
Reza Ravanmehr
Rezvan Mohamadrezaei

Session-Based
Recommender
Systems Using
Deep Learning

Session-Based Recommender Systems
Using Deep Learning

Session-Based
Recommender Systems
Using Deep Learning

Reza Ravanmehr . Rezvan Mohamadrezaei

Reza Ravanmehr
Department of Computer Engineering,
Central Tehran Branch
Islamic Azad University
Tehran, Iran

Rezvan Mohamadrezaei
Department of Computer Engineering,
Central Tehran Branch
Islamic Azad University
Tehran, Iran

ISBN 978-3-031-42558-5 ISBN 978-3-031-42559-2 (eBook)
https://doi.org/10.1007/978-3-031-42559-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-42559-2

Dedicated to
our families for their support
during the preparation of this book
and to
all our students for their ideas,
motivations, and patience.

Preface

The Web has become an essential part of human life, making it possible for everyone
everywhere to share information, access opportunities, and collaborate across geo-
graphic and cultural limitations. Millions of data objects are uploaded to the Web
every minute, and the amount of data is increasing exponentially. It is difficult and
even impossible for users to study all available data and discover the required and
favorite items among them. The recommender system is an important tool to
facilitate users’ decision-making process. These systems utilize the users’ short-
and long-term data in addition to the results of other users’ preferences and decisions
to predict the favorite items of the target user.

The role of recommender systems in the real world is vital and undeniable,
considering the increasing different types of service delivery and customer satisfac-
tion in e-commerce, multimedia and entertainment, jobs, news, etc. Recommender
systems are essential to increase user satisfaction and predict their favorite items, but
there are also various challenges in this field. The traditional recommender systems
rely on user profiles to generate personalized recommendations, but sometimes user
profiles do not exist or user authentication policies prevent access in real-life
applications. Indeed, the privacy of users’ personal information is becoming a big
challenge, and therefore, recommendation systems should reduce the dependence on
user profiles without adversely affecting the accuracy of recommendations. It should
be mentioned that despite permitting access to users’ long-term interests, the users
may still need an item that can be predicted using only their short-term data.

The solution is to predict and provide recommendations based on user session
interactions. A session is a list of user interactions considered in specific time
intervals. A session for a particular user usually consists of a set of interactions
related to the user that occurred at different times in the session. There are two types
of sessions: ordered and unordered sessions. An ordered session refers to a session in
which the interactions are chronologically ordered, but unordered sessions include a
set of interactions that are not in any particular order, such as purchases made by a
customer. Items in a session contain metadata such as name, description, and related
categories, which makes it easier to predict the user’s favorite items.

vii

viii Preface

A session-based recommender system (SBRS) provides recommendations
employing session data without the need to access long-term user data and interac-
tions. Due to the availability of required data for session-based recommender
systems and the compatibility of the features of these systems with real-world
applications, SBRS has attracted the attention of many researchers. Of course, it
should be noted that there are very narrow boundaries between session-based
recommender systems and sequential recommender systems. Session-based recom-
mender systems are modeled on the basis of session data, and sequential recom-
mender systems are modeled on chronologically sequential data. There is a
difference between a sequence, which is a list of previous time-ordered interactions
without defined time intervals, and a session, which consists of a list of interactions
on different items with a defined boundary over a relatively short period.

The purpose of session-based recommender systems is to predict one or a group
of items of a session or to predict the next session based on learning the dependen-
cies within each session or between several sessions. These dependencies are
recognized based on the simultaneous occurrence of the last few user interactions.
On the other hand, in sequential recommender systems, items are predicted based on
learning sequential dependencies between consecutive items in different sessions. In
fact, sequential recommender systems capture users’ long-term preferences across
previous sessions as conventional recommendation systems do, but they also need to
model users’ short-term interests in a short sequence.

Various methods have been proposed to model SBRS, such as association rules,
Markov chains, pattern mining, latent representation, and deep neural networks.
Each of these methods has been used in different research. Deep neural networks are
approaches that have received much attention due to their high performance and
capability to model complex problems. These techniques have been widely used in
many academic and commercial fields recently. In session-based recommender
systems, various deep neural network techniques are used to identify dependencies
between the interactions of a session and complex relations between different
sessions. Researchers have been more interested in developing session-based rec-
ommender system based on deep learning techniques in the last few years. This fact
proves the effective and undeniable role of deep learning techniques in session-based
recommender systems. The session-based recommender system using deep learning
approaches is mainly divided into basic and hybrid/advanced deep neural network
models. Basic deep neural network approaches include RNNs, CNNs, MLPs, AEs,
GANs, etc., while hybrid/advanced deep neural networks include GNNs, attention-
based models, deep reinforcement learning, and models obtained from the specific
combination of basic methods.

Preface ix

Aims and Scope

This book focuses on the widespread use of deep neural networks and their various
techniques in session-based recommender systems. In fact, the authors intend to
draw the audience’s attention to the fact that the process of choosing the appropriate
deep learning technique for recommender systems whose input data are sessions
should be done according to the type and context of session data and the goals of the
problem. In this book, an attempt has been made to present the success of using deep
learning techniques in many research on the session-based recommender system
from different perspectives. For this purpose, the concepts and fundamentals of
session-based recommender systems are fully elaborated. Then, different deep
learning techniques, specially focusing on the main subject of the book, are studied.
A review of studies in session-based recommender systems shows that various deep
learning approaches, such as discriminative, generative, and graph-based models,
have been utilized to provide effective and accurate recommendations. In addition,
we review and discuss different learning to rank (LtR) methods which are inevitable
parts of a session-based recommender system to achieve a better recommendation
quality and improve the ranking performance.

Main Emphasis

The main emphasis of this book is to deliver a precise, comprehensive, and up-to-
date perspective of the concepts, challenges, types, architectural details, evaluation
methodologies, and pros/cons of the methods presented in the session-based recom-
mender system using deep learning models. To this end, technical descriptions,
highlights, limitations, and strengths/weaknesses of different deep neural network
models in session-based recommender systems are discussed and analyzed.

Target Audience

According to the materials presented in the different chapters of the book, the authors
try to give the audiences of the book a comprehensive view and sufficient informa-
tion to elaborate and develop session-based recommender systems. In addition, the
contents of this book are prepared so that the readers can learn the fundamental
concepts related to session-based recommender systems and deep learning sepa-
rately and provide them with the details of the deep learning approaches applied in
the session-based recommender systems.

In fact, this book is provided for researchers who intend to use deep learning
models to solve the challenges related to session-based recommender systems. In
brief, the main target group can be classified into the academy (graduated students)

and the industry (RS applications/product developers and designers). The material
covered in the book addresses the areas of recommender systems, Web data mining,
information retrieval, and machine/deep learning.

x Preface

Prerequisites

We assume that all readers are familiar with computer science concepts. To better
understand the contents of the book, readers should be familiar with the basic
concepts and principles of designing and analyzing algorithms and machine learning
methods and, to some extent, be familiar with the principles of implementing
systems using at least one programming language, preferably Python. Mathemati-
cally, we expect that the reader is familiar with calculus, probability theory, and
linear algebra.

Short Summary

The book is well modularized, and each chapter can be learned in a stand-alone
manner based on individual interests and needs. It is noteworthy to mention that
readers familiar with session-based recommender systems can skip Chap. 1 and
readers who have already studied the concepts of deep learning methods can skip
Chap. 2. In the sequel, a brief introduction to each chapter of the book follows:

In the first chapter of the book, definitions and concepts related to a session-based
recommender systems are reviewed. At the beginning of this chapter, we have
explained a general overview of recommender systems. In the remainder of the
chapter, the main focus of the content is session-based recommender system. For this
purpose, we explain each concept more clearly with the related mathematical
formulations. Then, the challenges of session-based recommender systems are
thoroughly considered. Finally, a taxonomy of SBRS approaches is presented,
where the characteristics and applications of each class are discussed separately.

The second chapter starts with the basic concepts of deep learning and the
characteristics of each model. Then, each deep learning model, along with its
architecture and mathematical foundations, is introduced. For this purpose, deep
learning models are classified into discriminative, generative, and graph methods.
Deep discriminative models include convolutional neural networks (CNN), recur-
rent neural networks (RNN), and multilayer perceptron (MLP). The major deep
generative models include autoencoders (AE), generative adversarial networks
(GAN), and different types of Boltzmann machine (BM) models. Graph-based
models also include graph neural networks (GNN) and graph convolutional net-
works (GCN).

Different approaches of deep discriminative models in a session-based recom-
mender system are discussed and analyzed in Chap. 3. Due to the ability of RNNs to

model dynamic behaviors of session data over time, many approaches in session-
based recommender systems employ RNNs. Therefore, RNN approaches (including
GRU and LSTM) significantly impact the performance of SBRS. However, because
of the capability of CNNs to extract and learn temporal and spatial patterns, session-
based recommender systems also use CNNs. MLP-based approaches also are mainly
suitable for unordered session data due to their inability to model sequential data.

Preface xi

In the fourth chapter, session-based recommender systems that benefit from deep
generative neural networks are discussed. The study and analysis of published
research show that deep discriminative methods have broader applications than
deep generative methods in session-based recommender systems due to their
sequential approach. However, generative techniques are also important for
researchers due to their ability to reduce the problems of sparsity and complexity
of user interactions in the field of SBRS. This chapter focuses on autoencoder,
generative adversarial networks, and flow-based models (normalizing flow and
autoregressive flow) in session-based recommender systems.

Chapter 5 discusses session-based recommender systems using hybrid/advanced
deep learning methods. Each deep learning method has specific features and capa-
bilities, and due to the high flexibility of deep neural networks, many neural structure
blocks can be integrated to formulate more robust and accurate models. The inte-
gration of two or more different models provides the possibility of using the
advantages of each method, limiting their disadvantages, and strengthening the
capabilities of the resulting combined method. Usually, these approaches consist
of several stages, in which a deep learning technique is used in each stage to process
and generate the required data for the next stage. Therefore, the optimum combina-
tion and configuration of these stages in different research are discussed in this
chapter. In session-based recommender systems, the combination of CNNs and AEs,
CNNs and RNNs, RNNs and AEs, and RNNs and deep reinforcement learning
(DRL) has received the most attention. Due to the high efficiency of deep reinforce-
ment learning and graph neural network methods, a significant number of session-
based recommender systems are based on these methods. Therefore, Chap. 5 ends
with details of various session-based recommender systems using graph neural
networks or deep reinforcement learning.

Learning to rank (LtR) methods are based on machine learning techniques in
ranking results in different domains. Chapter 6 reviews different LtR methods
focusing on information retrieval and recommender system domains. For this pur-
pose, various approaches to rank creation and rank aggregation are discussed and
reviewed. This chapter mainly focuses on four approaches to ranking creation:
pointwise, pairwise, listwise, and hybrid.

Finally, the results of the investigations and findings from the research review
conducted throughout the book are presented in conclusion.

Tehran, Iran Reza Ravanmehr
Rezvan Mohamadrezaei

Acknowledgements

Writing acknowledgments at the beginning of a book is always the most beautiful
part! This book would not have been possible without the contribution and help of
many people. First of all, we would like to express our grateful thanks to all of the
previous and current faculty members and students of the Department of Computer
Engineering at CTBIAU and many friends and colleagues whose constant support
and encouragement have made our work on this stage. Appreciation also goes to the
friends and colleagues in the Institute for Research in Fundamental Sciences (IPM)
who helped make this project a success.

We want to thank Springer staff, in particular Ralf Gerstner, for their dedication
and helpfulness throughout the project. We also appreciate the invaluable feedback
from all of the reviewers. In addition, we also want to thank those who allowed us to
reproduce figures from their publications.

During our career, we were extremely privileged and lucky to work with a
fantastic group of students whom we would like to thank for their formative role.
We always had plenty of fascinating discussions during courses and research pro-
jects that motivated us to write this book.

Last, and most of all, we are grateful to our families for their wholehearted
support throughout this project and for giving us the strength to finish this book.
Reza would like to thank his wife, Paris, without her help and understanding, it
would be impossible to accomplish this project. He would also like to express his
gratitude to his parents for their support at different stages of life. Rezvan would like
to express her sincere appreciation to her husband, Vahid, for his kindness and
motivation while writing this book. And, she would also like to appreciate her
parents and brother for their encouragement and support that kept her constantly
moving forward.

xiii

Contents

1 Introduction to Session-Based Recommender Systems 1
1.1 Introduction 1
1.2 Recommender Systems 2
1.3 Fundamentals of Session-Based Recommender Systems 7

1.3.1 Basic Concepts of SBRS . 9
1.3.2 Challenges of SBRS 10
1.3.3 Session-Based vs. Sequential vs. Session-Aware

Recommender Systems 13
1.4 Session-Based Recommender System Approaches 16

1.4.1 Traditional SBRS . 16
1.4.2 Deep Learning SBRS 20

1.5 Conclusion . . 23
References 24

2 Deep Learning Overview 27
2.1 Introduction 27
2.2 Fundamentals of Deep Learning . 28

2.2.1 History of Deep Learning . 28
2.2.2 AI, ML, and DL . 30
2.2.3 Advantages of Deep Learning 32
2.2.4 General Process of Deep Learning-Based Solutions 34
2.2.5 Taxonomy of Deep Learning Models 35

2.3 Deep Discriminative Models . 37
2.3.1 Multilayer Perceptron 37
2.3.2 Convolutional Neural Network . 40
2.3.3 Recurrent Neural Network 42

2.4 Deep Generative Models . 49
2.4.1 Autoencoders . 49
2.4.2 Generative Adversarial Networks 56
2.4.3 Boltzmann Machines . 59

2.5 Graph-Based Models . 64

xv

xvi Contents

2.5.1 Graph Neural Network . 65
2.5.2 Graph Convolutional Network 66

2.6 Conclusion . . 67
References 68

3 Deep Discriminative Session-Based Recommender System 73
3.1 Introduction 73
3.2 Fundamentals . 74

3.2.1 Datasets 76
3.2.2 Evaluation . 81

3.3 Session-Based Recommender System Using RNN 87
3.3.1 Why RNN? . 87
3.3.2 GRU Approaches 91
3.3.3 LSTM Approaches 99

3.4 Session-Based Recommender System Using CNN 103
3.4.1 Why CNN? . 104
3.4.2 CNN Approaches 105

3.5 Discussion 109
3.6 Conclusion . . 113
References 114

4 Deep Generative Session-Based Recommender System 119
4.1 Introduction 119
4.2 Fundamentals . 120

4.2.1 Datasets 126
4.2.2 Evaluation . 128

4.3 Session-Based Recommender System Using Autoencoder 136
4.3.1 Why Autoencoder? 136
4.3.2 Autoencoder Approaches . 141

4.4 Session-Based Recommender System Using GAN 148
4.4.1 Why GAN? 148
4.4.2 GAN Approaches . 151

4.5 Session-Based Recommender System Using FBM 154
4.5.1 Why Flow-Based Models? . 156
4.5.2 Flow-Based Approaches 157

4.6 Discussion 160
4.7 Conclusion . . 165
References 165

5 Hybrid/Advanced Session-Based Recommender Systems 171
5.1 Introduction 171
5.2 Fundamentals . 172

5.2.1 Datasets 176
5.2.2 Evaluation . 179

5.3 SBRS Using Hybrid Deep Neural Networks 186

Contents xvii

5.3.1 Why Hybrid Deep Neural Network? 187
5.3.2 Approaches Based on CNN and LSTM 187
5.3.3 Approaches Based on CNN and GRU 191
5.3.4 Approaches Based on RNN and Autoencoder 198

5.4 SBRS Using Deep Graph Neural Network 200
5.4.1 Why Graph Neural Network? 200
5.4.2 Approaches Based on GNN . 207
5.4.3 Approaches Based on GNN and RNN 212
5.4.4 Approaches Based on GCN 217

5.5 SBRS Using Deep Reinforcement Learning 220
5.5.1 Why Deep Reinforcement Learning? 221
5.5.2 Approaches Based on Deep Q-Learning 225
5.5.3 Approaches Based on DRL and RNN 226
5.5.4 Approaches Based on DRL and CNN 228
5.5.5 Approaches Based on DRL and GAN 229

5.6 Discussion 231
5.7 Conclusion . . 235
References 236

6 Learning to Rank in Session-Based Recommender Systems 245
6.1 Introduction 245
6.2 Fundamentals . 246

6.2.1 Ranking Creation 247
6.2.2 Ranking Aggregation . 250
6.2.3 Datasets 252

6.3 Ranking Creation 253
6.3.1 Pointwise Methods 253
6.3.2 Pairwise Methods 260
6.3.3 Listwise Methods . 268
6.3.4 Hybrid Methods 276

6.4 Ranking Aggregation 279
6.4.1 Ranking Aggregation Methods in Information Retrieval . . . 280
6.4.2 Ranking Aggregation Methods in Recommender

Systems 282
6.5 Discussion 283
6.6 Conclusion . . 286
References 287

Summary 293

Index . 297

About the Authors

Reza Ravanmehr graduated in computer engineering from Shahid Beheshti Uni-
versity, Tehran, in 1996. After that, he gained his M.Sc. and Ph.D. in computer
engineering, from SRBIAU, Tehran, in 1999 and 2004, respectively. His main
research interests are recommender systems, big data analytics, and social networks.
He has published over 60 scientific papers in different computer science disciplines,
mainly in social network analysis and recommender systems. He has been a faculty
member of the Department of Computer Engineering at Central Tehran Branch,
Islamic Azad University, since 2001. E-mail: r.ravanmehr@iauctb.ac.ir

Rezvan Mohamadrezaei is currently a Ph.D. candidate in software systems at
Central Tehran Branch, Islamic Azad University. Before that, she received a B.-
Sc. degree in computer engineering from MHRIAU, in 2007. After that, she gained
her M.Sc. degree in computer engineering from SRBIAU, Khouzestan, in 2012. Her
current research interests are in the areas of deep learning, recommender systems,
and information retrieval. She has been a faculty member of the Computer Engi-
neering Department at Karoon Institute of Higher Education, Ahvaz, since 2013.

xix

Chapter 1
Introduction to Session-Based
Recommender Systems

Abstract Due to the massive growth of data in recent years, recommender systems
have become essential tools to improve people’s lives. However, access to users’
profiles and their long-term interests are crucial challenges of these systems.
A session-based recommender system (SBRS) was developed to solve these prob-
lems and received much attention from the research community. In this chapter of
the book, after presenting an overview of the definitions and techniques of traditional
recommender systems, we focus on the fundamental concepts, descriptions, chal-
lenges, and approaches of SBRS and clarify the differences between SBRS and SRS
(sequential recommender system) from various aspects.

Keywords Session-based recommender systems · SBRS · Sequential recommender
systems · SRS · Deep learning

1.1 Introduction

Recommender systems help users make efficient decisions in various fields. The
process of selecting favorable items from numerous available items is an ambiguous
process, and recommender systems facilitate this process by using data related to the
user and the results of other users’ decisions. Recommendation systems are divided
into different classes based on the type of related processes and the data used for
making recommendations. The use of recommender systems is needed to increase
user satisfaction and predict the interesting items of users in different fields. How-
ever, it has specific challenges, and so far, different types of recommender systems
have been proposed to solve these challenges.

Access to users’ profiles and their long-term interests are among these crucial
challenges. Many users do not create profiles to use different services in a recom-
mendation platform or maybe new users and have performed very limited trans-
actions. In this case, it is very difficult for the systems to decide on their favorite
items. On the other hand, even with access to the long-term interests of users, the
user may still consider a problem for which short-term data are required for effective
prediction. A session-based recommender system (SBRS) was proposed to improve
these problems and received the attention of many researchers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_1#DOI

2 1 Introduction to Session-Based Recommender Systems

Most of SBRS’s scenarios include a sequence of often short user interactions in a
session, and in many cases, the long-term interests of users are not available
[1]. Session-based recommender system have gained importance, and many studies
have been conducted on them recently. One of the reasons session-based recom-
mender systems are valuable is that each session is treated as a unit for organizing
data. This approach preserves the nature of transactional data and makes decisions
based on dependencies within each session. The SBRS modeling is not performed in
other types of recommender systems because SBRS usually divides session data into
multiple user-item interaction pairs to fit the data into the models. Moreover, it is
easier to access session data for session-based recommender systems than the rating
data required by content-based or collaborative filtering recommender systems. As a
result, these types of systems are more practical in the field of business and
e-commerce.

After the introduction, Sect. 1.2 presents an overview of the concepts and
approaches of recommender systems. Section 1.3 focuses on the fundamental
concepts, definitions, and challenges of session-based recommender system and
the differences between session-based recommender system, sequential recom-
mender system (SRS), and session-aware recommender system (SARS) from vari-
ous aspects, and the ambiguities related to the boundaries between them will be
addressed. Section 1.4 takes a brief look at various approaches related to session-
based recommender systems.

1.2 Recommender Systems

Recommender systems attempt to provide users with recommendations based on
their actions, behaviors, and interests, which match their preferences and make
effective decisions. These systems actively and continuously collect and process
different types of explicit or implicit data related to items, users, and previous
interactions of users to create accurate recommendations [2]. In other words, rec-
ommender systems are developed to estimate the usefulness of an item and predict
the value behind its recommendation. The prediction of the valuable items for a
specific user differs according to the proposed recommender algorithm. In the past
years, recommender systems have made significant progress and have focused on
different fields such as movies, music, news, jobs, books, and Web sites. Figure 1.1
shows the general process of a recommender system based on user data, item
features, and the interactions between users and items.

One of the most basic types of these filtering algorithms is recommender systems
based on demographic information. The filtering algorithm is the process of
distinguishing useful items to recommend to users. This filtering algorithm of the
recommender system is critical, and it determines the basis of the recommendation
systems.

Referring to the classic categories of previous research in recommender system
scope [3–5], recommendation techniques are divided into three general categories

based on the type of the filtering algorithm: content-based (CB), collaborative
filtering (CF), and knowledge-based (KB). Although such categories are still used,
many new categories have also been proposed, each with different degrees of
overlap: context-aware, utility-based, social, and hybrid recommender systems.
Marcuzzo et al. believed a more accurate classification for recommender systems
could be provided due to the ever-increasing expansion of data, the big data
revolution, and the emergence of data-oriented approaches [6].

1.2 Recommender Systems 3

Fig. 1.1 The general process of a recommender system

Now, we will briefly review the fundamental classes of recommender systems:
demographic-based, collaborative filtering, content-based, knowledge-based,
context-based, and social recommender systems:

. Demographic-based recommender systems consider each user based on his/her
demographic information. Demographic information is used to identify the types
and categories of users interested in certain items. Demographic-based recom-
mender systems utilize the principle that users with common characteristics (such
as the same nationality or the same gender) prefer similar items. Usually, these
algorithms are combined with other algorithms, such as content-based or collab-
orative filtering algorithms, to achieve better results [7].

. Collaborative filtering recommender systems utilize the past behaviors and
interests of users whose activities are similar to the target user. These types of
systems recommend items to each user that have been highly rated by users who
are similar to the target user [8, 9]. Collaborative filtering algorithms are divided
into memory-based and model-based methods. Model-based methods learn a
model based on the ratings that users have previously given for various items,
whose learning is implemented based on machine learning or data mining
techniques. However, memory-based methods provide recommendations based

4 1 Introduction to Session-Based Recommender Systems

on a database created on the relationships between items and users. They are
divided into item-based, user-based, and hybrid methods. User-based methods
calculate the degree of similarity between users based on the ratings given by
users to the same items. Recommending new items or predicting the level of
interest in a certain item for a specific user is based on the user’s previous interests
and the interest of other users similar to him. In item-based methods, recommen-
dations for users are calculated by finding items similar to other items that the user
is interested in. Hybrid methods are the result of combining user-based and item-
based methods. In memory-based methods, the learning process is done offline,
and in addition, all information and data must be in memory for calculations and
predictions, which creates a scalability challenge. But model-based methods do
not have scalability problems.

. Content-based recommender systems focus on item feature analysis. In this
approach, the user’s profile is built based on the features of the contents of the
items that have already been rated by that user [10]. Consequently, items are
recommended to each user that is related to the items that are related to his/her
previous interest, and these methods work independently of the interests of other
users. The recommendations provided by content-based filtering are based on
models created on statistical techniques or machine learning methods [2]. The
content-based filtering method has the advantage of recommending items that
have not yet been rated. If the user’s preferences change, this method quickly
matches the recommendations with the new preferences. It is not necessary that
different users have rated the same items in common so that the amount of their
similarity should be determined [7]. In addition to the advantages mentioned
above, the disadvantages of the content-based filtering method are the need to
access user profiles with complete information about the features of the items to
provide effective recommendations to users. Moreover, the recommendations
provided in this method are only similar to the items that the user has rated
before [2].

. Knowledge-based recommender systems are based on explicit knowledge and
rules about item domains and user requirements and preferences [11]. A
knowledge-based recommender system employs knowledge extracted from the
user’s previous interactions, in contrast to content and collaborative filtering-
based techniques. Knowledge usually includes explicit information related to
users and items that are provided by users, and the system creates user profiles
using this information. Or, the knowledge used in this type of system is related to
a specific domain and context, which is inferred from the usefulness of an item for
the user or the adaptation of the features of a particular item to the user’s
requirements and preferences [7]. Two widely used methods for developing
knowledge-based recommender systems are case-based reasoning and con-
straint-based methods. The case-based reasoning method is an artificial intelli-
gence model that provides reasoning processes for new situations based on the
experiences of previous cases of the system [12]. The constraint-based method
extracts a set of recommendation rules to find items based on users’
requirements [13].

. Context-aware recommender systems integrate information sources describing
the environment in which interactions occur. Contextual data can include repre-
sentational contextual data, which are a set of observable contextual variables
such as time, place, and weather, or contextual data of interactions that are
dynamic and usually include the user’s recent activities that are not explicitly
visible, such as the current purchase, the user’s state, etc. [14]. Another type of
contextual data, such as textual comments on an item, is important for recom-
mender systems by new or anonymous users. The most extensive type of con-
textual information that is studied is temporal [15]. Because user interests change
over time, static recommendations may be less effective. Instead, it may be
possible to discover patterns in the sequential behavior of users, which is the
goal of methods that incorporate time into the recommendation process. Methods
in this field usually distinguish between a sequence, which is a list of time-ordered
interactions without defined time intervals, and a session, which includes a list of
interactions with a defined boundary within a relatively short time interval.

. Social recommender systems simultaneously utilize user-to-item interactions as
well as user-to-user social relations for the task of generating item recommenda-
tions to users [16]. The most prominent types of social recommender systems are
the recommendation of social media content and the recommendation of people
[17, 18]. The important domains of social recommender systems are mostly
related to the content delivered on the Internet and include blogs, multimedia,
community question-answering systems, jobs, news, and microblogs. Groups and
communities play a crucial role in social media platforms which makes group
recommendation techniques highly relevant for the social recommender system
domain.

1.2 Recommender Systems 5

In Table 1.1, the abovementioned recommender system types are compared with
each other in terms of input data, basic assumptions, mechanisms, advantages, and
disadvantages.

To provide accurate and effective recommendations to users, all kinds of recom-
mender systems face challenges that they must handle. The most important common
technical challenges among all types of recommender systems are cold start, delay in
providing recommendations, changing user preferences, data sparsity and fragmen-
tation, scalability, security, appropriate user interface design, and selection of appro-
priate evaluation measures. Various studies have been presented to reduce each of
the challenges in different scopes. The readers who are interested in recommender
system should refer to a comprehensive handbook dedicated entirely to the field of
recommender systems contributed by leading experts in this field [19].

6 1 Introduction to Session-Based Recommender Systems

T
ab

le
 1
.1

C
om

pa
ri
so
n
of
 d
if
fe
re
nt
 t
yp

es
 o
f
re
co
m
m
en
de
r
sy
st
em

s

R
ec
om

m
en
de
r

sy
st
em

In
pu

t
B
as
ic
 a
ss
um

pt
io
n

M
ec
ha
ni
sm

A
dv

an
ta
ge
s

D
is
ad
va
nt
ag
es

D
em

og
ra
ph

ic
-

ba
se
d
re
co
m
-

m
en
de
r
sy
st
em

D
em

og
ra
ph

ic
 d
at
a
of

us
er
s
an
d
ite
m
s

U
se
rs
 w

ho
 h
av
e
si
m
ila
r

de
m
og

ra
ph

ic
 i
nf
or
m
at
io
n

ar
e
in
te
re
st
ed
 i
n
si
m
ila
r

ite
m
s

C
la
ss
ifi
ca
tio

n
of
 u
se
rs

ba
se
d
on

 d
em

og
ra
ph

ic

in
fo
rm

at
io
n
an
d
re
co
m
-

m
en
da
tio

n
of
 i
te
m
s
ba
se
d

on
 th

e
in
te
re
st
s
of
 s
im

ila
r

us
er
s

N
o
ne
ed
 f
or
 i
nf
or
m
at
io
n

ab
ou

t t
he
 u
se
r’
s
pr
ev
io
us

in
te
ra
ct
io
ns

U
se
rs
’
pr
iv
ac
y
vi
ol
at
io
n,

la
ck
 o
f
ac
ce
ss
 to

 th
e

de
m
og

ra
ph

ic
 i
nf
or
m
at
io
n

of
 a
ll
us
er
s,
 i
gn

or
in
g
th
e

ch
an
ge
 o
f
in
te
re
st
 o
f
us
er
s

C
on

te
nt
-b
as
ed

re
co
m
m
en
de
r

sy
st
em

Im
pl
ic
it
or
 e
xp

lic
it

co
nt
en
t
da
ta
 o
f
us
er
s

an
d
ite
m
s

T
he
 u
se
r
is
 in

te
re
st
ed
 i
n
an

ite
m
 t
ha
t
is
 s
im

ila
r
to

hi
s/
he
r
pr
ev
io
us
 f
av
or
ite

ite
m
s

A
cc
or
da
nc
e
of
 t
he
 u
se
r

pr
ofi

le
 d
at
a
w
ith

 t
he
 c
on

-
te
nt
 o
f
th
e
ite
m
s

S
im

pl
e
an
d
un

de
rs
ta
nd

-
ab
le
, r
ed
uc
in
g
th
e
co
ld

st
ar
t
pr
ob

le
m

O
nl
y
m
ak
es
 r
ec
om

m
en
da
-

tio
ns
 b
as
ed
 o
n
th
e
cu
rr
en
t

us
er
’s
 i
nt
er
es
ts

C
ol
la
bo

ra
tiv

e
fi
lte
ri
ng

 r
ec
-

om
m
en
de
r

sy
st
em

U
se
r-
ite
m
 i
nt
er
ac
-

tio
ns
’
m
at
ri
x

T
he
 u
se
r
is
 in

te
re
st
ed
 i
n
an

ite
m
 t
ha
t
is
 s
im

ila
r
to
 th

e
ite
m
s
lik

ed
 b
y
ot
he
rs

M
od

el
in
g
us
er
-i
te
m
 i
nt
er
-

ac
tio

ns
 a
nd

 fi
nd

in
g
a
se
t o

f
us
er
s
w
ith

 s
im

ila
r
in
te
re
st
s

to
 a
 p
ar
tic
ul
ar
 u
se
r

D
ir
ec
t
an
d
in
tu
iti
ve
 t
o

im
pl
em

en
t,
re
la
tiv

el
y

si
m
pl
e
m
ec
ha
ni
sm

D
at
a
sp
ar
si
ty
, c
ol
d
st
ar
t,

an
d
sc
al
ab
ili
ty
, h

ig
h
co
m
-

pu
ta
tio

n
co
st
 f
or
 la
rg
e
da
ta

C
on

te
xt
-a
w
ar
e

re
co
m
m
en
de
r

sy
st
em

C
on

te
xt
ua
l
fe
at
ur
es

an
d
in
te
ra
ct
io
na
l d

at
a

of
 u
se
rs
 a
nd

 i
te
m
s

U
se
rs
 h
av
e
di
ff
er
en
t
in
te
r-

es
ts
 i
n
di
ff
er
en
t
co
nt
ex
ts

an
d
co
ns
tr
ai
nt
s

M
od

el
in
g
ite
m
 a
nd

 u
se
r

in
te
ra
ct
io
ns
 b
as
ed
 o
n
co
n-

te
xt
ua
l
da
ta

A
da
pt
iv
e
re
co
m
m
en
da
-

tio
ns
 to

 d
if
fe
re
nt

co
nd

iti
on

s

U
na
va
ila
bi
lit
y
an
d
th
e

pr
ob

le
m
 o
f
pr
iv
ac
y
of

co
nt
ex
tu
al
 d
at
a

K
no

w
le
dg

e-
ba
se
d
re
co
m
-

m
en
de
r
sy
st
em

U
se
r’
s
pr
ev
io
us

in
te
ra
ct
io
ns
 a
nd

kn

ow
le
dg

e
of
 s
pe
-

ci
fi
c
do

m
ai
ns
 a
nd

co
nt
ex
t

T
he
 u
se
r’
s
fa
vo

ri
te
 i
te
m
s

ar
e
ob

ta
in
ed
 b
as
ed
 o
n
th
e

kn
ow

le
dg

e
ex
tr
ac
te
d
fr
om

do

m
ai
n
an
d
us
er
-i
te
m

in
te
ra
ct
io
ns

E
xt
ra
ct
in
g
kn

ow
le
dg

e
us
in
g
m
et
ho

ds
, s
uc
h
as

ne
ur
al
 n
et
w
or
ks
, m

et
a-

he
ur
is
tic
 a
lg
or
ith

m
s,
 a
nd

gr
ap
hs
, a
nd

 m
ap
pi
ng

 u
se
r

re
qu

ir
em

en
ts
 a
nd

 i
te
m

fe
at
ur
es

S
up

po
rt
in
g
ch
an
ge
s
in

us
er
s’
 in

te
re
st
s,
 s
ui
ta
bl
e

fo
r
co
nv

er
sa
tio

na
l
an
d

in
te
ra
ct
iv
e
sy
st
em

s

T
he
 d
if
fi
cu
lt
pr
oc
es
s
of

co
lle
ct
in
g
in
fo
rm

at
io
n
an
d

re
qu

ir
in
g
kn

ow
le
dg

e
en
gi
ne
er
in
g

S
oc
ia
l
re
co
m
-

m
en
de
r
sy
st
em

U
se
r-
ite
m
 i
nt
er
ac
-

tio
ns
, u

se
r-
us
er

so
ci
al
 r
el
at
io
ns
, a
nd

us
er
 p
ro
fi
le
s

U
se
rs
 w

ho
 e
st
ab
lis
h
so
ci
al

re
la
tio

ns
hi
ps
 h
av
e
si
m
ila
r

in
te
re
st
s

M
od

el
in
g
ite
m
 a
nd

 u
se
r

in
te
ra
ct
io
ns
 b
as
ed
 o
n
so
ci
al

re
la
tio

ns

R
ed
uc
in
g
t h
e
co
ld
 s
ta
rt

pr
ob

le
m
, s
up

po
rt
in
g

ch
an
ge
s
in
 u
se
rs
’

in
te
re
st
s

P
ri
va
cy
, u
ns
ta
bl
e
ac
cu
ra
cy

1.3 Fundamentals of Session-Based Recommender Systems 7

1.3 Fundamentals of Session-Based Recommender Systems

Many conventional recommender systems have several fundamental challenges
[20]. One of the crucial challenges is their focus on the long-term interests of users
statistically, which means that the patterns of short-term interests of users are
ignored. As a result, the change in users’ interests over time is not taken into account,
and the specific needs and items desired by the user in a certain period of time may
be affected by his long-term interests [21]. To make effective recommendations to
the user, recommender systems divide a basic transaction unit (such as a session)
into several records with smaller granularity (such as a user-item interaction) during
data processing. This process destroys the sequential nature of the interactive
behavior of users, which shows changes in their behavior and interests.

Another problem of the recommender system is the non-availability of user
information and characteristics, which are not always available due to privacy and
optional user authentication [20]. To solve this problem, the process of providing
recommendations should consider the user’s recent interactions in the system and
extract his/her behavior patterns.

The purpose of SBRS is to reduce the effect of the abovementioned problems.
These types of systems try to ensure that information related to the structure of
sessions and users’ short-term preferences are not ignored. Session-based recom-
mender system provide recommendations based on session data without the need to
access long-term user data and preferences. Due to the availability of input data
required for session-based recommender systems and the compatibility of the fea-
tures of these types of systems with real-world problems, SBRS has gained the
attention of many researchers. These types of systems have wide applications in
various fields, such as Web pages, tourism, news, hotels, media, etc. Of course, it
should be noted that there are very narrow boundaries between session-based and
sequential recommender systems [22]. Session-based recommender systems are
modeled based on session data, and sequential recommender systems are modeled
on sequential data. Further discussion of the differences between these systems is
provided in Sect. 1.4.

The goal of session-based recommender systems is to predict one or a group of
items of a session or to predict the next session based on learning the dependencies
within each session or between several sessions. These dependencies are recognized
based on co-occurrences of interactions in a session [20]. In contrast, in sequential
recommender systems, items are predicted based on learning sequential dependen-
cies between consecutive items in different sessions [23]. Figure 1.2 presents the
general process of a session-based recommender system, which shows the function-
ality of this type of system in the purchasing activities of different users.

From another perspective, the main difference between session-based recom-
mender system and traditional recommender systems can be summarized in the
three factors of data, task, and user, as shown in Table 1.2.

8 1 Introduction to Session-Based Recommender Systems

F
ig
. 1

.2

S
B
R
S
 p
ro
ce
ss
 in

 th
e
pu

rc
ha
si
ng

 a
ct
iv
iti
es
 o
f
di
ff
er
en
t
us
er
s

1.3 Fundamentals of Session-Based Recommender Systems 9

Table 1.2 Differences between session-based recommender systems and traditional recommender
systems

Major
factors Traditional recommender system Session-based recommender system

Data – User-item rating matrix
– User profile
– Item features

Timed and organized sequence of action/
interaction in sessions

Task Making time-independent recommen-
dations for users’ long-term preferences

Make recommendations for the current ses-
sion that fit the user’s short-term interactions

User Known user profile and usually
available

The profile is usually anonymous

1.3.1 Basic Concepts of SBRS

Session-based recommender systems consist of entities, including user, item, and
user-item interaction. In this subsection, user/item, action/interaction, and session
concepts are briefly explained as follows:

. User/item: A user is a person who takes actions in a system related to items, for
example, clicks, makes purchases, and receives the results of recommendations.
Each user has a unique identifier, and a set of explicit or implicit attributes is
considered to describe her/him. Of course, the users’ session information may not
always be available for two reasons: (1) it is not recorded due to privacy
protection, and (2) some users may not log in through the authentication system
and may be anonymous. An item is also an entity in a system that needs to be
recommended, like a product. Each item is treated with a unique identifier and a
set of features to provide item description information.

. Action/interaction: Action is often performed by a user on an item in a session,
for example, clicking on an item. Each action is provided with a unique identifier
and a set of attributes to provide information about it. Action has several different
types: click, view, buy, etc. Interaction is the most basic unit in the session. An
interaction is a ternary-tuple formed based on the action performed by a user on a
specific item. If the user’s information is not available, the interaction is
anonymous.

. Session: In session-based recommender systems, the session is the basic unit of
data organization for data analysis and providing recommendations. The meaning
of the word “session” in the Oxford Dictionary means “a period of time that is
spent doing a particular activity,” but in [20], the specialized meaning of the word
“session” in the field of recommendation systems is “a session is composed of
multiple user-item interactions that happen together in a continuous period of
time.” Also, a session can be a set of events and activities that happen in a specific
time period, for example, a set of purchased items or a group of music listened.

There are different formalizations for session-based recommender systems. Here,
we present a formalization at an abstract level generally suitable for these systems.
Suppose l = {int1,, intn} is a list of n interactions; each of these interactions

consists of an item and the corresponding action. Considering the systems that are
built on single-type action sessions, each interaction in the set l is reduced to one
item, and therefore, the interaction set l becomes the item set li = {i1,, in} (ij 2 I),
where I is the set of items. L is also a set of possible interaction lists derived from the
set of candidate items I and the set of actions A.

10 1 Introduction to Session-Based Recommender Systems

Now consider that U is a set of users. Unlike traditional recommender systems,
our goal is not to predict a utility score for each i 2 I and for each u 2 U, but to
calculate an ordered list of the set L for each user, where each element l 2 L
corresponds to i 2 I. For this purpose, we define a utility function f to compute the
score of a certain sequence l for user u based on Eq. (1.1):

lu = arg max f u, lð Þ, u 2 U, l 2 L ð1:1Þ

According to the above Eq. (1.1), the goal of an SBRS is to select the
recommended interaction list lu 2 L to maximize the utility score for the user u.
The utility function is applied to the list of interactions to optimize the list of
candidates as a whole and not as a single interaction (item). In general, f function
is not limited to specify the utility score for individual items but for entire ordered
lists of items. This makes it possible to consider other aspects of usefulness in
session-based recommender system problems, including the diversity of the collec-
tion as a whole and the quality of the order of recommendations in terms of
transitions between objects.

For each session, a set of attributes are considered, which are listed in Table 1.3:
Based on the type of recommendations, SBRS can be divided into three catego-

ries: next-item recommender systems, next-partial-session recommender systems,
and next-session (next-basket) recommender systems. The goal of the next-item
recommender systems is to suggest the next possible interaction in the current
session by modeling the dependencies within the session. According to the known
parts of a session, the next-partial-session recommender systems recommend the
unknown parts. Indeed, based on intra-session dependencies, it recommends all
remaining interactions to complete the current session, for example, predicting all
subsequent items to complete a cart given the items purchased. Considering past
sessions, the goal of the next-session recommender systems is based on modeling
dependencies between sessions. Sometimes, dependencies between sessions are also
included in the previous two types to improve the performance of the
recommendation.

1.3.2 Challenges of SBRS

The two major challenges in session-based recommender systems are related to data
and task modeling. Regarding data challenges, it should be considered that each
dataset in session-based recommender systems has a hierarchical structure, which
includes session level, item level, and item feature level, which are the main core of

learning models in this system. The challenges related to different levels of data can
be divided into the following four categories: heterogeneity within each level,
coupling within each level, complexity within each level, and interactions between
different levels. Each item can be introduced by several heterogeneous features such
as price, country of manufacture, etc., and each item feature can have different
values, some of which may be repeated more than others. It is a set of items and user
interactions that form a session.

1.3 Fundamentals of Session-Based Recommender Systems 11

Table 1.3 Attributes of a session in session-based recommender systems

Session attributes Description

Session length A session is determined based on the number of interactions. Different
lengths of sessions in a system affect the efficiency of that system

Action type Specifies the actions performed by users in a session. Some systems
consider only one action, for example, clicking, while other systems
record several different actions, such as clicking, purchasing, etc. These
actions may be interdependent. Therefore, the number of action types in a
session determines whether the dependencies within the session are
homogeneous (based on a single action type) or heterogeneous (based on
multiple action types)

Inner order It refers to the order of interactions within the session. Usually, the
interactions of different sessions can be unordered, be ordered, or have a
flexible order

User information It contains the user ID in the system or the attributes of that user. User
information plays an essential role in connecting sessions to each other
and accessing users’ long-term interests, but usually, users are anony-
mous, and sessions do not contain user information

Inter-session contex-
tual data

The set of recent sessions that occurred before the current session is the
context data for the current session. This type of data shows dependencies
and connections between sessions

Intra-session contex-
tual data

Contextual data within each session that recommends unknown data
includes items that are known in the same session. Intra-session contex-
tual data specifies intra-session dependencies

The task modeling challenge begins with extracting information from the session,
item, and item features and continues until the development of an intelligent model
suitable for the task requirements and its evaluation approach.

The challenges related to the data are:

. Heterogeneity within each level: Different elements in each level have different
specifications and features. Therefore, they should be examined from different
approaches, and each should be modeled based on appropriate methods. At the
item feature value level, the distribution of values is different, and one value may
be more iterated than the other. At the item features, there are usually different
features that are heterogeneous and cannot be modeled with the same method. For
example, the manufacturing country of an item and its price are different from
each other. At the item level, the items related to the same sessions have different
distributions, and some of them may be known and frequent, but other items are
rarely selected. Heterogeneity at the session level means that the connection of

each session with the current session of the user is different because the sessions
have different contexts. Some of them may even be irrelevant. Finally, the various
contextual factors that influence the evolution of sessions may include time,
location, season, etc. Since these factors are heterogeneous, they cannot be
modeled similarly.

. Coupling within each level: Different levels of data in session-based recom-
mender system depend on the interactions between their elements. At the level of
feature values, interactions between different feature values of each item may
cause coupling in case the values belong to one feature or are related to different
features of an item [24]. For example, the type of product affects its price.
Coupling at the feature level of an item means that one feature may affect another,
or a combination of several features may lead to the extraction of a specific
pattern. Common interactions between items in a session led to the coupling
between them. For example, some items are purchased together in a store. The
interactions between different sessions also affect each other, and the transactions
of each session are effective on the transactions of the next session. For example,
if a customer buys a car in one session, she/he will probably have a transaction
related to car insurance in the next session. The coupling between different
domains is also made based on the interaction between them; for example, after
users watch a movie, they are likely to search for the music of that movie.
Contextual couplings also bring about the effect of various contextual factors
on user transactions. For example, the products purchased by a user in winter are
different from those purchased in summer.

. The other complexity within each level: In addition to coupling and heteroge-
neity, other challenges lead to data complexity in session-based recommender
system. For example, the complexities inherent in an item level may include
implicit dependence, lack of coordination, or lack of balance of items at the
session level, and there are complexities including long-term dependencies
related to previous sessions and session modeling under one or more specific
contextual factors such as time and location [25].

. Interactions between different levels: The features of an item have mutual
effects on the occurrence of that item in a transaction. For example, items that
belong to the same category are more likely to be selected together. Also, the
mutual effects of data on two levels of the session and item are such that previous
sessions have an effect on the item selected in the current session. For example, a
user who purchased a house in the previous sessions may choose items related to
home appliances in the next session.

12 1 Introduction to Session-Based Recommender Systems

The challenges related to the task modeling are:

. Extraction of relevant information: the effective extraction of information
about different levels of session, item, and item features can be achieved using
different deep learning methods or transformers. Some of these patterns are
complicated, such as spatiotemporal patterns, which makes it difficult to choose
or make an appropriate algorithm for this task. In many cases, items have rich
features such as images and text descriptions that can be used to model sessions.

The appropriate method of how to use these features in related models is an
important challenge. Considering the semantic-level structural information
among the items can also lead to the discovery of additional external knowledge
sources that will be effective in the performance of SBRS.

. Modeling user preferences: this modeling extends far beyond a consecutive
time pattern in the transition of item choices. Recent research on session-based
recommender systems has mostly focused on capturing sequential patterns using
the attention mechanism, which is efficient for the session’s natural sequence
sorted by time, but has various problems with the complicated item transition
pattern. On the other hand, users’ preferences change dynamically, which can
make the modeling of these preferences difficult in final SBRS.

. Considering cross-sessions: instead of extracting sequential patterns in individ-
ual sessions, information modeling in cross-sessions can result in more complex
dependency relations between items. However, it is not easy to use cross-session
information due to the anonymity of session data, specially in cases where
relations between different sessions are prevented. Basically, the use of shared
information in neighboring sessions that has already been created by other users
and reflects the user’s intentions similar to the current session can help the
performance of SBRS in the current session.

. Evaluation process: identifying standard evaluation protocols and the existence
of widely used baselines to compare the performance of the proposed methods is
another challenging factor. The simulated or real datasets extracted from users’
actual behavior in different sessions are another one.

1.3 Fundamentals of Session-Based Recommender Systems 13

1.3.3 Session-Based vs. Sequential vs. Session-Aware
Recommender Systems

User preferences change and evolve. Given this fact, it is better to incorporate time
into the recommendation process and recognize patterns in sequential user behavior
more effectively than static recommendations. The research proposed in this field
typically distinguish between a sequence, which is a time-ordered list of interactions
without defined time intervals, and a session, which is a list of ordered or
non-ordered interactions with a defined boundary and usually covering a relatively
short time interval. To clarify the boundaries of sequential, session-based, and
session-aware recommender systems, we briefly explain them in the following:

. Sequential or sequence-aware recommender system (SRS) employs data with
a specific sequence and order and are not necessarily based on sessions. For
example, data with a timestamp or sorted by time or date is considered. These
types of systems attempt to explicitly recognize sequential dependencies, such as
behavioral patterns, and discover information within interactions that can be
realized by considering interactions as sequences of events. Different types of
patterns, including sequential, co-occurrence, and distance patterns, can be

considered [26]. Sequential patterns associate interactions in a specific order,
while co-occurrence patterns only care if two interactions happen together.
Distance patterns are less conventional, and they try to identify necessary tem-
poral distances before recommending items. On the other hand, these types of
systems usually consider a long-term sequence of user interactions and provide
recommendations based on these interactions [22]. These interactions usually
specify the selected item and the type of user behavior, for example, clicking on
item 1 or purchasing item 2. Therefore, in addition to users, items also have
additional data, and time-ordered events are extracted based on the time-based
user-item matrix [27]. The goal is to predict the user’s next item based on all the
user’s preferences in his/her long-term profile [28].

. Session-based recommender system (SBRS) takes a list of user interactions as
input, which are mostly grouped into anonymous sessions. For example, sessions
can be related to a session of music listened to on a music streaming Web site or a
shopping session on an e-commerce site [28]. In fact, these types of systems only
focus on session data that include their short-term events [22]. Compared to other
recommender systems, the main approach of this type of recommender system is
that users are not followed among different sessions and the systems provide
recommendations only based on a list of short-term users’ preferences, including
their recent interactions [27]. This feature is essential for Web sites that face the
problem of new users without any interactions or users who have not been
authenticated. Nowadays, researchers in the field of session-based recommender
systems are very active, and their works are very relevant to real-world
problems [28].

. Session-aware recommender system (SARS) is a special and personalized type
of session-based recommender system [28]. In both types of systems, the group-
ing of user interactions is done in specific sessions, and the goal of both is to
predict the user’s favorite items. However, in session-aware recommender sys-
tems, the users are not anonymous, and their previous actions can be obtained
through the events and interactions of the previous sessions, and based on them,
the next interactions of the current session can be predicted. Therefore, in addition
to users having IDs, sessions also have specific IDs. These types of systems
usually use a combination of short-term and long-term preferences (more atten-
tion to short-term) of users to recommend new items [27].

14 1 Introduction to Session-Based Recommender Systems

Figure 1.3 shows the similarities and differences between SBRS, SRS, and
SARS.

However, using the above terms in the recommender systems literature is not
always consistent. Sometimes, the term session-based recommendation is also used
for situations where long-term preferences are available, for example, in [29], which
is a fundamental research in the domain of session-based recommender systems.
Several authors also use the term sequential recommender systems in session-based
recommendation scenarios. In fact, the problem of session-based recommendations
can be considered from two sequential aspects, both in the sense that the goal is to
predict the next interactions in a session and the available data are chronologically

F
ig
.1

.3
S
B
R
S
vs
.S

R
S
vs
.S

A
R
S

1.3 Fundamentals of Session-Based Recommender Systems 15

sequential. However, not all sequential approaches are necessarily session-based.
Instead, it may be based on the user’s preferred information and have a long-term
timestamp.

16 1 Introduction to Session-Based Recommender Systems

1.4 Session-Based Recommender System Approaches

The goal of session-based recommender system is to predict unknown items of a
session or to predict the user’s next session based on modeling the complex relations
within a session or between sessions. There are two different perspectives to study
these types of systems. In the first view, the user’s next items are recommended
based on the data of the user’s current session, called intra-session context data. In
the second view, the next session or a part of the next session of a user is predicted
based on the inter-session context [20, 30].

On the other hand, SBRS approaches are divided into two general categories in
terms of the techniques used: traditional SBRS approaches and deep learning SBRS
approaches. Each of these categories is divided into several more detailed sub-
categories. For example, traditional SBRS approaches include pattern/rule mining,
K-nearest neighbors (KNN), Markov chain, generative probabilistic model, and
latent representation approaches. Deep learning SBRS approaches are mainly
divided into two subcategories: basic and hybrid/advanced deep neural networks.
Basic deep neural network methods include discriminative and generative models,
while hybrid/advanced deep neural network approaches include graph-based
methods, attention-based models, deep reinforcement learning, and hybrid.

Figure 1.4 shows the taxonomy of the session-based recommender system
approaches. Each of these models is briefly explained in the subsequent subsections.

1.4.1 Traditional SBRS

These approaches are based on data mining or machine learning techniques to
recognize the latent dependencies in sessions for the recommendation process. The
main idea of this type of approach is to detect sequences of data related to user
sessions by using recognition and mining of patterns and dependencies between
them to provide recommendations to users. These approaches are divided into five
separate categories, which are discussed in the following subsections:

1.4.1.1 Pattern/Rule Mining

In general, there are two types of pattern/rule mining-based approaches for session-
based recommender systems: (1) frequent pattern/association rule mining
approaches and (2) sequential pattern mining approaches. These approaches only

apply to sessions whose data is based on a single type of action and all dataset
actions are the same.

1.4 Session-Based Recommender System Approaches 17

Fig. 1.4 Taxonomy of session-based recommender system approaches

. Frequent pattern/association rule mining-based approaches: In these sys-
tems, first, frequent patterns or association rules are mined; then, user sessions
with the detected patterns and rules are identified; and finally, next-item recom-
mendations are delivered based on the results. Most users are assumed to act
based on commonly applied and frequent patterns. For example, the review of
users’ purchases shows that customers usually buy mobile and handsfree
together, so based on the model of mobile, handsfree can also be recommended
to customers who buy mobiles. These types of systems can be applied to data
without order and sequence.

. Sequential pattern mining-based approaches: Recommender systems based
on sequential patterns are suggested for processing ordered data, and their items
are based on temporal factors. Such systems first detect sequential patterns from
the dataset, and then based on the sequential pattern mining and the order of items
selected by the user, they recommend the next item. Recommender systems based
on sequential patterns have two fundamental differences from pattern-based

recommender systems. The first difference is that recommender systems based on
sequential patterns usually make cross-session recommendations by utilizing
inter-session dependencies, while in most cases, pattern-based recommender
systems utilize intra-session dependencies to make inner-session recommenda-
tions. The second difference is caused by the order of the data, because recom-
mender systems based on sequential patterns consider the orders over sessions,
which are appropriate for sequential data. Techniques such as previous weighted
sequences of users or combining with collaborative filtering have also been
proposed to improve approaches using basic sequential pattern recognition
methods.

18 1 Introduction to Session-Based Recommender Systems

1.4.1.2 K-Nearest Neighbors

K-nearest neighbors (KNN) is a supervised machine learning algorithm applied to
solve various problems such as classification and regression. A session-based
recommender system using the KNN method considers each interaction as an
item. In this type of approach, first, interactions or sessions that are similar to the
current interaction or session are captured. Then, a score is calculated for each
candidate interaction based on how similar and relevant it is to the current interaction
and based on whether similarity is considered between items or between sessions.

KNN-based approaches are divided into two categories: item-KNN or
session-KNN. For both approaches, the set of neighboring items and sessions can
usually be computed in advance to speed up prediction time [31]:

. Item-KNN approaches: recommend the K items that are most similar to the
current item, corresponding to the co-occurrence of items in other sessions.

. Session-KNN approaches: first, calculate the similarity between the current
session and other sessions to detect a set of K neighboring sessions. Then, the
score of each candidate item is determined based on that. These approaches
consider all the context of the session and obtain more accurate information for
the recommendation process than the item-KNN that only considers the current
item of the current session.

1.4.1.3 Markov Chain

A Markov chain or Markov process is a stochastic model that describes a sequence
of possible events, where the probability of each event depends only on the state
obtained in the previous event. SBRS using Markov chains first model the transitions
between the interactions of one or more sessions using Markov chains and then
predict the next possible interactions or the next session. Unlike recommender
systems based on sequential patterns, which remove items that are less frequent to
provide recommendations, in recommender systems based on Markov chains, all
items are considered. Most approaches in this field use the first-order Markov chain

to reduce the complexity of the model. According to how the transition probabilities
are calculated based on explicit observations or latent space, Markov chain-based
approaches can be divided into basic Markov chain and latent Markov embedding
approaches:

. Basic Markov chain approaches: The process of basic Markov chain
approaches consists of four main steps: The first step includes computing the
first-order transitional probability over interactions in the training data, the second
stage predicts the transition paths between interactions, the third stage matches
the context of the session with the predicted paths, and the fourth stage provides
recommendations based on the results of the previous stages. In fact, items with
higher probability are added to the list of recommendations. To improve the
results, some studies have employed techniques such as combining the first-order
and second-order Markov models, creating a hidden Markov model based on
probabilistic models, and factorization of the transition probability matrix.

. Latent Markov embedding approaches: Unlike the basic Markov chain
method, which computes the transition probabilities based on explicit observa-
tions, the approaches based on the latent Markov embedding method first embed
the Markov chain in a Euclidean space and then compute the transition probabil-
ity between items based on Euclidean distance. This method can include
unobserved transitions, which significantly reduces the problem of data sparsity
in cases with limited observed data.

1.4 Session-Based Recommender System Approaches 19

1.4.1.4 Generative Probabilistic Model

Generative probabilistic model approaches typically first infer latent categorization
of items in sessions and then learn transitions between these latent categories within
or between sessions. Then, the next latent categorization is predicted using the
learned transitions. Finally, they predict specific items as the next item, conditional
on the predicted latent ranking of the items. Latent topic models are commonly used
to infer latent categories and transitions between them.

1.4.1.5 Latent Representation

In session-based recommender systems, latent representation approaches using
shallow models generate a latent representation with low dimensions. This repre-
sentation is created for each interaction in a session. The learned informative
representations encode the dependencies between these interactions and are used
for subsequent session-based recommendations. One of the most popular models
used in this type of approach is the latent factor model. SBRS based on latent factor
models first determines a factorization model to decompose the observed transition
matrix of interactions into their latent representations and then uses the resulting
latent representations to estimate unobserved transitions for the next session-based

recommendations. Interactions in these types of approaches are considered items.
One of the widely used methods in this area is matrix factorization. Factorization-
based approaches first factorize the item-user matrix or the item-item co-occurrence
matrix into the latent representation vector of each item and predict the next items
using the latent representations. These approaches usually utilize factorization
machines such as matrix factorization in recommender systems based on collabora-
tive filtering to factorize the matrix of user-item interactions into latent factors of
users and items.

20 1 Introduction to Session-Based Recommender Systems

1.4.2 Deep Learning SBRS

In this section, we aim to provide a quick look at different deep learning models that
have been used in SBRS. Hence, the readers gain a preliminary perspective on the
main topic of this book, which will be discussed in the following chapters.

Approaches using deep learning employ various neural network models to learn
complicated relations between items in each session or between different sessions.
These types of approaches are divided into two groups based on the number of layers
and the depth of the model: approaches based on shallow neural networks and
approaches based on deep neural networks.

Shallow neural networks are a network architecture with a limited number of
layers and so a limited modeling power. Deep neural networks are used to learn an
optimized combination of different representations to predict and recommend the
next item or session. Deep learning provides two specific goals in the domain of
recommender systems: processing features of items and users and modeling relations
and interactions between users and items [32]. On the other hand, it provides several
benefits in the scope of session-based recommender systems, including the ability to
create non-linear models, extracting and engineering features automatically for
different types of data, high capability of sequential modeling for sequential data,
high scalability, and flexibility for modeling hybrid recommender systems [33]. In
SBRS, various deep neural network techniques are used to detect dependencies
between the interactions of a session and complex and extensive relations between
different sessions. Therefore, the motivation of researchers to provide SBRS based
on deep learning techniques has increased in recent years.

Deep learning approaches in various fields of SBRS are performed to achieve
these specific goals: using deep neural networks to process the features of items and
users and modeling the interactions between users and items. The strengths that have
led session-based recommender systems to deep learning approaches are as follows:

– The ability to generate non-linear models
– No need for engineering and diagnosing features manually for data like text,

image, and sound
– The significant capability of sequential modeling for sequential data

– The high scalability and high flexibility for modeling hybrid session-based
recommender systems

– Acceptable accuracy in obtaining results
– The ability to learn unlabeled data

1.4 Session-Based Recommender System Approaches 21

Session-based recommender systems using deep learning approaches can be
divided into two categories: basic deep neural networks and hybrid/advanced deep
neural networks:

. Basic deep neural network approaches utilize deep discriminative models such
as recurrent neural networks (RNN), convolutional neural networks (CNN),
multilayer perceptron (MLP), and deep generative models, such as autoencoders
(AE), generative adversarial networks (GAN), and flow-based models (FBM).
The first use of deep neural networks in SBRS was in 2015 by Hidasi et al., when
a model based on RNN was presented [34]. Many researchers in the field of deep
learning session-based recommender systems use RNN and its variants, including
GRU and LSTM models. In these session-based recommender systems, user
clicks or interactions are given as input to the system and are transformed into
meaningful data structures using an embedding method. Then, a recurrent neural
network is used to model the data and detect their dependency relations. Finally,
the fully connected layer is used before the output layer to make the model more
stable. Due to their sequential nature, recurrent neural networks have a high
potential to analyze the sequential dependencies between data in user sessions.
The capability to model dynamic behaviors over time in SBRS has made recur-
rent neural networks a desirable solution in this field. Most of the research uses
GRU type of RNNs because the number of gates and parameters of the LSTM
model is larger and it has higher computational complexity. RNN and its variant
models in SBRS are discussed in detail in Chap. 3.

Some approaches related to SBRS use the convolutional neural network
model. Using CNN is suitable for user session data in two ways: (1) The order
of items in one session or between different sessions of users can be easily
implemented and modeled on convolutional neural networks. (2) Convolutional
neural networks have a high capacity to learn local features of an area or special
relations between different areas, based on which they can recognize dependen-
cies that other models usually ignore. In such systems, to learn and model data
related to users and items, the inputs should be properly embedded so that
temporal and spatial patterns between them can be correctly identified by succes-
sively using convolution and pooling layers in CNNs. The user’s favorite items
are predicted based on the features obtained from the input data and the depen-
dencies between them. CNN models in SBRS are discussed in detail in Chap. 3.

MLP-based approaches are usually employed to learn the optimal combination
of different representations to create a complex representation of the session
context for later recommendations. Unlike RNN-based approaches, MLP-based
approaches are mainly suitable for unordered session data due to their inability to
model sequential data. It is necessary to mention that MLPs are not mainly used
alone in SBRS and are usually employed as complementary modules.

22 1 Introduction to Session-Based Recommender Systems

Approaches based on deep generative models for SBRS provide recommen-
dations by generating the next interaction or session through a carefully designed
generative strategy. Deep generative models pursue two goals: learning practical
and correct representation of data using unsupervised methods and learning
probabilistic distributions of data and related classes. These approaches also are
classified as autoencoders (AE), generative adversarial networks (GAN), and
flow-based models (FBM). Generative models in SBRS are discussed in detail
in Chap. 4.

. Hybrid/advanced deep neural network approaches Over time, to reduce
challenges such as complex dependencies of variables in different time steps,
cold start problem, data sparsity, and also more effective optimization of com-
plicated session-based recommender systems, more advanced deep learning
approaches were presented to improve the recommendation process. These
approaches include advanced deep neural networks such as graph neural net-
works (GNNs), attention-based models, deep reinforcement learning, and hybrid
models. These models are discussed in detail in Chap. 5.

Although conventional deep learning techniques have been successful in
various fields, most of their data are in Euclidean space, while many data are
inherently better represented by graph structures [35, 36]. In SBRS, it is possible
to model the sequential behaviors and interactions of users with a graph and learn
the relations between them using deep graph neural network models. In these
approaches, given a dataset containing several sessions, each session is mapped to
a chain on the graph. Each interaction in a session acts as a node in the
corresponding chain, where an edge is created to connect each pair of adjacent
interactions in the session. The constructed graph is then fed as input to the GNN
to learn rich information embedding for each node by encoding complex transi-
tions on the graph into embeddings. Finally, these learned embeddings are fed
into the prediction module for session-based recommendations. Graph neural
networks can also be combined with CNN and RNN models. Different types of
graph neural network-based approaches can be further divided into GCN or GAT.
GNN and its variant models in SBRS are discussed in detail in Chap. 5.

Attention-based session recommender systems provide an attention mecha-
nism for discriminative element exploitation in a session context. For accurate
recommendations, these systems try to generate an informative representation
from the context of the session. By integrating the attention mechanism, a
session-based recommender system can emphasize items that are most relevant
to the next interaction or session and reduce the interference of irrelevant items in
the session context. In general, an attention model mainly consists of two steps:
calculating attention weights for the relevant weights of interactions and aggre-
gation, which aggregates the embeddings of all interactions of the session to learn
their weights. It is worth mentioning that attention mechanisms are not mainly
used alone in SBRS and are usually utilized together with basic models such as
GNN [37, 38], CNN/LSTM [39], CNN/GRU [40], and MLP [41].

The deep reinforcement learning (DRL) approach is focused on goal-directed
learning through interaction, where the learning agent, through trial and error and

receiving rewards and punishments, determines which action receives the most
rewards. In session-based recommender systems that dynamically recommend
items to users, deep reinforcement learning methods are used to maximize
expected long-term cumulative rewards. Such approaches can optimize recom-
mendations for long-term user interactions instead of maintaining a short-term
goal of optimizing the process of providing immediate recommendations to the
user. Deep reinforcement learning methods enable recommender agents to learn
optimal recommendation policies to recommend items to users [42]. An SBRS
that uses reinforcement learning aims to learn optimal recommendation strategies
through trial and error and receive reinforcement data for recommended items
from user feedback [43]. In this way, these types of systems can continuously
update their strategies during interaction with users until they reach the best state
that meets their dynamic preferences. DRL models in SBRS are discussed in
detail in Chap. 5.

Finally, hybrid approaches mainly include several primary deep neural net-
work models to take advantage of each to model the various complex dependen-
cies embedded in the session data. Each of the basic models recognizes one or
more types of dependencies. In fact, a hybrid session-based recommender system
performs two main steps: (1) learns different types of dependencies using differ-
ent base models and (2) attentively integrates the learned dependencies to provide
more accurate recommendations. These models are also discussed in detail in
Chap. 5.

1.5 Conclusion 23

1.5 Conclusion

Session-based recommender systems provide recommendations based on session
data without the need to access long-term user data and transactions. Due to the
availability of input data required for SBRS and the compatibility of the features of
these types of systems with real-world problems, SBRS has attracted the attention of
many researchers.

In this chapter, we briefly reviewed the preliminary concepts of recommender
systems and session-based recommender systems and presented the significant
differences between these two systems in detail. Then, the fundamental components
and important attributes of session-based recommender systems, along with their
specific challenges, were discussed.

When time and sequence of events are incorporated into the recommendation
process, there will be three major approaches, session-based, sequential, and session-
aware recommender systems, which were fully elaborated on this chapter.

Since different research has been proposed in the scope of SBRS, each of these
models was briefly explained to provide a quick look at different deep learning
models used in session-based recommenders.

24 1 Introduction to Session-Based Recommender Systems

References

1. Dietmar Jannach, Massimo Quadrana, and Paolo Cremonesi. "Session-based recommender
systems." In Recommender Systems Handbook, pp. 301-334. Springer, New York, NY,
2022. https://doi.org/10.1007/978-1-0716-2197-4_8

2. Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. "Recommender
systems survey." Knowledge-based systems 46 (2013): 109-132. https://doi.org/10.1016/j.
knosys.2013.03.012

3. Qian Zhang, Jie Lu, and Yaochu Jin. "Artificial intelligence in recommender systems." Com-
plex & Intelligent Systems 7 (2021): 439-457. https://doi.org/10.1007/s40747-020-00212-w

4. Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. "Recommender
system application developments: a survey." Decision support systems 74 (2015): 12-32.
https://doi.org/10.1016/j.dss.2015.03.008

5. Eva Zangerle, and Christine Bauer. "Evaluating Recommender Systems: Survey and Frame-
work." ACM Computing Surveys 55, no. 8 (2022): 1-38. https://doi.org/10.1145/3556536

6. Matteo Marcuzzo, Alessandro Zangari, Andrea Albarelli, and Andrea Gasparetto. "Recommen-
dation Systems: An Insight Into Current Development and Future Research Challenges." IEEE
Access 10 (2022): 86578-86623. https://doi.org/10.1109/ACCESS.2022.3194536

7. Fatemeh Alyari, and Nima Jafari Navimipour. "Recommender systems: a systematic review of
the state of the art literature and suggestions for future research." Kybernetes (2018). https://doi.
org/10.1108/K-06-2017-0196

8. Yehuda Koren, Steffen Rendle, and Robert Bell. "Advances in collaborative filtering." Recom-
mender systems handbook (2022): 91-142. https://doi.org/10.1007/978-1-0716-2197-4_3

9. Wang Juan, Lan Yue-xin, and Wu Chun-ying. “"Survey of recommendation based on collab-
orative filtering”" In Journal of Physics: Conference Series, vol. 1314, no. 1, p. 012078. IOP
Publishing, 2019. https://doi.org/10.1088/1742-6596/1314/1/012078

10. Pasquale Lops, Dietmar Jannach, Cataldo Musto, Toine Bogers, and Marijn Koolen. “Trends in
content-based recommendation: Preface to the special issue on Recommender systems based on
rich item descriptions” User Modeling and User-Adapted Interaction 29 (2019): 239-249.
https://doi.org/10.1007/s11257-019-09231-w

11. Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing
He. “"A survey on knowledge graph-based recommender systems”" IEEE Transactions on
Knowledge and Data Engineering 34, no. 8 (2020): 3549-3568. https://doi.org/10.1109/
IAEAC50856.2021.9390863

12. Petra Perner. "Case-based reasoning–methods, techniques, and applications." In Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications: 24th Iberoamerican
Congress, CIARP 2019, Havana, Cuba, October 28-31, 2019, Proceedings 24, pp. 16-30.
Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-33904-3_2

13. Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. "Constraint-
based recommender systems." Recommender systems handbook (2015): 161-190. https://doi.
org/10.1007/978-1-4899-7637-6_5

14. Saurabh Kulkarni, and Sunil F. Rodd. “"Context Aware Recommendation Systems: A review of
the state of the art techniques”" Computer Science Review 37 (2020): 100255. https://doi.org/
10.1016/j.cosrev.2020.100255

15. Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. "A survey on accuracy-
oriented neural recommendation: From collaborative filtering to information-rich recommen-
dation." IEEE Transactions on Knowledge and Data Engineering (2022). https://doi.org/10.
1109/TKDE.2022.3145690

16. Ido Guy. "Social recommender systems." In Recommender Systems Handbook, Second Edi-
tion, pp. 511-543. Springer US, 2015. https://doi.org/10.1007/978-1-4899-7637-6_15

17. Hossein Tahmasebi, Reza Ravanmehr, and Rezvan Mohamadrezaei. "Social movie recom-
mender system based on deep autoencoder network using Twitter data." Neural Computing and
Applications 33 (2021): 1607-1623. https://doi.org/10.1007/s00521-020-05085-1

https://doi.org/10.1007/978-1-0716-2197-4_8
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1007/s40747-020-00212-w
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1145/3556536
https://doi.org/10.1109/ACCESS.2022.3194536
https://doi.org/10.1108/K-06-2017-0196
https://doi.org/10.1108/K-06-2017-0196
https://doi.org/10.1007/978-1-0716-2197-4_3
https://doi.org/10.1088/1742-6596/1314/1/012078
https://doi.org/10.1007/s11257-019-09231-w
https://doi.org/10.1109/IAEAC50856.2021.9390863
https://doi.org/10.1109/IAEAC50856.2021.9390863
https://doi.org/10.1007/978-3-030-33904-3_2
https://doi.org/10.1007/978-1-4899-7637-6_5
https://doi.org/10.1007/978-1-4899-7637-6_5
https://doi.org/10.1016/j.cosrev.2020.100255
https://doi.org/10.1016/j.cosrev.2020.100255
https://doi.org/10.1109/TKDE.2022.3145690
https://doi.org/10.1109/TKDE.2022.3145690
https://doi.org/10.1007/978-1-4899-7637-6_15
https://doi.org/10.1007/s00521-020-05085-1

References 25

18. Hirad Daneshvar, and Reza Ravanmehr. "A social hybrid recommendation system using LSTM
and CNN." Concurrency and Computation: Practice and Experience 34, no. 18 (2022): e7015.
https://doi.org/10.1002/cpe.7015

19. Francesco Ricci, Rokach, Lior, Shapira, Bracha and Kantor, Paul B.. Recommender systems
handbook. New York; London: Springer, 2022, ISSN: 978-1-0716-2197-4, https://doi.org/10.
1007/978-1-0716-2197-4

20. Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Defu Lian.
"A survey on session-based recommender systems." ACM Computing Surveys (CSUR) 54, no.
7 (2021): 1-38. https://doi.org/10.1145/3465401

21. Gabriel De Souza P. Moreira, Dietmar Jannach, and Adilson Marques Da Cunha. "Contextual
hybrid session-based news recommendation with recurrent neural networks." IEEE Access
7 (2019): 169185-169203. https://doi.org/10.1109/ACCESS.2019.2954957

22. Dietmar Jannach, Bamshad Mobasher, and Shlomo Berkovsky. "Research directions in session-
based and sequential recommendation: A preface to the special issue." User Modeling and User-
Adapted Interaction 30 (2020): 609-616. https://doi.org/10.1007/s11257-020-09274-4

23. Ali Noorian, Ali Harounabadi, and Reza Ravanmehr. "A novel Sequence-Aware personalized
recommendation system based on multidimensional information." Expert Systems with Appli-
cations 202 (2022): 117079. https://doi.org/10.1016/j.eswa.2022.117079

24. Longbing Cao. "Coupling learning of complex interactions." Information Processing & Man-
agement 51, no. 2 (2015): 167-186. https://doi.org/10.1016/j.ipm.2014.08.007

25. Longbing Cao. "Data science: challenges and directions." Communications of the ACM 60, no.
8 (2017): 59-68. https://doi.org/10.1145/3015456

26. Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. "Sequence-aware recommender
systems." ACM Computing Surveys (CSUR) 51, no. 4 (2018): 1-36. https://doi.org/10.1145/
3190616

27. Malte Ludewig. "Advances in session-based and session-aware recommendation." PhD diss.,
Dissertation, Dortmund, Technische Universität, 2020, 2020.

28. Sara Latifi, Noemi Mauro, and Dietmar Jannach. "Session-aware recommendation: A surprising
quest for the state-of-the-art." Information Sciences 573 (2021): 291-315. https://doi.org/10.
1016/j.ins.2021.05.048

29. Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. "Personal-
izing session-based recommendations with hierarchical recurrent neural networks." In pro-
ceedings of the Eleventh ACM Conference on Recommender Systems, pp. 130-137. 2017.
https://doi.org/10.1145/3109859.3109896

30. Lemei Zhang, Peng Liu, and Jon Atle Gulla. "A deep joint network for session-based news
recommendations with contextual augmentation." In Proceedings of the 29th on Hypertext and
Social Media, pp. 201-209. 2018. https://doi.org/10.1145/3209542.3209557

31. Dietmar Jannach, and Malte Ludewig. "When recurrent neural networks meet the neighborhood
for session-based recommendation." In Proceedings of the eleventh ACM conference on
recommender systems, pp. 306-310. 2017. https://doi.org/10.1145/3109859.3109872

32. Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. "Deep learning based recommender system: A
survey and new perspectives." ACM computing surveys (CSUR) 52, no. 1 (2019): 1-38. https://
doi.org/10.1145/3285029

33. Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. "DKN: Deep knowledge-aware
network for news recommendation." In Proceedings of the 2018 world wide web conference,
pp. 1835-1844. 2018. https://doi.org/10.1145/3178876.3186175

34. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In Proceedings International Conference on
Learning Representations, ICLR ’16, 2016. https://arxiv.org/abs/1511.06939

35. Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. Graph neural networks. Springer
Singapore, 2022. https://doi.org/10.1007/978-981-16-6054-2_3

36. Yao Ma, and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021. https://
doi.org/10.1017/9781108924184

https://doi.org/10.1002/cpe.7015
https://doi.org/10.1007/978-1-0716-2197-4
https://doi.org/10.1007/978-1-0716-2197-4
https://doi.org/10.1145/3465401
https://doi.org/10.1109/ACCESS.2019.2954957
https://doi.org/10.1007/s11257-020-09274-4
https://doi.org/10.1016/j.eswa.2022.117079
https://doi.org/10.1016/j.ipm.2014.08.007
https://doi.org/10.1145/3015456
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3209542.3209557
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3178876.3186175
https://arxiv.org/abs/1511.06939
https://doi.org/10.1007/978-981-16-6054-2_3
https://doi.org/10.1017/9781108924184
https://doi.org/10.1017/9781108924184

26 1 Introduction to Session-Based Recommender Systems

37. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. "Session-based
recommendation with graph neural networks." In Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, pp. 346-353. 2019. https://doi.org/10.1609/aaai.v33i01.
3301346

38. Zhiqiang Pan, Wanyu Chen, and Honghui Chen. "Dynamic graph learning for session-based
recommendation." Mathematics 9, no. 12 (2021): 1420. https://doi.org/10.3390/math9121420

39. Qiannan Zhu, Xiaofei Zhou, Zeliang Song, Jianlong Tan, and Li Guo. "Dan: Deep attention
neural network for news recommendation." In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, pp. 5973-5980. 2019. https://doi.org/10.1609/aaai.
v33i01.33015973

40. Jinjin Zhang, Chenhui Ma, Xiaodong Mu, Peng Zhao, Chengliang Zhong, and A. Ruhan.
"Recurrent convolutional neural network for session-based recommendation." Neurocomputing
437 (2021): 157-167. https://doi.org/10.1016/j.neucom.2021.01.041

41. Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. "STAMP: short-term attention/
memory priority model for session-based recommendation." In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1831-1839.
2018. https://doi.org/10.1145/3219819.3219950

42. Yuanguo Lin, Yong Liu, Fan Lin, Lixin Zou, Pengcheng Wu, Wenhua Zeng, Huanhuan Chen,
and Chunyan Miao. "A survey on reinforcement learning for recommender systems." IEEE
Transactions on Neural Networks and Learning Systems (2023). https://doi.org/10.1109/
TNNLS.2023.3280161

43. Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, and Jiliang Tang. "Deep
Reinforcement Learning for List-wise Recommendations." In 1st Workshop on Deep Rein-
forcement Learning for Knowledge Discovery (DRL4KDD 2019). 2019. https://arxiv.org/abs/1
801.00209

https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.3390/math9121420
https://doi.org/10.1609/aaai.v33i01.33015973
https://doi.org/10.1609/aaai.v33i01.33015973
https://doi.org/10.1016/j.neucom.2021.01.041
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1109/TNNLS.2023.3280161
https://doi.org/10.1109/TNNLS.2023.3280161
https://arxiv.org/abs/1801.00209
https://arxiv.org/abs/1801.00209

Chapter 2
Deep Learning Overview

Abstract Among the various machine learning algorithms, deep learning has
recently been dramatically used in different scopes. Deep learning models have
been significantly employed in effectively extracting hidden patterns from vast
amounts of data and modeling interdependent variables to solve complex problems.
Since this book aims to discuss the session-based recommender system approaches
using deep learning models, brief explanations of various deep neural networks are
provided in this chapter. For this purpose, the history, basic concepts, advantages/
applications, and fundamental models of deep learning are discussed.

Keywords Deep learning · Machine learning · Deep discriminative models · Deep
generative models · Graph-based models

2.1 Introduction

The ability of the human brain to learn and solve different problems is impressive
compared to the most powerful computers. For this reason, to increase the power of
computers to solve more complex problems, the functioning of the human brain has
been modeled to process different types of problem data. Indeed, an amazing
evolution occurred in technology systems so that passive and static systems became
active and dynamic and improved over time. This phenomenon was called machine
learning, which allowed computers to learn.

Machine learning has been used in various research and utilized in different
applications, such as text mining, spam detection, recommender systems, image
classification, multimedia information retrieval, etc. Among the various machine
learning algorithms, deep learning has recently been dramatically used in these
applications. Deep learning employs neural networks and works based on the
structure and function of neurons in the human brain system.

Today, deep learning models significantly affect extracting information or hidden
patterns from massive data due to their higher capacity. Moreover, deep learning can
solve complex problems and model interdependent variables compared to conven-
tional machine learning approaches. Nowadays, deep learning technology is con-
sidered a hot topic in machine learning, artificial intelligence, and data science due to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_2#DOI

its ability to learn from different data types. Many companies, including Google,
Microsoft, Apple, Meta, etc., are actively studying deep learning because it can
provide significant results in various problems of analyzing large structured/unstruc-
tured datasets [1].

28 2 Deep Learning Overview

This chapter presents an overview of the basic concepts of deep learning,
including its definition, history, advantages, and applications, and a comparison
between the characteristics of deep learning and machine learning in Sect. 2.2.
Then, a taxonomy of deep learning methods is presented, which includes the
fundamental models of deep learning. Based on this classification, each of these
models will be discussed and analyzed in the following subsections. In Sect. 2.3,
deep discriminative models, including MLP, CNN, and RNN (GRU-LSTM), are
described, and in Sect. 2.4, deep generative models such as AE, GAN, and methods
based on the Boltzmann machine are explained. The fifth section describes graph-
based models such as GNN and GCN.

2.2 Fundamentals of Deep Learning

2.2.1 History of Deep Learning

Although deep learning has become very popular in recent years, it has a long
evolution process. Currently, mainstream deep learning approaches are based on
neural networks, which have been researched for decades with varying levels of
success. With the increase in hardware power and the emergence of big data, which
provides much data for network training, it is possible to train networks with more
than several hidden layers. Neural networks that consist of several layers are called
deep networks. Currently, deep learning techniques are used in many domains, and
the evolution of artificial intelligence and big data processing depends on deep
learning methods.

The emergence of neural networks began in the early 1943s when Warren
McCulloch and Walter Pitts developed a computer model focusing on the human
neural system. They used a combination of algorithms and mathematics called
“threshold logic” to mimic human thinking. This network was a binary classifier
that could distinguish two different classes based on the input values. The problem of
this network was the adjustment of weights by a human operator. After that, in 1957,
the perceptron algorithm was proposed by Rosenblatt, which could learn the weights
to classify the data in its structure without the participation of a human operator.

The first attempts at developing deep learning algorithms were made by Alexey
Grigoryevich Ivakhnenko and Valentin Grigor’evich Lapa in 1965. They used
models with polynomial activation functions (complex equations) that were then
analyzed statistically. From each layer, the best-selected statistical features were
transferred to the next layer.

While the perceptron method was used for several years, in 1969, Minsky and
Papert published a paper presenting that the perceptron was more capable of

classifying linear problems, and this method could not solve non-linear problems. In
addition, the authors of this article in the same year claimed that there are no
sufficient computational resources to build large and deep neural networks.

2.2 Fundamentals of Deep Learning 29

The first “convolutional neural networks” were presented by Kunihiko
Fukushima. Fukushima designed neural networks with multiple pooling and convo-
lution layers, and in 1979, he developed an artificial neural network called the
neocognitron that used a multilayered hierarchical design. This design allowed the
computer to learn visual patterns. In addition, Fukushima’s design allowed for the
manual adjustment of critical features by increasing the “weight” of certain connec-
tions. In 1989, Yann LeCun presented the first practical demonstration of
backpropagation at Bell Labs. He combined convolutional neural networks with
backpropagation to read handwritten digits. This system was eventually used to read
handwritten check numbers.

In the 1990s, some people continued to work on AI and DL, and significant
progress was made. In 1995, Dana Cortes and Vladimir Vapnik developed the
support vector machine (a system for mapping and recognizing similar data). Long
short-term memory (LSTM) for recurrent neural networks was developed in 1997 by
Sepp Hochreiter and Juergen Schmidhuber.

The next important evolutionary step for deep learning occurred in 1999 when
computers became faster at processing data using GPUs (graphics processing units).
Faster processing, with the GPU, increased the speed of calculations by 1000 times
over 10 years. Neural networks also improved further with more available
training data.

Around 2000, the vanishing gradient problem appeared. It was found that the
“features” (lessons) that are formed in the lower layers do not learn anything from
the upper layers because the lower layers receive no learning signal. Of course, this
was not a fundamental problem for all neural networks and only happened to
networks that used gradient-based learning methods. Two solutions used to solve
this problem were layer-by-layer pre-training and the development of LSTMs.

Around 2006, deep belief networks (DBNs) and a layered pre-training framework
were developed. During 2011 and 2012, AlexNet, a convolutional neural network,
won many international competitions. The generative adversarial network (GAN)
was introduced in 2014 by Ian Goodfellow. With GAN, two neural networks play
against each other in the same game. The game’s objective is for a network to mimic
a photo and trick its opponent into believing it to be real. At the same time, the
opponent is looking for its flaws. The game is played until an almost perfect picture
deceives the opponent.

BERT, developed by Google in 2018, is a machine learning technique applied to
natural language processors that aims to better understand the language we use daily.
It analyzes all the words used in the search to understand the entire context and get
the user’s desired results. BERT is a system that uses transformers, a neural network
architecture that analyzes all possible relationships between words in a sentence. In
March 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun received the
Turing Prize for their continuous efforts on conceptual and engineering advance-
ments in deep neural networks. In 2020, when there was a pandemic, OpenAI

created an artificial intelligence algorithm called GPT-3 (Generative Pre-trained
Transformer 3) that could produce human-like text, which is currently (Jun 2023)
GPT-4 is the most advanced language model in the world.

30 2 Deep Learning Overview

Figure 2.1 shows the timeline of deep learning according to its important
milestones.

2.2.2 AI, ML, and DL

Artificial intelligence is the science and engineering of building intelligent machines,
specially computer systems, by reproducing human intelligence through learning,
reasoning, and adaptation. Artificial intelligence uses intelligent agents that under-
stand their environment and take actions that maximize their chances of success in
achieving their goals.

Data mining understands and discovers new, previously unseen knowledge in the
data. A simple definition of data mining is that data mining refers to the use of
algorithms to extract patterns from data [2]. Deep learning is considered a subset of
machine learning and artificial intelligence; therefore, deep learning can be consid-
ered an artificial intelligence function that mimics the data processing of the human
brain. Deep learning also refers to learning methods from data, where computations
are performed through multilayer neural networks. The term “deep” in deep learning
refers to the concept of multiple levels or steps through which data is processed to
build a data-driven model. It differs from standard machine learning in terms of
performance when the volume of data increases. The global popularity and scope of
applications of “deep learning” are increasing daily. Deep learning technology uses
multiple layers to represent the abstraction of data to build computational models.
While deep learning takes a long time to train a model due to numerous parameters,
it takes a short time to run during testing compared to other machine learning
algorithms [1].

Data science is a scientific discipline related to the study of generalizable knowl-
edge extraction from data and all preprocessing and processing steps related to data,
including collection, storage, cleaning, interpretation, analysis, visualization, vali-
dation, and decision-making based on data [3]. Data science uses artificial intelli-
gence, machine learning, data mining, and other approaches such as evolutionary
algorithms, operational research, statistics, etc.

Figure 2.2 shows the positions of artificial intelligence, machine learning, deep
learning, and data science relative to each other.

One of the most important differences between deep learning and machine
learning is the performance of the system based on increasing training samples.
Deep learning will not yield good results if there are not enough training samples. On
the other hand, machine learning can show good results even with a few samples. In
addition, deep learning requires advanced hardware, whereas machine learning can
be used with low-power hardware and computers. The key difference that shows the

2.2 Fundamentals of Deep Learning 31

F
ig
. 2

.1

T
im

el
in
e
of
 d
ee
p
le
ar
ni
ng

power of deep learning versus machine learning is the automatic extraction of
features in these algorithms.

32 2 Deep Learning Overview

Fig. 2.2 The position of AI, ML, DL, and data science relative to each other

ML and DL are very similar in allowing the model to learn from previous data.
The term ML can be generalized to any machine (model) that learns. DL is a specific
set of methods and techniques that enable the machine to make decisions using very
deep and complex networks. However, one of the most notable differences in DL is
its ability to replace the human-based feature extraction process and incorporate this
step into the neural network itself to automatically decide which features best
describe the data (Fig. 2.3). Although DL models have proven to solve some of
the most challenging problems, they can be data-hungry and computationally
expensive. Before developing a DL-based solution, careful consideration of the
hardware requirements for training and hosting complex DL models is required.

2.2.3 Advantages of Deep Learning

The deep learning process in systems is based on the construction of computational
models called neural networks, which are inspired by the brain’s structure. The
structure of this network consists of several processing layers, which by going to the
next level layers, it can solve more complex problems. The initial layers process the
raw data, and the subsequent layers can use the information of the neurons in the
previous layers to obtain a more complex representation of data. Most of the benefits

of deep learning come from the fact that neural networks can learn to perform much
better at feature extraction than any built artificial systems [5].

2.2 Fundamentals of Deep Learning 33

Fig. 2.3 Machine learning vs. deep learning [4]

Briefly, the advantages of deep learning methods are as follows:

. Automated feature extraction: Deep learning algorithms can generate new
feature representations from a limited number of features existing in the training
dataset without additional human intervention. This means that deep learning can
handle complex tasks requiring more extensive feature engineering and precision.

. Ease of working with unstructured data: One of the most prominent attractions
of deep learning is its ability to work with unstructured data. The power of
classical machine learning algorithms to analyze unstructured data is limited,
but deep learning is most effective in handling this type of data.

. Higher self-learning ability: Multiple layers in deep neural networks allow
models to learn complex features and perform computationally intensive tasks
more efficiently. Moreover, deep learning algorithms can learn from their errors;
in addition to confirming the correctness of their results, they can make the
necessary adjustments. However, classical machine learning models require
varying degrees of human intervention to determine output accuracy.

. Support for parallel and distributed algorithms: Parallel and distributed
algorithms allow deep learning models to be trained much faster. Models can

be trained on machines equipped with high-performance CPUs, GPUs, or a
combination of both.

. Advanced analytics: Deep learning, when applied to data science scope, can
provide better and more effective processing models. Its ability to learn in an
unsupervised mode continuously improves accuracy. It also provides data scien-
tists with more reliable and concise analysis results.

. Scalability: Deep learning is highly scalable due to its ability to process massive
amounts of data and perform many computations cost-effectively and cost-
efficiently. This directly affects modularity, portability, and productivity.

. Increased robustness: Deep learning approaches do not need in-advanced
designed features. Instead, they learn the optimal features automatically in the
learning process. As a result, robustness is obtained with respect to changes in
input data.

. Generalization: Deep learning approaches can be used in different applications
or with different types of data.

34 2 Deep Learning Overview

Deep learning techniques in various fields, such as image processing, social
network analysis, information retrieval, natural language processing, robotics, indus-
trial automation, agriculture, medical research, disease diagnosis, recommender
systems, motion detection systems, etc., can be used. In general, deep learning
techniques are helpful in the following cases:

. Lack of human experts

. Learning skills that humans are unable to express and explain, such as under-
standing language, image, and sound

. The solution dynamism and its changes over time

. The large size of the problem compared to the limited inference capabilities of
humans

. Problems with special constraints, such as biometrics

2.2.4 General Process of Deep Learning-Based Solutions

Each approach utilizing deep learning techniques includes different stages according
to their deep learning model. However, they all generally follow the steps shown in
Fig. 2.4. The datasets collected from various data sources in the data acquisition
phase must be first preprocessed. The preprocessing steps are data cleaning, nor-
malization, scaling, and quality assessment. After that, data transformation is
performed to enhance the preprocessed in different stages of standardization, reduc-
tion, and aggregation. During this phase, feature engineering is also performed, and
the resulting data representations are split into the training, testing, and validation
sets. It should be mentioned again that, unlike machine learning methods, the
process of feature extraction is done automatically in deep learning methods. After
this step, and based on the nature of the problem and its requirements, the architec-
ture of the deep learning approach, including discriminative, generative, graph, or

hybrid, is developed. During this phase, the type of learning algorithms, such as
Adam, SGD, BFGS, etc., should be developed and evaluated. The built model is
trained and then evaluated based on different evaluation metrics. If the obtained
results are acceptable, the final model will be deployed on the target platform;
otherwise, the model should be improved/revised/tuned, and the performance eval-
uation step should be repeated till acceptable results are achieved.

2.2 Fundamentals of Deep Learning 35

Fig. 2.4 Workflow of deep learning models

2.2.5 Taxonomy of Deep Learning Models

Deep learning models can be classified into three general groups, discriminative,
generative, and graph methods, based on their nature, architecture, and performance
[1]. Models based on discriminative methods usually specify the decision boundary
in the data space, while models based on generative methods learn the overall
distribution of the data [6]. Discriminative methods include convolutional neural
networks (CNN), recurrent neural networks (RNN), and multilayer perceptron
(MLP). The major generative methods include autoencoders (AE), generative

adversarial networks (GAN), and different types of Boltzmann machine (BM)
models. Graph-based methods also include graph neural networks (GNNs) and
graph convolutional networks (GCNs). It should be mentioned that many hybrid
models also result from various combinations of different models.

36 2 Deep Learning Overview

Fig. 2.5 The classification of deep learning models

The taxonomy of deep learning models is shown in Fig. 2.5.
In the following of this chapter, a variety of deep discriminative models will be

examined in Sect. 2.3, deep generative models in Sect. 2.4, and graph-based models
in Sect. 2.5.

2.3 Deep Discriminative Models 37

2.3 Deep Discriminative Models

Machine learning models often present the relations between features x and labels
y using a joint probability p over x,y. According to the method of calculation of p,
machine learning models are known as generative or discriminative [7]. In discrim-
inative methods to predict y based on x, the conditional likelihood model p(y|x) is
fitted. Since discriminative models do not model p(x), they may use their parameters
more effectively to identify the probability p(y|x). This makes them more suitable for
supervised learning problems, and by making fewer modeling assumptions, they
may use the data more efficiently [8]. A deep discriminative model uses layered
hierarchical architectures to directly compute p(y|x) [9]. This class of deep learning
techniques is used to provide a discriminative function in supervised or classification
applications. Deep discriminative architectures are usually designed to provide
discriminative power for pattern classification by describing posterior distributions
of categories conditioned on observable data.

Deep discriminative models generally include multilayer perceptron networks,
recurrent neural networks, and convolutional neural networks, and each of these
models will be discussed in the following subsections.

2.3.1 Multilayer Perceptron

The multilayer perceptron (MLP) neural network is a feedforward artificial neural
network that is the basis of deep neural network (DNN) architecture [10]. MLP
consists of an input layer to receive input signals and data, an output layer to predict
or make decisions related to inputs, and, between these two layers, an arbitrary
number of hidden layers that are responsible for the main function of the MLP.
MLPs can approximate continuous functions using hidden layers. MLP neural
networks are often applied to supervised learning problems. They are trained on a
set of input-output pairs and learn to model the dependencies between inputs and
outputs. The training phase consists of adjusting the parameters or weights and the
biases of the model to minimize the error.

In MLP, the backpropagation algorithm is used to adjust the weight and the
amount of bias toward the error, and its main purpose is to reduce the value of the
loss function by adjusting the values of the weights and bias of the network. The
backpropagation algorithm is the core of neural network training, which adjusts the
weight of the neural network obtained in the previous epoch. This algorithm moves
in two directions, forward and backward, in the network. It can calculate the error
gradient value for any network parameter (any weight or bias). In this way, it can
determine how much the value of each weight in an MLP neural network should
change.

During the training process, various optimization approaches, such as stochastic
gradient descent [11] (SGD), [12] BFGS (L-BFGS), and ADAM [13], can be

applied, which are algorithms that attempt to minimize the loss function. The
gradient descent algorithm is an iterative method that tries to minimize the loss
function by changing the internal weights of the network and gradually updating
them. The step size in each iteration of the algorithm determines the learning rate,
and the iteration process is carried out until there is no change in the loss function. In
practice, when the number of training samples is large, using the gradient descent
algorithm will take much time. This must be done in each iteration of the algorithm
for all samples. For this reason, using the stochastic gradient descent algorithm will
be more useful because it only updates a set of samples in each iteration of the
algorithm.

38 2 Deep Learning Overview

Stochastic gradient descent is a stochastic approximation method of gradient
descent in which each sample is randomly selected for optimization in each period,
and new weights are obtained. But it may get stuck in the local minima, which is why
the mini-batch gradient descent was presented, which divides the entire training set
into mini-batches and updates the parameters based on these mini-batches [14]. This
method is more resistant to noise and has less variance; as a result, it has more stable
convergence due to the use and combination of full gradient reduction and stochastic
gradient descent. Therefore, this optimization method is usually used in deep
learning, but determining the learning rate is essential. Learning rates in other
methods, such as ADAM, Adagrad [15], or Adadelta [16], are adjusted adaptively
and do not need manual adjustment. The ADAM algorithm outperforms other
adaptive methods and converges very quickly. It also overcomes other problems,
such as learning rate decay, high variance in updating, and slow convergence.

The outputs of neurons in an MLP network are determined using various activa-
tion functions, also known as transfer functions. These functions use simple math-
ematical calculations to determine whether a node’s input is important to the network
or should be ignored. In other words, the activation function maps the sum value of
the neuron’s weighted input to values between 0 and 1 or -1 and 1 (depending on
the type of activation function). Then, this function passes its final value to the next
layer. For this reason, this function is also called the transfer function. There are three
categories of activation functions: binary step, linear, and non-linear. The binary step
function is compared to a threshold value. If the input value is greater than the
threshold value, the node will be activated; otherwise, it will remain disabled, and
the output of the node will not be passed to the next layer. This function cannot
produce multiple-valued outputs and cannot be used for problems such as multi-
class classification. Also, the derivative of the binary step function is equal to zero,
which is a challenge for the backpropagation algorithm.

The linear activation function or the identity function does not perform compu-
tations on the weighted input sum and transfers this value to the next layer without
any changes. This function cannot be used in the backpropagation algorithm because
the derivative of this function is equal to a fixed number, has no relation with the
input value x, and does not show good performance for complex neural networks
with many parameters. On the other hand, the output of several linear functions is the
same for a fixed input value. Therefore, it does not matter if the deep neural network
is made of several hidden layers because the output of the activation function in the

last layer of the neural network is equal to the output of the activation function in the
first layer.

2.3 Deep Discriminative Models 39

Fig. 2.6 The general architecture of MLPs

The non-linear activation functions are the most widely used in neural networks
because the generalizability and adaptability of the model to different types of data
are made easy by using these functions. These functions solved the problem related
to the backpropagation algorithm and can determine which input node weight can
better contribute to the final diagnosis of the model. Using these functions, you can
also solve problems related to multiple outputs. There are various types of non-linear
activation functions, such as [17]:

Sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), leaky rectified
linear unit (leaky ReLU), parametric rectified linear unit (parametric ReLU), expo-
nential linear unit (ELU), softmax, Swish, Gaussian error linear unit (GELU), and
scaled exponential linear unit (SELU).

Each of these functions has its own characteristics. To choose the most suitable
activation function for the final layer of the deep neural network, one should pay
attention to the purpose of the model and the type of prediction of the model. MLP
requires setting several hyperparameters, such as the number of hidden layers,
neurons, and iterations, which can make solving a complex model computationally
expensive. However, MLP provides the advantage of learning non-linear models in
real time or online through relative fitting. Figure 2.6 shows the general architecture
of the MLP.

40 2 Deep Learning Overview

2.3.2 Convolutional Neural Network

Convolutional neural network (CNN or ConvNet) is a discriminative deep learning
architecture that learns features directly from the input without the need for human
feature extraction [18]. CNNs are widely used in various domains, such as image
processing, natural language processing, speech processing, etc. For some types of
data, specially images, methods such as MLP do not work well because each neuron
is fully connected to each neuron in the next layer and each neuron in the hidden
layer computes a function that depends on the values of the nodes in the input layer.
However, in CNNs, only a local subset of the previous layer variables is considered.
CNNs are more similar to the human visual processing system than conventional
neural networks; they perform more effective optimization for processing and
learning of 2D and 3D images and extract input features automatically [19]. CNNs
use local connections and shared weights in the network to extract features of the
input data, which results in much fewer parameters and makes training the network
faster and easier. This action is similar to the activity performed in the visual cortex
cells. These cells are sensitive to small parts of the scene rather than the whole scene.
In other words, the cells act as local filters on the input and extract the local
correlation in the data.

The CNN learning process is divided into two general phases: feature engineer-
ing/learning and classification based on fully connected layers. To extract and learn
features, there are usually several convolution layers followed by pooling layers, and
in the final stage, fully connected layers (MLP) are employed. The output nodes of
convolution and pooling layers are grouped in a two-dimensional plane called a
feature map. The nodes of a plane are connected to a small area of each connected
plane of the previous layer. Each node of the convolution layer extracts features from
the input images by convolution operations on the input nodes.

The main task of the convolution layer is to detect features in local regions of
input common to the entire dataset. Using filters to detect features leads to the
production of a feature map. The pooling layer is used periodically between two
successive convolutional layers, and its task is to reduce the dimensions of the
feature map. In addition to extracting important features in the feature map, this
work reduces the computing capability required for data processing by reducing the
number of parameters. Pooling layers are two types: max pooling and average
pooling. Maximum pooling (or max pooling) calculates the maximum value for
each patch on the feature map, and average pooling calculates the average value for
each patch on the feature map. After using several different layers, the fully
connected layer at the end of the CNN network can be used to calculate desired
features and output scores. A fully connected layer in CNN works like a hidden layer
in MLP and performs a classification. Figure 2.7 shows the general architecture of
the CNN model.

If the input x for CNN is considered as three-dimensional m × m × r, m is the
height and width of the input, and r is the depth or the number of channels. In each
convolution layer, there are k filters (kernels) of size n × n × q. Here, n must be

smaller than the input m, but q can be smaller or equal to r. The filters are the basis of
the local connections, which share a similar bias (bk) and weight Wk parameters for
generating k feature maps (hk) (the size of each of the feature maps is m-n-1).

2.3 Deep Discriminative Models 41

Fig. 2.7 The general architecture of CNNs

As shown in Eq. (2.1), the convolution layer calculates a dot product between the
weights and its inputs, and the inputs are small regions of the original input volume.
Then, a non-linear activation function f is applied to the output of the convolution
layers:

hk = f Wk * xþ bk() ð2:1Þ

After that, in the subsampling layers, the number of samples of each feature map
is decreased to reduce the parameters in the network, speed up the training process,
and control overfitting. A pooling operation (e.g., average or maximum) is
performed on an adjacent p × p region (where p is the filter size) for all feature
maps. Finally, the layers of the final stage, which are fully connected, take the
previous low/middle-level features and generate a high-level abstraction of the
data. The last layer (e.g., softmax) can be used to generate classification scores,
where each score is the probability of a particular class for a given sample.

Softmax is an activation function that scales numbers/logits into probabilities.
The output of a softmax is a vector that specifies the probabilities of each possible
outcome or classes and the sum of probabilities in this vector is equal to one.
Mathematically, softmax is defined as Eq. (2.2):

Softmax yið Þ=
exp yið Þ

Pc
j= 1

exp yj
() ð2:2Þ

where Y represents the values from the neurons of the output layer and c is the
number of classes. The exponential acts as the non-linear function. Later, these
values are divided by the sum of exponential values in order to normalize and then
convert them into probabilities. It is worth mentioning that the softmax layer must
have the same number of nodes as the output layer.

42 2 Deep Learning Overview

CNN network parameters are learned by the backpropagation algorithm and
stochastic gradient descent algorithm optimization. The first phase is forward prop-
agation, where signals are propagated from the input to the output of the network. In
the last layer, the output of the cost function is compared with the actual value, and
error estimation is performed. In the second phase, the backpropagation algorithm is
used again to compensate for this error. However, the learning process in CNN is
more complicated compared to the MLP neural network because it consists of
different types of layers and the forward and backward propagation phases follow
special rules in each layer. Neurons in CNN have a common weight, unlike MLP,
where each neuron has a separate weight vector. This sharing of weights reduces the
total number of trainable weights.

In general, most deep convolutional neural networks are built on a key set of
essential layers, including convolution, subsampling, and fully connected layers.
Specific architectures typically consist of stacks of multiple convolution layers,
pooling layers, fully connected layers, and softmax layers in the network. Some
examples of these models are LeNet [18], AlexNet [19], VGGNet [20], NiN [21],
and All-CNN [22]. Other types and more efficient advanced architectures have been
proposed in recent years, including DenseNet [23], FractalNet [24], GoogLeNet with
inception units [25], and ResNets with residual layers [26]. The main components of
the structure (convolution and pooling) are almost identical in these architectures.
However, some topological differences are observed in modern deep learning
architectures.

It should be mentioned that deep CNN, AlexNet [19], VGGNet [20], GoogLeNet
[25], DenseNet [23], and FractalNet [24] architectures are generally more popular
than other architectures due to their success in object detection on various datasets.
Among all these architectures, some architectures, such as GoogLeNet and ResNet,
are specially designed for large-scale data analysis, while the VGG network is
considered a general architecture.

2.3.3 Recurrent Neural Network

Many of the data in the world are order-based and considered sequential, such as a
user’s transactions on an online sales Web site, stock prices in the stock market, and
movies viewed by a user on Netflix. To process this type of data, deep learning
methods should be used that can model the dependencies between data. Standard
neural networks and CNNs cannot process this data because they only take a fixed-
size vector as input and produce a fixed-size output. Second, these models operate
with a fixed number of computational steps (e.g., the number of model layers)
[27]. However, recurrent neural networks are unique because they can operate on
a sequence of input vectors over time. These networks remember the dependencies
between sequential data using hidden states (or memory) and do not consider the
data independent of each other [28].

ð
()

ð
()

2.3 Deep Discriminative Models 43

Fig. 2.8 RNN schematics
proposed by Elman and
Jordan

The main characteristic of RNN is that the recurrent units have hidden states that
are not only dependent on the current input of the network but also related to the
previous inputs. Different versions of RNN have been proposed by Jordan and
Elman [29, 30]. In Elman, the architecture uses the output of the hidden layers as
its input in addition to the normal inputs of the hidden layers. On the other hand, the
outputs of the output unit are used as its inputs to the hidden layer in the Jordan
network. RNN element model computations in the Elman model are according to
Eqs. (2.3) and (2.4):

ht = σh Whxt þ Rhht- 1 þ bhð Þ 2:3Þ
yt = σy Wyht þ by ð2:4Þ

Jordan RNN model computations are also according to Eqs. (2.5) and (2.6):

ht = σh Whxt þ Rhyt- 1 þ bhð Þ 2:5Þ
yt = σy Wyht þ by ð2:6Þ

In Eqs. (2.3), (2.4), (2.5), and (2.6), the parameter xt is the input vector, ht is the
hidden layer vector, yt is the output vector, W and R are the weight matrices, and b is
the bias vector. The difference between these models lies in the position of the loop
connection giving the recurrent property to the network. The high-level schematics
of Elman and Jordan models have been depicted in Fig. 2.8.

44 2 Deep Learning Overview

Fig. 2.9 The general architecture of RNNs

Fig. 2.10 Various architectures of RNN networks

Concluding from the above descriptions of the primary models of RNN, the
general architecture of RNNs is shown in Fig. 2.9. As mentioned in RNN, each state
depends on all previous computations by a recursive equation. An important effect
of this is to create memory over time, as states are based on previous steps.

The various architectures for RNNs are categorized as one-to-one, one-to-many,
many-to-one, and many-to-many [31], as shown in Fig. 2.10. In the one-to-one
architecture, an RNN input unit is mapped to a hidden unit and an output unit
(Fig. 2.10a). In the one-to-many architecture, one input unit of RNN is mapped to
several hidden units and several output units, which is an example of image
annotation. The input layer receives an image and maps it to multiple words
(Fig. 2.10b). In the many-to-one architecture, several RNN input units are mapped
to several hidden units and one output unit. A practical example of this architecture is
emotion classification, where the input layer receives multiple tokens from different
words of a sentence and maps them into a positive or negative polarity (Fig. 2.10c).
In the many-to-many architecture, several input units of the RNN are mapped to
several hidden units and several output units. A practical example of this architecture
is machine translation, where the input layer receives multiple tokens of source
language words and maps them to tokens of words in the target language (Fig. 2.10d,
e).

ð
()

ð

ð
()

ð
()

2.3 Deep Discriminative Models 45

From a theoretical point of view, RNNs can remember information for a long
time, but in practice, they only see a few previous steps and do not have long-term
memory. The standard RNN can hardly extract the long-term dependencies of the
data due to vanishing and exploding gradients. Indeed, RNNs suffer from the
problem of preserving the context for long-range sequences (think long sentences
or long speeches). The effect of a given input on the hidden layer (and thus the
output) either decays exponentially (vanishes) or blows and saturates (explodes) as a
function of time (or sequence length).

Several solutions to solve this problem of RNNs have been proposed in the past
few decades. Two possible effective solutions for this problem are, firstly, clipping
the gradient and scaling the gradient if the norm is too large and, secondly,
developing a better RNN model. Therefore, modified RNNs such as GRU and
LSTM have been proposed, which have solved these problems by adding a gate
function to the RNN network. In the following subsections, we briefly review GRU
and LSTM models.

2.3.3.1 LSTM

One of the improved types of RNN networks is the long short-term memory (LSTM)
model. LSTM was introduced to reduce the vanishing gradient problem and has
become one of the most popular RNN architectures to date [32]. The standard LSTM
has three gates, the forget gate ft, which specifies how much of the previous data is to
be forgotten; the input gate it, which evaluates the data to be stored in memory; and
the output gate ot, which decides how to calculate the output based on the available
data and information, calculated by the below equations:

it = σ Wixt þ Riht- 1 þ bið Þ 2:7Þ
f t = σ Wf xt þ Rf ht- 1 þ bf ð2:8Þ
ot = σ Woxt þ Roht- 1 þ boð Þ 2:9Þ

In Eqs. (2.7), (2.8), and (2.9), σ usually represents a sigmoid function, parameters
W and R are the weight matrices, and b is the bias vector that can be trained. LSTM
units are defined based on Eqs. (2.10)–(2.13):

 Ct = tan h Wcxt þ Rcht- 1 þ bcð Þ 2:10Þ
Ct = f t⨀Ct-1 þ it⨀ Ct ð2:11Þ

ht = ot⨀ tan h Ctð Þð Þ 2:12Þ
yt = σ Wyht þ by ð2:13Þ

46 2 Deep Learning Overview

Fig. 2.11 The internal structure of LSTM cell

In fact, the state of the candidate cell Ćt is calculated based on the input data xt and
the previous hidden state ht-1. Memory or current cell state Ct is obtained by using
forget gate ft, previous cell state Ct - 1, input gate it, and candidate cell state Ćt. The
sign ⨀ means to use element-wise multiplication. The output yt is calculated based
on the weights (Wy and by) corresponding to the hidden state ht. Figure 2.11 shows
the internal structure of the LSTM cell.

Over time, various types of LSTMs were developed in different research, such as
stacked LSTM [33, 34], bidirectional LSTM [35], convolutional LSTM [36], multi-
dimensional LSTM [37], graph LSTM [38], etc.:

. Stacked LSTM: In typical applications, the simplest method of increasing
network capacity and depth in the LSTM network is to stack LSTM layers
[33, 34]. A stacked LSTM network is the most basic and simplest LSTM network
structure, which can also be considered as a multilayer fully connected structure.

. Bidirectional LSTM: Normal RNNs can only use the previous context. To
overcome this problem, bidirectional RNN (B-RNN) was introduced by Schuster
and Paliwal (1997) [39]. This type of architecture can be trained in both temporal
directions simultaneously, with separate hidden layers (i.e., forward and back-
ward layers). Therefore, to propose bidirectional LSTM in [35], Graves and
Schmidhuber combined the B-RNN method with the LSTM cell and proposed
B-LSTM.

. Convolutional LSTM: The fully connected LSTM layer contains too much
redundancy for spatial data. Therefore, to perform a spatiotemporal sequence
prediction problem, convolutional LSTM (ConvLSTM) was proposed by Sainath
et al. [36], which uses convolutional structures in recurrent connections. The

ð
ð

Þ ð
Þ ð

()

ConvLSTM network uses the convolution operator to compute the next state of a
particular cell, and then the next state is determined by the inputs and past states
of its local neighbors.

. Multi-dimensional LSTM: Standard RNNs can only be used to deal with
one-dimensional data. Multi-dimensional LSTM for expanding the application
scope of RNNs was introduced by Graves et al. [37]. Its main idea was to create
recursive connections as large as the dimensions of the data. At each point in the
data sequence, the iterative layer L receives both the output of layer L-1 and its
activations from one step back in all dimensions. This means that the LSTM cells
in layer L have n forget gates in the n-dimensional LSTM network.

. Graph LSTM: An extended fixed topology of LSTM has been proposed by
Liang et al. to develop the graph LSTM network based on the graph RNN
network [38]. The LSTM graph model assumes that each superpixel node is
defined by its previous states and adaptive neighboring nodes. In this method,
instead of using a fixed starting node and a predefined update path for all images,
the starting node and the updating scheme of LSTM graph nodes are determined
dynamically.

2.3 Deep Discriminative Models 47

2.3.3.2 GRU

LSTM can learn better than the standard RNN. However, additional parameters
increase the computational complexity and load [40]. Therefore, gated recurrent unit
(GRU) was introduced by Chu et al. in 2014 [41]. GRUs alleviate the vanishing
gradient problem by using a mechanism similar to LSTM. GRUs are simpler than
LSTMs because they use one less gate and eliminate the need to distinguish between
hidden states and memory cells. This type of mechanism is widely used and popular
due to the simplicity of the model and reduced complexity and computational costs
compared to LSTMs. In this type of network, forget and input gates are combined to
create an update gate. On the other hand, cell and hidden states are also merged.

GRU has two update gates ut and reset gate rt. The ut gate sets the update rate of
the hidden state, and the rt gate decides how much past information is to be
forgotten. Equations (2.14)–(2.18) show the formulation of GRU:

ut = σ Wuxt þ Ruht- 1 þ buð Þ 2:14Þ
ut = σ Wuxt þ Ruht- 1 þ buð Þ 2:15Þ

h ′ t = tan h Whxt þ rt⨀ht-1ð ÞRh þ bhð 2:16Þ
ht = 1- utð Þ⨀ht- 1 þ ut⨀h ′ tð 2:17Þ

yt = σ Wyht þ by ð2:18Þ

Figure 2.12 shows the internal structure of the GRU cell.

48 2 Deep Learning Overview

Fig. 2.12 The internal structure of GRU cell

Several types of GRU have been developed in different research, such as bidi-
rectional GRU, stacked bidirectional GRU, convolutional GRU, etc. [42]:

. Bidirectional GRU: A bidirectional GRU or BiGRU is a sequential processing
model consisting of two GRUs. One takes the input in the forward direction and
the other in the backward direction. In BiGRU, both layers are independent;
however, they have the same input sequence, and the final outputs of the two
layers are connected. The forward layer reads the input sequence from left to
right, and the backward layer reads the input sequence in reverse order from right
to left. Each cell consists of two gates, reset and update, with two activation
functions.

. Stacked bidirectional GRU (stacked BiGRU): When different layers of BiGRU
are stacked next to each other, a stacked bidirectional GRU is created. The
stacked BiGRU was used to encrypt the information to get more detailed infor-
mation and features. Some data, like sentences, are directed, and stacked BiGRU
is one of the suitable options for processing these types of datasets.

. Convolutional GRU: This model is a type of GRU that combines GRUs with
convolution operations. Specifically, CNN-GRU extracts features through the
convolution layer and performs time series prediction by stacking multiple GRU
layers. Similar to other deep neural network models, the CNN-GRU training
method is implemented using backpropagation and gradient descent. The goal of
the training process is to reduce the root mean square error.

2.4 Deep Generative Models 49

2.4 Deep Generative Models

Generative models are considered a type of deep learning model whose goal is to
learn how to generate new samples from the same training dataset [43]. During the
training phase, a generative model attempts to solve a density estimation problem. In
density estimation, the model learns to make an estimate as close as possible to the
unobserved probability density function. Furthermore, the generative model should
be able to create new distribution samples in addition to processing existing samples.
Generative models should recognize the distributions and basic features of the data
to reconstruct or generate similar samples and learn them efficiently. A model
capable of generating new samples can be said to have learned and comprehended
a concept without training. For this reason, these models are classified as
unsupervised models.

Deep generative models are neural networks with many hidden layers that are
trained for complex estimation and high-dimensional probability distributions
[44]. The most important goal of training this type of model is to learn intractable
or unknown statistical distributions from a few independent samples that are uni-
formly distributed. After successful training, deep generative methods can be used to
estimate the likelihood of a specific sample and create new samples similar to the
unknown distribution.

Deep generative learning models are used by researchers in various domains due
to their high flexibility in statistical distributions and their high capacity to learn
non-linear representations. The most important examples of generative models are
autoencoders (AE), generative adversarial networks (GAN), and models based on
Boltzmann machines such as restricted Boltzmann machines (RBM), deep belief
networks (DBN), and deep Boltzmann machines (DBM). Each of these models is
described below in separate subsections.

2.4.1 Autoencoders

An autoencoder is an unsupervised deep learning method that learns how to effi-
ciently compress and encode data and then reconstructs the data from a reduced
encoded representation to one that is similar to the original input [45]. Autoencoders
provide a method for automatically learning features from unlabeled data, which
enables unsupervised learning. This neural network model applies backpropagation
and sets the target values (outputs) equal to the inputs. Recently, the theoretical
bridge between autoencoders and latent variable models has transferred
autoencoders to the forefront of generative modeling.

In the autoencoder, in addition to the input, a layer with lower dimensions than
the input and output is considered in the middle of the structure, which forces the
autoencoder not only to transfer the input into the output but also to create a
compressed version of the input in hidden layers which is called representation or

code. The autoencoder includes layers such as the input, hidden, and output layers.
Combining the input layer and the hidden layer creates an encoder, and combining
the hidden layer and the output layer creates a decoder. The encoder compresses the
input and generates the code, and the decoder reconstructs the input based on the
code. Encoder and decoder are feedforward neural networks placed symmetrically in
the autoencoder structure in most cases. The hidden layer is a layer with the
appropriate dimensions, according to the designer. Notably, the number of neurons
in the hidden layer is a hyperparameter. Figure 2.13 shows the general architecture of
an autoencoder.

50 2 Deep Learning Overview

Fig. 2.13 The general architecture of autoencoders

In the autoencoder, the input x is encoded in a low-dimensional space and then
decoded by reconstructing x́ from the corresponding input [46]. Assuming a hidden
layer, the encoding and decoding processes of an autoencoder are shown in
Eqs. (2.18) and (2.19), respectively. The encoding and decoding weights are denoted
as W and W , and the objective is to minimize the reconstruction error. x = {x1,
x2, . . ., xn} is the input of the autoencoder with high dimensions, and its encrypted
representation is considered as h = {h1, h2, . . ., hd}. Equation (2.19) shows the
conversion of the input to the encoded representation:

ð

2.4 Deep Generative Models 51

h= f Wxþ bð Þ 2:19Þ

In Eq. (2.19), f is the activation function, W is the weight matrix, and b is the bias
vector. The decoder reconstructs the encrypted representation of the hidden layer and
reaches data x́= x́1, x́2, . . . , x́nf g using the g function. This decoder function is
calculated using Eq. (2.20):

x́= g W hþ b́() ð2:20Þ

In the above equation, g is the activation function, W is the weight matrix, and
b is the bias vector. Functions f and g are usually non-linear activation functions such
as the tanh and sigmoid that help the autoencoder to learn more important and useful
features than the PCA method by minimizing the reconstruction error between x and
x́ and obtaining the d-dimensional representation of the input data.

To train an autoencoder, several parameters that affect the performance of the
model must be set beforehand. These parameters include the type of optimizer,
dropout, hidden layer size, number of layers, and cost function [47]. A type of
optimizer that has a high speed and can handle high-volume data with low memory
consumption should be selected. Dropout is also only used during training and then
automatically disabled during execution. The size of the hidden layer is the number
of nodes in the middle or hidden layer, and the number of layers determines the size
of the required encoder and decoder layers. Autoencoders can be divided into deep
and shallow networks depending on the number of hidden layers. The number of
nodes in these layers should also be determined. The cost function evaluates the
neural network training process. The cost function in the autoencoder is the mean
square error or cross-entropy. Different types of autoencoders have been presented in
research, which include sparse autoencoder [48], denoising autoencoder [49], con-
tractive autoencoder [47], convolutional autoencoder [50], and variational
autoencoder [51], which are briefly explained in the following subsections.

2.4.1.1 Sparse Autoencoder

The purpose of sparse autoencoders is to extract sparse features from raw data.
Sparsity can be obtained either by penalizing hidden unit biases or directly by
penalizing the output of hidden unit values. In this type of neural network, the
number of hidden layer cells is greater than the number of input/output layer cells.
Sparse representations have several benefits, including (1) the use of representations
with large dimensions increases the probability that different categories can be
separated easily, (2) sparse representations provide a simple interpretation of com-
plex input data, and (3) biological vision uses sparse representations in primary
visual areas.

The idea of this type of autoencoder is that a neuron is activated only for some
training samples. Since the samples have different features, the activation of neurons

ð

should not be done by the same method. The goal is a latent representation in which
many elements in the representation are zero so that the most salient features are
shown.

52 2 Deep Learning Overview

If g(h) is the decoder output, h = f(x) is the encoder output, and ε(h) is the sparsity
penalty, then the loss function of the sparse autoencoder is as follows:

L x, g f xð Þð Þð Þ þ ε hð Þ ð2:21Þ

In Eq. (2.21), sparsity penalty ε(h) is based on the following logarithmic function:

ε hð Þ=
Xd
j= 1

KL p
||||||ṕj

()
ð2:22Þ

In Eq. (2.22), KL p jj ṕj
)(
is the Kullback-Leibler (KL) divergence between a

Bernoulli random variable with mean p and a Bernoulli random variable with mean
ṕj, and d is the number of neurons in the hidden layer.

The general architecture of the sparse autoencoder is shown in Fig. 2.14.

2.4.1.2 Denoising Autoencoder

In the denoising autoencoder, instead of adding a penalty to the loss function, it is
possible to train the autoencoder with useful information by changing the recon-
struction error of the loss function. This can be done by intentionally adding some
noise to the input layer. By entering these noise values, the denoising autoencoder
creates a corrupted copy of the input. A denoising autoencoder tries to improve the
representation (to extract useful features) by changing the reconstruction measure. In
other words, corrupted data are received as inputs and trained to recover the input
without distortion and the original error as outputs. This is done by minimizing the
average reconstruction error on the training data, i.e., removing the corrupted input
or removing the noise. The input in this network is a corrupted version ~x 2 Rn of the
original input x 2 Rn . This autoencoder does not simply copy the input to the output
but denoises the data and then constructs the input from the corrupted version.
According to Eq. (2.23), this autoencoder minimizes the error on the corrupted
input as follows:

L x, g f ~xð Þð Þð Þ 2:23Þ

In Eq. (2.23), g f ~xð Þð Þ is the output of the decoder, and f ~xð Þ is the encoded output
of the corrupted input. Therefore, in the field of computing, denoising autoencoders
can be considered potent filters that can be used for automatic preprocessing. For
example, an automatic denoising encoder can be used to automatically preprocess an
image, thereby increasing its quality for an accurate detection process. The general
architecture of this type of autoencoder is shown in Fig. 2.15.

2.4 Deep Generative Models 53

Fig. 2.14 The general architecture of sparse autoencoders

2.4.1.3 Contractive Autoencoder

This type of autoencoder is the further development of the denoising autoencoder,
and both motivations are the same for robust learning of data representations. While
the denoising autoencoder strength is the mapping operations by injecting noise into
the training set, the contractive autoencoder achieves this by adding an analytic
contractive penalty to the reconstruction error function. A denoising autoencoder
with small corruption noise can be considered as a type of contractive autoencoder
where the contractive penalty is on the whole reconstruction function instead of the
encoder. Both the contractive and denoising autoencoder were successfully used in

the transfer learning competition in an unsupervised mode. This is achieved by
adding a penalty to the loss function, as shown in Eq. (2.24):

54 2 Deep Learning Overview

Fig. 2.15 The general architecture of denoising autoencoders

L x, g f xð Þð Þð Þ þ ε hð Þ ð2:24Þ

In the above equation, g(f(x)) is the output of the decoder, f(x) is the output of the
encoder, and ε(h) is the sum of the square elements of the Jacobian matrix. In fact,
this penalty is the sum of the squared elements of the Jacobian matrix of the partial
derivatives of the encoder function, which is computed according to Eq. (2.25):

ε hð Þ= λ
∂f xð Þ
∂x

||||||||
||||||||
2

F

ð2:25Þ

In Eq. (2.25), the parameter λ is a hyperparameter used to control the regulariza-
tion strength. The final result is a reduction in the sensitivity of the learned repre-
sentation to the training input.

2.4 Deep Generative Models 55

Fig. 2.16 The general architecture of convolutional autoencoders

2.4.1.4 Convolutional Autoencoder

The convolutional autoencoder extends the basic structure of the simple autoencoder
by changing the fully connected hidden layers into convolutional layers. Similar to
the simple autoencoder, the size of the input layer is the same as the output layer, but
the encoder network is changed to convolution layers and the decoder network to
transposed convolution layers (deconvolution). To extract the structural features of
multi-dimensional data such as images, convolutional neural networks provide a
better architecture. In addition, they can be stacked such that each convolutional
autoencoder takes the latent representation of the previous convolutional
autoencoder for higher-level representations. The difficult part of this autoencoder
is on the decoder side of the model. During encoding, data sizes are reduced by
subsampling with average or maximum pooling. Both operations result in data loss
that is difficult to recover during decoding. The convolutional autoencoder allows
the model to learn optimal filters to minimize the reconstruction error. Once these
filters are learned, they can be applied to any input to extract features. Therefore,
these features can be used to perform any task that requires a compressed represen-
tation of the input. Figure 2.16 shows the general architecture of this type of
autoencoder.

2.4.1.5 Variational Autoencoder

A variational autoencoder is a type of autoencoder with additional constraints on the
encoded representations being learned. More precisely, this autoencoder learns a
latent variable model for its input data. Therefore, instead of the neural network
learning an arbitrary function, in the variational autoencoder, the parameters of the
probability distribution model its own data. If the points of this distribution are
sampled, it produces new input data samples. Because of this, variational
autoencoders are considered generative models.

Variational autoencoders attempt to decode encodings that come from a known
probability distribution to produce appropriate outputs, even if they are not real data
encodings. In variational autoencoders, instead of mapping the input to a fixed
vector, the input is mapped to a distribution. Therefore, the important difference
between this type of autoencoder and other types is that the bottleneck (hidden)
vector is replaced by the mean vector and the standard deviation vector and then the
sampled latent vector is considered as the real bottleneck. This is very different from
the conventional autoencoder, where the input directly generates a latent vector.

Based on these features, the major applications of variational autoencoders are to
reduce data dimensions and learn representations from them.

56 2 Deep Learning Overview

The function of this autoencoder is to take the input to provide two vectors of size
n: the mean vector and the standard deviation vector. By using mean and standard
deviation, we can generate samples with a normal distribution that corresponds to
Eq. (2.26):

F xð Þ=
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
- x- μð Þ2

2σ2 ð2:26Þ

In Eq. (2.26), μ and σ are the mean and standard deviation for a random number
Xi. After that, the obtained encoded data are passed to the decoder. New samples
added to the distribution expand the space for further sample generation. On the
other hand, the decoder learns that the samples are not generated from a single point
but follow a distribution in the continuous latent space. During decoding, each latent
feature is sampled to generate a sample vector and then sent to the decoder. In this
way, a slight change in the input leads to an accurate reconstruction of the output.
Statistically, this method uses Bayesian theory. If z samples are generated from
x observations, the probability of z given x is calculated as pθ(z| x), which is the true
posterior distribution of the latent space. Computing the posterior pθ(x) for each data
sample x is expensive, so to limit the space for a faster search process, the variational
autoencoder uses the approximate inference of the tractable posterior distribution,
which is provided by the encoder function via qφ(z| x).

To ensure that both pθ(z| x) and qφ(z| x) are similar, the divergence between them
should be minimized. To determine the value of the distance between these two
distributions, the difference measurement can be obtained with the help of the
Kullback-Leibler divergence. The divergence, according to Eq. (2.27), is measured
as KL divergence and always has a non-negative value:

DKL = qφ zjxð Þ k pθ zjxð Þ() ð2:27Þ

The loss function consists of two expressions, one related to reconstruction errors
and the other related to KL divergence. The loss function is calculated using
Eq. (2.28):

Ez-qφ zjxð Þ log pθ xjzð Þ½]-DKL qφ zjxð Þ k pθ zð Þ()
= -ELBO≤ log pθ xð Þ ð2:28Þ

Figure 2.17 shows the general architecture of the variational autoencoder.

2.4.2 Generative Adversarial Networks

The generative adversarial network (GAN) is a deep learning approach proposed by
Goodfellow in 2014 [52]. GANs provide an alternative approach to techniques based
on maximum likelihood estimation. GAN is an unsupervised deep learning approach
where two neural networks compete in a zero-sum game. One of these networks is a

ð

generator, and the other is a discriminator. These two networks have an adversarial
relation; each is defined as follows:

. Generator: A neural network that takes a random noise vector as input and
transforms it into a distribution model.

. Discriminator: A neural network that distinguishes between output data (fake)
and training data samples (real). It acts like a classifier and decides whether the
input is real or fake. These two neural networks try to work against each other.
The generator learns to transform a random noise vector into a distribution model
at these weight settings.

2.4 Deep Generative Models 57

Fig. 2.17 The general architecture of variational autoencoders

For example, in image generation, the generator network starts generating images
with Gaussian noise, and the discriminator network determines how good the
generated images are. This process continues until the outputs of the generative
network are close to the real input samples. Figure 2.18 presents the general
architecture of GAN models.

The generator and discriminator network in GAN are two players playing the
min-max game with the function V (D, G), which can be expressed as Eq. (2.29):

min
G

max
D

V D,Gð Þ=Ex logD xð Þ½] þ Ez log 1-D G zð ÞÞð Þð]½ 2:29Þ

In this regard, G and D represent the generator and the discriminator model,
respectively, Ex is the expected value over all real data instances, and Ez is the
expected value over all random inputs to the generator (the expected value over all
generated fake instances G(z)). In practice, this equation may not provide adequate
gradients to learn G (started from Gaussian random noise) in the initial stages. At the
initial stages, D can reject samples because they are clearly different compared to the

58 2 Deep Learning Overview

F
ig
. 2

.1
8

T
he
 g
en
er
al
 a
rc
hi
te
ct
ur
e
of
 G

A
N
s

training samples. In this case, the log(1 - D(G(z))) expression will be saturated.
Instead of training G to minimize log(1-D(G(z))),G can be trained to maximize log
(G(z)), which provides much better gradients at the initial stages of learning.

2.4 Deep Generative Models 59

In general, the GAN network is designed for unsupervised learning tasks, but it
has also proven to be a better solution for semi-supervised and reinforcement
learning depending on the nature of the problem [53]. GANs are also used in transfer
learning research to apply the alignment of the latent feature space. The application
areas of GANs include healthcare, image analysis, data augmentation, video gener-
ation, audio generation, traffic control, cyber security, and many other evolving
applications. Overall, GANs have established themselves as a comprehensive
domain of data-independent expansion and a solution to problems requiring a
generative approach.

2.4.3 Boltzmann Machines

Boltzmann machines (BMs) are undirected networks consisting of many nodes
connected to each other through weighted connections [54]. BMs represent a class
of unsupervised neural networks that do not attempt to minimize loss or achieve a
goal; instead, they generate data to form a system (usually a probability distribution)
similar to the original system [55]. Figure 2.19 shows the general architecture of
BMs, where visible and hidden nodes are selected and visible nodes are used as input
and output. Because, after feeding the visible nodes through contrastive divergence,
which uses Gibbs’ sampling, the visible nodes iteratively feed the hidden nodes
through weights. Instead, hidden nodes feed visible nodes. In this figure, gray nodes
are hidden, and white nodes are visible.

In this model, each node communicates with every other node, and the whole
model works as a system to create a generative network. Therefore, it can make its
own data based on what it learned by fitting it into a dataset. The visible nodes in
Boltzmann machines can be interacted with, but not with the hidden ones. Another
distinction is that there is no training process. The nodes learn how to model the
dataset as best as possible, turning the Boltzmann machine into an unsupervised
deep learning model.

If the units are updated sequentially in any order that does not depend on their
total inputs, the network will finally reach a Boltzmann distribution. The probability
of a state vector, v, is only determined by its “energy” relative to the energies of all
possible binary state vectors u, which can be calculated using Eq. (2.30):

P vð Þ= e-E vð Þ=
X
u
e-E uð Þ ð2:30Þ

As in Hopfield nets, the energy of state vector v is defined as Eq. (2.31):

60 2 Deep Learning Overview

Fig. 2.19 The general architecture of Boltzmann machines

E vð Þ=
X
i

sv i bi -
X
i< j

sv i s
v
j wij ð2:31Þ

where sv i is the binary state assigned to unit i by state vector v.
However, Boltzmann machines are not necessarily practical and suffer from

problems when the network becomes larger. Therefore, different types of Boltzmann
machines have been proposed, applicable in various domains, such as restricted
Boltzmann machines (RBM) [56], deep Boltzmann machines (DBM) [57], and deep
belief networks (DBN) [58], which are discussed and reviewed in the following
subsections.

2.4.3.1 Restricted Boltzmann Machine

In practice, it is not easy to sample every iteration when all nodes are connected to
every other node. Hence, the restricted Boltzmann machine was proposed
[56]. RBM is similar to BM, but the main difference is that RBM consists of only
two layers: the input layer and the hidden layer. Its architecture is similar to the
artificial neural network model, so the RBM layers are like the first two layers of an

ANN. However, for the layers, there is a restriction that none of the nodes within the
layer are connected to each other. RBM is Boolean/Bernoulli if each node outputs a
binary value. Figure 2.20 shows the architecture of RBM.

2.4 Deep Generative Models 61

Fig. 2.20 The general architecture of RBMs

RBMs (and BMs), in general, are energy-based models where the joint configu-
ration energy of visible and hidden nodes E(v, h) is calculated based on Eq. (2.32):

E v, hð Þ=
X

i2visible
pivi -

X
j2hidden

qihi -
X
i

X
j

viwi,jhj ð2:32Þ

In the above equation, vi and hi are the states of visible node i and hidden node j, pi
and qi are their biases, and wi, j shows the weight between them. RBM uses
Eq. (2.33) to determine the probability between each pair of hidden and visible
vectors:

p u, hð Þ=
e-E v,hð Þ

P
v, h

e-E v,hð Þ ð2:33Þ

Using the contrastive divergence method, the lowest energy state is obtained by
adjusting the weights. RBMs are used in the fields of dimensionality reduction,
classification, regression, collaborative filtering, feature learning, topic modeling,
etc. In general, RBMs can automatically recognize patterns in data and develop
probabilistic or stochastic models, which are used to select or extract features.

2.4.3.2 Deep Belief Network

A deep belief network (DBN) is a multilayer generative graphical model that stacks
and sequentially connects several individual unsupervised networks such as AE or
RBM [58]. This type of network uses the hidden layer of each network as input for
the next layer. One of the most important advantages of DBN, in contrast to
conventional shallow learning networks, is the capability to detect deep patterns,

which allows to reason and identify the deep differences between normal and noisy
data [59].

62 2 Deep Learning Overview

Fig. 2.21 The general architecture of DBNs

Considering that DBNs are extensions of RBMs, however, training DBNs is not
simple because there is a phenomenon called “explaining away” in Bayesian net-
works, which happens when hidden variables are inferred in hidden layers. The
reason for this is the intractability of the posterior distribution on the hidden vari-
ables. Explaining away happens when a cause of an effect completely explains the
effect, which reduces the chance that other causes are involved. Markov chain Monte
Carlo can be used to sample these intractable posterior distributions, but it is very
time-consuming. Another problem with training DBNs is when the prior is assumed
to be independent of the deepest hidden layer with initial random weights. To train
DBNs faster and more efficiently, it is necessary to remove the “explaining away”
effect and prior independence [55].

In deep belief networks, the training method is started with the first RBM, then
the hidden layer plays the role of the visible layer of the second RBM, and the second
RBM is trained. This process continues until each model layer is trained. Figure 2.21
shows the general architecture of a DBN with three hidden layers.

A continuous DBN is also simply an extension of a standard DBN that allows a
continuous range of decimals instead of binary data. In general, the DBN model can
play a key role in several high-dimensional data applications due to its effective
feature extraction and classification capabilities and has become one of the important
topics in the domain of neural networks [6].

2.4 Deep Generative Models 63

2.4.3.3 Deep Boltzmann Machine

The RBM model can only learn a simple representation of the data. By increasing its
hidden layers, it should be possible to build a deep architecture to extract the
complex features of the input data. The deep Boltzmann machine (DBM) model is
a deep generative model that has one visible layer and several hidden layers
[57]. The general architecture of DBM is shown in Fig. 2.22.

The main difference between DBMs and DBNs is that in DBMs, all connections
are undirected. DBMs are also used to capture hidden complex fundamental features
in data, making them suitable for tasks such as speech and object recognition.
DBMs, unlike DBNs, first use an approximate inference method with an additional
bottom-up pass to speed up learning and incorporate top-down feedback, which
makes the DBM deal well with ambiguous inputs.

The traditional process of training BMs uses a random start to approximate the
gradients of the likelihood function for the input data, which is not the fastest
approach. To deal with this, Salakhutdinov et al. proposed a variational technique
using mean field inference to estimate the expectations associated with the data with
a Markov chain-based estimation method to estimate the model’s expected statistics
[57]. The method involves Markov chains that initialize the weights to appropriate
values to facilitate joint learning of all layers. However, it is costly compared to DBN
pre-training, where inference is performed via a bottom-up pass. Therefore, the
inference of DBMs is accelerated using detection weights.

Fig. 2.22 The general
architecture of DBMs

64 2 Deep Learning Overview

2.5 Graph-Based Models

Basic types of neural networks can only be implemented using regular or Euclidean
data. Deep learning effectively detects hidden patterns in Euclidean data, while
many data in the real world have a non-Euclidean graph structure. The number of
problems in which data is represented in the form of graphs is increasing, such as
graph/node classifications, community detection, link prediction, influencer identi-
fication, and much more.

Graphs are a type of data structure that models a set of objects (nodes) and their
relations (edges). Recently, research on graph analysis with machine learning has
received more and more attention due to the high representation power of graphs
[60]. As a unique non-Euclidean data structure for machine learning, graph analysis
focuses on different types of tasks. It should be mentioned that graph datasets are
different from other datasets, such as text, image, audio, etc.

Graph-based models have the following unique characteristics:

. Irregular domains: It is possible to represent irregular domains or
non-Euclidean data in graphs, while other datasets, such as images and audio,
can be easily represented in a Euclidean plane or grid structure.

. Non-static structure: Graphs are a tool for representing complex systems.
Therefore, they have different types, such as homogeneous, non-homogeneous,
signed, unsigned, etc., and they may be node-oriented, graph-oriented, or edge-
oriented. One of the most widely used methods of graph representation is the use
of proximity. Matrices that change shape after nodes are added or removed. This
is why conventional machine learning models cannot handle adjacency matrices
directly.

. Scalability and parallelization: Big data is a problem in the era of an abundance
of computing tools. As a result, the generated graphs may have millions of nodes
and billions of edges. The second problem is how to parallelize the algorithms
because each node in the graph contains information about other nodes in the
graph, that is, nodes have relations with other nodes that should not be lost.

. Domain-specific knowledge: Graph learning may require specific knowledge of
the domain that may help to make better predictions. Other additional information
may also be useful to detect a new target or feature.

Graph neural networks (GNNs) are deep learning-based methods that operate on
the graph domain. Early studies on GNNs and their concept were done by Scarselli
et al. [61]. Based on the concepts of GNNs, many deep learning graph-based models
such as graph convolutional networks (GCN) [62], graph attention networks (GAT)
[63], and gated graph sequence neural networks (GGS-NN) [64] (a combination of
GNN and a type of RNN) have been developed and used in various research.

GCNs are a class of neural networks that use convolution operations to extract
meaningful statistical patterns from graph data and are capable of efficient imple-
mentation with minimal training [62]. In GAT, it is assumed that the influence of
neighbors is not only not the same but also not pre-determined by the graph

structure, so it differentiates the contribution of neighbors using the attention
mechanism. In GGS-NN, the recurrent function is executed several times on all
nodes in the aggregation phase and GRUs are adapted for updating purposes. In
addition to graph neural networks, GCNs have been used in session-based recom-
mender system in various articles, which are discussed below in the following
subsections.

2.5 Graph-Based Models 65

2.5.1 Graph Neural Network

Graph neural networks (GNNs) are a set of methods that apply deep neural networks
to graph-structured data. Classical deep neural networks cannot be easily extended to
graph-structured data because the graph structure is not a regular network. The study
of graph neural networks started in the early twenty-first century when the first GNN
model was proposed for node- and graph-centric tasks [61]. A graph neural network
is a type of neural network whose input data is a graph and learns to present the
features of each node. Furthermore, generated features can be used to solve any
graph-related problem, such as node classification, graph classification, and cluster-
ing. Graph neural networks can be considered as a process for learning a represen-
tation of data on a graph. GNNs focus on learning efficient features for each node to
facilitate node-centric tasks. For graph-centric tasks, they learn features for the entire
graph, where node feature learning is usually performed as an intermediate step. The
node feature learning process usually uses both the input node features and the graph
structure [65].

In the node classification problem, each node is characterized by its features xi
and is labeled lv. In the graph classification problem, a set of nodes are associated
with the label li. By learning the features of nodes i, the graph neural network can
predict the labels of unknown nodes i. It learns to represent each node with a
d-dimensional vector vi. The vector vi contains information about the neighbor
nodes of node i, which is presented in Eq. (2.34) [66]:

Vi = f Xi,Xco i½],Vne i½],Xne i½]
() ð2:34Þ

In Eq. (2.34), Xco[i] represents the features of edges adjacent to node i, and f is a
transfer function (feedforward neural network) that outputs the d-dimensional vec-
tor. The above formula can be solved using the neighborhood aggregation theorem
and iteratively rewritten as Eq. (2.35):

Vtþ1 =F Vt ,Xð Þ ð2:35Þ

The output transfer function Oi is applied to obtain the final vector with low
dimensions as Eq. (2.36):

66 2 Deep Learning Overview

Oi = g Vi,Xið Þ ð2:36Þ

Other hidden parameters are learned by applying the loss function between the
predicted output Oi and the actual labels li.

2.5.2 Graph Convolutional Network

Graphs, which represent entities and their relations, are everywhere in the real world,
such as social networks, traffic networks, knowledge graphs, molecular structures,
etc. Recently, many studies have focused on developing deep learning approaches
for graph data, leading to the rapid development in the domain of graph neural
networks. Moreover, graph convolutions adopt a neighborhood integration
(or message passing) scheme to learn representations of nodes by considering
node features and graph topology information together, among which the most
prominent method is graph convolutional networks (GCNs) [62]. Similar to
convolutional neural networks that help speed up learning and increase accuracy
with hierarchical data processing, graph convolutional networks are also meant to do
the same thing but on graph data. Graph convolutional networks are a group of
powerful neural networks that use convolution operations to extract meaningful
statistical patterns from graph data and can perform efficiently with minimal training.
In fact, they are so powerful that even a graph convolutional network with two
randomly initialized layers can obtain a useful representation of node features. In
general, graph convolutional networks find a new representation of each graph
vertex with the integrity of the features of its neighbors.

Differentiating, pooling, and flattening are the functions that are utilized in
convolutional graph networks. These three functions are important for the perfor-
mance of this type of network and are common to all graph convolutional networks.
A filter is a function that limits the number of cells to be considered at a time. The
pooling function produces output for all values in a specified range at once, based on
a function of maximum, average, etc. The flattening function transforms the network
structure into a lower-dimensional vector whose outputs can be used as inputs to
feedforward neural networks.

The node representation after a single layer of GCN can be defined as Eq. (2.37):

H = f ~D
- 1
2 Aþ Ið Þ~D

- 1
2

()
XW

()
ð2:37Þ

In the above equation, W 2 ℝd × d includes the network parameters, A is the node
adjacency, ~Dii =

P
j

Aþ Ið Þij, and f is an activation function. The representation of

the node v after k layers can be written as Eq. (2.38):

2.6 Conclusion 67

Fig. 2.23 The general architecture of GCNs

hv = f
X

u2N vð Þ
Wk hk u þ bk()

0
@

1
A, 8v 2 V ð2:38Þ

where Wk and bk represent the weight and bias parameters of GCN layer, respec-
tively. N(v) includes the nodes’ neighborhood of v in graph G including v, and hv is
the representation of node v.

In the past decades, researchers have worked on how to perform convolutional
operations on graphs. One approach is to define graph convolutions from a spectral
point of view and another from a spatial point of view. Briefly, spectral graph
convolutions are defined based on the Fourier transform of the graph, corresponding
to the 1D Fourier transform. In this way, spectral-based graph convolutions can be
computed by taking the inverse Fourier transform of the product between two
Fourier transform signals. On the other hand, spatial graph convolutions can also
be defined as the aggregation of node representations from neighbor nodes. This
perspective is very effective for graph convolutional networks [67]. In general, graph
convolutional network models are a type of neural network architecture that can
convolutionally collect graph structure and node information from neighborhoods.
Figure 2.23 shows the general architecture of graph convolutional networks.

2.6 Conclusion

Deep learning is a relatively new topic, defined as a set of layers that perform
non-linear processing to learn different levels of data representation. For decades,
researchers have been trying to discover patterns and data representations from raw
data based on machine learning methods. Unlike conventional machine learning and
data mining approaches, deep learning can generate very high-level data represen-
tations from huge amounts of raw data. Therefore, it is a solution for many real-

world applications. The evaluation results of deep learning methods and their
comparison with the results of other methods show the capabilities of deep learning
in different scopes.

68 2 Deep Learning Overview

In this chapter, first, an overview of the history and concepts of deep learning was
presented, and the characteristics of deep learning and machine learning were
compared. Then, a taxonomy of deep learning models was presented, in which
they were divided into three general categories: discriminative, generative, and
graph-based models. Finally, the fundamental models of these three categories
were briefly discussed.

References

1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. https://
www.deeplearningbook.org

2. Merima Kulin, Carolina Fortuna, Eli De Poorter, Dirk Deschrijver, and Ingrid Moerman. "Data-
driven design of intelligent wireless networks: An overview and tutorial." Sensors 16, no.
6 (2016): 790. https://doi.org/10.3390/s16060790

3. Vasant Dhar. "Data science and prediction." Communications of the ACM 56, no. 12 (2013):
64-73. https://doi.org/10.1145/2500499

4. Paul Fergus, and Carl Chalmers. Applied Deep Learning: Tools, Techniques, and Implemen-
tation. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-04420-5

5. Sergey I. Nikolenko. Introduction: The Data Problem. In: Synthetic Data for Deep Learning.
Springer Optimization and Its Applications 174, (2021). https://doi.org/10.1007/978-3-030-
75178-4_1

6. Iqbal H. Sarker. "Deep learning: a comprehensive overview on techniques, taxonomy, appli-
cations and research directions." SN Computer Science 2, no. 6 (2021): 420. https://doi.org/10.
1007/s42979-021-00815-1

7. Andrew Ng, and Michael Jordan. "On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes." Advances in neural information processing systems
14 (2001). https://dl.acm.org/doi/abs/10.5555/2980539.2980648

8. Volodymyr Kuleshov, and Stefano Ermon. "Deep hybrid models: Bridging discriminative and
generative approaches." In Proceedings of the Conference on Uncertainty in AI (UAI). Sydney,
Australia, August 12-14, 2017.

9. Li Deng, and Navdeep Jaitly. "Deep discriminative and generative models for speech pattern
recognition." In Handbook of pattern recognition and computer vision, pp. 27-52. 2016. https://
doi.org/10.1142/9789814656535_0002

10. Yoshua Bengio, Aaron Courville, and Pascal Vincent. "Representation learning: A review and
new perspectives." IEEE transactions on pattern analysis and machine intelligence 35, no.
8 (2013): 1798-1828. https://doi.org/10.1109/TPAMI.2013.50

11. Léon Bottou. "Large-scale machine learning with stochastic gradient descent." In Proceedings
of 19th International Conference on Computational Statistics Paris France, August 22-27, 2010
Keynote, Invited and Contributed Papers, pp. 177-186. Physica-Verlag HD, 2010. https://doi.
org/10.1007/978-3-7908-2604-3_16

12. Dong C. Liu, and Jorge Nocedal. "On the limited memory BFGS method for large scale
optimization." Mathematical programming 45, no. 1-3 (1989): 503-528. https://doi.org/10.
1007/BF01589116

13. Diederik P. Kingma and Jimmy Lei Ba. “Adam: a Method for Stochastic Optimization”.
International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015,
page 1-13. https://arxiv.org/pdf/1412.6980.pdf

https://www.deeplearningbook.org
https://www.deeplearningbook.org
https://doi.org/10.3390/s16060790
https://doi.org/10.1145/2500499
https://doi.org/10.1007/978-3-031-04420-5
https://doi.org/10.1007/978-3-030-75178-4_1
https://doi.org/10.1007/978-3-030-75178-4_1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://dl.acm.org/doi/abs/10.5555/2980539.2980648
https://doi.org/10.1142/9789814656535_0002
https://doi.org/10.1142/9789814656535_0002
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://arxiv.org/pdf/1412.6980.pdf

References 69

14. Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. "SGD: General analysis and improved rates." International conference on machine
learning, Long Beach, CA, USA, Jun 10-15, 2019 pp. 5200-5209. PMLR, 2019. https://doi.org/
10.48550/arXiv.1901.09401

15. John Duchi, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning
and stochastic optimization." Journal of machine learning research 12, no. 7 (2011). https://jmlr.
org/papers/v12/duchi11a.html

16. Matthew D. Zeiler. "Adadelta: an adaptive learning rate method." arXiv preprint
arXiv:1212.5701 (2012). https://doi.org/10.48550/arXiv.1212.5701

17. Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. "Activation functions in
deep learning: A comprehensive survey and benchmark." Neurocomputing (2022). https://doi.
org/10.1016/j.neucom.2022.06.111

18. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning
applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
https://doi.org/10.1109/5.726791

19. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Communications of the ACM 60, no. 6 (2017): 84-90. https://
doi.org/10.1145/3065386

20. Karen Simonyan, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014). https://doi.org/10.48550/arXiv.
1409.1556

21. Min Lin, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint
arXiv:1312.4400 (2013). https://doi.org/10.48550/arXiv.1312.4400

22. Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and M. Riedmiller. "Striving for
Simplicity: The All Convolutional Net." In ICLR (workshop track). 2015.

23. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely
Connected Convolutional Networks." In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, USA, July 21-26, 2017 pp. 2261-2269. https://doi.
org/10.1109/CVPR.2017.243

24. Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. "FractalNet: Ultra-Deep Neural
Networks without Residuals." In International Conference on Learning Representations ICLR
2017, Toulon, France, April 24-26, 2017. https://doi.org/10.48550/arXiv.1605.07648

25. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolu-
tions." In Proceedings of the IEEE conference on computer vision and pattern recognition,
Boston, MA, USA, June 7-12, 2015, pp. 1-9. 2015.

26. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, Caesars Palace, Jun 26-July 1, 2016 pp. 770-778. https://doi.org/10.1109/CVPR.2016.90

27. Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan, Omran
Al-Shamma, José Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie, and Laith Farhan.
"Review of deep learning: Concepts, CNN architectures, challenges, applications, future direc-
tions." Journal of big Data 8 (2021): 1-74. https://doi.org/10.1186/s40537-021-00444-8

28. Alex Sherstinsky. "Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network." Physica D: Nonlinear Phenomena 404 (2020): 132306. https://
doi.org/10.1016/j.physd.2019.132306

29. Michael I. Jordan. "Serial order: A parallel distributed processing approach." In Advances in
psychology, vol. 121, pp. 471-495. North-Holland, 1997. https://doi.org/10.1016/S0166-4115
(97)80111-2

30. Jeffrey L. Elman. "Finding structure in time." Cognitive science 14, no. 2 (1990): 179-211.
https://doi.org/10.1207/s15516709cog1402_1

https://doi.org/10.48550/arXiv.1901.09401
https://doi.org/10.48550/arXiv.1901.09401
https://jmlr.org/papers/v12/duchi11a.html
https://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/arXiv.1605.07648
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1207/s15516709cog1402_1

70 2 Deep Learning Overview

31. G. R. Kanagachidambaresan, Adarsha Ruwali, Debrup Banerjee, and Kolla Bhanu Prakash.
"Recurrent neural network." Programming with TensorFlow: Solution for Edge Computing
Applications (2021): 53-61. https://doi.org/10.1007/978-3-030-57077-4_7

32. Sepp Hochreiter, and Jürgen Schmidhuber. "Long short-term memory." Neural computation
9, no. 8 (1997): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

33. Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. "Sequence labelling in structured
domains with hierarchical recurrent neural networks." In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India. 6 –
12 January, 2007.

34. Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. "An application of recurrent neural
networks to discriminative keyword spotting." In Artificial Neural Networks–ICANN 2007:
17th International Conference, Porto, Portugal, September 9-13, 2007, Proceedings, Part II
17, pp. 220-229. Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-74695-
9_23

35. Alex Graves, and Jürgen Schmidhuber. "Framewise phoneme classification with bidirectional
LSTM and other neural network architectures." Neural networks 18, no. 5-6 (2005): 602-610.
https://doi.org/10.1016/j.neunet.2005.06.042

36. Tara N. Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. "Convolutional, long short-
term memory, fully connected deep neural networks." In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), South Brisbane, Queensland, Australia,
April 19-24, 2015, pp. 4580-4584. Ieee, 2015. https://doi.org/10.1109/ICASSP.2015.7178838

37. Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. "Multi-dimensional recurrent
neural networks." In Artificial Neural Networks–ICANN 2007: 17th International Conference,
Porto, Portugal, September 9-13, 2007, Proceedings, Part I 17, pp. 549-558. Springer Berlin
Heidelberg, 2007. https://doi.org/10.1007/978-3-540-74690-4_56

38. Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan.
"Semantic object parsing with local-global long short-term memory." In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Caesars Palace, Jun 26-July
1, 2016, pp. 3185-3193. 2016.

39. Mike Schuster, and Kuldip K. Paliwal. "Bidirectional recurrent neural networks." IEEE trans-
actions on Signal Processing 45, no. 11 (1997): 2673-2681. https://doi.org/10.1109/78.650093

40. Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. "A review of recurrent neural
networks: LSTM cells and network architectures." Neural computation 31, no. 7 (2019):
1235-1270. https://doi.org/10.1162/neco_a_01199

41. Kyunghyun Cho, Bart Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation." Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, Doha, Qatar, October 25-29, 2014, pp.1724-1734. 2014.
https://doi.org/10.3115/v1/D14-1179

42. Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. "Neural machine translation by
jointly learning to align and translate." In 3rd International Conference on Learning Represen-
tations, ICLR 2015. 2015.

43. Jakub M. Tomczak, "Deep Generative Modeling", Springer Nature, 2022, https://doi.org/10.
1007/978-3-030-93158-2

44. Lars Ruthotto, and Eldad Haber. "An introduction to deep generative modeling." GAMM-
Mitteilungen 44, no. 2 (2021): e202100008. https://doi.org/10.1002/gamm.202100008

45. Mark A. Kramer. "Nonlinear principal component analysis using autoassociative neural net-
works." AIChE journal 37, no. 2 (1991): 233-243. https://doi.org/10.1002/aic.690370209

46. R. Indrakumari, T. Poongodi, and Kiran Singh. "Introduction to Deep Learning." Advanced
Deep Learning for Engineers and Scientists: A Practical Approach (2021): 1-22. https://doi.org/
10.1007/978-3-030-66519-7_1

47. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. "Contractive
auto-encoders: Explicit invariance during feature extraction." In Proceedings of the 28th

https://doi.org/10.1007/978-3-030-57077-4_7
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-540-74695-9_23
https://doi.org/10.1007/978-3-540-74695-9_23
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/ICASSP.2015.7178838
https://doi.org/10.1007/978-3-540-74690-4_56
https://doi.org/10.1109/78.650093
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1007/978-3-030-93158-2
https://doi.org/10.1007/978-3-030-93158-2
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1007/978-3-030-66519-7_1
https://doi.org/10.1007/978-3-030-66519-7_1

References 71

international conference on international conference on machine learning, Bellevue, USA, June
28 - July 2, 2011, pp. 833-840.

48. Alireza Makhzani, Brendan Frey. K-sparse autoencoders. 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014.

49. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. "Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion." Journal of machine learning research 11, no.
12 (2010).

50. Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. "Stacked convolutional
auto-encoders for hierarchical feature extraction." In Artificial Neural Networks and Machine
Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo,
Finland, June 14-17, 2011, Proceedings, Part I 21, pp. 52-59. Springer Berlin Heidelberg, 2011.
https://doi.org/10.1007/978-3-642-21735-7_7

51. DP Kingma, Welling M. Auto-encoding variational bayes. 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014.

52. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. "Generative adversarial nets" (Advances in neural
information processing systems) (pp. 2672–2680). Red Hook, NY Curran (2014).

53. Alankrita Aggarwal, Mamta Mittal, and Gopi Battineni. "Generative adversarial network: An
overview of theory and applications." International Journal of Information Management Data
Insights 1, no. 1 (2021): 100004. https://doi.org/10.1016/j.jjimei.2020.100004

54. David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for
Boltzmann machines." Cognitive science 9, no. 1 (1985): 147-169. https://doi.org/10.1016/
S0364-0213(85)80012-4

55. Harshvardhan GM, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup
Rautaray. "A comprehensive survey and analysis of generative models in machine learning."
Computer Science Review 38 (2020): 100285. https://doi.org/10.1016/j.cosrev.2020.100285

56. Geoffrey E. Hinton. "A practical guide to training restricted Boltzmann machines." Neural
Networks: Tricks of the Trade: Second Edition (2012): 599-619. https://doi.org/10.1007/978-3-
642-35289-8_32

57. Ruslan Salakhutdinov, and Geoffrey E. Hinton. Deep Boltzmann machines, in: Proceedings of
the Twelfth International Conference on Artificial Intelligence and Statistics, Florida, USA,
April 2009.

58. Geoffrey E. Hinton. "Deep belief networks." Scholarpedia 4, no. 5 (2009): 5947. https://doi.org/
10.4249/scholarpedia.5947

59. Jing Ren, Mark Green, and Xishi Huang. "From traditional to deep learning: Fault diagnosis for
autonomous vehicles." In Learning Control, pp. 205-219. Elsevier, 2021. https://doi.org/10.
1016/B978-0-12-822314-7.00013-4

60. Ziwei Zhang, Peng Cui, and Wenwu Zhu. "Deep learning on graphs: A survey." IEEE Trans-
actions on Knowledge and Data Engineering 34, no. 1 (2020): 249-270. https://doi.org/10.1109/
TKDE.2020.2981333

61. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. "The graph neural network model." IEEE transactions on neural networks
20, no. 1 (2008). https://doi.org/61-80.10.1109/TNN.2008.2005605

62. Thomas N. Kipf, and Max Welling. "Semi-Supervised Classification with Graph Convolutional
Networks." In International Conference on Learning Representations ICLR 2017, Toulon,
France, April 24-26, 2017.

63. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018.

64. Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. "Gated Graph Sequence
Neural Networks." 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016.

https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1016/j.jjimei.2020.100004
https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1016/j.cosrev.2020.100285
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.4249/scholarpedia.5947
https://doi.org/10.4249/scholarpedia.5947
https://doi.org/10.1016/B978-0-12-822314-7.00013-4
https://doi.org/10.1016/B978-0-12-822314-7.00013-4
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/61-80.10.1109/TNN.2008.2005605

72 2 Deep Learning Overview

65. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. "Graph neural networks: A review of methods and
applications." AI open 1 (2020): 57-81. https://doi.org/10.1016/j.aiopen.2021.01.001

66. Shi Dong, Ping Wang, and Khushnood Abbas. "A survey on deep learning and its applications."
Computer Science Review 40 (2021): 100379. https://doi.org/10.1016/j.cosrev.2021.100379

67. Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. "Graph convolutional networks:
a comprehensive review." Computational Social Networks 6, no. 1 (2019): 1-23. https://doi.org/
10.1186/s40649-019-0069-y

https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y

Chapter 3
Deep Discriminative Session-Based
Recommender System

Abstract Due to the sequential nature and time-ordered session data, much research
in a session-based recommender system (SBRS) focuses on recurrent neural net-
works (RNNs), including GRU and LSTM. On the other hand, convolutional neural
networks (CNNs) provide very effective solutions for modeling sequential data
when sequence elements are associated with complex features. As a result, we
discuss different deep discriminative models in SBRS in this chapter, such as
variants of RNNs and CNNs.

Keywords Session-based recommender systems · SBRS · Deep discriminative
models · RNN · LSTM · GRU · CNN

3.1 Introduction

In recent years, there has been increasing research progress in a session-based
recommender system (SBRS), where almost all the proposed approaches utilized
deep neural network architectures. Deep neural networks have provided excellent
performance in some areas, such as image and speech recognition [1, 2], where
unstructured data are processed through several convolutional and standard layers.
The most popular of these networks are convolutional neural networks (CNNs).
However, sequential data modeling based on different recurrent neural network
(RNN) models has recently attracted much attention because it is the most appro-
priate model for analyzing this type of data. The use of deep neural networks in
SBRS has significantly increased the accuracy and effectiveness of recommenda-
tions by overcoming the obstacles of conventional models and achieving high
recommendation quality [3, 4]. Deep discriminative models, such as RNNs and
CNNs, can effectively capture and analyze non-linear and non-obvious user/item
relationships. Additionally, it can extract and aggregate complex relationships
within data from different sources, such as textual and visual information.

As previously discussed in Chap. 1, the session-based recommender systems
have eliminated the need to access interactions and the long-term interests of users.
Indeed, they focus on the recent interactions of users and their short-term interests
while considering the changes in these interests in short periods. However, the issue

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_3

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_3#DOI

of scalability and managing the volume and variety of items and users is one of their
major challenges. One of the important advantages of deep neural networks for
session-based recommender systems is that they can adjust model parameters with
different sizes of training datasets [3, 5]. In the learning process, changing and
updating the hidden variables related to items and users are performed independently
of previous data [6].

74 3 Deep Discriminative Session-Based Recommender System

A review of published research shows that discriminative deep learning
approaches in session-based recommender systems using GRU, LSTM, and CNN
have received much attention. To this end, different approaches to deep discrimina-
tive models in SBRS are discussed and analyzed in this chapter, considering the
models, datasets, evaluations, and highlights/limitations of each. First, in Sect. 3.2, a
brief overview of the fundamentals related to this chapter of the book is provided,
including the research distribution statistics, the employed datasets, and the evalu-
ation methods/metrics used in various research. Then, in the next Sects. 3.3 and 3.4,
approaches based on RNN and CNN are briefly discussed. Section 3.5 analyzes the
results and identifies existing challenges related to the deep discriminative models in
SBRS and provides several guidelines for future research.

3.2 Fundamentals

Before the emergence of deep learning techniques, limited research had been
conducted in the field of session-based recommender systems because the complex-
ity caused by the consecutive nature of the session data was difficult to analyze and
model by common methods. The only technique that could be used in the session-
based recommendation field was the item-to-item recommendation, in which the
recommended items were selected based on the similarity between items of the
user’s previous events, and the rest of the session was ignored [7]. This method had
very low accuracy because only items were recommended to the user that was
similar to the previous items or had occurred in the past at the same time as the
user’s previously selected item. By presenting deep learning techniques, the ability
to model the sequence of user interactions in one session or several other sessions
was provided.

In recent years, different types of deep learning techniques have been used in
session-based recommender systems, which, from a general perspective, can be
classified into three categories: deep discriminative models, deep generative models,
and hybrid/advanced models. Deep discriminative models include neural networks
trained in a way that allows their output to be interpreted as approximate posterior
class probabilities and directly compute the probability of an output given an input
[8]. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs)
are types of these methods, each including various architectures. Generative and
hybrid/advanced models in SBRS are discussed in the next chapters of the book.

Since 2016, different research on session-based recommender systems using deep
learning has been published. The beginning of this path belongs to research

performed by Hidasi et al. that used the RNN technique in SBRS [9]. After that,
more research was conducted using deep learning techniques in SBRS [10]. A
review of various research related to the deep discriminative models in SBRS
shows that RNNs and CNNs have been used in many articles. RNNs include GRU
(gated recurrent unit), LSTM (long short-term memory), and the improved types of
these two networks. CNNs classify into two-dimensional, three-dimensional, and
dilated CNNs.

3.2 Fundamentals 75

Table 3.1 The list of research
discussed using deep discrim-
inative models

Deep discriminative models References

GRU [9–29]

LSTM [30–39]

CNN [40–48]

Fig. 3.1 Percentage of each
type of deep discriminative
model in SBRS

Table 3.1 summarizes the list of research reviewed in this chapter, separated
based on the deep discriminative model.

To get a more comprehensive perspective of the research reviewed in this chapter,
Fig. 3.1 shows the percentage of each technique used in the discussed research based
on GRU, LSTM, and CNN.

According to Fig. 3.1, most of the reviewed research are based on two popular
types of RNN, i.e., GRU and LSTM. Due to their sequential nature, RNNs have a
great capacity to analyze the sequential dependencies between data in user sessions.
Indeed, the ability to model the dynamic behavior of users over time in session-based
recommender systems has made RNNs an appropriate solution in this scope. The
GRU deep neural network has received more attention than LSTM, considering a
large number of gates and parameters of the LSTM, which leads to higher compu-
tational complexity.

Figure 3.2 shows the general architecture of session-based recommender systems
using RNNs. The user interactions, clicks, and other session data are provided to the

model as input and then converted into analyzable data structures using an embed-
ding technique. Afterward, a type of RNN is utilized to model the structured data and
discover their dependency relationships. Finally, and before the output layer, the
fully connected layer is used to increase the stability of the model.

76 3 Deep Discriminative Session-Based Recommender System

Some approaches related to deep session-based recommender systems use the
CNN model. The use of CNN is suitable for user session data in two ways: (1) The
sequence of items in one session or between different sessions of users can be easily
implemented and modeled on CNN. (2) CNNs have a high capacity to learn the local
and spatial features of regions and capture the related dependencies that are usually
ignored by other models.

To learn and model the data related to users and items, these data should be
embedded suitably in the CNN type of session-based recommender system, so that
by successively executing convolution and pooling operations, temporal and spatial
patterns between them are correctly identified. The user’s favorable items are
predicted based on the features captured from the input data and the dependencies
between them.

Figure 3.3 shows the general architecture of session-based recommender systems
using CNN, which can be used (or customized) to model data using various types of
CNNs.

The following two subsections present a review and discussions of the dataset and
evaluation methods used in the literature regarding deep discriminative approaches.

3.2.1 Datasets

Several well-known datasets have been employed for the evaluation purposes of
session-based recommender systems using deep learning; each includes data related
to different session features, such as events (interactions), items, and users. In fact,
the authors usually select the most appropriate datasets considering the requirements
of the proposed methodology and use them for assessment and comparison with
other research.

Table 3.2 shows the datasets used in different articles, including the dataset name,
the domain, a brief description, and the paper that employed it.

Characteristics of the most popular datasets, including the number of sessions,
events, users, items, and data collection period, are listed in Table 3.3.

It is necessary to mention some points in Table 3.3. In YooChoose, Diginetica,
Tmall, and RecSys Challenge 2015 datasets, sessions whose length is equal to 1 are
not considered [7]. In the VIDEO dataset, sessions with a length of less than 3, users
with less than 5 sessions, and items that have been repeated less than 10 times have
been eliminated [14]. Because there are very few interactions for many items in the
MovieLens dataset, in the preprocessing step, the items repeated less than 20 times
were removed. Additionally, based on the timestamp of the interactions, the inter-
actions related to a specific user are collected as a sequence and divided into k
subsequences (watching k movies). Here, k is set to 30 and 100 for both datasets,

3.2 Fundamentals 77

F
ig
. 3

.2

T
he
 g
en
er
al
 a
rc
hi
te
ct
ur
e
of
 s
es
si
on

-b
as
ed
 r
ec
om

m
en
de
r
sy
st
em

s
us
in
g
R
N
N
s

78 3 Deep Discriminative Session-Based Recommender System

F
ig
. 3

.3

T
he
 g
en
er
al
 a
rc
hi
te
ct
ur
e
of
 s
es
si
on

-b
as
ed
 r
ec
om

m
en
de
r
sy
st
em

s
us
in
g
C
N
N
s

(continued)

3.2 Fundamentals 79

Table 3.2 Widely used datasets in SBRS using deep discriminative models

Dataset Domain Description References

Diginetica E-commerce The dataset includes user sessions
extracted from an e-commerce search
engine log

[20, 22, 26, 29,
45, 46]

YooChoose E-commerce The dataset consists of 6 months of
clickstreams from an e-commerce Web site

[11, 20, 22, 26,
29, 33, 41, 45,
46, 48]

Gowalla POI This dataset is from a location-based social
networking Web site where users share
their locations by checking in

[22, 42, 47]

Last.fm Music This dataset contains social networking,
tagging, and music artist listening infor-
mation from a set of 2K users from Last.fm
online music system

[15, 16, 20, 22,
26, 27, 30, 41,
48]

RecSys Chal-
lenge 2015

E-commerce This dataset comprises clickstream data
about user sessions with an e-commerce
Web site

[9, 13, 16, 17,
18, 21, 25, 28]

VIDEO Video This dataset is collected from a YouTube-
like OTT video service platform and
includes events of watching a video

[9, 14, 18, 21]

vidaXL Video This dataset is collected over a 2-month
period from a YouTube-like video site and
contains video-watching events

[10, 18]

CLASS E-commerce This dataset consists of product view
events of an online classified site

[10, 18]

Internal E-commerce It contains user browsing and purchasing
activity on multiple e-commerce Web sites
from diverse verticals over the period of
3 months

[11]

XING Job posting It is the XING RecSys Challenge 2016
dataset that contains interactions on job
postings. User interactions come with
timestamps and interaction types (click,
bookmark, reply, and delete)

[14]

Reddit News It is on user activity on the social news
aggregation and discussion Web site Reddit

[15, 27]

Tmall E-commerce This is the large dataset released in the
IJCAI-15 challenge, which has been col-
lected from Tmall, the largest business-to-
consumer e-commerce Web site in China.
It records two types of user behaviors,
views, and purchases

[16, 24, 42, 47]

AOTM Music This dataset includes the user-contributed
playlists from the Art of the Mix Web site

[16]

8T Music This dataset includes the user-contributed
playlists from the 8tracks.com (8T)
Web site

[16]

MovieLens Movie It consists of users’ sequential rating
records for different categories of movies
on the MovieLens site

[19, 23, 36, 42,
44]

http://www.artofthemix.org/
http://8tracks.com

(continued)

80 3 Deep Discriminative Session-Based Recommender System

Table 3.2 (continued)

Dataset Domain Description References

DoubanEvent Movie It is a Chinese Web site that allows Internet
users to share their comments and view-
points about movies in the Douban Movie
Web site

[19]

Adressa News Adressa is a news dataset that contains
reading behaviors and sessions from users

[23]

CiteULike Research
paper

In the CiteULike dataset, one user anno-
tating one research paper at a certain time
may have several records in order to dis-
tinguish different tags

[30]

Advertising
dataset

Advertising It is a public dataset released by Alimama,
an online advertising platform in China. It
contains records from ad display/clicks
logs of users and ads in 8 days

[32]

Recommender
dataset

E-commerce This dataset contains many display/clicks
logs of users and items on the Alibaba
Web site

[32]

GHTorrent GitHub GHTorrent monitors the public event
timeline of GitHub and provides abundant
social relations between developers and
development interactions between devel-
opers and software repositories from the
popular collaborative social coding plat-
form GitHub

[35]

Libraries.io Software
packages

Libraries.io provides explicit dependency
relations between software packages

[35]

JEWELRY E-commerce It consists of product view events of a
Web site selling jewelry products. The
view events immediately followed by add-
to-cart events were specially marked

[40]

ELECTRONICS E-commerce It consists of product viewing clicks of a
Web site selling electronic products. The
view events with the following add-to-cart
were marked

[40]

Foursquare POI This dataset contains check-ins in NYC
and Tokyo collected for about 10 months.
Each check-in is associated with its
timestamp, its GPS coordinates, and its
semantic meaning

[42]

TW10 Video TW10 is a short video dataset in which the
average playing time of each video is less
than 30 s

[44]

Retailrocket E-commerce The data has been collected from a real-
world e-commerce Web site. It is raw data,
i.e., without any content preprocessing;
however, all values are hashed due to
confidential issues

[45]

respectively, resulting in ML30 and ML100 datasets. In each dataset, if the number
of interactions is less than 10 and less than 20, the sequence will be deleted [44]. The
Adressa dataset has two different versions, one of which was collected over 1 week
and the other over 3 months [51]. The information presented in Table 3.3 is related to
the preprocessed data of the second version, which is related to 16 days, and the
sessions that include an interaction have been removed. Also, repeated clicks in each
session have been removed [49]. In the Reddit dataset, if two clicks are more than 1 h
apart, they are placed in two separate sessions [15].

3.2 Fundamentals 81

Table 3.2 (continued)

Dataset Domain Description References

Ta-Feng E-commerce The Ta-Feng dataset contains numerous
baskets of purchased items from a grocery
store, where each basket encapsulates the
items purchased by one user in a period of
time

[24]

3.2.2 Evaluation

Generally, two evaluation methodologies are used in session-based recommender
system: online and offline. In the offline approach, parts of the user’s feedback are
unknown to the recommender system, but in the online, the system presents its
recommendations to the actual user and receives her feedback. In each method,
various evaluation metrics are used to evaluate the session-based recommender
system so that the efficiency of the proposed method can be quantitatively mea-
sured and compared with others. According to the proposed method and the
employed datasets, one or more well-known baselines are selected to compare
the results.

The input data of session-based recommender systems usually are a sequence
of user interactions, which in the offline evaluation approach are typically divided
into two sets, train and test. Because the long-term history of the user’s interac-
tions is inaccessible in this type of system, they chose the last N sessions for
testing purposes and split the data based on that. In online methods, users’
feedback should be collected, which is usually either user answers to qualitative
questions or field tests based on a production-like environment and collects
implicit feedback from a large number of users [3]. Usually, in academic research,
the possibilities of conducting large-scale online studies are often limited, and
studies related to session-based recommender system mostly use offline evalua-
tion methods [3].

For an accurate evaluation and comparison of the results of the proposed
approaches, some previous methods are typically used, called as the baselines.
Some of these methods have been developed using traditional session-based

82 3 Deep Discriminative Session-Based Recommender System

T
ab

le
 3
.3

C
ha
ra
ct
er
is
tic
s
of
 w

id
el
y
us
ed
 d
at
as
et
s

D
at
as
et

N
um

be
r
of

se
ss
io
ns

N
um

be
r

of
 i
te
m
s

N
um

be
r
of

ev
en
ts

T
im

es
pa
n

A
ve
ra
ge

se
ss
io
n
le
ng

th

In
te
ra
ct
io
n

ty
pe

A
cc
es
s
lin

k

Y
oo

C
ho

os
e
[7
]

7,
98

1,
58

1
37

,4
86

31
,7
08

,5
05

18

2
da
ys

3.
97

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/
ch
ad
go

st
op

p/

re
cs
ys
-c
ha
lle
ng

e-
20

15

D
ig
in
et
ic
a
[7
]

20
4,
78

9
43

,1
36

99
3,
48

3
–

4.
85

C
lic
k

ht
tp
s:
//c
om

pe
tit
io
ns
.c
od

al
ab
.o
rg
/c
om

pe
ti

tio
ns
/1
11

61
#l
ea
rn
_t
he
_d

et
ai
ls
-d
at
a2

R
ec
S
ys
 C
ha
l-

le
ng

e
20

15
 [
3]

7,
98

1,
58

1
37

,4
86

31
,7
08

,5
05

18

2
da
ys

3.
97

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/
ch
ad
go

st
op

p/

re
cs
ys
-c
ha
lle
ng

e-
20

15

T
m
al
l
[7
]

1.
77

M
42

5,
34

8
13

.4
2M

91
 d
ay
s

7.
56

C
lic
k/
bu

y
ht
tp
s:
//i
jc
ai
-1
5.
or
g/
in
de
x.
ph

p/
re
pe
at
-b
uy

er
s-
pr
e

di
ct
io
n-
co
m
pe
tit
io
n

V
ID

E
O
 [
14
]

13
3,
16

5
19

,2
18

82
5,
44

9
60

 d
ay
s

6.
2

C
lic
k

N
ot
 p
ub

lic

M
ov

ie
L
en
s

M
L
30

 [
44

]
85

8,
16

0
18

,2
73

25
,3
68

,1
55

17

 y
ea
rs

–
R
at
in
g
(1
–

5)

ht
tp
://
fi
le
s.
gr
ou

pl
en
s.
or
g/
da
ta
se
ts
/m

ov
ie
le
ns
/

M
ov

ie
L
en
s

M
L
10

0
[4
4]

30
0,
62

4
18

,2
26

25
,2
40

,7
41

17

 y
ea
rs

–
R
at
in
g
(1
–

5)

ht
tp
://
fi
le
s.
gr
ou

pl
en
s.
or
g/
da
ta
se
ts
/m

ov
ie
le
ns
/

A
dr
es
sa
 [
49

]
98

2,
21

0
13

,8
20

2,
64

8,
99

9
16

 d
ay
s

2.
7

C
lic
k

ht
tp
://
re
cl
ab
.id

i.n
tn
u.
no

/d
at
as
et

R
ed
di
t
[1
5]

1,
13

5,
48

8
27

,4
52

3,
84

8,
33

0
30

 d
ay
s

3
C
lic
k

ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/c
ol
em

ac
le
an
/s
ub

re
dd

it-
in
te
ra
ct
io
ns

G
ow

al
la
 [
22

]
83

0,
89

3
29

,5
10

1,
12

2,
78

8
24

0
da
ys

3.
85

C
he
ck
-i
n

ht
tp
s:
//s
na
p.
st
an
fo
rd
.e
du

/d
at
a/
lo
c-
go

w
al
la
.h
tm

l

L
as
t.f
m
 [
50
]

16
9,
57

6
44

9,
03

7
2,
88

7,
34

9
95

 d
ay
s

17
.0
3

C
lic
k

ht
tp
://
m
ill
io
ns
on

gd
at
as
et
.c
om

/la
st
fm

/

A
O
T
M
 [
3]

21
,8
88

91
,1
66

30
6,
83

0
95

 d
ay
s

14
.0
2

C
lic
k

ht
tp
://
w
w
w
.a
rt
of
th
em

ix
.o
rg

8T
 [
3]

13
2,
45

3
37

6,
42

2
1.
50

 M
95

 d
ay
s

11
.3
2

C
lic
k

N
ot
 p
ub

lic

https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/
http://reclab.idi.ntnu.no/dataset
https://www.kaggle.com/colemaclean/subreddit-interactions
https://www.kaggle.com/colemaclean/subreddit-interactions
https://snap.stanford.edu/data/loc-gowalla.html
http://millionsongdataset.com/lastfm/
http://www.artofthemix.org

recommender system techniques, and others utilize deep neural networks. The most
frequently used baselines are as follows:

3.2 Fundamentals 83

POP More popular items are always recommended. The POP is effective and
straightforward simultaneously and is often a strong baseline in specific domains.

S-POP The most popular items in the current session are recommended. The
recommendation list changes based on the number of events that are related to
particular items. This baseline is useful for the domains with high repetitiveness.

Item-KNN Items similar to the actual item are recommended, and the similarity
between them is measured based on the cosine similarity measure of their session
vectors. In other words, it is the number of co-occurrences of two items in sessions
divided by the square root of the product of the number of sessions in which the
individual items occurred. This method is very effective for evaluating item-to-item
recommendation methods [52].

BPR-MF It utilizes matrix factorization which is optimized for pairwise ranking
objective functions through stochastic gradient descent. Methods based on matrix
factorization cannot be used in session-based models because there is no
pre-computed feature vector for new sessions. This problem is overcome by using
the average vectors of the items that belong to each session [54].

FPMC A hybrid model for the next-basket recommendation based on the
factorizing personalized Markov chains [53].

GRU4Rec A technique based on recurrent neural networks, which is one of the first
approaches to using deep learning techniques in session-based recommender system.
This method is based on GRU and is used to overcome the problem of gradient
vanishing [9].

GRU4Rec+ This method is one of the most recent methods that extend GRU4Rec
by introducing an improved sampling strategy pattern [25].

NARM An improved method of GRU4Rec, which improves session modeling by
introducing a hybrid encoder based on the attention mechanism. In this technique,
global and local encoders are defined, the global encoder corresponds to the
GRU4Rec method, and the local encoder is proposed for adding the attention
mechanism to the model, respectively [55].

STAMP This method is based on a Short-Term Attention/Memory Priority Model
and, unlike the NARM method, is not based on a recurrent neural network. In this
method, users’ general interests are obtained through the long-term memory data of
the session context, and their short-term interests are also recognized through short-
term memory [56].

It should be noted that traditional evaluation methods were done by predicting the
user’s score for each item. Today, instead of using these methods, a list with a
limited size, for example, 10 or 20, is considered for each user, which indicates the
number of items at the top of the recommendation list. The quality of the

8

recommendation list in the test set is measured numerically by checking the number
and rank of related items in the list. Some of the evaluation metrics that are used for
this purpose have been listed below:

. Recall: This metric is calculated based on the number of relevant items that are
among the top N items in the recommendation list, and the rank of the relevant
items in the N list is unimportant, and it is calculated using Eq. (3.1):

84 3 Deep Discriminative Session-Based Recommender System

Recall@N =
Number of relevant items in top N list

Total of relevant items
ð3:1Þ

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the
list of recommendations. It shows that placing a relevant item at the top of the
recommendation list significantly impacts user satisfaction and is calculated using
Eq. (3.2):

MRR@N =
1
Q

XQ
i= 1

1
ranki

if ranki ≤N

0 otherwise

<: ð3:2Þ

where Q is a sample of recommendation lists and rankirefers to the rank position
of the relevant item for the i-th recommendation list.

. Precision @ N: This metric evaluates the number of relevant items relative to the
total N items recommended in the list, and it is calculated using Eq. (3.3):

Precision@N =
Number of relevant items in top N list

Total of N items
ð3:3Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the
percentage of items that are ever recommended, and the variety of the
recommended items in the recommendation list is considered. Its goal is to
recommend a high percentage of various items to the user. This measure is
calculated using Eq. (3.4):

Coverage@N

=
distinct items that appeared in any top-N recommendation

all distinct recommendable items
ð3:4Þ

. Hit Rate@N: It is the percentage of times in which relevant items are retrieved
among the top N ranked items, and it is calculated using Eq. (3.5):

{

()
()

3.2 Fundamentals 85

Hit Rate@N =
1
Q

XQ
i=1

1 if ranki ≤N

0 otherwise
ð3:5Þ

where Q is a sample of recommendation lists and rankirefers to the rank position
of the relevant item for the i-th recommendation list.

. F1: This metric is calculated based on a combination of precision and recall, and
it is calculated using Eq. (3.6):

F1=
2 * Precision * Recall
Precisionþ Recall ð3:6Þ

. nDCGp: This measure is based on cumulative gain (CG). The cumulative gain is
the sum of the graded relevance values of all items in a recommendation list.
nDCG is computed as the ratio between discounted cumulative gain (DCG) and
idealized discounted cumulative gain (IDCG). Eqs. (3.7), (3.8), and (3.9) show
how to calculate this measure:

DCGp=
Xp
i= 1

2ri - 1
log 2 iþ 1ð Þ ð3:7Þ

IDCGp=
XRELp
i= 1

ri
log 2 iþ 1ð Þ ð3:8Þ

nDCGp=
DCGp
IDCGp

ð3:9Þ

In the above equations, ri is the graded relevance of the result at position i, and
RELp represents the list of relevant items (ordered by their relevance) up to
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant
item is recommended, the precision is measured, and the average is calculated
using Eq. (3.10):

MAP=

PQ
q= 1

AveP qð Þ
Q

ð3:10Þ

In this relation, P(q) is the precision of query q, and parameter Q is the number of
queries.

. Mean Absolute Error (MAE): This metric is one of the most common errors of
prediction factors, which calculates the mean absolute value of the difference

 !

ffis

þ

86 3 Deep Discriminative Session-Based Recommender System

between the score predicted by the system and the actual score of the item. The
mean absolute error indicates the degree of closeness of the recommendations to
reality, and it is calculated using Eq. (3.11):

MAE=
1
N

X
i2Ou

Pu,i - ru,ij j ð3:11Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the
predicted rank is more effective than the mean absolute error in problems where
the errors are more considerable, and it is calculated using Eq. (3.12):

RMSE=
1
N

X
i2Ou

Pu,i - ru,ið Þ2 ð3:12Þ

In Eqs. (3.11) and (3.12), Pu, i is the predicted score for the item i by user u, ru, i is
the actual value of the score assigned to item i by user u, Ou is the set of items
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine
the efficiency of recommender systems is the AUC. The larger the AUC value,
the more favorable the final system performance is evaluated. The ROC (receiver
operating characteristic) space is formed by two indices FPR on the horizontal
axis and TPR on the vertical axis, as calculated by Eqs. (3.13) and (3.14),
respectively. The line that connects two points (0,0) and (1,1) divides the ROC
space into two parts. The area above this line is the favorable area and below the
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a
classifier to distinguish between classes and is used as a summary of the ROC
curve.

TPR=
TP

TPþ FN
ð3:13Þ

FPR=
FP

FP TN
ð3:14Þ

The maximum value of this measure is equivalent to one and occurs in a situation
where the recommender system is ideal and can recognize all positive samples.
The AUC measure, unlike other measures for deciding the efficiency of classifi-
cation methods, is independent of the classification threshold. Therefore, this
metric indicates the output reliability of the system.

Table 3.4 shows the different evaluation metrics used in different articles on
session-based recommender systems using deep discriminative models.

3.3 Session-Based Recommender System Using RNN 87

Table 3.4 Widely used evaluation metrics in SBRS using deep discriminative models

Evaluation metrics References

Mean reciprocal rank (MRR) [9, 10, 12–23, 25–29, 30, 31, 34, 40, 41, 43–45, 48]

Recall@n [9–11, 13–15, 17–21, 23, 25, 27, 28, 30, 38, 40, 42, 57]

nDCG [12, 24, 35, 41, 44, 48, 57]

AP [42]

AUC [12, 39]

Precision@n [14, 22, 26, 29, 38, 39, 42, 45]

Hit Rate@n [16, 35, 41, 44, 48]

F1 [24, 34]

Accuracy [43]

RMSE [43]

MAE [27]

MAP [39]

3.3 Session-Based Recommender System Using RNN

Before looking at the approaches of recurrent neural network models in session-
based recommender systems, an overview of RNN, its variants, and the reasons that
made it an effective choice for SBRS are provided.

3.3.1 Why RNN?

Sequential methods directly model the sequence of user actions instead of relying on
features or co-occurrence frequencies. To be specific, recurrent neural networks
(RNNs) are a class of deep neural networks that have been successfully used to
predict the next item [9]. RNNs have a hidden state with non-linear dynamics that
enables them to discover patterns of events, which lead to the prediction of the next
item. In addition to the sequence of the items, more information about the user-item
interactions is also available, such as the type of interaction, the time interval
between events, and the time of interaction. This contextual information can signif-
icantly improve the prediction of the next event/item. For example, knowing the
event type of past products or different patterns of time gaps between past user
events can change the probability of the identity of the next product the user will
interact with. Figure 3.4 shows the different patterns of time gaps in the next item
prediction.

Leading research in this field is the GRU4Rec, which is based on RNN [9]. In this
method, RNN is trained based on the features of a session, such as clicks related to
item IDs, considering the ranking loss measure. However, GRU4Rec only focuses
on clicked items in the current session, while extended models can also incorporate
other user behavior during sessions (such as the length of time the user spends in a

88 3 Deep Discriminative Session-Based Recommender System

F
ig
. 3

.4

T
he
 e
ff
ec
t
of
 d
if
fe
re
nt
 p
at
te
rn
s
of
 t
im

e
ga
ps
 in

 th
e
ne
xt
 it
em

 p
re
di
ct
io
n

ð
þ ð Þ

ð
þ þ ð Þ
þ þð Þ ð Þ

session or the sequence of using other sessions) [18]. Today, GRU4Rec is often used
as a baseline method in empirical evaluations.

3.3 Session-Based Recommender System Using RNN 89

RNNs can also be utilized to model content with item features along with the
click sequence interactions. By considering the features of the extracted item, such as
thumbnail images of videos or a text description of a product, a parallel-RNN model
was developed, which provides a better recommendation quality than the simple
RNN [10]. Data augmentation techniques can also be used to improve the perfor-
mance of RNNs for session-based recommendations. In these techniques, a session
is divided into several sub-sessions for training, although the side effect is increasing
the training time [25].

The main feature of RNN is the presence of hidden states in the units, which are
not only related to the current input of the network but also related to the previous
inputs. The equations related to standard RNN are as follows:

ht = σh Wixt þ Uhht- 1 þ bhð Þ 3:15Þ()
yt = σy Wyht by 3:16

In Eqs. (3.15) and (3.16), xt is the input vector, ht is the hidden layer vector, yt is
the output vector, W and U are the weight matrices, and b is the bias vector.

Standard RNNs cannot learn long-term data dependencies due to the vanishing
and exploding gradient issues. So, modified models of RNNs, such as GRU and
LSTM, have been proposed, which have provided an effective solution to these
problems by adding a gate function to the RNN network. Over time, researchers
have presented various improved models of LSTM and GRU. Here, we will briefly
review the relation and equations of the basic types of GRU and LSTM models.

A special type of gated RNN, namely, long short-term memory (LSTM) [58], is
used in advanced SBRS to model user and item dynamics, which are dependent on
the temporal data [59]. The gate mechanism is used to balance the flow of informa-
tion from the current and previous time steps, so it can more effectively memorize
historical information over time for an appropriate recommendation.

The LSTM standard has three gates: ft is the forget gate that specifies how much
of the previous data is to be forgotten, it is the input gate that evaluates the data to be
stored in memory, and ot is an output gate that decides how to compute the output
based on the available data and information.

it = σ Wixt þ Riht- 1 þ bið Þ 3:17Þ()
f t = σ Wf xt Rf ht- 1 bf 3:18

ot = σ Woxt Roht- 1 bo 3:19

In Eqs. (3.17), (3.18), and (3.19), parameters W, R, and b are matrices and vectors
whose elements can be trained. LSTM units are defined based on Eqs. (3.20)–(3.23):

ð
þ ð Þ
ð Þð Þ ð Þ

þ() ð Þ

90 3 Deep Discriminative Session-Based Recommender System

Fig. 3.5 The internal structure of the LSTM cell

 Ct = tan h Wcxt þ Rcht- 1 þ bcð Þ 3:20Þ()
Ct = f t⨀Ct-1 it⨀ Ct 3:21

ht = ot⨀ tan h Ct 3:22

yt = σ Wyht by 3:23

The state of the candidate cell Ćt is calculated based on the input data xt and the
previous hidden state ht - 1. The cell memory or the current cell state Ct is obtained
using the forget gate ft, the previous cell state Ct - 1, the input gate it, and the
candidate cell state Ćt. The sign ⨀ is an element-wise product. The output yt is
calculated based on the weights (Wyو by) corresponding to the hidden state ht.
Figure 3.5 shows the internal structure of the LSTM cell.

In particular, to enable the effective extraction of high-order temporal dynamics,
gated recurrent unit (GRU) networks can be used [59]. Such networks require a more
accurate model than an RNN unit, which deals with the vanishing/exploding gradi-
ent problem. GRUs are widely used in the field of RNN network applications due to
the model’s simplicity, reduced complexity, and computational costs compared with
LSTMs. In this type of network, forget and input gates are combined to create the
update gate. However, cell states and hidden states are also combined.

Briefly speaking, GRU has two gates: update gate ut and reset gate rt. The ut sets
the update rate of the hidden state, and the rt decides how much of the past
information is to be forgotten. Equations (3.24)–(3.28) show the basic formulations
of GRU:

ð
þ þð Þ ð Þ
þ ð Þ þð Þ ð Þ

ð Þ þð Þ ð Þ
þ() ð Þ

3.3 Session-Based Recommender System Using RNN 91

Fig. 3.6 The internal structure of the GRU cell

ut = σ Wuxt þ Ruht- 1 þ buð Þ 3:24Þ
rt = σ Wrxt Rrht- 1 br 3:25

h ′ t = tan h Whxt rt⨀ht-1 Rh bh 3:26

ht = 1- ut ⨀ht- 1 ut⨀h ′ t 3:27

yt = σ Wyht by 3:28

Figure 3.6 shows the internal structure of a GRU cell.
After reading the above, the question may come to mind, which model of RNN

networks is better to choose for data modeling for session-based recommender
systems. In several studies, such as [59], this question has been addressed and
mentioned that so far, no scientific study has clearly stated the superiority of a
model in a general and comprehensive manner. Although GRU creates faster models
due to the lower number of parameters, LSTM can perform better if you have access
to high computing power and enough input data [58, 60].

In the following two subsections, different approaches based on GRU and LSTM
for session-based recommender systems will be discussed and analyzed to make the
readers familiar with the pros/cons of each model.

3.3.2 GRU Approaches

The first use of deep neural networks in session-based recommender systems was in
2016, when a model based on RNN was employed [9]. This method, GRU4Rec,

used a GRU network to effectively model longer sessions to solve the gradient
vanishing problem.

92 3 Deep Discriminative Session-Based Recommender System

Fig. 3.7 The general
architecture of GRU4Rec
[9]

The input data of GRU4Rec are vectors that encode items using the one-hot
encoding method, and each vector’s length is equal to the number of items. The
output is the score predicted by GRU4Rec for a fixed number of items. In other
words, the output of this method is the chance of an item being the next one in the
current session. The general architecture of GRU4Rec is shown in Fig. 3.7.

Hidasi et al. developed an efficient approach called session-parallel mini-batches,
which first creates an order for the sessions [9]. Then, the first events of the first
x sessions create the input of the first mini-batch of length x, whose considered
output is the second event of the sessions. The second mini-batch consists of the
second event from the first x sessions, and their output is the third event of the
sessions. If the events of any session end, then the first event of the next available
session in the list of sessions will be replaced. It should be mentioned that the
sessions are assumed to be independent, and when the sessions are replaced, the
hidden state is reset. The view of this process is indicated in Fig. 3.8.

Calculating the score for each item in each stage is very difficult because of the
large number of items. For this reason, the negative sampling method is used to
calculate the score of some negative samples in addition to the resulting outputs, and
the weights are updated.

In the GRU4Rec, the appropriate choice of the loss function is a critical decision
that greatly impacts the quality of the recommendations. The loss functions
presented in [9] are:

. Bayesian Personalized Ranking (BPR): BPR is a matrix factorization method that
uses pairwise ranking loss. This method compares the score of a desirable
(positive) item with the score of negative samples. In [9], the scores of positive
items are compared with negative items, and their average is used as the loss. Loss
at a given point of a session is calculated based on Eq. (3.29):

X ()

N

3.3 Session-Based Recommender System Using RNN 93

Fig. 3.8 The visual demonstration of the session-parallel mini-batches [9]

Ls = -
1
Ns

:
Xs

j= 1

log σ brs,i -brs,j()() ð3:29Þ

In Eq. (3.29), Ns is the number of samples, brs,k is the score of item k at a given
point of the session, i is the index of the desired item, and j is the index of the
negative samples.

. TOP1: This function is the regularized approximation of the relative rank of the
relevant item brs,i. Loss is calculated based on Eq. (3.30):

Ls brs,i, SNð Þ=
1
SNj j :

j2SN
σ brs,j -brs,i()þ σ br2 s,j ð3:30Þ

Using the fundamentals created in the GRU4Rec, a similar session-based recom-
mender system was proposed by Hidasi et al. [10]. In addition to the sessions’ data
related to user interactions, the features of the clicked items have also been consid-
ered. Usually, in cases where there is no access to users’ historical data, features such
as descriptions and images of items are very effective in users’ purchasing. For these
reasons, Hidasi et al. use features extracted with high quality from the images and
descriptions of the items, along with modeling the sessions based on deep learning
techniques. Indeed, like GRU4Rec, it has modeled sessions (a sequence of user
clicks) based on RNNs, but the type of network used in this method is parallel
recurrent neural networks (parallel-RNN), which concurrently models the textual
and visual features of the clicked items. Figure 3.9 shows the parallel-RNN
architecture.

The reason for using parallel-RNNs is the inherently different nature of the input
data. The features of the images are much denser than the one-hot presentation of the
item ID or the BOW presentation of the text of the items. Parallel-RNNs allow each

network to have its own configuration while maintaining communication between
networks through shared parameters. In this chapter, three different configurations
for parallel-RNN are presented; in the first type, each GRU is trained with one of the
data representations, and the outputs are computed by concatenating the hidden
layers of the subnets. In the second type, there is a shared hidden layer for the output
weight matrix, where the scores for each subnet are calculated by the weighted sum
of hidden states multiplied by a single weight matrix. This type has fewer parame-
ters. In the third type, before computing the scores of each subnet, the hidden states
of the subnets of the item features are multiplied by the hidden states of the subnet of
the item ID. This method has been more effective than similar models that utilize
fewer features along with sessions.

94 3 Deep Discriminative Session-Based Recommender System

Fig. 3.9 Architecture of the parallel-RNN approach using separate GRU layers versus single GRU
[10]

Hidasi et al. developed a suitable loss function that improved the results by
adding different data to GRU4Rec and using more samples for the mini-batch
[18]. Observations show that limiting the selection of negative samples from a
mini-batch provides low flexibility. Therefore, a more efficient solution has been
developed to select negative samples by sampling more items outside the mini-batch
and sharing them with all mini-batches. A hyperparameter controls whether external
samples are selected using uniform or popularity-based sampling. Also, a family of

ranking-max loss functions for RNNs is used, which replaces the averaging pairwise
ranking loss functions that are applied to all sampled items and the target item. This
loss function calculated the loss by comparing the target item with the most relevant
sample score. Moreover, this approach solves gradient vanishing by increasing the
number of samples.

3.3 Session-Based Recommender System Using RNN 95

Fig. 3.10 Graphical representation of hierarchical RNN [14]

Another research for improving GRU4Rec is personalizing RNNs performed by
Quadrana et al. through the information between user sessions, which uses a
hierarchical neural network [14]. This method is based on a hierarchy of two
GRUs, which are the session-level and the user-level. Session-level GRU models
user interactions in sessions, and user-level GRU models and considers the evolution
of user preferences across sessions over time. An illustration of this method is shown
in Fig. 3.10.

In hierarchical neural networks, the hidden state of the lower-level RNN at the
end of a user’s session is delivered as input to a higher-level RNN. This function
predicts an effective and acceptable initialization for the hidden state of the lower-
level network for the next user session. The proposed method is extended by adding
a GRU layer that models user activities in different sessions. It considers the changes
in users’ personal interests over time in providing recommendations.

Another RNN-based approach is a cross-domain SBRS which is developed by
joint modeling of users’ global dynamic interests and their local domain-specific
behavioral sequences by exploring users’ inter-session and intra-session behavioral
dynamics from various domains jointly (CDHRM: cross-domain hierarchical recur-
rent model) [19]. Although the combination of the user behavioral changes in
different domains is very effective in the quality of recommendations provided to
users, it is challenging from two aspects, including the differences in behavior in
different domains and asynchronous behavior. For this purpose, a cross-domain
hierarchical recurrent model is proposed to integrate the sequential information of
various domains, and the graphical representation is shown in Fig. 3.11.

First, a user-level cross-domain RNN that takes all the session inputs from
various domains is used to determine the dynamics in the global interests of users
through inter-session dynamics modeling. Then, two session-level cross-domain
RNNs are developed to separately detect the intra-session dynamics in different

96 3 Deep Discriminative Session-Based Recommender System

F
ig
. 3

.1
1

G
ra
ph

ic
al
 r
ep
re
se
nt
at
io
n
of
 C
D
H
R
M
 [
19

]

domains. To capture asynchronous information of events in different domains, the
user-level RNN allows information to be shared with the session-level RNN in the
order of time. Finally, the information on the user level and the cross-domain session
level are combined, and final recommendations are generated for the user.

3.3 Session-Based Recommender System Using RNN 97

A session-based recommender system using RNNs was developed by Hu et al.,
which employed user preference evolution networks that are designed in two stages
(PEN4Rec: Preference Evolution Networks for session-based Recommendation)
[26]. Modeling the evolution process of user interests is done based on the previous
context. First, user-item behaviors are encoded in the session graph to detect
complex item transfers under multi-hop neighbor connections and then extract the
user’s preferences through two-step retrieval. The architecture of PEN4Rec is shown
in Fig. 3.12.

As shown in the above figure, in the first stage of PEN4Rec, relevant behaviors
from previous behavioral contexts of recent items are integrated according to local
preferences through an attention-based mechanism. The last K items are considered
as of local preference because the next item may be related to the part of these K
items. Relevant behaviors are then integrated through a soft attention mechanism to
detect global preferences.

In the second stage of PEN4Rec, the evolution of user preferences over time is
modeled dynamically, as well as the reasons for preference evolving. In the second
stage, there are two key layers: the reader layer and the preference fusion layer. In the
second stage, there are two main layers: the session reader layer and the preference
fusion layer. In the session reader layer, using an adaptive Bi-GRU neural network,
the contextual information of each item is recorded in two directions. Bidirectional
GRU allows broadcast messages from neighboring contexts to obtain spatial infor-
mation in the current session. The preference fusion layer uses the modified GRU
neural network through the embedded information of the attention mechanism, and
the internal state of the GRU is updated with the weights of the attention mechanism
to increase the focus on relevant behaviors related to the preference evolution and
reduce the influence of unrelevant behaviors. The advantages of this method are
modeling a representation of recent preferences with relatively previous information
and better predicting the next item by considering the preference’s evolving
trajectory.

One of the most widely used filtering approaches in recommender systems is
collaborative filtering, which requires historical data to provide recommendations,
and in the case of insufficient data, it will face the cold start problem [61]. A solution
to overcome this problem is the session-based approach that uses the recent behav-
ioral information of users in the current session to provide recommendations. To this
end, Vikram et al. developed a deep learning-based framework called
SessionRNNRec, which uses RNN to model user sessions [21]. In SessionRNNRec,
sessions of a Web-based application are received as input, and events are organized
through the session-parallel mini-batch method. The sessions are then modeled using
the improved GRU. In this type of GRU, the activation function is selected based on
a linear interpolation between the candidate and the previous activation functions

98 3 Deep Discriminative Session-Based Recommender System

F
ig
. 3

.1
2

A
rc
hi
te
ct
ur
e
of
 P
E
N
4R

ec
 [
26
]

and is trained using mini-batches. The recommendations generated in
SessionRNNRec are actually the next item in each session.

3.3 Session-Based Recommender System Using RNN 99

The sparsity of sequential data and the lack of data needed to provide recom-
mendations to users have led to the proposal of a new context-based recommender
system that places contextual information along with sparse sequential data [23]. The
input of the network is the sessions, and the output is the next item in the session.
This method consists of four steps; in the first step, the contextual information of the
session, which includes the country and type of user’s device, is encoded by the
one-hot method. Then, the encoded vectors are mapped from the vector space with
high dimensions to dense numerical vectors with low dimensions, facilitating the
extraction and summarization of features by a neural network. Then, the data are
combined with one of the Add, MLP, and Stack. In the Add method, the vectors are
superimposed directly, their dimensions do not increase, but the dimensions of the
vectors must be equal. In the Stack method, vectors are placed on top of each other,
and the dimensions of the input or output of the neural network increase and require
more computational resources for processing. The last solution is to use MLP
networks, which create a combined vector based on the calculation of a weight
matrix. The disadvantages of this solution are the need for many computational
resources and the difficulty of the learning process. Then, in the next step, the vectors
are fused into the GRU network and are processed and modeled by this network. It is
recommended that the initialization of GRU hidden states should be done at the
beginning of each session so that they require fewer computational resources.

3.3.3 LSTM Approaches

In session-based recommender systems using deep learning, there has been much
attention and acceptance toward LSTM networks because these types of deep neural
networks effectively and optimally provide recommendations to users. These rec-
ommendations often deliver more precise results than the previous sequential
methods.

Lenz et al. presented an LSTM-based approach that generates a representation of
items in the vector space [31]. Vector space representations of items are used as input
to recommender systems. Learning vector space representations of items allows the
relations between items to be correctly recognized. Unlike other vector space pre-
sentations that use an additional network for learning, this method does not need to
pre-train the features of the items and can be trained end to end. By using this
embedding method, the items are presented in a continuous vector space with high
dimensions, which can represent multiple relations for a product. In contrast to this,
LSTM-based embedding method is the one-hot method, which creates vectors for
presenting items that are very sparse. Also, the proposed method greatly reduces
computation complexity compared with the one-hot embedding method.

Dobrovolny et al. investigated the use of the LSTM network as a deep learning
technique for session-based recommender systems [38]. This study proposes a

solution for using word-level LSTM as a real-time recommendation service. To
make the input data suitable for modeling by LSTM, the data should be transformed
in a sequence of steps. For example, if there is a list of news that the user has liked, it
can be converted from a list to a sequence and, for each user, considered a sentence
containing the ID of the news liked by him/her. In this method, each user has a
history of likes in a certain period, based on which the next news liked by the user
can be predicted. The session-based proposed system in [38] consists of three main
components of embedding, LSTM network, and dense layer. In the word embedding
stage, feature learning techniques are used to convert words into numerical vectors.
In the next step, two layers of LSTM are used to process and model the data. The
dense layer is designed to the number of output classes that predict what the next
class is to recommend to the user. To improve this method that was proposed at the
word level, a method presented in [36] performs embedding at the character level,
which can process a larger dataset.

100 3 Deep Discriminative Session-Based Recommender System

Utilizing LSTM as the main model of the recommender system requires sufficient
data to be available, and if possible, there should be access to relations between
classes. Using LSTM for small datasets leads to overfitting or generating a weak and
inefficient model. Therefore, the use of additional information than session data can
improve accuracy in session-based recommender systems. In [35], to detect the
dynamic interests of software developers (users), their dependency constraints and
social influence have been utilized and provided a Session-based Social and
Dependency-aware software Recommendation (SSDRec) system. This system
works based on the social influence of the user and the dependency between the
software packages (items), which consists of two attention-based graph networks.
These networks are, respectively, used to detect the dependencies between the items
and the social influence of the users, and a recurrent LSTM neural network for
modeling the short-term dynamic interests of developers in each session is formed.
The architecture of SSDRec is presented in Fig. 3.13.

As shown in Fig. 3.13, SSDRec consists of four main components:

1. Dependency constraint: By using an attention-based graph network, dependency
relationships between software packages are detected, and a presentation vector is
embedded for each software package.

2. Dynamic interest modeling: An LSTM recurrent neural network is used to model
the order of software packages in a session and obtain the embedded vector
presentation of the dynamics of each software developer’s interests in each
session. The inputs of the LSTM network are the sessions related to the software
developer and the presentation vectors of the software packages, which sessions
include a time-ordered set of software packages viewed by each software devel-
oper. The LSTM network recursively learns a latent representation from the order
of the current input and previous input software packages.

3. Social influence detection: In this component, a graph attention network is used to
obtain the social influence of each developer based on other neighbor developers
who are friends. Based on this graph, embedded vectors are created to represent
each developer.

3.3 Session-Based Recommender System Using RNN 101

F
ig
. 3

.1
3

A
rc
hi
te
ct
ur
e
of
 S
S
D
R
ec
 [

]
35

102 3 Deep Discriminative Session-Based Recommender System

Input

Previous baskets Embedding Layer
(Doc2Vec Initialized)

basket-id1

basket-id2

basket-idn

Products in session Embedding Layer Lstm Layer Dense Layer

Predictions

0
1
0

0
1
0

1

0

LSTM

Softmax

Sigmoid

Lstm Layer Dense Layer

Predictions

LSTM

LSTM

LSTM

LSTM

LSTM

P-id1

P-id2

P-idn

Input

Fig. 3.14 Next-item (top) and last-basket (bottom) SBRS architecture [34]

4. Recommendation: The probability of selecting a software package by a developer
is estimated using a softmax function.

Salampasis et al. proposed two recommender systems, one of which is completely
content-based and utilizes the Doc2Vec model to generate the vector of item
representation based on the text description of each item [34]. The second recom-
mender system utilizes the Item2Vec method to generate a vector of items, which
operates based on item-based collaborative filtering. This method of vector repre-
sentation and embedding of items are used to infer item-to-item relations and usually
used in session-based recommender systems. Finally, in this article, a combined
embedding method based on Doc2Vec and Item2Vec is proposed, which takes into
account the pattern orders between items in addition to the content of the items. The
LSTM recurrent neural network has been considered as the core component in the
proposed approach, in which the inputs of the LSTM are generated in each system by
one of the various embedding methods listed above. Figure 3.14 shows the archi-
tecture of next-item and last-basket SBRS.

In [34], in addition to choosing the type of embedding method and vector
representation of items, two tasks of next-item recommendation and next-basket
recommendation were investigated. LSTM presents the more efficient performance
in the next-item recommender system that uses the content-based method, but it is

less efficient in the basket. Evaluation results show that the combination of Doc2Vec
and Item2Vec together with the LSTM network does not provide better results.

3.4 Session-Based Recommender System Using CNN 103

Fig. 3.15 Architecture of DeepCBPP [37]

In many recently published research, the time intervals have been considered as
an explicit component and used in the learning process of sessions. However, the
effects of multiple previous levels are not considered; instead, a sequence with a
limited length is considered. For this purpose, Fuentes et al. modeled the sequential
prediction problem as a multi-class classification based on LSTM [37]. The Deep
Customer Buying Preference Prediction (DeepCBPP) method automatically learns
behavioral patterns from the history of purchase transactions and predicts the next
purchase item or the category to which the next item belongs. The architecture of
DeepCBPP consists of four parts: transactional data, the customer sequences file, the
LSTM training model input, and the output of the training model. These components
form the inputs and outputs of the three stages of the DeepCBPP, which are customer
buying sequence transformation, multi-level preference generation, and preference
buying learning.

An LSTM layer is capable of learning temporal dependencies, but a chain of
LSTMs is more suitable for processing time-based sequential data. For this purpose,
a combination of encoder-decoder and stacked LSTMs is used in DeepCBPP, as
shown in Fig. 3.15. The LSTM encoder processes a customer preference input and
generates an encoded state. The LSTM decoder uses the encoded state to produce an
output. Evaluations of DeepCBPP show improved accuracy and stability of recom-
mender system performance with multilayer LSTMs. In fact, a new sequence
customer presentation method is presented as the basis of the data transformation
process, which allows processing with multi-level interactions in scenarios where the
length of sequences may be limited and the interactions have more dependencies on
previous sessions.

3.4 Session-Based Recommender System Using CNN

Before looking at the approaches of convolutional neural network models in session-
based recommender systems, an overview of CNN and the reasons that made it an
effective choice for SBRS are provided.

ð

i
}

104 3 Deep Discriminative Session-Based Recommender System

3.4.1 Why CNN?

Convolutional neural network (CNN) is a type of neural network architecture that
has achieved advanced results in machine vision, speech recognition, and NLP. By
applying convolution operations (known as kernels or filters) at different levels of
granularity, the CNN model can extract useful spatial and temporal features from the
data learning tasks and reduce the need for manual feature engineering. This
particular feature is much needed in SBRS because the goal is to extract useful
patterns from the flow of clicks and predict the next events. A pattern can be a
sequence of clicks, a sequence of categories related to products or their names, or a
specific combination of all mentioned items.

The CNNs are useful for processing user sessions in two ways: (1) The sequence
of items in one session or between different sessions of users can be easily
implemented and modeled on CNNs. (2) They have a high capacity to learn local
features of a segmented area or specific relations between different areas, based on
which they can recognize dependencies that other models usually ignore.

Generally, in session-based recommender systems, to learn and model data
related to users and items, the input data must be embedded suitably to use convo-
lution and pooling layers to detect temporal and spatial patterns between them. The
user’s favorite items are predicted based on the features obtained from the input data
and the dependencies between them. For this purpose, suppose each interaction is
represented by a d-dimensional vector and the embedding matrix of each session
(which includes n interactions) is considered as E 2 Rd × j cj. Then, in a horizontal
convolutional layer, by convolving the x-th filter Fx from the top to the end of the E
matrix, the value of ax m is obtained as the following equation (in the m-th convolu-
tion based on the x-th filter):

ax m =φα Em:mþh- 1⨀Fxð Þ 3:31Þ

In Eq. (3.31), φα specifies the activation function for the convolutional layer.
The final output ec 2 Rz from the z filters is obtained based on applying the max

pooling on the convolution results αx = αx 1, α
x
2, . . . , α

x
cj j- hþ1

h
, with the aim of

obtaining the most significant features of a session using Eq. (3.32):

ec = max max α1
()

, max α2
()

, . . . , max αzð Þ{ ð3:32Þ

Indeed, ec is a presentation of the interaction of a session. The general architecture
of CNNs for session-based recommendation is shown in Fig. 3.16. In this figure, x1
to x11 represent item embedding vectors of a session as one-dimensional vectors, and
convolution layers are applied to these data to scan and check the session data.

In contrast to RNNs, the training of CNNs does not depend on previous
timestamp calculations and therefore allows parallelization on each element in a
sequence.

3.4 Session-Based Recommender System Using CNN 105

Fig. 3.16 Different layers of CNN in a session-based recommendation [41]

3.4.2 CNN Approaches

Tuan et al. were among the pioneers of using CNNs in the field of session-based
recommender systems and presented a method based on character-level embedding
and 3D-CNN [40]. The main difference between two-dimensional CNNs (2D-CNN)
and three-dimensional CNNs (3D-CNN) is that in the 3D-CNN, convolution and
pooling operations are performed in all three dimensions and on all three axes of the
cubic data structure, but in 2D-CNNs, the operation is performed only on two
dimensions. Models that use character-level embedding to represent concepts and
convert them into numerical representations can easily model different types of data
and perform the feature engineering stage.

Each input feature based on an alphanumeric format (combination of alphabet
letters from a to z, numeric digits from 0 to 9, and some special characters such as @,
$, -, etc.) becomes a vector without the need for classified embedding. Therefore,
each item is considered as a two-dimensional structure: one dimension is the
features, and the other one is the characters. They are represented in the form of a
three-dimensional structure based on the order of the interactions of each session,
which is actually the chronological order of the user’s visit to the items. Accord-
ingly, to obtain the spatial and temporal features of the input data, several 3D
convolution layers are used in a stack, which is applied between a feature map and
a 3D kernel of the 3D convolution operator at each step. For each convolution layer,
there are several kernels, and the results of kernels are feature maps to use in
subsequent layers.

Moreover, the residual connections are used in [40]. There are two types of
residual connection: the identity connection is applied to inputs and outputs with
the same dimension, and the projection connection is used to reduce distance

samples through the implementation of 1*1 convolution with a step size of 2. The
output represents a vector with the length of the number of items, which shows the
probability of their selection by the user. The general architecture 3D-CNN SBRS is
shown in Fig. 3.17.

106 3 Deep Discriminative Session-Based Recommender System

Fig. 3.17 Graphical representation of 3D-CNN SBRS [40]

The sequential convolution technique is presented to recommend the next item by
Yuan et al. to overcome the challenges of increasing the length of sessions and the
number of interactions in session-based recommender systems [41]. In this chapter, a
simple and basic method is presented that allows complex conditional distributions
to be modeled despite very long-range sequences. This model first explicitly encodes
the dependency between items in such a way that the distribution of the output
sequence is estimated. Then, instead of using large inefficient filters, it stacks dilated
one-dimensional convolutional layers on top of each other to increase the receptive
fields when modeling long-term dependencies.

Dilated CNN has been utilized for prediction in the fields of image generation,
translation, audio, etc.; however, it had been unused in the field of recommender
systems until the publication of this chapter. To optimize this deep architecture,
residual networks are used to cover convolutional layers with residual blocks. To
create the input matrix of this method, the convolutional neural network stores user-

item interactions in a matrix and considers the matrix as an image in latent space.
Another point of this method is to propose a masking-based dropout trick for
one-dimensional dilated convolution to overcome the problem of information leak-
age, which prevents the network from seeing future items.

3.4 Session-Based Recommender System Using CNN 107

Tang et al. used CNNs to learn sequential features and employed the latent factor
model to learn user-specific features [42]. The purpose of the multilayer Caser
(Convolutional Sequence Embedding Recommendation Model) network is to detect
the user’s general interests and sequential patterns on both union and point levels and
to see the user’s skip behaviors in unobserved spaces.

As shown in Fig. 3.18, Caser consists of three components: an embedding lookup
table, convolutional layers, and fully connected layers. To train the layers of
convolutional neural networks for each user u, L, successive item, and T, the next
item, are extracted from the sequence Su as the input, which is shown on the left side
of Fig. 3.18. This is achieved by sliding a window of length L+T over the user’s
sequence, and each window is a training sample for user u, represented by the triple
(u, previous L items, next T items).

Yuan et al. improved the dilated CNN proposed in [41] by utilizing a gap-filling
encoder-decoder framework using masked convolution operators that provides the
ability to simultaneously consider data from past and future contexts without data
leakage [35]. In this method, the encoder takes the partially complete session
sequence as an input, and the decoder predicts the masked items based on the
encoded representation. In the proposed method, the encoder should be aware of
the user’s general interests represented by the unmasked actions simultaneously, and
the decoder predicts the next item based on the user’s previous contexts and encoded
general user interests.

The convolutional neural networks with sparse kernels used in [44] have two
main advantages: (1) providing an autoregressive mechanism to create sequences
and (2) creating two-side contexts for encoding. Moreover, the projector neural
network proposed in this chapter increases the representational bandwidth between
the encoder and decoder. The encoder is implemented with a set of stacked
one-dimensional dilated CNNs that both dilated layers are covered with a residual
block to avoid the gradient vanishing. The decoder also consists of embedding
layers, the projector, and casual CNNs.

A special type of convolutional network (TCN: temporal convolutional network)
has been used in some recent models that can detect the dependency between
non-adjacent items in a session and balance the gaps.

In this regard, Ye et al. proposed a session-based recommender system that uses
cross-session information in addition to information within sessions to provide
recommended items (CA-TCN: cross-session aware temporal convolutional net-
work) [46]. There are two types of cross-session information, items in another
session that have common features with the current item and the context of the
session, which specifies the interests of users similar to the current user of the
session. At the item level, a directed item graph is created between global to consider
the effect of mutual session on each item. At the session level, a graph is created for

108 3 Deep Discriminative Session-Based Recommender System

F
ig
. 3

.1
8

A
rc
hi
te
ct
ur
e
of
 C
as
er
 [
42
]

cross-sessions, whose each edge represents the degree of similarity between two
sessions.

3.5 Discussion 109

A TCN is a sequence of convolutional models in which sequential information is
unlost during convolution operations because the same items have various repre-
sentations at different times. TCN can use the direct effect between items and solve
the problem of long-term dependencies and lack of sequential data. In fact, by using
TCN, convolution operations can be performed on long-term items, and sequence
information can be involved in the process of this operation. In this chapter, in fact, a
model based on hierarchical attention at the item level and at the session level has
been proposed, in which the influence of items and sessions are considered
simultaneously.

Although the proposed methods in session-based recommender systems using
deep learning methods have obtained efficient results, there are still two basic
challenges: (1) The value of each dimension in the results of the embedding layer
is distributed with a non-zero mean, and very large numerical gaps increase the
variance of the gradient, impede the optimization of the parameters, and ultimately
lead to incorrect recommendations. (2) Previous models cannot effectively and
correctly learn information about long-term dependencies and cannot recognize
dependencies between non-adjacent items in a session.

In [45], to solve these problems, another type of temporal convolutional neural
network is used to balance numerical gaps. In this method, the results of the
embedding layer are first normalized, and then the results obtained in the unit
hypersphere are limited to reduce their effect on the gradient calculation. Finally,
the use of the TCN completes the multilayer self-attention network to learn session
order.

3.5 Discussion

The proposed approaches discussed in this chapter provide different models for
session-based recommender systems utilizing one of the deep discriminative tech-
niques, such as GRU, LSTM, CNN, and variations of CNN. Due to the sequential
nature of session data, the majority of works use GRU and LSTM recurrent neural
networks. By proposing the GRU4Rec approach, a new roadmap was developed for
the use of RNNs in session-based recommender systems. Furthermore, other
methods such as [9, 14, 18] have been developed to improve GRU4Rec recently.
The GRU4Rec employs the session-parallel mini-batch technique to accelerate the
learning process, which is the key advantage of this method and similar ones.

However, a limitation of the GRU4Rec in new contexts is that the model can only
recommend items in the training set because this model was trained to predict the
scores in a limited number of items. Moreover, RNN-based approaches, such as [16],
may not improve the performance and prediction accuracy compared to simpler
methods due to the use of item identifiers in the learning process without considering
any other side information [55]. To solve such problems, the recently proposed

methods in this field use additional data and other deep learning techniques to extract
features and embed them to item and user representation so that they can consider
their various features in analysis and modeling and recommend items with high
accuracy.

110 3 Deep Discriminative Session-Based Recommender System

The methods such as [9, 14, 18, 42] do not consider parts of the item’s features,
which may lead to the incorrect detection of user interests in situations where
contextual data is ignored. Therefore, as mentioned above, additional information
helps to improve the performance of session-based recommender systems. To this
end, research such as [10] has utilized GRU4Rec with additional information such as
images and descriptions of images along with item identifiers. This improves system
performance and reduces the cold start problem. Furthermore, the evaluation results
of [23] also demonstrate the impact of contextual data in improving the performance
of the session-based recommender system. In addition, increasing the rank of the
more relevant items, reducing the effect of noisy data, and thus increasing the
model’s stability are advantages of using contextual data [23].

Another way to increase the amount of data is to use user and item data in various
contexts. For example, the authors in [19] also use information from several domains
to provide useful recommendations. Although the consideration of user behavior
changes in different domains is effective in the quality of recommendations, two
major challenges should be taken into account: the behavior differences in various
domains and the asynchronous behavior.

Another improvement of GRU4Rec has been performed in [14] by using an
additional GRU level that utilizes a hierarchy of GRU networks, which considers the
dependencies within each session and the dependencies between sessions. Although
this method has achieved some successes, it does not consider the randomness of
user interactions, and as a result, it may not correctly predict the user’s current goal
in some situations.

Some SBRS, such as [31, 34–38], employ LSTM networks to model data. For
example, in [31], LSTM is used for embedding information, and items are presented
in a continuous vector space with high dimensions, which can cover several rela-
tions. On the opposite side of this LSTM-based embedding method is the one-hot
method, which represents sparse vectors for item embedding. However, the compu-
tation complexity is greatly reduced compared to the one-hot embedding. Several
methods, such as [36] and [38], have also used character-level LSTM and word-level
LSTM for data modeling. It should be mentioned that the word-level LSTM
technique can only be used for small-size datasets and the character-level LSTM
has been efficient for larger datasets.

Considering the advantages of using additional data for better modeling, the
authors in [35] have obtained suitable results using the social data of users and the
relations between them based on LSTM and graphs. The efficiency of this method is
less for long sessions because short sessions include short-term dynamic interests,
but long sessions represent long-term static interests.

Using LSTM and the content-based method to recommend the next item leads to
efficient performance [34], but it has a weaker performance for the next-basket
recommender system. Investigations and results show that the combination of

embedding methods such as Doc2Vec and Item2Vec and using them along with the
LSTM network does not provide better results.

3.5 Discussion 111

In several methods, the improved classic mode of networks is used, such as
stacked LSTMs in [37]. The evaluation results show an improvement in the accuracy
and stability of the recommender system’s performance. This method allows work-
ing with multi-level interactions in scenarios where sequences may be short in length
and interactions have more dependencies on previous sessions. But this method is
significantly complicated due to the nature of the stacked LSTM.

Usually, RNNs have been considered the most effective technique for sequential
data. However, the effectiveness of CNN-based methods represents that CNNs are
also a suitable architecture for modeling sequential data, especially when sequence
elements are associated with complex features. In some research related to this field,
the standard model of CNNs has been used [42], but in some other methods, such as
[40, 41, 44–46], improved types of CNNs such as 3D-CNN, dilated CNN, and
temporal CNN have been used. By using 3D-CNNs, the temporal and spatial
features between the data are simultaneously extracted and modeled according to
the sequence of the data in the sessions. Moreover, instead of using one-hot vectors,
the character-level embedding method is used, which requires a less number of
parameters, but the input tensor of this method has a fixed size, so there is a limit for
the length of the text data and the maximum number of session clicks.

Dilated one-dimensional convolutional layers used in [41] and [44], when stacked
on top of each other, increase the receptive fields when modeling long-term depen-
dencies. Moreover, they propose a masking-based dropout trick for one-dimensional
dilated convolution to overcome the problem of information leakage, which prevents
the network from seeing future items.

Several approaches use temporal CNN, such as [45, 46], which can model the
direct effect between items and solve the problem of long-term dependencies and
lack of sequential data. In addition, the use of cross-sessions makes it possible to
consider its effect on each item.

Single-domain session-based recommender systems deal exclusively with a spe-
cific domain while ignoring the user’s interest in other domains and intensifying the
challenges of cold start and sparsity. Solutions to such problems can be provided
using cross-domain recommendation, which typically exploits the knowledge
learned from the domains and produces the target recommendation. One of these
approaches can be based on transfer learning, which utilizes the knowledge obtained
from one domain to improve learning tasks in another domain.

Session-based recommender systems based on multi-task learning can provide
better performance compared to single-task learning. An advantage of using multi-
task learning in a deep neural network is its ability to reduce the problem of data
sparsity through implicit data augmentation. Another advantage is that learning
many tasks at the same time can prevent overfitting by simplifying the shared hidden
representation.

An attention mechanism is a technique that enables a neural network to focus on a
subset of features by selecting a specific input. This mechanism can be directly
applied to many deep learning architectures, such as CNN and RNN. The main goal

Ref. Domain Input data Embedding technique Loss function

112 3 Deep Discriminative Session-Based Recommender System

Table 3.5 A summary of the reviewed research

Deep
learning
model

[9] Video,
e-commerce

GRU Items of sessions One-hot encoding BPR, TOP1

[10] Video,
e-commerce

GRU Text description,
ID and image of
session items

Bag-of-words and
TF-IDF + one-hot
encoding + CNN

TOP1

[14] Job, video GRU Items of sessions One-hot encoding TOP1

[18] Video,
e-commerce

GRU Items of sessions One-hot encoding BPR-max,
TOP1-max

[19] Movie,
music, book

GRU User interest,
sessions, and
items

One-hot encoding A weighted
loss function
based on
TOP1-max

[21] Video,
e-commerce

GRU Sessions, inter-
actions of
sessions

One-hot encoding BPR, TOP1

[23] Movie,
news

GRU Contextual
information of
session, items of
sessions

One-hot encoding +
random distribution
low-dimensional vector

BPR, cross-
entropy

[26] Music,
e-commerce

GRU Items of ses-
sions, sessions

One-hot encoding +
d-dimensional node
vector of session graph
(GGNN)

Cross-entropy

[31] E-commerce LSTM Items of sessions D-dimensional vector Cross-entropy

[34] E-commerce LSTM Items of sessions Doc2Vec/Item2Vec Cross-entropy

[35] GitHub LSTM Items, users,
sessions

One-hot encoding +
graph attention network

Log-
likelihood

[37] E-commerce Stacked
LSTM

Sessions, inter-
actions of
sessions

One-hot encoding +
encoder-decoder

Cross-entropy

[40] E-commerce 3D-CNN Sessions, inter-
actions of
sessions

Character-level
embedding

Cross-entropy

[41] Music,
e-commerce

Dilated
CNN

Items of sessions One-hot encoding + 1D
convolutional filters

Binary cross-
entropy

[42] POI, movie,
e-commerce

CNN Interactions of
sessions

Embedding lookup Binary cross-
entropy

[44] Movie Dilated
CNN

Sessions One-hot encoding Cross-entropy

[45] E-commerce Temporal
CNN

Items of sessions D-dimensional vector Cross-entropy

[46] E-commerce CNN Interactions and
items of sessions

One-hot encoding +
GNN

Cross-entropy

of the attention technique is to provide a solution to better remember network inputs.
For example, attention techniques applied to the CNN model help the model absorb
the most useful elements of input information. The attention-based RNN model also
enables the model to process noisy inputs. It also helps the LSTM remember input
elements when handling long-range dependencies.

3.6 Conclusion 113

Table 3.5 summarizes the existing works discussed in this chapter and addresses
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach.

3.6 Conclusion

In this chapter, different approaches to deep discriminative models in session-based
recommender systems have been discussed and analyzed regarding the models,
datasets, evaluations, and highlights/limitations of each. Various applications have
been addressed in these approaches, such as e-commerce, movies, news, books, etc.
Because of the sequential nature of session data, many of the proposed methods
utilized RNNs, including GRU and LSTM, which can detect dependencies and
relations between data and predict the relevant next item efficiently. Indeed, the
ability to model the dynamic behavior of users over time in session-based recom-
mender system has made RNNs an appropriate solution in this scope. Both GRU and
LSTM networks provide appropriate results and eliminate the vanishing/exploding
gradient issue. However, GRU networks have less computational complexity due to
the less number of gates and parameters, while LSTM networks could provide more
accurate results.

In addition to the high performance of recurrent neural networks in session-based
recommender systems, the temporal and spatial features of the session data can be
efficiently extracted using the standard and improved types of CNNs, such as
3D-CNN, dilated CNN, and temporal CNN. The sequence of items in one session
or between different sessions of users can be easily implemented and modeled on
CNN. Moreover, CNNs have a high capacity to learn the local and spatial features of
regions and capture the related dependencies that are usually ignored by other
models.

This chapter concluded with several discussions on the reviewed research and
provided future directions and trends in session-based recommender systems using
deep discriminative models.

114 3 Deep Discriminative Session-Based Recommender System

References

1. Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior et al. "Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups." IEEE Signal processing magazine 29, no. 6 (2012):
82-97. https://doi.org/10.1109/MSP.2012.2205597

2. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang et al. "Imagenet large scale visual recognition challenge." International journal of
computer vision 115 (2015): 211-252. https://doi.org/10.1007/s11263-015-0816-y

3. Malte Ludewig, and Dietmar Jannach. "Evaluation of session-based recommendation algo-
rithms." User Modeling and User-Adapted Interaction 28 (2018): 331-390. https://doi.org/10.
1007/s11257-018-9209-6

4. Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. "Performance comparison of
neural and non-neural approaches to session-based recommendation." In Proceedings of the
13th ACM conference on recommender systems, pp. 462-466. 2019. https://doi.org/10.1145/
3298689.3347041

5. Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. "Deep learning based recommender system: A
survey and new perspectives." ACM computing surveys (CSUR) 52, no. 1 (2019): 1-38. https://
doi.org/10.1145/3285029

6. Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. "DKN: Deep knowledge-aware
network for news recommendation." In Proceedings of the 2018 world wide web conference,
Lyon, France, April 23 - 27, 2018, pp. 1835-1844. https://doi.org/10.1145/3178876.3186175

7. Tran Khanh Dang, Quang Phu Nguyen, and Van Sinh Nguyen. "A study of deep learning-based
approaches for session-based recommendation systems." SN Computer Science 1 (2020): 1-13.
https://doi.org/10.1007/s42979-020-00222-y

8. Li Deng, and Navdeep Jaitly. "Deep discriminative and generative models for speech pattern
recognition." In Handbook of pattern recognition and computer vision, pp. 27-52. 2016. https://
doi.org/10.1142/9789814656535_0002

9. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-
based recommendations with recurrent neural networks. In Proceedings International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016. https://
doi.org/10.48550/arXiv.1511.06939

10. Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. "Parallel
recurrent neural network architectures for feature-rich session-based recommendations." In
Proceedings of the 10th ACM conference on recommender systems, Boston Massachusetts
USA September 15 - 19, 2016, pp. 241-248. https://doi.org/10.1145/2959100.2959167

11. Elena Smirnova, and Flavian Vasile. "Contextual sequence modeling for recommendation with
recurrent neural networks." In Proceedings of the 2nd workshop on deep learning for recom-
mender systems, Como, Italy, Aug 27-31, 2017, pp. 2-9. https://doi.org/10.1145/3125486.
3125488

12. Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. "Embedding-based news
recommendation for millions of users." In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, Halifax, NS, Canada, August 13-17,
2017, pp. 1933-1942. https://doi.org/10.1145/3097983.3098108

13. Alexander Dallmann, Alexander Grimm, Christian Pölitz, Daniel Zoller, and Andreas Hotho.
"Improving session recommendation with recurrent neural networks by exploiting dwell time."
arXiv preprint arXiv:1706.10231 (2017). https://doi.org/10.48550/arXiv.1706.10231

14. Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. "Personal-
izing session-based recommendations with hierarchical recurrent neural networks." In pro-
ceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, Aug
27-31, 2017, pp. 130-137. https://doi.org/10.1145/3109859.3109896

15. Massimiliano Ruocco, Ole Steinar Lillestøl Skrede, and Helge Langseth. "Inter-session model-
ing for session-based recommendation." In Proceedings of the 2nd Workshop on Deep Learning

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1145/3298689.3347041
https://doi.org/10.1145/3298689.3347041
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3178876.3186175
https://doi.org/10.1007/s42979-020-00222-y
https://doi.org/10.1142/9789814656535_0002
https://doi.org/10.1142/9789814656535_0002
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/2959100.2959167
https://doi.org/10.1145/3125486.3125488
https://doi.org/10.1145/3125486.3125488
https://doi.org/10.1145/3097983.3098108
https://doi.org/10.48550/arXiv.1706.10231
https://doi.org/10.1145/3109859.3109896

References 115

for Recommender Systems, Como, Italy, Aug 27-31, 2017, pp. 24-31. https://doi.org/10.1145/
3125486.3125491

16. Dietmar Jannach, and Malte Ludewig. "When recurrent neural networks meet the neighborhood
for session-based recommendation." In Proceedings of the eleventh ACM conference on
recommender systems, Como, Italy, Aug 27-31, 2017, pp. 306-310. https://doi.org/10.1145/
3109859.3109872

17. Yu Sun, Peize Zhao, and Honggang Zhang. "Ta4rec: Recurrent neural networks with time
attention factors for session-based recommendations." In 2018 international joint conference on
neural networks (IJCNN), Rio de Janeiro, Brazil, July 8-13, 2018, pp. 1-7. https://doi.org/10.
1109/IJCNN.2018.8489591

18. Hidasi Balázs, and Alexandros Karatzoglou. "Recurrent neural networks with top-k gains for
session-based recommendations." In Proceedings of the 27th ACM international conference on
information and knowledge management, Torino Italy October 22 - 26, 2018, pp. 843-852.
https://doi.org/10.1145/3269206.3271761

19. Yaqing Wang, Caili Guo, Yunfei Chu, Jenq-Neng Hwang, and Chunyan Feng. "A cross-
domain hierarchical recurrent model for personalized session-based recommendations."
Neurocomputing 380 (2020): 271-284. https://doi.org/10.1016/j.neucom.2019.11.013

20. Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten De Rijke. "Repeatnet:
A repeat aware neural recommendation machine for session-based recommendation." In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4806-4813.
2019. https://doi.org/10.1609/aaai.v33i01.33014806

21. Maditham Vikram, N. Sudhakar Reddy, and K. Madhavi. "SessionRNNRec: a deep learning
based framework for modelling user sessions to generate accurate recommendations." Interna-
tional Journal of System Assurance Engineering and Management (2021): 1-10. https://doi.org/
10.1007/s13198-021-01197-6

22. Chen Chen, Jie Guo, and Bin Song. "Dual attention transfer in session-based recommendation
with multi-dimensional integration." In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 869-878. 2021.
https://doi.org/10.1145/3404835.3462866

23. Tianhui Wu, Fuzhen Sun, Jiawei Dong, Zhen Wang, and Yan Li. "Context-aware session
recommendation based on recurrent neural networks." Computers and Electrical Engineering,
100, (2022): 107916. https://doi.org/10.1016/j.compeleceng.2022.107916

24. Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. "A dynamic recurrent model for
next basket recommendation." In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, Pisa Italy July 17 - 21, 2016,
pp. 729-732. https://doi.org/10.1145/2911451.2914683

25. Yong Kiam Tan, Xinxing Xu, and Yong Liu. "Improved recurrent neural networks for session-
based recommendations." In Proceedings of the 1st workshop on deep learning for recom-
mender systems, Boston, USA, Sep 15, 2016, pp. 17-22. https://doi.org/10.1145/2988450.
2988452

26. Dou Hu, Lingwei Wei, Wei Zhou, Xiaoyong Huai, Zhiqi Fang, and Songlin Hu. "Pen4rec:
Preference evolution networks for session-based recommendation." In Knowledge Science,
Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan,
August 14–16, 2021, Proceedings, Part I, pp. 504-516. Cham: Springer International Publish-
ing, 2021. https://doi.org/10.1007/978-3-030-82136-4_41

27. Bjørnar Vassøy, Massimiliano Ruocco, Eliezer de Souza da Silva, and Erlend Aune. "Time is of
the essence: a joint hierarchical rnn and point process model for time and item predictions." In
Proceedings of the twelfth ACM international conference on Web search and data mining,
Melbourne, Australia, February 11 - 15, 2019, pp. 591-599. https://doi.org/10.1145/3289600.
3290987

28. Sotirios P. Chatzis, Panayiotis Christodoulou, and Andreas S. Andreou. "Recurrent latent
variable networks for session-based recommendation." In Proceedings of the 2nd Workshop

https://doi.org/10.1145/3125486.3125491
https://doi.org/10.1145/3125486.3125491
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1109/IJCNN.2018.8489591
https://doi.org/10.1109/IJCNN.2018.8489591
https://doi.org/10.1145/3269206.3271761
https://doi.org/10.1016/j.neucom.2019.11.013
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1007/s13198-021-01197-6
https://doi.org/10.1007/s13198-021-01197-6
https://doi.org/10.1145/3404835.3462866
https://doi.org/10.1016/j.compeleceng.2022.107916
https://doi.org/10.1145/2911451.2914683
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1007/978-3-030-82136-4_41
https://doi.org/10.1145/3289600.3290987
https://doi.org/10.1145/3289600.3290987

116 3 Deep Discriminative Session-Based Recommender System

on Deep Learning for Recommender Systems, Como, Italy, Aug 27-31, 2017, pp. 38-45. 2017.
https://doi.org/10.1145/3125486.3125493

29. Dan Li, and Qian Gao. "Session Recommendation Model Based on Context-Aware and Gated
Graph Neural Networks." Computational Intelligence and Neuroscience 2021. https://doi.org/
10.1155/2021/7266960

30. Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. "What to
Do Next: Modeling User Behaviors by Time-LSTM." In IJCAI, Melbourne, Australia, August
19-25, 2017 vol. 17, pp. 3602-3608.

31. David Lenz, Christian Schulze, and Michael Guckert. "Real-time session-based recommenda-
tions using LSTM with neural embeddings." In Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018, Proceedings, Part II 27, pp. 337-348. Springer International
Publishing, 2018. https://doi.org/10.1007/978-3-030-01421-6_33

32. Yufei Feng, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu, and Keping Yang.
"Deep session interest network for click-through rate prediction." In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, Macao China, August 10 – 16, 2019,
pp. 2301-2307.

33. Serena McDonnell, Omar Nada, Muhammad Rizwan Abid, and Ehsan Amjadian. "Cyberbert:
A deep dynamic-state session-based recommender system for cyber threat recognition." In 2021
IEEE Aerospace Conference (50100), pp. 1-12. IEEE, 2021. https://doi.org/10.1109/
AERO50100.2021.9438286

34. Michail Salampasis, Theodosios Siomos, Alkiviadis Katsalis, Konstantinos Diamantaras,
Konstantinos Christantonis, Marina Delianidi, and Iphigenia Karaveli. "Comparison of RNN
and Embeddings Methods for Next-item and Last-basket Session-based Recommendations." In
2021 13th International Conference on Machine Learning and Computing, pp. 477-484. 2021.
https://doi.org/10.1145/3457682.3457755

35. Dengcheng Yan, Dengcheng, Tianyi Tang, Wenxin Xie, Yiwen Zhang, and Qiang
He. "Session-based social and dependency-aware software recommendation." Applied Soft
Computing 118 (2022): 108463. https://doi.org/10.1016/j.asoc.2022.108463

36. Michal Dobrovolny, Jaroslav Langer, Ali Selamat, and Ondrej Krejcar. "Session Based Rec-
ommendations Using Char-Level Recurrent Neural Networks." In Advances in Computational
Collective Intelligence: 13th International Conference, ICCCI 2021, Kallithea, Rhodes, Greece,
September 29–October 1, 2021, Proceedings 13, pp. 30-41. Springer International Publishing,
2021. https://doi.org/10.1007/978-3-030-88113-9_3

37. Ivett Fuentes, Gonzalo Nápoles, Leticia Arco, and Koen Vanhoof. "Best Next Preference
Prediction Based on LSTM and Multi-level Interactions." In Intelligent Systems and Applica-
tions: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 1, pp.
682-699. Springer International Publishing, 2022. https://doi.org/10.1007/978-3-030-82193-
7_46

38. Michal Dobrovolny, Ali Selamat, and Ondrej Krejcar. "Session based recommendations using
recurrent neural networks-long short-term memory." In Intelligent Information and Database
Systems: 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, April 7–10, 2021, Pro-
ceedings 13, pp. 53-65. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-
030-73280-6_5

39. Qiaolin Xia, Peng Jiang, Fei Sun, Yi Zhang, Xiaobo Wang, and Zhifang Sui. "Modeling
consumer buying decision for recommendation based on multi-task deep learning." In Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, Torino Italy, October 22 - 26, 2018, pp. 1703-1706. https://doi.org/10.1145/3269206.
3269285

40. Trinh Xuan Tuan, and Tu Minh Phuong. "3D convolutional networks for session-based
recommendation with content features." In Proceedings of the eleventh ACM conference on
recommender systems, Como, Italy, Aug 27-31, 2017, pp. 138-146. https://doi.org/10.1145/
3109859.3109900

https://doi.org/10.1145/3125486.3125493
https://doi.org/10.1155/2021/7266960
https://doi.org/10.1155/2021/7266960
https://doi.org/10.1007/978-3-030-01421-6_33
https://doi.org/10.1109/AERO50100.2021.9438286
https://doi.org/10.1109/AERO50100.2021.9438286
https://doi.org/10.1145/3457682.3457755
https://doi.org/10.1016/j.asoc.2022.108463
https://doi.org/10.1007/978-3-030-88113-9_3
https://doi.org/10.1007/978-3-030-82193-7_46
https://doi.org/10.1007/978-3-030-82193-7_46
https://doi.org/10.1007/978-3-030-73280-6_5
https://doi.org/10.1007/978-3-030-73280-6_5
https://doi.org/10.1145/3269206.3269285
https://doi.org/10.1145/3269206.3269285
https://doi.org/10.1145/3109859.3109900
https://doi.org/10.1145/3109859.3109900

References 117

41. Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. "A
simple convolutional generative network for next item recommendation." In Proceedings of the
twelfth ACM international conference on web search and data mining, Melbourne, Australia on
February 11-15, 2019, pp. 582-590. https://doi.org/10.1145/3289600.3290975

42. Jiaxi Tang, and Ke Wang. "Personalized top-n sequential recommendation via convolutional
sequence embedding." In Proceedings of the eleventh ACM international conference on web
search and data mining, Los Angeles, California, USA, on February 5-9, 2018, pp. 565-573.
https://doi.org/10.1145/3159652.3159656

43. Wafa Shafqat, and Yung-Cheol Byun. "Enabling “Untact” Culture via Online Product Recom-
mendations: An Optimized Graph-CNN based Approach." Applied Sciences 10, no. 16 (2020):
5445. https://doi.org/10.3390/app10165445

44. Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao Xu, and Yilin
Xiong. "Future data helps training: Modeling future contexts for session-based recommenda-
tion." In Proceedings of The Web Conference 2020, Taipei Taiwan April 20 - 24, 2020,
pp. 303-313. https://doi.org/10.1145/3366423.3380116

45. Weinan Li, Jin Gou, and Zongwen Fan. "Session-based recommendation with temporal
convolutional network to balance numerical gaps." Neurocomputing 493 (2022): 166-175.
https://doi.org/10.1016/j.neucom.2022.04.069

46. Rui Ye, Qing Zhang, and Hengliang Luo. "Cross-Session Aware Temporal Convolutional
Network for Session-based Recommendation." In 2020 International Conference on Data
Mining Workshops (ICDMW), Sorrento, Italy, November 17-20, 2020, pp. 220-226. https://
doi.org/10.1109/ICDMW51313.2020.00039

47. Shahpar Yakhchi, Amin Behehsti, Seyed-mohssen Ghafari, Imran Razzak, Mehmet Orgun, and
Mehdi Elahi. "A convolutional attention network for unifying general and sequential recom-
menders." Information Processing & Management 59, no. 1 (2022): 102755. https://doi.org/10.
1016/j.ipm.2021.102755

48. Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. "A
simple but hard-to-beat baseline for session-based recommendations." arXiv preprint
arXiv:1808.05163 (2018).

49. Gabriel De Souza, P. Moreira, Dietmar Jannach, and Adilson Marques Da Cunha. "Contextual
hybrid session-based news recommendation with recurrent neural networks." IEEE Access
7 (2019): https://doi.org/10.1109/ACCESS.2019.2954957

50. Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Defu Lian.
"A survey on session-based recommender systems." ACM Computing Surveys (CSUR) 54, no.
7 (2021): 1-38. https://doi.org/10.1145/3465401

51. Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. "The adressa
dataset for news recommendation." In Proceedings of the international conference on web
intelligence, Leipzig Germany August 23 - 26, 2017, pp. 1042-1048. https://doi.org/10.1145/
3106426.3109436

52. Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. "Item-based collaborative
filtering recommendation algorithms." In Proceedings of the 10th international conference on
World Wide Web, Hong Kong Hong Kong May 1 - 5, 2001, pp. 285-295. 2001. https://doi.org/
10.1145/371920.372071

53. Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. "Factorizing personalized
markov chains for next-basket recommendation." In Proceedings of the 19th international
conference on World wide web, Raleigh North Carolina, USA, April 26 - 30, 2010,
pp. 811-820. https://doi.org/10.1145/1772690.1772773

54. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. "BPR:
Bayesian personalized ranking from implicit feedback." In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, Montreal Quebec, Canada, June 18 -
21, 2009, pp. 452-461.

55. Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. "Neural attentive
session-based recommendation." In Proceedings of the 2017 ACM on Conference on

https://doi.org/10.1145/3289600.3290975
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.3390/app10165445
https://doi.org/10.1145/3366423.3380116
https://doi.org/10.1016/j.neucom.2022.04.069
https://doi.org/10.1109/ICDMW51313.2020.00039
https://doi.org/10.1109/ICDMW51313.2020.00039
https://doi.org/10.1016/j.ipm.2021.102755
https://doi.org/10.1016/j.ipm.2021.102755
https://doi.org/10.1109/ACCESS.2019.2954957
https://doi.org/10.1145/3465401
https://doi.org/10.1145/3106426.3109436
https://doi.org/10.1145/3106426.3109436
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/1772690.1772773

118 3 Deep Discriminative Session-Based Recommender System

Information and Knowledge Management, Singapore, November 6 - 10, 2017, pp. 1419-1428.
https://doi.org/10.1145/3132847.3132926

56. Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. "STAMP: short-term attention/
memory priority model for session-based recommendation." In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1831-1839.
2018. https://doi.org/10.1145/3219819.3219950

57. Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. "Modeling personalized item fre-
quency information for next-basket recommendation." In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, China, July
25 - 30, 2020, pp. 1071-1080. https://doi.org/10.1145/3397271.3401066

58. Lizhen Wu, Chun Kong, Xiaohong Hao, and Wei Chen. "A short-term load forecasting method
based on GRU-CNN hybrid neural network model." Mathematical Problems in Engineering
2020 (2020). https://doi.org/10.1155/2020/1428104

59. Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst
Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul AS Awwal, and Vijayan
K. Asari. "A state-of-the-art survey on deep learning theory and architectures." Electronics
8, no. 3 (2019): 292. https://doi.org/10.3390/electronics8030292

60. Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recur-
rent network architectures." In International conference on machine learning, Lille France, July
6 - 11, 2015, pp. 2342-2350.

61. Mehrnaz Mirhasani, and Reza Ravanmehr. "Alleviation of Cold Start in Movie Recommenda-
tion Systems using Sentiment Analysis of Multi-Modal Social Networks." Journal of Advances
in Computer Engineering and Technology 6, no. 4, (2020): 251-264.

https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/3397271.3401066
https://doi.org/10.1155/2020/1428104
https://doi.org/10.3390/electronics8030292

Chapter 4
Deep Generative Session-Based
Recommender System

Abstract The inherent structural sequences in sessions and the mutual influence of
complex variables in different time steps make deep generative models effective
solutions for a session-based recommender system (SBRS). In addition, in real-world
scenarios, users usually only select a limited number of items, and their interactions
in response to items are very sparse. Deep generative models that produce more
training samples can help reduce the data sparsity problem. To this end, we discuss
different deep generative models in SBRS in this chapter, such as autoencoders (AE),
generative adversarial networks (GAN), and flow-based models (FBM).

Keywords Session-based recommender systems · SBRS · Deep generative models ·
AE · GAN · FBM

4.1 Introduction

The purpose of session-based recommender systems is to predict the users’ subse-
quent transactions based on their previous short-term behaviors. This is performed
when the long-term history of user behavior is unavailable or the user does not have
a specific profile [1]. Previous studies in session-based recommender systems using
deep learning techniques such as RNNs or CNNs have obtained more effective
results than traditional sequence-based models like personalized Markov chain
decomposition or feature-based matrix factorization [2].

The first research related to session-based recommender systems was presented
primarily based on recurrent neural networks, which predicted the subsequent clicks
of users of a session based on the hidden states they had learned so far. These
methods obtain the information entropy at each time step of the observed sessions
through the conditional distributions of subsequent clicks relative to previous clicks
and typically choose a simple or combined parametric form. However, such a
structure may not have the necessary efficiency due to the inherent structural
sequences in sessions and the mutual influence of different output variables in a
time step on each, considering the complex dependencies between variables in
different time steps. Furthermore, click-level predictions only consider short-term
reactions and ignore long-term interaction even when combined with attention-based

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_4

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_4#DOI

mechanisms. Therefore, these approaches predict the subsequent clicks more accu-
rately in shorter sessions but may deviate from the main goals in more extended
sessions. To reduce these problems, neural networks can be strengthened by
employing multimodal output distributions and uncertainty estimation [2].

120 4 Deep Generative Session-Based Recommender System

On the other hand, in real-world scenarios, users usually only select a limited
number of items, and their interactions in response to items are very sparse.
Therefore, it is difficult to detect sequential patterns of user behavior, and it requires
much more data. Meanwhile, the basic neural network-based recommender systems
have many parameters whose incorrect and incomplete training may lead to chal-
lenges in optimizing complex models and, as a result, provide incorrect recommen-
dations [3]. Therefore, using deep generative models that produce more samples for
the training can help reduce the data sparsity problem [4].

There are different types of deep generative models; the widely used examples
include autoregressive generative models [5], autoencoders (AE), generative adver-
sarial networks (GAN) [6], flow-based models (FBM) [7], and energy-based models
(EBM) [8]. In fact, SBRS extracts latent information related to anonymous users’
interests and short-term session interactions using the potential of deep generative
models such as AEs or GANs for learning meaningful data representations and
embedding/reducing the dimensions of the input data [9]. A review of published
research in this field shows that most of the proposed methods are based on
autoencoders and generative adversarial networks. It should be mentioned that
several approaches based on autoencoders have been combined with techniques
such as normalizing flow, which belongs to FBM.

In this chapter of the book, we discuss the approaches utilizing deep generative
models for session-based recommender systems. For this purpose, in Sect. 4.2, a
brief overview of the fundamentals of these methods, the commonly used datasets,
and the basic evaluation metrics used in various research are discussed. Then, in
Sect. 4.3, methods based on autoencoders and then, in Sect. 4.4, approaches using
generative adversarial networks are discussed and analyzed. Flow-based models in
SBRS are discussed in Sect. 4.5. Section 4.6 explains the results and identifies
current issues and challenges related to using deep generative methods in session-
based recommender systems and provides guidelines for future research in this
scope.

4.2 Fundamentals

The purpose of modeling user preferences in recommender systems is to improve the
customer experience by recognizing the inherent preferences of users based on
previous user behaviors. Generally, users’ interests in session-based recommender
systems have a complex structure. For this reason, learning methods that have a
significant capacity to recognize relationships and dependencies between data
should be used to learn the patterns of users’ interests and recognize the similarity
between the behaviors of different users based on their short-term behaviors. Deep

a p xð Þ= p x0ð Þ
YD

p xijx< ið Þ ð4:1Þ

learning methods are practical and effective in these systems, and previous research
shows the effectiveness of their application in session-based recommender systems.

4.2 Fundamentals 121

Recently, more advanced deep learning approaches have been used in these types
of systems to solve the mentioned challenges and optimize complex session-based
recommender systems more effectively. One of the important approaches is deep
generative models [1]. Generally, approaches based on deep generative models for
SBRS provide recommendations by generating subsequent interactions or subse-
quent sessions through a carefully designed generation strategy. Deep generative
models follow two objectives:

. Learning practical and accurate representations of data using unsupervised
methods

. Learning joint probability distributions of data and the related classes

For example, using deep generative models to train stochastic latent variables in
tasks such as natural language processing, speech generation, and machine transla-
tion has led to significant and effective results. These methods model the generation
process of additional and auxiliary information, such as ratings, and generate a
probabilistic latent variable framework that shares statistical strength among users
and items. Different deep generative learning models provide a high capacity to learn
non-linear representations of user-item interactions [2].

Deep generative models are neural networks with numerous hidden layers trained
for complex estimation and high-dimensional probability distributions [10]. The
most prominent goal of training this type of model is to learn intractable or unknown
statistical distributions from several independent samples uniformly distributed.
After successful training, deep generative models can be used to estimate the
likelihood of a specific sample and generate new samples that are similar to the
unknown distribution. Deep generative models are used by researchers in the field of
SBRS due to their high flexibility in statistical distributions as well as their signif-
icant capacity to learn non-linear representations.

It should be mentioned that all generative models are not based on neural
networks, but considering neural networks as a powerful and flexible tool, they are
widely utilized to parameterize generative models and create deep generative
models. Deep generative models are generally divided into four groups:
autoregressive generative models, flow-based models, latent variable models, and
energy-based models:

. Autoregressive generative models: These models use the idea of autoregressive
modeling. Using the chain rule of probability, they condition their output to the
data observed in the past and not to the future data. The distribution of x in the
autoregressive method is calculated according to Eq. (4.1):

i= 1

| |

122 4 Deep Generative Session-Based Recommender System

The expression x<i shows all x whose index is greater than i. Modeling all
conditional distributions p(xi| x<i) are computationally very complicated and
inefficient, so they use the advantages of neural network models such as causal
convolutions.

Learning long-term statistics and robust density estimators are the main
features of autoregressive models. However, one of their disadvantages is that
they are parameterized in an autoregressive way, and therefore, their sampling
process is prolonged. Additionally, they lack a latent representation, so their
internal data representations are not apparent, and thus, they are less useful for
tasks such as compression or metric learning.

. Flow-based models: These types of models are built as a sequence of reversible
transformations called normalizing flow that repeatedly replaces variables
according to the change-of-variable law. Changing the formula of the variables
creates a method to present the density of the random variable, performed by
replacing it with an invertible transformation f according to Eq. (4.2):

p xð Þ= p z= f xð Þð Þ Jf xð Þ| | ð4:2Þ

In the above equation, Jf(x) represents the Jacobian matrix, which can be param-
eterized using deep neural networks. The type of neural network should be
chosen so that it can calculate the Jacobian matrix.

Flow-based models capture the accurate distribution of data and enable accu-
rate probability assessment. Research in the field of flow-based models can be
divided into two categories: models based on normalizing flows [11] and models
based on autoregressive flows [12].

. Latent variable models: Latent variables make the latent dependencies among the
observed variables to be obtained and the basic structure of the process and
principles of data generation to be learned. Latent variables can provide an
alternative low-dimensional representation of the observed variables. The main
idea of latent variable methods is the assumption of a latent space with low
dimensions, whose generating process is according to Eq. (4.3):

z - p zð Þ, x - p xjzð Þ ð4:3Þ

This model assumes that the observed variable x is generated by a stochastic
process based on an unobserved continuous variable z. In other words, the latent
variables correspond to the hidden factors in the data, and the conditional
distribution p(x| z) acts as a generator. One of the most popular types of methods
in this category is the probabilistic principal component analysis (pPCA), where
p(z) and p(x| z) are based on Gaussian distribution and the dependency between
z and x is linear. One of the developed examples of pPCA with an arbitrary
distribution is the variational autoencoder (VAE), used to approximate the

4.2 Fundamentals 123

Table 4.1 The list of research discussed using deep generative models

Deep generative models References

Autoencoder (AE) [2, 9, 14–24]

Generative adversarial network (GAN) [3, 25–34]

Flow-based models (FBM) [2]: Normalizing flows
[35]: Autoregressive flows

posterior probability of p(z| x) to make tractable inferences [13]. GAN networks
are one of the types of latent variable models.

. Energy-based models: A group of generative models inspired by the laws of
physics which utilize energy functions such as E(x). Energy-based models
(EBM), also known as non-normalized probability models, specify probability
density or mass functions up to an unknown normalizing constant. The density
determined using the EBM model is in the form of Eq. (4.4):

P Xð Þ=
1
Z
e-E xð Þð Þ ð4:4Þ

where the function E(x) (energy) is the non-linear regression function and z=P
x
exp -E Xð Þð Þ is a normalizing constant called the partition function. In other

words, the distribution is defined by an exponential energy function that is further
normalized to obtain values between zero and one. Energy-based models are
based on the energy function, and their main idea is to formulate the energy
function and estimate the partition function. One of the main groups of energy-
based models is Boltzmann machines.

Generally, flow-based, autoregressive, and energy-based models and several
models based on latent variables, such as variational autoencoders, can be trained
sustainably, but some models based on latent variables, such as generative adver-
sarial networks, face instability. In terms of sampling, autoregressive models have a
slow process, and energy-based models are also relatively slow due to implementing
the Monte Carlo method for obtaining samples, specially for objects with high
dimensions. However, other methods have a fast-sampling process. Energy-based
models, flow-based models, and models such as variable autoencoders can be used
to learn a representation of input data and provide data with low dimensions, but
autoregressive and GAN methods do not have this capability.

Due to the data sparsity and the complex structures of user interactions, many
research related to session-based recommender systems have employed different
deep generative models. Of course, some research has also presented a combination
of several generative methods. For this purpose, AEs, GANs, and FBMs (normal-
izing flow and autoregressive flow) have been discussed and analyzed in this
chapter.

124 4 Deep Generative Session-Based Recommender System

Fig. 4.1 Percentage of each
type of deep generative
model in SBRS

The research discussed in this chapter are shown in Table 4.1 according to the
deep generative model.

The diagram in Fig. 4.1 shows the percentage of each technique used in the
discussed research.

It should be mentioned that the review of research belonging to the third and
fourth chapters of the book shows that discriminative models have been used more
than generative models in session-based recommender systems, specially recurrent
neural networks. RNNs, due to their sequential nature, have a high capacity to
analyze the sequential dependencies between data in user sessions and to model
users’ behaviors over time. However, since deep generative methods are indepen-
dent of data labels and they propose greater flexibility in this field compared to
discriminative methods, researchers have been interested in using these methods
more and more in session-based recommender systems.

Another noteworthy point in the review of the research of this chapter is the
publication date, which shows that the approaches utilizing deep generative models
are more emerging and the desire of researchers to use them in session-based
recommender systems has increased in the last few years. Despite the presence of
several types of deep generative models, most of the published articles use
autoencoders or generative adversarial networks in session-based recommender
system.

A generative adversarial network (GAN) is a generative model based on deep
learning. These networks represent frameworks that build generative models based
on an adversarial process. In this framework, two models are learned
simultaneously:

. A generative model that obtains the data distribution and is used to generate new
acceptable examples from the problem domain. In fact, this model turns noise into
fake data.

. A discriminative model that estimates the probability of a sample belonging to the
training model or the model obtained from the generative method. In fact, this
model is employed to classify samples as real samples (from the domain) or fake
samples (made by the generative model).

4.2 Fundamentals 125

Fig. 4.2 The general architecture of a generative adversarial network

Fig. 4.3 The general architecture of an autoencoder

The performance of this type of network corresponds to a minimax two-player
game, where the goal of the training process of the generative model is to maximize
the probability that the discriminative model makes a mistake. If the generative and
discriminative models of GAN are defined as a multilayer perceptron (MLP) net-
work, the whole system can be trained in the form of error backpropagation. Then,
there is no need to use Markov chains or approximate inference networks [36]. Fig-
ure 4.2 shows the general architecture of a generative adversarial network.

Autoencoders are a special type of feedforward neural network in which the input
and output are the same. This type of neural network was proposed by Jeffrey Hinton
in the 1980s for solving unsupervised learning problems [37]. Autoencoders are
trained neural networks that replicate data from the input layer to the output. As
shown in Fig. 4.3, an autoencoder consists of three main parts: encoder, represen-
tation, and decoder. Autoencoders are structured to receive input and convert it into a
different representation. Then, they try reconstructing the original input as accurately
as possible. Autoencoders first encode the input and then reduce the size of the input
to a low-dimensional representation. Finally, the autoencoder decodes the represen-
tation to generate the reconstructed data.

126 4 Deep Generative Session-Based Recommender System

Fig. 4.4 The general architecture of a flow-based model

In recent years, various types of autoencoders have been proposed; the most
widely used are sparse autoencoders (SAE), denoising autoencoders (DAE), and
variational autoencoders (VAE). We found that many kinds of research related to
session-based recommender systems based on deep generative models use variable
autoencoders.

The distribution models used in AEs are not flexible enough to match the true
posterior and the uncertainty of the recommendations. To solve the problem,
improving the variational posterior distribution using the normalizing flow [38] is
presented. Normalizing flow is a set of inverse transformations to the desired vari-
ables with a simple initial distribution. Compared to VAE and GAN, flow-based
models have so far attracted less attention, specially in the field of session-based
recommender systems, although they have unique advantages such as accurate latent
variable inference and analytical likelihood evaluation. Figure 4.4 shows the general
architecture of a flow-based model.

In the following two subsections, a summary of the employed datasets and
evaluation metrics of the reviewed research is presented.

4.2.1 Datasets

To evaluate and validate the results of deep generative approaches in session-based
recommender systems, different datasets are used from different fields. The features
of these datasets have made them suitable options for evaluating the proposed
approaches.

Table 4.2 shows the datasets used in different articles, including the dataset name,
the domain, a brief description, and the paper that employed it.

Table 4.3 presents the information on each dataset, including the number of
sessions/items/events, duration of data collection, average length of the session,
type of interaction, and access link to the dataset.

The statistical information related to the dataset presented in Table 4.3 was
collected from the articles or from the links that introduced them. Reviewing the
evaluation section of various articles in the field of session-based recommender
system shows that some datasets have been widely used to evaluate the application

(continued)

4.2 Fundamentals 127

Table 4.2 Widely used datasets in SBRS using deep generative models

Dataset Domain Description References

Diginetica E-commerce The dataset includes user sessions extracted
from an e-commerce search engine log

[2, 3, 16, 18]

YELP Business Contains users’ reviews of various businesses.
Each display set is simulated by collecting
nine businesses with the nearest location

[27, 29]

Taobao E-commerce Contains the clicking and buying records of
users in 22 days. We consider the buying
records as positive events

[27]

Ant Financial
News

News Contains click records from 50,000 users for
1 month, involving dozens of thousands of
news. On average, each display set contains
five news articles

[27]

YooChoose E-commerce The dataset consists of 6 months of
clickstreams from an e-commerce Web site

[2, 16, 18,
19, 25]

Yahoo!
JAPAN’s
homepage

News They sampled approximately 12 million users
who had clicked at least one article from the
service logs of Yahoo! JAPAN’s homepage
on smartphones between January and
September 2016

[14]

Last.fm Music This dataset contains social networking, tag-
ging, and music artist listening information
from a set of 2K users from Last.fm online
music system

[19, 20, 22,
27]

RecSys Chal-
lenge 2015

E-commerce This dataset comprises clickstream data to
user sessions with an e-commerce Web site

[2, 16, 25,
27]

Studo Job Studo is a proprietary dataset collected from
the online platform Studo Jobs, a job-seeking
service for university students

[9]

RecSys17 Job The RecSys17 is the latest version of the data
provided by XING after the RecSys Challenge
2017

[9, 22]

CareerBuilder12 Job It is from an open Kaggle competition, called
Job Recommendation Challenge, provided by
the online employment Web site CareerBuilder

[9]

Amazon E-commerce Amazon is an e-commerce dataset, where [3]
focuses on the baby, beauty, and cellphone
domains

[3, 31]

Netflix Video Netflix is a well-known dataset recording the
ratings of users on a catalog of movies.
Because the timestamp of each rating is
available, it is possible to construct for each
user the sequence of movies he rates

[17, 28, 30]

Booking.com Travel Booking.com recently organized the WSDM
WebTour 2021 Challenge. The dataset con-
sists of over a million anonymized hotel res-
ervations based on real data. The challenge’s
goal is to recommend the final city of each trip

[15]

http://booking.com
http://booking.com

of different approaches based on discriminative, generative, or hybrid methods. For
example, YooChoose, MovieLens, RecSys Challenge 2015, and Diginetica datasets
have been used in many articles. Of course, each proposed approach, according to
the nature and type of their performance, has considered different preprocessing
operations for the dataset. For example, in [25] for the YooChoose dataset, only
sessions with more than five interactions are considered, or in [3] for the Diginetica
dataset, only users or items are considered that have participated in more than five
interactions. Sessions with more than two items have been considered in [16] for the
Diginetica and YooChoose datasets. In some research, different modifications have
been made to the original data to match it with the proposed method, for example, in
[17], the data related to the scores of the Netflix and MovieLens datasets have been
converted to binary values.

128 4 Deep Generative Session-Based Recommender System

Table 4.2 (continued)

Dataset Domain Description References

MovieLens Movie It consists of users’ sequential rating records
for different categories of movies on the
MovieLens site

[3, 17, 20,
21, 27–29,
31, 35]

CiteULike Research
paper

In the CiteULike dataset, one user annotating
one research paper at a certain time may have
several records to distinguish different tags

[35]

Retailrocket E-commerce The data has been collected from a real-world
e-commerce Web site. It is raw data, i.e.,
without any content preprocessing; however,
all values are hashed due to confidential issues

[22]

4.2.2 Evaluation

To accurately evaluate and analyze the results of new approaches to session-based
recommender systems, several previous approaches in this field are usually used as a
baseline. Some of these methods utilize the basic methods of session-based recom-
mender system. Some others are based on neural networks and specific to the
evaluation of deep learning session-based recommender systems. On the other
hand, one or more evaluation metrics are used to assess the performance of deep
generative models in the proposed approaches. Each of these evaluation metrics
considers the proposed methods from a specific perspective. In these subsections,
first, widely used baseline methods are introduced, and then the relevant metrics are
discussed and reviewed.

The most widely used baselines are as follows. It should be noted that some of
them have been introduced as baselines in the previous chapter. However, to keep
the comprehensiveness and consistency of the content of this chapter, they are also
repeated in this section:

(c
on

tin
ue
d)

4.2 Fundamentals 129

T
ab

le
 4
.3

C
ha
ra
ct
er
is
tic
s
of
 w

id
el
y
us
ed
 d
at
as
et
s

D
om

ai
n

D
at
as
et

N
um

be
r

of

se
ss
io
ns

N
um

be
r

of
 it
em

s
N
um

be
r
of

ev
en
ts

T
im

es
pa
n

in
 d
ay
s

A
ve
ra
ge

se
ss
io
n

le
ng

th

In
te
ra
ct
io
n

ty
pe

A
cc
es
s
lin

k

E
-c
om

m
er
ce

Y
oo

C
ho

os
e
1/
64

42

5,
75

7
16

,7
66

55
7,
24

8
18

2
6.
16

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/

ch
ad
go

st
op

p/
re
cs
ys
-c
ha
lle
ng

e-
20

15

D
ig
in
et
ic
a

20
4,
78

9
43

,1
36

99
3,
48

3
–

5.
12

C
lic
k

ht
tp
s:
//c
om

pe
tit
io
ns
.c
od

al
ab
.o
rg
/c
om

pe
tit
io
ns
/1
11

61
#l
ea
rn
_t
he
_d

et
ai
ls
-

da
ta
2

R
ec
S
ys
 C
ha
l-

le
ng

e
20

15

7,
98

1,
58

1
37

,4
86

31
,7
08

,5
05

18

2
3.
97

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/

ch
ad
go

st
op

p/
re
cs
ys
-c
ha
lle
ng

e-
20

15

T
ao
ba
o

18
6,
85

7
14

,7
46

3,
21

4,
63

7
22

17
.2

C
lic
k

ht
tp
s:
//t
ia
nc
hi
.a
liy

un
.c
om

/d
at
as
et
/6
49

A
m
az
on

 (
ba
by

,
be
au
ty
,

ce
llp

ho
ne
)

–
29

,5
83

55
3,
73

3
19

 y
ea
rs

–
R
ev
ie
w
s

an
d

m
et
ad
at
a

ht
tp
://
jm

ca
ul
ey
.u
cs
d.
ed
u/
da
ta
/

am
az
on

/

V
id
eo

N
et
fl
ix

48
0,
18

9
17

,7
70

10
0,
48

0,
50

7
6
ye
ar
s

–
R
at
in
g
(1
–5

)
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/

ne
tfl
ix
-i
nc
/n
et
fl
ix
-p
ri
ze
-d
at
a/

di
sc
us
si
on

M
ov

ie
L
en
s-
1M

60
40

37
06

1,
00

0,
20

9
17

 y
ea
rs

–
R
at
in
g
(1
–5

)
ht
tp
://
fi
le
s.
gr
ou

pl
en
s.
or
g/
da
ta
se
ts
/

m
ov

ie
le
ns
/

Y
ah
oo

!
JA

P
A
N
’s

ho
m
ep
ag
e

16
6

m
ill
io
n

2 m
ill
io
n

1
bi
lli
on

14
–

C
lic
k

ht
tp
s:
//w

eb
sc
op

e.
sa
nd

bo
x.
ya
ho

o.
co
m
/

ca
ta
lo
g.
ph

p?
da
ta
ty
pe
=
l

P
O
I

G
ow

al
la

83
0,
89

3
29

,5
10

1,
12

2,
78

8
24

0
3.
85

C
he
ck
-i
n

ht
tp
s:
//s
na
p.
st
an
fo
rd
.e
du

/d
at
a/
lo
c-

go
w
al
la
.h
tm

l

M
us
ic

L
as
t.f
m

16
9,
57

6
44

9,
03

7
28

8,
73

49
95

17
.0
3

C
lic
k

ht
tp
://
m
ill
io
ns
on

gd
at
as
et
.c
om

/la
st
fm

/

Jo
b

S
tu
do

26
,8
75

11
11

19
1,
25

9
90

6.
98

V
ie
w
,

ap
pl
y,
 s
ha
re
,

de
ta
il

N
ot
 p
ub

lic

R
ec
S
ys
17

16
,3
22

15
,6
86

55
,3
80

90
3.
62

https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://competitions.codalab.org/competitions/11161#learn_the_details-data2
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://tianchi.aliyun.com/dataset/649
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data/discussion
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data/discussion
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data/discussion
http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
http://millionsongdataset.com/lastfm/

D
om

ai
n

D
at
as
et

N
um

be
r

of se
ss
io
ns

N
um

be
r

of
ite
m
s

N
um

be
r
of

ev
en
ts

T
im

es
pa
n

in
da
ys

A
ve
ra
ge

se
ss
io
n

le
ng

th
In
te
ra
ct
io
n

ty
pe

A
cc
es
s
lin

k

C
lic
k,

m
ar
k,

an
d
ap
pl
y

ht
tp
://
w
w
w
.r
ec
sy
sc
ha
lle
ng

e.
co
m
/2
01

7/

C
ar
ee
rB
ui
ld
er
12

12

0,
14

7
19

7,
59

0
66

1,
91

0
90

5.
64

A
pp

ly
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/c
/jo

b-
re
co
m
m
en
da
tio

n

T
ra
ve
l

B
oo

ki
ng

.c
om

21
7,
68

6
39

,9
01

1,
16

6,
83

5
1
ye
ar

5.
36

R
es
er
va
tio

n
ht
tp
s:
//g

ith
ub

.c
om

/b
oo

ki
ng

co
m
/m

l-
da
ta
se
t-
m
dt

130 4 Deep Generative Session-Based Recommender System

T
ab

le
4.
3

(c
on

tin
ue
d)

http://www.recsyschallenge.com/2017/
http://www.recsyschallenge.com/2017/
https://www.kaggle.com/c/job-recommendation
https://www.kaggle.com/c/job-recommendation
http://booking.com
https://github.com/bookingcom/ml-dataset-mdt
https://github.com/bookingcom/ml-dataset-mdt

4.2 Fundamentals 131

POP More popular items are always recommended. The POP is effective and
straightforward simultaneously and is often a strong baseline in specific
domains [39].

S-POP The most popular items in the current session are recommended. The
recommendation list changes based on the number of events that are related to
particular items. This baseline is useful for the domains with high repetitiveness [39].

Item-KNN Items similar to the actual item are recommended, and the similarity
between them is measured based on the cosine similarity measure of their session
vectors. In other words, it is the number of co-occurrences of two items in sessions
divided by the square root of the product of the number of sessions in which the
individual items occurred. This method is very effective for evaluating item-to-item
recommendation methods [39].

FPMC A hybrid model for the next-basket recommendation based on the
factorizing personalized Markov chains. This method is adapted in [2] for the
scenario of session-based recommender systems. In fact, the user’s latent represen-
tations are omitted when calculating the scores of the recommendations.

BPR-MF It utilizes matrix factorization which is optimized for pairwise ranking
objective functions through stochastic gradient descent. Methods based on matrix
factorization cannot be used in session-based models because there is no
pre-computed feature vector for new sessions. This problem is overcome by using
the average vectors of the items that belong to each session [49].

GRU4Rec A technique based on recurrent neural networks, which is one of the first
approaches to using deep learning techniques in session-based recommender system.
This method is based on GRU and is used to overcome the problem of gradient
vanishing [39].

GRU4Rec+ This method is an improved version of GRU4Rec that uses data
augmentation and considers shifts in the distribution of input data to improve the
performance of GRU4Rec [2].

GRU4Rec++ This method is one of the most recent methods that extend GRU4Rec
by introducing an improved sampling strategy pattern [2].

NARM An improved version of GRU4Rec, which performs session modeling by
introducing a hybrid encoder based on the attention mechanism. In this technique,
global and local encoders are defined, the global encoder corresponds to the
GRU4Rec method, and the local encoder is proposed for adding the attention
mechanism to the model, respectively [18].

STAMP This method is based on a Short-Term Attention/Memory Priority Model
and, unlike the NARM method, is not based on a recurrent neural network. In this
method, users’ general interests are obtained through the long-term memory data of
the session context, and their short-term interests are also recognized through short-
term memory [40].

8

132 4 Deep Generative Session-Based Recommender System

ReLaVaR A Bayesian version of GRU4Rec, which considers the recurrent units of
the network as stochastic latent variables with some prior distributions and infers the
corresponding posterior probabilities for prediction and recommendation. This
method provides a session-based recommender system that works based on varia-
tional inference at the item level and uses the independent Gaussian distribution as
the prior probability of the items [2].

VRM A variational autoencoder approach for session-based recommender systems.
Unlike ReLaVaR, which is a variational method at the item level, the VRM model
performs stochastic inference on the session level [23].

CDAE A well-known model to recommend top N recommendations, which uses
denoising autoencoders and learns the data model from corrupted inputs [41].

CASR This counterfactual data augmentation method has been proposed for
sequential recommender systems [42]. It is composed of a sampler model and an
anchor model. The sampler model generates counterfactual sequences from the real
ones. The anchor model provides the final recommendation list and is trained based
on both real and counterfactual sequences.

SASRec The first model of the session-based recommender system based on the
self-attentive mechanism [43].

In this section, a number of evaluation metrics that are used more in this field have
been discussed in the following:

. Recall: This metric is calculated based on the number of relevant items that are
among the top N items in the recommendation list, and the rank of the relevant
items in the N list is unimportant, and it is calculated using Eq. (4.5):

Recall@N =
Number of relevant items in top N list

Total of relevant items
ð4:5Þ

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the
list of recommendations. It shows that placing a relevant item at the top of the
recommendation list significantly impacts user satisfaction and is calculated using
Eq. (4.6):

MRR@N =
1
Q

XQ
i= 1

1
ranki

if ranki ≤N

0 otherwise

<
: ð4:6Þ

where Q is a sample of recommendation lists and ranki refers to the rank position
of the relevant item for the i-th recommendation list.

. Precision @ N: This metric evaluates the number of relevant items relative to the
total N items recommended in the list, and it is calculated using Eq. (4.7):

()
()

4.2 Fundamentals 133

Precision@N =
Number of relevant items in top N list

Total of N items
ð4:7Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the
percentage of items that are ever recommended, and the variety of the
recommended items in the recommendation list is considered. Its goal is to
recommend a high percentage of various items to the user. This metric is
calculated using Eq. (4.8):

Coverage@N

=
Distinct items that appeared in any top-N recommendation

All distinct recommendable items
ð4:8Þ

. nDCGp: This metric is based on cumulative gain (CG). The cumulative gain is the
sum of the graded relevance values of all items in a recommendation list. nDCG is
computed as the ratio between discounted cumulative gain (DCG) and idealized
discounted cumulative gain (IDCG). Equations (4.9), (4.10), and (4.11) show
how to calculate this measure.

DCGp=
Xp
i= 1

2ri - 1
log 2 iþ 1ð Þ ð4:9Þ

IDCGp=
XRELp
i= 1

ri
log 2 iþ 1ð Þ ð4:10Þ

nDCGp=
DCGp

IDCGp
ð4:11Þ

In the above equations, ri is the graded relevance of the result at position i, and
RELp represents the list of relevant items (ordered by their relevance) up to
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant
item is recommended, the precision is measured, and the average is calculated
using Eq. (4.12):

MAP=

PQ
q= 1

AveP qð Þ
Q

ð4:12Þ

In this relation, P(q) is the precision of query q, and parameter Q is the number of
queries.

{

 !

ffis

134 4 Deep Generative Session-Based Recommender System

. Hit Rate@N: It is the percentage of times in which relevant items are retrieved
among the top N ranked items, and it is calculated using Eq. (4.13):

Hit Rate@N =
1
Q

XQ
i= 1

1 if ranki ≤N
0 otherwise

ð4:13Þ

where Q is a sample of recommendation lists and ranki refers to the rank position
of the relevant item for the i-th recommendation list.

. Mean Absolute Error (MAE): This metric is one of the most common errors of
prediction factors, which calculates the mean absolute value of the difference
between the score predicted by the system and the actual score of the item. The
mean absolute error indicates the degree of closeness of the recommendations to
reality. This measure can be calculated from Eq. (4.10).

MAE=
1
N

X
i2Ou

Pu,i - ru,ij j ð4:14Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the
predicted rank is more effective than the mean absolute error in problems where
the errors are more considerable, and it is calculated using Eq. (4.14):

RMSE=
1
N

X
i2Ou

Pu,i - ru,ið Þ2 ð4:15Þ

In Eqs. (4.14) and (4.15), Pu, i is the predicted score for the item i by user u, ru, i is
the actual value of the score assigned to item i by user u, Ou is the set of items
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine
the efficiency of recommender systems is the AUC. The larger the AUC value,
the more favorable the final system performance is evaluated. The ROC (receiver
operating characteristic) space is formed by two indices FPR on the horizontal
axis and TPR on the vertical axis, as calculated by Eqs. (4.16) and (4.17),
respectively. The line that connects two points (0,0) and (1,1) divides the ROC
space into two parts. The area above this line is the favorable area and below the
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a
classifier to distinguish between classes and is used as a summary of the ROC
curve.

X X
ð

X X X

4.2 Fundamentals 135

TPR=
TP

TP þ FN ð4:16Þ

FPR=
FP

FPþ TN ð4:17Þ

The maximum value of this metric is equivalent to one and occurs in a situation
where the recommender system is ideal and can recognize all positive samples.
The AUC measure, unlike other measures for deciding the efficiency of classifi-
cation methods, is independent of the classification threshold. Therefore, this
measure indicates the output reliability of the system.

. Expected Popularity Complement (EPC): This metric shows the ability of the
recommender system to introduce items that have not been recommended in the
system before. This measure is calculated based on Eq. (4.18):

EPC@k=
1
Sjj

s2S

1
Rkjj

Ri2Rk

disc ið Þp reljRi, sð Þ 1- p seenjRið Þð Þ 4:18Þ

In this regard, disc(i) is the discount factor for the weight of recommendation rank
i, and p(seen|Ri) is the probability that the i-th recommended item was already
seen in the system.

. Expected Profile Distance (EPD): Unlike the EPC measure, the EPD uses the
semantic content of recommendations and shows how surprising and unexpected
recommendations are for a specific session history. This measure is calculated
based on Eq. (4.19):

EPD@k =
1
Sjj

s2S

1
Rkjj Hsjj

Ri2RkHj2Hs

disc ið Þp reljRi, sð Þd RijHj

() ð4:19Þ

In the above equation, disc(i) is the discount factor for the weight of recommen-
dation rank i, and d(Ri|Hj) represents the dissimilarity between Ri and Hj. The
session-based novelty is given as the average dissimilarity of all items in the list
of recommended items Ri and items in the current session Hj.

Table 4.4 shows the different evaluation metrics used in different articles on
session-based recommender systems using deep generative models.

136 4 Deep Generative Session-Based Recommender System

Table 4.4 Widely used evaluation metrics in SBRS using deep generative models

Evaluation metrics References

Mean reciprocal rank (MRR) [2, 3, 9, 14, 16, 18, 19, 21, 22, 28–30]

Recall@n [2, 3, 17–19, 22, 24, 31, 35]

nDCG [3, 9, 14, 17, 20, 21, 26, 28–31, 35]

AUC [14]

Precision@n [16, 17, 25, 27, 28, 35]

Accuracy [15]

RMSE [25]

MAP [26, 27, 30, 35]

EPC [9]

EPD [9]

Coverage [9]

Hit Rate@n [20, 21]

4.3 Session-Based Recommender System Using
Autoencoder

Before looking at the approaches of autoencoder models in session-based recom-
mender system, an overview of AE and the reasons that made it an appropriate
choice for SBRS are provided.

4.3.1 Why Autoencoder?

With the advancement of neural networks and the increase in the computation power
of computer systems, the use of deep generative models has become one of the most
widely used approaches in different fields of artificial intelligence. In recommender
systems, deep generative models have been widely used, and one of the most popular
models in this field is autoencoders. The autoencoders are utilized to learn mean-
ingful representations of data such as embedding, reducing input data dimensions,
data reconstruction, etc. [44]. Moreover, the autoencoders are used in recommender
systems to compress, cluster, and reduce data dimensions to recognize latent simi-
larities between items or users and predict users’ interests based on them. Recom-
mender systems that use autoencoders have a more effective performance in terms of
noise management, as well as the use of multimedia data resources, compared to
traditional recommender systems. The results of the evaluation show that
autoencoder-based recommender systems could generate more accurate results.

Recently, research related to session-based recommender systems has also used
autoencoders for extracting hidden information related to the interests of anonymous
users in short sessions. In the proposed approaches, autoencoders are employed to
embed and generate semantic representations of users, items, or sessions, and

ð

simultaneously, while maintaining the most important features, they also reduce the
dimensions of the data. Indeed, autoencoders have changed the architectures of
session-based recommender systems, and by analyzing and reconstructing users’
experiences, they have provided more opportunities to increase their satisfaction
with the system’s performance. Autoencoders, alone or combined with other deep
learning methods, try to reduce the weaknesses of recommender systems, such as
data privacy, and effectively learn non-linear relationships between users and items.
Data privacy can be alleviated by learning knowledge from different data sources,
including contextual, textual, and image data.

4.3 Session-Based Recommender System Using Autoencoder 137

Autoencoders are categorized under unsupervised learning. The structure of the
autoencoder is divided into two parts: encoding and decoding. In encoding, the input
data is mapped to the feature space, and in decoding, it is converted back to its
original form from the feature space. The main part of an autoencoder is the hidden
layer used as the extracted feature for classification. The autoencoder receives a set
of data and, by encoding them, tries to represent the inputs. The autoencoder is
trained so that the weights produced in the layers make the output have the minimum
possible deviations from the input or equal in an ideal case. When training an
autoencoder, the model parameters such as the number of middle layer nodes, the
cost function, and the number of layers affect the performance of the model and
should be set in advance.

Figure 4.5 shows the general structure of an autoencoder, which consists of three
layers: input layer, hidden layer, and output layer.

The number of neurons in each input, hidden, and output layer is equal to n, m,
and n, respectively. The input layer and the hidden layer construct the encoder, and
the hidden layer, together with the output layer, constructs the decoder. As shown in
Fig. 4.4, the encoder converts x = {x1, x2, . . ., xn}, which is a high-dimensional input
data, into h = {h1, h2, . . ., hm}, which is a low-dimensional latent representation.
This transformation is performed through the f function in Eq. (4.20):

h= f xð Þ= sf Wxþ bð Þ 4:20Þ

In the above equation, sf is the activation function. The encoder parameters
include a weight matrix W with dimensions m×n and a bias vector bERm . The decoder
reconstructs the representations of the hidden layer h and reaches the data x́=
x́1, x́2, . . . , x́nf g using the g function in Eq. (4.21):

x́= g hð Þ= sg Ẃhþ b́() ð4:21Þ

In the above equation, sg is the activation function. The decoder parameters
include a weight matrix W with dimensions n×m and a bias vector b́ERn:sg and sf
functions are usually non-linear activation functions such as hyperbolic tangent
function, sigmoid, etc. These non-linear activation functions help the autoencoder
to learn more important and useful features than the PCA method by minimizing the
reconstruction error between x and x́ and obtaining a d-dimensional representation of

Þ ð

the input data. There are two methods of squared error and cross-entropy to
formulate the reconstruction error, which is calculated based on Eqs. (4.22) and
(4.23), respectively:

138 4 Deep Generative Session-Based Recommender System

Fig. 4.5 The layers of the autoencoder

EAE x, x́ð Þ= x- x́k k2 ð4:22Þ

EAE x, x́ð Þ= -
Xn
i= 1

xi log x́i þ 1- xið Þ log 1- x́ið Þð 4:23Þ

A regularized term can be added to calculate the reconstruction error and make
the loss function of the autoencoder. The loss function can be optimized through
methods such as SGD (stochastic gradient descent). Although this model is often
efficient, it can become very ineffective if errors occur in the first layers. A proper
technique to eliminate this problem is pre-training the network with initial weights
that approximate the final solution.

4.3 Session-Based Recommender System Using Autoencoder 139

Solutions that are presented based on autoencoders may face challenges that
affect the usability and robustness of the model. These challenges include [45]:

. Weight initialization: With large initial weights, autoencoders usually detect
weak local minima, and if the initial weights are small, the gradients of the initial
layers are small, making it impossible to train autoencoders with many hidden
layers. Random selection of initial values also affects the results.

. Model configuration: The model configuration, including the number of layers
and their width, makes the network look for a specific image of the data while
preserving relevant details.

. Hyperparameters: There are several hyperparameters for autoencoders that are
difficult to set. These hyperparameters are learning rate, weight cost, dropout
function, batch size, number of epochs, number of layers, number of nodes of
encoding/decoding layers, a type of activation function, initialization of weights,
and optimization algorithm.

If the neural network constructing an autoencoder is a deep network, it is called a
deep autoencoder. In this architecture, the number of hidden network layers is more
than one. Currently, very deep networks can be easily trained by GPUs. Recently,
different types of autoencoders have been proposed in various research on session-
based recommender systems, which are briefly reviewed as follows:

Denoising Autoencoder The autoencoder sometimes adapts only to the input data
instead of finding the most salient feature (this is an example of overfitting). The
denoising autoencoder adds a little noise to the input cell. By doing this, the encoder
is forced to reconstruct the output from a corrupted input and acquire more robust
features. The input in this network is a corrupted version ~x 2 Rn of the original input
x 2 Rn . This autoencoder does not simply copy the input to the output but denoises
the data and then produces the input from the noisy version. The loss function
minimizes the error in the noisy input. The general form of this type of autoencoder
is shown in Fig. 4.6.

Convolutional Autoencoder The convolutional autoencoder is a convolutional
neural network used as an advanced method in unsupervised learning based on
convolutional filters. In a convolutional autoencoder, the model can learn optimal
filters that minimize the reconstruction error instead of manually engineering
convolutional filters. Once these filters are learned, they can be applied to any
input to extract features. Therefore, these features can be used to do anything
requiring a compact input representation, such as classification. A convolutional
autoencoder learns to encode the input into a set of simple signals and then
reconstructs the input from them. In this type of autoencoder, the encoder layers
are called convolutional and the decoder layers are called deconvolution layers. The
general form of this type of autoencoder is shown in Fig. 4.7.

Variational Autoencoder Compared with the autoencoder, the variational
autoencoder compresses probabilities instead of features. Despite the small differ-
ences between the two mentioned neural networks, each of them answers a different

question. Autoencoder answers the question “How can the data be generalized?”. In
contrast, the variational autoencoder answers “How strong is the connection between
two events? Should the fault be distributed between the two events, or are they
completely independent?”. The variational autoencoder is an example of a deep
latent variable model that uses neural networks to approximate the posterior infer-
ence of latent variables and generate data samples. Indeed, a variational autoencoder
is a probabilistic generative model in which the probability density p(x) is modeled
through a latent variable z. Its goal is to model p(x) so that sampling the distribution
leads to the generation of ideal samples from the input dataset that does not exist in
the original form. In fact, the variational autoencoder can generate new data samples
similar to the data samples the model has seen during the training process. The
general form of this type of autoencoder is shown in Fig. 4.8.

140 4 Deep Generative Session-Based Recommender System

Fig. 4.6 The general architecture of denoising autoencoder

Fig. 4.7 The general architecture of convolutional autoencoder

4.3 Session-Based Recommender System Using Autoencoder 141

Fig. 4.8 The general architecture of variational autoencoder

4.3.2 Autoencoder Approaches

Autoencoders are one of the most powerful methods for extracting the main features
of data. These types of neural networks are used for unsupervised learning with the
aim of dimensionality reduction, optimal embeddings, and generative modeling. To
use the advantages of autoencoders and overcome the problems of previous session-
based recommender systems, different types of these systems have utilized
autoencoders. Each research discussed in this section has used different types of
autoencoders for their proposed model.

One of the first research that used autoencoders in session-based recommender
system was proposed by Li et al. [18]. The main idea is to create a latent represen-
tation of the user’s current session and make predictions. This method includes an
attention-based mechanism that works along with an encoder to model users’
sequential behaviors, determine the user’s main goal in the current session, and
finally create a unified representation of the session. Figure 4.9 shows the schematic
of this method, which is called neural attentive recommendation machine (NARM).

As shown in the figure, the encoder converts a sequence of input clicks x = {x1,
x2, . . ., xt - 1, xt} into a set of high-dimensional arrays h = {h1, h2, . . ., ht - 1, ht} and
sends it along with the attention signal at time t(αt) to the generator of session
features to create a representation of the current session and decoding at time t(ct).
Finally, ct is transformed into an activate function using the U matrix to create a
ranking list over all items. Following the successful use of GRUs in the GRU4Rec
method, this method also uses GRUs to model user sessions. In the proposed
architecture, a global encoder is considered, which is based on GRU4Rec and is
used to model sequential user behaviors. A local encoder is also used to detect the
main purpose of the user in the current session.

While in the previous methods, only the last hidden state was used to encode the
session, NARM uses all the hidden states of the GRU to encode the sessions. The
similarity between the last global hidden state and all previous global hidden states is
calculated, and using this similarity, the final local encoding of the session is
determined through the sum of all hidden states that are weighted based on their
similarity.

142 4 Deep Generative Session-Based Recommender System

Fig. 4.9 The schematic of
NARM [18]

The main disadvantage of NARM is that a session may contain noise or a
collection of choices from multiple users, so not all dependencies may be correctly
detected and considered. Many session-based recommender systems only focus on
the user’s current session and ignore the collaboration information of previous
sessions. The information from the previous sessions provides the behavior of
other users who may have similar interests to the intended user. To solve this
problem, a Collaborative Session-based Recommendation Machine (CSRM) with
parallel memory modules has been proposed by Wang et al., which uses a memory
network to encode the current session of the user [19]. In addition to the information
from the current session, this method also uses the information from neighbor
sessions to provide recommendations.

Figure 4.10 shows the architecture of CSRM. In CSRM, two modules based on
neural networks are implemented in parallel: the inner memory encoder (similar
architecture to the NARM) and the outer memory encoder. The inner memory
encoder is made of two submodules, one of which obtains the user’s global behavior
based on the order of his interactions and the other is used to pay attention to the
user’s specific behavior which is reflected by relatively important items in the current
session. Their outputs are linearly combined and determine the main goal of the user
and his interests in the session. On the other hand, the external memory encoder
implements a session-based collaborative refinement approach to extract knowledge
from other similar sessions. Finally, the information of both encoders is combined
through a fusion gating mechanism.

In addition to the CSRM, Liang et al. proposed a session-based recommender
system with a dual attention-based neural network that uses a hybrid encoder to
solve the problem of ignoring the user’s interest in previous sessions [22]. The

4.3 Session-Based Recommender System Using Autoencoder 143

F
ig
. 4

.1
0

T
he
 a
rc
hi
te
ct
ur
e
of
 t
he
 C
S
R
M
 [
19
]

hybrid encoder consists of the session encoder and the user encoder. The session
encoder, using a session-level attention mechanism, examines the user’s interests
and goals in the current session, and the user encoder, using a user-level attention
mechanism, distinguishes the user’s interests between different sessions. Both
encoders have employed GRU. Finally, using a decoder, the scores of the proposed
items are calculated.

144 4 Deep Generative Session-Based Recommender System

Santana et al. applied some modifications to the NARM and proposed a travel
recommendation system that was the subject of the WSDM WebTour 2021 Chal-
lenge [15]. In this method, categories and dense features of users, cities, and trips are
combined with data about the history of trips. The proposed architecture of this
method is shown in Fig. 4.11, the core of which is the NARM module, which works
the same as the process described above, but the size of the inputs, the bottleneck of
the latent representation, and the outputs have been changed.

Statistical user features use an autoencoder trained on the same training data to
embed user information. In addition to providing a dense representation of user
features, the autoencoder ensures that similar users are close to each other in the
vector space. At the beginning of the work, the input features are concatenated and
take two paths. The first group of features passes through an attention-based layer
before being sent to the NARM module. This is an essential step in relating different
positions of the same input sequence. In the second path, the features bypass the
feature bottleneck created by the NARM module, which results in improved decoded
performance and provides more contextual information for the session.

Okura et al. proposed a news recommender system based on the embedding
technique that uses a denoising autoencoder [14]. This is a three-step approach that
creates distributed representations of news articles using denoising autoencoders in
the first step. Then, based on the order and history of users’ searches, it creates
representations of users employing recurrent neural networks. Finally, for each user,
the inner product between the article-user representations is performed for the degree
of relationship between them. This production between article-article representations
is also performed to avoid the repetition of similar information in different articles.
Recurrent neural networks are used to learn user characteristics based on the
previous data of his searches.

In this method, denoising autoencoders with weak supervision are used to
represent news articles based on news text. Since the hidden layer contains input
data information, the hidden layer (h vector) is usually used to represent the input.
Based on this feature and taking into account that the greater the similarity between
two input articles, the larger the inner product of the two vectors presented as h0

T h1
becomes, this method uses a triple set (x0, x1, x2) of articles as an autoencoder input.
x0, x1 are the articles with the same category, and x0, x2 belong to a different category
(x is the original input vector). A penalty function is considered to detect the
similarity of the articles based on the classification using the inner product of the
input vectors. In this method, instead of using the stochastic corruption of the input
data, constant decay is used, which is based on the corruption rate in the training
phase (p is the corruption rate). As a result, the hidden vector will be unique at the
time of use for each article. Multiplying 1-p is effective in equalizing the input

distribution of middle-layer neurons in the learning phase with masking noise and
without applying this noise.

4.3 Session-Based Recommender System Using Autoencoder 145

City Score

(1. i)

(1. c)

(t, d) (t, d)

(t, k)

(l, v)

flatten

(t, s, d)

(t, d)

(t, d)

(t,)

A
tte

nt
io

n
S

ig
na

l

(1. r)

Country Score

Session
Feature

Generator

Agregate

Concatenate

Deep Layer

Input

Output

Feature Vector

N
A
R
M

Decoder

Encoder

Attention Layer

Trip Features

Contextual
Features

Space-Time
Feature

Time
Embedding

Category
Features

Dense
Features

User
Features

Cities
Event
Time

Embedding
Layer

Embedding
Layer

Embedding
Layer

[city0,city1, ..., cityi] [country0, ..., countryr]

Fig. 4.11 The architecture of the adapted NARM [15]

An approach based on the combination of deep learning and latent variable
modeling has been presented by Sachdeva et al. for a sequential recommender
system called SVAE [17]. The authors assume that at a certain time, the choice of
a certain item is affected by latent factors that model the interests of the user. It is
worth mentioning that latent factors are influenced by the short- and long-term
history of user interests and interactions. The previously proposed methods showed

that recurrent neural networks could consider short- and long-term dependencies and
could be used in a dynamic environment to obtain the optimum results.

146 4 Deep Generative Session-Based Recommender System

SVAE utilizes a recurrent neural network architecture with different levels of
abstraction to capture latent temporal dependencies and user preferences. SVAE uses
sequential variational autoencoders that use variational autoencoders to model user
preferences along with latent variables and temporal dependencies. SVAE models
the latent dependencies using a recurrent neural network before sending the latent
dependencies for prediction to variational autoencoders.

Another framework based on gap-filling using masked convolutional operators
has been proposed by Yuan et al., which allows simultaneously considering future
and past context data without data leakage [21]. In GRec (Gap-filling-based Rec-
ommender) approach, the encoder takes the sequence of sessions relatively complete
as an input, and the decoder predicts the masked items based on the output of the
encoder and its embeddings. Therefore, in GRec, the encoder must be aware of the
user’s interests and preferences through the user’s unmasked operations, and simul-
taneously, the decoder must predict the next item based on the previous context and
the encoded general interests of the user.

GRec uses convolutional neural networks with sparse kernels, which has two
main advantages: (1) creating an autoregressive mechanism to construct the
sequence and (2) creating two-side contexts for encoding. The projector neural
network proposed in GRec increases the representational bandwidth between the
encoder and the decoder. The encoder is implemented with a set of one-dimensional
dilated convolutional neural networks, in which every two dilated layers by a
residual block are wrapped to prevent the gradient vanishing of both dilated layers.
The decoder also consists of embedding layers, the projector, and causal
convolutional neural networks, which each position can only attend to the left.

According to different types of autoencoders, Lacic et al. have developed a
session-based job recommender system using different autoencoders [9]. The
autoencoder is used to encode user sessions, and it is trained based on different
job datasets. These datasets include user interactions that are extracted from sessions
and content features of job postings where interactions occur during a session. In this
research, three types of autoencoders, including classic autoencoder, denoising
autoencoder, and variational autoencoder, have been investigated to represent a
session. The input data of the three autoencoders are a binary representation of the
interactions of each session, and the dimensions of the input and output layers are the
same. In the classic autoencoder, which is the simplest type, there is a hidden layer
between the input and output layers representing the session and providing a latent
representation of the session using a mapping function. In the denoising
autoencoder, additive Gaussian noise is used to corrupt the input, which is applied
to the input layer with a probability of 0.5. The variational autoencoder uses
variational inference to extract the latent representation of the session and estimate
the intractable posterior distribution with a simpler variational distribution. Evalua-
tions show using a variational autoencoder achieves better results. Figure 4.12 shows
how to model sessions using an autoencoder. AEInt, which is a standard autoencoder,
considers user’s interaction data, and to combine this with job content data, AEComb

F
ig
.4

.1
2

M
od

el
in
g
jo
b
se
ss
io
ns

in
[
]9

4.3 Session-Based Recommender System Using Autoencoder 147

uses the most recent m job interactions within the session and generates a binary
encoding of the job content features in descending order.

148 4 Deep Generative Session-Based Recommender System

Deng et al. proposed a graph-based approach, HybridGNN-SR, and improved the
model’s efficiency from two aspects [16]. On the one hand, it reconstructs the mutual
information of each session graph to predict recommendations, and on the other
hand, it presents a session based on higher conceptual representation by considering
the adjacent items in a session. In HybridGNN-SR, graph learning is performed
based on the combination of two supervised and unsupervised methods to provide
item transition patterns in a session from the perspective of the graph. In the
unsupervised learning part of the graph, variational graph autoencoders are com-
bined with mutual information to represent the graph nodes of a session. In the
supervised learning part, a routing algorithm is used to extract high-level conceptual
features from the session, which considers the dependencies between items in the
session. This model extracts correlation information of dependent items and then
feeds them to the routing mechanism to extract the diversity of user interests from a
session.

Another session-based recommender system has been proposed by Kang et al.
that combines a bidirectional encoder and an autoregressive decoder and uses noisy
transformation for user interactions [20]. E-BART4Rec (Entangled BART for Rec-
ommendation) is built upon BART, a model that is widely used in NLP tasks. BART
uses a left-to-right decoder and injects noise into its bidirectional encoder, which can
reduce the gap between training and inference. In E-BART4Rec, the encoder
network consists of two sub-layers, a multi-head attention-based network and a
pointwise feedforward network. The decoder consists of three sub-layers, masked
multi-head attention-based network, multi-head attention-based network, and
pointwise feedforward network. The gating mechanism is used in E-BART4Rec to
detect the importance of the decoder or encoder to calculate the next interaction.
Unlike other similar methods, the output of E-BART4Rec dynamically integrates a
bidirectional encoder and an autoregressive decoder based on the gating mechanism
and according to the characteristics of user interactions.

4.4 Session-Based Recommender System Using GAN

Before looking at the approaches of generative adversarial network models in
session-based recommender systems, an overview of GAN and the reasons that
made it an effective choice for SBRS are provided.

4.4.1 Why GAN?

The significant successes achieved using generative adversarial networks (GANs) in
various fields of deep learning have been the reason for their use in recommender

systems. GAN-based recommender systems will become very popular in the field
[46]. This popularity is because the GAN concept provides new opportunities to
reduce data sparsity and noise. Several existing studies have confirmed the effec-
tiveness of GAN-based approaches and minimax game theory in the objective
function to reduce data noise. Other studies have also tried using the discriminator
to distinguish informative examples in an adversarial manner. Meanwhile, to address
the issue of data sparsity, a separate line of research has explored the capabilities of
GANs to generate user profiles with augmenting user-item interaction and auxiliary
information. Due to the significant impact of GAN networks on recommender
systems, these networks have recently been utilized in session-based recommender
system, some of which are discussed in this section.

4.4 Session-Based Recommender System Using GAN 149

Fig. 4.13 The general architecture of GAN

Generative adversarial networks are a computational method based on game
theory, and there is a combination of two neural networks at their core, the generator
and the discriminator. There is also an adversarial relationship between these two
networks. In simple words, the first one is trained to generate data, and the second is
trained to distinguish between real and fake data. The generator, who is a forger, tries
fooling the discriminator network, which is a detective. The detective’s goal is to
distinguish the fake sample from the real one, and with each unsuccessful attempt, it
optimizes its operations by receiving feedback from it. Figure 4.13 shows the general
architecture of the GAN.

The goal of the generative adversarial network is to learn a generative model
G that can generate samples from the data distribution px by transforming the latent
vector Z into samples in the data space with higher dimensions x. Usually, latent
vectors are sampled from Z using a uniform or normal distribution. To train the
generator model G, a discriminator model D is trained to distinguish the real training
samples from the fake ones generated by G. Therefore, the discriminator model
returns a value Dx 2 [0,1], which can be interpreted as how likely the input sample
x is a true sample from the data distribution. In this configuration, the generative
model is trained by generating examples most similar to the real training examples.

] ð

ð

ð

However, the discriminator model is continuously trained to distinguish real samples
from fake ones.

150 4 Deep Generative Session-Based Recommender System

The loss function in the generative adversarial network is defined as minimax.
Thus, if the goal of training the discriminator model is to bring the loss function V(D,
G) to the minimum value, the goal of training the generator model is to bring the
same loss function to the maximum value (or to minimize the discriminator’s
reward). According to the structure of the discriminator model, the loss function of
the generative adversarial network can be determined by Eq. (4.24):

min
G

max
D

V D,Gð Þ=Ex-pdata xð Þ logD xð Þ½] þ Ez-pz zð Þ log 1-D G zð ÞÞð Þð½ 4:24Þ

In the above equation, G and D represent the generator and the discriminator
models, respectively, pdata(x) is the probability distribution of the real data, pz(z) is
the probability distribution of generator data, Ex is the expected value over all real
data instances, and Ez is the expected value over all random inputs to the generator
(the expected value over all generated fake instances G(z)).

According to the loss function, a generative adversarial network is trained in two
stages. First, the loss function for the discriminator network is calculated based on
the training data x and the output of the generator network z according to Eq. (4.25).
Then, the chain derivatives for the training parameters of the discriminator model are
calculated based on these values and updated according to Eq. (4.26) by the gradient
ascent method:

ED x,G zð Þð Þ =Ex logD xð Þ½] þ Ez log 1-D G zð ÞÞð Þð]½ 4:25Þ

θD kþ1ð Þ = θD kð Þ þ η
∂ED

∂θD
kð Þ ð4:26Þ

After updating the values related to the discriminator model, the value of the loss
function of the generator model is calculated according to Eq. (4.27), and then its
weights are updated using the gradient descent method according to Eq. (4.28).

EG zð Þ =Ez log 1-D G zð ÞÞð Þð]½ 4:27Þ

θG kþ1ð Þ = θG kð Þ - η
∂EG

∂θG
kð Þ ð4:28Þ

In summary, GANs are proposed to avoid many disadvantages associated with
other generative models [50]:

. They can generate samples in parallel instead of using a proportional runtime to
the dimensions of x.

. The design of the generator’s performance has very few limitations. This is an
advantage over Boltzmann machines, for which few probability distributions
accept tractable Markov chain sampling.

. Markov chain is not required. This is an advantage over Boltzmann machines and
random generator networks.

. No variational bounds are required, and the types of models that can be used in
the GAN framework are already known to be universal approximators, so GANs
are asymptotically consistent.

. GANs inherently produce better samples than other models.

4.4 Session-Based Recommender System Using GAN 151

Despite the proposed advantages of GAN, there are also limitations to this model.
Although several studies discuss the convergence and existence of Nash equilibrium
in the GAN game, GAN training is very unstable and hard to converge. GAN solves
a minimax game iteratively through the gradient descent method for the generator
and discriminator. From the loss function approach, a solution to the GAN game is a
Nash equilibrium, which is a point of parameters where the cost of the discriminator
and the generator are minimal with respect to their parameters. However, decreasing
the loss function of the discriminator can increase the loss function of the generator
and vice versa. Therefore, the convergence of the GAN game may often fail and is
prone to instability.

Another important issue for GAN is the mode collapse problem. This problem is
harmful to GANs applied in real applications because mode collapse limits the
GAN’s ability to diversity. The generator must trick the discriminator, not describing
the multimodality of real data distribution. Mode collapse also can occur even in a
simple experiment, which prevents the usage of GANs due to low diversity. How-
ever, for a highly complex and multimodal real data distribution, mode collapse is
still a problem that GANs should solve.

Generative adversarial networks have been used in any research related to text
and image generation, feature extraction, etc. GAN could map input variables to
another feature space by using min-max optimization and discriminative models. It
can be used to solve problems of sparse datasets and create effective recommender
systems with acceptable performance. Recently, generative adversarial networks
have been widely used in the field of deep learning, and based on their capabilities,
different deep generative approaches have been presented in the field of session-
based recommender systems.

The purpose of generative adversarial networks in recommender systems is to
reduce casual and malicious noises in data and to increase the ability to recognize
samples from unobserved items. Additionally, generative adversarial networks have
been considered and used in all kinds of recommender systems due to their ability to
reduce the problems caused by the spareness of datasets. In the following subsection,
we discuss several research performed using GAN in SBRS.

4.4.2 GAN Approaches

One of the first methods that used generative adversarial networks in session-based
recommender systems has been proposed by Zhao et al., called Prioritizing

Long- And Short-Term Information in top-n reCommendation (PLASTIC)
[32]. PLASTIC used matrix factorization approaches and recurrent neural networks
along with generative adversarial networks to recommend the top N items to the
user. The proposed model adaptively adjusts how to combine short-term and long-
term information about users and items. In the process of adversarial training, the
generator model takes users and items as input for predicting the list of user
recommendations. For the discriminator model, it integrates prioritizing short- and
long-term models through the Siamese network as real samples are correctly distin-
guished from generated samples.

152 4 Deep Generative Session-Based Recommender System

Bharadhwaj et al. proposed another SBRS based on a generative adversarial
network, called recurrent generative adversarial network (RecGAN) [30]. RecGAN,
unlike other similar methods, is based on time, and it learns the latent temporal
feature of the user and item under the framework of generative adversarial networks
to improve the efficiency of the recommender system. RecGAN combines genera-
tive adversarial networks with recurrent neural networks to learn temporal features.
The generator model specifies the distribution of items to predict a sequence of items
for a user. In fact, the generator model in RecGAN is designed to learn the
distribution of the relevance of items for users and extract an unlabeled sequence
from the relevant items generated to obtain a better estimate of their relevance. The
discriminator model also determines whether the sampled items correspond to the
users’ true interest distribution. RecGAN modifies the GRU cell so that it can obtain
latent factors of users and items that are observable from short- and long-term
profiles.

Session-based recommender systems that use reinforcement learning have two
limitations: (1) Ignore the user’s skip behaviors that are scattered in sequential
patterns. (2) When the positive feedbacks in the dataset are sparse, the system cannot
use positive and negative feedback together. To solve these two problems, Gao et al.
utilized reinforcement learning along with generative adversarial networks in a
session-based interactive recommender system, called DRCGR [26]. In DRCGR,
convolutional neural networks and generative adversarial networks use deep
Q-Network learning to better understand high-dimensional data. CNN is used to
detect the sequential features of positive user feedback, and GAN is used to learn
negative feedback representations. Finally, the negative and positive feedbacks are
simultaneously sent to the deep Q-Network to create a better action-value function.
This increases the robustness of session-based interactive recommender systems.

The sequential interests of the user are first detected in DRCGR using a deep
model based on convolutional neural networks. This is performed using
convolutional filters. The spatiotemporal sequences of user clicking behavior and
their corresponding items are embedded in a potential dimensional space, and then
the horizontal convolution layer and vertical convolution layer are used to learn the
local features of the above images. Then, in generative adversarial networks, the
generator model purposefully generates different personalized negative samples, and
the positive feedback for training comes from the random sampling of real click data.
The discriminator model also recognizes real samples from irrelevant and non-real
samples.

4.4 Session-Based Recommender System Using GAN 153

Another session-based recommender system has been proposed by Chen et al.
using the modeling of the complex behavior of users, which has utilized reinforce-
ment learning and generative adversarial networks [27]. In this system, user dynamic
behavior modeling and related reward functions are learned in a unified minimax
framework, and then reinforcement learning policies are learned to use the model.
Using the user model as the simulation environment, a cascading Q-Network is
presented for a combinatorial recommendation policy, which can control many
candidate items well and reduce computational complexity. One of the advantages
of using the generative adversarial network in this method is that it improves the
representation of the user model as well as the reward function according to the
user’s learned model and considers online adaptation for new users.

In session-based recommender systems, the user’s previous behaviors are used to
predict his next behaviors, which could be performed using reinforcement learning
methods. However, reinforcement learning methods may experience unstable con-
vergence in learning processes. In fact, these methods require many training data,
which is challenging in sparse session-based recommender systems. For this reason,
the use of the generative adversarial network model is very effective. On the other
hand, the generation of negative samples in this type of system should not be random
because an item that the user likes but has no interaction with it may be considered a
negative sample for that user randomly. Therefore, the policy used in the generator
model is critical in generative adversarial networks.

For better processing of users’ immediate feedback in session-based recom-
mender system based on the collaborative filtering approach, Zhao et al. combined
reinforcement learning and a generative adversarial network, called Deep Generative
Adversarial Networks-based Collaborative Filtering (DCFGAN) [25]. DCFGAN
exploits the immediate feedback of users, which solves the need for information
and training examples. On the other hand, the generated negative samples are
optimized using collaborative filtering to provide sufficient recommendations to
users. To solve the instability of the training process caused by the uncertain
probability in the policy gradient algorithm in the previous session-based recom-
mender system, the deep deterministic policy gradient (DDPG) algorithm is pro-
posed to increase the stability of the training process. Meanwhile, DDPG optimizes
the value function and reduces the number of iterations required for convergence.
This method uses pre-training collaborative filtering to negative sample items with
low user interest, effectively improving negative sampling accuracy, which is more
suitable for recommendation scenarios. The generator model of GAN is also
improved using repeated experiences. Figure 4.14 shows the architecture of the
DCFGAN.

Considering the high potential of generative adversarial networks in improving
the efficiency of recommender systems based on collaborative filtering, Ren et al.
developed a multi-factor generative adversarial network (MFGAN) [33]. MFGAN
uses adversarial training to decouple factor utilization from the sequence prediction
component. This provides more flexibility in the use of external contextual infor-
mation in sequential recommendations, which can improve the interpretability of
recommendations. Two main modules are used in MFGAN: (1) transformer-based

generator module and (2) multiple factor-based discriminator module. Based on data
related to user-item interactions, the generator model predicts the next proposed
items, and the discriminator model considers the sequence of recommendations
based on various factors of the available information. The discriminator uses a
bidirectional transformer and can refer to the information on subsequent positions
for evaluations and increase the reliability of the evaluation. Because of the discrete
nature of the item generation process, the training of MFGAN is performed through
reinforcement learning. In this method, different factors are separated from the
generator and used by the discriminator to extract reward signals to improve the
generator. The architecture of MFGAN is shown in Fig. 4.15.

154 4 Deep Generative Session-Based Recommender System

Collaborative filtering
Sampling

Cross entropy

MLE
Generator

Discriminator

Generated
sequence

Masking
block

Generator
Generate

Mix
Q

When the training number reaches K

Experience replay
Experience pool

Training

Store

Discriminator
Real

sequence

DDPG

item 1

item 2

item t-1

item t

Pre-training

Negative items list

Real
 data

Fig. 4.14 The architecture of the DCFGAN [25]

4.5 Session-Based Recommender System Using FBM

Before looking at the approaches of flow-based models in session-based recom-
mender system, an overview of FBM and the reasons that made it a suitable choice
for SBRS are provided.

4.5 Session-Based Recommender System Using FBM 155

F
ig
. 4

.1
5

T
he
 a
rc
hi
te
ct
ur
e
of
 t
he
 M

F
G
A
N
 [
33
]

156 4 Deep Generative Session-Based Recommender System

4.5.1 Why Flow-Based Models?

Despite using Bayesian inference and uncertainty representation, collaborative VAE
models are difficult to optimize, mainly due to inherent biased variational inference.
Models based on autoencoders usually assume that the posterior can be decomposed
into several independent factors, while intractable variational inference requires
searching for the best approximation of the true posterior in a parameter family of
distributions that are usually specified in advance.

However, distributional models are inflexible enough to match the true posterior
and recommendation uncertainty unless a precise family of distributions is chosen.
Such challenges motivate researchers to enrich the variational posterior distribution
by using normalizing flow [38], which is a set of invertible transformations to the
desired variables with a simple initial distribution. Compared to VAE and GAN,
flow-based models have so far attracted less attention, specially in session-based
recommender systems, although their unique advantages, such as accurate latent
variable inference and analytical likelihood evaluation, can propose great potential
for future work.

Therefore, flow-based models are used to approximate the real posterior of
stochastic latent factors, which can significantly reduce the inference bias in the
VAE-based models and, as a result, improve the accuracy of predicting the next
click. In fact, using richer posterior distributions can effectively reduce the gap
between the approximate posterior and the true posterior. This approximate gap is
caused by the encoding cost, which is mainly due to the incorrect assumption of the
probabilistic distribution.

Flow-based models are built with a sequence of invertible transformations, and
unlike the previous two models, they explicitly learn the data distribution p(x), and
therefore, the loss function is simply a negative log-likelihood. Figure 4.16 shows
the main idea of flow-based models. In each step, using the change of variable
theorem, a new variable is replaced. Finally, the final distribution obtained can be
close enough to the target distribution.

Fig. 4.16 Transforming a simple distribution into a complex distribution by applying a sequence of
invertible transformations

4.5 Session-Based Recommender System Using FBM 157

Normalizing flow-based models provide a general approach for constructing
flexible probability distributions over continuous random variables. If x is a
d-dimensional real vector, and suppose we want to define a joint distribution on x,
the basic idea of flow-based modeling is to express x as a transformation function
T of a real vector u sampled from pu(u) :

x= T uð Þ where u - pu uð Þ: ð4:29Þ

pu(u) is the base distribution of the flow-based model [7]. The transformation
function T and the basic distribution pu(u) can have their own parameters. The
specific characteristic of flow-based models is that the transformation function
T must have an inverse function and T and T-1 must be differentiable. In this
situation, the density x is well defined and can be obtained using the change of
variable theorem by Eq. (4.30):

px xð Þ= pu uð Þ detJT uð Þj j- 1 where u= T - 1 xð Þ ð4:30Þ

Equivalently, we can also write px(x) in terms of the Jacobian T-1 by Eq. (4.31):

px xð Þ= pu T
- 1 xð Þ()

detJT - 1 xð Þ
||| ||| ð4:31Þ

The Jacobian JT(u) is the D × D matrix of all partial derivatives of T given by
Eq. (4.32):

JT uð Þ=

∂T1

∂u1
⋯

∂T1

∂uD⋮ ⋱ ⋮
∂TD

∂u1
⋯

∂TD

∂uD

2
664

3
775 ð4:32Þ

In practice, a flow-based model is often constructed by implementing
T (or T-1) with a neural network and taking pu(u) as a simple density (such as a
multivariate normal).

4.5.2 Flow-Based Approaches

Many recommender systems based on generative models, such as variational
autoencoders, are very effective for learning non-linear user-item representations
in collaborative filtering-based approaches [17, 47, 48]. However, session-based
recommender systems cannot use these models directly for the following reasons:

. Data availability: Lack of access to user profile information and long-term
interactions of users.

. Bypassing challenge: Autoregressive models combined with soft attention-based
mechanisms are capable of reconstructing encoded sessions. This mechanism
may weaken the effects of latent factors and potentially reduce the performance of
the model using variational autoencoders.

. Biased inference: Models based on an autoencoder assume a predefined prior
probability for latent factors that are restrictive for learning the distribution of data
and may lead to the approximate deviation of the inferred posterior from the true
distribution.

158 4 Deep Generative Session-Based Recommender System

Fig. 4.17 The architecture of VASER [2]

To this end, several research have been proposed to utilize flow-based models to
overcome the mentioned problems. Zhong et al. proposed an SBRS framework using
Bayesian inference for flexible parameter estimation, called VAriational SEssion-
based Recommendation (VASER) [2]. In VASER, instead of directly applying
extended variational autoencoders, the normalizing flow method is introduced to
estimate the probabilistic posterior. While maintaining Bayesian inference of vari-
ational autoencoders, the VASER model also allows for the exploration of
non-linear probabilistic latent variable models. This method augments session-
based recommender systems that have used recurrent neural networks with stochas-
tic latent variables trained by stochastic and amortized variational inference, making
it possible to infer a stable and effective approximation of a high-level objective of
the whole session from the observed clicks. To encode more useful information in
latent variables, an auxiliary factor is introduced that leverages variational attention
on user clicks. Unlike deterministic attention, the proposed attention mechanism can
accurately model click sessions without overpowering the latent representation. In
addition, the normalizing flows are used to approximate the real posterior of sto-
chastic latent factors, which can significantly reduce the inference biases in the
proposed models based on a variational autoencoder and improve the accuracy of
next-click prediction.

Zhong et al. also developed two variants of VASER with a deterministic attention
mechanism (VASER-DA) and with a variational attention mechanism (VASER-
VA), as shown in Fig. 4.17. Each model includes two main components, which are
the GRU and the attention modules. The GRU component takes sequential interests
whose hidden state can extract non-linear interests. The attention component is used
to enhance the GRU network, which dynamically selects different parts of the input
and combines them linearly. VASER-DA uses a deterministic attention mechanism,

while VASER-VA uses the attention vector as a stochastic latent factor to overcome
the bypassing phenomenon caused by recurrent neural networks and the determin-
istic attention mechanism. For flexible posterior approximation, both models utilize
normalizing flows.

4.5 Session-Based Recommender System Using FBM 159

Fig. 4.18 The architecture of the CAF [35]

Considering the improvement in the VASER for using variational autoencoders
and flow-based models in session-based recommender systems with a collaborative
filtering approach, the variation distribution choices are still not enough to recover
and improve the true distributions, and this model is difficult to optimize. The reason
for this problem is the biased maximum likelihood estimates of the model parame-
ters. By choosing only one family of probability distributions, the models are
inflexible enough to match the true posterior and the uncertainty of recommenda-
tions. To this end, Zhou et al. extended the flow-based model to CF for modeling
implicit feedbacks and presented the collaborative autoregressive flows (CAF)
[35]. The CAF transforms a simple initial density into more complex densities
through a sequence of invertible transformations until a desired level of complexity
is reached. This non-linear probabilistic approach provides the possibility of
representing the uncertainty and accurate tractability of latent variable inference in
item recommendations. In CAF, using the flow function to approximate the true
posterior probability of the latent factors, it adopts the probabilistic density estima-
tion to reduce the inference bias in the existing Bayesian recommendation model to
improve the recommendations. The combination of two autoregressive flows gives
the CAF the efficiency of variational inference and sampling and fills the gap
between latent factors with simple base distribution and real data with a complex
distribution. Figure 4.18 shows the schematic of CAF.

160 4 Deep Generative Session-Based Recommender System

4.6 Discussion

Recently, deep generative models have been effective in the efficiency of session-
based recommender systems. The deep generative models help reduce problems
caused by complex dependencies between variables in different time steps or
different sessions. On the other hand, generative methods have the ability to generate
more samples for model training and can help reduce the problems caused by data
sparsity. The proposed approaches discussed in this chapter provide models of
session-based recommender systems that have utilized deep generative techniques.

Autoencoders (AE), generative adversarial networks (GAN), and flow-based
models (FBM) are among the most widely used deep generative models that have
been used in session-based recommender systems. A large percentage of proposed
approaches using AE belong to variational autoencoders (VAE), an essential type of
AEs. The difference between variational autoencoders and generative adversarial
networks is their learning process and training time. Variational autoencoders are a
semi-supervised method, while generative adversarial networks are an unsupervised
method. Conversely, the training time of generative adversarial networks is more
than variational autoencoders.

Approaches based on autoencoders usually create a latent presentation of input
data, which in most cases includes user interactions and transactions in sessions. For
example, one of these approaches is the NARM method, which models the sequen-
tial behavior of users based on the encoder and decoder architecture, determines the
user’s main goal in the current session, and finally creates an integrated representa-
tion of the session [18]. NARM considers only one session, which may have noise or
a set of choices of several users; therefore, all dependencies may not be recognized
correctly. Other methods, such as [15, 19, 22], have been presented to improve
NARM. For example, in [15], the size of the inputs, the bottleneck of the latent
presentation, and the outputs are changed, and in [19], parallel neural networks are
used to provide recommendations, so in addition to the information of the current
session, the information of the neighboring sessions is also employed. The proposed
method in [22] also uses a dual attention-based neural network and GRU-based
hybrid encoder to reduce the problem of ignoring the user’s interest in previous
sessions.

As discussed before, variational autoencoders are widely used in session-based
recommender systems. For example, in [9], a session-based job recommender
system investigated three types of autoencoders, including classic autoencoder,
denoising autoencoder, and variational autoencoder, to provide sessions, and the
best result was related to the variational autoencoder. Many recommender systems
based on deep generative models, such as variational autoencoders, have provided
very effective results for learning non-linear user-item representations in collabora-
tive filtering methods. For example, in [2], variational autoencoders have been
extended for modeling users’ implicit feedback in session-based recommender
system and through augmenting RNN by stochastic latent variables trained by
stochastic and amortized variational inference allow effective inference of the entire

session from the observed clicks. Meanwhile, it uses normalizing flows to approx-
imate the real posterior of stochastic latent factors, greatly reducing the inference
biases in the proposed variational autoencoder-based models and improving the
accuracy of next-click prediction. Still, in [2], the variation distribution choices are
insufficient to recover and improve the correct distributions, making this model
difficult to optimize. The main reason for this problem is the inherent biased
variational inference. To reduce this problem, the method proposed in [35] using
autoregressive flows approximates the true posterior probability of stochastic latent
factors; enables flexible and tractable probabilistic density estimation, greatly reduc-
ing the biased inference in existing Bayesian proposed models; and improves the
accuracy of the recommender systems. To this end, the proposed method [17] is
based on a sequence of variational autoencoders that use variational autoencoders to
model user interests along with latent variables and time dependencies.

4.6 Discussion 161

An example of a denoising autoencoder in the session-based recommender
system is the proposed system [14], which uses denoising autoencoders to provide
a unique representation of news articles, along with the categories of articles that
increase the system’s efficiency. Additionally, in [20], a new recommender system is
proposed that combines a bidirectional encoder and an autoregressive decoder and
uses a noisy transformation for user interactions.

The purpose of generative adversarial networks (GAN) in session-based recom-
mender system is to reduce casual and malicious noises in data and increase the
ability to recognize samples from unobserved items. In addition, GANs have been
considered in all kinds of recommender systems due to their ability to reduce the
problems caused by the sparsity of datasets. The proposed method [32] combines
matrix factorization approaches and RNNs with GANs and integrates prioritizing
long-term and short-term models through Siamese networks. Another session-based
recommender system based on time-based GANs has been proposed in [30], which
combines GANs with RNNs to learn the latent temporal features of the user
and item.

Considering the high potential of generative adversarial networks in improving
the efficiency of recommender systems based on collaborative filtering, the method
presented in [33] uses generative adversarial networks with multiple factors and uses
adversarial training to decouple factor utilization from the sequence prediction
component. This provides more flexibility in the use of external contextual infor-
mation in sequential recommendations, which can improve the interpretability of
recommendations. Several research presented in the field of session-based recom-
mender system with collaborative filtering approach have also used reinforcement
learning in addition to generative adversarial networks [25–27]. In [26],
convolutional neural networks and generative adversarial networks use deep
Q-Network learning to better understand high-dimensional data. In [27], reinforce-
ment learning and generative adversarial networks are combined, which handle a
large number of candidate items well and reduce the computational complexity. The
advantage of using a generative adversarial network in this method is to improve the
representation of a user model and reward function according to the user’s learned
model and considers an online adaptation for new users. With the aim of processing

users’ immediate feedback as best as possible, a method is proposed in [25] that
combines Q-Learning with actor-critic models in reinforcement learning. In this
method, the combination of generative adversarial networks and reinforcement
learning is used to exploit the immediate feedback of users, which solves the need
for information and training examples. On the other hand, the generated negative
samples are optimized using collaborative filtering to provide better recommenda-
tions to users.

162 4 Deep Generative Session-Based Recommender System

At the end of this part, an important point about using flow-based models in
session-based recommender system should be mentioned. Normalizing flow models
are successful at estimating high-dimensional densities; however, their process still
has some disadvantages. Because the latent space where input data is projected is not
lower-dimensional, flow-based models do not allow data compression by default.
These models cannot estimate the probability of the samples not being from the same
distribution as the training set. An important feature of normalizing flows is the
invertibility of their bijective map. This property guarantees the theoretical inversion
and is achieved with some restrictions on the design of the models. Inverse integra-
tion is important in order to ensure the applicability of the change of variable
theorem, the Jacobian computation of the map, as well as the sampling with the
model. However, this invertibility is violated in practice, and the inverse map
explodes due to numerical imprecision.

For future research based on deep generative models discussed in this chapter, the
following items can be considered:

. A critical problem in recommender systems is data sparsity, which means that the
values of the user-item matrix are limited. This problem can be solved using side
information. Choosing appropriate auxiliary information to help understand the
relationship between users and items is essential to further improve recommen-
dation accuracy. Furthermore, there is little work examining changes in users’
interests or intentions. The autoencoder’s ability to process data from heteroge-
neous sources brings more opportunities to recommend various items based on
unstructured data, such as textual, visual, audio, and video features. In fact, cross-
domain models help represent the target domain using knowledge learned from
other sources and can be a suitable option to deal with the problem of data
sparsity. A topic that has been widely studied in cross-domain recommendations
is transfer learning [25]. This study improves learning ability in the target domain
by using knowledge transferred from other domains. However, integrating infor-
mation from different domains into the same representation space is still a
challenging problem. The GAN can continuously learn and optimize the mapping
process from the source domain to the target domain, thereby enriching the
training data of the recommendation model.

. Fusion methods can model the heterogeneous characteristics of determinant
factors, such as user, items, and context, in recommender systems. Studies have
integrated deep generative models with traditional recommendation methods.
However, only a few limited studies have been conducted in this field that
combined the use of deep generative models such as autoencoder and generative

adversarial networks with other deep learning methods. For example, an
autoencoder can be combined with deep semantic similarity models to learn the
semantic representation of items in a common continuous semantic space and to
measure their semantic similarities. Therefore, the fusion models are a promising
area for future research that is largely unexplored and where more studies are
expected.

. Attention-based mechanisms are an intuitive but effective technique that can be
applied to deep neural networks. The attention mechanism provides a good
solution to deal with long-term dependencies and helps the network remember
inputs better. By applying the attention mechanism, session-based recommender
system using deep generative models can filter meaningless content and select the
most meaningful ones that provide good interpretability.

. The time complexity of session-based recommender system based on deep
generative models is relatively high. For example, GANs include two generator
and discriminator components, and each part can be composed of several neural
network layers. This problem becomes more serious when the model contains
several generators and discriminators. The appropriate use of generative and
discriminative neural networks and the efficient training process in a mutually
promoting mode, at the same time considering suitable feedback between two
generative and discriminative modules, can be an effective solution to improve
the performance of the final model.

. Scalability is critical for session-based recommender system models because the
ever-increasing volume of data and the introduction of the concept of big data in
this field make time complexity one of the main considerations. Deep generative
models such as GAN and autoencoders have been applied to some commercial
products. However, due to the continuous improvement of GPU computing
power, further research on recommender systems based on deep generative
models is needed in the following areas: (1) incremental learning of streaming
data that is generated at high speed (velocity factor in big data concepts), such as
cases where numerous interactions between users and items are performed;
(2) accurate calculation of tensors with high dimensions, specially when using
multimedia data sources; and (3) balancing the complexity and scalability of the
model when we have exponential parameters’ growth in the developed model.

4.6 Discussion 163

In many cases, the research fields mentioned in the above paragraphs can be
considered together or have mutual effects on each other. For example, how to
develop a session-based recommender system based on deep generative models that
can simultaneously consider high scalability and the effective combination of
auxiliary information can be one of the valuable directions for future research.

Table 4.5 summarizes the existing works discussed in this chapter and addresses
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach.

Ref. Domain Input data Loss function

164 4 Deep Generative Session-Based Recommender System

Table 4.5 A summary of the reviewed research

Deep learning
model

Embedding
technique

[18] E-commerce Encoder/
decoder

Session click One-hot
encoding

Cross-entropy

[19] E-commerce Autoencoder Items of
session

One-hot
encoding

Cross-entropy

[22] E-commerce Autoencoder Session click One-hot
encoding +
encoder

Bi-linear similar-
ity function

[15] Trip Autoencoder User features,
cities, event
time,
categories

Autoencoder +
space-time
encoding

Focal loss
function

[14] News RNN (LSTM/
GRU)

News articles Denoising
autoencoder

Proposed loss
function

[17] Movie Variational
autoencoders

User
preferences

Binary matrix Proposed loss
function

[21] Movie Autoencoder Sessions One-hot
encoding

Cross-entropy

[9] Job Autoencoder
(denoising/
variational)

Sessions Binary-encoded
representation +
autoencoder

Kullback-Leibler
divergence

[16] E-commerce Variational
graph
autoencoder

Items of
session

D-dimensional
latent feature
vector

Cross-entropy +
proposed
unsupervised loss
function

[20] Movie, music Autoencoder User interac-
tions and items

D-dimensional
vector

Negative
log-likelihood

[32] Movie GAN + matrix
factorization +
RNN

Users and
items of
session

D-dimensional
vector

Minimax loss

[30] Fitness,
movie

GAN + RNN User ratings Temporal pref-
erence vector
representation

Minimax
function

[26] E-commerce GAN + DQN User’s
recently
clicked item

Embedding
lookup +
convolutional
operation

Proposed loss
function

[27] E-commerce,
news, movie

GAN + cascad-
ing
Q-Networks

User’s histori-
cal interactions

D-dimensional
vector

Proposed loss
function

[25] E-commerce GAN + rein-
forcement
learning

User’s histori-
cal interactions

Real-valued
vector

Proposed loss
function

[33] Movie,
music, game

GAN Items of
session

Item embed-
ding matrix

Proposed loss
function

[2] E-commerce Normalizing
flow + GRU

Session D-dimensional
latent
representation

ELBO + cross-
entropy

[35] Movie,
music, article

Autoregressive
flow

Matrix of users
and items

Binary matrix Proposed loss
function

References 165

4.7 Conclusion

One of the most widely used methods of deep learning in session-based recom-
mender system is deep generative models. The deep generative models have the
ability to generate more samples for model training and reduce the problems caused
by data sparsity. The recommender systems based on deep generative models help
reduce problems caused by complex dependencies between variables in different
time steps or different sessions. The proposed approaches discussed in this chapter
provide models of SBRS that utilize deep generative techniques. Most of the
research presented in this field is based on autoencoder, generative adversarial
network, and flow-based models.

In SBRS, various types of autoencoders, such as variational autoencoders,
convolutional autoencoders, denoising autoencoders, etc., have been used, but a
large percentage of proposed approaches have employed variational autoencoders
that are very effective for learning non-linear user-item representations. Generative
adversarial networks have been considered in session-based recommender systems
due to their ability to reduce the problems caused by data sparsity. Indeed, it
alleviates casual and malicious noise in data to increase the ability to recognize
samples from unobserved items. Compared to autoencoders and generative adver-
sarial networks, flow-based models have so far attracted less attention in the field of
session-based recommender systems, although their unique advantages, such as
accurate latent variable inference and analytical likelihood evaluation, can provide
great potential for future work.

This chapter concluded with several discussions on the proposed research and
provided future directions and trends in session-based recommender systems using
deep generative learning models.

References

1. Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Defu Lian.
"A survey on session-based recommender systems." ACM Computing Surveys (CSUR) 54, no.
7 (2021): 1-38. https://doi.org/10.1145/3465401

2. Ting Zhong, Zijing Wen, Fan Zhou, Goce Trajcevski, and Kunpeng Zhang. "Session-based
recommendation via flow-based deep generative networks and Bayesian inference."
Neurocomputing 391 (2020): 129-141. https://doi.org/10.1016/j.neucom.2020.01.096

3. Zhidan Wang, Wenwen Ye, Xu Chen, Wenqiang Zhang, Zhenlei Wang, Lixin Zou, and
Weidong Liu. "Generative session-based recommendation." In Proceedings of the ACM Web
Conference 2022, Lyon France April 25 - 29, 2022, pp. 2227-2235. https://doi.org/10.1145/
3485447.3512095

4. Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. "Deep generative
modelling: A comparative review of vaes, gans, normalizing flows, energy-based and
autoregressive models." IEEE transactions on pattern analysis and machine intelligence
(2021). https://doi.org/10.1109/TPAMI.2021.3116668

https://doi.org/10.1145/3465401
https://doi.org/10.1016/j.neucom.2020.01.096
https://doi.org/10.1145/3485447.3512095
https://doi.org/10.1145/3485447.3512095
https://doi.org/10.1109/TPAMI.2021.3116668

166 4 Deep Generative Session-Based Recommender System

5. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. "A Neural Probabi-
listic Language Model." Journal of Machine Learning Research 3 (2003): 1137-1155. https://dl.
acm.org/doi/10.5555/944919.944966

6. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, Yoshua Bengio “Generative adversarial networks”, Communications
of the ACM, Volume 63, Issue 11, 2020, pp 139–144, https://doi.org/10.1145/3422622

7. George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. "Normalizing flows for probabilistic modeling and inference." The Journal
of Machine Learning Research 22, no. 1 (2021): 2617-2680. https://dl.acm.org/doi/10.5555/354
6258.3546315

8. Yang Song, and Diederik P. Kingma. "How to train your energy-based models." arXiv preprint
arXiv:2101.03288 (2021). https://doi.org/10.48550/arXiv.2101.03288

9. Emanuel Lacic, Markus Reiter-Haas, Dominik Kowald, Manoj Reddy Dareddy, Junghoo Cho,
and Elisabeth Lex. "Using autoencoders for session-based job recommendations." User Model-
ing and User-Adapted Interaction 30 (2020): 617-658. https://doi.org/10.1007/s11257-020-
09269-1

10. Lars Ruthotto, and Eldad Haber. "An introduction to deep generative modeling." GAMM-
Mitteilungen 44, no. 2 (2021): e202100008. https://doi.org/10.1002/gamm.202100008

11. Ivan Kobyzev, Simon JD Prince, and Marcus A. Brubaker. "Normalizing flows: An introduc-
tion and review of current methods." IEEE transactions on pattern analysis and machine
intelligence 43, no. 11 (2020): 3964-3979. https://doi.org/10.1109/TPAMI.2020.2992934

12. Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. "Neural
autoregressive flows." In International Conference on Machine Learning, Stockholm, Sweden,
July 10-15, 2018, pp. 2078-2087.

13. Diederik P Kingma, and Max Welling. “Auto-encoding variational Bayes”. 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014.

14. Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. "Embedding-based news
recommendation for millions of users." In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, Halifax, Canada, August 13-17, 2017
pp. 1933-1942. https://doi.org/10.1145/3097983.3098108

15. Marlesson R. O. Santana, and Anderson Soares. “Hybrid Model with Time Modeling for
Sequential Recommender Systems.”, Proceedings of the Workshop on Web Tourism
co-located with the 14th ACM International WSDM Conference (WSDM 2021), Jerusalem,
Israel, March 12, 2021. https://ceur-ws.org/Vol-2855/challenge_short_9.pdf

16. Kai Deng, Jiajin Huang, and Jin Qin. "HybridGNN-SR: Combining unsupervised and super-
vised graph learning for session-based recommendation." In 2020 International Conference on
Data Mining Workshops (ICDMW), pp. 136-143. IEEE, 2020. https://doi.org/10.1109/
ICDMW51313.2020.00028

17. Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi. “Sequential variational
autoencoders for collaborative filtering.” In Proceedings of the twelfth ACM international
conference on web search and data mining, Melbourne, Australia, February 11-15, 2019
pp. 600-608. 2019. https://doi.org/10.1145/3289600.3291007

18. Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. "Neural attentive
session-based recommendation." In Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, Singapore, November 6-10, 2017 pp. 1419-1428. https://doi.
org/10.1145/3132847.3132926

19. Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten De Rijke. "A
collaborative session-based recommendation approach with parallel memory modules." In
Proceedings of the 42nd international ACM SIGIR conference on research and development
in information retrieval, Paris, France, July 21-25, 2019, pp. 345-354. https://doi.org/10.1145/
3331184.3331210

20. Taegwan Kang, Hwanhee Lee, Byeongjin Choe, and Kyomin Jung. "Entangled bidirectional
encoder to autoregressive decoder for sequential recommendation." In Proceedings of the 44th

https://dl.acm.org/doi/10.5555/944919.944966
https://dl.acm.org/doi/10.5555/944919.944966
https://doi.org/10.1145/3422622
https://dl.acm.org/doi/10.5555/3546258.3546315
https://dl.acm.org/doi/10.5555/3546258.3546315
https://doi.org/10.48550/arXiv.2101.03288
https://doi.org/10.1007/s11257-020-09269-1
https://doi.org/10.1007/s11257-020-09269-1
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1145/3097983.3098108
https://ceur-ws.org/Vol-2855/challenge_short_9.pdf
https://doi.org/10.1109/ICDMW51313.2020.00028
https://doi.org/10.1109/ICDMW51313.2020.00028
https://doi.org/10.1145/3289600.3291007
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3331184.3331210
https://doi.org/10.1145/3331184.3331210

References 167

International ACM SIGIR Conference on Research and Development in Information Retrieval,
Canada, July 11-15, 2021, pp. 1657-1661. https://doi.org/10.1145/3404835.3463016

21. Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao Xu, and Yilin
Xiong. "Future data helps training: Modeling future contexts for session-based recommenda-
tion." In Proceedings of The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020
pp. 303-313. https://doi.org/10.1145/3366423.3380116

22. Tianan Liang, Yuhua Li, Ruixuan Li, Xiwu Gu, Olivier Habimana, and Yi Hu. “Personalizing
session-based recommendation with dual attentive neural network.” In 2019 International Joint
Conference on Neural Networks (IJCNN), Budapest, Hungary, July 14-19, 2019, pp. 1-8.
https://doi.org/10.1109/IJCNN.2019.8852185

23. Zhitao Wang, Chengyao Chen, Ke Zhang, Yu Lei, and Wenjie Li. "Variational recurrent model
for session-based recommendation." In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, Torino, Italy, October 22-26, 2018,
pp. 1839-1842. https://doi.org/10.1145/3269206.3269302

24. Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. "BERT4Rec:
Sequential recommendation with bidirectional encoder representations from transformer." In
Proceedings of the 28th ACM international conference on information and knowledge man-
agement, Beijing. China November 3-7, 2019, pp. 1441-1450. https://doi.org/10.1145/
3357384.3357895

25. Jianli Zhao, Hao Li, Lijun Qu, Qinzhi Zhang, Qiuxia Sun, Huan Huo, and Maoguo Gong.
"DCFGAN: An adversarial deep reinforcement learning framework with improved negative
sampling for session-based recommender systems." Information Sciences 596 (2022): 222-235.
https://doi.org/10.1016/j.ins.2022.02.045

26. Rong Gao, Haifeng Xia, Jing Li, Donghua Liu, Shuai Chen, and Gang Chun. “DRCGR: Deep
reinforcement learning framework incorporating CNN and GAN-based for interactive recom-
mendation.” In 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China,
November 8-11, Beijing, China, pp. 1048-1053. IEEE, 2019. https://doi.org/10.1109/ICDM.
2019.00122

27. Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. “Generative adversarial
user model for reinforcement learning based recommendation system.” In International Con-
ference on Machine Learning, Long Beach, California, USA, June 11-13, 2019, pp. 1052-1061.

28. Wei Zhao, Benyou Wang, Min Yang, Jianbo Ye, Zhou Zhao, Xiaojun Chen, and Ying Shen.
“Leveraging long and short-term information in content-aware movie recommendation via
adversarial training.” IEEE transactions on cybernetics 50, no. 11 (2019): 4680-4693. https://
doi.org/10.1109/TCYB.2019.2896766

29. Zhe Xie, Chengxuan Liu, Yichi Zhang, Hongtao Lu, Dong Wang, and Yue Ding. “Adversarial
and contrastive variational autoencoder for sequential recommendation.” In Proceedings of the
Web Conference 2021, Ljubljana, Slovenia, April 19-23, 2021, pp. 449-459. https://doi.org/10.
1145/3442381.3449873

30. Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. “RecGAN: recurrent generative adver-
sarial networks for recommendation systems.” In Proceedings of the 12th ACM Conference on
Recommender Systems, Vancouver, Canada, October 2, 2018, pp. 372-376. https://doi.org/10.
1145/3240323.3240383

31. Yao Lv, Jiajie Xu, Rui Zhou, Junhua Fang, and Chengfei Liu. "SSRGAN: A Generative
Adversarial Network for Streaming Sequential Recommendation." In Database Systems for
Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April
11–14, 2021, Proceedings, Part III 26, pp. 36-52. Springer International Publishing, 2021.
https://doi.org/10.1007/978-3-030-73200-4_3

32. Wei Zhao, Benyou Wang, Jianbo Ye, Yongqiang Gao, Min Yang, and Xiaojun Chen. “Plastic:
Prioritize long and short-term information in top-n recommendation using adversarial training.”
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI-18), Stockholm, Sweden, July 13-19, 2018, pp. 3676-3682. https://doi.org/10.24963/
ijcai.2018/511

https://doi.org/10.1145/3404835.3463016
https://doi.org/10.1145/3366423.3380116
https://doi.org/10.1109/IJCNN.2019.8852185
https://doi.org/10.1145/3269206.3269302
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1016/j.ins.2022.02.045
https://doi.org/10.1109/ICDM.2019.00122
https://doi.org/10.1109/ICDM.2019.00122
https://doi.org/10.1109/TCYB.2019.2896766
https://doi.org/10.1109/TCYB.2019.2896766
https://doi.org/10.1145/3442381.3449873
https://doi.org/10.1145/3442381.3449873
https://doi.org/10.1145/3240323.3240383
https://doi.org/10.1145/3240323.3240383
https://doi.org/10.1007/978-3-030-73200-4_3
https://doi.org/10.24963/ijcai.2018/511
https://doi.org/10.24963/ijcai.2018/511

168 4 Deep Generative Session-Based Recommender System

33. Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, and
Ji-Rong Wen. "Sequential recommendation with self-attentive multi-adversarial network." In
Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, China, July 25-30, 2020, pp. 89-98. https://doi.org/10.1145/3397271.
3401111

34. Duo Liu, Yang Sun, Xiaoyan Zhao, Gengxiang Zhang, Rui Liu. "Adversarial Training for
Session-based Item Recommendations," 2020 IEEE 9th Joint International Information Tech-
nology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2020, pp. 1162-
1168, https://doi.org/10.1109/ITAIC49862.2020.9338819

35. Fan Zhou, Yuhua Mo, Goce Trajcevski, Kunpeng Zhang, Jin Wu, and Ting Zhong. "Recom-
mendation via collaborative autoregressive flows." Neural Networks 126 (2020): 52-64. https://
doi.org/10.1016/j.neunet.2020.03.010

36. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville and Yoshua Bengio. “Generative Adversarial Nets.” NIPS (2014),
Montréal, Canada, Dec 8-13, 2014, pp. 2672–2680.

37. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by
back-propagating errors." Nature 323, no. 6088 (1986): 533-536. https://doi.org/10.1038/
323533a0

38. Danilo Rezende, and Shakir Mohamed. "Variational inference with normalizing flows." In
International conference on machine learning, Lille, France, July 6-11, 2015, pp. 1530-1538.

39. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-
based recommendations with recurrent neural networks. In Proceedings International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016. https://
doi.org/10.48550/arXiv.1511.06939

40. Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. "STAMP: short-term attention/
memory priority model for session-based recommendation." In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, London, United
Kingdom, August 19 - 23, 2018, pp. 1831-1839. https://doi.org/10.1145/3219819.3219950

41. Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. "Collaborative denoising
auto-encoders for top-n recommender systems." In Proceedings of the ninth ACM international
conference on web search and data mining, San Francisco, California, USA, February 22-25,
2016, pp. 153-162. https://doi.org/10.1145/2835776.2835837

42. Zhenlei Wang, Jingsen Zhang, Hongteng Xu, Xu Chen, Yongfeng Zhang, Wayne Xin Zhao,
and Ji-Rong Wen. "Counterfactual data-augmented sequential recommendation." In Proceed-
ings of the 44th international ACM SIGIR conference on research and development in infor-
mation retrieval, Canada, July 11-15, 2021, pp. 347-356. https://doi.org/10.1145/3404835.
3462855

43. Wang-Cheng Kang, and Julian McAuley. 2018. Self-Attentive Sequential Recommendation. In
2018 IEEE International Conference on Data Mining (ICDM).

44. Guijuan Zhang, Yang Liu, and Xiaoning Jin. “A survey of autoencoder-based recommender
systems.” Frontiers of Computer Science 14, no. 2 (2020): 430-450. https://doi.org/10.1007/
s11704-018-8052-6

45. Anega Maheshwari, Priyanka Mitra, and Bhavna Sharma. "Autoencoder: Issues, Challenges
and Future Prospect." In: Vashista, M., Manik, G., Verma, O.P., Bhardwaj, B. (eds) Recent
Innovations in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer,
Singapore. https://doi.org/10.1007/978-981-16-9236-9_24

46. Min Gao, Junwei Zhang, Junliang Yu, Jundong Li, Junhao Wen, Qingyu Xiong, “Recom-
mender systems based on generative adversarial networks: A problem-driven perspective”,
Information Sciences, Volume 546, 2021, Pages 1166-1185. https://doi.org/10.1016/j.ins.2020.
09.013

47. Xiaopeng Li, James She. “Collaborative variational autoencoder for recommender systems”, in:
KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

https://doi.org/10.1145/3397271.3401111
https://doi.org/10.1145/3397271.3401111
https://doi.org/10.1109/ITAIC49862.2020.9338819
https://doi.org/10.1016/j.neunet.2020.03.010
https://doi.org/10.1016/j.neunet.2020.03.010
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1145/3404835.3462855
https://doi.org/10.1145/3404835.3462855
https://doi.org/10.1007/s11704-018-8052-6
https://doi.org/10.1007/s11704-018-8052-6
https://doi.org/10.1007/978-981-16-9236-9_24
https://doi.org/10.1016/j.ins.2020.09.013
https://doi.org/10.1016/j.ins.2020.09.013

References 169

Discovery and Data Mining, Halifax, Canada, August 13-17, 2017, Pages 305–314. https://doi.
org/10.1145/3097983.3098077

48. Yifan Chen, Maarten de Rijke. “A collective variational autoencoder for top-n recommendation
with side information”, in: DLRS 2018: Proceedings of the 3rd Workshop on Deep Learning for
Recommender Systems, Vancouver, Canada, October 2018 October 2018, Pages 3–9. https://
doi.org/10.1145/3270323.3270326

49. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. "BPR:
Bayesian personalized ranking from implicit feedback." In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, Montreal Quebec, Canada, June 18 -
21, 2009, pp. 452-461.

50. Ian, Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160,
Dec. 2016. https://doi.org/10.48550/arXiv.1701.00160

https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3270323.3270326
https://doi.org/10.1145/3270323.3270326
https://doi.org/10.48550/arXiv.1701.00160

Chapter 5
Hybrid/Advanced Session-Based
Recommender Systems

Abstract The deep learning models in SBRS which have been discussed in the
previous chapters have their own strengths and weaknesses. Due to the high flexi-
bility of deep neural networks, many neural network blocks can be integrated to
construct more robust and accurate models. Many session-based recommender
system utilize hybrid deep neural network models. There are also several advanced
deep learning approaches that are very popular in SBRS, including graph neural
networks (GNNs) and deep reinforcement learning (DRL). To this end, advanced
and hybrid deep neural network models in SBRS are discussed in this chapter.

Keywords Session-based recommender systems · SBRS · Graph neural network ·
Deep reinforcement learning · Hybrid models

5.1 Introduction

One of the main reasons for the popularity of deep learning methods is that they
eliminate the need to manually perform feature extraction on unstructured data,
which is challenging to do with traditional machine learning models. Since the
understanding and detailed feature engineering of the dataset is critical to the final
performance of the models, many algorithms based on deep learning achieve better
results in this stage due to providing better feature extraction of deep models using
more hidden layers than shallow models [1]. To achieve this level of accuracy, deep
neural networks are much more efficient than other methods in terms of computation
and the number of parameters. Deep neural networks can learn a deep and more
abstract representation of the input in each layer [2]. Each deep learning method has
specific features and capabilities, and due to the high flexibility of deep neural
networks, many neural structure blocks can be integrated to formulate more robust
models [3]. Hybrid deep learning models should follow the nature and characteris-
tics of the problem scope and can be developed logically with high precision for
specific purposes. The integration of two or more different models provides the
possibility of using the advantages of each method, limiting their disadvantages, and
strengthening the capabilities of the resulting integrated method.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_5

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_5#DOI

172 5 Hybrid/Advanced Session-Based Recommender Systems

Different deep learning methods can be combined to deliver more accurate results
in various research, but in the field of recommender systems, the combination of
CNN and AEs, CNNs and RNNs, RNNS and AEs, etc. has received the most
attention [3]. Many session-based recommender systems also utilized hybrid deep
neural network models, which, due to the sequential nature of user interactions,
mostly use the configuration whose important part includes RNNs. These
approaches are discussed in Sect. 5.3 of this chapter.

In addition to hybrid deep neural network methods consisting of two or more
types of basic deep neural networks, two other types of advanced approaches are
very popular in session-based recommender system that are usually employed with
other models: first, the approaches that utilize deep graph neural networks (GNNs) as
the fundamental component, and second, the approaches that employ deep rein-
forcement learning (DRL) as the core module. These approaches in SBRS are
discussed in Sects. 5.4 and 5.5 of this chapter, individually and in integration with
other deep learning models.

This chapter of the book is organized as follows. First, a brief overview of the
fundamental of these hybrid deep learning models, commonly used datasets, and
evaluation baselines/metrics used in various research in this field will be discussed.
Then, in Sect. 5.3, the hybrid deep neural network methods used in session-based
recommender systems will be considered. In Sects. 5.4 and 5.5, the advanced
approaches based on deep graph neural networks and deep reinforcement learning
models are discussed and reviewed. Section 5.6 discusses and analyzes the results
and the existing issues related to the hybrid/advanced deep learning models in SBRS
and provides guidelines for future research in this scope.

5.2 Fundamentals

Each deep learning method discussed in detail in Chap. 2 of this book has its
characteristics and advantages, which are used in different fields based on these
characteristics. In most research related to session-based recommender system,
multilayer neural networks are used to model non-linear interactions between
items and users, convolutional neural networks are used to extract local and global
representations from homogeneous data sources, and recurrent neural networks are
used to model sequential or temporally ordered data [4]. In fact, single deep learning
models are based on a single deep architecture, while hybrid deep models combine
more than one single deep learning method through an effective communication
technique [5]. Hybrid deep learning methods, in addition to benefiting from the
advantages of single deep learning methods, also reduce the disadvantages of each
method based on the capabilities that other models provide. In Table 5.1, single and
hybrid deep learning models are compared from different aspects.

Because of the data complexity in SBRS, many models presented in this field are
based on hybrid deep learning methods. In Chaps. 3 and 4 of the book, approaches
using a single deep neural network were discussed, while in this chapter, the details

of approaches based on a combination of deep learning models in SBRS are
considered. In addition to hybrid deep neural network methods, deep graph neural
networks and deep reinforcement learning are reviewed, both as a stand-alone
approach and in integration with other models.

5.2 Fundamentals 173

Table 5.1 Comparison of single and hybrid deep learning models

Single deep learning model Hybrid deep learning model

Feature extraction is done for a limited scope Feature extraction is done for a wider scope

Limited options for transfer learning More options for transfer learning

Less effective than hybrid deep learning
methods

Superior performance than single models

Fewer hardware resources required High computational power

Less complicated than hybrid deep learning
methods

The model complexity in both time and space is
high

Limited applications Various applications

Fig. 5.1 The general architecture of graph neural network in recommender systems

Although conventional deep learning techniques have achieved many successes
in various fields, most of their data has been Euclidean, while many data are
efficiently represented by graph structures [6]. Non-Euclidean data can more accu-
rately represent complex concepts than one- or two-dimensional representations.
One of the essential non-Euclidean structures is a graph. Graphs are a special type of
data structure consisting of nodes connected by edges and can be used to model most
problems in the scope of social networks. The need to cover non-Euclidean data in
deep learning methods has led to using deep learning methods and graph concepts in
various research fields.

One critical challenge of recommender systems is learning representations of
items and users, and recently graph neural networks have been used to learn data
representations very effectively [7, 8]. Figure 5.1 shows the general architecture of
graph neural networks in recommender systems. It should be mentioned that the
general framework of GNN in SBRS is presented in Sect. 5.4, Fig. 5.13.

Deep learning methods could learn accurate representations of graph-based data
due to their ability to learn non-linear interactions between the users and the items.
The combination of deep learning methods and graph neural networks has led to

many successes in various fields [9]. One of these areas is session-based recom-
mender system. In SBRS, it is possible to model the sequential behaviors and user-
item interactions with a graph and learn the relations between users and items using
deep graph neural network. Moreover, graph neural networks could be combined
with CNN and RNN models to provide more accurate and effective recommenda-
tions. The details of deep graph neural network methods and several approaches
presented in this field have been considered in the third section of this chapter.

174 5 Hybrid/Advanced Session-Based Recommender Systems

The reinforcement learning approach is focused on objective-oriented learning
through interactions, where the learning agent determines the action that receives the
most reward through the trial-and-error paradigm. This approach provides solutions
that can model user-agent interactions. However, when faced with problems with
high dimensions or continuous agents, inefficient representation of the feature and
increasing learning time occur. To alleviate this issue, deep learning techniques are
added to the reinforcement learning methods. They can automatically find compact
and low-dimensional representations of high-dimensional data [10]. Therefore, com-
bining the benefits of reinforcement learning and deep learning, deep reinforcement
learning models are proposed, which are widely used in various fields. These types
of models could learn the user’s past interactions in different states and spaces.

In session-based recommender systems that dynamically recommend items to
users, deep reinforcement learning methods are used to maximize expected long-
term cumulative rewards. Such approaches can optimize recommendations for long-
term user interactions instead of maintaining a short-term goal of optimizing the
process of providing immediate recommendations to the user. Deep reinforcement
learning methods enable recommender agents to learn optimal recommendation
policies to recommend items to users [11]. The details of the deep reinforcement
learning method and several approaches presented in this field have been considered
in the fifth section of this chapter. Figure 5.2 shows the general architecture of using
reinforcement learning in recommender systems. It should be mentioned that the
general framework of DRL in SBRS is presented in Sect. 5.5, Fig. 5.23.

To summarize, the proposed research methods discussed in this chapter focus on
three types of hybrid/advanced deep learning classifications, including hybrid deep
neural networks, deep graph neural networks, and deep reinforcement learning. The
first category, hybrid deep neural network methods, consists of the combination of
CNN with GRU, CNN with LSTM, and autoencoders with RNNs. The second
category, deep graph neural network methods, includes the methods based on
GNNs and the composition of GNNs with GRU, LSTM, GAN, and CNN models.
Finally, deep reinforcement learning methods include research using DRL or DRL
with GRU and CNN. Table 5.2 presents the list of these studies according to the
employed deep learning approach.

The diagram in Fig. 5.3 shows the percentage of each technique used in the
discussed research.

According to the diagram in Fig. 5.3, a large percentage of the research reviewed
is related to methods in which RNNs play a crucial role. This is inevitable because of
the high capability of recurrent neural networks in processing sequential data related
to session-based recommender systems. On the other hand, a quick review of the

listed research shows that many of them have used graph neural networks as the
main component together with different combinations with other methods.

5.2 Fundamentals 175

Fig. 5.2 The general architecture of reinforcement learning in recommender systems

Table 5.2 The list of research discussed in Chap. 5 using hybrid/advanced deep learning models

Deep learning model References

Hybrid deep neural networks CNN + GRU [12–21]

CNN + LSTM [22–26]

AE + RNN [27–29]

Deep graph neural networks GNN [30–44]

GNN + RNN [45–52]

GCN [53–66]

Deep reinforcement learning Deep Q-Learning [10, 67–70]

DRL + RNN [71–74]

DRL + CNN [75, 76]

DRL + GAN [77–79]

In hybrid deep neural network approaches, the largest percentage belongs to the
combination of CNN and RNNs (GRU, LSTM) due to the potential of CNNs for
automatic feature extraction and the capacity of RNNs for modeling sessions and
user interactions.

In the following two subsections, a summary of the employed datasets and
evaluation metrics of the reviewed research is presented.

176 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.3 Percentage of each type of hybrid/advanced deep learning models

5.2.1 Datasets

The evaluation of the proposed methods in each article is performed on datasets that
contain different features, such as user interactions, items, event time and location,
sessions, explicit user ratings, etc. Datasets are usually collected from various fields,
such as e-commerce, news, movies, jobs, etc. To evaluate the proposed SBRS, one
or more datasets are usually selected according to the intrinsic characteristics of the
proposed method. Table 5.3 shows the datasets used in different articles, including
the dataset name, the domain, a brief description, and the paper that employed it.

According to Table 5.3, some datasets, such as YooChoose, Diginetica, and
Tmall, have been used in more research for evaluation. These three datasets are in
the field of e-commerce, and their data are related to user interactions, which are
fully compatible with the functional intrinsic of session-based recommender system.
In SBRS, first, sessions must be captured in each dataset, and based on different
factors, several sessions are considered for training and several others for model
testing. For example, in the YooChoose dataset, which has many events, different

(continued)

5.2 Fundamentals 177

Table 5.3 Widely used datasets in SBRS using hybrid/advanced deep learning models

Dataset Domain Description References

Diginetica E-commerce The dataset includes user sessions
extracted from an e-commerce search
engine log

[17, 20, 34, 36–39,
48–51, 54–61, 77]

YooChoose E-commerce The dataset consists of 6 months of
clickstreams from an e-commerce
Web site

[17–21, 26, 28, 34,
36–39, 48, 49, 51,
56, 60, 61]

Gowalla POI This dataset is from a location-based social
networking Web site where users share
their locations by checking in

[21, 25, 50, 51]

Last.fm Music This dataset contains social networking,
tagging, and music artist listening infor-
mation from a set of 2K users from Last.fm
online music system

[14, 19, 23, 31, 50,
51]

XING Job posting It is the XING RecSys Challenge 2016
dataset that contains interactions on job
postings. User interactions come with
timestamps and interaction types (click,
bookmark, reply, and delete)

[15, 28, 31]

Reddit News It is on user activity on the social news
aggregation and discussion Web site Reddit

[31]

TMall E-commerce This is the large dataset released in the
IJCAI-15 challenge, which is collected
from Tmall, the largest business-to-con-
sumer e-commerce Web site in China. It
records two types of user behaviors, views
and purchases

[12, 18, 37, 45, 46,
54, 57, 59]

AOTM Music This dataset includes the user-contributed
playlists from the Art of the Mix Web site

[12, 58]

JD.com E-commerce JD.com is one of the largest Chinese
e-commerce Web sites that contains con-
sumer purchasing behaviors, user ratings,
reviews, and product metadata

[71, 75]

30MUSIC Music It is a collection of listening and playlists
data retrieved from Internet radio stations
through Last.fm API

[12, 45]

Nowplaying Music Nowplaying is created from music-related
tweets, where users posted which tracks
they were currently listening to

[34, 45, 54, 57]

MovieLens Movie It consists of users’ sequential rating
records for different categories of movies
on the MovieLens site

[21, 27, 72]

Adressa News Adressa is a news dataset that contains
reading behaviors and sessions from users

[13, 14, 23, 24, 47,
53]

MIND News The MIND is collected from Microsoft
News. The news articles include title,
abstract, body, category, and entities

[53]

Globo.com News Globo.com is the most popular media
company in Brazil. The second version of

[13]

http://jd.com
http://jd.com
http://globo.com
http://globo.com

Globo.com also includes contextual
information

sequences of events are sorted based on time, and after identifying the sessions, 1/4
or 1/64 of the total sequences are obtained according to the proposed method.
Accordingly, two versions of YooChoose 1/4 and YooChoose 1/64 have been
used to evaluate the proposed methods [17]. In the Adressa dataset, there are session
start and end tags, and sessions are identified this way, but in datasets such as Last.
fm, time intervals are used to identify sessions. For example, [14] considered the
time interval of a session to be 30 min, and if two events happened less than 30 min
apart, they were placed in one session; otherwise, they were placed in two different
sessions.

178 5 Hybrid/Advanced Session-Based Recommender Systems

Table 5.3 (continued)

Dataset Domain Description References

Tianchi E-commerce Tianchi is based on user-commodity
behavior data from Alibaba’s mobile
commerce platforms

[46]

Foursquare POI This dataset contains check-ins in NYC
and Tokyo collected for about 10 months.
Each check-in is associated with its
timestamp, its GPS coordinates, and its
semantic meaning

[21, 25]

Retailrocket E-commerce The data has been collected from a real-
world e-commerce Web site. It is raw data,
i.e., without any content preprocessing;
however, all values are hashed due to
confidential issues

[18, 49, 58, 59]

In some research, in addition to determining sessions, mechanisms are also used
to determine how to use sessions to train the model and evaluate it. For example, in
[13], after identifying the sessions, all the sessions that occurred in 1 h are divided
into a group and sorted based on time. The sessions related to each hour are placed in
a group, and every 5 h are used to train the model to evaluate and predict the sixth
hour. Then, the sessions from the beginning to the 10th session are used for training
the model, and the 11th session is tested. This process continued until the end.

Several research, such as [34, 36, 37, 54, 57], which employed Diginetica or
Nowplaying datasets, split and labeled sessions before using them. In the process of
splitting, the generated sequence contains the first item and the label of the second
item. The next sequence contains the first and second items and the label of the third
item. This procedure goes to the point that if a session contains n items, its last
sequence contains n-1 items and the label of the nth item. Depending on the model,
some methods based on graph neural networks utilize different special preprocessing
on datasets. For example, in [45], users participating in fewer than two sessions are
removed to ensure that each user graph contains interactions with enough previous
sessions.

Some session-based recommender systems that use the reinforcement learning
method (such as [10]), in addition to the offline and online evaluation using some

http://globo.com

datasets, have also utilized the RecSim simulation platform. RecSim is a
configurable platform and simulation environment for recommender system that
support sequential user interactions. This platform enables to create new environ-
ments that reflect specific aspects of user behavior and item structure at a level of
abstraction that is well suited for applying reinforcement learning constraints and
recommender system techniques to sequential interactive recommendation
problems.

5.2 Fundamentals 179

Table 5.4 presents the information on each dataset, including the number of
sessions/items/events, duration of data collection, average length of the session,
type of interaction, and access link to the dataset.

5.2.2 Evaluation

Generally, to evaluate recommender systems, the data of the selected dataset is
divided into two parts, train and test, so that the simulated proposed model is trained
based on the training data and evaluated using the test data. To evaluate session-
based recommender systems, the proper dataset must first be selected, and the data
divided into different session. For splitting at the event level, all events before a
certain time can be considered for training and the remaining events for testing.
However, in splitting at the session level, the time of the first event of a session is
considered, and based on that, it is determined that this session is related to the
training or test set. Both approaches are useful, but using the second approach makes
it possible for all user interactions in one session to be in the training or the test set.
But, in the first case, part of the interactions may be included in the test set and
another part in the training set [80]. The performance of each proposed method is
quantified based on different evaluation metrics, and the obtained values are com-
pared with the results of the baseline recommender systems. The most widely used
baseline methods commonly used to evaluate all session-based recommender
systems are listed below. It should be noted that some of them have been introduced
as baselines in the previous chapter. However, to keep the comprehensiveness and
consistency of the content of this chapter, they are also repeated in this section:

. POP: More popular items are always recommended. The POP is effective and
straightforward simultaneously and is often a strong baseline in specific
domains [81].

. S-POP: The most popular items in the current session are recommended. The
recommendation list changes based on the number of events that are related to
particular items. This baseline is useful for the domains with high
repetitiveness [81].

. Ppop: Based on the Ppop method, items are recommended that a user interacts
mostly [12].

. Item-KNN: Items similar to the actual item are recommended, and the similarity
between them is measured based on the cosine similarity measure of their session

180 5 Hybrid/Advanced Session-Based Recommender Systems

T
ab

le
 5
.4

C
ha
ra
ct
er
is
tic
s
of
 w

id
el
y
us
ed
 d
at
as
et
s

D
om

ai
n

D
at
as
et

N
um

be
r

of

se
ss
io
ns

N
um

be
r

of
 i
te
m
s

N
um

be
r
of

ev
en
ts

T
im

es
pa
n

A
ve
ra
ge

se
ss
io
n

le
ng

th

In
te
ra
ct
io
n

ty
pe

A
cc
es
s
lin

k

E
-c
om

m
er
ce

Y
oo

C
ho

os
e

7,
98

1,
58

1
37

,4
86

31
,7
08

,5
05

18

2
da
ys

3.
97

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/

ch
ad
go

st
op

p/
re
cs
ys
-c
ha
lle
ng

e-
20

15

D
ig
in
et
ic
a

20
4,
78

9
43

,1
36

99
3,
48

3
–

4.
85

C
lic
k

ht
tp
s:
//c
ik
m
20

16
.c
s.
iu
pu

i.e
du

/c
ik
m
-c
up

JD
.c
om

1,
00

0,
00

0
93

,2
43

5,
52

4,
49

1
3
ye
ar
s

an
d
a

qu
ar
te
r

–
C
lic
k/
bu

y
ht
tp
s:
//w

is
e.
cs
.r
ut
ge
rs
.e
du

/d
at
as
et
/

R
et
ai
lr
oc
ke
t

75
,4
05

55
,0
50

19
1,
19

7
13

5
da
ys

3.
54

C
lic
k/
bu

y
ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/r
et
ai
lr
oc
ke
t/

ec
om

m
er
ce
-d
at
as
et

T
M
al
l

1.
77

M
42

5,
34

8
13

.4
2M

91
 d
ay
s

7.
56

C
lic
k/
bu

y
ht
tp
s:
//i
jc
ai
-1
5.
or
g/
in
de
x.
ph

p/
re
pe
at
-b
uy

er
s-

pr
ed
ic
tio

n-
co
m
pe
tit
io
n

V
id
eo

M
ov

ie
L
en
s

M
L
30

85

8,
16

0
18

,2
73

25
,3
68

,1
55

17

 y
ea
rs

–
R
at
in
g
(1
–

5)

ht
tp
://
fi
le
s.
gr
ou

pl
en
s.
or
g/
da
ta
se
ts
/m

ov
ie
le
ns
/

M
ov

ie
L
en
s

M
L
10

0
30

0,
62

4
18

,2
26

25
,2
40

,7
41

17

 y
ea
rs

–
R
at
in
g
(1
–

5)

ht
tp
://
fi
le
s.
gr
ou

pl
en
s.
or
g/
da
ta
se
ts
/m

ov
ie
le
ns
/

N
ew

s
A
dr
es
sa

98
2,
21

0
13

,8
20

2,
64

8,
99

9
16

 d
ay
s

2.
7

C
lic
k

ht
tp
://
re
cl
ab
.id

i.n
tn
u.
no

/d
at
as
et

G
lo
bo

.c
om

(G

1)

1,
04

8,
59

4
46

,0
33

2,
98

8,
18

1
16

 d
ay
s

2.
84

C
lic
k

ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/d
at
as
et
s/

gs
pm

or
ei
ra
/n
ew

s-
po

rt
al
-u
se
r-
in
te
ra
ct
io
ns
-b
y-

gl
ob

oc
om

R
ed
di
t

1,
13

5,
48

8
27

,4
52

3,
84

8,
33

0
30

 d
ay
s

3
C
lic
k

ht
tp
s:
//w

w
w
.k
ag
gl
e.
co
m
/c
ol
em

ac
le
an
/

su
br
ed
di
t-
in
te
ra
ct
io
ns

P
O
I

G
ow

al
la

83
0,
89

3
29

,5
10

1,
12

2,
78

8
24

0
da
ys

3.
85

C
he
ck
-i
n

ht
tp
s:
//s
na
p.
st
an
fo
rd
.e
du

/d
at
a/
lo
c-
go

w
al
la
.

ht
m
l

M
us
ic

L
as
t.f
m

16
9,
57

6
44

9,
03

7
2,
88

7,
34

9
95

 d
ay
s

17
.0
3

C
lic
k

ht
tp
://
m
ill
io
ns
on

gd
at
as
et
.c
om

/la
st
fm

/

A
O
T
M

21
,8
88

91
,1
66

30
6,
83

0
95

 d
ay
s

14
.0
2

C
lic
k

ht
tp
://
w
w
w
.a
rt
of
th
em

ix
.o
rg

30
M
U
S
IC

15
2,
18

9
13

8,
27

4
1,
99

5,
77

8
36

5
da
ys

11
P
la
y

ht
tp
://
re
cs
ys
.d
ei
b.
po

lim
i.i
t/?
pa
ge
_i
d=

54

N
ow

pl
ay
in
g

12
6,
24

9
30

,6
73

97
6,
70

2
95

 d
ay
s

7.
73

C
lic
k

ht
tp
://
db

is
-n
ow

pl
ay
in
g.
ui
bk

.a
c.
at
/

#n
ow

pl
ay
in
g

https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://cikm2016.cs.iupui.edu/cikm-cup
http://jd.com
https://wise.cs.rutgers.edu/dataset/
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/
http://reclab.idi.ntnu.no/dataset
http://globo.com
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.kaggle.com/colemaclean/subreddit-interactions
https://www.kaggle.com/colemaclean/subreddit-interactions
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
http://millionsongdataset.com/lastfm/
http://www.artofthemix.org
http://recsys.deib.polimi.it/?page_id=54
http://dbis-nowplaying.uibk.ac.at/#nowplaying
http://dbis-nowplaying.uibk.ac.at/#nowplaying

vectors. In other words, it is the number of co-occurrences of two items in
sessions divided by the square root of the product of the number of sessions in
which the individual items occurred. This method is very effective for evaluating
item-to-item recommendation methods [82].

. GRU4Rec: A technique based on recurrent neural networks, which is one of the
first approaches to using deep learning techniques in session-based recommender
system. This method is based on GRU and is used to overcome the problem of
gradient vanishing [81].

. NARM: An improved version of GRU4Rec, which performs session modeling
by introducing a hybrid encoder based on the attention mechanism. In this
technique, global and local encoders are defined, the global encoder corresponds
to the GRU4Rec method, and the local encoder is proposed for adding the
attention mechanism to the model, respectively [83].

. STAMP: This method is based on a Short-Term Attention/Memory Priority
Model and, unlike the NARM method, is not based on a recurrent neural network.
In this method, users’ general interests are obtained through the long-term
memory data of the session context, and their short-term interests are also
recognized through short-term memory [84].

. BPR-MF: It utilizes matrix factorization which is optimized for pairwise ranking
objective functions through stochastic gradient descent. Methods based on matrix
factorization cannot be used in session-based models because there is no
pre-computed feature vector for new sessions. This problem is overcome by
using the average vectors of the items that belong to each session [85].

5.2 Fundamentals 181

In addition to the above methods, some baseline methods are based on graph
neural networks and are used to evaluate graph-based recommender systems. Some
of the most commonly used ones are:

. SR-GNN: This method provides a session-based recommender system using a
graph-based neural network that creates latent vectors of items and presents each
session through an attention-based network [36].

. FGNN: It learns the vectors of items through a weighted attention graph layer and
learns the features of sessions through the feature extraction layer of a session
graph [33].

. A-PGNN: This method converts all sessions of a user into a graph and uses a
gated graph neural network to learn item transitions. It also uses an attention
mechanism to explicitly model the effects of the user’s previous interests on the
current session [86].

In the evaluation process of recommendation systems based on reinforcement
learning, some of the most widely used baseline methods are as follows:

. DQN: This method is the result of combining deep learning and reinforcement
learning, which uses a deep neural network to estimate the Q function. DQN is
used for scenarios that have a discrete action space [87].

8

. DEERS: The main idea of this method is based on using the user’s negative
feedback in addition to his positive feedback. Q network has two inputs for
positive and negative states [71].

. DDQN: It is based on the DQN method, which decomposes its objective func-
tion, choosing the optimal action and calculating the target Q value from each
other. It uses a dual network structure for action selection and value
evaluation [88].

182 5 Hybrid/Advanced Session-Based Recommender Systems

In this section, a number of evaluation metrics that are used more in this field have
been discussed in the following:

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the
list of recommendations. It shows that placing a relevant item at the top of the
recommendation list significantly impacts user satisfaction and is calculated using
Eq. (5.1):

MRR@N =
1
Q

XQ
i= 1

1
ranki

if ranki ≤N

0 otherwise

<
: ð5:1Þ

where Q is a sample of recommendation lists and ranki refers to the rank position
of the relevant item for the i-th recommendation list.

. Recall: This metric is calculated based on the number of relevant items that are
among the top N items in the recommendation list, and the rank of the relevant
items in the N list is unimportant, and it is calculated using Eq. (5.2):

Recall@N =
Number of relevant items in top N list

Total of relevant items
ð5:2Þ

. Precision @ N: This metric evaluates the number of relevant items relative to the
total N items recommended in the list, and it is calculated using Eq. (5.3):

Precision@N =
Number of relevant items in top N list

Total of N items
ð5:3Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the
percentage of items that are ever recommended, and the variety of the
recommended items in the recommendation list is considered. Its goal is to
recommend a high percentage of various items to the user. This metric is
calculated using Eq. (5.4):

{

()
()

5.2 Fundamentals 183

Coverage@N

=
Distinct items that appeared in any top-N recommendation

All distinct recommendable items
ð5:4Þ

. Hit Rate@N: It is the percentage of times in which relevant items are retrieved
among the top N ranked items, and it is calculated using Eq. (5.5):

Hit Rate@N =
1
Q

XQ
i= 1

1 if ranki ≤N
0 otherwise

ð5:5Þ

where Q is a sample of recommendation lists and ranki refers to the rank position
of the relevant item for the i-th recommendation list.

. nDCGp: This metric is based on cumulative gain (CG). The cumulative gain is the
sum of the graded relevance values of all items in a recommendation list. nDCG is
computed as the ratio between discounted cumulative gain (DCG) and idealized
discounted cumulative gain (IDCG). Equations (5.6), (5.7), and (5.8) show how
to calculate this measure.

DCGp=
Xp
i= 1

2ri - 1
log 2 iþ 1ð Þ ð5:6Þ

IDCGp=
XRELp
i= 1

ri
log 2 iþ 1ð Þ ð5:7Þ

nDCGp=
DCGp

IDCGp
ð5:8Þ

In the above equations, ri is the graded relevance of the result at position i, and
RELp represents the list of relevant items (ordered by their relevance) up to
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant
item is recommended, the precision is measured, and the average is calculated
using Eq. (5.9):

MAP=

PQ
q= 1

AveP qð Þ
Q

ð5:9Þ

In this relation, P(q) is the precision of query q, and parameter Q is the number of
queries.

 !

ffis

þ

184 5 Hybrid/Advanced Session-Based Recommender Systems

. Mean Absolute Error (MAE): This metric is one of the most common errors of
prediction factors, which calculates the mean absolute value of the difference
between the score predicted by the system and the actual score of the item. The
mean absolute error indicates the degree of closeness of the recommendations to
reality. This measure can be calculated from Eq. (5.10):

MAE=
1
N

X
i2Ou

Pu,i - ru,ij j ð5:10Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the
predicted rank is more effective than the mean absolute error in problems where
the errors are more considerable, and it is calculated using Eq. (5.11):

RMSE=
1
N

X
i2Ou

Pu,i - ru,ið Þ2 ð5:11Þ

In Eqs. (5.10) and (5.11), Pu, i is the predicted score for the item i by user u, ru, i is
the actual value of the score assigned to item i by user u, Ou is the set of items
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine
the efficiency of recommender systems is the AUC. The larger the AUC value,
the more favorable the final system performance is evaluated. The ROC (receiver
operating characteristic) space is formed by two indices FPR on the horizontal
axis and TPR on the vertical axis, as calculated by Eqs. (5.12) and (5.13),
respectively. The line that connects two points (0,0) and (1,1) divides the ROC
space into two parts. The area above this line is the favorable area and below the
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a
classifier to distinguish between classes and is used as a summary of the ROC
curve.

TPR=
TP

TPþ FN
ð5:12Þ

FPR=
FP

FP TN
ð5:13Þ

Apart from the above evaluation metrics that are generally used in many methods,
some measures are specifically used in the reviewed approaches in this chapter:

. ESI-R@N: This metric expresses the expected self-information with rank sensi-
tivity, which is used to indicate the degree of novelty of the recommendations,
and it is calculated using Eq. (5.14):

5.2 Fundamentals 185

ESI-R Lð Þ=
1PN

j= 1
disc jð Þ

XN
k = 1

- log 2p ikð Þ * disc kð Þ ð5:14Þ

The main term of the above equation is log2p(i), which originates from the
concept of self-information and indicates the amount of information conveyed
through the observation of an event. The log function is used to emphasize the
impact of new items. p(i) is the probability that each item is part of a random user
interaction representing the recent normalized popularity of that item. disc(k) is a
logarithmic scaling function that maximizes the novelty effect of items at the top of
the suggestion list. This function is shown in Eq. (5.15):

disc kð Þ=
1

log 2k þ 1 ð5:15Þ

. ESI-RR@N: This metric is based on ESI - R(L) and expresses the expected self-
information with rank and relevance sensitivity, and it is calculated using
Eq. (5.16):

ESI-RR Lð Þ=Ck

XN
k= 1

- log 2p ikð Þ * disc kð Þ * relevance ik, uð Þ ð5:16Þ

the relevance (. , .) in the above equation indicates the degree of relevance. If the
desired item is among the list of items that the user interacts with in the current
session, its relevance value is 1. Otherwise, its value is equivalent to the back-
ground probability for unobserved items that the user does not interact with but
are somewhat relevant to him. Ck is calculated using Eq. (5.17):

C kð Þ=
1PN

´K = 1

disc ḱ
() ð5:17Þ

. EILD-R@N: This metric is used to calculate the amount of diversity in recom-
mendations and actually shows the expected intra-list diversity with rank sensi-
tivity, and it is calculated using Eq. (5.18):

ð

186 5 Hybrid/Advanced Session-Based Recommender Systems

EILD-R Lð Þ=
1PN

´k= 1

disc ḱ
()

XN
k = 1

disc kð Þ 1PN
ĺ= 1:ĺ≠ k

rdisc ĺ, k
() ð5:18Þ

XN
ĺ= 1:l≠ k

d ik , ilð Þ * rdisc l, kð Þ

In the above equation, rdisc(l, k), which is calculated according to Eq. (5.19),
represents a relative ranking discount, which considers item l that is ranked before
the target item k has already been discovered.

rdisc l, kð Þ= disc max 0, l- kð Þð Þ 5:19Þ

. EILD-RR@N: This metric is based on EILD-R@N and is sensitive to relevance in
addition to rank, and it is calculated using Eq. (5.20):

ILD-RR Lð Þ=Ck

XN
k = 1

disc kð Þ * relevance ik, uð ÞCl

XN
l= 1:l≠ k

d ik, ilð Þ

* rdisc k, lð Þ * relevance il, uð Þ ð5:20Þ

In the above equation, Ck is a normalization term which is a weighted average
based on rank discounts, and it is calculated using Eq. (5.21):

Cl =
1PN

ĺ= 1:ĺ≠ k

rdisc k, ĺ
() ð5:21Þ

Table 5.5 shows the different evaluation metrics used in different articles on
session-based recommender systems using hybrid/advanced deep learning models.

5.3 SBRS Using Hybrid Deep Neural Networks

Before looking at the approaches of hybrid deep neural network models in SBRS, it
is appropriate to discuss why this type of integration can be helpful in achieving
more accurate results in this scope. Then, we fully discuss different combinations of
deep neural network models for this purpose.

5.3 SBRS Using Hybrid Deep Neural Networks 187

Table 5.5 Widely used evaluation metrics in SBRS using hybrid/advanced deep learning models

Evaluation metrics References

Mean reciprocal rank (MRR) [12–15, 17–23, 31, 34, 36–38, 45, 46, 48–51, 53–57, 59–61]

Recall@n [12, 14, 15, 18–23, 25, 27–29, 45, 46, 49, 56, 58, 61, 75]

Mean rank percentile (MRP) [15]

nDCG [16, 58, 68, 69, 71, 72, 75, 76]

Click-through rate (CTR) [10, 69]

AUC [24, 54]

Precision@n [14, 17, 21, 25, 28, 34, 36–38, 48, 51, 54, 57, 59, 60, 69, 75, 77]

Hit rate [13, 16, 25, 31, 50, 72]

F1 [14, 24, 26, 47, 75]

RMSE [27, 29, 77]

MAP [25, 29, 68, 71, 75, 76]

Coverage [10, 13]

EILD-R@n [13, 53]

EILD-RR@n [13, 53]

ESI-R@n [13, 53]

ESI-RR@n [13, 53]

5.3.1 Why Hybrid Deep Neural Network?

Hybrid deep neural network methods are used in various fields to recognize more
accurate features and provide a more optimal model. Because of the sequential
nature of the data, session-based recommender systems usually use recurrent neural
networks to model the sequence of events in this way. On the other hand, for more
accurate feature extraction, achieving more optimal representations of inputs, and
obtaining better results, other deep learning methods can be combined with recurrent
neural networks. The research reviewed in this section shows that most hybrid deep
neural network methods in the field of SBRS have used a combination of CNN and
GRU, CNN and LSTM, and AE and RNN. A higher percentage of these studies are
based on GRU since LSTMs have more gates/parameters, which causes a higher
computational complexity. Each of these three categories will be discussed in the
following sections.

5.3.2 Approaches Based on CNN and LSTM

Many studies of a session-based recommender system are based on hybrid deep
neural network methods and usually include a type of recurrent neural network such
as GRU and LSTM. In this subsection, methods based on the combination of LSTM
and CNN are discussed.

Park et al. have proposed a session-based news recommender system based on the
combination of two methods, RNN and CNN, which uses an LSTM as a sub-type of

RNNs [22]. They used a personalized re-ranking approach that considers user
interests based on a weighted average of categories of articles the user reads. This
method estimates categories using the classification based on convolutional neural
networks for data that does not have category information. The embedding vector
related to each news article employing the bag-of-words representation of queries,
titles, and content of the news has been trained. In fact, each news article is converted
into a vector based on the Doc2Vec method. These vectors are then sent as input to
LSTM to create user representations based on their clicked news representation
vectors. In this article, two types of recurrent neural network approaches are inves-
tigated: history-based and session-based. In the history-based approach, all user
clicks are considered, while in the session-based approach, only clicks from the
current session are considered. The session-based approach has obtained better
results that show the impact of users’ short-term interests in predicting their next
clicks in session-based recommender systems.

188 5 Hybrid/Advanced Session-Based Recommender Systems

A Deep Joint Network (DeepJoNN) that uses a combination of deep learning
methods is proposed by Zhang et al. [23]. DeepJoNN utilized a combination of
three-dimensional CNN and recurrent neural networks. LSTM in DeepJoNN opti-
mizes the traditional RNN by integrating a memory cell vector during each session to
address the problem of exploding/vanishing gradient when learning long-term
dependencies. The features that are considered as input for each news article include
the article ID, keywords, entities, and category to which the relevant news belongs,
and character-level embedding is used for their embedding. Character-level
embedding has benefits of lower computation complexity and fewer parameters.
The only limitations appear in the processing of misspellings and informal words,
which rarely happen in the news field. 3D CNN is used to process input data and
extract news features. These types of CNNS are tensor-based and use 3D filters for
feature extraction.

The session-parallel mini-batch method is used in DeepJoNN to increase effi-
ciency in the model training, which is suitable for models in which different users
have different sessions with different numbers of interactions. The inputs are
considered a tensor or 3D array with dimensions: number of features ×length of
feature embedding × mini-batch size. LSTM is also used to detect sequential patterns
between user clicks and their related features. In addition, DeepJoNN presents a time
decay function to calculate the freshness of news articles within a time period;
beyond this time period, the news article will hardly attract the interest of users.

The architecture of DeepJoNN is shown in Fig. 5.4. As shown in this figure,
DeepJoNN consists of two types of deep neural networks, which are coupled
hierarchically and thus can extract textual patterns and process long-term and
short-term dependencies simultaneously.

Zhu et al. proposed a Deep Attention Neural network (DAN) model for a session-
based news recommendation system, which consists of three components: parallel
CNN (PCNN), attention-based neural network (ANN), and attention-based recurrent
neural network (ARNN) [24]. The ARNN is used to find the sequential features of
users’ clicked news, and the ANN is used to detect the features of users’ current
interests with respect to the candidate news. The ARNN works based on LSTM.
ANN designs an attention-based neural network that automatically matches each

clicked news with candidate news and aggregates the user’s current interests with
different weights. The PCNN component uses two parallel CNNS to extract news
presentations based on the news titles and news profiles. These two parallel CNNS
combine the information related to the title as well as the entities related to the news
text (profile).

5.3 SBRS Using Hybrid Deep Neural Networks 189

Fig. 5.4 The architecture of DeepJoNN [23]

To learn user features, not only ANN is used to model the user’s current interests,
but also the ARNN component is used to obtain potential sequential features of a
user’s history readings. Therefore, in DAN, the sequential features of the user’s click
history and the user’s current preferences together provide the user’s preferences and
features. Finally, DAN recommends the news to the user according to the similarity
between the user feature representation and the candidate news representation. The
architecture of DAN is shown in Fig. 5.5.

Due to the success of RNNs and CNNs in detecting local sequential patterns and
complex long-term dependencies between data, Xu et al. proposed a model based on

190 5 Hybrid/Advanced Session-Based Recommender Systems

F
ig
. 5

.5

T
he
 a
rc
hi
te
ct
ur
e
of
 D

A
N
 [
24
]

a recurrent convolutional neural network (RCNN) [25]. RCNN combines the short-
term and long-term interests of the user to provide a high-level hybrid representation
for sequential recommender systems. LSTM has been utilized in RCNN to detect
long-term dependencies and CNN to extract local sequential patterns among hidden
states. RCNN, when the current item enters the recurrent layer, creates a hidden state
at each time step, which is a hidden representation of the user’s sequential interests.
Then, the recent hidden states are considered as images in each time step, and their
local sequential features are investigated and searched using vertical and horizontal
convolutional filters. An intra-step horizontal filter is used to detect non-linear
features of interactions, while a vertical inter-stage filter is used to detect
non-monotone local patterns. The output of the convolutional neural network and
the LSTM hidden state vector are combined to describe the user’s overall interest. It
is then fed into a fully connected layer to predict the list of recommendations. The
architecture of RCNN is shown in Fig. 5.6.

5.3 SBRS Using Hybrid Deep Neural Networks 191

In some research, deep learning methods are combined with some classical
machine learning methods. Bedi et al. [26] have combined CNN and LSTM with
fuzzy time series to recommend products to users based on their activities performed
in a session, called FS-CNN-LSTM-SR [26]. The FS-CNN-LSTM-SR considers the
numerical and categorical features of session-based recommender systems. To this
end, fuzzy logic controls the uncertainty in the user’s interests, convolutional layers
extract the important features, and multivariate LSTM learns the sequential depen-
dencies between input data and learns patterns of fuzzy and non-fuzzy features. In
fact, LSTM is suitable for data with long sequential dependencies but takes a long
time to train. To solve this issue in FS-CNN-LSTM-SR, LSTM has been placed next
to CNN to reduce the number of epochs needed for training. FS-CNN-LSTM-SR
includes two general phases: preprocessing and recommendation. The preprocessing
consists of filling the empty values, retrieving required fields, extracting new
features, converting original time series data into fuzzy time series, data normaliza-
tion, and padding. The recommendation phase consists of two modules: prediction
and recommendation. In the prediction module, the items that qualify for the
recommendation are predicted, and in the recommendation module, a set of
recommended items is selected and specified for the user.

5.3.3 Approaches Based on CNN and GRU

Approaches based on recurrent neural networks usually have low speeds and are
difficult to train for high-volume data due to the gradient backpropagation problem.
CNN-based methods also have high memory consumption, and latent representa-
tions are not interpretable. Therefore, some SBRS use hybrid deep neural network
methods based on GRU and CNN, which can properly use their strengths and reduce
the limitations of each. In this subsection, the proposed research methods based on
the combination of CNN and GRU are discussed.

Due to the large volume of interactions, items, and users in SBRS, single deep
learning models such as RNNs or CNNs cannot capture the hierarchical interests of

192 5 Hybrid/Advanced Session-Based Recommender Systems

F
ig
. 5

.6

T
he
 a
rc
hi
te
ct
ur
e
of
 R
C
N
N
 [
25
]

users in a session or between different sessions. Therefore, You et al. have proposed
a Hierarchical Temporal Convolutional Networks (HierTCN) architecture for
modeling the sequential interactions of users in large-scale and real-time recom-
mender systems [15]. HierTCN consists of two levels that can recognize the hierar-
chy of user interests. The high-level model uses a recurrent neural network to detect
long-term user interests between sessions. The output of the low-level model
generates a dynamic user embedding that is created based on the user’s long-term
interests and short-term interactions within sessions. In HierTCN, the high-level
model is implemented based on GRU, and the low-level model is implemented
based on TCN (temporal convolutional networks). Users’ long-term interests are
represented using the GRU hidden state. Hidden states are updated through the
integration of item embedding vectors in each session. The low-level model presents
the user’s short-term interests and predicts the user’s next interaction in the session.
This model is based on TCN, a special type of convolutional neural network with
sequential inputs. Its structure includes causal convolution, dilated convolution,
residual block, and residual connections. The combination of these powerful com-
ponents leads to the achievement of acceptable efficiency and performance for TCN.
Using causal convolution and dilated convolution in TCN increases the speed of
calculations, and, similar to recurrent neural networks, TCN accepts inputs with
variable lengths. It is worth mentioning that TCN’s input is the user’s long-term
interests and its output is the user’s dynamic embedding.

5.3 SBRS Using Hybrid Deep Neural Networks 193

HierTCN uses a two-phase mechanism to update user interests and item embed-
ding. Users’ interests change rapidly, so the embedding vectors of users’ interests
should be updated in real time, but the properties of items change less quickly. In the
first phase of the updating mechanism, the item embedding vectors are created based
on convolutional graph neural networks. In this graph, each node represents an item,
and each edge is drawn between nodes that interact with the corresponding items
quickly. For each embedding item, the structural features of the graph are also used
in addition to the textual and image features. In the second phase, the embedding
vectors of the items are considered fixed, and the user’s interest vectors are created
based on them. The general architecture HierTCN is shown in Fig. 5.7.

Moreira et al. developed a meta-architecture, called CHAMELEON, that includes
some structural blocks for news recommender systems that can be set up in different
ways based on the characteristics of the target system [13]. The core of this
architecture consists of two modules whose inference and training processes are
independent of each other [89]. The Article Content Representation (ACR) module
is used to learn a distributed presentation of the content of articles, and the Next
Article Recommendation (NAR) module is used to recommend future articles in
current sessions of users. The ACR module comprises the submodules of Textual
Features Representation (TFR) and Content Embeddings Training (CET). In TFR,
the text content of news articles is processed using CNN and sent to fully connected
layers. The CET submodule can also learn, in a supervised or unsupervised manner,
the vectors for presenting articles generated by TFR. The ACR module learns the
embedding of the contents of an article independently of the records of users’
sessions. This is done for reasons of higher scalability because if the number of

interactions between users and news articles is huge, the process of learning these
interactions is computationally expensive in a joint process.

194 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.7 The architecture of the HierTCN [15]

Then the content vectors of the learned articles are stored in a memory and fed as
input to the NAR module. The NAR provides recommendations for active sessions
based on previous user interactions and news article content. NAR is designed to be
context-aware and receives contextual information such as location, the device used
by the user, and the previous user’s clicks as well as information about the context of
the articles, such as their popularity and recency as input. NAR consists of three
submodules: Contextual Article Representation (CAR), SEssion Representation
(SER), and Recommendation Ranking (RR).

The CAR combines NAR inputs, which include text embedding vectors of
articles, contextual features of articles (recency and popularity), and contextual
features of users. This component can be realized as a fully connected multilayer
or factorization machine. The SER uses GRU recurrent neural networks to model
users’ sequential clicks. RR is also developed to maximize the similarity between the
predicted embedding vector for the next article and the contextual personalized
embedding vector of the article already read by the user in his session (a positive
example), while it should minimize the similarity of the predicted embedding vector
for the next article with negative examples (articles that the user does not read during
the session). The architecture of CHAMELEON framework is shown in Fig. 5.8. It is
worth mentioning that another instantiation of the CHAMELEON has been pro-
posed by Moreira et al., in which the ACR module employs a CNN, and in the NAR
module, the sequence of clicks from users’ sessions is modeled by LSTM [90].

To take advantage of the recurrent neural network and CNN methods, Bach et al.
proposed a SBRS that is based on the recurrent convolutional recommendation
model, RecConRec [18]. RecConRec has two main features: (1) It contains a

5.3 SBRS Using Hybrid Deep Neural Networks 195

F
ig
. 5

.8

T
he
 a
rc
hi
te
ct
ur
e
of
 t
he
 C
H
A
M
E
L
E
O
N
 f
ra
m
ew

or
k
[1
3]

CNN layer that extracts the individual and collective associations inherent in a
sequence of sessions. Individual dependency refers to the condition that each
previous action of the user affects his next action, and on the other hand, collective
dependencies indicate that several consecutive actions jointly affect the next user’s
action. To achieve these complex dependencies, RecConRec uses CNN iteratively
on small windows of consecutive items in a session. By using convolutional filters of
different sizes, this layer can extract individual and collective patterns from the data.
(2) The GRU layer is used to capture long-term dependencies, and the input of the
GRU is the output of the CNN layer. The effect of this layer is for the time when the
previous actions do not affect the immediate next actions, but they affect the more
distant ones. In fact, RecConRec is a combination of the CNN layer, which works on
the items’ embedding vectors and extracts complex local patterns, and the GRU
layer, which recognizes long-term sequential patterns.

196 5 Hybrid/Advanced Session-Based Recommender Systems

For item embeddings that are fed to the CNN layer, the one-hot vector of each
item is created, and each vector is mapped to a space with smaller dimensions.
Reducing the sizes of the items embedding vectors reduces the complexity of
convolutional operations, and on the other hand, the embedding vectors can be
trained together with the model so that the items that are seen together in the same
session have similar embeddings. In RecConRec, the highway network layer
between CNN and GRU is used to increase the effectiveness, which includes a
multilayer perceptron network with residual connections.

Zhang et al. also combined CNN and GRU for SBRS [19]. In this method,
Recurrent and Convolutional Neural Network for Session-based Recommendation
(RCNN-SR), the user’s general interest is determined based on the user’s main
purpose, the user’s current interest is determined based on the user’s sequential
interactions and behaviors, and the user’s dynamic interest is formed based on the
changes in the user’s choices and actions. In the first step, the user’s general interest
is extracted by a GRU with an item-level attention mechanism to dynamically select
meaningful items in a session. Then, in the second step, the user’s dynamic interest is
detected through feature interactions and the user’s current interests through item
transitions. For this purpose, a vertical convolutional filter and multiple horizontal
convolutional filters are used to extract the effects of non-monotonic sequential
patterns and multivariate features. Finally, users’ general, current, and dynamic
preferences are concatenated and sent to a fully connected layer to provide
recommendations.

RCNN-SR includes three encoders for the main purpose, dynamic preference,
and sequential behaviors. The main-purpose encoder models the user’s current
interests. The input of this encoder is all the clicked items in the session, and its
output is the user’s current interest based on the candidate items clicked in the
current session. This encoder is based on GRU, and the final hidden state, which
summarizes the sequential behavior, is taken as the output of the current session. The
input of the dynamic interest encoder is the embedding vectors of the clicked items
in a session, and its output is the non-monotonic relationships between all features of
the clicked items in the current session. This encoder uses a vertical filter for the
vertical convolution operation to learn the item-specific features from the GRU

hidden states. In the sequential behavior encoder, the input is the clicked items in a
session, and the output is the non-linear transitions of the clicked items in the current
session. Although user behaviors are sequential, there may not necessarily be
dependencies between neighboring items, so the ability to detect point-level depen-
dencies alongside union-level dependencies allows CNN to model high-level rela-
tionships. This method can reduce the problem of data sparsity. The architecture of
the RCNN-SR is shown in Fig. 5.9.

5.3 SBRS Using Hybrid Deep Neural Networks 197

Fig. 5.9 The architecture of RCNN-SR [19]

To learn dependencies and general sequential patterns in session-based recom-
mender system, Zhao et al. utilized the recurrent residual convolution networks to
extract patterns from sequences of sessions [21]. The authors proposed a hybrid
neural model, SGPD, for learning Sequential General Pattern and Dependency.
SGPD includes four layers, the embedding, residual convolution, Bi-GRU, and
user preference layers. In the embedding layer, item IDs are encoded in a continuous
space with low dimensions to reduce the complexity of calculations and data
processing. The next layer is the optimized recurrent residual convolution layer,
where each recurrent residual block consists of a set of normalization and convolu-
tion operations and plays a key role in this method. In this layer, a sliding window is
designed first, and the consecutive items in the window create the item block in the
session. This window moves over items and learns general patterns of sequences of

interactions within the session. Finally, the output of this layer is sent to a fully
connected neural network to convert to a feature vector.

198 5 Hybrid/Advanced Session-Based Recommender Systems

SGPD provides a Bi-GRU model that scans the sequence forward and backward
in the Bi-GRU layer to learn potentially personalized information about a user. In the
user’s preference layer, according to the results of the forward and backward
scanning of the sequence, a representation of the user’s feature vector is created.
Finally, the features of the sequences are obtained by high-level abstraction through
a fully connected neural network, and based on that, the representation of the session
is determined. Accordingly, the score of each item is estimated for selection by the
user as the next item.

5.3.4 Approaches Based on RNN and Autoencoder

Another important type of hybrid deep neural network used in SBRS is the combi-
nation of autoencoders and recurrent neural networks. Autoencoders are usually
used to extract efficient representations for user interactions and feature transforma-
tions, and recurrent neural networks recognize sequential dependencies and long-
term interests of the user. In this subsection, the proposed research methods based on
AE and RNN are discussed.

Chen et al. proposed a sequential recommender system to predict the user’s next
transaction that employs an autoencoder on raw transaction data and submits
observed transaction encodings to a GRU-based sequential model [29]. Their
model, SEQNBT (SEQuential recommendation model for Next Best Transaction),
predicts the user’s next most likely transaction. Assuming that each user has
different transactions with different industries, this method receives as input a
sequence of previous transactions of the user and predicts the code of the industry
category and the amount of the user’s next transaction. SEQNBT consists of an
autoencoder, GRU, and transaction decoder. Autoencoder is a self-training model
that aims to encode transactions. Stacked autoencoders are used to extract efficient
representations for each transaction. Extensive feature conversion is performed in
this section. The characteristics related to the user’s behavior, such as the number of
transactions and mean/median/total transaction amount, and user’s spending behav-
ior, such as the reservation amount, i.e., the maximum amount that the user is willing
to pay for a product, are integrated into different industry categories. Embedding
descriptions of the types of industries in which the user has transactions are based on
the BERT (Bidirectional Encoder Representation from Transformers) model. All the
integrated features of the transactions, along with the transaction amount and
embedding of the relevant industry category, are merged and sent to the encoder
to be reconstructed by the decoder later.

Next, multiple GRU layers recognize sequential dependencies and the long-term
interests of the user. In addition to the embedding vectors of transactions, the input of
this layer includes time features so that the next transaction can be predicted using
them. Once the model is trained, it is evaluated on an out-of-sample dataset to predict

encodings for each user’s next predicted transaction. The predicted transaction
encryption is divided into two parts in the transaction decoding stage: the
concatenated transaction features vector and the industry category embedding vec-
tor. Then, the cosine similarity between the predicted industry category embedding
vector and all industry category embedding vectors in the feature table that store the
BERT representations is calculated. The predicted transaction amount can be
extracted from the features of the decoded transaction. The architecture of SEQNBT
is shown in Fig. 5.10.

5.3 SBRS Using Hybrid Deep Neural Networks 199

Fig. 5.10 The architecture of SEQNBT [29]

Although in most of the recent research, the time intervals have been considered
as an explicit component and used in the learning process of sessions, usually, the
effects of multiple previous levels are not considered in the proposed research;
instead, a sequence with a limited length is considered. To this end, Fuentes et al.
used deep learning models for the sequential prediction problem as a multi-class
classification based on LSTM [28]. This method is based on the combination of
LSTM, encoder, and decoder methods and automatically learns behavioral patterns
from previous purchase transactions to predict the next purchase item or the category
to which the next purchase item belongs. The architecture of this proposed method
consists of four parts: transaction data, customer sequences file, LSTM training
model input, and training model output. These components form the inputs and
outputs of the three stages of the proposed method, which are converting customers’
purchase sequences, creating multi-level favorites, and learning to buy favorites. An
LSTM layer is capable of learning temporal dependencies, but a chain of LSTMs is
more suitable for processing time-based sequential data; for this reason, a combina-
tion of encoder-decoder and stacked LSTMs is used in this method. The LSTM
encoder processes user interests as input and generates an encoded representation.
LSTM decoder uses decoder representation to generate output. A new customer
presentation method is presented as the basis of the data transformation process,
which allows working with multi-level interactions in scenarios where the length of
sequences may be short and interactions have more dependencies on previous
sessions.

To overcome the problem of data sparsity in the insurance industry, Borg Bruun
et al. employed a combination of an autoencoder and recurrent neural networks to
utilize the user’s past sessions as signals to learn recommendations [27]. In

particular, this model learns several types of user actions that are not necessarily
always related to items, and unlike other models of session-based recommender
system, they model the relationships between input sessions and user target opera-
tions that are not performed in input sessions. The purpose of providing this
recommender system based on cross-sessions is to recommend the next items that
the user will buy according to the user’s past sessions. This system has three distinct
features: the target operation, which is purchasing, occurs outside the session, the
user’s operations are monitored in multiple sessions, and predicting what items the
user will buy after the last time step.

200 5 Hybrid/Advanced Session-Based Recommender Systems

Generally, in session-based recommender systems that use recurrent neural
networks, the input of recurrent neural networks is the sequential items that the
user has interacted with in a session and the output for each time step is the
probability of selecting each item as an item that the user will interact with. This
method, which is an extension of the GRU4REC method, takes multiple sessions of
each user as input and predicts the items that the user will buy after the last time step
by considering all types of user operations. Each session is assumed to be a sequence
of user operations, and for each operation, a part of the Web site with which the user
has interacted, an entity of the Web site selected by the user, and the user’s
interaction method with that entity must be considered.

Three methods are proposed for passing input sessions to recurrent neural
networks. In the first method, which is cross-sessions encoding, a session is encoded
by integrating session operations with the max pooling operator, and for each time
step in user sessions, a GRU layer calculates hidden states. The second method is
cross-sessions concat, where all sessions of a user are concatenated and form one
session. A global order is considered for user operations, whereas the first method
only considers the order of sessions. In both methods, model learning is performed
through a multi-label classification. In the third method, cross-sessions auto, sessions
are encoded automatically using an autoencoder. An autoencoder based on recurrent
neural networks is trained with a GRU layer that takes as input a sequence of
operations ordered in a session.

5.4 SBRS Using Deep Graph Neural Network

Before looking at the approaches of deep graph neural network models in session-
based recommender systems, an overview of the GNN and the reasons that made it
an effective choice for SBRS are provided.

5.4.1 Why Graph Neural Network?

Graph topology/structure encodes a large amount of information that is difficult to
capture using traditional learning techniques. GNNs focus on learning mechanisms

that use this knowledge to achieve better performance for downstream tasks such as
ranking prediction and similar content retrieval. In this regard, the goal of GNNs is to
learn better representation/embedding of nodes using neighborhood information.
GNNs can also be used to learn edges and graph representations.

5.4 SBRS Using Deep Graph Neural Network 201

Graph neural networks are a class of deep learning methods specifically devel-
oped to infer data described by graphs. GNNs can be applied directly to graphs to
provide an optimal way to perform tasks such as node-level, edge-level, and graph-
level prediction. Graph neural networks allow the end-to-end machine learning
model that is simultaneously trained to learn a representation of graph-structured
data. Graph neural networks can be applied to data with a graph structure for
different purposes and can also learn representations at the node, edge, or graph
level.

There are various approaches for training machine learning models on data with a
graph structure using preprocessing techniques. However, they lack the flexibility to
fully adapt to existing datasets and operations in machine learning models due to the
high dimensionality and non-Euclidean intrinsic of graph data. It should be noted
that the basic types of neural networks can only be implemented using regular or
Euclidean data. However, almost all real-world data have a non-Euclidean dynamic
graph structure. The irregularity of the many graph-structured data and the required
parallel and scalable processing have led to recent advances in graph neural
networks.

A graph-structured data is widely used in various fields such as image processing,
recommender systems, social network analysis, etc. A graph is a data structure with
two components, nodes and edges. Graph G is shown as G=(V, E), while V is a set of
nodes, and E is a set of edges that connect these nodes. vi 2 V represents a node, and
eij = (vi, vj) 2 E represents the edge between two nodes vi and vj. In general, graphs
are classified as below [7]:

. Directed and undirected graphs: In directed graphs, edges connect a source node
to a destination node, but in undirected graphs, edges only show the connection
between two nodes.

. Homogeneous and heterogeneous graph: A homogeneous graph consists of one
type of node and edges, but a heterogeneous graph consists of various kinds of
nodes and edges.

. Hypergraph: A generalization of a graph in which an edge can connect any
number of nodes.

The main idea of GNN is to iteratively summarize the feature information of the
neighbors with respect to the graph data and integrate the collected information with
the current central node representation during the propagation process [91, 92]. From
the network architecture point of view, GNN stacks several propagation layers,
which include aggregate and update operations. The propagation process was
based on Eqs. (5.22) and (5.23):

0 1

8 2 ð Þ ð Þ

202 5 Hybrid/Advanced Session-Based Recommender Systems

Update : hlþ1
v =U hl v, n

l
v

()
=U hl vW

l þ
X

u2N vð Þ

1
cvu

hl uW
l0@ A ð5:22Þ

{ }()
Aggregation : nl v =A hl u, u N v 5:23

In the above equations, hl u represents the node u in the l
th layer, nl v is the result of

summarizing the aggregation function on neighboring nodes v in the lth layer, A and
U represent the aggregation and update operation functions in the lth layer, Wl and
Wl′ represent the learnable transformation matrices for the lth layer, and N is the set of
neighbors of the associated node.

It should be noted that in the aggregation stage, the existing works are mainly
based on mean-pooling operation for each neighbor equally [93] or differentiating
the importance of different neighbors by using the attention mechanism [94]. In the
update phase, the representation of the central node and the aggregated neighbor-
hood are merged into the updated representation of the central node.

Based on the concepts of graph neural networks, many deep learning models such
as graph convolutional networks (GCN) [95], graph attention networks (GAT) [94],
and different configurations of graph neural networks with other models such as
RNNs (e.g., GGNN: Gated Graph Sequence Neural Networks [96]) have been
developed and used in various research. GCN approximates the first-order
eigendecomposition of the graph Laplacian to iteratively aggregate information
from neighbors and uses a non-linear activation function, such as ReLU, for
updating phase. GAT assumes that the influence of neighbors is neither identical
nor pre-determined by the graph structure; therefore, using the attention mechanism,
it distinguishes the participation of neighbors. In GGNN, the recurrent function is
executed several times on all nodes in the aggregation phase and adopts a GRU
model for updating phase. In addition to graph neural networks, GCNs have also
been used in session-based recommender systems in various articles.

GCNs are suitable neural network architectures for machine learning on graphs.
A GCN can generate significant feature representations and use its structural infor-
mation in networks. GCNs use the concept of CNNs and define them for the open
graph domain. A significant difference between CNNs and GCNs is that CNNs are
specifically designed to work on regularly structured (Euclidean) data, while GCN is
a generalized version of CNNs where the number of nodes’ connections is different
and the nodes are also irregular (irregular on non-Euclidean structured data).

If you are familiar with convolution layers in CNNs, “convolution” in GCNs is
basically the same operation that refers to multiplying the input neurons by a set of
weights, commonly known as a filter or kernel. GCNs perform similar operations to
CNNs, where the model learns related features by considering neighboring nodes.

Researchers have classified GCNs into two types:

. Spatial GCN: This model of GCNs uses spatial features to learn from graphs that
are located in spatial space. In many cases, graphs are coupled with spatial
information embedded in their nodes. Standard GCNs do not consider the

location of nodes. These approaches directly perform convolution in the graph
domain by collecting the information of neighboring nodes.

. Spectral GCN: This model of GCNs uses a special Laplacian graph decomposi-
tion to propagate information along the nodes. These networks are inspired by the
propagation of waves in signals and systems study. The spectral graph convolu-
tion operation in the Fourier domain is performed by calculating the eigen
decomposition of the graph Laplacian. The eigenvalue of the (normalized)
graph Laplacian can be easily calculated from the adjacency matrix of the
symmetric normalized graph. However, filters must be defined in Fourier space,
and computing the Fourier transform of the graph is expensive (it requires
multiplying the node features by the eigenvector matrix of the graph Laplacian,
which is an O(N2) operation for a graph with N nodes).

5.4 SBRS Using Deep Graph Neural Network 203

Although spectral-based methods have more computational cost than spatial-
based, they provide a stronger capacity to extract features from graph data.

In GCNs, the adjacency matrix A should be considered in addition to the node
features (or the so-called input features) in the forward propagation equation. A is a
matrix that represents edges or connections between nodes in the forward propaga-
tion equation. A describes the representation of the graph structure in the form of an
adjacency matrix that enables the model to learn the representation of the features
based on the connectivity of nodes. By adding the adjacency matrix as an additional
element to the forward propagation representation of the features in neural networks,
the forward propagation is calculated using Eq. (5.24):

hlþ1
v = σ hl vW

l A* þ bl() ð5:24Þ

σ is a non-linear activation function such as ReLU, bl is a bias parameter in the lth

layer, Wl is the weight matrix in the lth layer, hl v is a representation of the node v in the
lth layer, and A* is the normalized version of A.

According to the above descriptions, three main steps should be considered for
the development of GCNs:

1. Kernel/Filters: A filter is a function that acts like a scanner that has a limit on the
number of cells (adjacency matrices) that must be considered.

2. Pooling: Similar to the function of the filter scanner, pooling is a function that
outputs all the values scanned by the scanner at the same time. This output value
can be calculated as the maximum, average, etc., of values. Only one output cell is
generated after applying the kernel, followed by the pooling function.

3. Flattening: The flattening function reduces the network structure to a vector with
lower dimensions, which can be used for the input of feedforward neural
networks.

The above three steps are common to all GCNs. The only major difference is in
the different kernel functions throughout the graph neural network. The general
architecture of GCNs is shown in Fig. 5.11.

204 5 Hybrid/Advanced Session-Based Recommender Systems

F
ig
. 5

.1
1

T
he
 g
en
er
al
 a
rc
hi
te
ct
ur
e
of
 G

C
N
s

5.4 SBRS Using Deep Graph Neural Network 205

Different types of techniques based on graph neural networks have been proposed
in various domains, and one of these domains belongs to recommender systems.
Many recommender systems form a graph-structured data, so graph neural networks
can be widely used due to their high capability in representation learning for graph
data. For example, user-item interactions can be represented by a bipartite graph
between the user and item nodes, where the edge represents the interaction between
the user and the corresponding item. In addition, a sequence of items can be
transformed into a sequence graph, so that each item can be connected to one or
more subsequent items, and an edge is considered between consecutive items.
Figure 5.12 shows an example of a bipartite and a sequence graph.

On the other hand, due to their high flexibility, graph neural networks provide the
possibility that side information can also be easily modeled and used in addition to
the main data. For example, social network data can be added to the user session
dataset. In addition, a graph neural network can explicitly encode the important
collaborative signal of user-item interactions to improve its representation through
the propagation process. Compared with non-graph models, graph neural networks
are more flexible and convenient for modeling multi-hop connectivity related to
user-item interactions.

In session-based recommender systems, sequences of items can be modeled as a
graph-structured data to represent adjacency between items. Graph neural networks
are widely used to detect the transition pattern from the sequential behaviors of users
by transforming them into a sequential graph. Figure 5.13 presents the general
framework of graph neural networks in recommender system with sequential data.

In short, the use of GNNs in session-based recommender systems can be sum-
marized by two general principles:

. Graph construction: In contrast to user-item interactions, which essentially have
a bipartite graph structure, sequential behaviors are naturally expressed in time
order. Therefore, constructing a sequence graph based on the sequential behavior
of users is necessary to use GNN in session-based recommender system. In
several systems, such as [33, 36, 54], the session data is modeled with a directed
graph to capture the item transfer pattern. Of course, the sequence of sessions in
session-based recommender systems is short, and user behaviors are limited; for
example, the average length of sequences in Tmall is only 6.69 [54, 57], and in
YooChoose, it is about 5.71 [36]. Therefore, a session graph constructed based on
a single session may contain only a limited number of nodes and edges. To
address the above challenge and capture possible relationships between items,
there are two strategies: (1) directly capturing relationships from other sessions
and (2) adding additional edges to the session graph.

. Aggregation of neighbor information: Given a constructed sequence graph, it is
essential to design an effective propagation mechanism to capture transition
patterns among items. In particular, the propagation process can be defined in
the simplest possible form and as a mean pooling to aggregate previous and
subsequent items. A combination of two aggregated representations and using
GRU to integrate the information of neighbors and the central node are other

206 5 Hybrid/Advanced Session-Based Recommender Systems

F
ig
. 5

.1
2

A
n
ex
am

pl
e
of
 a
 b
ip
ar
tit
e
an
d
se
qu

en
ce
 g
ra
ph

 i
n
re
co
m
m
en
de
r
sy
st
em

s

methods, all of which treat neighboring nodes equally [96]. The attention mech-
anism can also be used to distinguish the importance of neighbors [33, 54,
97]. All these methods adopt the permutation-invariant aggregation function
during message transmission and ignore the sequence of items in the neighbor-
hood, which may lead to information loss [50]. Several methods have been
proposed to preserve the sequence of items in the graph construction [50].

5.4 SBRS Using Deep Graph Neural Network 207

Fig. 5.13 The general framework of graph neural networks in SBRS

In the subsequent subsections, first, different research which used graph neural
networks in session-based recommender systems have been discussed. Then, the
combination of GNNs and RNNs and, after that, the research that has used GCNs are
reviewed.

5.4.2 Approaches Based on GNN

Session-based recommender systems that have used different types of graph neural
networks face three main challenges: graph construction, information propagation,
and sequential interests. Sequential data should be transformed into a sequence
graph to build a graph, and it should be determined whether it is sufficient to create
a subgraph for each sequence independently. Or is it better to add an edge between
several consecutive items or only consider an edge between two consecutive items?
To propagate information, it should be determined which propagation mechanism is
more suitable for recording transition patterns. Is it necessary to recognize the order
of related items? For the last problem, which is the user’s sequential interests, item
representations must be integrated into a sequence to obtain the user’s temporal
preference. Should one simply use attention-based pooling or a recurrent neural
network structure to improve sequential temporal patterns?

Different answers to the above questions will lead to the proposal of a new
approach, some of them will be discussed in the following.

208 5 Hybrid/Advanced Session-Based Recommender Systems

Wu et al. have proposed a Session-based Recommendation with Graph Neural
Networks, SR-GNN, that models session sequences as graph-structured data [36]. In
SR-GNN, in the first step, the sequence of sessions is modeled as a directed graph
with weighted edges, and each session sequence is considered a subgraph. In this
graph, each node is an item, and each edge between two nodes represents the
sequence of user clicks on two items. For example, if there is an edge from node
vi to node vj, it means that the user clicked on vj in a session after clicking on vi. The
weight of each edge is also calculated based on the occurrence of the edge divided by
the outdegree of that edge’s start node. Then, using the gated graph neural network,
transitions and connections between the items are detected, and the embedding
vectors of the items are generated.

Now, the information propagation between different nodes is performed based on
the matrix of connections and edge weights, and the latent vectors of nodes are
extracted and sent as input to the graph neural network. Then, two update and reset
gates decide what information to keep and discard, respectively. After that, the
candidate state is built based on the previous state, the current state, and the reset
gate. After updating all the nodes in the session graph and reaching convergence, the
final node vectors are obtained. Each session is presented using an attention network
as a combination of global interest and the current interests of that session. Finally,
the probability that each item will be the next click for each session is predicted. The
general architecture of SR-GNN is shown in Fig. 5.14.

Pang et al. presented another model based on a heterogeneous graph neural
network (HGNN) that attempts to recognize the simultaneous occurrence of items
globally [31]. This work is done by creating the item-user interaction graph and the
global co-occurrence graph of items. The global graph contains item transitions of
sessions, user-item interactions, and the global co-occurrence items. To detect the
transfer and change of items, first, a heterogeneous global graph including user and
item nodes is constructed, and the user’s previous interactions with items are used to
create user-item edges. This leads to the detection of the long-term preferences of the
user. Then, to generate connections between items, pairwise item transitions in the
sessions are considered. To detect potential correlations, pairs of similar items are
computed based on global co-occurrence information to construct item edges.

In HGNN, a graph augmented hybrid encoder consisting of a heterogeneous
graph neural network and a personalized session encoder is proposed to create a
session preference embedding to provide personalized session-based recommenda-
tions. The personalized session encoder combines current session item information
and general user preferences to create a personalized session presentation, which is
used to generate a more detailed and personalized list of recommendations. Since
session-based recommender systems only provide recommendations based on the
sequence of items that anonymous users have interacted with in a limited time frame,
HGNN can be used in limited situations where the user ID and previous sessions are
available and can be used [98].

In most methods based on graph neural networks, information is propagated
between adjacent items, and the information on items that are not directly related
is ignored. Multilayer graph neural networks were also used for information

propagation between items without direct connections, but they also easily led to
overfitting. To solve this challenge, Pan et al. have presented a Star Graph Neural
Networks with Highway Networks (SGNN-HN) for session-based recommender
system [38]. In SGNN-HN, a star graph neural network is used to model complex
change patterns in the current session, which can solve the problem of long-term
information propagation by adding a star node to check non-adjacent items. Then, to
solve the overfitting problem of graph neural networks, highway networks are used
to dynamically select the item embedding vectors before and after the star graph
neural network, which can help to discover the complex transition relationship
between items. Finally, the item embeddings generated by the star graph neural
network are carefully integrated into the current session, and the proposed item is
predicted based on the user’s preferences.

5.4 SBRS Using Deep Graph Neural Network 209

Fig. 5.14 The architecture of SR-GNN [36]

It is worth mentioning that in SGNN-HN, a star graph is created for each session,
and the set of graph nodes has two parts: the first part is all the unique items in a
session, which are called satellite nodes, and the second part is the star node. Graph
edges also include two types of connections for information propagation, which
include satellite connections and star connections. Satellite connections are used to
show adjacent relationships between items. For star connections, a bidirectional edge
is added between the star node and each satellite node in the star graph, and on the
other hand, to update the satellite nodes, edges are used to connect from the star node
to the satellite node. Through the star node, information from non-adjacent nodes
can be propagated in a two-hop way by considering the star node as an intermediate
node. On the other hand, the directed edges from the satellite nodes to the star node
are used to update the star node, which helps to create an accurate representation of
the star node by considering all the nodes in the star graph. The general architecture
of SGNN-HN is shown in Fig. 5.15.

Studying the methods’ effectiveness in session-based recommender systems based
on recurrent neural networks or attention-based mechanisms shows that complex
item transitions decrease system efficiency. While graph neural networks adopt a
mechanism that transforms snapshots of sessions into individual graphs at different
timestamps to model static structural information without considering the temporal
evolution of item transition relations, most session-based recommender system use
cross-entropy with softmax to optimize model parameters, where all items (except
the target item) are considered negative samples. During training, persistently
decreasing negative item scores may cause overfitting of the model and loss of

generalization ability. Moreover, these approaches cannot provide a large enough
gradient to reduce scores, limiting the convergence speed of the model.

210 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.15 The architecture of SGNN-HN [38]

To solve the abovementioned problems, dynamic graph learning for session-
based recommender system (DGL-SR) is proposed by Pan et al. [32]. DGL-SR
first converts the current session into a dynamic graph, and then, the structure layer is
used to consider the structural information to learn the representation of session
items at the different timestamps. At the same time, the structural information is
analyzed through the graph attention network and the temporal evolution of the
graph structures in different timestamps by temporal attention. To detect the tempo-
ral evolution of session graphs at different timestamps, DGL-SR produces a repre-
sentation with the temporal features of each item using the temporal layer in the
dynamic graph neural network. Then, the user’s dynamic preferences are generated
and used to generate predicted scores on all candidate items. Finally, a corrective
margin softmax is developed to correct the gradient of negative items to avoid
overfitting and achieve effective model optimization.

Qiu et al. proposed an improved graph neural network to learn the embeddings of
each item in a session [33]. FGNN (full graph neural network) performs the learning
process of embedding items by examining the inherent order of item transitions in a
weight graph attention network. Therefore, it considers the pattern of item transitions
by constructing a session graph and proposes a new model that jointly considers the
sequence and hidden order in the session graph for a session-based recommender
system. To use graph neural networks, a graph is constructed for each session, and
the recommendation of the next item in the session is formulated as a graph-level
classification problem. Specifically, it provides a weighted attention graph layer and
a readout function to learn item embeddings and sessions to recommend the next
item. The intrinsic sequence of the item transition pattern, which is critical for item-
level feature representation, is achieved using a multiple-weighted graph attention
layer network to compute the flow of information between items in a session. After
generating the item representation, the readout function, which automatically learns
to determine an appropriate order, is deployed to aggregate these features. Fig-
ure 5.16 shows the architecture of FGNN [33].

Many researchers attempted to provide methods that correctly identify the inter-
ests of anonymous users in short sessions. To this end, Li et al. proposed

disentangled representation learning to create better representations for items in
session-based recommender systems [34]. Disentangled Graph Neural Network
(Disen-GNN) captures the purpose of ease session considering factor-level attention
on each item. Disen-GNN consists of four main steps:

5.4 SBRS Using Deep Graph Neural Network 211

Fig. 5.16 The architecture of FGNN [33]

1. Embedding initialization: In this step, each session is converted into a directed
graph, where each item in the session is encoded in embedding vectors with K
parts. Each part represents the features of a factor. The similarity between
adjacent items within a session is measured based on the features of each factor.

2. Disentangled item embedding learning: The factor-based similarity matrix is
introduced, which estimates the similarity between adjacent items based on
each item’s embeddings. Then, the similarity matrix is integrated into the layers
of the gated graph neural network to learn factor-based item embedding. A
residual attention-based mechanism is also designed to preserve the distinctive-
ness of each item to avoid over-smoothing.

3. Session embedding learning: To detect the user’s goal in a session, an attention-
based network is used to calculate the user’s attention to various factors of each
item based on the factors of the last item, which provides the user’s local goal.
With assigned attention weights, a session embedding is created by weighted
summing the factor embeddings of all items in the session.

4. Prediction: For each candidate item, the probability that the next item will be the
user’s choice is calculated by matching its embedding with the session
embedding.

Considering the adjacent sessions and the correlation between them could be an
influential factor for the development of session-based recommender systems. To this
end, Pan et al. proposed a collaborative graph learning method (CGL) that utilized
gated graph neural networks to learn item embeddings [42]. CGL consists of two
main components: the main supervised and self-supervised modules. A gated graph
neural network is used to present each item in each session. In the main supervised
module, the user’s recent and long-term interests are considered, and dynamic
interest migration is detected. In this module, the model training is performed
based on the supervised signals generated in sequential order, and the target-aware
label confusion is designed to create an accurate label distribution. Label-aware
confusion is used to generate soft labels that combine optimization with a one-hot
encoding vector to avoid overfitting. Then, in the self-supervised module, supervi-
sion signals are extracted from the correlations between different sessions based on
the general graph built to enrich the item representations. This general graph is

created based on all sessions, where each session is a node and its edges are defined
based on similarity measure and max sampling. Based on this, the supervision
signals are extracted from the correlation between sessions by self-supervised
learning, and finally, the parameters of the model are optimized and updated based
on the loss function of both components.

212 5 Hybrid/Advanced Session-Based Recommender Systems

Due to the influence of friends’ interests on each other’s preferences, social
networks have been utilized in many applications of session-based recommender
system. Social network data is effective in better understanding users’ interests and
providing more accurate recommendations. In [40], an efficient framework for
session-based social recommendation is proposed by Chen et al., in which, first, a
heterogeneous graph neural network is used to learn user and item representations,
which integrates the knowledge of social networks. Then, to generate predictions,
only the user and item presentations related to the current session are sent to a
non-social aware model. This framework has two advantages. First, the framework is
flexible since it is compatible with existing non-social models and can easily
incorporate more knowledge than social networks. Second, this framework can
capture cross-session item transitions, whereas most existing methods can only
capture intra-session item transitions.

5.4.3 Approaches Based on GNN and RNN

Due to adapting the RNN’s functionalities to the sequential nature of data in session-
based recommender systems, many researchers are interested in using these types of
deep neural networks. Many session-based recommender systems usually model
sequential signals using RNN’s structures and transition relationships between items
using GNNs to identify user interest. Of course, in real scenarios, there may be
important and influential sequential signals in the behaviors of close users or multi-
step transition relationships between different items. Therefore, the methods based
on RNNs or GNNs can only get limited information to model the complex behavior
patterns of users. Recurrent neural networks usually focus on the sequential relation-
ships between items, whereas graph neural networks mainly focus on structural
information. Therefore, these two models can be used together in session-based
recommender systems to generate more acceptable results.

Chen et al. have proposed a collaborative co-attention network using the combi-
nation of recurrent neural network and graph neural network methods for session-
based recommender systems [46]. In CCN-SR (Collaborative Co-attention Network
for Session-based Recommendation), an embedding layer is considered for gener-
ating item embedding, whose outputs are the inputs of recurrent neural networks and
graph neural networks. In the first step of CCN-SR, the user’s behaviors in the
current session, which includes the user’s interaction items, are embedded and
entered as input to the GRU to model the sequential relations between the user’s
interactions and behaviors. Since each step’s hidden state contains sequential infor-
mation between the user’s previous behaviors up to this step and the user’s current

goal, the hidden state of each step is modeled in the current session and collected by
the recurrent neural network structure. Then, the transition relations between the
items are modeled, and the detailed embeddings of the items in the current session
are created with a graph neural network.

5.4 SBRS Using Deep Graph Neural Network 213

CCN-SR creates a directed graph for each session, whose nodes, items of each
session, and edges indicate the sequence of user interaction with the items. An edge
is generated between two nodes related to items in this graph when the user interacts
with one item after another. Since some edges may appear multiple times in a
session, these edges are given different weights to determine their importance. The
weights are calculated based on the occurrence of the edge divided by the outdegree
of the start node of the edge. Then, two adjacency matrices that specify the
connections between nodes based on input and output edges are used in the graph
neural network. Therefore, the encoder based on the graph neural network mainly
recognizes the transition relations between adjacent items and models the structural
information in the session. The output of the encoder based on the recurrent neural
network contains the sequence information in the session. Combining these two
types of information is helpful in providing a comprehensive representation for
predicting recommendations.

In CCN-SR, two mechanisms are considered based on the co-attention mecha-
nism: parallel co-attention and alternating co-attention. In the parallel mode, the
structural information related to the graph neural network and the sequential infor-
mation related to the GRU are taken as input, and it calculates the co-dependent
representations at the same time in parallel. But in the alternating mode, it alternates
between the initial outputs of the RNN-based session encoder and the GNN-based
session encoder and the attentive representations of them. It should be mentioned
that CCN-SR has high computational complexity and does not obtain acceptable
results in sparse datasets. The general architecture of CCN-SR is shown in Fig. 5.17.

Session-based recommender systems that use graph neural networks can model
data in a graph format and use content information and relationships between them to
predict user behaviors. In addition, context-based recommender methods can inte-
grate context data from several different and heterogeneous sources to obtain
information about item features and relationships. To this end, Li et al. have
proposed a session-based recommender system combined with two types of contex-
tual information and work using gated graph neural networks, called context-aware
and gated graph neural networks (CA-GGNN) [48]. Compared to the graph neural
network, the gating graph neural network uses GRU and creates a message propa-
gation model. The output of each layer of a typical GRU contains the current input
information and the previous state information, which are specified by the input
matrix and the state matrix, respectively. CA-GGNN first considers different types of
input context information and time interval context information to dynamically
create context matrices based on input information. These matrices include the
input matrix and the time interval matrix. The input matrix represents the external
environment information when the user makes the current decision, such as time and
location. The time interval matrix presents the proportion of the time interval
between the current decision and the next decision in the entire review period of

the session. In other words, the input matrix shows the scenario information of the
external environment when the user participates in the session. The time interval
matrix shows the proportion of time the user spends browsing each item in the entire
session time. Then, the CA-GGNN replaces the constant input matrix and the state
matrix with the input matrix and the interval matrix, respectively, and uses a context
matrix to model the effect of the transformation of the input elements. Finally, it uses
the time-based backpropagation method to train the model.

214 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.17 The architecture
of CCN-SR [46]

Figure 5.18 shows the general architecture of CA-GGNN [48], which includes
three parts. Part “a” is related to data preprocessing and includes context data of the
external environment, background data of time intervals, and the session graph
based on the session sequence. In part “b,” the gated graph neural network considers
the graph structure information and the state information of each node at any time to
create an accurate and reliable representation of each node. The process of this
session-based recommender system depends not only on the sequence information
of sessions but also on the sequence of sessions and related context information. In

part “c,” CA-GGNN uses a soft attention-based mechanism to determine the priority
between the user’s long-term and short-term interests as the last item in the session
sequence. A vector representation of the session sequence is obtained through a
linear connection and used as a recommendation basis.

5.4 SBRS Using Deep Graph Neural Network 215

Fig. 5.18 The architecture of CA-GGNN [48]

To overcome the problem of data sparsity and ignoring the effects of users’ short-
term and long-term interests on the accuracy of the recommendations, Hu et al. have
proposed a session-based news recommender [47]. This method, GNewsRec (Graph
Neural News Recommendation), first creates a heterogeneous user-news-topic graph
to explicitly model users, news articles, and their topics based on the interactions that
have already been performed between users and news articles. The topic information
reflects the users’ interests better and reduces the sparsity of user-item interactions.
In GNewsRec, graph-based neural networks are used to encode relationships

between users, news articles, and topics. In this GNN model, user representations
and news articles are learned by propagating their embeddings throughout the graph.
The user’s long-term interests are determined using the users’ embedding based on
the users’ study history. In GNewsRec, the user’s short-term interests are modeled
using recent user studies and the LSTM model based on the attention mechanism.

216 5 Hybrid/Advanced Session-Based Recommender Systems

GNewsRec consists of three main parts: a convolutional network for information
extraction, a graph neural network for modeling news articles and long-term user
interests, and LSTM based on an attention mechanism for modeling short-term user
interests. The first part is composed of two parallel convolutional networks for
extracting textual information, which takes the profile and title of the news as
input and creates representations at the level of the profile and title of the news.
Finally, both representations are placed next to each other. In the second part, a
heterogeneous undirected graph of users, news articles, and topics is created to
model users’ long-term interests. In this method, in addition to the text of news
articles, their sequence is also important. In the third part, LSTM based on the
attention mechanism is used to detect the short-term interests of users. Figure 5.19
shows the architecture of GNewsRec [47].

Despite all advantages of using graph neural networks in session-based recom-
mender system, some methods based on graph neural networks cannot express the
sequential information of the session completely, e.g., the repeated nodes in a
session and the starting node of the directed graph. On the other hand, noisy items
inevitably exist in the sessions where the user chooses among diverse products with
unintentional human behavior. This type of non-malicious noise is called natural
noise, which has been less considered in session-based recommender systems. These
problems limit GNN-based recommender methods and make them unable to achieve
better results. To address these problems, Zhang et al. proposed a denoising graph
neural network for session-based recommender system, called SEDGN (sequence-
enhanced denoising graph neural network) [49]. SEDGN is a combination of GNN
and GRU. It uses GRU to obtain sequential information to address limitations in
session graph modeling. To reduce the effect of natural noise, two denoising
modules have been developed separately in GNN and GRU, to produce two repre-
sentation vectors. These vectors include the normal behavior information vector
related to the sequence of the session and the graph vector of the session. Two
denoising modules are designed to obtain normal user behavior information from
sequential structure data and session graph structure, respectively, which reduce the
effect of noise in the session. The item representations extracted from the sequen-
tially structured data and graph structure are combined into a unified item represen-
tation that is used to predict the user’s next click.

Another problem in session-based recommender systems is that the model does
not deeply learn the potential characteristics of users and items when learning the
deviation between user interests and recommended items. This leads to a certain
degree of misunderstanding of the scope of users’ interest preferences, leading to
irrelevant or unexpected recommended content. In [52], an unexpected interest
recommender system with a graph neural network (UIRS-GNN) is proposed by
Xia et al. to address the current limitations of the models and uses a graph neural

network to aggregate the features of neighboring nodes in the target node. UIRS-
GNN can learn the user’s preferences using an attention-based long short-term gated
recurrent unit (A-LSGRU) network and model the user’s general and local interests.

5.4 SBRS Using Deep Graph Neural Network 217

Fig. 5.19 The architecture of GNewsRec [47]

5.4.4 Approaches Based on GCN

Much data in the recommender system does not have a regular spatial structure. To
model the complex relationship between users and items, a network structure that
can process temporal and spatial information should be used. Graph convolutional
networks can perform deep learning of spatiotemporal information on graph data.

Since the low-order approximation of GCN reflects short-term interest, in
GACOforRec, the proposed method by Zhang et al., ConvLSTM, is used to ensure
that the model can consider more conditions [63]. In addition to using temporal and
spatial information learned by graph convolutional networks, this model uses LSTM
capabilities to update and remember long-term preferences. Simultaneously, a new
adaptive attention-based mechanism using convolutional graph networks is pro-
posed to consider the effect of different propagation distances. To enhance the

hierarchical learning of the model from different priorities, a network structure called
ON-LSTM, which focuses more on the hierarchy and sequence of the neuron, is
introduced. This arrangement is necessary for a general understanding of the user’s
preferences.

218 5 Hybrid/Advanced Session-Based Recommender Systems

In GACOforRec, the importance of user sessions is considered first. In real
conditions, long-term historical records may not be critical to the user, and regular
user activities are considered in one session. Therefore, considering the sequence of
each user session and the connection between multiple sessions is an important goal
of GACOforRec. GCN is used to model user sessions and learn sequences in the
session and spatiality in the network to detect the short-term preferences of users. To
avoid ignoring the long-term and persistent interests of the user, ConvLSTM is
proposed, which is a type of recurrent neural network with long and short temporal
effects while enabling the algorithm to focus on spatial domain information. This
structure is used to connect two-part GCNs to account for “long” and “short” effects
across the application scenario. ConvLSTM is used to combine connections and
extract temporal information while paying attention to spatial feature extraction
capabilities. Considering that different user behaviors may have different degrees
of influence, a pair of new attention mechanisms are proposed that can obtain
weights from different propagation distances in GCN.

The management and control of session-based recommender systems with many
sessions and long time periods face three main challenges: First, the sessions are
continuously growing. Memory cannot hold all sessions. Second, user interest may
change significantly. A suitable model is required to model temporal information in
past sessions. Third, the information in the new session should be modeled in time.
To overcome these problems, Zhou et al. have proposed a temporal gated graph
neural network that extracts auxiliary information from incoming sessions, called
Temporal Augmented graph neural network for Session-based Recommendations
(TASRec) [58]. TASRec dynamically models the user’s long-term interest over a
long period of time. Item-to-item interactions are presented on two levels: temporal
graph and session graph. In the session graph, each node is an item related to the
session, and each directed edge represents the adjacency of two items. For each day,
a temporal graph is created that is undirected, and its nodes are the items of sessions
before the desired day, and its edges are determined based on the adjacency of
the items. The gated graph neural network is used for the session graph to determine
the interactions of the items within the sessions, and based on that, the embedding of
the items is obtained. In order to provide recommendations in the sessions of a
certain day, the temporal modeling layer performs the learning of item interactions
based on the graph that stores the records of the past sessions before the target day.
An exponential denominator is used to change the scale of edge weight, and the
effect of edge weight over time will decrease with the increase in the time difference
between the previous day and the current day.

A multilayered graph convolutional network is also implemented to learn about
high-order item interactions. Each layer of the GCN integrates all the first-order
neighbor embeddings and the item itself. For the embedding of sessions, first, the
embeddings within the session and the temporal embeddings of the item are

processed, and then the attention-based mechanism is used to compute the embed-
ding of the session. Finally, based on the embedding of the session, the probability of
selecting the candidate items is calculated.

5.4 SBRS Using Deep Graph Neural Network 219

Some data cannot be modeled using simple graphs. In these cases, a hypergraph
can be used to model a more general data structure. A hypergraph consists of a set of
vertices and a set of hyperedges, where a hyperedge can connect any number of
vertices. This method is used to encode correlations of high-order data and has high
ability and flexibility in detecting complex relationships in sessions. In this regard,
the research [57] performs data modeling through hypergraphs in the context
of GCN.

Xia et al. proposed a dual-channel hypergraph convolutional network (DHCN)
[57]. DHCN models each session as a hyperedge in which all items are related to
each other. Different edges connected through common items form a hypergraph
that contains item-level high-order relations. By stacking multiple layers in the
hypergraph channel, the strengths of hypergraph convolution can be used to produce
efficient results. However, since each edge contains only a limited number of items,
the problem of data sparsity may limit the benefits of hypergraph modeling. There-
fore, the line graph channel is introduced, and self-supervised learning is integrated
into the proposed model to enhance hypergraph modeling. A line graph is
constructed on the basis of a hypergraph, where each hyperedge is a node and the
edges are hyperedge connections that focus on session-level relations. After that, a
dual-channel hypergraph convolutional network is developed, which describes two
channels of information within and between sessions, while each of them knows
little about the other. By maximizing the mutual information between session
representations learned through two channels based on self-supervised learning,
the two channels can acquire new information from each other to improve their
performance in extracting item/session features. Figure 5.20 shows the architecture
of DHCN [57].

Several session-based news recommender systems can extract expressive features
(e.g., embedding) from articles and sessions, but they usually ignore the semantic-
level structure information of articles. To this end, Sheu et al. proposed a novel
context-aware graph embedding (CAGE) framework for session-based news recom-
mendations that enriches news article embeddings using an auxiliary knowledge
graph [65]. CAGE extracts textual-level features from news articles with
convolutional neural networks while representing semantic-level entities with the
help of a sub-knowledge graph. Semantic-level embedding extraction procedures
include five steps, including entity extraction, triple extraction from an open knowl-
edge graph, sub-knowledge graph construction, sub-knowledge graph embedding,
and entity-linking embeddings. Then, CAGE refines the concatenated embeddings
through multilayer graph convolutional networks. After that, session-level represen-
tations are learned by GRU. Finally, CAGE predicts the next click article for each
session.

An issue that session-based recommender systems deal with is that they mainly
rely on extracting sequential patterns in individual sessions. These methods are
unexpressive enough to show more complex dependency relationships among

items. Additionally, due to the anonymity of session data, which prevents commu-
nication between different sessions, cross-session information is not taken into
account. Some research, such as [60, 61], have proposed methods that are based
on intersection sessions and have used graph neural networks with convolutional
layers.

220 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.20 The architecture of DHCN [57]

Ye et al. solved the above limitation, used sequential information between
sessions, and proposed a cross-session aware temporal convolutional network
(CA-TCN) [60]. For cross-sessions, CA-TCN constructs a cross-session item
graph and a session-context graph to model the effect of cross-sessions on both
items and sessions. The global cross-session item graph considers the effect of cross-
sessions on the items by creating connections between items among all sessions, and
the session-context graph by establishing connections between the current session
and other sessions with interests. Similar user behaviors consider the complex
interaction effect on sessions. Finally, items and sessions are connected by a
hierarchical attention mechanism at the item level and the session level. Qiu et al.
used the full graph neural network and modeled each session as a graph to learn the
complex dependencies of items [61]. This method consists of two modules:
(1) There is a weighted graph attention layer (WGAT) to encode information
among nodes in the session graph for item embedding. (2) After obtaining the
item embeddings, a readout function, which determines the dependencies of the
items, is designed to aggregate the embeddings to produce a graph-level represen-
tation of the session embedding. In the last step, it outputs a list of ranked recom-
mendations according to the comparison of session embedding with item embedding
in the set of items.

5.5 SBRS Using Deep Reinforcement Learning

Before looking at the approaches of deep reinforcement learning models in session-
based recommender systems, an overview of DRL and the reasons that made it an
effective choice for SBRS are provided.

5.5 SBRS Using Deep Reinforcement Learning 221

5.5.1 Why Deep Reinforcement Learning?

The reinforcement learning approach is more focused on goal-directed learning
through interaction than other machine learning approaches. In reinforcement learn-
ing, the learner is not told what to do; rather, the agent must discover through trial
and error and receiving rewards and punishments which actions bring the most
rewards. The constituent elements of a reinforcement learning system are as follows:

. Agent: A program that is trained with the purpose of doing a specific task.

. Environment: The real or virtual world in which the agent performs actions.

. Action: A movement performed by an agent that causes a change in the state or
condition of the environment.

. State: All information of the agent in its current environment.

. Observation: Observation is part of the situation that the agent can observe.

. Policy: Specifies what actions the agent will take given the current state. In the
domain of deep learning, a neural network can be trained to make these decisions.
During training, the agent attempts to improve its policy to make better decisions.

. Value function: Determines what is proper for the agent in the long-term execu-
tion. In other words, when the value function is applied to a given state, starting
from that state, it yields the total expected reward that can be expected in the
future.

The reinforcement learning cycle begins with the agent observing the environ-
ment (step 1) and receiving a state and a reward. Next, the agent uses this state and
the reward to decide the following action (step 2). The agent then sends the action to
the environment to control it in the desired way (step 3). Finally, the environment
changes its state based on the previous state and the agent’s action (step 4). Then, the
cycle repeats. The reinforcement learning cycle is shown in Fig. 5.21.

In the reinforcement learning cycle at time t, the agent receives the state st from
the environment and uses its policy model (π) to select a correct action at based on a
control strategy. When the action is executed, the environment enters a new stage
and provides the next state st + 1 as well as feedback in the form of a reward rt + 1. The
agent uses the knowledge obtained during the state transition process in the form (st,
at, st + 1, rt + 1) to learn and improve π.

The reinforcement learning method suffers from the inefficient representation of
features in problems with high dimensions or continuous agents. Therefore, learning
time slows down, and some techniques must be developed to speed up the learning
process. Considering that the most crucial feature of deep learning is the automatic
generating of compact and low-dimensional representations of high-dimensional
data using deep neural networks, a new domain called deep reinforcement learning
was provided to help reduce the above problems. Deep reinforcement learning
combines the advantages of deep learning and reinforcement learning to build
efficient models in various scopes. In deep reinforcement learning, neural networks
are used as agents to solve the reinforcement learning problem.

]

1

222 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.21 The
reinforcement learning cycle

Deep reinforcement learning can be divided into two categories: model-based and
model-free methods. The main difference is how the agent learns from the environ-
ment. The goal of model-based methods is to estimate the transition function and
reward function, while the goal of model-free methods is to estimate the value
function or policy obtained from experience.

On the other hand, deep reinforcement learning approaches are divided into three
streams: value-based, policy-based, and hybrid methods. In value-based methods,
the agent updates the value function to learn a policy. Policy-based methods learn the
policy directly, and hybrid methods combine value-based and policy-based methods,
also called actor-critic methods. Actor-critic methods include two different net-
works, in which the actor network uses the policy-based and the critic network
uses the value-based methods to evaluate the policy learned by the agent.

In terms of policymaking, deep reinforcement learning approaches can be divided
into on-policy and off-policy methods. In off-policy, the behavioral policy πb is used
for exploration, while goal policy π is used for decision-making. In on-policy
methods, the behavioral policy is the same as the goal policy.

One of the specific implementations of reinforcement learning approaches is the
Q-Learning algorithm, which is a value-based approach utilizing the
Q-Table concepts. Q-Table calculates the maximum expected reward for each action
in each state. With this information, the model can choose the action with the
maximum reward. The main idea behind Q-Learning is to use the Bellman optimi-
zation equation as an iterative update:

Qiþ1 st, atð Þ=Qi st, atð Þ þ α Ri st, atð Þ þ γ:maxQi s
0
t, a

0
t

()
-Qi st, atð Þ[ð5:25Þ

In Eq. (5.25), γ is the discount rate, and α is the learning rate. Using the
appropriate parameter γ makes rewards more controllable in the future. It is impor-
tant to know that s0 t, a

0
t comes from the behavioral policy πb and st, at comes from the

goal policy π. The optimal convergence of the Q-Function in many iterations will
eventually be achieved (Qi → Q*, i →).

In deep Q-Learning, a deep neural network is employed to approximate the
Q-values’ function, where the states are given as input and the Q-value of all possible
actions is produced as output. The main difference between deep Q-Learning and

Q-Learning is the Q-Table implementation. Deep Q-Learning replaces the regular
Q-Table with a neural network, and instead of mapping a state-action pair to a
Q-value, a neural network maps input states to (action, Q-value) pairs. In fact, in
deep Q-Learning, a function approximator, like a neural network with parameter θ, is
trained to estimate Q-value so that Q(s, a; θ) ≈ Q*(s, a).

5.5 SBRS Using Deep Reinforcement Learning 223

The difference between deep Q-Learning and Q-Learning is shown schematically
in Fig. 5.22.

Some efforts have shown that reinforcement learning algorithms cope well with
the problems of recommender systems based on sequential data because such
problems can be naturally modeled as a Markov decision process to predict long-
term user interests. Here, the recommender agent easily performs a sequence of
ranking that usually learns the optimal policy from the recorded data with off-policy
methods [11].

In these approaches, session-based recommender systems using reinforcement
learning benefit from a recommender agent (RA) that interacts with the environment
E (users) to achieve the maximum cumulative reward by sequentially selecting
recommendation items during time steps. As discussed earlier, the modeling of
this process includes a set of states, actions, and rewards. More formally, this set
consists of five elements (S, A, P, R, γ) as follows:

. State space S: The state st = s1 t , . . . , s
n
t

() 2 S is defined as the browsing history
of the user, that is, the n previous items that the user has checked before time t.
The items in st are arranged in the order of occurrence.

. Action space A: Action at = a1 t , . . . , a
k
t

() 2 A is a list of items recommended to
the user at time t based on the current state st, where k is the number of items that
the recommender agent (RA) recommends to the user each time.

. Reward R: After the RA performs an action at in state st, i.e., recommends a list of
items to the user, the user reviews these items and provides feedback, which can
include skipping (not clicking), clicking, or ordering these items, and the agent
receives the immediate reward r(st, at) according to the user’s feedback.

. Transition probability P: Transition probability p(st + 1|st, at) defines the proba-
bility of the state transition from st to st + 1 when RA performs an action at. If the
user skips all the recommended items, then the next state is st + 1 = st, while if the
user clicks/orders some items, then the next state is updated to st + 1.

. Discount factor γ: The coefficient γ defines the discount factor when we measure
the value of a future reward. In particular, when γ = 0, RA only considers the
immediate reward. In other words, when γ = 1, all future rewards can be fully
accounted for the reward of the current action.

Figure 5.23 shows the general framework of using deep reinforcement learning in
session-based recommender systems.

At the end of this section, it should be mentioned that the nature of user
interaction with a recommender system is sequential and the problem of
recommending the best items to a user is not only a prediction problem but also a
sequential decision problem. This can be solved by reinforcement learning

algorithms for three reasons. The first reason is that reinforcement learning can
manage the dynamics of sequential user-system interaction by adjusting actions
based on continuous feedback received from the environment. The second reason
is that reinforcement learning can consider the long-term interaction of the user with
the system. Finally, although it is beneficial to have user ratings, reinforcement
learning naturally does not require user ratings and optimizes its policy by sequential

224 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.22 The difference between deep Q-Learning and Q-Learning

Fig. 5.23 The general framework of using deep reinforcement learning in SBRS

interaction with the environment. Because session-based recommender system work
on sequential data and aim to consider users’ sequential behavior, the reinforcement
learning method could be suitable considering their characteristics.

5.5 SBRS Using Deep Reinforcement Learning 225

The research reviewed in this section is mainly based on the use of deep
reinforcement learning as the core. For this purpose, in Sect. 5.5.2, research based
on the deep Q-Learning method is reviewed. Then, Sects. 5.5.3, 5.5.4, and 5.5.5
discuss the research using deep reinforcement learning combined with other deep
neural networks, such as recurrent neural networks, convolutional neural networks,
and generative adversarial networks.

5.5.2 Approaches Based on Deep Q-Learning

Q-Learning is a model-free, off-policy algorithm for learning the action values in a
given state. This method is widely used in various domains and has also been used in
session-based recommender system. To increase the capabilities of this method,
deep Q-Learning is proposed, which is a type of Q-Learning that uses a deep neural
network to represent the Q-Function instead of a simple table of values. Some
research that use deep Q-Learning to provide session-based recommender systems
are reviewed in this subsection.

Zhao et al. considered the sequential interactions between users and the recom-
mender agent and used reinforcement learning to automatically learn optimal rec-
ommendation strategies [68]. This method is called LIst-wise Recommendation
framework based on Deep reinforcement learning (LIRD). In fact, LIRD has
presented a new session-based recommender system with the ability to continuously
improve its strategies during interaction with users. Sequential interactions between
users and a recommender system are modeled as a Markov decision process, and
reinforcement learning is used to automatically learn optimal strategies through trial
and error items’ recommendations and receiving reinforcements for these items
based on user feedback. An online user-agent interactive environment simulator is
introduced in LIRD, which can pre-train and evaluate model parameters offline
before applying the model online. Furthermore, the importance of listwise recom-
mendations during interactions between users and the agent is confirmed, and a new
approach is presented to apply them in a proposed framework for extensive list
recommendations.

There are two main steps in the Actor framework of LIRD, which are the step of
creating the parameters of the state-specific scoring function, which is performed
through deep neural networks, and the step of creating the action, which is done
based on the parameters of the scoring function of the previous step. The Critic
framework is designed to use an estimator to learn an action-value function, which
determines whether the action produced by the agent corresponds to the current state.
This framework works based on deep Q-Learning. LIRD can be applied in scenarios
with large and dynamic item spaces and can significantly reduce recalculations.
Figure 5.24 shows the architecture of LIRD [68].

226 5 Hybrid/Advanced Session-Based Recommender Systems

Fig. 5.24 The architecture of LIRD [68]

Zheng et al. proposed a deep reinforcement learning framework for online
personalized news recommender systems, called Deep Reinforcement Learning
Framework for News Recommendation (DRN) [69]. DRN uses deep Q-Learning
to better model the dynamic and changing features of the news article and the user’s
interest so that it can simultaneously consider the current and future rewards. Deep
Q-Learning architecture can easily increase scalability. A difference between DRN
and other methods is that it considers user feedback as a combination of user clicks
and the number of times the user returns to the news recommender system. Simul-
taneously, to provide more accurate recommendations and avoid irrelevant recom-
mendations, it uses the Dueling Bandit Gradient Descent method.

In DRN, the environment consists of the collection of users and news articles, and
the recommender algorithm plays the agent role. Feature representation for users is
considered a state, and feature representation for news is considered as an action.
When the user requests, a representation state (user features) and a set of action
representations (candidate news features) are sent to the agent. The agent selects the
best actions (recommends a list of news to the user) and receives the user’s feedback.
All feedback and recommendations are stored in the agent’s memory. Every hour,
the recommendation algorithm is updated based on the recommendation and feed-
back stored in the agent’s memory.

5.5.3 Approaches Based on DRL and RNN

Many recommender systems treat the recommending process as static and provide
recommendations following a fixed greedy strategy. However, these approaches
may not be efficient enough due to the dynamic nature of user preferences. Further-
more, most existing recommender systems are designed to maximize the immediate
(short-term) reward of recommendation while completely ignoring whether the
recommended items lead to more efficient rewards in the future. To this end, Zhao
et al. considered the recommendation as sequential interactions between users and

the recommender agent and used deep reinforcement learning to automatically learn
optimal recommendation strategies [71]. The proposed deep reinforcement learning
recommender system (DEERS) has two advantages. First, it can continuously update
trial-and-error strategies during their interactions until the system converges to the
optimal strategy to generate recommendations tailored to users’ dynamic prefer-
ences. Second, the models in DEERS are trained by estimating the value of delayed
rewards under current states and actions. Therefore, the system can quickly identify
items with small immediate rewards that significantly affect future recommendation
rewards.

5.5 SBRS Using Deep Reinforcement Learning 227

Fig. 5.25 The architecture
of DEERS [71]

Recommender systems based on reinforcement learning may not be flexible with
the increasing number of items in the recommending process. This problem prevents
their use in e-commerce recommender systems. For this purpose, a deep Q-Network
(DQN) is used as a non-linear estimator to estimate the action-value function in
DEERS. This model-free reinforcement learning method does not estimate the
transition probability and does not store the Q-value table. This makes it flexible
to support many items in recommender systems. It can also strengthen the system
compared to traditional approaches that estimate the action-value function separately
for each sequence.

In a recommender system, positive feedback indicates users’ interests, and
ignoring some of the recommended items by the user can help the system gain a
better understanding of users’ interests. Therefore, it is necessary to investigate such
negative feedback, which is usually more than positive feedback. To this end, the
DEERS framework considers negative feedback in addition to positive feedback and
updates its strategy by receiving negative feedback.

Figure 5.25 shows the architecture of DEERS. This model concatenates the
positive state and a recommended item as positive input (positive signals) and the
negative state and a recommended item as negative input (negative signals). Then,

GRU is used to detect the preferences of the user, in which the update gate is used to
create a new state and the reset gate is used to control the input from the previous
state.

228 5 Hybrid/Advanced Session-Based Recommender Systems

5.5.4 Approaches Based on DRL and CNN

Convolutional neural networks are widely used in various domains due to their
ability to automatically extract temporal and spatial features individually or with
other learning methods. A number of research reviewed in this section have used a
combination of deep reinforcement learning and convolutional neural networks in
session-based recommender systems.

To update the recommendation strategy according to the users’ real-time feed-
back and create a page of items with an appropriate display, Zhao et al. developed
the DeepPage approach to jointly generate a set of complementary items and the
corresponding strategy to display them [75]. DeepPage is a novel page-wise recom-
mendation framework based on deep reinforcement learning, which optimizes a
page of items with an appropriate display based on real-time feedback from users. In
this recommendation system, different factors are considered, such as the state,
the user’s current interests, actions, recommending a page of candidate items, and
the reward that is the user’s reaction, including clicking, skipping, or purchasing.
The two fundamental challenges of applying deep reinforcement learning in such a
problem are the large dynamic state space and the cost of computations for choosing
the optimal action. To overcome these problems, the Actor-Critic framework is used,
which is suitable for dynamic and large problems and reduces repetitive
computations.

An encoder-decoder architecture is used in the Actor framework, in which GRU
is used in the encoding part to generate the initial state, GRU. The GRU’s input is the
last clicked items before the current session, and its output is a vector of the user’s
initial interests. To learn the strategy of spatial representation of items on a page that
leads to maximum reward, a convolutional neural network is used, the output of
which is a dense vector with a low dimension and represents the items and user
feedback on a given page. This vector is sent to another GRU to detect the real-time
preferences of the user in the current session. In the decoder, a deconvolution neural
network is used for reconstruction. The Critic framework is designed to use an
approximator to learn the action-value function, which judges whether the proposed
page generated by the Actor matches the current state. Figure 5.26 shows the
architecture of DeepPage [75].

Gao et al. proposed DRCGR, using deep Q-Network and utilizing the CNN and
GAN to help the agent to better understand high-dimensional data [76]. Two
different convolution kernels have been used in DRCGR to capture positive feed-
back from users. Meanwhile, DRCGR uses a generative adversarial network to learn
negative feedback to increase model robustness. DRCGR includes three main steps:
The first step is to model the user’s click behavior. At this stage, a matrix is formed

on the basis of the embedding vectors of the items, and vertical and horizontal
convolutional filters are applied to it, and the obtained results are placed next to each
other. The second step creates more relevant negative feedback using a generative
adversarial network. The third step integrates positive feedback and negative feed-
back in the DQN-based reinforcement learning model.

5.5 SBRS Using Deep Reinforcement Learning 229

Fig. 5.26 The architecture of DeepPage [75]

5.5.5 Approaches Based on DRL and GAN

One of the important challenges of reinforcement learning is the unstable conver-
gence of models in the training process. In practice, the negative effect of reinforce-
ment learning and recurrent neural networks is to increase the need for training data
by the system, which is a challenge, particularly in session-based recommender
system, which are inherently based on sparse data. One solution is to generate data
through adversarial generative networks for the reinforcement learning method.
Additionally, a random sampling method called the negative sampling method,
which is used to show that the user is not interested in the items, cannot depict the
user’s preferences completely. So, the interests of the user may not be recognized
correctly, and the items that are of interest to the user may be considered negative
samples.

Zhao et al. addressed the problem mentioned above and proposed a collaborative
filtering model based on deep adversarial generative network and deep reinforce-
ment learning that uses the combination of Q-Learning and Actor-Critic models
[77]. This method, Deep Generative Adversarial Networks-based Collaborative
Filtering (DCFGAN), is an adaptive session-based recommender system presented
in the domain of e-learning. DCFGAN uses the combination of deep adversarial
generative network and deep reinforcement learning to take advantage of the user’s
immediate feedback and uses the deep deterministic policy gradient algorithm to
return the gradient to increase the stability of the training process. Simultaneously,

optimizing the value function using a deep deterministic policy gradient algorithm
reduces the iterations required for convergence. According to the characteristics of
session-based recommender system, DCFGAN uses pre-trained collaborative filter-
ing in negative sampling items. It effectively improves the accuracy of negative
sampling and is efficient for recommender systems. DCFGAN uses GRU to model
sequential data in the deterministic part. Figure 5.27 shows the architecture of
DCFGAN [77].

230 5 Hybrid/Advanced Session-Based Recommender Systems

Collaborative filtering

item t

Generated
sequenceGenerate

Real
sequence

Mix
Discriminator

Training

When the training number reaches K

DDPG

Q

Store

Experience replay
Experience pool

Masking
block

Generator

MLE

Cross entropy
Discriminator

Generator

Pre-training

item t-1

item 2

item 1
Negative items list

SamplingReal
 data

Fig. 5.27 The architecture of DCFGAN [77]

A model-based deep reinforcement learning framework for SBRS has been
developed by Chen et al., where a GAN imitates user behavior dynamics and learns
the reward function [78]. The authors also developed a novel Cascading DQN
algorithm to obtain a recommendation policy that can handle a large number of
candidate items. The cascading design of the action-value function allows to identify
of the best subset of items from a large pool of candidates.

Gao et al. also proposed a deep reinforcement learning framework, DRCGR, that
employs CNN and GAN models [76]. A CNN model is used to capture the
sequential features for positive feedback, and a GAN model is adopted to learn
optimal negative feedback representations. Then, positive/negative representations
are fed into DQN simultaneously, which is claimed to generate a better action-value
function.

5.6 Discussion 231

5.6 Discussion

In this chapter, the methods based on hybrid/advanced deep neural network models
in a session-based recommender system have been discussed and analyzed. More-
over, research has been reviewed using graph neural networks and deep reinforce-
ment learning combined with other deep learning approaches.

Session-based recommender system approaches based on RNNs usually have a
low speed and difficult training process for large volumes of data. The CNN-based
methods have high memory consumption, and hidden representations are not inter-
pretable and readable. Therefore, a large percentage of session-based recommender
system use hybrid deep learning methods. A review of research in the session-based
recommender system domain with hybrid deep neural network models shows that
the most focus is on the following combinations: CNNs and RNNs, AEs and RNNs,
different combinations based on GNNs, and DRLs plus other models such as CNN
and RNN.

Generally, several research based on the combination of CNNs and LSTMs [22–
26] recognize the features of the data using CNN and model the user behaviors based
on LSTM. In various research, different types of CNNs are used, such as 3D-CNN,
parallel CNN, etc., and each has its own characteristics.

Due to the high number of LSTM parameters, some research based on RNNs use
GRU, which requires fewer parameters and limited computing resources. For this
reason, many session-based recommender systems use hybrid deep neural network
methods, using the combination of CNN and GRU [12–21].

Autoencoder also has been used with GRUs [27, 29] and LSTM [28] in session-
based recommender systems. In these research, different types of autoencoders, such
as stack autoencoders or denoising autoencoders, are employed to extract efficient
representations for user interactions and feature transformations, and RNNs recog-
nize sequential dependencies and long-term interests of the user.

In addition to hybrid deep neural network methods that consist of combining two
or more types of single deep neural networks, there are two other types of advanced
models, which consist of deep reinforcement learning and deep graph neural net-
works, which have been discussed in Sects. 5.4 and 5.5.

Many recommender systems’ data have a graph structure, and graph neural
networks are widely used in this field due to their high capability in graph data
representation learning in different domains. On the other hand, due to their high
flexibility, graph neural networks provide the capacity to easily model auxiliary data
in addition to the main data. In session-based recommender systems, sequences of
items can be modeled as graph-structured data to represent adjacency between items.
Graph neural networks are widely used to identify the transition pattern from the
sequential behaviors of users by converting them into the sequential graph. Research
such as [31, 32, 33, 38] are based on graph neural networks, but other research have
also combined graph neural networks with RNNs such as [34, 36, 45–48], or with
CNNs (GCNs) such as [53–57].

232 5 Hybrid/Advanced Session-Based Recommender Systems

Due to the over-smoothing problem, more studies focus on the appropriate
augmentation of GNN layers (deeper GNN) to capture higher-order correlations
on graphs and improve the performance of models [99, 100, 101]. Despite these
advances, there is no standard solution for constructing very deep GNNs like CNNs,
and related works suggest different strategies. Regarding future work, increasing the
performance of deeper GNNs compared to current shallow GNNs is a fundamental
challenge in the development of very deep GNNs, such as innovating works based
on networks, while the computational and time complexity should also be
acceptable.

Small-scale subgraph reconstruction from the original graph will be a suitable
solution to overcome the scalability challenge. Sampling is a natural strategy that has
been widely used for training large graphs. However, in sampling, relatively part of
the information is lost. Few studies have focused on how to design an effective
sampling strategy to balance the effectiveness and scalability. For example,
GraphSAGE [93] randomly samples a fixed number of neighbors, and PinSage
[102] uses a random walk strategy for sampling.

As mentioned in Sect. 5.4, GNN-based recommender models are mostly based on
static graphs, while many dynamic factors exist in session-based recommender
system. For example, user data are naturally collected dynamically in these systems.
Moreover, modeling user dynamic preferences is one of the most important chal-
lenges in these recommendation scenarios. In addition, the platform may dynami-
cally include new users, products, features, etc., which creates challenges for static
graph neural networks. Recently, dynamic GNNs [103, 104] have attracted the
attention of researchers who apply embedding propagation operations on dynami-
cally constructed graphs.

Static graphs are stable, so they can be modeled practically, while dynamic graphs
introduce changing structures. A serious future research challenge is how to design
the GNN framework in response to dynamic graphs in practice. On the other hand,
considering the characteristics of time evolution in session-based recommender
system, the proposed model based on a dynamic GNN will be a promising research
direction with broad applications in the real world.

Using a supervised approach on interactive data, relatively sparse results are
obtained compared with the graph scale. Therefore, it is necessary to consider
more supervised signals from the graph structure or recommendation task using
self-supervised GNN. Various studies have tried strengthening GNN-based recom-
mendations by designing auxiliary tasks from the graph structure with self-
supervision [105, 106]. Data augmentation, such as node removal, can be used to
generate sample pairs for contrastive training. We believe that using self-supervised
tasks to learn meaningful and robust representations in session-based recommender
system based on GNN is a suitable direction for future research.

Another learning method that widely has been utilized and discussed in this
chapter is deep reinforcement learning. DRLs deal well with the problems of
session-based recommender systems because such problems can be modeled as a
Markov decision process to predict the user’s long-term preferences. On the other
hand, the nature of user interaction with a recommender system is sequential, which

is consistent with the interactive nature of reinforcement learning. By combining the
advantages of deep learning and reinforcement learning, deep reinforcement learn-
ing tries to build effective platforms and has also been used in session-based
recommender systems. There are several research such as [10, 68, 69] based on
deep Q-Learning; [71–73, 77] based on the combination of DRLs and RNNs; and
[75] and [76] based on the combination of DRLs and CNNs.

5.6 Discussion 233

Most existing methods of SBRS use one agent. Multi-agent reinforcement learn-
ing (MARL) is a subfield of reinforcement learning that is capable of learning
multiple policies and strategies. Although a single-agent reinforcement learning
framework can only handle a single task, studies can be defined that consider the
multi-task situation in SBRS and use multi-agent DRL (MADRL) or hierarchical
DRL (HDRL). HDRL is proposed to handle complex tasks by dividing tasks into
several small components and requires the agent to determine sub-policies. Different
from HDRL, MADRL introduces several agents to handle subtasks. Hierarchical
multi-agent RL (HMARL) combines HRL and MARL, where HDRL can be used to
divide a complex task into several sub-tasks, such as users’ long-term interests and
short-term clicking behavior, and MADRL can also be considered several factors.

Sample inefficiency is a known challenge in model-free DRL methods used in
SBRS. Model-free DRL requires a significant number of samples because there is no
guarantee that the received mode will be useful. Typically, after a significant number
of intervals, and after receiving a useful state and reward signal, the agent can begin
to learn, which can be a severe challenge in the useful duration of a session. On the
other hand, DRL model-based methods work more efficiently in this case, although
they are more complicated because the agent must analyze the larger action and state
space to learn the environmental model and the desired policy.

Unlike existing sequential models that use convolutional or recurrent networks,
transformer is completely based on an attention mechanism called “self-attention,”
which is highly efficient and capable of uncovering syntactic and semantic patterns
between words in a sentence [107]. Transformer uses self-attention to form a codec
to calculate the contextual relationship. This network is used to weigh and aggregate
the information of all items. For sequential recommendation, Kang and McAuley
were the first to introduce a two-layer transformer decoder (i.e., transformer lan-
guage model) called SASRec to capture user’s sequential behaviors in 2018 [108]. In
another research around the same time, Sun et al. proposed BERT4Rec, which
employs deep bidirectional self-attention to model user behavior sequences
[e]. After these significant and influential works in SBRS, many researchers focused
on the transformer model and provided excellent performance solutions in SBRS
[109–117].

Although a lot of work has been done using transformers in SBRS in the last few
years, there is still much research potential:

. Incorporating rich context information into the transformer models, such as dwell
time, action types, locations, devices, or any other context data.

. Transformer models that can handle very long sequences (e.g., clicks).

Ref. Domain Input data technique Loss function

(continued)

. Considering user’s higher-order features and addressing the impact of item
position information on the current session by utilizing the position attention
layer in the transformer network.

. Since the transformers usually have a limited ability to identify local contextual
information, a CNN model can be employed at the aggregating stage of the item
features with long- and short-distance dependencies.

. Utilizing different time intervals in the behavior sequence of users that considers
item relations and corresponding time intervals using the combination of GNN
and transformers. This hybrid model can be embedded with time intervals to learn
the complex interaction information among items and users.

234 5 Hybrid/Advanced Session-Based Recommender Systems

Table 5.6 summarizes the existing works discussed in this chapter and addresses
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach.

Table 5.6 A summary of the reviewed research

Deep
learning
model

Embedding

[22] News CNN +
LSTM

Clicked news
documents

PV-DBOW BPR, TOP1

[23] News CNN +
LSTM

Category, ID
and keywords
of items,
sessions

Char-level
embeddings

BPR, TOP1,
cross-entropy

[24] News CNN +
LSTM

Clicked news Pre-trained from a
large corpus or ran-
domly initialized

Negative
log-likelihood
function

[25] POI CNN +
LSTM

Items of session D-dimensional
vector

Cross-entropy

[26] E-commerce CNN +
LSTM

Items of session
+ time series
data

Label encoder –

[15] Job posting CNN + GRU Items of session One-hot encoding +
d-dimensional
vector

Cross-entropy,
BPR, noise
contrastive esti-
mation, L2 loss,
hinge

[13] News CNN + GRU News article +
contextual data

CNN + pre-trained
word embedding

Similarity loss
function based
on accuracy and
novelty

[18] E-commerce CNN + GRU Items of session One-hot encoding Cross-entropy

[19] E-commerce CNN + GRU Items of session One-hot encoding Cross-entropy

[21] E-commerce CNN +
Bi-GRU

Items of session One-hot encoding +
embedding lookup

Cross-entropy

[27] Insurance GRU + AE One-hot encoding Binary cross-
entropy

Ref. Domain Input data technique Loss function

5.7 Conclusion 235

Table 5.6 (continued)

Deep
learning
model

Embedding

All user actions
across multiple
sessions

[29] E-commerce GRU + AE Items of session One-hot encoding +
autoencoder

Loss function
based on sum of
mean square
error

[34] E-commerce Gated graph
neural net-
works
(GGNN)

Items of session D-dimensional vec-
tor + GGNN

Cross-entropy

[57] E-commerce Hypergraphs
+ GCN

Items of session D-dimensional
vector

Hybrid loss
function based
on cross-
entropy

[48] E-commerce Gated GNN Session
sequences and
related context
information

Embedding vector
representation of
each item in the
session graph
(GGNN)

Cross-entropy

[63] E-commerce GCN +
ConvLSTM

Items of session D-dimensional
node vector in
directed session
graph (GNN)

–

[75] E-commerce DRL + CNN Category,
embedding and,
user’s feedback
of items of
session

Pre-trained
low-dimensional
vector

DDPG

[69] News Deep
Q-Learning

Interaction log Continuous feature
representation +
one-hot encoding
for news

–

5.7 Conclusion

Hybrid deep learning methods not only benefit from the advantages of single deep
learning methods but also reduce the disadvantages of each method based on the
capabilities that other models present. Due to the data complexity of session-based
recommender systems, many approaches presented in this field are based on hybrid
deep learning methods. Because of the sequential nature of the data, session-based
recommender systems usually employ recurrent neural networks to model the
sequence of events. Other deep learning methods can be combined with recurrent

neural networks to achieve more accurate feature extraction, achieve more optimal
representations of inputs, and obtain better results.

236 5 Hybrid/Advanced Session-Based Recommender Systems

In addition to hybrid deep neural network methods, two other types of advanced
approaches are popular in session-based recommender systems: first, the approaches
that utilize deep graph neural networks (GNNs) as the fundamental component, and
second, the approaches that employ deep reinforcement learning (DRL) as the core
module. Graph neural networks are a class of deep learning methods specifically
developed to infer data described by graphs. In session-based recommender systems,
it is possible to model the sequential behaviors and user-item interactions with a
graph and learn the relations between users and items using a deep graph neural
network. Moreover, graph neural networks could be combined with CNN and RNN
models to provide more accurate and effective recommendations. Recommendation
systems based on deep reinforcement learning benefit from a recommendation agent
that interacts with the users to obtain the maximum cumulative reward by sequen-
tially selecting recommendation items during time steps. Deep reinforcement learn-
ing also could be combined with CNN, GAN, and RNN models.

This chapter concluded with several discussions on the reviewed research and
provided future directions and trends in session-based recommender systems using
hybrid/advanced deep neural network models.

References

1. Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. "When and why are deep networks
better than shallow ones?." In Proceedings of the AAAI conference on artificial intelligence,
San Francisco, USA, February 4–9, 2017, vol. 31, no. 1. https://doi.org/10.1609/aaai.v31i1.
10913

2. Cach N. Dang, María N. Moreno-García, and Fernando De la Prieta. "Hybrid deep learning
models for sentiment analysis." Complexity 2021 (2021): 1-16. https://doi.org/10.1155/2021/
9986920

3. Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. "Deep learning based recommender system: A
survey and new perspectives." ACM computing surveys (CSUR) 52, no. 1 (2019): 1-38.
https://doi.org/10.1145/3285029

4. Li Deng, and Dong Yu. "Deep learning: methods and applications." Foundations and trends®
in signal processing 7, no. 3–4 (2014): 197-387. https://doi.org/10.1561/2000000039

5. Biswajit Jena, Sanjay Saxena, Gopal K. Nayak, Luca Saba, Neeraj Sharma, and Jasjit S. Suri.
"Artificial intelligence-based hybrid deep learning models for image classification: The first
narrative review." Computers in Biology and Medicine 137 (2021): 104803. https://doi.org/10.
1016/j.compbiomed.2021.104803

6. Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. "Graph neural networks." In Graph
Neural Networks: Foundations, Frontiers, and Applications, pp. 27-37. Springer, Singapore,
2022. https://doi.org/10.1007/978-981-16-6054-2_3

7. Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. "Graph neural networks in
recommender systems: a survey." ACM Computing Surveys 55, no. 5 (2022): 1-37. https://
doi.org/10.1145/3535101

8. Dai Hoang Tran, Quan Z. Sheng, Wei Emma Zhang, Abdulwahab Aljubairy, Munazza Zaib,
Salma Abdalla Hamad, Nguyen H. Tran, and Nguyen Lu Dang Khoa. "Hetegraph: graph

https://doi.org/10.1609/aaai.v31i1.10913
https://doi.org/10.1609/aaai.v31i1.10913
https://doi.org/10.1155/2021/9986920
https://doi.org/10.1155/2021/9986920
https://doi.org/10.1145/3285029
https://doi.org/10.1561/2000000039
https://doi.org/10.1016/j.compbiomed.2021.104803
https://doi.org/10.1016/j.compbiomed.2021.104803
https://doi.org/10.1007/978-981-16-6054-2_3
https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101

References 237

learning in recommender systems via graph convolutional networks." Neural computing and
applications (2021): 1-17. https://doi.org/10.1007/s00521-020-05667-z

9. Yao Ma, and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.
https://doi.org/10.1017/9781108924184

10. Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. "Batch-
constrained distributional reinforcement learning for session-based recommendation." arXiv
preprint arXiv:2012.08984 (2020). https://doi.org/10.48550/arXiv.2012.08984

11. Yuanguo Lin, Yong Liu, Fan Lin, Lixin Zou, Pengcheng Wu, Wenhua Zeng, Huanhuan Chen,
and Chunyan Miao. "A survey on reinforcement learning for recommender systems." IEEE
Transactions on Neural Networks and Learning Systems (2023). https://doi.org/10.1109/
TNNLS.2023.3280161

12. Yupu Guo, Duolong Zhang, Yanxiang Ling, and Honghui Chen. "A joint neural network for
session-aware recommendation." IEEE Access 8 (2020): 74205-74215. https://doi.org/10.
1109/ACCESS.2020.2984287

13. Gabriel De Souza P. Moreira, Dietmar Jannach, and Adilson Marques Da Cunha. "Contextual
hybrid session-based news recommendation with recurrent neural networks." IEEE Access
7 (2019): 169185-169203. https://doi.org/10.1109/ACCESS.2019.2954957

14. Lemei Zhang, Peng Liu, and Jon Atle Gulla. "Dynamic attention-integrated neural network for
session-based news recommendation." Machine Learning 108 (2019): 1851-1875. https://doi.
org/10.1007/s10994-018-05777-9

15. Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg, and Jure
Leskovec. "Hierarchical temporal convolutional networks for dynamic recommender sys-
tems." In The world wide web conference, pp. 2236-2246. 2019. https://doi.org/10.1145/
3308558.3313747

16. Xiao Gu, Haiping Zhao, and Ling Jian. "Sequence neural network for recommendation with
multi-feature fusion." Expert Systems with Applications 210 (2022): 118459. https://doi.org/
10.1016/j.eswa.2022.118459

17. Zhenyan Ji, Mengdan Wu, Yumin Feng, and José Enrique Armendáriz Íñigo. "Multi-channel
Convolutional Neural Network Feature Extraction for Session Based Recommendation."
Complexity 2021 (2021). https://doi.org/10.1155/2021/6661901

18. Ngo Xuan Bach, Dang Hoang Long, and Tu Minh Phuong. "Recurrent convolutional networks
for session-based recommendations." Neurocomputing 411 (2020): 247-258. https://doi.org/
10.1016/j.neucom.2020.06.077

19. Jinjin Zhang, Chenhui Ma, Xiaodong Mu, Peng Zhao, Chengliang Zhong, and A. Ruhan.
"Recurrent convolutional neural network for session-based recommendation."
Neurocomputing 437 (2021): 157-167. https://doi.org/10.1016/j.neucom.2021.01.041

20. Jingjing Wang, Lap-Kei Lee, and Nga-In Wu. "Dual-Channel Convolutional Recurrent
Networks for Session-Based Recommendation." In Cyber Security, Privacy and Networking:
Proceedings of ICSPN 2021, pp. 287-296. Singapore: Springer Nature Singapore, 2022.
https://doi.org/10.1007/978-981-16-8664-1_25

21. Quan Li, Xinhua Xu, Jinjun Liu, and Guangmin Li. "Learning Sequential General Pattern and
Dependency via Hybrid Neural Model for Session-Based Recommendation." IEEE Access
10 (2022): 89634-89644. https://doi.org/10.1109/ACCESS.2022.3201244

22. Keunchan Park, Jisoo Lee, and Jaeho Choi. "Deep neural networks for news recommenda-
tions." In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 2255-2258. 2017. https://doi.org/10.1145/3132847.3133154

23. Lemei Zhang, Peng Liu, and Jon Atle Gulla. "A deep joint network for session-based news
recommendations with contextual augmentation." In Proceedings of the 29th on Hypertext and
Social Media, pp. 201-209. 2018. https://doi.org/10.1145/3209542.3209557

24. Qiannan Zhu, Xiaofei Zhou, Zeliang Song, Jianlong Tan, and Li Guo. "Dan: Deep attention
neural network for news recommendation." In Proceedings of the AAAI Conference on
Artificial Intelligence, Hilton Hawaiian Village, Honolulu, Hawaii, USA, January 27 –

https://doi.org/10.1007/s00521-020-05667-z
https://doi.org/10.1017/9781108924184
https://doi.org/10.48550/arXiv.2012.08984
https://doi.org/10.1109/TNNLS.2023.3280161
https://doi.org/10.1109/TNNLS.2023.3280161
https://doi.org/10.1109/ACCESS.2020.2984287
https://doi.org/10.1109/ACCESS.2020.2984287
https://doi.org/10.1109/ACCESS.2019.2954957
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1145/3308558.3313747
https://doi.org/10.1145/3308558.3313747
https://doi.org/10.1016/j.eswa.2022.118459
https://doi.org/10.1016/j.eswa.2022.118459
https://doi.org/10.1155/2021/6661901
https://doi.org/10.1016/j.neucom.2020.06.077
https://doi.org/10.1016/j.neucom.2020.06.077
https://doi.org/10.1016/j.neucom.2021.01.041
https://doi.org/10.1007/978-981-16-8664-1_25
https://doi.org/10.1109/ACCESS.2022.3201244
https://doi.org/10.1145/3132847.3133154
https://doi.org/10.1145/3209542.3209557

238 5 Hybrid/Advanced Session-Based Recommender Systems

February 1, 2019, vol. 33, no. 01, pp. 5973-5980. https://doi.org/10.1609/aaai.v33i01.
33015973

25. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S. Sheng S. Sheng, Zhiming
Cui, Xiaofang Zhou, and Hui Xiong. "Recurrent convolutional neural network for sequential
recommendation." In The world wide web conference, pp. 3398-3404. 2019. https://doi.org/
10.1145/3308558.3313408

26. Punam Bedi, Purnima Khurana, and Ravish Sharma. "Session Based Recommendations using
CNN-LSTM with Fuzzy Time Series." In International Conference on Artificial Intelligence
and Speech Technology, Delhi, India, November 12-13, 2021, pp. 432-446. Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-030-95711-7_36

27. Simone Borg Bruun, Maria Maistro, and Christina Lioma. "Learning Recommendations from
User Actions in the Item-poor Insurance Domain." In Proceedings of the 16th ACM Confer-
ence on Recommender Systems, Seattle, USA, September 18-23, 2022, pp. 113-123. https://
doi.org/10.1145/3523227.3546775

28. Ivett Fuentes, Gonzalo Nápoles, Leticia Arco, and Koen Vanhoof. "Best Next Preference
Prediction Based on LSTM and Multi-level Interactions." In Intelligent Systems and Appli-
cations: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), Amsterdam,
Netherlands, September 1-2, 2022, Volume 1, pp. 682-699. Springer International Publishing.
https://doi.org/10.1007/978-3-030-82193-7_46

29. Xin Chen, Alex Reibman, Sanjay Arora. “Sequential Recommendation Model for Next
Purchase Prediction,” In 4th International Conference on Advances in Artificial Intelligence
Techniques (ArIT 2023), 2023, pp.141-158. https://doi.org/10.48550/arXiv.2207.06225

30. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang,
Junhua Fang, and Xiaofang Zhou. "Graph Contextualized Self-Attention Network for Session-
based Recommendation." In 28th International Joint Conference on Artificial Intelligence
(IJCAI), Macao, August 10-16, vol. 19, pp. 3940-3946. 2019. https://doi.org/10.24963/ijcai.
2019/547

31. Yitong Pang, Lingfei Wu, Qi Shen, Yiming Zhang, Zhihua Wei, Fangli Xu, Ethan Chang, Bo
Long, and Jian Pei. "Heterogeneous global graph neural networks for personalized session-
based recommendation." In Proceedings of the fifteenth ACM international conference on web
search and data mining, pp. 775-783. 2022. https://doi.org/10.1145/3488560.3498505

32. Zhiqiang Pan, Wanyu Chen, and Honghui Chen. "Dynamic graph learning for session-based
recommendation." Mathematics 9, no. 12 (2021): 1420. https://doi.org/10.3390/math9121420

33. Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. "Rethinking the item order in session-
based recommendation with graph neural networks." In Proceedings of the 28th ACM
international conference on information and knowledge management, Beijing, China,
November 3-7, 2019, pp. 579-588. 2019. https://doi.org/10.1145/3357384.3358010

34. Ansong Li, Zhiyong Cheng, Fan Liu, Zan Gao, Weili Guan, and Yuxin Peng. "Disentangled
graph neural networks for session-based recommendation." IEEE Transactions on Knowledge
and Data Engineering (2022). https://doi.org/10.1109/TKDE.2022.3208782

35. Feng Yu, Yanqiao Zhu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. "TAGNN: Target
attentive graph neural networks for session-based recommendation." In Proceedings of the
43rd international ACM SIGIR conference on research and development in information
retrieval, China, July 25-30, 2020, pp. 1921-1924. https://doi.org/10.1145/3397271.3401319

36. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. "Session-based
recommendation with graph neural networks." In Proceedings of the AAAI conference on
artificial intelligence, Honolulu, Hawaii, USA, January 27 – February 1, 2019, vol. 33, no.
01, pp. 346-353. https://doi.org/10.1609/aaai.v33i01.3301346

37. Lifeng Yin, Pengyu Chen, and Guanghai Zheng. "Session-Enhanced Graph Neural Network
Recommendation Model (SE-GNNRM)." Applied Sciences 12, no. 9 (2022): 4314. https://
doi.org/10.3390/app12094314

38. Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen, and Maarten De Rijke. "Star graph neural
networks for session-based recommendation." In Proceedings of the 29th ACM international

https://doi.org/10.1609/aaai.v33i01.33015973
https://doi.org/10.1609/aaai.v33i01.33015973
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1007/978-3-030-95711-7_36
https://doi.org/10.1145/3523227.3546775
https://doi.org/10.1145/3523227.3546775
https://doi.org/10.1007/978-3-030-82193-7_46
https://doi.org/10.48550/arXiv.2207.06225
https://doi.org/10.24963/ijcai.2019/547
https://doi.org/10.24963/ijcai.2019/547
https://doi.org/10.1145/3488560.3498505
https://doi.org/10.3390/math9121420
https://doi.org/10.1145/3357384.3358010
https://doi.org/10.1109/TKDE.2022.3208782
https://doi.org/10.1145/3397271.3401319
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.3390/app12094314
https://doi.org/10.3390/app12094314

References 239

conference on information & knowledge management, Ireland, October 19 - 23, 2020,
pp. 1195-1204. https://doi.org/10.1145/3340531.3412014

39. Zhi-Hong Deng, Chang-Dong Wang, Ling Huang, Jian-Huang Lai, and S. Yu Philip. "G^
3SR: Global Graph Guided Session-Based Recommendation." IEEE Transactions on Neural
Networks and Learning Systems (2022). https://doi.org/10.1109/TNNLS.2022.3159592

40. Tianwen Chen, and Raymond Chi-Wing Wong. "An efficient and effective framework for
session-based social recommendation." In Proceedings of the 14th ACM International Con-
ference on Web Search and Data Mining, Israel, March 8 - 12, 2021, pp. 400-408. https://doi.
org/10.1145/3437963.3441792

41. Wenjing Meng, Deqing Yang, and Yanghua Xiao. "Incorporating user micro-behaviors and
item knowledge into multi-task learning for session-based recommendation." In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. China, July 25-30, 2020, pp. 1091–1100. https://doi.org/10.1145/3397271.
3401098

42. Zhiqiang Pan, Fei Cai, Wanyu Chen, Chonghao Chen, and Honghui Chen. "Collaborative
Graph Learning for Session-based Recommendation." ACM Transactions on Information
Systems 40, 4 (2022), 1–26. https://doi.org/10.1145/3490479

43. Jianling Wang, Kaize Ding, Ziwei Zhu, and James Caverlee. "Session-based recommendation
with hypergraph attention networks." In Proceedings of the 2021 SIAM International Confer-
ence on Data Mining (SDM), April 29 - May 1, 2021. pp. 82-90. Society for Industrial and
Applied Mathematics, 2021. https://doi.org/10.1137/1.9781611976700.10

44. Wen Wang, Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha.
"Beyond clicks: Modeling multi-relational item graph for session-based target behavior
prediction." In Proceedings of the web conference 2020, Taipei, Taiwan, April 20 -
24, 2020, pp. 3056-3062. https://doi.org/10.1145/3366423.3380077

45. Yupu Guo, Yanxiang Ling, and Honghui Chen. "A time-aware graph neural network for
session-based recommendation." IEEE Access 8 (2020): 167371-167382. https://doi.org/10.
1109/ACCESS.2020.3023685

46. Wanyu Chen, and Honghui Chen. "Collaborative co-attention network for session-based
recommendation." Mathematics 9, no. 12 (2021): 1392. https://doi.org/10.3390/math9121392

47. Linmei Hu, Chen Li, Chuan Shi, Cheng Yang, and Chao Shao. "Graph neural news recom-
mendation with long-term and short-term interest modeling." Information Processing &
Management 57, no. 2 (2020): 102142. https://doi.org/10.1016/j.ipm.2019.102142

48. Dan Li, and Qian Gao. "Session Recommendation Model Based on Context-Aware and Gated
Graph Neural Networks." Computational Intelligence and Neuroscience 2021 (2021). https://
doi.org/10.1155/2021/7266960

49. Chunkai Zhang, Wenjing Zheng, Quan Liu, Junli Nie, and Hanyu Zhang. "SEDGN: Sequence
enhanced denoising graph neural network for session-based recommendation." Expert Sys-
tems with Applications 203 (2022): 117391. https://doi.org/10.1016/j.eswa.2022.117391

50. Tianwen Chen, and Raymond Chi-Wing Wong. "Handling information loss of graph neural
networks for session-based recommendation." In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, USA, July 6 - 10, 2020.
pp. 1172-1180. https://doi.org/10.1145/3394486.3403170

51. Chen Chen, Jie Guo, and Bin Song. "Dual attention transfer in session-based recommendation
with multi-dimensional integration." In Proceedings of the 44th International ACM SIGIR
Conference on research and development in information retrieval, Online, July 11-15, 2021,
pp. 869-878. https://doi.org/10.1145/3404835.3462866

52. Hongbin Xia, Kai Huang, and Yuan Liu. "Unexpected interest recommender system with
graph neural network." Complex & Intelligent Systems (2022): 1-15. https://doi.org/10.1007/
s40747-022-00849-9

53. Heng-Shiou Sheu, Zhixuan Chu, Daiqing Qi, and Sheng Li. "Knowledge-guided article
embedding refinement for session-based news recommendation." IEEE Transactions on

https://doi.org/10.1145/3340531.3412014
https://doi.org/10.1109/TNNLS.2022.3159592
https://doi.org/10.1145/3437963.3441792
https://doi.org/10.1145/3437963.3441792
https://doi.org/10.1145/3397271.3401098
https://doi.org/10.1145/3397271.3401098
https://doi.org/10.1145/3490479
https://doi.org/10.1137/1.9781611976700.10
https://doi.org/10.1145/3366423.3380077
https://doi.org/10.1109/ACCESS.2020.3023685
https://doi.org/10.1109/ACCESS.2020.3023685
https://doi.org/10.3390/math9121392
https://doi.org/10.1016/j.ipm.2019.102142
https://doi.org/10.1155/2021/7266960
https://doi.org/10.1155/2021/7266960
https://doi.org/10.1016/j.eswa.2022.117391
https://doi.org/10.1145/3394486.3403170
https://doi.org/10.1145/3404835.3462866
https://doi.org/10.1007/s40747-022-00849-9
https://doi.org/10.1007/s40747-022-00849-9

240 5 Hybrid/Advanced Session-Based Recommender Systems

Neural Networks and Learning Systems 33, no. 12 (2021): 7921-7927. https://doi.org/10.
1109/TNNLS.2021.3084958

54. Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. "Global
context enhanced graph neural networks for session-based recommendation." In Proceedings
of the 43rd international ACM SIGIR conference on research and development in information
retrieval, China, July 25-30, 2020, pp. 169-178. https://doi.org/10.1145/3397271.3401142

55. Tajuddeen Rabiu Gwadabe, and Ying Liu. "Improving graph neural network for session-based
recommendation system via non-sequential interactions." Neurocomputing 468 (2022):
111-122. https://doi.org/10.1016/j.neucom.2021.10.034

56. Xiangde Zhang, Yuan Zhou, Jianping Wang, and Xiaojun Lu. "Personal interest attention
graph neural networks for session-based recommendation." Entropy 23, no. 11 (2021): 1500.
https://doi.org/10.3390/e23111500

57. Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang.
"Self-supervised hypergraph convolutional networks for session-based recommendation." In
Proceedings of the AAAI conference on artificial intelligence, February 2-9, 2021, vol. 35, no.
5, pp. 4503-4511. https://doi.org/10.1609/aaai.v35i5.16578

58. Huachi Zhou, Qiaoyu Tan, Xiao Huang, Kaixiong Zhou, and Xiaoling Wang. "Temporal
augmented graph neural networks for session-based recommendations." In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Canada, July 11-15, 2021, pp. 1798-1802. https://doi.org/10.1145/3404835.
3463112

59. Xin Xia, Hongzhi Yin, Junliang Yu, Yingxia Shao, and Lizhen Cui. "Self-supervised graph
co-training for session-based recommendation." In Proceedings of the 30th ACM International
conference on information & knowledge management, Queensland, Australia, November 1-5,
2021, pp. 2180-2190. https://doi.org/10.1145/3459637.3482388

60. Rui Ye, Qing Zhang, and Hengliang Luo. "Cross-Session Aware Temporal Convolutional
Network for Session-based Recommendation." In 2020 International Conference on Data
Mining Workshops (ICDMW), Sorrento, Italy, November 17-20, pp. 220-226. https://doi.
org/10.1109/ICDMW51313.2020.00039

61. Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. "Exploiting cross-session information
for session-based recommendation with graph neural networks." ACM Transactions on
Information Systems (TOIS) 38, no. 3 (2020): 1-23. https://doi.org/10.1145/3382764

62. Gu Tang, Xiaofei Zhu, Jiafeng Guo, and Stefan Dietze. "Time enhanced graph neural networks
for session-based recommendation." Knowledge-Based Systems 251 (2022): 109204. https://
doi.org/10.1016/j.knosys.2022.109204

63. Mingge Zhang, and Zhenyu Yang. "GACOforRec: Session-based graph convolutional neural
networks recommendation model." IEEE Access 7 (2019): 114077-114085. https://doi.org/10.
1109/ACCESS.2019.2936461

64. Ruihong Qiu, Hongzhi Yin, Zi Huang, and Tong Chen. "Gag: Global attributed graph neural
network for streaming session-based recommendation". In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval.
669–678. https://doi.org/10.1145/3397271.3401109

65. Heng-Shiou Sheu, and Sheng Li. "Context-aware graph embedding for session-based news
recommendation". In Fourteenth ACM conference on recommender systems. Brazil,
September 22-26, 2020. pp. 657–662. https://doi.org/10.1145/3383313.3418477

66. Yujia Zheng, Siyi Liu, Zekun Li, and Shu Wu. "Dgtn: Dual-channel graph transition network
for session-based recommendation." In 2020 International Conference on Data Mining Work-
shops (ICDMW), pp. 236-242. IEEE, 2020. https://doi.org/10.1109/ICDMW51313.2020.
00041

67. Diddigi Raghu Ram Bharadwaj, Lakshya Kumar, Saif Jawaid, and Sreekanth Vempati. "Fine-
Grained Session Recommendations in E-commerce using Deep Reinforcement Learning."
arXiv preprint arXiv:2210.15451 (2022). https://doi.org/10.48550/arXiv.2210.15451

https://doi.org/10.1109/TNNLS.2021.3084958
https://doi.org/10.1109/TNNLS.2021.3084958
https://doi.org/10.1145/3397271.3401142
https://doi.org/10.1016/j.neucom.2021.10.034
https://doi.org/10.3390/e23111500
https://doi.org/10.1609/aaai.v35i5.16578
https://doi.org/10.1145/3404835.3463112
https://doi.org/10.1145/3404835.3463112
https://doi.org/10.1145/3459637.3482388
https://doi.org/10.1109/ICDMW51313.2020.00039
https://doi.org/10.1109/ICDMW51313.2020.00039
https://doi.org/10.1145/3382764
https://doi.org/10.1016/j.knosys.2022.109204
https://doi.org/10.1016/j.knosys.2022.109204
https://doi.org/10.1109/ACCESS.2019.2936461
https://doi.org/10.1109/ACCESS.2019.2936461
https://doi.org/10.1145/3397271.3401109
https://doi.org/10.1145/3383313.3418477
https://doi.org/10.1109/ICDMW51313.2020.00041
https://doi.org/10.1109/ICDMW51313.2020.00041
https://doi.org/10.48550/arXiv.2210.15451

References 241

68. Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, and Jiliang Tang. "Deep
Reinforcement Learning for List-wise Recommendations." In 1st Workshop on Deep Rein-
forcement Learning for Knowledge Discovery (DRL4KDD 2019), USA, August 5, 2019.
https://doi.org/10.48550/arXiv.1801.00209

69. Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie,
and Zhenhui Li. "DRN: A deep reinforcement learning framework for news recommendation."
In Proceedings of the 2018 world wide web conference, Lyon, France, April 23 - 27, 2018,
pp. 167-176. https://doi.org/10.1145/3178876.3185994

70. Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M. Jose. "Self-supervised
reinforcement learning for recommender systems." In Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval, China, July
25-30, 2020, pp. 931-940. https://doi.org/10.1145/3397271.3401147

71. Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin. "Rec-
ommendations with negative feedback via pairwise deep reinforcement learning." In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, London, United Kingdom, August 19-23, 2018, pp. 1040-1048. https://doi.org/
10.1145/3219819.3219886

72. Liwei Huang, Mingsheng Fu, Fan Li, Hong Qu, Yangjun Liu, and Wenyu Chen. "A deep
reinforcement learning based long-term recommender system." Knowledge-Based Systems
213 (2021): 106706 https://doi.org/10.1016/j.knosys.2020.106706

73. Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. "Reinforce-
ment learning to optimize long-term user engagement in recommender systems." In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Anchorage USA, August 4-8, 2019, pp. 2810-2818. https://doi.org/10.1145/
3292500.3330668

74. Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiwang Yang, Xiaobing Liu, Jiliang
Tang, and Hui Liu. "Dear: Deep reinforcement learning for online advertising impression in
recommender systems." In Proceedings of the AAAI conference on artificial intelligence,
February 2–9, 2021, vol. 35, no. 1, pp. 750-758. https://doi.org/10.1609/aaai.v35i1.16156

75. Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. "Deep
reinforcement learning for page-wise recommendations." In Proceedings of the 12th ACM
Conference on Recommender Systems, Vancouver, Canada, October 2, 2018 pp. 95-103.
https://doi.org/10.1145/3240323.3240374

76. Rong Gao, Haifeng Xia, Jing Li, Donghua Liu, Shuai Chen, and Gang Chun. "DRCGR: Deep
reinforcement learning framework incorporating CNN and GAN-based for interactive recom-
mendation." In 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China,
November 8-11, 2019, pp. 1048-1053. https://doi.org/10.1109/ICDM.2019.00122

77. Jianli Zhao, Hao Li, Lijun Qu, Qinzhi Zhang, Qiuxia Sun, Huan Huo, and Maoguo Gong.
"DCFGAN: An adversarial deep reinforcement learning framework with improved negative
sampling for session-based recommender systems." Information Sciences 596 (2022):
222-235. https://doi.org/10.1016/j.ins.2022.02.045

78. Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. "Generative
adversarial user model for reinforcement learning based recommendation system." In Interna-
tional Conference on Machine Learning, pp. 1052-1061. PMLR, 2019.

79. Xueying Bai, Jian Guan, and Hongning Wang. "A model-based reinforcement learning with
adversarial training for online recommendation." Advances in Neural Information Processing
Systems 32 (2019).

80. Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. "Sequence-aware recommender
systems." ACM Computing Surveys (CSUR) 51, no. 4 (2018): 1-36. https://doi.org/10.1145/
3190616

81. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. "Session-
based recommendations with recurrent neural networks." In Proceedings International

https://doi.org/10.48550/arXiv.1801.00209
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3397271.3401147
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1016/j.knosys.2020.106706
https://doi.org/10.1145/3292500.3330668
https://doi.org/10.1145/3292500.3330668
https://doi.org/10.1609/aaai.v35i1.16156
https://doi.org/10.1145/3240323.3240374
https://doi.org/10.1109/ICDM.2019.00122
https://doi.org/10.1016/j.ins.2022.02.045
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616

242 5 Hybrid/Advanced Session-Based Recommender Systems

Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016.
https://doi.org/10.48550/arXiv.1511.06939

82. James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas
Gargi, Sujoy Gupta et al. "The YouTube video recommendation system." In Proceedings of
the fourth ACM conference on Recommender systems, Barcelona, Spain, September 26-30,
2010, pp. 293-296. https://doi.org/10.1145/1864708.1864770

83. Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. "Neural attentive
session-based recommendation." In Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, Singapore, November 6-10, 2017, pp. 1419-1428.
https://doi.org/10.1145/3132847.3132926

84. Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. "STAMP: short-term attention/
memory priority model for session-based recommendation." In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1831-1839.
2018. https://doi.org/10.1145/3219819.3219950

85. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. "BPR:
Bayesian personalized ranking from implicit feedback." In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, Montreal Quebec, Canada, June 18 -
21, 2009, pp. 452-461.

86. Mengqi Zhang, Shu Wu, Meng Gao, Xin Jiang, Ke Xu, and Liang Wang. "Personalized graph
neural networks with attention mechanism for session-aware recommendation." IEEE Trans-
actions on Knowledge and Data Engineering 34, no. 8 (2020): 3946-3957. https://doi.org/10.
1109/TKDE.2020.3031329

87. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves et al. "Human-level control through deep reinforcement learning."
nature 518, no. 7540 (2015): 529-533. https://doi.org/10.1038/nature14236

88. Hasselt Van, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double
q-learning." In Proceedings of the AAAI conference on artificial intelligence, vol. 30, no.
1. 2016. https://doi.org/10.1609/aaai.v30i1.10295

89. Gabriel de Souza Pereira Moreira. "CHAMELEON: a deep learning meta-architecture for
news recommender systems." In Proceedings of the 12th ACM Conference on Recommender
Systems, Vancouver, Canada, October 2, 2018, pp. 578-583. https://doi.org/10.1145/3240323.
3240331

90. Gabriel de Souza Pereira Moreira, Felipe Ferreira, and Adilson Marques da Cunha. "News
session-based recommendations using deep neural networks." In Proceedings of the 3rd
workshop on deep learning for recommender systems, Vancouver, Canada, October 6, 2018,
pp. 15-23. https://doi.org/10.1145/3270323.3270328

91. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip.
"A comprehensive survey on graph neural networks." IEEE transactions on neural networks
and learning systems 32, no. 1 (2020): 4-24. https://doi.org/10.1109/TNNLS.2020.2978386

92. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. "Graph neural networks: A review of methods and
applications." AI open 1 (2020): 57-81. https://doi.org/10.1016/j.aiopen.2021.01.001

93. Will Hamilton, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large
graphs." Advances in neural information processing systems 30 (2017).

94. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. "Graph attention networks." 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018.

95. Thomas N. Kipf, and Max Welling. "Semi-Supervised Classification with Graph
Convolutional Networks." In International Conference on Learning Representations ICLR
2017, Toulon, France, April 24-26, 2017.

96. Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. "Gated Graph Sequence
Neural Networks." In Proceedings of ICLR'16. San Juan, Puerto Rico, May 2-4, 2016.

https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1109/TKDE.2020.3031329
https://doi.org/10.1109/TKDE.2020.3031329
https://doi.org/10.1038/nature14236
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1145/3240323.3240331
https://doi.org/10.1145/3240323.3240331
https://doi.org/10.1145/3270323.3270328
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.aiopen.2021.01.001

References 243

97. Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and
Yong Li. "Sequential recommendation with graph neural networks." In Proceedings of the
44th international ACM SIGIR conference on research and development in information
retrieval, Canada, July 11-15, 2021, pp. 378-387. https://doi.org/10.1145/3404835.3462968

98. Heeyoon Yang, Gahyung Kim, and Jee-Hyoung Lee. "Logit Averaging: Capturing Global
Relation for Session-Based Recommendation." Applied Sciences 12, no. 9 (2022): 4256.
https://doi.org/10.3390/app12094256

99. Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. "Towards
deeper graph neural networks with differentiable group normalization." Advances in neural
information processing systems 33 (2020): 4917-4928.

100. Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. "Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view." In Proceedings
of the AAAI conference on artificial intelligence, New York, USA, February 7–12, 2020, vol.
34, no. 04, pp. 3438-3445. https://doi.org/10.1609/aaai.v34i04.5747

101. Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. "DropEdge: Towards Deep
Graph Convolutional Networks on Node Classification." In International Conference on
Learning Representations. Addis Ababa, Ethiopia, April 26-30, 2020, pp. 1–18.

102. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 974-983. 2018. https://doi.org/10.1145/3219819.3219890

103. Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, and Qi Tian. "Dynamic
multiscale graph neural networks for 3d skeleton based human motion prediction." In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle,
USA, June 13-19, 2020, pp. 214-223.

104. Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. "Streaming graph neural
networks." In Proceedings of the 43rd international ACM SIGIR conference on research and
development in information retrieval, pp. 719-728. 2020. https://doi.org/10.1145/3397271.
3401092

105. Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and
Xiangliang Zhang. "Self-supervised multi-channel hypergraph convolutional network for
social recommendation." In Proceedings of the web conference 2021, Ljubljana, Slovenia,
April 19-23, 2021, pp. 413-424. https://doi.org/10.1145/3442381.3449844

106. Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
"Self-supervised graph learning for recommendation." In Proceedings of the 44th international
ACM SIGIR conference on research and development in information retrieval, pp. 726-735.
2021. https://doi.org/10.1145/3404835.3462862

107. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural informa-
tion processing systems 30 (2017).

108. Wang-Cheng Kang, and Julian McAuley. "Self-attentive sequential recommendation." In
2018 IEEE international conference on data mining (ICDM), pp. 197-206. IEEE, 2018.
https://doi.org/10.1109/ICDM.2018.00035

109. Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. "BERT4Rec:
Sequential recommendation with bidirectional encoder representations from transformer." In
Proceedings of the 28th ACM international conference on information and knowledge man-
agement, China, November 3-7, 2019, pp. 1441-1450. https://doi.org/10.1145/3357384.
3357895

110. Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
"Transformers4rec: Bridging the gap between nlp and sequential/session-based recommenda-
tion." In Proceedings of the 15th ACM Conference on Recommender Systems, Netherlands,
September 27-October 1, 2021, pp. 143-153. https://doi.org/10.1145/3460231.3474255

https://doi.org/10.1145/3404835.3462968
https://doi.org/10.3390/app12094256
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1145/3442381.3449844
https://doi.org/10.1145/3404835.3462862
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3460231.3474255

244 5 Hybrid/Advanced Session-Based Recommender Systems

111. Chen Chen, Bin Song, Jie Guo, and Tong Zhang. "Multi-dimensional shared representation
learning with graph fusion network for Session-based Recommendation." Information Fusion
92 (2023): 205-215. https://doi.org/10.1016/j.inffus.2022.11.021

112. Jingjing Wang, Haoran Xie, Fu Lee Wang, and Lap-Kei Lee. "A transformer–convolution
model for enhanced session-based recommendation." Neurocomputing 531 (2023): 21-33.
https://doi.org/10.1016/j.neucom.2023.01.083

113. Huanwen Wang, Yawen Zeng, Jianguo Chen, Ning Han, and Hao Chen. "Interval-enhanced
Graph Transformer solution for session-based recommendation." Expert Systems with Appli-
cations 213 (2023): 118970. https://doi.org/10.1016/j.eswa.2022.118970

114. Yichao Lu, Zhaolin Gao, Zhaoyue Cheng, Jianing Sun, Bradley Brown, Guangwei Yu, Anson
Wong, Felipe Pérez, and Maksims Volkovs. "Session-based Recommendation with Trans-
formers." In Proceedings of the Recommender Systems Challenge 2022, Seattle, USA,
September 18-23, 2022, pp. 29-33. https://doi.org/10.1145/3556702.3556844

115. Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui. "M2TRec:
Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based
Recommendations." In Proceedings of the 16th ACM Conference on Recommender Systems,
Seattle, USA, September 18-23, 2022, pp. 573-578. https://doi.org/10.1145/3523227.3551477

116. Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. "SSE-PT: Sequential recom-
mendation via personalized transformer." In Proceedings of the 14th ACM Conference on
Recommender Systems, Brazil, September 22-26, 2020, pp. 328-337. https://doi.org/10.1145/
3383313.3412258

117. Gabriel de Souza Pereira Moreira, Sara Rabhi, Ronay Ak, Md Yasin Kabir, Even Oldridge.
"Transformers with Multi-Modal Features and Post-Fusion Context for e-Commerce Session-
Based Recommendation", In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval July 2021SIGIR eCom’21, Montreal,
Canada, July 15, 2021. pp. 143-153. https://doi.org/10.48550/arXiv.2107.05124

https://doi.org/10.1016/j.inffus.2022.11.021
https://doi.org/10.1016/j.neucom.2023.01.083
https://doi.org/10.1016/j.eswa.2022.118970
https://doi.org/10.1145/3556702.3556844
https://doi.org/10.1145/3523227.3551477
https://doi.org/10.1145/3383313.3412258
https://doi.org/10.1145/3383313.3412258
https://doi.org/10.48550/arXiv.2107.05124

Chapter 6
Learning to Rank in Session-Based
Recommender Systems

Abstract Today, our daily activities are increasingly dependent on data-oriented
systems. A new trend emerged based on machine learning techniques to rank the
results in information retrieval and recommender systems automatically called
learning to rank (LtR). Two main important subsets of LtR systems include ranking
creation and ranking aggregation. This chapter of the book discussed different
models of LtR in information retrieval, recommender systems, and session-based
recommender systems.

Keywords Learning to rank · LtR · Recommender systems · Information retrieval ·
Session-based recommender systems · Ranking creation · Ranking aggregation

6.1 Introduction

Due to the increasing expansion of data-driven platforms such as social networks in
our daily lives, different types of information retrieval systems play a significant role
in organizing our activities. Information retrieval systems have access to information
sources and help users make different decisions. For this reason, the approaches of
ranking items, prioritizing, and presenting them to the users are important and
effective. In recent years, a field called learning to rank (LtR) has emerged based
on a combination of machine learning and information retrieval. Learning to rank
uses machine learning techniques to rank the results, which is applied in various
fields such as document retrieval, entity search, personalized search, collaborative
filtering, document summarization, meta-search, question answering, etc. The LtR
approaches are classified into ranking creation and ranking aggregation [1]. Ranking
creation is making a ranking list of objects using their attributes, while ranking
aggregation builds a ranking list of objects using multiple ranking list techniques.
Various methods in these two fields usually employ supervised, semi-supervised, or
unsupervised machine learning approaches. Learning to rank, specially ranking
creation, has recently been intensively studied.

Information retrieval systems, specially search engines and recommender sys-
tems based on information sources, help users’ decision-making process. Various
approaches have been proposed to achieve a better quality of recommender systems

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2_6

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42559-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-42559-2_6#DOI

and improve their ranking performance. Creating a high-quality ranking list is
essential for recommender systems, whose final goal is to recommend a prioritized
list of the suggested items to users. Although deep learning models have widely
shown promising performance in recommender systems, little effort has been made
to investigate learning to rank in these systems [2].

246 6 Learning to Rank in Session-Based Recommender Systems

In this chapter of the book, first, a brief overview of the fundamental of learning to
rank models and commonly used datasets in various research in this field will be
discussed. Then in Sects. 6.3 and 6.4, the various approaches to rank creation and
rank aggregation are discussed and reviewed. Section 6.5 discusses and analyzes the
results and the existing issues related to the learning to rank models in session-based
recommender systems and provides guidelines for future research in this scope.

6.2 Fundamentals

Learning to rank (LtR) is a subfield of machine learning that considers methods and
theories for automatically creating a data model for a ranking problem [3]. In other
words, learning to rank is a machine learning technique that automatically creates a
ranking function for specific objects.

LtR, as a supervised learning-based method, has been widely used in IR (infor-
mation retrieval) to generate ranking functions based on training datasets. The
ranking function is used to rank documents retrieved in response to a user query.
Figure 6.1 shows the high-level process of the LtR that most information retrieval
systems follow. For this purpose, the training set made of query-document pairs is
given as input to the machine learning algorithm. A ranking model or ranking
function is created based on the trained model and then used to rank search results
for user queries. The ranking model can also be used in the testing phase to measure

Fig. 6.1 High-level process of LtR in information retrieval systems

the predictive performance of the ranking algorithm on the test dataset. Finally, the
ranking system produces an ordered list of documents retrieved from the document
collection (document repository) in response to the user’s search query.

6.2 Fundamentals 247

Two main important subsets of LtR include ranking creation and ranking aggre-
gation, each described and formulated separately along with their learning methods
in subsequent sections.

6.2.1 Ranking Creation

The purpose of ranking is to create a ranking list of recommendations based on the
features of recommendations and requests so that better recommendations are ranked
higher. Learning methods in ranking creation are related to the automatic construc-
tion of the ranking model using machine learning techniques. In previous informa-
tion retrieval systems, learning was not performed to obtain a ranking model to sort
documents based on queries. As an example, assuming query q and document d in
the BM25 model, the ranking model f(q, d) is presented with a conditional proba-
bility distribution such as P(r| q, d), where the value of r is equal to zero or one and
indicates the unrelatedness or relatedness of the document, respectively. In the
language model for IR (LMIR) [4], the conditional probability distribution P(q| d)
represents the ranking model. The computation of probabilistic models is done
through observed words in documents and queries and is independent of learning.

After that, a new trend emerged in information retrieval that used machine
learning techniques to create ranking models automatically. In the information
retrieval scope, a lot of data present the relations and can be used in automatically
creating the ranking model. It also provides a new opportunity to automatically
create a low-cost ranking model by extracting training data from search logs.
Therefore, learning to rank has become one of the effective technologies for modern
Web search engines [1]. Figure 6.2 shows the framework of learning to rank [3].

As shown in Fig. 6.2, since learning to rank is a type of supervised learning, it
needs a training set. Generating a training set is similar to creating a test set for
evaluation purposes. In this framework, a set of n training queries are represented by
qi(i = 1, . . .n) and documents related to them, represented by feature vectors by

x ið Þ = x ið Þ j

n om ið Þ

j= 1
. m (i) is the number of documents related to qi query. Ground truth

labels are also specified by y= yj
{ }m

j= 1
. Then, a special learning algorithm is

employed to learn the ranking model so that the output of the ranking model can
predict the ground truth labels in the training set as accurately as possible and
according to the loss function. In the test phase, when a new query is entered, the
built and trained model in the previous phase is used to sort the documents and return
the corresponding ranking list to the user.

The field of ranking creation includes four main issues: training and testing
processes, creating high-quality training data, feature construction, and evaluation.

248 6 Learning to Rank in Session-Based Recommender Systems

Fig. 6.2 Learning to rank framework [3]

If ranking creation is performed using a supervised approach, training and test
data are the crucial components. For example, in information retrieval, sets of
queries and documents are considered training data, which include the degree of
relevance between each query and the documents. However, in real-world scenarios,
this kind of data can be difficult to obtain because ranking lists must contain average
judgments of users about the relevance of documents to queries. Typically, there are
two common methods of training data creation. The first labeling method is by
human users, which is widely used in various fields of information retrieval. Another
method is to extract data through clicks. Click-through data in a Web search engine
records the user clicks on documents after submitting a query. Click-through data
presents implicit feedback about users’ relevance and is therefore useful for rele-
vance judgments. It is worth mentioning that the ranking model is actually defined as
a function of the feature vector based on the document and the query. This is why the
ranking model is generalizable, and even if it is trained on a small amount of data, it
can be extended to use for any other data. Like other machine learning tasks, learning
performance strongly depends on the features’ effectiveness. Therefore, the method
for feature construction is critical. Finally, performance evaluation of a ranking
model is performed by comparing the ranking list of the model’s output and the
ranking list provided as the ground truth.

6.2 Fundamentals 249

Fig. 6.3 The supervised LtR process

The supervised LtR process is depicted in Fig. 6.3. LtR process includes datasets
for training and testing purposes, which are indicated by Dtrain and Dtest, respec-
tively. Dtrain is used to train an LtR model, and its purpose of this training is to
minimize the prediction error on Gtrain based on the ranking function ´Rank Fð Þ. G is a
set of score features and ground truth for supervised learning. This process is usually
done by minimizing the sum of the individual errors ´Rank between the ground truth
G and its prediction G for Dtrain. To evaluate the performance of the ´Rank model, we
apply it to Dtest and then compare the ground truth scores and predictions. If the
ranking predictions are considered accurate enough, then the previous test result has
succeeded. So ´Rank considers a new set of candidates to predict their scores
Ǵ= ´Rank Fð Þ, and candidates are ranked based on these predictions.

In step (1) of Fig. 6.3, the training data Dtrain, consisting of tuples (F, G), is given
as input to a learning to rank algorithm, which in step (2), a ranking function
´Rank Fð Þ is trained. This is done by minimizing the errors ´Rank Fð Þ when predicting

the scores G for Dtrain in step (3). The prediction accuracy of the model is evaluated
in (4); for this purpose, the Ftest features from Dtest are taken as input for ´Rank. In
step (5), the predicted scores for G are calculated, and then G is compared with the
ground truth Gtest in (6).

It should be noted that the approaches presented in the field of ranking creation
based on learning methods are divided into three categories: pointwise, pairwise, and
listwise. Pointwise and pairwise approaches transform the ranking problem into
classification, regression, and ordinal regression. The listwise approach takes the
ranking lists of objects as examples for learning and learns the ranking model based
on the ranking lists. The main differences between the approaches are based on the
loss functions used.

250 6 Learning to Rank in Session-Based Recommender Systems

6.2.2 Ranking Aggregation

The purpose of ranking aggregation is to combine multiple rankings into a single
ranking, which is better than any of the original rankings in terms of evaluation
metrics. Learning in ranking aggregation involves building a ranking model for
ranking aggregation using machine learning techniques. For example, in meta-
search, the query from the user is sent to several search systems, and the ranking
lists from the search systems are combined and presented to the user in a ranking list.
Because rankings from individual search engines may not be accurate enough, meta-
search actually takes the majority of votes over search rankings. The question is how
to effectively perform majority voting. Here, individual search engine rankings are
called base rankings, and meta-search rankings are called final rankings. LtR
aggregation can be done through unsupervised or supervised learning approaches.
In previous information retrieval methods, ranking aggregation was usually based on
unsupervised learning. Recently, supervised methods for ranking aggregation have
also been proposed. In supervised LtR aggregation, the training data includes
queries, their associated documents, and the basic rankings on the documents, as
well as the corresponding final rankings. Test data include queries, related docu-
ments, and basic rankings of documents. Finally, the evaluation metrics in the
ranking aggregation are based on how to present the ground truth. It can be any
standard measure in LtR systems [1].

Another type of LtR classification method includes feature-based and discrimi-
native methods. Feature-based methods, called label learning methods in machine
learning, represent all the available documents with feature vectors that reflect the
relevance of the documents to the query. Conventional features used in learning to
rank are the frequency of query terms in the document, the outputs of the BM25
model, and the PageRank model. These features can be obtained from the indexes of
a search engine. LtR aggregation methods can combine several features, and by
including the output of the model as one of the dimensions of the features, it is able
to apply any new development in the information retrieval model. This capability
enables real search engines to use multiple features to detect the required complex
information of Web users. Learning to rank techniques based on discriminative
methods have an automatic learning process based on training data. These methods
are often needed for real search engines because these search engines receive much
feedback from users and usage reports every day. Therefore, automatic learning
from feedback and continuous improvement of the ranking are critical. In addition,
discriminative methods are utilized to combine different types of features without the
need to define a probabilistic framework to provide entities and predict accuracy.

All learning to rank approaches generally learn their ranking functions by min-
imizing some loss functions. In recommender systems, a top N list is usually
generated to be displayed to users. Hence, ranking this list is crucial for both the
quality of recommendations and user satisfaction. Indeed, instead of focusing on
recommendations as a rank prediction problem in recommender systems, looking at
how items are ranked is more reasonable. The item most related to the user should be

] [

] [

] [

] [–60]

]

at the top of the list of recommendations. Defining relevance eliminates the need to
predict rankings. You do not need to know how many users rate something; what
matters is that the user at least likes that item more than anything else available. It is
worth noting that the item catalog may not contain an item the user likes, but in that
case, the recommender system still wants to provide a list of the best available items
it has [5]. Ranking models and algorithms help recommender systems arrange the
items of the list of recommendations in the most optimal state possible [6].

6.2 Fundamentals 251

Table 6.1 Reviewed studies in LtR scope (information retrieval and recommender systems)

Learning to rank
model

Reference Ranking model

Information
retrieval

Recommender
system Information retrieval

Recommender
system

Rank
creation

Pointwise [7–17 18–22] SubsetRanking [7],
OPRF [8], McRank
[11], PRanking [13],
DPG-FBE [16]

CPL-mg [22]

Pairwise [23–34 35–42] RankNet [26],
LambdaRank [23],
FRank [28], Ranking
SVM [29], GBRank
[30], SortNet [31],
SSRankBoost [32]

PRM [41],
BPR [36],
TOP1[37],
CPLR [38],
PDLR [35],
PLtR-N [40]

Listwise [43–50 51–54] AdaRank [45],
ListNet [46], PiRank
[47], SetRank [48],
FastAP [49], DLCM
[50], RaMBO [44]

TOP1-max
[52], BPR-max
[52], Do-Rank
[53]

Hybrid [55–57 2, 58 LambdaRank [56],
LambdaMART [56],
IESR-Rank [57],
IESVM-Rank [57]

DeepRank [2]

Rank aggregation [34, 61–68 [69–73] Cranking [63],
v-ManX [65], RABF
[68]

ERA [70]

Recommender systems that learn a ranking model based on the preference scores
of individual items are considered pointwise ranking methods. Recommender sys-
tems using pairwise learning to rank can consider each user’s preferences for a pair
of items, and finally, listwise learning to rank systems can consider each user’s list
preferences for a list of items (usually ranked) model.

Table 6.1 presents the list of studies according to the type of ranking (creation/
aggregation) and their application (IR/RS).

The diagram in Fig. 6.4 shows the percentage of each technique used in the
discussed research.

According to the diagram in Fig. 6.4, a large percentage of the research reviewed
is related to methods in ranking creation which are devoted to the automatic
construction of the ranking model using machine learning techniques.

252 6 Learning to Rank in Session-Based Recommender Systems

Fig. 6.4 Percentage of each type of ranking creation and ranking aggregation methods in IR/RS
scope

6.2.3 Datasets

To evaluate learning to rank systems, several datasets have been published publicly.
This dataset contains thousands of annotated queries, hundreds of semantic features,
and millions of user sessions, which have been widely used in learning to rank
research. Publicly available learning to rank datasets can be roughly classified using
synthetic or real user feedback. Both are widely used in the empirical study of
unbiased learning to rank algorithms.

. Microsoft LETOR [74]: It uses the Gov2 Web page collection (~25 million
pages) and two sets of queries from the Million Query track derived from
TREC 2007 and TREC 2008. These two query sets are called MQ2007 and

MQ2008. In MQ2007, there are 1692 queries with 65,323 labeled documents; in
MQ2008, there are about 784 queries with 14,384 labeled documents.

6.3 Ranking Creation 253

. Yahoo! LETOR [75]: It is one of the largest datasets for public LtR that have used
commercial English search engines. In total, it contains 29,921 queries with
710,000 documents. Each query and document pair has a five-level relevance
judgment and 700 features selected by a separate feature selection phase.

. Tiangong-ULTR [76]: The dataset was collected using real-world user click data
sampled from Sogou.com search sessions. For this purpose, 3449 queries written
by real search engine users were randomly sampled, and the top 10 results were
collected from a 2-week search report. After cleaning, the dataset has 333,813
documents, 71,106 ranked lists, and 3,268,177 anonymized search sessions with
clicks.

. Istella-S [77]: It contains 33,000 queries and 3,408,000 documents (approxi-
mately 103 documents per query) sampled from an Italian commercial search
engine. Each query-document pair is represented by 220 features and annotated
with five-level relevance judgments.

. Baidu-ULTR [78]: The dataset consists of two parts: (1) large-scale Web search
sessions and (2) expert annotation dataset. The first consisted of 383,429,526
queries and 1,287,710,306 documents randomly sampled from Baidu search
engine search sessions in April 2022. Most sessions contain less than ten candi-
date documents with page presentation features and user behaviors in the current
query. The latter is also randomly sampled from the monthly collected search
sessions of the Baidu search engine, and the relevance of each document to the
query is judged by expert annotators, which includes five tags.

6.3 Ranking Creation

Ranking creation is the ranking of recommended lists based on the features of the
recommendations so that the more relevant recommendations are ranked at a higher
level. In this section, we will discuss the main ranking creation models, which are
generally classified into pointwise, pairwise, and listwise in the two fields of
information retrieval and recommender systems.

6.3.1 Pointwise Methods

In pointwise methods, the ranking problem becomes a classification, regression, or
ordinal regression problem, and existing classification, regression, or ordinal regres-
sion methods can be used to solve it. These types of methods take training data as
input and ignore group structures. Training data is transformed into supervised
learning data so that existing methods can be used to perform learning. When a
class label, a real number, and a score label are considered for the data in the dataset,

http://sogou.com

the problem becomes classification, regression, and ordinal regression, respectively.
Assuming that the output of the learned model is real numbers, this model can be
used to rank documents when a query is given (sort documents according to the
scores given by the model). The loss function is defined in pointwise methods on a
single object. In fact, the total loss in pointwise methods is calculated as the sum of
the defined losses for each document as the distance between the predicted score and
the real score.

254 6 Learning to Rank in Session-Based Recommender Systems

In the field of information retrieval systems, four basic components are formally
defined to describe pointwise methods: input, output, hypothesis, and loss function
[3]:

. The input space contains the feature vectors of each document.

. The output space contains the degree of relevance of each document. The ground
truth label in the output space is defined as follows: if the judgment is directly
assumed as the degree of relevance lj, the ground truth label for the document xj is
defined as yj = lj, but if the judgment is defined as the total order of πl, the ground
truth label can be obtained using a mapping function. It is worth mentioning that
if the judgment is given as a pairwise preference lu, v, it is not easy to use it to
generate the ground truth label.

. The hypothesis space contains functions that take the feature vector of a docu-
ment as input and predict the degree of relevance of the document. Usually, such
a function is called the scoring function f. All documents can be ordered based on
the scoring function, and the final ranking list can be delivered.

. The loss function measures the accurate prediction of the ground truth label for
each document. In different pointwise ranking algorithms, ranking is modeled as
regression, classification, and ordinal regression. Therefore, regression loss,
classification loss, and ordinal regression loss are utilized as loss functions.

As mentioned above, based on different machine learning techniques, the
pointwise approach can be divided into three categories: classification-based algo-
rithms, regression-based algorithms, and ordinal regression-based algorithms [3]:

. The ranking problem can be considered as a classification model. Classification is
a supervised learning problem in which the predicted target variable is discrete.
When ranking is modeled as a classification, the degree of relevance given to a
document is considered a class label. In classification-based algorithms, the
output space contains unordered categories. Some of these approaches are
based on binary classification, and some others are based on multi-class classifi-
cation. Approaches related to binary classification are based on support vector
machines (SVM) [9], logistic regression [10], etc. SVM-based methods have
been noticed due to their ability to automatically learn arbitrary features, fewer
assumptions, and expressiveness [9]. Logistic regression is a popular classifica-
tion technique used to perform binary classification for ranking. Approaches
based on multi-class classification use boosting tree-based method techniques
[11], association rule mining [12], etc.

. For regression-based algorithms, by considering the degree of relevance as real
numbers, the ranking problem is reduced to a regression problem. Regression is
also a supervised learning problem where the predicted target variable is contin-
uous. When ranking is modeled as regression, the degree of relevance given to a
document is considered a continuous variable, and the ranking function is trained
by minimizing the loss of the training set. In these methods, the output space
contains points associated with real values. In regression-based approaches,
various types of regression have been used, such as weighted regression [7],
polynomial regression [8], etc.

. Ordinal regression considers the ordinal relationship between ground truth labels
when learning a ranking model. For algorithms based on ordinal regression, the
output space consists of ordered categories. Documents with their ground truth
labels are considered in the training set as random independent variables with the
same distribution resulting from the multiplication of the input spaces [3]. If the
number of sorted categories is considered equal to 2 in this type of approach, the
problem is reduced to a binary classification. For this reason, ordinal regression-
based techniques strongly correlate with classification-based algorithms. These
types of approaches use perceptron-based ranking methods [13, 14], ranking with
large margin principles [15], and loss functions based on threshold [17].

6.3 Ranking Creation 255

Table 6.2 Learning methods in pointwise approaches

Regression Classification Ordinal regression

Input Single document xj
Output Real number yj Non-ordered category yj Ordered category yj
Hypothesis f(xj) Classifier on (f(xj)) f(xj) + thresholding

Loss function Regression loss
L = (f; xj, yj)

Classification loss Ordinal regression loss

Table 6.2 shows the learning methods of pointwise approaches, separated by
input, output, hypothesis, and related loss function for regression, classification, and
ordinal regression approaches.

Pointwise approaches in recommender systems create a score for each item and
then rank the items based on that score. Then, the recommendations are presented to
users based on this rating. The difference between score prediction and ranking is
that with ranking, the score of an item is important when it represents the correct
position of that item in the ranking. In Sect. 6.3.1.1, the pointwise methods in the
field of information retrieval and, in Sect. 6.3.1.2, the pointwise methods in the field
of recommender systems are discussed and reviewed.

6.3.1.1 Pointwise Methods in Information Retrieval

One of the fundamental methods for pointwise LtR is the method provided by
Cossock et al., which models the ranking problem based on the regression technique
[7]. The set of m documents related to query q is represented by x = xj

{ }m
j= 1, and the

{ }m

()

set of y = yj j= 1
represents the ground truth labels of the documents sorted by

multiple ordered categories. The scoring function f is used to rank these documents,
and the loss function is calculated using Eq. (6.1):

256 6 Learning to Rank in Session-Based Recommender Systems

L f ; xj, yj
()

= yj - f xj
()()2 ð6:1Þ

The results of this method show that there is no loss if and only if the output of the
scoring function f(xj) is exactly equal to the label yj. Otherwise, the loss value
increases to the power of 2. In other words, for a related document, the loss will
be zero only if the scoring function can output exactly yj. The specific loss of this
function can be the upper limit of the ranking error based on the nDCG metric. In the
case of high regression loss, the corresponding ranking is optimal as long as the
relative orders between the predictions of f(xj) correspond to the ground truth labels.
As a result, it is expected that the squared loss function is a loose bound of the
nDCG-based ranking error.

With the aim that ranking errors based on DCG is limited by multi-class classi-
fication errors, Li et al. proposed multi-class classification, the McRank algorithm
[11]. They learn a classification model and use it to obtain the membership proba-
bility of each object. Then, they calculate the expected scores of the objects and use
them for ranking purposes. Class probabilities are learned using the gradient
boosting tree algorithm.

The loss function used to learn the classifier in McRank is according to Eq. (6.2):

L -yj, yj
()

= I yj ≠ -yjf g ð6:2Þ

The surrogate loss function is defined according to Eq. (6.3), and the boosting tree
algorithm is used to minimize the error.

Lφ yj, -yj
()

=
Xm
j= 1

XK
k = 1

- logP -yj = k
()

I yj = kf g ð6:3Þ

In Eq. (6.3), P -yj = k is defined using the logistic function, which is calculated
using Eq. (6.4):

P -yj = k
()

=
eFk xj,wð ÞPK

s= 1
eFs xj ,wð Þ

ð6:4Þ

In Eq. (6.4), the expression Fk (xj,w) shows the degree of belonging of the
document xj to category k. Then, classification results are converted into ranking
scores. The output of the classifier is converted to probability using Eq. (6.4). Then,

the weighted combination of Eq. (6.5) is used to determine the final ranking score of
a document.

6.3 Ranking Creation 257

f xj
()

=
XK
k = 1

g kð Þ: P -yj = k
() ð6:5Þ

Another well-known pointwise method based on ordinal regression called
PRanking has been proposed by Crammer et al. [13]. The goal of this algorithm is
to find the path defined by the parameter vector w after presenting the documents on
it. Then, thresholds can be easily used to identify the documents sorted into different
categories. This goal is achieved using an iterative learning process. In iteration t, the
learning algorithm receives an instance xj associated with query q. The algorithm
predicts -yj according to Eq. (6.6) and receives the ground truth label yj.

-yj = argmin k w
T xj - bk < 0

(} ð6:6Þ

If the algorithm makes a mistake and there is at least one threshold indexed by k,
the value of wT xj is in the wrong side from bk. To correct the error, values of w

T xj
and bk should be directed toward each other on the same side. After that, the model
parameter w is set by w = w + xj, same as in many perceptron-based algorithms. This
process is repeated until the training process converges.

Hu et al. considered item ranking in search sessions on e-commerce platforms
such as Amazon and Taobao, which is a multi-step decision-making problem
[16]. For greater correlation between different ranking steps, the authors presented
a reinforcement learning method to learn the optimal ranking policy in which
expected accumulative rewards are maximized in one search session. For this
purpose, the concept of the search session Markov decision process (SSMDP) is
formally defined to formulate the multi-step ranking problem by identifying the state
space, reward function, and state transition function. In addition, a new algorithm
named Deterministic Policy Gradient with Full Backup Estimation (DPG-FBE) is
proposed, which is used for the problem of high reward variance and unbalanced
reward distribution of SSMDP.

6.3.1.2 Pointwise Methods in Recommender Systems

One of the pointwise methods presented in the field of video recommender systems,
which is a large-scale multi-objective ranking system, recommends the next video to
watch on a commercial video-sharing platform [19]. This method is a combination of
classification and regression approaches that have multiple objectives. The ranking
problem in a video recommender system has several challenges. They usually have
different or conflicting goals; high-rated videos may be recommended as well as
videos shared with the viewer’s friends. Or, there is often an implicit bias in the
system. For example, a user may have clicked and watched a video just because it

was rated high, not because the user liked it the most. Therefore, models trained
using data generated from the current system will be biased, causing a feedback loop
effect [21].

258 6 Learning to Rank in Session-Based Recommender Systems

Zhao et al. have employed user behaviors as training labels [19]. Since users can
behave differently from what is recommended, the ranking system is designed to
support multiple objectives. This method divides goals into two categories: (1) par-
ticipation objectives, such as user clicks and the degree of participation with
recommended videos, and (2) satisfaction objectives, such as a user liking a
YouTube video and rating a recommendation. The prediction of behaviors related
to interaction goals is formulated into two tasks: binary classification for behaviors
such as clicks and regression for behaviors related to time spent watching. Similarly,
predicting user satisfaction behaviors are described as binary categories or regres-
sions. For example, behaviors such as clicking like for a video are described as a
binary classification task, and behaviors such as rating as a regression task. The
binary classification is calculated from the cross-entropy loss function, and the
squared loss is calculated for regression. The proposed framework of Zhao et al.
has been shown in Fig. 6.5.

Zhu et al. proposed a new framework called CPL (Combined framework of
Pointwise prediction and LTR) in which pointwise prediction and LTR are com-
bined to improve the performance of top N recommendations [22]. In fact, there may
be a problem of overfitting in pointwise prediction, while LTR is more prone to
higher variance. Both problems can be improved using the hybrid model presented
by the authors. For this purpose, they propose a special implementation of CPL
called CPLmg, which is a combination of FSLIM and GAPfm models. FSLIM is
extended from SLIM using matrix factorization (MF) methods. SLIM directly learns
a similarity matrix from the data. Factorized SLIM is a new version of SLIM that
incorporates the idea of traditional matrix factorization (MF) methods. GAPfm is a
list LTR method that directly optimizes a smoothed approximation of the GAP
metric. GAP extends average precision to cases of multi-graded relevance and
inherits the most important feature of the AP metric, which ensures that errors in
recommended items at the top of the list are penalized more than errors at the bottom
of the list.

The authors train FSLIM and GAPfm using the multi-task learning approach. As
shown in Fig. 6.6, FSLIM and GAPfm are iteratively updated based on their
respective objective functions with shared underlying variables, latent factor matri-
ces P and Q, and learned item similarity matrix W. The matrices P and Q are jointly
updated by FSLIM and GAPfm in each joint training round, and the item similarity
matrix W helps GAPfm to extract potential positive samples.

To learn and estimate several types of user behavior, Ma et al. used MMoE [18] to
automatically learn parameters and share potentially conflicting objectives. MMoE
is a soft parameter-sharing model developed to model task relations. It adapts the
mixture-of-experts (MoE) structure for multi-task learning by sharing experts in all
tasks while also having a trained gating network for each task. The key idea is to
replace the shared ReLU layer with the MoE layer and add a separate gating network
for each task.

F
ig
.6

.5
T
he

fr
am

ew
or
k
of

en
d-
to
-e
nd

ra
nk

in
g
sy
st
em

[
]

19

6.3 Ranking Creation 259

G
at

in
g

N
et

w
or

ks

‘s
ha

llo
w

’
to

w
er

E
ng

ag
em

en
t b

eh
av

io
rs

,
e.

g.
, c

lic
ks

, w
at

ch
es

S

at
is

fa
ct

io
n

be
ha

vi
or

s,

e.
g.

, l
ik

es
, d

is
m

is
sa

ls

S
of

tm
ax

 G
at

es

U
se

r
E

ng
ag

em
en

t O
bj

ec
tiv

es

Lo
gi

t f
or

se

le
ct

io
n

bi
as

W
ei

gh
te

d
C

om
bi

na
tio

n

R
an

ki
ng

 s
co

re

S
er

vi
ng

U

se
r

Lo
gs

T

ra
in

in
g

U
se

r
S

at
is

fa
ct

io
n

O
bj

ec
tiv

es

F
ea

tu
re

s
fo

r
se

le
ct

io
n

bi
as

 s
uc

h
as

 c
lic

k
po

si
tio

n

E
m

be
dd

in
gs

 fo
r

qu
er

y
an

d
ca

nd
id

at
e

ite
m

s

Q
ue

ry
 a

nd
 c

an
di

da
te

 v
id

eo
 fe

at
ur

es
, e

.g
.,

co
nt

en
t

to
pi

c,
 ti

tle
, u

pl
oa

d
tim

e

U
se

r
an

d
co

nt
ex

t f
ea

tu
re

s,

e.
g.

, t
im

e,
 u

se
r

pr
of

ile
, e

tc
.

E
m

be
dd

in
gs

 fo
r

vi
su

al
 a

nd

la
ng

ua
ge

, a
nd

 c
on

te
xt

 fe
at

ur
es

D

en
se

 F
ea

tu
re

s

In
pu

t F
ea

tu
re

s

R
eL

U

R
eL

U

R
eL

U

M
ix

tu
re

-o
f-

E
xp

er
ts

S
ig

m
oi

d
S

ig
m

oi
d

S
ig

m
oi

d
S

ig
m

oi
d

260 6 Learning to Rank in Session-Based Recommender Systems

Fig. 6.6 The CPLmg framework [22]

In [20], Tang et al. presented a pointwise ranking method that considers multiple
objectives for modeling different user behaviors, such as clicking, sharing, and
commenting in the ranking system. In the offline training process, the ranking
model is trained based on user actions extracted from user logs. After each online
request, the ranking model provides predictions for each task, and then the weighted
multiplication-based ranking module combines these predicted scores through a
combination function. Among all tasks, VCR (view completion ratio) and VTR
(view-through rate) are two important objectives that model the key online metrics of
view count and watch time, respectively. VCR is a regression-based task trained on
MSE, and VTR is a binary classification task trained on cross-entropy. The patterns
between VCR and VTR are complicated, and the SEESAW phenomenon exists
between them. The SEESAW phenomenon is defined as the improvement of one
task often leading to a decrease in the performance of another task.

In this chapter, a progressive layered extraction (PLE) model is proposed to deal
with the SEESAW phenomenon and negative transfer. The key idea of PLE is as
follows. First, it explicitly separates common and task-specific experts to avoid
harmful parameter interference. Second, multi-level experts and gating networks
are introduced to incorporate more abstract representations. Finally, it adopts a novel
progressive separation routing to model interactions between experts and achieves
more efficient knowledge transfer between complex related tasks.

6.3.2 Pairwise Methods

The pairwise approach does not focus on accurately predicting the degree of
relevance of each document but rather on the relative order between two documents.

()

In this sense, it is closer to the concept of “ranking” than the pointwise approach. In
the pairwise approach, ranking is usually reduced to classification over pairs of
documents, determining which document is preferred in a pair. Therefore, the goal of
learning is to minimize the number of unclassified document pairs. This classifica-
tion differs from the classification in the pointwise approach because it operates on
both documents under review. In the field of information retrieval systems, four
essential components are formally defined to describe pairwise methods: input,
output, hypothesis, and loss function [3].

. The input space contains pairs of documents, both represented by feature vectors.

. The output space contains the pairwise preferences between each pair of docu-
ments, which take the values {+1,-1}. Different types of judgments can be
converted into ground truth labels in terms of pairwise priorities:

– If the judgment is assumed as the degree of relevance lj, then the pairwise
preference for (xu, xv) can be defined as yu,v = 2:I lu> lvf g - 1.

– If the judgment is assumed directly as a pairwise preference, it is simply set as
yu, v = lu, v.

– If the judgment is assumed to be the total order of πl, it can be defined as
yu,v = 2:I πl uð Þ< πl vð Þf g - 1.

. The hypothesis space consists of two-variable function h, which takes a pair of
documents as input and outputs the relative order between them. Some pairwise
ranking algorithms define their hypotheses directly, and others define this hypoth-
esis with a scoring function f according to Eq. (6.7):

6.3 Ranking Creation 261

Table 6.3 Components of
pairwise approaches

Pairwise methods

Input Document pair (xu, xv)

Output Preference yu, v
Hypothesis Ranking function f X

→

2:I f xuð Þ> f xvð Þf g - 1

Loss function Pairwise classification/regression loss
L (f ; xu, xv, yu, v)

h xu, xvð Þ= 2:I f xuð Þ> f xvð Þf g - 1 ð6:7Þ

. The loss function measures the inconsistency between h(xu, xv) and the ground
truth label, yu, v. In many pairwise ranking algorithms, the ranking is modeled as a
pairwise classification, and the loss of the corresponding classification on a pair of
documents is used as a loss function. The scoring function f uses the classification
loss function based on the difference (f(xu), f(xv)) instead of the value h(xu, xv).

Table 6.3 shows the components of pairwise approaches, separated by input,
output, hypothesis, and related loss function.

ð

262 6 Learning to Rank in Session-Based Recommender Systems

Several recommender systems use pairwise methods to rank recommended items.
In particular, session-based recommender systems that are based on sequential data
and usually apply recurrent neural networks mostly use pairwise ranking loss
functions [52]. Since deep learning methods need to propagate gradients in several
layers to optimize model parameters, the quality of these gradients caused by the loss
function affects the optimization quality and model parameters. Additionally, output
spaces with several items present unique challenges that must also be considered
when developing an appropriate ranking loss function.

The basic approaches to pairwise LtR have different types. Some of them are
based on neural networks [34], perceptrons [31], boosting [33], SVM [29], and other
machine learning methods [28, 30]. In Sect. 6.3.2.1, the pairwise methods in the field
of information retrieval and, in Sect. 6.3.2.2, the pairwise methods in the field of
recommender systems are discussed and reviewed.

6.3.2.1 Pairwise Methods in Information Retrieval

In [26], one of the first pairwise methods for learning to rank was proposed by
Burges et al. using neural networks, which is called RankNet. RankNet selects the
cross-entropy function as the loss function for learning and considers probability in
the training data for each pair of relevant objects. If you consider two documents xu,
xv associated with q, -Pu,v is calculated based on their ground truth labels. In this case,
if yu, v = 1, then -Pu,v = 1; otherwise, -Pu,v = 0. Then, the modeled probability Pu, v

based on the difference between the scores of these two documents is defined by the
scoring function according to Eq. (6.8):

Pu,v fð Þ=
exp f xuð Þ- f xvð Þð Þ

1þ exp f xuð Þ- f xvð Þð Þ ð6:8Þ

Cross-entropy between the final probability and the modeled probability is used
as a loss function, which is briefly mentioned in Eq. (6.9):

L f ; xu, xv, yu,v
()

= - -Pu,v log Pu,v fð Þ- 1- -Pu,vð Þ log 1-Pu,v fð Þð Þ 6:9Þ

Cross-entropy loss is an upper bound of the 0-1 pairwise loss function, which is
defined in Eq. (6.10):

L0- 1 f ; xu; xv; yu,v
()

=
1 yu,v f xuð Þ- f xvð Þð Þ< 0,
0 otherwise:

{
ð6:10Þ

Then a neural network is used as a model and stochastic gradient descent as an
optimization algorithm to learn the scoring function f. This neural network consists
of two normal layers and an output layer, where the features of a document are
entered in the first layer. The second layer consists of several hidden nodes, each

containing a sigmoid transformation, and the network output is the document
ranking score.

6.3 Ranking Creation 263

Burges et al. proposed a nested pairwise ranking method based on RankNet,
which iteratively re-ranks documents with higher scores [27]. At each iteration, this
approach uses the RankNet algorithm to re-rank a subset of the results. It divides the
problem into smaller and simpler parts and creates a new distribution of results to be
learned by the algorithm.

In the method presented in [26] by Burges et al., in some cases, cross-entropy loss
has a non-zero minimum, which shows that there will always be some loss regardless
of the type of model used. This may not match our cognition of a loss function. In
addition, the loss is not bounded, which may lead to the dominance of some difficult
document pairs in the training process. To deal with these problems, a new loss
function called fidelity loss function is proposed in [28], which is defined by
Eq. (6.11):

L f ; xu, xv, yu,v
()

= 1-
ffi
-Pu,v Pu,v fð Þ

q
-

ffi
1- -Pu,vð Þ 1-Pu,v fð Þð Þ

q
ð6:11Þ

Fidelity was originally used in quantum physics to measure the difference
between two possible states of a quantum. When used to measure the difference
between the target probability and the modeled probability, it is (f(xu) - f(xv)). By
comparing loss fidelity with cross-entropy loss, it is clear that fidelity loss is limited
between 0 and 1. On the other hand, while cross-entropy loss is convex, fidelity loss
becomes non-convex, which makes optimizing such a non-convex objective more
difficult. In addition, fidelity loss is no longer an upper bound of 0-1 pairwise loss. In
[28], a generative additive model as a ranking function is proposed by Tsai et al.,
which is similar to the boosting technique to learn the coefficients in the additive
model. Specifically, a new weak ranker (i.e., a new feature) is added in each iteration,
and the combination coefficient is adjusted by considering the fidelity loss gradient.
The learning process converges when adding a new ranking no longer results in a
significant reduction.

The ranking evaluation result based on the learning to rank objective function is
usually non-continuous and non-differentiable and depends on the ordering. Of
course, it should be noted that the sorting function is not continuous and differen-
tiable. Burges et al. have proposed a method called LambdaRank that considers the
use of gradient descent to optimize the evaluation result and tries to directly use the
gradient function of the evaluation result [23]. In LambdaRank, position-based
weights are introduced for the pairwise loss function. In fact, the evaluation mea-
sures (based on position) are directly used to define the gradient according to each
pair of documents in the training process.

Suppose there are only two relevant documents x1 and x2 and NDCG@1 is used
as the evaluation metric. In this case, if we can rank x2 and x1 at the top of the list and
x1 is ranked higher, we will achieve the maximum NDCG@1. It is obviously easier
to move x1 up, since x2 will have much less effort. Therefore, we can define (but not
calculate) the “gradient” given the rank score x1 (denoted by s1 = f(x1)) greater than

ð

that given the rank score x2 (denoted by s2 = f(x2)). In other words, we can consider
that there is an implicit loss function L in the optimization process, which Eq. (6.12)
shows:

264 6 Learning to Rank in Session-Based Recommender Systems

∂L
∂s1

>
∂L
∂s2

ð6:12Þ

The above gradient is called the lambda function, and that is why the algorithm is
called LambdaRank. When nDCG is used for training, it provides a special form of
lambda function as shown in Eq. (6.13):

λ= Zm
2yu - 2yv

1þ exp f xuð Þ- f xvð Þð Þ η r xuð Þð Þ- η xvð Þð Þ 6:13Þ

r(.) represents the position of a document in the previous iteration of the training.
The scores of each pair of documents xv and xu are updated by +λ and -λ,
respectively, in each round of optimization.

One of the types of pairwise learning to rank are SVM-based methods
[24, 25]. These types of methods use pairwise classification to implement LtR.
Suppose there are n queries qif gn i= 1, which have a pair of relevant documents
x ið Þ u , x

ið Þ
v

()
, and their ground truth label is y ið Þ u,v ; Assuming the use of linear ranking

function f(x) = wT x, the Ranking SVM is formulated as Eq. (6.14):

min
1
2

wkk 2 þ λ
Xn
i= 1

X
u, v:y ið Þ u,v = 1

ξ ið Þ u,v ð6:14Þ

()
s:t: wT x ið Þ u - x ið Þ v ≥ 1- ξ ið Þ u,v, if y ið Þ u,v = 1,

ξ ið Þ u,v ≥ 0, i= 1, . . . , n

In Eq. (6.14), 1 2 wkk 2 controls the complexity of model w. The difference between
SVM and Ranking SVM is in the constraints that are constructed from document
pairs. The loss function in Ranking SVM is a hinge loss defined on document pairs.
For example, for query q, if a document xu is labeled more relevant than a document
xv, i.e., yu, v is equal to one, if w

T xu is greater than w
T xv by margin 1, the loss does not

exist. Otherwise, the loss equals to ξu, v. Hinge loss is an upper bound of 0-1
pairwise loss.

One type of research related to providing the correct ranking order of documents
for a query describes the process of creating a list of documents as a Markov decision
process (MDP). For this purpose, document ranking in search result diversification is
modeled as an MDP, in which each time step is related to a ranking position and each
action is related to selecting a document for that position. Given a set of labeled
training data, a policy gradient is used to learn MDP parameters. In this process, in
each training iteration, the policy gradient algorithm first samples a document list as

its training sample, and then the gradient is estimated according to the list weighted
by the absolute performance score. When this model is applied to rank documents in
IR, gradient estimation in this way has limitations, and it ignores the relative
ordering nature of IR ranking and estimates gradients with high variance. To solve
this problem, Xu et al. proposed a policy gradient algorithm in which the gradients
are determined by a pairwise comparison of two sampled document lists in a query
[79]. This algorithm, called Pairwise Policy Gradient (PPG), repeatedly samples
pairs of document lists. It estimates gradients by pairwise comparisons and fully
updates model parameters.

6.3 Ranking Creation 265

6.3.2.2 Pairwise Methods in Recommender Systems

In recommender systems, pairwise methods generate a list of personalized recom-
mendations for users and determine users’ pairwise preferences and interests
between items. In session-based recommender systems where there is no specific
profile for users, these methods collect users’ preferences according to their pairs of
behaviors, and a set of item pair preferences are used to represent each user.

The BPR-MF proposed by Rendle et al. is a pairwise LtR method developed for
recommender system scenarios with implicit feedback [36]. BPR-MF is commonly
used for matrix completion problems based on long-term user-item interactions. This
method is one of the most widespread pairwise approaches for learning to rank
items, which has corrected ranking capabilities with acceptable computational
complexity. Some methods, such as matrix factorization, cannot be directly applied
to session-based recommender systems because the feature vectors are not
pre-computed in the new session. However, this problem can be overcome by
using the average feature vectors of the items that occurred in the session as the
user feature vector. The similarity of the feature vectors between a proposed item and
the current session items is averaged and optimized with the following measure:

BPR-MF=
X

u, i, jð ÞEDs

ln σ ru,i - ru,j
()

- λθ θk k2 ð6:15Þ

In Eq. (6.15), the ranking ru, i for user u and item i is approximated by the dot
product of the corresponding rows in W and H matrices. The parameters of the Θ =
(W, H) model are learned by stochastic gradient descent in multiple iterations on
dataset D, which consists of triples of the form (u, i, j). (u, i) is a positive feedback
pair, and (u, j) is a negative sample. σ is the logistic function, and λθ is the
regularization parameter that controls the complexity. The optimized measure in
objective Eq. (6.15) is to rank the positive sample (u, i) higher than the unobserved
sample (u, j). The goal of BPR is to maximize the probability that the target score is
higher than the sample score. The loss function related to BPR in session-based
recommender systems used by Hidasi et al. in [52] at a certain point of the session is
defined as follows:

e

))

266 6 Learning to Rank in Session-Based Recommender Systems

Ls = -
1
Ns

:
XNs

j= 1

log σ rs,i - rs,j
()() ð6:16Þ

In Eq. (6.16), Ns is the number of samples, rs,k is the score of item k at a certain
point of the session, i is the target item (the next item of the session), and j represents
the negative samples.

One of the pairwise loss functions proposed by Hidasi et al. in [37] is th
TOP1 function, which consists of two parts. The purpose of the first part is to
raise the score of the target item higher than the score of the samples, while the
second part aims to reduce the score of the negative samples to zero. The second
part acts as a regularizer, but instead of directly limiting the model weights, it
penalizes high scores on negative samples. Since all items in a training example
act as negative scores, it lowers overall scores. The TOP1 function is calculated
using Eq. (6.17):

LTOP1 =
1
Ns

XNs

j= 1

σ rs,j - rs,i
()þ σ rs,j 2

() ð6:17Þ

In the above equation, j times execution is performed on the negative items Ns

(non-relevant), and relevant items are identified by i.
Although BPR empirically performs well for recommending based on implicit

feedback compared to existing methods, it (1) treats all unobserved feedback as
negative, (2) treats all observed feedback as the same, and (3) ignores the influence
between users. Items without observed feedback may be interpreted as user’s lack of
interest, and some observed data may be noisy and biased. To solve these problems,
a Collaborative Pairwise Learning to Rank method called CPLR is proposed in [38]
by Liu et al., which considers the influence between users on preferences among
both items with observed and unobserved feedback. The objective function of this
method is presented by Eq. (6.18):

CPLR-OPT≔
X
uEU

α
X
iEPu

X
tECu

ln σ Cuit rui - rutð Þð Þð Þ
"

þ β
X
tECu

X
jELu

ln σ Cutj rut - ruj
()()()þ γ

X
iEPu

X
jELu

ln σ Cuij rui - ruj
()((#

-
1
2
λθ θk k2 ð6:18Þ

In this function, Pu represents the positive set, that is, the set of items to which
user u has given positive feedback. Cu denotes the collaborative set, i.e., the set of
items that have been given positive feedback by at least one of user u’s neighbors,
but not by himself. Lu represents the set of items that neither the user nor his

neighbors have yet given positive feedback. rui represents the predicted preference of
user u about i. Cuij, Cuit, and Cutj are confidence coefficients and are used to set the
confidence of pairwise preferences. α, β, and γ are control coefficients and are used
to control the type of relative preferences and their weight in the model. λθ is the
regularization coefficient and prevents overfitting in the learning process. When α is
set to zero, it assumes that the positive and collaborative item sets are incomparable.
When β is set to zero, it assumes that cases without positive feedback are incompa-
rable, and when γ is set to zero, it tries to use the transitive property of the relative
preference order.

6.3 Ranking Creation 267

Ludewig et al. developed a recommender system approach that can be used for
both personalized search and session-based recommendation to rank hotels based on
the latest user interactions and metadata on available items [42]. In the area of hotel
search and recommendation, the problem of effective recommendations is critical
because the users are either not logged in or are the first users. This means that
adaptation to the users’ goals and preferences can only be based on the recent
interactions observed in the users’ ongoing browsing session. For this purpose, a
combination of Bayesian personalized ranking (BPR) with matrix factorization,
Doc2Vec, and gradient boosting decision trees (GBDT) has been used. To determine
the desired ranking, the problem is considered a pairwise LtR task, and several
features are extracted based on the log data.

A recommender architecture based on a deep neural network called PDLR
(Pairwise Deep Learning to Rank) has been proposed by Zhou et al., in which the
set of items is divided into two groups of positive and negative samples, respectively
[35]. Then, the pairwise comparison between positive and negative samples is
performed to learn the preference degree for each user. PDLR generally includes
embedding, pairwise interaction, attention-aware ranking, and output layers. Spe-
cifically, in the PDLR architecture, the embedding layer can learn the feature
representation for users and items through the average pooling operation, and the
attention-aware ranking layer can determine the importance of each item to the user.

Mayerl et al. were inspired by other research on learning to rank and used a
pairwise model for hit song prediction [80]. This model takes a pair of songs A and B
and predicts whether song A is more popular than song B. For this purpose, a neural
network model is proposed that takes the audio features of two songs as its input and
produces a label as an output that shows whether the first song is more popular than
the second song or not.

DU et al. utilized methods of LtR to recommend future events for a group of users
[39]. The GERF (Group Event Recommendation Framework) analyzes various
contextual influences on the user’s attendance at events and extracts the user’s
preference for the event by considering all contextual influences. Then, the prefer-
ence scores of users in a group are considered learning to rank features for group
preference modeling. In addition, a fast pairwise LtR algorithm, Bayesian group
ranking, is proposed to learn the ranking model for each group.

Two shared memory lock-free parallel SGD schemes are developed by Yagci
et al. for personalized paired LtR to improve its scalability [40]. The authors first
adapted a block partitioning approach to these settings and proposed the PLtR-B

j= 1

(Parallel pairwise LtR with Block partitioning) algorithm. They have shown that the
no-partitioning approach can be applied to paired LtR such as point LtR, and they
have presented the PLtR-N (Parallel pairwise LtR with No partitioning) algorithm.
For shared memory lock-free parallelization of matrix completion, a block
partitioning idea divides a user item preference matrix into multiple sets of
non-overlapping ideal chunks. Then, each processing unit updates a chunk in each
set, thereby enabling parallel processing without using locks. This approach was
originally developed for personalized pointwise LtR scenarios, where updates are
based on the interaction of an item, and in this study, this method is extended to
pairwise LtR.

268 6 Learning to Rank in Session-Based Recommender Systems

6.3.3 Listwise Methods

Listwise approaches treat the ranking problem more naturally than other learning to
rank methods. In particular, it considers ranked lists as samples in learning and
prediction. The group structure of the ranking is preserved, and the ranking evalu-
ation measure can be more directly incorporated into the loss functions. Listwise
approaches take training data as inputs and view labeled data
xi,1, yi,1
()

, . . . , xi,ni , yi,ni
()

associated with qi as samples. A ranking model f(x) is
then learned from the training data that can assign scores to the feature vectors
(documents) and rank the feature vectors using the scores, such that feature vectors
with higher degrees are ranked higher. In fact, in the learning process, it takes ranked
lists of documents as samples and trains a ranking function by minimizing a listwise
loss function based on the predicted and the ground truth lists.

In the field of information retrieval systems, four basic components are formally
defined to describe listwise methods: input, output, hypothesis, and loss function [3].

. The input space of the listwise approach contains a set of documents related to the
query q, e.g., x= xj

{ }m
.

. The output space of the listwise approach consists of a ranked list
(or permutation) of documents. Different types of judgments can be converted
into ground truth labels in terms of ranked lists:

– If the judgment is given as the degree of relevance lj, all permutations that
match the judgment are ground truth permutations. A permutation πy is defined
as consistent with the relevance degree lj, if 8u, v satisfying lu > lv, then
πy(u) < πy(v) is always true. There might be multiple ground truth permuta-
tions in this case. Ωy is used to denote the set of all such permutations.

6.3 Ranking Creation 269

– If the judgment is given as pairwise preferences, then all permutations consis-
tent with the pairwise preferences are ground truth permutations. If the per-
mutation πy is defined according to the degree of relevance lu, v and if 8u,v
lu, v = + 1, then πy(u) < πy(v) is always true. There might be multiple ground
truth permutations in this case. Ωy is used to denote the set of all such
permutations.

– If the judgment is given as the total order of πl, one can simply define πy = πl.

. The hypothesis space contains multivariate functions h that act on a set of
documents and predict their permutations. Hypothesis h is usually implemented
with a scoring function h(x) = sort ∘ f(x). In fact, first, the scoring function f is
used to score each document, and then these documents are sorted in descending
order of scores to create the desired permutation.

. There are two types of loss functions for listwise approaches. For the first type,
the loss function is explicitly related to the evaluation measure (measure-specific
loss function). In the second type, there is no loss function (non-specific loss
function). Sometimes, it is not easy to determine whether a loss function is
listwise or not because some basic components of a listwise loss function may
also be pointwise or pairwise. In [3], three distinct criteria are considered to
distinguish listwise methods from pointwise and pairwise methods:

– A loss function is defined in the listwise method according to all training
documents related to the query.

– A loss function in the listwise method cannot be completely decomposed into
pairs of documents or separate documents.

– A loss function in the listwise method emphasizes the concept of a ranked list,
and the position of the documents is visible because of the final ranking for the
loss function.

According to the loss functions used in the approaches, they can be divided into
two subcategories. For the first category, the loss function is explicitly related to
evaluation measures. It may be the easiest choice to learn the ranking model by
directly optimizing what is used to evaluate the ranking performance. This is
precisely the motivation for the first subcategory of listwise approaches, i.e., direct
optimization methods. Due to the strong relationship between loss functions and
evaluation measures, these algorithms are also referred to as direct optimization
methods. The difficulty of optimizing such functions stems from the fact that most
existing optimization techniques were developed to deal with continuous and dif-
ferentiable issues. To solve this limitation,

1. A continuous and differentiable approximation of the measure-based ranking loss
can be optimized.

2. One can alternately optimize a continuous and differentiable (and sometimes
even convex) bound on the measure-based ranking loss.

3. It is possible to use optimization technologies that can optimize non-smooth
objectives.

{ }
()

270 6 Learning to Rank in Session-Based Recommender Systems

Table 6.4 Components of
listwise approaches

Listwise methods

Input Set of document x= xj
m

j= 1

Output Ranked list πy
Hypothesis Ranking function f X

→

sort ∘ f(x)

Loss function Listwise loss function
L(f ; x, πy)

In the second category of listwise approaches, the loss function is not explicitly
related to evaluation measures. In these methods, the loss function, which is not
based on a specific measure, reflects the inconsistency between the output of the
ranking model and the ground truth permutation.

Table 6.4 shows the components of listwise approaches, separated by input,
output, hypothesis, and related loss function.

Listwise methods in recommender systems use the entire list of items viewed by
users to optimize a listwise ranking loss function or to optimize the probability of
permutations that map items to ranks. Typically, such methods optimize a smooth
estimate of a loss function that measures the distance between the reference lists of
ranked items in the training data and the ranked list of items generated by the
ranking mode.

Next, in Sect. 6.3.3.1, the listwise methods in the field of information retrieval
and, in Sect. 6.3.3.2, the listwise methods in the field of recommender systems are
discussed and reviewed.

6.3.3.1 Listwise Methods in Information Retrieval

One of the listwise methods based on measure-based loss function minimization that
uses measure approximation has been proposed by Qin et al. [43]. The underlying
reason for the non-smoothness of the evaluation measure is that the rank positions
are non-smooth compared to the ranking scores. Therefore, they suggest making
approximations for ranking positions using smooth functions of ranking scores so
that the approximate evaluation measure can be derived and optimized. If the
summation index in the definition of nDCG is changed from existing positions as
a result of ranking to document indexes, nDCG can be defined as Eq. (6.19):

Z - 1
m

X
j

G yj
()

log 1þ π xj
()(ð6:19Þ

π(xj) represents the position of document xj in the ranking list π, which is
calculated based on Eq. (6.20):

() X

()

ð

6.3 Ranking Creation 271

π xj = 1þ
u≠ j

I f xjð Þ- f xuð Þ< 0f g ð6:20Þ

From the above equation, it is clear why the nDCG is non-smooth! In fact, nDCG
is a smooth function of the rank position; however, the rank position is a non-smooth
function of the ranking scores due to the indicator function. The key idea of this
method is to approximate the indicator function with a sigmoid function so that the
position can be approximated with a smooth function of the ranking points:

bπ xj()= 1þ
X
u≠ j

exp - α f xj
()

- f xuð Þ()()
1þ exp - α f xj

()
- f xuð Þ()() ð6:21Þ

By replacing π(xj) in Eq. (6.19) with bπ xj , we can obtain an approximation for
nDCG which is defined by AppNDCG and then define the loss function as (1 -
AppNDCG) according to Eq. (6.22).

L f ; x, yð Þ= 1- Z - 1
m

Xm
j= 1

G yj
()

log 1þ bπ xj()(ð6:22Þ

Xu et al. have proposed a method called AdaRank in which the boosting
algorithm is used to optimize the exponential function of the evaluation measure
[45]. Since the exponential function is monotonic, optimizing the objective function
in AdaRank is equivalent to optimizing the evaluation measure itself. In the con-
ventional AdaBoost algorithm, the exponential loss function is used to update the
input distribution and determine the combined coefficient of weak learners in each
round of iteration. In AdaRank, evaluation measures are used to update the distri-
bution of queries and calculate the combined coefficient of weak rankers. Due to the
similarity of this method with AdaBoost, AdaRank can focus on those hard queries
and gradually minimize 1-E(π, y). E(π, y) represents the evaluation measure.

Assume that S= xi, yið Þf gm i= 1 and the training data are presented as lists of feature
vectors and labels (grade). A ranking model f (x) should be learned on the feature
vector x. Given a new list of objects (feature vectors) x, the learned ranking model
can assign a score to each object. The objects can then be sorted by the scores to
create a π (permutation) ranked list. The evaluation is performed at the list level;
specifically, a listwise evaluation measure is used as E(π, y). In training, a ranking
model is developed that can maximize the accuracy in terms of the listwise evalu-
ation measure in the training data or, equivalently, minimize the loss function
defined in Eq. (6.23).

L fð Þ=
Xm
i= 1

1-E πi, yið Þð Þ 6:23Þ

ð

272 6 Learning to Rank in Session-Based Recommender Systems

where πi is the permutation of the feature vector xi with ranking model f and yi is the
corresponding list of grades. This loss function is not smooth and differentiable, so
simple evaluation optimization may not work. Instead, since exp (-x) ≥ 1- x holds,
we can consider the optimization of an upper bound of the loss function as
Eq. (6.24).

Xm
i= 1

exp -E πi, yið Þð Þ 6:24Þ

Exponential function and logistic function may be used as “surrogate” loss
functions in learning. Note that both functions are continuous, differentiable, and
even convex with respect to E. One of the advantages of AdaRank is its simplicity,
and it is perhaps one of the easiest ways to learn ranking algorithms.

In [46], Cao et al. proposed a listwise method called ListNet, whose loss function
is defined using probability distribution on permutations. Many famous models have
been proposed to represent permutation probability distributions, such as the
Plackett-Luce model or the Mallows model. Since a permutation has a natural one-
to-one correspondence with a ranked list, these methods can be applied to ranking.
ListNet shows exactly how the Plackett-Luce model can be used to learn rankings.
With the Plackett-Luce model, for a given query q, ListNet first defines a permuta-
tion probability distribution based on the scores given by the scoring function f. Then
it defines the probability distribution of another permutation Py(π) based on the
ground truth label. When the ground truth is assumed to be a permutation πy, Py(π)
can be defined as a delta function that takes the value 1 for this permutation only and
0 for all other permutations. It is also possible to first use a mapping function to map
the ground truth permutation positions to real-valued scores and then use Eq. (6.25)
to calculate the probability distribution. The Plackett-Luce model defines a proba-
bility for each possible permutation π of documents, based on the chain rule, as
follows:

P πjsð Þ=
Ym
j= 1

φ sπ- 1 jð Þ
()

Pm
u= 1

φ sπ - 1 uð Þ
() ð6:25Þ

where π-1 (j) represents a document in the jth position of permutation of π and φ is a
transformation function that can be linear, exponential, or sigmoid. For the next step,
ListNet uses the K-L divergence between the probability distribution for the ranking
model and for the ground truth to define its loss function. The K-L divergence loss
function is convex, and a simple gradient descent method can be used for its
optimization. This function is shown in Eq. (6.26):

() ||(
6.3 Ranking Creation 273

L f ; x,Ωy =D Py πð Þ||||P πj f w, xð Þð Þð Þ ð6:26Þ

Although the complexity of ListNet testing can be the same as pointwise and
pairwise approaches due to the use of a scoring function to define the hypothesis, the
complexity of ListNet training is much higher. The complexity of training is an
exponential order of m, because K-L divergence loss for each query q requires the
addition of m-factorial terms. To deal with this problem, a top k version of K-L
divergence loss is introduced in [51], which is based on Plackett-Luce’s top k model
and can reduce the complexity from exponential to polynomial order.

Map search can usually be divided into two sub-domains, both of which deal with
the retrieval and ranking of geospatial entities: The first sub-domain is geocoding, in
which, given a map request, it is the task of finding a distinct spatial entity (e.g., a
place, a road, or an address) that best matches the query. The second sub-domain is
business search, where, given the map query, it finds a ranked list of multiple
business entities that best match the query. Zhang et al. have shown how a powerful
mechanism, such as attention, can be adapted to design advanced learning to rank
(LtR) models for map search [81]. It has been shown that traditional LtR models
based on gradient-boosting decision trees (GBDT) and re-ranking provide the
retrieved results in map search with relatively high accuracy. In this chapter, a fast
attention-based learning to rank learning model is proposed, which uses self-
attention with the ranking model.

This model implements very lightweight two-layer attention, which is more
compatible to the ranking problem. The first attention layer modifies transformer’s
self-attention layer in such a way that it can calculate the function Attention(Q, K, V)
where attention queries (Q) are made only on query terms, while attention keys (K)
and values (V) are calculated on the result. The second attention layer processes the
features of all heterogeneous inputs and implements a listwise inference function,
which shows how users understand the quality of a result in the context of other
potential results.

6.3.3.2 Listwise Methods in Recommender Systems

BPR and TOP1 were introduced in the pairwise methods in Sect. 6.3.2.2, which were
widely used in recommender systems, but they faced a challenge. The gradient
related to the score of a negative sample is the pairwise loss gradient between the
target and the sample divided by the number of negative samples. This means that if
all negative samples are relevant, their updates still decrease as the number of
negative samples increases. To overcome the vanishing of gradients with increasing
number of samples, a new type of listwise loss functions called TOP1-max and
BPR-max has been proposed by Hidasi et al. in [52], whose idea is that the target
score is compared with the most relevant sample score, which is the maximum score
among the samples. The choice of max is not differentiable and cannot be used with
gradient descent. So, softmax scores are used to preserve differentiability, and

softmax transformations are used only in negative examples. The BPR-max function
combines the benefits of pairwise loss, softmax transformation, and score regulari-
zation and is calculated according to Eq. (6.27):

274 6 Learning to Rank in Session-Based Recommender Systems

LBPR- max = - log
XNs

j= 1

sjσ ri - rj
()þ λ

XNs

j= 1

sjrj
2 ð6:27Þ

BPR-max gradient is the weighted average of individual BPR gradients, where
the weights are sjσ(ri- rj). The regularization term is performed with softmax with a
weight of ‘2 regularization to the scores of the negative samples. λ is the regulari-
zation hyperparameter of the loss function.

The TOP1-max loss function is relatively simple. It is not necessary for the
regularization section to be applied only to the maximum negative score, but since
this mode provides the best results, it is kept as such. A continuous approximation to
the maximum choice requires summing the individual loss weighted by the softmax
scores sj. The TOP1-max function is in the form of Eq. (6.28):

LTOP1- max =
XNs

j= 1

sj σ rj - ri
()þ σ rj 2

()() ð6:28Þ

The TOP1-max gradient is the softmax weighted average of the individual
pairwise gradients. If rj is much less than the maximum negative score, the weight
will be almost zero, and more weight will be placed on samples with scores close to
the maximum. This solves the gradient vanishing problem with more samples since
irrelevant samples are simply ignored, while the gradient points toward the gradient
of relevant samples. Of course, if all samples are irrelevant, the gradient approaches
zero, but that’s all right because if the target score is greater than all sample scores,
there’s nothing to learn.

Although, in practical applications, only the top, e.g., top N items, in a ranked list
are of interest, and the lower-ranked rankings in the list are less reliable, most
learning to rank methods optimize the overall rankings of the list. This can poten-
tially reduce the ranking quality of top-ranked items and also have high computa-
tional complexity. For this purpose, Liang et al. introduced a listwise ranking model
for top N recommendations that directly optimizes a weighted top-heavy truncated
ranking objective function, wDCG@N [51]. This model improves the quality of top
N item lists by reducing the influence of lower-ranked items and can handle different
types of implicit feedback. To solve the limitations of DCG, wDCG@N is defined in
[51] as follows:

wDCGu@N =
X
iEI

1 Rui <Nð Þ: wpui 2
yui - 1ð Þ

log Rui þ 2ð Þ ð6:29Þ

6.3 Ranking Creation 275

In Eq. (6.29), 1(Rui < N) is the indicator function that selects N top-rated items
and ignores other items. wpui is the weight of the implicit feedback pui, which models
the importance and reliability of the feedback. The ranking objective function
according to this measure is defined in Eq. (6.30):

L θð Þ= max
θ

X
uEU

wDCGu@N- λ θk k2 2 ð6:30Þ

:k k2 2 represents L2-norm, and λ is the regularization coefficient. Training a
non-smooth objective function like (6.30) is challenging. Hence, it can be replaced
by its smooth approximation. The one-sided nature of ReLU removes the contribu-
tion of lower-ranked items in the objective function. And besides being computa-
tionally simpler, ReLU allows an algorithm with linear computational complexity in
the average number of observed items over all users. The objective function of
Eq. (6.30), which has been transformed into a smooth objective function by applying
the ReLU function, is shown in Eq. (6.31):

Lþ θð Þ= min
θ

-
X
uEU

X
iEIþ

u

h N-Rþ
ui

()
:
wpui 2

yui - 1ð Þ
log Rþ

ui þ 2ð Þ þ λ θk k2 2 ð6:31Þ

Ifada et al. have presented a listwise ranking method for tag-based item recom-
mender systems [53]. This method proposes a new LtR method called Do-Rank by
optimizing the DCG for the recommender system as a ranking measure. This method
creates an optimal list of recommended items from a DCG perspective for all users.
Do-Rank is designed based on a listwise ranking model, which means that the
objective function should be formed based on a list of items from each user-tag
set. In Do-Rank, ru,i,t represents the ranking position of item i for user u with tag t. To
approximate the ranking position of ru,i,t by a smooth function according to the
parameters of the model, the smooth function is used, as shown by Eq. (6.32):

ru,i,t = 1 þ
X
j≠ i

σ Δbyð Þ ð6:32Þ

The function σ is the logistic function, and Δby=byu,i,t -byu,j,t is the difference of
the predicted relevance scores for two items, which is calculated from the
decomposed tensor model. However, in order to implement the listwise model, it
is suggested to use the UTS model. The UTS scheme, based on (u, t) 2 A, interprets
observed and non-observed tagging data and labels of each item as positive, null, or
negative. Positive input items are derived from the observed data, and negative input
items are derived from items not labeled by user u. Using this scheme, the input set
consists of a list of label assignments A labeled with their relevance score yu,i,t and
uses the following rules:

8
276 6 Learning to Rank in Session-Based Recommender Systems

yu, i, t≔
1 if u; i; tð Þ 2 A

- 1 if u; i; tð Þ=2A and i 2 I\ ij u; i; *ð Þ 2 Af g
0 otherwise

<: ð6:33Þ

If ZP = {i| yu,i,t = 1} are positive items derived from observed data and ZN =
{i| yu,i,t = - 1} are negative items derived from unlabeled items by user u, the
objective function is according to Eq. (6.34):

L θð Þ≔
X
uEU

X
tET

X
iEZP

2yu,i,t - 1

1þ log 2

P
jEZN

σ Δbyð Þ
 ! - λθ θk k2 F ð6:34Þ

The gradient descent method is used to optimize this objective function.
Product rating based on online product reviews is the task of inferring relative

user preferences between different products as a type of entity-level sentiment
analysis [82]. Product ranking methods usually consist of two parts: (1) understand-
ing the opinions provided by individual reviews and (2) ranking products based on
overall user preference, which is the weighted sum of user preferences
corresponding to a given category. However, there are some limitations. First, the
sentiments in the comments are simplistically categorized as purely positive or
negative without considering the various sentiments that lie along the spectrum
between these poles. Second, the importance of individual reviews is determined
manually by users or independently through product ratings. This importance
significantly affects how individual reviews are converted into product ratings.
Therefore, there is a need for an integrated approach that extracts distinct informa-
tion from the observed data and puts it into a ranking score using a module. To this
end, Lee et al. have proposed an integrated approach to learn product ratings based
on online product reviews [54]. The LtR technique is used to combine many related
features into a ranking model. To implement this approach, a hierarchical attention
network (HAN), which is a kind of deep neural network, is extended to operate in the
domain of ranking with learning strategies. Hierarchical attention network for
learning to rank (HAN-LTR) consists of an embedding lookup, a word-level atten-
tion-based encoder, a review-level attention-based encoder, a linear layer, and the
ranking loss function. Two ranking functions, RankNet and ListNet, have been used
to build the ranking model. The architecture of HAN-LTR is shown in Fig. 6.7.

6.3.4 Hybrid Methods

Although listwise methods have been shown to perform better in terms of accuracy
than pointwise and pairwise approaches [46], the need to improve the performance
of LtR approaches has prompted researchers to propose hybrid methods. For exam-
ple, Sculley proposed an LtR approach that simultaneously combines pointwise

using linear regression and pairwise with a support vector machine [55]. Two other
hybrid approaches are LambdaRank and LambdaMART, which combine pairwise
with listwise methods [56]. LambdaRank is based on RankNet [26], while
LambdaMART is a boosted LambdaRank tree. Both LambdaMART and
LambdaRank have shown good performance in terms of data retrieval accuracy.

6.3 Ranking Creation 277

Fig. 6.7 The architecture of HAN-LTR [54]

In this section, some important research using hybrid LtR approaches are
discussed and reviewed.

Sadek et al. have presented an effective and efficient method for LtR in the field of
IR, which combines evolutionary strategy (ES) with machine learning techniques
[57]. The proposed method is an ES that creates a vector of weights, each
representing a desirable document feature. Three methods for initializing the weight
vector (chromosome) are addressed in this chapter: ES-Rank simply sets all the
genes of the initial chromosome to the same value. IESR-Rank uses linear regres-
sion, and IESVM-Rank uses a support vector machine for the initialization process.

Pointwise and pairwise approaches have their complementary advantages and
disadvantages, and many studies focus on only one approach and try to reduce their
drawbacks in case-by-case methods. Cinar et al. extended a hybrid pointwise-
pairwise standard paradigm for LtR in the context of personalized recommendations
[58]. For this purpose, a new surrogate loss is introduced, which is an optimal and
adaptive combination of these two approaches, so that the exact balance between
pointwise and pairwise contributions can depend on the particular pair or triplet
instance.

In this method, a learning strategy is proposed in which the model itself can make
the correct decision: which pointwise or pairwise approaches should be adopted for

ð

each triple <u, i, j > ? The surrogate loss presented in this chapter considers that
there is a continuum between pointwise and pairwise approaches, and how to
position the cursor in this continuum should be learned from the data and depend
on the triplet considered. This can be shown using the coefficient γ, which softly
determines the trade-off between pointwise and pairwise rank:

278 6 Learning to Rank in Session-Based Recommender Systems

p i> j uÞ= σ f u, i θÞ- γf u, j θÞjðj Þððjð 6:35Þ

In Eq. (6.35), instead of γ taking only the values [0,1] and being a simple
hyperparameter, it is proposed to be calculated as a learnable function that depends
on the user u and items i and j and called “adaptive mixing function.”

The method presented by D’Amico et al. focuses on the problem of session-based
and context-aware accommodation recommendations in the travel domain [59]. The
purpose of this chapter is to recommend suitable accommodation according to the
traveler’s needs to maximize the chance of changing the direction (click out) to the
booking site, relying on explicit and implicit signals of the user in one session
(clicks, search modification, filter use). For this purpose, they used a session’s
contextual and content features. Contextual features exploit interactions with accom-
modations occurring within a session. For content features, interactions between
sessions or other non-session-related information are considered. The proposed
model relies on gradient boosting for decision trees and combines different methods.
In order to exploit the sequential structure of the problem, a recurrent neural network
has been developed in which each session is represented with a fixed number of
interactions and fed to the network. This network uses TensorFlow ranking, which is
a ranking algorithm published by Google and is able to optimize listwise losses for
ranking.

Although many MF-based methods have performed well in recommender sys-
tems, they cannot effectively learn user and item representations, making them
poorly capable of capturing complex and deeper information about the interaction
between users and items. To solve this problem, and inspired by the great success of
deep learning methods applied to LtR, DeepRank was proposed by Chen et al.
[2]. Instead of predicting rank, DeepRank uses predicted scores. In fact, the proposed
ranking model is reduced from top N listwise to top one listwise, which is a simpler
structure, and then to the simplest possible structure, which is the pairwise learning
method, which is one of the most popular learning to rank methods in recommender
systems.

Considering the user-item rating matrix R, where n is the number of users and
m is the number of items, the interaction matrix Y is defined as Eq. (6.36):

yui =
1, if rui > 0
0, else

{
ð6:36Þ

where yui 2 Y and rui 2 R indicate the rating of user u to item i. The main purpose of
DeepRank is to predict the unrated order of items based on their final score. For this
purpose, the objective function is defined by Eq. (6.37):

6.4 Ranking Aggregation 279

L= f y, byð Þ þ λΩ Θð Þ ð6:37Þ

In the above equation, f(.) is the loss function of the model, y and by are the correct
and predicted labels of the samples, and Ω(Θ) is the regularization function to reduce
overfitting. Due to recent advances in adversarial learning, there is a strong and
continuous interest in investigating how adversarial LtR is performed. Despite the
successes of adversarial methods for LtR, there are still many open issues in this
field. For example, previous methods have focused on optimizing pointwise or
pairwise learning to rank functions or have only investigated how to adapt the
GAN framework for ranking. While GAN has various types, in this regard, Yu
et al. have done an in-depth study of how to perform adversarial learning to LtR by
adapting different adversarial learning frameworks [60].

6.4 Ranking Aggregation

Ranking aggregation is a problem that has been widely studied in various domains,
such as meta-search and image integration. The main purpose of ranking aggregation
is to create an overall ranking from the ranking results of items or alternatives, which
uses multiple ranking functions to find better functions. These methods can be
classified into two categories: score-based methods and order-based methods.

In score-based methods, ranked lists of items are scored separately, and these
scores are used by the ranking aggregation function [61, 62]. On the other hand,
order-based or rank-based methods only use the order of items in separate ranked
lists. These methods are widely used in modern meta-search engines because of their
simplicity and linear time complexity with the number and size of ranked lists. In
some situations, it is difficult to find ranking points; hence, order-based methods
seem to be the best choice because they only use the relative position of the items in
each ranked list and are called position-based methods [34].

Ranking aggregation methods are classified into two categories based on another
approach [86]: supervised and unsupervised learning methods. Supervised learning-
based methods use a training set for ranking. But in methods based on unsupervised
learning, ranking aggregation is created based on distance measures and provides the
possibility of comparing individual rankings with them.

An important field in ranking aggregation is recommender systems. Among
recommender systems, top N recommenders work by recommending the ranking
of N items that can be interesting to the user. They often differ in the rankings of the
items they return to the user, and they provide an opportunity to improve the final
recommendation ranking by aggregating the outputs of different algorithms. The
advantages of using ranking aggregation methods in recommender systems are [83]:

1. Providing more accurate item recommendations to users, taking into account the
different biases of the recommenders

2. Improving the diversity of recommendation rankings

280 6 Learning to Rank in Session-Based Recommender Systems

3. Reducing the impact of items imprecisely placed in high positions by a
recommender

In the following subsections, ranking aggregation methods in the scope of
information retrieval and recommender systems will be discussed.

6.4.1 Ranking Aggregation Methods in Information Retrieval

One of the first approaches in ranking aggregation is the Borda count, which is based
on the unsupervised method for ranking aggregation suggested by Aslam and
Montague in the meta-search [61]. The Borda count ranks a fixed set of c candidates
in the order of preference for each voter. For each voter, the top-ranked candidate is
given c points, the second-ranked candidate is given c-1 points, and so on. If a
number of candidates are left unranked by the voter, the remaining points are divided
equally among the unranked candidates. Candidates are ranked in the order of total
points, and the candidate who gets the most points wins the election.

The Borda count finalizes the ranking of documents based on their position in the
base ranking. More precisely, in the final ranking, the documents are sorted
according to the number of documents that rank below them. If a document ranks
high in many base rankings, it will also rank high in the final ranking list.

Unsupervised ranking aggregation methods use majority voting in their final
ranking decisions. In fact, the methods treat all primary ranking lists equally and
assign high scores to documents that rank high in most primary ranking lists. For
example, in meta-search, ranking lists produced by different search engines may
have different accuracy and reliability. One might want to learn the weights of the
primary ranking lists. Supervised learning methods such as cranking proposed by
Lebanon and Lafferty can solve the problem [63]. This method uses the probabilistic
model of Eq. (6.38):

P πjθ,
X()

=
1

Z θ,
Pð Þ exp

Xk
j= 1

θj: d π, σj
() !

ð6:38Þ

In Eq. (6.38), π is the final ranking, ∑ = (σ1, . . ., σk) is the basic ranking, d is the
distance between two rankings, and θ is the weight parameters. For example, d can
be calculated based on Kendal’s tau. Maximum likelihood estimation can be used to
learn model parameters. If the final ranking and base rankings are all complete
ranking lists in the training data, the log-likelihood function is calculated as
Eq. (6.39):

 !
6.4 Ranking Aggregation 281

L θð Þ= log
Ym
i= 1

P πijθ,
X

i

()
=
Xm
i= 1

log

exp
Pk
j= 1

θj:d πi, σi,j
()

P
πiEΠ

exp
Pk
j= 1

θj:d πi, σi,j
() ð6:39Þ

In the above relation, πi represents partial lists.
Liang et al. focused on combining ranked lists of documents that are retrieved in

response to a query, and based on this, they proposed multiple learning aggregation
approaches, ManX and v-ManX, which are based on the cluster hypothesis and
exploit inter-document similarity information [65]. ManX is a new manifold-based
data fusion approach that (1) is based on the generic data fusion method X and
(2) allows similar documents to support each other by using inter-document simi-
larities in a global manifold of fused documents. To further improve rank aggrega-
tion performance, a virtual adversarial manifold learning algorithm, v-ManX, and an
efficient version that uses anchor documents, a-v-ManX, are proposed. The pro-
posed virtual adversarial multiple learning algorithms first create a virtual adversarial
document for each original document and then regularize the model to produce the
same output distribution model according to the document they produce in the
adversarial perturbation.

Instance search is a less studied subject in the information retrieval domain,
described as a search in which a new set of results is returned for each keystroke.
If the goal is to provide a wide range of results in a single list beyond lexical matches,
implementing a robust instant search service presents several challenges, including
combining results for a given search term when there are multiple matches (lexical,
semantic, etc.) or preventing ancillary matches from ranking higher than logical
matches when there are multiple candidate sources. In this regard, Rome et al. have
proposed a solution to solve these challenges in a real platform (Xfinity) that has
millions of users [67]. The presented method consists of three stages: candidate
generation, availability filtering, and re-ranking of key components. In the candidate
generation stage, asynchronous calls are established with multiple indices. Then, the
candidates are filtered based on the item’s availability to the user. In the next step, the
results are combined into a single list through a heuristic method and then sent to the
re-ranking stage. The re-ranking stage consists of two deep learning models com-
bining different candidate lists and fine-tuning the user results. In the final stage of
the pipeline, business logic is applied to create the final ranking and to respect the
product requirements.

Motivated by the fact that current ranking aggregation methods are feature-
unaware or sensitive to noisy features, Chiang et al. proposed a new rank aggrega-
tion model that learns rank scores from features and comparisons simultaneously
[68]. In this method, the ranking is estimated by balancing between pairwise
comparisons and feature information (Rank Aggregation by Balancing Feature,
RABF). One of the highlights of this model is its improved sample complexity
guarantee. Sample complexity analysis for ranking aggregation has recently

attracted more attention intending to study the number of comparisons required to
ensure ranking accuracy.

282 6 Learning to Rank in Session-Based Recommender Systems

To reduce the computational complexity of global ranking learning, a common
method is to use rank breaking. In rank breaking, the collected ordinal data are first
transformed into a bag of pairwise comparisons, ignoring the dependencies in the
original data. It is then processed through existing inference algorithms designed for
independent pairwise comparisons, hoping that the dependence on the input data
does not cause bias. This idea is one of the main motivations in several approaches
that are used in learning to rank from pairwise comparisons. However, it has been
shown that such a heuristic of full rank breaking, where all pairs are weighted and
treated equally, leads to estimation bias. The key idea to produce accurate and
unbiased estimates is to treat pairwise comparisons unequally, depending on the
topology of the collected data. For this purpose, Khetan et al. have investigated how
the accuracy depends on the topology of the data and the weights of pairwise
comparisons [66].

6.4.2 Ranking Aggregation Methods in Recommender
Systems

A number of ranking aggregation methods have been presented in the field of
recommender systems. Tulio et al. presented a hybrid recommendation algorithm
that aggregates the results of different input recommendation algorithms to improve
the accuracy, novelty, and diversity of rankings [69]. Aggregation is performed
using a weighted linear combination of the items returned by the recommendation
algorithms. The weights are optimized by an evolutionary algorithm following a
Pareto-efficient multi-objective setting that considers the accuracy, novelty, and
diversity of ranking aggregation. Indeed, the overemphasis on the accuracy of the
recommendations can cause information over-specialization and make recommen-
dations boring and even predictable. Novelty and diversity are two useful solutions
to these problems, which have recently been studied by Jafari and Ravanmehr
[84, 85].

Following evolutionary approaches, papers [70] and [71] proposed rank aggre-
gation methods to combine rankings generated by top N recommendation algo-
rithms. Oliveira et al. proposed ERA (evolutionary rank aggregation), which uses
genetic programming (GP) to evolve a population of aggregation functions (indi-
viduals) [70]. These functions are used to assign scores to the items in the input
ranking, and then by sorting the items according to their scores, the ranking is
aggregated.

Silva et al. used a genetic algorithm (GA) to combine different rankings from
memory-based collaborative filtering [71]. The strategy behind the proposed GA
consists of building a structure for each user that is used to select the items that form
the ranking aggregation. The proposed GA establishes a structure that determines

how many items should be selected from each input ranking to aggregate the
ranking.

6.5 Discussion 283

One of the possible approaches for ranking aggregation is to aggregate the
ranking to produce a single-criteria matrix and thus create a ranking list. This
approach hides important details in the ranking of each criterion. Abderrahmane
et al. proposed a three-stage hybrid ranking order for multi-criteria recommender
systems that uses rank aggregation [72]. This system generates a partial ranking list
using learning to rank and then generates a final ranked list using rank aggregation.
This method is considered a movie recommender system, and for each movie, the
criteria of actor, director, story, and visual are used, and it uses many useful ranking
methods to reach the final ranked list. In the first step of this method (matrix
decomposition), the multi-criteria user-item matrix is decomposed into N single-
rating user-item matrix according to the number of criteria in the system. Hence, five
single-rating user-item matrices are obtained. In the second step (learning to rank),
one of the LtR methods is applied in each matrix separately to find partially ranked
lists. For this purpose, a matrix factorization based listwise method is used to sort the
items for each matrix separately and minimizes an error function that represents the
uncertainty between the input training list and the resulting output list. In the third
stage (rank aggregation), it ranks the partially ranked lists using rank aggregation.
The proposed framework of [72] is shown in Fig. 6.8.

Zhao et al. consider video recommendation as a ranking problem and create
multiple ranking lists by exploring different information sources [73]. For this
purpose, a multi-task rank aggregation approach is proposed to integrate the ranking
lists for different users in a joint mode. The proposed approach organizes related data
according to information sources about users, including profiles, viewing history,
and information available on social networks, as well as video information. After
creating several video ranking lists using different data sources, the next task is to
aggregate these video lists into an optimized video list so that the best ones can be
recommended to users. A score-based approach is used here, i.e., the ranking lists are
combined according to the ranking scores of each video instead of their ranking
positions.

6.5 Discussion

Learning to rank methods are based on machine learning techniques in ranking
results in different domains, most notably in information retrieval and recommender
systems. These methods are classified into three general categories: pointwise,
pairwise, and listwise.

Pointwise methods are usually defined based on classification [9–12], regression
[7, 8], or ordinal regression [13–15, 17]. Pointwise methods are also used in the field
of recommender systems to rank the results [19, 20]. Instead of focusing on the
personalized ranking of a set of items, pointwise methods only focus on predicting
the exact ranking of an item. Users tend to pay more attention to an item’s ranking

284 6 Learning to Rank in Session-Based Recommender Systems

F
ig
. 6

.8

T
he
 p
ro
po

se
d
fr
am

ew
or
k
of
 [
72
]

order than its rating. For example, when a user wants to watch a movie online, he
often cares less about its rating and chooses the movie at the top of the recommended
list. Compared to other methods, pointwise approaches do not consider the depen-
dencies between documents; therefore, the position of a document in the final
ranking list is not visible to their loss function. Therefore, the pointwise loss function
may overemphasize unimportant documents (documents that rank low in the final
ranking list and therefore do not affect user experiences) [3].

6.5 Discussion 285

In fact, the advantages of pointwise ranking are twofold. First, the pointwise
ranking is calculated separately based on each query-document pair (q), which
makes it simple and easy to scale. Second, the outputs of the neural models learned
with the pointwise loss function often have real values in practice. For example, in
sponsored search, a model learned with cross-entropy loss and click-through rate can
directly predict the probability of a user clicking on search ads, which is more
important than creating a good result list in some application scenarios. However,
in general, the use of pointwise ranking in ranking operations is actually less
effective. Since pointwise loss functions do not consider any document preference
or ordered information, they are not guaranteed to produce the best-ranked list with
minimum model loss. Therefore, effective ranking paradigms that directly optimize
document ranking based on pairwise and listwise loss functions have often been
proposed for LtR problems.

The pairwise approach does not focus on accurately predicting the degree of
relevance of each document, but rather the relative order between two documents,
and is closer to the concept of “ranking” than the pointwise approach. In the pairwise
approach, ranking is usually reduced to classification over pairs of documents,
determining which document is preferred in a pair. This classification differs from
the classification in the pointwise approach because it operates on both documents
under review. The proposed pairwise ranking learning approaches have different
types, some of which utilize neural networks [34], perceptrons [31], boosting [33],
SVM [29], and other machine learning methods [28, 30]. It is worth mentioning that
pairwise methods are widely used in the field of session-based recommender system
[36–38].

However, pairwise methods have two major problems: (1) They only consider the
relative order of two items, not the position of the items in the proposed list. As a
result, items at the top of the suggested list are more important than items at the
bottom. If the items at the top are evaluated incorrectly, the ranking cost is signif-
icantly higher than the items at the bottom. (2) The number of relevant items varies
widely among different users. After converting to item pairs, some users have
hundreds of corresponding item pairs. While others have only tens of pairs of
corresponding items, it is difficult to evaluate the performance of the models.

Ideally, when pairwise ranking loss is minimized, all preference relations between
documents should be satisfied, and the model will produce the optimal result list for
each query. This makes pairwise ranking objectives effective in many tasks where
system performance is evaluated based on the ranking of relevant documents.
However, in practice, optimizing document preferences in pairwise methods does
not always improve the final ranking measure for two reasons: (1) It is impossible to

develop a ranking model that can correctly predict document preferences in all cases,
and (2) not all document pairs are equally important in the computation of most
existing ranking measures. This means that the prediction performance of pairwise
preference is not equal to the performance of the final retrieval results as a list.

286 6 Learning to Rank in Session-Based Recommender Systems

Listwise approaches deal with the ranking problem more naturally than other
learning to rank methods. In particular, it considers ranked lists as examples of the
learning and prediction process. The group structure of the ranking is preserved, and
the ranking evaluation measure can be more directly incorporated into the loss
functions. Different listwise methods have been proposed for information retrieval,
such as [43, 45–50, 81], and some of them have been utilized in the scope of
recommender systems, such as [52–54].

Note that for the listwise approach, the output space that facilitates the learning
process is exactly the output space of the problem. In this regard, the theoretical
analysis of the listwise approach can have a more direct value for understanding the
real ranking problem than other approaches in which there is a mismatch between the
output spaces. This feature facilitates learning and the actual output space of the
problem.

While listwise ranking objectives are usually more effective than pairwise rank-
ing objectives, their high computational cost often limits their applications. In fact,
these methods are suitable for the re-ranking stage in a small set of candidate
documents. Since many practical search systems now use neural network models
to re-rank documents, listwise ranking objectives have become increasingly popular
in neural ranking frameworks.

6.6 Conclusion

Learning to rank (LtR) has emerged in recent years based on a combination of
machine learning and information retrieval. Learning to rank uses machine learning
methods to rank the results and solve a different problem than the classic recom-
mender problem of predicting ratings. Ranking models and algorithms help recom-
mender systems arrange the items of the list of recommendations in the most optimal
state possible. The important challenges in this field are related to ranking creation
and ranking aggregation.

Ranking creation is related to the automatic construction of the ranking model
using machine learning methods. In this chapter, we mainly introduced four
approaches to ranking creation: pointwise, pairwise, listwise, and hybrid. The
pointwise approach reduces ranking to regression, classification, or ordinal regres-
sion on every single item. The pairwise approach formulates ranking as a pairwise
classification problem. The listwise approach, which regards ranking as a new
problem, tries to directly optimize the non-smooth IR evaluation measures or to
minimize listwise ranking losses. To improve the performance, researchers proposed
hybrid LtR approaches.

References 287

Ranking aggregation combines multiple rankings into a single ranking and
creates an overall ranking from the ranking results of items.

References

1. Hang Li. "Learning to rank for information retrieval and natural language processing." Synthesis
lectures on human language technologies 7, no. 3 (2014): 1-121. https://doi.org/10.1007/978-3-
031-02155-8

2. Ming Chen, and Xiuze Zhou. "DeepRank: Learning to rank with neural networks for recom-
mendation." Knowledge-Based Systems 209 (2020): 106478. https://doi.org/10.1016/j.knosys.
2020.106478

3. Tie-Yan Liu. "Learning to Rank for Information Retrieval.", Springer Berlin Heidelberg, 2011.
https://doi.org/10.1007/978-3-642-14267-3

4. Chengxiang Zhai, and John Lafferty. "A study of smoothing methods for language models
applied to information retrieval." ACM Transactions on Information Systems (TOIS) 22, no.
2 (2004): 179-214. https://doi.org/10.1145/984321.984322

5. Kim Falk. Practical recommender systems. Simon and Schuster, 2019.
6. Meike Zehlike, Ke Yang, and Julia Stoyanovich. "Fairness in ranking, part ii: Learning-to-rank

and recommender systems." ACM Computing Surveys 55, no. 6 (2022): 1-41. https://doi.org/
10.1145/3533380

7. David Cossock, and Tong Zhang. "Subset ranking using regression." In Learning Theory: 19th
Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006.
Proceedings 19, pp. 605-619. Springer Berlin Heidelberg, 2006. https://doi.org/10.1007/
11776420_44

8. Norbert Fuhr. "Optimum polynomial retrieval functions based on the probability ranking
principle." ACM Transactions on Information Systems (TOIS) 7, no. 3 (1989): 183-204.
https://doi.org/10.1145/65943.65944

9. Ramesh Nallapati. "Discriminative models for information retrieval." In Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in information
retrieval, Sheffield, United Kingdom, July 25-29, 2004, pp. 64-71. https://doi.org/10.1145/
1008992.1009006

10. Fredric C. Gey. "Inferring probability of relevance using the method of logistic regression." In
Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Dublin, Ireland, July 3-6, 1994, pp. 222-231. https://doi.
org/10.1007/978-1-4471-2099-5_23

11. Ping Li, Qiang Wu, and Christopher Burges. "Mcrank: Learning to rank using multiple
classification and gradient boosting." Advances in neural information processing systems
20 (2007).

12. Adriano A. Veloso, Humberto M. Almeida, Marcos A. Gonçalves, and Wagner Meira
Jr. "Learning to rank at query-time using association rules." In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information retrieval,
pp. 267-274. 2008. https://doi.org/10.1145/1390334.1390381

13. Koby Crammer, and Yoram Singer. "Pranking with ranking." In Proceedings of the 14th
International Conference on Neural Information Processing Systems: Natural and Synthetic,
pp. 641-647. 2001.

14. Edward F. Harrington. "Online ranking/collaborative filtering using the perceptron algorithm."
In Proceedings of the 20th International Conference on Machine Learning (ICML-03),
pp. 250-257. 2003.

15. Amnon Shashua, and Anat Levin. "Ranking with large margin principle: Two approaches."
Advances in neural information processing systems 15 (2002).

https://doi.org/10.1007/978-3-031-02155-8
https://doi.org/10.1007/978-3-031-02155-8
https://doi.org/10.1016/j.knosys.2020.106478
https://doi.org/10.1016/j.knosys.2020.106478
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1145/984321.984322
https://doi.org/10.1145/3533380
https://doi.org/10.1145/3533380
https://doi.org/10.1007/11776420_44
https://doi.org/10.1007/11776420_44
https://doi.org/10.1145/65943.65944
https://doi.org/10.1145/1008992.1009006
https://doi.org/10.1145/1008992.1009006
https://doi.org/10.1007/978-1-4471-2099-5_23
https://doi.org/10.1007/978-1-4471-2099-5_23
https://doi.org/10.1145/1390334.1390381

288 6 Learning to Rank in Session-Based Recommender Systems

16. Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. "Reinforcement learning to
rank in e-commerce search engine: Formalization, analysis, and application." In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 368-377. 2018. https://doi.org/10.1145/3219819.3219846

17. Jason DM Rennie, and Nathan Srebro. "Loss functions for preference levels: Regression with
discrete ordered labels." In Proceedings of the IJCAI multidisciplinary workshop on advances
in preference handling, Palo Alto, California, USA, March 21–23, 2005, vol. 1, AAAI Press,
Menlo Park, CA, 2005.

18. Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. "Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts." In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, London,
United Kingdom, August 19 - 23, 2018, pp. 1930-1939. https://doi.org/10.1145/3219819.
3220007

19. Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee
Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. "Recommending what
video to watch next: a multitask ranking system." In Proceedings of the 13th ACM Conference
on Recommender Systems, pp. 43-51. 2019. https://doi.org/10.1145/3298689.3346997

20. Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. "Progressive layered extraction
(ple): A novel multi-task learning (mtl) model for personalized recommendations." In Pro-
ceedings of the 14th ACM Conference on Recommender Systems, Brazil, September 22-26,
2020, pp. 269-278. https://doi.org/10.1145/3383313.3412236

21. Ayan Sinha, David F. Gleich, and Karthik Ramani. "Deconvolving feedback loops in recom-
mender systems." Advances in neural information processing systems 29 (2016).

22. Nengjun Zhu, Jian Cao, Xinjiang Lu, and Qi Gu. "Leveraging pointwise prediction with
learning to rank for top-N recommendation." World Wide Web 24 (2021): 375-396. https://
doi.org/10.1007/s11280-020-00846-3

23. Christopher Burges, Robert Ragno, and Quoc Le. "Learning to rank with nonsmooth cost
functions." Advances in neural information processing systems 19 (2006).

24. Ralf Herbrich, Obermayer, K., Graepel, T. "Large margin rank boundaries for ordinal
regression". In: Advances in Large Margin Classifiers (2000).

25. Thorsten Joachims. "Optimizing search engines using clickthrough data." In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
Edmonton Alberta, Canada, July 23-26, 2002, pp. 133-142. https://doi.org/10.1145/775047.
775067

26. Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. "Learning to rank using gradient descent." In Proceedings of the 22nd international
conference on Machine learning, Bonn, Germany, August 7-11, 2005, pp. 89-96. https://doi.
org/10.1145/1102351.1102363

27. Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong. "High accuracy
retrieval with multiple nested ranker." In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, Seattle, USA, August
6-11, 2006, pp. 437-444. https://doi.org/10.1145/1148170.1148246

28. Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. "Frank: a ranking
method with fidelity loss." In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, Amsterdam, Netherlands,
July 23-27, 2007, pp. 383-390. https://doi.org/10.1145/1277741.1277808

29. Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon. "Adapting
ranking SVM to document retrieval." In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, Seattle, USA, August
6-11, 2006, pp. 186-193. https://doi.org/10.1145/1148170.1148205

30. Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, and Gordon Sun.
"A general boosting method and its application to learning ranking functions for web search."
Advances in neural information processing systems 20 (2007).

https://doi.org/10.1145/3219819.3219846
https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3298689.3346997
https://doi.org/10.1145/3383313.3412236
https://doi.org/10.1007/s11280-020-00846-3
https://doi.org/10.1007/s11280-020-00846-3
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1277741.1277808
https://doi.org/10.1145/1148170.1148205

References 289

31. Libin Shen, and Aravind K. Joshi. "Ranking and reranking with perceptron." Machine Learning
60 (2005): 73-96. https://doi.org/10.1007/s10994-005-0918-9

32. Massih Reza Amini, Tuong Vinh Truong, and Cyril Goutte. "A boosting algorithm for learning
bipartite ranking functions with partially labeled data." In Proceedings of the 31st annual
international ACM SIGIR conference on research and development in information retrieval,
Singapore, July 20 -24, 2008, pp. 99-106. https://doi.org/10.1145/1390334.1390354

33. Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. "An efficient boosting algorithm
for combining preferences." Journal of machine learning research 4, no. Nov (2003): 933-969.

34. Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. "Effective rank aggregation for
metasearching." Journal of Systems and Software 84, no. 1 (2011): 130-143. https://doi.org/10.
1016/j.jss.2010.09.001

35. Wang Zhou, Yujun Yang, Yajun Du, and Amin Ul Haq. "Pairwise deep learning to rank for
top-N recommendation." Journal of Intelligent & Fuzzy Systems 40, no. 6 (2021): 10969-
10980. https://doi.org/10.3233/JIFS-202092

36. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. "BPR:
Bayesian personalized ranking from implicit feedback." In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, Montreal Quebec, Canada, June 18 -
21, 2009, pp. 452-461.

37. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In Proceedings International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016. https://doi.org/
10.48550/arXiv.1511.06939

38. Hongzhi Liu, Zhonghai Wu, and Xing Zhang. "CPLR: Collaborative pairwise learning to rank
for personalized recommendation." Knowledge-Based Systems 148 (2018): 31-40. https://doi.
org/10.1016/j.knosys.2018.02.023

39. Yulu Du, Xiangwu Meng, Yujie Zhang, and Pengtao Lv. "GERF: A group event recommen-
dation framework based on learning-to-rank." IEEE Transactions on Knowledge and Data
Engineering 32, no. 4 (2019): 674-687. https://doi.org/10.1109/TKDE.2019.2893361

40. Murat Yagci, Tevfik Aytekin, and Fikret Gurgen. "On parallelizing SGD for pairwise learning
to rank in collaborative filtering recommender systems." In Proceedings of the Eleventh ACM
Conference on Recommender Systems, Como, Italy, August 27-31, 2017. pp. 37-41. https://doi.
org/10.1145/3109859.3109906

41. Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and Pheng Ann Heng.
"Personalized Re-ranking with Item Relationships for E-commerce." In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, Ireland, October
19-23, 2020, pp. 925-934. https://doi.org/10.1145/3340531.3412332

42. Malte Ludewig, and Dietmar Jannach. "Learning to rank hotels for search and recommendation
from session-based interaction logs and meta data." In Proceedings of the Workshop on ACM
Recommender Systems Challenge, Copenhagen, Denmark, September 20, 2019, pp. 1-5.
https://doi.org/10.1145/3359555.3359561

43. Tao Qin, Tie-Yan Liu, and Hang Li. "A general approximation framework for direct optimiza-
tion of information retrieval measures." Information retrieval 13 (2010): 375-397. https://doi.
org/10.1007/s10791-009-9124-x

44. Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis, and Georg
Martius. "Optimizing rank-based metrics with blackbox differentiation." In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, June 14-19,
2020 pp. 7620-7630.

45. Jun Xu, and Hang Li. "Adarank: a boosting algorithm for information retrieval." In Proceedings
of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, Amsterdam, Netherlands, July 23-27, 2007, pp. 391-398. https://doi.org/
10.1145/1277741.1277809

46. Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. "Learning to rank: from
pairwise approach to listwise approach." In Proceedings of the 24th international conference

https://doi.org/10.1007/s10994-005-0918-9
https://doi.org/10.1145/1390334.1390354
https://doi.org/10.1016/j.jss.2010.09.001
https://doi.org/10.1016/j.jss.2010.09.001
https://doi.org/10.3233/JIFS-202092
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1016/j.knosys.2018.02.023
https://doi.org/10.1016/j.knosys.2018.02.023
https://doi.org/10.1109/TKDE.2019.2893361
https://doi.org/10.1145/3109859.3109906
https://doi.org/10.1145/3109859.3109906
https://doi.org/10.1145/3340531.3412332
https://doi.org/10.1145/3359555.3359561
https://doi.org/10.1007/s10791-009-9124-x
https://doi.org/10.1007/s10791-009-9124-x
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809

290 6 Learning to Rank in Session-Based Recommender Systems

on Machine learning, Corvallis, USA, June 20-24, 2007, pp. 129-136. https://doi.org/10.1145/
1273496.1273513

47. Robin Swezey, Aditya Grover, Bruno Charron, and Stefano Ermon. "Pirank: Scalable learning
to rank via differentiable sorting." Advances in Neural Information Processing Systems
34 (2021): 21644-21654.

48. Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen. "Setrank:
Learning a permutation-invariant ranking model for information retrieval." In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, China, July 25-30, 2020, pp. 499-508. https://doi.org/10.1145/3397271.3401104

49. Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. "Deep metric learning to rank."
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Long
Beach, CA, USA, June 16-17, 2019, pp. 1861-1870.

50. Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. "Learning a deep listwise context
model for ranking refinement." In The 41st international ACM SIGIR conference on research &
development in information retrieval, pp. 135-144. 2018. https://doi.org/10.1145/3209978.
3209985

51. Junjie Liang, Jinlong Hu, Shoubin Dong, and Vasant Honavar. "Top-N-rank: A scalable list-
wise ranking method for recommender systems." In 2018 IEEE International Conference on Big
Data (Big Data), Seattle, WA, USA, December 10-13, 2018, pp. 1052-1058. https://doi.org/10.
1109/BigData.2018.8621994

52. Balázs Hidasi, and Alexandros Karatzoglou. "Recurrent neural networks with top-k gains for
session-based recommendations." In Proceedings of the 27th ACM international conference on
information and knowledge management, Torino Italy October 22 - 26, 2018, pp. 843-852.
https://doi.org/10.1145/3269206.3271761

53. Noor Ifada, and Richi Nayak. "Do-rank: DCG optimization for learning-to-rank in tag-based
item recommendation systems." In Advances in Knowledge Discovery and Data Mining: 19th
Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015,
Proceedings, Part II 19, pp. 510-521. https://doi.org/10.1007/978-3-319-18032-8_40

54. Ho-Chang Lee, Hae-Chang Rim, and Do-Gil Lee. "Learning to rank products based on online
product reviews using a hierarchical deep neural network." Electronic Commerce Research and
Applications 36 (2019): 100874. https://doi.org/10.1016/j.elerap.2019.100874

55. David Sculley. "Combined regression and ranking." In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, Washington, USA, July
25-28, 2010 pp. 979-988. https://doi.org/10.1145/1835804.1835928

56. Christopher JC. Burges. "From ranknet to lambdarank to lambdamart: An overview." Learning
11, no. 23-581 (2010): 81.

57. Osman Ali Sadek Ibrahim, and Dario Landa-Silva. "An evolutionary strategy with machine
learning for learning to rank in information retrieval." Soft Computing 22 (2018): 3171-3185.
https://doi.org/10.1007/s00500-017-2988-6

58. Yagmur Gizem Cinar, and Jean-Michel Renders. "Adaptive pointwise-pairwise learning-to-
rank for content-based personalized recommendation." In Proceedings of the 14th ACM
Conference on Recommender Systems, Brazil, September 22 - 26, 2020, pp. 414-419. https://
doi.org/10.1145/3383313.3412229

59. Edoardo D'Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico
Parroni, Federico Piccinini, Alberto Rossettini, Alessio Russo Introito, Cesare Bernardis, and
Maurizio Ferrari Dacrema. "Leveraging laziness, browsing-pattern aware stacked models for
sequential accommodation learning to rank." In Proceedings of the Workshop on ACM
Recommender Systems Challenge, Copenhagen, Denmark, September 20, 2019, pp. 1-5.
https://doi.org/10.1145/3359555.3359563

60. Hai-Tao Yu, Rajesh Piryani, Adam Jatowt, Ryo Inagaki, Hideo Joho, and Kyoung-Sook Kim.
"An in-depth study on adversarial learning-to-rank." Information Retrieval Journal 26, no.
1 (2023): 1. https://doi.org/10.1007/s10791-023-09419-0

https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1109/BigData.2018.8621994
https://doi.org/10.1109/BigData.2018.8621994
https://doi.org/10.1145/3269206.3271761
https://doi.org/10.1007/978-3-319-18032-8_40
https://doi.org/10.1016/j.elerap.2019.100874
https://doi.org/10.1145/1835804.1835928
https://doi.org/10.1007/s00500-017-2988-6
https://doi.org/10.1145/3383313.3412229
https://doi.org/10.1145/3383313.3412229
https://doi.org/10.1145/3359555.3359563
https://doi.org/10.1007/s10791-023-09419-0

References 291

61. Javed A. Aslam, and Mark Montague. "Models for metasearch." In Proceedings of the 24th
annual international ACM SIGIR conference on Research and development in information
retrieval, New Orleans Louisiana, USA, pp. 276-284. 2001. https://doi.org/10.1145/383952.
384007

62. Christopher C. Vogt, and Garrison W. Cottrell. "Fusion via a linear combination of scores."
Information retrieval 1, no. 3 (1999): 151-173. https://doi.org/10.1023/A:1009980820262

63. Guy Lebanon, and John Lafferty. "Cranking: Combining rankings using conditional probability
models on permutations." In ICML, vol. 2, pp. 363-370. 2002.

64. Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. "Rank aggregation
methods for the web." In Proceedings of the 10th international conference on World Wide
Web, Hong Kong, May 1 - 5, 2001, pp. 613-622. https://doi.org/10.1145/371920.372165

65. Shangsong Liang, Ilya Markov, Zhaochun Ren, and Maarten de Rijke. "Manifold learning for
rank aggregation." In Proceedings of the 2018 World Wide Web Conference, Lyon, France,
April 23 - 27, 2018, pp. 1735-1744. https://doi.org/10.1145/3178876.3186085

66. Ashish Khetan, and Sewoong Oh. "Data-driven rank breaking for efficient rank aggregation." In
International Conference on Machine Learning, pp. 89-98. PMLR, 2016.

67. Scott Rome, Sardar Hamidian, Richard Walsh, Kevin Foley, and Ferhan Ture. "Learning to
Rank Instant Search Results with Multiple Indices: A Case Study in Search Aggregation for
Entertainment." In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid, Spain, July 11-15, 2022, pp. 3412-3416.
https://doi.org/10.1145/3477495.3536334

68. Kai-Yang Chiang, Cho-Jui Hsieh, and Inderjit Dhillon. "Rank aggregation and prediction with
item features." In Artificial Intelligence and Statistics, pp. 748-756. PMLR, 2017.

69. Marco Tulio Ribeiro, Nivio Ziviani, Edleno Silva De Moura, Itamar Hata, Anisio Lacerda, and
Adriano Veloso. "Multiobjective pareto-efficient approaches for recommender systems." ACM
Transactions on Intelligent Systems and Technology (TIST) 5, no. 4 (2014): 1-20. https://doi.
org/10.1145/2629350

70. Samuel Oliveira, Victor Diniz, Anisio Lacerda, and Gisele L. Pappa. "Evolutionary rank
aggregation for recommender systems." In 2016 IEEE Congress on Evolutionary Computation
(CEC), Vancouver, BC, Canada, July 24-29, 2016, pp. 255-262. https://doi.org/10.1109/CEC.
2016.7743803

71. Edjalma Queiroz da Silva, Celso G. Camilo-Junior, Luiz Mario L. Pascoal, and Thierson
C. Rosa. "An evolutionary approach for combining results of recommender systems techniques
based on collaborative filtering." Expert Systems with Applications 53 (2016): 204-218. https://
doi.org/10.1016/j.eswa.2015.12.050

72. Abderrahmane Kouadria, Omar Nouali, and Mohammad Yahya H. Al-Shamri. "A multi-criteria
collaborative filtering recommender system using learning-to-rank and rank aggregation."
Arabian Journal for Science and Engineering 45 (2020): 2835-2845. https://doi.org/10.1007/
s13369-019-04180-3

73. Xiaojian Zhao, Guangda Li, Meng Wang, Jin Yuan, Zheng-Jun Zha, Zhoujun Li, and Tat-Seng
Chua. "Integrating rich information for video recommendation with multi-task rank aggrega-
tion." In Proceedings of the 19th ACM international conference on Multimedia, Scottsdale,
USA, November 28-December 1, 2011, pp. 1521-1524. https://doi.org/10.1145/2072298.
2072055

74. Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. "LETOR: A benchmark collection for research on
learning to rank for information retrieval." Information Retrieval 13 (2010): 346-374. https://
doi.org/10.1007/s10791-009-9123-y

75. Olivier Chapelle, and Yi Chang. "Yahoo! learning to rank challenge overview." In Proceedings
of the learning to rank challenge, pp. 1-24. PMLR, 2011.

76. Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. "Unbiased learning to
rank with unbiased propensity estimation." In The 41st international ACM SIGIR conference on
research & development in information retrieval, USA, July 8 - 12, 2018, pp. 385-394. https://
doi.org/10.1145/3209978.3209986

https://doi.org/10.1145/383952.384007
https://doi.org/10.1145/383952.384007
https://doi.org/10.1023/A:1009980820262
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/3178876.3186085
https://doi.org/10.1145/3477495.3536334
https://doi.org/10.1145/2629350
https://doi.org/10.1145/2629350
https://doi.org/10.1109/CEC.2016.7743803
https://doi.org/10.1109/CEC.2016.7743803
https://doi.org/10.1016/j.eswa.2015.12.050
https://doi.org/10.1016/j.eswa.2015.12.050
https://doi.org/10.1007/s13369-019-04180-3
https://doi.org/10.1007/s13369-019-04180-3
https://doi.org/10.1145/2072298.2072055
https://doi.org/10.1145/2072298.2072055
https://doi.org/10.1007/s10791-009-9123-y
https://doi.org/10.1007/s10791-009-9123-y
https://doi.org/10.1145/3209978.3209986
https://doi.org/10.1145/3209978.3209986

292 6 Learning to Rank in Session-Based Recommender Systems

77. Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio
Silvestri, and Salvatore Trani. "Post-learning optimization of tree ensembles for efficient
ranking." In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, Pisa, Italy, July 17-21, 2016, pp. 949-952. https://doi.
org/10.1145/2911451.2914763

78. Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Shuaiqiang Wang,
Daiting Shi, Zhicong Cheng, and Dawei Yin. "Pre-trained language model based ranking in
Baidu search." In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, Singapore, August 14 - 18, 2021, pp. 4014-4022. https://doi.org/10.1145/
3447548.3467147

79. Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng, and Ji-Rong Wen.
"Reinforcement learning to rank with pairwise policy gradient." In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
China, July 25-30, 2020, pp. 509-518. https://doi.org/10.1145/3397271.3401148

80. Maximilian Mayerl, Michael Vötter, Günther Specht, and Eva Zangerle. "Pairwise learning to
rank for hit song prediction." BTW 2023 (2023). 10.18420/BTW2023-26

81. Chiqun Zhang, Michael R. Evans, Max Lepikhin, and Dragomir Yankov. "Fast Attention-based
Learning-To-Rank Model for Structured Map Search." In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval, Canada, July
11-15, 2021 pp. 942-951. https://doi.org/10.1145/3404835.3462904

82. Azam Seilsepour, Reza Ravanmehr, and Ramin Nassiri. "Topic sentiment analysis based on
deep neural network using document embedding technique." The Journal of Supercomputing
(2023): 1-39. https://doi.org/10.1007/s11227-023-05423-9

83. Samuel EL Oliveira, Victor Diniz, Anisio Lacerda, Luiz Merschmanm, and Gisele L. Pappa. "Is
rank aggregation effective in recommender systems? an experimental analysis." ACM Trans-
actions on Intelligent Systems and Technology (TIST) 11, no. 2 (2020): 1-26. https://doi.org/10.
1145/3365375

84. Reza Jafari Ziarani, and Reza Ravanmehr. "Serendipity in recommender systems: a systematic
literature review." Journal of Computer Science and Technology 36 (2021): 375-396. https://
doi.org/10.1007/s11390-020-0135-9

85. Reza Jafari Ziarani, and Reza Ravanmehr. "Deep neural network approach for a serendipity-
oriented recommendation system." Expert Systems with Applications 185 (2021): 115660.
https://doi.org/10.1016/j.eswa.2021.115660

86. Michał Bałchanowski, and Urszula Boryczka. "A Comparative Study of Rank Aggregation
Methods in Recommendation Systems." Entropy 25, no. 1 (2023): 132. https://doi.org/10.3390/
e25010132

https://doi.org/10.1145/2911451.2914763
https://doi.org/10.1145/2911451.2914763
https://doi.org/10.1145/3447548.3467147
https://doi.org/10.1145/3447548.3467147
https://doi.org/10.1145/3397271.3401148
https://doi.org/10.1145/3404835.3462904
https://doi.org/10.1007/s11227-023-05423-9
https://doi.org/10.1145/3365375
https://doi.org/10.1145/3365375
https://doi.org/10.1007/s11390-020-0135-9
https://doi.org/10.1007/s11390-020-0135-9
https://doi.org/10.1016/j.eswa.2021.115660
https://doi.org/10.3390/e25010132
https://doi.org/10.3390/e25010132

Summary

Today, due to the increasing volume of data and the human need to quickly access
the required information, recommender systems play a crucial role in daily life.
Recommender systems try to provide effective suggestions to users that match their
personal preferences based on explicit or implicit data extracted from users’ actions
and behaviors.

One of the important challenges of conventional recommender systems is to focus
on the long-term interests of users statically and ignore the patterns of short-term
interests of users. Another problem is the unavailability of user information and
characteristics due to data privacy and optional user authentication. A session-based
recommender system (SBRS) is presented to reduce the effects of the mentioned
problems. The recommendation process in session-based recommender systems is
based on learning the dependencies within each session or between several sessions,
which are recognized based on the co-occurrences of the interactions. Deep learning
methods are one of the most extensively employed and essential methods used to
correctly detect dependencies between interactions in sessions. This book provides a
comprehensive review of diverse methodologies employed in the context of session-
based recommender systems that incorporate deep learning techniques.

This book was organized into six chapters as follows:
Chapter 1 reviewed the general concepts of recommender systems to highlight the

necessity of session-based recommender systems. Then, the fundamental concepts,
data and task modeling challenges, the classification of methods, and an overlook of
various approaches of session-based recommender systems were presented. Since
the concepts of session-based and sequential recommender systems are close to each
other, the rest of this chapter clarifies and distinguishes between their boundaries.

Due to the high importance of deep learning and the diversity of their techniques
and applications in different domains, specially in SRS, they were studied briefly in
Chap. 2. This chapter presented the history and timeline of deep learning; deter-
mined the position of deep learning next to the fields of artificial intelligence,
machine learning, and data science; and addressed its advantages and disadvantages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2

293

https://doi.org/10.1007/978-3-031-42559-2#DOI

Then, a taxonomy was presented according to the types of deep learning methods
and their use in different research in the scope of session-based recommender
system. In this taxonomy, deep learning models were classified into discriminative,
generative, and graph-based approaches, and then each of these three categories was
further divided into different models and discussed.

294 Summary

Chapter 3 focused on the approaches of session-based recommender systems
using deep discriminative models. A review of the literature on SBRS shows that
various methods using RNN and its variants (GRU and LSTM) have been proposed
to model the dynamic behaviors of session data over time. Due to the sequential
nature of session data, many session-based recommender systems use RNNs.
Indeed, RNNs have a hidden state with non-linear dynamics that enables them to
discover patterns of events and predict the next item. On the other hand, CNN can
extract spatial and temporal features and patterns among data, reducing the need for
manual feature engineering. For this reason, it is used in session-based recommender
system to extract effective patterns from interactions and predict the next items. At
the beginning of the chapter, a brief overview of the fundamental concepts of these
models, the conventional datasets, and the evaluation methods used were provided.
Then, in the following subsections, different methods based on LSTM, GRU, and
then CNN were discussed and analyzed separately.

Chapter 4 of the book was devoted to session-based recommender systems using
deep generative models. Despite the advantages of using deep discriminative
methods in SBRS, these approaches obtain information entropy through the condi-
tional distributions of subsequent clicks relative to previous clicks and typically
choose a unimodal or a mixture of unimodal. In sessions, intrinsic structural
sequences may lead to mutual influence between different output variables in a
time step. Discriminative methods may not have the necessary efficiency for these
types of systems and may deviate from the main goals as the sessions expand.
Therefore, deep generative models, which are strengthened by examining multi-
modal output distributions and uncertainty estimation, can be employed for SBRS
research. Moreover, deep generative methods can produce more samples for model
training and reduce the problems caused by data sparsity. Most of the research in this
field is based on autoencoders (AE), generative adversarial networks (GAN), and
flow-based models (FBM). At the beginning of the chapter, a brief overview of the
fundamental concepts of generative methods, the conventional datasets, and the
basic evaluation methods of various research were discussed. In the subsequent
sections, different methods based on AEs, GANs, and flow-based methods were
investigated.

Due to the high flexibility of deep neural networks and to take more benefit of
each method and reduce their limitations, many proposed session-based recom-
mender system utilized an hybrid/advanced deep neural network model. Chapter 5
discussed the session-based recommender systems using hybrid/advanced models.
In many cases, due to the sequential nature of user interactions, RNNs are an
essential part of the hybrid approach. In addition, the graph neural networks and
deep reinforcement learning models in SBRS were also discussed in this chapter.

Summary 295

The ranking methods that give priority to presenting them to the users are
essential in all recommender systems. On the other hand, learning to rank (LtR)
has emerged based on a combination of machine learning and information retrieval.
Chapter 6 was dedicated to learning to rank (LtR) methods in session-based recom-
mender system. LtR methods were discussed in the two fields of ranking creation
and ranking aggregation. Ranking creation methods are divided into four categories:
pointwise, pairwise, listwise, and hybrid methods. In the remainder of this chapter,
ranking aggregation methods were also included. The approaches presented for each
of these methods have been investigated both in information retrieval and recom-
mender systems scopes.

In closing, the goal of this book is to help researchers/engineers who are inter-
ested in using deep learning techniques in session-based recommender systems. The
material of this book will help readers to simultaneously enhance their knowledge in
the two contexts of session-based recommender systems and deep learning. To this
end, the book presents a comprehensive overview of the methods presented in
session-based recommender systems from various aspects, which provides a funda-
mental technical background for developing these types of systems.

B
B

B
B
B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C

C

C
C
C
C
C
C
C

Index

A
Accuracy, 6, 100, 282
Action, 2, 9, 221
Action space, 223
Actor-critic, 162, 222
AdaBoost, 271
ADAM, 35, 38
Adaptive moment estimation optimizer

(ADAM), 35, 38
AdaRank, 251, 271
Adressa, 80
Advanced deep learning, 22, 74, 172, 174
Advertising dataset, 80
Agent, 22, 174, 221
AlexNet, 29, 42
All-CNN, 42
Amazon, 127
Ant Financial News, 127
AOTM, 79
A-PGNN, 181
Area under the ROC curve (AUC), 86
Artificial intelligence (AI), 4, 30
Association rules mining, 17
Autoencoder (AE), 21, 35, 49, 123, 125, 136,

140, 157, 174, 198
Autoregressive, 107, 121
Autoregressive flow, 122
Autoregressive generative model, 120, 121
Auxiliary information, 121, 149

B
Baidu-ULTR, 253
Bayesian personalized ranking (BPR), 92
Bias, 37, 41, 43, 45, 51

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ravanmehr, R. Mohamadrezaei, Session-Based Recommender Systems Using
Deep Learning, https://doi.org/10.1007/978-3-031-42559-2

297

iased inference, 158
idirectional Encoder Representation from

Transformers (BERT), 29, 198
idirectional GRU, 48
idirectional LSTM, 46
idirectional RNN (B-RNN), 46
ig data, 28
inary classification, 254
M25 model, 247
oltzmann machine (BM), 36, 59
ooking.com, 127
PR-max, 112, 273
PR-MF, 83, 265
royden–Fletcher–Goldfarb–Shanno

algorithm (BFGS), 35

areerBuilder, 127
hange-of-variable law, 122
haracter-level embedding, 105, 188
iteULike, 80
lick-through data, 248
old start, 5
ollaborative denoising auto-encoder (CDAE),

132
ollaborative filtering recommender system

(CF), 3
onditional probability distribution, 247
onstraint-based method, 4
ontent-based recommender system (CB), 4
ontext-aware recommender system, 5
ontractive autoencoder, 51, 53
onvolutional autoencoder, 51, 55, 139
onvolutional GRU, 48

https://doi.org/10.1007/978-3-031-42559-2#DOI

298 Index

Convolutional LSTM, 46
Convolutional neural network (CNN), 21, 35,

40, 75, 104, 174, 187, 191, 228, 234
Counterfactual data-augmentation sequential

recommendation (CASR), 132
Coupling, 11, 12
Coverage, 84
Cranking, 251, 280
Cross-domain, 95
Cross-entropy, 51, 262
Cross-session, 13, 200

D
Data augmentation, 59, 89
Data mining, 3, 30
Data sparsity, 5, 19, 120, 149, 162
Decoder, 50, 137
Deep belief networks (DBNs), 29, 61
Deep Boltzmann machine (DBM), 49, 63
Deep discriminative method, 21, 37
Deep discriminative model, 37, 73, 75
Deep generative model, 21, 49, 120, 123, 136
Deep learning (DL), 12, 20, 27, 30, 32, 34, 35,

172
Deep Q-Learning, 175, 222, 225
Deep Q-Network (DQN), 181
DeepRank, 251, 278
Deep reinforcement learning (DRL), 16, 22,

174, 221, 226, 228, 229
Deep reinforcement learning recommender

system (DEERS), 182
Demographic-based recommender system, 3
Denoising autoencoder, 51, 52, 139
DenseNet, 42
Diginetica, 76, 79
Dilated CNN, 75, 106
Directed graph, 201
Discounted cumulative gain (DCG), 85
Discount factor, 223
Discriminator, 57, 149, 150
Diversity, 10, 185
Doc2Vec, 102, 112
Domain, 4
Domain-specific knowledge, 64
Do-Rank, 251, 275
DoubanEvent, 80
Double DQN (DDQN), 182
Dynamic preferences, 23, 196, 232

E
Edge, 22, 64
8T (8tracks.com), 79
EILD-R, 185

EILD-RR, 186
ELECTRONICS, 80
Encoder, 50
Energy function, 123
ESI-R, 184
ESI-RR, 185
Euclidean data, 64
Evolutionary strategy (ES), 277
Expected popularity complement (EPC), 135
Expected profile distance (EPD), 135
Explaining away, 62
Exploding gradient, 45, 90
Exponential linear unit (ELU), 39

F
F1, 85
Factorizing personalized Markov chains

(FPMC), 83
Fake sample, 125
Feature extraction, 32
Feedforward neural networks, 50, 65
Flow-based model (FBM), 21, 122, 123, 154,

158
Forget gate, 45
Fourier transform, 67
Foursquare, 80
FractalNet, 42
Full graph neural network (FGNN), 181

G
Gated Graph Sequence Neural Network

(GGS-NN), 64, 202
Gated recurrent unit (GRU), 21, 47, 75, 92, 174,

191, 212
Gaussian error linear unit (GELU), 39
Gaussian noise, 57
Generative adversarial network (GAN), 21, 36,

56, 124, 148, 151, 174, 229
Generative model, 16, 49, 120
Generative Pre-trained Transformer 3 (GPT-3),

30
Generative Pre-trained Transformer 4 (GPT-4),

30
Generative probabilistic, 16, 19
Generator, 57, 149, 150
GHTorrent, 80
Gibbs sampling, 59
Globo.com, 177
GoogLeNet, 42
Gowalla, 79
Gradient boosting decision trees (GBDT), 267
Graph attention network (GAT), 64, 202
Graph-based model, 28, 64

Index 299

Graph convolutional network (GCN), 22, 36,
66, 175, 202, 217

Graph LSTM, 46, 47
Graph neural network (GNN), 22, 36, 174, 200,

207, 212
Graph-structured data, 65, 201, 205
Ground truth label, 247
GRU4Rec, 83, 91
GRU4Rec+, 83
GRU4Rec++, 131

H
Heterogeneity, 11
Heterogeneous graph, 201
Hidden state, 42, 90
Hierarchical attention network (HAN), 276
Hierarchical DRL (HDRL), 233
Hit rate, 84, 134
Homogeneous graph, 201
Hopfield nets, 59
Hybrid deep learning, 74, 171, 172, 174
Hyperbolic tangent (tanh), 39
Hypergraph, 201, 219
Hyperparameter, 39
Hypothesis, 254

I
Idealized discounted cumulative gain (IDCG),

85
Information retrieval, 27, 245
Input gate, 45, 47
Interaction, 2, 9
Inter-session contextual data, 11, 95
Intra-session contextual data, 11, 95
Irrelevant item, 22
Istella-S, 253
Item-KNN, 18, 83
Item2Vec, 102, 112

J
Jacobian matrix, 54, 122
JD.com, 177
JEWELRY, 80
Judgment, 248

K
Kernel, 40, 105
K-nearest neighbors (KNN), 16, 18

Knowledge-based recommender system, 4
Kullback-Leibler (KL), 52

L
LambdaMART, 251, 277
LambdaRank, 251, 263
Language Model for IR (LMIR), 247
Last.fm, 79
Latent Markov embedding, 19
Latent representation, 16, 19
Latent variable model, 49, 122
Leaky rectified linear unit (leaky ReLU), 39
Learning to rank (LtR), 245, 246, 251
LeNet, 42
Libraries.io, 80
ListNet, 251, 272
Listwise method, 251, 268, 270, 273, 276
Logistic regression, 254
Long short-term memory (LSTM), 21, 29, 45,

75, 89, 99, 174, 187
Long-term dependencies, 12
Long-term interest, 1, 7

M
Markov chain, 16, 18
Matrix factorization, 20, 83
Maximum likelihood estimation, 56, 280
Max pooling, 40, 104
McRank, 251, 256
Mean absolute error (MAE), 85
Mean Average Precision (MAP), 85
Mean reciprocal rank (MRR), 84
Microsoft LETOR, 252
MIND, 177
Mini-batch, 38, 92
Minimax, 125, 150
Model-free DRL, 233
Movielens, 79
Multi-agent reinforcement learning (MARL),

233
Multi-class classification, 38, 254
Multi-dimensional LSTM, 46, 47
Multi-hop, 97
Multilayer perceptron (MLP), 21, 35, 37

N
Natural language processing (NLP), 34
nDCG, 85
Negative feedback, 152, 227

300 Index

Negative sample, 92, 152
Negative sampling, 92, 230
Neighborhood aggregation theorem, 65
Netflix, 42, 127
Network in Network (NiN), 42
Neural attentive recommendation machine

(NARM), 83
Next-basket recommender system, 10, 102
Next-partial-session recommender system, 10
Node, 22, 64
Normalizing flow, 120, 122, 157
Novelty, 135, 184
Nowplaying, 177

O
Off-policy, 222
One-hot encoding, 92, 112, 164, 234
Ordinal regression, 249, 253
Output gate, 45

P
Pairwise method, 251, 260, 262, 265, 276
Pairwise policy gradient (PPG), 265
Parallel-RNN, 93
Parametric rectified linear unit (parametric

ReLU), 39
Pattern mining, 16
Pointwise method, 251, 253, 255, 257, 283
Policy gradient, 153, 264
Policy model, 221
POP, 83
Positive feedback, 152
PRanking, 251, 257
Precision, 33, 85
Ppop, 179

Q
Q-Learning, 162, 222
Query, 85, 247
Q-value, 222

R
Ranking aggregation, 245, 250, 251
Ranking creation, 245, 247, 251, 253
Ranking model, 246
Ranking SVM, 251, 264
RankNet, 251, 262
Rating, 2
Recall, 84
Recommender agent (RA), 23, 223
RecSys17, 127

RecSys Challenge 2015, 76, 79
Rectified linear unit (ReLU), 39
Recurrent neural network (RNN), 21, 35, 43,

73, 75, 87, 174, 191, 212, 226
Reddit, 79
Regression, 18, 253
ReLaVaR, 132
Relevant item, 22, 84
Reset gate, 47, 90
Residual connection, 105
ResNet, 42
Restricted Boltzmann machine (RBM), 49, 60
Retailrocket, 80
Reward, 23, 174
Robustness, 34
Root mean square error (RMSE), 86
Rule mining, 16

S
SASRec, 132
Scalability, 4, 34
Scaled exponential linear unit (SELU), 39
Self-learning, 33
Self-supervised learning, 212
Semi-supervised, 59, 245
Sequence-aware recommender system (SRS),

13
Sequential data, 7, 73, 111
Sequential recommender system (SRS), 2, 7, 13
Session, 1, 7, 9
Session-aware recommender system (SARS), 2,

14
Session-based recommender system (SBRS), 1,

7, 14, 16, 73, 87, 103, 136, 148, 154,
186, 200, 220

Session embedding, 211
Short-Term Attention/Memory Priority Model

(STAMP), 83
Short-term interests, 7, 73
Sigmoid, 39
Softmax, 39, 41
Sparse autoencoder (SAE), 51, 126
Spatial GCN, 202
Spatiotemporal sequence, 46, 152
Spectral GCN, 203
S-POP, 83
Stacked bidirectional GRU (Stacked BiGRU),

48
State space, 223
Stochastic gradient descent (SGD), 35, 37, 138,

262
Stochastic latent variable, 121
Studo, 127
Supervised learning, 37, 148, 246

Index 301

Support vector machine (SVM), 29, 254
Surrogate loss, 256

T
Ta-Feng, 81
Taobao, 127
Temporal convolutional network (TCN), 107,

193
30MUSIC, 177
3D-CNN, 105, 188
Tianchi, 178
Tiangong-ULTR, 253
Time-ordered interactions, 5
Tmall, 79
TOP1, 93
TOP1-max, 112, 274
Traditional recommender system, 7, 10
Traditional SBRS, 16
Transformer, 12, 233
Transition pattern, 13, 205
Transition probability, 223
Transition probability matrix, 19
TW10, 80
2D-CNN, 105

U
Unstructured data, 33, 162
Unsupervised learning, 49
Update gate, 47

User feedback, 23
User-item interaction, 2
User’s preference, 4, 14, 97, 189, 251
Utility score, 10

V
Value function, 153, 221
Vanishing gradient, 29, 45
Variational autoencoder (VAE), 51, 55, 122,

139
Variational recurrent model (VRM), 132
VGGNet, 42
vidaXL, 79
Visible node, 59

W
Weight matrix, 51, 94

X
XING, 79

Y
Yahoo! JAPAN’s homepage, 127
Yahoo! LETOR, 253
YELP, 127
YooChoose, 76, 79

	Preface
	Aims and Scope
	Main Emphasis
	Target Audience
	Prerequisites
	Short Summary

	Acknowledgements
	Contents
	About the Authors
	Chapter 1: Introduction to Session-Based Recommender Systems
	1.1 Introduction
	1.2 Recommender Systems
	1.3 Fundamentals of Session-Based Recommender Systems
	1.3.1 Basic Concepts of SBRS
	1.3.2 Challenges of SBRS
	1.3.3 Session-Based vs. Sequential vs. Session-Aware Recommender Systems

	1.4 Session-Based Recommender System Approaches
	1.4.1 Traditional SBRS
	1.4.1.1 Pattern/Rule Mining
	1.4.1.2 K-Nearest Neighbors
	1.4.1.3 Markov Chain
	1.4.1.4 Generative Probabilistic Model
	1.4.1.5 Latent Representation

	1.4.2 Deep Learning SBRS

	1.5 Conclusion
	References

	Chapter 2: Deep Learning Overview
	2.1 Introduction
	2.2 Fundamentals of Deep Learning
	2.2.1 History of Deep Learning
	2.2.2 AI, ML, and DL
	2.2.3 Advantages of Deep Learning
	2.2.4 General Process of Deep Learning-Based Solutions
	2.2.5 Taxonomy of Deep Learning Models

	2.3 Deep Discriminative Models
	2.3.1 Multilayer Perceptron
	2.3.2 Convolutional Neural Network
	2.3.3 Recurrent Neural Network
	2.3.3.1 LSTM
	2.3.3.2 GRU

	2.4 Deep Generative Models
	2.4.1 Autoencoders
	2.4.1.1 Sparse Autoencoder
	2.4.1.2 Denoising Autoencoder
	2.4.1.3 Contractive Autoencoder
	2.4.1.4 Convolutional Autoencoder
	2.4.1.5 Variational Autoencoder

	2.4.2 Generative Adversarial Networks
	2.4.3 Boltzmann Machines
	2.4.3.1 Restricted Boltzmann Machine
	2.4.3.2 Deep Belief Network
	2.4.3.3 Deep Boltzmann Machine

	2.5 Graph-Based Models
	2.5.1 Graph Neural Network
	2.5.2 Graph Convolutional Network

	2.6 Conclusion
	References

	Chapter 3: Deep Discriminative Session-Based Recommender System
	3.1 Introduction
	3.2 Fundamentals
	3.2.1 Datasets
	3.2.2 Evaluation

	3.3 Session-Based Recommender System Using RNN
	3.3.1 Why RNN?
	3.3.2 GRU Approaches
	3.3.3 LSTM Approaches

	3.4 Session-Based Recommender System Using CNN
	3.4.1 Why CNN?
	3.4.2 CNN Approaches

	3.5 Discussion
	3.6 Conclusion
	References

	Chapter 4: Deep Generative Session-Based Recommender System
	4.1 Introduction
	4.2 Fundamentals
	4.2.1 Datasets
	4.2.2 Evaluation

	4.3 Session-Based Recommender System Using Autoencoder
	4.3.1 Why Autoencoder?
	4.3.2 Autoencoder Approaches

	4.4 Session-Based Recommender System Using GAN
	4.4.1 Why GAN?
	4.4.2 GAN Approaches

	4.5 Session-Based Recommender System Using FBM
	4.5.1 Why Flow-Based Models?
	4.5.2 Flow-Based Approaches

	4.6 Discussion
	4.7 Conclusion
	References

	Chapter 5: Hybrid/Advanced Session-Based Recommender Systems
	5.1 Introduction
	5.2 Fundamentals
	5.2.1 Datasets
	5.2.2 Evaluation

	5.3 SBRS Using Hybrid Deep Neural Networks
	5.3.1 Why Hybrid Deep Neural Network?
	5.3.2 Approaches Based on CNN and LSTM
	5.3.3 Approaches Based on CNN and GRU
	5.3.4 Approaches Based on RNN and Autoencoder

	5.4 SBRS Using Deep Graph Neural Network
	5.4.1 Why Graph Neural Network?
	5.4.2 Approaches Based on GNN
	5.4.3 Approaches Based on GNN and RNN
	5.4.4 Approaches Based on GCN

	5.5 SBRS Using Deep Reinforcement Learning
	5.5.1 Why Deep Reinforcement Learning?
	5.5.2 Approaches Based on Deep Q-Learning
	5.5.3 Approaches Based on DRL and RNN
	5.5.4 Approaches Based on DRL and CNN
	5.5.5 Approaches Based on DRL and GAN

	5.6 Discussion
	5.7 Conclusion
	References

	Chapter 6: Learning to Rank in Session-Based Recommender Systems
	6.1 Introduction
	6.2 Fundamentals
	6.2.1 Ranking Creation
	6.2.2 Ranking Aggregation
	6.2.3 Datasets

	6.3 Ranking Creation
	6.3.1 Pointwise Methods
	6.3.1.1 Pointwise Methods in Information Retrieval
	6.3.1.2 Pointwise Methods in Recommender Systems

	6.3.2 Pairwise Methods
	6.3.2.1 Pairwise Methods in Information Retrieval
	6.3.2.2 Pairwise Methods in Recommender Systems

	6.3.3 Listwise Methods
	6.3.3.1 Listwise Methods in Information Retrieval
	6.3.3.2 Listwise Methods in Recommender Systems

	6.3.4 Hybrid Methods

	6.4 Ranking Aggregation
	6.4.1 Ranking Aggregation Methods in Information Retrieval
	6.4.2 Ranking Aggregation Methods in Recommender Systems

	6.5 Discussion
	6.6 Conclusion
	References

	Summary
	Index

