
Reza Ravanmehr
Rezvan Mohamadrezaei

Session-Based 
Recommender 
Systems Using 
Deep Learning



Session-Based Recommender Systems 
Using Deep Learning



Session-Based
Recommender Systems 
Using Deep Learning

Reza Ravanmehr . Rezvan Mohamadrezaei 



Reza Ravanmehr 
Department of Computer Engineering, 
Central Tehran Branch 
Islamic Azad University 
Tehran, Iran 

Rezvan Mohamadrezaei 
Department of Computer Engineering, 
Central Tehran Branch 
Islamic Azad University 
Tehran, Iran 

ISBN 978-3-031-42558-5 ISBN 978-3-031-42559-2 (eBook) 
https://doi.org/10.1007/978-3-031-42559-2 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2024 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-42559-2


Dedicated to 
our families for their support 
during the preparation of this book 
and to 
all our students for their ideas, 
motivations, and patience.



Preface 

The Web has become an essential part of human life, making it possible for everyone 
everywhere to share information, access opportunities, and collaborate across geo-
graphic and cultural limitations. Millions of data objects are uploaded to the Web 
every minute, and the amount of data is increasing exponentially. It is difficult and 
even impossible for users to study all available data and discover the required and 
favorite items among them. The recommender system is an important tool to 
facilitate users’ decision-making process. These systems utilize the users’ short-
and long-term data in addition to the results of other users’ preferences and decisions 
to predict the favorite items of the target user. 

The role of recommender systems in the real world is vital and undeniable, 
considering the increasing different types of service delivery and customer satisfac-
tion in e-commerce, multimedia and entertainment, jobs, news, etc. Recommender 
systems are essential to increase user satisfaction and predict their favorite items, but 
there are also various challenges in this field. The traditional recommender systems 
rely on user profiles to generate personalized recommendations, but sometimes user 
profiles do not exist or user authentication policies prevent access in real-life 
applications. Indeed, the privacy of users’ personal information is becoming a big 
challenge, and therefore, recommendation systems should reduce the dependence on 
user profiles without adversely affecting the accuracy of recommendations. It should 
be mentioned that despite permitting access to users’ long-term interests, the users 
may still need an item that can be predicted using only their short-term data. 

The solution is to predict and provide recommendations based on user session 
interactions. A session is a list of user interactions considered in specific time 
intervals. A session for a particular user usually consists of a set of interactions 
related to the user that occurred at different times in the session. There are two types 
of sessions: ordered and unordered sessions. An ordered session refers to a session in 
which the interactions are chronologically ordered, but unordered sessions include a 
set of interactions that are not in any particular order, such as purchases made by a 
customer. Items in a session contain metadata such as name, description, and related 
categories, which makes it easier to predict the user’s favorite items.
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viii Preface

A session-based recommender system (SBRS) provides recommendations 
employing session data without the need to access long-term user data and interac-
tions. Due to the availability of required data for session-based recommender 
systems and the compatibility of the features of these systems with real-world 
applications, SBRS has attracted the attention of many researchers. Of course, it 
should be noted that there are very narrow boundaries between session-based 
recommender systems and sequential recommender systems. Session-based recom-
mender systems are modeled on the basis of session data, and sequential recom-
mender systems are modeled on chronologically sequential data. There is a 
difference between a sequence, which is a list of previous time-ordered interactions 
without defined time intervals, and a session, which consists of a list of interactions 
on different items with a defined boundary over a relatively short period. 

The purpose of session-based recommender systems is to predict one or a group 
of items of a session or to predict the next session based on learning the dependen-
cies within each session or between several sessions. These dependencies are 
recognized based on the simultaneous occurrence of the last few user interactions. 
On the other hand, in sequential recommender systems, items are predicted based on 
learning sequential dependencies between consecutive items in different sessions. In 
fact, sequential recommender systems capture users’ long-term preferences across 
previous sessions as conventional recommendation systems do, but they also need to 
model users’ short-term interests in a short sequence. 

Various methods have been proposed to model SBRS, such as association rules, 
Markov chains, pattern mining, latent representation, and deep neural networks. 
Each of these methods has been used in different research. Deep neural networks are 
approaches that have received much attention due to their high performance and 
capability to model complex problems. These techniques have been widely used in 
many academic and commercial fields recently. In session-based recommender 
systems, various deep neural network techniques are used to identify dependencies 
between the interactions of a session and complex relations between different 
sessions. Researchers have been more interested in developing session-based rec-
ommender system based on deep learning techniques in the last few years. This fact 
proves the effective and undeniable role of deep learning techniques in session-based 
recommender systems. The session-based recommender system using deep learning 
approaches is mainly divided into basic and hybrid/advanced deep neural network 
models. Basic deep neural network approaches include RNNs, CNNs, MLPs, AEs, 
GANs, etc., while hybrid/advanced deep neural networks include GNNs, attention-
based models, deep reinforcement learning, and models obtained from the specific 
combination of basic methods.
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Aims and Scope 

This book focuses on the widespread use of deep neural networks and their various 
techniques in session-based recommender systems. In fact, the authors intend to 
draw the audience’s attention to the fact that the process of choosing the appropriate 
deep learning technique for recommender systems whose input data are sessions 
should be done according to the type and context of session data and the goals of the 
problem. In this book, an attempt has been made to present the success of using deep 
learning techniques in many research on the session-based recommender system 
from different perspectives. For this purpose, the concepts and fundamentals of 
session-based recommender systems are fully elaborated. Then, different deep 
learning techniques, specially focusing on the main subject of the book, are studied. 
A review of studies in session-based recommender systems shows that various deep 
learning approaches, such as discriminative, generative, and graph-based models, 
have been utilized to provide effective and accurate recommendations. In addition, 
we review and discuss different learning to rank (LtR) methods which are inevitable 
parts of a session-based recommender system to achieve a better recommendation 
quality and improve the ranking performance. 

Main Emphasis 

The main emphasis of this book is to deliver a precise, comprehensive, and up-to-
date perspective of the concepts, challenges, types, architectural details, evaluation 
methodologies, and pros/cons of the methods presented in the session-based recom-
mender system using deep learning models. To this end, technical descriptions, 
highlights, limitations, and strengths/weaknesses of different deep neural network 
models in session-based recommender systems are discussed and analyzed. 

Target Audience 

According to the materials presented in the different chapters of the book, the authors 
try to give the audiences of the book a comprehensive view and sufficient informa-
tion to elaborate and develop session-based recommender systems. In addition, the 
contents of this book are prepared so that the readers can learn the fundamental 
concepts related to session-based recommender systems and deep learning sepa-
rately and provide them with the details of the deep learning approaches applied in 
the session-based recommender systems. 

In fact, this book is provided for researchers who intend to use deep learning 
models to solve the challenges related to session-based recommender systems. In 
brief, the main target group can be classified into the academy (graduated students)



and the industry (RS applications/product developers and designers). The material 
covered in the book addresses the areas of recommender systems, Web data mining, 
information retrieval, and machine/deep learning. 

x Preface

Prerequisites 

We assume that all readers are familiar with computer science concepts. To better 
understand the contents of the book, readers should be familiar with the basic 
concepts and principles of designing and analyzing algorithms and machine learning 
methods and, to some extent, be familiar with the principles of implementing 
systems using at least one programming language, preferably Python. Mathemati-
cally, we expect that the reader is familiar with calculus, probability theory, and 
linear algebra. 

Short Summary 

The book is well modularized, and each chapter can be learned in a stand-alone 
manner based on individual interests and needs. It is noteworthy to mention that 
readers familiar with session-based recommender systems can skip Chap. 1 and 
readers who have already studied the concepts of deep learning methods can skip 
Chap. 2. In the sequel, a brief introduction to each chapter of the book follows: 

In the first chapter of the book, definitions and concepts related to a session-based 
recommender systems are reviewed. At the beginning of this chapter, we have 
explained a general overview of recommender systems. In the remainder of the 
chapter, the main focus of the content is session-based recommender system. For this 
purpose, we explain each concept more clearly with the related mathematical 
formulations. Then, the challenges of session-based recommender systems are 
thoroughly considered. Finally, a taxonomy of SBRS approaches is presented, 
where the characteristics and applications of each class are discussed separately. 

The second chapter starts with the basic concepts of deep learning and the 
characteristics of each model. Then, each deep learning model, along with its 
architecture and mathematical foundations, is introduced. For this purpose, deep 
learning models are classified into discriminative, generative, and graph methods. 
Deep discriminative models include convolutional neural networks (CNN), recur-
rent neural networks (RNN), and multilayer perceptron (MLP). The major deep 
generative models include autoencoders (AE), generative adversarial networks 
(GAN), and different types of Boltzmann machine (BM) models. Graph-based 
models also include graph neural networks (GNN) and graph convolutional net-
works (GCN). 

Different approaches of deep discriminative models in a session-based recom-
mender system are discussed and analyzed in Chap. 3. Due to the ability of RNNs to



model dynamic behaviors of session data over time, many approaches in session-
based recommender systems employ RNNs. Therefore, RNN approaches (including 
GRU and LSTM) significantly impact the performance of SBRS. However, because 
of the capability of CNNs to extract and learn temporal and spatial patterns, session-
based recommender systems also use CNNs. MLP-based approaches also are mainly 
suitable for unordered session data due to their inability to model sequential data. 

Preface xi

In the fourth chapter, session-based recommender systems that benefit from deep 
generative neural networks are discussed. The study and analysis of published 
research show that deep discriminative methods have broader applications than 
deep generative methods in session-based recommender systems due to their 
sequential approach. However, generative techniques are also important for 
researchers due to their ability to reduce the problems of sparsity and complexity 
of user interactions in the field of SBRS. This chapter focuses on autoencoder, 
generative adversarial networks, and flow-based models (normalizing flow and 
autoregressive flow) in session-based recommender systems. 

Chapter 5 discusses session-based recommender systems using hybrid/advanced 
deep learning methods. Each deep learning method has specific features and capa-
bilities, and due to the high flexibility of deep neural networks, many neural structure 
blocks can be integrated to formulate more robust and accurate models. The inte-
gration of two or more different models provides the possibility of using the 
advantages of each method, limiting their disadvantages, and strengthening the 
capabilities of the resulting combined method. Usually, these approaches consist 
of several stages, in which a deep learning technique is used in each stage to process 
and generate the required data for the next stage. Therefore, the optimum combina-
tion and configuration of these stages in different research are discussed in this 
chapter. In session-based recommender systems, the combination of CNNs and AEs, 
CNNs and RNNs, RNNs and AEs, and RNNs and deep reinforcement learning 
(DRL) has received the most attention. Due to the high efficiency of deep reinforce-
ment learning and graph neural network methods, a significant number of session-
based recommender systems are based on these methods. Therefore, Chap. 5 ends 
with details of various session-based recommender systems using graph neural 
networks or deep reinforcement learning. 

Learning to rank (LtR) methods are based on machine learning techniques in 
ranking results in different domains. Chapter 6 reviews different LtR methods 
focusing on information retrieval and recommender system domains. For this pur-
pose, various approaches to rank creation and rank aggregation are discussed and 
reviewed. This chapter mainly focuses on four approaches to ranking creation: 
pointwise, pairwise, listwise, and hybrid. 

Finally, the results of the investigations and findings from the research review 
conducted throughout the book are presented in conclusion. 

Tehran, Iran Reza Ravanmehr 
Rezvan Mohamadrezaei
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Chapter 1 
Introduction to Session-Based 
Recommender Systems 

Abstract Due to the massive growth of data in recent years, recommender systems 
have become essential tools to improve people’s lives. However, access to users’ 
profiles and their long-term interests are crucial challenges of these systems. 
A session-based recommender system (SBRS) was developed to solve these prob-
lems and received much attention from the research community. In this chapter of 
the book, after presenting an overview of the definitions and techniques of traditional 
recommender systems, we focus on the fundamental concepts, descriptions, chal-
lenges, and approaches of SBRS and clarify the differences between SBRS and SRS 
(sequential recommender system) from various aspects. 

Keywords Session-based recommender systems · SBRS · Sequential recommender 
systems · SRS · Deep learning 

1.1 Introduction 

Recommender systems help users make efficient decisions in various fields. The 
process of selecting favorable items from numerous available items is an ambiguous 
process, and recommender systems facilitate this process by using data related to the 
user and the results of other users’ decisions. Recommendation systems are divided 
into different classes based on the type of related processes and the data used for 
making recommendations. The use of recommender systems is needed to increase 
user satisfaction and predict the interesting items of users in different fields. How-
ever, it has specific challenges, and so far, different types of recommender systems 
have been proposed to solve these challenges. 

Access to users’ profiles and their long-term interests are among these crucial 
challenges. Many users do not create profiles to use different services in a recom-
mendation platform or maybe new users and have performed very limited trans-
actions. In this case, it is very difficult for the systems to decide on their favorite 
items. On the other hand, even with access to the long-term interests of users, the 
user may still consider a problem for which short-term data are required for effective 
prediction. A session-based recommender system (SBRS) was proposed to improve 
these problems and received the attention of many researchers. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction to Session-Based Recommender Systems

Most of SBRS’s scenarios include a sequence of often short user interactions in a 
session, and in many cases, the long-term interests of users are not available 
[1]. Session-based recommender system have gained importance, and many studies 
have been conducted on them recently. One of the reasons session-based recom-
mender systems are valuable is that each session is treated as a unit for organizing 
data. This approach preserves the nature of transactional data and makes decisions 
based on dependencies within each session. The SBRS modeling is not performed in 
other types of recommender systems because SBRS usually divides session data into 
multiple user-item interaction pairs to fit the data into the models. Moreover, it is 
easier to access session data for session-based recommender systems than the rating 
data required by content-based or collaborative filtering recommender systems. As a 
result, these types of systems are more practical in the field of business and 
e-commerce. 

After the introduction, Sect. 1.2 presents an overview of the concepts and 
approaches of recommender systems. Section 1.3 focuses on the fundamental 
concepts, definitions, and challenges of session-based recommender system and 
the differences between session-based recommender system, sequential recom-
mender system (SRS), and session-aware recommender system (SARS) from vari-
ous aspects, and the ambiguities related to the boundaries between them will be 
addressed. Section 1.4 takes a brief look at various approaches related to session-
based recommender systems. 

1.2 Recommender Systems 

Recommender systems attempt to provide users with recommendations based on 
their actions, behaviors, and interests, which match their preferences and make 
effective decisions. These systems actively and continuously collect and process 
different types of explicit or implicit data related to items, users, and previous 
interactions of users to create accurate recommendations [2]. In other words, rec-
ommender systems are developed to estimate the usefulness of an item and predict 
the value behind its recommendation. The prediction of the valuable items for a 
specific user differs according to the proposed recommender algorithm. In the past 
years, recommender systems have made significant progress and have focused on 
different fields such as movies, music, news, jobs, books, and Web sites. Figure 1.1 
shows the general process of a recommender system based on user data, item 
features, and the interactions between users and items. 

One of the most basic types of these filtering algorithms is recommender systems 
based on demographic information. The filtering algorithm is the process of 
distinguishing useful items to recommend to users. This filtering algorithm of the 
recommender system is critical, and it determines the basis of the recommendation 
systems. 

Referring to the classic categories of previous research in recommender system 
scope [3–5], recommendation techniques are divided into three general categories



based on the type of the filtering algorithm: content-based (CB), collaborative 
filtering (CF), and knowledge-based (KB). Although such categories are still used, 
many new categories have also been proposed, each with different degrees of 
overlap: context-aware, utility-based, social, and hybrid recommender systems. 
Marcuzzo et al. believed a more accurate classification for recommender systems 
could be provided due to the ever-increasing expansion of data, the big data 
revolution, and the emergence of data-oriented approaches [6]. 

1.2 Recommender Systems 3

Fig. 1.1 The general process of a recommender system 

Now, we will briefly review the fundamental classes of recommender systems: 
demographic-based, collaborative filtering, content-based, knowledge-based, 
context-based, and social recommender systems:

. Demographic-based recommender systems consider each user based on his/her 
demographic information. Demographic information is used to identify the types 
and categories of users interested in certain items. Demographic-based recom-
mender systems utilize the principle that users with common characteristics (such 
as the same nationality or the same gender) prefer similar items. Usually, these 
algorithms are combined with other algorithms, such as content-based or collab-
orative filtering algorithms, to achieve better results [7].

. Collaborative filtering recommender systems utilize the past behaviors and 
interests of users whose activities are similar to the target user. These types of 
systems recommend items to each user that have been highly rated by users who 
are similar to the target user [8, 9]. Collaborative filtering algorithms are divided 
into memory-based and model-based methods. Model-based methods learn a 
model based on the ratings that users have previously given for various items, 
whose learning is implemented based on machine learning or data mining 
techniques. However, memory-based methods provide recommendations based
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on a database created on the relationships between items and users. They are 
divided into item-based, user-based, and hybrid methods. User-based methods 
calculate the degree of similarity between users based on the ratings given by 
users to the same items. Recommending new items or predicting the level of 
interest in a certain item for a specific user is based on the user’s previous interests 
and the interest of other users similar to him. In item-based methods, recommen-
dations for users are calculated by finding items similar to other items that the user 
is interested in. Hybrid methods are the result of combining user-based and item-
based methods. In memory-based methods, the learning process is done offline, 
and in addition, all information and data must be in memory for calculations and 
predictions, which creates a scalability challenge. But model-based methods do 
not have scalability problems.

. Content-based recommender systems focus on item feature analysis. In this 
approach, the user’s profile is built based on the features of the contents of the 
items that have already been rated by that user [10]. Consequently, items are 
recommended to each user that is related to the items that are related to his/her 
previous interest, and these methods work independently of the interests of other 
users. The recommendations provided by content-based filtering are based on 
models created on statistical techniques or machine learning methods [2]. The 
content-based filtering method has the advantage of recommending items that 
have not yet been rated. If the user’s preferences change, this method quickly 
matches the recommendations with the new preferences. It is not necessary that 
different users have rated the same items in common so that the amount of their 
similarity should be determined [7]. In addition to the advantages mentioned 
above, the disadvantages of the content-based filtering method are the need to 
access user profiles with complete information about the features of the items to 
provide effective recommendations to users. Moreover, the recommendations 
provided in this method are only similar to the items that the user has rated 
before [2].

. Knowledge-based recommender systems are based on explicit knowledge and 
rules about item domains and user requirements and preferences [11]. A 
knowledge-based recommender system employs knowledge extracted from the 
user’s previous interactions, in contrast to content and collaborative filtering-
based techniques. Knowledge usually includes explicit information related to 
users and items that are provided by users, and the system creates user profiles 
using this information. Or, the knowledge used in this type of system is related to 
a specific domain and context, which is inferred from the usefulness of an item for 
the user or the adaptation of the features of a particular item to the user’s 
requirements and preferences [7]. Two widely used methods for developing 
knowledge-based recommender systems are case-based reasoning and con-
straint-based methods. The case-based reasoning method is an artificial intelli-
gence model that provides reasoning processes for new situations based on the 
experiences of previous cases of the system [12]. The constraint-based method 
extracts a set of recommendation rules to find items based on users’ 
requirements [13].



. Context-aware recommender systems integrate information sources describing 
the environment in which interactions occur. Contextual data can include repre-
sentational contextual data, which are a set of observable contextual variables 
such as time, place, and weather, or contextual data of interactions that are 
dynamic and usually include the user’s recent activities that are not explicitly 
visible, such as the current purchase, the user’s state, etc. [14]. Another type of 
contextual data, such as textual comments on an item, is important for recom-
mender systems by new or anonymous users. The most extensive type of con-
textual information that is studied is temporal [15]. Because user interests change 
over time, static recommendations may be less effective. Instead, it may be 
possible to discover patterns in the sequential behavior of users, which is the 
goal of methods that incorporate time into the recommendation process. Methods 
in this field usually distinguish between a sequence, which is a list of time-ordered 
interactions without defined time intervals, and a session, which includes a list of 
interactions with a defined boundary within a relatively short time interval.

. Social recommender systems simultaneously utilize user-to-item interactions as 
well as user-to-user social relations for the task of generating item recommenda-
tions to users [16]. The most prominent types of social recommender systems are 
the recommendation of social media content and the recommendation of people 
[17, 18]. The important domains of social recommender systems are mostly 
related to the content delivered on the Internet and include blogs, multimedia, 
community question-answering systems, jobs, news, and microblogs. Groups and 
communities play a crucial role in social media platforms which makes group 
recommendation techniques highly relevant for the social recommender system 
domain.

1.2 Recommender Systems 5

In Table 1.1, the abovementioned recommender system types are compared with 
each other in terms of input data, basic assumptions, mechanisms, advantages, and 
disadvantages. 

To provide accurate and effective recommendations to users, all kinds of recom-
mender systems face challenges that they must handle. The most important common 
technical challenges among all types of recommender systems are cold start, delay in 
providing recommendations, changing user preferences, data sparsity and fragmen-
tation, scalability, security, appropriate user interface design, and selection of appro-
priate evaluation measures. Various studies have been presented to reduce each of 
the challenges in different scopes. The readers who are interested in recommender 
system should refer to a comprehensive handbook dedicated entirely to the field of 
recommender systems contributed by leading experts in this field [19].
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1.3 Fundamentals of Session-Based Recommender Systems 

Many conventional recommender systems have several fundamental challenges 
[20]. One of the crucial challenges is their focus on the long-term interests of users 
statistically, which means that the patterns of short-term interests of users are 
ignored. As a result, the change in users’ interests over time is not taken into account, 
and the specific needs and items desired by the user in a certain period of time may 
be affected by his long-term interests [21]. To make effective recommendations to 
the user, recommender systems divide a basic transaction unit (such as a session) 
into several records with smaller granularity (such as a user-item interaction) during 
data processing. This process destroys the sequential nature of the interactive 
behavior of users, which shows changes in their behavior and interests. 

Another problem of the recommender system is the non-availability of user 
information and characteristics, which are not always available due to privacy and 
optional user authentication [20]. To solve this problem, the process of providing 
recommendations should consider the user’s recent interactions in the system and 
extract his/her behavior patterns. 

The purpose of SBRS is to reduce the effect of the abovementioned problems. 
These types of systems try to ensure that information related to the structure of 
sessions and users’ short-term preferences are not ignored. Session-based recom-
mender system provide recommendations based on session data without the need to 
access long-term user data and preferences. Due to the availability of input data 
required for session-based recommender systems and the compatibility of the fea-
tures of these types of systems with real-world problems, SBRS has gained the 
attention of many researchers. These types of systems have wide applications in 
various fields, such as Web pages, tourism, news, hotels, media, etc. Of course, it 
should be noted that there are very narrow boundaries between session-based and 
sequential recommender systems [22]. Session-based recommender systems are 
modeled based on session data, and sequential recommender systems are modeled 
on sequential data. Further discussion of the differences between these systems is 
provided in Sect. 1.4. 

The goal of session-based recommender systems is to predict one or a group of 
items of a session or to predict the next session based on learning the dependencies 
within each session or between several sessions. These dependencies are recognized 
based on co-occurrences of interactions in a session [20]. In contrast, in sequential 
recommender systems, items are predicted based on learning sequential dependen-
cies between consecutive items in different sessions [23]. Figure 1.2 presents the 
general process of a session-based recommender system, which shows the function-
ality of this type of system in the purchasing activities of different users. 

From another perspective, the main difference between session-based recom-
mender system and traditional recommender systems can be summarized in the 
three factors of data, task, and user, as shown in Table 1.2.
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Table 1.2 Differences between session-based recommender systems and traditional recommender 
systems 

Major 
factors Traditional recommender system Session-based recommender system 

Data – User-item rating matrix 
– User profile 
– Item features 

Timed and organized sequence of action/ 
interaction in sessions 

Task Making time-independent recommen-
dations for users’ long-term preferences 

Make recommendations for the current ses-
sion that fit the user’s short-term interactions 

User Known user profile and usually 
available 

The profile is usually anonymous 

1.3.1 Basic Concepts of SBRS 

Session-based recommender systems consist of entities, including user, item, and 
user-item interaction. In this subsection, user/item, action/interaction, and session 
concepts are briefly explained as follows:

. User/item: A user is a person who takes actions in a system related to items, for 
example, clicks, makes purchases, and receives the results of recommendations. 
Each user has a unique identifier, and a set of explicit or implicit attributes is 
considered to describe her/him. Of course, the users’ session information may not 
always be available for two reasons: (1) it is not recorded due to privacy 
protection, and (2) some users may not log in through the authentication system 
and may be anonymous. An item is also an entity in a system that needs to be 
recommended, like a product. Each item is treated with a unique identifier and a 
set of features to provide item description information.

. Action/interaction: Action is often performed by a user on an item in a session, 
for example, clicking on an item. Each action is provided with a unique identifier 
and a set of attributes to provide information about it. Action has several different 
types: click, view, buy, etc. Interaction is the most basic unit in the session. An 
interaction is a ternary-tuple formed based on the action performed by a user on a 
specific item. If the user’s information is not available, the interaction is 
anonymous.

. Session: In session-based recommender systems, the session is the basic unit of 
data organization for data analysis and providing recommendations. The meaning 
of the word “session” in the Oxford Dictionary means “a period of time that is 
spent doing a particular activity,” but in [20], the specialized meaning of the word 
“session” in the field of recommendation systems is “a session is composed of 
multiple user-item interactions that happen together in a continuous period of 
time.” Also, a session can be a set of events and activities that happen in a specific 
time period, for example, a set of purchased items or a group of music listened. 

There are different formalizations for session-based recommender systems. Here, 
we present a formalization at an abstract level generally suitable for these systems. 
Suppose l = {int1, . . . ., intn} is a list of n interactions; each of these interactions



consists of an item and the corresponding action. Considering the systems that are 
built on single-type action sessions, each interaction in the set l is reduced to one 
item, and therefore, the interaction set l becomes the item set li = {i1, . . . ., in} (ij 2 I ), 
where I is the set of items. L is also a set of possible interaction lists derived from the 
set of candidate items I and the set of actions A. 

10 1 Introduction to Session-Based Recommender Systems

Now consider that U is a set of users. Unlike traditional recommender systems, 
our goal is not to predict a utility score for each i 2 I and for each u 2 U, but to 
calculate an ordered list of the set L for each user, where each element l 2 L 
corresponds to i 2 I. For this purpose, we define a utility function f to compute the 
score of a certain sequence l for user u based on Eq. (1.1): 

lu = arg max f u, lð Þ, u 2 U, l 2 L ð1:1Þ 

According to the above Eq. (1.1), the goal of an SBRS is to select the 
recommended interaction list lu 2 L to maximize the utility score for the user u. 
The utility function is applied to the list of interactions to optimize the list of 
candidates as a whole and not as a single interaction (item). In general, f function 
is not limited to specify the utility score for individual items but for entire ordered 
lists of items. This makes it possible to consider other aspects of usefulness in 
session-based recommender system problems, including the diversity of the collec-
tion as a whole and the quality of the order of recommendations in terms of 
transitions between objects. 

For each session, a set of attributes are considered, which are listed in Table 1.3: 
Based on the type of recommendations, SBRS can be divided into three catego-

ries: next-item recommender systems, next-partial-session recommender systems, 
and next-session (next-basket) recommender systems. The goal of the next-item 
recommender systems is to suggest the next possible interaction in the current 
session by modeling the dependencies within the session. According to the known 
parts of a session, the next-partial-session recommender systems recommend the 
unknown parts. Indeed, based on intra-session dependencies, it recommends all 
remaining interactions to complete the current session, for example, predicting all 
subsequent items to complete a cart given the items purchased. Considering past 
sessions, the goal of the next-session recommender systems is based on modeling 
dependencies between sessions. Sometimes, dependencies between sessions are also 
included in the previous two types to improve the performance of the 
recommendation. 

1.3.2 Challenges of SBRS 

The two major challenges in session-based recommender systems are related to data 
and task modeling. Regarding data challenges, it should be considered that each 
dataset in session-based recommender systems has a hierarchical structure, which 
includes session level, item level, and item feature level, which are the main core of



learning models in this system. The challenges related to different levels of data can 
be divided into the following four categories: heterogeneity within each level, 
coupling within each level, complexity within each level, and interactions between 
different levels. Each item can be introduced by several heterogeneous features such 
as price, country of manufacture, etc., and each item feature can have different 
values, some of which may be repeated more than others. It is a set of items and user 
interactions that form a session. 
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Table 1.3 Attributes of a session in session-based recommender systems 

Session attributes Description 

Session length A session is determined based on the number of interactions. Different 
lengths of sessions in a system affect the efficiency of that system 

Action type Specifies the actions performed by users in a session. Some systems 
consider only one action, for example, clicking, while other systems 
record several different actions, such as clicking, purchasing, etc. These 
actions may be interdependent. Therefore, the number of action types in a 
session determines whether the dependencies within the session are 
homogeneous (based on a single action type) or heterogeneous (based on 
multiple action types) 

Inner order It refers to the order of interactions within the session. Usually, the 
interactions of different sessions can be unordered, be ordered, or have a 
flexible order 

User information It contains the user ID in the system or the attributes of that user. User 
information plays an essential role in connecting sessions to each other 
and accessing users’ long-term interests, but usually, users are anony-
mous, and sessions do not contain user information 

Inter-session contex-
tual data 

The set of recent sessions that occurred before the current session is the 
context data for the current session. This type of data shows dependencies 
and connections between sessions 

Intra-session contex-
tual data 

Contextual data within each session that recommends unknown data 
includes items that are known in the same session. Intra-session contex-
tual data specifies intra-session dependencies 

The task modeling challenge begins with extracting information from the session, 
item, and item features and continues until the development of an intelligent model 
suitable for the task requirements and its evaluation approach. 

The challenges related to the data are:

. Heterogeneity within each level: Different elements in each level have different 
specifications and features. Therefore, they should be examined from different 
approaches, and each should be modeled based on appropriate methods. At the 
item feature value level, the distribution of values is different, and one value may 
be more iterated than the other. At the item features, there are usually different 
features that are heterogeneous and cannot be modeled with the same method. For 
example, the manufacturing country of an item and its price are different from 
each other. At the item level, the items related to the same sessions have different 
distributions, and some of them may be known and frequent, but other items are 
rarely selected. Heterogeneity at the session level means that the connection of



each session with the current session of the user is different because the sessions 
have different contexts. Some of them may even be irrelevant. Finally, the various 
contextual factors that influence the evolution of sessions may include time, 
location, season, etc. Since these factors are heterogeneous, they cannot be 
modeled similarly.

. Coupling within each level: Different levels of data in session-based recom-
mender system depend on the interactions between their elements. At the level of 
feature values, interactions between different feature values of each item may 
cause coupling in case the values belong to one feature or are related to different 
features of an item [24]. For example, the type of product affects its price. 
Coupling at the feature level of an item means that one feature may affect another, 
or a combination of several features may lead to the extraction of a specific 
pattern. Common interactions between items in a session led to the coupling 
between them. For example, some items are purchased together in a store. The 
interactions between different sessions also affect each other, and the transactions 
of each session are effective on the transactions of the next session. For example, 
if a customer buys a car in one session, she/he will probably have a transaction 
related to car insurance in the next session. The coupling between different 
domains is also made based on the interaction between them; for example, after 
users watch a movie, they are likely to search for the music of that movie. 
Contextual couplings also bring about the effect of various contextual factors 
on user transactions. For example, the products purchased by a user in winter are 
different from those purchased in summer.

. The other complexity within each level: In addition to coupling and heteroge-
neity, other challenges lead to data complexity in session-based recommender 
system. For example, the complexities inherent in an item level may include 
implicit dependence, lack of coordination, or lack of balance of items at the 
session level, and there are complexities including long-term dependencies 
related to previous sessions and session modeling under one or more specific 
contextual factors such as time and location [25].

. Interactions between different levels: The features of an item have mutual 
effects on the occurrence of that item in a transaction. For example, items that 
belong to the same category are more likely to be selected together. Also, the 
mutual effects of data on two levels of the session and item are such that previous 
sessions have an effect on the item selected in the current session. For example, a 
user who purchased a house in the previous sessions may choose items related to 
home appliances in the next session. 
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The challenges related to the task modeling are:

. Extraction of relevant information: the effective extraction of information 
about different levels of session, item, and item features can be achieved using 
different deep learning methods or transformers. Some of these patterns are 
complicated, such as spatiotemporal patterns, which makes it difficult to choose 
or make an appropriate algorithm for this task. In many cases, items have rich 
features such as images and text descriptions that can be used to model sessions.



The appropriate method of how to use these features in related models is an 
important challenge. Considering the semantic-level structural information 
among the items can also lead to the discovery of additional external knowledge 
sources that will be effective in the performance of SBRS.

. Modeling user preferences: this modeling extends far beyond a consecutive 
time pattern in the transition of item choices. Recent research on session-based 
recommender systems has mostly focused on capturing sequential patterns using 
the attention mechanism, which is efficient for the session’s natural sequence 
sorted by time, but has various problems with the complicated item transition 
pattern. On the other hand, users’ preferences change dynamically, which can 
make the modeling of these preferences difficult in final SBRS.

. Considering cross-sessions: instead of extracting sequential patterns in individ-
ual sessions, information modeling in cross-sessions can result in more complex 
dependency relations between items. However, it is not easy to use cross-session 
information due to the anonymity of session data, specially in cases where 
relations between different sessions are prevented. Basically, the use of shared 
information in neighboring sessions that has already been created by other users 
and reflects the user’s intentions similar to the current session can help the 
performance of SBRS in the current session.

. Evaluation process: identifying standard evaluation protocols and the existence 
of widely used baselines to compare the performance of the proposed methods is 
another challenging factor. The simulated or real datasets extracted from users’ 
actual behavior in different sessions are another one. 
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1.3.3 Session-Based vs. Sequential vs. Session-Aware 
Recommender Systems 

User preferences change and evolve. Given this fact, it is better to incorporate time 
into the recommendation process and recognize patterns in sequential user behavior 
more effectively than static recommendations. The research proposed in this field 
typically distinguish between a sequence, which is a time-ordered list of interactions 
without defined time intervals, and a session, which is a list of ordered or 
non-ordered interactions with a defined boundary and usually covering a relatively 
short time interval. To clarify the boundaries of sequential, session-based, and 
session-aware recommender systems, we briefly explain them in the following:

. Sequential or sequence-aware recommender system (SRS) employs data with 
a specific sequence and order and are not necessarily based on sessions. For 
example, data with a timestamp or sorted by time or date is considered. These 
types of systems attempt to explicitly recognize sequential dependencies, such as 
behavioral patterns, and discover information within interactions that can be 
realized by considering interactions as sequences of events. Different types of 
patterns, including sequential, co-occurrence, and distance patterns, can be



considered [26]. Sequential patterns associate interactions in a specific order, 
while co-occurrence patterns only care if two interactions happen together. 
Distance patterns are less conventional, and they try to identify necessary tem-
poral distances before recommending items. On the other hand, these types of 
systems usually consider a long-term sequence of user interactions and provide 
recommendations based on these interactions [22]. These interactions usually 
specify the selected item and the type of user behavior, for example, clicking on 
item 1 or purchasing item 2. Therefore, in addition to users, items also have 
additional data, and time-ordered events are extracted based on the time-based 
user-item matrix [27]. The goal is to predict the user’s next item based on all the 
user’s preferences in his/her long-term profile [28].

. Session-based recommender system (SBRS) takes a list of user interactions as 
input, which are mostly grouped into anonymous sessions. For example, sessions 
can be related to a session of music listened to on a music streaming Web site or a 
shopping session on an e-commerce site [28]. In fact, these types of systems only 
focus on session data that include their short-term events [22]. Compared to other 
recommender systems, the main approach of this type of recommender system is 
that users are not followed among different sessions and the systems provide 
recommendations only based on a list of short-term users’ preferences, including 
their recent interactions [27]. This feature is essential for Web sites that face the 
problem of new users without any interactions or users who have not been 
authenticated. Nowadays, researchers in the field of session-based recommender 
systems are very active, and their works are very relevant to real-world 
problems [28].

. Session-aware recommender system (SARS) is a special and personalized type 
of session-based recommender system [28]. In both types of systems, the group-
ing of user interactions is done in specific sessions, and the goal of both is to 
predict the user’s favorite items. However, in session-aware recommender sys-
tems, the users are not anonymous, and their previous actions can be obtained 
through the events and interactions of the previous sessions, and based on them, 
the next interactions of the current session can be predicted. Therefore, in addition 
to users having IDs, sessions also have specific IDs. These types of systems 
usually use a combination of short-term and long-term preferences (more atten-
tion to short-term) of users to recommend new items [27]. 
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Figure 1.3 shows the similarities and differences between SBRS, SRS, and 
SARS. 

However, using the above terms in the recommender systems literature is not 
always consistent. Sometimes, the term session-based recommendation is also used 
for situations where long-term preferences are available, for example, in [29], which 
is a fundamental research in the domain of session-based recommender systems. 
Several authors also use the term sequential recommender systems in session-based 
recommendation scenarios. In fact, the problem of session-based recommendations 
can be considered from two sequential aspects, both in the sense that the goal is to 
predict the next interactions in a session and the available data are chronologically
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sequential. However, not all sequential approaches are necessarily session-based. 
Instead, it may be based on the user’s preferred information and have a long-term 
timestamp. 
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1.4 Session-Based Recommender System Approaches 

The goal of session-based recommender system is to predict unknown items of a 
session or to predict the user’s next session based on modeling the complex relations 
within a session or between sessions. There are two different perspectives to study 
these types of systems. In the first view, the user’s next items are recommended 
based on the data of the user’s current session, called intra-session context data. In 
the second view, the next session or a part of the next session of a user is predicted 
based on the inter-session context [20, 30]. 

On the other hand, SBRS approaches are divided into two general categories in 
terms of the techniques used: traditional SBRS approaches and deep learning SBRS 
approaches. Each of these categories is divided into several more detailed sub-
categories. For example, traditional SBRS approaches include pattern/rule mining, 
K-nearest neighbors (KNN), Markov chain, generative probabilistic model, and 
latent representation approaches. Deep learning SBRS approaches are mainly 
divided into two subcategories: basic and hybrid/advanced deep neural networks. 
Basic deep neural network methods include discriminative and generative models, 
while hybrid/advanced deep neural network approaches include graph-based 
methods, attention-based models, deep reinforcement learning, and hybrid. 

Figure 1.4 shows the taxonomy of the session-based recommender system 
approaches. Each of these models is briefly explained in the subsequent subsections. 

1.4.1 Traditional SBRS 

These approaches are based on data mining or machine learning techniques to 
recognize the latent dependencies in sessions for the recommendation process. The 
main idea of this type of approach is to detect sequences of data related to user 
sessions by using recognition and mining of patterns and dependencies between 
them to provide recommendations to users. These approaches are divided into five 
separate categories, which are discussed in the following subsections: 

1.4.1.1 Pattern/Rule Mining 

In general, there are two types of pattern/rule mining-based approaches for session-
based recommender systems: (1) frequent pattern/association rule mining 
approaches and (2) sequential pattern mining approaches. These approaches only



apply to sessions whose data is based on a single type of action and all dataset
actions are the same.
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Fig. 1.4 Taxonomy of session-based recommender system approaches

. Frequent pattern/association rule mining-based approaches: In these sys-
tems, first, frequent patterns or association rules are mined; then, user sessions 
with the detected patterns and rules are identified; and finally, next-item recom-
mendations are delivered based on the results. Most users are assumed to act 
based on commonly applied and frequent patterns. For example, the review of 
users’ purchases shows that customers usually buy mobile and handsfree 
together, so based on the model of mobile, handsfree can also be recommended 
to customers who buy mobiles. These types of systems can be applied to data 
without order and sequence.

. Sequential pattern mining-based approaches: Recommender systems based 
on sequential patterns are suggested for processing ordered data, and their items 
are based on temporal factors. Such systems first detect sequential patterns from 
the dataset, and then based on the sequential pattern mining and the order of items 
selected by the user, they recommend the next item. Recommender systems based 
on sequential patterns have two fundamental differences from pattern-based



recommender systems. The first difference is that recommender systems based on 
sequential patterns usually make cross-session recommendations by utilizing 
inter-session dependencies, while in most cases, pattern-based recommender 
systems utilize intra-session dependencies to make inner-session recommenda-
tions. The second difference is caused by the order of the data, because recom-
mender systems based on sequential patterns consider the orders over sessions, 
which are appropriate for sequential data. Techniques such as previous weighted 
sequences of users or combining with collaborative filtering have also been 
proposed to improve approaches using basic sequential pattern recognition 
methods.
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1.4.1.2 K-Nearest Neighbors 

K-nearest neighbors (KNN) is a supervised machine learning algorithm applied to 
solve various problems such as classification and regression. A session-based 
recommender system using the KNN method considers each interaction as an 
item. In this type of approach, first, interactions or sessions that are similar to the 
current interaction or session are captured. Then, a score is calculated for each 
candidate interaction based on how similar and relevant it is to the current interaction 
and based on whether similarity is considered between items or between sessions. 

KNN-based approaches are divided into two categories: item-KNN or 
session-KNN. For both approaches, the set of neighboring items and sessions can 
usually be computed in advance to speed up prediction time [31]:

. Item-KNN approaches: recommend the K items that are most similar to the 
current item, corresponding to the co-occurrence of items in other sessions.

. Session-KNN approaches: first, calculate the similarity between the current 
session and other sessions to detect a set of K neighboring sessions. Then, the 
score of each candidate item is determined based on that. These approaches 
consider all the context of the session and obtain more accurate information for 
the recommendation process than the item-KNN that only considers the current 
item of the current session. 

1.4.1.3 Markov Chain 

A Markov chain or Markov process is a stochastic model that describes a sequence 
of possible events, where the probability of each event depends only on the state 
obtained in the previous event. SBRS using Markov chains first model the transitions 
between the interactions of one or more sessions using Markov chains and then 
predict the next possible interactions or the next session. Unlike recommender 
systems based on sequential patterns, which remove items that are less frequent to 
provide recommendations, in recommender systems based on Markov chains, all 
items are considered. Most approaches in this field use the first-order Markov chain



to reduce the complexity of the model. According to how the transition probabilities 
are calculated based on explicit observations or latent space, Markov chain-based 
approaches can be divided into basic Markov chain and latent Markov embedding 
approaches:

. Basic Markov chain approaches: The process of basic Markov chain 
approaches consists of four main steps: The first step includes computing the 
first-order transitional probability over interactions in the training data, the second 
stage predicts the transition paths between interactions, the third stage matches 
the context of the session with the predicted paths, and the fourth stage provides 
recommendations based on the results of the previous stages. In fact, items with 
higher probability are added to the list of recommendations. To improve the 
results, some studies have employed techniques such as combining the first-order 
and second-order Markov models, creating a hidden Markov model based on 
probabilistic models, and factorization of the transition probability matrix.

. Latent Markov embedding approaches: Unlike the basic Markov chain 
method, which computes the transition probabilities based on explicit observa-
tions, the approaches based on the latent Markov embedding method first embed 
the Markov chain in a Euclidean space and then compute the transition probabil-
ity between items based on Euclidean distance. This method can include 
unobserved transitions, which significantly reduces the problem of data sparsity 
in cases with limited observed data. 
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1.4.1.4 Generative Probabilistic Model 

Generative probabilistic model approaches typically first infer latent categorization 
of items in sessions and then learn transitions between these latent categories within 
or between sessions. Then, the next latent categorization is predicted using the 
learned transitions. Finally, they predict specific items as the next item, conditional 
on the predicted latent ranking of the items. Latent topic models are commonly used 
to infer latent categories and transitions between them. 

1.4.1.5 Latent Representation 

In session-based recommender systems, latent representation approaches using 
shallow models generate a latent representation with low dimensions. This repre-
sentation is created for each interaction in a session. The learned informative 
representations encode the dependencies between these interactions and are used 
for subsequent session-based recommendations. One of the most popular models 
used in this type of approach is the latent factor model. SBRS based on latent factor 
models first determines a factorization model to decompose the observed transition 
matrix of interactions into their latent representations and then uses the resulting 
latent representations to estimate unobserved transitions for the next session-based



recommendations. Interactions in these types of approaches are considered items. 
One of the widely used methods in this area is matrix factorization. Factorization-
based approaches first factorize the item-user matrix or the item-item co-occurrence 
matrix into the latent representation vector of each item and predict the next items 
using the latent representations. These approaches usually utilize factorization 
machines such as matrix factorization in recommender systems based on collabora-
tive filtering to factorize the matrix of user-item interactions into latent factors of 
users and items. 
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1.4.2 Deep Learning SBRS 

In this section, we aim to provide a quick look at different deep learning models that 
have been used in SBRS. Hence, the readers gain a preliminary perspective on the 
main topic of this book, which will be discussed in the following chapters. 

Approaches using deep learning employ various neural network models to learn 
complicated relations between items in each session or between different sessions. 
These types of approaches are divided into two groups based on the number of layers 
and the depth of the model: approaches based on shallow neural networks and 
approaches based on deep neural networks. 

Shallow neural networks are a network architecture with a limited number of 
layers and so a limited modeling power. Deep neural networks are used to learn an 
optimized combination of different representations to predict and recommend the 
next item or session. Deep learning provides two specific goals in the domain of 
recommender systems: processing features of items and users and modeling relations 
and interactions between users and items [32]. On the other hand, it provides several 
benefits in the scope of session-based recommender systems, including the ability to 
create non-linear models, extracting and engineering features automatically for 
different types of data, high capability of sequential modeling for sequential data, 
high scalability, and flexibility for modeling hybrid recommender systems [33]. In 
SBRS, various deep neural network techniques are used to detect dependencies 
between the interactions of a session and complex and extensive relations between 
different sessions. Therefore, the motivation of researchers to provide SBRS based 
on deep learning techniques has increased in recent years. 

Deep learning approaches in various fields of SBRS are performed to achieve 
these specific goals: using deep neural networks to process the features of items and 
users and modeling the interactions between users and items. The strengths that have 
led session-based recommender systems to deep learning approaches are as follows: 

– The ability to generate non-linear models 
– No need for engineering and diagnosing features manually for data like text, 

image, and sound 
– The significant capability of sequential modeling for sequential data



– The high scalability and high flexibility for modeling hybrid session-based 
recommender systems 

– Acceptable accuracy in obtaining results 
– The ability to learn unlabeled data 
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Session-based recommender systems using deep learning approaches can be 
divided into two categories: basic deep neural networks and hybrid/advanced deep 
neural networks:

. Basic deep neural network approaches utilize deep discriminative models such 
as recurrent neural networks (RNN), convolutional neural networks (CNN), 
multilayer perceptron (MLP), and deep generative models, such as autoencoders 
(AE), generative adversarial networks (GAN), and flow-based models (FBM). 
The first use of deep neural networks in SBRS was in 2015 by Hidasi et al., when 
a model based on RNN was presented [34]. Many researchers in the field of deep 
learning session-based recommender systems use RNN and its variants, including 
GRU and LSTM models. In these session-based recommender systems, user 
clicks or interactions are given as input to the system and are transformed into 
meaningful data structures using an embedding method. Then, a recurrent neural 
network is used to model the data and detect their dependency relations. Finally, 
the fully connected layer is used before the output layer to make the model more 
stable. Due to their sequential nature, recurrent neural networks have a high 
potential to analyze the sequential dependencies between data in user sessions. 
The capability to model dynamic behaviors over time in SBRS has made recur-
rent neural networks a desirable solution in this field. Most of the research uses 
GRU type of RNNs because the number of gates and parameters of the LSTM 
model is larger and it has higher computational complexity. RNN and its variant 
models in SBRS are discussed in detail in Chap. 3. 

Some approaches related to SBRS use the convolutional neural network 
model. Using CNN is suitable for user session data in two ways: (1) The order 
of items in one session or between different sessions of users can be easily 
implemented and modeled on convolutional neural networks. (2) Convolutional 
neural networks have a high capacity to learn local features of an area or special 
relations between different areas, based on which they can recognize dependen-
cies that other models usually ignore. In such systems, to learn and model data 
related to users and items, the inputs should be properly embedded so that 
temporal and spatial patterns between them can be correctly identified by succes-
sively using convolution and pooling layers in CNNs. The user’s favorite items 
are predicted based on the features obtained from the input data and the depen-
dencies between them. CNN models in SBRS are discussed in detail in Chap. 3. 

MLP-based approaches are usually employed to learn the optimal combination 
of different representations to create a complex representation of the session 
context for later recommendations. Unlike RNN-based approaches, MLP-based 
approaches are mainly suitable for unordered session data due to their inability to 
model sequential data. It is necessary to mention that MLPs are not mainly used 
alone in SBRS and are usually employed as complementary modules.
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Approaches based on deep generative models for SBRS provide recommen-
dations by generating the next interaction or session through a carefully designed 
generative strategy. Deep generative models pursue two goals: learning practical 
and correct representation of data using unsupervised methods and learning 
probabilistic distributions of data and related classes. These approaches also are 
classified as autoencoders (AE), generative adversarial networks (GAN), and 
flow-based models (FBM). Generative models in SBRS are discussed in detail 
in Chap. 4.

. Hybrid/advanced deep neural network approaches Over time, to reduce 
challenges such as complex dependencies of variables in different time steps, 
cold start problem, data sparsity, and also more effective optimization of com-
plicated session-based recommender systems, more advanced deep learning 
approaches were presented to improve the recommendation process. These 
approaches include advanced deep neural networks such as graph neural net-
works (GNNs), attention-based models, deep reinforcement learning, and hybrid 
models. These models are discussed in detail in Chap. 5. 

Although conventional deep learning techniques have been successful in 
various fields, most of their data are in Euclidean space, while many data are 
inherently better represented by graph structures [35, 36]. In SBRS, it is possible 
to model the sequential behaviors and interactions of users with a graph and learn 
the relations between them using deep graph neural network models. In these 
approaches, given a dataset containing several sessions, each session is mapped to 
a chain on the graph. Each interaction in a session acts as a node in the 
corresponding chain, where an edge is created to connect each pair of adjacent 
interactions in the session. The constructed graph is then fed as input to the GNN 
to learn rich information embedding for each node by encoding complex transi-
tions on the graph into embeddings. Finally, these learned embeddings are fed 
into the prediction module for session-based recommendations. Graph neural 
networks can also be combined with CNN and RNN models. Different types of 
graph neural network-based approaches can be further divided into GCN or GAT. 
GNN and its variant models in SBRS are discussed in detail in Chap. 5. 

Attention-based session recommender systems provide an attention mecha-
nism for discriminative element exploitation in a session context. For accurate 
recommendations, these systems try to generate an informative representation 
from the context of the session. By integrating the attention mechanism, a 
session-based recommender system can emphasize items that are most relevant 
to the next interaction or session and reduce the interference of irrelevant items in 
the session context. In general, an attention model mainly consists of two steps: 
calculating attention weights for the relevant weights of interactions and aggre-
gation, which aggregates the embeddings of all interactions of the session to learn 
their weights. It is worth mentioning that attention mechanisms are not mainly 
used alone in SBRS and are usually utilized together with basic models such as 
GNN [37, 38], CNN/LSTM [39], CNN/GRU [40], and MLP [41]. 

The deep reinforcement learning (DRL) approach is focused on goal-directed 
learning through interaction, where the learning agent, through trial and error and



receiving rewards and punishments, determines which action receives the most 
rewards. In session-based recommender systems that dynamically recommend 
items to users, deep reinforcement learning methods are used to maximize 
expected long-term cumulative rewards. Such approaches can optimize recom-
mendations for long-term user interactions instead of maintaining a short-term 
goal of optimizing the process of providing immediate recommendations to the 
user. Deep reinforcement learning methods enable recommender agents to learn 
optimal recommendation policies to recommend items to users [42]. An SBRS 
that uses reinforcement learning aims to learn optimal recommendation strategies 
through trial and error and receive reinforcement data for recommended items 
from user feedback [43]. In this way, these types of systems can continuously 
update their strategies during interaction with users until they reach the best state 
that meets their dynamic preferences. DRL models in SBRS are discussed in 
detail in Chap. 5. 

Finally, hybrid approaches mainly include several primary deep neural net-
work models to take advantage of each to model the various complex dependen-
cies embedded in the session data. Each of the basic models recognizes one or 
more types of dependencies. In fact, a hybrid session-based recommender system 
performs two main steps: (1) learns different types of dependencies using differ-
ent base models and (2) attentively integrates the learned dependencies to provide 
more accurate recommendations. These models are also discussed in detail in 
Chap. 5.
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1.5 Conclusion 

Session-based recommender systems provide recommendations based on session 
data without the need to access long-term user data and transactions. Due to the 
availability of input data required for SBRS and the compatibility of the features of 
these types of systems with real-world problems, SBRS has attracted the attention of 
many researchers. 

In this chapter, we briefly reviewed the preliminary concepts of recommender 
systems and session-based recommender systems and presented the significant 
differences between these two systems in detail. Then, the fundamental components 
and important attributes of session-based recommender systems, along with their 
specific challenges, were discussed. 

When time and sequence of events are incorporated into the recommendation 
process, there will be three major approaches, session-based, sequential, and session-
aware recommender systems, which were fully elaborated on this chapter. 

Since different research has been proposed in the scope of SBRS, each of these 
models was briefly explained to provide a quick look at different deep learning 
models used in session-based recommenders.
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Chapter 2 
Deep Learning Overview 

Abstract Among the various machine learning algorithms, deep learning has 
recently been dramatically used in different scopes. Deep learning models have 
been significantly employed in effectively extracting hidden patterns from vast 
amounts of data and modeling interdependent variables to solve complex problems. 
Since this book aims to discuss the session-based recommender system approaches 
using deep learning models, brief explanations of various deep neural networks are 
provided in this chapter. For this purpose, the history, basic concepts, advantages/ 
applications, and fundamental models of deep learning are discussed. 

Keywords Deep learning · Machine learning · Deep discriminative models · Deep 
generative models · Graph-based models 

2.1 Introduction 

The ability of the human brain to learn and solve different problems is impressive 
compared to the most powerful computers. For this reason, to increase the power of 
computers to solve more complex problems, the functioning of the human brain has 
been modeled to process different types of problem data. Indeed, an amazing 
evolution occurred in technology systems so that passive and static systems became 
active and dynamic and improved over time. This phenomenon was called machine 
learning, which allowed computers to learn. 

Machine learning has been used in various research and utilized in different 
applications, such as text mining, spam detection, recommender systems, image 
classification, multimedia information retrieval, etc. Among the various machine 
learning algorithms, deep learning has recently been dramatically used in these 
applications. Deep learning employs neural networks and works based on the 
structure and function of neurons in the human brain system. 

Today, deep learning models significantly affect extracting information or hidden 
patterns from massive data due to their higher capacity. Moreover, deep learning can 
solve complex problems and model interdependent variables compared to conven-
tional machine learning approaches. Nowadays, deep learning technology is con-
sidered a hot topic in machine learning, artificial intelligence, and data science due to
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its ability to learn from different data types. Many companies, including Google, 
Microsoft, Apple, Meta, etc., are actively studying deep learning because it can 
provide significant results in various problems of analyzing large structured/unstruc-
tured datasets [1].
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This chapter presents an overview of the basic concepts of deep learning, 
including its definition, history, advantages, and applications, and a comparison 
between the characteristics of deep learning and machine learning in Sect. 2.2. 
Then, a taxonomy of deep learning methods is presented, which includes the 
fundamental models of deep learning. Based on this classification, each of these 
models will be discussed and analyzed in the following subsections. In Sect. 2.3, 
deep discriminative models, including MLP, CNN, and RNN (GRU-LSTM), are 
described, and in Sect. 2.4, deep generative models such as AE, GAN, and methods 
based on the Boltzmann machine are explained. The fifth section describes graph-
based models such as GNN and GCN. 

2.2 Fundamentals of Deep Learning 

2.2.1 History of Deep Learning 

Although deep learning has become very popular in recent years, it has a long 
evolution process. Currently, mainstream deep learning approaches are based on 
neural networks, which have been researched for decades with varying levels of 
success. With the increase in hardware power and the emergence of big data, which 
provides much data for network training, it is possible to train networks with more 
than several hidden layers. Neural networks that consist of several layers are called 
deep networks. Currently, deep learning techniques are used in many domains, and 
the evolution of artificial intelligence and big data processing depends on deep 
learning methods. 

The emergence of neural networks began in the early 1943s when Warren 
McCulloch and Walter Pitts developed a computer model focusing on the human 
neural system. They used a combination of algorithms and mathematics called 
“threshold logic” to mimic human thinking. This network was a binary classifier 
that could distinguish two different classes based on the input values. The problem of 
this network was the adjustment of weights by a human operator. After that, in 1957, 
the perceptron algorithm was proposed by Rosenblatt, which could learn the weights 
to classify the data in its structure without the participation of a human operator. 

The first attempts at developing deep learning algorithms were made by Alexey 
Grigoryevich Ivakhnenko and Valentin Grigor’evich Lapa in 1965. They used 
models with polynomial activation functions (complex equations) that were then 
analyzed statistically. From each layer, the best-selected statistical features were 
transferred to the next layer. 

While the perceptron method was used for several years, in 1969, Minsky and 
Papert published a paper presenting that the perceptron was more capable of



classifying linear problems, and this method could not solve non-linear problems. In 
addition, the authors of this article in the same year claimed that there are no 
sufficient computational resources to build large and deep neural networks. 
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The first “convolutional neural networks” were presented by Kunihiko 
Fukushima. Fukushima designed neural networks with multiple pooling and convo-
lution layers, and in 1979, he developed an artificial neural network called the 
neocognitron that used a multilayered hierarchical design. This design allowed the 
computer to learn visual patterns. In addition, Fukushima’s design allowed for the 
manual adjustment of critical features by increasing the “weight” of certain connec-
tions. In 1989, Yann LeCun presented the first practical demonstration of 
backpropagation at Bell Labs. He combined convolutional neural networks with 
backpropagation to read handwritten digits. This system was eventually used to read 
handwritten check numbers. 

In the 1990s, some people continued to work on AI and DL, and significant 
progress was made. In 1995, Dana Cortes and Vladimir Vapnik developed the 
support vector machine (a system for mapping and recognizing similar data). Long 
short-term memory (LSTM) for recurrent neural networks was developed in 1997 by 
Sepp Hochreiter and Juergen Schmidhuber. 

The next important evolutionary step for deep learning occurred in 1999 when 
computers became faster at processing data using GPUs (graphics processing units). 
Faster processing, with the GPU, increased the speed of calculations by 1000 times 
over 10 years. Neural networks also improved further with more available 
training data. 

Around 2000, the vanishing gradient problem appeared. It was found that the 
“features” (lessons) that are formed in the lower layers do not learn anything from 
the upper layers because the lower layers receive no learning signal. Of course, this 
was not a fundamental problem for all neural networks and only happened to 
networks that used gradient-based learning methods. Two solutions used to solve 
this problem were layer-by-layer pre-training and the development of LSTMs. 

Around 2006, deep belief networks (DBNs) and a layered pre-training framework 
were developed. During 2011 and 2012, AlexNet, a convolutional neural network, 
won many international competitions. The generative adversarial network (GAN) 
was introduced in 2014 by Ian Goodfellow. With GAN, two neural networks play 
against each other in the same game. The game’s objective is for a network to mimic 
a photo and trick its opponent into believing it to be real. At the same time, the 
opponent is looking for its flaws. The game is played until an almost perfect picture 
deceives the opponent. 

BERT, developed by Google in 2018, is a machine learning technique applied to 
natural language processors that aims to better understand the language we use daily. 
It analyzes all the words used in the search to understand the entire context and get 
the user’s desired results. BERT is a system that uses transformers, a neural network 
architecture that analyzes all possible relationships between words in a sentence. In 
March 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun received the 
Turing Prize for their continuous efforts on conceptual and engineering advance-
ments in deep neural networks. In 2020, when there was a pandemic, OpenAI



created an artificial intelligence algorithm called GPT-3 (Generative Pre-trained 
Transformer 3) that could produce human-like text, which is currently (Jun 2023) 
GPT-4 is the most advanced language model in the world. 
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Figure 2.1 shows the timeline of deep learning according to its important 
milestones. 

2.2.2 AI, ML, and DL 

Artificial intelligence is the science and engineering of building intelligent machines, 
specially computer systems, by reproducing human intelligence through learning, 
reasoning, and adaptation. Artificial intelligence uses intelligent agents that under-
stand their environment and take actions that maximize their chances of success in 
achieving their goals. 

Data mining understands and discovers new, previously unseen knowledge in the 
data. A simple definition of data mining is that data mining refers to the use of 
algorithms to extract patterns from data [2]. Deep learning is considered a subset of 
machine learning and artificial intelligence; therefore, deep learning can be consid-
ered an artificial intelligence function that mimics the data processing of the human 
brain. Deep learning also refers to learning methods from data, where computations 
are performed through multilayer neural networks. The term “deep” in deep learning 
refers to the concept of multiple levels or steps through which data is processed to 
build a data-driven model. It differs from standard machine learning in terms of 
performance when the volume of data increases. The global popularity and scope of 
applications of “deep learning” are increasing daily. Deep learning technology uses 
multiple layers to represent the abstraction of data to build computational models. 
While deep learning takes a long time to train a model due to numerous parameters, 
it takes a short time to run during testing compared to other machine learning 
algorithms [1]. 

Data science is a scientific discipline related to the study of generalizable knowl-
edge extraction from data and all preprocessing and processing steps related to data, 
including collection, storage, cleaning, interpretation, analysis, visualization, vali-
dation, and decision-making based on data [3]. Data science uses artificial intelli-
gence, machine learning, data mining, and other approaches such as evolutionary 
algorithms, operational research, statistics, etc. 

Figure 2.2 shows the positions of artificial intelligence, machine learning, deep 
learning, and data science relative to each other. 

One of the most important differences between deep learning and machine 
learning is the performance of the system based on increasing training samples. 
Deep learning will not yield good results if there are not enough training samples. On 
the other hand, machine learning can show good results even with a few samples. In 
addition, deep learning requires advanced hardware, whereas machine learning can 
be used with low-power hardware and computers. The key difference that shows the
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power of deep learning versus machine learning is the automatic extraction of 
features in these algorithms.
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Fig. 2.2 The position of AI, ML, DL, and data science relative to each other 

ML and DL are very similar in allowing the model to learn from previous data. 
The term ML can be generalized to any machine (model) that learns. DL is a specific 
set of methods and techniques that enable the machine to make decisions using very 
deep and complex networks. However, one of the most notable differences in DL is 
its ability to replace the human-based feature extraction process and incorporate this 
step into the neural network itself to automatically decide which features best 
describe the data (Fig. 2.3). Although DL models have proven to solve some of 
the most challenging problems, they can be data-hungry and computationally 
expensive. Before developing a DL-based solution, careful consideration of the 
hardware requirements for training and hosting complex DL models is required. 

2.2.3 Advantages of Deep Learning 

The deep learning process in systems is based on the construction of computational 
models called neural networks, which are inspired by the brain’s structure. The 
structure of this network consists of several processing layers, which by going to the 
next level layers, it can solve more complex problems. The initial layers process the 
raw data, and the subsequent layers can use the information of the neurons in the 
previous layers to obtain a more complex representation of data. Most of the benefits



of deep learning come from the fact that neural networks can learn to perform much 
better at feature extraction than any built artificial systems [5]. 
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Fig. 2.3 Machine learning vs. deep learning [4] 

Briefly, the advantages of deep learning methods are as follows:

. Automated feature extraction: Deep learning algorithms can generate new 
feature representations from a limited number of features existing in the training 
dataset without additional human intervention. This means that deep learning can 
handle complex tasks requiring more extensive feature engineering and precision.

. Ease of working with unstructured data: One of the most prominent attractions 
of deep learning is its ability to work with unstructured data. The power of 
classical machine learning algorithms to analyze unstructured data is limited, 
but deep learning is most effective in handling this type of data.

. Higher self-learning ability: Multiple layers in deep neural networks allow 
models to learn complex features and perform computationally intensive tasks 
more efficiently. Moreover, deep learning algorithms can learn from their errors; 
in addition to confirming the correctness of their results, they can make the 
necessary adjustments. However, classical machine learning models require 
varying degrees of human intervention to determine output accuracy.

. Support for parallel and distributed algorithms: Parallel and distributed 
algorithms allow deep learning models to be trained much faster. Models can



be trained on machines equipped with high-performance CPUs, GPUs, or a 
combination of both.

. Advanced analytics: Deep learning, when applied to data science scope, can 
provide better and more effective processing models. Its ability to learn in an 
unsupervised mode continuously improves accuracy. It also provides data scien-
tists with more reliable and concise analysis results.

. Scalability: Deep learning is highly scalable due to its ability to process massive 
amounts of data and perform many computations cost-effectively and cost-
efficiently. This directly affects modularity, portability, and productivity.

. Increased robustness: Deep learning approaches do not need in-advanced 
designed features. Instead, they learn the optimal features automatically in the 
learning process. As a result, robustness is obtained with respect to changes in 
input data.

. Generalization: Deep learning approaches can be used in different applications 
or with different types of data. 
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Deep learning techniques in various fields, such as image processing, social 
network analysis, information retrieval, natural language processing, robotics, indus-
trial automation, agriculture, medical research, disease diagnosis, recommender 
systems, motion detection systems, etc., can be used. In general, deep learning 
techniques are helpful in the following cases:

. Lack of human experts

. Learning skills that humans are unable to express and explain, such as under-
standing language, image, and sound

. The solution dynamism and its changes over time

. The large size of the problem compared to the limited inference capabilities of 
humans

. Problems with special constraints, such as biometrics 

2.2.4 General Process of Deep Learning-Based Solutions 

Each approach utilizing deep learning techniques includes different stages according 
to their deep learning model. However, they all generally follow the steps shown in 
Fig. 2.4. The datasets collected from various data sources in the data acquisition 
phase must be first preprocessed. The preprocessing steps are data cleaning, nor-
malization, scaling, and quality assessment. After that, data transformation is 
performed to enhance the preprocessed in different stages of standardization, reduc-
tion, and aggregation. During this phase, feature engineering is also performed, and 
the resulting data representations are split into the training, testing, and validation 
sets. It should be mentioned again that, unlike machine learning methods, the 
process of feature extraction is done automatically in deep learning methods. After 
this step, and based on the nature of the problem and its requirements, the architec-
ture of the deep learning approach, including discriminative, generative, graph, or



hybrid, is developed. During this phase, the type of learning algorithms, such as 
Adam, SGD, BFGS, etc., should be developed and evaluated. The built model is 
trained and then evaluated based on different evaluation metrics. If the obtained 
results are acceptable, the final model will be deployed on the target platform; 
otherwise, the model should be improved/revised/tuned, and the performance eval-
uation step should be repeated till acceptable results are achieved. 
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Fig. 2.4 Workflow of deep learning models 

2.2.5 Taxonomy of Deep Learning Models 

Deep learning models can be classified into three general groups, discriminative, 
generative, and graph methods, based on their nature, architecture, and performance 
[1]. Models based on discriminative methods usually specify the decision boundary 
in the data space, while models based on generative methods learn the overall 
distribution of the data [6]. Discriminative methods include convolutional neural 
networks (CNN), recurrent neural networks (RNN), and multilayer perceptron 
(MLP). The major generative methods include autoencoders (AE), generative



adversarial networks (GAN), and different types of Boltzmann machine (BM) 
models. Graph-based methods also include graph neural networks (GNNs) and 
graph convolutional networks (GCNs). It should be mentioned that many hybrid 
models also result from various combinations of different models. 
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Fig. 2.5 The classification of deep learning models 

The taxonomy of deep learning models is shown in Fig. 2.5. 
In the following of this chapter, a variety of deep discriminative models will be 

examined in Sect. 2.3, deep generative models in Sect. 2.4, and graph-based models 
in Sect. 2.5.
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2.3 Deep Discriminative Models 

Machine learning models often present the relations between features x and labels 
y using a joint probability p over x,y. According to the method of calculation of p, 
machine learning models are known as generative or discriminative [7]. In discrim-
inative methods to predict y based on x, the conditional likelihood model p(y|x) is 
fitted. Since discriminative models do not model p(x), they may use their parameters 
more effectively to identify the probability p(y|x). This makes them more suitable for 
supervised learning problems, and by making fewer modeling assumptions, they 
may use the data more efficiently [8]. A deep discriminative model uses layered 
hierarchical architectures to directly compute p(y|x) [9]. This class of deep learning 
techniques is used to provide a discriminative function in supervised or classification 
applications. Deep discriminative architectures are usually designed to provide 
discriminative power for pattern classification by describing posterior distributions 
of categories conditioned on observable data. 

Deep discriminative models generally include multilayer perceptron networks, 
recurrent neural networks, and convolutional neural networks, and each of these 
models will be discussed in the following subsections. 

2.3.1 Multilayer Perceptron 

The multilayer perceptron (MLP) neural network is a feedforward artificial neural 
network that is the basis of deep neural network (DNN) architecture [10]. MLP 
consists of an input layer to receive input signals and data, an output layer to predict 
or make decisions related to inputs, and, between these two layers, an arbitrary 
number of hidden layers that are responsible for the main function of the MLP. 
MLPs can approximate continuous functions using hidden layers. MLP neural 
networks are often applied to supervised learning problems. They are trained on a 
set of input-output pairs and learn to model the dependencies between inputs and 
outputs. The training phase consists of adjusting the parameters or weights and the 
biases of the model to minimize the error. 

In MLP, the backpropagation algorithm is used to adjust the weight and the 
amount of bias toward the error, and its main purpose is to reduce the value of the 
loss function by adjusting the values of the weights and bias of the network. The 
backpropagation algorithm is the core of neural network training, which adjusts the 
weight of the neural network obtained in the previous epoch. This algorithm moves 
in two directions, forward and backward, in the network. It can calculate the error 
gradient value for any network parameter (any weight or bias). In this way, it can 
determine how much the value of each weight in an MLP neural network should 
change. 

During the training process, various optimization approaches, such as stochastic 
gradient descent [11] (SGD), [12] BFGS (L-BFGS), and ADAM [13], can be



applied, which are algorithms that attempt to minimize the loss function. The 
gradient descent algorithm is an iterative method that tries to minimize the loss 
function by changing the internal weights of the network and gradually updating 
them. The step size in each iteration of the algorithm determines the learning rate, 
and the iteration process is carried out until there is no change in the loss function. In 
practice, when the number of training samples is large, using the gradient descent 
algorithm will take much time. This must be done in each iteration of the algorithm 
for all samples. For this reason, using the stochastic gradient descent algorithm will 
be more useful because it only updates a set of samples in each iteration of the 
algorithm. 
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Stochastic gradient descent is a stochastic approximation method of gradient 
descent in which each sample is randomly selected for optimization in each period, 
and new weights are obtained. But it may get stuck in the local minima, which is why 
the mini-batch gradient descent was presented, which divides the entire training set 
into mini-batches and updates the parameters based on these mini-batches [14]. This 
method is more resistant to noise and has less variance; as a result, it has more stable 
convergence due to the use and combination of full gradient reduction and stochastic 
gradient descent. Therefore, this optimization method is usually used in deep 
learning, but determining the learning rate is essential. Learning rates in other 
methods, such as ADAM, Adagrad [15], or Adadelta [16], are adjusted adaptively 
and do not need manual adjustment. The ADAM algorithm outperforms other 
adaptive methods and converges very quickly. It also overcomes other problems, 
such as learning rate decay, high variance in updating, and slow convergence. 

The outputs of neurons in an MLP network are determined using various activa-
tion functions, also known as transfer functions. These functions use simple math-
ematical calculations to determine whether a node’s input is important to the network 
or should be ignored. In other words, the activation function maps the sum value of 
the neuron’s weighted input to values between 0 and 1 or -1 and 1 (depending on 
the type of activation function). Then, this function passes its final value to the next 
layer. For this reason, this function is also called the transfer function. There are three 
categories of activation functions: binary step, linear, and non-linear. The binary step 
function is compared to a threshold value. If the input value is greater than the 
threshold value, the node will be activated; otherwise, it will remain disabled, and 
the output of the node will not be passed to the next layer. This function cannot 
produce multiple-valued outputs and cannot be used for problems such as multi-
class classification. Also, the derivative of the binary step function is equal to zero, 
which is a challenge for the backpropagation algorithm. 

The linear activation function or the identity function does not perform compu-
tations on the weighted input sum and transfers this value to the next layer without 
any changes. This function cannot be used in the backpropagation algorithm because 
the derivative of this function is equal to a fixed number, has no relation with the 
input value x, and does not show good performance for complex neural networks 
with many parameters. On the other hand, the output of several linear functions is the 
same for a fixed input value. Therefore, it does not matter if the deep neural network 
is made of several hidden layers because the output of the activation function in the



last layer of the neural network is equal to the output of the activation function in the 
first layer. 
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Fig. 2.6 The general architecture of MLPs 

The non-linear activation functions are the most widely used in neural networks 
because the generalizability and adaptability of the model to different types of data 
are made easy by using these functions. These functions solved the problem related 
to the backpropagation algorithm and can determine which input node weight can 
better contribute to the final diagnosis of the model. Using these functions, you can 
also solve problems related to multiple outputs. There are various types of non-linear 
activation functions, such as [17]: 

Sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), leaky rectified 
linear unit (leaky ReLU), parametric rectified linear unit (parametric ReLU), expo-
nential linear unit (ELU), softmax, Swish, Gaussian error linear unit (GELU), and 
scaled exponential linear unit (SELU). 

Each of these functions has its own characteristics. To choose the most suitable 
activation function for the final layer of the deep neural network, one should pay 
attention to the purpose of the model and the type of prediction of the model. MLP 
requires setting several hyperparameters, such as the number of hidden layers, 
neurons, and iterations, which can make solving a complex model computationally 
expensive. However, MLP provides the advantage of learning non-linear models in 
real time or online through relative fitting. Figure 2.6 shows the general architecture 
of the MLP.
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2.3.2 Convolutional Neural Network 

Convolutional neural network (CNN or ConvNet) is a discriminative deep learning 
architecture that learns features directly from the input without the need for human 
feature extraction [18]. CNNs are widely used in various domains, such as image 
processing, natural language processing, speech processing, etc. For some types of 
data, specially images, methods such as MLP do not work well because each neuron 
is fully connected to each neuron in the next layer and each neuron in the hidden 
layer computes a function that depends on the values of the nodes in the input layer. 
However, in CNNs, only a local subset of the previous layer variables is considered. 
CNNs are more similar to the human visual processing system than conventional 
neural networks; they perform more effective optimization for processing and 
learning of 2D and 3D images and extract input features automatically [19]. CNNs 
use local connections and shared weights in the network to extract features of the 
input data, which results in much fewer parameters and makes training the network 
faster and easier. This action is similar to the activity performed in the visual cortex 
cells. These cells are sensitive to small parts of the scene rather than the whole scene. 
In other words, the cells act as local filters on the input and extract the local 
correlation in the data. 

The CNN learning process is divided into two general phases: feature engineer-
ing/learning and classification based on fully connected layers. To extract and learn 
features, there are usually several convolution layers followed by pooling layers, and 
in the final stage, fully connected layers (MLP) are employed. The output nodes of 
convolution and pooling layers are grouped in a two-dimensional plane called a 
feature map. The nodes of a plane are connected to a small area of each connected 
plane of the previous layer. Each node of the convolution layer extracts features from 
the input images by convolution operations on the input nodes. 

The main task of the convolution layer is to detect features in local regions of 
input common to the entire dataset. Using filters to detect features leads to the 
production of a feature map. The pooling layer is used periodically between two 
successive convolutional layers, and its task is to reduce the dimensions of the 
feature map. In addition to extracting important features in the feature map, this 
work reduces the computing capability required for data processing by reducing the 
number of parameters. Pooling layers are two types: max pooling and average 
pooling. Maximum pooling (or max pooling) calculates the maximum value for 
each patch on the feature map, and average pooling calculates the average value for 
each patch on the feature map. After using several different layers, the fully 
connected layer at the end of the CNN network can be used to calculate desired 
features and output scores. A fully connected layer in CNN works like a hidden layer 
in MLP and performs a classification. Figure 2.7 shows the general architecture of 
the CNN model. 

If the input x for CNN is considered as three-dimensional m × m × r, m is the 
height and width of the input, and r is the depth or the number of channels. In each 
convolution layer, there are k filters (kernels) of size n × n × q. Here, n must be



smaller than the input m, but q can be smaller or equal to r. The filters are the basis of 
the local connections, which share a similar bias (bk ) and weight Wk parameters for 
generating k feature maps ( hk ) (the size of each of the feature maps is m-n-1). 
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Fig. 2.7 The general architecture of CNNs 

As shown in Eq. (2.1), the convolution layer calculates a dot product between the 
weights and its inputs, and the inputs are small regions of the original input volume. 
Then, a non-linear activation function f is applied to the output of the convolution 
layers: 

hk = f Wk * xþ bk( ) ð2:1Þ 

After that, in the subsampling layers, the number of samples of each feature map 
is decreased to reduce the parameters in the network, speed up the training process, 
and control overfitting. A pooling operation (e.g., average or maximum) is 
performed on an adjacent p × p region (where p is the filter size) for all feature 
maps. Finally, the layers of the final stage, which are fully connected, take the 
previous low/middle-level features and generate a high-level abstraction of the 
data. The last layer (e.g., softmax) can be used to generate classification scores, 
where each score is the probability of a particular class for a given sample. 

Softmax is an activation function that scales numbers/logits into probabilities. 
The output of a softmax is a vector that specifies the probabilities of each possible 
outcome or classes and the sum of probabilities in this vector is equal to one. 
Mathematically, softmax is defined as Eq. (2.2): 

Softmax yið Þ= 
exp yið Þ  

Pc 
j= 1 

exp yj
( ) ð2:2Þ 

where Y represents the values from the neurons of the output layer and c is the 
number of classes. The exponential acts as the non-linear function. Later, these 
values are divided by the sum of exponential values in order to normalize and then 
convert them into probabilities. It is worth mentioning that the softmax layer must 
have the same number of nodes as the output layer.
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CNN network parameters are learned by the backpropagation algorithm and 
stochastic gradient descent algorithm optimization. The first phase is forward prop-
agation, where signals are propagated from the input to the output of the network. In 
the last layer, the output of the cost function is compared with the actual value, and 
error estimation is performed. In the second phase, the backpropagation algorithm is 
used again to compensate for this error. However, the learning process in CNN is 
more complicated compared to the MLP neural network because it consists of 
different types of layers and the forward and backward propagation phases follow 
special rules in each layer. Neurons in CNN have a common weight, unlike MLP, 
where each neuron has a separate weight vector. This sharing of weights reduces the 
total number of trainable weights. 

In general, most deep convolutional neural networks are built on a key set of 
essential layers, including convolution, subsampling, and fully connected layers. 
Specific architectures typically consist of stacks of multiple convolution layers, 
pooling layers, fully connected layers, and softmax layers in the network. Some 
examples of these models are LeNet [18], AlexNet [19], VGGNet [20], NiN [21], 
and All-CNN [22]. Other types and more efficient advanced architectures have been 
proposed in recent years, including DenseNet [23], FractalNet [24], GoogLeNet with 
inception units [25], and ResNets with residual layers [26]. The main components of 
the structure (convolution and pooling) are almost identical in these architectures. 
However, some topological differences are observed in modern deep learning 
architectures. 

It should be mentioned that deep CNN, AlexNet [19], VGGNet [20], GoogLeNet 
[25], DenseNet [23], and FractalNet [24] architectures are generally more popular 
than other architectures due to their success in object detection on various datasets. 
Among all these architectures, some architectures, such as GoogLeNet and ResNet, 
are specially designed for large-scale data analysis, while the VGG network is 
considered a general architecture. 

2.3.3 Recurrent Neural Network 

Many of the data in the world are order-based and considered sequential, such as a 
user’s transactions on an online sales Web site, stock prices in the stock market, and 
movies viewed by a user on Netflix. To process this type of data, deep learning 
methods should be used that can model the dependencies between data. Standard 
neural networks and CNNs cannot process this data because they only take a fixed-
size vector as input and produce a fixed-size output. Second, these models operate 
with a fixed number of computational steps (e.g., the number of model layers) 
[27]. However, recurrent neural networks are unique because they can operate on 
a sequence of input vectors over time. These networks remember the dependencies 
between sequential data using hidden states (or memory) and do not consider the 
data independent of each other [28].
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Fig. 2.8 RNN schematics 
proposed by Elman and 
Jordan 

The main characteristic of RNN is that the recurrent units have hidden states that 
are not only dependent on the current input of the network but also related to the 
previous inputs. Different versions of RNN have been proposed by Jordan and 
Elman [29, 30]. In Elman, the architecture uses the output of the hidden layers as 
its input in addition to the normal inputs of the hidden layers. On the other hand, the 
outputs of the output unit are used as its inputs to the hidden layer in the Jordan 
network. RNN element model computations in the Elman model are according to 
Eqs. (2.3) and (2.4): 

ht = σh Whxt þ Rhht- 1 þ bhð Þ 2:3Þ 
yt = σy Wyht þ by ð2:4Þ 

Jordan RNN model computations are also according to Eqs. (2.5) and (2.6): 

ht = σh Whxt þ Rhyt- 1 þ bhð Þ 2:5Þ 
yt = σy Wyht þ by ð2:6Þ 

In Eqs. (2.3), (2.4), (2.5), and (2.6), the parameter xt is the input vector, ht is the 
hidden layer vector, yt is the output vector, W and R are the weight matrices, and b is 
the bias vector. The difference between these models lies in the position of the loop 
connection giving the recurrent property to the network. The high-level schematics 
of Elman and Jordan models have been depicted in Fig. 2.8.
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Fig. 2.9 The general architecture of RNNs 

Fig. 2.10 Various architectures of RNN networks 

Concluding from the above descriptions of the primary models of RNN, the 
general architecture of RNNs is shown in Fig. 2.9. As mentioned in RNN, each state 
depends on all previous computations by a recursive equation. An important effect 
of this is to create memory over time, as states are based on previous steps. 

The various architectures for RNNs are categorized as one-to-one, one-to-many, 
many-to-one, and many-to-many [31], as shown in Fig. 2.10. In the one-to-one 
architecture, an RNN input unit is mapped to a hidden unit and an output unit 
(Fig. 2.10a). In the one-to-many architecture, one input unit of RNN is mapped to 
several hidden units and several output units, which is an example of image 
annotation. The input layer receives an image and maps it to multiple words 
(Fig. 2.10b). In the many-to-one architecture, several RNN input units are mapped 
to several hidden units and one output unit. A practical example of this architecture is 
emotion classification, where the input layer receives multiple tokens from different 
words of a sentence and maps them into a positive or negative polarity (Fig. 2.10c). 
In the many-to-many architecture, several input units of the RNN are mapped to 
several hidden units and several output units. A practical example of this architecture 
is machine translation, where the input layer receives multiple tokens of source 
language words and maps them to tokens of words in the target language (Fig. 2.10d, 
e).
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From a theoretical point of view, RNNs can remember information for a long 
time, but in practice, they only see a few previous steps and do not have long-term 
memory. The standard RNN can hardly extract the long-term dependencies of the 
data due to vanishing and exploding gradients. Indeed, RNNs suffer from the 
problem of preserving the context for long-range sequences (think long sentences 
or long speeches). The effect of a given input on the hidden layer (and thus the 
output) either decays exponentially (vanishes) or blows and saturates (explodes) as a 
function of time (or sequence length). 

Several solutions to solve this problem of RNNs have been proposed in the past 
few decades. Two possible effective solutions for this problem are, firstly, clipping 
the gradient and scaling the gradient if the norm is too large and, secondly, 
developing a better RNN model. Therefore, modified RNNs such as GRU and 
LSTM have been proposed, which have solved these problems by adding a gate 
function to the RNN network. In the following subsections, we briefly review GRU 
and LSTM models. 

2.3.3.1 LSTM 

One of the improved types of RNN networks is the long short-term memory (LSTM) 
model. LSTM was introduced to reduce the vanishing gradient problem and has 
become one of the most popular RNN architectures to date [32]. The standard LSTM 
has three gates, the forget gate ft, which specifies how much of the previous data is to 
be forgotten; the input gate it, which evaluates the data to be stored in memory; and 
the output gate ot, which decides how to calculate the output based on the available 
data and information, calculated by the below equations: 

it = σ Wixt þ Riht- 1 þ bið Þ 2:7Þ 
f t = σ Wf xt þ Rf ht- 1 þ bf ð2:8Þ 
ot = σ Woxt þ Roht- 1 þ boð Þ 2:9Þ 

In Eqs. (2.7), (2.8), and (2.9), σ usually represents a sigmoid function, parameters 
W and R are the weight matrices, and b is the bias vector that can be trained. LSTM 
units are defined based on Eqs. (2.10)–(2.13):

 Ct = tan h Wcxt þ Rcht- 1 þ bcð Þ 2:10Þ 
Ct = f t⨀Ct-1 þ it⨀  Ct ð2:11Þ 

ht = ot⨀ tan h Ctð Þð Þ 2:12Þ 
yt = σ Wyht þ by ð2:13Þ
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Fig. 2.11 The internal structure of LSTM cell 

In fact, the state of the candidate cell Ćt is calculated based on the input data xt and 
the previous hidden state ht-1. Memory or current cell state Ct is obtained by using 
forget gate ft, previous cell state Ct - 1, input gate it, and candidate cell state Ćt. The 
sign ⨀ means to use element-wise multiplication. The output yt is calculated based 
on the weights (Wy and by) corresponding to the hidden state ht. Figure 2.11 shows 
the internal structure of the LSTM cell. 

Over time, various types of LSTMs were developed in different research, such as 
stacked LSTM [33, 34], bidirectional LSTM [35], convolutional LSTM [36], multi-
dimensional LSTM [37], graph LSTM [38], etc.:

. Stacked LSTM: In typical applications, the simplest method of increasing 
network capacity and depth in the LSTM network is to stack LSTM layers 
[33, 34]. A stacked LSTM network is the most basic and simplest LSTM network 
structure, which can also be considered as a multilayer fully connected structure.

. Bidirectional LSTM: Normal RNNs can only use the previous context. To 
overcome this problem, bidirectional RNN (B-RNN) was introduced by Schuster 
and Paliwal (1997) [39]. This type of architecture can be trained in both temporal 
directions simultaneously, with separate hidden layers (i.e., forward and back-
ward layers). Therefore, to propose bidirectional LSTM in [35], Graves and 
Schmidhuber combined the B-RNN method with the LSTM cell and proposed 
B-LSTM.

. Convolutional LSTM: The fully connected LSTM layer contains too much 
redundancy for spatial data. Therefore, to perform a spatiotemporal sequence 
prediction problem, convolutional LSTM (ConvLSTM) was proposed by Sainath 
et al. [36], which uses convolutional structures in recurrent connections. The
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ConvLSTM network uses the convolution operator to compute the next state of a 
particular cell, and then the next state is determined by the inputs and past states 
of its local neighbors.

. Multi-dimensional LSTM: Standard RNNs can only be used to deal with 
one-dimensional data. Multi-dimensional LSTM for expanding the application 
scope of RNNs was introduced by Graves et al. [37]. Its main idea was to create 
recursive connections as large as the dimensions of the data. At each point in the 
data sequence, the iterative layer L receives both the output of layer L-1 and its 
activations from one step back in all dimensions. This means that the LSTM cells 
in layer L have n forget gates in the n-dimensional LSTM network.

. Graph LSTM: An extended fixed topology of LSTM has been proposed by 
Liang et al. to develop the graph LSTM network based on the graph RNN 
network [38]. The LSTM graph model assumes that each superpixel node is 
defined by its previous states and adaptive neighboring nodes. In this method, 
instead of using a fixed starting node and a predefined update path for all images, 
the starting node and the updating scheme of LSTM graph nodes are determined 
dynamically. 
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2.3.3.2 GRU 

LSTM can learn better than the standard RNN. However, additional parameters 
increase the computational complexity and load [40]. Therefore, gated recurrent unit 
(GRU) was introduced by Chu et al. in 2014 [41]. GRUs alleviate the vanishing 
gradient problem by using a mechanism similar to LSTM. GRUs are simpler than 
LSTMs because they use one less gate and eliminate the need to distinguish between 
hidden states and memory cells. This type of mechanism is widely used and popular 
due to the simplicity of the model and reduced complexity and computational costs 
compared to LSTMs. In this type of network, forget and input gates are combined to 
create an update gate. On the other hand, cell and hidden states are also merged. 

GRU has two update gates ut and reset gate rt. The ut gate sets the update rate of 
the hidden state, and the rt gate decides how much past information is to be 
forgotten. Equations (2.14)–(2.18) show the formulation of GRU: 

ut = σ Wuxt þ Ruht- 1 þ buð Þ 2:14Þ 
ut = σ Wuxt þ Ruht- 1 þ buð Þ 2:15Þ 

h ′ t = tan h Whxt þ rt⨀ht-1ð ÞRh þ bhð 2:16Þ 
ht = 1- utð Þ⨀ht- 1 þ ut⨀h ′ tð 2:17Þ 

yt = σ Wyht þ by ð2:18Þ 

Figure 2.12 shows the internal structure of the GRU cell.
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Fig. 2.12 The internal structure of GRU cell 

Several types of GRU have been developed in different research, such as bidi-
rectional GRU, stacked bidirectional GRU, convolutional GRU, etc. [42]:

. Bidirectional GRU: A bidirectional GRU or BiGRU is a sequential processing 
model consisting of two GRUs. One takes the input in the forward direction and 
the other in the backward direction. In BiGRU, both layers are independent; 
however, they have the same input sequence, and the final outputs of the two 
layers are connected. The forward layer reads the input sequence from left to 
right, and the backward layer reads the input sequence in reverse order from right 
to left. Each cell consists of two gates, reset and update, with two activation 
functions.

. Stacked bidirectional GRU (stacked BiGRU): When different layers of BiGRU 
are stacked next to each other, a stacked bidirectional GRU is created. The 
stacked BiGRU was used to encrypt the information to get more detailed infor-
mation and features. Some data, like sentences, are directed, and stacked BiGRU 
is one of the suitable options for processing these types of datasets.

. Convolutional GRU: This model is a type of GRU that combines GRUs with 
convolution operations. Specifically, CNN-GRU extracts features through the 
convolution layer and performs time series prediction by stacking multiple GRU 
layers. Similar to other deep neural network models, the CNN-GRU training 
method is implemented using backpropagation and gradient descent. The goal of 
the training process is to reduce the root mean square error.
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2.4 Deep Generative Models 

Generative models are considered a type of deep learning model whose goal is to 
learn how to generate new samples from the same training dataset [43]. During the 
training phase, a generative model attempts to solve a density estimation problem. In 
density estimation, the model learns to make an estimate as close as possible to the 
unobserved probability density function. Furthermore, the generative model should 
be able to create new distribution samples in addition to processing existing samples. 
Generative models should recognize the distributions and basic features of the data 
to reconstruct or generate similar samples and learn them efficiently. A model 
capable of generating new samples can be said to have learned and comprehended 
a concept without training. For this reason, these models are classified as 
unsupervised models. 

Deep generative models are neural networks with many hidden layers that are 
trained for complex estimation and high-dimensional probability distributions 
[44]. The most important goal of training this type of model is to learn intractable 
or unknown statistical distributions from a few independent samples that are uni-
formly distributed. After successful training, deep generative methods can be used to 
estimate the likelihood of a specific sample and create new samples similar to the 
unknown distribution. 

Deep generative learning models are used by researchers in various domains due 
to their high flexibility in statistical distributions and their high capacity to learn 
non-linear representations. The most important examples of generative models are 
autoencoders (AE), generative adversarial networks (GAN), and models based on 
Boltzmann machines such as restricted Boltzmann machines (RBM), deep belief 
networks (DBN), and deep Boltzmann machines (DBM). Each of these models is 
described below in separate subsections. 

2.4.1 Autoencoders 

An autoencoder is an unsupervised deep learning method that learns how to effi-
ciently compress and encode data and then reconstructs the data from a reduced 
encoded representation to one that is similar to the original input [45]. Autoencoders 
provide a method for automatically learning features from unlabeled data, which 
enables unsupervised learning. This neural network model applies backpropagation 
and sets the target values (outputs) equal to the inputs. Recently, the theoretical 
bridge between autoencoders and latent variable models has transferred 
autoencoders to the forefront of generative modeling. 

In the autoencoder, in addition to the input, a layer with lower dimensions than 
the input and output is considered in the middle of the structure, which forces the 
autoencoder not only to transfer the input into the output but also to create a 
compressed version of the input in hidden layers which is called representation or



code. The autoencoder includes layers such as the input, hidden, and output layers. 
Combining the input layer and the hidden layer creates an encoder, and combining 
the hidden layer and the output layer creates a decoder. The encoder compresses the 
input and generates the code, and the decoder reconstructs the input based on the 
code. Encoder and decoder are feedforward neural networks placed symmetrically in 
the autoencoder structure in most cases. The hidden layer is a layer with the 
appropriate dimensions, according to the designer. Notably, the number of neurons 
in the hidden layer is a hyperparameter. Figure 2.13 shows the general architecture of 
an autoencoder. 
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Fig. 2.13 The general architecture of autoencoders 

In the autoencoder, the input x is encoded in a low-dimensional space and then 
decoded by reconstructing x́ from the corresponding input [46]. Assuming a hidden 
layer, the encoding and decoding processes of an autoencoder are shown in 
Eqs. (2.18) and (2.19), respectively. The encoding and decoding weights are denoted 
as W and W  , and the objective is to minimize the reconstruction error. x = {x1, 
x2, . . ., xn} is the input of the autoencoder with high dimensions, and its encrypted 
representation is considered as h = {h1, h2, . . ., hd}. Equation (2.19) shows the 
conversion of the input to the encoded representation:
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h= f Wxþ bð Þ 2:19Þ 

In Eq. (2.19), f is the activation function, W is the weight matrix, and b is the bias 
vector. The decoder reconstructs the encrypted representation of the hidden layer and 
reaches data x́= x́1, x́2, . . . , x́nf g  using the g function. This decoder function is 
calculated using Eq. (2.20): 

x́= g W  hþ b́( ) ð2:20Þ 

In the above equation, g is the activation function, W  is the weight matrix, and 
b is the bias vector. Functions f and g are usually non-linear activation functions such 
as the tanh and sigmoid that help the autoencoder to learn more important and useful 
features than the PCA method by minimizing the reconstruction error between x and 
x́ and obtaining the d-dimensional representation of the input data. 

To train an autoencoder, several parameters that affect the performance of the 
model must be set beforehand. These parameters include the type of optimizer, 
dropout, hidden layer size, number of layers, and cost function [47]. A type of 
optimizer that has a high speed and can handle high-volume data with low memory 
consumption should be selected. Dropout is also only used during training and then 
automatically disabled during execution. The size of the hidden layer is the number 
of nodes in the middle or hidden layer, and the number of layers determines the size 
of the required encoder and decoder layers. Autoencoders can be divided into deep 
and shallow networks depending on the number of hidden layers. The number of 
nodes in these layers should also be determined. The cost function evaluates the 
neural network training process. The cost function in the autoencoder is the mean 
square error or cross-entropy. Different types of autoencoders have been presented in 
research, which include sparse autoencoder [48], denoising autoencoder [49], con-
tractive autoencoder [47], convolutional autoencoder [50], and variational 
autoencoder [51], which are briefly explained in the following subsections. 

2.4.1.1 Sparse Autoencoder 

The purpose of sparse autoencoders is to extract sparse features from raw data. 
Sparsity can be obtained either by penalizing hidden unit biases or directly by 
penalizing the output of hidden unit values. In this type of neural network, the 
number of hidden layer cells is greater than the number of input/output layer cells. 
Sparse representations have several benefits, including (1) the use of representations 
with large dimensions increases the probability that different categories can be 
separated easily, (2) sparse representations provide a simple interpretation of com-
plex input data, and (3) biological vision uses sparse representations in primary 
visual areas. 

The idea of this type of autoencoder is that a neuron is activated only for some 
training samples. Since the samples have different features, the activation of neurons
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should not be done by the same method. The goal is a latent representation in which 
many elements in the representation are zero so that the most salient features are 
shown. 
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If g(h) is the decoder output, h = f(x) is the encoder output, and ε(h) is the sparsity 
penalty, then the loss function of the sparse autoencoder is as follows: 

L x, g f  xð Þð Þð Þ þ  ε hð Þ ð2:21Þ 

In Eq. (2.21), sparsity penalty ε(h) is based on the following logarithmic function: 

ε hð Þ= 
Xd 
j= 1 

KL p
||||||ṕj

( )
ð2:22Þ 

In Eq. (2.22), KL p jj ṕj
)(
is the Kullback-Leibler (KL) divergence between a 

Bernoulli random variable with mean p and a Bernoulli random variable with mean 
ṕj, and d is the number of neurons in the hidden layer. 

The general architecture of the sparse autoencoder is shown in Fig. 2.14. 

2.4.1.2 Denoising Autoencoder 

In the denoising autoencoder, instead of adding a penalty to the loss function, it is 
possible to train the autoencoder with useful information by changing the recon-
struction error of the loss function. This can be done by intentionally adding some 
noise to the input layer. By entering these noise values, the denoising autoencoder 
creates a corrupted copy of the input. A denoising autoencoder tries to improve the 
representation (to extract useful features) by changing the reconstruction measure. In 
other words, corrupted data are received as inputs and trained to recover the input 
without distortion and the original error as outputs. This is done by minimizing the 
average reconstruction error on the training data, i.e., removing the corrupted input 
or removing the noise. The input in this network is a corrupted version ~x 2 Rn of the 
original input x 2 Rn . This autoencoder does not simply copy the input to the output 
but denoises the data and then constructs the input from the corrupted version. 
According to Eq. (2.23), this autoencoder minimizes the error on the corrupted 
input as follows: 

L x, g  f  ~xð Þð Þð Þ 2:23Þ 

In Eq. (2.23), g  f  ~xð  Þð  Þ is the output of the decoder, and f ~xð  Þ  is the encoded output 
of the corrupted input. Therefore, in the field of computing, denoising autoencoders 
can be considered potent filters that can be used for automatic preprocessing. For 
example, an automatic denoising encoder can be used to automatically preprocess an 
image, thereby increasing its quality for an accurate detection process. The general 
architecture of this type of autoencoder is shown in Fig. 2.15.
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Fig. 2.14 The general architecture of sparse autoencoders 

2.4.1.3 Contractive Autoencoder 

This type of autoencoder is the further development of the denoising autoencoder, 
and both motivations are the same for robust learning of data representations. While 
the denoising autoencoder strength is the mapping operations by injecting noise into 
the training set, the contractive autoencoder achieves this by adding an analytic 
contractive penalty to the reconstruction error function. A denoising autoencoder 
with small corruption noise can be considered as a type of contractive autoencoder 
where the contractive penalty is on the whole reconstruction function instead of the 
encoder. Both the contractive and denoising autoencoder were successfully used in



the transfer learning competition in an unsupervised mode. This is achieved by 
adding a penalty to the loss function, as shown in Eq. (2.24): 
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Fig. 2.15 The general architecture of denoising autoencoders 

L x, g f  xð Þð Þð Þ þ ε hð Þ ð2:24Þ 

In the above equation, g( f(x)) is the output of the decoder, f(x) is the output of the 
encoder, and ε(h) is the sum of the square elements of the Jacobian matrix. In fact, 
this penalty is the sum of the squared elements of the Jacobian matrix of the partial 
derivatives of the encoder function, which is computed according to Eq. (2.25): 

ε hð  Þ= λ 
∂f xð Þ  
∂x

||||||||
||||||||
2 

F 

ð2:25Þ 

In Eq. (2.25), the parameter λ is a hyperparameter used to control the regulariza-
tion strength. The final result is a reduction in the sensitivity of the learned repre-
sentation to the training input.



2.4 Deep Generative Models 55

Fig. 2.16 The general architecture of convolutional autoencoders 

2.4.1.4 Convolutional Autoencoder 

The convolutional autoencoder extends the basic structure of the simple autoencoder 
by changing the fully connected hidden layers into convolutional layers. Similar to 
the simple autoencoder, the size of the input layer is the same as the output layer, but 
the encoder network is changed to convolution layers and the decoder network to 
transposed convolution layers (deconvolution). To extract the structural features of 
multi-dimensional data such as images, convolutional neural networks provide a 
better architecture. In addition, they can be stacked such that each convolutional 
autoencoder takes the latent representation of the previous convolutional 
autoencoder for higher-level representations. The difficult part of this autoencoder 
is on the decoder side of the model. During encoding, data sizes are reduced by 
subsampling with average or maximum pooling. Both operations result in data loss 
that is difficult to recover during decoding. The convolutional autoencoder allows 
the model to learn optimal filters to minimize the reconstruction error. Once these 
filters are learned, they can be applied to any input to extract features. Therefore, 
these features can be used to perform any task that requires a compressed represen-
tation of the input. Figure 2.16 shows the general architecture of this type of 
autoencoder. 

2.4.1.5 Variational Autoencoder 

A variational autoencoder is a type of autoencoder with additional constraints on the 
encoded representations being learned. More precisely, this autoencoder learns a 
latent variable model for its input data. Therefore, instead of the neural network 
learning an arbitrary function, in the variational autoencoder, the parameters of the 
probability distribution model its own data. If the points of this distribution are 
sampled, it produces new input data samples. Because of this, variational 
autoencoders are considered generative models. 

Variational autoencoders attempt to decode encodings that come from a known 
probability distribution to produce appropriate outputs, even if they are not real data 
encodings. In variational autoencoders, instead of mapping the input to a fixed 
vector, the input is mapped to a distribution. Therefore, the important difference 
between this type of autoencoder and other types is that the bottleneck (hidden) 
vector is replaced by the mean vector and the standard deviation vector and then the 
sampled latent vector is considered as the real bottleneck. This is very different from 
the conventional autoencoder, where the input directly generates a latent vector.



Based on these features, the major applications of variational autoencoders are to 
reduce data dimensions and learn representations from them. 
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The function of this autoencoder is to take the input to provide two vectors of size 
n: the mean vector and the standard deviation vector. By using mean and standard 
deviation, we can generate samples with a normal distribution that corresponds to 
Eq. (2.26): 

F xð Þ= 
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
- x- μð Þ2 

2σ2 ð2:26Þ 

In Eq. (2.26), μ and σ are the mean and standard deviation for a random number 
Xi. After that, the obtained encoded data are passed to the decoder. New samples 
added to the distribution expand the space for further sample generation. On the 
other hand, the decoder learns that the samples are not generated from a single point 
but follow a distribution in the continuous latent space. During decoding, each latent 
feature is sampled to generate a sample vector and then sent to the decoder. In this 
way, a slight change in the input leads to an accurate reconstruction of the output. 
Statistically, this method uses Bayesian theory. If z samples are generated from 
x observations, the probability of z given x is calculated as pθ(z| x), which is the true 
posterior distribution of the latent space. Computing the posterior pθ(x) for each data 
sample x is expensive, so to limit the space for a faster search process, the variational 
autoencoder uses the approximate inference of the tractable posterior distribution, 
which is provided by the encoder function via qφ(z| x). 

To ensure that both pθ(z| x) and qφ(z| x) are similar, the divergence between them 
should be minimized. To determine the value of the distance between these two 
distributions, the difference measurement can be obtained with the help of the 
Kullback-Leibler divergence. The divergence, according to Eq. (2.27), is measured 
as KL divergence and always has a non-negative value: 

DKL = qφ zjxð Þ k  pθ zjxð Þ( ) ð2:27Þ 

The loss function consists of two expressions, one related to reconstruction errors 
and the other related to KL divergence. The loss function is calculated using 
Eq. (2.28): 

Ez-qφ zjxð Þ  log pθ xjzð Þ½ ]-DKL qφ zjxð Þ k  pθ zð Þ( )
= -ELBO≤ log pθ xð Þ  ð2:28Þ 

Figure 2.17 shows the general architecture of the variational autoencoder. 

2.4.2 Generative Adversarial Networks 

The generative adversarial network (GAN) is a deep learning approach proposed by 
Goodfellow in 2014 [52]. GANs provide an alternative approach to techniques based 
on maximum likelihood estimation. GAN is an unsupervised deep learning approach 
where two neural networks compete in a zero-sum game. One of these networks is a



ð

generator, and the other is a discriminator. These two networks have an adversarial 
relation; each is defined as follows:

. Generator: A neural network that takes a random noise vector as input and 
transforms it into a distribution model.

. Discriminator: A neural network that distinguishes between output data (fake) 
and training data samples (real). It acts like a classifier and decides whether the 
input is real or fake. These two neural networks try to work against each other. 
The generator learns to transform a random noise vector into a distribution model 
at these weight settings. 
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Fig. 2.17 The general architecture of variational autoencoders 

For example, in image generation, the generator network starts generating images 
with Gaussian noise, and the discriminator network determines how good the 
generated images are. This process continues until the outputs of the generative 
network are close to the real input samples. Figure 2.18 presents the general 
architecture of GAN models. 

The generator and discriminator network in GAN are two players playing the 
min-max game with the function V (D, G), which can be expressed as Eq. (2.29): 

min 
G 

max 
D 

V D,Gð Þ=Ex logD xð Þ½ ] þ  Ez log 1-D G  zð ÞÞð Þð ]½ 2:29Þ 

In this regard, G and D represent the generator and the discriminator model, 
respectively, Ex is the expected value over all real data instances, and Ez is the 
expected value over all random inputs to the generator (the expected value over all 
generated fake instances G(z)). In practice, this equation may not provide adequate 
gradients to learn G (started from Gaussian random noise) in the initial stages. At the 
initial stages, D can reject samples because they are clearly different compared to the
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training samples. In this case, the log(1 - D(G(z))) expression will be saturated. 
Instead of training G to minimize log(1-D(G(z))),G can be trained to maximize log 
(G(z)), which provides much better gradients at the initial stages of learning.
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In general, the GAN network is designed for unsupervised learning tasks, but it 
has also proven to be a better solution for semi-supervised and reinforcement 
learning depending on the nature of the problem [53]. GANs are also used in transfer 
learning research to apply the alignment of the latent feature space. The application 
areas of GANs include healthcare, image analysis, data augmentation, video gener-
ation, audio generation, traffic control, cyber security, and many other evolving 
applications. Overall, GANs have established themselves as a comprehensive 
domain of data-independent expansion and a solution to problems requiring a 
generative approach. 

2.4.3 Boltzmann Machines 

Boltzmann machines (BMs) are undirected networks consisting of many nodes 
connected to each other through weighted connections [54]. BMs represent a class 
of unsupervised neural networks that do not attempt to minimize loss or achieve a 
goal; instead, they generate data to form a system (usually a probability distribution) 
similar to the original system [55]. Figure 2.19 shows the general architecture of 
BMs, where visible and hidden nodes are selected and visible nodes are used as input 
and output. Because, after feeding the visible nodes through contrastive divergence, 
which uses Gibbs’ sampling, the visible nodes iteratively feed the hidden nodes 
through weights. Instead, hidden nodes feed visible nodes. In this figure, gray nodes 
are hidden, and white nodes are visible. 

In this model, each node communicates with every other node, and the whole 
model works as a system to create a generative network. Therefore, it can make its 
own data based on what it learned by fitting it into a dataset. The visible nodes in 
Boltzmann machines can be interacted with, but not with the hidden ones. Another 
distinction is that there is no training process. The nodes learn how to model the 
dataset as best as possible, turning the Boltzmann machine into an unsupervised 
deep learning model. 

If the units are updated sequentially in any order that does not depend on their 
total inputs, the network will finally reach a Boltzmann distribution. The probability 
of a state vector, v, is only determined by its “energy” relative to the energies of all 
possible binary state vectors u, which can be calculated using Eq. (2.30): 

P vð  Þ= e-E vð Þ= 
X 
u 
e-E uð Þ ð2:30Þ 

As in Hopfield nets, the energy of state vector v is defined as Eq. (2.31):
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Fig. 2.19 The general architecture of Boltzmann machines 

E vð Þ= 
X 
i 

sv i bi -
X 
i< j 

sv i s
v 
j wij ð2:31Þ 

where sv i is the binary state assigned to unit i by state vector v. 
However, Boltzmann machines are not necessarily practical and suffer from 

problems when the network becomes larger. Therefore, different types of Boltzmann 
machines have been proposed, applicable in various domains, such as restricted 
Boltzmann machines (RBM) [56], deep Boltzmann machines (DBM) [57], and deep 
belief networks (DBN) [58], which are discussed and reviewed in the following 
subsections. 

2.4.3.1 Restricted Boltzmann Machine 

In practice, it is not easy to sample every iteration when all nodes are connected to 
every other node. Hence, the restricted Boltzmann machine was proposed 
[56]. RBM is similar to BM, but the main difference is that RBM consists of only 
two layers: the input layer and the hidden layer. Its architecture is similar to the 
artificial neural network model, so the RBM layers are like the first two layers of an



ANN. However, for the layers, there is a restriction that none of the nodes within the 
layer are connected to each other. RBM is Boolean/Bernoulli if each node outputs a 
binary value. Figure 2.20 shows the architecture of RBM. 
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Fig. 2.20 The general architecture of RBMs 

RBMs (and BMs), in general, are energy-based models where the joint configu-
ration energy of visible and hidden nodes E(v, h) is calculated based on Eq. (2.32): 

E v, hð Þ= 
X 

i2visible 
pivi -

X 
j2hidden 

qihi -
X 
i 

X 
j 

viwi,jhj ð2:32Þ 

In the above equation, vi and hi are the states of visible node i and hidden node j, pi 
and qi are their biases, and wi, j shows the weight between them. RBM uses 
Eq. (2.33) to determine the probability between each pair of hidden and visible 
vectors: 

p u, hð Þ= 
e-E v,hð Þ  

P 
v, h 

e-E v,hð Þ ð2:33Þ 

Using the contrastive divergence method, the lowest energy state is obtained by 
adjusting the weights. RBMs are used in the fields of dimensionality reduction, 
classification, regression, collaborative filtering, feature learning, topic modeling, 
etc. In general, RBMs can automatically recognize patterns in data and develop 
probabilistic or stochastic models, which are used to select or extract features. 

2.4.3.2 Deep Belief Network 

A deep belief network (DBN) is a multilayer generative graphical model that stacks 
and sequentially connects several individual unsupervised networks such as AE or 
RBM [58]. This type of network uses the hidden layer of each network as input for 
the next layer. One of the most important advantages of DBN, in contrast to 
conventional shallow learning networks, is the capability to detect deep patterns,



which allows to reason and identify the deep differences between normal and noisy 
data [59]. 
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Fig. 2.21 The general architecture of DBNs 

Considering that DBNs are extensions of RBMs, however, training DBNs is not 
simple because there is a phenomenon called “explaining away” in Bayesian net-
works, which happens when hidden variables are inferred in hidden layers. The 
reason for this is the intractability of the posterior distribution on the hidden vari-
ables. Explaining away happens when a cause of an effect completely explains the 
effect, which reduces the chance that other causes are involved. Markov chain Monte 
Carlo can be used to sample these intractable posterior distributions, but it is very 
time-consuming. Another problem with training DBNs is when the prior is assumed 
to be independent of the deepest hidden layer with initial random weights. To train 
DBNs faster and more efficiently, it is necessary to remove the “explaining away” 
effect and prior independence [55]. 

In deep belief networks, the training method is started with the first RBM, then 
the hidden layer plays the role of the visible layer of the second RBM, and the second 
RBM is trained. This process continues until each model layer is trained. Figure 2.21 
shows the general architecture of a DBN with three hidden layers. 

A continuous DBN is also simply an extension of a standard DBN that allows a 
continuous range of decimals instead of binary data. In general, the DBN model can 
play a key role in several high-dimensional data applications due to its effective 
feature extraction and classification capabilities and has become one of the important 
topics in the domain of neural networks [6].
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2.4.3.3 Deep Boltzmann Machine 

The RBM model can only learn a simple representation of the data. By increasing its 
hidden layers, it should be possible to build a deep architecture to extract the 
complex features of the input data. The deep Boltzmann machine (DBM) model is 
a deep generative model that has one visible layer and several hidden layers 
[57]. The general architecture of DBM is shown in Fig. 2.22. 

The main difference between DBMs and DBNs is that in DBMs, all connections 
are undirected. DBMs are also used to capture hidden complex fundamental features 
in data, making them suitable for tasks such as speech and object recognition. 
DBMs, unlike DBNs, first use an approximate inference method with an additional 
bottom-up pass to speed up learning and incorporate top-down feedback, which 
makes the DBM deal well with ambiguous inputs. 

The traditional process of training BMs uses a random start to approximate the 
gradients of the likelihood function for the input data, which is not the fastest 
approach. To deal with this, Salakhutdinov et al. proposed a variational technique 
using mean field inference to estimate the expectations associated with the data with 
a Markov chain-based estimation method to estimate the model’s expected statistics 
[57]. The method involves Markov chains that initialize the weights to appropriate 
values to facilitate joint learning of all layers. However, it is costly compared to DBN 
pre-training, where inference is performed via a bottom-up pass. Therefore, the 
inference of DBMs is accelerated using detection weights. 

Fig. 2.22 The general 
architecture of DBMs
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2.5 Graph-Based Models 

Basic types of neural networks can only be implemented using regular or Euclidean 
data. Deep learning effectively detects hidden patterns in Euclidean data, while 
many data in the real world have a non-Euclidean graph structure. The number of 
problems in which data is represented in the form of graphs is increasing, such as 
graph/node classifications, community detection, link prediction, influencer identi-
fication, and much more. 

Graphs are a type of data structure that models a set of objects (nodes) and their 
relations (edges). Recently, research on graph analysis with machine learning has 
received more and more attention due to the high representation power of graphs 
[60]. As a unique non-Euclidean data structure for machine learning, graph analysis 
focuses on different types of tasks. It should be mentioned that graph datasets are 
different from other datasets, such as text, image, audio, etc. 

Graph-based models have the following unique characteristics:

. Irregular domains: It is possible to represent irregular domains or 
non-Euclidean data in graphs, while other datasets, such as images and audio, 
can be easily represented in a Euclidean plane or grid structure.

. Non-static structure: Graphs are a tool for representing complex systems. 
Therefore, they have different types, such as homogeneous, non-homogeneous, 
signed, unsigned, etc., and they may be node-oriented, graph-oriented, or edge-
oriented. One of the most widely used methods of graph representation is the use 
of proximity. Matrices that change shape after nodes are added or removed. This 
is why conventional machine learning models cannot handle adjacency matrices 
directly.

. Scalability and parallelization: Big data is a problem in the era of an abundance 
of computing tools. As a result, the generated graphs may have millions of nodes 
and billions of edges. The second problem is how to parallelize the algorithms 
because each node in the graph contains information about other nodes in the 
graph, that is, nodes have relations with other nodes that should not be lost.

. Domain-specific knowledge: Graph learning may require specific knowledge of 
the domain that may help to make better predictions. Other additional information 
may also be useful to detect a new target or feature. 

Graph neural networks (GNNs) are deep learning-based methods that operate on 
the graph domain. Early studies on GNNs and their concept were done by Scarselli 
et al. [61]. Based on the concepts of GNNs, many deep learning graph-based models 
such as graph convolutional networks (GCN) [62], graph attention networks (GAT) 
[63], and gated graph sequence neural networks (GGS-NN) [64] (a combination of 
GNN and a type of RNN) have been developed and used in various research. 

GCNs are a class of neural networks that use convolution operations to extract 
meaningful statistical patterns from graph data and are capable of efficient imple-
mentation with minimal training [62]. In GAT, it is assumed that the influence of 
neighbors is not only not the same but also not pre-determined by the graph



structure, so it differentiates the contribution of neighbors using the attention 
mechanism. In GGS-NN, the recurrent function is executed several times on all 
nodes in the aggregation phase and GRUs are adapted for updating purposes. In 
addition to graph neural networks, GCNs have been used in session-based recom-
mender system in various articles, which are discussed below in the following 
subsections. 
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2.5.1 Graph Neural Network 

Graph neural networks (GNNs) are a set of methods that apply deep neural networks 
to graph-structured data. Classical deep neural networks cannot be easily extended to 
graph-structured data because the graph structure is not a regular network. The study 
of graph neural networks started in the early twenty-first century when the first GNN 
model was proposed for node- and graph-centric tasks [61]. A graph neural network 
is a type of neural network whose input data is a graph and learns to present the 
features of each node. Furthermore, generated features can be used to solve any 
graph-related problem, such as node classification, graph classification, and cluster-
ing. Graph neural networks can be considered as a process for learning a represen-
tation of data on a graph. GNNs focus on learning efficient features for each node to 
facilitate node-centric tasks. For graph-centric tasks, they learn features for the entire 
graph, where node feature learning is usually performed as an intermediate step. The 
node feature learning process usually uses both the input node features and the graph 
structure [65]. 

In the node classification problem, each node is characterized by its features xi 
and is labeled lv. In the graph classification problem, a set of nodes are associated 
with the label li. By learning the features of nodes i, the graph neural network can 
predict the labels of unknown nodes i. It learns to represent each node with a 
d-dimensional vector vi. The vector vi contains information about the neighbor 
nodes of node i, which is presented in Eq. (2.34) [66]: 

Vi = f Xi,Xco i½ ],Vne i½ ],Xne i½ ]
( ) ð2:34Þ 

In Eq. (2.34), Xco[i] represents the features of edges adjacent to node i, and f is a 
transfer function (feedforward neural network) that outputs the d-dimensional vec-
tor. The above formula can be solved using the neighborhood aggregation theorem 
and iteratively rewritten as Eq. (2.35): 

Vtþ1 =F Vt ,Xð Þ ð2:35Þ 

The output transfer function Oi is applied to obtain the final vector with low 
dimensions as Eq. (2.36):
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Oi = g Vi,Xið Þ ð2:36Þ 

Other hidden parameters are learned by applying the loss function between the 
predicted output Oi and the actual labels li. 

2.5.2 Graph Convolutional Network 

Graphs, which represent entities and their relations, are everywhere in the real world, 
such as social networks, traffic networks, knowledge graphs, molecular structures, 
etc. Recently, many studies have focused on developing deep learning approaches 
for graph data, leading to the rapid development in the domain of graph neural 
networks. Moreover, graph convolutions adopt a neighborhood integration 
(or message passing) scheme to learn representations of nodes by considering 
node features and graph topology information together, among which the most 
prominent method is graph convolutional networks (GCNs) [62]. Similar to 
convolutional neural networks that help speed up learning and increase accuracy 
with hierarchical data processing, graph convolutional networks are also meant to do 
the same thing but on graph data. Graph convolutional networks are a group of 
powerful neural networks that use convolution operations to extract meaningful 
statistical patterns from graph data and can perform efficiently with minimal training. 
In fact, they are so powerful that even a graph convolutional network with two 
randomly initialized layers can obtain a useful representation of node features. In 
general, graph convolutional networks find a new representation of each graph 
vertex with the integrity of the features of its neighbors. 

Differentiating, pooling, and flattening are the functions that are utilized in 
convolutional graph networks. These three functions are important for the perfor-
mance of this type of network and are common to all graph convolutional networks. 
A filter is a function that limits the number of cells to be considered at a time. The 
pooling function produces output for all values in a specified range at once, based on 
a function of maximum, average, etc. The flattening function transforms the network 
structure into a lower-dimensional vector whose outputs can be used as inputs to 
feedforward neural networks. 

The node representation after a single layer of GCN can be defined as Eq. (2.37): 

H = f ~D
- 1 
2 Aþ Ið Þ~D

- 1 
2

( )
XW

( )
ð2:37Þ 

In the above equation, W 2 ℝd × d includes the network parameters, A is the node 
adjacency, ~Dii =

P 
j 

Aþ Ið  Þij,  and  f is an activation function. The representation of 

the node v after k layers can be written as Eq. (2.38):
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Fig. 2.23 The general architecture of GCNs 

hv = f 
X 

u2N vð Þ  
Wk hk u þ bk( )

0 
@ 

1 
A, 8v 2 V ð2:38Þ 

where Wk and bk represent the weight and bias parameters of GCN layer, respec-
tively. N(v) includes the nodes’ neighborhood of v in graph G including v, and hv is 
the representation of node v. 

In the past decades, researchers have worked on how to perform convolutional 
operations on graphs. One approach is to define graph convolutions from a spectral 
point of view and another from a spatial point of view. Briefly, spectral graph 
convolutions are defined based on the Fourier transform of the graph, corresponding 
to the 1D Fourier transform. In this way, spectral-based graph convolutions can be 
computed by taking the inverse Fourier transform of the product between two 
Fourier transform signals. On the other hand, spatial graph convolutions can also 
be defined as the aggregation of node representations from neighbor nodes. This 
perspective is very effective for graph convolutional networks [67]. In general, graph 
convolutional network models are a type of neural network architecture that can 
convolutionally collect graph structure and node information from neighborhoods. 
Figure 2.23 shows the general architecture of graph convolutional networks. 

2.6 Conclusion 

Deep learning is a relatively new topic, defined as a set of layers that perform 
non-linear processing to learn different levels of data representation. For decades, 
researchers have been trying to discover patterns and data representations from raw 
data based on machine learning methods. Unlike conventional machine learning and 
data mining approaches, deep learning can generate very high-level data represen-
tations from huge amounts of raw data. Therefore, it is a solution for many real-



world applications. The evaluation results of deep learning methods and their 
comparison with the results of other methods show the capabilities of deep learning 
in different scopes. 

68 2 Deep Learning Overview

In this chapter, first, an overview of the history and concepts of deep learning was 
presented, and the characteristics of deep learning and machine learning were 
compared. Then, a taxonomy of deep learning models was presented, in which 
they were divided into three general categories: discriminative, generative, and 
graph-based models. Finally, the fundamental models of these three categories 
were briefly discussed. 
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Chapter 3 
Deep Discriminative Session-Based 
Recommender System 

Abstract Due to the sequential nature and time-ordered session data, much research 
in a session-based recommender system (SBRS) focuses on recurrent neural net-
works (RNNs), including GRU and LSTM. On the other hand, convolutional neural 
networks (CNNs) provide very effective solutions for modeling sequential data 
when sequence elements are associated with complex features. As a result, we 
discuss different deep discriminative models in SBRS in this chapter, such as 
variants of RNNs and CNNs. 

Keywords Session-based recommender systems · SBRS · Deep discriminative 
models · RNN · LSTM · GRU · CNN 

3.1 Introduction 

In recent years, there has been increasing research progress in a session-based 
recommender system (SBRS), where almost all the proposed approaches utilized 
deep neural network architectures. Deep neural networks have provided excellent 
performance in some areas, such as image and speech recognition [1, 2], where 
unstructured data are processed through several convolutional and standard layers. 
The most popular of these networks are convolutional neural networks (CNNs). 
However, sequential data modeling based on different recurrent neural network 
(RNN) models has recently attracted much attention because it is the most appro-
priate model for analyzing this type of data. The use of deep neural networks in 
SBRS has significantly increased the accuracy and effectiveness of recommenda-
tions by overcoming the obstacles of conventional models and achieving high 
recommendation quality [3, 4]. Deep discriminative models, such as RNNs and 
CNNs, can effectively capture and analyze non-linear and non-obvious user/item 
relationships. Additionally, it can extract and aggregate complex relationships 
within data from different sources, such as textual and visual information. 

As previously discussed in Chap. 1, the session-based recommender systems 
have eliminated the need to access interactions and the long-term interests of users. 
Indeed, they focus on the recent interactions of users and their short-term interests 
while considering the changes in these interests in short periods. However, the issue
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of scalability and managing the volume and variety of items and users is one of their 
major challenges. One of the important advantages of deep neural networks for 
session-based recommender systems is that they can adjust model parameters with 
different sizes of training datasets [3, 5]. In the learning process, changing and 
updating the hidden variables related to items and users are performed independently 
of previous data [6].
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A review of published research shows that discriminative deep learning 
approaches in session-based recommender systems using GRU, LSTM, and CNN 
have received much attention. To this end, different approaches to deep discrimina-
tive models in SBRS are discussed and analyzed in this chapter, considering the 
models, datasets, evaluations, and highlights/limitations of each. First, in Sect. 3.2, a  
brief overview of the fundamentals related to this chapter of the book is provided, 
including the research distribution statistics, the employed datasets, and the evalu-
ation methods/metrics used in various research. Then, in the next Sects. 3.3 and 3.4, 
approaches based on RNN and CNN are briefly discussed. Section 3.5 analyzes the 
results and identifies existing challenges related to the deep discriminative models in 
SBRS and provides several guidelines for future research. 

3.2 Fundamentals 

Before the emergence of deep learning techniques, limited research had been 
conducted in the field of session-based recommender systems because the complex-
ity caused by the consecutive nature of the session data was difficult to analyze and 
model by common methods. The only technique that could be used in the session-
based recommendation field was the item-to-item recommendation, in which the 
recommended items were selected based on the similarity between items of the 
user’s previous events, and the rest of the session was ignored [7]. This method had 
very low accuracy because only items were recommended to the user that was 
similar to the previous items or had occurred in the past at the same time as the 
user’s previously selected item. By presenting deep learning techniques, the ability 
to model the sequence of user interactions in one session or several other sessions 
was provided. 

In recent years, different types of deep learning techniques have been used in 
session-based recommender systems, which, from a general perspective, can be 
classified into three categories: deep discriminative models, deep generative models, 
and hybrid/advanced models. Deep discriminative models include neural networks 
trained in a way that allows their output to be interpreted as approximate posterior 
class probabilities and directly compute the probability of an output given an input 
[8]. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) 
are types of these methods, each including various architectures. Generative and 
hybrid/advanced models in SBRS are discussed in the next chapters of the book. 

Since 2016, different research on session-based recommender systems using deep 
learning has been published. The beginning of this path belongs to research



performed by Hidasi et al. that used the RNN technique in SBRS [9]. After that, 
more research was conducted using deep learning techniques in SBRS [10]. A 
review of various research related to the deep discriminative models in SBRS 
shows that RNNs and CNNs have been used in many articles. RNNs include GRU 
(gated recurrent unit), LSTM (long short-term memory), and the improved types of 
these two networks. CNNs classify into two-dimensional, three-dimensional, and 
dilated CNNs. 
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Table 3.1 The list of research 
discussed using deep discrim-
inative models 

Deep discriminative models References 

GRU [9–29] 

LSTM [30–39] 

CNN [40–48] 

Fig. 3.1 Percentage of each 
type of deep discriminative 
model in SBRS 

Table 3.1 summarizes the list of research reviewed in this chapter, separated 
based on the deep discriminative model. 

To get a more comprehensive perspective of the research reviewed in this chapter, 
Fig. 3.1 shows the percentage of each technique used in the discussed research based 
on GRU, LSTM, and CNN. 

According to Fig. 3.1, most of the reviewed research are based on two popular 
types of RNN, i.e., GRU and LSTM. Due to their sequential nature, RNNs have a 
great capacity to analyze the sequential dependencies between data in user sessions. 
Indeed, the ability to model the dynamic behavior of users over time in session-based 
recommender systems has made RNNs an appropriate solution in this scope. The 
GRU deep neural network has received more attention than LSTM, considering a 
large number of gates and parameters of the LSTM, which leads to higher compu-
tational complexity. 

Figure 3.2 shows the general architecture of session-based recommender systems 
using RNNs. The user interactions, clicks, and other session data are provided to the



model as input and then converted into analyzable data structures using an embed-
ding technique. Afterward, a type of RNN is utilized to model the structured data and 
discover their dependency relationships. Finally, and before the output layer, the 
fully connected layer is used to increase the stability of the model. 
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Some approaches related to deep session-based recommender systems use the 
CNN model. The use of CNN is suitable for user session data in two ways: (1) The 
sequence of items in one session or between different sessions of users can be easily 
implemented and modeled on CNN. (2) CNNs have a high capacity to learn the local 
and spatial features of regions and capture the related dependencies that are usually 
ignored by other models. 

To learn and model the data related to users and items, these data should be 
embedded suitably in the CNN type of session-based recommender system, so that 
by successively executing convolution and pooling operations, temporal and spatial 
patterns between them are correctly identified. The user’s favorable items are 
predicted based on the features captured from the input data and the dependencies 
between them. 

Figure 3.3 shows the general architecture of session-based recommender systems 
using CNN, which can be used (or customized) to model data using various types of 
CNNs. 

The following two subsections present a review and discussions of the dataset and 
evaluation methods used in the literature regarding deep discriminative approaches. 

3.2.1 Datasets 

Several well-known datasets have been employed for the evaluation purposes of 
session-based recommender systems using deep learning; each includes data related 
to different session features, such as events (interactions), items, and users. In fact, 
the authors usually select the most appropriate datasets considering the requirements 
of the proposed methodology and use them for assessment and comparison with 
other research. 

Table 3.2 shows the datasets used in different articles, including the dataset name, 
the domain, a brief description, and the paper that employed it. 

Characteristics of the most popular datasets, including the number of sessions, 
events, users, items, and data collection period, are listed in Table 3.3. 

It is necessary to mention some points in Table 3.3. In YooChoose, Diginetica, 
Tmall, and RecSys Challenge 2015 datasets, sessions whose length is equal to 1 are 
not considered [7]. In the VIDEO dataset, sessions with a length of less than 3, users 
with less than 5 sessions, and items that have been repeated less than 10 times have 
been eliminated [14]. Because there are very few interactions for many items in the 
MovieLens dataset, in the preprocessing step, the items repeated less than 20 times 
were removed. Additionally, based on the timestamp of the interactions, the inter-
actions related to a specific user are collected as a sequence and divided into k 
subsequences (watching k movies). Here, k is set to 30 and 100 for both datasets,
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Table 3.2 Widely used datasets in SBRS using deep discriminative models 

Dataset Domain Description References 

Diginetica E-commerce The dataset includes user sessions 
extracted from an e-commerce search 
engine log 

[20, 22, 26, 29, 
45, 46] 

YooChoose E-commerce The dataset consists of 6 months of 
clickstreams from an e-commerce Web site 

[11, 20, 22, 26, 
29, 33, 41, 45, 
46, 48] 

Gowalla POI This dataset is from a location-based social 
networking Web site where users share 
their locations by checking in 

[22, 42, 47] 

Last.fm Music This dataset contains social networking, 
tagging, and music artist listening infor-
mation from a set of 2K users from Last.fm 
online music system 

[15, 16, 20, 22, 
26, 27, 30, 41, 
48] 

RecSys Chal-
lenge 2015 

E-commerce This dataset comprises clickstream data 
about user sessions with an e-commerce 
Web site 

[9, 13, 16, 17, 
18, 21, 25, 28] 

VIDEO Video This dataset is collected from a YouTube-
like OTT video service platform and 
includes events of watching a video 

[9, 14, 18, 21] 

vidaXL Video This dataset is collected over a 2-month 
period from a YouTube-like video site and 
contains video-watching events 

[10, 18] 

CLASS E-commerce This dataset consists of product view 
events of an online classified site 

[10, 18] 

Internal E-commerce It contains user browsing and purchasing 
activity on multiple e-commerce Web sites 
from diverse verticals over the period of 
3 months 

[11] 

XING Job posting It is the XING RecSys Challenge 2016 
dataset that contains interactions on job 
postings. User interactions come with 
timestamps and interaction types (click, 
bookmark, reply, and delete) 

[14] 

Reddit News It is on user activity on the social news 
aggregation and discussion Web site Reddit 

[15, 27] 

Tmall E-commerce This is the large dataset released in the 
IJCAI-15 challenge, which has been col-
lected from Tmall, the largest business-to-
consumer e-commerce Web site in China. 
It records two types of user behaviors, 
views, and purchases 

[16, 24, 42, 47] 

AOTM Music This dataset includes the user-contributed 
playlists from the Art of the Mix Web site 

[16] 

8T Music This dataset includes the user-contributed 
playlists from the 8tracks.com (8T) 
Web site 

[16] 

MovieLens Movie It consists of users’ sequential rating 
records for different categories of movies 
on the MovieLens site 

[19, 23, 36, 42, 
44]

http://www.artofthemix.org/
http://8tracks.com
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Table 3.2 (continued)

Dataset Domain Description References 

DoubanEvent Movie It is a Chinese Web site that allows Internet 
users to share their comments and view-
points about movies in the Douban Movie 
Web site 

[19] 

Adressa News Adressa is a news dataset that contains 
reading behaviors and sessions from users 

[23] 

CiteULike Research 
paper 

In the CiteULike dataset, one user anno-
tating one research paper at a certain time 
may have several records in order to dis-
tinguish different tags 

[30] 

Advertising 
dataset 

Advertising It is a public dataset released by Alimama, 
an online advertising platform in China. It 
contains records from ad display/clicks 
logs of users and ads in 8 days 

[32] 

Recommender 
dataset 

E-commerce This dataset contains many display/clicks 
logs of users and items on the Alibaba 
Web site 

[32] 

GHTorrent GitHub GHTorrent monitors the public event 
timeline of GitHub and provides abundant 
social relations between developers and 
development interactions between devel-
opers and software repositories from the 
popular collaborative social coding plat-
form GitHub 

[35] 

Libraries.io Software 
packages 

Libraries.io provides explicit dependency 
relations between software packages 

[35] 

JEWELRY E-commerce It consists of product view events of a 
Web site selling jewelry products. The 
view events immediately followed by add-
to-cart events were specially marked 

[40] 

ELECTRONICS E-commerce It consists of product viewing clicks of a 
Web site selling electronic products. The 
view events with the following add-to-cart 
were marked 

[40] 

Foursquare POI This dataset contains check-ins in NYC 
and Tokyo collected for about 10 months. 
Each check-in is associated with its 
timestamp, its GPS coordinates, and its 
semantic meaning 

[42] 

TW10 Video TW10 is a short video dataset in which the 
average playing time of each video is less 
than 30 s 

[44] 

Retailrocket E-commerce The data has been collected from a real-
world e-commerce Web site. It is raw data, 
i.e., without any content preprocessing; 
however, all values are hashed due to 
confidential issues 

[45]



respectively, resulting in ML30 and ML100 datasets. In each dataset, if the number 
of interactions is less than 10 and less than 20, the sequence will be deleted [44]. The 
Adressa dataset has two different versions, one of which was collected over 1 week 
and the other over 3 months [51]. The information presented in Table 3.3 is related to 
the preprocessed data of the second version, which is related to 16 days, and the 
sessions that include an interaction have been removed. Also, repeated clicks in each 
session have been removed [49]. In the Reddit dataset, if two clicks are more than 1 h 
apart, they are placed in two separate sessions [15].
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Table 3.2 (continued)

Dataset Domain Description References 

Ta-Feng E-commerce The Ta-Feng dataset contains numerous 
baskets of purchased items from a grocery 
store, where each basket encapsulates the 
items purchased by one user in a period of 
time 

[24] 

3.2.2 Evaluation 

Generally, two evaluation methodologies are used in session-based recommender 
system: online and offline. In the offline approach, parts of the user’s feedback are 
unknown to the recommender system, but in the online, the system presents its 
recommendations to the actual user and receives her feedback. In each method, 
various evaluation metrics are used to evaluate the session-based recommender 
system so that the efficiency of the proposed method can be quantitatively mea-
sured and compared with others. According to the proposed method and the 
employed datasets, one or more well-known baselines are selected to compare 
the results. 

The input data of session-based recommender systems usually are a sequence 
of user interactions, which in the offline evaluation approach are typically divided 
into two sets, train and test. Because the long-term history of the user’s interac-
tions is inaccessible in this type of system, they chose the last N sessions for 
testing purposes and split the data based on that. In online methods, users’ 
feedback should be collected, which is usually either user answers to qualitative 
questions or field tests based on a production-like environment and collects 
implicit feedback from a large number of users [3]. Usually, in academic research, 
the possibilities of conducting large-scale online studies are often limited, and 
studies related to session-based recommender system mostly use offline evalua-
tion methods [3]. 

For an accurate evaluation and comparison of the results of the proposed 
approaches, some previous methods are typically used, called as the baselines. 
Some of these methods have been developed using traditional session-based
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recommender system techniques, and others utilize deep neural networks. The most 
frequently used baselines are as follows:
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POP More popular items are always recommended. The POP is effective and 
straightforward simultaneously and is often a strong baseline in specific domains. 

S-POP The most popular items in the current session are recommended. The 
recommendation list changes based on the number of events that are related to 
particular items. This baseline is useful for the domains with high repetitiveness. 

Item-KNN Items similar to the actual item are recommended, and the similarity 
between them is measured based on the cosine similarity measure of their session 
vectors. In other words, it is the number of co-occurrences of two items in sessions 
divided by the square root of the product of the number of sessions in which the 
individual items occurred. This method is very effective for evaluating item-to-item 
recommendation methods [52]. 

BPR-MF It utilizes matrix factorization which is optimized for pairwise ranking 
objective functions through stochastic gradient descent. Methods based on matrix 
factorization cannot be used in session-based models because there is no 
pre-computed feature vector for new sessions. This problem is overcome by using 
the average vectors of the items that belong to each session [54]. 

FPMC A hybrid model for the next-basket recommendation based on the 
factorizing personalized Markov chains [53]. 

GRU4Rec A technique based on recurrent neural networks, which is one of the first 
approaches to using deep learning techniques in session-based recommender system. 
This method is based on GRU and is used to overcome the problem of gradient 
vanishing [9]. 

GRU4Rec+ This method is one of the most recent methods that extend GRU4Rec 
by introducing an improved sampling strategy pattern [25]. 

NARM An improved method of GRU4Rec, which improves session modeling by 
introducing a hybrid encoder based on the attention mechanism. In this technique, 
global and local encoders are defined, the global encoder corresponds to the 
GRU4Rec method, and the local encoder is proposed for adding the attention 
mechanism to the model, respectively [55]. 

STAMP This method is based on a Short-Term Attention/Memory Priority Model 
and, unlike the NARM method, is not based on a recurrent neural network. In this 
method, users’ general interests are obtained through the long-term memory data of 
the session context, and their short-term interests are also recognized through short-
term memory [56]. 

It should be noted that traditional evaluation methods were done by predicting the 
user’s score for each item. Today, instead of using these methods, a list with a 
limited size, for example, 10 or 20, is considered for each user, which indicates the 
number of items at the top of the recommendation list. The quality of the



8

recommendation list in the test set is measured numerically by checking the number 
and rank of related items in the list. Some of the evaluation metrics that are used for 
this purpose have been listed below:

. Recall: This metric is calculated based on the number of relevant items that are 
among the top N items in the recommendation list, and the rank of the relevant 
items in the N list is unimportant, and it is calculated using Eq. (3.1): 
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Recall@N = 
Number of relevant items in top N list 

Total of relevant items
ð3:1Þ

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the 
list of recommendations. It shows that placing a relevant item at the top of the 
recommendation list significantly impacts user satisfaction and is calculated using 
Eq. (3.2): 

MRR@N = 
1 
Q 

XQ 
i= 1 

1 
ranki 

if ranki ≤N 

0 otherwise 

<: ð3:2Þ 

where Q is a sample of recommendation lists and rankirefers to the rank position 
of the relevant item for the i-th recommendation list.

. Precision @ N: This metric evaluates the number of relevant items relative to the 
total N items recommended in the list, and it is calculated using Eq. (3.3): 

Precision@N = 
Number of relevant items in top N list 

Total of N items
ð3:3Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the 
percentage of items that are ever recommended, and the variety of the 
recommended items in the recommendation list is considered. Its goal is to 
recommend a high percentage of various items to the user. This measure is 
calculated using Eq. (3.4): 

Coverage@N 

= 
distinct items that appeared in any top-N recommendation 

all distinct recommendable items
ð3:4Þ

. Hit Rate@N: It is the percentage of times in which relevant items are retrieved 
among the top N ranked items, and it is calculated using Eq. (3.5):



{

( )
( )
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Hit Rate@N = 
1 
Q 

XQ 
i=1 

1 if ranki ≤N 

0 otherwise
ð3:5Þ 

where Q is a sample of recommendation lists and rankirefers to the rank position 
of the relevant item for the i-th recommendation list.

. F1: This metric is calculated based on a combination of precision and recall, and 
it is calculated using Eq. (3.6): 

F1= 
2 * Precision * Recall 
Precisionþ Recall ð3:6Þ

. nDCGp: This measure is based on cumulative gain (CG). The cumulative gain is 
the sum of the graded relevance values of all items in a recommendation list. 
nDCG is computed as the ratio between discounted cumulative gain (DCG) and 
idealized discounted cumulative gain (IDCG). Eqs. (3.7), (3.8), and (3.9) show 
how to calculate this measure: 

DCGp= 
Xp 
i= 1 

2ri - 1 
log 2 iþ 1ð Þ ð3:7Þ 

IDCGp= 
XRELp 
i= 1 

ri 
log 2 iþ 1ð Þ ð3:8Þ 

nDCGp= 
DCGp 
IDCGp

ð3:9Þ 

In the above equations, ri is the graded relevance of the result at position i, and 
RELp represents the list of relevant items (ordered by their relevance) up to 
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant 
item is recommended, the precision is measured, and the average is calculated 
using Eq. (3.10): 

MAP= 

PQ 
q= 1 

AveP qð Þ  
Q

ð3:10Þ 

In this relation, P(q) is the precision of query q, and parameter Q is the number of 
queries.

. Mean Absolute Error (MAE): This metric is one of the most common errors of 
prediction factors, which calculates the mean absolute value of the difference
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between the score predicted by the system and the actual score of the item. The 
mean absolute error indicates the degree of closeness of the recommendations to 
reality, and it is calculated using Eq. (3.11): 

MAE= 
1 
N

X 
i2Ou 

Pu,i - ru,ij j ð3:11Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the 
predicted rank is more effective than the mean absolute error in problems where 
the errors are more considerable, and it is calculated using Eq. (3.12): 

RMSE= 
1 
N

X 
i2Ou 

Pu,i - ru,ið Þ2 ð3:12Þ 

In Eqs. (3.11) and (3.12), Pu, i is the predicted score for the item i by user u, ru, i is 
the actual value of the score assigned to item i by user u, Ou is the set of items 
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine 
the efficiency of recommender systems is the AUC. The larger the AUC value, 
the more favorable the final system performance is evaluated. The ROC (receiver 
operating characteristic) space is formed by two indices FPR on the horizontal 
axis and TPR on the vertical axis, as calculated by Eqs. (3.13) and (3.14), 
respectively. The line that connects two points (0,0) and (1,1) divides the ROC 
space into two parts. The area above this line is the favorable area and below the 
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a 
classifier to distinguish between classes and is used as a summary of the ROC 
curve. 

TPR= 
TP 

TPþ FN
ð3:13Þ 

FPR= 
FP 

FP TN
ð3:14Þ 

The maximum value of this measure is equivalent to one and occurs in a situation 
where the recommender system is ideal and can recognize all positive samples. 
The AUC measure, unlike other measures for deciding the efficiency of classifi-
cation methods, is independent of the classification threshold. Therefore, this 
metric indicates the output reliability of the system. 

Table 3.4 shows the different evaluation metrics used in different articles on 
session-based recommender systems using deep discriminative models.
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Table 3.4 Widely used evaluation metrics in SBRS using deep discriminative models 

Evaluation metrics References 

Mean reciprocal rank (MRR) [9, 10, 12–23, 25–29, 30, 31, 34, 40, 41, 43–45, 48] 

Recall@n [9–11, 13–15, 17–21, 23, 25, 27, 28, 30, 38, 40, 42, 57] 

nDCG [12, 24, 35, 41, 44, 48, 57] 

AP [42] 

AUC [12, 39] 

Precision@n [14, 22, 26, 29, 38, 39, 42, 45] 

Hit Rate@n [16, 35, 41, 44, 48] 

F1 [24, 34] 

Accuracy [43] 

RMSE [43] 

MAE [27] 

MAP [39] 

3.3 Session-Based Recommender System Using RNN 

Before looking at the approaches of recurrent neural network models in session-
based recommender systems, an overview of RNN, its variants, and the reasons that 
made it an effective choice for SBRS are provided. 

3.3.1 Why RNN? 

Sequential methods directly model the sequence of user actions instead of relying on 
features or co-occurrence frequencies. To be specific, recurrent neural networks 
(RNNs) are a class of deep neural networks that have been successfully used to 
predict the next item [9]. RNNs have a hidden state with non-linear dynamics that 
enables them to discover patterns of events, which lead to the prediction of the next 
item. In addition to the sequence of the items, more information about the user-item 
interactions is also available, such as the type of interaction, the time interval 
between events, and the time of interaction. This contextual information can signif-
icantly improve the prediction of the next event/item. For example, knowing the 
event type of past products or different patterns of time gaps between past user 
events can change the probability of the identity of the next product the user will 
interact with. Figure 3.4 shows the different patterns of time gaps in the next item 
prediction. 

Leading research in this field is the GRU4Rec, which is based on RNN [9]. In this 
method, RNN is trained based on the features of a session, such as clicks related to 
item IDs, considering the ranking loss measure. However, GRU4Rec only focuses 
on clicked items in the current session, while extended models can also incorporate 
other user behavior during sessions (such as the length of time the user spends in a
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session or the sequence of using other sessions) [18]. Today, GRU4Rec is often used 
as a baseline method in empirical evaluations.
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RNNs can also be utilized to model content with item features along with the 
click sequence interactions. By considering the features of the extracted item, such as 
thumbnail images of videos or a text description of a product, a parallel-RNN model 
was developed, which provides a better recommendation quality than the simple 
RNN [10]. Data augmentation techniques can also be used to improve the perfor-
mance of RNNs for session-based recommendations. In these techniques, a session 
is divided into several sub-sessions for training, although the side effect is increasing 
the training time [25]. 

The main feature of RNN is the presence of hidden states in the units, which are 
not only related to the current input of the network but also related to the previous 
inputs. The equations related to standard RNN are as follows: 

ht = σh Wixt þ Uhht- 1 þ bhð Þ 3:15Þ( )
yt = σy Wyht by 3:16 

In Eqs. (3.15) and (3.16), xt is the input vector, ht is the hidden layer vector, yt is 
the output vector, W and U are the weight matrices, and b is the bias vector. 

Standard RNNs cannot learn long-term data dependencies due to the vanishing 
and exploding gradient issues. So, modified models of RNNs, such as GRU and 
LSTM, have been proposed, which have provided an effective solution to these 
problems by adding a gate function to the RNN network. Over time, researchers 
have presented various improved models of LSTM and GRU. Here, we will briefly 
review the relation and equations of the basic types of GRU and LSTM models. 

A special type of gated RNN, namely, long short-term memory (LSTM) [58], is 
used in advanced SBRS to model user and item dynamics, which are dependent on 
the temporal data [59]. The gate mechanism is used to balance the flow of informa-
tion from the current and previous time steps, so it can more effectively memorize 
historical information over time for an appropriate recommendation. 

The LSTM standard has three gates: ft is the forget gate that specifies how much 
of the previous data is to be forgotten, it is the input gate that evaluates the data to be 
stored in memory, and ot is an output gate that decides how to compute the output 
based on the available data and information. 

it = σ Wixt þ Riht- 1 þ bið Þ 3:17Þ( )
f t = σ Wf xt Rf ht- 1 bf 3:18 

ot = σ Woxt Roht- 1 bo 3:19 

In Eqs. (3.17), (3.18), and (3.19), parameters W, R, and b are matrices and vectors 
whose elements can be trained. LSTM units are defined based on Eqs. (3.20)–(3.23):
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Fig. 3.5 The internal structure of the LSTM cell

 Ct = tan h Wcxt þ Rcht- 1 þ bcð Þ 3:20Þ( )
Ct = f t⨀Ct-1 it⨀  Ct 3:21 

ht = ot⨀ tan h Ct 3:22 

yt = σ Wyht by 3:23 

The state of the candidate cell Ćt is calculated based on the input data xt and the 
previous hidden state ht - 1. The cell memory or the current cell state Ct is obtained 
using the forget gate ft, the previous cell state Ct - 1, the input gate it, and the 
candidate cell state Ćt. The sign ⨀ is an element-wise product. The output yt is 
calculated based on the weights (Wyو by) corresponding to the hidden state ht. 
Figure 3.5 shows the internal structure of the LSTM cell. 

In particular, to enable the effective extraction of high-order temporal dynamics, 
gated recurrent unit (GRU) networks can be used [59]. Such networks require a more 
accurate model than an RNN unit, which deals with the vanishing/exploding gradi-
ent problem. GRUs are widely used in the field of RNN network applications due to 
the model’s simplicity, reduced complexity, and computational costs compared with 
LSTMs. In this type of network, forget and input gates are combined to create the 
update gate. However, cell states and hidden states are also combined. 

Briefly speaking, GRU has two gates: update gate ut and reset gate rt. The ut sets 
the update rate of the hidden state, and the rt decides how much of the past 
information is to be forgotten. Equations (3.24)–(3.28) show the basic formulations 
of GRU:
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Fig. 3.6 The internal structure of the GRU cell 

ut = σ Wuxt þ Ruht- 1 þ buð Þ 3:24Þ 
rt = σ Wrxt Rrht- 1 br 3:25 

h ′ t = tan h Whxt rt⨀ht-1 Rh bh 3:26 

ht = 1- ut ⨀ht- 1 ut⨀h ′ t 3:27 

yt = σ Wyht by 3:28 

Figure 3.6 shows the internal structure of a GRU cell. 
After reading the above, the question may come to mind, which model of RNN 

networks is better to choose for data modeling for session-based recommender 
systems. In several studies, such as [59], this question has been addressed and 
mentioned that so far, no scientific study has clearly stated the superiority of a 
model in a general and comprehensive manner. Although GRU creates faster models 
due to the lower number of parameters, LSTM can perform better if you have access 
to high computing power and enough input data [58, 60]. 

In the following two subsections, different approaches based on GRU and LSTM 
for session-based recommender systems will be discussed and analyzed to make the 
readers familiar with the pros/cons of each model. 

3.3.2 GRU Approaches 

The first use of deep neural networks in session-based recommender systems was in 
2016, when a model based on RNN was employed [9]. This method, GRU4Rec,



used a GRU network to effectively model longer sessions to solve the gradient 
vanishing problem. 
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Fig. 3.7 The general 
architecture of GRU4Rec 
[9] 

The input data of GRU4Rec are vectors that encode items using the one-hot 
encoding method, and each vector’s length is equal to the number of items. The 
output is the score predicted by GRU4Rec for a fixed number of items. In other 
words, the output of this method is the chance of an item being the next one in the 
current session. The general architecture of GRU4Rec is shown in Fig. 3.7. 

Hidasi et al. developed an efficient approach called session-parallel mini-batches, 
which first creates an order for the sessions [9]. Then, the first events of the first 
x sessions create the input of the first mini-batch of length x, whose considered 
output is the second event of the sessions. The second mini-batch consists of the 
second event from the first x sessions, and their output is the third event of the 
sessions. If the events of any session end, then the first event of the next available 
session in the list of sessions will be replaced. It should be mentioned that the 
sessions are assumed to be independent, and when the sessions are replaced, the 
hidden state is reset. The view of this process is indicated in Fig. 3.8. 

Calculating the score for each item in each stage is very difficult because of the 
large number of items. For this reason, the negative sampling method is used to 
calculate the score of some negative samples in addition to the resulting outputs, and 
the weights are updated. 

In the GRU4Rec, the appropriate choice of the loss function is a critical decision 
that greatly impacts the quality of the recommendations. The loss functions 
presented in [9] are:

. Bayesian Personalized Ranking (BPR): BPR is a matrix factorization method that 
uses pairwise ranking loss. This method compares the score of a desirable 
(positive) item with the score of negative samples. In [9], the scores of positive 
items are compared with negative items, and their average is used as the loss. Loss 
at a given point of a session is calculated based on Eq. (3.29):



X ( )

N 
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Fig. 3.8 The visual demonstration of the session-parallel mini-batches [9] 

Ls = -
1 
Ns 

:
Xs 

j= 1 

log σ brs,i -brs,j( )( ) ð3:29Þ 

In Eq. (3.29), Ns is the number of samples, brs,k is the score of item k at a given 
point of the session, i is the index of the desired item, and j is the index of the 
negative samples.

. TOP1: This function is the regularized approximation of the relative rank of the 
relevant item brs,i. Loss is calculated based on Eq. (3.30): 

Ls brs,i, SNð Þ= 
1 
SNj j : 

j2SN 
σ brs,j -brs,i( )þ σ br2 s,j ð3:30Þ 

Using the fundamentals created in the GRU4Rec, a similar session-based recom-
mender system was proposed by Hidasi et al. [10]. In addition to the sessions’ data 
related to user interactions, the features of the clicked items have also been consid-
ered. Usually, in cases where there is no access to users’ historical data, features such 
as descriptions and images of items are very effective in users’ purchasing. For these 
reasons, Hidasi et al. use features extracted with high quality from the images and 
descriptions of the items, along with modeling the sessions based on deep learning 
techniques. Indeed, like GRU4Rec, it has modeled sessions (a sequence of user 
clicks) based on RNNs, but the type of network used in this method is parallel 
recurrent neural networks (parallel-RNN), which concurrently models the textual 
and visual features of the clicked items. Figure 3.9 shows the parallel-RNN 
architecture. 

The reason for using parallel-RNNs is the inherently different nature of the input 
data. The features of the images are much denser than the one-hot presentation of the 
item ID or the BOW presentation of the text of the items. Parallel-RNNs allow each



network to have its own configuration while maintaining communication between 
networks through shared parameters. In this chapter, three different configurations 
for parallel-RNN are presented; in the first type, each GRU is trained with one of the 
data representations, and the outputs are computed by concatenating the hidden 
layers of the subnets. In the second type, there is a shared hidden layer for the output 
weight matrix, where the scores for each subnet are calculated by the weighted sum 
of hidden states multiplied by a single weight matrix. This type has fewer parame-
ters. In the third type, before computing the scores of each subnet, the hidden states 
of the subnets of the item features are multiplied by the hidden states of the subnet of 
the item ID. This method has been more effective than similar models that utilize 
fewer features along with sessions. 
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Fig. 3.9 Architecture of the parallel-RNN approach using separate GRU layers versus single GRU 
[10] 

Hidasi et al. developed a suitable loss function that improved the results by 
adding different data to GRU4Rec and using more samples for the mini-batch 
[18]. Observations show that limiting the selection of negative samples from a 
mini-batch provides low flexibility. Therefore, a more efficient solution has been 
developed to select negative samples by sampling more items outside the mini-batch 
and sharing them with all mini-batches. A hyperparameter controls whether external 
samples are selected using uniform or popularity-based sampling. Also, a family of



ranking-max loss functions for RNNs is used, which replaces the averaging pairwise 
ranking loss functions that are applied to all sampled items and the target item. This 
loss function calculated the loss by comparing the target item with the most relevant 
sample score. Moreover, this approach solves gradient vanishing by increasing the 
number of samples. 
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Fig. 3.10 Graphical representation of hierarchical RNN [14] 

Another research for improving GRU4Rec is personalizing RNNs performed by 
Quadrana et al. through the information between user sessions, which uses a 
hierarchical neural network [14]. This method is based on a hierarchy of two 
GRUs, which are the session-level and the user-level. Session-level GRU models 
user interactions in sessions, and user-level GRU models and considers the evolution 
of user preferences across sessions over time. An illustration of this method is shown 
in Fig. 3.10. 

In hierarchical neural networks, the hidden state of the lower-level RNN at the 
end of a user’s session is delivered as input to a higher-level RNN. This function 
predicts an effective and acceptable initialization for the hidden state of the lower-
level network for the next user session. The proposed method is extended by adding 
a GRU layer that models user activities in different sessions. It considers the changes 
in users’ personal interests over time in providing recommendations. 

Another RNN-based approach is a cross-domain SBRS which is developed by 
joint modeling of users’ global dynamic interests and their local domain-specific 
behavioral sequences by exploring users’ inter-session and intra-session behavioral 
dynamics from various domains jointly (CDHRM: cross-domain hierarchical recur-
rent model) [19]. Although the combination of the user behavioral changes in 
different domains is very effective in the quality of recommendations provided to 
users, it is challenging from two aspects, including the differences in behavior in 
different domains and asynchronous behavior. For this purpose, a cross-domain 
hierarchical recurrent model is proposed to integrate the sequential information of 
various domains, and the graphical representation is shown in Fig. 3.11. 

First, a user-level cross-domain RNN that takes all the session inputs from 
various domains is used to determine the dynamics in the global interests of users 
through inter-session dynamics modeling. Then, two session-level cross-domain 
RNNs are developed to separately detect the intra-session dynamics in different
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domains. To capture asynchronous information of events in different domains, the 
user-level RNN allows information to be shared with the session-level RNN in the 
order of time. Finally, the information on the user level and the cross-domain session 
level are combined, and final recommendations are generated for the user.
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A session-based recommender system using RNNs was developed by Hu et al., 
which employed user preference evolution networks that are designed in two stages 
(PEN4Rec: Preference Evolution Networks for session-based Recommendation) 
[26]. Modeling the evolution process of user interests is done based on the previous 
context. First, user-item behaviors are encoded in the session graph to detect 
complex item transfers under multi-hop neighbor connections and then extract the 
user’s preferences through two-step retrieval. The architecture of PEN4Rec is shown 
in Fig. 3.12. 

As shown in the above figure, in the first stage of PEN4Rec, relevant behaviors 
from previous behavioral contexts of recent items are integrated according to local 
preferences through an attention-based mechanism. The last K items are considered 
as of local preference because the next item may be related to the part of these K 
items. Relevant behaviors are then integrated through a soft attention mechanism to 
detect global preferences. 

In the second stage of PEN4Rec, the evolution of user preferences over time is 
modeled dynamically, as well as the reasons for preference evolving. In the second 
stage, there are two key layers: the reader layer and the preference fusion layer. In the 
second stage, there are two main layers: the session reader layer and the preference 
fusion layer. In the session reader layer, using an adaptive Bi-GRU neural network, 
the contextual information of each item is recorded in two directions. Bidirectional 
GRU allows broadcast messages from neighboring contexts to obtain spatial infor-
mation in the current session. The preference fusion layer uses the modified GRU 
neural network through the embedded information of the attention mechanism, and 
the internal state of the GRU is updated with the weights of the attention mechanism 
to increase the focus on relevant behaviors related to the preference evolution and 
reduce the influence of unrelevant behaviors. The advantages of this method are 
modeling a representation of recent preferences with relatively previous information 
and better predicting the next item by considering the preference’s evolving 
trajectory. 

One of the most widely used filtering approaches in recommender systems is 
collaborative filtering, which requires historical data to provide recommendations, 
and in the case of insufficient data, it will face the cold start problem [61]. A solution 
to overcome this problem is the session-based approach that uses the recent behav-
ioral information of users in the current session to provide recommendations. To this 
end, Vikram et al. developed a deep learning-based framework called 
SessionRNNRec, which uses RNN to model user sessions [21]. In SessionRNNRec, 
sessions of a Web-based application are received as input, and events are organized 
through the session-parallel mini-batch method. The sessions are then modeled using 
the improved GRU. In this type of GRU, the activation function is selected based on 
a linear interpolation between the candidate and the previous activation functions
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and is trained using mini-batches. The recommendations generated in 
SessionRNNRec are actually the next item in each session.
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The sparsity of sequential data and the lack of data needed to provide recom-
mendations to users have led to the proposal of a new context-based recommender 
system that places contextual information along with sparse sequential data [23]. The 
input of the network is the sessions, and the output is the next item in the session. 
This method consists of four steps; in the first step, the contextual information of the 
session, which includes the country and type of user’s device, is encoded by the 
one-hot method. Then, the encoded vectors are mapped from the vector space with 
high dimensions to dense numerical vectors with low dimensions, facilitating the 
extraction and summarization of features by a neural network. Then, the data are 
combined with one of the Add, MLP, and Stack. In the Add method, the vectors are 
superimposed directly, their dimensions do not increase, but the dimensions of the 
vectors must be equal. In the Stack method, vectors are placed on top of each other, 
and the dimensions of the input or output of the neural network increase and require 
more computational resources for processing. The last solution is to use MLP 
networks, which create a combined vector based on the calculation of a weight 
matrix. The disadvantages of this solution are the need for many computational 
resources and the difficulty of the learning process. Then, in the next step, the vectors 
are fused into the GRU network and are processed and modeled by this network. It is 
recommended that the initialization of GRU hidden states should be done at the 
beginning of each session so that they require fewer computational resources. 

3.3.3 LSTM Approaches 

In session-based recommender systems using deep learning, there has been much 
attention and acceptance toward LSTM networks because these types of deep neural 
networks effectively and optimally provide recommendations to users. These rec-
ommendations often deliver more precise results than the previous sequential 
methods. 

Lenz et al. presented an LSTM-based approach that generates a representation of 
items in the vector space [31]. Vector space representations of items are used as input 
to recommender systems. Learning vector space representations of items allows the 
relations between items to be correctly recognized. Unlike other vector space pre-
sentations that use an additional network for learning, this method does not need to 
pre-train the features of the items and can be trained end to end. By using this 
embedding method, the items are presented in a continuous vector space with high 
dimensions, which can represent multiple relations for a product. In contrast to this, 
LSTM-based embedding method is the one-hot method, which creates vectors for 
presenting items that are very sparse. Also, the proposed method greatly reduces 
computation complexity compared with the one-hot embedding method. 

Dobrovolny et al. investigated the use of the LSTM network as a deep learning 
technique for session-based recommender systems [38]. This study proposes a



solution for using word-level LSTM as a real-time recommendation service. To 
make the input data suitable for modeling by LSTM, the data should be transformed 
in a sequence of steps. For example, if there is a list of news that the user has liked, it 
can be converted from a list to a sequence and, for each user, considered a sentence 
containing the ID of the news liked by him/her. In this method, each user has a 
history of likes in a certain period, based on which the next news liked by the user 
can be predicted. The session-based proposed system in [38] consists of three main 
components of embedding, LSTM network, and dense layer. In the word embedding 
stage, feature learning techniques are used to convert words into numerical vectors. 
In the next step, two layers of LSTM are used to process and model the data. The 
dense layer is designed to the number of output classes that predict what the next 
class is to recommend to the user. To improve this method that was proposed at the 
word level, a method presented in [36] performs embedding at the character level, 
which can process a larger dataset. 
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Utilizing LSTM as the main model of the recommender system requires sufficient 
data to be available, and if possible, there should be access to relations between 
classes. Using LSTM for small datasets leads to overfitting or generating a weak and 
inefficient model. Therefore, the use of additional information than session data can 
improve accuracy in session-based recommender systems. In [35], to detect the 
dynamic interests of software developers (users), their dependency constraints and 
social influence have been utilized and provided a Session-based Social and 
Dependency-aware software Recommendation (SSDRec) system. This system 
works based on the social influence of the user and the dependency between the 
software packages (items), which consists of two attention-based graph networks. 
These networks are, respectively, used to detect the dependencies between the items 
and the social influence of the users, and a recurrent LSTM neural network for 
modeling the short-term dynamic interests of developers in each session is formed. 
The architecture of SSDRec is presented in Fig. 3.13. 

As shown in Fig. 3.13, SSDRec consists of four main components: 

1. Dependency constraint: By using an attention-based graph network, dependency 
relationships between software packages are detected, and a presentation vector is 
embedded for each software package. 

2. Dynamic interest modeling: An LSTM recurrent neural network is used to model 
the order of software packages in a session and obtain the embedded vector 
presentation of the dynamics of each software developer’s interests in each 
session. The inputs of the LSTM network are the sessions related to the software 
developer and the presentation vectors of the software packages, which sessions 
include a time-ordered set of software packages viewed by each software devel-
oper. The LSTM network recursively learns a latent representation from the order 
of the current input and previous input software packages. 

3. Social influence detection: In this component, a graph attention network is used to 
obtain the social influence of each developer based on other neighbor developers 
who are friends. Based on this graph, embedded vectors are created to represent 
each developer.
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Fig. 3.14 Next-item (top) and last-basket (bottom) SBRS architecture [34] 

4. Recommendation: The probability of selecting a software package by a developer 
is estimated using a softmax function. 

Salampasis et al. proposed two recommender systems, one of which is completely 
content-based and utilizes the Doc2Vec model to generate the vector of item 
representation based on the text description of each item [34]. The second recom-
mender system utilizes the Item2Vec method to generate a vector of items, which 
operates based on item-based collaborative filtering. This method of vector repre-
sentation and embedding of items are used to infer item-to-item relations and usually 
used in session-based recommender systems. Finally, in this article, a combined 
embedding method based on Doc2Vec and Item2Vec is proposed, which takes into 
account the pattern orders between items in addition to the content of the items. The 
LSTM recurrent neural network has been considered as the core component in the 
proposed approach, in which the inputs of the LSTM are generated in each system by 
one of the various embedding methods listed above. Figure 3.14 shows the archi-
tecture of next-item and last-basket SBRS. 

In [34], in addition to choosing the type of embedding method and vector 
representation of items, two tasks of next-item recommendation and next-basket 
recommendation were investigated. LSTM presents the more efficient performance 
in the next-item recommender system that uses the content-based method, but it is



less efficient in the basket. Evaluation results show that the combination of Doc2Vec 
and Item2Vec together with the LSTM network does not provide better results. 
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Fig. 3.15 Architecture of DeepCBPP [37] 

In many recently published research, the time intervals have been considered as 
an explicit component and used in the learning process of sessions. However, the 
effects of multiple previous levels are not considered; instead, a sequence with a 
limited length is considered. For this purpose, Fuentes et al. modeled the sequential 
prediction problem as a multi-class classification based on LSTM [37]. The Deep 
Customer Buying Preference Prediction (DeepCBPP) method automatically learns 
behavioral patterns from the history of purchase transactions and predicts the next 
purchase item or the category to which the next item belongs. The architecture of 
DeepCBPP consists of four parts: transactional data, the customer sequences file, the 
LSTM training model input, and the output of the training model. These components 
form the inputs and outputs of the three stages of the DeepCBPP, which are customer 
buying sequence transformation, multi-level preference generation, and preference 
buying learning. 

An LSTM layer is capable of learning temporal dependencies, but a chain of 
LSTMs is more suitable for processing time-based sequential data. For this purpose, 
a combination of encoder-decoder and stacked LSTMs is used in DeepCBPP, as 
shown in Fig. 3.15. The LSTM encoder processes a customer preference input and 
generates an encoded state. The LSTM decoder uses the encoded state to produce an 
output. Evaluations of DeepCBPP show improved accuracy and stability of recom-
mender system performance with multilayer LSTMs. In fact, a new sequence 
customer presentation method is presented as the basis of the data transformation 
process, which allows processing with multi-level interactions in scenarios where the 
length of sequences may be limited and the interactions have more dependencies on 
previous sessions. 

3.4 Session-Based Recommender System Using CNN 

Before looking at the approaches of convolutional neural network models in session-
based recommender systems, an overview of CNN and the reasons that made it an 
effective choice for SBRS are provided.
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3.4.1 Why CNN? 

Convolutional neural network (CNN) is a type of neural network architecture that 
has achieved advanced results in machine vision, speech recognition, and NLP. By 
applying convolution operations (known as kernels or filters) at different levels of 
granularity, the CNN model can extract useful spatial and temporal features from the 
data learning tasks and reduce the need for manual feature engineering. This 
particular feature is much needed in SBRS because the goal is to extract useful 
patterns from the flow of clicks and predict the next events. A pattern can be a 
sequence of clicks, a sequence of categories related to products or their names, or a 
specific combination of all mentioned items. 

The CNNs are useful for processing user sessions in two ways: (1) The sequence 
of items in one session or between different sessions of users can be easily 
implemented and modeled on CNNs. (2) They have a high capacity to learn local 
features of a segmented area or specific relations between different areas, based on 
which they can recognize dependencies that other models usually ignore. 

Generally, in session-based recommender systems, to learn and model data 
related to users and items, the input data must be embedded suitably to use convo-
lution and pooling layers to detect temporal and spatial patterns between them. The 
user’s favorite items are predicted based on the features obtained from the input data 
and the dependencies between them. For this purpose, suppose each interaction is 
represented by a d-dimensional vector and the embedding matrix of each session 
(which includes n interactions) is considered as E 2 Rd × j cj. Then, in a horizontal 
convolutional layer, by convolving the x-th filter Fx from the top to the end of the E 
matrix, the value of ax m is obtained as the following equation (in the m-th convolu-
tion based on the x-th filter): 

ax m =φα Em:mþh- 1⨀Fxð Þ 3:31Þ 

In Eq. (3.31), φα specifies the activation function for the convolutional layer. 
The final output ec 2 Rz from the z filters is obtained based on applying the max 

pooling on the convolution results αx = αx 1, α
x 
2, . . . , α

x 
cj j- hþ1 

h  
, with the aim of 

obtaining the most significant features of a session using Eq. (3.32): 

ec = max max α1
( )

, max α2
( )

, . . . , max αzð Þ{ ð3:32Þ 

Indeed, ec is a presentation of the interaction of a session. The general architecture 
of CNNs for session-based recommendation is shown in Fig. 3.16. In this figure, x1 
to x11 represent item embedding vectors of a session as one-dimensional vectors, and 
convolution layers are applied to these data to scan and check the session data. 

In contrast to RNNs, the training of CNNs does not depend on previous 
timestamp calculations and therefore allows parallelization on each element in a 
sequence.
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Fig. 3.16 Different layers of CNN in a session-based recommendation [41] 

3.4.2 CNN Approaches 

Tuan et al. were among the pioneers of using CNNs in the field of session-based 
recommender systems and presented a method based on character-level embedding 
and 3D-CNN [40]. The main difference between two-dimensional CNNs (2D-CNN) 
and three-dimensional CNNs (3D-CNN) is that in the 3D-CNN, convolution and 
pooling operations are performed in all three dimensions and on all three axes of the 
cubic data structure, but in 2D-CNNs, the operation is performed only on two 
dimensions. Models that use character-level embedding to represent concepts and 
convert them into numerical representations can easily model different types of data 
and perform the feature engineering stage. 

Each input feature based on an alphanumeric format (combination of alphabet 
letters from a to z, numeric digits from 0 to 9, and some special characters such as @, 
$, -, etc.) becomes a vector without the need for classified embedding. Therefore, 
each item is considered as a two-dimensional structure: one dimension is the 
features, and the other one is the characters. They are represented in the form of a 
three-dimensional structure based on the order of the interactions of each session, 
which is actually the chronological order of the user’s visit to the items. Accord-
ingly, to obtain the spatial and temporal features of the input data, several 3D 
convolution layers are used in a stack, which is applied between a feature map and 
a 3D kernel of the 3D convolution operator at each step. For each convolution layer, 
there are several kernels, and the results of kernels are feature maps to use in 
subsequent layers. 

Moreover, the residual connections are used in [40]. There are two types of 
residual connection: the identity connection is applied to inputs and outputs with 
the same dimension, and the projection connection is used to reduce distance



samples through the implementation of 1*1 convolution with a step size of 2. The 
output represents a vector with the length of the number of items, which shows the 
probability of their selection by the user. The general architecture 3D-CNN SBRS is 
shown in Fig. 3.17. 
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Fig. 3.17 Graphical representation of 3D-CNN SBRS [40] 

The sequential convolution technique is presented to recommend the next item by 
Yuan et al. to overcome the challenges of increasing the length of sessions and the 
number of interactions in session-based recommender systems [41]. In this chapter, a 
simple and basic method is presented that allows complex conditional distributions 
to be modeled despite very long-range sequences. This model first explicitly encodes 
the dependency between items in such a way that the distribution of the output 
sequence is estimated. Then, instead of using large inefficient filters, it stacks dilated 
one-dimensional convolutional layers on top of each other to increase the receptive 
fields when modeling long-term dependencies. 

Dilated CNN has been utilized for prediction in the fields of image generation, 
translation, audio, etc.; however, it had been unused in the field of recommender 
systems until the publication of this chapter. To optimize this deep architecture, 
residual networks are used to cover convolutional layers with residual blocks. To 
create the input matrix of this method, the convolutional neural network stores user-



item interactions in a matrix and considers the matrix as an image in latent space. 
Another point of this method is to propose a masking-based dropout trick for 
one-dimensional dilated convolution to overcome the problem of information leak-
age, which prevents the network from seeing future items. 
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Tang et al. used CNNs to learn sequential features and employed the latent factor 
model to learn user-specific features [42]. The purpose of the multilayer Caser 
(Convolutional Sequence Embedding Recommendation Model) network is to detect 
the user’s general interests and sequential patterns on both union and point levels and 
to see the user’s skip behaviors in unobserved spaces. 

As shown in Fig. 3.18, Caser consists of three components: an embedding lookup 
table, convolutional layers, and fully connected layers. To train the layers of 
convolutional neural networks for each user u, L, successive item, and T, the next 
item, are extracted from the sequence Su as the input, which is shown on the left side 
of Fig. 3.18. This is achieved by sliding a window of length L+T over the user’s 
sequence, and each window is a training sample for user u, represented by the triple 
(u, previous L items, next T items). 

Yuan et al. improved the dilated CNN proposed in [41] by utilizing a gap-filling 
encoder-decoder framework using masked convolution operators that provides the 
ability to simultaneously consider data from past and future contexts without data 
leakage [35]. In this method, the encoder takes the partially complete session 
sequence as an input, and the decoder predicts the masked items based on the 
encoded representation. In the proposed method, the encoder should be aware of 
the user’s general interests represented by the unmasked actions simultaneously, and 
the decoder predicts the next item based on the user’s previous contexts and encoded 
general user interests. 

The convolutional neural networks with sparse kernels used in [44] have two 
main advantages: (1) providing an autoregressive mechanism to create sequences 
and (2) creating two-side contexts for encoding. Moreover, the projector neural 
network proposed in this chapter increases the representational bandwidth between 
the encoder and decoder. The encoder is implemented with a set of stacked 
one-dimensional dilated CNNs that both dilated layers are covered with a residual 
block to avoid the gradient vanishing. The decoder also consists of embedding 
layers, the projector, and casual CNNs. 

A special type of convolutional network (TCN: temporal convolutional network) 
has been used in some recent models that can detect the dependency between 
non-adjacent items in a session and balance the gaps. 

In this regard, Ye et al. proposed a session-based recommender system that uses 
cross-session information in addition to information within sessions to provide 
recommended items (CA-TCN: cross-session aware temporal convolutional net-
work) [46]. There are two types of cross-session information, items in another 
session that have common features with the current item and the context of the 
session, which specifies the interests of users similar to the current user of the 
session. At the item level, a directed item graph is created between global to consider 
the effect of mutual session on each item. At the session level, a graph is created for
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cross-sessions, whose each edge represents the degree of similarity between two 
sessions.
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A TCN is a sequence of convolutional models in which sequential information is 
unlost during convolution operations because the same items have various repre-
sentations at different times. TCN can use the direct effect between items and solve 
the problem of long-term dependencies and lack of sequential data. In fact, by using 
TCN, convolution operations can be performed on long-term items, and sequence 
information can be involved in the process of this operation. In this chapter, in fact, a 
model based on hierarchical attention at the item level and at the session level has 
been proposed, in which the influence of items and sessions are considered 
simultaneously. 

Although the proposed methods in session-based recommender systems using 
deep learning methods have obtained efficient results, there are still two basic 
challenges: (1) The value of each dimension in the results of the embedding layer 
is distributed with a non-zero mean, and very large numerical gaps increase the 
variance of the gradient, impede the optimization of the parameters, and ultimately 
lead to incorrect recommendations. (2) Previous models cannot effectively and 
correctly learn information about long-term dependencies and cannot recognize 
dependencies between non-adjacent items in a session. 

In [45], to solve these problems, another type of temporal convolutional neural 
network is used to balance numerical gaps. In this method, the results of the 
embedding layer are first normalized, and then the results obtained in the unit 
hypersphere are limited to reduce their effect on the gradient calculation. Finally, 
the use of the TCN completes the multilayer self-attention network to learn session 
order. 

3.5 Discussion 

The proposed approaches discussed in this chapter provide different models for 
session-based recommender systems utilizing one of the deep discriminative tech-
niques, such as GRU, LSTM, CNN, and variations of CNN. Due to the sequential 
nature of session data, the majority of works use GRU and LSTM recurrent neural 
networks. By proposing the GRU4Rec approach, a new roadmap was developed for 
the use of RNNs in session-based recommender systems. Furthermore, other 
methods such as [9, 14, 18] have been developed to improve GRU4Rec recently. 
The GRU4Rec employs the session-parallel mini-batch technique to accelerate the 
learning process, which is the key advantage of this method and similar ones. 

However, a limitation of the GRU4Rec in new contexts is that the model can only 
recommend items in the training set because this model was trained to predict the 
scores in a limited number of items. Moreover, RNN-based approaches, such as [16], 
may not improve the performance and prediction accuracy compared to simpler 
methods due to the use of item identifiers in the learning process without considering 
any other side information [55]. To solve such problems, the recently proposed



methods in this field use additional data and other deep learning techniques to extract 
features and embed them to item and user representation so that they can consider 
their various features in analysis and modeling and recommend items with high 
accuracy. 
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The methods such as [9, 14, 18, 42] do not consider parts of the item’s features, 
which may lead to the incorrect detection of user interests in situations where 
contextual data is ignored. Therefore, as mentioned above, additional information 
helps to improve the performance of session-based recommender systems. To this 
end, research such as [10] has utilized GRU4Rec with additional information such as 
images and descriptions of images along with item identifiers. This improves system 
performance and reduces the cold start problem. Furthermore, the evaluation results 
of [23] also demonstrate the impact of contextual data in improving the performance 
of the session-based recommender system. In addition, increasing the rank of the 
more relevant items, reducing the effect of noisy data, and thus increasing the 
model’s stability are advantages of using contextual data [23]. 

Another way to increase the amount of data is to use user and item data in various 
contexts. For example, the authors in [19] also use information from several domains 
to provide useful recommendations. Although the consideration of user behavior 
changes in different domains is effective in the quality of recommendations, two 
major challenges should be taken into account: the behavior differences in various 
domains and the asynchronous behavior. 

Another improvement of GRU4Rec has been performed in [14] by using an 
additional GRU level that utilizes a hierarchy of GRU networks, which considers the 
dependencies within each session and the dependencies between sessions. Although 
this method has achieved some successes, it does not consider the randomness of 
user interactions, and as a result, it may not correctly predict the user’s current goal 
in some situations. 

Some SBRS, such as [31, 34–38], employ LSTM networks to model data. For 
example, in [31], LSTM is used for embedding information, and items are presented 
in a continuous vector space with high dimensions, which can cover several rela-
tions. On the opposite side of this LSTM-based embedding method is the one-hot 
method, which represents sparse vectors for item embedding. However, the compu-
tation complexity is greatly reduced compared to the one-hot embedding. Several 
methods, such as [36] and [38], have also used character-level LSTM and word-level 
LSTM for data modeling. It should be mentioned that the word-level LSTM 
technique can only be used for small-size datasets and the character-level LSTM 
has been efficient for larger datasets. 

Considering the advantages of using additional data for better modeling, the 
authors in [35] have obtained suitable results using the social data of users and the 
relations between them based on LSTM and graphs. The efficiency of this method is 
less for long sessions because short sessions include short-term dynamic interests, 
but long sessions represent long-term static interests. 

Using LSTM and the content-based method to recommend the next item leads to 
efficient performance [34], but it has a weaker performance for the next-basket 
recommender system. Investigations and results show that the combination of



embedding methods such as Doc2Vec and Item2Vec and using them along with the 
LSTM network does not provide better results. 
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In several methods, the improved classic mode of networks is used, such as 
stacked LSTMs in [37]. The evaluation results show an improvement in the accuracy 
and stability of the recommender system’s performance. This method allows work-
ing with multi-level interactions in scenarios where sequences may be short in length 
and interactions have more dependencies on previous sessions. But this method is 
significantly complicated due to the nature of the stacked LSTM. 

Usually, RNNs have been considered the most effective technique for sequential 
data. However, the effectiveness of CNN-based methods represents that CNNs are 
also a suitable architecture for modeling sequential data, especially when sequence 
elements are associated with complex features. In some research related to this field, 
the standard model of CNNs has been used [42], but in some other methods, such as 
[40, 41, 44–46], improved types of CNNs such as 3D-CNN, dilated CNN, and 
temporal CNN have been used. By using 3D-CNNs, the temporal and spatial 
features between the data are simultaneously extracted and modeled according to 
the sequence of the data in the sessions. Moreover, instead of using one-hot vectors, 
the character-level embedding method is used, which requires a less number of 
parameters, but the input tensor of this method has a fixed size, so there is a limit for 
the length of the text data and the maximum number of session clicks. 

Dilated one-dimensional convolutional layers used in [41] and [44], when stacked 
on top of each other, increase the receptive fields when modeling long-term depen-
dencies. Moreover, they propose a masking-based dropout trick for one-dimensional 
dilated convolution to overcome the problem of information leakage, which prevents 
the network from seeing future items. 

Several approaches use temporal CNN, such as [45, 46], which can model the 
direct effect between items and solve the problem of long-term dependencies and 
lack of sequential data. In addition, the use of cross-sessions makes it possible to 
consider its effect on each item. 

Single-domain session-based recommender systems deal exclusively with a spe-
cific domain while ignoring the user’s interest in other domains and intensifying the 
challenges of cold start and sparsity. Solutions to such problems can be provided 
using cross-domain recommendation, which typically exploits the knowledge 
learned from the domains and produces the target recommendation. One of these 
approaches can be based on transfer learning, which utilizes the knowledge obtained 
from one domain to improve learning tasks in another domain. 

Session-based recommender systems based on multi-task learning can provide 
better performance compared to single-task learning. An advantage of using multi-
task learning in a deep neural network is its ability to reduce the problem of data 
sparsity through implicit data augmentation. Another advantage is that learning 
many tasks at the same time can prevent overfitting by simplifying the shared hidden 
representation. 

An attention mechanism is a technique that enables a neural network to focus on a 
subset of features by selecting a specific input. This mechanism can be directly 
applied to many deep learning architectures, such as CNN and RNN. The main goal



Ref. Domain Input data Embedding technique Loss function
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Table 3.5 A summary of the reviewed research 

Deep 
learning 
model 

[9] Video, 
e-commerce 

GRU Items of sessions One-hot encoding BPR, TOP1 

[10] Video, 
e-commerce 

GRU Text description, 
ID and image of 
session items 

Bag-of-words and 
TF-IDF + one-hot 
encoding + CNN 

TOP1 

[14] Job, video GRU Items of sessions One-hot encoding TOP1 

[18] Video, 
e-commerce 

GRU Items of sessions One-hot encoding BPR-max, 
TOP1-max 

[19] Movie, 
music, book 

GRU User interest, 
sessions, and 
items 

One-hot encoding A weighted 
loss function 
based on 
TOP1-max 

[21] Video, 
e-commerce 

GRU Sessions, inter-
actions of 
sessions 

One-hot encoding BPR, TOP1 

[23] Movie, 
news 

GRU Contextual 
information of 
session, items of 
sessions 

One-hot encoding + 
random distribution 
low-dimensional vector 

BPR, cross-
entropy 

[26] Music, 
e-commerce 

GRU Items of ses-
sions, sessions 

One-hot encoding + 
d-dimensional node 
vector of session graph 
(GGNN) 

Cross-entropy 

[31] E-commerce LSTM Items of sessions D-dimensional vector Cross-entropy 

[34] E-commerce LSTM Items of sessions Doc2Vec/Item2Vec Cross-entropy 

[35] GitHub LSTM Items, users, 
sessions 

One-hot encoding + 
graph attention network 

Log-
likelihood 

[37] E-commerce Stacked 
LSTM 

Sessions, inter-
actions of 
sessions 

One-hot encoding + 
encoder-decoder 

Cross-entropy 

[40] E-commerce 3D-CNN Sessions, inter-
actions of 
sessions 

Character-level 
embedding 

Cross-entropy 

[41] Music, 
e-commerce 

Dilated 
CNN 

Items of sessions One-hot encoding + 1D 
convolutional filters 

Binary cross-
entropy 

[42] POI, movie, 
e-commerce 

CNN Interactions of 
sessions 

Embedding lookup Binary cross-
entropy 

[44] Movie Dilated 
CNN 

Sessions One-hot encoding Cross-entropy 

[45] E-commerce Temporal 
CNN 

Items of sessions D-dimensional vector Cross-entropy 

[46] E-commerce CNN Interactions and 
items of sessions 

One-hot encoding + 
GNN 

Cross-entropy



of the attention technique is to provide a solution to better remember network inputs. 
For example, attention techniques applied to the CNN model help the model absorb 
the most useful elements of input information. The attention-based RNN model also 
enables the model to process noisy inputs. It also helps the LSTM remember input 
elements when handling long-range dependencies.
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Table 3.5 summarizes the existing works discussed in this chapter and addresses 
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach. 

3.6 Conclusion 

In this chapter, different approaches to deep discriminative models in session-based 
recommender systems have been discussed and analyzed regarding the models, 
datasets, evaluations, and highlights/limitations of each. Various applications have 
been addressed in these approaches, such as e-commerce, movies, news, books, etc. 
Because of the sequential nature of session data, many of the proposed methods 
utilized RNNs, including GRU and LSTM, which can detect dependencies and 
relations between data and predict the relevant next item efficiently. Indeed, the 
ability to model the dynamic behavior of users over time in session-based recom-
mender system has made RNNs an appropriate solution in this scope. Both GRU and 
LSTM networks provide appropriate results and eliminate the vanishing/exploding 
gradient issue. However, GRU networks have less computational complexity due to 
the less number of gates and parameters, while LSTM networks could provide more 
accurate results. 

In addition to the high performance of recurrent neural networks in session-based 
recommender systems, the temporal and spatial features of the session data can be 
efficiently extracted using the standard and improved types of CNNs, such as 
3D-CNN, dilated CNN, and temporal CNN. The sequence of items in one session 
or between different sessions of users can be easily implemented and modeled on 
CNN. Moreover, CNNs have a high capacity to learn the local and spatial features of 
regions and capture the related dependencies that are usually ignored by other 
models. 

This chapter concluded with several discussions on the reviewed research and 
provided future directions and trends in session-based recommender systems using 
deep discriminative models.
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Chapter 4 
Deep Generative Session-Based 
Recommender System 

Abstract The inherent structural sequences in sessions and the mutual influence of 
complex variables in different time steps make deep generative models effective 
solutions for a session-based recommender system (SBRS). In addition, in real-world 
scenarios, users usually only select a limited number of items, and their interactions 
in response to items are very sparse. Deep generative models that produce more 
training samples can help reduce the data sparsity problem. To this end, we discuss 
different deep generative models in SBRS in this chapter, such as autoencoders (AE), 
generative adversarial networks (GAN), and flow-based models (FBM). 

Keywords Session-based recommender systems · SBRS · Deep generative models · 
AE · GAN · FBM 

4.1 Introduction 

The purpose of session-based recommender systems is to predict the users’ subse-
quent transactions based on their previous short-term behaviors. This is performed 
when the long-term history of user behavior is unavailable or the user does not have 
a specific profile [1]. Previous studies in session-based recommender systems using 
deep learning techniques such as RNNs or CNNs have obtained more effective 
results than traditional sequence-based models like personalized Markov chain 
decomposition or feature-based matrix factorization [2]. 

The first research related to session-based recommender systems was presented 
primarily based on recurrent neural networks, which predicted the subsequent clicks 
of users of a session based on the hidden states they had learned so far. These 
methods obtain the information entropy at each time step of the observed sessions 
through the conditional distributions of subsequent clicks relative to previous clicks 
and typically choose a simple or combined parametric form. However, such a 
structure may not have the necessary efficiency due to the inherent structural 
sequences in sessions and the mutual influence of different output variables in a 
time step on each, considering the complex dependencies between variables in 
different time steps. Furthermore, click-level predictions only consider short-term 
reactions and ignore long-term interaction even when combined with attention-based
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mechanisms. Therefore, these approaches predict the subsequent clicks more accu-
rately in shorter sessions but may deviate from the main goals in more extended 
sessions. To reduce these problems, neural networks can be strengthened by 
employing multimodal output distributions and uncertainty estimation [2].
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On the other hand, in real-world scenarios, users usually only select a limited 
number of items, and their interactions in response to items are very sparse. 
Therefore, it is difficult to detect sequential patterns of user behavior, and it requires 
much more data. Meanwhile, the basic neural network-based recommender systems 
have many parameters whose incorrect and incomplete training may lead to chal-
lenges in optimizing complex models and, as a result, provide incorrect recommen-
dations [3]. Therefore, using deep generative models that produce more samples for 
the training can help reduce the data sparsity problem [4]. 

There are different types of deep generative models; the widely used examples 
include autoregressive generative models [5], autoencoders (AE), generative adver-
sarial networks (GAN) [6], flow-based models (FBM) [7], and energy-based models 
(EBM) [8]. In fact, SBRS extracts latent information related to anonymous users’ 
interests and short-term session interactions using the potential of deep generative 
models such as AEs or GANs for learning meaningful data representations and 
embedding/reducing the dimensions of the input data [9]. A review of published 
research in this field shows that most of the proposed methods are based on 
autoencoders and generative adversarial networks. It should be mentioned that 
several approaches based on autoencoders have been combined with techniques 
such as normalizing flow, which belongs to FBM. 

In this chapter of the book, we discuss the approaches utilizing deep generative 
models for session-based recommender systems. For this purpose, in Sect. 4.2, a  
brief overview of the fundamentals of these methods, the commonly used datasets, 
and the basic evaluation metrics used in various research are discussed. Then, in 
Sect. 4.3, methods based on autoencoders and then, in Sect. 4.4, approaches using 
generative adversarial networks are discussed and analyzed. Flow-based models in 
SBRS are discussed in Sect. 4.5. Section 4.6 explains the results and identifies 
current issues and challenges related to using deep generative methods in session-
based recommender systems and provides guidelines for future research in this 
scope. 

4.2 Fundamentals 

The purpose of modeling user preferences in recommender systems is to improve the 
customer experience by recognizing the inherent preferences of users based on 
previous user behaviors. Generally, users’ interests in session-based recommender 
systems have a complex structure. For this reason, learning methods that have a 
significant capacity to recognize relationships and dependencies between data 
should be used to learn the patterns of users’ interests and recognize the similarity 
between the behaviors of different users based on their short-term behaviors. Deep



a p xð Þ= p x0ð Þ
YD

p xijx< ið Þ ð4:1Þ

learning methods are practical and effective in these systems, and previous research 
shows the effectiveness of their application in session-based recommender systems. 
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Recently, more advanced deep learning approaches have been used in these types 
of systems to solve the mentioned challenges and optimize complex session-based 
recommender systems more effectively. One of the important approaches is deep 
generative models [1]. Generally, approaches based on deep generative models for 
SBRS provide recommendations by generating subsequent interactions or subse-
quent sessions through a carefully designed generation strategy. Deep generative 
models follow two objectives:

. Learning practical and accurate representations of data using unsupervised 
methods

. Learning joint probability distributions of data and the related classes 

For example, using deep generative models to train stochastic latent variables in 
tasks such as natural language processing, speech generation, and machine transla-
tion has led to significant and effective results. These methods model the generation 
process of additional and auxiliary information, such as ratings, and generate a 
probabilistic latent variable framework that shares statistical strength among users 
and items. Different deep generative learning models provide a high capacity to learn 
non-linear representations of user-item interactions [2]. 

Deep generative models are neural networks with numerous hidden layers trained 
for complex estimation and high-dimensional probability distributions [10]. The 
most prominent goal of training this type of model is to learn intractable or unknown 
statistical distributions from several independent samples uniformly distributed. 
After successful training, deep generative models can be used to estimate the 
likelihood of a specific sample and generate new samples that are similar to the 
unknown distribution. Deep generative models are used by researchers in the field of 
SBRS due to their high flexibility in statistical distributions as well as their signif-
icant capacity to learn non-linear representations. 

It should be mentioned that all generative models are not based on neural 
networks, but considering neural networks as a powerful and flexible tool, they are 
widely utilized to parameterize generative models and create deep generative 
models. Deep generative models are generally divided into four groups: 
autoregressive generative models, flow-based models, latent variable models, and 
energy-based models:

. Autoregressive generative models: These models use the idea of autoregressive 
modeling. Using the chain rule of probability, they condition their output to the 
data observed in the past and not to the future data. The distribution of x in the 
autoregressive method is calculated according to Eq. (4.1): 

i= 1



| |
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The expression x<i shows all x whose index is greater than i. Modeling all 
conditional distributions p(xi| x<i) are computationally very complicated and 
inefficient, so they use the advantages of neural network models such as causal 
convolutions. 

Learning long-term statistics and robust density estimators are the main 
features of autoregressive models. However, one of their disadvantages is that 
they are parameterized in an autoregressive way, and therefore, their sampling 
process is prolonged. Additionally, they lack a latent representation, so their 
internal data representations are not apparent, and thus, they are less useful for 
tasks such as compression or metric learning.

. Flow-based models: These types of models are built as a sequence of reversible 
transformations called normalizing flow that repeatedly replaces variables 
according to the change-of-variable law. Changing the formula of the variables 
creates a method to present the density of the random variable, performed by 
replacing it with an invertible transformation f according to Eq. (4.2): 

p xð Þ= p z= f xð Þð Þ  Jf xð Þ| | ð4:2Þ 

In the above equation, Jf(x) represents the Jacobian matrix, which can be param-
eterized using deep neural networks. The type of neural network should be 
chosen so that it can calculate the Jacobian matrix. 

Flow-based models capture the accurate distribution of data and enable accu-
rate probability assessment. Research in the field of flow-based models can be 
divided into two categories: models based on normalizing flows [11] and models 
based on autoregressive flows [12].

. Latent variable models: Latent variables make the latent dependencies among the 
observed variables to be obtained and the basic structure of the process and 
principles of data generation to be learned. Latent variables can provide an 
alternative low-dimensional representation of the observed variables. The main 
idea of latent variable methods is the assumption of a latent space with low 
dimensions, whose generating process is according to Eq. (4.3): 

z - p  zð Þ, x - p xjzð Þ ð4:3Þ 

This model assumes that the observed variable x is generated by a stochastic 
process based on an unobserved continuous variable z. In other words, the latent 
variables correspond to the hidden factors in the data, and the conditional 
distribution p(x| z) acts as a generator. One of the most popular types of methods 
in this category is the probabilistic principal component analysis (pPCA), where 
p(z) and p(x| z) are based on Gaussian distribution and the dependency between 
z and x is linear. One of the developed examples of pPCA with an arbitrary 
distribution is the variational autoencoder (VAE), used to approximate the
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Table 4.1 The list of research discussed using deep generative models 

Deep generative models References 

Autoencoder (AE) [2, 9, 14–24] 

Generative adversarial network (GAN) [3, 25–34] 

Flow-based models (FBM) [2]: Normalizing flows 
[35]: Autoregressive flows 

posterior probability of p(z| x) to make tractable inferences [13]. GAN networks 
are one of the types of latent variable models.

. Energy-based models: A group of generative models inspired by the laws of 
physics which utilize energy functions such as E(x). Energy-based models 
(EBM), also known as non-normalized probability models, specify probability 
density or mass functions up to an unknown normalizing constant. The density 
determined using the EBM model is in the form of Eq. (4.4): 

P Xð Þ= 
1 
Z 
e-E xð Þð Þ ð4:4Þ 

where the function E(x) (energy) is the non-linear regression function and z=P
x 
exp -E Xð Þð Þ  is a normalizing constant called the partition function. In other 

words, the distribution is defined by an exponential energy function that is further 
normalized to obtain values between zero and one. Energy-based models are 
based on the energy function, and their main idea is to formulate the energy 
function and estimate the partition function. One of the main groups of energy-
based models is Boltzmann machines. 

Generally, flow-based, autoregressive, and energy-based models and several 
models based on latent variables, such as variational autoencoders, can be trained 
sustainably, but some models based on latent variables, such as generative adver-
sarial networks, face instability. In terms of sampling, autoregressive models have a 
slow process, and energy-based models are also relatively slow due to implementing 
the Monte Carlo method for obtaining samples, specially for objects with high 
dimensions. However, other methods have a fast-sampling process. Energy-based 
models, flow-based models, and models such as variable autoencoders can be used 
to learn a representation of input data and provide data with low dimensions, but 
autoregressive and GAN methods do not have this capability. 

Due to the data sparsity and the complex structures of user interactions, many 
research related to session-based recommender systems have employed different 
deep generative models. Of course, some research has also presented a combination 
of several generative methods. For this purpose, AEs, GANs, and FBMs (normal-
izing flow and autoregressive flow) have been discussed and analyzed in this 
chapter.
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Fig. 4.1 Percentage of each 
type of deep generative 
model in SBRS 

The research discussed in this chapter are shown in Table 4.1 according to the 
deep generative model. 

The diagram in Fig. 4.1 shows the percentage of each technique used in the 
discussed research. 

It should be mentioned that the review of research belonging to the third and 
fourth chapters of the book shows that discriminative models have been used more 
than generative models in session-based recommender systems, specially recurrent 
neural networks. RNNs, due to their sequential nature, have a high capacity to 
analyze the sequential dependencies between data in user sessions and to model 
users’ behaviors over time. However, since deep generative methods are indepen-
dent of data labels and they propose greater flexibility in this field compared to 
discriminative methods, researchers have been interested in using these methods 
more and more in session-based recommender systems. 

Another noteworthy point in the review of the research of this chapter is the 
publication date, which shows that the approaches utilizing deep generative models 
are more emerging and the desire of researchers to use them in session-based 
recommender systems has increased in the last few years. Despite the presence of 
several types of deep generative models, most of the published articles use 
autoencoders or generative adversarial networks in session-based recommender 
system. 

A generative adversarial network (GAN) is a generative model based on deep 
learning. These networks represent frameworks that build generative models based 
on an adversarial process. In this framework, two models are learned 
simultaneously:



. A generative model that obtains the data distribution and is used to generate new 
acceptable examples from the problem domain. In fact, this model turns noise into 
fake data.

. A discriminative model that estimates the probability of a sample belonging to the 
training model or the model obtained from the generative method. In fact, this 
model is employed to classify samples as real samples (from the domain) or fake 
samples (made by the generative model). 
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Fig. 4.2 The general architecture of a generative adversarial network 

Fig. 4.3 The general architecture of an autoencoder 

The performance of this type of network corresponds to a minimax two-player 
game, where the goal of the training process of the generative model is to maximize 
the probability that the discriminative model makes a mistake. If the generative and 
discriminative models of GAN are defined as a multilayer perceptron (MLP) net-
work, the whole system can be trained in the form of error backpropagation. Then, 
there is no need to use Markov chains or approximate inference networks [36]. Fig-
ure 4.2 shows the general architecture of a generative adversarial network. 

Autoencoders are a special type of feedforward neural network in which the input 
and output are the same. This type of neural network was proposed by Jeffrey Hinton 
in the 1980s for solving unsupervised learning problems [37]. Autoencoders are 
trained neural networks that replicate data from the input layer to the output. As 
shown in Fig. 4.3, an autoencoder consists of three main parts: encoder, represen-
tation, and decoder. Autoencoders are structured to receive input and convert it into a 
different representation. Then, they try reconstructing the original input as accurately 
as possible. Autoencoders first encode the input and then reduce the size of the input 
to a low-dimensional representation. Finally, the autoencoder decodes the represen-
tation to generate the reconstructed data.
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Fig. 4.4 The general architecture of a flow-based model 

In recent years, various types of autoencoders have been proposed; the most 
widely used are sparse autoencoders (SAE), denoising autoencoders (DAE), and 
variational autoencoders (VAE). We found that many kinds of research related to 
session-based recommender systems based on deep generative models use variable 
autoencoders. 

The distribution models used in AEs are not flexible enough to match the true 
posterior and the uncertainty of the recommendations. To solve the problem, 
improving the variational posterior distribution using the normalizing flow [38] is  
presented. Normalizing flow is a set of inverse transformations to the desired vari-
ables with a simple initial distribution. Compared to VAE and GAN, flow-based 
models have so far attracted less attention, specially in the field of session-based 
recommender systems, although they have unique advantages such as accurate latent 
variable inference and analytical likelihood evaluation. Figure 4.4 shows the general 
architecture of a flow-based model. 

In the following two subsections, a summary of the employed datasets and 
evaluation metrics of the reviewed research is presented. 

4.2.1 Datasets 

To evaluate and validate the results of deep generative approaches in session-based 
recommender systems, different datasets are used from different fields. The features 
of these datasets have made them suitable options for evaluating the proposed 
approaches. 

Table 4.2 shows the datasets used in different articles, including the dataset name, 
the domain, a brief description, and the paper that employed it. 

Table 4.3 presents the information on each dataset, including the number of 
sessions/items/events, duration of data collection, average length of the session, 
type of interaction, and access link to the dataset. 

The statistical information related to the dataset presented in Table 4.3 was 
collected from the articles or from the links that introduced them. Reviewing the 
evaluation section of various articles in the field of session-based recommender 
system shows that some datasets have been widely used to evaluate the application
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Table 4.2 Widely used datasets in SBRS using deep generative models 

Dataset Domain Description References 

Diginetica E-commerce The dataset includes user sessions extracted 
from an e-commerce search engine log 

[2, 3, 16, 18] 

YELP Business Contains users’ reviews of various businesses. 
Each display set is simulated by collecting 
nine businesses with the nearest location 

[27, 29] 

Taobao E-commerce Contains the clicking and buying records of 
users in 22 days. We consider the buying 
records as positive events 

[27] 

Ant Financial 
News 

News Contains click records from 50,000 users for 
1 month, involving dozens of thousands of 
news. On average, each display set contains 
five news articles 

[27] 

YooChoose E-commerce The dataset consists of 6 months of 
clickstreams from an e-commerce Web site 

[2, 16, 18, 
19, 25] 

Yahoo! 
JAPAN’s 
homepage 

News They sampled approximately 12 million users 
who had clicked at least one article from the 
service logs of Yahoo! JAPAN’s homepage 
on smartphones between January and 
September 2016 

[14] 

Last.fm Music This dataset contains social networking, tag-
ging, and music artist listening information 
from a set of 2K users from Last.fm online 
music system 

[19, 20, 22, 
27] 

RecSys Chal-
lenge 2015 

E-commerce This dataset comprises clickstream data to 
user sessions with an e-commerce Web site 

[2, 16, 25, 
27] 

Studo Job Studo is a proprietary dataset collected from 
the online platform Studo Jobs, a job-seeking 
service for university students 

[9] 

RecSys17 Job The RecSys17 is the latest version of the data 
provided by XING after the RecSys Challenge 
2017 

[9, 22] 

CareerBuilder12 Job It is from an open Kaggle competition, called 
Job Recommendation Challenge, provided by 
the online employment Web site CareerBuilder 

[9] 

Amazon E-commerce Amazon is an e-commerce dataset, where [3] 
focuses on the baby, beauty, and cellphone 
domains 

[3, 31] 

Netflix Video Netflix is a well-known dataset recording the 
ratings of users on a catalog of movies. 
Because the timestamp of each rating is 
available, it is possible to construct for each 
user the sequence of movies he rates 

[17, 28, 30] 

Booking.com Travel Booking.com recently organized the WSDM 
WebTour 2021 Challenge. The dataset con-
sists of over a million anonymized hotel res-
ervations based on real data. The challenge’s 
goal is to recommend the final city of each trip 

[15]

http://booking.com
http://booking.com


of different approaches based on discriminative, generative, or hybrid methods. For 
example, YooChoose, MovieLens, RecSys Challenge 2015, and Diginetica datasets 
have been used in many articles. Of course, each proposed approach, according to 
the nature and type of their performance, has considered different preprocessing 
operations for the dataset. For example, in [25] for the YooChoose dataset, only 
sessions with more than five interactions are considered, or in [3] for the Diginetica 
dataset, only users or items are considered that have participated in more than five 
interactions. Sessions with more than two items have been considered in [16] for the 
Diginetica and YooChoose datasets. In some research, different modifications have 
been made to the original data to match it with the proposed method, for example, in 
[17], the data related to the scores of the Netflix and MovieLens datasets have been 
converted to binary values.
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Table 4.2 (continued)

Dataset Domain Description References 

MovieLens Movie It consists of users’ sequential rating records 
for different categories of movies on the 
MovieLens site 

[3, 17, 20, 
21, 27–29, 
31, 35] 

CiteULike Research 
paper 

In the CiteULike dataset, one user annotating 
one research paper at a certain time may have 
several records to distinguish different tags 

[35] 

Retailrocket E-commerce The data has been collected from a real-world 
e-commerce Web site. It is raw data, i.e., 
without any content preprocessing; however, 
all values are hashed due to confidential issues 

[22] 

4.2.2 Evaluation 

To accurately evaluate and analyze the results of new approaches to session-based 
recommender systems, several previous approaches in this field are usually used as a 
baseline. Some of these methods utilize the basic methods of session-based recom-
mender system. Some others are based on neural networks and specific to the 
evaluation of deep learning session-based recommender systems. On the other 
hand, one or more evaluation metrics are used to assess the performance of deep 
generative models in the proposed approaches. Each of these evaluation metrics 
considers the proposed methods from a specific perspective. In these subsections, 
first, widely used baseline methods are introduced, and then the relevant metrics are 
discussed and reviewed. 

The most widely used baselines are as follows. It should be noted that some of 
them have been introduced as baselines in the previous chapter. However, to keep 
the comprehensiveness and consistency of the content of this chapter, they are also 
repeated in this section:
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POP More popular items are always recommended. The POP is effective and 
straightforward simultaneously and is often a strong baseline in specific 
domains [39]. 

S-POP The most popular items in the current session are recommended. The 
recommendation list changes based on the number of events that are related to 
particular items. This baseline is useful for the domains with high repetitiveness [39]. 

Item-KNN Items similar to the actual item are recommended, and the similarity 
between them is measured based on the cosine similarity measure of their session 
vectors. In other words, it is the number of co-occurrences of two items in sessions 
divided by the square root of the product of the number of sessions in which the 
individual items occurred. This method is very effective for evaluating item-to-item 
recommendation methods [39]. 

FPMC A hybrid model for the next-basket recommendation based on the 
factorizing personalized Markov chains. This method is adapted in [2] for the 
scenario of session-based recommender systems. In fact, the user’s latent represen-
tations are omitted when calculating the scores of the recommendations. 

BPR-MF It utilizes matrix factorization which is optimized for pairwise ranking 
objective functions through stochastic gradient descent. Methods based on matrix 
factorization cannot be used in session-based models because there is no 
pre-computed feature vector for new sessions. This problem is overcome by using 
the average vectors of the items that belong to each session [49]. 

GRU4Rec A technique based on recurrent neural networks, which is one of the first 
approaches to using deep learning techniques in session-based recommender system. 
This method is based on GRU and is used to overcome the problem of gradient 
vanishing [39]. 

GRU4Rec+ This method is an improved version of GRU4Rec that uses data 
augmentation and considers shifts in the distribution of input data to improve the 
performance of GRU4Rec [2]. 

GRU4Rec++ This method is one of the most recent methods that extend GRU4Rec 
by introducing an improved sampling strategy pattern [2]. 

NARM An improved version of GRU4Rec, which performs session modeling by 
introducing a hybrid encoder based on the attention mechanism. In this technique, 
global and local encoders are defined, the global encoder corresponds to the 
GRU4Rec method, and the local encoder is proposed for adding the attention 
mechanism to the model, respectively [18]. 

STAMP This method is based on a Short-Term Attention/Memory Priority Model 
and, unlike the NARM method, is not based on a recurrent neural network. In this 
method, users’ general interests are obtained through the long-term memory data of 
the session context, and their short-term interests are also recognized through short-
term memory [40].
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ReLaVaR A Bayesian version of GRU4Rec, which considers the recurrent units of 
the network as stochastic latent variables with some prior distributions and infers the 
corresponding posterior probabilities for prediction and recommendation. This 
method provides a session-based recommender system that works based on varia-
tional inference at the item level and uses the independent Gaussian distribution as 
the prior probability of the items [2]. 

VRM A variational autoencoder approach for session-based recommender systems. 
Unlike ReLaVaR, which is a variational method at the item level, the VRM model 
performs stochastic inference on the session level [23]. 

CDAE A well-known model to recommend top N recommendations, which uses 
denoising autoencoders and learns the data model from corrupted inputs [41]. 

CASR This counterfactual data augmentation method has been proposed for 
sequential recommender systems [42]. It is composed of a sampler model and an 
anchor model. The sampler model generates counterfactual sequences from the real 
ones. The anchor model provides the final recommendation list and is trained based 
on both real and counterfactual sequences. 

SASRec The first model of the session-based recommender system based on the 
self-attentive mechanism [43]. 

In this section, a number of evaluation metrics that are used more in this field have 
been discussed in the following:

. Recall: This metric is calculated based on the number of relevant items that are 
among the top N items in the recommendation list, and the rank of the relevant 
items in the N list is unimportant, and it is calculated using Eq. (4.5): 

Recall@N = 
Number of relevant items in top N list 

Total of relevant items
ð4:5Þ

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the 
list of recommendations. It shows that placing a relevant item at the top of the 
recommendation list significantly impacts user satisfaction and is calculated using 
Eq. (4.6): 

MRR@N = 
1 
Q 

XQ 
i= 1 

1 
ranki 

if ranki ≤N 

0 otherwise 

< 
: ð4:6Þ 

where Q is a sample of recommendation lists and ranki refers to the rank position 
of the relevant item for the i-th recommendation list.

. Precision @ N: This metric evaluates the number of relevant items relative to the 
total N items recommended in the list, and it is calculated using Eq. (4.7):
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Precision@N = 
Number of relevant items in top N list 

Total of N items
ð4:7Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the 
percentage of items that are ever recommended, and the variety of the 
recommended items in the recommendation list is considered. Its goal is to 
recommend a high percentage of various items to the user. This metric is 
calculated using Eq. (4.8): 

Coverage@N 

= 
Distinct items that appeared in any top-N recommendation 

All distinct recommendable items
ð4:8Þ

. nDCGp: This metric is based on cumulative gain (CG). The cumulative gain is the 
sum of the graded relevance values of all items in a recommendation list. nDCG is 
computed as the ratio between discounted cumulative gain (DCG) and idealized 
discounted cumulative gain (IDCG). Equations (4.9), (4.10), and (4.11) show 
how to calculate this measure. 

DCGp= 
Xp 
i= 1 

2ri - 1 
log 2 iþ 1ð Þ ð4:9Þ 

IDCGp= 
XRELp 
i= 1 

ri 
log 2 iþ 1ð Þ ð4:10Þ 

nDCGp= 
DCGp 

IDCGp
ð4:11Þ 

In the above equations, ri is the graded relevance of the result at position i, and 
RELp represents the list of relevant items (ordered by their relevance) up to 
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant 
item is recommended, the precision is measured, and the average is calculated 
using Eq. (4.12): 

MAP= 

PQ 
q= 1 

AveP qð Þ  
Q

ð4:12Þ 

In this relation, P(q) is the precision of query q, and parameter Q is the number of 
queries.
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. Hit Rate@N: It is the percentage of times in which relevant items are retrieved 
among the top N ranked items, and it is calculated using Eq. (4.13): 

Hit Rate@N = 
1 
Q 

XQ 
i= 1 

1 if ranki ≤N 
0 otherwise

ð4:13Þ 

where Q is a sample of recommendation lists and ranki refers to the rank position 
of the relevant item for the i-th recommendation list.

. Mean Absolute Error (MAE): This metric is one of the most common errors of 
prediction factors, which calculates the mean absolute value of the difference 
between the score predicted by the system and the actual score of the item. The 
mean absolute error indicates the degree of closeness of the recommendations to 
reality. This measure can be calculated from Eq. (4.10). 

MAE= 
1 
N 

X 
i2Ou 

Pu,i - ru,ij j ð4:14Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the 
predicted rank is more effective than the mean absolute error in problems where 
the errors are more considerable, and it is calculated using Eq. (4.14): 

RMSE= 
1 
N 

X 
i2Ou 

Pu,i - ru,ið Þ2 ð4:15Þ 

In Eqs. (4.14) and (4.15), Pu, i is the predicted score for the item i by user u, ru, i is 
the actual value of the score assigned to item i by user u, Ou is the set of items 
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine 
the efficiency of recommender systems is the AUC. The larger the AUC value, 
the more favorable the final system performance is evaluated. The ROC (receiver 
operating characteristic) space is formed by two indices FPR on the horizontal 
axis and TPR on the vertical axis, as calculated by Eqs. (4.16) and (4.17), 
respectively. The line that connects two points (0,0) and (1,1) divides the ROC 
space into two parts. The area above this line is the favorable area and below the 
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a 
classifier to distinguish between classes and is used as a summary of the ROC 
curve.



X X
ð

X X X

4.2 Fundamentals 135

TPR= 
TP 

TP þ FN ð4:16Þ 

FPR= 
FP 

FPþ TN ð4:17Þ 

The maximum value of this metric is equivalent to one and occurs in a situation 
where the recommender system is ideal and can recognize all positive samples. 
The AUC measure, unlike other measures for deciding the efficiency of classifi-
cation methods, is independent of the classification threshold. Therefore, this 
measure indicates the output reliability of the system.

. Expected Popularity Complement (EPC): This metric shows the ability of the 
recommender system to introduce items that have not been recommended in the 
system before. This measure is calculated based on Eq. (4.18): 

EPC@k= 
1 
Sjj 

s2S 

1 
Rkjj 

Ri2Rk 

disc ið Þp reljRi, sð Þ  1- p seenjRið Þð Þ 4:18Þ 

In this regard, disc(i) is the discount factor for the weight of recommendation rank 
i, and p(seen|Ri) is the probability that the i-th recommended item was already 
seen in the system.

. Expected Profile Distance (EPD): Unlike the EPC measure, the EPD uses the 
semantic content of recommendations and shows how surprising and unexpected 
recommendations are for a specific session history. This measure is calculated 
based on Eq. (4.19): 

EPD@k = 
1 
Sjj 

s2S 

1 
Rkjj Hsjj 

Ri2RkHj2Hs 

disc ið Þp reljRi, sð Þd RijHj

( ) ð4:19Þ 

In the above equation, disc(i) is the discount factor for the weight of recommen-
dation rank i, and d(Ri|Hj) represents the dissimilarity between Ri and Hj. The 
session-based novelty is given as the average dissimilarity of all items in the list 
of recommended items Ri and items in the current session Hj. 

Table 4.4 shows the different evaluation metrics used in different articles on 
session-based recommender systems using deep generative models.
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Table 4.4 Widely used evaluation metrics in SBRS using deep generative models 

Evaluation metrics References 

Mean reciprocal rank (MRR) [2, 3, 9, 14, 16, 18, 19, 21, 22, 28–30] 

Recall@n [2, 3, 17–19, 22, 24, 31, 35] 

nDCG [3, 9, 14, 17, 20, 21, 26, 28–31, 35] 

AUC [14] 

Precision@n [16, 17, 25, 27, 28, 35] 

Accuracy [15] 

RMSE [25] 

MAP [26, 27, 30, 35] 

EPC [9] 

EPD [9] 

Coverage [9] 

Hit Rate@n [20, 21] 

4.3 Session-Based Recommender System Using 
Autoencoder 

Before looking at the approaches of autoencoder models in session-based recom-
mender system, an overview of AE and the reasons that made it an appropriate 
choice for SBRS are provided. 

4.3.1 Why Autoencoder? 

With the advancement of neural networks and the increase in the computation power 
of computer systems, the use of deep generative models has become one of the most 
widely used approaches in different fields of artificial intelligence. In recommender 
systems, deep generative models have been widely used, and one of the most popular 
models in this field is autoencoders. The autoencoders are utilized to learn mean-
ingful representations of data such as embedding, reducing input data dimensions, 
data reconstruction, etc. [44]. Moreover, the autoencoders are used in recommender 
systems to compress, cluster, and reduce data dimensions to recognize latent simi-
larities between items or users and predict users’ interests based on them. Recom-
mender systems that use autoencoders have a more effective performance in terms of 
noise management, as well as the use of multimedia data resources, compared to 
traditional recommender systems. The results of the evaluation show that 
autoencoder-based recommender systems could generate more accurate results. 

Recently, research related to session-based recommender systems has also used 
autoencoders for extracting hidden information related to the interests of anonymous 
users in short sessions. In the proposed approaches, autoencoders are employed to 
embed and generate semantic representations of users, items, or sessions, and



ð

simultaneously, while maintaining the most important features, they also reduce the 
dimensions of the data. Indeed, autoencoders have changed the architectures of 
session-based recommender systems, and by analyzing and reconstructing users’ 
experiences, they have provided more opportunities to increase their satisfaction 
with the system’s performance. Autoencoders, alone or combined with other deep 
learning methods, try to reduce the weaknesses of recommender systems, such as 
data privacy, and effectively learn non-linear relationships between users and items. 
Data privacy can be alleviated by learning knowledge from different data sources, 
including contextual, textual, and image data. 
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Autoencoders are categorized under unsupervised learning. The structure of the 
autoencoder is divided into two parts: encoding and decoding. In encoding, the input 
data is mapped to the feature space, and in decoding, it is converted back to its 
original form from the feature space. The main part of an autoencoder is the hidden 
layer used as the extracted feature for classification. The autoencoder receives a set 
of data and, by encoding them, tries to represent the inputs. The autoencoder is 
trained so that the weights produced in the layers make the output have the minimum 
possible deviations from the input or equal in an ideal case. When training an 
autoencoder, the model parameters such as the number of middle layer nodes, the 
cost function, and the number of layers affect the performance of the model and 
should be set in advance. 

Figure 4.5 shows the general structure of an autoencoder, which consists of three 
layers: input layer, hidden layer, and output layer. 

The number of neurons in each input, hidden, and output layer is equal to n, m, 
and n, respectively. The input layer and the hidden layer construct the encoder, and 
the hidden layer, together with the output layer, constructs the decoder. As shown in 
Fig. 4.4, the encoder converts x = {x1, x2, . . ., xn}, which is a high-dimensional input 
data, into h = {h1, h2, . . ., hm}, which is a low-dimensional latent representation. 
This transformation is performed through the f function in Eq. (4.20): 

h= f xð Þ= sf Wxþ bð Þ 4:20Þ 

In the above equation, sf is the activation function. The encoder parameters 
include a weight matrix W with dimensions m×n and a bias vector bERm . The decoder 
reconstructs the representations of the hidden layer h and reaches the data x́= 
x́1, x́2, . . . , x́nf g  using the g function in Eq. (4.21): 

x́= g  hð Þ= sg Ẃhþ b́( ) ð4:21Þ 

In the above equation, sg is the activation function. The decoder parameters 
include a weight matrix W  with dimensions n×m and a bias vector b́ERn:sg and sf 
functions are usually non-linear activation functions such as hyperbolic tangent 
function, sigmoid, etc. These non-linear activation functions help the autoencoder 
to learn more important and useful features than the PCA method by minimizing the 
reconstruction error between x and x́ and obtaining a d-dimensional representation of
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the input data. There are two methods of squared error and cross-entropy to 
formulate the reconstruction error, which is calculated based on Eqs. (4.22) and 
(4.23), respectively: 
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Fig. 4.5 The layers of the autoencoder 

EAE x, x́ð Þ= x- x́k k2 ð4:22Þ 

EAE x, x́ð Þ= -
Xn 
i= 1 

xi log x́i þ 1- xið Þ log 1- x́ið Þð 4:23Þ 

A regularized term can be added to calculate the reconstruction error and make 
the loss function of the autoencoder. The loss function can be optimized through 
methods such as SGD (stochastic gradient descent). Although this model is often 
efficient, it can become very ineffective if errors occur in the first layers. A proper 
technique to eliminate this problem is pre-training the network with initial weights 
that approximate the final solution.
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Solutions that are presented based on autoencoders may face challenges that 
affect the usability and robustness of the model. These challenges include [45]:

. Weight initialization: With large initial weights, autoencoders usually detect 
weak local minima, and if the initial weights are small, the gradients of the initial 
layers are small, making it impossible to train autoencoders with many hidden 
layers. Random selection of initial values also affects the results.

. Model configuration: The model configuration, including the number of layers 
and their width, makes the network look for a specific image of the data while 
preserving relevant details.

. Hyperparameters: There are several hyperparameters for autoencoders that are 
difficult to set. These hyperparameters are learning rate, weight cost, dropout 
function, batch size, number of epochs, number of layers, number of nodes of 
encoding/decoding layers, a type of activation function, initialization of weights, 
and optimization algorithm. 

If the neural network constructing an autoencoder is a deep network, it is called a 
deep autoencoder. In this architecture, the number of hidden network layers is more 
than one. Currently, very deep networks can be easily trained by GPUs. Recently, 
different types of autoencoders have been proposed in various research on session-
based recommender systems, which are briefly reviewed as follows: 

Denoising Autoencoder The autoencoder sometimes adapts only to the input data 
instead of finding the most salient feature (this is an example of overfitting). The 
denoising autoencoder adds a little noise to the input cell. By doing this, the encoder 
is forced to reconstruct the output from a corrupted input and acquire more robust 
features. The input in this network is a corrupted version ~x 2 Rn of the original input 
x 2 Rn . This autoencoder does not simply copy the input to the output but denoises 
the data and then produces the input from the noisy version. The loss function 
minimizes the error in the noisy input. The general form of this type of autoencoder 
is shown in Fig. 4.6. 

Convolutional Autoencoder The convolutional autoencoder is a convolutional 
neural network used as an advanced method in unsupervised learning based on 
convolutional filters. In a convolutional autoencoder, the model can learn optimal 
filters that minimize the reconstruction error instead of manually engineering 
convolutional filters. Once these filters are learned, they can be applied to any 
input to extract features. Therefore, these features can be used to do anything 
requiring a compact input representation, such as classification. A convolutional 
autoencoder learns to encode the input into a set of simple signals and then 
reconstructs the input from them. In this type of autoencoder, the encoder layers 
are called convolutional and the decoder layers are called deconvolution layers. The 
general form of this type of autoencoder is shown in Fig. 4.7. 

Variational Autoencoder Compared with the autoencoder, the variational 
autoencoder compresses probabilities instead of features. Despite the small differ-
ences between the two mentioned neural networks, each of them answers a different



question. Autoencoder answers the question “How can the data be generalized?”. In  
contrast, the variational autoencoder answers “How strong is the connection between 
two events? Should the fault be distributed between the two events, or are they 
completely independent?”. The variational autoencoder is an example of a deep 
latent variable model that uses neural networks to approximate the posterior infer-
ence of latent variables and generate data samples. Indeed, a variational autoencoder 
is a probabilistic generative model in which the probability density p(x) is modeled 
through a latent variable z. Its goal is to model p(x) so that sampling the distribution 
leads to the generation of ideal samples from the input dataset that does not exist in 
the original form. In fact, the variational autoencoder can generate new data samples 
similar to the data samples the model has seen during the training process. The 
general form of this type of autoencoder is shown in Fig. 4.8. 
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Fig. 4.6 The general architecture of denoising autoencoder 

Fig. 4.7 The general architecture of convolutional autoencoder
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Fig. 4.8 The general architecture of variational autoencoder 

4.3.2 Autoencoder Approaches 

Autoencoders are one of the most powerful methods for extracting the main features 
of data. These types of neural networks are used for unsupervised learning with the 
aim of dimensionality reduction, optimal embeddings, and generative modeling. To 
use the advantages of autoencoders and overcome the problems of previous session-
based recommender systems, different types of these systems have utilized 
autoencoders. Each research discussed in this section has used different types of 
autoencoders for their proposed model. 

One of the first research that used autoencoders in session-based recommender 
system was proposed by Li et al. [18]. The main idea is to create a latent represen-
tation of the user’s current session and make predictions. This method includes an 
attention-based mechanism that works along with an encoder to model users’ 
sequential behaviors, determine the user’s main goal in the current session, and 
finally create a unified representation of the session. Figure 4.9 shows the schematic 
of this method, which is called neural attentive recommendation machine (NARM). 

As shown in the figure, the encoder converts a sequence of input clicks x = {x1, 
x2, . . ., xt - 1, xt} into a set of high-dimensional arrays h = {h1, h2, . . ., ht - 1, ht} and 
sends it along with the attention signal at time t(αt) to the generator of session 
features to create a representation of the current session and decoding at time t(ct). 
Finally, ct is transformed into an activate function using the U matrix to create a 
ranking list over all items. Following the successful use of GRUs in the GRU4Rec 
method, this method also uses GRUs to model user sessions. In the proposed 
architecture, a global encoder is considered, which is based on GRU4Rec and is 
used to model sequential user behaviors. A local encoder is also used to detect the 
main purpose of the user in the current session. 

While in the previous methods, only the last hidden state was used to encode the 
session, NARM uses all the hidden states of the GRU to encode the sessions. The 
similarity between the last global hidden state and all previous global hidden states is 
calculated, and using this similarity, the final local encoding of the session is 
determined through the sum of all hidden states that are weighted based on their 
similarity.
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Fig. 4.9 The schematic of 
NARM [18] 

The main disadvantage of NARM is that a session may contain noise or a 
collection of choices from multiple users, so not all dependencies may be correctly 
detected and considered. Many session-based recommender systems only focus on 
the user’s current session and ignore the collaboration information of previous 
sessions. The information from the previous sessions provides the behavior of 
other users who may have similar interests to the intended user. To solve this 
problem, a Collaborative Session-based Recommendation Machine (CSRM) with 
parallel memory modules has been proposed by Wang et al., which uses a memory 
network to encode the current session of the user [19]. In addition to the information 
from the current session, this method also uses the information from neighbor 
sessions to provide recommendations. 

Figure 4.10 shows the architecture of CSRM. In CSRM, two modules based on 
neural networks are implemented in parallel: the inner memory encoder (similar 
architecture to the NARM) and the outer memory encoder. The inner memory 
encoder is made of two submodules, one of which obtains the user’s global behavior 
based on the order of his interactions and the other is used to pay attention to the 
user’s specific behavior which is reflected by relatively important items in the current 
session. Their outputs are linearly combined and determine the main goal of the user 
and his interests in the session. On the other hand, the external memory encoder 
implements a session-based collaborative refinement approach to extract knowledge 
from other similar sessions. Finally, the information of both encoders is combined 
through a fusion gating mechanism. 

In addition to the CSRM, Liang et al. proposed a session-based recommender 
system with a dual attention-based neural network that uses a hybrid encoder to 
solve the problem of ignoring the user’s interest in previous sessions [22]. The
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hybrid encoder consists of the session encoder and the user encoder. The session 
encoder, using a session-level attention mechanism, examines the user’s interests 
and goals in the current session, and the user encoder, using a user-level attention 
mechanism, distinguishes the user’s interests between different sessions. Both 
encoders have employed GRU. Finally, using a decoder, the scores of the proposed 
items are calculated.
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Santana et al. applied some modifications to the NARM and proposed a travel 
recommendation system that was the subject of the WSDM WebTour 2021 Chal-
lenge [15]. In this method, categories and dense features of users, cities, and trips are 
combined with data about the history of trips. The proposed architecture of this 
method is shown in Fig. 4.11, the core of which is the NARM module, which works 
the same as the process described above, but the size of the inputs, the bottleneck of 
the latent representation, and the outputs have been changed. 

Statistical user features use an autoencoder trained on the same training data to 
embed user information. In addition to providing a dense representation of user 
features, the autoencoder ensures that similar users are close to each other in the 
vector space. At the beginning of the work, the input features are concatenated and 
take two paths. The first group of features passes through an attention-based layer 
before being sent to the NARM module. This is an essential step in relating different 
positions of the same input sequence. In the second path, the features bypass the 
feature bottleneck created by the NARM module, which results in improved decoded 
performance and provides more contextual information for the session. 

Okura et al. proposed a news recommender system based on the embedding 
technique that uses a denoising autoencoder [14]. This is a three-step approach that 
creates distributed representations of news articles using denoising autoencoders in 
the first step. Then, based on the order and history of users’ searches, it creates 
representations of users employing recurrent neural networks. Finally, for each user, 
the inner product between the article-user representations is performed for the degree 
of relationship between them. This production between article-article representations 
is also performed to avoid the repetition of similar information in different articles. 
Recurrent neural networks are used to learn user characteristics based on the 
previous data of his searches. 

In this method, denoising autoencoders with weak supervision are used to 
represent news articles based on news text. Since the hidden layer contains input 
data information, the hidden layer (h vector) is usually used to represent the input. 
Based on this feature and taking into account that the greater the similarity between 
two input articles, the larger the inner product of the two vectors presented as h0 

T h1 
becomes, this method uses a triple set (x0, x1, x2) of articles as an autoencoder input. 
x0, x1 are the articles with the same category, and x0, x2 belong to a different category 
(x is the original input vector). A penalty function is considered to detect the 
similarity of the articles based on the classification using the inner product of the 
input vectors. In this method, instead of using the stochastic corruption of the input 
data, constant decay is used, which is based on the corruption rate in the training 
phase ( p is the corruption rate). As a result, the hidden vector will be unique at the 
time of use for each article. Multiplying 1-p is effective in equalizing the input



distribution of middle-layer neurons in the learning phase with masking noise and 
without applying this noise. 
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Fig. 4.11 The architecture of the adapted NARM [15] 

An approach based on the combination of deep learning and latent variable 
modeling has been presented by Sachdeva et al. for a sequential recommender 
system called SVAE [17]. The authors assume that at a certain time, the choice of 
a certain item is affected by latent factors that model the interests of the user. It is 
worth mentioning that latent factors are influenced by the short- and long-term 
history of user interests and interactions. The previously proposed methods showed



that recurrent neural networks could consider short- and long-term dependencies and 
could be used in a dynamic environment to obtain the optimum results. 
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SVAE utilizes a recurrent neural network architecture with different levels of 
abstraction to capture latent temporal dependencies and user preferences. SVAE uses 
sequential variational autoencoders that use variational autoencoders to model user 
preferences along with latent variables and temporal dependencies. SVAE models 
the latent dependencies using a recurrent neural network before sending the latent 
dependencies for prediction to variational autoencoders. 

Another framework based on gap-filling using masked convolutional operators 
has been proposed by Yuan et al., which allows simultaneously considering future 
and past context data without data leakage [21]. In GRec (Gap-filling-based Rec-
ommender) approach, the encoder takes the sequence of sessions relatively complete 
as an input, and the decoder predicts the masked items based on the output of the 
encoder and its embeddings. Therefore, in GRec, the encoder must be aware of the 
user’s interests and preferences through the user’s unmasked operations, and simul-
taneously, the decoder must predict the next item based on the previous context and 
the encoded general interests of the user. 

GRec uses convolutional neural networks with sparse kernels, which has two 
main advantages: (1) creating an autoregressive mechanism to construct the 
sequence and (2) creating two-side contexts for encoding. The projector neural 
network proposed in GRec increases the representational bandwidth between the 
encoder and the decoder. The encoder is implemented with a set of one-dimensional 
dilated convolutional neural networks, in which every two dilated layers by a 
residual block are wrapped to prevent the gradient vanishing of both dilated layers. 
The decoder also consists of embedding layers, the projector, and causal 
convolutional neural networks, which each position can only attend to the left. 

According to different types of autoencoders, Lacic et al. have developed a 
session-based job recommender system using different autoencoders [9]. The 
autoencoder is used to encode user sessions, and it is trained based on different 
job datasets. These datasets include user interactions that are extracted from sessions 
and content features of job postings where interactions occur during a session. In this 
research, three types of autoencoders, including classic autoencoder, denoising 
autoencoder, and variational autoencoder, have been investigated to represent a 
session. The input data of the three autoencoders are a binary representation of the 
interactions of each session, and the dimensions of the input and output layers are the 
same. In the classic autoencoder, which is the simplest type, there is a hidden layer 
between the input and output layers representing the session and providing a latent 
representation of the session using a mapping function. In the denoising 
autoencoder, additive Gaussian noise is used to corrupt the input, which is applied 
to the input layer with a probability of 0.5. The variational autoencoder uses 
variational inference to extract the latent representation of the session and estimate 
the intractable posterior distribution with a simpler variational distribution. Evalua-
tions show using a variational autoencoder achieves better results. Figure 4.12 shows 
how to model sessions using an autoencoder. AEInt, which is a standard autoencoder, 
considers user’s interaction data, and to combine this with job content data, AEComb



F
ig
.4

.1
2

M
od

el
in
g
jo
b
se
ss
io
ns

in
[
]9

4.3 Session-Based Recommender System Using Autoencoder 147



uses the most recent m job interactions within the session and generates a binary 
encoding of the job content features in descending order. 
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Deng et al. proposed a graph-based approach, HybridGNN-SR, and improved the 
model’s efficiency from two aspects [16]. On the one hand, it reconstructs the mutual 
information of each session graph to predict recommendations, and on the other 
hand, it presents a session based on higher conceptual representation by considering 
the adjacent items in a session. In HybridGNN-SR, graph learning is performed 
based on the combination of two supervised and unsupervised methods to provide 
item transition patterns in a session from the perspective of the graph. In the 
unsupervised learning part of the graph, variational graph autoencoders are com-
bined with mutual information to represent the graph nodes of a session. In the 
supervised learning part, a routing algorithm is used to extract high-level conceptual 
features from the session, which considers the dependencies between items in the 
session. This model extracts correlation information of dependent items and then 
feeds them to the routing mechanism to extract the diversity of user interests from a 
session. 

Another session-based recommender system has been proposed by Kang et al. 
that combines a bidirectional encoder and an autoregressive decoder and uses noisy 
transformation for user interactions [20]. E-BART4Rec (Entangled BART for Rec-
ommendation) is built upon BART, a model that is widely used in NLP tasks. BART 
uses a left-to-right decoder and injects noise into its bidirectional encoder, which can 
reduce the gap between training and inference. In E-BART4Rec, the encoder 
network consists of two sub-layers, a multi-head attention-based network and a 
pointwise feedforward network. The decoder consists of three sub-layers, masked 
multi-head attention-based network, multi-head attention-based network, and 
pointwise feedforward network. The gating mechanism is used in E-BART4Rec to 
detect the importance of the decoder or encoder to calculate the next interaction. 
Unlike other similar methods, the output of E-BART4Rec dynamically integrates a 
bidirectional encoder and an autoregressive decoder based on the gating mechanism 
and according to the characteristics of user interactions. 

4.4 Session-Based Recommender System Using GAN 

Before looking at the approaches of generative adversarial network models in 
session-based recommender systems, an overview of GAN and the reasons that 
made it an effective choice for SBRS are provided. 

4.4.1 Why GAN? 

The significant successes achieved using generative adversarial networks (GANs) in 
various fields of deep learning have been the reason for their use in recommender



systems. GAN-based recommender systems will become very popular in the field 
[46]. This popularity is because the GAN concept provides new opportunities to 
reduce data sparsity and noise. Several existing studies have confirmed the effec-
tiveness of GAN-based approaches and minimax game theory in the objective 
function to reduce data noise. Other studies have also tried using the discriminator 
to distinguish informative examples in an adversarial manner. Meanwhile, to address 
the issue of data sparsity, a separate line of research has explored the capabilities of 
GANs to generate user profiles with augmenting user-item interaction and auxiliary 
information. Due to the significant impact of GAN networks on recommender 
systems, these networks have recently been utilized in session-based recommender 
system, some of which are discussed in this section. 
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Fig. 4.13 The general architecture of GAN 

Generative adversarial networks are a computational method based on game 
theory, and there is a combination of two neural networks at their core, the generator 
and the discriminator. There is also an adversarial relationship between these two 
networks. In simple words, the first one is trained to generate data, and the second is 
trained to distinguish between real and fake data. The generator, who is a forger, tries 
fooling the discriminator network, which is a detective. The detective’s goal is to 
distinguish the fake sample from the real one, and with each unsuccessful attempt, it 
optimizes its operations by receiving feedback from it. Figure 4.13 shows the general 
architecture of the GAN. 

The goal of the generative adversarial network is to learn a generative model 
G that can generate samples from the data distribution px by transforming the latent 
vector Z into samples in the data space with higher dimensions x. Usually, latent 
vectors are sampled from Z using a uniform or normal distribution. To train the 
generator model G, a discriminator model D is trained to distinguish the real training 
samples from the fake ones generated by G. Therefore, the discriminator model 
returns a value Dx 2 [0,1], which can be interpreted as how likely the input sample 
x is a true sample from the data distribution. In this configuration, the generative 
model is trained by generating examples most similar to the real training examples.
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However, the discriminator model is continuously trained to distinguish real samples 
from fake ones. 
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The loss function in the generative adversarial network is defined as minimax. 
Thus, if the goal of training the discriminator model is to bring the loss function V(D, 
G) to the minimum value, the goal of training the generator model is to bring the 
same loss function to the maximum value (or to minimize the discriminator’s 
reward). According to the structure of the discriminator model, the loss function of 
the generative adversarial network can be determined by Eq. (4.24): 

min 
G 

max 
D 

V D,Gð Þ=Ex-pdata xð Þ  logD xð Þ½ ] þ  Ez-pz zð Þ  log 1-D G  zð ÞÞð Þð½ 4:24Þ 

In the above equation, G and D represent the generator and the discriminator 
models, respectively, pdata(x) is the probability distribution of the real data, pz(z) is  
the probability distribution of generator data, Ex is the expected value over all real 
data instances, and Ez is the expected value over all random inputs to the generator 
(the expected value over all generated fake instances G(z)). 

According to the loss function, a generative adversarial network is trained in two 
stages. First, the loss function for the discriminator network is calculated based on 
the training data x and the output of the generator network z according to Eq. (4.25). 
Then, the chain derivatives for the training parameters of the discriminator model are 
calculated based on these values and updated according to Eq. (4.26) by the gradient 
ascent method: 

ED x,G zð Þð Þ  =Ex logD xð Þ½ ] þ  Ez log 1-D G  zð ÞÞð Þð ]½ 4:25Þ 

θD kþ1ð Þ  = θD kð Þ þ η 
∂ED 

∂θD 
kð Þ ð4:26Þ 

After updating the values related to the discriminator model, the value of the loss 
function of the generator model is calculated according to Eq. (4.27), and then its 
weights are updated using the gradient descent method according to Eq. (4.28). 

EG zð Þ  =Ez log 1-D G  zð ÞÞð Þð ]½ 4:27Þ 

θG kþ1ð Þ  = θG kð Þ - η 
∂EG 

∂θG 
kð Þ ð4:28Þ 

In summary, GANs are proposed to avoid many disadvantages associated with 
other generative models [50]:

. They can generate samples in parallel instead of using a proportional runtime to 
the dimensions of x.

. The design of the generator’s performance has very few limitations. This is an 
advantage over Boltzmann machines, for which few probability distributions 
accept tractable Markov chain sampling.



. Markov chain is not required. This is an advantage over Boltzmann machines and 
random generator networks.

. No variational bounds are required, and the types of models that can be used in 
the GAN framework are already known to be universal approximators, so GANs 
are asymptotically consistent.

. GANs inherently produce better samples than other models. 

4.4 Session-Based Recommender System Using GAN 151

Despite the proposed advantages of GAN, there are also limitations to this model. 
Although several studies discuss the convergence and existence of Nash equilibrium 
in the GAN game, GAN training is very unstable and hard to converge. GAN solves 
a minimax game iteratively through the gradient descent method for the generator 
and discriminator. From the loss function approach, a solution to the GAN game is a 
Nash equilibrium, which is a point of parameters where the cost of the discriminator 
and the generator are minimal with respect to their parameters. However, decreasing 
the loss function of the discriminator can increase the loss function of the generator 
and vice versa. Therefore, the convergence of the GAN game may often fail and is 
prone to instability. 

Another important issue for GAN is the mode collapse problem. This problem is 
harmful to GANs applied in real applications because mode collapse limits the 
GAN’s ability to diversity. The generator must trick the discriminator, not describing 
the multimodality of real data distribution. Mode collapse also can occur even in a 
simple experiment, which prevents the usage of GANs due to low diversity. How-
ever, for a highly complex and multimodal real data distribution, mode collapse is 
still a problem that GANs should solve. 

Generative adversarial networks have been used in any research related to text 
and image generation, feature extraction, etc. GAN could map input variables to 
another feature space by using min-max optimization and discriminative models. It 
can be used to solve problems of sparse datasets and create effective recommender 
systems with acceptable performance. Recently, generative adversarial networks 
have been widely used in the field of deep learning, and based on their capabilities, 
different deep generative approaches have been presented in the field of session-
based recommender systems. 

The purpose of generative adversarial networks in recommender systems is to 
reduce casual and malicious noises in data and to increase the ability to recognize 
samples from unobserved items. Additionally, generative adversarial networks have 
been considered and used in all kinds of recommender systems due to their ability to 
reduce the problems caused by the spareness of datasets. In the following subsection, 
we discuss several research performed using GAN in SBRS. 

4.4.2 GAN Approaches 

One of the first methods that used generative adversarial networks in session-based 
recommender systems has been proposed by Zhao et al., called Prioritizing



Long- And Short-Term Information in top-n reCommendation (PLASTIC) 
[32]. PLASTIC used matrix factorization approaches and recurrent neural networks 
along with generative adversarial networks to recommend the top N items to the 
user. The proposed model adaptively adjusts how to combine short-term and long-
term information about users and items. In the process of adversarial training, the 
generator model takes users and items as input for predicting the list of user 
recommendations. For the discriminator model, it integrates prioritizing short- and 
long-term models through the Siamese network as real samples are correctly distin-
guished from generated samples. 
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Bharadhwaj et al. proposed another SBRS based on a generative adversarial 
network, called recurrent generative adversarial network (RecGAN) [30]. RecGAN, 
unlike other similar methods, is based on time, and it learns the latent temporal 
feature of the user and item under the framework of generative adversarial networks 
to improve the efficiency of the recommender system. RecGAN combines genera-
tive adversarial networks with recurrent neural networks to learn temporal features. 
The generator model specifies the distribution of items to predict a sequence of items 
for a user. In fact, the generator model in RecGAN is designed to learn the 
distribution of the relevance of items for users and extract an unlabeled sequence 
from the relevant items generated to obtain a better estimate of their relevance. The 
discriminator model also determines whether the sampled items correspond to the 
users’ true interest distribution. RecGAN modifies the GRU cell so that it can obtain 
latent factors of users and items that are observable from short- and long-term 
profiles. 

Session-based recommender systems that use reinforcement learning have two 
limitations: (1) Ignore the user’s skip behaviors that are scattered in sequential 
patterns. (2) When the positive feedbacks in the dataset are sparse, the system cannot 
use positive and negative feedback together. To solve these two problems, Gao et al. 
utilized reinforcement learning along with generative adversarial networks in a 
session-based interactive recommender system, called DRCGR [26]. In DRCGR, 
convolutional neural networks and generative adversarial networks use deep 
Q-Network learning to better understand high-dimensional data. CNN is used to 
detect the sequential features of positive user feedback, and GAN is used to learn 
negative feedback representations. Finally, the negative and positive feedbacks are 
simultaneously sent to the deep Q-Network to create a better action-value function. 
This increases the robustness of session-based interactive recommender systems. 

The sequential interests of the user are first detected in DRCGR using a deep 
model based on convolutional neural networks. This is performed using 
convolutional filters. The spatiotemporal sequences of user clicking behavior and 
their corresponding items are embedded in a potential dimensional space, and then 
the horizontal convolution layer and vertical convolution layer are used to learn the 
local features of the above images. Then, in generative adversarial networks, the 
generator model purposefully generates different personalized negative samples, and 
the positive feedback for training comes from the random sampling of real click data. 
The discriminator model also recognizes real samples from irrelevant and non-real 
samples.
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Another session-based recommender system has been proposed by Chen et al. 
using the modeling of the complex behavior of users, which has utilized reinforce-
ment learning and generative adversarial networks [27]. In this system, user dynamic 
behavior modeling and related reward functions are learned in a unified minimax 
framework, and then reinforcement learning policies are learned to use the model. 
Using the user model as the simulation environment, a cascading Q-Network is 
presented for a combinatorial recommendation policy, which can control many 
candidate items well and reduce computational complexity. One of the advantages 
of using the generative adversarial network in this method is that it improves the 
representation of the user model as well as the reward function according to the 
user’s learned model and considers online adaptation for new users. 

In session-based recommender systems, the user’s previous behaviors are used to 
predict his next behaviors, which could be performed using reinforcement learning 
methods. However, reinforcement learning methods may experience unstable con-
vergence in learning processes. In fact, these methods require many training data, 
which is challenging in sparse session-based recommender systems. For this reason, 
the use of the generative adversarial network model is very effective. On the other 
hand, the generation of negative samples in this type of system should not be random 
because an item that the user likes but has no interaction with it may be considered a 
negative sample for that user randomly. Therefore, the policy used in the generator 
model is critical in generative adversarial networks. 

For better processing of users’ immediate feedback in session-based recom-
mender system based on the collaborative filtering approach, Zhao et al. combined 
reinforcement learning and a generative adversarial network, called Deep Generative 
Adversarial Networks-based Collaborative Filtering (DCFGAN) [25]. DCFGAN 
exploits the immediate feedback of users, which solves the need for information 
and training examples. On the other hand, the generated negative samples are 
optimized using collaborative filtering to provide sufficient recommendations to 
users. To solve the instability of the training process caused by the uncertain 
probability in the policy gradient algorithm in the previous session-based recom-
mender system, the deep deterministic policy gradient (DDPG) algorithm is pro-
posed to increase the stability of the training process. Meanwhile, DDPG optimizes 
the value function and reduces the number of iterations required for convergence. 
This method uses pre-training collaborative filtering to negative sample items with 
low user interest, effectively improving negative sampling accuracy, which is more 
suitable for recommendation scenarios. The generator model of GAN is also 
improved using repeated experiences. Figure 4.14 shows the architecture of the 
DCFGAN. 

Considering the high potential of generative adversarial networks in improving 
the efficiency of recommender systems based on collaborative filtering, Ren et al. 
developed a multi-factor generative adversarial network (MFGAN) [33]. MFGAN 
uses adversarial training to decouple factor utilization from the sequence prediction 
component. This provides more flexibility in the use of external contextual infor-
mation in sequential recommendations, which can improve the interpretability of 
recommendations. Two main modules are used in MFGAN: (1) transformer-based



generator module and (2) multiple factor-based discriminator module. Based on data 
related to user-item interactions, the generator model predicts the next proposed 
items, and the discriminator model considers the sequence of recommendations 
based on various factors of the available information. The discriminator uses a 
bidirectional transformer and can refer to the information on subsequent positions 
for evaluations and increase the reliability of the evaluation. Because of the discrete 
nature of the item generation process, the training of MFGAN is performed through 
reinforcement learning. In this method, different factors are separated from the 
generator and used by the discriminator to extract reward signals to improve the 
generator. The architecture of MFGAN is shown in Fig. 4.15. 
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Fig. 4.14 The architecture of the DCFGAN [25] 

4.5 Session-Based Recommender System Using FBM 

Before looking at the approaches of flow-based models in session-based recom-
mender system, an overview of FBM and the reasons that made it a suitable choice 
for SBRS are provided.
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4.5.1 Why Flow-Based Models? 

Despite using Bayesian inference and uncertainty representation, collaborative VAE 
models are difficult to optimize, mainly due to inherent biased variational inference. 
Models based on autoencoders usually assume that the posterior can be decomposed 
into several independent factors, while intractable variational inference requires 
searching for the best approximation of the true posterior in a parameter family of 
distributions that are usually specified in advance. 

However, distributional models are inflexible enough to match the true posterior 
and recommendation uncertainty unless a precise family of distributions is chosen. 
Such challenges motivate researchers to enrich the variational posterior distribution 
by using normalizing flow [38], which is a set of invertible transformations to the 
desired variables with a simple initial distribution. Compared to VAE and GAN, 
flow-based models have so far attracted less attention, specially in session-based 
recommender systems, although their unique advantages, such as accurate latent 
variable inference and analytical likelihood evaluation, can propose great potential 
for future work. 

Therefore, flow-based models are used to approximate the real posterior of 
stochastic latent factors, which can significantly reduce the inference bias in the 
VAE-based models and, as a result, improve the accuracy of predicting the next 
click. In fact, using richer posterior distributions can effectively reduce the gap 
between the approximate posterior and the true posterior. This approximate gap is 
caused by the encoding cost, which is mainly due to the incorrect assumption of the 
probabilistic distribution. 

Flow-based models are built with a sequence of invertible transformations, and 
unlike the previous two models, they explicitly learn the data distribution p(x), and 
therefore, the loss function is simply a negative log-likelihood. Figure 4.16 shows 
the main idea of flow-based models. In each step, using the change of variable 
theorem, a new variable is replaced. Finally, the final distribution obtained can be 
close enough to the target distribution. 

Fig. 4.16 Transforming a simple distribution into a complex distribution by applying a sequence of 
invertible transformations
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Normalizing flow-based models provide a general approach for constructing 
flexible probability distributions over continuous random variables. If x is a 
d-dimensional real vector, and suppose we want to define a joint distribution on x, 
the basic idea of flow-based modeling is to express x as a transformation function 
T of a real vector u sampled from pu(u) :  

x= T uð Þ  where u - pu uð Þ: ð4:29Þ 

pu(u) is the base distribution of the flow-based model [7]. The transformation 
function T and the basic distribution pu(u) can have their own parameters. The 
specific characteristic of flow-based models is that the transformation function 
T must have an inverse function and T and T-1 must be differentiable. In this 
situation, the density x is well defined and can be obtained using the change of 
variable theorem by Eq. (4.30): 

px xð Þ= pu uð Þ  detJT uð Þj j- 1 where u= T - 1 xð Þ ð4:30Þ 

Equivalently, we can also write px(x) in terms of the Jacobian T-1 by Eq. (4.31): 

px xð Þ= pu T
- 1 xð Þ( )

detJT - 1 xð Þ
||| ||| ð4:31Þ 

The Jacobian JT(u) is the D × D matrix of all partial derivatives of T given by 
Eq. (4.32): 

JT uð Þ= 

∂T1 

∂u1 
⋯ 

∂T1 

∂uD⋮ ⋱ ⋮  
∂TD 

∂u1 
⋯ 

∂TD 

∂uD 

2 
664 

3 
775 ð4:32Þ 

In practice, a flow-based model is often constructed by implementing 
T (or T-1 ) with a neural network and taking pu(u) as a simple density (such as a 
multivariate normal). 

4.5.2 Flow-Based Approaches 

Many recommender systems based on generative models, such as variational 
autoencoders, are very effective for learning non-linear user-item representations 
in collaborative filtering-based approaches [17, 47, 48]. However, session-based 
recommender systems cannot use these models directly for the following reasons:

. Data availability: Lack of access to user profile information and long-term 
interactions of users.



. Bypassing challenge: Autoregressive models combined with soft attention-based 
mechanisms are capable of reconstructing encoded sessions. This mechanism 
may weaken the effects of latent factors and potentially reduce the performance of 
the model using variational autoencoders.

. Biased inference: Models based on an autoencoder assume a predefined prior 
probability for latent factors that are restrictive for learning the distribution of data 
and may lead to the approximate deviation of the inferred posterior from the true 
distribution. 
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Fig. 4.17 The architecture of VASER [2] 

To this end, several research have been proposed to utilize flow-based models to 
overcome the mentioned problems. Zhong et al. proposed an SBRS framework using 
Bayesian inference for flexible parameter estimation, called VAriational SEssion-
based Recommendation (VASER) [2]. In VASER, instead of directly applying 
extended variational autoencoders, the normalizing flow method is introduced to 
estimate the probabilistic posterior. While maintaining Bayesian inference of vari-
ational autoencoders, the VASER model also allows for the exploration of 
non-linear probabilistic latent variable models. This method augments session-
based recommender systems that have used recurrent neural networks with stochas-
tic latent variables trained by stochastic and amortized variational inference, making 
it possible to infer a stable and effective approximation of a high-level objective of 
the whole session from the observed clicks. To encode more useful information in 
latent variables, an auxiliary factor is introduced that leverages variational attention 
on user clicks. Unlike deterministic attention, the proposed attention mechanism can 
accurately model click sessions without overpowering the latent representation. In 
addition, the normalizing flows are used to approximate the real posterior of sto-
chastic latent factors, which can significantly reduce the inference biases in the 
proposed models based on a variational autoencoder and improve the accuracy of 
next-click prediction. 

Zhong et al. also developed two variants of VASER with a deterministic attention 
mechanism (VASER-DA) and with a variational attention mechanism (VASER-
VA), as shown in Fig. 4.17. Each model includes two main components, which are 
the GRU and the attention modules. The GRU component takes sequential interests 
whose hidden state can extract non-linear interests. The attention component is used 
to enhance the GRU network, which dynamically selects different parts of the input 
and combines them linearly. VASER-DA uses a deterministic attention mechanism,



while VASER-VA uses the attention vector as a stochastic latent factor to overcome 
the bypassing phenomenon caused by recurrent neural networks and the determin-
istic attention mechanism. For flexible posterior approximation, both models utilize 
normalizing flows. 
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Fig. 4.18 The architecture of the CAF [35] 

Considering the improvement in the VASER for using variational autoencoders 
and flow-based models in session-based recommender systems with a collaborative 
filtering approach, the variation distribution choices are still not enough to recover 
and improve the true distributions, and this model is difficult to optimize. The reason 
for this problem is the biased maximum likelihood estimates of the model parame-
ters. By choosing only one family of probability distributions, the models are 
inflexible enough to match the true posterior and the uncertainty of recommenda-
tions. To this end, Zhou et al. extended the flow-based model to CF for modeling 
implicit feedbacks and presented the collaborative autoregressive flows (CAF) 
[35]. The CAF transforms a simple initial density into more complex densities 
through a sequence of invertible transformations until a desired level of complexity 
is reached. This non-linear probabilistic approach provides the possibility of 
representing the uncertainty and accurate tractability of latent variable inference in 
item recommendations. In CAF, using the flow function to approximate the true 
posterior probability of the latent factors, it adopts the probabilistic density estima-
tion to reduce the inference bias in the existing Bayesian recommendation model to 
improve the recommendations. The combination of two autoregressive flows gives 
the CAF the efficiency of variational inference and sampling and fills the gap 
between latent factors with simple base distribution and real data with a complex 
distribution. Figure 4.18 shows the schematic of CAF.
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4.6 Discussion 

Recently, deep generative models have been effective in the efficiency of session-
based recommender systems. The deep generative models help reduce problems 
caused by complex dependencies between variables in different time steps or 
different sessions. On the other hand, generative methods have the ability to generate 
more samples for model training and can help reduce the problems caused by data 
sparsity. The proposed approaches discussed in this chapter provide models of 
session-based recommender systems that have utilized deep generative techniques. 

Autoencoders (AE), generative adversarial networks (GAN), and flow-based 
models (FBM) are among the most widely used deep generative models that have 
been used in session-based recommender systems. A large percentage of proposed 
approaches using AE belong to variational autoencoders (VAE), an essential type of 
AEs. The difference between variational autoencoders and generative adversarial 
networks is their learning process and training time. Variational autoencoders are a 
semi-supervised method, while generative adversarial networks are an unsupervised 
method. Conversely, the training time of generative adversarial networks is more 
than variational autoencoders. 

Approaches based on autoencoders usually create a latent presentation of input 
data, which in most cases includes user interactions and transactions in sessions. For 
example, one of these approaches is the NARM method, which models the sequen-
tial behavior of users based on the encoder and decoder architecture, determines the 
user’s main goal in the current session, and finally creates an integrated representa-
tion of the session [18]. NARM considers only one session, which may have noise or 
a set of choices of several users; therefore, all dependencies may not be recognized 
correctly. Other methods, such as [15, 19, 22], have been presented to improve 
NARM. For example, in [15], the size of the inputs, the bottleneck of the latent 
presentation, and the outputs are changed, and in [19], parallel neural networks are 
used to provide recommendations, so in addition to the information of the current 
session, the information of the neighboring sessions is also employed. The proposed 
method in [22] also uses a dual attention-based neural network and GRU-based 
hybrid encoder to reduce the problem of ignoring the user’s interest in previous 
sessions. 

As discussed before, variational autoencoders are widely used in session-based 
recommender systems. For example, in [9], a session-based job recommender 
system investigated three types of autoencoders, including classic autoencoder, 
denoising autoencoder, and variational autoencoder, to provide sessions, and the 
best result was related to the variational autoencoder. Many recommender systems 
based on deep generative models, such as variational autoencoders, have provided 
very effective results for learning non-linear user-item representations in collabora-
tive filtering methods. For example, in [2], variational autoencoders have been 
extended for modeling users’ implicit feedback in session-based recommender 
system and through augmenting RNN by stochastic latent variables trained by 
stochastic and amortized variational inference allow effective inference of the entire



session from the observed clicks. Meanwhile, it uses normalizing flows to approx-
imate the real posterior of stochastic latent factors, greatly reducing the inference 
biases in the proposed variational autoencoder-based models and improving the 
accuracy of next-click prediction. Still, in [2], the variation distribution choices are 
insufficient to recover and improve the correct distributions, making this model 
difficult to optimize. The main reason for this problem is the inherent biased 
variational inference. To reduce this problem, the method proposed in [35] using 
autoregressive flows approximates the true posterior probability of stochastic latent 
factors; enables flexible and tractable probabilistic density estimation, greatly reduc-
ing the biased inference in existing Bayesian proposed models; and improves the 
accuracy of the recommender systems. To this end, the proposed method [17] is  
based on a sequence of variational autoencoders that use variational autoencoders to 
model user interests along with latent variables and time dependencies. 
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An example of a denoising autoencoder in the session-based recommender 
system is the proposed system [14], which uses denoising autoencoders to provide 
a unique representation of news articles, along with the categories of articles that 
increase the system’s efficiency. Additionally, in [20], a new recommender system is 
proposed that combines a bidirectional encoder and an autoregressive decoder and 
uses a noisy transformation for user interactions. 

The purpose of generative adversarial networks (GAN) in session-based recom-
mender system is to reduce casual and malicious noises in data and increase the 
ability to recognize samples from unobserved items. In addition, GANs have been 
considered in all kinds of recommender systems due to their ability to reduce the 
problems caused by the sparsity of datasets. The proposed method [32] combines 
matrix factorization approaches and RNNs with GANs and integrates prioritizing 
long-term and short-term models through Siamese networks. Another session-based 
recommender system based on time-based GANs has been proposed in [30], which 
combines GANs with RNNs to learn the latent temporal features of the user 
and item. 

Considering the high potential of generative adversarial networks in improving 
the efficiency of recommender systems based on collaborative filtering, the method 
presented in [33] uses generative adversarial networks with multiple factors and uses 
adversarial training to decouple factor utilization from the sequence prediction 
component. This provides more flexibility in the use of external contextual infor-
mation in sequential recommendations, which can improve the interpretability of 
recommendations. Several research presented in the field of session-based recom-
mender system with collaborative filtering approach have also used reinforcement 
learning in addition to generative adversarial networks [25–27]. In [26], 
convolutional neural networks and generative adversarial networks use deep 
Q-Network learning to better understand high-dimensional data. In [27], reinforce-
ment learning and generative adversarial networks are combined, which handle a 
large number of candidate items well and reduce the computational complexity. The 
advantage of using a generative adversarial network in this method is to improve the 
representation of a user model and reward function according to the user’s learned 
model and considers an online adaptation for new users. With the aim of processing



users’ immediate feedback as best as possible, a method is proposed in [25] that 
combines Q-Learning with actor-critic models in reinforcement learning. In this 
method, the combination of generative adversarial networks and reinforcement 
learning is used to exploit the immediate feedback of users, which solves the need 
for information and training examples. On the other hand, the generated negative 
samples are optimized using collaborative filtering to provide better recommenda-
tions to users. 
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At the end of this part, an important point about using flow-based models in 
session-based recommender system should be mentioned. Normalizing flow models 
are successful at estimating high-dimensional densities; however, their process still 
has some disadvantages. Because the latent space where input data is projected is not 
lower-dimensional, flow-based models do not allow data compression by default. 
These models cannot estimate the probability of the samples not being from the same 
distribution as the training set. An important feature of normalizing flows is the 
invertibility of their bijective map. This property guarantees the theoretical inversion 
and is achieved with some restrictions on the design of the models. Inverse integra-
tion is important in order to ensure the applicability of the change of variable 
theorem, the Jacobian computation of the map, as well as the sampling with the 
model. However, this invertibility is violated in practice, and the inverse map 
explodes due to numerical imprecision. 

For future research based on deep generative models discussed in this chapter, the 
following items can be considered:

. A critical problem in recommender systems is data sparsity, which means that the 
values of the user-item matrix are limited. This problem can be solved using side 
information. Choosing appropriate auxiliary information to help understand the 
relationship between users and items is essential to further improve recommen-
dation accuracy. Furthermore, there is little work examining changes in users’ 
interests or intentions. The autoencoder’s ability to process data from heteroge-
neous sources brings more opportunities to recommend various items based on 
unstructured data, such as textual, visual, audio, and video features. In fact, cross-
domain models help represent the target domain using knowledge learned from 
other sources and can be a suitable option to deal with the problem of data 
sparsity. A topic that has been widely studied in cross-domain recommendations 
is transfer learning [25]. This study improves learning ability in the target domain 
by using knowledge transferred from other domains. However, integrating infor-
mation from different domains into the same representation space is still a 
challenging problem. The GAN can continuously learn and optimize the mapping 
process from the source domain to the target domain, thereby enriching the 
training data of the recommendation model.

. Fusion methods can model the heterogeneous characteristics of determinant 
factors, such as user, items, and context, in recommender systems. Studies have 
integrated deep generative models with traditional recommendation methods. 
However, only a few limited studies have been conducted in this field that 
combined the use of deep generative models such as autoencoder and generative



adversarial networks with other deep learning methods. For example, an 
autoencoder can be combined with deep semantic similarity models to learn the 
semantic representation of items in a common continuous semantic space and to 
measure their semantic similarities. Therefore, the fusion models are a promising 
area for future research that is largely unexplored and where more studies are 
expected.

. Attention-based mechanisms are an intuitive but effective technique that can be 
applied to deep neural networks. The attention mechanism provides a good 
solution to deal with long-term dependencies and helps the network remember 
inputs better. By applying the attention mechanism, session-based recommender 
system using deep generative models can filter meaningless content and select the 
most meaningful ones that provide good interpretability.

. The time complexity of session-based recommender system based on deep 
generative models is relatively high. For example, GANs include two generator 
and discriminator components, and each part can be composed of several neural 
network layers. This problem becomes more serious when the model contains 
several generators and discriminators. The appropriate use of generative and 
discriminative neural networks and the efficient training process in a mutually 
promoting mode, at the same time considering suitable feedback between two 
generative and discriminative modules, can be an effective solution to improve 
the performance of the final model.

. Scalability is critical for session-based recommender system models because the 
ever-increasing volume of data and the introduction of the concept of big data in 
this field make time complexity one of the main considerations. Deep generative 
models such as GAN and autoencoders have been applied to some commercial 
products. However, due to the continuous improvement of GPU computing 
power, further research on recommender systems based on deep generative 
models is needed in the following areas: (1) incremental learning of streaming 
data that is generated at high speed (velocity factor in big data concepts), such as 
cases where numerous interactions between users and items are performed; 
(2) accurate calculation of tensors with high dimensions, specially when using 
multimedia data sources; and (3) balancing the complexity and scalability of the 
model when we have exponential parameters’ growth in the developed model. 
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In many cases, the research fields mentioned in the above paragraphs can be 
considered together or have mutual effects on each other. For example, how to 
develop a session-based recommender system based on deep generative models that 
can simultaneously consider high scalability and the effective combination of 
auxiliary information can be one of the valuable directions for future research. 

Table 4.5 summarizes the existing works discussed in this chapter and addresses 
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach.



Ref. Domain Input data Loss function
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Table 4.5 A summary of the reviewed research 

Deep learning 
model 

Embedding 
technique 

[18] E-commerce Encoder/ 
decoder 

Session click One-hot 
encoding 

Cross-entropy 

[19] E-commerce Autoencoder Items of 
session 

One-hot 
encoding 

Cross-entropy 

[22] E-commerce Autoencoder Session click One-hot 
encoding + 
encoder 

Bi-linear similar-
ity function 

[15] Trip Autoencoder User features, 
cities, event 
time, 
categories 

Autoencoder + 
space-time 
encoding 

Focal loss 
function 

[14] News RNN (LSTM/ 
GRU) 

News articles Denoising 
autoencoder 

Proposed loss 
function 

[17] Movie Variational 
autoencoders 

User 
preferences 

Binary matrix Proposed loss 
function 

[21] Movie Autoencoder Sessions One-hot 
encoding 

Cross-entropy 

[9] Job Autoencoder 
(denoising/ 
variational) 

Sessions Binary-encoded 
representation + 
autoencoder 

Kullback-Leibler 
divergence 

[16] E-commerce Variational 
graph 
autoencoder 

Items of 
session 

D-dimensional 
latent feature 
vector 

Cross-entropy + 
proposed 
unsupervised loss 
function 

[20] Movie, music Autoencoder User interac-
tions and items 

D-dimensional 
vector 

Negative 
log-likelihood 

[32] Movie GAN + matrix 
factorization + 
RNN 

Users and 
items of 
session 

D-dimensional 
vector 

Minimax loss 

[30] Fitness, 
movie 

GAN + RNN User ratings Temporal pref-
erence vector 
representation 

Minimax 
function 

[26] E-commerce GAN + DQN User’s 
recently 
clicked item 

Embedding 
lookup + 
convolutional 
operation 

Proposed loss 
function 

[27] E-commerce, 
news, movie 

GAN + cascad-
ing 
Q-Networks 

User’s histori-
cal interactions 

D-dimensional 
vector 

Proposed loss 
function 

[25] E-commerce GAN + rein-
forcement 
learning 

User’s histori-
cal interactions 

Real-valued 
vector 

Proposed loss 
function 

[33] Movie, 
music, game 

GAN Items of 
session 

Item embed-
ding matrix 

Proposed loss 
function 

[2] E-commerce Normalizing 
flow + GRU 

Session D-dimensional 
latent 
representation 

ELBO + cross-
entropy 

[35] Movie, 
music, article 

Autoregressive 
flow 

Matrix of users 
and items 

Binary matrix Proposed loss 
function
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4.7 Conclusion 

One of the most widely used methods of deep learning in session-based recom-
mender system is deep generative models. The deep generative models have the 
ability to generate more samples for model training and reduce the problems caused 
by data sparsity. The recommender systems based on deep generative models help 
reduce problems caused by complex dependencies between variables in different 
time steps or different sessions. The proposed approaches discussed in this chapter 
provide models of SBRS that utilize deep generative techniques. Most of the 
research presented in this field is based on autoencoder, generative adversarial 
network, and flow-based models. 

In SBRS, various types of autoencoders, such as variational autoencoders, 
convolutional autoencoders, denoising autoencoders, etc., have been used, but a 
large percentage of proposed approaches have employed variational autoencoders 
that are very effective for learning non-linear user-item representations. Generative 
adversarial networks have been considered in session-based recommender systems 
due to their ability to reduce the problems caused by data sparsity. Indeed, it 
alleviates casual and malicious noise in data to increase the ability to recognize 
samples from unobserved items. Compared to autoencoders and generative adver-
sarial networks, flow-based models have so far attracted less attention in the field of 
session-based recommender systems, although their unique advantages, such as 
accurate latent variable inference and analytical likelihood evaluation, can provide 
great potential for future work. 

This chapter concluded with several discussions on the proposed research and 
provided future directions and trends in session-based recommender systems using 
deep generative learning models. 
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Chapter 5 
Hybrid/Advanced Session-Based 
Recommender Systems 

Abstract The deep learning models in SBRS which have been discussed in the 
previous chapters have their own strengths and weaknesses. Due to the high flexi-
bility of deep neural networks, many neural network blocks can be integrated to 
construct more robust and accurate models. Many session-based recommender 
system utilize hybrid deep neural network models. There are also several advanced 
deep learning approaches that are very popular in SBRS, including graph neural 
networks (GNNs) and deep reinforcement learning (DRL). To this end, advanced 
and hybrid deep neural network models in SBRS are discussed in this chapter. 

Keywords Session-based recommender systems · SBRS · Graph neural network · 
Deep reinforcement learning · Hybrid models 

5.1 Introduction 

One of the main reasons for the popularity of deep learning methods is that they 
eliminate the need to manually perform feature extraction on unstructured data, 
which is challenging to do with traditional machine learning models. Since the 
understanding and detailed feature engineering of the dataset is critical to the final 
performance of the models, many algorithms based on deep learning achieve better 
results in this stage due to providing better feature extraction of deep models using 
more hidden layers than shallow models [1]. To achieve this level of accuracy, deep 
neural networks are much more efficient than other methods in terms of computation 
and the number of parameters. Deep neural networks can learn a deep and more 
abstract representation of the input in each layer [2]. Each deep learning method has 
specific features and capabilities, and due to the high flexibility of deep neural 
networks, many neural structure blocks can be integrated to formulate more robust 
models [3]. Hybrid deep learning models should follow the nature and characteris-
tics of the problem scope and can be developed logically with high precision for 
specific purposes. The integration of two or more different models provides the 
possibility of using the advantages of each method, limiting their disadvantages, and 
strengthening the capabilities of the resulting integrated method. 
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Different deep learning methods can be combined to deliver more accurate results 
in various research, but in the field of recommender systems, the combination of 
CNN and AEs, CNNs and RNNs, RNNS and AEs, etc. has received the most 
attention [3]. Many session-based recommender systems also utilized hybrid deep 
neural network models, which, due to the sequential nature of user interactions, 
mostly use the configuration whose important part includes RNNs. These 
approaches are discussed in Sect. 5.3 of this chapter. 

In addition to hybrid deep neural network methods consisting of two or more 
types of basic deep neural networks, two other types of advanced approaches are 
very popular in session-based recommender system that are usually employed with 
other models: first, the approaches that utilize deep graph neural networks (GNNs) as 
the fundamental component, and second, the approaches that employ deep rein-
forcement learning (DRL) as the core module. These approaches in SBRS are 
discussed in Sects. 5.4 and 5.5 of this chapter, individually and in integration with 
other deep learning models. 

This chapter of the book is organized as follows. First, a brief overview of the 
fundamental of these hybrid deep learning models, commonly used datasets, and 
evaluation baselines/metrics used in various research in this field will be discussed. 
Then, in Sect. 5.3, the hybrid deep neural network methods used in session-based 
recommender systems will be considered. In Sects. 5.4 and 5.5, the advanced 
approaches based on deep graph neural networks and deep reinforcement learning 
models are discussed and reviewed. Section 5.6 discusses and analyzes the results 
and the existing issues related to the hybrid/advanced deep learning models in SBRS 
and provides guidelines for future research in this scope. 

5.2 Fundamentals 

Each deep learning method discussed in detail in Chap. 2 of this book has its 
characteristics and advantages, which are used in different fields based on these 
characteristics. In most research related to session-based recommender system, 
multilayer neural networks are used to model non-linear interactions between 
items and users, convolutional neural networks are used to extract local and global 
representations from homogeneous data sources, and recurrent neural networks are 
used to model sequential or temporally ordered data [4]. In fact, single deep learning 
models are based on a single deep architecture, while hybrid deep models combine 
more than one single deep learning method through an effective communication 
technique [5]. Hybrid deep learning methods, in addition to benefiting from the 
advantages of single deep learning methods, also reduce the disadvantages of each 
method based on the capabilities that other models provide. In Table 5.1, single and 
hybrid deep learning models are compared from different aspects. 

Because of the data complexity in SBRS, many models presented in this field are 
based on hybrid deep learning methods. In Chaps. 3 and 4 of the book, approaches 
using a single deep neural network were discussed, while in this chapter, the details



of approaches based on a combination of deep learning models in SBRS are 
considered. In addition to hybrid deep neural network methods, deep graph neural 
networks and deep reinforcement learning are reviewed, both as a stand-alone 
approach and in integration with other models. 
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Table 5.1 Comparison of single and hybrid deep learning models 

Single deep learning model Hybrid deep learning model 

Feature extraction is done for a limited scope Feature extraction is done for a wider scope 

Limited options for transfer learning More options for transfer learning 

Less effective than hybrid deep learning 
methods 

Superior performance than single models 

Fewer hardware resources required High computational power 

Less complicated than hybrid deep learning 
methods 

The model complexity in both time and space is 
high 

Limited applications Various applications 

Fig. 5.1 The general architecture of graph neural network in recommender systems 

Although conventional deep learning techniques have achieved many successes 
in various fields, most of their data has been Euclidean, while many data are 
efficiently represented by graph structures [6]. Non-Euclidean data can more accu-
rately represent complex concepts than one- or two-dimensional representations. 
One of the essential non-Euclidean structures is a graph. Graphs are a special type of 
data structure consisting of nodes connected by edges and can be used to model most 
problems in the scope of social networks. The need to cover non-Euclidean data in 
deep learning methods has led to using deep learning methods and graph concepts in 
various research fields. 

One critical challenge of recommender systems is learning representations of 
items and users, and recently graph neural networks have been used to learn data 
representations very effectively [7, 8]. Figure 5.1 shows the general architecture of 
graph neural networks in recommender systems. It should be mentioned that the 
general framework of GNN in SBRS is presented in Sect. 5.4, Fig. 5.13. 

Deep learning methods could learn accurate representations of graph-based data 
due to their ability to learn non-linear interactions between the users and the items. 
The combination of deep learning methods and graph neural networks has led to



many successes in various fields [9]. One of these areas is session-based recom-
mender system. In SBRS, it is possible to model the sequential behaviors and user-
item interactions with a graph and learn the relations between users and items using 
deep graph neural network. Moreover, graph neural networks could be combined 
with CNN and RNN models to provide more accurate and effective recommenda-
tions. The details of deep graph neural network methods and several approaches 
presented in this field have been considered in the third section of this chapter. 
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The reinforcement learning approach is focused on objective-oriented learning 
through interactions, where the learning agent determines the action that receives the 
most reward through the trial-and-error paradigm. This approach provides solutions 
that can model user-agent interactions. However, when faced with problems with 
high dimensions or continuous agents, inefficient representation of the feature and 
increasing learning time occur. To alleviate this issue, deep learning techniques are 
added to the reinforcement learning methods. They can automatically find compact 
and low-dimensional representations of high-dimensional data [10]. Therefore, com-
bining the benefits of reinforcement learning and deep learning, deep reinforcement 
learning models are proposed, which are widely used in various fields. These types 
of models could learn the user’s past interactions in different states and spaces. 

In session-based recommender systems that dynamically recommend items to 
users, deep reinforcement learning methods are used to maximize expected long-
term cumulative rewards. Such approaches can optimize recommendations for long-
term user interactions instead of maintaining a short-term goal of optimizing the 
process of providing immediate recommendations to the user. Deep reinforcement 
learning methods enable recommender agents to learn optimal recommendation 
policies to recommend items to users [11]. The details of the deep reinforcement 
learning method and several approaches presented in this field have been considered 
in the fifth section of this chapter. Figure 5.2 shows the general architecture of using 
reinforcement learning in recommender systems. It should be mentioned that the 
general framework of DRL in SBRS is presented in Sect. 5.5, Fig. 5.23. 

To summarize, the proposed research methods discussed in this chapter focus on 
three types of hybrid/advanced deep learning classifications, including hybrid deep 
neural networks, deep graph neural networks, and deep reinforcement learning. The 
first category, hybrid deep neural network methods, consists of the combination of 
CNN with GRU, CNN with LSTM, and autoencoders with RNNs. The second 
category, deep graph neural network methods, includes the methods based on 
GNNs and the composition of GNNs with GRU, LSTM, GAN, and CNN models. 
Finally, deep reinforcement learning methods include research using DRL or DRL 
with GRU and CNN. Table 5.2 presents the list of these studies according to the 
employed deep learning approach. 

The diagram in Fig. 5.3 shows the percentage of each technique used in the 
discussed research. 

According to the diagram in Fig. 5.3, a large percentage of the research reviewed 
is related to methods in which RNNs play a crucial role. This is inevitable because of 
the high capability of recurrent neural networks in processing sequential data related 
to session-based recommender systems. On the other hand, a quick review of the



listed research shows that many of them have used graph neural networks as the 
main component together with different combinations with other methods. 
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Fig. 5.2 The general architecture of reinforcement learning in recommender systems 

Table 5.2 The list of research discussed in Chap. 5 using hybrid/advanced deep learning models 

Deep learning model References 

Hybrid deep neural networks CNN + GRU [12–21] 

CNN + LSTM [22–26] 

AE + RNN [27–29] 

Deep graph neural networks GNN [30–44] 

GNN + RNN [45–52] 

GCN [53–66] 

Deep reinforcement learning Deep Q-Learning [10, 67–70] 

DRL + RNN [71–74] 

DRL + CNN [75, 76] 

DRL + GAN [77–79] 

In hybrid deep neural network approaches, the largest percentage belongs to the 
combination of CNN and RNNs (GRU, LSTM) due to the potential of CNNs for 
automatic feature extraction and the capacity of RNNs for modeling sessions and 
user interactions. 

In the following two subsections, a summary of the employed datasets and 
evaluation metrics of the reviewed research is presented.
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Fig. 5.3 Percentage of each type of hybrid/advanced deep learning models 

5.2.1 Datasets 

The evaluation of the proposed methods in each article is performed on datasets that 
contain different features, such as user interactions, items, event time and location, 
sessions, explicit user ratings, etc. Datasets are usually collected from various fields, 
such as e-commerce, news, movies, jobs, etc. To evaluate the proposed SBRS, one 
or more datasets are usually selected according to the intrinsic characteristics of the 
proposed method. Table 5.3 shows the datasets used in different articles, including 
the dataset name, the domain, a brief description, and the paper that employed it. 

According to Table 5.3, some datasets, such as YooChoose, Diginetica, and 
Tmall, have been used in more research for evaluation. These three datasets are in 
the field of e-commerce, and their data are related to user interactions, which are 
fully compatible with the functional intrinsic of session-based recommender system. 
In SBRS, first, sessions must be captured in each dataset, and based on different 
factors, several sessions are considered for training and several others for model 
testing. For example, in the YooChoose dataset, which has many events, different



(continued)
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Table 5.3 Widely used datasets in SBRS using hybrid/advanced deep learning models 

Dataset Domain Description References 

Diginetica E-commerce The dataset includes user sessions 
extracted from an e-commerce search 
engine log 

[17, 20, 34, 36–39, 
48–51, 54–61, 77] 

YooChoose E-commerce The dataset consists of 6 months of 
clickstreams from an e-commerce 
Web site 

[17–21, 26, 28, 34, 
36–39, 48, 49, 51, 
56, 60, 61] 

Gowalla POI This dataset is from a location-based social 
networking Web site where users share 
their locations by checking in 

[21, 25, 50, 51] 

Last.fm Music This dataset contains social networking, 
tagging, and music artist listening infor-
mation from a set of 2K users from Last.fm 
online music system 

[14, 19, 23, 31, 50, 
51] 

XING Job posting It is the XING RecSys Challenge 2016 
dataset that contains interactions on job 
postings. User interactions come with 
timestamps and interaction types (click, 
bookmark, reply, and delete) 

[15, 28, 31] 

Reddit News It is on user activity on the social news 
aggregation and discussion Web site Reddit 

[31] 

TMall E-commerce This is the large dataset released in the 
IJCAI-15 challenge, which is collected 
from Tmall, the largest business-to-con-
sumer e-commerce Web site in China. It 
records two types of user behaviors, views 
and purchases 

[12, 18, 37, 45, 46, 
54, 57, 59] 

AOTM Music This dataset includes the user-contributed 
playlists from the Art of the Mix Web site 

[12, 58] 

JD.com E-commerce JD.com is one of the largest Chinese 
e-commerce Web sites that contains con-
sumer purchasing behaviors, user ratings, 
reviews, and product metadata 

[71, 75] 

30MUSIC Music It is a collection of listening and playlists 
data retrieved from Internet radio stations 
through Last.fm API 

[12, 45] 

Nowplaying Music Nowplaying is created from music-related 
tweets, where users posted which tracks 
they were currently listening to 

[34, 45, 54, 57] 

MovieLens Movie It consists of users’ sequential rating 
records for different categories of movies 
on the MovieLens site 

[21, 27, 72] 

Adressa News Adressa is a news dataset that contains 
reading behaviors and sessions from users 

[13, 14, 23, 24, 47, 
53] 

MIND News The MIND is collected from Microsoft 
News. The news articles include title, 
abstract, body, category, and entities 

[53] 

Globo.com News Globo.com is the most popular media 
company in Brazil. The second version of 

[13]

http://jd.com
http://jd.com
http://globo.com
http://globo.com


Globo.com also includes contextual
information

sequences of events are sorted based on time, and after identifying the sessions, 1/4 
or 1/64 of the total sequences are obtained according to the proposed method. 
Accordingly, two versions of YooChoose 1/4 and YooChoose 1/64 have been 
used to evaluate the proposed methods [17]. In the Adressa dataset, there are session 
start and end tags, and sessions are identified this way, but in datasets such as Last. 
fm, time intervals are used to identify sessions. For example, [14] considered the 
time interval of a session to be 30 min, and if two events happened less than 30 min 
apart, they were placed in one session; otherwise, they were placed in two different 
sessions.
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Table 5.3 (continued)

Dataset Domain Description References 

Tianchi E-commerce Tianchi is based on user-commodity 
behavior data from Alibaba’s mobile 
commerce platforms 

[46] 

Foursquare POI This dataset contains check-ins in NYC 
and Tokyo collected for about 10 months. 
Each check-in is associated with its 
timestamp, its GPS coordinates, and its 
semantic meaning 

[21, 25] 

Retailrocket E-commerce The data has been collected from a real-
world e-commerce Web site. It is raw data, 
i.e., without any content preprocessing; 
however, all values are hashed due to 
confidential issues 

[18, 49, 58, 59] 

In some research, in addition to determining sessions, mechanisms are also used 
to determine how to use sessions to train the model and evaluate it. For example, in 
[13], after identifying the sessions, all the sessions that occurred in 1 h are divided 
into a group and sorted based on time. The sessions related to each hour are placed in 
a group, and every 5 h are used to train the model to evaluate and predict the sixth 
hour. Then, the sessions from the beginning to the 10th session are used for training 
the model, and the 11th session is tested. This process continued until the end. 

Several research, such as [34, 36, 37, 54, 57], which employed Diginetica or 
Nowplaying datasets, split and labeled sessions before using them. In the process of 
splitting, the generated sequence contains the first item and the label of the second 
item. The next sequence contains the first and second items and the label of the third 
item. This procedure goes to the point that if a session contains n items, its last 
sequence contains n-1 items and the label of the nth item. Depending on the model, 
some methods based on graph neural networks utilize different special preprocessing 
on datasets. For example, in [45], users participating in fewer than two sessions are 
removed to ensure that each user graph contains interactions with enough previous 
sessions. 

Some session-based recommender systems that use the reinforcement learning 
method (such as [10]), in addition to the offline and online evaluation using some

http://globo.com


datasets, have also utilized the RecSim simulation platform. RecSim is a 
configurable platform and simulation environment for recommender system that 
support sequential user interactions. This platform enables to create new environ-
ments that reflect specific aspects of user behavior and item structure at a level of 
abstraction that is well suited for applying reinforcement learning constraints and 
recommender system techniques to sequential interactive recommendation 
problems. 
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Table 5.4 presents the information on each dataset, including the number of 
sessions/items/events, duration of data collection, average length of the session, 
type of interaction, and access link to the dataset. 

5.2.2 Evaluation 

Generally, to evaluate recommender systems, the data of the selected dataset is 
divided into two parts, train and test, so that the simulated proposed model is trained 
based on the training data and evaluated using the test data. To evaluate session-
based recommender systems, the proper dataset must first be selected, and the data 
divided into different session. For splitting at the event level, all events before a 
certain time can be considered for training and the remaining events for testing. 
However, in splitting at the session level, the time of the first event of a session is 
considered, and based on that, it is determined that this session is related to the 
training or test set. Both approaches are useful, but using the second approach makes 
it possible for all user interactions in one session to be in the training or the test set. 
But, in the first case, part of the interactions may be included in the test set and 
another part in the training set [80]. The performance of each proposed method is 
quantified based on different evaluation metrics, and the obtained values are com-
pared with the results of the baseline recommender systems. The most widely used 
baseline methods commonly used to evaluate all session-based recommender 
systems are listed below. It should be noted that some of them have been introduced 
as baselines in the previous chapter. However, to keep the comprehensiveness and 
consistency of the content of this chapter, they are also repeated in this section:

. POP: More popular items are always recommended. The POP is effective and 
straightforward simultaneously and is often a strong baseline in specific 
domains [81].

. S-POP: The most popular items in the current session are recommended. The 
recommendation list changes based on the number of events that are related to 
particular items. This baseline is useful for the domains with high 
repetitiveness [81].

. Ppop: Based on the Ppop method, items are recommended that a user interacts 
mostly [12].

. Item-KNN: Items similar to the actual item are recommended, and the similarity 
between them is measured based on the cosine similarity measure of their session
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vectors. In other words, it is the number of co-occurrences of two items in 
sessions divided by the square root of the product of the number of sessions in 
which the individual items occurred. This method is very effective for evaluating 
item-to-item recommendation methods [82].

. GRU4Rec: A technique based on recurrent neural networks, which is one of the 
first approaches to using deep learning techniques in session-based recommender 
system. This method is based on GRU and is used to overcome the problem of 
gradient vanishing [81].

. NARM: An improved version of GRU4Rec, which performs session modeling 
by introducing a hybrid encoder based on the attention mechanism. In this 
technique, global and local encoders are defined, the global encoder corresponds 
to the GRU4Rec method, and the local encoder is proposed for adding the 
attention mechanism to the model, respectively [83].

. STAMP: This method is based on a Short-Term Attention/Memory Priority 
Model and, unlike the NARM method, is not based on a recurrent neural network. 
In this method, users’ general interests are obtained through the long-term 
memory data of the session context, and their short-term interests are also 
recognized through short-term memory [84].

. BPR-MF: It utilizes matrix factorization which is optimized for pairwise ranking 
objective functions through stochastic gradient descent. Methods based on matrix 
factorization cannot be used in session-based models because there is no 
pre-computed feature vector for new sessions. This problem is overcome by 
using the average vectors of the items that belong to each session [85].
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In addition to the above methods, some baseline methods are based on graph 
neural networks and are used to evaluate graph-based recommender systems. Some 
of the most commonly used ones are:

. SR-GNN: This method provides a session-based recommender system using a 
graph-based neural network that creates latent vectors of items and presents each 
session through an attention-based network [36].

. FGNN: It learns the vectors of items through a weighted attention graph layer and 
learns the features of sessions through the feature extraction layer of a session 
graph [33].

. A-PGNN: This method converts all sessions of a user into a graph and uses a 
gated graph neural network to learn item transitions. It also uses an attention 
mechanism to explicitly model the effects of the user’s previous interests on the 
current session [86]. 

In the evaluation process of recommendation systems based on reinforcement 
learning, some of the most widely used baseline methods are as follows:

. DQN: This method is the result of combining deep learning and reinforcement 
learning, which uses a deep neural network to estimate the Q function. DQN is 
used for scenarios that have a discrete action space [87].



8

. DEERS: The main idea of this method is based on using the user’s negative 
feedback in addition to his positive feedback. Q network has two inputs for 
positive and negative states [71].

. DDQN: It is based on the DQN method, which decomposes its objective func-
tion, choosing the optimal action and calculating the target Q value from each 
other. It uses a dual network structure for action selection and value 
evaluation [88]. 
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In this section, a number of evaluation metrics that are used more in this field have 
been discussed in the following:

. Mean Reciprocal Rank (MRR): MRR focuses on the rank of relevant items in the 
list of recommendations. It shows that placing a relevant item at the top of the 
recommendation list significantly impacts user satisfaction and is calculated using 
Eq. (5.1): 

MRR@N = 
1 
Q 

XQ 
i= 1 

1 
ranki 

if ranki ≤N 

0 otherwise 

< 
: ð5:1Þ 

where Q is a sample of recommendation lists and ranki refers to the rank position 
of the relevant item for the i-th recommendation list.

. Recall: This metric is calculated based on the number of relevant items that are 
among the top N items in the recommendation list, and the rank of the relevant 
items in the N list is unimportant, and it is calculated using Eq. (5.2): 

Recall@N = 
Number of relevant items in top N list 

Total of relevant items
ð5:2Þ

. Precision @ N: This metric evaluates the number of relevant items relative to the 
total N items recommended in the list, and it is calculated using Eq. (5.3): 

Precision@N = 
Number of relevant items in top N list 

Total of N items
ð5:3Þ

. Coverage@N: It checks the coverage of the items. Item coverage measures the 
percentage of items that are ever recommended, and the variety of the 
recommended items in the recommendation list is considered. Its goal is to 
recommend a high percentage of various items to the user. This metric is 
calculated using Eq. (5.4):



{

( )
( )
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Coverage@N 

= 
Distinct items that appeared in any top-N recommendation 

All distinct recommendable items
ð5:4Þ

. Hit Rate@N: It is the percentage of times in which relevant items are retrieved 
among the top N ranked items, and it is calculated using Eq. (5.5): 

Hit Rate@N = 
1 
Q 

XQ 
i= 1 

1 if ranki ≤N 
0 otherwise

ð5:5Þ 

where Q is a sample of recommendation lists and ranki refers to the rank position 
of the relevant item for the i-th recommendation list.

. nDCGp: This metric is based on cumulative gain (CG). The cumulative gain is the 
sum of the graded relevance values of all items in a recommendation list. nDCG is 
computed as the ratio between discounted cumulative gain (DCG) and idealized 
discounted cumulative gain (IDCG). Equations (5.6), (5.7), and (5.8) show how 
to calculate this measure. 

DCGp= 
Xp 
i= 1 

2ri - 1 
log 2 iþ 1ð Þ ð5:6Þ 

IDCGp= 
XRELp 
i= 1 

ri 
log 2 iþ 1ð Þ ð5:7Þ 

nDCGp= 
DCGp 

IDCGp
ð5:8Þ 

In the above equations, ri is the graded relevance of the result at position i, and 
RELp represents the list of relevant items (ordered by their relevance) up to 
position p.

. MAP: This metric calculates the average precision. In fact, after each relevant 
item is recommended, the precision is measured, and the average is calculated 
using Eq. (5.9): 

MAP= 

PQ 
q= 1 

AveP qð Þ  
Q

ð5:9Þ 

In this relation, P(q) is the precision of query q, and parameter Q is the number of 
queries.
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. Mean Absolute Error (MAE): This metric is one of the most common errors of 
prediction factors, which calculates the mean absolute value of the difference 
between the score predicted by the system and the actual score of the item. The 
mean absolute error indicates the degree of closeness of the recommendations to 
reality. This measure can be calculated from Eq. (5.10): 

MAE= 
1 
N 

X 
i2Ou 

Pu,i - ru,ij j ð5:10Þ

. Root Mean Square Error (RMSE): The metric of the root mean square error of the 
predicted rank is more effective than the mean absolute error in problems where 
the errors are more considerable, and it is calculated using Eq. (5.11): 

RMSE= 
1 
N 

X 
i2Ou 

Pu,i - ru,ið Þ2 ð5:11Þ 

In Eqs. (5.10) and (5.11), Pu, i is the predicted score for the item i by user u, ru, i is 
the actual value of the score assigned to item i by user u, Ou is the set of items 
rated by user u, and N is the total number of predictions made by the system.

. Area Under the ROC Curve (AUC): Another important metric used to determine 
the efficiency of recommender systems is the AUC. The larger the AUC value, 
the more favorable the final system performance is evaluated. The ROC (receiver 
operating characteristic) space is formed by two indices FPR on the horizontal 
axis and TPR on the vertical axis, as calculated by Eqs. (5.12) and (5.13), 
respectively. The line that connects two points (0,0) and (1,1) divides the ROC 
space into two parts. The area above this line is the favorable area and below the 
line is the unfavorable area. Therefore, the AUC is the measure of the ability of a 
classifier to distinguish between classes and is used as a summary of the ROC 
curve. 

TPR= 
TP 

TPþ FN
ð5:12Þ 

FPR= 
FP 

FP TN
ð5:13Þ 

Apart from the above evaluation metrics that are generally used in many methods, 
some measures are specifically used in the reviewed approaches in this chapter:

. ESI-R@N: This metric expresses the expected self-information with rank sensi-
tivity, which is used to indicate the degree of novelty of the recommendations, 
and it is calculated using Eq. (5.14):
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ESI-R Lð Þ= 
1PN 

j= 1 
disc jð Þ  

XN 
k = 1

- log 2p ikð Þ * disc kð Þ ð5:14Þ 

The main term of the above equation is log2p(i), which originates from the 
concept of self-information and indicates the amount of information conveyed 
through the observation of an event. The log function is used to emphasize the 
impact of new items. p(i) is the probability that each item is part of a random user 
interaction representing the recent normalized popularity of that item. disc(k) is a  
logarithmic scaling function that maximizes the novelty effect of items at the top of 
the suggestion list. This function is shown in Eq. (5.15): 

disc kð Þ= 
1 

log 2k þ 1 ð5:15Þ

. ESI-RR@N: This metric is based on ESI - R(L ) and expresses the expected self-
information with rank and relevance sensitivity, and it is calculated using 
Eq. (5.16): 

ESI-RR Lð Þ=Ck 

XN 
k= 1

- log 2p ikð Þ * disc kð Þ * relevance ik, uð Þ ð5:16Þ 

the relevance (. , .) in the above equation indicates the degree of relevance. If the 
desired item is among the list of items that the user interacts with in the current 
session, its relevance value is 1. Otherwise, its value is equivalent to the back-
ground probability for unobserved items that the user does not interact with but 
are somewhat relevant to him. Ck is calculated using Eq. (5.17): 

C kð Þ= 
1PN 

´K = 1 

disc ḱ
( ) ð5:17Þ

. EILD-R@N: This metric is used to calculate the amount of diversity in recom-
mendations and actually shows the expected intra-list diversity with rank sensi-
tivity, and it is calculated using Eq. (5.18):



ð
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EILD-R Lð Þ= 
1PN 

´k= 1 

disc ḱ
( )

XN 
k = 1 

disc kð Þ 1PN 
ĺ= 1:ĺ≠ k 

rdisc ĺ, k
( ) ð5:18Þ 

XN 
ĺ= 1:l≠ k 

d ik , ilð Þ * rdisc l, kð Þ  

In the above equation, rdisc(l, k), which is calculated according to Eq. (5.19), 
represents a relative ranking discount, which considers item l that is ranked before 
the target item k has already been discovered. 

rdisc l, kð Þ= disc max 0, l- kð Þð Þ 5:19Þ

. EILD-RR@N: This metric is based on EILD-R@N and is sensitive to relevance in 
addition to rank, and it is calculated using Eq. (5.20): 

ILD-RR Lð Þ=Ck 

XN 
k = 1 

disc kð Þ * relevance ik, uð ÞCl 

XN 
l= 1:l≠ k 

d ik, ilð Þ

* rdisc k, lð Þ * relevance il, uð Þ ð5:20Þ 

In the above equation, Ck is a normalization term which is a weighted average 
based on rank discounts, and it is calculated using Eq. (5.21): 

Cl = 
1PN 

ĺ= 1:ĺ≠ k 

rdisc k, ĺ
( ) ð5:21Þ 

Table 5.5 shows the different evaluation metrics used in different articles on 
session-based recommender systems using hybrid/advanced deep learning models. 

5.3 SBRS Using Hybrid Deep Neural Networks 

Before looking at the approaches of hybrid deep neural network models in SBRS, it 
is appropriate to discuss why this type of integration can be helpful in achieving 
more accurate results in this scope. Then, we fully discuss different combinations of 
deep neural network models for this purpose.
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Table 5.5 Widely used evaluation metrics in SBRS using hybrid/advanced deep learning models 

Evaluation metrics References 

Mean reciprocal rank (MRR) [12–15, 17–23, 31, 34, 36–38, 45, 46, 48–51, 53–57, 59–61] 

Recall@n [12, 14, 15, 18–23, 25, 27–29, 45, 46, 49, 56, 58, 61, 75] 

Mean rank percentile (MRP) [15] 

nDCG [16, 58, 68, 69, 71, 72, 75, 76] 

Click-through rate (CTR) [10, 69] 

AUC [24, 54] 

Precision@n [14, 17, 21, 25, 28, 34, 36–38, 48, 51, 54, 57, 59, 60, 69, 75, 77] 

Hit rate [13, 16, 25, 31, 50, 72] 

F1 [14, 24, 26, 47, 75] 

RMSE [27, 29, 77] 

MAP [25, 29, 68, 71, 75, 76] 

Coverage [10, 13] 

EILD-R@n [13, 53] 

EILD-RR@n [13, 53] 

ESI-R@n [13, 53] 

ESI-RR@n [13, 53] 

5.3.1 Why Hybrid Deep Neural Network? 

Hybrid deep neural network methods are used in various fields to recognize more 
accurate features and provide a more optimal model. Because of the sequential 
nature of the data, session-based recommender systems usually use recurrent neural 
networks to model the sequence of events in this way. On the other hand, for more 
accurate feature extraction, achieving more optimal representations of inputs, and 
obtaining better results, other deep learning methods can be combined with recurrent 
neural networks. The research reviewed in this section shows that most hybrid deep 
neural network methods in the field of SBRS have used a combination of CNN and 
GRU, CNN and LSTM, and AE and RNN. A higher percentage of these studies are 
based on GRU since LSTMs have more gates/parameters, which causes a higher 
computational complexity. Each of these three categories will be discussed in the 
following sections. 

5.3.2 Approaches Based on CNN and LSTM 

Many studies of a session-based recommender system are based on hybrid deep 
neural network methods and usually include a type of recurrent neural network such 
as GRU and LSTM. In this subsection, methods based on the combination of LSTM 
and CNN are discussed. 

Park et al. have proposed a session-based news recommender system based on the 
combination of two methods, RNN and CNN, which uses an LSTM as a sub-type of



RNNs [22]. They used a personalized re-ranking approach that considers user 
interests based on a weighted average of categories of articles the user reads. This 
method estimates categories using the classification based on convolutional neural 
networks for data that does not have category information. The embedding vector 
related to each news article employing the bag-of-words representation of queries, 
titles, and content of the news has been trained. In fact, each news article is converted 
into a vector based on the Doc2Vec method. These vectors are then sent as input to 
LSTM to create user representations based on their clicked news representation 
vectors. In this article, two types of recurrent neural network approaches are inves-
tigated: history-based and session-based. In the history-based approach, all user 
clicks are considered, while in the session-based approach, only clicks from the 
current session are considered. The session-based approach has obtained better 
results that show the impact of users’ short-term interests in predicting their next 
clicks in session-based recommender systems. 
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A Deep Joint Network (DeepJoNN) that uses a combination of deep learning 
methods is proposed by Zhang et al. [23]. DeepJoNN utilized a combination of 
three-dimensional CNN and recurrent neural networks. LSTM in DeepJoNN opti-
mizes the traditional RNN by integrating a memory cell vector during each session to 
address the problem of exploding/vanishing gradient when learning long-term 
dependencies. The features that are considered as input for each news article include 
the article ID, keywords, entities, and category to which the relevant news belongs, 
and character-level embedding is used for their embedding. Character-level 
embedding has benefits of lower computation complexity and fewer parameters. 
The only limitations appear in the processing of misspellings and informal words, 
which rarely happen in the news field. 3D CNN is used to process input data and 
extract news features. These types of CNNS are tensor-based and use 3D filters for 
feature extraction. 

The session-parallel mini-batch method is used in DeepJoNN to increase effi-
ciency in the model training, which is suitable for models in which different users 
have different sessions with different numbers of interactions. The inputs are 
considered a tensor or 3D array with dimensions: number of features ×length of 
feature embedding × mini-batch size. LSTM is also used to detect sequential patterns 
between user clicks and their related features. In addition, DeepJoNN presents a time 
decay function to calculate the freshness of news articles within a time period; 
beyond this time period, the news article will hardly attract the interest of users. 

The architecture of DeepJoNN is shown in Fig. 5.4. As shown in this figure, 
DeepJoNN consists of two types of deep neural networks, which are coupled 
hierarchically and thus can extract textual patterns and process long-term and 
short-term dependencies simultaneously. 

Zhu et al. proposed a Deep Attention Neural network (DAN) model for a session-
based news recommendation system, which consists of three components: parallel 
CNN (PCNN), attention-based neural network (ANN), and attention-based recurrent 
neural network (ARNN) [24]. The ARNN is used to find the sequential features of 
users’ clicked news, and the ANN is used to detect the features of users’ current 
interests with respect to the candidate news. The ARNN works based on LSTM. 
ANN designs an attention-based neural network that automatically matches each



clicked news with candidate news and aggregates the user’s current interests with 
different weights. The PCNN component uses two parallel CNNS to extract news 
presentations based on the news titles and news profiles. These two parallel CNNS 
combine the information related to the title as well as the entities related to the news 
text (profile). 
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Fig. 5.4 The architecture of DeepJoNN [23] 

To learn user features, not only ANN is used to model the user’s current interests, 
but also the ARNN component is used to obtain potential sequential features of a 
user’s history readings. Therefore, in DAN, the sequential features of the user’s click 
history and the user’s current preferences together provide the user’s preferences and 
features. Finally, DAN recommends the news to the user according to the similarity 
between the user feature representation and the candidate news representation. The 
architecture of DAN is shown in Fig. 5.5. 

Due to the success of RNNs and CNNs in detecting local sequential patterns and 
complex long-term dependencies between data, Xu et al. proposed a model based on
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a recurrent convolutional neural network (RCNN) [25]. RCNN combines the short-
term and long-term interests of the user to provide a high-level hybrid representation 
for sequential recommender systems. LSTM has been utilized in RCNN to detect 
long-term dependencies and CNN to extract local sequential patterns among hidden 
states. RCNN, when the current item enters the recurrent layer, creates a hidden state 
at each time step, which is a hidden representation of the user’s sequential interests. 
Then, the recent hidden states are considered as images in each time step, and their 
local sequential features are investigated and searched using vertical and horizontal 
convolutional filters. An intra-step horizontal filter is used to detect non-linear 
features of interactions, while a vertical inter-stage filter is used to detect 
non-monotone local patterns. The output of the convolutional neural network and 
the LSTM hidden state vector are combined to describe the user’s overall interest. It 
is then fed into a fully connected layer to predict the list of recommendations. The 
architecture of RCNN is shown in Fig. 5.6.
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In some research, deep learning methods are combined with some classical 
machine learning methods. Bedi et al. [26] have combined CNN and LSTM with 
fuzzy time series to recommend products to users based on their activities performed 
in a session, called FS-CNN-LSTM-SR [26]. The FS-CNN-LSTM-SR considers the 
numerical and categorical features of session-based recommender systems. To this 
end, fuzzy logic controls the uncertainty in the user’s interests, convolutional layers 
extract the important features, and multivariate LSTM learns the sequential depen-
dencies between input data and learns patterns of fuzzy and non-fuzzy features. In 
fact, LSTM is suitable for data with long sequential dependencies but takes a long 
time to train. To solve this issue in FS-CNN-LSTM-SR, LSTM has been placed next 
to CNN to reduce the number of epochs needed for training. FS-CNN-LSTM-SR 
includes two general phases: preprocessing and recommendation. The preprocessing 
consists of filling the empty values, retrieving required fields, extracting new 
features, converting original time series data into fuzzy time series, data normaliza-
tion, and padding. The recommendation phase consists of two modules: prediction 
and recommendation. In the prediction module, the items that qualify for the 
recommendation are predicted, and in the recommendation module, a set of 
recommended items is selected and specified for the user. 

5.3.3 Approaches Based on CNN and GRU 

Approaches based on recurrent neural networks usually have low speeds and are 
difficult to train for high-volume data due to the gradient backpropagation problem. 
CNN-based methods also have high memory consumption, and latent representa-
tions are not interpretable. Therefore, some SBRS use hybrid deep neural network 
methods based on GRU and CNN, which can properly use their strengths and reduce 
the limitations of each. In this subsection, the proposed research methods based on 
the combination of CNN and GRU are discussed. 

Due to the large volume of interactions, items, and users in SBRS, single deep 
learning models such as RNNs or CNNs cannot capture the hierarchical interests of
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users in a session or between different sessions. Therefore, You et al. have proposed 
a Hierarchical Temporal Convolutional Networks (HierTCN) architecture for 
modeling the sequential interactions of users in large-scale and real-time recom-
mender systems [15]. HierTCN consists of two levels that can recognize the hierar-
chy of user interests. The high-level model uses a recurrent neural network to detect 
long-term user interests between sessions. The output of the low-level model 
generates a dynamic user embedding that is created based on the user’s long-term 
interests and short-term interactions within sessions. In HierTCN, the high-level 
model is implemented based on GRU, and the low-level model is implemented 
based on TCN (temporal convolutional networks). Users’ long-term interests are 
represented using the GRU hidden state. Hidden states are updated through the 
integration of item embedding vectors in each session. The low-level model presents 
the user’s short-term interests and predicts the user’s next interaction in the session. 
This model is based on TCN, a special type of convolutional neural network with 
sequential inputs. Its structure includes causal convolution, dilated convolution, 
residual block, and residual connections. The combination of these powerful com-
ponents leads to the achievement of acceptable efficiency and performance for TCN. 
Using causal convolution and dilated convolution in TCN increases the speed of 
calculations, and, similar to recurrent neural networks, TCN accepts inputs with 
variable lengths. It is worth mentioning that TCN’s input is the user’s long-term 
interests and its output is the user’s dynamic embedding.
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HierTCN uses a two-phase mechanism to update user interests and item embed-
ding. Users’ interests change rapidly, so the embedding vectors of users’ interests 
should be updated in real time, but the properties of items change less quickly. In the 
first phase of the updating mechanism, the item embedding vectors are created based 
on convolutional graph neural networks. In this graph, each node represents an item, 
and each edge is drawn between nodes that interact with the corresponding items 
quickly. For each embedding item, the structural features of the graph are also used 
in addition to the textual and image features. In the second phase, the embedding 
vectors of the items are considered fixed, and the user’s interest vectors are created 
based on them. The general architecture HierTCN is shown in Fig. 5.7. 

Moreira et al. developed a meta-architecture, called CHAMELEON, that includes 
some structural blocks for news recommender systems that can be set up in different 
ways based on the characteristics of the target system [13]. The core of this 
architecture consists of two modules whose inference and training processes are 
independent of each other [89]. The Article Content Representation (ACR) module 
is used to learn a distributed presentation of the content of articles, and the Next 
Article Recommendation (NAR) module is used to recommend future articles in 
current sessions of users. The ACR module comprises the submodules of Textual 
Features Representation (TFR) and Content Embeddings Training (CET). In TFR, 
the text content of news articles is processed using CNN and sent to fully connected 
layers. The CET submodule can also learn, in a supervised or unsupervised manner, 
the vectors for presenting articles generated by TFR. The ACR module learns the 
embedding of the contents of an article independently of the records of users’ 
sessions. This is done for reasons of higher scalability because if the number of



interactions between users and news articles is huge, the process of learning these 
interactions is computationally expensive in a joint process. 
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Fig. 5.7 The architecture of the HierTCN [15] 

Then the content vectors of the learned articles are stored in a memory and fed as 
input to the NAR module. The NAR provides recommendations for active sessions 
based on previous user interactions and news article content. NAR is designed to be 
context-aware and receives contextual information such as location, the device used 
by the user, and the previous user’s clicks as well as information about the context of 
the articles, such as their popularity and recency as input. NAR consists of three 
submodules: Contextual Article Representation (CAR), SEssion Representation 
(SER), and Recommendation Ranking (RR). 

The CAR combines NAR inputs, which include text embedding vectors of 
articles, contextual features of articles (recency and popularity), and contextual 
features of users. This component can be realized as a fully connected multilayer 
or factorization machine. The SER uses GRU recurrent neural networks to model 
users’ sequential clicks. RR is also developed to maximize the similarity between the 
predicted embedding vector for the next article and the contextual personalized 
embedding vector of the article already read by the user in his session (a positive 
example), while it should minimize the similarity of the predicted embedding vector 
for the next article with negative examples (articles that the user does not read during 
the session). The architecture of CHAMELEON framework is shown in Fig. 5.8.  It  is  
worth mentioning that another instantiation of the CHAMELEON has been pro-
posed by Moreira et al., in which the ACR module employs a CNN, and in the NAR 
module, the sequence of clicks from users’ sessions is modeled by LSTM [90]. 

To take advantage of the recurrent neural network and CNN methods, Bach et al. 
proposed a SBRS that is based on the recurrent convolutional recommendation 
model, RecConRec [18]. RecConRec has two main features: (1) It contains a
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CNN layer that extracts the individual and collective associations inherent in a 
sequence of sessions. Individual dependency refers to the condition that each 
previous action of the user affects his next action, and on the other hand, collective 
dependencies indicate that several consecutive actions jointly affect the next user’s 
action. To achieve these complex dependencies, RecConRec uses CNN iteratively 
on small windows of consecutive items in a session. By using convolutional filters of 
different sizes, this layer can extract individual and collective patterns from the data. 
(2) The GRU layer is used to capture long-term dependencies, and the input of the 
GRU is the output of the CNN layer. The effect of this layer is for the time when the 
previous actions do not affect the immediate next actions, but they affect the more 
distant ones. In fact, RecConRec is a combination of the CNN layer, which works on 
the items’ embedding vectors and extracts complex local patterns, and the GRU 
layer, which recognizes long-term sequential patterns.
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For item embeddings that are fed to the CNN layer, the one-hot vector of each 
item is created, and each vector is mapped to a space with smaller dimensions. 
Reducing the sizes of the items embedding vectors reduces the complexity of 
convolutional operations, and on the other hand, the embedding vectors can be 
trained together with the model so that the items that are seen together in the same 
session have similar embeddings. In RecConRec, the highway network layer 
between CNN and GRU is used to increase the effectiveness, which includes a 
multilayer perceptron network with residual connections. 

Zhang et al. also combined CNN and GRU for SBRS [19]. In this method, 
Recurrent and Convolutional Neural Network for Session-based Recommendation 
(RCNN-SR), the user’s general interest is determined based on the user’s main 
purpose, the user’s current interest is determined based on the user’s sequential 
interactions and behaviors, and the user’s dynamic interest is formed based on the 
changes in the user’s choices and actions. In the first step, the user’s general interest 
is extracted by a GRU with an item-level attention mechanism to dynamically select 
meaningful items in a session. Then, in the second step, the user’s dynamic interest is 
detected through feature interactions and the user’s current interests through item 
transitions. For this purpose, a vertical convolutional filter and multiple horizontal 
convolutional filters are used to extract the effects of non-monotonic sequential 
patterns and multivariate features. Finally, users’ general, current, and dynamic 
preferences are concatenated and sent to a fully connected layer to provide 
recommendations. 

RCNN-SR includes three encoders for the main purpose, dynamic preference, 
and sequential behaviors. The main-purpose encoder models the user’s current 
interests. The input of this encoder is all the clicked items in the session, and its 
output is the user’s current interest based on the candidate items clicked in the 
current session. This encoder is based on GRU, and the final hidden state, which 
summarizes the sequential behavior, is taken as the output of the current session. The 
input of the dynamic interest encoder is the embedding vectors of the clicked items 
in a session, and its output is the non-monotonic relationships between all features of 
the clicked items in the current session. This encoder uses a vertical filter for the 
vertical convolution operation to learn the item-specific features from the GRU



hidden states. In the sequential behavior encoder, the input is the clicked items in a 
session, and the output is the non-linear transitions of the clicked items in the current 
session. Although user behaviors are sequential, there may not necessarily be 
dependencies between neighboring items, so the ability to detect point-level depen-
dencies alongside union-level dependencies allows CNN to model high-level rela-
tionships. This method can reduce the problem of data sparsity. The architecture of 
the RCNN-SR is shown in Fig. 5.9. 
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Fig. 5.9 The architecture of RCNN-SR [19] 

To learn dependencies and general sequential patterns in session-based recom-
mender system, Zhao et al. utilized the recurrent residual convolution networks to 
extract patterns from sequences of sessions [21]. The authors proposed a hybrid 
neural model, SGPD, for learning Sequential General Pattern and Dependency. 
SGPD includes four layers, the embedding, residual convolution, Bi-GRU, and 
user preference layers. In the embedding layer, item IDs are encoded in a continuous 
space with low dimensions to reduce the complexity of calculations and data 
processing. The next layer is the optimized recurrent residual convolution layer, 
where each recurrent residual block consists of a set of normalization and convolu-
tion operations and plays a key role in this method. In this layer, a sliding window is 
designed first, and the consecutive items in the window create the item block in the 
session. This window moves over items and learns general patterns of sequences of



interactions within the session. Finally, the output of this layer is sent to a fully 
connected neural network to convert to a feature vector. 

198 5 Hybrid/Advanced Session-Based Recommender Systems

SGPD provides a Bi-GRU model that scans the sequence forward and backward 
in the Bi-GRU layer to learn potentially personalized information about a user. In the 
user’s preference layer, according to the results of the forward and backward 
scanning of the sequence, a representation of the user’s feature vector is created. 
Finally, the features of the sequences are obtained by high-level abstraction through 
a fully connected neural network, and based on that, the representation of the session 
is determined. Accordingly, the score of each item is estimated for selection by the 
user as the next item. 

5.3.4 Approaches Based on RNN and Autoencoder 

Another important type of hybrid deep neural network used in SBRS is the combi-
nation of autoencoders and recurrent neural networks. Autoencoders are usually 
used to extract efficient representations for user interactions and feature transforma-
tions, and recurrent neural networks recognize sequential dependencies and long-
term interests of the user. In this subsection, the proposed research methods based on 
AE and RNN are discussed. 

Chen et al. proposed a sequential recommender system to predict the user’s next 
transaction that employs an autoencoder on raw transaction data and submits 
observed transaction encodings to a GRU-based sequential model [29]. Their 
model, SEQNBT (SEQuential recommendation model for Next Best Transaction), 
predicts the user’s next most likely transaction. Assuming that each user has 
different transactions with different industries, this method receives as input a 
sequence of previous transactions of the user and predicts the code of the industry 
category and the amount of the user’s next transaction. SEQNBT consists of an 
autoencoder, GRU, and transaction decoder. Autoencoder is a self-training model 
that aims to encode transactions. Stacked autoencoders are used to extract efficient 
representations for each transaction. Extensive feature conversion is performed in 
this section. The characteristics related to the user’s behavior, such as the number of 
transactions and mean/median/total transaction amount, and user’s spending behav-
ior, such as the reservation amount, i.e., the maximum amount that the user is willing 
to pay for a product, are integrated into different industry categories. Embedding 
descriptions of the types of industries in which the user has transactions are based on 
the BERT (Bidirectional Encoder Representation from Transformers) model. All the 
integrated features of the transactions, along with the transaction amount and 
embedding of the relevant industry category, are merged and sent to the encoder 
to be reconstructed by the decoder later. 

Next, multiple GRU layers recognize sequential dependencies and the long-term 
interests of the user. In addition to the embedding vectors of transactions, the input of 
this layer includes time features so that the next transaction can be predicted using 
them. Once the model is trained, it is evaluated on an out-of-sample dataset to predict



encodings for each user’s next predicted transaction. The predicted transaction 
encryption is divided into two parts in the transaction decoding stage: the 
concatenated transaction features vector and the industry category embedding vec-
tor. Then, the cosine similarity between the predicted industry category embedding 
vector and all industry category embedding vectors in the feature table that store the 
BERT representations is calculated. The predicted transaction amount can be 
extracted from the features of the decoded transaction. The architecture of SEQNBT 
is shown in Fig. 5.10. 
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Fig. 5.10 The architecture of SEQNBT [29] 

Although in most of the recent research, the time intervals have been considered 
as an explicit component and used in the learning process of sessions, usually, the 
effects of multiple previous levels are not considered in the proposed research; 
instead, a sequence with a limited length is considered. To this end, Fuentes et al. 
used deep learning models for the sequential prediction problem as a multi-class 
classification based on LSTM [28]. This method is based on the combination of 
LSTM, encoder, and decoder methods and automatically learns behavioral patterns 
from previous purchase transactions to predict the next purchase item or the category 
to which the next purchase item belongs. The architecture of this proposed method 
consists of four parts: transaction data, customer sequences file, LSTM training 
model input, and training model output. These components form the inputs and 
outputs of the three stages of the proposed method, which are converting customers’ 
purchase sequences, creating multi-level favorites, and learning to buy favorites. An 
LSTM layer is capable of learning temporal dependencies, but a chain of LSTMs is 
more suitable for processing time-based sequential data; for this reason, a combina-
tion of encoder-decoder and stacked LSTMs is used in this method. The LSTM 
encoder processes user interests as input and generates an encoded representation. 
LSTM decoder uses decoder representation to generate output. A new customer 
presentation method is presented as the basis of the data transformation process, 
which allows working with multi-level interactions in scenarios where the length of 
sequences may be short and interactions have more dependencies on previous 
sessions. 

To overcome the problem of data sparsity in the insurance industry, Borg Bruun 
et al. employed a combination of an autoencoder and recurrent neural networks to 
utilize the user’s past sessions as signals to learn recommendations [27]. In



particular, this model learns several types of user actions that are not necessarily 
always related to items, and unlike other models of session-based recommender 
system, they model the relationships between input sessions and user target opera-
tions that are not performed in input sessions. The purpose of providing this 
recommender system based on cross-sessions is to recommend the next items that 
the user will buy according to the user’s past sessions. This system has three distinct 
features: the target operation, which is purchasing, occurs outside the session, the 
user’s operations are monitored in multiple sessions, and predicting what items the 
user will buy after the last time step. 
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Generally, in session-based recommender systems that use recurrent neural 
networks, the input of recurrent neural networks is the sequential items that the 
user has interacted with in a session and the output for each time step is the 
probability of selecting each item as an item that the user will interact with. This 
method, which is an extension of the GRU4REC method, takes multiple sessions of 
each user as input and predicts the items that the user will buy after the last time step 
by considering all types of user operations. Each session is assumed to be a sequence 
of user operations, and for each operation, a part of the Web site with which the user 
has interacted, an entity of the Web site selected by the user, and the user’s 
interaction method with that entity must be considered. 

Three methods are proposed for passing input sessions to recurrent neural 
networks. In the first method, which is cross-sessions encoding, a session is encoded 
by integrating session operations with the max pooling operator, and for each time 
step in user sessions, a GRU layer calculates hidden states. The second method is 
cross-sessions concat, where all sessions of a user are concatenated and form one 
session. A global order is considered for user operations, whereas the first method 
only considers the order of sessions. In both methods, model learning is performed 
through a multi-label classification. In the third method, cross-sessions auto, sessions 
are encoded automatically using an autoencoder. An autoencoder based on recurrent 
neural networks is trained with a GRU layer that takes as input a sequence of 
operations ordered in a session. 

5.4 SBRS Using Deep Graph Neural Network 

Before looking at the approaches of deep graph neural network models in session-
based recommender systems, an overview of the GNN and the reasons that made it 
an effective choice for SBRS are provided. 

5.4.1 Why Graph Neural Network? 

Graph topology/structure encodes a large amount of information that is difficult to 
capture using traditional learning techniques. GNNs focus on learning mechanisms



that use this knowledge to achieve better performance for downstream tasks such as 
ranking prediction and similar content retrieval. In this regard, the goal of GNNs is to 
learn better representation/embedding of nodes using neighborhood information. 
GNNs can also be used to learn edges and graph representations. 
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Graph neural networks are a class of deep learning methods specifically devel-
oped to infer data described by graphs. GNNs can be applied directly to graphs to 
provide an optimal way to perform tasks such as node-level, edge-level, and graph-
level prediction. Graph neural networks allow the end-to-end machine learning 
model that is simultaneously trained to learn a representation of graph-structured 
data. Graph neural networks can be applied to data with a graph structure for 
different purposes and can also learn representations at the node, edge, or graph 
level. 

There are various approaches for training machine learning models on data with a 
graph structure using preprocessing techniques. However, they lack the flexibility to 
fully adapt to existing datasets and operations in machine learning models due to the 
high dimensionality and non-Euclidean intrinsic of graph data. It should be noted 
that the basic types of neural networks can only be implemented using regular or 
Euclidean data. However, almost all real-world data have a non-Euclidean dynamic 
graph structure. The irregularity of the many graph-structured data and the required 
parallel and scalable processing have led to recent advances in graph neural 
networks. 

A graph-structured data is widely used in various fields such as image processing, 
recommender systems, social network analysis, etc. A graph is a data structure with 
two components, nodes and edges. Graph G is shown as G=(V, E), while V is a set of 
nodes, and E is a set of edges that connect these nodes. vi 2 V represents a node, and 
eij = (vi, vj) 2 E represents the edge between two nodes vi and vj. In general, graphs 
are classified as below [7]:

. Directed and undirected graphs: In directed graphs, edges connect a source node 
to a destination node, but in undirected graphs, edges only show the connection 
between two nodes.

. Homogeneous and heterogeneous graph: A homogeneous graph consists of one 
type of node and edges, but a heterogeneous graph consists of various kinds of 
nodes and edges.

. Hypergraph: A generalization of a graph in which an edge can connect any 
number of nodes. 

The main idea of GNN is to iteratively summarize the feature information of the 
neighbors with respect to the graph data and integrate the collected information with 
the current central node representation during the propagation process [91, 92]. From 
the network architecture point of view, GNN stacks several propagation layers, 
which include aggregate and update operations. The propagation process was 
based on Eqs. (5.22) and (5.23):
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In the above equations, hl u represents the node u in the l
th layer, nl v is the result of 

summarizing the aggregation function on neighboring nodes v in the lth layer, A and 
U represent the aggregation and update operation functions in the lth layer, Wl and 
Wl′ represent the learnable transformation matrices for the lth layer, and N is the set of 
neighbors of the associated node. 

It should be noted that in the aggregation stage, the existing works are mainly 
based on mean-pooling operation for each neighbor equally [93] or differentiating 
the importance of different neighbors by using the attention mechanism [94]. In the 
update phase, the representation of the central node and the aggregated neighbor-
hood are merged into the updated representation of the central node. 

Based on the concepts of graph neural networks, many deep learning models such 
as graph convolutional networks (GCN) [95], graph attention networks (GAT) [94], 
and different configurations of graph neural networks with other models such as 
RNNs (e.g., GGNN: Gated Graph Sequence Neural Networks [96]) have been 
developed and used in various research. GCN approximates the first-order 
eigendecomposition of the graph Laplacian to iteratively aggregate information 
from neighbors and uses a non-linear activation function, such as ReLU, for 
updating phase. GAT assumes that the influence of neighbors is neither identical 
nor pre-determined by the graph structure; therefore, using the attention mechanism, 
it distinguishes the participation of neighbors. In GGNN, the recurrent function is 
executed several times on all nodes in the aggregation phase and adopts a GRU 
model for updating phase. In addition to graph neural networks, GCNs have also 
been used in session-based recommender systems in various articles. 

GCNs are suitable neural network architectures for machine learning on graphs. 
A GCN can generate significant feature representations and use its structural infor-
mation in networks. GCNs use the concept of CNNs and define them for the open 
graph domain. A significant difference between CNNs and GCNs is that CNNs are 
specifically designed to work on regularly structured (Euclidean) data, while GCN is 
a generalized version of CNNs where the number of nodes’ connections is different 
and the nodes are also irregular (irregular on non-Euclidean structured data). 

If you are familiar with convolution layers in CNNs, “convolution” in GCNs is 
basically the same operation that refers to multiplying the input neurons by a set of 
weights, commonly known as a filter or kernel. GCNs perform similar operations to 
CNNs, where the model learns related features by considering neighboring nodes. 

Researchers have classified GCNs into two types:

. Spatial GCN: This model of GCNs uses spatial features to learn from graphs that 
are located in spatial space. In many cases, graphs are coupled with spatial 
information embedded in their nodes. Standard GCNs do not consider the



location of nodes. These approaches directly perform convolution in the graph 
domain by collecting the information of neighboring nodes.

. Spectral GCN: This model of GCNs uses a special Laplacian graph decomposi-
tion to propagate information along the nodes. These networks are inspired by the 
propagation of waves in signals and systems study. The spectral graph convolu-
tion operation in the Fourier domain is performed by calculating the eigen 
decomposition of the graph Laplacian. The eigenvalue of the (normalized) 
graph Laplacian can be easily calculated from the adjacency matrix of the 
symmetric normalized graph. However, filters must be defined in Fourier space, 
and computing the Fourier transform of the graph is expensive (it requires 
multiplying the node features by the eigenvector matrix of the graph Laplacian, 
which is an O(N2 ) operation for a graph with N nodes). 
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Although spectral-based methods have more computational cost than spatial-
based, they provide a stronger capacity to extract features from graph data. 

In GCNs, the adjacency matrix A should be considered in addition to the node 
features (or the so-called input features) in the forward propagation equation. A is a 
matrix that represents edges or connections between nodes in the forward propaga-
tion equation. A describes the representation of the graph structure in the form of an 
adjacency matrix that enables the model to learn the representation of the features 
based on the connectivity of nodes. By adding the adjacency matrix as an additional 
element to the forward propagation representation of the features in neural networks, 
the forward propagation is calculated using Eq. (5.24): 

hlþ1 
v = σ hl vW

l A* þ bl( ) ð5:24Þ 

σ is a non-linear activation function such as ReLU, bl is a bias parameter in the lth 

layer, Wl is the weight matrix in the lth layer, hl v is a representation of the node v in the 
lth layer, and A* is the normalized version of A. 

According to the above descriptions, three main steps should be considered for 
the development of GCNs: 

1. Kernel/Filters: A filter is a function that acts like a scanner that has a limit on the 
number of cells (adjacency matrices) that must be considered. 

2. Pooling: Similar to the function of the filter scanner, pooling is a function that 
outputs all the values scanned by the scanner at the same time. This output value 
can be calculated as the maximum, average, etc., of values. Only one output cell is 
generated after applying the kernel, followed by the pooling function. 

3. Flattening: The flattening function reduces the network structure to a vector with 
lower dimensions, which can be used for the input of feedforward neural 
networks. 

The above three steps are common to all GCNs. The only major difference is in 
the different kernel functions throughout the graph neural network. The general 
architecture of GCNs is shown in Fig. 5.11.
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Different types of techniques based on graph neural networks have been proposed 
in various domains, and one of these domains belongs to recommender systems. 
Many recommender systems form a graph-structured data, so graph neural networks 
can be widely used due to their high capability in representation learning for graph 
data. For example, user-item interactions can be represented by a bipartite graph 
between the user and item nodes, where the edge represents the interaction between 
the user and the corresponding item. In addition, a sequence of items can be 
transformed into a sequence graph, so that each item can be connected to one or 
more subsequent items, and an edge is considered between consecutive items. 
Figure 5.12 shows an example of a bipartite and a sequence graph. 

On the other hand, due to their high flexibility, graph neural networks provide the 
possibility that side information can also be easily modeled and used in addition to 
the main data. For example, social network data can be added to the user session 
dataset. In addition, a graph neural network can explicitly encode the important 
collaborative signal of user-item interactions to improve its representation through 
the propagation process. Compared with non-graph models, graph neural networks 
are more flexible and convenient for modeling multi-hop connectivity related to 
user-item interactions. 

In session-based recommender systems, sequences of items can be modeled as a 
graph-structured data to represent adjacency between items. Graph neural networks 
are widely used to detect the transition pattern from the sequential behaviors of users 
by transforming them into a sequential graph. Figure 5.13 presents the general 
framework of graph neural networks in recommender system with sequential data. 

In short, the use of GNNs in session-based recommender systems can be sum-
marized by two general principles:

. Graph construction: In contrast to user-item interactions, which essentially have 
a bipartite graph structure, sequential behaviors are naturally expressed in time 
order. Therefore, constructing a sequence graph based on the sequential behavior 
of users is necessary to use GNN in session-based recommender system. In 
several systems, such as [33, 36, 54], the session data is modeled with a directed 
graph to capture the item transfer pattern. Of course, the sequence of sessions in 
session-based recommender systems is short, and user behaviors are limited; for 
example, the average length of sequences in Tmall is only 6.69 [54, 57], and in 
YooChoose, it is about 5.71 [36]. Therefore, a session graph constructed based on 
a single session may contain only a limited number of nodes and edges. To 
address the above challenge and capture possible relationships between items, 
there are two strategies: (1) directly capturing relationships from other sessions 
and (2) adding additional edges to the session graph.

. Aggregation of neighbor information: Given a constructed sequence graph, it is 
essential to design an effective propagation mechanism to capture transition 
patterns among items. In particular, the propagation process can be defined in 
the simplest possible form and as a mean pooling to aggregate previous and 
subsequent items. A combination of two aggregated representations and using 
GRU to integrate the information of neighbors and the central node are other
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methods, all of which treat neighboring nodes equally [96]. The attention mech-
anism can also be used to distinguish the importance of neighbors [33, 54, 
97]. All these methods adopt the permutation-invariant aggregation function 
during message transmission and ignore the sequence of items in the neighbor-
hood, which may lead to information loss [50]. Several methods have been 
proposed to preserve the sequence of items in the graph construction [50].
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Fig. 5.13 The general framework of graph neural networks in SBRS 

In the subsequent subsections, first, different research which used graph neural 
networks in session-based recommender systems have been discussed. Then, the 
combination of GNNs and RNNs and, after that, the research that has used GCNs are 
reviewed. 

5.4.2 Approaches Based on GNN 

Session-based recommender systems that have used different types of graph neural 
networks face three main challenges: graph construction, information propagation, 
and sequential interests. Sequential data should be transformed into a sequence 
graph to build a graph, and it should be determined whether it is sufficient to create 
a subgraph for each sequence independently. Or is it better to add an edge between 
several consecutive items or only consider an edge between two consecutive items? 
To propagate information, it should be determined which propagation mechanism is 
more suitable for recording transition patterns. Is it necessary to recognize the order 
of related items? For the last problem, which is the user’s sequential interests, item 
representations must be integrated into a sequence to obtain the user’s temporal 
preference. Should one simply use attention-based pooling or a recurrent neural 
network structure to improve sequential temporal patterns? 

Different answers to the above questions will lead to the proposal of a new 
approach, some of them will be discussed in the following.
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Wu et al. have proposed a Session-based Recommendation with Graph Neural 
Networks, SR-GNN, that models session sequences as graph-structured data [36]. In 
SR-GNN, in the first step, the sequence of sessions is modeled as a directed graph 
with weighted edges, and each session sequence is considered a subgraph. In this 
graph, each node is an item, and each edge between two nodes represents the 
sequence of user clicks on two items. For example, if there is an edge from node 
vi to node vj, it means that the user clicked on vj in a session after clicking on vi. The 
weight of each edge is also calculated based on the occurrence of the edge divided by 
the outdegree of that edge’s start node. Then, using the gated graph neural network, 
transitions and connections between the items are detected, and the embedding 
vectors of the items are generated. 

Now, the information propagation between different nodes is performed based on 
the matrix of connections and edge weights, and the latent vectors of nodes are 
extracted and sent as input to the graph neural network. Then, two update and reset 
gates decide what information to keep and discard, respectively. After that, the 
candidate state is built based on the previous state, the current state, and the reset 
gate. After updating all the nodes in the session graph and reaching convergence, the 
final node vectors are obtained. Each session is presented using an attention network 
as a combination of global interest and the current interests of that session. Finally, 
the probability that each item will be the next click for each session is predicted. The 
general architecture of SR-GNN is shown in Fig. 5.14. 

Pang et al. presented another model based on a heterogeneous graph neural 
network (HGNN) that attempts to recognize the simultaneous occurrence of items 
globally [31]. This work is done by creating the item-user interaction graph and the 
global co-occurrence graph of items. The global graph contains item transitions of 
sessions, user-item interactions, and the global co-occurrence items. To detect the 
transfer and change of items, first, a heterogeneous global graph including user and 
item nodes is constructed, and the user’s previous interactions with items are used to 
create user-item edges. This leads to the detection of the long-term preferences of the 
user. Then, to generate connections between items, pairwise item transitions in the 
sessions are considered. To detect potential correlations, pairs of similar items are 
computed based on global co-occurrence information to construct item edges. 

In HGNN, a graph augmented hybrid encoder consisting of a heterogeneous 
graph neural network and a personalized session encoder is proposed to create a 
session preference embedding to provide personalized session-based recommenda-
tions. The personalized session encoder combines current session item information 
and general user preferences to create a personalized session presentation, which is 
used to generate a more detailed and personalized list of recommendations. Since 
session-based recommender systems only provide recommendations based on the 
sequence of items that anonymous users have interacted with in a limited time frame, 
HGNN can be used in limited situations where the user ID and previous sessions are 
available and can be used [98]. 

In most methods based on graph neural networks, information is propagated 
between adjacent items, and the information on items that are not directly related 
is ignored. Multilayer graph neural networks were also used for information



propagation between items without direct connections, but they also easily led to 
overfitting. To solve this challenge, Pan et al. have presented a Star Graph Neural 
Networks with Highway Networks (SGNN-HN) for session-based recommender 
system [38]. In SGNN-HN, a star graph neural network is used to model complex 
change patterns in the current session, which can solve the problem of long-term 
information propagation by adding a star node to check non-adjacent items. Then, to 
solve the overfitting problem of graph neural networks, highway networks are used 
to dynamically select the item embedding vectors before and after the star graph 
neural network, which can help to discover the complex transition relationship 
between items. Finally, the item embeddings generated by the star graph neural 
network are carefully integrated into the current session, and the proposed item is 
predicted based on the user’s preferences. 
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Fig. 5.14 The architecture of SR-GNN [36] 

It is worth mentioning that in SGNN-HN, a star graph is created for each session, 
and the set of graph nodes has two parts: the first part is all the unique items in a 
session, which are called satellite nodes, and the second part is the star node. Graph 
edges also include two types of connections for information propagation, which 
include satellite connections and star connections. Satellite connections are used to 
show adjacent relationships between items. For star connections, a bidirectional edge 
is added between the star node and each satellite node in the star graph, and on the 
other hand, to update the satellite nodes, edges are used to connect from the star node 
to the satellite node. Through the star node, information from non-adjacent nodes 
can be propagated in a two-hop way by considering the star node as an intermediate 
node. On the other hand, the directed edges from the satellite nodes to the star node 
are used to update the star node, which helps to create an accurate representation of 
the star node by considering all the nodes in the star graph. The general architecture 
of SGNN-HN is shown in Fig. 5.15. 

Studying the methods’ effectiveness in session-based recommender systems based 
on recurrent neural networks or attention-based mechanisms shows that complex 
item transitions decrease system efficiency. While graph neural networks adopt a 
mechanism that transforms snapshots of sessions into individual graphs at different 
timestamps to model static structural information without considering the temporal 
evolution of item transition relations, most session-based recommender system use 
cross-entropy with softmax to optimize model parameters, where all items (except 
the target item) are considered negative samples. During training, persistently 
decreasing negative item scores may cause overfitting of the model and loss of



generalization ability. Moreover, these approaches cannot provide a large enough 
gradient to reduce scores, limiting the convergence speed of the model. 
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Fig. 5.15 The architecture of SGNN-HN [38] 

To solve the abovementioned problems, dynamic graph learning for session-
based recommender system (DGL-SR) is proposed by Pan et al. [32]. DGL-SR 
first converts the current session into a dynamic graph, and then, the structure layer is 
used to consider the structural information to learn the representation of session 
items at the different timestamps. At the same time, the structural information is 
analyzed through the graph attention network and the temporal evolution of the 
graph structures in different timestamps by temporal attention. To detect the tempo-
ral evolution of session graphs at different timestamps, DGL-SR produces a repre-
sentation with the temporal features of each item using the temporal layer in the 
dynamic graph neural network. Then, the user’s dynamic preferences are generated 
and used to generate predicted scores on all candidate items. Finally, a corrective 
margin softmax is developed to correct the gradient of negative items to avoid 
overfitting and achieve effective model optimization. 

Qiu et al. proposed an improved graph neural network to learn the embeddings of 
each item in a session [33]. FGNN (full graph neural network) performs the learning 
process of embedding items by examining the inherent order of item transitions in a 
weight graph attention network. Therefore, it considers the pattern of item transitions 
by constructing a session graph and proposes a new model that jointly considers the 
sequence and hidden order in the session graph for a session-based recommender 
system. To use graph neural networks, a graph is constructed for each session, and 
the recommendation of the next item in the session is formulated as a graph-level 
classification problem. Specifically, it provides a weighted attention graph layer and 
a readout function to learn item embeddings and sessions to recommend the next 
item. The intrinsic sequence of the item transition pattern, which is critical for item-
level feature representation, is achieved using a multiple-weighted graph attention 
layer network to compute the flow of information between items in a session. After 
generating the item representation, the readout function, which automatically learns 
to determine an appropriate order, is deployed to aggregate these features. Fig-
ure 5.16 shows the architecture of FGNN [33]. 

Many researchers attempted to provide methods that correctly identify the inter-
ests of anonymous users in short sessions. To this end, Li et al. proposed



disentangled representation learning to create better representations for items in 
session-based recommender systems [34]. Disentangled Graph Neural Network 
(Disen-GNN) captures the purpose of ease session considering factor-level attention 
on each item. Disen-GNN consists of four main steps: 
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Fig. 5.16 The architecture of FGNN [33] 

1. Embedding initialization: In this step, each session is converted into a directed 
graph, where each item in the session is encoded in embedding vectors with K 
parts. Each part represents the features of a factor. The similarity between 
adjacent items within a session is measured based on the features of each factor. 

2. Disentangled item embedding learning: The factor-based similarity matrix is 
introduced, which estimates the similarity between adjacent items based on 
each item’s embeddings. Then, the similarity matrix is integrated into the layers 
of the gated graph neural network to learn factor-based item embedding. A 
residual attention-based mechanism is also designed to preserve the distinctive-
ness of each item to avoid over-smoothing. 

3. Session embedding learning: To detect the user’s goal in a session, an attention-
based network is used to calculate the user’s attention to various factors of each 
item based on the factors of the last item, which provides the user’s local goal. 
With assigned attention weights, a session embedding is created by weighted 
summing the factor embeddings of all items in the session. 

4. Prediction: For each candidate item, the probability that the next item will be the 
user’s choice is calculated by matching its embedding with the session 
embedding. 

Considering the adjacent sessions and the correlation between them could be an 
influential factor for the development of session-based recommender systems. To this 
end, Pan et al. proposed a collaborative graph learning method (CGL) that utilized 
gated graph neural networks to learn item embeddings [42]. CGL consists of two 
main components: the main supervised and self-supervised modules. A gated graph 
neural network is used to present each item in each session. In the main supervised 
module, the user’s recent and long-term interests are considered, and dynamic 
interest migration is detected. In this module, the model training is performed 
based on the supervised signals generated in sequential order, and the target-aware 
label confusion is designed to create an accurate label distribution. Label-aware 
confusion is used to generate soft labels that combine optimization with a one-hot 
encoding vector to avoid overfitting. Then, in the self-supervised module, supervi-
sion signals are extracted from the correlations between different sessions based on 
the general graph built to enrich the item representations. This general graph is



created based on all sessions, where each session is a node and its edges are defined 
based on similarity measure and max sampling. Based on this, the supervision 
signals are extracted from the correlation between sessions by self-supervised 
learning, and finally, the parameters of the model are optimized and updated based 
on the loss function of both components. 
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Due to the influence of friends’ interests on each other’s preferences, social 
networks have been utilized in many applications of session-based recommender 
system. Social network data is effective in better understanding users’ interests and 
providing more accurate recommendations. In [40], an efficient framework for 
session-based social recommendation is proposed by Chen et al., in which, first, a 
heterogeneous graph neural network is used to learn user and item representations, 
which integrates the knowledge of social networks. Then, to generate predictions, 
only the user and item presentations related to the current session are sent to a 
non-social aware model. This framework has two advantages. First, the framework is 
flexible since it is compatible with existing non-social models and can easily 
incorporate more knowledge than social networks. Second, this framework can 
capture cross-session item transitions, whereas most existing methods can only 
capture intra-session item transitions. 

5.4.3 Approaches Based on GNN and RNN 

Due to adapting the RNN’s functionalities to the sequential nature of data in session-
based recommender systems, many researchers are interested in using these types of 
deep neural networks. Many session-based recommender systems usually model 
sequential signals using RNN’s structures and transition relationships between items 
using GNNs to identify user interest. Of course, in real scenarios, there may be 
important and influential sequential signals in the behaviors of close users or multi-
step transition relationships between different items. Therefore, the methods based 
on RNNs or GNNs can only get limited information to model the complex behavior 
patterns of users. Recurrent neural networks usually focus on the sequential relation-
ships between items, whereas graph neural networks mainly focus on structural 
information. Therefore, these two models can be used together in session-based 
recommender systems to generate more acceptable results. 

Chen et al. have proposed a collaborative co-attention network using the combi-
nation of recurrent neural network and graph neural network methods for session-
based recommender systems [46]. In CCN-SR (Collaborative Co-attention Network 
for Session-based Recommendation), an embedding layer is considered for gener-
ating item embedding, whose outputs are the inputs of recurrent neural networks and 
graph neural networks. In the first step of CCN-SR, the user’s behaviors in the 
current session, which includes the user’s interaction items, are embedded and 
entered as input to the GRU to model the sequential relations between the user’s 
interactions and behaviors. Since each step’s hidden state contains sequential infor-
mation between the user’s previous behaviors up to this step and the user’s current



goal, the hidden state of each step is modeled in the current session and collected by 
the recurrent neural network structure. Then, the transition relations between the 
items are modeled, and the detailed embeddings of the items in the current session 
are created with a graph neural network. 
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CCN-SR creates a directed graph for each session, whose nodes, items of each 
session, and edges indicate the sequence of user interaction with the items. An edge 
is generated between two nodes related to items in this graph when the user interacts 
with one item after another. Since some edges may appear multiple times in a 
session, these edges are given different weights to determine their importance. The 
weights are calculated based on the occurrence of the edge divided by the outdegree 
of the start node of the edge. Then, two adjacency matrices that specify the 
connections between nodes based on input and output edges are used in the graph 
neural network. Therefore, the encoder based on the graph neural network mainly 
recognizes the transition relations between adjacent items and models the structural 
information in the session. The output of the encoder based on the recurrent neural 
network contains the sequence information in the session. Combining these two 
types of information is helpful in providing a comprehensive representation for 
predicting recommendations. 

In CCN-SR, two mechanisms are considered based on the co-attention mecha-
nism: parallel co-attention and alternating co-attention. In the parallel mode, the 
structural information related to the graph neural network and the sequential infor-
mation related to the GRU are taken as input, and it calculates the co-dependent 
representations at the same time in parallel. But in the alternating mode, it alternates 
between the initial outputs of the RNN-based session encoder and the GNN-based 
session encoder and the attentive representations of them. It should be mentioned 
that CCN-SR has high computational complexity and does not obtain acceptable 
results in sparse datasets. The general architecture of CCN-SR is shown in Fig. 5.17. 

Session-based recommender systems that use graph neural networks can model 
data in a graph format and use content information and relationships between them to 
predict user behaviors. In addition, context-based recommender methods can inte-
grate context data from several different and heterogeneous sources to obtain 
information about item features and relationships. To this end, Li et al. have 
proposed a session-based recommender system combined with two types of contex-
tual information and work using gated graph neural networks, called context-aware 
and gated graph neural networks (CA-GGNN) [48]. Compared to the graph neural 
network, the gating graph neural network uses GRU and creates a message propa-
gation model. The output of each layer of a typical GRU contains the current input 
information and the previous state information, which are specified by the input 
matrix and the state matrix, respectively. CA-GGNN first considers different types of 
input context information and time interval context information to dynamically 
create context matrices based on input information. These matrices include the 
input matrix and the time interval matrix. The input matrix represents the external 
environment information when the user makes the current decision, such as time and 
location. The time interval matrix presents the proportion of the time interval 
between the current decision and the next decision in the entire review period of



the session. In other words, the input matrix shows the scenario information of the 
external environment when the user participates in the session. The time interval 
matrix shows the proportion of time the user spends browsing each item in the entire 
session time. Then, the CA-GGNN replaces the constant input matrix and the state 
matrix with the input matrix and the interval matrix, respectively, and uses a context 
matrix to model the effect of the transformation of the input elements. Finally, it uses 
the time-based backpropagation method to train the model. 
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Fig. 5.17 The architecture 
of CCN-SR [46] 

Figure 5.18 shows the general architecture of CA-GGNN [48], which includes 
three parts. Part “a” is related to data preprocessing and includes context data of the 
external environment, background data of time intervals, and the session graph 
based on the session sequence. In part “b,” the gated graph neural network considers 
the graph structure information and the state information of each node at any time to 
create an accurate and reliable representation of each node. The process of this 
session-based recommender system depends not only on the sequence information 
of sessions but also on the sequence of sessions and related context information. In



part “c,” CA-GGNN uses a soft attention-based mechanism to determine the priority 
between the user’s long-term and short-term interests as the last item in the session 
sequence. A vector representation of the session sequence is obtained through a 
linear connection and used as a recommendation basis. 
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Fig. 5.18 The architecture of CA-GGNN [48] 

To overcome the problem of data sparsity and ignoring the effects of users’ short-
term and long-term interests on the accuracy of the recommendations, Hu et al. have 
proposed a session-based news recommender [47]. This method, GNewsRec (Graph 
Neural News Recommendation), first creates a heterogeneous user-news-topic graph 
to explicitly model users, news articles, and their topics based on the interactions that 
have already been performed between users and news articles. The topic information 
reflects the users’ interests better and reduces the sparsity of user-item interactions. 
In GNewsRec, graph-based neural networks are used to encode relationships



between users, news articles, and topics. In this GNN model, user representations 
and news articles are learned by propagating their embeddings throughout the graph. 
The user’s long-term interests are determined using the users’ embedding based on 
the users’ study history. In GNewsRec, the user’s short-term interests are modeled 
using recent user studies and the LSTM model based on the attention mechanism. 
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GNewsRec consists of three main parts: a convolutional network for information 
extraction, a graph neural network for modeling news articles and long-term user 
interests, and LSTM based on an attention mechanism for modeling short-term user 
interests. The first part is composed of two parallel convolutional networks for 
extracting textual information, which takes the profile and title of the news as 
input and creates representations at the level of the profile and title of the news. 
Finally, both representations are placed next to each other. In the second part, a 
heterogeneous undirected graph of users, news articles, and topics is created to 
model users’ long-term interests. In this method, in addition to the text of news 
articles, their sequence is also important. In the third part, LSTM based on the 
attention mechanism is used to detect the short-term interests of users. Figure 5.19 
shows the architecture of GNewsRec [47]. 

Despite all advantages of using graph neural networks in session-based recom-
mender system, some methods based on graph neural networks cannot express the 
sequential information of the session completely, e.g., the repeated nodes in a 
session and the starting node of the directed graph. On the other hand, noisy items 
inevitably exist in the sessions where the user chooses among diverse products with 
unintentional human behavior. This type of non-malicious noise is called natural 
noise, which has been less considered in session-based recommender systems. These 
problems limit GNN-based recommender methods and make them unable to achieve 
better results. To address these problems, Zhang et al. proposed a denoising graph 
neural network for session-based recommender system, called SEDGN (sequence-
enhanced denoising graph neural network) [49]. SEDGN is a combination of GNN 
and GRU. It uses GRU to obtain sequential information to address limitations in 
session graph modeling. To reduce the effect of natural noise, two denoising 
modules have been developed separately in GNN and GRU, to produce two repre-
sentation vectors. These vectors include the normal behavior information vector 
related to the sequence of the session and the graph vector of the session. Two 
denoising modules are designed to obtain normal user behavior information from 
sequential structure data and session graph structure, respectively, which reduce the 
effect of noise in the session. The item representations extracted from the sequen-
tially structured data and graph structure are combined into a unified item represen-
tation that is used to predict the user’s next click. 

Another problem in session-based recommender systems is that the model does 
not deeply learn the potential characteristics of users and items when learning the 
deviation between user interests and recommended items. This leads to a certain 
degree of misunderstanding of the scope of users’ interest preferences, leading to 
irrelevant or unexpected recommended content. In [52], an unexpected interest 
recommender system with a graph neural network (UIRS-GNN) is proposed by 
Xia et al. to address the current limitations of the models and uses a graph neural



network to aggregate the features of neighboring nodes in the target node. UIRS-
GNN can learn the user’s preferences using an attention-based long short-term gated 
recurrent unit (A-LSGRU) network and model the user’s general and local interests. 
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Fig. 5.19 The architecture of GNewsRec [47] 

5.4.4 Approaches Based on GCN 

Much data in the recommender system does not have a regular spatial structure. To 
model the complex relationship between users and items, a network structure that 
can process temporal and spatial information should be used. Graph convolutional 
networks can perform deep learning of spatiotemporal information on graph data. 

Since the low-order approximation of GCN reflects short-term interest, in 
GACOforRec, the proposed method by Zhang et al., ConvLSTM, is used to ensure 
that the model can consider more conditions [63]. In addition to using temporal and 
spatial information learned by graph convolutional networks, this model uses LSTM 
capabilities to update and remember long-term preferences. Simultaneously, a new 
adaptive attention-based mechanism using convolutional graph networks is pro-
posed to consider the effect of different propagation distances. To enhance the



hierarchical learning of the model from different priorities, a network structure called 
ON-LSTM, which focuses more on the hierarchy and sequence of the neuron, is 
introduced. This arrangement is necessary for a general understanding of the user’s 
preferences. 
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In GACOforRec, the importance of user sessions is considered first. In real 
conditions, long-term historical records may not be critical to the user, and regular 
user activities are considered in one session. Therefore, considering the sequence of 
each user session and the connection between multiple sessions is an important goal 
of GACOforRec. GCN is used to model user sessions and learn sequences in the 
session and spatiality in the network to detect the short-term preferences of users. To 
avoid ignoring the long-term and persistent interests of the user, ConvLSTM is 
proposed, which is a type of recurrent neural network with long and short temporal 
effects while enabling the algorithm to focus on spatial domain information. This 
structure is used to connect two-part GCNs to account for “long” and “short” effects 
across the application scenario. ConvLSTM is used to combine connections and 
extract temporal information while paying attention to spatial feature extraction 
capabilities. Considering that different user behaviors may have different degrees 
of influence, a pair of new attention mechanisms are proposed that can obtain 
weights from different propagation distances in GCN. 

The management and control of session-based recommender systems with many 
sessions and long time periods face three main challenges: First, the sessions are 
continuously growing. Memory cannot hold all sessions. Second, user interest may 
change significantly. A suitable model is required to model temporal information in 
past sessions. Third, the information in the new session should be modeled in time. 
To overcome these problems, Zhou et al. have proposed a temporal gated graph 
neural network that extracts auxiliary information from incoming sessions, called 
Temporal Augmented graph neural network for Session-based Recommendations 
(TASRec) [58]. TASRec dynamically models the user’s long-term interest over a 
long period of time. Item-to-item interactions are presented on two levels: temporal 
graph and session graph. In the session graph, each node is an item related to the 
session, and each directed edge represents the adjacency of two items. For each day, 
a temporal graph is created that is undirected, and its nodes are the items of sessions 
before the desired day, and its edges are determined based on the adjacency of 
the items. The gated graph neural network is used for the session graph to determine 
the interactions of the items within the sessions, and based on that, the embedding of 
the items is obtained. In order to provide recommendations in the sessions of a 
certain day, the temporal modeling layer performs the learning of item interactions 
based on the graph that stores the records of the past sessions before the target day. 
An exponential denominator is used to change the scale of edge weight, and the 
effect of edge weight over time will decrease with the increase in the time difference 
between the previous day and the current day. 

A multilayered graph convolutional network is also implemented to learn about 
high-order item interactions. Each layer of the GCN integrates all the first-order 
neighbor embeddings and the item itself. For the embedding of sessions, first, the 
embeddings within the session and the temporal embeddings of the item are



processed, and then the attention-based mechanism is used to compute the embed-
ding of the session. Finally, based on the embedding of the session, the probability of 
selecting the candidate items is calculated. 
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Some data cannot be modeled using simple graphs. In these cases, a hypergraph 
can be used to model a more general data structure. A hypergraph consists of a set of 
vertices and a set of hyperedges, where a hyperedge can connect any number of 
vertices. This method is used to encode correlations of high-order data and has high 
ability and flexibility in detecting complex relationships in sessions. In this regard, 
the research [57] performs data modeling through hypergraphs in the context 
of GCN. 

Xia et al. proposed a dual-channel hypergraph convolutional network (DHCN) 
[57]. DHCN models each session as a hyperedge in which all items are related to 
each other. Different edges connected through common items form a hypergraph 
that contains item-level high-order relations. By stacking multiple layers in the 
hypergraph channel, the strengths of hypergraph convolution can be used to produce 
efficient results. However, since each edge contains only a limited number of items, 
the problem of data sparsity may limit the benefits of hypergraph modeling. There-
fore, the line graph channel is introduced, and self-supervised learning is integrated 
into the proposed model to enhance hypergraph modeling. A line graph is 
constructed on the basis of a hypergraph, where each hyperedge is a node and the 
edges are hyperedge connections that focus on session-level relations. After that, a 
dual-channel hypergraph convolutional network is developed, which describes two 
channels of information within and between sessions, while each of them knows 
little about the other. By maximizing the mutual information between session 
representations learned through two channels based on self-supervised learning, 
the two channels can acquire new information from each other to improve their 
performance in extracting item/session features. Figure 5.20 shows the architecture 
of DHCN [57]. 

Several session-based news recommender systems can extract expressive features 
(e.g., embedding) from articles and sessions, but they usually ignore the semantic-
level structure information of articles. To this end, Sheu et al. proposed a novel 
context-aware graph embedding (CAGE) framework for session-based news recom-
mendations that enriches news article embeddings using an auxiliary knowledge 
graph [65]. CAGE extracts textual-level features from news articles with 
convolutional neural networks while representing semantic-level entities with the 
help of a sub-knowledge graph. Semantic-level embedding extraction procedures 
include five steps, including entity extraction, triple extraction from an open knowl-
edge graph, sub-knowledge graph construction, sub-knowledge graph embedding, 
and entity-linking embeddings. Then, CAGE refines the concatenated embeddings 
through multilayer graph convolutional networks. After that, session-level represen-
tations are learned by GRU. Finally, CAGE predicts the next click article for each 
session. 

An issue that session-based recommender systems deal with is that they mainly 
rely on extracting sequential patterns in individual sessions. These methods are 
unexpressive enough to show more complex dependency relationships among



items. Additionally, due to the anonymity of session data, which prevents commu-
nication between different sessions, cross-session information is not taken into 
account. Some research, such as [60, 61], have proposed methods that are based 
on intersection sessions and have used graph neural networks with convolutional 
layers. 
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Fig. 5.20 The architecture of DHCN [57] 

Ye et al. solved the above limitation, used sequential information between 
sessions, and proposed a cross-session aware temporal convolutional network 
(CA-TCN) [60]. For cross-sessions, CA-TCN constructs a cross-session item 
graph and a session-context graph to model the effect of cross-sessions on both 
items and sessions. The global cross-session item graph considers the effect of cross-
sessions on the items by creating connections between items among all sessions, and 
the session-context graph by establishing connections between the current session 
and other sessions with interests. Similar user behaviors consider the complex 
interaction effect on sessions. Finally, items and sessions are connected by a 
hierarchical attention mechanism at the item level and the session level. Qiu et al. 
used the full graph neural network and modeled each session as a graph to learn the 
complex dependencies of items [61]. This method consists of two modules: 
(1) There is a weighted graph attention layer (WGAT) to encode information 
among nodes in the session graph for item embedding. (2) After obtaining the 
item embeddings, a readout function, which determines the dependencies of the 
items, is designed to aggregate the embeddings to produce a graph-level represen-
tation of the session embedding. In the last step, it outputs a list of ranked recom-
mendations according to the comparison of session embedding with item embedding 
in the set of items. 

5.5 SBRS Using Deep Reinforcement Learning 

Before looking at the approaches of deep reinforcement learning models in session-
based recommender systems, an overview of DRL and the reasons that made it an 
effective choice for SBRS are provided.
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5.5.1 Why Deep Reinforcement Learning? 

The reinforcement learning approach is more focused on goal-directed learning 
through interaction than other machine learning approaches. In reinforcement learn-
ing, the learner is not told what to do; rather, the agent must discover through trial 
and error and receiving rewards and punishments which actions bring the most 
rewards. The constituent elements of a reinforcement learning system are as follows:

. Agent: A program that is trained with the purpose of doing a specific task.

. Environment: The real or virtual world in which the agent performs actions.

. Action: A movement performed by an agent that causes a change in the state or 
condition of the environment.

. State: All information of the agent in its current environment.

. Observation: Observation is part of the situation that the agent can observe.

. Policy: Specifies what actions the agent will take given the current state. In the 
domain of deep learning, a neural network can be trained to make these decisions. 
During training, the agent attempts to improve its policy to make better decisions.

. Value function: Determines what is proper for the agent in the long-term execu-
tion. In other words, when the value function is applied to a given state, starting 
from that state, it yields the total expected reward that can be expected in the 
future. 

The reinforcement learning cycle begins with the agent observing the environ-
ment (step 1) and receiving a state and a reward. Next, the agent uses this state and 
the reward to decide the following action (step 2). The agent then sends the action to 
the environment to control it in the desired way (step 3). Finally, the environment 
changes its state based on the previous state and the agent’s action (step 4). Then, the 
cycle repeats. The reinforcement learning cycle is shown in Fig. 5.21. 

In the reinforcement learning cycle at time t, the agent receives the state st from 
the environment and uses its policy model (π) to select a correct action at based on a 
control strategy. When the action is executed, the environment enters a new stage 
and provides the next state st + 1  as well as feedback in the form of a reward rt + 1. The 
agent uses the knowledge obtained during the state transition process in the form (st, 
at, st + 1, rt + 1) to learn and improve π. 

The reinforcement learning method suffers from the inefficient representation of 
features in problems with high dimensions or continuous agents. Therefore, learning 
time slows down, and some techniques must be developed to speed up the learning 
process. Considering that the most crucial feature of deep learning is the automatic 
generating of compact and low-dimensional representations of high-dimensional 
data using deep neural networks, a new domain called deep reinforcement learning 
was provided to help reduce the above problems. Deep reinforcement learning 
combines the advantages of deep learning and reinforcement learning to build 
efficient models in various scopes. In deep reinforcement learning, neural networks 
are used as agents to solve the reinforcement learning problem.
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Fig. 5.21 The 
reinforcement learning cycle 

Deep reinforcement learning can be divided into two categories: model-based and 
model-free methods. The main difference is how the agent learns from the environ-
ment. The goal of model-based methods is to estimate the transition function and 
reward function, while the goal of model-free methods is to estimate the value 
function or policy obtained from experience. 

On the other hand, deep reinforcement learning approaches are divided into three 
streams: value-based, policy-based, and hybrid methods. In value-based methods, 
the agent updates the value function to learn a policy. Policy-based methods learn the 
policy directly, and hybrid methods combine value-based and policy-based methods, 
also called actor-critic methods. Actor-critic methods include two different net-
works, in which the actor network uses the policy-based and the critic network 
uses the value-based methods to evaluate the policy learned by the agent. 

In terms of policymaking, deep reinforcement learning approaches can be divided 
into on-policy and off-policy methods. In off-policy, the behavioral policy πb is used 
for exploration, while goal policy π is used for decision-making. In on-policy 
methods, the behavioral policy is the same as the goal policy. 

One of the specific implementations of reinforcement learning approaches is the 
Q-Learning algorithm, which is a value-based approach utilizing the 
Q-Table concepts. Q-Table calculates the maximum expected reward for each action 
in each state. With this information, the model can choose the action with the 
maximum reward. The main idea behind Q-Learning is to use the Bellman optimi-
zation equation as an iterative update: 

Qiþ1 st, atð Þ=Qi st, atð Þ þ  α Ri st, atð Þ þ  γ:maxQi s
0 
t, a

0 
t

( )
-Qi st, atð Þ[ ð5:25Þ 

In Eq. (5.25), γ is the discount rate, and α is the learning rate. Using the 
appropriate parameter γ makes rewards more controllable in the future. It is impor-
tant to know that s0 t, a

0 
t comes from the behavioral policy πb and st, at comes from the 

goal policy π. The optimal convergence of the Q-Function in many iterations will 
eventually be achieved (Qi → Q*, i → ). 

In deep Q-Learning, a deep neural network is employed to approximate the 
Q-values’ function, where the states are given as input and the Q-value of all possible 
actions is produced as output. The main difference between deep Q-Learning and



Q-Learning is the Q-Table implementation. Deep Q-Learning replaces the regular 
Q-Table with a neural network, and instead of mapping a state-action pair to a 
Q-value, a neural network maps input states to (action, Q-value) pairs. In fact, in 
deep Q-Learning, a function approximator, like a neural network with parameter θ, is  
trained to estimate Q-value so that Q(s, a; θ) ≈ Q*(s, a). 
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The difference between deep Q-Learning and Q-Learning is shown schematically 
in Fig. 5.22. 

Some efforts have shown that reinforcement learning algorithms cope well with 
the problems of recommender systems based on sequential data because such 
problems can be naturally modeled as a Markov decision process to predict long-
term user interests. Here, the recommender agent easily performs a sequence of 
ranking that usually learns the optimal policy from the recorded data with off-policy 
methods [11]. 

In these approaches, session-based recommender systems using reinforcement 
learning benefit from a recommender agent (RA) that interacts with the environment 
E (users) to achieve the maximum cumulative reward by sequentially selecting 
recommendation items during time steps. As discussed earlier, the modeling of 
this process includes a set of states, actions, and rewards. More formally, this set 
consists of five elements (S, A, P, R, γ) as follows:

. State space S: The state st = s1 t , . . . , s
n 
t

( ) 2 S is defined as the browsing history 
of the user, that is, the n previous items that the user has checked before time t. 
The items in st are arranged in the order of occurrence.

. Action space A: Action at = a1 t , . . . , a
k 
t

( ) 2 A is a list of items recommended to 
the user at time t based on the current state st, where k is the number of items that 
the recommender agent (RA) recommends to the user each time.

. Reward R: After the RA performs an action at in state st, i.e., recommends a list of 
items to the user, the user reviews these items and provides feedback, which can 
include skipping (not clicking), clicking, or ordering these items, and the agent 
receives the immediate reward r(st, at) according to the user’s feedback.

. Transition probability P: Transition probability p(st + 1|st, at) defines the proba-
bility of the state transition from st to st + 1  when RA performs an action at. If the 
user skips all the recommended items, then the next state is st + 1  = st, while if the 
user clicks/orders some items, then the next state is updated to st + 1.

. Discount factor γ: The coefficient γ defines the discount factor when we measure 
the value of a future reward. In particular, when γ = 0, RA only considers the 
immediate reward. In other words, when γ = 1, all future rewards can be fully 
accounted for the reward of the current action. 

Figure 5.23 shows the general framework of using deep reinforcement learning in 
session-based recommender systems. 

At the end of this section, it should be mentioned that the nature of user 
interaction with a recommender system is sequential and the problem of 
recommending the best items to a user is not only a prediction problem but also a 
sequential decision problem. This can be solved by reinforcement learning



algorithms for three reasons. The first reason is that reinforcement learning can 
manage the dynamics of sequential user-system interaction by adjusting actions 
based on continuous feedback received from the environment. The second reason 
is that reinforcement learning can consider the long-term interaction of the user with 
the system. Finally, although it is beneficial to have user ratings, reinforcement 
learning naturally does not require user ratings and optimizes its policy by sequential
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Fig. 5.22 The difference between deep Q-Learning and Q-Learning 

Fig. 5.23 The general framework of using deep reinforcement learning in SBRS



interaction with the environment. Because session-based recommender system work 
on sequential data and aim to consider users’ sequential behavior, the reinforcement 
learning method could be suitable considering their characteristics.
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The research reviewed in this section is mainly based on the use of deep 
reinforcement learning as the core. For this purpose, in Sect. 5.5.2, research based 
on the deep Q-Learning method is reviewed. Then, Sects. 5.5.3, 5.5.4, and 5.5.5 
discuss the research using deep reinforcement learning combined with other deep 
neural networks, such as recurrent neural networks, convolutional neural networks, 
and generative adversarial networks. 

5.5.2 Approaches Based on Deep Q-Learning 

Q-Learning is a model-free, off-policy algorithm for learning the action values in a 
given state. This method is widely used in various domains and has also been used in 
session-based recommender system. To increase the capabilities of this method, 
deep Q-Learning is proposed, which is a type of Q-Learning that uses a deep neural 
network to represent the Q-Function instead of a simple table of values. Some 
research that use deep Q-Learning to provide session-based recommender systems 
are reviewed in this subsection. 

Zhao et al. considered the sequential interactions between users and the recom-
mender agent and used reinforcement learning to automatically learn optimal rec-
ommendation strategies [68]. This method is called LIst-wise Recommendation 
framework based on Deep reinforcement learning (LIRD). In fact, LIRD has 
presented a new session-based recommender system with the ability to continuously 
improve its strategies during interaction with users. Sequential interactions between 
users and a recommender system are modeled as a Markov decision process, and 
reinforcement learning is used to automatically learn optimal strategies through trial 
and error items’ recommendations and receiving reinforcements for these items 
based on user feedback. An online user-agent interactive environment simulator is 
introduced in LIRD, which can pre-train and evaluate model parameters offline 
before applying the model online. Furthermore, the importance of listwise recom-
mendations during interactions between users and the agent is confirmed, and a new 
approach is presented to apply them in a proposed framework for extensive list 
recommendations. 

There are two main steps in the Actor framework of LIRD, which are the step of 
creating the parameters of the state-specific scoring function, which is performed 
through deep neural networks, and the step of creating the action, which is done 
based on the parameters of the scoring function of the previous step. The Critic 
framework is designed to use an estimator to learn an action-value function, which 
determines whether the action produced by the agent corresponds to the current state. 
This framework works based on deep Q-Learning. LIRD can be applied in scenarios 
with large and dynamic item spaces and can significantly reduce recalculations. 
Figure 5.24 shows the architecture of LIRD [68].
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Fig. 5.24 The architecture of LIRD [68] 

Zheng et al. proposed a deep reinforcement learning framework for online 
personalized news recommender systems, called Deep Reinforcement Learning 
Framework for News Recommendation (DRN) [69]. DRN uses deep Q-Learning 
to better model the dynamic and changing features of the news article and the user’s 
interest so that it can simultaneously consider the current and future rewards. Deep 
Q-Learning architecture can easily increase scalability. A difference between DRN 
and other methods is that it considers user feedback as a combination of user clicks 
and the number of times the user returns to the news recommender system. Simul-
taneously, to provide more accurate recommendations and avoid irrelevant recom-
mendations, it uses the Dueling Bandit Gradient Descent method. 

In DRN, the environment consists of the collection of users and news articles, and 
the recommender algorithm plays the agent role. Feature representation for users is 
considered a state, and feature representation for news is considered as an action. 
When the user requests, a representation state (user features) and a set of action 
representations (candidate news features) are sent to the agent. The agent selects the 
best actions (recommends a list of news to the user) and receives the user’s feedback. 
All feedback and recommendations are stored in the agent’s memory. Every hour, 
the recommendation algorithm is updated based on the recommendation and feed-
back stored in the agent’s memory. 

5.5.3 Approaches Based on DRL and RNN 

Many recommender systems treat the recommending process as static and provide 
recommendations following a fixed greedy strategy. However, these approaches 
may not be efficient enough due to the dynamic nature of user preferences. Further-
more, most existing recommender systems are designed to maximize the immediate 
(short-term) reward of recommendation while completely ignoring whether the 
recommended items lead to more efficient rewards in the future. To this end, Zhao 
et al. considered the recommendation as sequential interactions between users and



the recommender agent and used deep reinforcement learning to automatically learn 
optimal recommendation strategies [71]. The proposed deep reinforcement learning 
recommender system (DEERS) has two advantages. First, it can continuously update 
trial-and-error strategies during their interactions until the system converges to the 
optimal strategy to generate recommendations tailored to users’ dynamic prefer-
ences. Second, the models in DEERS are trained by estimating the value of delayed 
rewards under current states and actions. Therefore, the system can quickly identify 
items with small immediate rewards that significantly affect future recommendation 
rewards. 
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Fig. 5.25 The architecture 
of DEERS [71] 

Recommender systems based on reinforcement learning may not be flexible with 
the increasing number of items in the recommending process. This problem prevents 
their use in e-commerce recommender systems. For this purpose, a deep Q-Network 
(DQN) is used as a non-linear estimator to estimate the action-value function in 
DEERS. This model-free reinforcement learning method does not estimate the 
transition probability and does not store the Q-value table. This makes it flexible 
to support many items in recommender systems. It can also strengthen the system 
compared to traditional approaches that estimate the action-value function separately 
for each sequence. 

In a recommender system, positive feedback indicates users’ interests, and 
ignoring some of the recommended items by the user can help the system gain a 
better understanding of users’ interests. Therefore, it is necessary to investigate such 
negative feedback, which is usually more than positive feedback. To this end, the 
DEERS framework considers negative feedback in addition to positive feedback and 
updates its strategy by receiving negative feedback. 

Figure 5.25 shows the architecture of DEERS. This model concatenates the 
positive state and a recommended item as positive input (positive signals) and the 
negative state and a recommended item as negative input (negative signals). Then,



GRU is used to detect the preferences of the user, in which the update gate is used to 
create a new state and the reset gate is used to control the input from the previous 
state. 
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5.5.4 Approaches Based on DRL and CNN 

Convolutional neural networks are widely used in various domains due to their 
ability to automatically extract temporal and spatial features individually or with 
other learning methods. A number of research reviewed in this section have used a 
combination of deep reinforcement learning and convolutional neural networks in 
session-based recommender systems. 

To update the recommendation strategy according to the users’ real-time feed-
back and create a page of items with an appropriate display, Zhao et al. developed 
the DeepPage approach to jointly generate a set of complementary items and the 
corresponding strategy to display them [75]. DeepPage is a novel page-wise recom-
mendation framework based on deep reinforcement learning, which optimizes a 
page of items with an appropriate display based on real-time feedback from users. In 
this recommendation system, different factors are considered, such as the state, 
the user’s current interests, actions, recommending a page of candidate items, and 
the reward that is the user’s reaction, including clicking, skipping, or purchasing. 
The two fundamental challenges of applying deep reinforcement learning in such a 
problem are the large dynamic state space and the cost of computations for choosing 
the optimal action. To overcome these problems, the Actor-Critic framework is used, 
which is suitable for dynamic and large problems and reduces repetitive 
computations. 

An encoder-decoder architecture is used in the Actor framework, in which GRU 
is used in the encoding part to generate the initial state, GRU. The GRU’s input is the 
last clicked items before the current session, and its output is a vector of the user’s 
initial interests. To learn the strategy of spatial representation of items on a page that 
leads to maximum reward, a convolutional neural network is used, the output of 
which is a dense vector with a low dimension and represents the items and user 
feedback on a given page. This vector is sent to another GRU to detect the real-time 
preferences of the user in the current session. In the decoder, a deconvolution neural 
network is used for reconstruction. The Critic framework is designed to use an 
approximator to learn the action-value function, which judges whether the proposed 
page generated by the Actor matches the current state. Figure 5.26 shows the 
architecture of DeepPage [75]. 

Gao et al. proposed DRCGR, using deep Q-Network and utilizing the CNN and 
GAN to help the agent to better understand high-dimensional data [76]. Two 
different convolution kernels have been used in DRCGR to capture positive feed-
back from users. Meanwhile, DRCGR uses a generative adversarial network to learn 
negative feedback to increase model robustness. DRCGR includes three main steps: 
The first step is to model the user’s click behavior. At this stage, a matrix is formed



on the basis of the embedding vectors of the items, and vertical and horizontal 
convolutional filters are applied to it, and the obtained results are placed next to each 
other. The second step creates more relevant negative feedback using a generative 
adversarial network. The third step integrates positive feedback and negative feed-
back in the DQN-based reinforcement learning model. 
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Fig. 5.26 The architecture of DeepPage [75] 

5.5.5 Approaches Based on DRL and GAN 

One of the important challenges of reinforcement learning is the unstable conver-
gence of models in the training process. In practice, the negative effect of reinforce-
ment learning and recurrent neural networks is to increase the need for training data 
by the system, which is a challenge, particularly in session-based recommender 
system, which are inherently based on sparse data. One solution is to generate data 
through adversarial generative networks for the reinforcement learning method. 
Additionally, a random sampling method called the negative sampling method, 
which is used to show that the user is not interested in the items, cannot depict the 
user’s preferences completely. So, the interests of the user may not be recognized 
correctly, and the items that are of interest to the user may be considered negative 
samples. 

Zhao et al. addressed the problem mentioned above and proposed a collaborative 
filtering model based on deep adversarial generative network and deep reinforce-
ment learning that uses the combination of Q-Learning and Actor-Critic models 
[77]. This method, Deep Generative Adversarial Networks-based Collaborative 
Filtering (DCFGAN), is an adaptive session-based recommender system presented 
in the domain of e-learning. DCFGAN uses the combination of deep adversarial 
generative network and deep reinforcement learning to take advantage of the user’s 
immediate feedback and uses the deep deterministic policy gradient algorithm to 
return the gradient to increase the stability of the training process. Simultaneously,



optimizing the value function using a deep deterministic policy gradient algorithm 
reduces the iterations required for convergence. According to the characteristics of 
session-based recommender system, DCFGAN uses pre-trained collaborative filter-
ing in negative sampling items. It effectively improves the accuracy of negative 
sampling and is efficient for recommender systems. DCFGAN uses GRU to model 
sequential data in the deterministic part. Figure 5.27 shows the architecture of 
DCFGAN [77]. 
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Fig. 5.27 The architecture of DCFGAN [77] 

A model-based deep reinforcement learning framework for SBRS has been 
developed by Chen et al., where a GAN imitates user behavior dynamics and learns 
the reward function [78]. The authors also developed a novel Cascading DQN 
algorithm to obtain a recommendation policy that can handle a large number of 
candidate items. The cascading design of the action-value function allows to identify 
of the best subset of items from a large pool of candidates. 

Gao et al. also proposed a deep reinforcement learning framework, DRCGR, that 
employs CNN and GAN models [76]. A CNN model is used to capture the 
sequential features for positive feedback, and a GAN model is adopted to learn 
optimal negative feedback representations. Then, positive/negative representations 
are fed into DQN simultaneously, which is claimed to generate a better action-value 
function.
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5.6 Discussion 

In this chapter, the methods based on hybrid/advanced deep neural network models 
in a session-based recommender system have been discussed and analyzed. More-
over, research has been reviewed using graph neural networks and deep reinforce-
ment learning combined with other deep learning approaches. 

Session-based recommender system approaches based on RNNs usually have a 
low speed and difficult training process for large volumes of data. The CNN-based 
methods have high memory consumption, and hidden representations are not inter-
pretable and readable. Therefore, a large percentage of session-based recommender 
system use hybrid deep learning methods. A review of research in the session-based 
recommender system domain with hybrid deep neural network models shows that 
the most focus is on the following combinations: CNNs and RNNs, AEs and RNNs, 
different combinations based on GNNs, and DRLs plus other models such as CNN 
and RNN. 

Generally, several research based on the combination of CNNs and LSTMs [22– 
26] recognize the features of the data using CNN and model the user behaviors based 
on LSTM. In various research, different types of CNNs are used, such as 3D-CNN, 
parallel CNN, etc., and each has its own characteristics. 

Due to the high number of LSTM parameters, some research based on RNNs use 
GRU, which requires fewer parameters and limited computing resources. For this 
reason, many session-based recommender systems use hybrid deep neural network 
methods, using the combination of CNN and GRU [12–21]. 

Autoencoder also has been used with GRUs [27, 29] and LSTM [28] in session-
based recommender systems. In these research, different types of autoencoders, such 
as stack autoencoders or denoising autoencoders, are employed to extract efficient 
representations for user interactions and feature transformations, and RNNs recog-
nize sequential dependencies and long-term interests of the user. 

In addition to hybrid deep neural network methods that consist of combining two 
or more types of single deep neural networks, there are two other types of advanced 
models, which consist of deep reinforcement learning and deep graph neural net-
works, which have been discussed in Sects. 5.4 and 5.5. 

Many recommender systems’ data have a graph structure, and graph neural 
networks are widely used in this field due to their high capability in graph data 
representation learning in different domains. On the other hand, due to their high 
flexibility, graph neural networks provide the capacity to easily model auxiliary data 
in addition to the main data. In session-based recommender systems, sequences of 
items can be modeled as graph-structured data to represent adjacency between items. 
Graph neural networks are widely used to identify the transition pattern from the 
sequential behaviors of users by converting them into the sequential graph. Research 
such as [31, 32, 33, 38] are based on graph neural networks, but other research have 
also combined graph neural networks with RNNs such as [34, 36, 45–48], or with 
CNNs (GCNs) such as [53–57].
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Due to the over-smoothing problem, more studies focus on the appropriate 
augmentation of GNN layers (deeper GNN) to capture higher-order correlations 
on graphs and improve the performance of models [99, 100, 101]. Despite these 
advances, there is no standard solution for constructing very deep GNNs like CNNs, 
and related works suggest different strategies. Regarding future work, increasing the 
performance of deeper GNNs compared to current shallow GNNs is a fundamental 
challenge in the development of very deep GNNs, such as innovating works based 
on networks, while the computational and time complexity should also be 
acceptable. 

Small-scale subgraph reconstruction from the original graph will be a suitable 
solution to overcome the scalability challenge. Sampling is a natural strategy that has 
been widely used for training large graphs. However, in sampling, relatively part of 
the information is lost. Few studies have focused on how to design an effective 
sampling strategy to balance the effectiveness and scalability. For example, 
GraphSAGE [93] randomly samples a fixed number of neighbors, and PinSage 
[102] uses a random walk strategy for sampling. 

As mentioned in Sect. 5.4, GNN-based recommender models are mostly based on 
static graphs, while many dynamic factors exist in session-based recommender 
system. For example, user data are naturally collected dynamically in these systems. 
Moreover, modeling user dynamic preferences is one of the most important chal-
lenges in these recommendation scenarios. In addition, the platform may dynami-
cally include new users, products, features, etc., which creates challenges for static 
graph neural networks. Recently, dynamic GNNs [103, 104] have attracted the 
attention of researchers who apply embedding propagation operations on dynami-
cally constructed graphs. 

Static graphs are stable, so they can be modeled practically, while dynamic graphs 
introduce changing structures. A serious future research challenge is how to design 
the GNN framework in response to dynamic graphs in practice. On the other hand, 
considering the characteristics of time evolution in session-based recommender 
system, the proposed model based on a dynamic GNN will be a promising research 
direction with broad applications in the real world. 

Using a supervised approach on interactive data, relatively sparse results are 
obtained compared with the graph scale. Therefore, it is necessary to consider 
more supervised signals from the graph structure or recommendation task using 
self-supervised GNN. Various studies have tried strengthening GNN-based recom-
mendations by designing auxiliary tasks from the graph structure with self-
supervision [105, 106]. Data augmentation, such as node removal, can be used to 
generate sample pairs for contrastive training. We believe that using self-supervised 
tasks to learn meaningful and robust representations in session-based recommender 
system based on GNN is a suitable direction for future research. 

Another learning method that widely has been utilized and discussed in this 
chapter is deep reinforcement learning. DRLs deal well with the problems of 
session-based recommender systems because such problems can be modeled as a 
Markov decision process to predict the user’s long-term preferences. On the other 
hand, the nature of user interaction with a recommender system is sequential, which



is consistent with the interactive nature of reinforcement learning. By combining the 
advantages of deep learning and reinforcement learning, deep reinforcement learn-
ing tries to build effective platforms and has also been used in session-based 
recommender systems. There are several research such as [10, 68, 69] based on 
deep Q-Learning; [71–73, 77] based on the combination of DRLs and RNNs; and 
[75] and [76] based on the combination of DRLs and CNNs. 
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Most existing methods of SBRS use one agent. Multi-agent reinforcement learn-
ing (MARL) is a subfield of reinforcement learning that is capable of learning 
multiple policies and strategies. Although a single-agent reinforcement learning 
framework can only handle a single task, studies can be defined that consider the 
multi-task situation in SBRS and use multi-agent DRL (MADRL) or hierarchical 
DRL (HDRL). HDRL is proposed to handle complex tasks by dividing tasks into 
several small components and requires the agent to determine sub-policies. Different 
from HDRL, MADRL introduces several agents to handle subtasks. Hierarchical 
multi-agent RL (HMARL) combines HRL and MARL, where HDRL can be used to 
divide a complex task into several sub-tasks, such as users’ long-term interests and 
short-term clicking behavior, and MADRL can also be considered several factors. 

Sample inefficiency is a known challenge in model-free DRL methods used in 
SBRS. Model-free DRL requires a significant number of samples because there is no 
guarantee that the received mode will be useful. Typically, after a significant number 
of intervals, and after receiving a useful state and reward signal, the agent can begin 
to learn, which can be a severe challenge in the useful duration of a session. On the 
other hand, DRL model-based methods work more efficiently in this case, although 
they are more complicated because the agent must analyze the larger action and state 
space to learn the environmental model and the desired policy. 

Unlike existing sequential models that use convolutional or recurrent networks, 
transformer is completely based on an attention mechanism called “self-attention,” 
which is highly efficient and capable of uncovering syntactic and semantic patterns 
between words in a sentence [107]. Transformer uses self-attention to form a codec 
to calculate the contextual relationship. This network is used to weigh and aggregate 
the information of all items. For sequential recommendation, Kang and McAuley 
were the first to introduce a two-layer transformer decoder (i.e., transformer lan-
guage model) called SASRec to capture user’s sequential behaviors in 2018 [108]. In 
another research around the same time, Sun et al. proposed BERT4Rec, which 
employs deep bidirectional self-attention to model user behavior sequences 
[e]. After these significant and influential works in SBRS, many researchers focused 
on the transformer model and provided excellent performance solutions in SBRS 
[109–117]. 

Although a lot of work has been done using transformers in SBRS in the last few 
years, there is still much research potential:

. Incorporating rich context information into the transformer models, such as dwell 
time, action types, locations, devices, or any other context data.

. Transformer models that can handle very long sequences (e.g., clicks).
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. Considering user’s higher-order features and addressing the impact of item 
position information on the current session by utilizing the position attention 
layer in the transformer network.

. Since the transformers usually have a limited ability to identify local contextual 
information, a CNN model can be employed at the aggregating stage of the item 
features with long- and short-distance dependencies.

. Utilizing different time intervals in the behavior sequence of users that considers 
item relations and corresponding time intervals using the combination of GNN 
and transformers. This hybrid model can be embedded with time intervals to learn 
the complex interaction information among items and users. 

234 5 Hybrid/Advanced Session-Based Recommender Systems

Table 5.6 summarizes the existing works discussed in this chapter and addresses 
the application domain, deep learning model, type of input data, embedding tech-
nique, and loss function of each approach. 

Table 5.6 A summary of the reviewed research 

Deep 
learning 
model 

Embedding 

[22] News CNN + 
LSTM 

Clicked news 
documents 

PV-DBOW BPR, TOP1 

[23] News CNN + 
LSTM 

Category, ID 
and keywords 
of items, 
sessions 

Char-level 
embeddings 

BPR, TOP1, 
cross-entropy 

[24] News CNN + 
LSTM 

Clicked news Pre-trained from a 
large corpus or ran-
domly initialized 

Negative 
log-likelihood 
function 

[25] POI CNN + 
LSTM 

Items of session D-dimensional 
vector 

Cross-entropy 

[26] E-commerce CNN + 
LSTM 

Items of session 
+ time series 
data 

Label encoder – 

[15] Job posting CNN + GRU Items of session One-hot encoding + 
d-dimensional 
vector 

Cross-entropy, 
BPR, noise 
contrastive esti-
mation, L2 loss, 
hinge 

[13] News CNN + GRU News article + 
contextual data 

CNN + pre-trained 
word embedding 

Similarity loss 
function based 
on accuracy and 
novelty 

[18] E-commerce CNN + GRU Items of session One-hot encoding Cross-entropy 

[19] E-commerce CNN + GRU Items of session One-hot encoding Cross-entropy 

[21] E-commerce CNN + 
Bi-GRU 

Items of session One-hot encoding + 
embedding lookup 

Cross-entropy 

[27] Insurance GRU + AE One-hot encoding Binary cross-
entropy
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Table 5.6 (continued)

Deep 
learning 
model 

Embedding 

All user actions 
across multiple 
sessions 

[29] E-commerce GRU + AE Items of session One-hot encoding + 
autoencoder 

Loss function 
based on sum of 
mean square 
error 

[34] E-commerce Gated graph 
neural net-
works 
(GGNN) 

Items of session D-dimensional vec-
tor + GGNN 

Cross-entropy 

[57] E-commerce Hypergraphs 
+ GCN 

Items of session D-dimensional 
vector 

Hybrid loss 
function based 
on cross-
entropy 

[48] E-commerce Gated GNN Session 
sequences and 
related context 
information 

Embedding vector 
representation of 
each item in the 
session graph 
(GGNN) 

Cross-entropy 

[63] E-commerce GCN + 
ConvLSTM 

Items of session D-dimensional 
node vector in 
directed session 
graph (GNN) 

– 

[75] E-commerce DRL + CNN Category, 
embedding and, 
user’s feedback 
of items of 
session 

Pre-trained 
low-dimensional 
vector 

DDPG 

[69] News Deep 
Q-Learning 

Interaction log Continuous feature 
representation + 
one-hot encoding 
for news 

– 

5.7 Conclusion 

Hybrid deep learning methods not only benefit from the advantages of single deep 
learning methods but also reduce the disadvantages of each method based on the 
capabilities that other models present. Due to the data complexity of session-based 
recommender systems, many approaches presented in this field are based on hybrid 
deep learning methods. Because of the sequential nature of the data, session-based 
recommender systems usually employ recurrent neural networks to model the 
sequence of events. Other deep learning methods can be combined with recurrent



neural networks to achieve more accurate feature extraction, achieve more optimal 
representations of inputs, and obtain better results. 
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In addition to hybrid deep neural network methods, two other types of advanced 
approaches are popular in session-based recommender systems: first, the approaches 
that utilize deep graph neural networks (GNNs) as the fundamental component, and 
second, the approaches that employ deep reinforcement learning (DRL) as the core 
module. Graph neural networks are a class of deep learning methods specifically 
developed to infer data described by graphs. In session-based recommender systems, 
it is possible to model the sequential behaviors and user-item interactions with a 
graph and learn the relations between users and items using a deep graph neural 
network. Moreover, graph neural networks could be combined with CNN and RNN 
models to provide more accurate and effective recommendations. Recommendation 
systems based on deep reinforcement learning benefit from a recommendation agent 
that interacts with the users to obtain the maximum cumulative reward by sequen-
tially selecting recommendation items during time steps. Deep reinforcement learn-
ing also could be combined with CNN, GAN, and RNN models. 

This chapter concluded with several discussions on the reviewed research and 
provided future directions and trends in session-based recommender systems using 
hybrid/advanced deep neural network models. 
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Chapter 6 
Learning to Rank in Session-Based 
Recommender Systems 

Abstract Today, our daily activities are increasingly dependent on data-oriented 
systems. A new trend emerged based on machine learning techniques to rank the 
results in information retrieval and recommender systems automatically called 
learning to rank (LtR). Two main important subsets of LtR systems include ranking 
creation and ranking aggregation. This chapter of the book discussed different 
models of LtR in information retrieval, recommender systems, and session-based 
recommender systems. 

Keywords Learning to rank · LtR · Recommender systems · Information retrieval · 
Session-based recommender systems · Ranking creation · Ranking aggregation 

6.1 Introduction 

Due to the increasing expansion of data-driven platforms such as social networks in 
our daily lives, different types of information retrieval systems play a significant role 
in organizing our activities. Information retrieval systems have access to information 
sources and help users make different decisions. For this reason, the approaches of 
ranking items, prioritizing, and presenting them to the users are important and 
effective. In recent years, a field called learning to rank (LtR) has emerged based 
on a combination of machine learning and information retrieval. Learning to rank 
uses machine learning techniques to rank the results, which is applied in various 
fields such as document retrieval, entity search, personalized search, collaborative 
filtering, document summarization, meta-search, question answering, etc. The LtR 
approaches are classified into ranking creation and ranking aggregation [1]. Ranking 
creation is making a ranking list of objects using their attributes, while ranking 
aggregation builds a ranking list of objects using multiple ranking list techniques. 
Various methods in these two fields usually employ supervised, semi-supervised, or 
unsupervised machine learning approaches. Learning to rank, specially ranking 
creation, has recently been intensively studied. 

Information retrieval systems, specially search engines and recommender sys-
tems based on information sources, help users’ decision-making process. Various 
approaches have been proposed to achieve a better quality of recommender systems
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and improve their ranking performance. Creating a high-quality ranking list is 
essential for recommender systems, whose final goal is to recommend a prioritized 
list of the suggested items to users. Although deep learning models have widely 
shown promising performance in recommender systems, little effort has been made 
to investigate learning to rank in these systems [2].
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In this chapter of the book, first, a brief overview of the fundamental of learning to 
rank models and commonly used datasets in various research in this field will be 
discussed. Then in Sects. 6.3 and 6.4, the various approaches to rank creation and 
rank aggregation are discussed and reviewed. Section 6.5 discusses and analyzes the 
results and the existing issues related to the learning to rank models in session-based 
recommender systems and provides guidelines for future research in this scope. 

6.2 Fundamentals 

Learning to rank (LtR) is a subfield of machine learning that considers methods and 
theories for automatically creating a data model for a ranking problem [3]. In other 
words, learning to rank is a machine learning technique that automatically creates a 
ranking function for specific objects. 

LtR, as a supervised learning-based method, has been widely used in IR (infor-
mation retrieval) to generate ranking functions based on training datasets. The 
ranking function is used to rank documents retrieved in response to a user query. 
Figure 6.1 shows the high-level process of the LtR that most information retrieval 
systems follow. For this purpose, the training set made of query-document pairs is 
given as input to the machine learning algorithm. A ranking model or ranking 
function is created based on the trained model and then used to rank search results 
for user queries. The ranking model can also be used in the testing phase to measure

Fig. 6.1 High-level process of LtR in information retrieval systems



the predictive performance of the ranking algorithm on the test dataset. Finally, the 
ranking system produces an ordered list of documents retrieved from the document 
collection (document repository) in response to the user’s search query.
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Two main important subsets of LtR include ranking creation and ranking aggre-
gation, each described and formulated separately along with their learning methods 
in subsequent sections. 

6.2.1 Ranking Creation 

The purpose of ranking is to create a ranking list of recommendations based on the 
features of recommendations and requests so that better recommendations are ranked 
higher. Learning methods in ranking creation are related to the automatic construc-
tion of the ranking model using machine learning techniques. In previous informa-
tion retrieval systems, learning was not performed to obtain a ranking model to sort 
documents based on queries. As an example, assuming query q and document d in 
the BM25 model, the ranking model f(q, d ) is presented with a conditional proba-
bility distribution such as P(r| q, d ), where the value of r is equal to zero or one and 
indicates the unrelatedness or relatedness of the document, respectively. In the 
language model for IR (LMIR) [4], the conditional probability distribution P(q| d ) 
represents the ranking model. The computation of probabilistic models is done 
through observed words in documents and queries and is independent of learning. 

After that, a new trend emerged in information retrieval that used machine 
learning techniques to create ranking models automatically. In the information 
retrieval scope, a lot of data present the relations and can be used in automatically 
creating the ranking model. It also provides a new opportunity to automatically 
create a low-cost ranking model by extracting training data from search logs. 
Therefore, learning to rank has become one of the effective technologies for modern 
Web search engines [1]. Figure 6.2 shows the framework of learning to rank [3]. 

As shown in Fig. 6.2, since learning to rank is a type of supervised learning, it 
needs a training set. Generating a training set is similar to creating a test set for 
evaluation purposes. In this framework, a set of n training queries are represented by 
qi(i = 1, . . .n) and documents related to them, represented by feature vectors by 

x ið Þ  = x ið Þ  j 

n om ið Þ  

j= 1 
. m (i) is the number of documents related to qi query. Ground truth 

labels are also specified by y= yj
{ }m 

j= 1 
. Then, a special learning algorithm is 

employed to learn the ranking model so that the output of the ranking model can 
predict the ground truth labels in the training set as accurately as possible and 
according to the loss function. In the test phase, when a new query is entered, the 
built and trained model in the previous phase is used to sort the documents and return 
the corresponding ranking list to the user. 

The field of ranking creation includes four main issues: training and testing 
processes, creating high-quality training data, feature construction, and evaluation.
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Fig. 6.2 Learning to rank framework [3] 

If ranking creation is performed using a supervised approach, training and test 
data are the crucial components. For example, in information retrieval, sets of 
queries and documents are considered training data, which include the degree of 
relevance between each query and the documents. However, in real-world scenarios, 
this kind of data can be difficult to obtain because ranking lists must contain average 
judgments of users about the relevance of documents to queries. Typically, there are 
two common methods of training data creation. The first labeling method is by 
human users, which is widely used in various fields of information retrieval. Another 
method is to extract data through clicks. Click-through data in a Web search engine 
records the user clicks on documents after submitting a query. Click-through data 
presents implicit feedback about users’ relevance and is therefore useful for rele-
vance judgments. It is worth mentioning that the ranking model is actually defined as 
a function of the feature vector based on the document and the query. This is why the 
ranking model is generalizable, and even if it is trained on a small amount of data, it 
can be extended to use for any other data. Like other machine learning tasks, learning 
performance strongly depends on the features’ effectiveness. Therefore, the method 
for feature construction is critical. Finally, performance evaluation of a ranking 
model is performed by comparing the ranking list of the model’s output and the 
ranking list provided as the ground truth.
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Fig. 6.3 The supervised LtR process 

The supervised LtR process is depicted in Fig. 6.3. LtR process includes datasets 
for training and testing purposes, which are indicated by Dtrain and Dtest, respec-
tively. Dtrain is used to train an LtR model, and its purpose of this training is to 
minimize the prediction error on Gtrain based on the ranking function ´Rank Fð Þ. G is a 
set of score features and ground truth for supervised learning. This process is usually 
done by minimizing the sum of the individual errors ´Rank between the ground truth 
G and its prediction G  for Dtrain. To evaluate the performance of the ´Rank model, we 
apply it to Dtest and then compare the ground truth scores and predictions. If the 
ranking predictions are considered accurate enough, then the previous test result has 
succeeded. So ´Rank considers a new set of candidates to predict their scores 
Ǵ= ´Rank Fð Þ, and candidates are ranked based on these predictions. 

In step (1) of Fig. 6.3, the training data Dtrain, consisting of tuples (F, G), is given 
as input to a learning to rank algorithm, which in step (2), a ranking function 
´Rank Fð Þ  is trained. This is done by minimizing the errors ´Rank Fð Þ  when predicting 

the scores G  for Dtrain in step (3). The prediction accuracy of the model is evaluated 
in (4); for this purpose, the Ftest features from Dtest are taken as input for ´Rank. In 
step (5), the predicted scores for G  are calculated, and then G  is compared with the 
ground truth Gtest in (6). 

It should be noted that the approaches presented in the field of ranking creation 
based on learning methods are divided into three categories: pointwise, pairwise, and 
listwise. Pointwise and pairwise approaches transform the ranking problem into 
classification, regression, and ordinal regression. The listwise approach takes the 
ranking lists of objects as examples for learning and learns the ranking model based 
on the ranking lists. The main differences between the approaches are based on the 
loss functions used.
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6.2.2 Ranking Aggregation 

The purpose of ranking aggregation is to combine multiple rankings into a single 
ranking, which is better than any of the original rankings in terms of evaluation 
metrics. Learning in ranking aggregation involves building a ranking model for 
ranking aggregation using machine learning techniques. For example, in meta-
search, the query from the user is sent to several search systems, and the ranking 
lists from the search systems are combined and presented to the user in a ranking list. 
Because rankings from individual search engines may not be accurate enough, meta-
search actually takes the majority of votes over search rankings. The question is how 
to effectively perform majority voting. Here, individual search engine rankings are 
called base rankings, and meta-search rankings are called final rankings. LtR 
aggregation can be done through unsupervised or supervised learning approaches. 
In previous information retrieval methods, ranking aggregation was usually based on 
unsupervised learning. Recently, supervised methods for ranking aggregation have 
also been proposed. In supervised LtR aggregation, the training data includes 
queries, their associated documents, and the basic rankings on the documents, as 
well as the corresponding final rankings. Test data include queries, related docu-
ments, and basic rankings of documents. Finally, the evaluation metrics in the 
ranking aggregation are based on how to present the ground truth. It can be any 
standard measure in LtR systems [1]. 

Another type of LtR classification method includes feature-based and discrimi-
native methods. Feature-based methods, called label learning methods in machine 
learning, represent all the available documents with feature vectors that reflect the 
relevance of the documents to the query. Conventional features used in learning to 
rank are the frequency of query terms in the document, the outputs of the BM25 
model, and the PageRank model. These features can be obtained from the indexes of 
a search engine. LtR aggregation methods can combine several features, and by 
including the output of the model as one of the dimensions of the features, it is able 
to apply any new development in the information retrieval model. This capability 
enables real search engines to use multiple features to detect the required complex 
information of Web users. Learning to rank techniques based on discriminative 
methods have an automatic learning process based on training data. These methods 
are often needed for real search engines because these search engines receive much 
feedback from users and usage reports every day. Therefore, automatic learning 
from feedback and continuous improvement of the ranking are critical. In addition, 
discriminative methods are utilized to combine different types of features without the 
need to define a probabilistic framework to provide entities and predict accuracy. 

All learning to rank approaches generally learn their ranking functions by min-
imizing some loss functions. In recommender systems, a top N list is usually 
generated to be displayed to users. Hence, ranking this list is crucial for both the 
quality of recommendations and user satisfaction. Indeed, instead of focusing on 
recommendations as a rank prediction problem in recommender systems, looking at 
how items are ranked is more reasonable. The item most related to the user should be
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at the top of the list of recommendations. Defining relevance eliminates the need to 
predict rankings. You do not need to know how many users rate something; what 
matters is that the user at least likes that item more than anything else available. It is 
worth noting that the item catalog may not contain an item the user likes, but in that 
case, the recommender system still wants to provide a list of the best available items 
it has [5]. Ranking models and algorithms help recommender systems arrange the 
items of the list of recommendations in the most optimal state possible [6]. 
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Table 6.1 Reviewed studies in LtR scope (information retrieval and recommender systems) 

Learning to rank 
model 

Reference Ranking model 

Information 
retrieval 

Recommender 
system Information retrieval 

Recommender 
system 

Rank 
creation 

Pointwise [7–17 18–22] SubsetRanking [7], 
OPRF [8], McRank 
[11], PRanking [13], 
DPG-FBE [16] 

CPL-mg [22] 

Pairwise [23–34 35–42] RankNet [26], 
LambdaRank [23], 
FRank [28], Ranking 
SVM [29], GBRank 
[30], SortNet [31], 
SSRankBoost [32] 

PRM [41], 
BPR [36], 
TOP1[37], 
CPLR [38], 
PDLR [35], 
PLtR-N [40] 

Listwise [43–50 51–54] AdaRank [45], 
ListNet [46], PiRank 
[47], SetRank [48], 
FastAP [49], DLCM 
[50], RaMBO [44] 

TOP1-max 
[52], BPR-max 
[52], Do-Rank 
[53] 

Hybrid [55–57 2, 58 LambdaRank [56], 
LambdaMART [56], 
IESR-Rank [57], 
IESVM-Rank [57] 

DeepRank [2] 

Rank aggregation [34, 61–68 [69–73] Cranking [63], 
v-ManX [65], RABF 
[68] 

ERA [70] 

Recommender systems that learn a ranking model based on the preference scores 
of individual items are considered pointwise ranking methods. Recommender sys-
tems using pairwise learning to rank can consider each user’s preferences for a pair 
of items, and finally, listwise learning to rank systems can consider each user’s list 
preferences for a list of items (usually ranked) model. 

Table 6.1 presents the list of studies according to the type of ranking (creation/ 
aggregation) and their application (IR/RS). 

The diagram in Fig. 6.4 shows the percentage of each technique used in the 
discussed research. 

According to the diagram in Fig. 6.4, a large percentage of the research reviewed 
is related to methods in ranking creation which are devoted to the automatic 
construction of the ranking model using machine learning techniques.
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Fig. 6.4 Percentage of each type of ranking creation and ranking aggregation methods in IR/RS 
scope 

6.2.3 Datasets 

To evaluate learning to rank systems, several datasets have been published publicly. 
This dataset contains thousands of annotated queries, hundreds of semantic features, 
and millions of user sessions, which have been widely used in learning to rank 
research. Publicly available learning to rank datasets can be roughly classified using 
synthetic or real user feedback. Both are widely used in the empirical study of 
unbiased learning to rank algorithms.

. Microsoft LETOR [74]: It uses the Gov2 Web page collection (~25 million 
pages) and two sets of queries from the Million Query track derived from 
TREC 2007 and TREC 2008. These two query sets are called MQ2007 and



MQ2008. In MQ2007, there are 1692 queries with 65,323 labeled documents; in 
MQ2008, there are about 784 queries with 14,384 labeled documents.

6.3 Ranking Creation 253

. Yahoo! LETOR [75]: It is one of the largest datasets for public LtR that have used 
commercial English search engines. In total, it contains 29,921 queries with 
710,000 documents. Each query and document pair has a five-level relevance 
judgment and 700 features selected by a separate feature selection phase.

. Tiangong-ULTR [76]: The dataset was collected using real-world user click data 
sampled from Sogou.com search sessions. For this purpose, 3449 queries written 
by real search engine users were randomly sampled, and the top 10 results were 
collected from a 2-week search report. After cleaning, the dataset has 333,813 
documents, 71,106 ranked lists, and 3,268,177 anonymized search sessions with 
clicks.

. Istella-S [77]: It contains 33,000 queries and 3,408,000 documents (approxi-
mately 103 documents per query) sampled from an Italian commercial search 
engine. Each query-document pair is represented by 220 features and annotated 
with five-level relevance judgments.

. Baidu-ULTR [78]: The dataset consists of two parts: (1) large-scale Web search 
sessions and (2) expert annotation dataset. The first consisted of 383,429,526 
queries and 1,287,710,306 documents randomly sampled from Baidu search 
engine search sessions in April 2022. Most sessions contain less than ten candi-
date documents with page presentation features and user behaviors in the current 
query. The latter is also randomly sampled from the monthly collected search 
sessions of the Baidu search engine, and the relevance of each document to the 
query is judged by expert annotators, which includes five tags. 

6.3 Ranking Creation 

Ranking creation is the ranking of recommended lists based on the features of the 
recommendations so that the more relevant recommendations are ranked at a higher 
level. In this section, we will discuss the main ranking creation models, which are 
generally classified into pointwise, pairwise, and listwise in the two fields of 
information retrieval and recommender systems. 

6.3.1 Pointwise Methods 

In pointwise methods, the ranking problem becomes a classification, regression, or 
ordinal regression problem, and existing classification, regression, or ordinal regres-
sion methods can be used to solve it. These types of methods take training data as 
input and ignore group structures. Training data is transformed into supervised 
learning data so that existing methods can be used to perform learning. When a 
class label, a real number, and a score label are considered for the data in the dataset,

http://sogou.com


the problem becomes classification, regression, and ordinal regression, respectively. 
Assuming that the output of the learned model is real numbers, this model can be 
used to rank documents when a query is given (sort documents according to the 
scores given by the model). The loss function is defined in pointwise methods on a 
single object. In fact, the total loss in pointwise methods is calculated as the sum of 
the defined losses for each document as the distance between the predicted score and 
the real score. 
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In the field of information retrieval systems, four basic components are formally 
defined to describe pointwise methods: input, output, hypothesis, and loss function 
[3]:

. The input space contains the feature vectors of each document.

. The output space contains the degree of relevance of each document. The ground 
truth label in the output space is defined as follows: if the judgment is directly 
assumed as the degree of relevance lj, the ground truth label for the document xj is 
defined as yj = lj, but if the judgment is defined as the total order of πl, the ground 
truth label can be obtained using a mapping function. It is worth mentioning that 
if the judgment is given as a pairwise preference lu, v, it is not easy to use it to 
generate the ground truth label.

. The hypothesis space contains functions that take the feature vector of a docu-
ment as input and predict the degree of relevance of the document. Usually, such 
a function is called the scoring function f. All documents can be ordered based on 
the scoring function, and the final ranking list can be delivered.

. The loss function measures the accurate prediction of the ground truth label for 
each document. In different pointwise ranking algorithms, ranking is modeled as 
regression, classification, and ordinal regression. Therefore, regression loss, 
classification loss, and ordinal regression loss are utilized as loss functions. 

As mentioned above, based on different machine learning techniques, the 
pointwise approach can be divided into three categories: classification-based algo-
rithms, regression-based algorithms, and ordinal regression-based algorithms [3]:

. The ranking problem can be considered as a classification model. Classification is 
a supervised learning problem in which the predicted target variable is discrete. 
When ranking is modeled as a classification, the degree of relevance given to a 
document is considered a class label. In classification-based algorithms, the 
output space contains unordered categories. Some of these approaches are 
based on binary classification, and some others are based on multi-class classifi-
cation. Approaches related to binary classification are based on support vector 
machines (SVM) [9], logistic regression [10], etc. SVM-based methods have 
been noticed due to their ability to automatically learn arbitrary features, fewer 
assumptions, and expressiveness [9]. Logistic regression is a popular classifica-
tion technique used to perform binary classification for ranking. Approaches 
based on multi-class classification use boosting tree-based method techniques 
[11], association rule mining [12], etc.



. For regression-based algorithms, by considering the degree of relevance as real 
numbers, the ranking problem is reduced to a regression problem. Regression is 
also a supervised learning problem where the predicted target variable is contin-
uous. When ranking is modeled as regression, the degree of relevance given to a 
document is considered a continuous variable, and the ranking function is trained 
by minimizing the loss of the training set. In these methods, the output space 
contains points associated with real values. In regression-based approaches, 
various types of regression have been used, such as weighted regression [7], 
polynomial regression [8], etc.

. Ordinal regression considers the ordinal relationship between ground truth labels 
when learning a ranking model. For algorithms based on ordinal regression, the 
output space consists of ordered categories. Documents with their ground truth 
labels are considered in the training set as random independent variables with the 
same distribution resulting from the multiplication of the input spaces [3]. If the 
number of sorted categories is considered equal to 2 in this type of approach, the 
problem is reduced to a binary classification. For this reason, ordinal regression-
based techniques strongly correlate with classification-based algorithms. These 
types of approaches use perceptron-based ranking methods [13, 14], ranking with 
large margin principles [15], and loss functions based on threshold [17].
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Table 6.2 Learning methods in pointwise approaches 

Regression Classification Ordinal regression 

Input Single document xj 
Output Real number yj Non-ordered category yj Ordered category yj 
Hypothesis f(xj) Classifier on ( f(xj)) f(xj) + thresholding 

Loss function Regression loss 
L = ( f; xj, yj) 

Classification loss Ordinal regression loss 

Table 6.2 shows the learning methods of pointwise approaches, separated by 
input, output, hypothesis, and related loss function for regression, classification, and 
ordinal regression approaches. 

Pointwise approaches in recommender systems create a score for each item and 
then rank the items based on that score. Then, the recommendations are presented to 
users based on this rating. The difference between score prediction and ranking is 
that with ranking, the score of an item is important when it represents the correct 
position of that item in the ranking. In Sect. 6.3.1.1, the pointwise methods in the 
field of information retrieval and, in Sect. 6.3.1.2, the pointwise methods in the field 
of recommender systems are discussed and reviewed. 

6.3.1.1 Pointwise Methods in Information Retrieval 

One of the fundamental methods for pointwise LtR is the method provided by 
Cossock et al., which models the ranking problem based on the regression technique 
[7]. The set of m documents related to query q is represented by x = xj

{ }m 
j= 1, and the



{ }m

( )

set of y = yj j= 1 
represents the ground truth labels of the documents sorted by 

multiple ordered categories. The scoring function f is used to rank these documents, 
and the loss function is calculated using Eq. (6.1): 
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L f ; xj, yj
( )

= yj - f xj
( )( )2 ð6:1Þ 

The results of this method show that there is no loss if and only if the output of the 
scoring function f(xj) is exactly equal to the label yj. Otherwise, the loss value 
increases to the power of 2. In other words, for a related document, the loss will 
be zero only if the scoring function can output exactly yj. The specific loss of this 
function can be the upper limit of the ranking error based on the nDCG metric. In the 
case of high regression loss, the corresponding ranking is optimal as long as the 
relative orders between the predictions of f(xj) correspond to the ground truth labels. 
As a result, it is expected that the squared loss function is a loose bound of the 
nDCG-based ranking error. 

With the aim that ranking errors based on DCG is limited by multi-class classi-
fication errors, Li et al. proposed multi-class classification, the McRank algorithm 
[11]. They learn a classification model and use it to obtain the membership proba-
bility of each object. Then, they calculate the expected scores of the objects and use 
them for ranking purposes. Class probabilities are learned using the gradient 
boosting tree algorithm. 

The loss function used to learn the classifier in McRank is according to Eq. (6.2): 

L -yj, yj
( )

= I yj ≠ -yjf g ð6:2Þ 

The surrogate loss function is defined according to Eq. (6.3), and the boosting tree 
algorithm is used to minimize the error. 

Lφ yj, -yj
( )

= 
Xm 
j= 1 

XK 
k = 1

- logP -yj = k
( )

I yj = kf g ð6:3Þ 

In Eq. (6.3), P -yj = k is defined using the logistic function, which is calculated 
using Eq. (6.4): 

P -yj = k
( )

= 
eFk xj,wð ÞPK 

s= 1 
eFs xj ,wð Þ  

ð6:4Þ 

In Eq. (6.4), the expression Fk (xj,w) shows the degree of belonging of the 
document xj to category k. Then, classification results are converted into ranking 
scores. The output of the classifier is converted to probability using Eq. (6.4). Then,



the weighted combination of Eq. (6.5) is used to determine the final ranking score of 
a document. 
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f xj
( )

= 
XK 
k = 1 

g kð Þ: P -yj = k
( ) ð6:5Þ 

Another well-known pointwise method based on ordinal regression called 
PRanking has been proposed by Crammer et al. [13]. The goal of this algorithm is 
to find the path defined by the parameter vector w after presenting the documents on 
it. Then, thresholds can be easily used to identify the documents sorted into different 
categories. This goal is achieved using an iterative learning process. In iteration t, the 
learning algorithm receives an instance xj associated with query q. The algorithm 
predicts -yj according to Eq. (6.6) and receives the ground truth label yj.

-yj = argmin k w
T xj - bk < 0

( } ð6:6Þ 

If the algorithm makes a mistake and there is at least one threshold indexed by k, 
the value of wT xj is in the wrong side from bk. To correct the error, values of w

T xj 
and bk should be directed toward each other on the same side. After that, the model 
parameter w is set by w = w + xj, same as in many perceptron-based algorithms. This 
process is repeated until the training process converges. 

Hu et al. considered item ranking in search sessions on e-commerce platforms 
such as Amazon and Taobao, which is a multi-step decision-making problem 
[16]. For greater correlation between different ranking steps, the authors presented 
a reinforcement learning method to learn the optimal ranking policy in which 
expected accumulative rewards are maximized in one search session. For this 
purpose, the concept of the search session Markov decision process (SSMDP) is 
formally defined to formulate the multi-step ranking problem by identifying the state 
space, reward function, and state transition function. In addition, a new algorithm 
named Deterministic Policy Gradient with Full Backup Estimation (DPG-FBE) is 
proposed, which is used for the problem of high reward variance and unbalanced 
reward distribution of SSMDP. 

6.3.1.2 Pointwise Methods in Recommender Systems 

One of the pointwise methods presented in the field of video recommender systems, 
which is a large-scale multi-objective ranking system, recommends the next video to 
watch on a commercial video-sharing platform [19]. This method is a combination of 
classification and regression approaches that have multiple objectives. The ranking 
problem in a video recommender system has several challenges. They usually have 
different or conflicting goals; high-rated videos may be recommended as well as 
videos shared with the viewer’s friends. Or, there is often an implicit bias in the 
system. For example, a user may have clicked and watched a video just because it



was rated high, not because the user liked it the most. Therefore, models trained 
using data generated from the current system will be biased, causing a feedback loop 
effect [21]. 
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Zhao et al. have employed user behaviors as training labels [19]. Since users can 
behave differently from what is recommended, the ranking system is designed to 
support multiple objectives. This method divides goals into two categories: (1) par-
ticipation objectives, such as user clicks and the degree of participation with 
recommended videos, and (2) satisfaction objectives, such as a user liking a 
YouTube video and rating a recommendation. The prediction of behaviors related 
to interaction goals is formulated into two tasks: binary classification for behaviors 
such as clicks and regression for behaviors related to time spent watching. Similarly, 
predicting user satisfaction behaviors are described as binary categories or regres-
sions. For example, behaviors such as clicking like for a video are described as a 
binary classification task, and behaviors such as rating as a regression task. The 
binary classification is calculated from the cross-entropy loss function, and the 
squared loss is calculated for regression. The proposed framework of Zhao et al. 
has been shown in Fig. 6.5. 

Zhu et al. proposed a new framework called CPL (Combined framework of 
Pointwise prediction and LTR) in which pointwise prediction and LTR are com-
bined to improve the performance of top N recommendations [22]. In fact, there may 
be a problem of overfitting in pointwise prediction, while LTR is more prone to 
higher variance. Both problems can be improved using the hybrid model presented 
by the authors. For this purpose, they propose a special implementation of CPL 
called CPLmg, which is a combination of FSLIM and GAPfm models. FSLIM is 
extended from SLIM using matrix factorization (MF) methods. SLIM directly learns 
a similarity matrix from the data. Factorized SLIM is a new version of SLIM that 
incorporates the idea of traditional matrix factorization (MF) methods. GAPfm is a 
list LTR method that directly optimizes a smoothed approximation of the GAP 
metric. GAP extends average precision to cases of multi-graded relevance and 
inherits the most important feature of the AP metric, which ensures that errors in 
recommended items at the top of the list are penalized more than errors at the bottom 
of the list. 

The authors train FSLIM and GAPfm using the multi-task learning approach. As 
shown in Fig. 6.6, FSLIM and GAPfm are iteratively updated based on their 
respective objective functions with shared underlying variables, latent factor matri-
ces P and Q, and learned item similarity matrix W. The matrices P and Q are jointly 
updated by FSLIM and GAPfm in each joint training round, and the item similarity 
matrix W helps GAPfm to extract potential positive samples. 

To learn and estimate several types of user behavior, Ma et al. used MMoE [18]  to  
automatically learn parameters and share potentially conflicting objectives. MMoE 
is a soft parameter-sharing model developed to model task relations. It adapts the 
mixture-of-experts (MoE) structure for multi-task learning by sharing experts in all 
tasks while also having a trained gating network for each task. The key idea is to 
replace the shared ReLU layer with the MoE layer and add a separate gating network 
for each task.
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Fig. 6.6 The CPLmg framework [22] 

In [20], Tang et al. presented a pointwise ranking method that considers multiple 
objectives for modeling different user behaviors, such as clicking, sharing, and 
commenting in the ranking system. In the offline training process, the ranking 
model is trained based on user actions extracted from user logs. After each online 
request, the ranking model provides predictions for each task, and then the weighted 
multiplication-based ranking module combines these predicted scores through a 
combination function. Among all tasks, VCR (view completion ratio) and VTR 
(view-through rate) are two important objectives that model the key online metrics of 
view count and watch time, respectively. VCR is a regression-based task trained on 
MSE, and VTR is a binary classification task trained on cross-entropy. The patterns 
between VCR and VTR are complicated, and the SEESAW phenomenon exists 
between them. The SEESAW phenomenon is defined as the improvement of one 
task often leading to a decrease in the performance of another task. 

In this chapter, a progressive layered extraction (PLE) model is proposed to deal 
with the SEESAW phenomenon and negative transfer. The key idea of PLE is as 
follows. First, it explicitly separates common and task-specific experts to avoid 
harmful parameter interference. Second, multi-level experts and gating networks 
are introduced to incorporate more abstract representations. Finally, it adopts a novel 
progressive separation routing to model interactions between experts and achieves 
more efficient knowledge transfer between complex related tasks. 

6.3.2 Pairwise Methods 

The pairwise approach does not focus on accurately predicting the degree of 
relevance of each document but rather on the relative order between two documents.



( )

In this sense, it is closer to the concept of “ranking” than the pointwise approach. In 
the pairwise approach, ranking is usually reduced to classification over pairs of 
documents, determining which document is preferred in a pair. Therefore, the goal of 
learning is to minimize the number of unclassified document pairs. This classifica-
tion differs from the classification in the pointwise approach because it operates on 
both documents under review. In the field of information retrieval systems, four 
essential components are formally defined to describe pairwise methods: input, 
output, hypothesis, and loss function [3].

. The input space contains pairs of documents, both represented by feature vectors.

. The output space contains the pairwise preferences between each pair of docu-
ments, which take the values {+1,-1}. Different types of judgments can be 
converted into ground truth labels in terms of pairwise priorities: 

– If the judgment is assumed as the degree of relevance lj, then the pairwise 
preference for (xu, xv) can be defined as yu,v = 2:I lu> lvf g - 1. 

– If the judgment is assumed directly as a pairwise preference, it is simply set as 
yu, v = lu, v. 

– If the judgment is assumed to be the total order of πl, it can be defined as 
yu,v = 2:I πl uð Þ< πl vð Þf g - 1.

. The hypothesis space consists of two-variable function h, which takes a pair of 
documents as input and outputs the relative order between them. Some pairwise 
ranking algorithms define their hypotheses directly, and others define this hypoth-
esis with a scoring function f according to Eq. (6.7): 
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Table 6.3 Components of 
pairwise approaches 

Pairwise methods 

Input Document pair (xu, xv) 

Output Preference yu, v 
Hypothesis Ranking function f X  

→ 

2:I f xuð Þ> f xvð Þf g - 1 

Loss function Pairwise classification/regression loss 
L (f  ;  xu, xv, yu, v) 

h xu, xvð Þ= 2:I f xuð Þ> f xvð Þf g - 1 ð6:7Þ

. The loss function measures the inconsistency between h(xu, xv) and the ground 
truth label, yu, v. In many pairwise ranking algorithms, the ranking is modeled as a 
pairwise classification, and the loss of the corresponding classification on a pair of 
documents is used as a loss function. The scoring function f uses the classification 
loss function based on the difference ( f(xu), f(xv)) instead of the value h(xu, xv). 

Table 6.3 shows the components of pairwise approaches, separated by input, 
output, hypothesis, and related loss function.



ð
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Several recommender systems use pairwise methods to rank recommended items. 
In particular, session-based recommender systems that are based on sequential data 
and usually apply recurrent neural networks mostly use pairwise ranking loss 
functions [52]. Since deep learning methods need to propagate gradients in several 
layers to optimize model parameters, the quality of these gradients caused by the loss 
function affects the optimization quality and model parameters. Additionally, output 
spaces with several items present unique challenges that must also be considered 
when developing an appropriate ranking loss function. 

The basic approaches to pairwise LtR have different types. Some of them are 
based on neural networks [34], perceptrons [31], boosting [33], SVM [29], and other 
machine learning methods [28, 30]. In Sect. 6.3.2.1, the pairwise methods in the field 
of information retrieval and, in Sect. 6.3.2.2, the pairwise methods in the field of 
recommender systems are discussed and reviewed. 

6.3.2.1 Pairwise Methods in Information Retrieval 

In [26], one of the first pairwise methods for learning to rank was proposed by 
Burges et al. using neural networks, which is called RankNet. RankNet selects the 
cross-entropy function as the loss function for learning and considers probability in 
the training data for each pair of relevant objects. If you consider two documents xu, 
xv associated with q, -Pu,v is calculated based on their ground truth labels. In this case, 
if yu, v = 1, then -Pu,v = 1; otherwise, -Pu,v = 0. Then, the modeled probability Pu, v 

based on the difference between the scores of these two documents is defined by the 
scoring function according to Eq. (6.8): 

Pu,v fð Þ= 
exp f xuð Þ- f xvð Þð Þ  

1þ exp f xuð Þ- f xvð Þð Þ ð6:8Þ 

Cross-entropy between the final probability and the modeled probability is used 
as a loss function, which is briefly mentioned in Eq. (6.9): 

L f ; xu, xv, yu,v
( )

= - -Pu,v log Pu,v fð Þ- 1- -Pu,vð Þ log 1-Pu,v fð Þð Þ 6:9Þ 

Cross-entropy loss is an upper bound of the 0-1 pairwise loss function, which is 
defined in Eq. (6.10): 

L0- 1 f ; xu; xv; yu,v
( )

= 
1 yu,v f xuð Þ- f xvð Þð Þ< 0, 
0 otherwise:

{
ð6:10Þ 

Then a neural network is used as a model and stochastic gradient descent as an 
optimization algorithm to learn the scoring function f. This neural network consists 
of two normal layers and an output layer, where the features of a document are 
entered in the first layer. The second layer consists of several hidden nodes, each



containing a sigmoid transformation, and the network output is the document 
ranking score. 
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Burges et al. proposed a nested pairwise ranking method based on RankNet, 
which iteratively re-ranks documents with higher scores [27]. At each iteration, this 
approach uses the RankNet algorithm to re-rank a subset of the results. It divides the 
problem into smaller and simpler parts and creates a new distribution of results to be 
learned by the algorithm. 

In the method presented in [26] by Burges et al., in some cases, cross-entropy loss 
has a non-zero minimum, which shows that there will always be some loss regardless 
of the type of model used. This may not match our cognition of a loss function. In 
addition, the loss is not bounded, which may lead to the dominance of some difficult 
document pairs in the training process. To deal with these problems, a new loss 
function called fidelity loss function is proposed in [28], which is defined by 
Eq. (6.11): 

L f ; xu, xv, yu,v
( )

= 1-
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-Pu,v Pu,v fð Þ

q
-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1- -Pu,vð Þ  1-Pu,v fð Þð Þ

q
ð6:11Þ 

Fidelity was originally used in quantum physics to measure the difference 
between two possible states of a quantum. When used to measure the difference 
between the target probability and the modeled probability, it is ( f( xu) - f(xv)). By 
comparing loss fidelity with cross-entropy loss, it is clear that fidelity loss is limited 
between 0 and 1. On the other hand, while cross-entropy loss is convex, fidelity loss 
becomes non-convex, which makes optimizing such a non-convex objective more 
difficult. In addition, fidelity loss is no longer an upper bound of 0-1 pairwise loss. In 
[28], a generative additive model as a ranking function is proposed by Tsai et al., 
which is similar to the boosting technique to learn the coefficients in the additive 
model. Specifically, a new weak ranker (i.e., a new feature) is added in each iteration, 
and the combination coefficient is adjusted by considering the fidelity loss gradient. 
The learning process converges when adding a new ranking no longer results in a 
significant reduction. 

The ranking evaluation result based on the learning to rank objective function is 
usually non-continuous and non-differentiable and depends on the ordering. Of 
course, it should be noted that the sorting function is not continuous and differen-
tiable. Burges et al. have proposed a method called LambdaRank that considers the 
use of gradient descent to optimize the evaluation result and tries to directly use the 
gradient function of the evaluation result [23]. In LambdaRank, position-based 
weights are introduced for the pairwise loss function. In fact, the evaluation mea-
sures (based on position) are directly used to define the gradient according to each 
pair of documents in the training process. 

Suppose there are only two relevant documents x1 and x2 and NDCG@1 is used 
as the evaluation metric. In this case, if we can rank x2 and x1 at the top of the list and 
x1 is ranked higher, we will achieve the maximum NDCG@1. It is obviously easier 
to move x1 up, since x2 will have much less effort. Therefore, we can define (but not 
calculate) the “gradient” given the rank score x1 (denoted by s1 = f(x1)) greater than



ð

that given the rank score x2 (denoted by s2 = f(x2)). In other words, we can consider 
that there is an implicit loss function L in the optimization process, which Eq. (6.12) 
shows: 
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∂L 
∂s1 

> 
∂L 
∂s2 

ð6:12Þ 

The above gradient is called the lambda function, and that is why the algorithm is 
called LambdaRank. When nDCG is used for training, it provides a special form of 
lambda function as shown in Eq. (6.13): 

λ= Zm 
2yu - 2yv 

1þ exp f xuð Þ- f xvð Þð Þ  η r xuð Þð Þ- η xvð Þð Þ 6:13Þ 

r(.) represents the position of a document in the previous iteration of the training. 
The scores of each pair of documents xv and xu are updated by +λ and -λ, 
respectively, in each round of optimization. 

One of the types of pairwise learning to rank are SVM-based methods 
[24, 25]. These types of methods use pairwise classification to implement LtR. 
Suppose there are n queries qif gn i= 1, which have a pair of relevant documents 
x ið Þ  u , x 

ið Þ  
v

( )
, and their ground truth label is y ið Þ  u,v ; Assuming the use of linear ranking 

function f(x) = wT x, the Ranking SVM is formulated as Eq. (6.14): 

min 
1 
2 

wkk 2 þ λ
Xn 
i= 1 

X 
u, v:y ið Þ  u,v = 1 

ξ ið Þ  u,v ð6:14Þ

( )
s:t: wT x ið Þ  u - x ið Þ  v ≥ 1- ξ ið Þ  u,v, if  y ið Þ  u,v = 1, 

ξ ið Þ  u,v ≥ 0, i= 1, . . . , n 

In Eq. (6.14), 1 2 wkk 2 controls the complexity of model w. The difference between 
SVM and Ranking SVM is in the constraints that are constructed from document 
pairs. The loss function in Ranking SVM is a hinge loss defined on document pairs. 
For example, for query q, if a document xu is labeled more relevant than a document 
xv, i.e., yu, v is equal to one, if w

T xu is greater than w
T xv by margin 1, the loss does not 

exist. Otherwise, the loss equals to ξu, v. Hinge loss is an upper bound of 0-1 
pairwise loss. 

One type of research related to providing the correct ranking order of documents 
for a query describes the process of creating a list of documents as a Markov decision 
process (MDP). For this purpose, document ranking in search result diversification is 
modeled as an MDP, in which each time step is related to a ranking position and each 
action is related to selecting a document for that position. Given a set of labeled 
training data, a policy gradient is used to learn MDP parameters. In this process, in 
each training iteration, the policy gradient algorithm first samples a document list as



its training sample, and then the gradient is estimated according to the list weighted 
by the absolute performance score. When this model is applied to rank documents in 
IR, gradient estimation in this way has limitations, and it ignores the relative 
ordering nature of IR ranking and estimates gradients with high variance. To solve 
this problem, Xu et al. proposed a policy gradient algorithm in which the gradients 
are determined by a pairwise comparison of two sampled document lists in a query 
[79]. This algorithm, called Pairwise Policy Gradient (PPG), repeatedly samples 
pairs of document lists. It estimates gradients by pairwise comparisons and fully 
updates model parameters. 
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6.3.2.2 Pairwise Methods in Recommender Systems 

In recommender systems, pairwise methods generate a list of personalized recom-
mendations for users and determine users’ pairwise preferences and interests 
between items. In session-based recommender systems where there is no specific 
profile for users, these methods collect users’ preferences according to their pairs of 
behaviors, and a set of item pair preferences are used to represent each user. 

The BPR-MF proposed by Rendle et al. is a pairwise LtR method developed for 
recommender system scenarios with implicit feedback [36]. BPR-MF is commonly 
used for matrix completion problems based on long-term user-item interactions. This 
method is one of the most widespread pairwise approaches for learning to rank 
items, which has corrected ranking capabilities with acceptable computational 
complexity. Some methods, such as matrix factorization, cannot be directly applied 
to session-based recommender systems because the feature vectors are not 
pre-computed in the new session. However, this problem can be overcome by 
using the average feature vectors of the items that occurred in the session as the 
user feature vector. The similarity of the feature vectors between a proposed item and 
the current session items is averaged and optimized with the following measure: 

BPR-MF= 
X 

u, i, jð ÞEDs 

ln σ ru,i - ru,j
( )

- λθ θk k2 ð6:15Þ 

In Eq. (6.15), the ranking ru, i for user u and item i is approximated by the dot 
product of the corresponding rows in W and H matrices. The parameters of the Θ = 
(W, H) model are learned by stochastic gradient descent in multiple iterations on 
dataset D, which consists of triples of the form (u, i, j). (u, i) is a positive feedback 
pair, and (u, j) is a negative sample. σ is the logistic function, and λθ is the 
regularization parameter that controls the complexity. The optimized measure in 
objective Eq. (6.15) is to rank the positive sample (u, i) higher than the unobserved 
sample (u, j). The goal of BPR is to maximize the probability that the target score is 
higher than the sample score. The loss function related to BPR in session-based 
recommender systems used by Hidasi et al. in [52] at a certain point of the session is 
defined as follows:



e

))
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Ls = -
1 
Ns 

:
XNs 

j= 1 

log σ rs,i - rs,j
( )( ) ð6:16Þ 

In Eq. (6.16), Ns is the number of samples, rs,k is the score of item k at a certain 
point of the session, i is the target item (the next item of the session), and j represents 
the negative samples. 

One of the pairwise loss functions proposed by Hidasi et al. in [37] is th  
TOP1 function, which consists of two parts. The purpose of the first part is to 
raise the score of the target item higher than the score of the samples, while the 
second part aims to reduce the score of the negative samples to zero. The second 
part acts as a regularizer, but instead of directly limiting the model weights, it 
penalizes high scores on negative samples. Since all items in a training example 
act as negative scores, it lowers overall scores. The TOP1 function is calculated 
using Eq. (6.17): 

LTOP1 = 
1 
Ns 

XNs 

j= 1 

σ rs,j - rs,i
( )þ σ rs,j 2

( ) ð6:17Þ 

In the above equation, j times execution is performed on the negative items Ns 

(non-relevant), and relevant items are identified by i. 
Although BPR empirically performs well for recommending based on implicit 

feedback compared to existing methods, it (1) treats all unobserved feedback as 
negative, (2) treats all observed feedback as the same, and (3) ignores the influence 
between users. Items without observed feedback may be interpreted as user’s lack of 
interest, and some observed data may be noisy and biased. To solve these problems, 
a Collaborative Pairwise Learning to Rank method called CPLR is proposed in [38] 
by Liu et al., which considers the influence between users on preferences among 
both items with observed and unobserved feedback. The objective function of this 
method is presented by Eq. (6.18): 

CPLR-OPT≔
X 
uEU 

α
X 
iEPu 

X 
tECu 

ln σ Cuit rui - rutð Þð Þð Þ
" 

þ β
X 
tECu 

X 
jELu 

ln σ Cutj rut - ruj
( )( )( )þ γ

X 
iEPu 

X 
jELu 

ln σ Cuij rui - ruj
( )(( #

-
1 
2 
λθ θk k2 ð6:18Þ 

In this function, Pu represents the positive set, that is, the set of items to which 
user u has given positive feedback. Cu denotes the collaborative set, i.e., the set of 
items that have been given positive feedback by at least one of user u’s neighbors, 
but not by himself. Lu represents the set of items that neither the user nor his



neighbors have yet given positive feedback. rui represents the predicted preference of 
user u about i. Cuij, Cuit, and Cutj are confidence coefficients and are used to set the 
confidence of pairwise preferences. α, β, and γ are control coefficients and are used 
to control the type of relative preferences and their weight in the model. λθ is the 
regularization coefficient and prevents overfitting in the learning process. When α is 
set to zero, it assumes that the positive and collaborative item sets are incomparable. 
When β is set to zero, it assumes that cases without positive feedback are incompa-
rable, and when γ is set to zero, it tries to use the transitive property of the relative 
preference order. 
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Ludewig et al. developed a recommender system approach that can be used for 
both personalized search and session-based recommendation to rank hotels based on 
the latest user interactions and metadata on available items [42]. In the area of hotel 
search and recommendation, the problem of effective recommendations is critical 
because the users are either not logged in or are the first users. This means that 
adaptation to the users’ goals and preferences can only be based on the recent 
interactions observed in the users’ ongoing browsing session. For this purpose, a 
combination of Bayesian personalized ranking (BPR) with matrix factorization, 
Doc2Vec, and gradient boosting decision trees (GBDT) has been used. To determine 
the desired ranking, the problem is considered a pairwise LtR task, and several 
features are extracted based on the log data. 

A recommender architecture based on a deep neural network called PDLR 
(Pairwise Deep Learning to Rank) has been proposed by Zhou et al., in which the 
set of items is divided into two groups of positive and negative samples, respectively 
[35]. Then, the pairwise comparison between positive and negative samples is 
performed to learn the preference degree for each user. PDLR generally includes 
embedding, pairwise interaction, attention-aware ranking, and output layers. Spe-
cifically, in the PDLR architecture, the embedding layer can learn the feature 
representation for users and items through the average pooling operation, and the 
attention-aware ranking layer can determine the importance of each item to the user. 

Mayerl et al. were inspired by other research on learning to rank and used a 
pairwise model for hit song prediction [80]. This model takes a pair of songs A and B 
and predicts whether song A is more popular than song B. For this purpose, a neural 
network model is proposed that takes the audio features of two songs as its input and 
produces a label as an output that shows whether the first song is more popular than 
the second song or not. 

DU et al. utilized methods of LtR to recommend future events for a group of users 
[39]. The GERF (Group Event Recommendation Framework) analyzes various 
contextual influences on the user’s attendance at events and extracts the user’s 
preference for the event by considering all contextual influences. Then, the prefer-
ence scores of users in a group are considered learning to rank features for group 
preference modeling. In addition, a fast pairwise LtR algorithm, Bayesian group 
ranking, is proposed to learn the ranking model for each group. 

Two shared memory lock-free parallel SGD schemes are developed by Yagci 
et al. for personalized paired LtR to improve its scalability [40]. The authors first 
adapted a block partitioning approach to these settings and proposed the PLtR-B



j= 1

(Parallel pairwise LtR with Block partitioning) algorithm. They have shown that the 
no-partitioning approach can be applied to paired LtR such as point LtR, and they 
have presented the PLtR-N (Parallel pairwise LtR with No partitioning) algorithm. 
For shared memory lock-free parallelization of matrix completion, a block 
partitioning idea divides a user item preference matrix into multiple sets of 
non-overlapping ideal chunks. Then, each processing unit updates a chunk in each 
set, thereby enabling parallel processing without using locks. This approach was 
originally developed for personalized pointwise LtR scenarios, where updates are 
based on the interaction of an item, and in this study, this method is extended to 
pairwise LtR. 
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6.3.3 Listwise Methods 

Listwise approaches treat the ranking problem more naturally than other learning to 
rank methods. In particular, it considers ranked lists as samples in learning and 
prediction. The group structure of the ranking is preserved, and the ranking evalu-
ation measure can be more directly incorporated into the loss functions. Listwise 
approaches take training data as inputs and view labeled data 
xi,1, yi,1
( )

, . . . , xi,ni , yi,ni
( )

associated with qi as samples. A ranking model f(x) is 
then learned from the training data that can assign scores to the feature vectors 
(documents) and rank the feature vectors using the scores, such that feature vectors 
with higher degrees are ranked higher. In fact, in the learning process, it takes ranked 
lists of documents as samples and trains a ranking function by minimizing a listwise 
loss function based on the predicted and the ground truth lists. 

In the field of information retrieval systems, four basic components are formally 
defined to describe listwise methods: input, output, hypothesis, and loss function [3].

. The input space of the listwise approach contains a set of documents related to the 
query q, e.g., x= xj

{ }m 
.

. The output space of the listwise approach consists of a ranked list 
(or permutation) of documents. Different types of judgments can be converted 
into ground truth labels in terms of ranked lists: 

– If the judgment is given as the degree of relevance lj, all permutations that 
match the judgment are ground truth permutations. A permutation πy is defined 
as consistent with the relevance degree lj,  if  8u, v satisfying lu > lv, then 
πy(u) < πy(v) is always true. There might be multiple ground truth permuta-
tions in this case. Ωy is used to denote the set of all such permutations.
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– If the judgment is given as pairwise preferences, then all permutations consis-
tent with the pairwise preferences are ground truth permutations. If the per-
mutation πy is defined according to the degree of relevance lu, v and if 8u,v 
lu, v = + 1, then πy(u) < πy(v) is always true. There might be multiple ground 
truth permutations in this case. Ωy is used to denote the set of all such 
permutations. 

– If the judgment is given as the total order of πl, one can simply define πy = πl.

. The hypothesis space contains multivariate functions h that act on a set of 
documents and predict their permutations. Hypothesis h is usually implemented 
with a scoring function h(x) = sort ∘ f(x). In fact, first, the scoring function f is 
used to score each document, and then these documents are sorted in descending 
order of scores to create the desired permutation.

. There are two types of loss functions for listwise approaches. For the first type, 
the loss function is explicitly related to the evaluation measure (measure-specific 
loss function). In the second type, there is no loss function (non-specific loss 
function). Sometimes, it is not easy to determine whether a loss function is 
listwise or not because some basic components of a listwise loss function may 
also be pointwise or pairwise. In [3], three distinct criteria are considered to 
distinguish listwise methods from pointwise and pairwise methods: 

– A loss function is defined in the listwise method according to all training 
documents related to the query. 

– A loss function in the listwise method cannot be completely decomposed into 
pairs of documents or separate documents. 

– A loss function in the listwise method emphasizes the concept of a ranked list, 
and the position of the documents is visible because of the final ranking for the 
loss function. 

According to the loss functions used in the approaches, they can be divided into 
two subcategories. For the first category, the loss function is explicitly related to 
evaluation measures. It may be the easiest choice to learn the ranking model by 
directly optimizing what is used to evaluate the ranking performance. This is 
precisely the motivation for the first subcategory of listwise approaches, i.e., direct 
optimization methods. Due to the strong relationship between loss functions and 
evaluation measures, these algorithms are also referred to as direct optimization 
methods. The difficulty of optimizing such functions stems from the fact that most 
existing optimization techniques were developed to deal with continuous and dif-
ferentiable issues. To solve this limitation, 

1. A continuous and differentiable approximation of the measure-based ranking loss 
can be optimized. 

2. One can alternately optimize a continuous and differentiable (and sometimes 
even convex) bound on the measure-based ranking loss. 

3. It is possible to use optimization technologies that can optimize non-smooth 
objectives.
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Table 6.4 Components of 
listwise approaches 

Listwise methods 

Input Set of document x= xj 
m 

j= 1 

Output Ranked list πy 
Hypothesis Ranking function f X  

→ 

sort ∘ f(x) 

Loss function Listwise loss function 
L(f ; x, πy) 

In the second category of listwise approaches, the loss function is not explicitly 
related to evaluation measures. In these methods, the loss function, which is not 
based on a specific measure, reflects the inconsistency between the output of the 
ranking model and the ground truth permutation. 

Table 6.4 shows the components of listwise approaches, separated by input, 
output, hypothesis, and related loss function. 

Listwise methods in recommender systems use the entire list of items viewed by 
users to optimize a listwise ranking loss function or to optimize the probability of 
permutations that map items to ranks. Typically, such methods optimize a smooth 
estimate of a loss function that measures the distance between the reference lists of 
ranked items in the training data and the ranked list of items generated by the 
ranking mode. 

Next, in Sect. 6.3.3.1, the listwise methods in the field of information retrieval 
and, in Sect. 6.3.3.2, the listwise methods in the field of recommender systems are 
discussed and reviewed. 

6.3.3.1 Listwise Methods in Information Retrieval 

One of the listwise methods based on measure-based loss function minimization that 
uses measure approximation has been proposed by Qin et al. [43]. The underlying 
reason for the non-smoothness of the evaluation measure is that the rank positions 
are non-smooth compared to the ranking scores. Therefore, they suggest making 
approximations for ranking positions using smooth functions of ranking scores so 
that the approximate evaluation measure can be derived and optimized. If the 
summation index in the definition of nDCG is changed from existing positions as 
a result of ranking to document indexes, nDCG can be defined as Eq. (6.19): 

Z - 1 
m 

X 
j 

G yj
( )

log 1þ π xj
( )( ð6:19Þ 

π(xj) represents the position of document xj in the ranking list π, which is 
calculated based on Eq. (6.20):
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π xj = 1þ 
u≠ j 

I f xjð Þ- f xuð Þ< 0f g ð6:20Þ 

From the above equation, it is clear why the nDCG is non-smooth! In fact, nDCG 
is a smooth function of the rank position; however, the rank position is a non-smooth 
function of the ranking scores due to the indicator function. The key idea of this 
method is to approximate the indicator function with a sigmoid function so that the 
position can be approximated with a smooth function of the ranking points: 

bπ xj( )= 1þ
X 
u≠ j 

exp - α f xj
( )

- f xuð Þ( )( )
1þ exp - α f xj

( )
- f xuð Þ( )( ) ð6:21Þ 

By replacing π(xj) in Eq. (6.19) with bπ xj , we can obtain an approximation for 
nDCG which is defined by AppNDCG and then define the loss function as (1 -
AppNDCG) according to Eq. (6.22). 

L f ; x, yð Þ= 1- Z - 1 
m 

Xm 
j= 1 

G yj
( )

log 1þ bπ xj( )( ð6:22Þ 

Xu et al. have proposed a method called AdaRank in which the boosting 
algorithm is used to optimize the exponential function of the evaluation measure 
[45]. Since the exponential function is monotonic, optimizing the objective function 
in AdaRank is equivalent to optimizing the evaluation measure itself. In the con-
ventional AdaBoost algorithm, the exponential loss function is used to update the 
input distribution and determine the combined coefficient of weak learners in each 
round of iteration. In AdaRank, evaluation measures are used to update the distri-
bution of queries and calculate the combined coefficient of weak rankers. Due to the 
similarity of this method with AdaBoost, AdaRank can focus on those hard queries 
and gradually minimize 1-E(π, y). E(π, y) represents the evaluation measure. 

Assume that S= xi, yið Þf gm i= 1 and the training data are presented as lists of feature 
vectors and labels (grade). A ranking model f (x) should be learned on the feature 
vector x. Given a new list of objects (feature vectors) x, the learned ranking model 
can assign a score to each object. The objects can then be sorted by the scores to 
create a π (permutation) ranked list. The evaluation is performed at the list level; 
specifically, a listwise evaluation measure is used as E(π, y). In training, a ranking 
model is developed that can maximize the accuracy in terms of the listwise evalu-
ation measure in the training data or, equivalently, minimize the loss function 
defined in Eq. (6.23). 

L  fð  Þ= 
Xm 
i= 1 

1-E πi, yið  Þð Þ 6:23Þ
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where πi is the permutation of the feature vector xi with ranking model f and yi is the 
corresponding list of grades. This loss function is not smooth and differentiable, so 
simple evaluation optimization may not work. Instead, since exp (-x) ≥ 1- x holds, 
we can consider the optimization of an upper bound of the loss function as 
Eq. (6.24). 

Xm 
i= 1 

exp -E πi, yið Þð Þ 6:24Þ 

Exponential function and logistic function may be used as “surrogate” loss 
functions in learning. Note that both functions are continuous, differentiable, and 
even convex with respect to E. One of the advantages of AdaRank is its simplicity, 
and it is perhaps one of the easiest ways to learn ranking algorithms. 

In [46], Cao et al. proposed a listwise method called ListNet, whose loss function 
is defined using probability distribution on permutations. Many famous models have 
been proposed to represent permutation probability distributions, such as the 
Plackett-Luce model or the Mallows model. Since a permutation has a natural one-
to-one correspondence with a ranked list, these methods can be applied to ranking. 
ListNet shows exactly how the Plackett-Luce model can be used to learn rankings. 
With the Plackett-Luce model, for a given query q, ListNet first defines a permuta-
tion probability distribution based on the scores given by the scoring function f. Then 
it defines the probability distribution of another permutation Py(π) based on the 
ground truth label. When the ground truth is assumed to be a permutation πy, Py(π) 
can be defined as a delta function that takes the value 1 for this permutation only and 
0 for all other permutations. It is also possible to first use a mapping function to map 
the ground truth permutation positions to real-valued scores and then use Eq. (6.25) 
to calculate the probability distribution. The Plackett-Luce model defines a proba-
bility for each possible permutation π of documents, based on the chain rule, as 
follows: 

P πjsð  Þ= 
Ym 
j= 1 

φ sπ- 1 jð Þ
( )

Pm 
u= 1 

φ sπ - 1 uð Þ
( ) ð6:25Þ 

where π-1 ( j) represents a document in the jth position of permutation of π and φ is a 
transformation function that can be linear, exponential, or sigmoid. For the next step, 
ListNet uses the K-L divergence between the probability distribution for the ranking 
model and for the ground truth to define its loss function. The K-L divergence loss 
function is convex, and a simple gradient descent method can be used for its 
optimization. This function is shown in Eq. (6.26):
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L f ; x,Ωy =D Py πð Þ||||P πj f w, xð Þð Þð Þ ð6:26Þ 

Although the complexity of ListNet testing can be the same as pointwise and 
pairwise approaches due to the use of a scoring function to define the hypothesis, the 
complexity of ListNet training is much higher. The complexity of training is an 
exponential order of m, because K-L divergence loss for each query q requires the 
addition of m-factorial terms. To deal with this problem, a top k version of K-L 
divergence loss is introduced in [51], which is based on Plackett-Luce’s top k model 
and can reduce the complexity from exponential to polynomial order. 

Map search can usually be divided into two sub-domains, both of which deal with 
the retrieval and ranking of geospatial entities: The first sub-domain is geocoding, in 
which, given a map request, it is the task of finding a distinct spatial entity (e.g., a 
place, a road, or an address) that best matches the query. The second sub-domain is 
business search, where, given the map query, it finds a ranked list of multiple 
business entities that best match the query. Zhang et al. have shown how a powerful 
mechanism, such as attention, can be adapted to design advanced learning to rank 
(LtR) models for map search [81]. It has been shown that traditional LtR models 
based on gradient-boosting decision trees (GBDT) and re-ranking provide the 
retrieved results in map search with relatively high accuracy. In this chapter, a fast 
attention-based learning to rank learning model is proposed, which uses self-
attention with the ranking model. 

This model implements very lightweight two-layer attention, which is more 
compatible to the ranking problem. The first attention layer modifies transformer’s 
self-attention layer in such a way that it can calculate the function Attention(Q, K, V) 
where attention queries (Q) are made only on query terms, while attention keys (K) 
and values (V) are calculated on the result. The second attention layer processes the 
features of all heterogeneous inputs and implements a listwise inference function, 
which shows how users understand the quality of a result in the context of other 
potential results. 

6.3.3.2 Listwise Methods in Recommender Systems 

BPR and TOP1 were introduced in the pairwise methods in Sect. 6.3.2.2, which were 
widely used in recommender systems, but they faced a challenge. The gradient 
related to the score of a negative sample is the pairwise loss gradient between the 
target and the sample divided by the number of negative samples. This means that if 
all negative samples are relevant, their updates still decrease as the number of 
negative samples increases. To overcome the vanishing of gradients with increasing 
number of samples, a new type of listwise loss functions called TOP1-max and 
BPR-max has been proposed by Hidasi et al. in [52], whose idea is that the target 
score is compared with the most relevant sample score, which is the maximum score 
among the samples. The choice of max is not differentiable and cannot be used with 
gradient descent. So, softmax scores are used to preserve differentiability, and



softmax transformations are used only in negative examples. The BPR-max function 
combines the benefits of pairwise loss, softmax transformation, and score regulari-
zation and is calculated according to Eq. (6.27): 
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LBPR- max = - log 
XNs 

j= 1 

sjσ ri - rj
( )þ λ 

XNs 

j= 1 

sjrj 
2 ð6:27Þ 

BPR-max gradient is the weighted average of individual BPR gradients, where 
the weights are sjσ(ri- rj). The regularization term is performed with softmax with a 
weight of ‘2 regularization to the scores of the negative samples. λ is the regulari-
zation hyperparameter of the loss function. 

The TOP1-max loss function is relatively simple. It is not necessary for the 
regularization section to be applied only to the maximum negative score, but since 
this mode provides the best results, it is kept as such. A continuous approximation to 
the maximum choice requires summing the individual loss weighted by the softmax 
scores sj. The TOP1-max function is in the form of Eq. (6.28): 

LTOP1- max = 
XNs 

j= 1 

sj σ rj - ri
( )þ σ rj 2

( )( ) ð6:28Þ 

The TOP1-max gradient is the softmax weighted average of the individual 
pairwise gradients. If rj is much less than the maximum negative score, the weight 
will be almost zero, and more weight will be placed on samples with scores close to 
the maximum. This solves the gradient vanishing problem with more samples since 
irrelevant samples are simply ignored, while the gradient points toward the gradient 
of relevant samples. Of course, if all samples are irrelevant, the gradient approaches 
zero, but that’s all right because if the target score is greater than all sample scores, 
there’s nothing to learn. 

Although, in practical applications, only the top, e.g., top N items, in a ranked list 
are of interest, and the lower-ranked rankings in the list are less reliable, most 
learning to rank methods optimize the overall rankings of the list. This can poten-
tially reduce the ranking quality of top-ranked items and also have high computa-
tional complexity. For this purpose, Liang et al. introduced a listwise ranking model 
for top N recommendations that directly optimizes a weighted top-heavy truncated 
ranking objective function, wDCG@N [51]. This model improves the quality of top 
N item lists by reducing the influence of lower-ranked items and can handle different 
types of implicit feedback. To solve the limitations of DCG, wDCG@N is defined in 
[51] as follows: 

wDCGu@N =
X 
iEI 

1 Rui <Nð Þ: wpui 2
yui - 1ð Þ  

log Rui þ 2ð Þ ð6:29Þ
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In Eq. (6.29), 1(Rui < N ) is the indicator function that selects N top-rated items 
and ignores other items. wpui is the weight of the implicit feedback pui, which models 
the importance and reliability of the feedback. The ranking objective function 
according to this measure is defined in Eq. (6.30): 

L θð Þ= max 
θ 

X 
uEU 

wDCGu@N- λ θk k2 2 ð6:30Þ 

:k k2 2 represents L2-norm, and λ is the regularization coefficient. Training a 
non-smooth objective function like (6.30) is challenging. Hence, it can be replaced 
by its smooth approximation. The one-sided nature of ReLU removes the contribu-
tion of lower-ranked items in the objective function. And besides being computa-
tionally simpler, ReLU allows an algorithm with linear computational complexity in 
the average number of observed items over all users. The objective function of 
Eq. (6.30), which has been transformed into a smooth objective function by applying 
the ReLU function, is shown in Eq. (6.31): 

Lþ θð Þ= min 
θ

-
X 
uEU 

X 
iEIþ 

u 

h N-Rþ 
ui

( )
: 
wpui 2

yui - 1ð Þ  
log Rþ 

ui þ 2ð Þ þ λ θk k2 2 ð6:31Þ 

Ifada et al. have presented a listwise ranking method for tag-based item recom-
mender systems [53]. This method proposes a new LtR method called Do-Rank by 
optimizing the DCG for the recommender system as a ranking measure. This method 
creates an optimal list of recommended items from a DCG perspective for all users. 
Do-Rank is designed based on a listwise ranking model, which means that the 
objective function should be formed based on a list of items from each user-tag 
set. In Do-Rank, ru,i,t represents the ranking position of item i for user u with tag t. To  
approximate the ranking position of ru,i,t by a smooth function according to the 
parameters of the model, the smooth function is used, as shown by Eq. (6.32): 

ru,i,t = 1 þ
X 
j≠ i 

σ Δbyð Þ ð6:32Þ 

The function σ is the logistic function, and Δby=byu,i,t -byu,j,t is the difference of 
the predicted relevance scores for two items, which is calculated from the 
decomposed tensor model. However, in order to implement the listwise model, it 
is suggested to use the UTS model. The UTS scheme, based on (u, t) 2 A, interprets 
observed and non-observed tagging data and labels of each item as positive, null, or 
negative. Positive input items are derived from the observed data, and negative input 
items are derived from items not labeled by user u. Using this scheme, the input set 
consists of a list of label assignments A labeled with their relevance score yu,i,t and 
uses the following rules:
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yu, i, t≔ 
1 if  u; i; tð Þ 2  A

- 1 if  u; i; tð Þ=2A and i 2 I\ ij u; i; *ð Þ 2  Af g  
0 otherwise 

<: ð6:33Þ 

If ZP = {i| yu,i,t = 1} are positive items derived from observed data and ZN = 
{i| yu,i,t = - 1} are negative items derived from unlabeled items by user u, the 
objective function is according to Eq. (6.34): 

L θð  Þ≔
X 
uEU 

X 
tET 

X 
iEZP 

2yu,i,t - 1 

1þ log 2 

P
jEZN 

σ Δbyð Þ
 ! - λθ θk k2 F ð6:34Þ 

The gradient descent method is used to optimize this objective function. 
Product rating based on online product reviews is the task of inferring relative 

user preferences between different products as a type of entity-level sentiment 
analysis [82]. Product ranking methods usually consist of two parts: (1) understand-
ing the opinions provided by individual reviews and (2) ranking products based on 
overall user preference, which is the weighted sum of user preferences 
corresponding to a given category. However, there are some limitations. First, the 
sentiments in the comments are simplistically categorized as purely positive or 
negative without considering the various sentiments that lie along the spectrum 
between these poles. Second, the importance of individual reviews is determined 
manually by users or independently through product ratings. This importance 
significantly affects how individual reviews are converted into product ratings. 
Therefore, there is a need for an integrated approach that extracts distinct informa-
tion from the observed data and puts it into a ranking score using a module. To this 
end, Lee et al. have proposed an integrated approach to learn product ratings based 
on online product reviews [54]. The LtR technique is used to combine many related 
features into a ranking model. To implement this approach, a hierarchical attention 
network (HAN), which is a kind of deep neural network, is extended to operate in the 
domain of ranking with learning strategies. Hierarchical attention network for 
learning to rank (HAN-LTR) consists of an embedding lookup, a word-level atten-
tion-based encoder, a review-level attention-based encoder, a linear layer, and the 
ranking loss function. Two ranking functions, RankNet and ListNet, have been used 
to build the ranking model. The architecture of HAN-LTR is shown in Fig. 6.7. 

6.3.4 Hybrid Methods 

Although listwise methods have been shown to perform better in terms of accuracy 
than pointwise and pairwise approaches [46], the need to improve the performance 
of LtR approaches has prompted researchers to propose hybrid methods. For exam-
ple, Sculley proposed an LtR approach that simultaneously combines pointwise



using linear regression and pairwise with a support vector machine [55]. Two other 
hybrid approaches are LambdaRank and LambdaMART, which combine pairwise 
with listwise methods [56]. LambdaRank is based on RankNet [26], while 
LambdaMART is a boosted LambdaRank tree. Both LambdaMART and 
LambdaRank have shown good performance in terms of data retrieval accuracy. 
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Fig. 6.7 The architecture of HAN-LTR [54] 

In this section, some important research using hybrid LtR approaches are 
discussed and reviewed. 

Sadek et al. have presented an effective and efficient method for LtR in the field of 
IR, which combines evolutionary strategy (ES) with machine learning techniques 
[57]. The proposed method is an ES that creates a vector of weights, each 
representing a desirable document feature. Three methods for initializing the weight 
vector (chromosome) are addressed in this chapter: ES-Rank simply sets all the 
genes of the initial chromosome to the same value. IESR-Rank uses linear regres-
sion, and IESVM-Rank uses a support vector machine for the initialization process. 

Pointwise and pairwise approaches have their complementary advantages and 
disadvantages, and many studies focus on only one approach and try to reduce their 
drawbacks in case-by-case methods. Cinar et al. extended a hybrid pointwise-
pairwise standard paradigm for LtR in the context of personalized recommendations 
[58]. For this purpose, a new surrogate loss is introduced, which is an optimal and 
adaptive combination of these two approaches, so that the exact balance between 
pointwise and pairwise contributions can depend on the particular pair or triplet 
instance. 

In this method, a learning strategy is proposed in which the model itself can make 
the correct decision: which pointwise or pairwise approaches should be adopted for



ð

each triple <u, i, j > ? The surrogate loss presented in this chapter considers that 
there is a continuum between pointwise and pairwise approaches, and how to 
position the cursor in this continuum should be learned from the data and depend 
on the triplet considered. This can be shown using the coefficient γ, which softly 
determines the trade-off between pointwise and pairwise rank: 
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p i> j uÞ= σ f u, i θÞ- γf u, j θÞjðj Þððjð 6:35Þ 

In Eq. (6.35), instead of γ taking only the values [0,1] and being a simple 
hyperparameter, it is proposed to be calculated as a learnable function that depends 
on the user u and items i and j and called “adaptive mixing function.” 

The method presented by D’Amico et al. focuses on the problem of session-based 
and context-aware accommodation recommendations in the travel domain [59]. The 
purpose of this chapter is to recommend suitable accommodation according to the 
traveler’s needs to maximize the chance of changing the direction (click out) to the 
booking site, relying on explicit and implicit signals of the user in one session 
(clicks, search modification, filter use). For this purpose, they used a session’s 
contextual and content features. Contextual features exploit interactions with accom-
modations occurring within a session. For content features, interactions between 
sessions or other non-session-related information are considered. The proposed 
model relies on gradient boosting for decision trees and combines different methods. 
In order to exploit the sequential structure of the problem, a recurrent neural network 
has been developed in which each session is represented with a fixed number of 
interactions and fed to the network. This network uses TensorFlow ranking, which is 
a ranking algorithm published by Google and is able to optimize listwise losses for 
ranking. 

Although many MF-based methods have performed well in recommender sys-
tems, they cannot effectively learn user and item representations, making them 
poorly capable of capturing complex and deeper information about the interaction 
between users and items. To solve this problem, and inspired by the great success of 
deep learning methods applied to LtR, DeepRank was proposed by Chen et al. 
[2]. Instead of predicting rank, DeepRank uses predicted scores. In fact, the proposed 
ranking model is reduced from top N listwise to top one listwise, which is a simpler 
structure, and then to the simplest possible structure, which is the pairwise learning 
method, which is one of the most popular learning to rank methods in recommender 
systems. 

Considering the user-item rating matrix R, where n is the number of users and 
m is the number of items, the interaction matrix Y is defined as Eq. (6.36): 

yui = 
1, if rui > 0 
0, else

{
ð6:36Þ 

where yui 2 Y and rui 2 R indicate the rating of user u to item i. The main purpose of 
DeepRank is to predict the unrated order of items based on their final score. For this 
purpose, the objective function is defined by Eq. (6.37):
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L= f y, byð Þ þ λΩ Θð Þ ð6:37Þ 

In the above equation, f(.) is the loss function of the model, y and by are the correct 
and predicted labels of the samples, and Ω(Θ) is the regularization function to reduce 
overfitting. Due to recent advances in adversarial learning, there is a strong and 
continuous interest in investigating how adversarial LtR is performed. Despite the 
successes of adversarial methods for LtR, there are still many open issues in this 
field. For example, previous methods have focused on optimizing pointwise or 
pairwise learning to rank functions or have only investigated how to adapt the 
GAN framework for ranking. While GAN has various types, in this regard, Yu 
et al. have done an in-depth study of how to perform adversarial learning to LtR by 
adapting different adversarial learning frameworks [60]. 

6.4 Ranking Aggregation 

Ranking aggregation is a problem that has been widely studied in various domains, 
such as meta-search and image integration. The main purpose of ranking aggregation 
is to create an overall ranking from the ranking results of items or alternatives, which 
uses multiple ranking functions to find better functions. These methods can be 
classified into two categories: score-based methods and order-based methods. 

In score-based methods, ranked lists of items are scored separately, and these 
scores are used by the ranking aggregation function [61, 62]. On the other hand, 
order-based or rank-based methods only use the order of items in separate ranked 
lists. These methods are widely used in modern meta-search engines because of their 
simplicity and linear time complexity with the number and size of ranked lists. In 
some situations, it is difficult to find ranking points; hence, order-based methods 
seem to be the best choice because they only use the relative position of the items in 
each ranked list and are called position-based methods [34]. 

Ranking aggregation methods are classified into two categories based on another 
approach [86]: supervised and unsupervised learning methods. Supervised learning-
based methods use a training set for ranking. But in methods based on unsupervised 
learning, ranking aggregation is created based on distance measures and provides the 
possibility of comparing individual rankings with them. 

An important field in ranking aggregation is recommender systems. Among 
recommender systems, top N recommenders work by recommending the ranking 
of N items that can be interesting to the user. They often differ in the rankings of the 
items they return to the user, and they provide an opportunity to improve the final 
recommendation ranking by aggregating the outputs of different algorithms. The 
advantages of using ranking aggregation methods in recommender systems are [83]: 

1. Providing more accurate item recommendations to users, taking into account the 
different biases of the recommenders 

2. Improving the diversity of recommendation rankings
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3. Reducing the impact of items imprecisely placed in high positions by a 
recommender 

In the following subsections, ranking aggregation methods in the scope of 
information retrieval and recommender systems will be discussed. 

6.4.1 Ranking Aggregation Methods in Information Retrieval 

One of the first approaches in ranking aggregation is the Borda count, which is based 
on the unsupervised method for ranking aggregation suggested by Aslam and 
Montague in the meta-search [61]. The Borda count ranks a fixed set of c candidates 
in the order of preference for each voter. For each voter, the top-ranked candidate is 
given c points, the second-ranked candidate is given c-1 points, and so on. If a 
number of candidates are left unranked by the voter, the remaining points are divided 
equally among the unranked candidates. Candidates are ranked in the order of total 
points, and the candidate who gets the most points wins the election. 

The Borda count finalizes the ranking of documents based on their position in the 
base ranking. More precisely, in the final ranking, the documents are sorted 
according to the number of documents that rank below them. If a document ranks 
high in many base rankings, it will also rank high in the final ranking list. 

Unsupervised ranking aggregation methods use majority voting in their final 
ranking decisions. In fact, the methods treat all primary ranking lists equally and 
assign high scores to documents that rank high in most primary ranking lists. For 
example, in meta-search, ranking lists produced by different search engines may 
have different accuracy and reliability. One might want to learn the weights of the 
primary ranking lists. Supervised learning methods such as cranking proposed by 
Lebanon and Lafferty can solve the problem [63]. This method uses the probabilistic 
model of Eq. (6.38): 

P πjθ, 
X( )

= 
1 

Z θ, 
Pð Þ  exp 

Xk 
j= 1 

θj: d π, σj
( ) !  

ð6:38Þ 

In Eq. (6.38), π is the final ranking, ∑ = (σ1, . . ., σk) is the basic ranking, d is the 
distance between two rankings, and θ is the weight parameters. For example, d can 
be calculated based on Kendal’s tau. Maximum likelihood estimation can be used to 
learn model parameters. If the final ranking and base rankings are all complete 
ranking lists in the training data, the log-likelihood function is calculated as 
Eq. (6.39):



 !
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L θð Þ= log 
Ym 
i= 1 

P πijθ,
X

i

( )
= 
Xm 
i= 1 

log 

exp 
Pk 
j= 1 

θj:d πi, σi,j
( )

P
πiEΠ 

exp 
Pk 
j= 1 

θj:d πi, σi,j
( ) ð6:39Þ 

In the above relation, πi represents partial lists. 
Liang et al. focused on combining ranked lists of documents that are retrieved in 

response to a query, and based on this, they proposed multiple learning aggregation 
approaches, ManX and v-ManX, which are based on the cluster hypothesis and 
exploit inter-document similarity information [65]. ManX is a new manifold-based 
data fusion approach that (1) is based on the generic data fusion method X and 
(2) allows similar documents to support each other by using inter-document simi-
larities in a global manifold of fused documents. To further improve rank aggrega-
tion performance, a virtual adversarial manifold learning algorithm, v-ManX, and an 
efficient version that uses anchor documents, a-v-ManX, are proposed. The pro-
posed virtual adversarial multiple learning algorithms first create a virtual adversarial 
document for each original document and then regularize the model to produce the 
same output distribution model according to the document they produce in the 
adversarial perturbation. 

Instance search is a less studied subject in the information retrieval domain, 
described as a search in which a new set of results is returned for each keystroke. 
If the goal is to provide a wide range of results in a single list beyond lexical matches, 
implementing a robust instant search service presents several challenges, including 
combining results for a given search term when there are multiple matches (lexical, 
semantic, etc.) or preventing ancillary matches from ranking higher than logical 
matches when there are multiple candidate sources. In this regard, Rome et al. have 
proposed a solution to solve these challenges in a real platform (Xfinity) that has 
millions of users [67]. The presented method consists of three stages: candidate 
generation, availability filtering, and re-ranking of key components. In the candidate 
generation stage, asynchronous calls are established with multiple indices. Then, the 
candidates are filtered based on the item’s availability to the user. In the next step, the 
results are combined into a single list through a heuristic method and then sent to the 
re-ranking stage. The re-ranking stage consists of two deep learning models com-
bining different candidate lists and fine-tuning the user results. In the final stage of 
the pipeline, business logic is applied to create the final ranking and to respect the 
product requirements. 

Motivated by the fact that current ranking aggregation methods are feature-
unaware or sensitive to noisy features, Chiang et al. proposed a new rank aggrega-
tion model that learns rank scores from features and comparisons simultaneously 
[68]. In this method, the ranking is estimated by balancing between pairwise 
comparisons and feature information (Rank Aggregation by Balancing Feature, 
RABF). One of the highlights of this model is its improved sample complexity 
guarantee. Sample complexity analysis for ranking aggregation has recently



attracted more attention intending to study the number of comparisons required to 
ensure ranking accuracy. 
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To reduce the computational complexity of global ranking learning, a common 
method is to use rank breaking. In rank breaking, the collected ordinal data are first 
transformed into a bag of pairwise comparisons, ignoring the dependencies in the 
original data. It is then processed through existing inference algorithms designed for 
independent pairwise comparisons, hoping that the dependence on the input data 
does not cause bias. This idea is one of the main motivations in several approaches 
that are used in learning to rank from pairwise comparisons. However, it has been 
shown that such a heuristic of full rank breaking, where all pairs are weighted and 
treated equally, leads to estimation bias. The key idea to produce accurate and 
unbiased estimates is to treat pairwise comparisons unequally, depending on the 
topology of the collected data. For this purpose, Khetan et al. have investigated how 
the accuracy depends on the topology of the data and the weights of pairwise 
comparisons [66]. 

6.4.2 Ranking Aggregation Methods in Recommender 
Systems 

A number of ranking aggregation methods have been presented in the field of 
recommender systems. Tulio et al. presented a hybrid recommendation algorithm 
that aggregates the results of different input recommendation algorithms to improve 
the accuracy, novelty, and diversity of rankings [69]. Aggregation is performed 
using a weighted linear combination of the items returned by the recommendation 
algorithms. The weights are optimized by an evolutionary algorithm following a 
Pareto-efficient multi-objective setting that considers the accuracy, novelty, and 
diversity of ranking aggregation. Indeed, the overemphasis on the accuracy of the 
recommendations can cause information over-specialization and make recommen-
dations boring and even predictable. Novelty and diversity are two useful solutions 
to these problems, which have recently been studied by Jafari and Ravanmehr 
[84, 85]. 

Following evolutionary approaches, papers [70] and [71] proposed rank aggre-
gation methods to combine rankings generated by top N recommendation algo-
rithms. Oliveira et al. proposed ERA (evolutionary rank aggregation), which uses 
genetic programming (GP) to evolve a population of aggregation functions (indi-
viduals) [70]. These functions are used to assign scores to the items in the input 
ranking, and then by sorting the items according to their scores, the ranking is 
aggregated. 

Silva et al. used a genetic algorithm (GA) to combine different rankings from 
memory-based collaborative filtering [71]. The strategy behind the proposed GA 
consists of building a structure for each user that is used to select the items that form 
the ranking aggregation. The proposed GA establishes a structure that determines



how many items should be selected from each input ranking to aggregate the 
ranking. 
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One of the possible approaches for ranking aggregation is to aggregate the 
ranking to produce a single-criteria matrix and thus create a ranking list. This 
approach hides important details in the ranking of each criterion. Abderrahmane 
et al. proposed a three-stage hybrid ranking order for multi-criteria recommender 
systems that uses rank aggregation [72]. This system generates a partial ranking list 
using learning to rank and then generates a final ranked list using rank aggregation. 
This method is considered a movie recommender system, and for each movie, the 
criteria of actor, director, story, and visual are used, and it uses many useful ranking 
methods to reach the final ranked list. In the first step of this method (matrix 
decomposition), the multi-criteria user-item matrix is decomposed into N single-
rating user-item matrix according to the number of criteria in the system. Hence, five 
single-rating user-item matrices are obtained. In the second step (learning to rank), 
one of the LtR methods is applied in each matrix separately to find partially ranked 
lists. For this purpose, a matrix factorization based listwise method is used to sort the 
items for each matrix separately and minimizes an error function that represents the 
uncertainty between the input training list and the resulting output list. In the third 
stage (rank aggregation), it ranks the partially ranked lists using rank aggregation. 
The proposed framework of [72] is shown in Fig. 6.8. 

Zhao et al. consider video recommendation as a ranking problem and create 
multiple ranking lists by exploring different information sources [73]. For this 
purpose, a multi-task rank aggregation approach is proposed to integrate the ranking 
lists for different users in a joint mode. The proposed approach organizes related data 
according to information sources about users, including profiles, viewing history, 
and information available on social networks, as well as video information. After 
creating several video ranking lists using different data sources, the next task is to 
aggregate these video lists into an optimized video list so that the best ones can be 
recommended to users. A score-based approach is used here, i.e., the ranking lists are 
combined according to the ranking scores of each video instead of their ranking 
positions. 

6.5 Discussion 

Learning to rank methods are based on machine learning techniques in ranking 
results in different domains, most notably in information retrieval and recommender 
systems. These methods are classified into three general categories: pointwise, 
pairwise, and listwise. 

Pointwise methods are usually defined based on classification [9–12], regression 
[7, 8], or ordinal regression [13–15, 17]. Pointwise methods are also used in the field 
of recommender systems to rank the results [19, 20]. Instead of focusing on the 
personalized ranking of a set of items, pointwise methods only focus on predicting 
the exact ranking of an item. Users tend to pay more attention to an item’s ranking
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order than its rating. For example, when a user wants to watch a movie online, he 
often cares less about its rating and chooses the movie at the top of the recommended 
list. Compared to other methods, pointwise approaches do not consider the depen-
dencies between documents; therefore, the position of a document in the final 
ranking list is not visible to their loss function. Therefore, the pointwise loss function 
may overemphasize unimportant documents (documents that rank low in the final 
ranking list and therefore do not affect user experiences) [3].
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In fact, the advantages of pointwise ranking are twofold. First, the pointwise 
ranking is calculated separately based on each query-document pair (q), which 
makes it simple and easy to scale. Second, the outputs of the neural models learned 
with the pointwise loss function often have real values in practice. For example, in 
sponsored search, a model learned with cross-entropy loss and click-through rate can 
directly predict the probability of a user clicking on search ads, which is more 
important than creating a good result list in some application scenarios. However, 
in general, the use of pointwise ranking in ranking operations is actually less 
effective. Since pointwise loss functions do not consider any document preference 
or ordered information, they are not guaranteed to produce the best-ranked list with 
minimum model loss. Therefore, effective ranking paradigms that directly optimize 
document ranking based on pairwise and listwise loss functions have often been 
proposed for LtR problems. 

The pairwise approach does not focus on accurately predicting the degree of 
relevance of each document, but rather the relative order between two documents, 
and is closer to the concept of “ranking” than the pointwise approach. In the pairwise 
approach, ranking is usually reduced to classification over pairs of documents, 
determining which document is preferred in a pair. This classification differs from 
the classification in the pointwise approach because it operates on both documents 
under review. The proposed pairwise ranking learning approaches have different 
types, some of which utilize neural networks [34], perceptrons [31], boosting [33], 
SVM [29], and other machine learning methods [28, 30]. It is worth mentioning that 
pairwise methods are widely used in the field of session-based recommender system 
[36–38]. 

However, pairwise methods have two major problems: (1) They only consider the 
relative order of two items, not the position of the items in the proposed list. As a 
result, items at the top of the suggested list are more important than items at the 
bottom. If the items at the top are evaluated incorrectly, the ranking cost is signif-
icantly higher than the items at the bottom. (2) The number of relevant items varies 
widely among different users. After converting to item pairs, some users have 
hundreds of corresponding item pairs. While others have only tens of pairs of 
corresponding items, it is difficult to evaluate the performance of the models. 

Ideally, when pairwise ranking loss is minimized, all preference relations between 
documents should be satisfied, and the model will produce the optimal result list for 
each query. This makes pairwise ranking objectives effective in many tasks where 
system performance is evaluated based on the ranking of relevant documents. 
However, in practice, optimizing document preferences in pairwise methods does 
not always improve the final ranking measure for two reasons: (1) It is impossible to



develop a ranking model that can correctly predict document preferences in all cases, 
and (2) not all document pairs are equally important in the computation of most 
existing ranking measures. This means that the prediction performance of pairwise 
preference is not equal to the performance of the final retrieval results as a list. 
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Listwise approaches deal with the ranking problem more naturally than other 
learning to rank methods. In particular, it considers ranked lists as examples of the 
learning and prediction process. The group structure of the ranking is preserved, and 
the ranking evaluation measure can be more directly incorporated into the loss 
functions. Different listwise methods have been proposed for information retrieval, 
such as [43, 45–50, 81], and some of them have been utilized in the scope of 
recommender systems, such as [52–54]. 

Note that for the listwise approach, the output space that facilitates the learning 
process is exactly the output space of the problem. In this regard, the theoretical 
analysis of the listwise approach can have a more direct value for understanding the 
real ranking problem than other approaches in which there is a mismatch between the 
output spaces. This feature facilitates learning and the actual output space of the 
problem. 

While listwise ranking objectives are usually more effective than pairwise rank-
ing objectives, their high computational cost often limits their applications. In fact, 
these methods are suitable for the re-ranking stage in a small set of candidate 
documents. Since many practical search systems now use neural network models 
to re-rank documents, listwise ranking objectives have become increasingly popular 
in neural ranking frameworks. 

6.6 Conclusion 

Learning to rank (LtR) has emerged in recent years based on a combination of 
machine learning and information retrieval. Learning to rank uses machine learning 
methods to rank the results and solve a different problem than the classic recom-
mender problem of predicting ratings. Ranking models and algorithms help recom-
mender systems arrange the items of the list of recommendations in the most optimal 
state possible. The important challenges in this field are related to ranking creation 
and ranking aggregation. 

Ranking creation is related to the automatic construction of the ranking model 
using machine learning methods. In this chapter, we mainly introduced four 
approaches to ranking creation: pointwise, pairwise, listwise, and hybrid. The 
pointwise approach reduces ranking to regression, classification, or ordinal regres-
sion on every single item. The pairwise approach formulates ranking as a pairwise 
classification problem. The listwise approach, which regards ranking as a new 
problem, tries to directly optimize the non-smooth IR evaluation measures or to 
minimize listwise ranking losses. To improve the performance, researchers proposed 
hybrid LtR approaches.
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Ranking aggregation combines multiple rankings into a single ranking and 
creates an overall ranking from the ranking results of items. 
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Summary 

Today, due to the increasing volume of data and the human need to quickly access 
the required information, recommender systems play a crucial role in daily life. 
Recommender systems try to provide effective suggestions to users that match their 
personal preferences based on explicit or implicit data extracted from users’ actions 
and behaviors. 

One of the important challenges of conventional recommender systems is to focus 
on the long-term interests of users statically and ignore the patterns of short-term 
interests of users. Another problem is the unavailability of user information and 
characteristics due to data privacy and optional user authentication. A session-based 
recommender system (SBRS) is presented to reduce the effects of the mentioned 
problems. The recommendation process in session-based recommender systems is 
based on learning the dependencies within each session or between several sessions, 
which are recognized based on the co-occurrences of the interactions. Deep learning 
methods are one of the most extensively employed and essential methods used to 
correctly detect dependencies between interactions in sessions. This book provides a 
comprehensive review of diverse methodologies employed in the context of session-
based recommender systems that incorporate deep learning techniques. 

This book was organized into six chapters as follows: 
Chapter 1 reviewed the general concepts of recommender systems to highlight the 

necessity of session-based recommender systems. Then, the fundamental concepts, 
data and task modeling challenges, the classification of methods, and an overlook of 
various approaches of session-based recommender systems were presented. Since 
the concepts of session-based and sequential recommender systems are close to each 
other, the rest of this chapter clarifies and distinguishes between their boundaries. 

Due to the high importance of deep learning and the diversity of their techniques 
and applications in different domains, specially in SRS, they were studied briefly in  
Chap. 2. This chapter presented the history and timeline of deep learning; deter-
mined the position of deep learning next to the fields of artificial intelligence, 
machine learning, and data science; and addressed its advantages and disadvantages.
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Then, a taxonomy was presented according to the types of deep learning methods 
and their use in different research in the scope of session-based recommender 
system. In this taxonomy, deep learning models were classified into discriminative, 
generative, and graph-based approaches, and then each of these three categories was 
further divided into different models and discussed.

294 Summary

Chapter 3 focused on the approaches of session-based recommender systems 
using deep discriminative models. A review of the literature on SBRS shows that 
various methods using RNN and its variants (GRU and LSTM) have been proposed 
to model the dynamic behaviors of session data over time. Due to the sequential 
nature of session data, many session-based recommender systems use RNNs. 
Indeed, RNNs have a hidden state with non-linear dynamics that enables them to 
discover patterns of events and predict the next item. On the other hand, CNN can 
extract spatial and temporal features and patterns among data, reducing the need for 
manual feature engineering. For this reason, it is used in session-based recommender 
system to extract effective patterns from interactions and predict the next items. At 
the beginning of the chapter, a brief overview of the fundamental concepts of these 
models, the conventional datasets, and the evaluation methods used were provided. 
Then, in the following subsections, different methods based on LSTM, GRU, and 
then CNN were discussed and analyzed separately. 

Chapter 4 of the book was devoted to session-based recommender systems using 
deep generative models. Despite the advantages of using deep discriminative 
methods in SBRS, these approaches obtain information entropy through the condi-
tional distributions of subsequent clicks relative to previous clicks and typically 
choose a unimodal or a mixture of unimodal. In sessions, intrinsic structural 
sequences may lead to mutual influence between different output variables in a 
time step. Discriminative methods may not have the necessary efficiency for these 
types of systems and may deviate from the main goals as the sessions expand. 
Therefore, deep generative models, which are strengthened by examining multi-
modal output distributions and uncertainty estimation, can be employed for SBRS 
research. Moreover, deep generative methods can produce more samples for model 
training and reduce the problems caused by data sparsity. Most of the research in this 
field is based on autoencoders (AE), generative adversarial networks (GAN), and 
flow-based models (FBM). At the beginning of the chapter, a brief overview of the 
fundamental concepts of generative methods, the conventional datasets, and the 
basic evaluation methods of various research were discussed. In the subsequent 
sections, different methods based on AEs, GANs, and flow-based methods were 
investigated. 

Due to the high flexibility of deep neural networks and to take more benefit  of  
each method and reduce their limitations, many proposed session-based recom-
mender system utilized an hybrid/advanced deep neural network model. Chapter 5 
discussed the session-based recommender systems using hybrid/advanced models. 
In many cases, due to the sequential nature of user interactions, RNNs are an 
essential part of the hybrid approach. In addition, the graph neural networks and 
deep reinforcement learning models in SBRS were also discussed in this chapter.
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The ranking methods that give priority to presenting them to the users are 
essential in all recommender systems. On the other hand, learning to rank (LtR) 
has emerged based on a combination of machine learning and information retrieval. 
Chapter 6 was dedicated to learning to rank (LtR) methods in session-based recom-
mender system. LtR methods were discussed in the two fields of ranking creation 
and ranking aggregation. Ranking creation methods are divided into four categories: 
pointwise, pairwise, listwise, and hybrid methods. In the remainder of this chapter, 
ranking aggregation methods were also included. The approaches presented for each 
of these methods have been investigated both in information retrieval and recom-
mender systems scopes. 

In closing, the goal of this book is to help researchers/engineers who are inter-
ested in using deep learning techniques in session-based recommender systems. The 
material of this book will help readers to simultaneously enhance their knowledge in 
the two contexts of session-based recommender systems and deep learning. To this 
end, the book presents a comprehensive overview of the methods presented in 
session-based recommender systems from various aspects, which provides a funda-
mental technical background for developing these types of systems.
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