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Introduction

Thomas R. Consi and Barbara Webb

nimals have long served as inspiration to roboticists. Their adaptability,
Ajlcxibility of motion and great variety of behaviors has made them the

often unspoken) benchmarks for robot performance. Beyond inspira-
tion, however, animals have not always yielded much in the way of concrete
mechanisms that could be used to build robots, and robots have been almost
comical representations of animals. The problem was that engineered compo-
nents did not have the performance or form factor of their biological counter-
parts. Recently things have begun to change and robots are now capable, to a
limited degree, of accurately mimicking the behavior of animals. Advances that
have made this possible include microprocessors of ever increasing computa-
tional power and ever decreasing size, tiny solid-state sensors, low-power elec-
tronics, and miniaturized mechanical components. Robots can now be built
that have some of the sensing capability of, for example, a desert ant or the mo-
tor skills approaching that of a cockroach. Animal-like robots (termed biorobots
in this book but also known as biomimetic or biomorphic robots) are serving an
increasingly important role as a link between the worlds of biology and engi-
neering,

Biorobotics is a new multidisciplinary field that encompasses the dual uses of
biorobots as tools for biologists studying animal behavior and as testbeds for the
study and evaluation of biological algorithms for potential applications to engi-
neering. There have been several recent reviews of biorobotics as a way to apply
biological algorithms and mechanisms to engineered systems (e.g. Beer et al.
1993, Dario et al. 1993, Hirose 1993, Srinivasan and Venkatesh 1997, Bekey
1996, Beer et al 1997, Sharkey and Ziemke 1998, Chang and Gaudiano 2000)
This book particularly concerns the role of robots as tools for biologists, a more
recent phenomenon. Understanding how animals work is essentially a problem
of “reverse engineering” i.e. rather than building something with a certain func-
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tional capability, we have something with a certain functional capability and
want to work out how it works. Thus the application of engineering method-
ologies for modeling animals seems an appropriate and promising approach.
However such a task is far from easy.

An animal can be described as mobile vehicle with a multimodal, high-band-
width interface to its environment. One merely has to look at a cricket with a
hand lens to see the thousands of sensory hairs studding its exoskeleton. Each
hair is invested with many sensory cells and different types of cells “see” the en-
vironment in different ways (e.g. some respond to mechanical stimulation and
others to chemical signals). Animals are therefore, deeply embedded in their en-
vironments and they are profoundly affected by the subtle and complex signals
within those environments (e.g. turbulence, polarization patterns, acoustic
noise, thermal micro-climates, etc). It is the complexity of the environment and
the high degree to which animals can sense and respond to that complexity that
makes it difficult to obtain a detailed understanding of the world as seen by an
animal through its senses and interpreted through its behaviors. The situation is
made even more complicated because the animal invariably disturbs its environ-
ment and creates a new set of stimuli that may also be important to the crea-
ture’s behavior.

Biorobots are now enabling biologists to understand these complex animal-
environment relationships. They can be thought of as micro-environment ex-
ploration robots that can detect and map sensory signals at the level of the ani-
mal and can measure how the presence and motion of the animal affects those
signals. This data, coupled with observations of the animal itself, can lead to
very sophisticated hypotheses as to what is causing a behavior and what is shap-
ing the behavior as it plays out. These hypotheses can then be tested in laborato-
ry or field-based experiments with the biorobot robot as well as with the real an-
imals. The robot offers two distinct advantages over the real animal in such
studies. First, the behavior under test in the robot is not affected by competing,
uncontrolled, behaviors. Second, orders of magnitude more data can be ob-
tained from a robot, compared to an animal, on its actions, its sensory input,
and its internal states. Despite these advantages it must not be forgotten that the
biorobot, however sophisticated, is only mimicking part of the animal.
Biorobotics is a tool-based discipline, much like the microscopy, and one should
never lose sight that biorobots are tools for use in studies of animals, not re-
placements for such studies.

Computer simulation has long been another tool used by biologists to model
biological phenomena at all levels of organization, from populations of animals to
individual creatures, to “subassemblies” such as the ear, down to individual com-
ponents, neurons, sensory receptor cells and muscle fibers. The question naturally
comes to mind as to why bother building robots at all when computer/numerical
models have been so useful? The answer to this question comes from the complex-
ity of the sensory world discussed above. A hypothesis implemented on a robot
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operating in a real environment can be tested more rigorously than in simulation
because the hypothesis will be challenged with real, complex and often unmode-
lable stimuli. For example, hydrodynamic simulations of underwater turbulence
are very complex yet still do not adequately represent real turbulent flow. This
type of flow is what shapes the olfactory signal sensed by lobsters, fish and many
other underwater creatures. It is far easier and cheaper to generate a real odor
plume to test a plume following algorithm than to use a plume simulation that
will produce an inferior stimulus compared to the real thing. Biorobots can be
usefully thought of as physical models of animals that enable a level of investiga-
tion beyond that possible with simulation. Note that biorobots do not replace
simulation, just as they do not replace real animals in experiments. Simulation is
very useful both as a hypothesis testing methodology and as a design tool for de-
veloping biorobots. It often happens that there is a cyclic iteration of animal ob-
servations, simulations, and biorobotic experiments during the course of an inves-
tigation that, in the best case, leads to an increasingly more accurate picture of the
animal’s behavior and its physiological underpinnings.

A Brief History of Biorobotics

The attempt to make machines behave in a lifelike manner is as old as science
(De Solla Price 1964). Ingenious mechanical devices have been built to mimic
animal behaviors, sometimes with impressive detail e.g. Vaucanson’s duck (de
Vaucanson 1738, Chapuis and Droz 1958). However their clockwork mecha-
nisms did not noticeably resemble the inner workings of biological systems. A
more or less direct scientific lineage to biorobotics can be traced starting at the
end of the nineteenth century with the advent of the then new discipline of
electrical engineering. Nikola Tesla conceived “the idea of constructing [an] au-
tomaton that would ... respond, as I do myself, but of course, in a much more
primitive manner, to external influences. Such an automaton evidently had to
have motive power, organs for locomotion, directive organs, and one or more
sensitive organs so adapted to be excited by external stimuli....” He built and
demonstrated a radio controlled boat in the 1890s and discussed plans for an
automaton that “will be able, independent of an operator, left entirely to itself,
to perform, in response to external influences affecting its sensitive organs, a
great variety of acts and operations as if it had intelligences [sic]” (cited in
Rosheim 1994). The pioneering physiologist Jacques Loeb compared the behav-
iors of “lower” animals to that of an artificial heliotropic machine, a light fol-
lowing device made of motors, photocells and relays (Loeb 1918). Breder
(1926) developed two model boats, one propelled by a flapping fin and the oth-
er by an undulating fin, to study fish propulsion. Fifty years ago the advent of
cybernetics saw the building of a series of electromechanical devices intended to
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explore aspects of animal behavior, such as the “homeostat” machine (Ashby
1952) and the reactive “turtle” (Walter 1961). A number of similar devices built
around this time are described in Young (1969).

Although the advent of modern transistor technology and computers might
have been expected to support rapid further progress in building animal-like
robots, in fact the main research emphasis diverged in somewhat different direc-
tions. One might be termed investigation of the “disembodied” brain: an em-
phasis on building machines with human reasoning powers (artificial intelli-
gence) rather than human (or animal) physical powers. Although some of these
mechanisms were “biologically-inspired,” such as the neural network approach,
the tasks investigated were still largely cognitive. Even within biology, where
“analog” (i.e. electrical circuit models) of hypothesized animal control systems
continued to be used as simulation tools (e.g. Harmon 1961, Collewijn 1972;
Collett 1980) till replaced by today’s software simulations, the systems rarely
“closed the loop” with real actuators and sensors. On the other hand, investiga-
tion of the physical problems of sensing and control for artificial systems were
somewhat subsumed by mechanization, with much robot research deriving from
industrial concerns (with the main exception some notable research on hu-
manoid robots in Japanese research groups such as that of Ichiro Kato). Cyber-
netic theory for operating these systems developed sophisticated mathematical
formalisms, but was in the main not closely related to biology. One reason may
have been the limited understanding of how biological systems actually worked.

Thus a parallel development in biology that was critical to the emergence of
biorobotics was the application of control system theory and other engineering
techniques to the study of animal behavior, most notably by the “European
School” of neuroethology. This work was primarily focused on the sensory-mo-
tor behavior of arthropods and began with the work of von Holst and Mittel-
staedt (reviewed in Schone 1984). Ground breaking studies on many arthropod
systems were carried out in the mid to latter twentieth century. A few examples
of the many systems studied include: fly vision (reviewed in Buchner 1984), ant
navigation (Wehner 1989), walking in the stick insect (Cruse 1990) and crab
oculomotor behavior (Horridge and Sandeman 1964). This work, and other
similar studies, provided a rich baseline of quantitative data on the performance
of animals that was ready to be incorporated into the biorobots that began to
emerge in the last decades of the twentieth century.

Two notable event in the development of current biorobotics were the publi-
cation of the slender volume Vehicles, Experiments in Synthetic Psychology (Brait-
enberg 1984) and the emergence of behavior-based robots (Brooks 1986a).
Braitenberg in “Vehicles” showed how animal-like behaviors might be produced
in simple “thought” robots and how these vehicles may be used to interpret be-
havioral data. Brooks and colleagues expanded the field of artificial intelligence
to consider the problems faced by relatively simple insect-like robots that must
navigate within the real world. Other influential work done in this period in-
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cludes the highly impressive running robots developed at the Massachusetts In-
stitute of Technology’s Lego Lab (Raibert 1986), and the application of Arbib’s
(1972) biologically based “schema theory” to autonomous robots by Arkin
(1987). The fields of artificial life (Langton 1989) and adaptive behavior or “an-
imats” (Meyer and Guillot 1990) also emerged around this time, with their em-
phasis on artificial replication of precognitive behaviors, though still largely in
simulation. What these interdisciplinary movements helped generate was a
meeting point between robot technology on one hand and mainstream biologi-
cal models on the other.

This has resulted in recent years in a rapid increase in the number of models
of specific animal competencies being implemented in robot devices, driven
both by advances in technology, as mentioned above, and in our expanding
knowledge of the sensory, motor, and nervous systems of animals. In table 1 we
list papers from the last decade that fall within this description (not including
the large amounts of work in biologically-based sensory processing except where
it is used in behavioral control, i.e. on a robot), demonstrating both the quanti-
ty and breadth of current work in this field.

Overview of the Book

This book is an edited collection of papers that were presented at the “Robots
and Biology: Developing Connections” American Association for Artificial In-
telligence Symposium held on October 23-25, 1998 in Orlando Florida. The
purpose of the symposium was to bring together scientists from a diverse array
of disciplines all of whom are using biorobots as probes of animal behavior and
brain function. The chapters are ordered with those primarily involved with
sensory biology presented first, followed by chapters that focus on motor sys-
tems, and ending with chapters concerned with higher-level or cognitive pro-
cesses. This ordering is, of course, artificial because it is difficult if not impossi-
ble to cleanly separate functional subsystems within animals. A prime example
of this is the use of visual motion for object detection and navigation (Viollet
and Franceschini, chapter 4) in which the motor and visual systems are closely
coupled to perform this function. Nevertheless, the ordering does serve as a
convenient organizational framework for the book and to direct readers with
specific interests to specific chapters.

A chapter on neural mechanisms in cricket phonotaxis by Barbara Webb be-
gins the Sensory Systems section. A robot model of a cricket is used to test a
neuronal model for sound localization by these noisy insects. Next we dip un-
derwater where Frank Grasso examines the world of olfactory-based guidance in
lobsters. The robot presented in Grasso’s chapter is one of the first examples of a
marine biorobot. Polarized light navigation in insects has long been of interest
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to biologists and the next chapter by Ralf Méeller and colleagues presents a
robot with a visual system modeled after that of the desert ant Cazaglyphis. “Sa-
habot” is being used to test hypothesis on how Cataglyphis uses the pattern of
skylight polarization to find its way back to its desert burrow. This is followed
by an invited chapter by Nicolas Franceschini, a pioneer in biorobotics. In this
chapter Franceschini and coauthor Stéphane Violett present a novel and robust
visual tracking system that utilizes of low amplitude scanning of a photodetec-
tor. Such a system may have an analog in the compound the fly in which a tiny
muscle oscillates the photoreceptor array.

Two chapters are presented in the Motor System section. In the first, Roger
Quinn and Roy Ritzman review their work in developing hexapod robots with
cockroach kinematics and control. This work is an excellent example of how the
close collaboration of an engineer and a biologist can lead to advances in both
fields. The chapter by Holk Cruse presents the intriguing argument that an un-
derstanding of how the brain controls complex, multiple degrees of freedom
motor systems, such as the six legs of the stick insect, may give us important in-
sight into how the so-called higher cognitive functions are implemented.

The issues addressed in Cruse’s chapter lead us into the final pair of chapters
on the use of robots to explore higher brain function. Olaf Sporns and Nikolaus
Almdssy explore the development of perceptual invariance in a neural model
patterned after the mammalian inferior temporal cortex. This model was incor-
porated into a mobile robot with a visual system and was shown to develop pat-
tern-selective “neurons” over time as the robot was permitted to move about
within the real world. In the final chapter of this book Brian Scassellati discusses
the application of humanoid robots to the study of human social development.
The book ends with a discussion of the outstanding issues in biorobotics, given
the current state of the art, that were derived from the lively discussions that oc-
curred during the AAAI symposium.

It is our hope that the reader will find these chapters informative and insight-
ful and perhaps inspirational. We do hope, however, that the reader also views
these chapters with a critical eye. Biorobotics is an emerging field that will be-
come scientifically strong only through vigorous debate and the application of
rigorous standards of scientific utility. It must not be forgotten that a biorobot is
a model of a living animal and, like all models, has its appropriate uses and its
limits. To aid our readers in the evaluation of work in this field, and to help
them develop their own research, we provide the following list of dimensions
(Webb 2001) on which biorobotic modeling decisions need to be made:

* Realism: whether the model tests and generates hypotheses applicable to biology.

* Level: the elemental units of the model in the hierarchy from atoms to societies.

* Generality: the range of biological systems the model can represent.

*  Abstraction: the complexity, relative to the target, or amount of detail included in
the model.
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Subject area | Examples References
Simple sensorimotor control
Chemical [ Moth pheromone Kuwana, Shimoyama, and Miura 1995; Ishida, Kobayashi, Nak and Moriisumi 1999;
tracking Kanzaki 1996; Willis 2000
Ant trail following Sharpe and Webb 1998; Russell 1998
Lobster plume following Grasso, Consi, Mountain, and Atema 1996; Grasso, Consi, Mountain, and Atema 2000; Ayers
eral. 1998
C. elegans gradient climb Morse, Ferree, and Lockery 1998
Auditory | Cricker phonoraxis Webb 1995; Lund, Webb, and Hallam 1998; Webb and Scutt 2000
Owl sound localisation Rucci, Edelman, and Wray 1999
Human localisation Horiuchi 1997; Huang, Ohnishi, and Sugie 1995
Bat sonar Kuc 1997; Peremans, Walker, and Hallam 1998
Visual | Locust looming detection Blanchard, Verschure, and Rind 1999; Indiveri 1998
Frog snapping Arbib and Liaw 1995
Fly motion detection to Franceschini, Pichon, and Blanes 1992; Weber, Venkatesh, and Srinivasan 1998; Hoshino,
control movement Mura, Morii, Suematsu. and Shimoyama 1998; Huber and Biilthoff 1998; Srinivasan and
Venkatesh 1997; Harrison and Koch 1999
Draying mantis peering Lewis and Nelson 1998
Human Horiuchi and Koch 1999; Takanishi, Hirano, and Sato 1998; Shibata and Schaal 1999
oculomoror reflex
Tracking/Saccade control Clark 1998; Wagner, Galiana, and Hunter 1994; Schall and Hanes 1998
Other | Ant polarized light Lambrinos et al. 1997, Lambrinos, Méller, Labhart, Pfeifer, and Wehner 2000
compass
Lobster ancmotaxis Ayers ccal. 1998
Cricket wind escape Chapman and Webb 1999
Trace fossils Prescott and Ibbotson 1997
Complex motor control
Walking | Stick insect Cruse et al. 1998, Kindermann e al. 1998, Ferrell 1995; Pfeiffer et al. 1995
Cockroach Espenschied et al. 1996,Delcomyn and Nelson 2000, Nelson and Quinn 1998, Binnard 1995
Four-legged mammal Tig ctal. 1998, Berkemeicr and Desai 1996
Swimming | Tail propulsion Triantafyllou and Triantafyllou 1995, Kumph 1998
Pectoral fin Kato and Inaba 1998
Undulation Patel ec al. 1998
Flagellar motion Mojarrad and Shahinpoor 1997
Flying | Insect wings Miki and Shimoyami 1998, Fearing 1999, Fearing et al. 2000, Dickinson et al. 1999, Pornsin-
Bat Sirirak and Tai 1999
Arms/hands | Spinal circuits Hannaford et al. 1995;, Williamson 1998
Cerebellar control Fagg et al 97, van der Smage 1998, Hoff and Bekey 1997
Grasping Lconi ctal. 1998, Hauck ct al. 1998
Haptic exploration Erkman ecal. 1999
Humanoid Special issue Advanced Robotics 116: 1997; Brooks and Stein 1993 Hirai et al. 1998; Yamaguchi
and Takanishi 1997
Other | Runningand Hopping Raibert 1986, Pratt and Prate 1998
Brachiation Saito and Fukuda 1996
Mastication Takanobu et al. 1998
Snakes Hirose 1993, Review in Worst, Miller forthcoming
Paper wasp nest construct Honma 1996
Navigation
Landmarks | Ant/bee landmark homing Maller 2000; Méller et al. 1998
Maps | Rat hippocampus Burgess et al. 1997, Gaussier et al. 1997; Recce and Harris 1996
Search | review Gelenbe et al. 1997
Collective behaviours Beckers et al. 1996; Holland and Melhuish 1999; Melhuish et al. 1998; Kube and Bonabeau
2000
Learning Edelman ec al. 1992; Hallam et al. 1994; Sporns forthcoming, Scutt and Damper 1997, Saksida
etal. 1997, Voegdlin and Verschure 1999, Chang and Gaudiano 1998

Table 1: Examples of biorobot research. This is intended to be a representative
sampling not a fully comprebensive listing.
* Accuracy: how well the model represents the actual mechanisms of behavior.
® Medium: the physical basis by which the model is implemented.
* Performance match: to what extent the model behavior matches the target behavior.

* Utility: the biological understanding, technical insight or communication of ideas
that the model provides.
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CHAPTER

1

A Spiking Neuron Controller
for Robot Phonotaxis

Barbara Webb

n their 1988 paper about the auditory behavior of the cricket, Weber and
Thorson suggest as a “first model” of phonotaxis:

“... the simple rule ‘turn toward the ear more strongly stimulated.” We use the
word simple because a two-eared robot programmed to obey this rule (if suitable
noise were incorporated) could be made to track a sound source in a manner like
that of the female.”

This chapter reports the latest in a series of studies (Webb 1994, 1995; Webb and
Hallam 1996; Lund, Webb, and Hallam 1997, 1998) of what is required to make a
two-eared robot track sound sources in a manner like the female cricket. In the
process many questions have been raised, both about the “simple rules” of phono-
taxis, the more general problems of understanding neural control of behavior, and
what can be learned from robot models. The ultimate aim in these investigations
has been to gain an understanding of how the sensory and neural systems of ani-
mals, embedded in appropriate environments, successfully control behavior. A gen-
eral strategy has been to look for alternatives to the standard “information process-
ing” conception of perception by focusing on how sensors can act as matched
filters, how temporal dynamics of neurons can interact, and how environmental
conditions control behavior. Consequently the models have the following features:

* As far as possible the models are built as real systems with actual sensors and mo-
tors, behaving in the real world. They are also built as whole systems, solving a
complete problem of sensorimotor control rather than partial problems of sensing
or moving.

* The architectures represent neural processes at appropriate levels of detail rather
than using standard artificial neural net abstractions. Individual neuron properties
and identified connectivity are included, rather than training methods being ap-
plied to generic architectures.
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¢ The systems built are treated as models: the resulting behavior is compared in some
detail with biological data, with the aim of assessing how the well the model really
explains the observations.

The particular system studied—cricket phonotaxis—is a useful “model” to
explore these themes. The behavior is stereotyped, yet nontrivial. The neu-
roethological understanding of this system is relatively well advanced. Thus an
explanation of behavior in terms of neurons should be forth-coming. However,
when the rigorous test of trying to build a replica of the system is applied it is
quickly evident how far short of a full explanation current research falls. More-
over building the models suggest some alternative plausible explanations.

Cricket Phonotaxis

The female cricket can find a conspecific male by walking or flying towards the
calling song the male produces. This sensory cue is sufficient (though not neces-
sary) for finding a mate. Using only auditory cues, the female is able to cover a
large distance—ten to twenty meters—negotiating uneven vegetation-covered
terrain, and reliably locate a single male, despite other males and other sounds
in the vicinity. In the lab the female will track sound for long periods on a tread-
mill and thus many details of the tracking ability are available (e.g. Thorson,
Weber, and Huber 1982; Schmitz, Scharstein, and Wendler 1982; Huber and
Thorson 1985; Huber, Moore, and Loher 1989). It is a tractable system for the
neuroethological approach, involving a well-defined stimulus and response, an
accessible nervous system and a relatively small number of critical neural con-
nections (e.g. Wohlers and Huber 1982; Schildberger 1988; Horseman and Hu-
ber 1994; Stumpner , Atkins, and Stout 1995).

Thorson, Weber, and Huber (1982) suggested a basic hypothesis that still un-
derlies most of the research on this system:

“Once a song is recognized as correct, the female apparently walks towards it by

sensing whether the sound source is to the right or left and making suitable correc-
tive turns.”

This assumes that recognition of correct songs is an independent, prior event
to localization of sound. However, whether a song is recognized is generally as-
sessed by whether the female walks towards it, thus it is possible that failure to
approach a song simply indicates failure to make the suitable corrective turns. It
has been argued (Weber and Thorson 1988) that the fact that the cricket moves
in typical “phonotactic” fashion i.e. stop-start movement with corrective turns,
even when sound is played from above and hence contains no useful directional
information, is evidence for explicit “recognition,” but as will be discussed be-
low this does not necessarily follow.

It is beyond the scope of the current chapter to review the extensive evidence



A SPIKING NEURON CONTROLLER FOR ROBOT PHONOTAXIS 5

on cricket phonotaxis (see e.g. Huber, Moore, and Loher 1989; Pollack 1998).
The main finding that will be addressed is that the female cricket only turns to-
wards and approaches the calling song of conspecific males. To be more exact,
the carrier frequency of the song and the temporal repetition structure affect the
likelihood and accuracy of taxis in the female: in general the best taxis is seen to
the conspecific song.

Cricket song generally consists of short bursts (ten to thirty millisecond “syl-
lables”) of fairly pure tone (around 4-5 kHz) grouped in various distinctive pat-
terns (“chirps”). A number of studies have shown frequency preference in the
approach to temporally identical songs. For example, Popov and Shuvalov
(1977), Stout and McGhee (1988) and Oldfield (1980) all report a higher
threshold and decreased accuracy for taxis as the frequency is changed from the
typical carrier, and no taxis below 2 kHz or above 12 kHz. The most important
temporal pattern cue for recognition is given by the syllable repetition interval
(SRI) in the song (Popov and Shuvalov 1977; Thorson, Weber, and Huber
1982; Stout and McGhee 1988). Thorson and colleagues argue for a “thirty Hz”
hypothesis for Gryllus campestris: that a repetition rate of around this speed is
necessary and sufficient for taxis in the female, whatever the length of syllables
or higher order grouping of syllables. Doherty (1985) and Wendler (1990) sug-
gest that chirp structure alone may also be necessary or sufficient for taxis in
Acheta domestica and Gryllus bimaculatus respectively, but there is general agree-
ment that syllable rate is a primary cue.

In previous work (Webb 1994, Webb 1995) it was hypothesized that the fre-
quency selectivity of the cricket could be a simple consequence of the physical
means by which it detects the direction of sound sources, and the temporal se-
lectivity a consequence of using the relative timing of firing to control behavior
rather than firing rates. The work discussed here will show that both these hy-
potheses are borne out by the robot model.

Robot Modeling

A good way to evaluate the completeness and usefulness of a hypothesis is to
implement it in a model system. This will always quickly reveal gaps in informa-
tion or inconsistencies in evidence, as well as potentially producing predictions
for further testing.

In the case of hypotheses about sensorimotor function, there are a number of
reasons why using a physical model rather than a simulation can be advanced. Al-
though there has been much pseudo-philosophical debate over the merits of using
real-world systems I believe that the pragmatic advantages are the ones to stress:

* It is easier to model physical constraints physically than symbolically. By using real-

world physics there is little risk that the model violates the possible. Noise is natural



6 WEBB

rather than an arbitrary added randomness. Good simulations of real world con-
straints require substantial calculations, it is easier to let the “physics do the walk-
ing” (Flynn and Brooks 1989). Finally the testing of mechanisms is more straight-
forward and more robust—ideally one can use the same experimental paradigms on
the robot as are used on the animal being modeled.

* Implementing a robot forces you to look for simple mechanisms that might make
it work, rather than immediately implementing a given hypothesis. Thus each as-
sumption about the system is questioned for its necessity and plausibility. The con-
straints imposed are appropriate because they are sensorimotor ones such as signal
processing time, noise, and effects of self motion.

Implementation

The robot model of the cricket has undergone a number of incarnations. The
main features of the current model (discussed in detail below) are (1) an elec-
tronic sound processing circuit that mimics the auditory processing of the crick-
et ear in real time, with programmable control of parameters; and (2) a neural-
network model that operates at the level of dynamic changes in membrane
potential

The robot base is a Khepera (K-Team 1994) miniature mobile robot. This
measures roughly six centimeters in diameter and four centimeters high: the ears
circuit described below adds six centimeters to the height. It has two drive
wheels and two castors. It has a 68332 processor programmed in C. This plat-
form was chosen because it is closer than most robots to the scale of a cricket,
has precise motor control, and is relatively straightforward to interface. The pro-
cessor speed turned out to be a limitation, requiring the invention of a pared-
down version of the model of neural spiking previously used (Scutt and Webb
1997) to enable it to run in real time on the robot.

The Robot’s Ears

The cricket has evolved a unique solution to the problem of determining the di-
rection of the sound source it wishes to approach (Michelsen, Popov, and Lewis
1994). There is little direct amplitude difference in sound at the two ears either
from distance attenuation or sound shadowing, and the cricket lacks the special-
ized neural processes found in other animals for detecting microsecond phase
differences. Instead the phase difference is physically converted into an easily de-
tected amplitude difference as follows. The ear-drums on the legs are connected
by an air-filled tracheal tube to each other and to two additional openings on
the cricket body. Sound thus reaches the tympani both directly and indirectly,
via the tube, so that its vibration reflects the summation of these different waves.
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The phase relationships of these waves depend on the distances traveled (and in-
ternal delays in the tube), which depend on the direction of the sound source.
Thus a sound source on the left side produces a larger vibration in the left tym-
panum than the right tympanum, and consequently quicker firing of auditory
neurons on that side.

This mechanism was modeled electronically (Lund, Webb, and Hallam
1997), using two microphones with a small separation. The output of each mi-
crophone was combined with the inverted, delayed output of the other micro-
phone. The delay represents the time for sound to travel through the tracheal
tube and the inversion the fact that direct and indirect sound operate on oppo-
site sides of the ear-drum. The result is that sound amplitude measured on the
combined signal varies with sound direction in an approximately cardioid func-
tion.

The implemented circuit is mounted on top of the robot. The two micro-
phones face forward and their exact separation can be varied. In the experiments
below it was set at eighteen millimeters, approximately one-quarter the wave-
length of 4.7 kHz sound, which is the carrier frequency of Gryllus bimaculatus
song. The circuit is programmable so that the relative delay between the ears
and gains of the combined signal can be altered. In the experiments below it was
set to a fifty-three microsecond delay—the time for sound to propagate one-
quarter wavelength of 4.7 kHz, and gains of one were used.

An important feature of this system is that the tuning of the ears separation
and the delay result in the circuit being most directional for a particular signal
frequency and providing progressively less directionality as the frequency in-
creases or decreases. Thus behavior, such as turning to the sound, that depends
on the directionality, should become progressively worse as the carrier frequency
of song is altered from the ideal. Although the system as described has no direct
frequency filtering, the behavior will nevertheless appear frequency selective.

Experiments on the robot demonstrated that this does in fact occur. Full de-
tails are given in Lund, Webb and Hallam (1997) but in summary, the robot
would approach cricket sounds or a synthesized signal with a 4.7 kHz carrier
frequency, would ignore a 9.4 kHz carrier frequency, and had a raised threshold
for taxis to a 2.35 kHz signal. Moreover the robot was able to “choose” a 4.7
kHz signal over a 6.7 kHz signal when played simultaneously.

The Robot’s Neurons

The model neurons implemented are a simplified version of the Scutt-Dampner
(Scutt and Dampner 1991, Scutt 1994) model, which has previously been used
in a phonotaxis simulation (Scutt and Webb 1997). Implementing such a model
on the robot produced strong constraints. While it was considered essential to re-
tain the dynamic membrane potential (and spiking) elements of the neurons, it
was also necessary that the model run at real time speed (e.g. spiking at up to two



8 WEBB

hundred to three hundred times a second, or at least three to five times during a
cricket’s fifteen to twenty millisecond syllable) on the robot’s microprocessor.

General Features of the Model

The implemented model uses a two-state system to describe neuron membrane
potential, modeled as a single compartment. In the pre-firing state there is leaky
integration of input. When threshold is reached a spike (rapid increase in poten-
tial) occurs and the neuron goes into a-post-firing state. In the latter state input
is still added but there is also a rapid decrease in potential. While the neuron is
above a recovery level it passes proportional activation via weighted synapses to
other neurons. When it drops below this level it returns to the pre-firing state.
The time-constant and the recovery level can be varied; to mimic specific prop-
erties of identified neurons.

Neurons are connected by “weighted synapses.” During the post-firing (pre-
recovery) state, a spiking neuron passes potential to those neurons with which it
connects, the amount of potential dependent on the membrane potential of the
neuron and the size of the weight of the connection. These synapses also exhibit
depression, i.e. the efficacy is decreased after firing and takes time to recover. It
is also possible for synapses to connect to other synapses, in which case they fa-
cilitate or inhibit that connection by altering its weight.

Neurons can be defined to have sensory input, in which case the signal is rep-
resented as a change in membrane potential; or motor output, in which case
spikes in the neuron are interfaced with the motor control of the robot. The
original model (Scutt 1994) included mechanisms for long-term alteration of
connection weight, to model biological learning mechanisms. These and various
other details have been stripped out of the code and it has been optimized as far
as possible. The four-neuron model described below runs faster than a
cycle/millisecond: one cycle updates all neuron membrane potentials including
input and output functions.

The Phonotaxis Circuit

The current robot controller consists of only four neurons and four synapses
(figure 1). The two input neurons are based on the identified “AN1” neurons in
the cricket (Wohlers and Huber 1982), which are closely associated with taxis
(Schildberger and Horner 1988). The amplitude signal from the auditory cir-
cuit is scaled-down by a factor of 4 and a “noise” constant subtracted. The re-
sulting value is added to the membrane potential of the respective input neu-
rons. If this is higher than the constant “leak,” the potential will eventually sum
to threshold. The AN in the cricket has spikes superimposed on a raised poten-
tial so recovery (i.e. ability to spike again) in the model neuron is set near
threshold rather than near the resting level. This means that continued input
will rapidly lead to further spikes for the duration of the stimulus (see examples
in figure 2). The amplitude of the input will be represented both by the initial
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Figure 1. The four neuron model for phonotaxis.

Auditory neurons (AN) neurons have input from ears, excite an ipsilateral motor neuron
(MN), and inhibit the opposite AN-MN connection. Both connections habituate. When an
MN fires the robor turns in thart direction.

latency to start spiking and the consequent firing rate. The time constant of this
neuron is matched to the cricket neuron such that it decays half-way to resting
potential after around ten milliseconds (Wohlers and Huber 1982). This gap
appears to set a limit on the fastest temporal patterns that can be encoded in its
spike pattern (Schildberger 1984). ’
In the cricket the AN1 send axons to the brain, but although a number of
brain neurons involved in auditory processing have been identified (Schildberg-
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er 1984; Bohm and Schildberger 1992; Staudacher 1998) the circuit connectivi-
ty is not known. In the robot model each AN makes an excitatory connection to
a motor neuron (MN) on the same side. Thus an initial spike raises the poten-
tial of the MN towards threshold. However the depression of this synapse
means that immediately following spikes do not raise the potential significantly
further. Only if there is a gap in the firing of the AN1, leading to recovery of the
synapse, can a further spike in AN1 contribute sufficiently to MN to drive it
above threshold. As MN also performs leaky integration, if the gap is too large,
potential will have decayed too far below threshold for this to occur. Each AN1
also makes a further, inhibitory, connection to the opposite AN-MN synapse.
This means that the AN1 firing first will suppress any effect of the opposite
AN firing slightly later.

Each MN controls motor behavior in the following way. If it spikes, the
robot makes a turn in the corresponding direction at a fixed speed and of a fixed
duration. If another spike occurs before the duration elapses, it is extended. If
the opposite MN fires during the duration the turn will be reversed. Currently
the speed and duration of turns is set at approximately fifty-five degrees per sec-
ond for one hundred fifty milliseconds Obviously this is a substantial simplifica-
tion of the actual control of turns by a walking or flying cricket but in the ab-
sence of detailed information it was adopted as a simple approximation: most
cricket behavioral data is reported in terms of body movement rather than leg
control.

Experimental Variables

The robot can be run in several modes to facilitate the collection of data. First,
the membrane potential of each neuron can be recorded at each cycle so that
recordings of the spiking behavior can be produced. Memory limitations on the
robot limit consecutive recordings to around four hundred cycles worth of data
(less than half second) but as the relevant input patterns vary at thirty Hz this is
sufficient for most purposes in which such a detailed record is required. Second,
the motor behavior can be recorded. The default forward speed of the robot can
be selected, altering how fast it moves, towards the speaker or in other direc-
tions. This speed can be set at 0 so that instead of moving towards the sound
source, the robot rotates in a fixed position, generating data directly comparable
to that collected from crickets walking on a treadmill. The rate of recording mo-
tor position can be varied but is generally set at around ten Hz, allowing up to
sixty seconds worth of data to be collected consecutively. Finally the robot can
be run in “nonrecording” mode in which case it performs the behavior without

breaking off to download data.
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Results

The data below comes from a series of tests run in “treadmill” mode, i.e. with
the robot turning in response to MN spikes but not moving closer to the sound.
Using recordings of the neurons and the motors, the behavior was examined
with both recorded cricket songs and artificial stimuli.

Turning to Sound

The graphs below (figure 2) show how this circuit controls turns towards the
sound source. The stimulus is recorded cricket song (fifteen millisecond bursts
of approximately 4.7 kHz sound), looped to repeat the syllables continuously,
and the robot is initially facing about forty-five degrees to the right. The output
of the auditory circuit is thus much stronger for the left ear than the right ear; in
fact the right ear is initially below threshold. It can be seen that each syllable of
sound in the left ear produces a ramp in potential in the left AN followed by
four spikes, and then a slow decrease towards resting level once the syllable has
ended. The first spike of each group increases potential in the left MN, but due
to synaptic depression, the immediately following spikes have little effect. MN
potential decays between syllables but slowly enough such that after two or
three syllables it exceeds threshold and produces a spike.

The spikes turn the robot left, towards the sound, as can be seen by the in-
crease in input amplitude for the right ear and decrease in the left. The right
AN begins to spike, but close comparison will show that it takes longer to reach
threshold and spikes later than the left AN. This means that the left AN activity
will have inhibited the connection between the right AN and MN, so the right
MN does not yet fire, while the left AN continues to do so.

Selectivity for Syllable Rate

The turning response can be made selective to a bandpass of syllable rates by
tuning the time constants. The first critical factor is illustrated in figure 3,
which shows the neural response on one side of the circuit to syllables faster
than normal—this is a synthesized signal consisting of 4.7 kHz tone bursts of
ten millisecond duration with ten millisecond gaps. The time constant of AN is
sufficiently slow that it is unable to code this pattern clearly, but instead contin-
ues to fire almost constantly. This means that the MN-AN synapse is depressed
and never gets an opportunity to recover, so MN does not receive sufficient in-
put to fire, and no turn is made even though the direction of sound is clearly
represented in the input.

Figure 4 shows the same neurons when the synthesized syllables are doubled
to last twenty milliseconds with twenty millisecond gaps. Note that these gaps
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Figure 2. The model neuron response to cricket song—15 millisecond bursts of 4.7 kHz tone.

At the start, only the left input is strong enough to cause spikes AN, and these sum to a spike in
MN every two or three syllables. This means the robot turns towards the sound. The right ear
amplitude increases, but it is still lower than the left. Thus the right AN spikes after the left AN,
which has inhibited its connection to MN. Note that the amplitude and membrane potential are
arbitrary units, cycles refer to processor cycles of average duration just under one millisecond.
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Figure 3. Response to fast (ten millisecond) syllables (lef side only).

The AN neuron does not recover between firing to each syllable, so the AN-MN connection
remains inhibited and the robot does not respond to the sound.

are about the same length as those in the cricket song stimuli in figure 2. In this
case the AN firing clearly represents each syllable with a burst of spikes. The
first spike in a burst produces an increase in potential in MN. The gap is long
enough for the depression of the AN-MN connection to recover, so that the fol-
lowing burst again increases MN potential. Though MN potential decays in the
gap, each increase brings it closer to threshold, and MN fires after two or three
syllables, producing turns towards the sound source.

When the length of syllables is increased further the circuit becomes less ef-
fective at locating sound as shown in figure 5. Here each syllable and gap lasts
40 milliseconds Though these gaps are long enough to allow the AN-MN con-
nection to recover, they are also long enough for the MN potential to decay
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Figure 4. Response to medium (twenty millisecond) syllables (left side only).

As in figure 2, every two or three syllables produces a spike in MN. The robot responds
quickly to sound

most of the way back to threshold, hence more syllables are needed to produce a
spike in MN.

The ability of the robot to locate sounds of different syllable rates was tested
behaviorally by adopting the treadmill paradigm used by Thorson, Weber, and
Huber (1982). The robot starts facing between two speakers that are at ninety
degrees separation, right and left. The signal is produced in one speaker,
switched to the other after about ten seconds, and switched back again after a
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Figure 5. Response to long (40 millisecond) syllables (left side only).
MN potential decays further in the longer gaps between syllables and thus is less likely to

reach threshold. The robot is slower to respond to sound.

further ten seconds. Crickets performing phonotaxis show a characteristic oscil-

lation around the speaker direction and follow the switch between the speakers,
provided the signal has the “preferred” temporal properties.

The results are shown in figure 6. For continuous sound the robot does not
move, and at ten milliseconds one turn occurs when the sound is switched back.
At fifteen milliseconds the robot actually turns the wrong way although it pro-
duces some periods of oscillatory behavior. At twenty and thirty milliseconds
the robot tracks the sound in the characteristic fashion and quickly follows the
shift in direction. The tracking at thirty milliseconds shows slightly larger oscil-

lations. At forty milliseconds, slower oscillation around the sound direction oc-

curs, and the robot fails to follow the switch between the speakers.
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Figure 6. Bebavior of the robot with different syllable rates.

Sound is switched from +45 to—45 degrees after approximately ten seconds and switched
back at twenty seconds. The robot successfully tracks the switch only for syllables of twenty to
thirty milliseconds.
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Recognition and Choice?

As a further test of the capabilities of the implemented circuit the following ad-
ditional tests were performed. Crickets have been shown to perform nondirect-
ed oscillation behavior to a sound broadcast directly above them that they pre-
sumably can’t localize, and this has been taken as evidence of independent
recognition of the signal (Weber and Thorson 1988). In the same study, crickets
presented with two sound sources are shown to track one of them rather than
confusing the direction, and this is taken to mean the female cricket can choose
between males if more than one is calling (Hedrick and Dill 1993). In figure 7
three trials using recorded cricket song are shown. In the first, the robot success-
fully tracks and switches between speakers. In the second, faced with two
sounds, the robot briefly oscillates between them then turns towards and tracks
one sound. In the third, initial silence, producing no turning behavior from the
robot is replaced after about ten seconds by a sound directly above. The robot
begins to oscillate as though it had “recognized” the nondirectional signal.

Discussion

The robot cricket described here demonstrates a plausible, simple mechanism by
which crickets may carry out selective phonotaxis. It raises a number of interest-
ing issues for understanding of this system. More generally it reveals the com-
plex neural/behavior interactions that can emerge from even a simple model cir-
cuit. Finally, the methods described can be used to support models of alternative
hypotheses and other sensorimotor systems.

Implications for Cricket Phonotaxis

The four neuron circuit implemented on the robot demonstrates the complexity
of behavior that can result from the dynamic properties of neurons embedded in
a real sensorimotor device. It can be usefully considered as a “minimal” model of
phonotaxis, that s, it represents (probably) the simplest neural circuitry that can
actually support the observed behaviors: tracking of sound sources, selectivity
for specific frequencies and syllable rates, and tracking behavior without direc-
tional input or with competing sounds.

So how might this relate to the actual circuitry in the cricket? More than four
identified neurons have been associated with auditory processing and taxis be-
havior. Our strategy has been to include the connections and properties of neu-
rons in the model only when they appear to be functionally demanded in at-
tempts to reproduce the behavior. For example, it might prove useful to include
the mutually inhibitory ON1 neurons that appear to increase the difference in
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Figure 7. Bebavior of the robot with (top) recorded cricket song switched
between speakers (middle) song simultaneously from both speakers and
(bottom) song from a speaker above the robot.

The ability to track one speaker out of two and to make phonotaxis like turns when there is

no directional information have been taken as evidence of independent “recognition” in the
cricket, but the simple robot circuit can reproduce these behaviors.

firing of the AN1 neurons (Horseman and Huber 1994). This additional sup-
pression of firing of the wrong side may solve some of the problems caused in
the current circuit by the latter firing sufficiently long after the right side to
cause a motor spike in the wrong direction.

An important implication for cricket neurophysiology of the model is that
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more caution should be exercised in assuming that spike rates provide sufficient
information about the function of neurons, and that operations on spike rates
directly control the behavior. The time scale and temporal patterning of the sig-
nal already suggest that changing firing rates may not provide the best “informa-
tion.” More subtle interactions of the timing of spikes can be employed success-
fully to control behavior. And firing rates that correlate with the behavior—in
particular the evidence of a brain neuron that appears to fire most to the syllable
rates preferred by crickets (Schildberger 1984)—do not necessarily imply a
functional role for those firing rates. In the current model, the MNss in the four-
neuron circuit show the same correlation of firing rate to preferred syllables (i.e.
they spike most frequently to the correct syllable rates), but this is simply a side
effect, not a clue to their function.

The minimal model given here thus provides one plausible answer to the
question—what neural mechanism underlies phonotaxis? It suggests a number
of directions for further investigation of this system, including:

* What relative role is played by the inherent frequency tuning of auditory neurons

versus the frequency limitations of directionality in the auditory system?

* Are time differences in AN firing alone able to cause turns? For example if a short
syllable on one side preceded a normal length syllable on the other, then latency
and number of spikes would suggest opposite directions of movement.

* Can recognition be disambiguated from localization in neural responses? Many ex-
periments fail to allow this distinction to be drawn.

* How should female choice studies be interpreted? The results here suggest that a
simple sensory bias hypothesis may suffice to explain the fact that females can di-
rectly approach the sound more like the correct calling song. However better exper-
iments on both crickets and the robot are needed to follow this up.

Further Work

Although the robot described has been used to implement a particular hypothe-
sis about phonotaxis, an important feature of the design is that it can easily be
used to test alternative hypotheses. The neurons and connections can be speci-
fied independently of the general processing mechanism so various circuits can
be tested in the same robot device. Further, it is quite plausible to add different
sensory and motor capabilities to the robot (there are already light sensors, cam-
era inputs and gripper controllers implemented on the same robot base by other
research groups) and interface these to the neural circuitry. This means that vari-
ous other neuroethologically investigated systems could be explored, for exam-
ple escape behavior.

What the system provides is a tool for thinking about the problem of sensori-
motor control in terms of the dynamics of neural interaction and real-world
constraints. This can produce alternate theories to the standard functional de-
compositions and information processing accounts. One hope is that a “tool-



20 WEBB

box” of circuit ideas may accumulate allowing the design of more complex neu-
ral processors, in a manner analogous to analog electronic circuit design. Even
better would be to develop a formalism for this kind of processor: however this
is likely to be a difficult task as a balance must be continually maintained be-
tween abstraction to enable mathematical tractability and realism so that impor-
tant low-level properties of neurons are included. An alternative route is to
adopt the “neuromorphic” approach of building explicit electronic circuitry to
model neural processes rather than using software. This would offer advantages
of speed and parallelism but perhaps at the cost of flexibility.

Acknowledgments

The ears circuit was built under EPSRC grant GR/K 78942 at the University of
Edinburgh, designed by John Hallam and Andrew Haston and implemented by

Henrik Lund. The neural model is based on collaborative work with Tom Scutt.



CHAPTER

2

Environmental Information,
Animal Behavior, and Biorobot Design
Reflections on Locating Chemical Sources

in Marine Environments

Frank W, Grasso

’ I Yhere are two uses of biorobots. They can be employed, first, as tools to
aid biological research, and second, as the end products of biological re-
search that perform useful tasks with an efficiency that approaches that

of animals. My focus is primarily on using them as aides to developing a deeper

understanding of animal behavior and its physiological substrates. The idea of
producing useful robots along the way, while desirable, is a secondary considera-
tion.

In the study of biological systems there are two broad areas in which
biorobots contribute. First, they allow for the direct test of biological hypotheses
themselves. If an appropriate implementation of a theory fails to replicate the
biological process it is intended to explain, that failure constitutes strong
grounds for rejecting the hypothesis. I shall return to this point in detail later. A
second application for biorobots is exploring the constraints of the world of an
animal. The behavior produced and data collected from a properly scaled au-
tonomous robot in the natural environment of the animal it emulates are about
as close as we can come to experiencing the world of another species. I shall re-
flect on both these applications of biorobots in detail in this chapter.

To produce useful robots, one must have a well-defined problem and a work-
able solution to that problem. Certainly animals can be found with capabilities
that are desirable in robots. Researchers who aim is to implement animal algo-
rithms and hopefully approach animal efficiency in these areas add to their
labors the burden of having the animal solution in hand before they begin con-
struction. The extent of this self-imposed burden depends upon the vagueness
with which the builder is “inspired” by the natural system. Future designers of
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practical biorobots will rely on understanding of the model animals gleaned
from biological research. For such an understanding to be adequate it will most
likely have one foot on traditional biological research and the other foot on pre-
vious generations of biorobots used as tools of biological research.

Three Issues

As a result of my experiences in the study of robots and animals, three issues
have been promoted to high relief in my thinking about projects involving
biorobots:

1. What constitutes a sufficient understanding of the organism to ensure that a
biorobotic implementation will lead to useful results?

2. What constitute good measures of robot performance?

3. What is the proper control algorithm(s) to represent a biological function in a
robot—more specifically, how does one decide the relative importance of environ-
mental cues and internal representations?

These are good questions for researchers to ask themselves in the early plan-
ning phases of a biorobotic project, regardless of whether they are planning on
using robotics to understand biological phenomena or are interested in the devel-
opment of practical robots based on biological inspiration. The answers—even
partial answers—to these questions, obtained from the perspective of a particular
task or biological system, are more useful to have in hand at the start of a
biorobotics project than they are as “discoveries” at the end of one. In this chap-
ter | will review the results of studies exploring the nature of lobster chemo-ori-
entation with our autonomous underwater biorobot, RoboLobster and use them
to illustrate the effect answers to these questions have on the biorobotic approach
to understanding biological phenomena and the production of useful robots.

The RobolLobster Experiments

The RoboLobster experiments and design specifications have been described in
previous publications. In this section I summarize the key features of that work
that illustrate the general points. The reader interested in the details of the robot
and chemo-orientation is directed to those papers (Consi, Atema, et al. 1994;
Consi, Grasso, et al. 1995; Grasso, Dale, et al. 1996; Grasso, Dale, et al. 1997;
Grasso, Basil, et al. 1998; Grasso, Consi, et al. 2000).

Three Lines of Attack

Marine species appear to have evolved a variety of strategies to deal with chemo-
orientation in the sea (Dodson and Dohse 1984; Moore, Scholz, et al. 1991;
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Dunsenberry 1992; Weissburg and Zimmer-Faust 1994; Zimmer-Faust, Finelli,
et al. 1995; Baird, Johari, et al. 1996; Cox, Hunt, et al. 1997; Dale 1997;
Moore and Lepper 1997; Barbin 1998). The spatial dynamics of the fluid medi-
um and the animal’s speed of locomotion appear to dominate the strategy each
species uses. Some—and probably many species not yet studied under multiple
conditions—appear to have evolved multiple strategies that they can switch on
and off depending on context (Dunsenberry 1992; Oliver, Grasso, et al. 1996;
Beglane, Grasso, et al. 1997; Mjos, Grasso, et al. 1999).

The aim of the RoboLobster project was to evaluate alternative hypotheses of
lobster chemo-orientation in the American lobster, Homarus americanus.
RoboLobster was one component of three parallel lines of research aimed at ex-
plaining lobster chemotaxis. The other two components involved understanding
the animal behavior and understanding the environment of the plume-tracking
lobster. Our efforts with RoboLobster would have been a tangle of free parame-
ters without these two sources of constraints.

In the following sections, I will review studies of the chemo-orientation be-
havior of lobsters under conditions of turbulent flow and the physics of chemi-
cal distribution under the action of turbulence before turning to the implemen-
tation of chemo-orientation algorithms in RoboLobster.

The Animal

In the case of the American lobster, it is clear that—at least for the plumes so far
studied—they use two chemo-sensors to inform their chemo-orientation strate-
gies. They perform more efficiently (i.e., they take straighter, less convoluted
paths) when they use both lateral antennules, but they can still track a plume to
its source with one (Devine and Atema 1982; Beglane, Grasso, et al. 1997). Al-
though it is not possible at this time to exclude the possibility that animals using
one antennule are employing a degraded form of the two antennule strategy, it
appears that the lobster is capable of using at least two strategies. The following
paragraph will illustrate why multiple strategies are likely.

Lobster behavior suggests that they might actually be using the turbulence-in-
duced spatial-temporal structure of the odor plume to track odors to their
source (Moore, Scholz, et al. 1991; Basil 1994). In contrast to the predictions of
other strategies such as odor-gated rheotaxis (Kennedy 1986), the closeness of
the lobster’s direction of travel (heading angle) to the direction of the source in-
creases as the lobster progresses through the plume (see figures 1 and 2). This
unequivocally demonstrates that the animal is extracting some form of informa-
tion about the direction of the source that is distinct from the direction of mean
flow on which odor-gated rheotaxis is based. If the lobster were to approach the
source along a line parallel to the direction of mean flow (the definition of
Rheotaxis) its heading angle would increase unless it were walking a parallel di-
rectly downstream from the source. The likely source is the pattern of intermit-
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Lobster Plume Tracking Behavior
Lobsters decrease heading angle error and increase speed
as they track a plume.
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Figure 1. The pattern of lobster behavior that indicates the
extraction of guidance information during tracking.
Solid lines are plots of heading error angle versus distance from the odor source as predicted from
odor-gated rheotasis (OGR), and from representative lobster data (RLD). Dashed line is a plot of
lobster speed versus distance from odor source from representative lobster data. Summary of the re-
sults obtained from Moore, Scholz, and Atema (1991) and Basin (1994).

tent odor patches produced by turbulence source (Moore, Scholz, et al. 1991;
Basil 1994).

If we accept the conclusion that lobsters are extracting and using some plume
information beyond mean flow, the natural question is, what information is the
lobster using? Recordings of these intermittent odor patches encountered by
plume-tracking lobsters indicate that they make turning decisions on the 2-4
second time scale (Grasso, Basil, et al. 1998). This is much too rapid an interval
for an accurate estimate of the average odor concentration. Neurophysiological
studies of the response dynamics of the chemo-receptor neurons on the lobster’s
lateral antennules indicate that these cells are capable of following the temporal
fluctuations of turbulence-influenced concentration signals (see next section)
(Gomez, Voigt, et al. 1992, 1994a, 1994b; Gomez and Atema 1996a; Gomez
and Atema 1996b). Simulation studies based on this data indicate that the tem-
poral filter properties of these neurons selectively preserve this information

(Grasso, Voigt, et al. 1998).

The Environment

To understand the task an American lobster faces as it tracks an odor plume to its
source, we must place ourselves in the lobster’s situation. In practical terms, diffu-
sion is too slow to cover distances of more than a few millimeters in the time that
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Heading Angle is measured between the direction of the animal or robot’s
shortest route to the source and its actual direction of motion.

Heading angle

Source G e G‘Wg
[

Direction Path
of the source.

Figure 2. The method of extracting heading
angle (o)) from a digitized path as viewed from overhead.

The heading angle may be computed from any pair of position measurements along this hy-
pothetical path.

a lobster walks a number of meters distance. The lobster places its lateral anten-
nules above the viscous sublayer (the sheet of water nearest the substrate) up into
the flowing medium that lies above it to sense these passing chemicals (as per-
ceived chemicals known as odors that can be individual compounds or mixtures
of chemicals). The lobster can sense this passing flow and sample the chemicals
that are carried within it. The lobster obtains a frame of reference to evaluate the
relative motion of the flow-borne patches of odor through its contact with the
substrate. Turbulence produced by physical features that effect the motion of the
seawater generates spatial patterns of flow, and therefore spatially heterogeneous
distributions of chemical. Thus, what can be thought of as confusing noise to a
concentration-tracking strategy may provide guidance cues to help the lobster
track the chemical to its source using a feature detection-based strategy.

Studies of chemical distribution in turbulence in the field and in the labora-
tory provide insights into the nature of the signal environment that animals ac-
tually encounter (Moore and Atema 1991; Murlis, Elkinton, et al. 1992; Finelli,
Pentcheft, et al. 1999). The period of time required to obtain a statically station-
ary estimate of concentration depends on the magnitude of the turbulence. In
our seawater conditions, the time scale for such estimates is typically several
minutes. On purely physical evidence, these studies demonstrate that the idea
that animals (or at least lobsters and similar-sized crustaceans) track chemicals to
their source by ascending the concentration gradient in environments that con-
tain even moderate levels of turbulence (Re > 1 X 102) is untenable.

Studies of the dynamics of the concentration signal have revealed features
(such as characteristic rates or patterns of change) that could provide the lobster
(or other animals) with guidance cues for certain plumes (Dittmer, Grasso, et al.
1995; Dittmer, Grasso, et al. 1996; Finelli, Pentcheff, et al. 1999; Moore and
Atema 1991; but see Hanna, Grasso, et al. 1999). Examples of cues extracted
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from the concentration signal include peak height (the maximum value of a
pulse of odor), peak slope (the rate of change of concentration in time on the
rising phase of an odor pulse), and interpeak-interval (the delay between the
passing of one peak and the arrival of the next at a sensor). There are many oth-
ers that have been studied. Such cues might provide the information lobster be-
havior indicates they are using to decrease their heading angles during chemo-
orientation (figures 1 and 2).

The Robot

The constraints supplied from the physics of odor plumes and the behavior of
lobsters provided a suite of testable hypotheses on how lobsters locate odor
sources in turbulence. They also provided suitable constraints for the construc-
tion of a robot that could be used to test those hypotheses.

Why a Robot?

Hypotheses of chemo-orientation mechanisms are difficult to test in animal be-
havior experiments because measures of the cue stimuli are very difficult to ob-
tain—and harder still from a freely moving animal. The viscosity of water guar-
antees that the effects of physical perturbations from obstacles or changes in the
shape of the channel persist far downstream from the agents that produce them.
Once a perturbation is introduced (say from a plume-generating device or the
animal itself), it evolves in a way that is only predictable in a stochastic way that
requires large numbers of repetitions before statistical stationarity is achieved.
This makes the construction of apparatus for testing lobster reactions to specific
features highly problematic (if not technically impossible) for two major rea-
sons: First, the control of flow through a stimulus delivery device to produce
odor pulses of a predetermined duration, slope, or other character is exceedingly
difficult, and second, good methods are not yet available to reproduce arbitrary
patterns. This would suggest a restrained animal preparation that would allow
tight control of the stimulus delivery to the chemo-sensors. However, this ap-
proach also removes the possibility to observe natural behavioral responses from
the animal. Sequential effects would also be very difficult and time consuming
to extract from such a preparation.

At first glance, simulation studies appear to be a means to circumvent these
difficulties. An artificial plume environment constructed from calculations with-
in a theoretical framework would provide the experimenter with perfect control
of the environment. Such direct numerical simulation (DNS) methods exist in
the field of fluid dynamics, but they come with serious caveats for the biologist
or bioroboticist. First, they describe long-term average behavior of fluid dynam-
ics systems; the second-by second spatial structure of the signals encountered by
the animals is not available from such simulations. Second, the computational
load of DNs that approaches the appropriate spatial scale is so great as to practi-
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cally prohibit the large repetitions required for evaluation of orientation algo-
rithms in a reasonable amount of time (Belanger and Willis 1996).

We have implemented a number of algorithms in simulation, with “playback”
plumes. These plume simulations are based on the playback of data recorded
from actual odor plumes rather than the theoretical approach described in the
previous paragraph. These simulation studies have identified guidance features,
which are available to the lobster through its peripheral chemoreceptors. The use
of these features speeds up the simulation’s orientation by an order of magnitude
compared to concentration-averaging techniques (Grasso, Gaito, et al. 1999).
Such studies are useful as a means of screening algorithms and tuning parameters
prior to biorobotic studies, but they cannot, for reasons discussed above, com-
pletely capture a number of important environmental features such as the effect
of the robot or lobsters hydrodynamic shadow on the guidance cues. This is a
problem that must be solved in all simulation studies of behavior.. The results of
the simulation study are only as good as the simulation of the task environment.
In the case of chemo-orientation in turbulence, a robotic implementation is a
critical and unequivocal test of the quality of an orientation algorithm.

By constructing an artificial lobster and placing it into the same environment
as the biological lobster, we had a method for testing hypotheses of chemo-ori-
entation that circumvented these difficulties. Tom Consi, Jelle Atema, David
Mountain, and I undertook a series of experiments to test simple hypotheses of
lobster chemo-orientation (Consi, Grasso, et al. 1995; Grasso, Dale, et al. 1997;
Grasso, Basil, et al. 1998; Grasso, Consi, et al. 2000)

There is an additional advantage to a biologist who has a biorobot in his or
her tool-kit. By placing a scaled surrogate of the animal under study in the
exact environment, the biologist can view the sensory world of a given
species. Data from sensors with spatial and temporal sampling scales matched
to that of the animal could be logged to on-board data-storage media. (This
was the case in Robolobster.) Offline analysis of these logs can be of great
value in evaluating the reasons for an algorithm’s failure to reproduce animal
behavior. By suggesting alternative hypotheses for testing of the animals, such
data closes the loop between robot and animal experiments.

Bio-Mimetic Scaling

The first biorobot we used to study lobster chemotactic strategies—dubbed
RoboLobster—was designed and built by Tom Consi and Cliff Goudey who
were then working at the Massachusetts Institute of Technology’s AUV lab
(Consi, Atema, et al. 1994). It had wheels instead of legs and was not intend-
ed to mimic lobster biomechanics or morphology (figure 3). Instead it incor-
porated those features essential for the evaluation of the chemotactic hy-
potheses: RoboLobster was built to the proportions of the American lobster
and had two chemo-sensors that can be positioned at the same height and
separation as the lobster’s two lateral antennules.
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Figure 3. RoboLobster with a standard dye-tinted plume.

The robot is inside a ten meter by two meter flume in seawater forty-four centimeters in
depth. The robot is designed to serve as a platform to carry chemical sensors, visible above the

front end of the robot, through an odor plume. (Photo courtesy Tom Consi and Margorie
Stecle.)

In addition to scaling the hardware we also shaped the control software to scale
the robot’s performance to that of the lobster. The RoboLobster’s chemo-sensors
acquired sensor data at rates that were much higher than those that could possibly
operate in the American lobster’s nose. We used software to scale the data acquisi-
tion rates to match those that we knew from lobster-chemoreceptor neurophysiol-
ogy. Similarly, RoboLobster’s motors could propel and turn the robot at speeds
and angular speeds exceeding those of the lobster. We programmed lobster-scaled
speeds into the algorithms controlling behavior during trials.

What RoboLobster Allowed Us to Do

Our ultimate aim was (and remains) tests of the feature-based chemo-orientation
strategies mentioned above. First however, with Ockham’s razor in mind, we test-
ed a set of simpler algorithms. Our thinking was that if these simpler algorithms
were adequate to provide a satisfactory explanation of lobster plume-tracking be-
havior, our conclusion would put feature-based algorithms into question. We de-
cided to focus on what secemed the simplest dual-sensor strategy: tropotaxis.
Tropotaxis is an orientation strategy based on an instantaneous estimate of the lo-
cal gradient of a cue derived from two sensors (Fraenkel and Gunn 1961).

The major result of these studies was a solid demonstration that tropotactic
concentration-sensing algorithms could not explain the plume tracking behavior
lobsters—at least not in the type of plume that we tested (Moore and Atema
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Overall Length Speed (cm/s)  Sensor Height & Chemo-sensor

(cm) Separation (cm) ampling Rate (Hz)
Lobster ~30.0 -9.0 9.0 & 3.0 ~2.5
Robot 24.0 -9.0 9.0 & 3.0 2.0-5.0

Table 1. RoboLobster’s critical points of biomimetic scaling.

1991; Dittmer, Grasso, et al. 1995). As a consequence, we are forced to consider
other biologically reasonable algorithms in search of a reasonable explanation.

The negative result was significant because the conditions of the series of ex-
periments were carefully constructed to succeed if and only if the plume struc-
ture supported the algorithm. The plume structure failed to do so in an interest-
ing way. The behavior of the robot as it tracked the plume showed two
statistically distinct patterns of locomotion in two regions of the plume using
the same algorithm. In the downstream region, the robot did not make signifi-
cant progress toward the source. In the upstream region, where progress toward
the source was possible with a tropotactic algorithm, the paths produced showed
little resemblance to those of lobsters (figure 4). Thus RoboLobster revealed to
us something about the lobster’s world that we had previously only suspected:
the need to switch tracking strategies between different regions of the plume.

In one series of experiments we systematically varied the intersensor separation.
Since tropotaxis relies on an instantaneous estimate of the gradient, the increased
distance between the sensors should have improved performance. This was the case
in the upstream but not the downstream regions of the plume. These experiments,
which varied one of the biologically derived constraints of the robot, represent a
type of evolutionary experiment in that they test the sensitivity of an algorithm to
architectural variation. They place the question of why the lobsters possess the in-
tersensor separation that they do (other species have both greater and less separa-
tions) in high relief and open the door to further experiments that can explore the
relationship between environment and evolutionarily derived structure.

Sufficient Description for
Biorobotic Algorithm Implementation

A biologically meaningful biorobot cannot be created de novo from first princi-
ples. A good practical robot might arise from first principles but not a biorobot.
There must be a sufficient descriptive database available to provide appropriate
constraints for the design parameters. Without this set of constraints one who
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Figure 4a. Representative robolobster and lobster paths and sensor profiles.

These particular paths were chosen because they show the closest similarity between lobster
and robot paths obtained. Panels A and B show the paths. The lobster’s path in panel A con-
trasts that of the robot in Panel B. Robolobster, running a simple tropotactic algorithm makes
a series of sweeping counter-turns as it approaches the source (marked by an *).

sets about building a loosely constrained biorobot will, unless very lucky, pro-
duce neither a practical robot nor good biology. They would also probably never
finish building the robot.

These statements might appear to pose a paradox. If the biological system is
so sufficiently well understood that a biological replica can be built, why bother
building it as a tool to study the biology? If the biology is imperfectly under-
stood how does one proceed with the development of a robot? This reduces to
the old question of judging the dividing line between essential facts and irrele-
vant details. The basis for the experimentor’s determining the relevance of par-
ticular features of the description of the system should be strong theoretical in-
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Figure 4b. Representative robolobster and lobster paths and sensor profiles.

These particular paths were chosen because they show the closest similarity between lob-
ster and robot paths obtained. Panels C and D the corresponding sensor logs. Panel C
shows dopamine concentration profiles recorded with a pair of electrochemical electrodes
mounted on the back of the lobster and positioned in the olfactory sampling area of the
lobster. Dopamine was used as a tracer in the food odor plume the lobster tracked. Panel
D shows concentration signals taken from the robot’s sensor logs. Both C and D are ex-
pressed as percent of maximum signal. RoboLobster’s counter turning near the source is
evident in the sensor log.

ference (Platt 1964). That is, do they fulfill the requirement that the included
features are both necessary and sufficient to explain the system under study?

In our studies with RoboLobster, we made an effort to explain the observa-
tion that lobsters reduce their heading-angle error as they progress through the
plume. Based in part on the observation that lobsters perform well with two an-
tennules, we formulated a chemo-tropotaxis model as an explanation. This
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framework allowed us to suppose that legs were not essential for our robot but
that appropriate speed was essential. It allowed us to determine the spatial and
temporal resolution of the sensors so that we could be reasonably certain that
the information that the robot used for guidance was comparable to that are
available to the lobster. Plume signals above five Hz frequency and below the
size of the lobster’s antennules were not allowed to inform the tropotactic algo-
rithm. These and similar constraints were sufficient to allow us to critically test
the concentration-based tropotaxis hypothesis as an explanation of lobster
plume-tracking behavior.

This is the essence of the biorobotic strategy: Construct a robot that is com-
petent to test a hypothesis or set of hypotheses that have been suggested by the
biology and then allow the robot’s behavior to inform you of the acceptability of
that hypothesis. If you are in possession of the biological algorithm you can pro-
ceed to the production of practical robots and hypothesis testing is not an issue.
If the algorithm is not known one need include only those constraints that are
required to test the hypothesis under consideration. I assume here that one un-
dertakes a robotic study to answer a biological question only if it is not possible
or too costly to obtain the answer directly from the animal. Constraints or de-
sign features that are not required to test the hypothesis (in our case legs, for one
example) are likely to cloud the scientific issues and make for greater technical
difficulties. In other words a sufficient database for a biorobotic implementation
is one that leaves at most one or two, preferably no, free parameters in the mod-
el suggested by the hypothesis to be evaluated.

Adequate Performance Measures

If the aim of the biorobot is hypothesis testing, then the performance measures
must be sufficiently well understood in the biological system for a meaningful
comparison to be made between the robot and the animal. As with constraints
on robot design, the hypothesis being tested delineates the relevant and irrele-
vant features of the biological behavior in an adequate description of perfor-
mance. Performance measures should be derived from descriptions of the bio-
logical behaviors that are adequate to permit the determination that the
algorithm under study is or is not operating.

In our case, it was essential to have a good description of the animal behavior.
We measured a number of descriptors of the paths RoboLobster took as it tra-
versed the plume. These were measured using exactly the same methods and un-
der exactly the same conditions as those used in lobster studies.

The trials where RoboLobster “missed” the source must be due to failures of
the implemented algorithms. We cannot be certain, however, that the same is
true for the lobster. Motivation makes the “hit” rates of the lobsters difficult to
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contrast with RoboLobster because the robot is programmed to always seek the
source, while the lobster may not be driven by a single motivation. Thus we
used a finer-grained performance measure. We digitized the paths taken by the
robot at intervals that are shorter than the variation in lobster locomotor perfor-
mance. From these, we were able to measure, in both the lobster and the robot,
the distance from the source, time to various points from the source, locomoto-
ry speed, and the path tortuosity (a measure of the deviation of the path from a
straight line). These parameters allowed us to make direct, quantitative compar-
isons between lobster and robot performance with specific relevance to the
tropotactic hypothesis.

This narrow view of the performance measure has a cost, however. Given that
the performance matches some reasonable criterion of the biological system,
there is no guarantee that the function implemented in the robot is zbe strategy
used by the animal. It merely constitutes evidence that the two are consistent.
The narrowing of the performance measures to just those that are adequate to
evaluate the hypothesis may mask inconsistencies in other aspects of perfor-
mance. In contrast to the robot design, performance measures should be chosen
to at least permit testing the hypothesis. A discrepancy in some aspect of perfor-
mance that is unessential for the hypothesis points to a limitation of the model
(maybe the hardware, maybe the software implementation, or maybe the theory
itself) that is in need of explanation.

Control Algorithm Selection and Internal Representations

The choice of the sophistication of the algorithms to be tested in an experi-
mental biorobot is also of importance. The biorobot could be designed with
elaborate internal representations of the world that it will encounter, and de-
tailed contingency mechanisms that are activated when certain conditions are
met. Alternatively, it could be designed so that its behavior is driven by the stim-
ulus world.

In a biorobot intended to evaluate a biological hypothesis, it is likely that ac-
tual algorithms will fall between these extremes. With the exception of simple
unicellular animals (Berg and Purcell 1977), most animals produce behaviors
that suggest they plan their actions, make use of environmental features, re-
member past tribulations and successes, and use this information to adjust their
behaviors accordingly. These information-use strategies suggest some form of in-
ternal representation. Biorobotics is an ideal tool to explore such hypotheses.
On the other hand, it is possible to generate quite complex behaviors from a rel-
atively simple algorithm if the environment is complex (Braitenberg 1984,
Kennedy 1992). Whichever side one chooses, the implications of this assump-
tion must be considered.
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BioMimetic Robots Place the Hypothesis in the
Environment of the Animal
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Figure 5. The role biorobots can play in basic biological research.

The environment, through evolution or ontogeny, plays a critical role in shaping the behavior
of an animal. By placing the robot in the natural environment the contribution of the
environment to behavior can be disassociated from that of the animal.

We applied the principle of parsimony in choosing our algorithms. In our
biorobotic studies with RoboLobster we could have assumed a large amount of
data stored in the lobster’s brain to support chemo-taxis. Instead, we started
with very simple chemo-orientation strategies that assumed a minimum knowl-
edge of the lobster’s world. The failures of simple algorithms to explain lobster
behavior justify our implementation of more complex algorithms, since we are
left with no simpler alternatives.

This is the principle of Ockham’s razor—and it seems as useful a heuristic in
the evaluation of biologically-relevant hypotheses with biorobots as it does in
the rest of science. This approach also highlights one of the major advantages of
biorobots in biology. The biorobot offers a way of systematically evaluating the
contribution and influence of environmental structure on behavioral patterns
and a justification of the use of more complex devices and systems (such as these
that include internal representations) in models as the simpler explanations are
demonstrated to be untenable (figure 5). By placing the biorobot in the same
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environment as the animal, we are, in reality, placing the hypothesis directly in-
to the environment.

Summary

Recently, Vogel (1998) has strongly argued against the common prejudice that
biological solutions to problems are necessarily optimal. He points out that evo-
lution has shaped biological systems to be adequate to ensure the survival of the
individual animal until it can reproduce. In this, optimality is not required—
merely adequacy. At the same time, biological solutions exist (to problems such
as chemo-orientation in turbulence) that are superior to our present ones. The
animals themselves are existence proofs of such superior solutions. Biorobots are
a powerful tool that can aid our efforts to uncover these natural strategies.

To achieve this however, we must acknowledge that the science of biology,
with its own brand of methods and logic, must be at the center of any such ef-
fort. The performance measures, hypotheses, and design parameters must be bi-
ologically meaningful and not merely biologically inspired if we are divine na-
ture’s solutions to difficult problems.
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3

Insect Strategies of Visual Homing
in Mobile Robots

Ralf Moller, Dimitrios Lambrinos,
Thorsten Roggendorf, Rolf Pfeifer, and Riidiger Wehner

nimals of many species are impressive navigators. Especially insects such

as bees or ants solve demanding navigation tasks, despite their tiny

rains. Desert ants of the genus Cataghyphis (see figure 1), for example,

unfailingly return to the nest from foraging excursions that took them several

hundred meters away (Wehner 1987). Unlike other ants, Cataglyphis can not

use chemical cues for navigation, since no marker substance would endure long

enough in the heat of its desert habitat. Experiments revealed that the ants in-

stead, besides using path integration, rely on visual information about land-

marks in their environment (Wehner and Riber 1979; Wehner, Michel, and
Antonsen 1996).

The limited brain size of insects restricts the complexity of the mechanisms
that could underlie their navigational capabilities. Hypotheses about these parsi-
monious and yet efficient navigation strategies can serve as a guideline for the
development of navigation strategies for mobile robots. Vice versa, in a process
of “synthetic modeling,” the understanding of a natural system can be improved
by constructing an artificial agent that mimics some aspects of its behavior, and
observing the behavior and internal states of the artificial agent, preferably in
environments similar to the habitat of the biological agent. Synthetic modeling
is an indispensable complement to computer simulations, and will especially be
used in cases, where the agent-environment interaction is too complex to be
simulated with sufficient accuracy.

The work presented here focuses on modeling the visual homing capabilities
of insects with mobile robots. Two navigation models—the “snapshot model”
and the related “average landmark vector model,” which both widely explain the
navigation behavior observed in bees and ants—were implemented and tested
on mobile robots. The snapshot model was tested in a software implementation
on the mobile robot Sahabot 2, while the average landmark vector model was
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Figure 1. The desert ant Cataglyphis bicolor (courtesy R. Wehner).

implemented in analog hardware on a robot with fully analog control (called
“analog robot” in the following).

The section “Visual Homing of Insects” briefly outlines the experiments that
have been done with insects to analyze their visual homing strategies. The snap-
shot model and the average landmark vector model are presented in the section
“Navigation Models.” The section “Robot Implementation” describes, how the
navigation models are implemented on the two mobile robots. The experimen-
tal setups and the results of the robot experiments are presented in the section
“Robot Experiments.” The “Discussion” section provides a discussion of the ex-
perimental results and relates the study to other work in both the fields of syn-
thetic modeling and visual robot navigation. It also provides first experimental

results of an application of the average landmark vector model to navigation in
indoor environments.

Visual Homing of Insects

Desert ants of the genus Cazaglyphis are solitary foragers that have to return to
important locations in their environment, which can be either food sources or



INSECT STRATEGIES OF VISUAL HOMING 39

Figure 2. Landmark navigation experiment with Cataglyphis.

Ants were trained to locate the center of an array of three landmarks (black cylinders, depict-
ed as circles). The figure shows the trajectory of a single ant that was displaced to a test area
with an identical landmark configuration. R marks the release point (adapted from Wehner,

Michel, and Antonsen [1996]).

the nest entrance. Experiments revealed that the ants resort to three different
navigation strategies: path integration (dead reckoning), visual landmark naviga-
tion, and systematic search (Wehner, Michel, and Antonsen 1996). Path inte-
gration guides the animal to the vicinity of the target location, but is subject to
cumulative errors that limit the precision of this strategy. Ants that by means of
path integration returned to a target location that is not surrounded by land-
marks have to start a systematic search around the expected goal position. How-
ever, their behavior is completely different, if landmarks are visible: in this case,
the ants precisely pinpoint the goal (Wehner, Michel, and Antonsen 1996).

The typical experimental procedure to analyze the visual homing strategies
that was used for experiments with both ants (Wehner and Riber 1979;
Wehner, Michel, and Antonsen 1996) and bees (Cartwright and Colletc 1983)
is depicted in figures 2 and 3. In a training area, landmarks are positioned
close to a target location, e.g., the nest entrance. When the animals have
learned to locate this goal, they are displaced to a test area with another land-
mark configuration, where their search path is recorded. The place where the
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Figure 3. Search density profiles of Cataglyphis ants trained to the
landmark array shown in figure 2.
R marks the release point of the ants. Leff: Test in the training situation. Cenzer: Test situation
with landmarks separated by twice the training distance. Righz: Test situation with landmarks

of twice the training size and in twice the training distance (adapted from Wehner, Michel,
and Antonsen [1996])

animals search most densely is assumed to be the position where they expect
to find the target.

By varying the landmark configuration in the test area with respect to the
training configuration and observing the changes of the search peak position,
properties of the insects’ navigation strategies can be unveiled. From experi-
ments like the one depicted in figure 3 it can be concluded that the visual mem-
ory of the insect contains a rather unprocessed two-dimensional “snapshot” of
the visual scene. When returning from the excursion to the vicinity of the snap-
shot position, the insect moves in a direction where the discrepancy between the
snapshot and the current view is reduced, until the two views match (Wehner,
Michel, and Antonsen 1996). Which aspects of the two views are actually com-
pared was derived from experiments with bees, where size and position of the
landmarks were varied. The results suggested that no more than the apparent
size and the bearing of the landmark are considered (Cartwright and Collett
1983); bees also use distance cues, but the effect of distance is negligible com-
pared to apparent size (Cheng et al. 1987).
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Navigation Models

Several models have been devised to explain the visual navigation abilities of in-
sects. These models differ in the information that is assumed to be stored about
the target location, and in the mechanisms used to derive a home direction from
currently available and stored information. An early algorithmic model was sug-
gested by Anderson (1977) and studied in computer simulations. He supposed
that bees consider the overall “Gestalt” of a landmark configuration—specifical-
ly the “surroundedness” by landmarks—rather than remembering the landmarks
around the goal pictorially. However, this concept was later given up based on
evidence from the experiments by Wehner and Riber (1979) and Cartwright
and Collett (1983) in favor of a pictorial matching process. The corresponding
algorithmic description is the “snapshot model,” studied in computer simula-
tions by Cartwright and Collett (1983). Recently it could be shown that the
Gestalt concept and the snapshot model are actually closely related; the bridge
between the two domains is established by the “average landmark vector model”
(Lambrinos et al. 1998, 2000). While the snapshot model is already considered
parsimonious, the average landmark vector model turns out to be extremely
cheap, both with respect to the memory capacity and computation required.
The algorithms of both the snapshot model and the average landmark vector
model are described in the following subsections.

Snapshot Model

Cartwright and Collett (1983) proposed an algorithm of the snapshot matching
procedure that reproduces some aspects of the behavior observed in bees; figure
4 (left) visualizes the matching process of this model. It assumes that the views
on which the matching process is operating are horizontal images comprising
dark and bright sectors corresponding to the landmarks and the gaps between
them, respectively. These views are supposed to be aligned with an external
compass direction. A pairing between sectors in the two views is established by
searching the closest sector of the same type (dark or bright) in the current view
for each sector in the snapshot. Each pair of sectors contributes two vectors to
the final home vector: a tangential vector pointing from the snapshot sector to-
wards the paired sector in the current view, and a radial vector that points cen-
trifugally from the snapshot sector, if the apparent width of the current view
sector is smaller than the width of its counterpart in the snapshot, and vice ver-
sa. A movement in the direction of the tangential vector reduces the difference
in bearing of the paired sectors; a movement in the direction of the radial vector
reduces the difference in their apparent size. The model could also take into ac-
count differences in apparent height, though this was not considered in the
original snapshot model. Averaging all contributions gives a home vector point-
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Figure 4. Simulation of the snapshot model (version with proportional vector
contributions) for a configuration of three landmarks (black circles).
Top lefi: A snapshot (inner ring) taken at the nest position marked with a cross is matched
with a current view (middle ring) visible from the position in the center of the ring diagram.
Each pair of matched sectors (both landmarks and gaps) contributes a radial and a tangential
vector (attached to the outer ring in the diagram). The home vector (originating from the
center) is obtained by averaging the contributing vectors. T9p right: A home vector can be as-
signed to each point of the plane. Bozzom: Trajectories running tangentially to the home vec-

tors. Most trajectories end at the snapshot position, some trajectories run into one of the
landmarks.

ing approximately to the position of the target (figure 4, top right); a trajectory
following these home vectors that are attached to each point of the plane will
approach the location where the snapshot was taken (figure 4, bottom).

Despite this rather simple procedure, homing is highly reliable even for more
complex landmark configurations like the one shown in figure 5. As can be seen
in the center image and in the view trace on the right, the algorithm tolerates
the occlusion of landmarks and the fusion of landmark sectors.
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Figure 5. Simulation of the snapshot model (with proportional vector contributions) for a
configuration of eight landmarks (black circles).

1op: Trajectories running tangentially to the home vectors. Bottom lefi: Number of landmark
sectors visible from each point; darker areas correspond to higher numbers of visible sectors. A
selected trajectory is depicted with a white line. Bottom right: Transformation of the current
view over time (upper part) towards the snapshot (lower part) for the trajectory depicted in
the center image.

Average Landmark Vector Model

Surprisingly, there is an even more parsimonious method, the “average landmark
vector (ALV) model,” which can be derived mathematically from the snapshot
model (Lambrinos et al. 1998, 2000). In this model, views are characterized by
two-component “average landmark vectors,” which are computed as the average
(or sum) of unit vectors pointing towards the selected image features; see figure
6. Instead of a snapshot image, only the average landmark vector of the target
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Figure 6. Simulation of the ALV model. Black bars depict landmarks, of which the edges
marked with an arrow serve as landmark cues for the algorithm.

Top lefi: Each gray ring depicts the view as visible from the center of the ring. A unit-length
landmark vector is assigned to each detected edge (vectors attached to the outer ring). At the
target location (cross), an average landmark (AL) vector (wide head, originating from the cen-
ter) is computed as the sum (or average) of all landmark vectors. In the current location (low-
er left diagram), another AL vector is determined in the same way (thin vector, small head,
originating from the center). The difference of the two AL vectors is the home vector (thick
vector, originating from the center. 7op right: AL vector field. Bottom: Trajectories for the tar-
get position marked with the cross.

location has to be stored. An image matching procedure as in the snapshot
model is not required; in the ALV model, this step is simplified to a subtraction
of the average landmark vectors of the current and the target location. Like the
snapshot model, the ALV model presumes that the vectors are aligned to the
same global reference system. For the analog implementation of the ALV model,
it is advantageous that only a vector has to be rotated and not an image as in the
snapshot model, which would require more hardware effort.
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Robot Implementation

The snapshot model and the average landmark vector model were tested on two
different robots and in two different types of implementations. The snapshot
model was conventionally implemented in software on the mobile robot Sa-
habot-2 and tested in setups comparable to those used in navigation experi-
ments with desert ants. In principle, the average landmark vector model could
have been implemented and tested in the same way. However, the extreme parsi-
mony of this model made it possible to implement it completely in analog elec-
tronic hardware (without processors or even digital components). Since analog
hardware and biological nervous systems share a number of processing princi-
ples, an analog implementation provides additional insights in the neural archi-
tecture that may underlie insect navigation capabilities (see the Discussion sec-
tion).

Implementation of the Snapshot Model

Hitherto, the snapshot model has only been tested in computer simulations. For
the test on a mobile robot, the model had to be adapted and linked with the in-
formation provided by the robot's sensors, as described in the following. Modi-
fications of the algorithm were necessary in order to find a termination criterion
for the robot experiments. The representation required by the snapshot model
had to be extracted from the visual information obtained from the camera im-
age. An additional sensor was incorporated to provide the compass information
necessary for the view alignment in the snapshot model.

Modifications of the Model

In the original model presented by Cartwright and Collett (1983), all contribut-
ing vectors have unit length. For the robot experiments described below, these
unit vectors have been replaced by vectors with a length proportional to the dif-
ference in bearing or apparent size of the paired sectors. This modified method
was also used in the simulations shown in figures 4 and 5. As demonstrated in
figure 7, this modification facilitates the use of the length of the home vector as
a measure of discrepancy between current view and snapshot, called “disparity”
here, which also relates to the distance from the goal. This is not possible with
the original unit vector model, since the disparity does not decrease while ap-
proaching the snapshot position; it would only become zero if a perfect match
between snapshot and current view was achieved. Using proportional contribu-
tions, the robot runs can be stopped when the disparity falls below a threshold.
Moreover, the proportional vector model enables the reduction of speed while
approaching the target, which can be used to improve the precision of homing,
For the weighting of tangential and radial contributions, the same ratio of 1:3 as
given by Cartwright and Collett (1987) was used.



46 MOLLER, LAMBRINOS, ROGGENDORF, PFEIFER, AND WEHNER

Y o
proport. vectors
unit vectors
o
T T J '
“ee et e e e "
%‘ """" unit vectors
§ [ — proport. vectors
w
2
0 T T J J
0 10 20 30 40 %

steps

Figure 7. Simulation of two versions of the snapshot model.

Bostom: Time course of the disparity (length of the home vector) in a simulation of the origi-
nal snapshot model using unit vector contributions, and of a version where vector contribu-
tions have a length proportional to differences in bearing and apparent size of sectors. Top:
Corresponding trajectories running towards the snapshot position in the center (see also fig-
ure 4, bottom.

Robot Hardware

Figure 8 shows the robot Sahabot 2 that was used for the visual homing experi-
ments. It has two propeled wheels in the front (differential steering) and two
caster wheels in the rear end. All computation is done on-board using a PC/104
embedded PC and a 16 bit micro-controller. The sensor arrays in the rear part
and at the sides of the robot are part of a “polarized light compass” that is used
for the alignment of snapshot and current view (see the section “External Com-
pass Reference”).

Visual input comes from a 360 degree camera system mounted above the
center of the front wheels axis. It consists of a digital CCD camera and a coni-
cally shaped mirror in the vertical optical axis of the camera (see figure 9). The
opening angle of the cone was determined so that the visual field extends £10
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Figure 8: The mobile robot Sahabot 2.

degrees around the horizon. In order to reduce the total light intensity, a neutral
density filter was mounted between camera and mirror. An additional infrared
filter was necessary to prevent an influence of thermal radiation on the camera
image.

Image Processing

Figure 10 illustrates the image processing steps that transform the camera image
into a horizontal view with black and white sectors as required by the matching
mechanism described in the section “Snapshot Model.” The same processing
steps were applied to both snapshot and current views. In the first step, the cam-
era image (obtained from a situation similar to the one shown in figure 13) is
transformed into an azimuth-altitude representation. A mean gray value is de-
termined from the transformed image and used to adjust the brightness parame-
ter of the camera in a way that the mean gray value of this image is kept con-
stant. This is indispensable for the subsequent thresholding operation separating
dark and bright regions. The final one-dimensional horizontal view is obtained
by counting the number of black pixels within a part of each pixel column (lim-
ited by the two lines shown in the thresholded image) and applying a threshold
of 50 percent.

External Compass Reference

An important prerequisite of the matching procedure between snapshot and
current view is the alignment of both views with respect to an external compass
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Figure 9. Detailed view of the 360 degree camera system of the Sahabor 2.
The 360 degree camera consists of a camera with vertical optical axis (within the case) and a
conical mirror that is aligned with the axis of the camera and mounted within an acrylic glass
tube. The axial alignment and the distance between mirror and camera can be adjusted. An
infrared and a neutral density filter are mounted between camera and mirror.
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Figure 10. Image processing for visual homing with the snapshot model.

The image from the 360 degree camera (160 x 120 pixels) is transformed into a polar view
(351 x 56). After applying a threshold to each pixel, the segmented horizon (351 x 1) is
extracted from the area within the two lines; a pixel in the horizon will be black, if more than
50 percent of the pixels in the corresponding column are black. The landmark extracted in
the center belongs to equipment in the vicinity that was removed for the experiments.

reference. Without proper alignment, the number of mismatches between sec-
tors—sectors in the two views that are paired, but do not correspond to the
same landmark or gap—will increase significantly, resulting in an erroneous
home vector. Cataglyphis ants, as other insects, gain the compass direction from
celestial cues, mainly from the polarization pattern of the blue sky (Wehner
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Figure 11. Overview of the analog implementation of the ALV model.

1994). The Sahabot 2 is equipped with a special “polarized light compass” (see
figure 8), which is based on the same principles that insects use to derive com-
pass information from the polarization pattern. In the experiments described
below, directional information provided by this compass was used to align the
current view with the stored snapshot. The construction of the polarized light
compass and methods for extracting compass information are described else-
where (Lambrinos et al. 1997, Moller et al. 1998, Lambrinos et al., 2000).

Implementation of the ALV Model

The implementation of the ALV model is based entirely on discrete analog com-
ponents. Most of the active components are operational amplifiers that are used
in standard circuits (as amplifier, comparator, adder etc.). The sensors, the
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Compass

Figure 12. The analog robot (height 22 centimeters, diameter 12.8 centimeters).

The black ring in the center contains thirty-two photo diodes, the boards above implement
the ALV model, the boards below belong to the motor control circuitry. A magnetic compass
is mounted on the top of the robot.

boards implementing the ALV model, and the also fully analog motor control
boards are mounted on a small robot base (see figure 12).

An overview of the ALV circuit is given in figure 11; technical details are pre-
sented in Méller (1999, 2000). Visual input comes from a ring of thirty-two
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photo diodes (see figure 12) mimicking the portion of ommatidia of both insect
eyes facing the horizon. The angle between two neighboring diodes is = 11.25
degrees.

An aperture in front of each diode restricts the opening angle to o = 8 de-
grees. The signals of the photo diodes are amplified. Edges of one polarity
(clockwise black-to-white) are used as landmark cues; they are detected by
thresholding the difference of the signals of two neighboring sensors. Unidirec-
tional lateral inhibition between neighboring edge filters ensures that only one
pixel per edge becomes active; this is a prerequisite for the operation of the ALV
model. For opening angles smaller than the inter-sensor angles, and for sharp vi-
sual edges as they are used in the experimental setup, lateral inhibition can be
restricted to immediate neighbors.

From the outputs of the edge-filters, which deliver binary signals (high con-
stant voltage for an active edge, or 0 V), the robot-centered AL vector is com-
puted. A radial landmark vector is assigned to each edge pixel, and all landmark
vectors are added simultaneously. This can be achieved in a simple way by en-
coding the two components of each landmark vector in two resistors that are
connected to the input of two adder circuits (“convergent pathway” in figure
11).

The home vector is the difference of the AL vector of the current location
and the AL vector of the target location, with both vectors relating to the same
coordinate system. Before the target AL vector is stored in two capacitors, it is
rotated to world coordinates using a circuit with four analog multipliers. The
orientation of the robot in the global reference system is determined by a mag-
netic (fluxgate) compass. In the return phase, the stored vector is rotated back to
robot coordinates according to the current orientation of the robot, and sub-
tracted from the current AL vector, which gives the home vector in robot coor-
dinates.

The robot uses differential steering. Each of the two motors can be directly
controlled by one component of the home vector, if the robot coordinate system
is rotated by forty-five degrees with respect to the front of the robot, so that the
vector (1, 1) points to the front. The component of the axis on the left side de-
termines the speed of the right motor and vice versa. This arrangement will sta-
bilize a home vector in the frontal direction; if the home vector is pointing to
the rear, the robot will automatically turn around, since the opposite direction is
unstable. As in the proportional vector model, the length of the home vector of
the ALV model corresponds to the distance from the goal. Since the home vec-
tor components determine the speed of the motors, the robot automatically
slows down when it approaches the target location, which avoids oscillations
around that location.
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Figure 13. Example of a landmark array used for the experiments with the Sababot 2.

Robot Experiments

Snapshot model and average landmark vector model were tested in setups with
comparable complexity; however, while the Sabahot-2 experiments on the snap-
shot model were done outdoors under varying conditions of illumination, the
analog implementation of the average landmark vector model is so far restricted
to a laboratory setup. Both series of experiments, described below, aim at
demonstrating the applicability of the models under real-world conditions. As a
quantitative criterion, the precision of homing achieved in the experiments and
factors influencing the precision are analyzed.

Experiments with the Sahabot 2

Experiments with the Sahabot 2 were done in one of the habitats of Cataglyphis
in the Tunisian part of the Sahara desert. The experimental field was a sandy
salt-pan flat. A grid was painted on the desert ground to simplify the alignment
of landmarks and robot as well as the registration of the final points. Figure 13
shows a typical setup. Black cylinders were used as landmarks; the same type of
landmarks was also used for the ant experiments.

Before each experiment, the robot was placed at the starting position within
the landmark array. The landmark array used for the experiments shown in fig-
ure 14 consisted of three black cylinders with a height of eighty centimeters and
a diameter of thirty centimeters, forming an equilateral triangle with three-me-
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Figure 14. Visual homing experiment with the robot Sahabort 2.

Top lefi: Two typical trajectories of the robot in an array of three landmarks (circles). From the
end of the preprogrammed outward journey (dashed line) towards the target position (0,0)
the robot is guided by the visual landmark navigation algorithm (solid line). 7op right: Transi-
tions of the rotated current view over time towards the snapshots (images underneath each
trace) for the two trajectories. Bottom: Time course of disparity between snapshot and current
view for the two trajectories. The dashed line depicts the threshold used for terminating the

runs.

ter side length. The starting position was situated on a symmetry line of this tri-
angle in a distance of one meter from one of the landmarks. The same setup was
used in the simulation presented in figure 4.

Data from two of the experiments are visualized in figure 14. At the begin-
ning of each experiment, a snapshot was taken at the starting position, pro-
cessed as described in the section “Image Processing,” rotated by the angle ob-
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tained from the polarized light compass, and stored in the form of black and
white sectors (figure 14, top right). After taking the snapshot, the robot had to
follow a certain direction for a certain distance (four meters for trajectory A, two
meters for trajectory B; see figure 14, top left) corresponding to a short foraging
journey (it could also have been displaced manually). At the end of this outward
trip, control was handed over to the homing algorithm that accomplished the
extraction of a sectorized horizontal view from the camera image, the alignment
of this view according to the compass direction, and the computation of the
home vector by matching the aligned view to the snapshot, using the propor-
tional vector model described in the section “Modifications of the Model.”
Transitions of the rotated current views are shown in the center of figure 14.
The resulting home vector was used to set the direction of movement. As soon
as the disparity became lower than a threshold, the experiment was stopped (fig-
ure 14, bottom).

Eight runs (including trajectories 4 and B in figure 14) with different angles
and distances of the outward journey were executed with this landmark configu-
ration and the same starting point; the final parts of the eight trajectories are
shown in figure 15 (bottom). The deviation between final and initial position of
the camera axis was between seven and twenty centimeters. However, this devia-
tion does not reflect the maximal precision that can be obtained with this hom-
ing mechanism, since the final points are locations where the disparity reached
the termination threshold, but not locations with minimal disparity. For a visual
evaluation of the data, those points on the trajectory are marked, where the dis-
parity dropped below 1.5 x threshold. For comparison, the upper part of figure
15 visualizes the disparity for points in the vicinity of the snapshot location; two
iso-disparity curves obtained from this simulation are overlaid to the experimen-
tal data in the left part. The final points as well as the points where 1.5 x thresh-
old was passed are located on two different iso-disparity bands around the snap-
shot position, with the band of the final points lying inside the other. Since
these bands are not overlapping, noise induced to the disparity from the sensor
signal seems to be in a range below the termination threshold. Therefore it can
be assumed that a lower termination threshold will bring the final points even
closer to the snapshot location. This will require a modified control algorithm
for the final phase of the approach enabling the robot to locate the target point
more precisely.

Experiments with the Analog Robot

The experiments with the analog robot were done in a one meter by one meter
arena with white walls (30 cm high) and floor; see figure 16. Three black pieces
of paper (21 cm x 29 cm) attached upright to the walls served as landmarks.
Light came from the ceiling lamps of the room. Figure 17 (left) shows the AL
vector voltages measured (using multimeters with computer interface) while the
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Figure 15. Analysis of homing precision.

Bottom: Zoom into the target region showing the final parts of 8 homing trajectories (for the
configuration in figure 14, including trajectory A and B shown there). All points relate to the
position of the camera axis. Large cross-circles (®) mark the end points of the trajectories.
Small dots are placed on the trajectories at points, where the disparity dropped below a value
of 1.5 x termination threshold. Two iso-disparity curves from the right figure are overlaid
(dashed lines). 7op: Disparity in the vicinity of the snapshot location. Gray regions are re-
stricted by iso-disparity curves with equi-distant disparity values; disparity decreases when ap-
proaching the snapshot position.

robot was placed at 64 locations on a grid and aligned with the world coordi-
nate system; compare this field with the AL vector field obtained from the com-
puter simulation in figure 6 (top right) where the same setup was used.

Figure 17 (top right) shows a home vector field obtained for the target posi-
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Figure 16. Arena used for the experiments with the analog robot.

tion marked with the cross-circle in the same setup. The robot was first placed
at the target location, and the AL vector of that location was stored. Then the
robot was rotated by sixty degrees (to test the vector rotation system) and moved
to sixty-four positions on a grid, where the two voltages of the home vector were
measured. Evidently, all home vectors point approximately to the target loca-
tion; their length decreases in the vicinity of the target.

For the homing experiment presented in figure 17 (bottom), the robot was
first placed at the target location, where the AL vector was registered, and then
moved to different starting points close to the walls of the arena. A pen was
mounted in the center of the robot between the two wheels. After some sec-
onds, a time switch released the motors and the robot started to move. The tra-
jectory was drawn by the pen on paper covering the floor of the arena; the tra-
jectories were afterwards digitized from a photo of the paper (this method causes
the small distortions of the diagram). The V-shaped parts in some of the trajec-
tories result from changes in the movement direction of the robot from back-
wards to forward (see the section “Implementation of the ALV Model”). In the
upper left trajectory, the robot temporarily lost sight of one of the landmarks,
which caused a short disruption.

On average, the final points of the trajectories shown in figure 17 (bottom)
deviated from the target point by 58 £ 17 millimeters. The experiment was re-
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Figure 17. Visual homing experiment with the analog robot.

Three landmarks (depicted by bars) where attached to the walls of the arena. The detectable
edges are marked by an arrow. Top lefi: Average landmark vector measured for 64 positions on
a grid. The vector scaling is shown in the upper right corner (1 V). Top right: Home vector
field for the target location marked with the cross-circle. Bottom: Robot trajectories. The
cross-circle marks the target location where the AL vector was stored. The final positions of
the robot are depicted by dots.

peated nine times with different target locations; the mean deviation over all 99
runs was 68 * 35 millimeters. The deviations in this and other experiments can
almost entirely be explained as an effect of the low visual resolution of the robot.
In a relatively large area around the target point, the edge-filtered view perceived
by the robot is constant. Consequently, the target location can not be located
with higher precision. This “iso-view” region has been constructed geometrically
for the experiment in figure 18. The view sector of each active edge pixel, which
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Figure 18. Geometrical reconstruction of the region where the perceived view
does not change (hatched area) for the experiment in figure 17 (bottom).

Dots on the margins depict the position of the detectable edges, the cross marks the target po-
sition, and the small dots show the final points of the robot trajectories. B = 11.25 degrees is
the intersensor angle.

has an angular size equal to the inter-sensor angle = 11.25 degrees, was at-
tached to the corresponding landmark; the cross section of all view sectors gives
the iso-view region (hatched area). Depending on the orientation of the robot,
different edge detectors are activated, which results in iso-view regions with sim-
ilar size but different shapes; in the geometrical reconstruction, the orientation
was chosen in a way that the shape of the iso-view region was in accordance
with the final points of the trajectories obtained in the experiments. Apparently,
an iso-view region could be found where the final points are located close to the
margin or inside the region.

Discussion

Mobile robot experiments proved to be useful tools for testing hypotheses about
information processing in biological agents, especially in the field of visual navi-
gation. Franceschini, Pichon, and Blanes (1992) constructed a vision system for
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a robot based on the motion detection circuits in the compound eye of the
housefly. Elementary motion detectors of insects have also been modeled in sev-
eral analog VLSI implementations (see chapter 1). Visual dead-reckoning evi-
dently performed by honey bees was tested on a mobile robot by Srinivasan,
Chahl, and Zhang (1997). Mechanisms of path integration using a polarized
light compass that mimics the celestial compass found in certain insect species
have been reproduced with mobile robots by Lambrinos et al. (1997, 2000) and
Moller et al. (1998). An overview of projects in biomimetic robot navigation is
given by Franz and Mallot (2000).

The investigations presented here focus on synthetic modeling of visual hom-
ing strategies of insects. It was demonstrated that the snapshot model—which
was only tested in computer simulations before—works under real-world condi-
tions. The experiments with the mobile robot Sahabot 2 have shown that the
deviations of the final points of the robot’s return journeys from the target posi-
tion are in the range of ten centimeters. From this distance, the nest entrance
should be visible for the ant. Therefore it is justifiable to assume that the preci-
sion of the visual homing is comparable to the precision achieved by desert ants.
To directly compare the homing precision of ants and robot is legitimate, since
the visual processing is not affected by differences in body size and propulsion.
Moreover, the high precision of homing could be achieved with a relatively low
visual resolution, which is in accordance with animal data—the resolution of
the camera image along the horizon is approximately 2 degrees, whereas a reso-
lution of 3 degrees was determined for the horizonal belt of the Cataglyphis eye
(Zollikofer, Wehner, and Fukushi 1995). The robot could successfully cope with
sensor noise in the visual system and in the polarized-light compass that was
used for the view alignment required by the snapshot model.

In the robot experiments, the same type of artificial landmarks were used as
in experiments with Cataglyphis ants. Attempts have been made to use those
landmarks that are relevant to the ants in their natural habitat. However, where-
as the ant’s eyes are about 0.5 centimeter above ground, the mirror of the robot’s
visual system is at 27 centimeter height. Objects like small shrubs or stones that
stick above the horizon of the ants and are therefore visible as a skyline against
the bright sky as background are usually below the horizon seen by the robot.
From its higher perspective, the frequent shrubs in the vicinity of the test field
form a single band around the horizon, which can not be separated into distinct
landmarks. For the setup with artificial landmarks, only very few and simple im-
age processing steps were necessary to link the visual input to the representation
required by the navigation method, since the landmarks are clearly distinguish-
able from the background. In more complex environments, however, the effort
required for the extraction of landmark cues may increase (see the section “Ap-
plication for Robot Navigation”).

The experiments with the analog robot have shown that insects might employ
an even simpler navigation method, the ALV model. Snapshot model and ALV
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model are closely related and it is known that a version of the snapshot model
and the ALV model even yield identical home vectors in the vicinity of the target
location (Lambrinos et al., 2000). There are also versions of the ALV model,
where the apparent size of the landmarks is considered (Lambrinos et al., 2000).
With the experimental procedures described in the section “Visual Homing of
Insects” it is therefore difficult to decide which strategy is actually used by the in-
sect. Only experiments, where bees had to decide between two different land-
mark arrays, provide some evidence that it may actually be a picture that is stored
in the animal’s brain (Cartwright and Collett 1983, figure 15).

The homing precision achieved in the experiments with the analog robot
seems to be limited only by the very low visual resolution (11.25 degrees). How-
ever, also the precision of the compass is critical for the homing precision; a re-
design of the compass system was necessary, since the original, less precise sys-
tem entailed large position errors. With the successful operation of the analog
implementation of the ALV model it is possible to define a lower limit of com-
plexity for visual-homing mechanisms: the apparently computationally complex
task can be realized in a very simple analog electronic circle (the current imple-
mentation contains ninety-one operational amplifiers, eight analog switches and
twelve analog multipliers).

The analog implementation also adds plausibility to the ALV model as a
model of insect navigation, since analog electronic circuits and biological ner-
vous systems share a number of information processing principles. The process-
ing in both architectures is analog, continuous in time, inherently parallel, and
the same operations are easy to realize (like weighted addition of signals) or dif-
ficult (like shifting an array of data). It therefore seems likely that the analog cir-
cuit has a close biological counterpart, which may not be the case with a system
relying on digital computation (where, for example, the shifting of an array can
be done by changing a single pointer variable, while weighted addition is a time-
consuming process with considerable underlying hardware effort). The first pro-
cessing steps from the sensor information to the robot centered AL vector are
widely compliant with the architecture of biological nervous systems, since they
are mainly based on weighted addition of signals and thresholding operations.
Differences will occur in the part for rotation and storage of the AL vectors,
where precision analog components were used that are unlikely to have direct
correspondences in biological neural systems. Starting from the architecture of
the analog implementation, it may be possible to interpret the responses of bio-
logical neurons that are involved in the navigation system; neurons that encode
the AL vector, for example, would be identified as large field neurons with a spe-
cific sinusoidal response over the horizon. From the simplicity of the analog im-
plementation and the fact that the largest part of the circuit (sixty-four of the
ninety-one operational amplifiers) is organized in a retinotopical manner it may
be concluded that visual homing capabilities are implemented in the peripheral
parts of the insect’s visual brain.
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Application for Robot Navigation

Besides approaches that employ mobile robots for the “synthetic modeling” of
animal behavior, a growing number of approaches in robotics get inspiration
from the navigation capabilities that insects show despite their diminutive
brains. Related to this, there seems to be a shift from “computational,” “quanti-
tative” towards “qualitative” methods. Traditional approaches in visual robot
navigation are based on determining the metric position of the robot using ac-
curate geometrical two-dimensional maps or CAD-like three-dimensional world
models (reviews can be found in Kuipers and Byun 1988, Kortenkamp 1993,
and Bartlett et al. 1995). Typically, the amount of required computation and in-
formation that has to be stored about the environment by far exceeds the limits
that can be assumed for insects.

Recent changes in the robotics paradigm towards “cheaper” methods affect
both world models and navigation strategies. Concerning the type of world
models, there is a transition from the aforementioned topographical to topologi-
cal maps that only represent “interesting places” in the environment and relate
these places by notions of order, proximity, or instructions for the transition be-
tween them. This idea is appealing, since it eliminates the problem of dealing
with movement uncertainty in mobile robots (Kortenkamp 1993).

Many of the “cheap” navigation strategies that currently replace the “compu-
tational,” position-based methods regard “homing” as the basic navigation abili-
ty. In particular, homing methods are used in conjunction with topological
maps (Kuipers and Byun 1988; Franz et al. 1998a). There are two different ap-
proaches to image-based homing, called “local” and “associative” homing (Hong
et al. 1992). Local homing methods gradually align a current view with a snap-
shot stored at the target position by deriving a direction of movement from the
differences between the two images (Hong et al. 1992; Franz et al. 1998b). As-
sociative homing methods associate stored scenes with movement vectors point-
ing towards the goal (Gaussier et al. 1997; Cassinis, Grana, and Rizzi 1996;
Nelson 1989). The method presented in this study belongs to the local homing
methods. It is a disadvantage of the associative approaches that they require an
exploration phase and some external means like path integration to determine
the home direction associated with a scene.

Local homing methods have to cope with the problem what features to use as
landmarks for the comparison of images, and how to establish the correspon-
dence berween featues in the current and the stored view (an exception is the
“warping” approach suggested by Franz et al. 1998b). The computationally
most expensive part of these methods is the correlation of image regions
(Gaussier et al. 1997; Hong et al. 1992). An alternative is the approach present-
ed here, which is based on the snapshot model (Cartwright and Collett 1983).
Only a small set of features, like two different types of edges, has to be extracted
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from the images. To establish the correspondence, the closest features in the two
views are paired with each other, without identifying the features as belonging
to the same landmark. Whereas the neural apparatus required to perform a cor-
relation of image regions will be rather complex, it could be shown thar a neural
architecture realizing the matching procedure of the snapshot model is actually
very simple (Moller, Maris, and Lambrinos 1999). The “average landmark vec-
tor model” is even cheaper: only a reliable detection of landmark features is nec-
essary, but no correspondences have to be established between features in the
two views.

The two robot implementations described here are restricted to artificial se-
tups. The detection of landmarks in the desert experiments with the Sahabot 2
relies on the fact that the dark artificial landmarks can be separated from the
bright background using a simple thresholding mechanism. The analog imple-
mentation uses a very simple feature detection mechanism (threshold and lateral
inhibition) that only works under room light conditions and in the artificial set-
up with its sharp contrast edges. While the navigation methods themselves are
very parsimonious, it still has to be investigated, how much effort has to be in-
vested for a reliable detection of landmark cues in more complex visual environ-
ments without artificial landmarks and under changing light conditions.

First experiments in an indoor environment provide some evidence that actu-
ally relatively simple image processing steps might be sufficient for an extraction
of landmark cues. An album of images was taken with the camera of the Sa-
habot-2 in an area of 3 meters x 4.5 meters on grid positions with a spacing of
30 cm; the light conditions were constant for all images of the album. Figure 20
shows the environment, an entrance hall, which was left unmodified for the reg-
istration of the album. All images are aligned in the same direction. Figure 19
explains the image processing steps that were afterwards applied to extract land-
mark vectors for the ALV model. A stripe above and including the horizon was
extracted from the camera image. The gray values in the columns of this image
were averaged. The resulting one-dimensional image was low-pass filtered.
Landmark vectors point to those pixels, where the low-pass filtered view crosses
a threshold.

The threshold is adjusted automatically in the following way: In the low-pass
filtered image, regions with small absolute value of slope were detected (dots on
the curve). The corresponding gray values were marked in a table of the 256 pos-
sible values (right diagram). The gray value in the center of the largest unmarked
region (bracket) was used as threshold. This method increases the stability of the
detected features when the robot is displaced from the target position. Small
changes in the gray values of the low-pass filtered image will not add or remove
detected landmarks; this directly affects the size of the region of attraction. After
the threshold has been determined for the target location, it is stored together
with the AL vector and kept constant during the return to this location.

The home vectors obtained with this method are visualized in figure 21. In
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Figure 19. Image processing for visual homing with the ALV model in indoor environments.

80 of in total 150 grid points, the same landmarks as in the target location were
detected. Trajectories starting from 98 of the grid points converge to the target
point, which corresponds to a region of attraction of 8.8 meters® . This result
shows that a large region of attraction may be obtained based on few simple im-
age processing steps. The issue of changing light conditions, however, is still un-
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Figure 20. Indoor environment where the image album was taken.

resolved, as is the problem of the compass—magnetic compasses are unreliable
indoors and should be replaced by landmark-based compass information.

Finally it shall be mentioned that from the application perspective it may also
be interesting that a cheap analog implementation could be found for the ALV
model. Analog circuits have considerably lower power consumption than digital
computers, are extremely fast due to the inherent parallelity, simplify control
tasks since processing is continuous in time, and have a better fault tolerance
than digital computers (changing an analog value will only gradually impair the
performance, while a single flipped bit in a digital computer can cause a total
breakdown). The trade-off for these advantages is the lack of flexibility of analog
systems.

Conclusion and Future Work

Two parsimonious visual-homing algorithms—the snapshot model and the av-
erage landmark vector model—have been implemented on mobile robots and
shown to operate successfully in the real world, however in simplified experi-
mental setups. This suggests that the two models are plausible models of insect
navigation. Additional support for the ALV model is gained from the fact that it
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Figure 21. Home vectors computed for the indoor album.

The cross-circle marks the target location.

was implemented in analog hardware that shares a number of information pro-
cessing principles with nervous systems. The results also indicate that the parsi-
monious strategies of insect navigation can provide a guideline for robotics re-
search. Future work will try to adapt the mechanisms to environments with
more complex visual features and to integrate multiple snapshots in topological
maps.
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CHAPTER

4

Aerial Minirobot that Stabilizes and
Tracks with a Bio-Inspired
Visual Scanning Sensor

Stéphane Viollet and Nicolas Franceschini

he present study was carried out in the context of our previous studies

using a biologically-inspired minimalistic robotic approach, which were

based on the idea of reconstructing natural visuomotor processes in or-
der to better understand them. Here we show that an elementary visual sensor
composed of only two pixels is able to accurately detect contrasting features
within its visual field, provided it uses a particular scanning mode, such as that
recently discovered in the compound eye of flies. This low-complexity, low-
weight, low-power, low-cost scanning sensor was found to deliver an output that
is (1) quasi-linear with respect to the angular position of a contrasting object in
its field of view and (2) largely invariant with respect to the distance to the ob-
ject and its level of contrast.

The most novel feature of this visual sensor, which differs from other systems
based on scanning at constant angular speed and pulse-scanning, is that it scans the
visual field at an angular speed that varies gradually with time (variable speed
scanning). The sensor’s output then becomes a graded function of the position
of a contrast feature within its visual field, with the interesting consequence that
if this sensor is incorporated into a visuomotor control loop, it is able to stabi-
lize a robot such as a micro air-vehicle with respect to the environmental fea-
tures.

In the first part of this chapter, we simulate the pure rotation at a variable
speed of two photoreceptors in front of a stationary contour (a light-to-dark
edge) and show that the processing of the apparent motion yields a signal that
gradually varies with the angular position of the edge in the visual field. On the
basis of our simulation results, we then describe the structure of a miniature
scanning sensor coupled with an elementary motion detector (EMD), the prin-
ciple of which was again derived from the fly compound eye. Finally, we de-
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scribe a miniature twin-engine aerial robot, which stabilizes in yaw by means of
a visual feedback loop based on the scanning sensor. The latter picks up an error
signal, which is used to drive the two propellers differentially, causing the “see-
ing robot” to reorient and adjust its line of sight so as to remain visually locked
onto a nearby or distant contrasting target.

Contrary to the kind of yaw stabilization, which can be achieved with a gyro-
scope having similar low-weight and low-cost characteristics, the one described
here is not only stiff but also devoid of drift. Some examples are given below,
where the (tethered) aircraft either tracks a slowly moving dark edge or main-
tains fixation onto a stationary target for seventeen minutes.

The scanning visual sensor and the visuomotor control loop we have devel-
oped are appropriate for: detecting low speed relative motion between a craft
and its environment; rejecting environmental disturbances by maintaining visu-
al fixation onto a nearby or distant target, regardless of its contrast and distance
within a given range; and stabilizing the attitude of a craft optically with respect
to environmental features.

Scanning at a Variable Angular Speed

In this section, we simulated the concerted rotation of two photoreceptors at a
variable angular speed in front of a light-dark brightness transition (an edge)
(see figure 1a). Each photoreceptor can receive light only within a small field of
view characterized by the angular sensitivity function.

Photoreceptor Model

The angular sensitivity of a lens-photoreceptor combination is usually approxi-
mated by a bell-shaped function. In the present case, we use a Gaussian func-
tion, the bottom part of which is truncated below the threshold s,.

The angular sensitivity S(¢) of photoreceptor i is therefore given by:

S((P)___(ab:(G,-((P)—:0;+(Gi((p)—:0)) O
with
I
G.-(fl’)—exp[ 202] 2)

S(¢) is characterized by its total angular width Lv and its angular width at half
height Ap. Both parameters can be expressed with respect to o as follows:
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»
Ap= 20{2 ln(1 vy J] (3)
Lv=20|2In| — (4)

Variable Angular Speed

As sketched in figure 1a, we have simulated the concerted rotation of two pho-
tosensors, 1 and 2, separated by a constant angle Ay, called the interreceptor an-
gle, in front of an elementary panorama consisting of a single segment AB. The
pair of photosensors is assumed here to rotate clockwise at an angular speed 2
that decays exponentially with time. The angle ¥ is given by figure 1b:

W) = A[l —exp(—%)) )

Hence the angular speed £2(t) is:
Q(r) = écxp(—i) (6)
T T

The position of the segment is defined by the points A(x,, 1) and B(x,, y,)
with y,= y,.

At any time, the output R(#) from photoreceptor / is obtained by integrating
the angular sensitivity S(¢) weighted by the intensity /(¢):

R =["" Ig)Sp)dp @)

Processing the Photoreceptor Signals

To calculate the output signal from each photoreceptor, we used a discrete ver-
sion of equation 7. The signal sampled, R{kT), with T in seconds, results from
a convolution of the light intensity I with the Gaussian mask S(¢75) (75 in de-
grees). In other words, at each value of ¥, R{kT) results from the filtering of /
by a filter with a Gaussian-shaped impulse response. In all these calculations, the
Gaussian mask S(#75) based on equation 1 was processed with a spatial sam-
pling step 75 equal to 0.004 degrees. R,(£7) is maximal and equal to 1 when a
black segment (/ = 10) covers the whole visual field L» and it is null when the
black segment is completely outside the visual field (7 = 0).

In order to show that the time lag between the two photosensors varies with
the position of the contrast feature, we refer to the scheme of figure 1a, in which
we put the dark edge at 3 positions (1, 2, 3) along the x axis. For each of these
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Figure 1. Simulated response of two adjacent photosensors.

(a) Simulated response of two adjacent photosensors rotating clockwise at a variable angular
speed 2, and encountering a dark edge placed at various positions 1, 2, 3 (a). (b) Variation of
angle Y(v). (c, d, ) Output from photoreceptors 1 and 2, depending of the position of the
dark edge (1, 2, 3). (f, g, h) High-pass filtered version of (c, d, ) (cut-off frequency : 2Hz)
and thresholding of the output signal from each photoreceptor. Ap = 2 degrees , AQ = 4 de-
grees , Lv = 5.2 degrees , s, = 0.01, A = 2A@, T = 20 milliseconds, T = 0.01s

stationary positions, figures 1(c, d, e) give the output from photosensors 1 and 2
as they turn clockwise at a variable angular speed £2. In figures 1(f, g, h), the
output from each photosensor was passed through an analog high-pass filter
with a cut-off frequency of 2Hz.
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Figure 1(f, g, h) shows that the time lag At between the differentiated and
thresholded outputs of the two photosensors indeed varies gradually with the
angular position ¢_ of the contrast edge within the visual field. Moreover, it
should be noticed that the angular separation (1.8 degrees) berween each posi-
tion (1, 2, 3) of the dark edge is smaller (by about 50 percent) than the inter-
receptor angle Ag. This leads to the expectation that scanning at a variable an-
gular speed can lead to subpixel accuracy in target location.

The Elementary Motion Detector (EMD)

The elementary motion detector (EMD) — is an analog circuit yielding an out-
put signal that decreases gradually when the time lag Az between its two inputs
increases. Like many insect motion detecting neurons, the analog EMD is direc-
tionally selective. The EMD we used here detects only light-to-dark transitions
(“OFF contrasts”) when the scanning direction is clockwise. The use of the
derivative in the first EMD processing step is essential, as it makes it possible to
eliminate the DC level of the photosensors and discriminate between positive
(ON) contrasts and negative (OFF) contrasts.

A block diagram of the EMD is shown in figure 2.

The signal output V, results from multiplying an exponentially decaying
pulse by a delayed fast pulse. V, varies inversely with Az and hence grows larger
with £2. We originally designed this scheme for an analog motion detector on
the basis of our electrophysiological findings on flies, and we patented it in
1986. We used an array of motion detectors of this kind in 1991 onboard a vi-
sually guided autonomous robot capable of avoiding obstacles at 50 centimeters
per second. A similar EMD principle (called “facilitate and sample” scheme) was
discovered independently by authors at the California Institute of Technology in
1996, and patented in 1998.

It can be predicted from the simulations shown in figure 1, that if an EMD is
driven by a pair of photosensors rotating at a variable angular speed, its output
V. will vary gradually with the angular position ¢_ of a dark edge in the visual
field of the scanning sensor.

The Scanning Sensor

In the previous sections, we have shown that scanning plus motion detection
can lead to position sensing. We now present the construction and test of a
miniature scanning sensor with only two pixels that scan the environment local-
ly at a variable angular speed.
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Figure 2. Structure of the EMD.

The Scanning Sensor

We built a miniature scanner, the components of which are sketched in figure 3.
A dual photosensor and a lens (focal length: 8.5 millimeters), mounted opposite
each other on a blackened perspex drum (diameter 15 millimeters), form a
miniature “camera eye,” which is driven by a DC micromotor (diameter 10 mil-
limeters). The angle of divergence Ag between the visual axes of the two pho-
toreceptors (“interreceptor angle”) is:

Ag = 4 degrees

The angular position of the drum (and hence, that of the sensor’s mean line
of sight) is monitored by a magnetoresistive sensor responding to the angular po-
sition of a micromagnet glued to the hub of the drum. This sensor is part of the
loop of an accessory position-servo, which controls the eye so that it will follow
any imposed signal.

This servo-eye is positioned by a composite periodic signal at 10 Hz (cf figure
4a), which eventually leads to two scanning phases (cf figure 4c). During the
first phase (duration: 25ms), the angular speed §2 of the eye is made to decrease
quasi-exponentially with time. During the longer “return phase” (duration 75
ms), the eye is made to return to its original position at a quasi-constant speed.
The amplitude A& of the scan is expressed in terms of the interreceptor angle
Ag by means of the scanning factor a:

Y

Ap

The EMD has a preferred direction such that it responds only during the first
part of the scan (short phase), delivering an output that varies in a graded man-
ner with the position of the contrasting edge within its visual field. Imposing a
slow and constant angular speed during the return phase improves the robust-
ness of the scanning sensor, making it responsive to environmental features far
beyond the simple edge considered here.
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Figure 3. Sketch of the complete visual scanning sensor
in front of a dark object posted up on the wall.

Sensor Output Versus Contrast and Distance

The complete scanning sensor was mounted vertically onto the shaft of a re-
solver and a 16-bit resolver-to-digital converter was used to accurately deter-
mine the angular orientation of the sensor. The two photoreceptor outputs
were connected to an EMD via soft microwires. We varied the orientation of
the scanning sensor manually and at each orientation recorded the voltage
output V, from the EMD and the angular position ¢_ of the sensor.

The object was a contrast step (an edge) made of grey paper that stood out
from the background. The contrast 7 was determined by measuring the relative
illuminance of the paper (/;) and its background (/,) and calculating:
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Figure 4. Measured periodic signals from the position servo of the scanning eye.

(a) reference input voltage imposed upon the position servo. (b) actual motor input voltage.
(c) resulting orientation of the “eye” as monitored by the magnetoresistive sensor
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Contrast was measured #7 situ with a linear photo device having the same
spectral sensitivity as the dual photosensor used.

Figures 5(a, b, ¢) show that the sensor output varies with the position of a
contrasting edge within its visual field, as predicted on the basis of the simula-
tion results shown in figure 1. The responses are quasilinear with respect to
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Figure 5. Voltage output Vs from the scanning sensor (cf figure 3) as a function of its orienta-
tion ©_and the contrast m of the pattern.

Accuracy: £ 50mV. (a) response at D = 60 centimeters with respect to a dark edge (solid) and
a dark stripe 10 millimeters in width (dotted). (b) response at D = 100 centimeters to a dark
edge of various contrasts. (c) response at D = 140 centimeters to the same dark edges. (A@ =
4° o = 2).

the yaw orientation of the scanning sensor and largely invariant with respect
to the contrast 7 and the distance D of the dark edge. Subtracting a reference
signal » = 5.5V from all the data gives an odd function, which is a useful fea-
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ture for incorporating the scanning sensor into an optomotor loop. Moreover,
invariance with respect to the distance—within a limited range—is an impor-
tant feature for the dynamics of an optomotor loop of this kind, because it
does not introduce any gain variations liable to cause instability. The sensor
was designed to be robust against any spurious modulations caused by neon
room illumination (100Hz intensity modulations).

Visual Control of a Miniature Twin-Propeller Robot

We built a miniature aerial robot equipped with its scanning sensor described
in the previous section. The robot is made of carbon, wood, fiberglass, and
EPS (figure 6a). Its total weight is 100 grams, including the engines, scanning
sensor, gyroscope, and the complete electronics. The onboard battery
(LiMnO,, 9V-0.8A.h) weighs another 54 grams and gives about one hour au-
tonomy. In order to minimize the inertia around the yaw axis, the DC engines
are positioned close to the axis of rotation and transmit their power to their
respective propellers (diameter 13 centimeters) through a 12 centimeter-long
carbon fiber shaft and bevel gear (reduction ration 1/5). The SMD electronic
components occupy five decks of printed circuit boards interconnected via
miniature bus connectors. Each board (diameter 55 millimeters) is dedicated
to a particular task: (a) power conditioning and (b) 433 MHz RC receiver and
PWM motor controller for each propeller, (c) EMD circuit, (d) optomotor
analog controller circuit (e) servoloop controller of the scanner.

Dynamical Modeling of the Twin-Propeller Robot

We analyzed the dynamics of the twin-propeller system around its yaw axis
from its response to a step input.  We mounted the robot onto the shaft of
the resolver, which was selected because of its negligible friction and inertia.
The 16 bit resolver-to-digital converter was then used to measure the angular
speed of the robot in yaw. This tachometer has a scale factor of 2.27.103
V/°/s, a scale factor error of ten percent and a bandwidth of 125Hz.

In order to convey a step input voltage to the autonomous plant, we de-
signed a remote control system operating at 433MHz (1,000 bauds). At the
transmitter, the throttle and yaw commands were adjusted by means of “digi-
tal” joysticks. Onboard the robot, these signals were received by a miniature
receiver and dispatched to two digital potentiometers via a PIC16F84 micro-
controller. These potentiometers (8-bit digital-to-analog converters) generated
a differential signal »,to adjust the yaw and a signal #_ to adjust the common
throttle (figure 7). In order to make sure that the two thrusters reached the
same nominal speed (i.e., the same “operating point”) during each experimen-
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Figure 6. Twin-engine autonomous minirobot and test-bed.

(a). Twin-engine autonomous minirobot equipped with its scanning visual sensor. The robot’s
body has a diameter of 55 millimeters and the robot weights 100 grams, including all the
clectronic signal processing, motor control systems, radio throttle control, and start and kill
switches. The robot is usually tethered to a 100 pm wire secured to the ceiling. The robot
controls its yaw orientation by performing visual fixation and tracking, even in the presence
of pendulum oscillations. The robot’s heading direction is the same as the mean eye axis.

(b) Test-bed used to characterize the robot and identify its dynamics. Instcad of being sus-
pended, the robot is here mounted onto a low-friction resolver to assess its dynamical proper-
ties or to a low-friction potentiometer to measure its orientation in yaw. ‘The visual pattern
(here a dark bar) can be moved in front of the robot to test its tracking ability.
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Figure 7. Block diagram of the differential system driving the propellers.

tal run, the DC level %, was memorized in the microcontroller flash memory
and called back via a third remote control channel.
The open loop model G(s) of the robot obtained from its step response is as

follows:
] 2700

Gls)=—= = .
U, (0.0265> +0.232s+1)

where6 , is the angular speed (°/s) of the robot and U is in volts.
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Figure 8. Block diagram of the closed-loop visual control system incorporating

the scanning visual sensor (outer loop) and a gyroscope (inner loop).

The Visual Inertial Feedback System

The complete position feedback system we have designed is shown in figure 8.

The scanning sensor is modeled by a simple gain Ks = 1V/° (cf figure 5), and
its output signal was maintained by a zero-order hold (ZOH) until the comple-
tion of each scan (7 = 100 milliseconds). Since the transfer function from the
controlling yaw input to the yaw angle has three main poles, we incorporated a
velocity feedback using a miniature piezo gyroscope. The latter was modeled by
the following transfer function H(s):

Hi= L o _67.10 ’
6, (0.0032s+1)

The gain K, = 5 was chosen so as to give a closed loop step response with a
settling time of 100 milliseconds with a minor overshoot. The lead compensator
D(s) was chosen so as to raise the phase margin further, thereby increasing the
damping and reducing the settling time to 100 milliseconds. The transfer func-
tion of D(s) is given by :

0.085+1
D(s)=0.3| ———
© (0.014s+1)’
and Ke = 6.102

The frequency response of the open-loop transfer function
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Figure 9. Frequency response of the complete system (figure 8) obtained with Matlab. In this
Bode diagram, the visual scanning sensor is modeled as a simple gain.

40
(5)

is shown in figure 9.

B(s)=

Target Tracking and Visual Fixation

We assessed the performance of the visual-inertial feedback system on the
testbed described in figure Gb. Both the angular position of the dark edge (in-
put) and the angular orientation in yaw of the robot (output) were measured
with miniature servopotentiometers, as depicted in figure 6.

Figure 10 illustrates the actual tracking performance of the robot with respect
to a sinusoidal variation of the position of a dark edge in the visual field of the
scanning sensor.

The response was found to lag behind the command by about 100 millisec-
onds, i.e., by hardly more than the scan period, which turned out to be the
main limiting factor. The maximum linear speed of the dark edge that the aerial
robot was able to track was about twenty-five centimeters per second at a dis-
tance of one meter (i.e. 14°/s). The histogram in figure 11 shows that the robot
steadily controls its two propellers so as to gaze steadily on a stationary target
during a long (seventeen minute) experiment.
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Figure 10 Dynamic performance of the overall twin-propeller robot (cf figure 6) tracking a
dark edge (contrast m=0.2) located at a distance of 1 meter in front of the eye and oscillating
at 0.2 Hz perpendicularly to its line of sight. r = 5.5V,

Conclusion

We described a low-level, low complexity, miniature sensor designed to provide
a micro-air vehicle with visual stabilization and tracking possibilities. We estab-
lished that a hundred gram twin-propeller robot equipped with this miniature
scanning eye can track an object with various levels of contrast (down to ten
percent) at various distances (up to 1.5 meters), using its onboard electronics
and energy in a completely autonomous manner.

The aim here was not to achieve a high performance closed-loop system such
as those based on a CCD camera that recognize a target and track it at high
speeds. Such systems rely on more complex control laws, which require larger,
heavier, and more consuming computational systems. Our low-level visual sys-
tem is not based on any “understanding of the environment,” and consequently
cannot detect and track a specific target among many others. Yet this moderate-
ly complex, inexpensive (= 400 USD) system can be used to stabilize a micro
air vehicle around a given axis of rotation, where the time-constant is small (the
small time-constants of micro air vehicles make it difficult for them to be stabi-
lized by a human operator); to replace a gyroscope by maintaining an angular
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Figure 11. Distribution of the yaw orientation of the robot, which constantly fixated a sta-
tionary dark edge (contrast m=0.2) for seventeen minutes.

Number of samples = 50000 Acquisition time = 1000s Standard deviation 6 = 0.22 degrees .

position with respect to environmental features, for a long time and with no
drift; and to track a target visually with relative insensitivity to shape, contrast,
and distance, using a single pair of photoreceptors scanning concomitantly.

It is worth noting that the optical position-servoing method we have devel-
oped is based on a position sensor that actually relies on a motion sensor.

An essential message of this chapter is that a simple, low amplitude scanning
of two adjacent photoreceptors with motion detection can provide positional in-
formation to an accuracy far better than that expected from their angular sam-
pling basis, hence leading to subpixel accuracy in target localization and tracking.
Extending these results to a 1D or 2D photoreceptor array will retain this most
interesting property while enlarging the sensor’s field of view.
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CHAPTER

5

Construction of a Hexapod Robot
with Cockroach Kinematics
Benefits both Robotics and Biology

Roger D. Quinn and Roy E. Ritzmann

logical emulation in robot design. The robot would be used as a plat-

form on which both biologists and engineers could test hypotheses
about posture and locomotion. We did not intend to build a robot with all of
the remarkable locomotion capabilities of the cockroach. The state of actuator
and power source technology precludes this. Therefore, we limited the locomo-
tion goals of Robot III to walking, turning, and climbing in a manner similar to
a cockroach. To determine the aspects of the insect’s legs and their control that
are critical to those behaviors, we made detailed kinematic and neurobiological
observations of the animal while performing those tasks.

The goal of this project was to demonstrate the advantages of careful bio-

In this chapter we first describe the biological observations that were made,
providing detailed kinematic data on cockroaches running on a treadmill and
climbing over barriers. We then describe how those data were incorporated into
a dynamic simulation that predicted motor and structural loads that were used
in design of the robot. Finally, we describe the construction of the robot and de-
velopment of its posture controller. The posture controller is an important part
of the locomotion controller that is currently under development.

Biological Observations

In order to collect the necessary data on the mechanics of cockroach walking,
our first task was to build a walking platform that would allow us to monitor
the movements of all leg joints as the animal performed real walking move-
ments. Considerable work had been done in the past on cockroach walking
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Figure 1. Schematic showing data collection methodology.

The leg in the upper left corner shows the placement of insulated wires for EMG recording.
The record in the upper right corner shows joint angle data from a rear leg (trace 1 from the
coxa-trochanter-femur (CTF) joint and trace 2 from the femur-tibia (FT) joint) combined
with three electormyograms (trace 3 from the trochanter depressor, trace 4 from the tibial ex-
tensor and trace 5 from the tibial flexor).

(Pearson and Iles 1970; Delcomyn 1971; Pearson 1976; Spirito and Mushrush
1979; Delcomyn 1985). However, most of that work focused upon the timing
of foot contact with the ground (i.e. footfall patterns). In order to provide accu-
rate information on leg movements and on the control of leg movements, we
had to move beyond footfall patterns to monitor individual joint movements.
Fortunately, advances in high-speed video systems made these observations
possible. However, an important problem had to be overcome. Insects make
complex leg movements in three-dimensional space. Because of the inherent
problems associated with viewing a three dimensional movement projected onto
a single plane, any single view could readily generate false data on joint move-
ment. In order to accurately determine joint kinematics, we had to view leg
movements from two orthogonal directions, measure the joint angles and then
reconstruct the true three dimensional movements from those data (Biewener
and Full 1992). To accomplish this task, we constructed a miniature transparent
treadmill that allowed us to view the animal simultaneously from the side and
from the ventral surface (underside), via a mirror positioned at a forty-five de-
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gree angle under the belt (Watson and Ritzmann 1998a) (figure 1). Video im-
ages were taken at either two hundred or two hundred and fifty frames per sec-
ond. The videotape was then played back frame by frame so that we could digi-
tize specific landmark points on the legs. The digitized data from both views
were entered into a custom program along with measurements of the actual di-
mensions of each leg segment. The program then reconstructed the true angles
of the leg joints in three dimensions as the animal moved along the treadmill.

Each cockroach leg is divided into several segments (figure 4a). Although the
segments are reproduced in each of the three pairs of legs, their dimensions are
very different in the front, middle and rear legs. The leg segments from the most
proximal to the most distal segment are called the coxa, trochanter, femur, tibia
and a series of foot joints collectively called the tarsus. The joint between the body
and coxa is made of two plates with soft tissue between them. The complex mus-
culature coupled with complex mechanics confers upon this joint three degrees of
freedom much like that of a ball and socket joint (Laurent and Richard 1986).
The distal joints are for the most part more straightforward. The joints between
the coxa and trochanter, between the trochanter and femur, and between the fe-
mur and tibia are simple one degree of freedom joints. The joint between the
trochanter and femur makes only a small movement and has often been referred
to as fused. However, our observations suggest that because of the 45° orientation
of the joint coupled with its proximal location on the leg, even the small move-
ment of the trochanter femur joint allows the animal to rotate the tibia and tarsus
relative to the ground. This movement is important to the actions associated with
several movements, especially climbing. The tarsal joints each have several passive
degrees of freedom making for agile foot placement. Finally, a claw located on the
end of the tarsus can be raised or lowered to engage the substrate during locomo-
tion on slippery surfaces for climbing (Frazier et al. 1999).

We also have an interest in the control of the leg joints. Thus, we combined
our kinematic analysis with electrophysiological recordings of motor activity (fig-
ure 1). Neuromuscular activity can be readily monitored in a freely behaving ani-
mal by recording the electrical currents in the muscle extracellularly (Watson and
Ritzmann 1998a). The resulting records are referred to as electromyograms
(EMGs). In insects, this technique is particularly useful because, unlike verte-
brates, each arthropod muscle is typically innervated by relatively few motor neu-
rons. For example, the muscles that are believed to provide most of the action in
extending the femur of each leg during walking are innervated by only two mo-
tor neurons, the fast and slow depressors (Df'and Ds respectively) (Pearson and
Iles 1971). Moreover, muscle records from these two motor neurons are readily
distinguished based upon the size of their related EMG potentials. Thus, activity
in the muscle can be directly related to activity in specific motor neurons.

In order to make a useful robotic vehicle, we wanted it to be able to walk
through complex terrain and interact with its environment in three dimensions.
Specifically, the tasks that we wanted the robot to be capable of performing in-
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Coxa

Figure 2. Movement of rear leg.

Equal movement of the coxa-femur joint and the femur-tibia joint results in a powerful rear
directed movement.

cluded efficient walking, turning and climbing over objects. We, therefore, set
out to study the leg movements and joint control in horizontal walking at vari-
ous different speeds, as well as during turning and climbing.

Horizontal Walking

Even in our initial observations, it was clear that the movements of the three
pairs of legs were not similar. The typical gait during most speeds of walking is
an alternating tripod gate (Delcomyn 1971). In this movement the front and
rear right legs move in synchrony with the left middle leg forming a tripod that
alternates with the tripod that is made up of the remaining three legs. Although
the feet of the three legs move in synchrony, the joint movements of the front,
middle and rear legs are distinct. Each legs joint movements are specialized for
unique roles played by each pair of legs. This observation is consistent with data
on ground reaction forces indicating unique patterns of behavior for each pair
of legs (Fuil, Blickhan and Ting 1991).

The rear (metathoracic) legs are specialized for producing power to accelerate
the animal forward. The movement of the two joints that are responsible for ex-
tending the leg, coxa-trochanter-femur (CTF) and femur-tibia (FT) joints ex-
tend in synchrony moving through approximately the same excursion in both
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joints (Watson and Ritzmann 1998a) (figure 1). As a result, the tarsal segments
are driven directly backward in a line essentially parallel to the animal’s long ax-
is, providing powerful forward propulsion on the body (figure 2).

In the middle (mesothoracic) legs, the two joints also move synchronously,
but the FT joint goes through a smaller excursion than the CTF joint (Watson
and Ritzmann 1998a). This movement, along with the orientation at the body
coxa joint, results in a sweeping movement, which first decelerates and then ac-
celerates the animal (Full et al. 1991). Other observations described below sug-
gest that the middle legs are particularly important in turning the animal and in
climbing movements.

The front (prothoracic) legs are the most unique. To form a functional tripod
movement, the tarsus of these legs must extend forward during swing and then
be pulled rearward while the middle and rear legs of a given tripod extend rear-
ward. To do this the front leg must make much more use of the body-coxa joint
to swing the coxa forward than is seen in the middle and rear legs. With the for-
ward swing of the coxa and the required forward movement of the tarsus, the
CTF and FT joints must come out of synchrony to make the appropriate foot
placement. Indeed, in some cases these two joints actually move in antiphase
(Tryba and Ritzmann 2000). Although the movement made by the prothoracic
legs is complex, it can be at least partially visualized by realizing that, unlike the
other two pairs of legs, the front legs are extended during swing. Then during
the stance phase, they are drawn back toward the body and then extended again.
The first part of the stance movement is accomplished by flexing the FT joint
while extending the CTF joint and rotating the coxa backward. As the tarsi are
drawn under the body, the FT joint stops flexing and the CT joint continues to
extend pushing the tarsi rearward. During swing the process is essentially re-
versed, while the leg is lifted off the ground.

Also unlike the middle and rear legs, the movements of the front legs are
somewhat variable. Indeed, the forward projection and variability of the protho-
racic leg movements are reminiscent of human arms, suggesting that they may
be used as sensori-motor appendages for investigating the local environment.

The different joint movements found in the three pairs of legs should be asso-
ciated with equally different motor activity. This was found in the related EMG
records (Watson and Ritzmann 1998a). In the rear legs, activity in the slow de-
pressor motor neuron (Ds), which controls extension of the CTF joint occurs in
near synchrony with activity from the slow extensor of the tibia (SETi), which
controls extension of the FT joint (figure 1). In the middle legs the two motor
neurons are also in synchrony, but SETi is active at a lower frequency consistent
with the smaller movement at the FT joint in that leg. In the prothoracic legs,
activity in Ds and SETi are not in synchrony (Tryba and Ritzmann 2000).
Rather, SETI fires before Ds to produce the initial FT Flexion. After the FT flex-
ion and as the CF joint is extending, there is a second lower frequency burst in
SETi. This occurs as the leg is passing under the animal’s body. It is consistent
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with a hypothesis that, at this point, the front leg is being loaded and a small
amount of tension is required in the FT joint to prevent collapse of the leg. This
burst could result from a reflex initiated by sensory receptors called campani-
form sensilla (Zill 1990; Zill and Seyfarth 1996) that are located in the leg’s cu-

ticle and detect cuticular strain such as would occur during loading.

Change in Walking Speed

In order to walk faster, the cockroach increases the velocity of joint movement,
in particular in the stance phase (depression and extension of joints). This
change is accomplished by increasing the rate of activity in the slow motor neu-
rons that control movement of those joints (Watson and Ritzmann 1998a). In
fact there is a linear relationship between the firing rate of Ds and SETi and the
related joint velocity. At very high speeds, the second motor neuron that con-
trols each of these joint movements is recruited. These neurons are called the
fast depressor (Df) and the fast extensor of the tibia (FETi). They are easily dis-
tinguished from the slow motor neurons because they generate much larger
muscle potentials in the EMG records (Watson and Ritzmann 1998b).

In response to activity in Df, the CTF joint appears to become much stiffer
(Watson and Ritzmann 1998b). The joint rebounds more rapidly from swing to
stance thus shortening the transition time. Timing of activity in Df comes at the
right time for this change in transition duration to occur. Stiffening of the CTF
joint appears to be an important event for walking at any speed. The Df poten-
tial occurs at the same time in which Ds normally fires a high frequency burst.
Thus, it appears that at this time of transition it is very important for the joint to
become stiff in expectation of the increased load during foot touchdown, regard-
less of walking speed. A similar high frequency burst has also been found at the
onset of extensor activity in cats (Gorassini, Prochazka, Hiebert and Gauthier
1994). Finally, joint stiffening at touchdown was found to be a critical problem
that has to be overcome in walking movements of Robot III. This observation is
just one example of where hurdles that have to be overcome in Robot III point to
an explanation for universal properties of legged locomotion in animals.

Turning

In order to turn, the cockroach must create a mismatch in joint movement in
the right and left legs that at any given time are generating forward-directed
force. This can be accomplished by altering the velocity of movement in the
middle leg relative to the activity of the rear leg of the same tripod. For example,
to turn to the right the animal would increase the activity in the left middle leg
relative to the right rear leg. However, if the alternate tripod is on the ground it
would turn towards the middle leg by decreasing activity in the right middle leg
relative to the left rear leg. Observations of animals turning on the treadmill in-
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dicate that this does, in fact occur (Watson and Ritzmann 1998b). Thus, the
middle legs play an important role in turning the animal. They are also critical
to changes in body attitude during climbing.

Climbing

In order to climb over a barrier, the cockroach first appears to measure the
height of the object. It then pitches its body up and finally extends its legs force-
fully to push it up and over the obstacle. We have very little information on
how the insect measures the height of the object. However, we are confident
that such a measurement is done, because in over half of the climbs that we ob-
served, the front legs are precisely placed on top of the barrier without bumping
into the side of the object. Reasonable sensory devices for making the measure-
ment include the compound eyes and the antenna. They may in fact be acting
in tandem to make the calculation.

In order to alter the attitude of the body in preparation for the climb, the mid-
dle legs are rotated so that the tibia is more nearly perpendicular to the substrate
(figure 3) (Watson, Tryba, Ritzmann, and Zill 1997). Once this is done, exten-
sion of the middle leg will pitch the animal up in preparation for the climbing
movement. The rotation of the tibia occurs via a combination of movements at
the body-coxa (BC) and trochanter-femur (TF) joints. Both the TF joint and the
BC joint of the middle leg are located at an angle, so that movement of the BC
joint will rotate the leg segments distal to the joint. Because both of these joints
are located proximally on the leg, relatively small movements at the BC joint can
result in large rotations at the tibia and tarsus. The contraction of the BC joint
rotates the coxa along its long axis. This movement is very different from the
movement that occurs in the front and rear legs where contraction of that joint
causes the coxa to rock forward increasing the angle between the coxa and body
as viewed from the side. In fact during the climb the side view angle of the coxa
and body do not change significantly from what occurs during walking. Never-
theless, the coxa rotation will swing the tibia to a more perpendicular position.

The movement of the TF joint is subtle. In fact, this joint was previously
thought to be fused. However, we have found that a small flexion does occur
and that such a flexion can contribute to the rotation of the tibia relative to the
substrate. Indeed, when we did fuse the TF joint with staples or pins through
the tendon, we found that the rotation of the tibia during climbing was signifi-
cantly reduced, and the animal had difficulty executing the climb.

Once the animal has reared up, it can then extend its rear legs forcefully to
push it up and over the barrier (Watson et al. 1997). It does this by activating
Ds at a particularly high frequency to generate greater force and push the animal
upward. We are currently performing experiments to test whether this increased
activation is yet another example of a reflex adjustment initiated by the campan-
iform sensilla, which serve as strain detectors in the cuticle.
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Figure 3. Diagram of a cockroach moving from a standing position (dark shading) to an ele-
vated position (light shading) in preparation for climbing.
The critical movement is a rotation of the middle leg that redirects the

extension of that leg to lift the animal upward.
Summary of Biological Data

The biological data described above provides the essential parameters for design
of the robot. By incorporating the insights that were gained in those experi-
ments it was possible to create an agile hexapod vehicle with the potential to
walk and run at various different speeds, turn and climb over barriers. We found
that the most efficient way to incorporate these data into the design of the robot
was to use a dynamic simulation tool that could utilize the digitized kinematic

data to generate appropriate dynamic properties and then scale those factors up
to the size of the actual robot.

Dynamic Model of Blaberus

We developed a dynamic model of the Blaberus cockroach to help us under-
stand the biological data and to aid in the design of the robot (Nelson and
Quinn 1995; Nelson 1995). The model is based upon a quasicoordinate formu-
lation developed in the Biorobotics Laboratory that can be used to accurately
model any legged animal or vehicle (Nelson and Quinn 1996). The model has a
total of thirty-six degrees of freedom, three translations and three rotations of
the body, and five actuated degrees of freedom in each of its six legs.
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Each cockroach leg has ten segments and seven degrees of freedom. Six of
these segments are in the tarsus (foot) and are actuated by a single muscle group.
We found that the majority of the locomotion data of interest could be modeled
using the three major segments (coxa, femur and tibia) and five degrees of free-
dom in each leg (Nelson and Quinn 1995). In the interest of limiting actuation,
this ignores for the time being the relatively small movement of the TF joint.
We believe that we can capture that action in climbing by making adjustments
to the BC joint. The BC joint has three degrees of freedom and the CF joint
and FT joint are each modeled with one degree of freedom.

The inputs to the simulation include the lengths and inertia of the leg seg-
ments and the body and joint angle trajectories from the behavioral studies dis-
cussed in the previous section. These joint angle trajectories were used as equi-
librium point trajectories in the simulation. The joint torques are computed
using a proportional-derivative control law:

torque for a joint = (Bactual — Odesired ) k + (dOactualldt — dOdesired] dr) ¢

where Qactual is the actual angle, Odesired is the desired angle, and 4 and c are con-
stants.

The joint torques caused the model’s legs to move and when they contacted
the ground they caused the body to move. The foot-ground interaction was
modeled using a spring in parallel with a viscous damper and slip was permitted
using a Coulomb friction model. Two sets of walking data were used, one for a
tripod gait and one for a slower gait. In both simulations, the model walked
similarly to the animal.

The outputs from the simulation include the joint torques, the body motions,
the ground reaction forces and the structural bending moments in the leg seg-
ments. The body motions of the model are not input and therefore, are a good
measure of the success of the simulation. Because the mechanical properties of
the model are similar to the insect, the joint torques are good predictions of those
used by the cockroach. This information is useful for the biologists because joint
torques are difficult to measure in a walking animal and can be related to EMG
data. The ground reaction forces are also a measure of the success of the simula-
tion. Our predicted ground reaction forces qualitatively agree with measured data
(Full 1993). The ground reaction forces and structural bending moments can al-
so be used in robot design to choose materials and size the components.

A Robot based on Biological Observations

We designed the robot to be 17 times larger than the animal to ease the robot’s
development and to make use of commercially available actuator technology
(Bachmann et al. 1997; Nelson et al. 1997). It is convenient to construct and
work with a robot that it is desktop size, about 1-3 feet in length. It is also easier
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to visualize its motions and conduct locomotion studies. We chose a length of
30 inches because we wished to use commercial air cylinder actuators. For this
robot size the actuators are readily available.

Pneumatic piston actuators were chosen because their power to weight ratio is
much higher than standard DC motors and they offer the possibility of passive
spring-like properties. It has been shown that the passive spring-like properties
of muscles are important for efficient locomotion of animals (Alexander 1988).
Our previous robots, Robot I and Robot II (Quinn and Espenschied 1993; Es-
penschied et al. 1995; Espenschied et al. 1996; Beer et al. 1997), used DC mo-
tors that are good for slow locomotion as observed in stick insect, but they are
not energetic enough for the complex locomotion goals of this robot.

We wished to reduce the number of degrees of freedom of each leg as much
as possible to further simplify the robot design. The joint angle trajectory from
the biological data for the modes of locomotion of interest showed that two of
the three degrees of freedom in the BC joint in the rear leg exhibited small ex-
cursions. Furthermore, one degree of freedom in the BC joint in the middle leg
was found to move only slightly and could be eliminated (Nelson et al. 1997).
We also felt that one degree of freedom in the body-coxa joint in the front leg
could be eliminated even though all five degrees of freedom of that leg showed
significant excursions.

The dynamic model of the cockroach discussed in the previous section was
scaled up seventeen times in length and used to test the reduced degrees of free-
dom design: three degrees of freedom in the rear legs, four degrees of freedom
each in the middle and front legs (Nelson et al. 1997). The middle and rear legs
functioned similarly with or without the eliminated degrees of freedom for both
walking gaits. However, the front legs did not reach forward as far with the four
degrees of freedom configuration. We could have changed the joint trajectory
input to try to compensate for this or we could have returned to the five degrees
of freedom design.

The choice between these two strategies was influenced by our original goals.
The goals of the robot include climbing and turning as well as walking. As dis-
cussed above the animal propels itself forward with its rear legs and this can be
performed using the three degrees of freedom configuration. The middle legs
pitch the body for climbing and yaw the body for turning. The four degrees of
freedom configuration for the middle legs is sufficient for these functions. How-
ever, as described above, the cockroach uses its front legs as sensori-motor
“arms” as it reaches and climbs over barriers. This function requires these legs to
be the most dexterous pair and for this reason we chose to design the robot’s
front legs with five degrees of freedom (figure 4b).

The robot was designed to be energetic and mechanically robust (Bachmann
et al. 1997). Our dynamic simulation was further used as a design tool for sizing
actuators and structural members. Each leg was designed to be capable of with-
standing 1.5 times the robot’s weight in its most extended configuration because
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Figure 4. Cockroach front leg.

(a). Cockroach front leg diagram with segments labeled. (b) Schematic of front leg design
showing five degrees of freedom.
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Figure 5. CAD model of Robot 111.

in simulation it was found that a ground reaction force could be that large. Also,
structural bending loads were predicted for the case where the robot model was
dropped from a height of 1 inch onto three legs. Predicted torques during simu-
lated locomotion were used to size the pneumatic actuators.

The range of motion of each degrees of freedom is just as important as the
number of degrees of freedom in the legs. The desired range of motion for each
degree of freedom was determined from the biological data. Where possible the
joint ranges of motion are 110 percent of the desired minimum values. Actuator
placement and actuator attachment points affected the mechanical limits of the
joint range of motion. These further affected the actuator moment arms, which
determined the maximum joint torque possible for a given actuator size. In
many cases two actuators were used for a given degree of freedom to balance the
force input and permit a larger range of motion of the joint. This design process
was clearly iterative and CAD (figure 5) was essential to visualize the leg config-
urations and determine mechanical interference and joint ranges of motion.
Three prototype legs were constructed before the final leg designs were deter-
mined (Bachmann et al. 1997).

Construction of Robot IlI’s Physical Plant

The robot is 30 inches long and its structure, constructed mostly of aluminum,
weighs 6.9 pounds (Bachmann et al. 1997) (figure 6). Its leg segments are made

of hollow aluminum tubes and its joints are fabricated of machined aluminum
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Figure 6. Side view of Robot I11.

with roller bearings and hardened steel shafts. The tarsi are made of flexible
plastic hoses clamped to the distal ends of the tibias. The hose material was cho-
sen for its stiffness and frictional characteristics. Coil springs are inserted inside
the plastic tarsi of the middle and rear legs to increase the stiffness of these load
bearing legs. This construction models the passive stiffness of the animal’s tarsi
in a simplified manner and the friction is necessary to support horizontal loads
in the stance legs.

The robot’s total weight is 29.5 pounds including thirty-six double-acting air
cylinders, forty-eight air valves (six blocks of eight valves), air hoses, and wires.
The air valves are located on the robot’s “abdomen” such that the fore-aft loca-
tion of its center of mass is at the body-coxa joints of the rear legs as it is in the
animal. A potentiometer is mounted at each joint to measure joint angles and a
strain gage is mounted at the proximal end of cach tibia to measure loading of
the legs. These play the roles of chordotonal organs that monitor joint angle and
campaniform sensilla that monitor cuticular strain in the animal (Zill 1990).

The robot has twenty-four active degrees of freedom. The minimum number
of valves to control the robot is forty-eight three-way valves, one valve on cach
side of a double-acting air cylinder (or pair of cylinders). In this configuration
the valve is always cither pressurizing the one side of a cylinder or exhausting it
and no air storage is possible. Unfortunately, the inability to store air climinates
the potendally useful property of passive stiffness.
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The valves on the robot have a maximum frequency of about 200Hz and are
controlled using pulse-width-modulation (PWM) at about 50Hz. Before choos-
ing pneumatic cylinders to actuate the robot, we tested the control system using
a prototype leg with four degrees of freedom and proportional control of indi-
vidual joints (Nelson et al. 1997). The system was demonstrated to have the
necessary smoothness, path following and repeatability characteristics for loco-
motion.

The biological data show that the rear legs typically operate with the CF and
FT joints coupled, in-phase, and moving through equal excursions (figures 1
and 2). This provides the powerful piston-like motion that drives the animal
forward. We designed the robot with three degrees of freedom in its rear legs in
case all 3 were later found to be important, but we left provisions for a linkage
to be attached to reduce it to two degrees of freedom. We now have installed a
four-bar, parallel linkage mechanism on the rear legs and therefore have reduced
the rear legs to two degrees of freedom. This mechanism simplifies the control
of the robot because it stiffly couples the CF and FT joints, thereby reducing
wobble in the posterior of the robot.

At thirty inches in body length, the robot is seventeen times larger than a typ-
ical adult Blaberus cockroach. Its leg segment lengths are also scaled to be seven-
teen times larger than those in the animal. The rear legs are large and powerful
and have two degrees of freedom, the middle legs are smaller and have four de-
grees of freedom and the front legs are smallest and have five degrees of free-
dom.

Design of Robot Ill’s Posture Controller

Posture control is the control of body motion in three translations and three ori-
entations. Biological data on mammals suggest that robust posture control is es-
sential for locomotion (Horak and Macpherson 1995). Furthermore, these stud-
ies have shown that the higher centers of the nervous system are important for
posture. Although decerebrate mammals are fully capable of moving their legs
in a pattern reminiscent of walking, they cannot stand on their own. Thus, nor-
mal posture requires an interaction between local reflex circuits in the spinal
cord and computational centers in the brain. These centers process various
kinds of sensory data such as leg position, head orientation and visual cues and
then act through the local circuits in the spinal cord to actively control posture
in a task and context dependent fashion. Insects have a more sprawled leg de-
sign that could require less attention to active posture control. Nevertheless, our
own preliminary observations indicate that even in insects, information from
the brain is critical to maintaining balance during active behavior. A cockroach
that has experienced a lesion of both neck connectives demonstrates grossly ex-
tended leg joints and has a strong tendency to overturn with any rapid move-
ments. Although some of these problems are reversed with time, the animal
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does not recover its agility even after a period of almost two months. Our con-
clusion from these observations and those on mammals is that posture is more
than local reflex interaction. It appears to be the orchestration and tuning of re-
flexes in lower regions of the central nervous system according to some desired
behavior. Robot III’s posture controller reflects these ideas (Nelson and Quinn
1998; Nelson et al. 1998): It is a centralized controller based on the virtual
model approach (Raibert et al. 1986; Pratt 1995; Pratt et al. 1997).

There are no sensors on cockroaches to directly measure their total body posi-
tion or orientation, but there are many proprioceptors that monitor joint angle,
strain on the cuticle, and position in extreme flexion. Total body posture can be
calculated within the central nervous system from those proprioceptive measure-
ments. In Robot III, body posture is also measured indirectly using propriocep-
tive data: from potentiometers on the stance legs. Even in humans, propriocep-
tive data are very important for posture control. Patients who have lost
proprioceptive input to the brain have difficulty remaining upright even though
their vestibular system is functioning normally (Horak and Macpherson 1995).

The input to the robot’s posture controller is the desired body position and
orientation. The desired forces F (in the x, y and z directions) and moments M
(about the x, y and z axes) on the body required to cause this motion are calcu-
lated based on the robot being modeled as a body attached to six springs, one
for each of the body’s six degrees of freedom, for example:

Fi = Ki (actuali — desireds)

where actuali is the actual body position in the 7 direction, desired; is the desired
body position in the i direction, and the subscript 7 denotes any of the three di-
rections X, y, or 2.

The posture control problem then is one of assigning the load bearing re-
sponsibilities to the stance legs such that their summation causes Fand M to be
exerted on the body. As the robot walks, the stance legs typically number from
three to six. Therefore, the number of equations needed to solve this load distri-
bution problem varies with the gait and the phase of the gait.

The problem is separated into a solution for the vertical force distribution (z
direction) and a solution for the horizontal force distribution (x and y direc-
tions) (Nelson and Quinn 1998). The coordinates are further defined in figure
7. Fand M are used to determine the desired center of pressure (COP) for the
robot (figure 7). Equations are developed that constrain the sum of the vertical
forces from the stance legs to equal Fz and the COP to be positioned as desired.
Typically, depending on the number of legs in the stance phase, there are not
enough constraint equations to solve directly for the vertical force required from
each stance leg. Therefore, in addition to the constraint equations, an optimiza-
tion problem is solved that encourages an equal sharing of vertical load among
the stance legs. Note that normally the legs will not share an equal vertical load
because of the enforcement of the constraint equations.
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Figure 7. Desired center of pressure.

The desired center of pressure (COP) for the body can be found based upon the desired
forces Fand moments M. Note that z is the vertical direction, x is the heading direction and y
is the lateral direction that follows for a right-handed coordinate system.

Independent constraint equations based on satisfying F and M on the body
are formed to solve for the horizontal forces. Again, the problem is typically un-
der-constrained and an optimization is used in the solution for the horizontal
forces that encourages minimization of the joint torques in each leg. This has
been shown to cause horizontal ground reaction forces directed in toward the
body. A force distribution similar to this has been measured in walking cock-
roaches (Full 1993).

With this posture controller the robot stands and resists large disturbances.
When pushed from the side repeatedly while standing, it appears to exhibit a
swaying reflex similar to that observed in animals (figure 8). To further demon-
strate the posture controller and the robot’s strength, we have shown that it can
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Figure 8: Robot III's posture controller rejects disturbances
(reproduced from Nelson and Quinn 1998) .

The arrows indicate when the disturbance forces were applied. ypos and zpos are the y and z
components of the position of the body and ycp is the y component of the position of the
center of pressure.

perform push-ups while carrying a thirty pound weight (Nelson and Quinn,
1998; Bachmann et al., 1997).

The posture controller forms part of a locomotion controller. When the com-
manded body position is moved forward, the stance legs push the body forward.
For the robot to walk, a gait controller must be added to encourage stance legs
to lift and enter their swing phases in a coordinated manner. Also, a controller
must be added to cause the legs to swing forward and transition to stance.

Conclusions

We have constructed a robot based strongly on the kinematics and behavioral
observations of cockroach. Our strategy has been to use the animal’s design and
behavior as the default in the design and control of the robot rather than only
using the biological design as inspiration to solve engineering problems. We re-
sisted the urge to use a traditional engineering solution when the biological data
suggested otherwise, even if it would appear easier. As a result, we have a robot



104 QUINN AND RITZMANN

Figure 9. Robot 111 performing push-ups with a 30 pound payload.

that responds to disturbance in an animal like way and we believe will locomote
in an animal like manner. An additional unforeseen payoft is that many of the
problems that arise in controlling the robot lead to new understanding of the
animal. These include the appreciation of the need for stiffening leg joints in
anticipation of loading and the probable role of a sophisticated central control
circuit that controls posture through interactions with local distributed circuits.
Robot III's leg designs capture the degrees of freedom, joint angle excursions
and segment ratios that are necessary for walking and climbing in the animal re-
markably well. This design is both a blessing and a challenge. In contrast, other
hexapod robots, including Robot 11, which was constructed by our group, have
simpler leg designs (Beer et al. 1997). Typically, they include fewer degrees of
freedom and all six legs are similar in construction. We believe that the leg de-
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signs for Robot III will ultimately make it behave in a more animal-like fashion,
and this has been born out in the posture control. However, controlling the
front legs has proved challenging because of their five degrees of freedom and
relatively small inertia. A typical inverse kinematics approach such as that used
in Robot II is difficult because of their kinematic redundancy. Even with these
difficulties, there is benefit. The problems that we have encountered in control-
ling Robot III point to similar problems that animals face in controlling their
legs, that if anything are even more complex. Thus, as a result of the close atten-
tion to biology in the design of this robot, the problems in control have led to
insights in biology.

Although we are excited about the results of this project, we recognize that a
detailed attention to biology is not necessary or desired in all biorobotics pro-
jects. Depending on the ultimate goals of the project, a group might be more
inclined to use more traditional engineering methods and only look to biology
for specific solutions. Indeed, in other projects that our group has undertaken,
we are using this strategy. In deciding which strategy to take, a biorobotics
group must first define the ultimate goals of the project. The goals of Robot III
dictated a more detailed use of biology.
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CHAPTER

6

Building Robots with a
Complex Motor System
to Understand Cognition

Holk Cruse

( :ould an ethologist be interested in building robots? At first sight, this
seems to be implausible. The central interest of an ethologist is to under-
stand how the behavior of an animal is controlled. To this end he or she

observes the behavior of animals and performs experiments in order to search for
information concerning the control principles underlying these behaviors. How-
ever, already quite simple control rules can produce unexpectedly complex behav-
iors, in particular when the loop through the world is taken into account (e.g.
Braitenberg 1984, Brooks 1991a, Holland et al. 1994, Pfeifer 1996). This is be-
cause systems with recurrent information flow—in cases like the simple Braiten-
berg vehicles formed by the animat plus its environment—can have complex dy-
namic properties. If, in addition, the biological experiments indicate that several
control rules cooperate in parallel within the brain of the animal, it becomes very
difficult if not impossible to judge by intuition whether or not the observed be-
havior of the whole system can be traced back on these hypothetical rules. The
only way to solve this problem appears to perform a simulation using these rules
and by this way to test whether these rules form a sensible hypothesis. Typically
such simulations are performed using digital computers. As the world usually
represents an important part of the complete system, it is generally necessary to
include some properties of the world into the simulation. This may prove diffi-
cult, in particular because some relevant properties of the world may be un-
known to the programmer. A sensible way to overcome these problems inherent
in such a “software” simulation is to use “hardware” simulations. This means to
build a physical robot, or animat, which has to act in the real world. Such a hard-
ware simulation has the advantage that the world no longer needs to be simulat-
ed, it is already there. Therefore, the above question has to be answered: yes,
ethologists should be interested in the construction of animats.
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Four Types of Animats

Real animals are, of course, far more complex systems than any animat yet built.
Nevertheless, many researchers pursue the task of building simple animats in or-
der to understand the principles underlying the construction of real animals,
particularly the construction of their brains. So the question arises to what ex-
tent might such a reductionistic approach be sensible and helpful. To approach
this question I will distinguish between four different types of animats. Many
interesting investigations have been performed using the simple Braitenberg-
type animats. These robots contain a simple sensory input (often two sensors), a
simple motor output (usually two active, i.e., motor driven wheels) and a corre-
spondingly simple connection scheme between sensor and motor units (e.g.
Webb 1996, Scheier and Pfeifer 1998, Smithers 2000). Although of quite sim-
ple structure, these systems can show unexpectedly complex behavior, in partic-
ular behaviors that resemble considerably those observed in animals.

This type of animat can be made more complex when it is provided with
more complex sensory input. This may either include different types of sensors
like tactile and vision sensors (for example to be able to learn conditioned reflex-
es as in the work of Pfeifer and Verschure 1992) or may use only one type of
sensor, often visual sensors, which form complex subsystems showing a sensory
array with many pixels and many, possibly nonlinear, connections. Examples are
the robots of Franceschini et al. (1992) exploiting visual movement detection
for obstacle avoidance, or Mel’s system (1997) for pattern recognition. The un-
derlying schema is given in figure 1a (animat type 1). Because only feed-forward
connections are considered here, these systems are strictly dependent on their
sensory input and are therefore called sensory-driven or data-driven systems.

A major step to make the control structure of an animat more animal-like is
to introduce internal recurrent connections (animat type 2, figure 1b). With an
appropriate recurrent architecture such a system is no longer solely dependent
on the actual sensory input, but can adopt internal states. When for example
provided with an internal oscillator like a circadian rhythm generator, the re-
sponse of the animat to a given sensory input might depend on the state of this
oscillator. More complex versions are animats with a set of motivations (Maes
1991). Systems with internal states can also be considered as containing some
kind of dynamic (short-term) memory. However, most of these animats still
have a simple two degrees of freedom motor output. Although these recurrent
systems are very interesting because they can show even more complex behaviors
than do feed-forward systems, they have only rarely applied to the control of
robots. One reason for this might be that the theoretical background of the dy-
namic properties of such recurrent systems is only poorly understood in most
cases, which means that each individual version has to be separately studied in
detail (see Beer [1996] for an interesting case study).
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Figure 1. The control architecture of an animat with a—possibly—complex sensory input
and a two degrees of freedom output.

a. A sensory-driven system using only feed-forward connections. b. A system with recurrent
connections may have internal states.
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Nevertheless, I would also like to argue that also these systems are still far
simpler than real brains. In what respect? The general task of a brain is to con-
trol behavior. In the case of an animal, this means to control a high number of
degrees of freedom, not just two. One reason for this is that there are no wheels
in natural systems and locomotion is therefore very often based on the control
of several articulated limbs. This is, of course, a more complicated task that re-
quires an expansion of the control system. An obvious possibility to expand the
system shown in figure 1b is simply to add a “motor system,” which replaces the
two wheels by, say, two legs, an articulated backbone, a neck, and maybe two
arms. This motor system might consist of feed-forward connections only or it
might be complicated by the introduction of recurrent connections as depicted
in figure 2a (animat type 3).

The assumption that such a “bottleneck” architecture approximates the archi-
tecture of real brains might be intuitively supported by the qualitative observa-
tion that only an extremely small fraction of the rich sensory input passes our
consciousness, and this small amount of information than seems to be used in a
fan-out network to control our actions. Although probably nobody assumes that
mammalian brains work that way, this idea still appears to guide our intuitions
in some way. Many authors at least implicitly assume that insect brains may bet-
ter be described by such bottleneck architectures. However, even in insects low-
level activities, for example the activation of a leg muscle, appear to be repre-
sented in the head ganglia, too (Elsner 1994, Edwards et al. 1999). The
existence of a high number of low-level reflexes clearly shows that also for insects
a bottle neck architecture in the strict sense is only able to describe selected sub-
systems, but not the complete brain. Therefore, at least as far as mammalian
brains are concerned, all knowledge indicates that a better approximation to the
structure is given by the schema depicted in figure 2b (animat type 4), showing
a massively parallel architecture including recurrent connections.

If a bottleneck structure was an appropriate description of a brain, the ap-
proach considering animats of type 1 or 2 (figure 1) is justified. But even if the
holistic structure of type 4 (figure 2b) is a better approximation to reality, inves-
tigation of type 1 and type 2 animats can be helpful, in any case with respect to
questions concerning application, but also with respect to brain research, be-
cause there might be cases where the brain is appropriately modularized making
a reductionistic separation possible (e.g. the examples mentioned above). How-
ever, the strict concentration on only these types of systems precludes the inves-
tigation of possible “holistic” properties. By considering only animats of type 1,
2, or 3, the most interesting properties, and maybe the really essential properties
of brains, might be completely neglected. This concentration on bottleneck ar-
chitectures might mean more than just leaving out some modules. It rather
might correspond to removing the essential part of the system. In an unpub-
lished keynote lecture at the Conference on Simulation of Adaptive Behavior
1998, Zurich, Steven Grand formulated this as: “there is no such thing as half
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Figure 2. Two animats with complex sensory input and complex motor output.

a. A “bottleneck brain.” b. A massively parallel holistic system.

an organism,” which led him to the recommendation that we should “embrace
complexity.” Agreeing with this view, I would like to argue that investigation of
only type 1, 2, or 3 animats comprises a, probably dramatic self-limitation when
approaching the goal of understanding the function of brains. At the same con-
ference, Keijzer (1998) argues along similar lines. He distinguishes two scales at
which the animal and its environment can be coupled: the sensory-motor cou-
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plings for proximally guided behavior and perception-action couplings for dis-
tally oriented behavior. Concerning “wheeled behavior” he states: “wheels allow
one to study distal behavior by simplifying the proximal mediating process:
What if the proximal mediating mechanism is a much more central aspect of
adaptive behavior than many tend to think?”

Two reasons may have caused researchers to stay away from studying complex
recurrent systems. One is the lack of knowledge concerning properties of (mas-
sively parallel) recurrent systems. But there is also a more practical reason why
researchers traditionally prefer to study systems with simple motor output as, for
example, pressing a button or deciding between left and right etc. In such exper-
iments the situation can be nearly completely controlled by the experimenter
even when the input is arbitrarily complex, and the tools of classical systems
analysis can well be applied. This is very different when studying systems with
complex motor output. Already a simple stimulus may elicit a complex behavior
and because of the autonomy of the system classical input-output analysis is not
easily applicable. However, despite these problems, investigation of complex
motor systems have to be performed in order to understand the principles un-
derlying such autonomous systems.

The essential property of a brain is its capability of controlling behavior in
the context of dealing with complex motor output, i.e., a high number of de-
grees of freedom. This, in general, means that the control system has to deal
with the problem of redundancy, i.e., with situations in which the system has to
choose between a number of possible solutions. The higher the number of de-
grees of freedom of the system the more intelligence, or autonomy, is required
for its controller. It may not be by accident that in the domain of invertebrates,
for example, those animals are considered as to be the most intelligent ones that
have to deal with the most complex motor system, namely the Cephalopods, in
particular Octopus. This leads to the conclusion that we should much more
concentrate on the investigation of animals or animats that have not only com-
plex sensory input, but also sufficiently complex body kinematics because the
latter require a correspondingly complex motor control system.

Two Examples

Two examples presented below will illustrate—and propose solutions for—
problems occurring when dealing with the control of nontrivial motor systems.
The first example concentrates on an eighteen degrees of freedom system, name-
ly a six-legged insect being able to walk on irregular substrate. This system is a
comparatively simple case because it is organized in a modular way. The legs
represent six quasi-parallel, mechanically coupled systems with three degrees of
freedom—three active joints—each. As the body-ground distance is essentially
fixed (one of the leg joints serves as a height controller) there remain twelve
joints to be controlled.
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How is the movement of these twelve joints organized to find a common so-
lution? This task poses several major problems. It is not enough simply to speci-
fy a movement for each leg on its own: the mechanical coupling through the
substrate means that efficient locomotion requires coordinated movement of all
the joints of all the legs in contact with the substrate. However, the number and
combination of mechanically coupled joints varies from one moment to the
next, depending on which legs are lifted. The task is quite nonlinear, particular-
ly when the rotational axes of the joints are not orthogonal, as is often the case
for insect legs and for the basal leg joint in particular. A further complication
occurs when the animal negotiates a curve, which requires the different legs to
move at different speeds.

In machines, these problems can be solved using traditional, though compu-
tationally costly, methods, which consider the ground reaction forces of all legs
in stance and seek to optimize some additional criteria, such as minimizing the
tension or compression exerted by the legs on the substrate. Due to the nature
of the mechanical interactions and inherent in the search for a globally optimal
control strategy, such algorithms require a single, central controller; they do not
lend themselves to distributed processing. This makes real-time control difficult,
even in the still simple case of walking on a rigid substrate.

Further complexities arise in more complex, natural walking situations, mak-
ing solution difficult even with high computational power. These occur, for ex-
ample, when an animal or a machine walks on a slippery surface or on a compli-
ant substrate, such as the leaves and twigs encountered by insects. Any flexibility
in the suspension of the joints further increases the degrees of freedom that
must be considered and the complexity of the computation. Further problems
for an exact, analytical solution occur when the length of leg segments changes
during growth or their shape changes through injury. In such cases, knowledge
of the geometrical situation is incomplete, making an explicit calculation diffi-
cult, if not impossible.

Despite the evident complexity of these tasks, they are mastered even by in-
sects with their “simple” nervous systems. Hence, there has to be a solution that
is fast enough that on-line computation is possible even for slow neuronal sys-
tems. How can this be done? Several authors (e.g. Brooks 1991a) have pointed
out that some relevant parameters do not need to be explicitly calculated by the
nervous system because they are already available in the interaction with the en-
vironment. This means that, instead of an abstract calculation, the system can
directly exploit the dynamics of the interaction and thereby avoid a slow, com-
putationally exact algorithm. To solve the particular problem at hand, we pro-
pose to replace a central controller with distributed control in the form of local
positive feedback (Cruse et al. 1998).

The positive feedback occurs at the level of single joints: the position signal of
each is fed back to control the motor output of the same joint. How does this
system work? Let us assume that any one joint is moved actively. Then, because
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of the mechanical connections, all other joints begin to move passively, but in
exactly the proper way. Thus, the movement direction and speed of each joint
does not have to be computed because this information is already provided by
the physics. The positive feedback then transforms this passive movement into
an active movement.

There are, however, several problems to be solved. The first is that positive
feedback using the raw position signal would lead to unpredictable changes in
movement speed, not the nearly constant walking speed that is usually desired.
This problem can be solved by introducing a kind of band-pass filter into the
feedback loop. The effect is to make the feedback proportional to the angular
velocity of joint movement, not the angular position. In the simulation, this is
done by feeding back a signal proportional to the angular change over the pre-
ceding time interval.

A second problem inherent in using positive feedback is the following. Let us
assume that a stationary insect is pulled backward by gravity or by a brief tug
from an experimenter. With positive feedback control as described, the insect
should then continue to walk backwards even after the initial pull ends. This
has never been observed. Therefore, we assume that a supervisory system exists
that is not only responsible for switching on and off the entire walking system,
but also specifies walking direction (for details see H. Kindermann 2001).

Compared to earlier versions (Cruse et al. 1995), this change permits the
control of the stance movement to be radically simplified. In this way, an ex-
tremely decentralized, simple controller, based on a combination of negative and
positive feedback at the joint level, copes with all these problems by exploiting
the physical properties of the system, i.e. the mechanical connections between
the leg segments.

As could be shown by a computer simulation, this extremely decentralized
control system is able to solve straight and curved walking (figure 3a, 3b), walk-
ing over obstacles, and walking after a part of a leg has been cut. The system
even showed the unexpected behavior of automatically righting up the body af-
ter a fall (figure 4).

One major disadvantage of this simulation is its pure kinematic nature that
means that possibly important properties of the real world are not included. To
test the principle of local positive feedback at least for straight walking, we have
performed a dynamic simulation for the six-legged system under positive feed-
back control during stance. The basic software was kindly provided by F. Pfeiffer,
Technical University of Munich. No problems occurred. Nevertheless, a hard-
ware simulation of the walking situations is necessary and is currently being test-
ed by M. Frik, University of Duisburg, using his robot TARRY 11 (Frik et al. 1999).

The second problem considered concerns the control of a mechanical chain of
limbs that has extra degrees of freedom. When a leg is not in contact with the
ground but is swung through the air to meet a given target’s position, the trajecto-
ry of that leg (or likewise an arm) and its configuration at the endpoint could be
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Figure 3. Simulated walk by the basic six-legged system with eighteen degrees of freedom.

Movement direction is from left to right (arrow). Leg positions are illustrated only during
stance and only for every second time interval in the simulation. Each leg makes about five
steps. Upper part: top view, lower part: side view. (a) Straight walking. (b) curved walking.

determined by a hardwired feed-forward network. This means that for a given
starting configuration and a given target position the trajectory of the leg is fully
determined. In this case the control system has no possibility to choose a different
trajectory. However, in many cases, maybe not in insect walking but definitely in
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Figure 4. Righting behavior.

(a) By clamping the tarsi to the ground (arrowheads), the system is made to fall leading to dis-
ordered arrangement of the legs (b). Nevertheless, the system stands up without help and re-
sumes proper walking (c).

human grasping movements, an arbitrary sclection of one out of all the geometri-
cally possible solutions is possible. The number of possible solutions increases dra-
matically when the leg or arm has redundant degrees of freedom. For example,
consider the simple but generic case of a three joint arm moving in a two-dimen-
sional plane. In this situation the control system has to choose in a continuous so-
lution space (this is different to the above mentioned network of Maes (1991)
where a decision between discrete behaviors e.g. fight, flight, etc. has to be made
that can be done by using a WTA system, i.e., a special form of Hopfield network).

To solve this ill-posed problem in a way that does not use fixed, prescribed so-
lutions (e.g. Briiwer and Cruse 1990), but that allow the control system to really
choose between all geometrically possible solutions, I see no other way then to
apply an internal representation of the arm, i.e., some kind of body model.

How could such a body model look like? Based on the “passive motion
paradigm” (Mussa-Ivaldi et al. 1988), a body model has been proposed in the
form of a relatively simple recurrent network (Steinkiihler and Cruse 1998). A
linear version of this “mean of multiple computation” or MMC net is shown in
figure 5. This recurrent network can be used to solve the inverse kinematic
problem, the direct kinematic problem and any mixed problem. According to
the passive motion paradigm these problems can be solved in the following way.
Imagine that a mechanical model of the arm to be controlled is used and the
joints are provided with elastic springs. The inverse kinematic problem is solved
simply by pulling the endpoint of the mechanical model to the desired position.
During this movement the other joints automatically move to new angle values
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Figure 5. The MMC net for the three-joint planar arm.
a) The arm segments are represented by the vectors L, L,, and Lj. Vector R describes the
(e.g. visually given) position of the endpoint. The diagonals (D,, D,) are used as internal vari-
ables only. b) The recurrent network. Only the net for one spatial component is shown.
Weights are 1 (closed circles) or -1 (open circles). The black triangles represent arbitrary
weights that must, however, taken into account for the calculation of the weighted mean x.

(see Cruse et al. 1998 for details).
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and the final configuration of the mechanical model comprises a solution of the
task. Now the angles can be read off the model arm and then be used to control
the real arm. To solve another problem, one or more selected joints could be
fixed before the endpoint of the mechanical model is moved. Then, of course,
another solution is found (if it exists) that fulfills these additional constraints.
The recurrent network proposed is a neuronal version of this mechanical model.
As mentioned, it is not only able to solve these inverse kinematic tasks, but also
the direct kinematic task and any mixed problem. Forming a holistic system, its
internal structure does not have to be changed when switching between these
tasks. This change is simply triggered by providing different input (see left hand
part of figure 5b) to the network.

Figure 6a, and figure 6b shows an example of how the system behaves when
relaxing from a given starting configuration to an end position defined by the
coordinates of the end effector. The system always finds a solution for the in-
verse problem. The system is quite “tolerant” as it provides approximate solu-
tions also to problems that cannot be solved exactly. Such a case is presented by
the example in figure 6¢, and figure 6d. Here, the coordinates of the endpoint
cannot be reached by the manipulator because they specify a point outside its
workspace. Nevertheless, the network tries to follow the desired coordinates as
well as possible. The manipulator finally points in the direction of the desired
endpoint coordinates.

This neuronal model can, as described, be used as a network to control move-
ment, even in ill-posed situations. When disconnected from the motor output,
it could likewise be used for motor planning. As Calvin (1996) argues, thinking
is movement that has not yet taken place. Therefore, this internal body model
could be regarded as being the basis for a simple form of thinking. This is in
agreement with several researchers (e.g. Fuster 1995, Ito 1993) who argue that
thinking is some kind of imagined movement.

Similarly, in a more general view this model can be considered as a neural sys-
tem that is able to mentally deal with complex geometrical systems, a task simi-
lar to but more difficult than the mental rotation of geometrically fixed bodies
(Shepard and Metzler 1971, Georgopoulos et al. 1989). In other words, the sys-
tem can manipulate knowledge, in this case knowledge concerning the own
body. This means that, according to the definition of McFarland and Bésser
(1993), this network may be regarded as a basis for cognition.

Furthermore, the MMC net provides a solution for the problem of sensor
fusion, occurring when different sensory inputs, for example visually or
mechanoreceptively given input values, represent the same value. Using tradi-
tional feed-forward systems, because of limited exactness of these systems, in
general numerically different results are produced for the same value. The
holistic MMC network integrates the values and concatenates both the visual
and the mechanoreceptively given spaces to form a common, dynamic repre-
sentation.
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Figure 6. Movement of a three-joint manipulator using the network of figure 5.

(a) The manipulator moves from a starting configuration (dotted lines) to the prescribed posi-
tion of the end effector (cross). (b) The temporal changes of the three joint angles o, B, and
8 during relaxation. (c, d) Movement of the manipulator when the desired endpoint coordi-
nates (cross) lie outside its workspace. Only the manipulator configuration of every fifth cycle
is shown in (c). (d) and (b): Abscissa is the number of iteration cycles (i.t.).
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Conclusion

Thus, both examples show that the investigation of systems with complex mo-
tor output addresses problems that may not occur when dealing with systems
having only a small number of degrees of freedom. In the first case, the degrees
of freedom are not exploited to solve variable tasks. The high number of degrees
of freedom result from a repetition of more or less identical segments—a milli-
pede would be a more extreme case—that have to cooperate to serve a common
goal, namely the propulsion of the body. This task does not appear to require a
“manipulate-able” body model, i.e., a model that can be used to “play around”
in order to find possible solutions by exploiting all the possibilities of the com-
plex motor system. Instead, the body itself is used.

The second example considers the control of a complex kinematic body that
might be expanded by including external objects like tools and therefore might
serve not only as an internal body model, but might also be extended to form an
internal world model. This leads to the assumption that the ability to control
complex kinematic systems may have formed the prerequisite to deal with more
general problems, i.e., to become an intelligent system. Examples of systems
with the need to control complex kinematics are the grasping and manipulation
movements with an arm and a hand shown by different mammals, in particular
primates, the control of the trunk in elephants, manipulation of objects with
legs and beak in parrots or the above mentioned invertebrate example of Octo-
pus. All appear to be good problem solvers. As a conclusion, therefore, I assume
that the understanding of how to control a complex kinematic system is an es-

sential prerequisite to understand the functioning of cognitive systems.
This proposal may also be relevant for the development of artificial

cognitive systems. If one is only dealing with the control of a cylindrical, two-
wheeled robot, such holistic (recurrent) networks may not be necessary because
the task to control such a “trivial” body is simple enough to be solved by using
feed-forward systems. This kind of research may, however, preclude the finding
of solutions for the very task for which brains have been developed to deal with.
Also artificial cognitive systems may have to be built on the basis of holistic sys-
tems for motor control (Cruse 1999).
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7

Perceptual Invariance and
Categorization in an Embodied
Model of the Visual System

Nikolaus Almdssy and Olaf Sporns

erceptual invariance is an important prerequisite for the discrimination
and categorization of stimuli in a natural environment. Biological nervous
systems contain neurons, i.e., within the mammalian inferior temporal
cortex, that respond invariantly to specific visual stimuli. Little is known about
the role of phenotype, behavior, and environment in the development and expe-
rience-dependent plasticity of inferior temporal neuronal responses. To investi-
gate this question, we designed a neuronal model based on visual cortex that is
embedded in a real world device capable of autonomous behavior. Initially, visu-
al responses are nonselective and noninvariant. In the course of autonomous be-
havior, synaptic changes in visual and sensorimotor networks accumulate result-
ing in neuronal units that are pattern selective and translation invariant. In
analyzing the model, we find that the continuity of self-generated movements is
essential for the development of these complex response properties; no transla-
tion invariance develops if behavior is disrupted and substituted with passive
presentations of static stimuli. Voltage-dependent intrinsic connections in the
inferior temporal cortex aid in the development of large and sharply defined re-
ceptive fields and support rapid and accurate behavioral discrimination. In sum-
mary, our studies suggest that at least some perceptual invariances may be the
result of the interplay between plasticity intrinsic to the nervous system and ex-
trinsic factors (“embodiment”) due to phenotype, behavior and environment.
Organisms are able to behaviorally discriminate highly diverse and often nov-
el visual stimuli and to acquire new perceptual categories throughout their life-
time (Edelman 1987). Traditionally, theoretical frameworks of pattern classifica-
tion have approached the problem by attempting to devise strategies for
partitioning often high-dimensional input spaces into distinct regions corre-
sponding to categories. These approaches do not typically take into account sev-
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eral key characteristics of how biological systems achieve their superior perfor-
mance in categorizing natural environments. Biological perceptual categoriza-
tion is not the result of disembodied information processing or of (even neurally
implemented) algorithmic procedures. Rather, viewed from a biological perspec-
tive, categorization necessarily involves exploration and active movement result-
ing in sensory exposure and sampling. The construction of basic feature dimen-
sions depends upon statistical patterns in sensory inputs. The generation of
these patterns may depend critically on an organism’s body structure (including
physical properties of its sensory and motor organs, i.e., its “phenotype”), its
movement repertoire and on the previous history of its interactions in the real
world.

One key prerequisite for successful categorization is the extraction of invari-
ants from the highly variable activity pattern present on the sensory sheet (Ep-
stein 1977, Walsh and Kulikowski 1998). In the visual domain, many organisms
(in particular higher vertebrates) are able to categorize stimuli no matter where
they are located within the visual field (translation invariance), and, in addition,
discount differences in rotational angle, perspective, and illuminant (see
schematic in figure 1). In mammalian brains, a possible neural basis for these vi-
sual invariances can be found in the receptive field properties of neurons located
in the inferior temporal cortex (for reviews see Gross 1992, Logothetis, Pauls,
and Poggio 1995, Tanaka 1996). These neurons respond selectively to various
kinds of complex visual stimuli (Gross, Rocha-Miranda, and Bender 1972, Des-
imone et al. 1984, Tanaka et al. 1991). They have large receptive fields giving
rise to responses that are invariant with respect to stimulus translation (Gross
and Mishkin 1977, Tovee, Rolls, and Azzopardi 1994, Ito et al. 1995). Other
invariant properties of visual neurons include rotational invariance, size invari-
ance, viewpoint invariance, and invariance with respect to illuminance.

Here, we address two questions concerning the highly characteristic patterns
of neuronal responses observed in mammalian inferior temporal cortex. The
first question concerns the developmental origin of the complex response prop-
erties of such neurons. There is relatively little empirical data on the develop-
ment and experience-dependence of these properties. Evidence suggests that
tuning properties of visual cortical neurons are subject to significant postnatal
modification and refinement (Rodman 1994), at least in part as a result of expo-
sure to actual stimuli (Kobatake, Wang, and Tanaka 1998). Our modeling stud-
ies investigate what developmental mechanisms might be involved in shaping
these responses. The second question concerns potential roles for a class of con-
nections linking neurons within the inferior temporal cortex (also called tangen-
tial, horizontal, or long-range intrinsic connections). Such connections have
been described in primary visual cortex (Gilbert and Wiesel 1983, Callaway and
Katz 1990, Gilbert 1993) as well as in inferior temporal cortex (Fujita and Fuji-
ta 1996, Tanigawa et al. 1998). They link distinct groups of pyramidal neurons

over distances of up to several millimeters. We investigated what effects such
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(a) Translation

(b) Size (d) Viewpoint

(e) Color

Figure 1. Examples of perceptual invariances.

In each panel two separate views of an object (with a “bloblike” texture) are shown. (a) Trans-
lation invariance. (b) Size invariance. (c) Rotation invariance. (d) Viewpoint invariance. (e)
Color invariance.

connections might have on local response properties of inferior temporal neu-
rons as well as on categorization behavior.

In a series of previous modeling studies Reeke et al. 1990, Reeke, Sporns, and
Edelman 1990, Edelman et al. 1992, Reeke and Sporns 1993, Verschure et al.
1995), we have designed simulations of neuronal models that could be inter-
faced with a behaving phenotype and interact with an environment to produce
autonomous behavior. We have called our approach “synthetic neural modeling”
to indicate our central aim: to interrelate realistically modeled neural processes
across multiple scales of organization (from synapses to the function of entire
neural systems) in the context of a behaving system. Other approaches, based on
embodied models of brain and behavior have been proposed (such as Chiel and
Beer 1997, Clark 1997, Mataric 1998, Pfeifer and Scheier 1999); several of

these are reviewed in this book.
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Our most recent set of studies (Almdssy, Edelman, and Sporns 1998, Almdssy
and Sporns 1998, Sporns, Alméssy and Edelman 2000) was aimed at the role of
behavior and changes in environmental input during visual development. We
designed Darwin V, a neuronal model based on visual cortex embedded in a real
world device, and behaving in an environment containing objects that differed
in their visual patterns. In brief, Darwin V operated as follows: Visual input ac-
quired by a video camera was transmitted to a primary visual area (VAp) and
from there to a secondary visual area (VAs) resembling inferior temporal cortex.
Connections of VAp to VAs were widely divergent and modifiable according to
a synaptic rule allowing for potentiation and depression. Connections of VAs to
motor centers were modifiable depending upon value elicited by “taste” (con-
ductivity). Before visual experience, VAs responses were weak, nonselective and
noninvariant, and behaviorally Darwin V did not discriminate between stimuli.
In the course of visual experience, groups of VAs units emerged that were more
sharply tuned, and responded selectively for distinct stimulus patterns and in-
variantly with respect to their location. After conditioning, Darwin V was able
to discriminate objects, approaching nonconductive ones, while avoiding con-
ductive ones. The emergence of translation invariance was impaired if the tem-
poral continuity of stimulus sequences due to self-generated movements was
disrupted. The map of units within VAs reflected the history of stimulus en-
counters and was sensitive to changes in sensory input due to behavior. In the
course of development, a patchy network of long-range intrinsic connections
developed within area VAs, resulting in larger and more sharply defined recep-
tive fields of neurons within VAs as well as improved categorization behavior.

Overall, our results are consistent with the view that the development of pat-
tern selective and translation invariant neuronal responses depends critically on
self-generated movement, the stimulus content of the environment and the dy-
namics of ongoing behavior.

Implementation

In this chapter, the implementation of Darwin V, in particular the construction
of its robotic phenotype and the simulated nervous system, are only described in
outline. Details of the implementation (including parameter values) are con-
tained in previous publications (Alméssy, Edelman, and Sporns 1998, Almdssy
and Sporns 1998, Sporns, Almdssy, and Edelman 1999).

A mobile device called NOMAD was equipped with a miniature CCD camera,
six infrared sensors that trigger collision-avoidance reflexes, and a rigid electro-
magnetic “snout” that provides a binary “taste” signal to the nervous system.
The experiments were conducted in an enclosed area with black cloth-covered
walls and a black floor. Six to nine metal cubes (ten centimeters wide, subtend-
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Figure 2. NOMAD in its environment.

ing a visual angle of about 7.5 degrees) were evenly distributed in the environ-
ment, and the robot’s control architecture allowed the exploration and sampling
of two types of test stimuli. “Appetitive” tasting stimuli were marked with five
white “stripes” (width five millimeters, evenly spaced) and “aversive” stimuli
showed “blobs” (four white patches, @ 2.5 centimeters).

During autonomous behavior NOMAD performs obstacle avoidance, visual ex-
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Figure 3. Schematic diagram of the anatomy of Darwin V's nervous system.

Boxes indicate different anatomical areas (numbers within boxes indicate their dimensions in
neuronal units), shaded boxes indicate inhibitory units, arrows indicate major pathways, typi-
cally comprising hundreds or thousands of individual connections. The open arrowhead (in
area VAs) indicates voltage-dependent long-range intrinsic connections. All other connections
are voltage-independent. Cross-hatched areas indicate plastic connections. Value projections
are represented by a stippled arrow and area of termination indicates projections that are sub-
ject to value-dependent modification. Insert on top is a sketch of postsynaptic function F (see
equation 4).



PERCEPTUAL INVARIANCE AND CATEGORIAZATION 129

ploration, tracking, gripping and conductivity (taste) sensing, as well as appeti-
tive and aversive behaviors. Appetitive behavior consists of prolonged gripping,
movement and sensing of taste, while aversive behavior consists of releasing the
object and turning away. The last two modes of behavior are activated either by
the sensing of taste (the unconditioned stimulus, US, triggering an uncondi-
tioned response, UR), or by inputs from another sensory modality, such as vi-
sion (the conditioned stimulus, CS, followed by a conditioned response, CR).
Appetitive or aversive behavior is triggered as soon as the difference in instanta-
neous activity between motor areas Mapp and Mave (see below) exceeds a be-
havioral threshold B. If visual inputs act to trigger aversive behavior, the aversive
turning response (CR) is executed instantaneously, resulting in immediate re-
moval of the aversive object from the visual field; no taste sensing (UR) occurs.

Nervous System

Darwin V’s nervous system consists of a number of areas representing different
brain regions containing neuronal units of different types. Such units are taken
to represent local populations of neurons, often corresponding to neuronal
groups (Edelman 1987). In the instantiation used in the present experiments,
the simulated nervous system contains a total of approximately 15,000 neuronal
units and 600,000 synaptic connections. There are five major components: a vi-
sual system, a taste system, sets of motor neurons capable of triggering behavior,
a visual tracking system, and a value system. A schematic diagram of the major
components of Darwin V’s nervous system is shown in figure 3.

The pixel image captured by NOMAD’s camera is relayed to a receiving area R
and transmitted via topographic connections to a primary visual area VAp. The
spatial arrangement (resembling feature matrices) of these connections results in
various stimulus selectivities within interleaved subpartitions of VAp. There are
three subpartitions, one each selective for visual “blobs,” “horizontal” and “verti-
cal” stripes. Topographic, mutually inhibitory connections result in sharpening
and disambiguation of responses. Dynamically, responses within VAp are brisk
and closely follow stimulus onset and lateral displacements. All subpartitions of
VAp project to a secondary visual area VAs, containing both excitatory and in-
hibitory units. Local excitatory-excitatory, excitatory-inhibitory, and inhibitory-
excitatory interactions produce firing patterns that are characterized by focal re-
gions of excitation (diameter about three to five neuronal units) surrounded by
inhibition; responses tend to be more long-lasting than those in VAp.

The taste system consists of two kinds of sensory units responsive to either
the presence or absence of conductivity across the surface of stimulus objects (as
measured by sensors in NOMAD’s snout). These units emit all-or-none responses
that are transmitted to appropriate motor centers by innately specified (“pre-
wired”) connections. In addition, both taste units send a uniform, nonplastic in-
put to the value system.
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The motor system consists of two groups of units capable of triggering two
distinct behaviors, appetitive (Mapp) and aversive (Mave). These two groups re-
ceive pre-specified and fixed connections from the taste system (Tapp to Mapp
and Tave to Mave) and have mutually inhibitory connections. In addition they
receive initially weak nonspecific connections from the visual system (VAs to
Mapp and Mave) that are subject to value-dependent modification.

The visual tracking system controls navigational movements, in particular ap-
proach of objects identified by brightness contrast with respect to the back-
ground. The visual receiving area R emits a projection to an area C (“collicu-
lus”), containing excitatory (Ce) and inhibitory (Ci) units. The pattern of
connectivity within area C helps to sharpen Ce responses to visual targets and
partially disambiguates such responses when multiple targets are present. Ce ac-
tivity triggers translational and rotational motion of NOMAD (via activation of
Mtra and Mrot, respectively) ultimately producing visual approach behavior.
Connection strengths in projections from Ce to Mtra and Mrot were assigned
initial values resembling distributions obtained in earlier work by value-depen-
dent synaptic modification during sensorimotor training (Edelman et al. 1992).

Cell Activation and Synaptic Rules

As in previous models (such as Reeke, Sporns, and Edelman 1990), activity val-
ues s5,(#) of neuronal units at cycle # represent the average firing rate of a local
populatnon of neurons. Synaptic strengths ¢ may be subject to activity-depen-
dent modification (see below).

Synaptic inputs can be voltage-independent or voltage-dependent. The total
input to unit ; from voltage-independent (VI) connections is given by

A()=33e,5(0) ()

=1 j=1
where M is the number of different anatomically defined connection types and
Ny is the number of connections per type € projecting to unit . Negative values
for ¢;; correspond to inhibitory connections. The total contribution from volt-
age- d’ependent (VD) connections is glven by

A7()= gtanh(/iyl(t)m,.( ))zc,] () @

where @ determines the persistence of unit activity from one cycle to the next.
Voltage-dependent connections have no effect unless there is sufficient postsy-
naptic activity due to other, voltage-independent inputs.

The activity level of unit 7 is given by

5i(1+1) = 6, (canh (g [ 4"() + 4! (s) + 5,(1)]) 3)

where @5, is a unit-specific firing-threshold function and g; is a scale factor. In
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the model, several types of connections (both voltage-dependent and voltage-in-
dependent, see figure 3) are subject to activity-dependent modification accord-
ing to a synaptic rule:

Ac,(t) = (c;(0) =, (¢)) + 15, (1) F(s (1)) 4)
where 5,(£) and 5,(#) are activities of post- and presynaptic units, respectively, 77 is
a fixed learning rate, € is a decay constant (€ <<1), and ¢;{0) is the initial (# = 0)
weight of connection i Synaptic changes depend upon both pre- and postsy-
naptic activity and can result in either strengthening or weakening of connec-
tions as determined by the function F (see figure 3, inset), which sets limits and
rates for synaptic potentiation and depression depending upon the postsynaptic
activity (compare Bienenstock, Cooper and Munro 1982). For some connec-
tions (e.g., VAs to Mapp and Mave), this modification depends on value (for
more detail see Sporns, Almdssy, and Edelman 2000). The long-range intrinsic
connections within area VAs studied in this chapter are modifiable, with
changes in i solely depending on pre- and postsynaptic activity.

Results

In this chapter we present some exemplary results obtained from experiments
reported previously (Almdssy, Edelman, and Sporns 1998, Alm4ssy and Sporns
1998, Sporns, Almdssy, and Edelman 1999). These results address the problem
of how perceptual invariants arise during development and how their emergence
relates to aspects of a behaving system’s embodiment. First, we briefly describe
the overall behavior of Darwin V and its development over time. Then, we de-
scribe the development of visual properties of neuronal units within the “high-
er” visual area VAs, in particular the development of translation invariance and
object selectivity.

Overall Behavior of Darwin V

Figures 4 and 5 provide a summary of relevant neural and behavioral states
recorded during several stimulus encounters. Neural states of visual, taste, motor
and value networks are indicated as average activity levels over time (figure 4).
Before development, Darwin V indiscriminately approaches all visual objects
until they are located within the visual fovea. Then, all objects are gripped to al-
low sensing of their conductivity (“taste”). Taste sensing triggers either appeti-
tive or aversive behavior. Visual neuronal responses in area VAs are still nonspe-
cific and do not allow the translation invariant recognition of objects.
Therefore, all behavior is initially driven by “taste” sensing only. After some
time, synaptic changes in connections linking visual areas VAp and VAs have ac-
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Figure 4. Average neural states of several sensory and motor networks of Darwin V recorded
before (left) and after (right) visual development and conditioning.

Traces for two individual encounters with a “blob” and a “stripe” are shown, with (top to bot-
tom) traces for average visual activity in VAs, taste sensing (Tave, broken line; Tapp, solid
line), behavioral motor activity (Mave, broken line; Mapp solid line), and the value system .
For description see text.

cumulated and neuronal responses within VAs have developed that allow the vi-
sual recognition of objects. This results in visual responses becoming linked di-
rectly to behavior (figure 5). After this developmental stage is completed, Dar-
win V will still approach objects that “taste good,” but will avoid objects that
“taste bad,” i.c., if encountered, trigger avoidance behavior.

Development of Translation Invariant and
Object Selective Neuronal Responses

During visual exploration and approach, neuronal units in the primary (VAp)
and secondary (VAs) visual areas show responses with different temporal char-
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Figure 5. Learning curves.

On the left, symbols indicate the difference in average activities of Mave and Mapp for
“stripes” (+) and “blobs” (©), with a stippled line indicating the behavioral threshold (8 = 0.3)
used in the present experiments. On the right, the percent incidence of conditioned responses
(aversive and appetitive) are indicated. Note that after about 1,000 seconds (30 minutes) of
experience only conditioned responses occur, i.e., responses that are triggered by vision alone.

acteristics. Neuronal units in VAp have small receptive fields and respond to
local features of the image, i.e. short segments of vertical lines. Due to stimu-
lus displacement during approach, line segments quickly move in and out of
the unit’s receptive fields and unit responses are brief in duration. In our ex-
periments, no modification of VAp responses occurred with development. At
higher levels of the cortical model (VAs), neuronal units receive highly conver-
gent inputs from a large region within VAp. Due to local dynamics of excita-
tory/inhibitory interactions, lateral displacement of stimuli within the visual
field is accompanied by sustained activation or suppression of subsets of units
within VAs. For many units, such responses either increase or decrease in both
amplitude and temporal duration during development, producing an overall
sharpening of unit responses.

Next, we tested the neuronal response patterns we obtained from area VAs for
translation invariance (figure 6). For this purpose, we presented visual objects at
different locations within the field of view and compared the activity patterns
within area VAs. Recording the activity values for all nine hundred units within
area VAs for a given pair of object locations yielded two activation vectors a and
b. Their mutual overlap (degree of pair-wise correlation) is estimated as

ab

(0)=1 w1 )
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Figure 6. Patterns of neural activity in VAs before and afier development.
Presentation of an object in two different positions (top) and resulting activity patterns in VAs
before (middle) and after (bottom) development. Element-by-element product of unit activi-
ties is indicated at right.

Before development, VAs activation was characterized by variable foci of ac-
tivity due to local excitation and inhibition. Exemplary activity patterns for the
same object presented at two different locations are shown in figure 6. Their
overlap before development (cos(¢) = 0.114) indicated a very small number of
units that respond invariantly with respect to translation of the object. After de-
velopment (4,083 cycles, 82 objects) VAs activity patterns were more sharply
tuned and overlapped significantly for the same object presented at different lo-
cations indicating translation invariance (cos(¢) = 0.493). On average, during
development the overlap increased significantly for all object distances (Almassy,

Edelman, and Sporns 1998).
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So far, we have shown that translation invariant and pattern selective neu-
ronal responses emerged in the course of development as Darwin V interacted
with numerous objects in its environment. A key question arises: does the emer-
gence of these properties depend on movement and how is it affected if the con-
tinuity of Darwin V’s movements is disrupted? To address this question, we
compared Darwin V’s neuronal responses before and after “normal” develop-
ment to those of a separately trained Darwin V that had been immobilized and
presented with sequences of stationary images of visual patterns flashed at ran-
dom positions within its narrow-angle field of view (“discontinuous” develop-
ment). Patterns used consisted of a training set of “blobs” and “stripes” (in hori-
zontal and vertical orientations) that were presented with equal frequency. To
keep the overall amount of sensory stimulation comparable to “normal” devel-
opment, individual patterns were presented for about seven seconds (twenty cy-
cles) separated by about twenty-five seconds (seventy blank cycles that simulated
the times for visual search and exploration).

We recorded activity levels and calculated cos(¢) (equation 5) for pairs of ob-
ject presentations at a distance of sixteen and thirty-two pixels (corresponding to
a viewing angle of 6.4 and 12.8 degrees, respectively) distributed evenly over all
parts of the field of view. The overall level of activity within VAs (s,(#) > 0.0) was
unchanged between “normal” and “discontinuous” modes of stimulation, al-
though a significantly larger number of units showed strong (s{#) > 0.5) and sus-
tained responses in the former versus the latter condition. While “normal” de-
velopment significantly increased the overlap measure cos(¢), which is an
indicator of the degree of translation invariance, “discontinuous” development
did not result in a similar increase and cos(¢) remained at baseline levels.

Receptive field maps of individual VAs units were examined and compared
before and after “normal” and “discontinuous” development. VAs responses
were recorded while presenting an object in a regularly spaced array of 32 x 32
locations within the narrow-angle field of view. An individual receptive field
map was obtained by plotting the steady-state activity level of a single neuronal
unit for all spatial locations. Figure 7 shows representative examples of such
maps for a unit located near the center of VAs, which received highly conver-
gent anatomical input from a large, central portion of VAp. Before develop-
ment, receptive field maps were patchy and showed weak pattern selectivity over
much of their spatial extent (figure 7, “before”). After “normal” development,
neuronal units with high selectivity for a particular visual pattern (in this case
“horizontals”) had receptive fields that were coherent in their selectivity, consist-
ing in most cases of a single large region; at the same time, parts of the receptive
field showing responses to other patterns decreased (figure 7, “normal”). After
“discontinuous” development, receptive field maps changed only slightly and re-
tained many of their initial characteristics (figure 7, “discontinuous”). In partic-
ular, these receptive field maps did not extend across large regions of the visual
field and did not show coherent regions of high pattern selectivity. No improve-
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Figure 7. Effect of continuous movements on development of receptive field maps.
Receptive field maps were obtained by recording VAs responses while presenting an object in
a regularly spaced array of 32 X 32 locations within the narrow-angle field of view. Pixel val-
ues represent neural activity for a single presentation of an object centered at that location and
are spatially averaged over 2 X 2 subregions. Receptive field maps are plotted before (top), af-
ter “normal” (middle) and after “discontinuous” (bottom) visual development. For each con-
dition, a single receptive field map is shown with three components (responses to “blobs,”
“horizontals” and “verticals”) displayed side by side.

ment was found even after very long runs (data not shown). From all of these
results, we reach the conclusion that disrupting the continuity of self-generated
movements strongly impaired the development of translation invariance for VAs
neuronal units.
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Figure 8. Axonal arbors and synaptic strengths of long-range
intrinsic connections within VAs to an excitatory neuronal unit
selective for “blobs” (located on the lower right of the array), after visual development.

The contour lines mark groups of neurons (similar to those shown in figure 6 that respond se-
&

lectively to “blobs.” Note that connections are strongest between neurons with similar re-

sponse properties (selectivity for “blobs”).

Potential Functional Role of Intrinsic Connections

Recently, long-range intrinsic connections have been described in inferior tem-
poral cortex, but their functional role remains unknown. One possible function-
al role concerns their involvement in translation invariance and in helping to
generate robust categorization behavior. In the model, long-range intrinsic con-
nections were implemented as voltage-dependent connections. Before visual ex-
perience, long-range intrinsic connections within area VAs had relatively weak
connection strengths and were distributed randomly between neuronal units in
VAs. After development (figure 8), strengthened long-range intrinsic connec-
tions selectively linked groups of neuronal units that had similar response prop-

. . . . . (33 »
erties; other long-range intrinsic connections were weakened (“pruned away”).
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Figure 9. Population vector angles between VAs activity sampled at individual
cycles after stimulus onset and an average “late” pattern (cycles 6-10).

Without long-range intrinsic connections (LRIC), the angle is significantly larger during the
first three cycles after stimulus onset (ttest2: p-values = 2.6 x 10-7, 0.0079, 0.027, respective-
ly). In addition, arrows indicate when, on average, behavior is triggered.

This pattern allowed distant groups of neuronal units to interact through a
patchy network of voltage-dependent connections.

Long-range intrinsic connections affected the dynamics of firing patterns
within VAs. During early development, these firing patterns tended to fluctuate
and showed little stability and selectivity with respect to particular visual stim-
uli. This was due to the still immature patterns of afferent and intrinsic synaptic
strengths. A prerequisite for reliable categorization of visual stimuli is a relatively
stable firing pattern that ensures the consistent development of sensorimotor
connections linking VAs to the motor units. To quantify how quickly the popu-
lation response stabilized after stimulus onset we evaluated the overlap in VAs
response patterns (activity vectors) between individual time points during stim-
ulus encounter. In particular, we compared the “late” (stabilized) pattern (sam-
pled after the time when behavior is initiated) and “early” firing patterns sam-
pled directly after stimulus onset (figure 9). We found that when long-range
intrinsic connections were present, the overlap (vector angle ¢) between early
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Figure 10. Receptive field of a neuronal unit (shown in figure 8) selective for “blobs.”

The contour line in the surface plot indicates half the maximal response. The sharpness of the
receptive field was defined as the average gradient around that line.

and late population vectors decreased more quickly than in a model where long-
range intrinsic connections had been “lesioned” (by setting their €;;$ to zero).
This indicated that the population response organized more quickly into a pat-
tern that allowed the initiation of a motor response. Overall levels of activity
were similar between the two models.

Long-range intrinsic connections had significant effects on the size and shape
of receptive fields within VAs (figure 10). Before development, the receptive
field maps of units in VAs were patchy and weak, indicating inconsistent selec-
tivity over much of their spatial extent. After normal visual development during
behavior, neuronal units exhibiting object selectivity and translation invariance
had receptive field maps that were coherent in their selectivity, consisting in
most cases of a single large region. The receptive field maps of 118 neuronal
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units sampled from a model with long-range intrinsic connections were com-
pared to the receptive fields of 90 neuronal units sampled from a model that did
not have long-range intrinsic connections but received the same visual experi-
ence. We found that the receptive field sizes in the model with long-range in-
trinsic connections increased by about thirty percent compared to the model
without long-range intrinsic connections and the average neuronal response
within the receptive field increased by thirteen percent. Furthermore, the aver-
age gradient along the half maximal contour line of the receptive field (the
“sharpness”) increased by thirty-eight percent. All differences are statistically sig-
nificant (data not shown).

Models that included long-range intrinsic connections in area VAs showed a
significant improvement in categorizing performance. On average, behavior was
triggered significantly earlier when long-range intrinsic connections were present
(after 2.5 cycles, versus 3.5 for a2 model without long-range intrinsic connec-
tions, twelve trials, behavioral threshold 8 = 0.3; one-way Anova, 4f= 1, F = 6,
2 = 0.023, see figure 9). Also, categorization was more reliable, with the rate of
errors in behavioral discrimination increasing from one to five (out of twelve tri-
als, in a representative simulation segment) as long-range intrinsic connections
are omitted from the model.

Discussion

The development of object selectivity and translation invariance in visual neu-
ronal responses is a prerequisite for the behavioral discrimination of objects. In
this chapter, we describe exemplary results obtained from a biologically based
neuronal model of visual cortex that is embedded in a real world device and is ca-
pable of autonomous behavior. Most previous models of form recognition or cat-
egorization have dealt with these processes as purely sensory or perceptual phe-
nomena, independent of motor activity and ongoing behavior. Our modeling
study suggests that in autonomous systems the development of cortical selective
and invariant neuronal responses may depend critically on self-generated move-
ment and behavior. Overall, our study is consistent with the notion that the be-
havioral activity of organisms in their econiche is an important factor in the de-
velopment and subsequent elaboration of their neural circuitry. Self-generated
movement and behavior play important roles in the ability of an organism to
sense and discriminate objects and events in its environment.

The Development of Object Selectivity and Translation Invariance

Biological object recognition is typically achieved in a manner that is invariant
with respect to natural transformations, such as translation, size or rotation.
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Neurophysiological evidence (Gross, Rocha-Miranda, and Bender 1972, Logo-
thetis, Pauls, and Poggio 1995, Tanaka 1996) suggests that the object selective
and translation invariant responses of neurons in the inferotemporal cortex play
a key role in this process. While recognition of some visual patterns may be in-
nate, developmental studies in primates (Spinozzi 1996) and humans (Berten-
thal 1996) strongly suggest that exposure to visual stimuli is required for normal
(selective and invariant) neuronal responses to emerge. In Darwin V, we mod-
eled the development of such responses in the course of successive exposure to
various objects present in its environment.

In the primate visual system, areas within “lower” hierarchical levels contain
neurons that are selective only for elementary (simple) features of visual objects,
such as line segments. Invariant and object-selective visual responses arise only
at “higher” hierarchical levels and depend for their construction on the progres-
sive elaboration of visual input from “lower” to “higher” areas via convergent/di-
vergent feed-forward connectivity (for a review see Rolls 1992). In our model,
for reasons of computational expediency, we have simplified the multi-level hier-
archical arrangement of the primate visual system to include only two areas
(VAp and VAs), with properties characteristic for primary/secondary (V1/V2)
and inferior temporal cortices (IT), respectively. These two areas are linked by
widely convergent/divergent connections, arising from neurons with different
stimulus selectivity in VAp and terminating on a single set of neurons in VAs.
Intrinsic connections within VAs link distinct populations of excitatory and in-
hibitory units. Activity patterns within VAs are sustained (lasting for several
time steps, corresponding to several hundred milliseconds of real time) and are
characterized by local foci of activation surrounded by lateral inhibition. Before
visual experience, these foci are highly dynamic and unstable, appearing at dif-
ferent locations within the VAs map depending upon small fluctuations in the
input. During synaptic modification, repeated sustained coactivation of neigh-
boring units tends to produce similar patterns of synaptic change in their affer-
ent and efferent connectivity. Inhibition tends to spread apart and limit the size
of emerging functional neuronal groups selective for specific objects. Intrinsic
excitatory-inhibitory interactions within VAs enhance competition between
neuronal populations in different parts of the array, sharpening their responses
and leading to the emergence of distinct neuronal groups.

Several computational models of inferior temporal have been developed pre-
viously (Gochin 1994, Wallis and Rolls 1997). Different proposals have been
made to account for the translation invariant properties of inferior temporal
neurons. An important set of models (Féldiak 1991,0ram and Fsldiak 1996,
Wallis and Rolls 1997, Wallis and Biilthoff 1999) has utilized a Hebbian-type
learning mechanism (the so-called trace rule) to develop translation invariant
neuronal responses. The trace rule incorporates temporal delays into the learn-
ing mechanism, providing an effective way to link successive images of objects.
In our model, such linkage is achieved directly through neuronal dynamics, i.e.
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the sustained activation of neurons in area VAs. This dynamical process, in con-
junction with lateral displacement of objects at a time scale commensurate with
synaptic changes, serves to allow units within VAs to become responsive to sig-
nals arriving over an extended region of the visual field.

Intrinsic Organization of Inferior Temporal Cortex

A functional columnar organization of inferior temporal cortex has been shown
in a series of electrophysiological and optical imaging studies (Fujita et al.
1992,Wang, Tanaka, and Tanifuji 1996); this pattern of organization is striking-
ly similar to the pattern of neuronal groups emerging during visual development
in our modeled area VAs (figure 6). These neuronal groups contain units that
share object selectivity and generate translation invariant responses. Such local
functional coupling is consistent with the observed higher incidence of func-
tional interactions for neurons located within about one hundred micrometers
(Gochin et al. 1991). While neuronal groups are generated through dynamic in-
teractions over short distances, they become mutually linked over longer dis-
tances through voltage-dependent intrinsic connections. Synaptic changes in
these connections result in connection patterns that resemble the patchy net-
work of intra-areal connections present within the inferior temporal cortex (Fu-
jita and Fujita 1996, Tanigawa et al. 1998). After development, strong connec-
tions tend to link groups of neurons that have similar response properties. We
found that the presence of these connections had significant effects on the size
and shape of receptive fields within VAs; they tended to increase both overall
areal extent and sharpness of receptive fields and thus contributed to an increase
in translation invariance. Also, firing patterns within area VAs emerged more
quickly after the onset of a visual stimulus and converged more rapidly towards
patterns that allowed the initiation of a motor response. This dynamic effect
produced an effect on behavior. We found that, on average, appropriate motor
responses were triggered earlier within a behavioral trial. These effects on recep-
tive fields and behavior of intrinsic connections within our modeled area VAs
are suggestive of potential functional roles of such connections in inferior tem-
poral cortex.

Conclusion

The essential role of behavioral and environmental interactions in the develop-
ment of translation invariance is demonstrated by the drastic effects on neuronal
responses if such interactions are impaired. No translation invariant responses
develop if the continuity of stimulus displacement is selectively destroyed, even
if equivalent levels of sensory input and synaptic changes are allowed. We con-
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clude that in systems showing autonomous behavior, complex neuronal respons-
es are in part determined by self-generated behavioral interactions in the envi-
ronment. Such interactions can help in sampling and generating statistical regu-
larities in the environment that can be captured by developing neuronal
circuitry. Similar mechanisms may also be responsible for generating other per-
ceptual invariances, such as those for object size, rotation, view-independence,
or color (see figure 1). In general, our study is consistent with the hypothesis
that the ongoing behavioral and motor activity of organisms constitute essential
prerequisites for the extraction of invariants by specialized neurons.
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CHAPTER

8

Investigating Models of
Social Development Using a
Humanoid Robot

Brian Scassellati

esearch on humanoid robotics has been motivated by a variety of differ-

ent goals. Some research groups have focused on the construction of ma-

hines with humanlike form and motion to meet anticipated commercial

needs as a flexible factory worker, a domestic assistant, or to operate in areas that

are dangerous to humans (Hirai et al. 1998, Kawamura et al. 1996). Other re-

search has focused on the construction of humanoid robots to examine issues of

human-robot interaction and cooperation (Takanishi, Hirano, and Sato 1998;

Morita, Shibuya, and Sugano 1998), or to examine issues of sensory-motor inte-

gration and architectural techniques from artificial intelligence (Kanehiro et al.

1998). The majority of these research efforts have focused on the challenging
engineering issues of building intelligent and adaptive systems.

My colleagues and I have proposed that humanoid robotics research can also
investigate scientific questions about the nature of human intelligence (Brooks
et al. 1998). We believe that humanoid robots can serve as a unique tool to in-
vestigators in the cognitive sciences. Robotic implementations of cognitive, be-
havioral, and developmental models provide a test-bed for evaluating the predic-
tive power and validity of those models. An implemented robotic model allows
for more accurate testing and validation of these models through controlled, re-
peatable experiments. Slight experimental variations can be used to isolate and
evaluate single factors (whether environmental or internal) independent of
many of the confounds that affect normal behavioral observations. Experiments
can also be repeated with nearly identical conditions to allow for easy validation.
Further, internal model structures can be manipulated to observe the quantita-
tive and qualitative effects on behavior. A robotic model can also be subjected to
controversial testing that is potentially hazardous, costly, or unethical to conduct
on humans; the “boundary conditions™ of the models can be explored by test-
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ing alternative learning and environmental conditions. Finally, a robotic model
can be used to suggest and evaluate potential intervention strategies before ap-
plying them to human subjects.

In this chapter, I discuss the potential biological and engineering questions
that can be examined by implementing models of human social development on
a humanoid robot. Our group has implemented biological models at many dif-
ferent abstraction levels, including interaction models of infant-caregiver inter-
actions (Breazeal and Scassellati 1998), behavioral models of the development of
infant reaching (Marjanovic, Scassellati, and Williamson 1996) and neural
models of spinal motor neurons (Williamson 1996, Williamson 1998). In this
chapter, we present an on-going implementation of one behavioral model of so-
cial development that focuses on the recognition and production of joint atten-
tion behaviors (Scassellati 1996, Scassellati 1998).

Models of Joint Attention

One of the critical precursors to social learning in human development is the
ability to selectively attend to an object of mutual interest. Humans have a large
repertoire of social cues, such as gaze direction, pointing gestures, and postural
cues, that all indicate to an observer which object is currently under considera-
tion. These abilities, collectively named mechanisms of joint (or shared) atten-
tion, are vital to the normal development of social skills in children. Joint atten-
tion to objects and events in the world serves as the initial mechanism for
infants to share experiences with others and to negotiate shared meanings. Joint
attention is also a mechanism for allowing infants to leverage the skills and
knowledge of an adult caregiver in order to learn about their environment, in
part by allowing the infant to manipulate the behavior of the caregiver and in
part by providing a basis for more complex forms of social communication such
as language and gestures.

Joint attention has been investigated by researchers in a variety of fields. Ex-
perts in child development are interested in these skills as part of the normal de-
velopmental course that infants acquire extremely rapidly, and in a stereotyped
sequence (Scaife and Bruner 1975, Moore and Dunham 1995). Additional
work on the etiology and behavioral manifestations of pervasive developmental
disorders such as autism and Asperger’s syndrome have focused on disruptions
to joint attention mechanisms and demonstrated how vital these skills are in hu-
man social interactions (Cohen and Volkmar 1997, Baron-Cohen 1995).
Philosophers have been interested in joint attention both as an explanation for
issues of contextual grounding and as a precursor to a theory of other minds
(Whiten 1991, Dennett 1991). Evolutionary psychologists and primatologists
have focused on the evolution of these simple social skills throughout the ani-
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mal kingdom as a means of evaluating both the presence of theory of mind and
as a measure of social functioning (Povinelli and Preuss 1995, Hauser 1996,
Premack 1988).

The investigation of joint attention asks questions about the development
and origins of the complex nonverbal communication skills that humans so eas-
ily master: What is the progression of skills that humans must acquire to engage
in shared attention? When something goes wrong in this development, as it
seems to do in autism, what problems can occur, and what hope do we have for
correcting these problems? What parts of this complex interplay can be seen in
other primates, and what can we learn about the basis of communication from
these comparisons?

Decomposing Social Skills

The most relevant studies to our purposes have occured as developmental and
evolutionary investigations of “theory of mind” (see Whiten 1991 for a collec-
tion of these studies). The most important finding, repeated in many different
forms, is that the mechanisms of joint attention are not a single monolithic sys-
tem. Evidence from childhood development shows that not all mechanisms for
joint attention are present from birth, and there is a stereotypic progression of
skills that occurs in all infants at roughly the same rate (Hobson 1993). For ex-
ample, infants are always sensitive to eye direction before they can interpret and
generate pointing gestures.

There are also developmental disorders, such as autism, that limit and frac-
ture the components of this system (Frith 1990). Autism is a pervasive develop-
mental disorder of unknown etiology that is diagnosed by a set of behavioral cri-
teria centered around abnormal social and communicative skills (Diagnostic and
Statistical Manual of Mental Disorders, 1994; The ICD-10 Classification of Men-
tal and Behavioral Disorders, 1993). Individuals with autism tend to have nor-
mal sensory and motor skills, but have difficulty with certain socially relevant
tasks. For example, autistic individuals fail to make appropriate eye contact, and
while they can recognize where a person is looking, they often fail to grasp the
implications of this information. While the deficits of autism certainly cover
many other cognitive abilities, some researchers believe that the missing mecha-
nisms of joint attention may be critical to the other deficiencies (Baron-Cohen
1995). In comparison to other mental retardation and developmental disorders
(like Williams and Downs Syndromes), the social deficiencies of autism are
quite specific (Karmiloff-Smith et al. 1995).

Evidence from research into the social skills of other animals has also indicat-
ed that joint attention can be decomposed into a set of subskills. The same on-
tological progression of joint attention skills that is evident in human infants
can also be seen as an evolutionary progression in which the increasingly com-
plex set of skills can be mapped to animals that are increasingly closer to hu-
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mans on a phylogenetic scale (Povinelli and Preuss 1995). For example, skills
that infants acquire early in life, such as sensitivity to eye direction, have been
demonstrated in relatively simple vertebrates, such as snakes (Burghardt and
Greene 1990), while skills that are acquired later tend to appear only in the pri-
mates (Whiten 1991).

A Theoretical Decomposition

One of the most influential models of joint attention comes from Baron-Cohen
(1995). Baron-Cohen’s model gives a coherent account of the observed develop-
mental stages of joint attention behaviors in both normal and blind children,
the observed deficiencies in joint attention of children with autism, and a partial
explanation of the observed abilities of primates on joint attention tasks.

Baron-Cohen describes four Fodorian modules: the eye-direction detector
(EDD), the intentionality detector (ID), the shared attention module (saM), and
the theory-of-mind module (TOMM) (see figure 1). In brief, the eye-direction de-
tector locates eyelike shapes and extrapolates the object that they are focused up-
on while the intentionality detector attributes desires and goals to objects that
appear to move under their own volition. The outputs of these two modules
(EDD and ID) are used by the shared attention module to generate representa-
tions and behaviors that link attentional states in the observer to attentional
states in the observed. Finally, the theory-of-mind module acts on the output of
SAM to predict the thoughts and actions of the observed individual. In normal
development, the interaction of EDD, ID, and sAM produce a variety of normal
behaviors. Furthermore, the model proposes that autistic behavior can be ex-
plained by including the EDD and ID modules without any of the competencies
of the shared attention module.

Decomposition Based on Observable Behaviors

In order to implement and test a complex social model, representative behaviors
that can be independently tested and observed must be identified for each part
of the model. A behavioral decomposition allows us to evaluate the performance
of the system incrementally and to match the observed behavior of our robot
with observed behavior in humans. The skill decomposition that we are pursu-
ing is a set of representative behaviors from EDD, ID, and saM for two social
modalities (eye contact and pointing). This decomposition includes four observ-
able and testable behaviors: maintaining eye contact, gaze following, imperative
pointing, and declarative pointing. Figure 2 shows simple cartoon illustrations
of these four skills in which the smaller figure on the left in each cartoon repre-
sents the novice and the larger figure on the right represents the caregiver. These
skills were selected as representative behaviors because the ontogeny and phy-
logeny of the skills have been intensively studied, because they are possible with
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Theory of Mind
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Figure 1. Overview of Baron-Cohen’s model of the
development of joint attention and theory of mind.

current robot technology, and because they are significant improvements to the
behavioral repertoire of our humanoid robot (Scassellati 1998).

The simplest behavioral manifestation of Baron-Cohen’s eye direction detec-
tor (EDD) is the recognition and maintenance of eye contact. Many animals have
been shown to be extremely sensitive to eyes that are directed at them, including
reptiles like the hognosed snake (Burghardt and Greene 1990), avians like the
chicken (Scaife 1976) and the plover (Ristau 1991), and all primates (Cheney
and Seyfarth 1990). Identifying whether or not something is looking at you
provides an obvious evolutionary advantage in escaping predators. In many
mammals, especially primates, the recognition that another is looking at you al-
so carries social significance. In monkeys, eye contact is significant for maintain-
ing a social dominance hierarchy (Cheney and Seyfarth 1990). In humans, the
reliance on eye contact as a social cue is even more striking. Infants have a
strong preference for looking at human faces and eyes, and maintain (and thus
recognize) eye contact within the first three months. Maintenance of eye contact
will be the first testable behavioral goal for the eye direction detector.

The simplest shared attention behavior is gaze following, the rapid alterna-
tion between looking at the eyes of the individual and looking at the distal ob-
ject of their attention. As part of the shared attention module (sam), gaze fol-
lowing utilizes information about eye direction and mutual gaze from the eye
direction detector (EDD) and extrapolates to external objects of focus. While
many animals are sensitive to eyes that are gazing directly at them, only primates
show the capability to extrapolate from the direction of gaze to a distal object,
and only the great apes will extrapolate to an object that is outside their imme-
diate field of view (Povinelli and Preuss 1995). This evolutionary progression is
also mirrored in the ontogeny of social skills. At least by the age of three
months, human infants display maintenance (and thus recognition) of eye con-
tact. However, it is not until nine months that children begin to exhibit gaze
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Stage #1: Mutual Gaze

Stage #2: Gaze Following

Stage #3: Imperative Pointing

Figure 2. A four-part task-based decomposition of joint attention skills.

The capabilities for maintaining mutual gaze lead to the ability of gaze following, Imperative
pointing skills, combined with gaze following, results in declarative pointing, For further in-
formation, see the text.

following, and not until eighteen months that children will follow gaze outside
their field of view (Baron-Cohen 1995). Gaze following is an extremely useful
imitative gesture, which serves to focus the child’s attention on the same object
that the caregiver is attending to. Even this simple mechanism of joint attention
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is believed to be critical for social scaffolding (Thelen and Smith 1994), devel-
opment of theory of mind (Baron-Cohen 1995), and providing shared meaning
for learning language (Wood, Bruner, and Ross 1976).

While gaze following and eye contact constitute one mechanism for joint at-
tention, I believe that it will also be instructive to examine a second mechanism
for establishing joint attention. I selected pointing as the second behavior. The
development of pointing to direct attention is based upon much more complex
sensory-motor control than eye gaze; pointing forces us to utilize the robot’s
arms and to recognize gesture cues. However, a pointing gesture can be used for
purposes other than to direct attention. The same arm motion can also be uti-
lized to reach for an object.

Developmental psychologists distinguish between imperative pointing, which
is a gesture to obtain an object that is out of reach, and declarative pointing,
which is a joint attention mechanism. Imperative pointing is first seen in human
children at about nine months of age (Baron-Cohen 1995), and occurs in many
monkeys (Cheney and Seyfarth 1990). However, there is nothing particular to
the infant’s behavior that is different from a simple reach—the infant is initially
as likely to perform imperative pointing when the caregiver is attending to the
infant as when the caregiver is looking in the other direction or when the care-
giver is not present. The caregiver’s interpretation of the infant’s gesture provides
the shared meaning. Over time, the infant learns when the gesture is appropri-
ate. One can imagine the child learning this behavior through simple reinforce-
ment. The reaching motion of the infant is interpreted by the adult as a request
for a specific object, which the adult then acquires and provides to the child.
The acquisition of the desired object serves as positive reinforcement for the
contextual setting that preceded the reward (the reaching action in the presence
of the attentive caregiver). Generation of this behavior is then a simple exten-
sion of a primitive reaching behavior.

Declarative pointing differs from imperative pointing in both form and func-
tion. Declarative pointing is characterized by an extended arm and index finger
designed to draw attention to a distal object. Unlike imperative pointing, it is
not necessarily a request for an object; children often use declarative pointing to
draw attention to objects that are clearly outside their reach, such as the sun or
an airplane passing overhead. Declarative pointing also only occurs under spe-
cific social conditions; children do not point unless there is someone to observe
their action. From the perspective of Baron-Cohen’s model, we can formulate
declarative pointing as the application of SAM and ID to the motor abilities of
imperative pointing combined with imitative learning. When the intentionality
detector identifies motion that matches a pointing gesture, the shared attention
module extrapolates to identify the distal target. The recognition of pointing
gestures builds upon the competencies of gaze following; the infrastructure for
extrapolation from a body cue is already present from gaze following, it need
only be applied to a new domain. The generation of declarative pointing ges-
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tures builds upon the moror capabilities of imperative pointing; by imitating the
successful pointing gestures of other individuals, the child can learn to make use
of similar gestures.

The involvement of imitation as a learning mechanism is consistent with on-
tological and a phylogenetic evidence. From an ontological perspective, declara-
tive pointing begins to emerge at approximately twelve months in human in-
fants, which is also the same time that other complex imitative behaviors such as
pretend play begin to emerge. From the phylogenetic perspective, declarative
pointing has not been identified in any nonhuman primate (Premack 1988).
This also corresponds to the phylogeny of imitation; no nonhuman primate has
ever been documented to display complex imitative behavior under general con-

ditions (Hauser 1996).

Evaluating the Robotic Implementation

A robotic implementation of a behavioral model provides a standardized evalua-
tion mechanism. Behavioral observation and classification techniques that are
used on children and adults can be applied to the behavior of our robot with
only minimal modifications. Because of their use in the diagnosis and assess-
ment of autism and related disorders, evaluation tools for joint attention mecha-
nisms, such as the Vineland Adaptive Behavior Scales, the Autism Diagnostic
Interview, and the Autism Diagnostic Observation Schedule, have been exten-
sively studied (Sparrow et al. 1997, Powers 1997). With the evaluations ob-
tained from these tools, the success of our implementation efforts can be tested
using the same criteria that are applied to human behaviors. The behavior of the
complete robotic implementation can be compared with developmental data
from normal children. Furthermore, operating with only the EDD and ID mod-
ules should produce behavior that can be compared with developmental data
from autistic children. With these evaluation techniques, we can determine the
extent to which our model matches the observed biological data. However, what
conclusions can we draw from the outcomes of these studies?

One possible outcome is that the robotic implementation will match the ex-
pected behavior evaluations, that is, the complete system will demonstrate nor-
mal uses of joint attention. In this case, our efforts have provided evidence that
the model is internally consistent in producing the desired behaviors, but says
nothing about the underlying biological processes. We can verify that the model
provides a possible explanation for the normal (and abnormal) development of
joint attention, but we cannot verify that this model accurately reflects what
happens in biology.

If the robotic implementation does not meet the same behavioral criteria, the
reasons for the failure are significant. The implementation may be unsuccessful
because of an internal logical flaw in the model. In this case, we can identify
shortcomings of the proposed model and potentially suggest alternate solutions.
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A more difficult failure may result if our environmental conditions differ too
significantly from normal human social interactions. While the work of Reeves
and Nass (1996) leads us to believe that this result will not occur, this possibility
allows us to draw conclusions only about our implementation and not the mod-
el or the underlying biological factors.

Building Social Skills

A robotic approach to studies of joint attention and social skill development has
three main advantages. First, human observers readily anthropomorphize their
social interactions with a humanlike robot. Second, the construction of a physi-
cally embodied system may be computationally simpler than the construction of
a simulation of sufficient detail. Third, the skills that must be implemented to
test these models are useful for a variety of other practical robotics tasks.

Interactions with a robotic agent are easily anthropomorphized by children
and adults. An embodied system with human form allows for natural social in-
teractions to occur without any additional training or prompting. Observers
need not be trained in special procedures necessary to interact with the robot;
the same behaviors that they use for interacting with other people allow them to
interact naturally with the robot. In our experience, and in the empirical studies
by Reeves and Nass (1996), people readily treat a robot as if it were another per-
son. Human form also provides important task constraints on the behavior of
the robot. For example, to observe an object carefully, our robot must orient its
head and eyes toward a target. These task constraints allow observers to easily
interpret the behavior of the robot.

A second reason for choosing a robotic implementation is that physical em-
bodiment may actually simplify the computation necessary for this task. The di-
rect physical coupling between action and perception reduces the need for an
intermediary representation. For an embodied system, internal representations
can be ultimately grounded in sensory-motor interactions with the world
(Lakoff 1987); there is no need to model aspects of the environment that can
simply be experienced (Brooks 1986, Brooks 1991). The effects of gravity, fric-
tion, and natural human interaction are obtained for free, without any compu-
tation. Embodied systems can also perform some complex tasks in relatively
simple ways by exploiting the properties of the complete system. For example,
when putting a jug of milk in the refrigerator, you can exploit the pendulum ac-
tion of your arm to move the milk (Greene 1982). The swing of the jug does
not need to be explicitly planned or controlled, since it is the natural behavior
of the system. Instead of having to plan the whole motion, the system only has
to modulate, guide, and correct the natural dynamics.

The social skills that must be implemented to test these models are also im-
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Figure 3. Cog, an upper-torso humanoid robot.

Cog has twenty-one degrees of freedom and a variety of sensory systems including visual, au-
ditory, tactile, kinesthetic, and vestibular systems.

portant from an engineering perspective. A robotic system that can recognize
and engage in joint attention behaviors will allow for human-machine interac-
tions that have previously not been possible. The robot would be capable of
learning from an observer using normal social signals in the same way that hu-
man infants learn; no specialized training of the observer would be necessary.
The robot would also be capable of expressing its internal state (emotions, de-
sires, goals, etc.) through social interactions without relying upon an artificial
vocabulary. Further, a robot that can recognize the goals and desires of others
will allow for systems that can more accurately react to the emotional, attention-
al, and cognitive states of the observer, can learn to anticipate the reactions of
the observer, and can modify its own behavior accordingly.
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Robotic Hardware

Our humanoid robot, called Cog, was designed to investigate a variety of scien-
tific and engineering issues; constraints imposed by social interaction studies
were balanced with constraints from other parallel investigations, as well as con-
straints from cost and availability of components (Brooks and Stein 1994,
Brooks et al. 1998). To allow for natural social interactions, and to provide simi-
lar task constraints, our robot was built with humanlike sensory systems and
motor abilities (see figure 3).

To approximate human motion, Cog has a total of twenty-one mechanical
degrees of freedom. Cog’s torso has six degrees of freedom: the waist bends side-
to-side and front-to-back, the “spine” can twist, and the neck tilts side-to-side,
nods front-to-back, and twists left-to-right. To approximate human eye motion,
each eye can rotate about an independent vertical axis (pan) and a coupled hori-
zontal axis (tilt). Each arm has six compliant degrees of freedom, each of which
is powered by a series elastic actuator (Pratt and Williamson 1995), which pro-
vides a sensible “natural” behavior: if it is disturbed, or hits an obstacle, the arm
simply deflects out of the way.

To obtain information about the environment, Cog has a variety of sensory
systems including visual, vestibular, auditory, tactile, and kinesthetic senses. The
visual system mimics some of the capabilities of the human visual system, in-
cluding binocularity and space-variant sensing (Scassellati 1998a). To allow for
both a wide field of view and high resolution vision, there are two cameras per
eye, one that captures a wide-angle view of the periphery [88.6° X 115.8° field
of view] and one that captures a narrow-angle view of the central (foveal) area
[18.4° X 24.4° field of view] with the same resolution. Vestibular function is ap-
proximated with three rate gyroscopes and two inclinometers. The robot has
two microphones for ears, and simple pinnae. We have also begun implement-
ing a tactile system using arrays of resistive force sensors for the torso and hands.
Kinesthetic information, including joint position from shaft encoders and po-
tentiometers, temperature measurements from the motors and motor driver
chips, and torque measurements from strain gauges on the arms, is also available
on our robot.

Cog has a distributed, heterogeneous computational network. Similar to the
decomposition in humans, specialized subsystems operate on specific aspects of
the robot’s behavior. Each joint has a dedicated on-board motor controller that
performs low-level functions and simple reflexes, similar to the spinal cord. A
network of industrial Pentium processors, a network of custom-built Motorola
68332 processor boards, and a digital signal processor network for auditory and
visual processing combine to provide higher-level functionality.
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Implementing Joint Attention

Even the simplest of joint attention behaviors require the coordination of a large
number of perceptual, sensory-motor, attentional, and cognitive processes, in-
cluding basic eye motor skills, face and eye detection, determination of eye di-
rection, gesture recognition, attentional systems that allow for social behavior
selection at appropriate moments, emotive responses, arm motor control, image
stabilization, and many others. We have begun to construct many of these com-
ponent pieces, and many results from this work have been published previously
(Brooks et al. 1998, Scassellati 1998d, Scassellati 1998, Marjanovic, Scassellati,
and Williamson 1996, Breazeal and Scassellati 1998, Breazeal 1998). In this sec-
tion, we will review some of the capabilities of our robot that have direct bear-
ing on implementing joint attention.

Implementing Maintenance of Eye Contact

Implementing the first stage in our developmental framework, recognizing and
responding to eye contact, requires mostly perceptual abilities. We require at
least that the robot be capable of finding faces, determining the location of the
eye within the face, and determining if the eye is looking at the robot. The only
necessary motor abilities are to maintain a fixation point.

Many computational methods of face detection on static images have been in-
vestigated by the machine vision community, for example Sung and Poggio (1994)
and Rowley, Baluja, and Kanade (1995). However, these methods are computa-
tionally intensive, and current implementations do not operate in real time. How-
ever, a simpler strategy for finding faces can operate in real time and produce good
results under dynamic conditions (Scassellati 1998). The strategy that we use is
based on the ratio-template method of object detection reported by Sinha (1994).
In summary, finding a face is accomplished with the following five steps:

1. Use a motion-based prefilter to identify potential face locations in the peripheral

image.

2. Use a ratio-template based face detector to identify target faces.

3. Saccade to the target using a learned sensory-motor mapping.

4. Convert the location in the peripheral image to a foveal location using a learned

mapping.

5. Extract the image of the eye from the foveal image.

A short summary of these steps appears below, and additional details can be
found in Scassellati (1998).

To identify face locations, the peripheral image is converted to grayscale and
passed through a prefilter stage (see figure 4). The prefilter allows us to search on-
ly locations that are likely to contain a face, greatly improving the speed of the
detection step. The prefilter selects a location as a potential target if it has had
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Figure 4. Block diagram for the prefiltering stage of face detection.

The prefilter selects target locations based upon motion information and past history. The
prefilter allows face detection to occur at 20 Hz with little accuracy loss.

motion in the last 4 frames, was a detected face in the last 5 frames, or has not
been evaluated in 3 seconds. A combination of the prefilter and some early-rejec-
tion optimizations dllows us to detect faces at 20 Hz with little accuracy loss.

Face detection is done with a template-based method called “ratio templates”
designed to recognize frontal views of faces under varying lighting conditions
(Sinha 1996). A ratio template is composed of a number of regions and a num-
ber of relations, as shown in figure 5. Overlaying the template with a grayscale
image location, each region is convolved with the grayscale image to give the av-
erage grayscale value for that region. Relations are comparisons between region
values, such as “the left forehead is brighter than the left temple.” In figure 5,
each arrow indicates a relation, with the head of the arrow denoting the lesser
value. The match metric is the number of satisfied relations; the more matches,
the higher the probability of a face.

Once a face has been detected, two sensory-motor mappings must be used to
extract the eye image (see figure 6). First, the face location is converted into a
motor command to center the face in the peripheral image. To maintain porta-
bility and to ensure accuracy in the sensory-motor behaviors, we require that all
of our sensory-motor behaviors be learned by on-line adaptive algorithms
(Brooks et al. 1998). The mapping between image locations and the motor
commands necessary to foveate that target is called a saccade map. This map is
implemented as a 17 X 17 interpolated lookup table, which is trained by the fol-
lowing algorithm:

1. Initialize with a linear map obtained from self-calibration.

. Randomly select a visual target.
. Saccade using the current map.
. Find the target in the post-saccade image using correlation.

. Update the saccade map based on L, error.

A N N

. Go to step 2.
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Figure 5. A ratio template for face detection.

The template is composed of 16 regions (the gray boxes) and 23 relations (shown by arrows).

The system converges to an average of less than one pixel of error per saccade af-
ter 2000 trials (1.5 hours). More information on this technique can be found in
Marjanovic, Scassellati, and Williamson (1996).

Because humans are rarely motionless, after the active vision system has sac-
caded to the face, we first verify the location of the face in the peripheral image.
The face and eye locations from the template in the peripheral camera are then
mapped into foveal camera coordinates using a second learned mapping. The
mapping from foveal to peripheral pixel locations can be seen as an attempt to
find both the difference in scales between the images and the difference in pixel
offset. In other words, we need to estimate four parameters: the row and column
scale factor that we must apply to the foveal image to match the scale of the pe-
ripheral image, and the row and column offset that must be applied to the
foveal image within the peripheral image. This mapping can be learned in two
steps. First, the scale factors are estimated using active vision techniques: while




INVESTIGATING MODELS OF SOCIAL DEVELOPMENT 159

Figure 6. Block diagram for finding eyes and faces.

Once a target face has been located, the system must saccade to that location, verify that the

face is still present, and then map the position of the eye from the face template onto a posi-

tion in the foveal image.
moving the motor at a constant speed, we measure the optic flow of both cam-
eras. The ratio of the flow rates is the ratio of the image sizes. Second, we use
correlation to find the offsets. The foveal image is scaled down by the discovered
scale factors, and then correlated with the peripheral image to find the best
match location.

Once this mapping has been learned, whenever a face is foveated we can ex-
tract the image of the eye from the foveal image. This extracted image is then
ready for further processing. The left image of figure 7a shows the result of the
face detection routines on a typical grayscale image before the saccade. The right
image of figure 7a shows the extracted subimage of the eye that was obtained af-
ter saccading to the target face. Additional examples of successful detections on
a variety of faces can be seen in figure 7b. This method achieves good results in
a dynamic real-world environment; in a total of one hundred and forty trials
distributed between seven subjects, the system extracted a foveal image that con-
tained an eye on one hundred thirty-one trials (ninety-four percent accuracy)
(Scassellati 1998b).

In order to accurately recognize whether or not the caregiver is looking at the
robot, we must take into account both the position of the eye within the head
and the position of the head with respect to the body. Work on extracting the
location of the pupil within the eye and the position of the head on the body
has begun, but is still in progress.

Implementing Gaze Following

Once our system is capable of detecting eye contact, we require three additional
subskills to achieve gaze following: extracting the angle of gaze, extrapolating the
angle of gaze to a distal object, and motor routines for alternating between the
distal object and the caregiver. Extracting angle of gaze is a generalization of de-
tecting someone gazing at you, and requires the skills noted in the preceding
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A B

Figure 7. Successful face and eye detections.

A. The 128 X 128 grayscale image was captured by the active vision system, and then pro-
cessed by the prefiltering and ratio template detection routines. One face was found within
the peripheral image, shown at left. The right subimage was then extracted from the foveal
image using a learned peripheral-to-foveal mapping.

B. The system locates faces in the peripheral camera, saccades to that position, and then ex-
tracts the eye image from the foveal camera. The position of the cye is inexact, in part because
the human subjects are not motionless.

section. Extrapolation of the angle of gaze can be more difficult. By a geometric
analysis of this rask, we would need to determine not only the angle of gaze, but
also the degree of vergence of the observer’s eyes to find the distal object. How-
ever, the ontogeny of gaze following in human children demonstrates a simpler
strategy.

Butterworth (1991) has shown that at approximately six months, infants will
begin to follow a caregiver’s gaze to the correct side of the body, that is, the child
can distinguish between the caregiver looking to the left and the caregiver look-
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6 months:
Sensitivity to field

9 months:
Ecological stage

12 months:
Geometric stage

18 months:
Representational
stage

Figure 8. Proposed developmental progression of
gaze following adapted from Butterworth (1991).
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ing to the right (see figure 8). Over the next three months, their accuracy in-
creases so that they can roughly determine the angle of gaze. At nine months,
the child will track from the caregiver’s eyes along the angle of gaze until a
salient object is encountered. Even if the actual object of attention is further
along the angle of gaze, the child is somehow “stuck” on the first object encoun-
tered along that path. Butterworth labels this the “ecological” mechanism of
joint visual attention, since it is the nature of the environment itself that com-
pletes the action. It is not until twelve months that the child will reliably attend
to the distal object regardless of its order in the scan path. This “geometric”
stage indicates that the infant successfully can determine not only the angle of
gaze but also the vergence. However, even at this stage, infants will only exhibit
gaze following if the distal object is within their field of view. They will not turn
to look behind them, even if the angle of gaze from the caregiver would warrant
such an action. Around eighteen months, the infant begins to enter a “represen-
tational” stage in which it will follow gaze angles outside its own field of view,
that is, it somehow represents the angle of gaze and the presence of objects out-
side its own view.

At six months, infants show sensitivity only to the side that the caregiver is gazing. At nine

months, infants show a particular strategy of scanning along the line of gaze for salient ob-

jects. By one year, the child can recognize the vergence of the caregiver’s eyes to localize the

distal target, but will not orient if that object is outside the field of view until eighteen
months of age.

Implementing this progression for a robotic system provides a simple means
of bootstrapping behaviors. The capabilities used in detecting and maintaining
eye contact can be extended to provide a rough angle of gaze. By tracking along
this angle of gaze, and watching for objects that have salient color, intensity, or
motion, our robot can mimic the ecological strategy. From an ecological mecha-
nism, we can refine the algorithms for determining gaze and add mechanisms
for determining vergence. A rough geometric strategy can then be implemented,
and later refined through feedback from the caregiver. A representational strate-
gy requires the ability to maintain information on salient objects that are out-
side of the field of view including information on their appearance, location,
size, and salient properties. The implementation of this strategy requires us to
make assumptions about the important properties of objects that must be in-
cluded in a representational structure, a topic beyond the scope of this chapter.

Implementing Imperative Pointing

Implementing imperative pointing is accomplished by implementing the more
generic task of reaching to a visual target. Children pass through a developmen-
tal progression of reaching skills (Diamond 1990). The first stage in this pro-
gression appears around the fifth month and is characterized by a very stereo-
typed reach that always initiates from a position close to the child’s eyes and
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Figure 9. Reaching to a visual target is the product of two subskills: foveating
a target and generating a ballistic reach from that eye position.
Image correlation can be used to train a saccade map that transforms retinal coordinates into gaze
coordinates (eye positions). This saccade map can then be used in conjunction with motion detec-
tion to train a ballistic map that transforms gaze coordinates into a ballistic reach.

moves ballistically along an angle of gaze directly toward the target object.
Should the infant miss with the first attempt, the arm is withdrawn to the start-
ing position and the attempt is repeated.

To achieve this stage of reaching on our robotic system, we have utilized the
foveation behavior to train the arm to reach (Marjanovic, Scassellati,
Williamson 1996). To reach to a visual target, the robot must learn the mapping
from retinal image coordinates x = (x, y) to the head-centered gaze coordinates
of the eye motors e = (pan, tilf) and then to the coordinates of the arm motors o
=(,..0 5) (see figure 9). The saccade map S: x — e relates positions in the
camera image with the motor commands necessary to foveate the eye at that lo-
cation. Our task then becomes to learn the ballistic movement mapping head-
centered coordinates e to arm-centered coordinates 0. To simplify the dimen-
sionality problems involved in controlling a six degree-of-freedom arm, arm
positions are specified as a linear combination of basis posture primitives.

The ballistic mapping B: e — o, is constructed by an on-line learning algo-
rithm that compares motor command signals with visual motion feedback clues
to localize the arm in visual space. Once the saccade map has been trained, we
can utilize that mapping to generate error signals for attempted reaches (see fig-
ure 10). By tracking the moving arm, we can obtain its final position in image
coordinates. The vector from the tip of the arm in the image to the center of the
image is the visual error signal, which can be converted into an error in gaze co-
ordinates using the saccade mapping. The gaze coordinates can then be used to
train a forward and inverse model of the ballistic map using a distal supervised
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Figure 10. Generation of error signals from a single reaching trial.

Once a visual target is foveated, the gaze coordinates are transformed into a ballistic reach by
the ballistic map. By observing the position of the moving hand, we can obtain a reaching er-
ror signal in image coordinates, which can be converted back into gaze coordinates using the
saccade map.

learning technique (Jordan and Rumelhart 1992). A single learning trial pro-
ceeds as follows:

1. Locate a visual target.

2. Saccade to that target using the learned saccade map.

3. Convert the eye position to a ballistic reach using the ballistic map.

4. As the arm moves, use motion detection to locate the end of the arm.

5. Use the saccade map to convert the error signal from image coordinates into gaze
g g g
positions, which can be used to train the ballistic map.

6. Withdraw the arm, and repeat.

This learning algorithm operates continually, in real time, and in an unstruc-
tured “real-world” environment without using explicit world coordinates or
complex kinematics. This technique successfully trains a reaching behavior
within approximately three hours of self-supervised training,

Implementing Declarative Pointing

The task of recognizing a declarative pointing gesture can be seen as the applica-
tion of the geometric and representational mechanisms for gaze following to a
new initial stimulus. Instead of extrapolating from the vector formed by the an-
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Figure 11. Images captured from a videotape of the robot imitating head nods.

The upper two images show the robot imitating head nods from a human caregiver. ‘The out-
put of the face detector is used to drive fixed yes/no nodding responses in the robot. The face
detector also picks out the face from stuffed animals, and will also mimic their actions. '

gle of gaze to achieve a distal object, we extrapolate the vector formed by the po-
sition of the arm with respect to the body. This requires a rudimentary gesture
recognition system, but otherwise utilizes the same mechanisms.

We have proposed that producing declarative pointing gestures relies upon
the imitation of declarative pointing in an appropriate social context. We have
not yet begun to focus on the problems involved in recognizing these contexts,
but we have begun to build systems capable of simple mimicry. By adding a
tracking mechanism to the output of the face detector and then classifying these
outputs, we have been able to have the system mimic yes/no head nods of the
caregiver, that is, when the caregiver nods yes, the robot responds by nodding
yes (see figure 11). The face detection module produces a stream of face loca-
tions at 20Hz. An attentional marker is attached to the most salient face stimu-
lus, and the location of that marker is tracked from frame to frame. If the posi-
tion of the marker changes drastically, or if no face is determined to be salient,
then the tracking routine resets and waits for a new face to be acquired. Other-
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wise, the position of the attentional marker over time represents the motion of
the face stimulus. The motion of the attentional marker for a fixed-duration
window is classified into one of three static classes: a yes class, a 7o class, and a
no-motion class. Two metrics are used to classify the motion, the cumulative sum
of the displacements between frames (the relative displacement over the time
window) and the cumulative sum of the absolute values of the displacements
(the total distance traveled by the marker). If the horizontal total trip distance
exceeds a threshold (indicating some motion), and if the horizontal cumulative
displacement is below a threshold (indicating that the motion was back and
forth around a mean), and if the horizontal total distance exceeds the vertical to-
tal distance, then we classify the motion as part of the 7o class. Otherwise, if the
vertical cumulative total trip distance exceeds a threshold (indicating some mo-
tion), and if the vertical cumulative displacement is below a threshold (indicat-
ing that the motion was up and down around a mean), then we classify the mo-
tion as part of the yes class. All other motion types default to the no-motion class.
These simple classes then drive fixed-action patterns for moving the head and
eyes in a yes or no nodding motion. While this is a very simple form of imita-
tion, it is highly selective. Merely producing horizontal or vertical movement is
not sufficient for the head to mimic the action—the movement must come
from a facelike object.

Future Work

The implementation of Baron-Cohen’s model is still work in progress. All of the
basic sensory-motor skills have been demonstrated. The robot can move its eyes
in many humanlike ways, including saccades, vergence, tracking, and maintain-
ing fixation through vestibulo-ocular and opto-kinetic reflexes. Orientation with
the neck to maximize eye range has been implemented, as well as coordinated
arm pointing. Perceptual components of EDD and SAM have also been construct-
ed; the robot can detect and foveate faces to obtain high-resolution images of
eyes.

These initial results are incomplete, but have provided encouraging evidence
that the technical problems faced by an implementation of this nature are with-
in our grasp. Cog’s perceptual systems have been successful at finding faces and
eyes in real-time, and in real-world environments. Simple social behaviors, such
as eye-neck orientation and head-nod imitation, have been easy to interpret by
human observers who have found their interactions with the robot to be both
believable and entertaining,

Our future work will focus on the construction and implementation of the
remainder of the EDD, ID, and SAM modules from Baron-Cohen’s model. From
an engineering perspective, this approach has already succeeded in providing
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adaptive solutions to classical problems in behavior integration, space-variant
perception, and the integration of multiple sensory and motor modalities. From
a scientific perspective, we are optimistic that when completed, this implemen-
tation will provide new insights and evaluation methods for models of social de-
velopment.

Note

1. The original video clips are available at www.ai.mit.edu/projects/cog/.



Epilog

Barbara Webb and Thomas R. Consi

r I Yhe chapters collected in this book cover a highly diverse range of re-
search endeavors—from insect neurobiology to human cognitive devel-
opment and from mechanical design considerations to high-level learn-

ing algorithms. Nevertheless the participants in the AAAI symposium from
which this book is derived felt a strong sense of common ground. This lay, not
in the subject matter per se, but in the approach and methodology adopted to
address these apparently diverse topics. “Biorobotics” was seen as the true inter-
section of biology and robotics: where one system addressed and answered ques-
tions in both fields. At the meeting we held extensive and productive discussions
of key issues for this methodology. For example, how closely should the biology
be represented in the robot model? What advantages accrue in building physical
rather than simulation models and what technological problems get in the way?
What evaluation methods are most appropriate? What systems look promising
for application of the approach in the near future? What are the longer-term
possibilities for scaling up? In this epilog we will attempt to summarize and syn-
thesize some of the outcomes of these discussions. It should be stressed that all
the authors in this book (and the other AAAI symposium participants) have
contributed points to the discussion we present.

Copying Biology

While a great deal has been said over the last twenty years or so about the possi-
ble technological benefits of copying biology, what is common to the research
reported here is that a serious attempt has been made to do so. Rather than sim-
ply being “inspired” by some vaguely understood notions of how animal systems
work, these studies identify specific, well studied animal systems and attempt to
build truly representative models of them. Much of this research involves direct
collaboration between biologists and robotic engineers. A thorough knowledge
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of the relevant biological data is taken to be necessary, so that the risk of misin-
terpretation is minimized. Having said this, it is important to add that
biorobotics does not simply consist in taking an example from biology and di-
rectly translating it in hardware and software. While the animal serves as a “de-
fault” point of reference in design decisions, it is rare for any biological system
to be sufficiently well studied that all the answers needed to build the system are
directly available. Indeed, for a number of the systems discussed here there are
substantial gaps in the data. For example, almost nothing may be known about
the neural underpinnings of a behavior, or measurements of sensory or motor
capabilities may not available, or a number of hypothetical control mechanisms
may be consistent with the data.

A problem always to be solved is how to go from the results of neuroethologi-
cal research to specifications for robotic implementation. First it needs to be
clear what are the current hypotheses in the field: both explicit and implicit. Are
there already mathematical or computer models of the system, and if so what is
the robot model intended to add? There are then a variety of different ways in
which the implementation can be constrained: by behavioral evidence, by physi-
ological evidence or neural plausibility of the mechanisms, by the information
processing problem posed, by the environment, and by the physical limitations
of sensory and motor capacities. Obviously it is useful if extensive information is
available, but a complete story from the biology is not necessary before robot
building can make a contribution. Indeed, building a robot can be extremely
productive in determining critical areas needing further biological research.

The other major consideration is how to determine which aspects of the
known biology should be included in the robot model. What details are crucial
and what are irrelevant? One conclusion of the AAAI symposium was that no a
priori judgment (e.g. that a low-level model of neural processes is always better;
or that exact replication of a sensing device is needed before any conclusions
about processing can be made) could be universally applied. It needs to be deter-
mined for each different example with reference to current understanding and
current questions that the system can hope to answer. This may be easier to do
when the system is intended as a means to test a very specific hypothesis, but
more difficult when the system is a more open-ended project intended to achieve
a biological level of competence in some task or tasks. This determination also
applies to the correctness of the choice to build a physical model in the first
place, which is linked to assumptions about the importance of the physical plant
and the environment in understanding behavior, and the need to close the loop
between sensing and action. Making a “realistic” model is not necessarily in the
sense of highly accurate detail, but rather in the sense of addressing the essential
aspects of the problem. Two kinds of (unavoidable) abstraction can be identified:
in isolating the problem to be tackled, e.g. taking the animal behavior out of the
context of survival and propagation of the species; and in making the mapping
between the animal and the available technology to implement the model.
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Certain biological systems might be particularly fruitful to explore with cur-
rent technology. Criteria for identifying such systems include the following. The
animal must be a good “model” system for a class of behavior. The phenomenon
must have been well investigated in biology and be “ripe” for more rigorous
modeling. There must be relatively clear evaluation criteria (measurement and
experimental protocols) for the success of the model. Finally, the behavior must
have some inherent fascination for the researcher to be willing to take the time
to obtain nontrivial training in another field (biology or engineering). Our
meeting came up with a number of suggestions for future work, i.e. biological
systems that seem ready for a biorobotics approach (some of these have in fact
already begun to be studied). Specific biological systems and phenomena in-
clude: escape behaviors, nematodes, electrolocation in fish, bird song, jumping-
spider trajectory planning, magnetic sensing in birds and other animals, and
construction behaviors such as bird nests and spider webs. More abstract phe-
nomena for which biological examples can be found include: object invariance,
extracting energy from the environment (e.g. an oil-spill eating robot), complex
multimodal systems (e.g. body stabilization via optical and vestibular inputs),
long distance navigation, the use of biological signal processing and control
strategies to compensate for noisy sensors and sloppy actuators, etror correction,
self-repair, and reproduction.

Physical Implementations

The previous section encouraged robotics researchers to embrace details of biol-
ogy; this section encourages biological researchers to embrace the nitty-gritty of
building real robotic systems rather than limiting themselves to computational,
mathematical or box-and-arrow models. Not that “biorobotics” is always or only
the correct approach for model building—other methods are sometimes more
appropriate. Rather, biorobotics is particularly useful in situations when it is sus-
pected that the complexity of the stimulus is important and simulations cannot
adequately represent that complexity. It is also useful where it is desired to criti-
cally address perceptual problems in context of actions, or motor problems in
context of the plant. Counter to what seems expected by some biologists, robots
can be very useful even where we have a rather limited notion of how the animal
performs the behavior of interest. In these situations biorobotics is a rapid, yet
stringent, way of evaluating many alternative hypotheses. It is especially useful
for eliminating ideas that are physically unreasonable, e.g. the animal cannot use
a particular algorithm without certain data that is, in fact, unobtainable given its
sensing limitations or the environmental constraints.

Why go to the trouble of building real robotic systems to test biological or
cognitive hypotheses? What emerges again and again in the literature is that the
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physical implementations raised critical, central issues that had not been previ-
ously anticipated or addressed. To make a robotic system work you really have
to solve the full problem, which may be more difficult than realized (e.g. under-
water odor plume tracking, chapter 2). On the other hand, it may be discovered
that certain problems can be solved more simply than expected by novel, often
noncomputational, solutions that exploit the physical constraints (e.g. the crick-
et ear, chapter 1).

However, one should bear in mind that physical implementations are
strongly constrained by current technology and that these constraints, though
sometimes similar to those faced by animals, are by no means guaranteed to
be so. Limitations in technology are a major issue in biorobotics. Compared
to their biological counterparts, sensors are typically more bulky and more
limited in dynamic range. Linear actuators of the size and form factor of real
muscles are simply not available. Robots have almost no ability to extract en-
ergy from their surroundings, as animals do, and thus have operational times
that are constrained by the amount of energy they can carry. Finally there is
the ever-present reliability problem, which grows rapidly with the complexity
(i.e. number of components, size of the software) of the robot. Limits in mi-
croprocessors are mostly in their interfaces to sensors and actuators and not in
their computational abilities. Our wish-list of new technology for biorobotics
includes: muscle-like actuators (motor, housing, transmission, power and
sensing in one cheap package), tough, compliant, and conformable materials
for skin and joint coverings, sensor arrays that can be easily embedded in a
biorobot’s skin, improved chemical sensors, better power sources (from biolo-
gy-derived ideas for low-power consumption and energy conserving strate-
gies), and parallel processor architectures tailored for easy implementation of
neural-like computational strategies.

Experimental Approach

The preceding considerations—both engineering and biological justifications for
the biorobotics approach— feed into the third major issue: evaluation. In strict
robotics terms this is an important consideration not always sufficiently attended
to, that is, the necessity to evaluate how well the robot can perform a task. This
becomes increasingly important when claims are made regarding the advantages
of adopting biologically based approaches. For example, biological sensing strate-
gies are often claimed to be more robust but how can this be demonstrated? This
is equally important with regard to the biological understanding that can be de-
rived from a robot experiment. Given that technology constrains a model’s accu-
racy, it is important to consider how this affects the experimental data and the
conclusions drawn from that data. It can be hard to pinpoint the cause of a fail-
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ure to replicate a desired behavior: is it a weakness in the theory itself, or in the
physical match between the animal and the robot, or simply a failure of the robot
builders to be clever enough in their implementation? On the other hand, success
might be due to nonbiological features of the model.

The high biological fidelity of biorobots confers the advantage that the exper-
imental methods developed by biologists can be directly applied to biorobotic
experiments. Indeed, a good practical yardstick of biological adequacy is
whether or not the biorobot can be put in the same experimental apparatus as
used for the animal. The use of the same experimental methods permits a rigor-
ous test of biological relevance in that it enables verifiable predictions to be
made on the behavior of the animal under study. Another advantage of the
biorobotic approach is the ability to perform experiments that explore the per-
formance of the model in situations beyond its original design space. This fea-
ture is most important to evaluating the utility of the biological idea in nonbio-
logical applications.

To summarize—the biorobotic method should be carried out in the same
stages as other forms of modeling. First is the identification of the target phe-
nomenon and the specific question that is to be resolved. Next is the develop-
ment of a mapping between the biological and robotic systems using appropri-
ate representations that include physical as well as symbolic analogs. Having
built the model, it is tested in the appropriate ways, often through the use of the
same experimental apparatus as that used for parallel biological studies. The re-
sults of the experiments are then analyzed and biological predictions are made
for further biological and robotic explorations. The key to this methodology is
the continuous back and forth between the biological and robotic systems dur-
ing both the developmental and the experimental stages of the investigation.
Note that the robot is not an endpoint in the study: a well-evaluated hypothesis
is the goal. It is a mistake to consider the robot as finished product in the sense
of, for example, an automobile. Rather, a good biorobot is a dynamic bread-
board for testing biological ideas, devices and software are added and subtracted
as dictated by the needs of the experiments.

The Challenge of Multidisciplinary Research

Several practical issues were raised by the participants with regard to the prob-
lems inherent in working in a novel interdisciplinary field. First is the communi-
cation difficulties often experienced between collaborating biologists and engi-
neers. Both fields have their own particular language, point of view, and
priorities, and a willingness to understand and appreciate these divergences is im-
portant. Second, effort should be devoted to clearly establishing the nature of the
collaboration (research priorities, publication authorship, etc.) to ensure that no
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member of the team feels left out or exploited. Third is the challenge of training
students. To work with this methodology, biology students will need to get some
engineering training; and engineering students will need a reasonable grounding
in biology; neither typically occurs in current standard degree programs. Encour-
agingly, there do seem to be more “cross-over” programs being introduced.

Funding of biorobotics is currently easier to achieve from engineering re-
sources, which can sometimes undermine the biological relevance with the focus
being placed on immediate technological results. A more long-term view—that
really understanding how biological systems work, rather than just superficially
taking inspiration from them, will have multiple payoffs—needs to be brought
to the attention of funding bodies. Finally, we considered avenues of publication
for biorobotics research. There is especially a need to go beyond the specialist
forums, such as the AAAI symposium, and present biorobotics research to the
larger biological and engineering communities. Thus we considered it inappro-
priate to attempt to establish a journal or conference series, which would only
isolate this area from the main streams from which it draws its strength and jus-
tification. On the other hand it would be useful to have a forum for communi-
cation by which the relevant research that currently appears in highly diverse
places can be brought to attention of workers in the field. Internet-based re-
sources seem the most appropriate mechanism for this kind of interdisciplinary
networking. A website and mailing list resulting from the AAAI symposium can
be found at: http://www.ai.mit.edu/-scaz/biorobotics/

Scaling the Achievements

So far biorobotics has been most successful in the study of single sensorimotor
systems or “isolated” motor control, particularly in invertebrates. Can
biorobotics scale up to explore more complex systems? The chapters in this
book suggest that this is possible. First, there are several obvious ways in which
existing systems might be combined (e.g. taxis and walking) and such collabora-
tive efforts were one outcome of the meeting. Second, implicit even in some of
the invertebrate systems discussed was the issue of limits of simple “reactivity”
and need for more complex notions of behavioral control. Third, is the explicit
idea that sensory and motor complexity in robots are needed as driving forces to
make us face the real problems solved by animal systems (chapter 6). Finally, the
last two chapters in this book have provided examples of the successful applica-
tion of biorobotics to research where the aim is to investigate mammalian and
human systems. Our general feeling was one of confidence that, in synergy with
developments in biology and robot technology, the methodology of biorobotics
will have a significant role in future research in exploring and understanding a
wide range of animal behaviors.
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Acheta domestica, 5
aerial minirobot, with visual scanning
sensor, 67-83
elementary motion detector
(EMD), 71-72
robot features, dynamical model-
ing of twin-propeller robot,
76-79
robot features, target tracking and
visual fixation, 80-81
robot features, visual inertial feed-
back system, 79-80
scanning sensor features, 71-76
scanning sensor features, compo-
nents, 72-73
scanning sensor features, impact of
contrast and distance on output,
73-76
variable angular speed, 68-71
variable angular speed, formula
for, 69
variable angular speed, photore-
ceptor model for, 68-69
variable angular speed, processing
photoreceptor signals, 69-71
algorithms
biological categorization and, 124
control strategies and, 113
face recognition, 157
gaze following, 162
learning, 164, 173
RoboLobster experiments, 27-29,
33-35

ALV model. see average landmark vec-
tor (ALV) model
American Association for Artificial In-
telligence (AAAI) Symposium
(1998), xi
American lobster
chemo-sensors of, 23-24
environment, of, 24-26
analog robot, ALV model and
discussion of findings, 60-61
experiments with, 55-59
homing precision of, 61
overview of, 50-52
AN (auditory neurons), in
crickets/cricket robots, 8—10
angle of gaze, development of gaze fol-
lowing and, 159-162
animals
as benchmark for robot
performance, vii
complexity of relationship to envi-
ronment, viii
navigation strategies of, 37
using biorobotics to experience
world of, 21
animats, 107-120
adding complex sensory input to
(type 1), 108, 109
adding internal recurrent connec-
tions (type 2), 108, 109
adding motor systems (type 3),
110,111
arguments supporting study of
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complex recurrent systems,
111-112
Braitenberg-type, 108
conclusions about control of com-
plex kinematics, 120
example controlling all geometri-
cally possible solutions, 115-119
example controlling eighteen de-
grees of freedom, 112-115
massively parallel architecture with
recurrent connections (type 4),
110, 111
use by ethologists, 107
ants, navigation strategies, 37
arthropods, biorobotics and, x
artificial intelligence, early research
on, x
Asperger’s syndrome, 146
associative homing, of insects, 62. see
also homing
auditory neurons (AN), in
crickets/cricket robots, 8-10
autism
evaluation tools for, 152
joint attention and, 146-147
Autism Diagnostic Interview, 152
Autism Diagnostic Observation
Schedule, 152
average landmark vector (ALV) mod-
el. see also analog robot
insect navigation and, 37-38
navigation models, 43—44

Baron-Cohen model

future work with, 166

joint attention and, 148
BC joints, cockroaches

climbing and, 93

modeling Blaberus and, 95-97
bees

navigation strategies of, 37,

39-40, 41

visual dead reckoning of, 60

behavior control
animats, all geometrically possible
solutions, 115-119
animats, eighteen degrees of free-
dom, 112-115
brain and, 110
local positive feedback and,
113-114
using body models for, 116
biological research
applications of biorobots, 21, 171
determining focus of robotic mod-
eling applications, 170
early research using robots, x—xi
multidisciplinary challenges of
biorobotics, 173-174
physical demands of robotic
modeling, 171-172
role of biorobotics in, 34,
169-170
biology
emulating in robot design, 87
observing cockroaches, 87-94
observing cockroaches, climbing,
93
observing cockroaches, horizontal
walking, 90-92
observing cockroaches, techniques
for, 87-90
observing cockroaches, turning,
92-93
observing cockroaches, walking
speed, 92
using robotics to copy, 169-170
visual categorization and,
123-124
biomimetic robots, vii
bio-mimetic scaling, of RoboLobster,
27-28
biomorphic robots, vii
biorobotics. see also robotic modeling
advantages vs. computer simula-
tion, ix



applications of, 21, vii—viii
emulating biology, 169-170
evaluation issues, 172—-173
Grasso on issues in, 22
history of, ix—xi
as intersection of biology and
robotics, 169
measuring achievements of, 174
multidisciplinary challenges of,
173-174
physical demands of, 171-172
studying animal-environment rela-
tionships, viii
technological limitations and, 172
using for biological research, 34,
169-170
using same stages as other model-
ing techniques, 173
Blaberus, 94. see also cockroaches
body-coxa (BC) joints, cockroaches
climbing and, 93
modeling Blaberus and, 95-97
bottleneck architectures, brain struc-
ture and, 110
brain
behavior control function of, 110
complex motor systems and, 112
early research on disembodied
brain, x
Braitenberg-type animat, 108

Cataglyphis. see also visual homing of
insects, robotic modeling
experiments in habitat of, 53
navigation strategies of, 39
use of visual homing by, 37-38
using celestial cues for compass di-
rection, 49
visual resolution of, 60
categorization, of visual stimuli,
123-124. see also object selectivity
CCD cameras
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aerial minirobot, 81
NOMAD mobile device, 126
cell activation, Darwin V, 130-131
Cephalopods, 112
chemo-orientation, of marine species,
22-23
chemo-sensors
of American lobster, 23-24
of RoboLobster, 27-28
chemotaxis, 26-27
chemo-tropotaxis, 31-32
child development research, 146
climbing, of cockroaches, 93
cockroaches, 87-89
biological observations of, 87-94
biological observations of, changes
in walking speed, 92
biological observations of, climb-
ing, 93
biological observations of, hori-
zontal walking, 90-92
biological observations of, tech-
niques for observing, 87-90
biological observations of, turning,
92-93
emulation of selected features, 87
leg joints of, 89
Cog. see also social development mod-
el (Cog)
hardware of, 155
illustration of, 154
cognition systems. see also social devel-
opment model (Cog); visual system
model (Darwin V)
using animats to understand, 120
using humanoid robots for re-
search on, 145
complex recurrent systems
animats (type 4), 110, 111
arguments for researching,
111-112
conclusions, 120
deterrents to study of, 112
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complex sensory input, animats (type
1), 108, 109
computer simulation
of adjacent photosensors, 70
of ALV model, 44
of animat plus its environment,
107
of decentralized control system,
114
of insect navigation, 41
of neuronal visual models, 125
of plume tracking by lobsters, 24,
26-27
of snapshot model, 4243, 46
vs. biorobotics, viii-ix
vs. physical modeling, 5-6
vs. synthetic modeling, 37
constant speed scanning, 67
contrast output, aerial minirobot,
73-76
control. see behavior control
cortex. see visual cortex
coxa-trochanter-femur (CTF) joints,
of cockroaches
changes in walking speed and, 92
horizontal walking and, 90-92
cricket phonotaxis, robotic modeling
advantages of robotic modeling,
5-6
directions for further work, 19-20
implementation, 3-10
implementation, experimental
variables, 10
implementation, general features, 8
implementation, phonotaxis cir-
cuit, 8-10
implementation, robot’s ears, 6-7
implementation, robot’s neurons,
7-8
implications of study, 17-19
overview of cricket phonotaxis,
4-5

results, recognition and choice, 17

results, selectivity for syllable rate,
11-16
results, turning to sound, 11
studies of cricket phonotaxis, 3
cricket song, frequency preferences in,
5
CTF (coxa-trochanter-femur) joints,
of cockroaches
changes in walking speed and, 92
horizontal walking and, 90-92
cybernetics, early research on robots
and, ix—x

Darwin V. see visual system model
(Darwin V)
dead reckoning, see path integration
(dead reckoning)
declarative pointing, 164-166
gaze following and, 164-165
mimicry systems and, 165-166
overview of, 151-152
degrees of freedom
behavior control and, 110
controlling chain of limbs and,
114-116
impact of redundant possibilities
on, 116
Df (fast depressors), cockroaches
changes in walking speed and, 92
horizontal walking and, 91
as motor neurons, 89
disembodied brain, early research on,
X
distance output, aerial minirobot,
73-76
Ds (slow depressors), cockroaches
changes in walking speed and, 92
horizontal walking and, 91
as motor neuron, 89
dynamic memory, in animats, 108
dynamic modeling, cockroach kine-
matics, 94-95



ears, robot phonotaxis, 6-7
EDD (eye-direction detector). see also
eye contact
in Baron-Cohen model, 148
maintenance of eye contact and,
149
electromyograms (EMGs)
observing motor activity of cock-
roaches with, 89
walking speed and, 92
EMD (elementary motion detector),
of aerial minirobot, 71-72
EMGs (electromyograms)
observing motor activity of cock-
roaches with, 89
walking speed and, 92
engineering, multidisciplinary chal-
lenges of biorobotics and, 173-174
environment
of American lobster, 24—-26
complexity of relationship of ani-
mals to, viii
simulating animat plus its envi-
ronment, 107
ethologists, use of robots by, 107
experimental approach, evaluation
and, 172-173
external compass, Sahabot 2 (snapshot
model), 47-50
eye contact, 156-159
autism and, 147
face detection and, 156-157
finding eye image, 157-159, 160
significance in animals and hu-
mans, 149
work on location of pupil and po-
sition of head, 159
eye-direction detector (EDD). see also
eye contact
in Baron-Cohen model, 148
maintenance of eye contact and,

149
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face detection, 156-157, 160
ratio templates and, 157-158
steps in, 156
fast depressors (Df), cockroaches
changes in walking speed and, 92
horizontal walking and, 91
as motor neurons, 89
feedback
replacing central controller with,
113-114
visual inertial feedback system of
aerial minirobot, 79-80
femur-tibia (FT) joints, of cockroach-
es
changes in walking speed and, 92
horizontal walking and, 90-92
footfall patterns, of cockroaches, 88
form recognition. see object selectivity
frequency
preferences in female crickets, 5
selectivity of robotic ears, 7
FT (femur-tibia) joints, of cockroach-
es
changes in walking speed and, 92
horizontal walking and, 90-92

gaze following, 159-162
declarative pointing and, 164-165
developmental process of,
160-162
shared attention module (SAM)
and, 149
skills necessary for, 159-160
Gryllus bimaculatus, 5, 7
Gryllus campestris, 5
gyroscopes, yaw stabilization and, 68,
79

hardware
Cog, 155
Robot III, 98-100
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Sahabot 2, 4647
Hebbian-type learning mechanism,
141
Hexapod robot, with cockroach kine-
matics, 87-105
biological observations of cock-
roaches, 87-94
biological observations of cock-
roaches, changes in walking
speed, 92
biological observations of cock-
roaches, climbing, 93
biological observations of cock-
roaches, horizontal walking,
90-92
biological observations of cock-
roaches, techniques for observ-
ing, 87-90
biological observations of cock-
roaches, turning, 92-93
conclusion of work on, 103-105
construction of robot’s physical
plant, 98-100
design of posture controller,
100-103
dynamic modeling of biological
observation data, 94-95
robot design based on biological
observation, 95-98
high-speed video, biological observa-
tion with, 88
Homarus americanus. see American
lobster
homing. see also visual homing of in-
sects, robotic modeling
as basic navigational ability, 62
local and associative, 62
in snapshot model, 42
honey bees, visual dead reckoning of,
60
human intelligence, using humanoid
robots for research on, 145

humanoid robots. see also social devel-
opment model (Cog)
advantages and applications of,
153-154
motivations for developing, 145
using to investigate human intelli-
gence, 145-146
work of Ichiro Kato on, x
hypotheses
of chemo-orientation mechanisms,
26
robotic modeling and, 170
using biorobotics to test, 21

ID (intentionality detector)
in Baron-Cohen model, 148
declarative pointing and, 151
image processing
ALV model and, 64
Sahabot 2 and, 47, 49
imperative pointing, 162—-164
overview of, 151
reaching skills and, 162-163
robotic implementation of,
163-164
inferior temporal cortex, modeling,
141-142. see also visual cortex
insects, visual homing. see visual hom-
ing of insects
intentionality detector (ID)
in Baron-Cohen model, 148
declarative pointing and, 151
intrinsic connections, temporal lobe,
142
potential function of, 137-140
translation invariance and object
selectivity and, 137
invariance. see perceptual invariance

joint attention, 146-153
declarative pointing and, 164-166



decomposing into subset of social
skills, 147-148

decomposition based on observa-
tion, 148-152

eye contact and, 156-159

gaze following and, 159-162

history of research on, 146-147

imperative pointing and, 162-164

robotic implementation of,
152-153

social learning and, 146

theoretical decomposition model

(Baron-Cohen), 148

Kato, Ichiro (on humanoid robots), x

Khepera miniature mobile robots,
modeling cricket phonotaxis with, 6

kinematics, cockroach, 94-95

lobster chemotaxis. see RoboLobster
experiments

local homing, of insects, 62. see also
homing

Loeb, Jacques, ix

magnetoresistive sensor, 72—73
marine species, chemo-orientation of,
22-23. see also RoboLobster experi-
ments
Massachusetts Institute of Technology
(MIT), xi
massively parallel architecture with re-
current connections (type 4). see
complex recurrent systems
mean of multiple computation
(MMCQ), 116-119
applying to kinematic problems,
117-118
for three-joint planar arm, 117

INDEX 203

micro-air vehicle. see aerial minirobot,
with visual scanning sensor
micro-environment exploration
robots, viii
mimicry systems, declarative pointing
and, 165-166
MMC. see mean of multiple computa-
tion (MMC)
MN (motor neurons)
in cockroaches, 89
in crickets/cricket robots, 10, 19
motion sensors, 82
motivations, animats, 108
motor neurons (MN)
in cockroaches, 89
in crickets/cricket robots, 10, 19
motor systems. see also animats; Hexa-
pod robot, with cockroach kinemat-
ics
animats (type 3), 110, 111
closing loop with sensory systems,
170
Darwin V, 130
understanding cognition and, 120

navigation models, of insects
average landmark vector (ALV)
model, 37-38, 4344
snapshot model, 38, 41-43
nervous system, Darwin V, 128-130
motor system, 130
schematic of, 128
taste system, 129
visual system, 129
neural processes, modeling cricket
phonotaxis and, 3—4
neural spiking, 6, 7-8
neuroethology, European school of, x
neuromuscular activity, of cockroach-
es, 89
neurons, auditory neurons (AN),
8-10
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neurons, motor neurons (MN)
in cockroaches, 89
in crickets/cricket robots, 10, 19
neurons, robot phonotaxis
four-neuron model, 8-10
membrane potential and, 8
neural spiking and, 6, 7-8
response to syllable rate, 11,
13-16
turning toward sound and, 11-12
neurons, visual
development mechanisms effect-
ing, 124
linking connections and, 124-125
visual stimuli and, 123
NOMAD mobile device, Darwin V,
126-131
functions of, 127-129
use of CCD camera by, 126
object recognition, biological,
140-141
object selectivity, 140-142
in Darwin V experiments,
132-137
development of visual recognition,
132
intrinsic connections of temporal
lobe and, 137-140
role in biological object recogni-
tion, 141
Ockham’s razor
applying to selection of algorithms
for RoboLobster experiments,
34
using in algorithm selection, 28
Octopus, 112
odor plumes, tracking by lobsters,
23-24,28-29

passive motion paradigm, body mod-
els and, 116
path integration (dead reckoning)

navigation strategies of ants, 39
testing mechanisms of, 60
perceptual invariance
examples of, 125
factors in, 123
visual cortex and, 124
performance measures, RoboLobster
experiments, 32-33
phonotaxis, 3. see also cricket phono-
taxis, robotic modeling
photoreceptor model
of aerial minirobot, 68-69
processing signals, 69-71
plume-tracking. see odor plumes,
tracking by lobsters
pointing, as mechanism of joint atten-
tion, 151
position sensors, 82
posture controller, Robot I1I,
100-103
primary visual area (VAp), Darwin V,
126
primates
eye contact in, 149
gaze following by, 149
pointing behavior and, 151
pulse scanning, 67
pupil detection, 159

ratio templates, face detection and,
157-158
reaching skills
development of, 162-163
pointing behavior and, 151
recognition and choice, in cricket
robot, 17-18
recurrent connections, animats (type
2), 108, 109
RoboLobster experiments, 21-35
algorithm selection, 33-35
bio-mimetic scaling of RoboLob-
ster, 27-28



charting RoboLobster against lob-
ster paths, 30-31
chemo-sensors of American lob-
ster, 23-24
as component of work on lobster
chemotaxis, 22-23
design challenge, integrating ap-
propriate constraints, 29-31
environment of American lobster,
24-26
evidence supporting multiple odor
tracking strategies, 29
issues with performance measures,
32-33
reasons for using a robot to study
chemotactic strategies, 26-27
testing chemo-tropotaxis, 31-32
testing tropotaxis, 28-29
Robot I, 96
robotic modeling. see also biorobotics
advantages for modeling social
skill development, 153-154
biological emulation in design, 87
considerations in application of,
170
copying biology, 169-170
physical demands of, 171-172
use of animats by ethologists, 107
Robot II, 96
Robot III. see also Hexapod robot,
with cockroach kinematics
conclusion of work on, 103-105
construction of robot’s physical
plant, 98-100
design based on biological obser-
vation of cockroaches, 95-98
design of posture controller,
100-103
robot phonotaxis. see cricket phono-
taxis, robotic modeling
“Robots and Biology: Developing

Connections”, xi
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Sahabot 2 (snapshot model), 45-50
discussion of findings, 60
experiments, 53-55
external compass, 47-50
hardware, 4647
image processing capability, 47, 49
modifications, 4546

SAM. see shared attention module

(SAM)
secondary visual area (VAs), Darwin
V, 126
sensorimotor control
advantages of using physical mod-
eling vs. simulation, 5-6
studies of, 3
sensory systems. see also aerial
minirobot; cricket phonotaxis;
RoboLobster experiments; visual
homing of insects
closing loop with motor systems,
170
sensory array of analog robot,
50-52
sensory array of Sahabot 2, 46-47
using robots for study of, 27
SETi (slow extensor of the tibia),
cockroaches
changes in walking speed and, 92
horizontal walking and, 91-92
shared attention. see joint attention
shared attention module (SAM)
in Baron-Cohen model, 148
declarative pointing and, 151
gaze following and, 149

slow depressors (Ds), cockroaches
changes in walking speed and, 92
horizontal walking and, 91
as motor neuron, 89

slow extensor of the tibia (SET1), of

cockroaches
changes in walking speed and, 92
horizontal walking and, 91-92
snapshot model. see a/so Sahabot 2
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(snapshot model)
navigation models, 41-43
navigation models, of insects, 38
social development model (Cog). see
social development model (Cog)
advantages of robotic modeling of
social skill development,
153-154
applications of humanoid robots,
145-146
implementation, declarative point-
ing, 164-166
implementation, eye contact,
156-159
implementation, gaze following,
159-162
implementation, imperative point-
ing, 162-164
modeling joint attention,
146-153
modeling joint attention, decom-
posing social skills, 147-148
modeling joint attention, decom-
position based on observation,
148-152
modeling joint attention, history
of research on, 146-147
modeling joint attention, robotic
implementation for, 152-153
modeling joint attention, theoreti-
cal decomposition, 148
robotic hardware of Cog, 155
social skills
attending to objects of mutual in-
terest (joint attention), 146—-147
role of eye contact in, 149
role of gaze following in, 149-151
sound, cricket robot turning toward,
11-12
SRI (syllable repetition interval), in
cricket song, 5
syllable rate, responsiveness of cricket
robot to, 13-16, 19

syllable repetition interval (SRI), in
cricket song, 5
synaptic rules, Darwin V, 130-131
synthetic modeling. see robotic model-
ing
of animal behavior, 62
of visual homing strategies of in-
sects, 60
vs. computer simulation, 37
synthetic neural modeling, 125
systematic search, navigation strategies

of ants, 39

target tracking and visual fixation,
aerial minirobot, 80-81, 82
Tarry I1, 114
taste system, Darwin V, 129
technological limitations, of
biorobotics, 172
Tesla, Nikola, ix
TF (trochanter-femur) joints, cock-
roaches
climbing, 93
modeling Blaberus and, 95, 97
theories of mind, 146-147, 151
theory-of-mind module (TOMM),
Baron-Cohen model, 148
trace rule, modeling inferior temporal
cortex, 141-142
translation invariance, Darwin V ex-
periments
biological object recognition and,
141
development, 132-137
development, impairing by re-
stricting self-generated move-
ment, 135-136
development, patterns revealing,
134
development, testing, 133
in higher vertebrates, 124



intrinsic connections of temporal
lobe and, 137-140
object selectivity and, 140-142
trochanter-femur (TF) joints, cock-
roaches
climbing, 93
modeling Blaberus and, 95, 97
tropotaxis
defined, 28
using RoboLobster to test, 28-29
turning, of cockroaches, 92-93
wwin propeller dynamics, aerial
minirobot, 76-79, 81

VAp (primary visual area), Darwin V,
126
variable speed scanning, aerial
minirobot, 68-71
formula for, 69
photoreceptor model, 68—-69
processing photoreceptor signals,
69-71
vs. constant speed scanning, 67
VAs (secondary visual area), Darwin
V, 126
Vehicles, Experiments in Synthetic Psy-
chology (Braitenberg), x
Vineland Adaptive Behavior Scales,
152
visual area, primary and secondary,
Darwin V, 126
visual cortex
model based on, 123

modeling inferior temporal cortex,

141-142
perceptual invariance and, 124
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