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welcome 
Thanks for purchasing the MEAP for AI-Powered Search! 

This book teaches you the knowledge and skills you need to deliver highly-intelligent 
search applications that are able to automatically learn from every content update and user 
interaction, delivering continuously more relevant search results. 

As you can imagine given that goal, this is not an “introduction to search” book. In order 
to get the most out of this book, you should ideally already be familiar with the core 
capabilities of modern search engines (inverted indices, relevance ranking, faceting, query 
parsing, text analysis, and so on) through experience with a technology like Apache Solr, 
Elasticsearch/OpenSearch, Vespa, or Apache Lucene. If you need to come up to speed 
quickly, Solr in Action (which I also wrote) provides you with all the search background 
necessary to dive head-first into AI-Powered Search. 

Additionally, the code examples in this book are written in Python (and delivered in pre-
configured Jupyter notebooks) to appeal both to engineers and data scientists. You don’t 
need to be an expert in Python, but you should have some programming experience to be 
able to read and understand the examples. 

Over my career, I’ve had the opportunity to dive deep into search relevance, semantic 
search, recommendations, behavioral signals processing, learning to rank, dense vector 
search, and many other AI-powered search capabilities, publishing cutting-edge research in 
top journals and conferences and, more importantly, delivering working software at massive 
scale. As Founder of Searchkernel and as Lucidworks’ former Chief Algorithms Officer and 
SVP of Engineering, I’ve also helped deliver many of these capabilities to hundreds of the 
most innovative companies in the world to help them power search experiences you 
probably use every single day. 

I’m thrilled to also have Doug Turnbull (Shopify) and Max Irwin (OpenSource 
Connections) as contributing authors on this book, pulling from their many years of hands-
on experience helping companies and clients with search and relevance engineering. Doug is 
contributing chapters 10-12 about building machine-learned ranking models (Learning to 
Rank) and automating their training using click models, and Max is contributing chapters 
13-14 on dense vector search, question answering, and the search frontier. 

In this book, we distill our decades of combined experience into a practical guide to help 
you take your search applications to the next level. You’ll discover how to enable your 
applications to continually learn to better understand your content, users, and domain in 
order to deliver optimally-relevant experiences with each and every user interaction. We’re 
working steadily on the book, and readers should expect a new chapter to arrive about every 
1 to 2 months. 
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By purchasing the MEAP of AI-Powered Search, you gain early access to written 
chapters, and well as the ability to provide input into what goes into the book as it is being 
written. If you have any comments or questions along the way, please direct them to 
Manning’s liveBook Discussion Forum for the book.

I would greatly appreciate your feedback and suggestions, as they will be invaluable 
toward making this book all it can be. Thanks again for purchasing the MEAP, thank you in 
advance for your input, and best wishes as you begin putting AI-Powered Search into 
practice! 

—Trey Grainger 
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1
This chapter covers

The search box has rapidly become the default user interface for interacting with data in most
modern applications. If you think of every major app or website you visit on a daily basis, one of
the first things you likely do on each visit is type or speak a query in order to find the content or
actions most relevant to you in that moment.

Even in scenarios where you are not explicitly searching, you may instead be consuming streams
of content customized for your particular tastes and interests. Whether these be video
recommendations, items for purchase, e-mails sorted by priority or recency, news articles, or
other content, you are likely still looking at filtered or ranked results and given the option to
either page through or explictly filter the content with your own query.

Whereas the phrase "search engine" to most people brings up thoughts of a website like Google,
Baidu, or Bing, that enables queries based upon a crawl of the entire public internet, the reality is
that search is now ubiquitous - it is a tool present and available in nearly all of our digital
interactions every day across the numerous websites and applications we use.

Furthermore, while not too long ago the expected response from a search box may have been
simply returning "ten blue links" - a list of ranked documents for a user to investigate to find
further information in response to their query - expectations for the intelligence-level of search
technologies have sky-rocketed in recent years.

Introducing AI-powered search

The need for AI-powered search
The dimensions of user intent
Foundational technologies for building AI-powered Search
How AI-powered search works
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Today’s search capabilities are expected to be:

Domain-aware: understanding the entities, terminology, categories, and attributes of each
specific use case and corpus of documents, not just leveraging generic statitistics on
strings of text.
Contextual & Personalized: able to take user context (location, last search, profile,
previous interactions, user recommendations, and user classification), query context
(other keywords, similar searches), and domain context (inventory, business rules,
domain-specific terminology) in order to better understand user intent.
Conversational: able to interact in natural language and guide users through a multi-step
discovery process while learning and remembering relevant new information along the
way.
Multi-modal: able to resolve text queries, voice queries, search using images or video, or
even monitor for events and send event-based pushed notifications.
Intelligent: able to deliver predictive type-ahead, to understand what users mean (spelling
correction, phrase and attribute detection, intent classification, conceptual searching, and
so on) to deliver the right answers at the right time and to be constantly getting smarter.
Assistive: moving beyond just delivery of links to delivering answers and available
actions.

The goal of AI-powered search is to leverage automated learning techniques to deliver on these
desired capabilities. While many organizations start with basic text search and spend many years
trying to manually optimize synonyms lists, business rules, ontologies, field weights, and
countless other aspects of their search configuration, some are beginning to realize that most of
this process can actually be automated.

This book is an example-driven guide through the most applicable machine learning algorithms
and techniques commonly leveraged to build intelligent search systems. We’ll not only walk
through key concepts, but will also provide reusable code examples to cover data collection and
processing techniques, as well as the self-learning query interpretation and relevance strategies
employed to deliver AI-powered search capabilities across today’s leading organizations -
hopefully soon to include your own!
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In order to deliver AI-powered search, it’s important that we establish up-front a cohesive
understanding of the many dimensions involved in interpreting user intent and subsequently
returning content matching that intent. Within the field of information retrieval, search engines
and recommendation engines are the two most popular technologies employed in an attempt to
deliver users the content needed to satisfy their information need. Many organizations think of
search engines and recommendation engines as separate technologies solving different use cases,
and indeed it is often the case that different teams within the same organization - often with
different skillsets - work independently on separate search engines and recommendation engines.
In this section, we’ll dive into why separating search and recommendations into separate silos
(independent functions and teams) can often lead to less than ideal outcomes.

A search engine is typically thought of as a technology for explictly entering queries and
receiving a response. It is usually exposed to end users through some sort of text box into which
a user can enter keywords or full natural-language questions, and the results are usually returned
in a list alongside additional filtering options that enable further refinement of the initial query.
Using this mechanism, search is leveraged as a tool for directed discovery of relevant content.
Whenever a user is finished with their search session, however, they can usually issue a new
query and start with a blank slate, wiping away any context from the previous search.

Figure 1.1 A typical search experience, with a user entering a query and seeing search results with
filtering options to support further refinement of search results

Within the software engineering world, a search engine is one of the most cross-functional kinds

1.1 Searching for User Intent

1.1.1 Search Engines
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of systems in existence. Most underlying search engine technology is designed to operate in a
massively scalable way - scaling to millions, billions, or in a select cases trillions of documents,
handling enormous volumes of concurrent queries, and delivering search results in hundreds of
milliseconds or often less. In many cases, real-time processing and near-real-time searching on
newly ingested data is also required, and all of this must be massively parallelizable across
numerous servers in order to scale out to meet such high performance requirements.

Needless to say, engineering the above kind of system requires strong back-end developers with
a solid understanding of distributed systems, concurrency, data structures, operating systems, and
high-performance computing.

Search engines also require substantial work building search specific data structures like an
inverted index, an understanding of linear algebra and vector similarity scoring, experience with
text analysis and natural language processing, and knowledge of numerous search-specific kinds
of data models and capabilities (spell checking, autosuggest, faceting, text highlighting, and so
on).

Further, as relevancy becomes more important, search teams often employ relevance engineers
who live and breathe the domain of their company, and who think in terms of ranking models,
A/B testing, click-models, feature engineering, and query interpretation and intent discovery.

Of course, there are product managers driving requirements, data analysts assessing search
quality and improvements, DevOps engineers running and scaling the search platform, and
numerous other supporting roles surrounding a production search engine implementation.

It is rare to find someone with multiple of these skillsets, let alone all of them, making search a
highly cross-functional discipline. In order for a search engine to fully interpret user intent,
however, being able to combine a thorough understanding of your content, your users, and your
domain is critical. We’ll revisit why this is important after briefly discussing the related topic of
recommendation engines.
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Whereas search engines are traditionally thought of as technology that requires explicit
user-driven queries, most people in contrast think of recommendation engines as systems which
don’t accept user input and only push out content to users based upon what it knows about them
and believes best matches their computed interests. Both of these are oversimplifications, as
we’ll see in section 1.1.3, but they are nevertheless the prevailing ways in which search engines
and recommendation engines are commonly distinguished. If you routinely visit Amazon.com or
any other major ecommerce website, you are no doubt familiar with recommendation engines
sections stating that "based on your interest in this item, you may also like …​" or otherwise just
recommending a list of items based upon your collective browsing and purchase history, similar
to Figure 1.2. These recommendations often drive significant revenue for companies, and they
help customers discover relevant, personalized, and related content that often complements what
they were looking for explicitly.

Figure 1.2 Recommendations based upon purchase patterns of user expressing interest in similar items

Recommendation engines, also commonly referred to as recommendation systems, come in
many shapes and sizes. They employ algorithms which can take in inputs (user preferences, user
behavior, content, and so on) and leverage those inputs to automatically match the most relevant
content. Recommendation algorithms can roughly be divided into three categories:
Content-based Recommenders, Behavior-based Recommenders, and Multi-modal
Recommenders.

1.1.2 Recommendation Engines
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These algorithms recommend new content based upon attributes shared between different entities
(often between users and items, between items and items, or between users and users). For
example, imagine a job search website. Jobs may have properties on them like "job title",
"industry", "salary range", "years of experience", and "skills", and users will also have similar
attributes on their profile or resume/CV. Based upon this, a content-based recommendation
algorithm can figure out which of these features matter the most, and can then rank the best
matching jobs for any given user based upon how well that job matches the user’s desired
attributes. This is what’s known as an user-item (or "user to item") recommender.

Similarly, if a user likes a particular job, it is possible to leverage this same process to
recommend similar other jobs based upon how well those jobs match the attributes for the first
job that is known to be good. This type of recommendation is popular on product details pages,
where a user is already looking at an item and it may be desirable to help them explore additional
related items. This kind of a recommendation algorithm is known as an item-item (or "item to
item") recommender.

Figure 1.3 demonstrates how a content-based recommender might leverage attributes about items
with which a user has previously interacted in order to match similar items for that user. In this
case, our user viewed the "detergent" product, and then the recommendation algorithm suggests
"fabric softener" and "dryer sheets" products based upon them matching within the same
category field (the "laundry" category) and containing similar text to the "detergent" product
within their product descriptions.

Figure 1.3 Content-based recommendations based upon matching attributes of an item of interest to a
user, such as categories and text keywords.

It is also possible to match users to other users or really any entity to any other entity. In the

CONTENT-BASED RECOMMENDERS
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context of content-based recommenders, all recommendations can be seen as "item-item"
recommendations, where each item is just an arbitrary entity that shares attributes with the other
entities being recommended.

These algorithms leverage user interactions with items (documents) to discover similar patterns
of interest among groups of items. This process is called , referring to thecollaborative filtering
use of a multiple-person (collaborative) voting process to filter matches to those demonstrating
the highest similarity, as measured by how many overlapping users interacted with the same
items. The intuition here is that similar users (i.e. those with the similar preferences) tend to
interact with the same items, and that when users interact with multiple items they are more
likely to be looking for and interacting with similar items as opposed to unrelated items.

One amazing characteristic of collaborative filtering algorithms is that they fully crowd-source
the relevance scoring process to your end users. In fact, features of the items themselves (name,
brand, colors, text, and so on) are not needed - all that is required is a unique ID for each item,
and knowledge of which users interacted with which items. Further, the more users and
interactions (known as " " or just " ") you have, the smarter thesebehavior signals signals
algorithms tend to get, because you have more people continually voting and informing your
scoring algorithm. This often leads to collaborative filtering algorithms significantly
outperforming content-based algorithms.

Figure 1.4 demonstrates how overlapping behavioral signals between multiple users can be used
to drive collaborative recommendations

Figure 1.4 Recommendations based upon collaborative filtering, a technique leveraging the overlap
between behavioral signals across multiple users.

Unfortunately, the same dependence upon user behavioral signals that makes collaborative
filtering so powerful also turns out to be their Achilles' heel. What happens when there are only a
few interactions with a particular item—or possibly none at all? The answer is that the item
either never gets recommended (when there are no signals), or otherwise will likely to generate

BEHAVIOR-BASED RECOMMENDERS
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poor recommendations or show up as a bad match for other items (when there are few signals).
This situation is known as the , and is a major challenge for behavior-basedcold start problem
recommenders.

Sometimes, you can have your cake and eat it, too. Such is the case with multi-modal
recommenders, which attempt to combine the best of both the content-based and behavior-based
recommender approaches. Since collaborative filtering tends to work best for items with many
signals, but poorly when few or no signals are present, it is most effective to use both
content-based features as a baseline and then to layer a model based on behavioral signals on top.
This way, if few signals are present, the content-based matcher will still return results, while if
there are many signals, then the collaborative filtering matches will take greater prominence.
We’ll cover methods for combining approaches in chapter 6, but it is easy to infer already that
including some results from both approaches can give you the best of both worlds: high quality
crowd-sourced matching, while avoiding the cold start problem for newer and
less-well-discovered content. Figure 1.5 demonstrates how this can work in practice.

Figure 1.5 Multi-modal recommendations, which combine both content-based matching and
collaborative filtering into a hybrid matching algorithm.

You can see in Figure 1.5 that the user could interact with either the drill (which has no signals
and can thus only be used in recommendations through a content-based matcher) or the
screwdriver (which has previous signals from other users, as well as content), and the user would
receive recommendations in both cases. This provides the benefit that signals-based collaborative
filtering can be used, while also enabling content-based matching for items where insufficient

MULTI-MODAL RECOMMENDERS
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signals are currently available, such as is the case with the drill in this example. This kind of
multi-modal recommendation algorithm provides significant flexibility and advantage over only
leveraging content-based or behavior-based recommendations alone.

We just finished discussing two different kinds of information retrieval systems: Search Engines
and Recommendation Engines. The key differentiating factor between the two was that search
engines are typically guided by users and match their explicitly-entered queries, whereas
recommendation engines typically accept no direct user input and instead recommend—based
upon already known or inferred knowledge—what a user may want to see next.

The reality, however, is that these two kinds of systems are really just two sides of the same coin.
The goal, in both cases, is to understand what a user is looking for, and to deliver relevant results
to meet that user’s information need. In this section, we’ll discuss the broad spectrum of
capabilities that lie within the information retrieval continuum between search and
recommendation systems

Let’s imagine running a restaurant search engine. Our user, Michelle, is on her phone in New
York at lunch time and she types in a keyword search for "steamed bagels". She sees top-rated
steamed bagel shops in Greenville, South Carolina (USA), Columbus, Ohio (USA), and London
(UK).

What’s wrong with these search results? Well, in this case, the answer is fairly
obvious—Michelle is looking for lunch in New York, but the search engine is showing her
results hundreds to thousands of miles away. But Michelle never  the search engine she onlytold
wanted to see results in New York, nor did she tell the search engine that she was looking for a
lunch place close by because she wants to eat now…​

Consider another scenario - Michelle is at the airport after a long flight and she searches her
phone for "driver". The top results that come back are for a golf club for hitting the ball off a tee,
followed by a link to printer drivers, followed by a screwdriver. If the search engine knows
Michelle’s location, shouldn’t it be able to infer her intended meaning?

Using our job search example from earlier, let’s assume Michelle goes to her favorite job search
engine and types in "nursing jobs". Similar to our restaurant example earlier, wouldn’t it be ideal
if nursing jobs in New York showed up at the top of the list? What if she later types in "jobs in
Seattle"? Wouldn’t it be ideal if—instead of seeing random jobs in Seattle (doctor, engineer,
chef, etc.)— nursing jobs now showed up at the top of the list, since the engine previously
learned that she is a nurse?

1.1.3 The Information Retrieval Continuum

PERSONALIZED SEARCH
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Each of the above are examples of personalized search - the process of combining both explicit
user input  an implicit understanding of each user’s specific intent and preferences, into aand
query that can return a set of results specifically catering to that user. Doing this well is a tricky
subject, as you have to carefully balance leveraging your understanding of the user without
overriding anything for which they explicitly want to query. We’ll dive into how to gracefully
balance these concerns later in chapter 9.

Just as it is possible to sprinkle in implicit and user-specific attributes into a search to generate
personalized search, it is also possible to enable user-guided recommendations.

It is becoming increasingly more common for recommendation engines to allow users to see and
edit their recommendation preferences. These preferences usually include a list of items the user
has interacted with before, such as watched movies and ratings for a movie recommendation
engine, or a list of previously viewed or purchased items for an ecommerce website. Across a
wide array of use cases, these preferences could also include things like clothing sizes, brand
affinities, favorite colors, prefered local store, favorite menu items, desired job titles and skills,
prefered salary ranges, etc. In essence, these recommendation preferences make up a user profile
- they define what is known about a customer, and the more control you can give a user to see,
adjust, and improve this profile, the better you’ll be able to understand your users and the happier
they’ll likely be.

We’ve seen that when trying to find content for your end users, that personalization profile
information can either be ignored (traditional keyword search), used implicity along with other
explicit user input (personalized search), used explicitly with the ability for a user to adjust
(user-guided recommendations), or used explicitly with no ability for a user to adjust (traditional
recommendations). Figure 1.6 shows this personalization spectrum.

Figure 1.6 The personalization spectrum, showing traditional keyword search and traditional
recommendations as simply two ends of a larger continuum

While the two ends of this personalization spectrum (traditional keyword search, and traditional

USER-GUIDED RECOMMENDATIONS

SEARCH VS. RECOMMENDATIONS: THE FALSE DICHOTOMY
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recommendations) represent the extremes, they are also the two most common. Unfortunately,
one of the biggest mistakes that I see in many organizations is the building of teams and
organizations around the belief that search and recommendations are separate problems. This
often leads to data science teams building complicated personalization and segmentation models
that can only recommend content and can’t do search at all, and for engineering teams to build
large-scale keyword matching engines that can’t take easy advantage of the robust
personalization models built by the recommendations teams. More often than not, the
recommendation teams are staffed by Data Scientists with minimal information retrieval
background, and the search teams are often staffed by engineers with minimal data science
background. Due to Conway’s Law ("organizations which design systems …​ are constrained to
produce designs which are copies of the communication structures of these organizations."), this
ultimately results in challenges solving problems along this personalization spectrum
(particularly in the middle) that need the best from both teams. In this scenario, more often than
not the search and recommendation engines will naturally evolve into separate systems that can’t
as easily maximize for relevance needs across the full personalization spectrum. In this book,
we’ll focus on the shared techniques that enable search to become smarter and for
recommendations to become more flexible through a unified approach, as an AI-powered search
platform needs to be able to continuously learn from both your users and your content and enable
your users to do the same.

While we’ve presented search and recommendations as a personalization spectrum in Figure 1.6,
with personalized search and user-guided recommendations in-between, there’s still one more
dimension that is critical for building a good AI-powered search system—a deep understanding
of the given domain. It’s not enough to match on keywords and to recommend content based
upon how users collectively interact with different documents. To build a truly smart search
system, it is important for the engine to learn as much as it can about the domain. This includes
learning all of the important domain-specific phrases, synonyms, and related terms, as well as
identifying entities in documents and queries, generating a knowledge graphs that relates those
entities, disambiguating the many nuanced meanings represented by domain-specific
terminology, and ultimately being able to effectively parse, interpret, and conceptually match the
nuanced intent of users within your domain. Figure 1.7 shows an example of a semantic parsing
of a query, with the goal being to search for "things" (known entities) instead of "strings" (just
text matching).

1.1.4 Semantic Search and Knowledge Graphs
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Figure 1.7 Semantic parsing of a query, demonstrating an understanding of the entities ("things")
represented by query terms

Many companies have spent considerable money building out large teams to manually create
dictionaries and knowledge graphs in an attempt to understand the relationships between entities
in their users' queries in order to make their search smarter. This book will focus on a more
scalable approach, however - building an AI-powered search engine that can automatically learn
all of the above on a continuous basis. We’ll dive deep into the topic of automatically generating
this domain-specific intelligence when we cover semantic search further in chapters 5, 6, and 7.
We’ll also dive into additional emerging techniques for conceptual search, such as dense vector
search and neural search in chapters 13 and 14.

We’ve discussed the important role of traditional keyword search, of recommendations, and of
the personalization spectrum in-between. We also discussed the need for Semantic Search
(leveraging a Knowledge Graph) to be able to provide domain-specific understanding of your
content and your user’s queries. All of these are key pillars of a singular, larger goal, however: to
fully understand user intent. Figure 1.8 provides a comprehensive model demonstrating the
interplay between each of these key pillars of user intent.

1.1.5 Understanding the Dimensions of User Intent
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Figure 1.8 The dimensions of user intent, a combination of content understanding, user understanding,
and domain understanding.

The top-left circle in Figure 1.8 represents "content understanding" - the ability to find any
arbitrary content leveraging keywords and matching on attributes. The top-right circle represents
"user understanding" - the ability to understand each user’s specific preferences and leverage
those to return more personalized results. Finally, the lower circle represents "domain
understanding" - the ability to interpret words, phrases, concepts, entities, and nuanced
interpretations and relationships between each of these within your own domain-specific context.

A query only in the "content understanding" circle represents traditional ,keyword search
enabling matching on keywords but without leveraging any domain- or user-specific context. A
query only in the "user understanding" circle would be generated recommendations from
collaborative filtering, with no ability for the user to override the inputs and no understanding of
the domain or content underlying documents. A query only in the "domain understanding"
bucket might be a structured query only on known tags, categories, or entities, or even a
browse-like interface that enabled exploration of a  of these domain-specificknowledge graph
entities and their relationships, but without any user specific personalization or ability to find
arbitrary terms, phrases, and content.

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

13

https://livebook.manning.com/#!/book/ai-powered-search/discussion


When traditional keyword search and recommendations overlap, we get  orpersonalized search
guided recommendations (discussed earlier). When traditional keyword search and knowledge
graphs overlap, we get  (also discussed earlier in section 1.1.3): a smart,semantic search
domain-specific search experience. Finally, when recommendations and knowledge graphs
overlap we get smarter  that not only match on the crowd-sourcedmulti-modal recommendations
interactions of users across similar documents, but also on a domain-specific understanding of
the important attributes of those documents.

The holy grail for AI-powered search, however, is to harness the intersection of all three
categories: personalized search, semantic search, and multi-modal recommendations. That is to
say, in order to truly understand user intent, we need an expert understanding of the domain the
user is searching, an expert understanding of the user and their preferences, and an expert ability
to match and rank arbitrary queries against any content. AI-powered search starts with the three
pillars of user intent (content, domain, and user), and then leverages intelligent algorithms to
constantly learn and improve in each of these areas automatically. This includes techniques like
automatically learning ranking criteria (see chapters 10-11), automatically learning user
preferences (see chapter 9), and automatically learning knowledge graphs of the represented
domain (see chapters 5-6). At the end of the day, the combination of each of these approaches -
and balancing them appropriately against each other - provides the key to optimal understanding
of users and their query intent, which is the end goals of our AI-powered search system.

This book is a guide for readers to take their search applications to the next level and build
highly-relevant, self-learning search systems. In order to get to the "next level", however, this
assumes readers have prior experience with or are already familiar with key concepts behind
traditional keyword search engines and modern data processing platforms.

While the techniques in this book are broadly applicable for use in most open source and
commercial search engines, we have chosen to adopt the following key technologies for the
examples in this book:

Programming Language: Python
Data Processing Framework: Spark (PySpark)
Delivery Mechanism: Docker Containers
Code Setup and Walkthroughs: Jupyter Notebooks
Search Engine: Apache Solr

In this section, we’ll introduce these technologies, as well the following other search engines
besides Apache Solr which may also be good choices for applying the techniques we’ll cover in
this book: Lucene, Elasticsearch, Open Search, Lucidworks Fusion, Milvus, and Vespa.

1.2 Key Technologies for AI-powered search
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Python was chosen as the programming language for this book for a few reasons. First, given this
book targets both software engineers and data scientists, we needed to select a language popular
and widely used among both professions. With Python being by far the most used programming
language among data scientists and being a top-3 most used programming language among
software engineerings (after C and Java), Python was the clear front-runner here.

Additionally, many of the most prominent data science frameworks applicable to the problems
we’ll tackle in this book are written in python or contain python bindings, making it a pragmatic
choice.

Finally, Python is one of the most readible and approachable programming languages to those
with no prior experience, making a great choice for teaching concepts even to those with no prior
experience.

Apache Spark is one of today’s go-to technologies for large-scale data processing. It can be run
easily on a single server, or scaled to large clusters for production distributed data processing
jobs. Because search engines often deal with massive amounts of data, and AI-powered Search
techniques in particular usually work better the most data you can provide, we wanted to show
implementations which could be easily scaled out as needed, which building on Apache Spark
provides.

Additionally, because we expect readers to be using many different search engines and other
technologies, by demonstrating data processing using a technology not ties to any particular
search engine, this enables the maximum amount of re-use of the techniques you’ll learn in this
book. Spark uses the generic idea of data frames, which can pull from any arbitrary data source,
process data, and then save back to any data source. This means that even HDFS can be swapped
out, as needed, with faster data platforms. Apache Solr and Elasticsearch, for example, can both
be used as data sources and data targets of Spark jobs, enabling Spark to be run directly on top of
your search platform to process and enhance your search data (content augmentation, user
behavior analysis, machine learning model generation, and so on) and to take advantage of the
speed of leveraging your search index when appropriate.

1.2.1 Programming language: Python

1.2.2 Data Processing Framework: Spark (PySpark)
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The  contains hundreds of libraries and dependencies, and setting them all upAI-powered Search
seamlessly on a new computer or across different operating systems can be a very
time-consuming and error-prone task. As such, we’ve chosen to ship all of the code for the book
as Docker files and Docker containers. Docker is a platform for running virtual machine images
with all operating system configuration and dependencies needed, enabling you to be up and
running with no special configuration required and no opportunitiy for version or operating
system conflicts.

We want it to be as easy as possible for you to run and experiment with the code examples in this
book. Jupyter notebooks enable all of the code to be shipped as walkthrough tutorials where you
can view the code examples, make changes to the code, and just click "run" in your web browser
to see the code running and in action.

The notebooks are all designed such that you can run them as many times as you like and get the
same results, enabling you to focus on reading and understanding the each of the chapters, and
following along and running all of the corresponding code without having to worry about
configuration management or running system-level commands to get the code to run.

Though this book is a practical guide to delivering AI-powered search regardless of the
underlying search engine, it is unfortunately not practical to create duplicate code examples
targeting every available search engine technology. As such, we have chosen to base the book’s
code examples on the open source Apache Solr search engine.

Most of the data processing and machine learning code implemented in Python or Apache Spark
can target virtually any search engine with minor configuration changes, and most direct search
engine interactions (for queries, for example) can be implemented through using slightly
different engine-specific configuration and query syntax.

With regard to search-specific features, the vast majority of capabilities needed to implement the
techniques in this book exist across most major referenced search engines. That said, a handful
of features needed for this book are only available in Solr - such as Solr’s Text Tagger for entity
extraction, Solr’s Semantic Knowledge Graph capabilities, Solr’s query-time graph traversals,
and some of Solr’s ranking and query parser capabilities, so users of other engines may have a
bit of extra work when trying to implement those capabilities.

With Elasticsearch and Solr being the number one and number two top ranked full text search
engines respectively, with Elasticsearch no longer being opensourced as of 2021, and with
Elasticsearch missing a few key features needed to implement the techniques in this book, the

1.2.3 Delivery Mechanism: Docker Containers

1.2.4 Code Setup and Walkthroughs: Jupyter Notebooks

1.2.5 Choosing the right search engine technology
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choice to go with Solr was a clear one. Solr is based on Apache Lucene, which is the same
underlying search engine library that powers Elasticsearch (not open source) and OpenSearch (an
up and coming fork or Elasticsearch that is open source). Since we expect the large majority of
readers to be using Lucene-based search engines (Elasticsearch, Solr, OpenSearch, or Lucene
directly) due to their market dominance, we’ve chosen the most popular open sourced one and
expect for the concepts to map well to practitioners using any of these engines.

Whether you choose one of the aforementioned search engines for your AI-powered search
application, already have your own engine and are just looking to enhance it, or are potentially
looking to try something new and cutting edge, it is good to know your options. The upcoming
sections will provide a high-level summary of each of these engines, plus some others you may
want to also consider depending on your use case.

Apache Lucene is an open-source Java framework for building rich search applications. Lucene
does not provide a search "engine", but instead provides extensive java libraries that you can
integrate into your own software to build inverted indices, perform text analysis and
tokenization, convert data into efficient data types for search, and manage both the low-level
operations and the functions necessary to perform most search operations (query parsing,
faceting, index updates and segment merges, indexing and querying, and so on).

Lucene is internally used in more search applications than any other search technology today, but
is typically not used directly. That is to say, whereas Lucene is a search library, other software
projects have evolved on top of Lucene to expose out fully-featured search servers that can be
run as scalable distributed systems across large computing clusters (Lucene, in contrast, runs
locally on each node only). These search servers expose APIs (REST and other protocols), as
well as client libraries that are ready to deploy and use out of the box. Though some people still
build applications directly on top of Lucene, most organizations have switched to using one of
the popular production-ready search servers built on top of Lucene, such as Apache Solr,
Elasticsearch, or OpenSearch.

Solr is open source and was actually part of the Apache Lucene project until 2021, when became
it’s own top-level project at the Apache Software Foundation.

While we won’t go deep into all the capabilities of Solr in this book (  took 638Solr in Action
pages, and that was written back in 2014!), suffice it to say that Solr powers search for many of
the most advanced search applications in the world, and it is very feature-rich and well-suited for
building an AI-powered search application.

APACHE LUCENE: THE CORE SEARCH LIBRARY POWERING APACHE SOLR,
ELASTICSEARCH, AND OPENSEARCH

APACHE SOLR: THE OPEN SOURCED, COMMUNITY-DRIVEN, RELEVANCE-FOCUSED SEARCH
ENGINE
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It is second in popularity only to Elasticsearch, but Solr has historically been leveraged moreso
on information retrieval and ranking use cases over logs and data analytics (Elasticsearch’s core
focus), providing Solr with some unique capabilities on the relevance front which we’ll make use
of throughout our journey.

Regarding data processing, Solr also maintains a streaming expression framework that rivals
Sparks distributed processing capabilities in many ways. While we could leverage this
framework in our examples to reduce dependencies, we’ll instead choose to leverage Spark for
most of our offline data crunching and machine learning tasks in order to keep our examples
more generally-applicable across different search platforms. This will make all of the examples
easily reusable across all other engines.

Ultimately, our goal in this book is to teach you reusable techniques that you can apply
regardless of your underlying search technology, so leveraging open source Solr for
search-specific requirements and engine-agnostic technologies where possible will help us best
achieve that goal of being engine-agnostic.

Elasticsearch is the most downloaded and most well-known search engine technology today by
developers, apart from Apache Lucene, which internally powers Solr, Elasticsearch, and
OpenSearch.

Due to Elasticsearch’s popularity and mindshare and relative ease of use, it is often the go-to
search application for new developers getting started with search.

Elasticsearch has overtaken Solr over time in terms of number of deployments and overall
developer mind share, largely due to the popularity of the ELK stack (Elasticsearch + Logstash +
Kibana), which has become the industry-standard for ingesting, searching, and analyzing log
data. While log and event search is the main use case for Elasticsearch, it is also a very capable
text search engine, providing a high level of feature parity with Solr (plus some additional
features unavailable in Solr) for traditional search use cases.

Unfortunately Elasticsearch is no longer open sourced (as of 2021), making it now a much riskier
choice for many organizations. That said, other than licensing issues, Elasticsearch is a perfectly
great technology to use to apply the techniques in this book, and we expect Elasticsearch users to
be able to easily follow along and apply most of the techniques in this book.

ELASTICSEARCH: THE MOST USED, ANAYTICS-FOCUSED, FULL TEXT SEARCH ENGINE
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The OpenSearch project is an open source fork of Elasticsearch launched by Amazon in April
2021, after Elastic announced they would abandon their open source licensing for Elasticsearch
in January 2021. It is yet to be seen whether OpenSearch will take over significant marketshare
as an open source alternative to Elasticsearch and Solr, but OpenSearch provides most of the
same capabilities as Elasticsearch, without the licensing issues. The Elasticsearch and
OpenSearch projects will almost certainly diverge more and more over time, so the trajectory of
OpenSearch under Amazon’s management is yet to be determined.

Sometimes it is more expedient to buy the capabilities you needs versus build them all in house.
Whereas Apache Solr, Elasticsearch, and OpenSearch provide solid core search engine
capabilities, neither of them provide many of the AI-powered search capabilities and pipelines
found in this book.

Commercial vendors, like Lucidworks, can deliver end-to-end AI-powered search capabilities
out of the box, whereas Solr and Elasticsearch are core matching engines but lack much of the
extended infrastructure needed for AI-powered search. Lucidworks delivers Fusion using an
"open core" model, where the central technologies Fusion relies upon (Apache Solr, Apache
Spark) are completely open source, and customers thus have the full ability to see, debug, and
modify their systems without being stuck with a black box system that restricts access to the core
technologies, algorithms, and code.

NOTE Disclaimer: Many of the techniques in this book are integrated out of the box
in Fusion because the author previously worked at Lucidworks and helped
integrate these techniques into Fusion. This book does not endorse any
specific technology, so we recommend you do your own research before
choosing a vendor.

Lucidworks Fusion ships with most of the capabilities described in this book, giving you the
opportunity to buy vs. build them all yourself. While this book is primarily focused on
explaining how AI-powered search works under the covers and showing you how to implement
it yourself, there’s no doubt that leveraging a leading commercial vendor’s product will get you
better results faster. Regardless of which path you choose, this book will cover many of the
techniques used by products like Fusion, and will help Fusion customers better understand, tune,
and improve their Fusion-powered search applications.

OPENSEARCH: THE OPEN SOURCE FORK OF ELASTICSEARCH

LUCIDWORKS FUSION: THE OUT-OF-THE-BOX AI-POWERED SEARCH ENGINE
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Massive improvements in natural language models has given rise to new mechanisms for search
and ranking based upon mapping queries and documents into dense vector spaces. This is
sometimes referred to as "neural search" depending on the models being leveraged. We’ll cover
all of this in chapters 13-14, but several emerging search techniques rely entirely on these dense
vector search approaches.

Milvus is an open source vector database, which is leading the way on this front. It enables
efficient indexing of vectors, querying of vectors through a technique known as approximate
nearest neighbors search, and scoring of vector similarities.

Some commercial vector databases are also beginning to emerge, such as the Pinecone vector
similarity search engine. These engines open up new doors for high-performance natural
language search and question answering systems, but they also lack most of the free-text search
capabilities that power traditional search engines. As such, while these may be good for
specialized use cases, they won’t enable to full spectrum of AI-powered search techniques we’ll
cover in this book.

The Vespa search engine is a traditional keyword search engine, but with first-class support
tensors, which enable indexing of vectors, matricies, and other kinds of multi-dimensional data.
The means that Vespa supports the best of both worlds, which rich text and attribute based
search and ranking, as well as rich dense vector based search and ranking.

Vespa is the search engine technology acquired and developed by Yahoo to power Yahoo search,
and later acquired by Verizon Media and open sourced. This means it has years of development,
investment, and large-scale production hardening. Vespa was open sourced in September 2017,
well after Solr and Elasticsearch had achieved the majority of their current marketshare. Vespa is
not as widely known or used, but it contains a unique combination features that make it an
interesting choice for someone implementing an AI-powered search engine. Solr, Elasticsearch,
and OpenSearch are likely to catch up to Vespa over time on the dense vector search front, but as
of now Vespa is positioned capability-wise in a very envious position possessing both
competitive text search and ranking and also much more sophisticated dense vector search
capabilities than any of the Lucene-based search engines.

MILVUS

VESPA
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Jina is an open source framework for building neural search systems. It provides a flexible and
feature-rich framework for developing document and query processing pipelines. Jina AI’s focus
is specifically on integrating cutting edge AI models to enable next-generation search capabilities
like semantic search, question answering, chatbots, multimodal search (images, audio, video, text
combined), and so on. Jina is more of a python-based framework for building and running search
workflows as opposed to a search engine in the traditional sense (so we won’t be using it in this
book), but it provides a very powerful toolkit of building blocks for assembling your own
AI-powered search workflows, so it could be an interesting technology to consider for
integrating many of the techniques in this book.

This book assumes certain prerequisite knowledge of the mechanics of a search engine. If you do
not have prior experience working with a technology like Solr or Elasticsearch, you can come up
to speed quickly by reading through the books  or .Solr in Action Elasticsearch in Action

This book is primarily targeted at search engineers, software engineers, and data scientists. The
book will also provide relevant conceptual understanding of AI-powered search for product
managers and business leaders who do not possess these skills, but for a reader to get the most
out of this book, they will need to be able to follow the Python code examples and will need a
basic understanding how search and relevancy work leveraging a technology like Solr or
Elasticsearch.

In order to comfortably run all the examples in this book, you will need a Mac, Linux, or
Windows computer, and we recommend a minimum of 8GB of RAM to be able to run through
some of the more heavy-duty Spark jobs. You will need to ensure you have Java 8+ installed on
your computer, but we will walk you through configuration of all other dependencies on an
as-needed basis. You will also need to install Docker and pull or build the Docker containers for
the book (instruction in Appendix A). The Docker containers and datasets are quite large, so we
recommend a minimum of 25GB of available disk space to pull and process all examples in the
book.

AI-powered search, as can be seen from Figure 1.9, provides a much more sophisticated
alternative to manual relevance tuning. For organizations that benefit greatly from better search
relevancy and either invest or are thinking about investing significantly in their search platform,
deploying AI-powered search should lead to significantly higher quality with significantly less
effort in the long run.

1.3 Target Audience for AI-Powered Search

1.4 When to consider AI-powered search

JINA

1.3.1 Targeted Skillsets and Occupations

1.3.2 System Requirements for Running Code Examples
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That being said, installing Elasticsearch/OpenSearch, Solr, or Vespa and ingesting documents is
relatively easy, and if you only need basic keyword matching or are unable to invest the
resources to build out and maintain an AI-powered search platform, then you might proceed
cautiously with implementing too many of the techniques in this book, as it will definitely add
more components and complexity to your search engine overall.

For organizations desparately needing to optimize their search relevance investment, however,
the techniques in this book are an excellent guide in that endeavor.

We’ve laid out our end goal of matching user intent through content understanding, user
understanding, and domain understanding. We’ve also laid out the key technology platforms
we’ll leverage and prerequisite knowledge you’ll need to do pull this off. With that background
established, let’s now wrap up this chapter with an overview of what components are needed to
actually deliver an AI-powered search platform. Search intelligence is not black and white with
search either being "basic" or "AI-powered". Instead, search intelligence typically matures along
a predictable progression, as shown in Figure 1.9.

Figure 1.9 The Typical Search Intelligence Progression, from basic keyword search to a full self-learning
search platform.

In this progression, organizations almost always start with basic keyword search in order to get
up and running. Once in production, they realize their search relevancy needs to be improved, at
which point they start manually tuning field weights, boosts, text and language analysis, and
introducing additional features and functions to improve the aggregate relevancy of search
results.

1.5 How does AI-powered search work?
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Eventually, they realize they need to inject domain understanding into their search capabilities, at
which point organizations begin to invest in synonyms lists, taxonomies, lists of known entities,
and domain-specific business rules. While these all help, they eventually also discover that
relevant search is very much dependent upon successfully interpreting user queries and
understanding user intent, so they begin investing in techniques for query classification, semantic
query parsing, knowledge graphs, personalization, and other attempts to correctly interpret user
queries.

Because these tasks successfully yield improvement, this success often results in the creation of
large teams investing significant time manually tuning lists and parameters, and eventually
organizations may realize that it is possible (and more expedient) to automate as much of that
process as possible through learning from user signals, user testing (A/B, multi-armed-bandit,
and offline relevancy simulations), and building of machine-learned relevancy models. The end
goal is to completely automate each of these steps along the search intelligence progression and
enable the engine to be self-learning. It takes a while for most to get there, however, so it’s
important to start with a solid foundation.

The first step in building a search platform is almost always to get traditional keyword search
working (the "content understanding" part back in Figure 1.8). Many people and teams have
spent years or even a decade or more tuning and improving this step, and a whole discipline
called  has arisen that has historically focused significant efforts inRelevance Engineering
understanding content, improving content for search, adjusting boosts, query parameters, and
query functions, and otherwise trying to maximize the relevance of the traditional search
experience. As relevance engineers become more sophisticated, their work often bleeds over into
the realms of user understanding and recommendations, as well as into the
domain-understanding and semantic search realm.

Our focus in  will be on automating the process of learning and optimizingAI Powered Search
search relevance to be continual and automatic, but a deep understanding of how to think like a
relevance engineer and tune a search engine yourself would be quite helpful to you as
background on that journey. For that background into the world of Relevance Engineering and
tuning traditional keyword search relevance, I highly recommend the book  byRelevant Search
Doug Turnbull and John Berryman (Manning, 2016).

So what characteristics actually differentiate a well-tuned search engine and an AI-powered
search engine? A well-tuned search engine clearly serves as the foundation upon which
AI-powered search is built, but AI-powered search goes far beyond just being well-tuned and
delivers on the ability to continuously learn and improve through Reflected Intelligence. 

1.5.1 The Core Search Foundation
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 is the idea of leveraging continual feedback loops of user inputs, contentReflected Intelligence
updates, and user interactions with content in order to continually learn and improve the quality
of your search application.

Feedback loops are critical to building an AI-powered search solution. Imagine if your entire
middle school, secondary school, and possible post-secondary school education had consisted of
nothing more that you reading text books: no teachers to ask questions, no exams to test your
knowledge and provide feedback, and no classmates or others with which to interact, study, or
collaborate. You would have probably hit endless walls where you were unable to fully grasp
certain concepts or even understand what was being read, and you would probably have
understood many ideas incorrectly and never even had the opportunity to realize or adjust your
assumptions.

Search engines often operate this same way. Smart engineers push data to the search engine and
tune certain features and feature weights, but then the engine just reads those configurations and
that content and statically acts upon it the same way every time for repeated user queries. Search
engines are the perfect kind of system for interactive learning, however, through the use of
feedback loops. Figure 1.10 shows the idea of search engine feedback loops.

Figure 1.10 Reflected Intelligence through Feedback Loops

In Figure 1.10, you see the typical flow of information through a search feedback loop. First, a
user issues a query. This query executes a search, which returns results to an end user, such as a
specific answer or list of answers or a list of links to pages. Once presented with the list, the user
then takes one or more actions. These actions usually start with clicks on documents, but those
clicks can ultimately lead to adding an item to a shopping cart and purchasing it (ecommerce),

1.5.2 Reflected Intelligence through Feedback Loops
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giving the item a thumbs up or thumbs down (media consumption website), liking or
commenting on the result (social media website), or any number of other context-specific
actions.

Each of those actions taken by a user, however, is likely to provide clues as to the perceived
relevance of the search results to that user. A thumbs up or thumbs down provides explicit
positive and negative relevance judgements, as do add to cart, purchases, likes, and bookmarks.
Clicks provide less clear signals, but usually indicate some perceived suitability as a search
result.

These actions can then be leveraged to generate an improved relevance ranking model for future
searches. For example, if the majority of users for a given query always click on result number
three more often than on result one or two, this is a strong indicator that result number three is
perceived as a better, more relevant result. Leveraging feedback loops, your search application
can then automatically adjust the results ordering for that query in future searches, delivering an
improved search experience for the next user’s search. This feedback loop then continues again,
ad infinitum, as the engine is constantly self-tuning.

The searches, clicks, likes, add to carts, purchases, comments, and any number of other
interactions your users may have with your search application, are incredibly valuable data that
your search application needs to capture. We collectively refer to these data points as .signals
Signals provide a constant stream of feedback to your search application recording every
meaningful interaction with your end users. These digital moments - whether a search, a list of
returned search results, a click, a purchase, or anything in-between, can then be leveraged by
machine learning algorithms to generate all kinds of models to power user understanding,
content understanding, and domain understanding. Figure 1.11 shows the data flow for the
collection and processing of signals in a typical AI-powered search application.

BEHAVIORAL INTELLIGENCE FROM USER SIGNALS
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Figure 1.11 Signal collection & processing data flow

In Figure 1.11, you’ll see signals being collected for each search, as well as resulting clicks and
purchases, though unique signals can also be recorded for any other kind of user interaction (add
to cart, facet click, bookmark, hover, or even page dwell time).

Signals are one of the two kinds of fuel that power the intelligence engine of your AI-powered
search application, with the other type being your content.

While signals provide the constant stream of usage and feedback data to your search application,
your content is also a rich source of information that can be leveraged in your feedback loops.
For example, if someone searches for a particular keyword, the other keywords and top
categories in the documents returned serve as a valuable datapoint that can be leveraged to tag or
categorize the query. That data might be shown to end users (as facets, for example), and then
users might interact with that data, which subsequently generates a signal from which the engine
can then learn.

Further, the content of your documents contains a representative textual model of your domain.
Entities, domain-specific terminology, and the sentences contained within your documents serve
as a rich, semantic graph representing the domain of your data. That graph can be leveraged to
drive powerful conceptual and semantic search that better understands your domain. We’ll dive
more deeply into understanding your content in chapter 2, and into these semantic search
capabilities leveraging this rich semantic knowledge graph in chapter 5.

CONTENT INTELLIGENCE FROM DOCUMENTS
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Many modern AI techniques rely heavily on deep learning based on artificial neural networks.
Unfortunately, it is very challenging in most cases for a human to understand specific factors that
go into any particular prediction or output from the deep learning model due to the internal
complexity of the learned model.

This results in a "black box AI" system, where the results may be correct or impressive, but they
are not easy for someone to debug—or more importantly, correct—when the model makes an
incorrect judgement. An entire field of  (sometimes called  or Explainable AI Interpretable AI

) has arisen out of a need to be able to understand, curate, and trust these models.Transparent AI

In this book, while we will cover several deep learning approaches to search (see chapters 13 and
14 on dense vector search and question answering), we will largely focus our efforts on creating
intelligence which can be expressed in human terms and then corrected and augmented by
human intelligence. You can think of this as "AI-assisted human curation", or alternatively as
"human-assisted AI", but either way the overriding philosophy of this book is to use AI to
automate the process of search intelligence, while keeping the human in the loop and able to take
control and inject their own subject matter expertise as needed.

The architecture for an AI-powered search engine requires numerous building blocks to be
assembled together to form a smart end-to-end system. You obviously need a core search engine
like Solr, Elasticsearch/OpenSearch, or Vespa. You need to feed your searchable content into the
engine, transforming it to make it more useful. These transformation might include changes like:

Classifying the document, adding the classification as a field
Normalizing field values
Entity Extraction from text, adding entities in separate fields
Sentiment Analysis
Clustering content, adding clusters as a field
Phrase detection and annotation
Pulling in additional data from a knowledge graph, external API, or other data source
Part of Speech Detection and other Natural Language Processing steps
Fact extraction (such as RDF triples)
Spam or NSFW (Not Safe For Work) content detection
Application of other Machine Learning models or ETL rules to enrich the document

Once the data is in the engine, your goal is to make it available for searching. This requires query
pipelines, which can parse incoming queries, idenfity phrases and entities, expand to related
terms/synonyms and concepts, correct misspellings, and then rewrite the query so your core
engine can find the most relevant results.

1.5.3 Curated vs. Black-box AI

1.5.4 Architecture for an AI-powered search engine
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Much of this query intelligence requires a robust understanding of your domain, however. This
requires running batch jobs on your content and user signals in order to learn patterns and derive
domain-specific intelligence. What are the most common misspellings from your users, and what
do they choose as the correct spelling among multiple candidates (covered in chapter 6)? When a
user searches for specific queries, which documents should be boosted as the most popular
(covered in chapter 8)? For unknown queries, what is the ideal ranking among all the
attributes/features available for matching (covered in chapter 10)?

We need access to most of these answers in a pre-computed (or quickly computable) fashion at
query time, because we expect queries to be real-time and often to return within milliseconds.
This requires a job processing framework (we’ll use Spark in this book) and a workflow
scheduling mechanism to keep the jobs running in sequence.

You’ll also have a constant stream of new data incoming in the form of user signals, so you’ll
need a mechanism for capturing and storing those (capturing on the front-end application, storing
in your core engine or other back-end datastore).

The signals will then be used to generate all kinds of models—from signal boosting of specific
items for popular queries, to generation of generalized learning to rank models which apply to all
queries, to generation of user-specific recommendations and personalization preferences for each
user or segment of users.

Ultimately, you’ll end up with a system that receives constant streams of document changes and
user signals, is constantly processing those updates to learn and improve the model, and is then
constantly adjusting future search results and measuring the impact of changes to continually
deliver more intelligent results. That is the key behind AI-powered search: the processes of
continual learning and improvement based upon real user interactions and evolving content
patterns, in order to fully understand user intent and deliver an ever improving search experience.
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Expectations for search sophistication are evolving, with end users expecting search to
now be domain-aware, contextual and personalized, conversational, multi-modal
(through text, voice, images, or even push-based events), intelligent, and assistive.
Search and recommendations are the two extreme ends of a continuous personalization
spectrum within information retrieval.
Correctly interpreting user intent requires simultaneous understanding of your content,
your user and their preferences, and the knowledge domain in which your platform
operates.
Optimal search relevancy lies at the intersection of Personalized Search (traditional
keyword search + collaborative recommendations), Semantic Search (traditional keyword
search + knowledge graphs), and Multi-modal Recommendations (collaborative
recommendations + knowledge graphs).
The techniques in this book should apply to most search platforms, but we’ll primarily
leverage Apache Solr and Apache Spark for most of our examples.
AI-powered search operates on two kinds of fuel: content and user signals
Reflected Intelligence - the use of feedback loops to continually collect signals, tune
results, and measure improvements, is the engine the enables AI-powered search to learn
and constantly improve.

1.6 Summary
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2
This chapter covers

In the first chapter, we provided a high-level overview of what it means to build an AI-powered
search system. Throughout the rest of the book, we’ll explore and demonstrate the numerous
ways your search application can continuously learn from your content and your user behavioral
signals in order to better understand your content, your users, and your domain, and to ultimately
deliver users the answers they need. We will get much more hands on in chapter three, firing up
a search server (Apache Solr), a data processing layer (Apache Spark), and starting with the first
of our Jupyter notebooks, which we’ll use throughout the book to walk through many
step-by-step examples.

Before we dive into those hands-on examples and specific implementations (the "what"),
however, it is important in this chapter that we first establish a shared mental model for the
higher level problems we’re trying to solve. Specifically, when it comes to intelligent search, we
have to deal with many complexities and nuances in natural language - both in the content we’re
searching and in our users' search queries. We have to deal with keywords, entities, concepts,
misspellings, synonyms, acronyms, ambiguous terms, explicit and implied relationships between
concepts, hierarchical relationships usually found in taxonomies, higher-level relationships
usually found in ontologies, and specific instances of entity relationships usually found in
higher-level knowledge graphs.

Working with natural language

Uncovering the hidden structure in unstructured data
A search-centric philosophy of language and natural language understanding
Exploring distributional semantics and word embeddings
Modeling domain-specific knowledge
Tackling challenges in natural language understanding and query interpretation
Applying natural language learning techniques to both content and signals
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While it might be tempting to dive immediately into some specific problems like how to
automatically learn misspellings from content or how to discover synonyms from mining user
search sessions, it’s going to be more prudent to first establish a conceptual foundation that
explains what  of problems we have to deal with in search and natural languagekinds
understanding. Establishing that philosophical foundation will enable us to build better
end-to-end solutions in our AI-powered search system, where all the parts work together in a
cohesive and integrated way. This chapter will thus provide the philosophical underpinnings for
how we tackle the problems of natural language understanding throughout this book and apply
those solutions to make our search applications more intelligent. We’ll begin by discussing some
common misconceptions about the nature of free text and other unstructured data sources.

The term "unstructured data" has been used for years to describe textual data, because it does not
appear to be formatted in a way that can be readily interpreted and queried. The widely held idea
that text, or any other data that doesn’t fit a pre-defined schema ("structure"), is actually
"unstructured", however, is a myth that we’ll spend time reconsidering throughout this section.

If you look up  in Wikipedia, it is defined as "information that either does notunstructured data
have a pre-defined data model or is not organized in a pre-defined manner". The entry goes on to
say that "unstructured information is typically text-heavy, but may contain data such as dates,
numbers, and facts, as well".

The phrase "unstructured data" really is a poor term to describe textual content, however. In
reality, the terms and phrases present in text encode an enormous amount of meaning, and the
linguistic rules applied to the text to give it meaning serve as their own structure. Calling text
unstructured is a bit like calling a song playing on the radio "arbitrary audio waves". Even
though every song has unique characteristics, most typically exhibit common attributes (tempo,
melodies, harmonies, lyrics, and so on). Though these attributes may differ or be absent from
song to song, they nevertheless fit common expectations that then enable meaning to be
conveyed by and extracted from each song. Textual information typically follows similar rules -
sentence structure, grammar, punctuation, interaction between parts of speech, and so on. Figure
2.1 shows an example of text which we’ll explore a bit more in the upcoming sections as we
investigate this structure further.

2.1 The myth of unstructured data
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Figure 2.1 Unstructured Data. This text represents typical unstructured data you may find in a search
engine.

While text is the most commonly recognized kind of unstructured data, there are also several
other kinds of unstructured data that share similar characteristics with textual data, as we’ll see in
the next section.

Free text content is considered the primary type of unstructured data, but search engines are also
commonly used to index many other kinds of data that similarly don’t fit neatly into a structured
database. Common examples include images, audio, video, and event logs. Figure 2.2 expands
on our text example from Figure 2.1 and includes several other types of unstructured data, such
as audio, images, and video.

Figure 2.2 Multiple types of unstructured data. In addition to the text from the last example, we now see
images, audio, and video, which Are other forms of unstructured data.

Audio is the most similar to text content, since it is often just another way to encode words and

2.1.1 Types of unstructured data
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sentences. Of course, audio can include much more than just spoken words—it can include
music and non-language sounds, and it can more effectively encode nuances such as emotion,
tone of voice, and simultaneously overlapping communication.

Images are another kind of unstructured data. Just as words form sentences and paragraphs to
express ideas, images form grids of colors that taken together form pictures.

Video, then, serves as yet another kind of unstructured data, as it is a combination of multiple
images over time, as well as optional audio that coincides with the image progression.

Often times unstructured data may be found mixed with structured data, which we typically refer
to as "semi-structured" data. Log data is a great example of such semi-structured data. Often logs
end up being semi-structured, for example, having an event date, event type (such as warning vs.
error or search vs. click), and some kind of log message or description in free text.

Technically speaking virtually any kind of file could be considered unstructured data, but we’ll
primarily deal with the aforementioned types throughout this book.

Search engines are often tasked with handling each of these kinds of unstructured data, so we’ll
discuss strategies for handling them throughout the book.

In order to better deal with our unstructured data, it may be useful to first contrast it with
structured data in SQL database. This will allow us to later draw parallels between how we can
query unstructured data representations versus structured ones.

A record (row) in a SQL database is segmented into columns, which can each be of a particular
data type. Some of these data types represent discrete values - values that come from an
enumerated list. IDs, names, and textual attributes are a few examples of discrete values. Other
columns may hold continuous values, such as date/time ranges, numbers, and other column types
which represent ranges without a finite number of possible values.

Generally speaking, when one wants to relate different rows together or to relate them to rows in
other database tables, "joins" will be performed on the discrete values. Joins leverage a shared
value (often an ID field) to link two or more records together in order to form a composite record
that relates each of those records together.

For example, if someone had two tables of data, one representing "employees" and another
representing "companies", then there would likely be an "ID" column on the "companies" table,
and a corresponding "company" column on the employees table. The company field on the
employees table is known as a , which is a value that is shared across the two tablesforeign key

2.1.2 Data types in traditional structured databases
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and which is used to link the records together based upon a shared identifier. Figure 2.3
demonstrates this example, showing examples of discrete values, continuous values, and a join
across tables using a foreign key.

Figure 2.3 Structured data in a typical database. Discrete values represent identifiers and enumerated
values, continuous values represent data that falls within ranges, and foreign keys exist when the same
value exists across two tables and can thus be used as a shared attribute which creates a relationship
between corresponding rows from each table.

This notion of joining different records together based upon known relationships (keys and
foreign keys) is powerful way to work with relational data across explicitly modelled tables, but
as we’ll see in the next section, very similar techniques can also be applied even to free-form
unstructured data.

Whereas structured data in a database is already in an easily queryable form, the reality is that
unstructured data suffers less from a lack of structure, and more just from having a large amount
of information packed into a very flexible structure. In this section, we’ll walk through a
concrete example that uncovers this hidden structure in unstructured data and demonstrates the
ways it can similarly be leveraged to find and join relationships between documents.

In the last section, we discussed how foreign keys can be used to join two rows together in a
database based upon a shared identifier between the two records. In this section, we’ll show how
the same objective can actually also be achieved with text data.

For example, we can easily map the idea of "foreign keys" used in a SQL table into the same
unstructured information we previously explored in Figure 2.2. Notice in Figure 2.4 that two

2.1.3 Joins, fuzzy joins, and entity resolution in unstructured data

FOREIGN KEYS IN UNSTRUCTURED DATA
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different sections of text both contain the word "Activate", which refers to a technology
conference.

Figure 2.4 Foreign keys in unstructured data. In this example, the same term is being used to join across
two related text documents.

The first instance indicates a conference being spoken at, while the second block of text contains
general information about the event. For purposes of our example, let’s assume that every piece
of information (block of text, image, video, and audio clip) is represented as a separate document
in our search engine. As such, there is functionally very little difference between having two
rows in a database table that each contain a column with the value of "Activate", and having
separate documents in our search engine that each contain the value of "Activate". In both cases,
we can think of these documents as related by a foreign key.

With unstructured data, however, we have much more power than with traditional structured data
modeling. In Figure 2.5, for example, notice that now two documents are linked that both refer to
me - one using my full name of "Trey Grainger", and one simply using my first name of "Trey".

FUZZY FOREIGN KEYS IN UNSTRUCTURED DATA
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Figure 2.5 Fuzzy foreign keys. In this example, the same entity is being referenced using different term
sequences, and a join is occurring based upon both phrases resolving to the same entity.

This is an example of , where there are two different representations of theentity resolution
entity, but they can still be resolved to the same meaning, and therefore can still be used to join
information between two documents. you can think of this as a "fuzzy foreign key", since it’s
still a foreign key, but not in a strict token matching sense, as it requires additional Natural
Language Processing and entity resolution techniques to resolve.

Once we’ve opened that door to advanced text processing for entity resolution, of course, now
we can learn even more from our unstructured information.

For example, not only do the names  and  in these documents refer to theTrey Trey Grainger

same entity, but so do the words  and , as Figure 2.6 demonstrates.he his
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Figure 2.6 Fuzzier foreign keys. In this example, proper nouns, pronouns, images, and references within
video are all resolved to the same entity, which can then be used to join across documents.

You’ll also notice in Figure 2.6 that both an image of me (in the bottom-left corner, in case you
have no idea what I look like) and a video containing a reference to my name are identified as
related and joined back to the textual references. We’re essentially relying on the hidden
structure present in all of this unstructured information in order to understand the meaning,
related the documents together, and learn even more about each of the referenced entities in
those documents.

So far, so good, but in real-world content it is not always appropriate to assume that the same
term in multiple places carries the same meaning, or even that our entity resolution always
resolves entities correctly. This problem of the same spelling of words and phrases having
multiple potential meanings is called , and dealing with these ambiguous terms can be apolysemy
huge problem in search applications.

You may have noticed an odd image in the upper-right-hand corner of the previous figures that
seemed a bit out of place in our examples. This image is of a fairly terrifying man holding a
machete. Apparently, if you go to Google and search for , this image comesTrey Grainger

back. If you dig in further, you’ll see in Figure 2.7 that there’s a Twitter user also named Trey
, and this image is his profile picture.Grainger

DEALING WITH AMBIGUOUS TERMS
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Figure 2.7 Polysemy. This image shows a Google search for the phrase "Trey Grainger". Pictures of
multiple different people are returned because those people’s names share the same spelling, making
the term sequence "Trey Grainger" ambiguous.

The picture is apparently of Robert Shaw (who plays Quint in the 1975 movie Jaws), but it’s
definitely not the kind of thing you want people to first come across when they search for you
online!

There are two key lessons to take away here. First, never Google yourself (you might be terrified
at what you find!). Second, and on a more serious note, polysemy is a major problem in search
and natural language understanding. It’s not safe to assume a term has a single meaning, or even
a consistent meaning in different contexts, and it’s important that our AI-powered search engine
is able to leverage context to differentiate these different meanings.

In the previous sections we’ve seen that unstructured data not only contains rich information
(entities and their relationships), but also that it is possible to relate together different documents
by joining them on shared entities, similarly to how foreign keys work in traditional databases.
Typical unstructured data contains so many of these relationships, however, that instead of
thinking in terms of rows and colums, it may be more useful to think of the collection of data as
a giant graph of relationships, as we’ll explore in this section.

At this point, it should be clear that there is much more structure hidden in unstructured data than
most people appreciate. Unstructured information is really more like "hyper-structured"
information - it is a graph that contains much more structure than typical "structured data".

UNSTRUCTURED DATA AS A GIANT GRAPH OF RELATIONSHIPS
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Figure 2.8 Giant graph of relationships. A rich graph of relationships emerges from even just a few
related documents.

Figure 2.8 demonstrates this giant graph of relationships that is present in even the small handful
of documents from our example. You can see names, dates, events, locations, people, companies,
and other entities, and you can infer relationships between them leveraging joins between the
entities across documents. You’ll also notice that the images have been correctly disambiguated
so that the machete guy is now disconnected from the graph.

If all of this can be learned from just a few documents, imagine what can be learned from the
thousands, or millions, or billions of documents you have within your own search engine.

Part of an AI-powered search platform is being able to learn insights like this from your data.
The question is, how do you leverage this enormous graph of semantic knowledge in order to
drive this intelligence?

Fortunately, the inherent structure of the inverted index in your search engine makes it very easy
to traverse this graph without any additional explicit data modeling required. We will dive deep
into how to harness this semantic knowledge graph hidden in your data in chapter 5.

In the last section we discussed how text and unstructured data typically contain a giant graph of
relationships which can be derived by looking at shared terms between different records. If
you’ve been building search engines for a while, you are used to thinking about your content in
terms of "documents", "fields", and "terms" within those fields. When interpreting the semantic
meaning of your content, however, there are a few more levels to consider.

2.2 The structure of natural language
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Figure 2.9 Semantic data encoded into free text content. Characters form character sequences, which
form terms, which form term sequences, which form fields, which form documents, which form a
corpus.

Figure 2.9 walks through these additional levels of semantic meaning. At the most basic level,
you have , which are single letters, numbers, or symbols, such as the letter "e" in thecharacters
figure. One or more characters are then combined together to form  such ascharacter sequences
"e", "en," eng", …​ "engineer", "engineers". Some character sequences form terms, which are
completed words or tokens that carry an identifiable meaning, such as "engineer", "engineers",
"engineering", or "software". One or more terms can then be combined together into term

 - usually called "phrases" when the terms are all sequential . These include things likesequences
"software engineer", "software engineers", and "senior software engineer". For simplicity in this
book, we also consider single terms to be "term sequences", and thus any time we refer to
"phrases", this is also inclusive of single-term phrases.
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SIDEBAR Term Sequences vs. Phrases

You may look at these definitions and be wondering what the difference is
between a "term sequence" and a "phrase". Quite simply, a phrase is a term
sequence where all of the terms appear sequentially. For example "chief
executive officer" is both a phrase and a term sequence, whereas "chief
officer"~2 (meaning "officer" within two positions, or edit distances, of "chief")
is only a term sequence, since it specifies a sequence of terms that is not
necessarily sequential. In the vast majority of cases, you will only be dealing
with sequential term sequences, hence we’ll mostly use the word "phrase" for
simplicity throughout the book when referring inclusively to both single and
multi-term sequential term sequences.

Of course, we know that multiple term sequences together can form sentences, multiple
sentences can form paragraphs, and that paragraphs can then be rolled up into even larger groups
of text. For the purposes of a search engine, though, the next level of grouping we’ll typically
focus on above term sequences is simply a . Text fields can be analyzed in any number offield
ways using a text analyzer, which typically includes techniques like splitting on white space and
punctuation, lowercasing all terms so they are case insensitive, stripping out noise (stopwords
and certain characters), stemming or lemmatization to reduce terms down to a base form, and
removal of accents. If the text analysis process is unfamiliar to you or you would like a refresher,
I’d recommend checking out chapter 6 of .Solr in Action

One or more fields are then composed together into a , and multiple documents form a document
 or collection of data. Whenever a query is executed against the search index, it filters thecorpus

corpus into a , which is a subset of the corpus that specifically relates the query indocument set
question.

Each of these linguistic levels - character sequences, terms, term sequences, fields, documents,
document sets, and the corpus, all provide unique insights into understanding your content and
it’s unique meaning within your specific domain.

Distributional semantics is a research area within the field Natural Language Processing that
focuses upon the semantic relationships between terms and phrases based upon the distributional
hypothesis. The distributional hypothesis is that words that occur in similar contexts tend to
share similar meanings. It is summarized well by the popular quote: "You shall know a word by
the company it keeps".1

2.3 Distributional semantics and word embeddings
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TIP "You shall know a word by the company it keeps."

-John Rupert Firth

When applying machine learning approaches to your text, these distributional semantics become
increasingly important, and the search engine makes it incredibly easy to derive the context for
any linguistic representation present in your corpus. For example, if one wanted to find all
documents about C-level executives, you could issue a query like:

This query would match "CEO", "CMO", "CFO, or any other CXO-style title, as it is asking for
any character sequence starting with "c" and ending with "o" with a single character in-between.

The same kind of freedom exists to query for arbitrarily-complex term sequences, as well:

This query would match "VP Engineering", "VP of Engineering", "Engineering VP", or even
"VP of Software Engineering", as it is asking to find "VP" and "Engineering" within two
positions (edit distances) of each other.

Of course, the nature of the inverted index also makes it trivial to support arbitary Boolean
queries. For example, if someone searches for the term "Word", but we want to ensure any
matched documents also contain either the term "Microsoft" or "MS" somewhere in the
document, we could issue the following query:

Search engines support arbitrarily complex combinations of queries for character sequences,
terms, and term sequences throughout your corpus, returning document sets that supply a unique
context of content matching that query. For example, if I query for the term "pizza", the
documents returned are more likely going to be restaurants than car rental companies, and if I
query for the term "machine learning", I’m more likely to see jobs for data scientists or software
engineers than for accountants, food service workers, or pharmacists. This means that you can
infer a strong relationship between "machine learning" and "software engineering", and a weak
relationship between "machine learning" and "food service worker". If you dig deeper, you’ll
also be able to see what other terms and phrases most commonly co-occur within the machine
learning document set relative to in the rest of your corpus, and thereby better understand the
meaning and usage of the phrase "machine learning". We’ll dive into hands-on examples of
leveraging these relationships in chapter 5.

c?o

"VP Engineering"~2

(Microsoft OR MS) AND Word
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SIDEBAR Introducing Vectors

In this section, we first introduce the concept of a . A  isvector vector
essentially a list of values describing some attributes of an item. For example,
if your items are houses, you may have a list of attributes like , ,price size

and . If you have a home costing $100,000 with 1000number of bedrooms

square feet, and 2 bedrooms, this could be represented as the vector 
. These attributes (price, size, and number of bedrooms)[100000, 1000, 2]

are often referred to as , and a specific collection of dimensions isdimensions
called . You can represent any other items (like other homes,vector space
apartments, or dwellings) within the same vector space if you can assign
them values within the dimensions of the vector space. If we consider other
vectors within the same vector space (for example, a house [1000000, 9850,

 and another house , we can perform mathematical12] [120000, 1400, 3]

operations on the vectors to learn trends and compare vectors. For example,
you may intuitively look at these three vectors and determine that "home
prices tend to incease as number of rooms increases" or that "number of
rooms tends to increase as home size increases". We can also perform
similarity calculations on vectors to determine, for example, that the
$120,000 home with 1400 square feet and 3 bedrooms is more similar to
the $100,000 home with 1000 square feet and 2 bedrooms than to the
$1,000,000 home with 9850 square feet and 12 bedrooms. If you have not
worked with vectors like this before or need a quick refresher on the math, we
have included Appendix B to ensure you are up to speed comfortable with
these concepts. A basic undertanding of vector operations will be important
as you progress through this book.

In recent years, the distributional hypothesis has been applied to create semantic understandings
of terms and term sequences through what are known as . A word embedding isword embeddings
a numerical vector (usually a list of floats) that is intended to represent the semantic meaning of a
given term sequence (typically a word or phrase). For example The term sequence is encoded
into a reduced-dimension vector which can be compared with the vectors for all of the other
word embeddings within the corpus, in order to find the most semantically-related documents.

In order to understand this process, it may be useful to think of how a search engine works out of
the box. Let’s imagine a vector exists for each term that contains a value (dimension) for every
word in your corpus. It might look something like Figure 2.10.
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Figure 2.10 Vectors with one dimension per term in the inverted index. Every query on the left maps to a
vector on the right, with a value of "1" for any term in the index that is also in the query, and a "0" for
any term in the index that is not in the query.

Figure 2.10 demonstrates how document matching and similarity scoring typically works in most
search engines by default. For every query, a vector exists which contains a dimension for every
term that is in the inverted index. If that term exists in the query, the value in the vector is "1" for
that dimension, and if that value does not exist in the query, then the value is "0" for that
dimension. A similar vector exists for every document in the inverted index, with a "1" value for
any term from the index that appears in the document, and a zero for all other terms.

When a query is executed, an exact lookup occurs in the index for any matched terms
(post-text-analysis), and then a similarity score is calculated based on a comparison of the vector
for the query and the vector for the document that is being scored relative to the query. We’ll
walk through the specific scoring calculation further in chapter 3, but that high-level
understanding is sufficient for now.

There are obvious downsides to this approach. While it is great for finding documents with exact
keywords matches, what happens when you want to find "related" things instead? For example,
you’ll notice in Figure 2.10 that the term "soda" appears in a query, but never in the index. Even
though there are other kinds of drinks (apple juice, water, cappuccino, and latte), the search
engine will always return zero results because it doesn’t understand that the user is searching for
a drink. Similarly, you’ll notice that even though the term caffeine exists in the index, that
queries for "latte", "cappuccino", and "green tea" will never match the term caffeine, even though
they are related.

For these reasons, it is now a common practice to use something called word embeddings to
model a semantic meaning for term sequences in your index and queries. A  forword embedding
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a term is a vector of features which represents the term’s conceptual meaning in a semantic
space. Figure 2.11 demonstrates the terms now mapped to a dimensionally-reduced vector that
can serve as a word embedding.

Figure 2.11 Word embeddings with reduced dimensions. In this case, instead of one dimension per term
(exists or missing), now higher-level dimensions exist that score shared attributes across items such as
"healthy", contains "caffeine" or "bread" or "dairy", or whether the item is "food" or a "drink".

With a new word embedding vector now available for each term sequence in the left-most
column of Figure 2.11, we can now score the relationship between each pair of term sequences
leveraging the similarity between their vectors. In Linear Algebra, we will use a cosine similarity
function or other distance measure to score the relationship between two vectors, which is simply
computed by performing a dot product between the two vectors and scaling it by the magnitudes
(lengths) of each of the vectors. We’ll visit the math in more detail in the next chapter, but for
now, Figure 2.12 shows the results of scoring the similarity between several of these vectors.
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Figure 2.12 Similarity between Word Embeddings. The dot product between vectors shows the items list
sorted by similarity with "green tea", with "cheese pizza", and with "donut".

As you can see in Figure 2.12, since each term sequence is now encoded into a vector that
represents its meaning in terms of higher-level features, this vector (or word embedding) can
now be used to score the similarity of that term sequence with any other similar vector. You’ll
see three vector similarity lists at the bottom of the figure: one for "green tea", one for "cheese
pizza", and one for "donut".

By comparing the vector similarity of "green tea" with all the other term sequences, we find that
the top most related items are "water", "cappuccino", "latte", "apple juice", and "soda", with the
least related being "donut". This makes intuitive sense, as "green tea" shares more attributes with
the items higher in the list. For the "cheese pizza" vector, we see that the most similar other word
embeddings are for "cheese bread sticks", "cinnamon breads sticks", and "donut", with "water"
being at the bottom of the list. Finally, for the query "donut", we find the top items to be
"cinnamon bread sticks", "cheese bread sticks", and "cheese pizza", with "water" once again
being at the bottom of the list. These results do a great job of finding the most similar items to
our original query.

It’s worth noting that this vector scoring is only used in the calculation of similarity between
items. In your search engine, there’s usually a two-phase process whereby you first execute a
keyword search and then score the resulting documents. Unless you’re going to skip the first step
and score all of your documents relative to your query vectors (which can be time and processing
intensive), you’ll still need some combination of initial keyword or document set filtering. We’ll
dive more into these mechanics for successfully implementing word embeddings and vector
search in chapter 13.
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These higher-level attribute vectors we’ve discussed might represent other term sequences in
queries, or they could be term sequences within documents, or they could even be entire
documents. It is commonplace to encode terms and term sequences into word embeddings, but 

 (encoding a vector for an entire sentence), sentence embeddings paragraph embeddings
(encoding a vector for an entire paragraph), and  (encoding a vector for andocument embeddings
entire document) are also common techniques. It’s also very common that dimensions
themselves are more abstract than our examples here. For example, deep learning models may be
applied that pull out seemingly unitelligible features from character sequences and the way that
documents cluster together within the corpus. We wouldn’t be able to easily label such
dimensions in the embedding vector, but as long as it improves the predictive power of the
model to increase relevance, this is often not a huge concern for most search teams.

Ultimately, combining multiple models for harnessing the power of distributional semantics and
word embeddings tends to create the best outcomes, and we’ll dive further into numerous graph
and vector-based approaches to leveraging these techniques throughout the rest of this book.

In chapter 1, we discussed the Search Intelligence Progression (refer to Figure 1.9), whereby
organizations start with basic keyword search, and progress through several additional stages of
improvement before they ultimately achieve a full self-learning system. The second stage in that
search intelligence progression was that of building taxonomies and ontologies, and the third
stage ("query intent") included the building and use of knowledge graphs. Unfortunately, there
can sometimes be significant confusion among practitioners in the industry on proper definitions
and use of key terminology like "ontology", "taxonomy", "synonym lists", "knowledge graphs",
"alternative labels", and so on, so it will benefit us to provide some definitions for use in this
book so as to prevent any ambiguity. Specifically, we’ll lay out definitions for the key terms of
"knowledge graph", "ontology", "taxonomy", "synonyms", and "alternative labels". Figure 2.13
shows a high level diagram for how they relate.

2.4 Modeling domain-specific knowledge
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Figure 2.13 Levels of domain-specific knowledge modeling. Knowledge graphs extend ontologies, which
extend taxonomies. Synonyms extend alternative labels and map to entries in taxonomies.

We define each of these knowledge modeling techniques as follows:

Alternative Labels (or Alt. Labels): Substitute term sequences with identical meanings.

Synonyms: Substitute term sequences that can be used to represent the same or very
similar things.

Taxonomy: A classification of things into categories.

Examples:
  CTO => Chief Technology Officer
  specialise => specialize

Examples:
  human => homo sapiens, mankind
  food => sustenance, meal

Examples:
  human is mammal
  mammal is animal
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Ontology: A mapping of relationships between types of things

Knowledge Graph: An instantiation of an Ontology that also contains the things that are
related

Creation of Alternative Labels is the most straight-forward of these techniques to understand.
Acronyms (RN => Registered Nurse) virtually always serve as alternative labels, as do
misspellings and alternative spellings. Sometimes it is useful to keep these mappings stored in
separate lists, particularly if you’re using algorithms to determine them and you expect to allow
for human modification of them and/or plan to re-run the algorithms later.

Synonyms are the next most common of the techniques, as virtually every search engine will
have some implementation of a synonyms list. Alternative labels are a subset of a synonyms list
and are the most obvious kind of synonym. Most people consider "highly related" term
sequences to be synonyms, as well. For example, "software engineer" and "software developer"
are often considered synonyms since they are usually used interchangably, even though there are
some slight nuances in meaning between the two. Sometimes, you’ll even see translations of
words between languages showing up in synonyms for bilingual search use cases.

One key difference between Alternative Labels and more general Synonyms is that alternative
labels can be seen as "replacement" terms for the original, whereas synonyms are more often
used as "expansion" terms to add alongside the original. Implementations can vary widely, but
this ultimately boils down to whether you are confident two term sequences carry exactly the
same meaning (and want to normalize it), or whether you’re just trying to include additional
related term sequences so you don’t miss other relevant results.

Taxonomies are the next step up from synonyms. Taxonomies focus less on substitute or
expansion words, and instead focus on categorizing your content into a hierarchy. Taxonomical
information will often be used to drive website navigation, to change behavior with a subset of
search results (for example, show different faceting or filtering options based upon a parent
product category), or to apply dynamic filtering based upon a category to which a query maps.
For example, if someone searches for "range" on a home improvement website, the site might
automatically filter down to "appliances" to remove the noise of other products which contain
phrases like "fall within the range" in their product description. Synonyms then map into a
taxonomy as pointers to particular items within the taxonomy.

Whereas taxonomies tend to specify parent-child relationships between categories and then map

Examples:
  animal eats food
  human is animal

Examples:
  John is human
  John eats food
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things into those categories, ontologies provide the ability to define much richer relationships
between things (term sequences, entities) within a domain. Ontologies typically define more
abstract relationships, attempting to model the relationships between kinds of things in a domain
- for example, "employee reports to boss", "CMO’s boss is CEO", "CMO is employee". This
makes ontologies really useful for deriving new information from known facts by mapping the
facts into the ontology and then drawing logical conclusions based upon relationships in the
ontology that can be applied to those facts.

Knowledge Graphs are the relative newcomer to the knowledge management space. Whereas
ontologies define high-level relationships which apply to types of things, knowledge graphs tend
to be full instantiations of ontologies that also include each of the specific entities that fall within
those types. Using our previous ontology example, a knowledge graph would additionally have
"Michael is CMO", "Michael reports to Marcia", and "Marcia is CEO" as relationships in the
graph. Before knowledge graphs came into the forefront, it was common for these more detailed
relationships to be modeled into ontologies, and many people still do this today. As a result,
you’ll often see the terms knowledge graph and ontology used interchangably, though this is
becoming less common over time.

Throughout this book, we will mostly focus our discussions on alternative labels, synonyms, and
knowledge graphs, since taxonomies and ontologies are mostly subsumed into knowledge
graphs.

In the last few sections, we’ve discussed the rich graph of meaning embedded within
unstructured data and text, as well as how distributional semantics and word embeddings can be
leveraged to derive and score semantic relationships between term sequences in queries and
documents. We also introduced key techniques for knowledge modeling and defined key
terminology we’ll use throughout this book. In this section, we’ll discuss a few key challenges
associated with Natural Language Understanding that we’ll seek to overcome in the coming
chapters.

In section 2.1.3, we introduced the idea of polysemy, or ambiguous terms. In that section, we
were dealing with an image tagged with the name "Trey Grainger", but which was referring to a
different person than the author of this book. In textual data, however, we have the same
problem, and it can get very messy.

Consider a word like "driver". Driver can refer broadly to a "vehicle driver", a kind of golf club
for hitting the ball off a tee, software that enables a hardware device to work, a kind of tool
(screwdriver), or the impetus for pushing something forward ("a key driver of success"). Clearly
there are many potential meaning for this word, but in reality you could dive in and explore

2.5 Challenges in natural language understanding for search

2.5.1 The challenge of ambiguity (polysemy)
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many even more granular meanings. For example, within the "vehicle driver" category, it could
mean taxi driver, or Uber driver, or Lyft driver, or it could mean professional trucker like a CDL
driver (someone with a Commercial Drivers License), or it could mean bus driver. Within the
subset of bus drivers, it could mean a school bus driver, a driver of a public city bus, a driver for
a tour bus, and so on. This list could continue being broken down into dozens of additional
categories at a minimum.

Often times when building search applications, engineers will naively create static synonyms
lists and assume terms have a singular meaning that can be applied universally. The reality,
however, is that every term (word or phrase) takes on a unique meaning that is based upon the
specific context in which it is being used.

TIP Every term takes on a unique meaning that is based upon the specific context
in which it is being used.

It’s not often practical to support an infinite number of potential meanings, though we will
discuss techniques to approximate this with a semantic knowledge graph in chapter 5.
Nevertheless, regardless of whether you support many meanings per phrase or just a few, it’s
important to recognize the clear need to be able to generate an accurate (and often nuanced)
interpretation for any given phrase your users may encounter.

I like to say that every term (word or phrase) you ever encounter is a "context-dependent cluster
of meaning with an ambiguous label".

TIP Every word or phrase is "a context-dependent cluster of meaning with an
ambiguous label"

That is to say, there is a label (the textual representation of the term) that is being applied to
some concept (a cluster of meaning) that is dependent upon the context in which it is found. By
this definition, it is impossible to ever interpret a term without an understanding of the context in
which it is found, and as such, creating fixed synonyms lists that aren’t able to take context into
account is likely to create suboptimal search experiences for your users.

As we discussed in chapter 1, the context for a query includes more than just the search
keywords and the content within your documents, however. It also includes an understanding of
your domain, as well as an understanding of your user. Queries can take on entirely different
meaning based upon what you know about your user and any domain-specific understanding you

2.5.2 The challenge of understanding context
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may have. This context is necessary to both detect and to resolve the kinds of ambiguity we
discussed in the last section, as well as to ensure your users are receiving the most intelligent
search experience possible.

Throughout this book, our focus will be on techniques to automatically learn contextual
interpretations of each query based upon the unique context in which it is being used.

Just because context is important doesn’t mean it is always easy to apply correctly. It is always
necessary to have the ability to perform basic keywords search as a fallback for when your
system doesn’t understand a query, and it is almost always useful to have pre-built domain
understanding that can similarly be relied upon to help interpret queries. This pre-built domain
understanding then ends up overriding some of the default keyword-based matching behavior
(such as joining individual keywords into phrases, injecting synonyms, and correcting
misspellings).

Once you begin better understanding your users, however, it is not always obvious how to apply
user-specific personalization on top of the pre-existing content and domain-specific scoring. For
example, say you learn that a particular user really likes Apple as a brand because they keep
searching for iPhones. Does this mean that Apple should also be boosted when they are
searching for watches and computers and television streaming boxes and keyboards and
headphones and music players? It could be that the user only likes Apple-branded phones and
that by boosting the brand in other categories you may actually frustrate the user. For example,
even if the user did search for iPhone previously, how do you know they weren’t just trying to
compare the iPhone with other phones they were considering?

Out of all of the dimensions of user intent (figure 1.8), personalization is the easiest one to trip
up on, and subsequently it is the one that is least-commonly seen in modern AI-powered search
applications (outside of recommendation engines, of course). We’ll work through these problems
in detail in chapter 9 in order to highlight how to strike the right balance when rolling out a
personalized search experience.

One common problem I see when engineers and data scientists first get started with search is a
propensity to apply standard Natural Language Processing techniques like language detection,
part of speech detection, phrase detection, and sentiment analysis to queries. All of those
techniques were designed to operate on longer blocks of text - usually at the document,
paragraph, or at least sentence level.

Documents tend to be longer and to supply significantly more context to the surrounding text,
whereas queries tend to be short (a few keywords only) in most use cases, and even when they

2.5.3 The challenge of personalization

2.5.4 Challenges interpreting queries vs. documents
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are longer they tend to combine multiple ideas together as opposed to supplying more linguistic
context.

As such, when trying to interpret queries, you need to leverage external context as much as
possible to interpret the query. Instead of using a Natural Language Processing library that
typically relies upon sentence structure to interpret the query, for example, you can try to lookup
the phrases from your query in your corpus of documents to find the most common
domain-specific interpretations of them. Likewise, you can leverage the co-occurrence of terms
within your query across previous user search sessions by mining your user behavioral signals.
This enables you to learn real intention from similar users, which would be very challenging to
accurately derive from a standard Natural Language Processing library on a consistent basis.

In short, queries need special handling and interpretation due to their tendency to be short and to
often imply more than they state explicitly, so fully leveraging search-centric data science
approaches to queries is going to generate much better results than traditional Natural Language
Processing approaches.

While the process of parsing a query to understand the terms and phrases it contains is important,
there is often a higher-level intent behind the query—a query type, if you will. For example, lets
consider the inherent differences between following queries:

The intent of the first query for "who is the CEO?" is clearly to find a factual answer and not a
list of documents. The second query for "support" is trying to navigate to the support section of a
website, or to otherwise contact the support team. The third query for "iphone screen blacked
out" is also looking for support, but it is for a specific problem, and the person is likely to want
to find troubleshooting pages that may exist to help with that specific problem before reaching
out to the actual support team.

The next two queries for "iphone" and for "verizon silver iphone 8 plus 64GB" are quite
interesting. While they are both for iphones, the first search is a general search, indicating a
likely browsing or product research intent, whereas the second query is a much more specific
variant of the first search, indicating the user knows exactly what they are looking for, and may
be closer to making a purchasing decision. As such, the general query for "iphone" may do better
to return a landing page that provides an overview of iphones and the available options, while the
more specific query may do better to go straight to the product page with a purchase button

2.5.5 Challenges interpreting query intent

who is the CEO?
support
iphone screen blacked out
iphone
verizon silver iphone 8 plus 64GB
sale
refrigerators
pay my bill
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immediately available. As a general rule of thumb, the more general a query, the more likely the
user is just browsing, whereas more specific queries—especially when they refer to specific
items by name—often indicate a purchase intent or desire to find a particular known item.

The query for "sale" indicates that the user is looking for items which are available for purchase
at a discounted rate, which will invoke some specially-implemented filter or redirect to a
particular landing page for an ongoing sale event. The query for "refrigerators" indicates that the
use wants to browse a particular category of product documents. Finally, the query for "pay my
bill" indicates that the user wants to take an action—the best response to this query isn’t a set of
search results or even an answer, but instead a redirect to a bill review and payment section of
the application.

Each of these queries contains an intent beyond just a set of keywords to be matched. Whether
the intent is to redirect to a particular page, to apply particular filters, to browse or to purchase
items, or even to take domain-specific actions, the point is that there is domain-specific nuance
to how users may express their goals to your search engine. Often times, it can be difficult to
automatically derive these domain-specific user intents automatically. It is fairly common for
businesses to implement specific business rules to handle these as one-off requests. Query Intent
classifiers can certainly be built to handle subsets of this problem, but successfully interpreting
every possible query intent still remains challenging when building out natural language query
interpretation capabilities.

In the first chapter, we introduced the idea of Reflected Intelligence - leveraging feedback loops
to continually learn from both content and user interactions. This chapter has focused entirely on
understanding the meaning and intelligence embedded within your content, but it’s important to
recognize that many of the techniques we’ll apply to the "unstructured data" in your documents
can also be just as readily applied to your user behavioral signals. For example, we discussed
earlier in this chapter how the meaning of phrases can be derived from finding the other phrases
that they appear with the most often within your corpus. We used the example that "machine
learning" appears more commonly with "data scientist" and "software engineer" than it does with
"accountants", "food service workers", or "pharmacists".

If you abstract this idea beyond your documents and to your users' behavior, you might also
expect that the users querying your search engine are likely to exhibit similar query behavior that
also falls inline with the distributional hypothesis. Specifically, people who are data scientists or
who are searching for data scientists are far more likely to also search for or interact with
documents about "machine learning", and the likelihood of a food service worker or accountant
searching for machine learning content is much lower than the likelihood for a software
engineering doing the same. We can thus apply these same techniques to learn related terms and
term sequences from query logs, where instead of thinking of terms and term sequences mapping

2.6 The fuel powering AI-powered search
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to fields in documents, we think of terms in queries and clicks on search results mapping to user
sessions, which then map to users.

Some search applications will be content-rich, but have very few user signals. Other search
applications will have an enormous number of signals, but will have very little content or have
content which poses challenges from an automated learning perspective. In an ideal scenario, you
have great content and an enormous quantity of user signals to learn from, which allows
combining the best of both worlds into an even smarter AI-powered search application.
Regardless of which scenario you’re in, keep in mind that your content and your user signals can
both serve as fuel for your application, and you should do your best to maximize the collection
and quality of collection of each.

Now that we’ve covered all the background needed to begin extracting meaning from your
natural language content, it’s time to roll up your sleeves and get hands-on. In the next chapter,
we’ll dive into lots of examples as we begin to explore content-based relevancy in an
AI-powered search application.

Unstructured data is a misnomer - it is really more like hyper-structured data, as it
represents a giant graph of domain-specific knowledge.
Search engines can leverage distributional semantics - interpreting the semantic
relationships between terms and phrases based upon the distributional hypothesis - to
harness rich semantic meaning at the level of character sequences, terms, term sequences
(typically phrases), fields, documents, document sets, and an entire corpus.
Distributional semantics approaches enable us to learn the nuanced meaning of our
queries and content from their larger surrounding context.
Word embeddings are a powerful technique for modeling and scoring based upon the
semantic meaning of phrases instead of just pure text matching statistics.
Domain specific knowledge is commonly modeled through a combination of alternative
labels, synonyms lists, taxonomies, ontologies, and knowledge graphs. Knowledge
graphs typically model the output from each of the other approaches into a unified
knowledge representation of a particular domain.
Polysemy (ambiguous terms), context, personalization, and query-specific Natural
Language Processing approaches represent some of the more interesting challenges in
natural language search.
Content and user signals are both important fuel for our AI-powered search applications
to leverage when solving natural language challenges.

2.7 Summary
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3
This chapter covers

Search engines fundamentally do three things: ingest content, return content matching incoming
queries, and sort the returned content based upon some measure of how well it matches the
query.  is the term used to describe this notion of "how well the content matches theRelevance
query". Most of the time the matched content is documents, and the returned and ranked content
is those matched documents along with some corresponding metadata describing the documents.

In most search engines, the default relevance sorting is based upon a score indicating how well
each keyword in a query matches the same keyword in each document, with the best matches
yielding the highest relevance score and returned at the top of the search results. The relevance
calculation is highly configurable, however, and can be easily adjusted on a per-query-basis in
order to enable very sophisticated ranking behavior.

In this chapter, we will provide an overview of how relevance is calculated, how the relevance
function can be easily controlled and adjusted through function queries, and how to implement
popular domain-specific and user-specific relevance ranking features. We’ll start by looking at
how ranking actually works.

Ranking and content-based relevance

Executing queries and returning matching search results
Ranking search results based upon how relevant they are to an incoming query
Controlling and specifying your own ranking functions with function queries
Catering ranking functions to a specific domain
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In section 2.3, we demonstrated the idea of measuring the similarity of two vectors by
calculating the cosine between them. We created vectors (lists of numbers, where each number
represents the strength of some feature) representing different food items, and we then calculated
the cosine (the size of the angle between the vectors) in order to determine their similarity. We’ll
expand upon that technique in this section, discussing how text queries and documents can map
into vectors for ranking purposes. We’ll further get into some popular text-based feature
weighting techniques and how they can be integrated to create an improved relevance ranking
formula.

SIDEBAR Running the Code Examples

All code listings in the book are available in Jupyter notebooks, enabling you
to run live versions of the code in real-time and easily follow along as you read
through the chapters. See Appendix A: "Running the Examples" for
instructions on how to launch the Jupyter notebooks and follow along in your
web browser.

For your convenience, electronic copies of the book also contain
hyperlinks for each listing, making it seamless for you to link directly to the
live code examples from the text if you are running the Jupyter notebooks on
the same device. For brevity, listings may leave out certain lines of code, such
as imports ancillary code, so going to the notebook will also enable you to
dive deeper into some of those implementation details when needed.

In this section, we will begin diving into our first code listings for the book, so it will be helpful
to fire up our live code examples and open the chapter 3 Jupyter Notebooks so that you can
follow along. Instructions for doing this are located in Appendix A: "Running the Code
Examples".

In a typical search application, we start with a collection of documents and we then try to rank
documents based upon how well they match some user’s query. In this section, we’ll walk
through the process of mapping the text of queries and documents into vectors.

In the last chapter, we used the example of a search for food and beverage items, like apple
, so let’s reuse that example here.juice

Query: apple juice

Let’s assume we have two different documents that we would like to sort based upon how well
they match this query.

3.1 Scoring query and document vectors with cosine similarity

3.1.1 Mapping text to vectors
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Document 1:

Document 2:

If we mapped both of these documents (containing a combined 48 words) to vectors, they would
map to a 48-word vector-space with the following dimensions:

If you recall in section 2.3, we proposed thinking of a query for the phrase  as aapple juice

vector containing a feature for every word in any of our documents, with a value of  for the1

terms  and , and a value of  all other terms.apple juice 0

Since the word  is in the third position and  is in the 28th position of our 48-wordapple juice

vector-space, a query vector for the phrase  would look as shown in Figure 3.1.apple juice

Figure 3.1 Query Vector. The query for  is mapped to a vector containing one dimension forapple juice

every known term, with a value of  for the terms  and  and a value of  for all other terms.1 apple juice 0

Note that even though the query vector only contains a non-zero value for two dimensions
(representing the position of  and ), that it still contains values of  for all otherapple juice 0

possible dimensions. Representing a vector like this including every possible value is known as a
.dense vector representation

Each of the documents also maps to the same vector space based upon each of the terms it
contains:

With these dense vector representations of our query and documents, we can now use linear
algebra to measure the similarity between our query vector and each of the document vectors.

Lynn: ham and cheese sandwich, chocolate cookie, ice water.
Brian: turkey avocado sandwich, plain potato chips, apple juice
Mohammed: grilled chicken salad, fruit cup, lemonade

Orchard Farms apple juice is premium, organic apple juice made from the freshest apples, never

from concentrate. Its juice has received the regional award for best apple juice three

years in a row.

[a, and, apple, apples, avocado, award, best, brian, cheese, chicken, chips, chocolate,

concentrate, cookie, cup, farms, for, freshest, from, fruit, grilled, ham, has, ice, in, is, 

its, juice, lemonade, lynn, made, mohammed, never, orchard, organic, plain, potato, premium,

received, regional, row, salad, sandwich, the, three, turkey, water, years]

Document 1: [0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0

1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0]

Document 2: [1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1

0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1]
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To rank our documents, we just need to follow the same process we used in chapter 2 to
calculate the cosine between each document and the query. This cosine value will then become
the relevance score for each document, and we’ll be able to sort documents based upon that
relevance score.

Listing 3.1 shows how we would represent the query and document vectors in code, and how we
would calculate the cosine similarity between the query and each document.

Listing 3.1 Cosine Similarity calculation between query and document vectors

Results:

Interesting…​ Both documents received exactly the same relevance score, even though the
documents contain lengthy vectors with very different content. It might not be immediately
obvious what’s going on, so let’s simplify the calculation by focusing only on the features that
matter.

3.1.2 Calculating similarity between dense vector representations

query_vector = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0])

doc1_vector = np.array([0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,

0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,

1, 1, 0, 0, 1, 1, 0])

doc2_vector = np.array([1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,

1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,

0, 0, 1, 1, 0, 0, 1])

def cos_sim(vector1, vector2):
  return dot(vector1, vector2) / (norm(vector1) * norm(vector2))

doc1_score = cos_sim(query_vector, doc1_vector)
doc2_score = cos_sim(query_vector, doc2_vector)

print("Relevance Scores:\n doc1: " + num2str(doc1_score) + "\n doc2: " +

num2str(doc2_score))

Relevance Scores:
 doc1: 0.2828
 doc2: 0.2828
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The key to understanding the calculation in the last section is understanding that the only
features that matter are the ones shared between both the query and a document. All other
features (words appearing in documents that don’t match the query) have zero impact on whether
one document is ranked higher than another. As a result, we can remove all of the other
insignificant terms from our vector to simplify the example, converting from a dense vector
representation to what is known as a sparse vector representation.

In the last section, we worked with dense vector representations, which are vector
representations including a value for every possible dimension, even if many of those values are 

 (see Figure 3.1). It is also possible to create a much smaller vector representation that only0

contains useful values, however. A vector representation only containing the non-zero values for
a calculation is known as a , as shown in Figure 3.2.sparse vector representation

Figure 3.2 Sparse vector representation, which only contains the "present" features, unlike dense vector
representations which also contain the  valued entries for every feature.0

In most search engine scoring operations, we tend to deal with sparse vector representations
because they are more efficient to work with when we are only dealing with scoring based upon
the small number of features.

In addition, we can further simplify our calculations by creating sparse vectors that only include
"meaningful entries" - the terms that are actually present in the query - as shown in .Listing 3.2

Listing 3.2 Cosine Similarity calculation between sparse query and document vectors

Results:

3.1.3 Calculating similarity between sparse vector representations

sparse_query_vector = [1, 1] #[apple, juice]
sparse_doc1_vector = [1, 1]
sparse_doc2_vector = [1, 1]

doc1_score = cos_sim(sparse_query_vector, sparse_doc1_vector)
doc2_score = cos_sim(sparse_query_vector, sparse_doc2_vector)

print("Relevance Scores:\n doc1: " + num2str(doc1_score) + "\n doc2: " +

num2str(doc2_score))
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Notice that  and  still yield the same relative score, but that now the actual score is .doc1 doc2 1.0

If you remember, a  score from a cosine calculation means the vectors are perfect matches,1.0

and in fact, it should be obvious that since each of the sparse vectors contain the exact same
values ( ) that they are all equal and thus get a perfect score.[1 1]

In fact, you’ll notice several very interesting things:

This simplified sparse vector calculation still shows both  and  returningdoc1 doc2

equivalent relevance scores, since they both match all the words in the query.
Even though the absolute score between the dense vector representation similarity
(0.2828) and the sparse vector representation similarity (1.0) are different due to our new
sparse vector only containing terms actually in the query, the scores are still the same
relative to each other within each vector type.
The feature weights for the two query terms ( , ) are exactly the sameapple juice

between the query and each of the documents, resulting in a cosine score of 1.0.

SIDEBAR Vectors vs. Vector Representations

We’ve been careful to refer to "dense vector representations" and "sparse
vector representations" instead of "dense vectors" and "sparse "vectors". This
is because there is an conceptual distinction between the idea of a vector and
its representation.

Specifically, a dense vector is any vector that contains mostly non-zero
values, whereas a sparse vector is any vector that contains mostly
zero-values, regardless of how they are stored or represented. The vector
representations, on the other hand, deal with the data structures we actually
use to work with the vectors, and so since our query and document vectors
are all sparse vectors, it makes sense to use a sparse vector representation to
work with only the non-zero values.

In addition to these academic terminology distinctions, however, when we
are working with our sparse vector representations, we are not actually
preserving the original vector, but instead we are creating a brand new vector
containing  the values that are present in the query. Since we’veonly
determined that values not in the query do not affect the relative difference in
score between any two documents, we simplify our calculations by creating a
new sparse vector that only contains the values present in the query and, of
course, we use a sparse vector representation to work with this sparse new
vector.

Search engines adjust for these issues by not just considering each feature in the vector as a 1
(exists) or a  (does not exist), but instead providing a score for each feature based upon how 0

 the feature matches. We’ll discuss a few ways to do this in the following sections.well

Relevance Scores:
 doc1: 1.0
 doc2: 1.0

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

61

https://livebook.manning.com/#!/book/ai-powered-search/discussion


1.  

2.  

The problem we encountered in the last section is that the features in our term vectors only
signify  the word  or  exists, not how well each document actually represents eitherif apple juice

of the terms. We can see that the oddity of representing each term from the query as a feature
with a value of  indicating it exists, is that both  and  will always have the same1 doc1 doc2

cosine similarity score for the query, even though qualitatively  is a much better match sincedoc2

it talks about apple juice much more.

Instead of using a value of  for each existing term, we can try to correct for this notion of "how1

well" a document matches by using the , which is a measure of the number ofterm frequency
times a term occurs within each document. The idea here is that the more frequently a term
occurs within a specific document, the greater the liklihood that the document is more related to
the query.

If we replace the feature weights in our vector with a count of the number of times each term
occurs within the document or query, then we get the vectors in Listing 3.3

Listing 3.3 Cosine similarity of term frequency vectors based upon raw term counts

Results:

As you can see,  is considered a better cosine similarity match than . This is becausedoc1 doc2

the terms  and  both occur "the same proportion of times" (one occurrence of eachapple juice

term for every occurrence of the other term) in both the query and in , making them thedoc1

most textually similar. Even though  is intuitively more "about" the query, mentioning thedoc2

terms in the query significantly more. Since our goal is for documents like  with higher termdoc2

frequency to score higher, we can overcome these by either:

Continuing to use cosine similarity, but modifying the query features to actually represent
the "best" possible score for each query term, or
Switching from cosine similarity to another scoring function that increases as feature
weights continue to increase.

3.1.4 Term Frequency (TF): measuring how well documents match a term

doc1_tf_vector = [1, 1] #[apple:1, juice:1]
doc2_tf_vector = [3, 4] #[apple:3, juice:4]

query_vector = [1, 1] #[apple:1, juice:1]

doc1_score = num2str(cos_sim(query_vector, doc1_tf_vector))
doc2_score = num2str(cos_sim(query_vector, doc2_tf_vector))

print("Relevance Scores:\n doc1: " + str(doc1_score) + "\n doc2: " +

str(doc2_score))

Relevance Scores:
 doc1: 1.0
 doc2: 0.9899
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Let’s try option 1 for now (we’ll visit option 2 in section 3.2).

SIDEBAR Phrase matching and other relevance tricks

By now, you may be wondering why we keep treating  and  asapple juice

independent terms and why we don’t just treat  as a phrase toapple juice

boost documents higher that match the exact phrase. If so, your intuition is
great, and this is one of many easy relevance tuning trick we’ll learn later in
the chapter. For now, though, we’ll keep our query processing simple and just
deal with individual keywords in order to stay focused on our main goal -
explaining vector-based relevance scoring and text-based keyword scoring
features.

In , we adjust the feature weights in the query vector to be based upon the "best"Listing 3.4
possible match for each term.

Listing 3.4 Cosine similarity of term frequency vectors, with query weights per term
normalized for best match.

Query vector should represent the "best possible" match, so we include the top
possible score for each term in the query vector.

Results:

As you can see,  now yields a higher cosine similarity with the query than , andoc2 doc1

improvement that aligns better with our intuition.

While using the term frequency as the feature weight in our vectors certainly helps, textual
queries exhibit additional challenges that also need to be considered. Thusfar, our documents
have all contained every term from our queries, which does not match with most real-world
scenarios. The following example will better demonstrate some of the limitations still present
when using only term-frequency-based weighting for our text-based sparse vector similarity
scoring. Let’s start with the following three text documents:

doc1_tf_vector = [1, 1] #[apple:1, juice:1]
doc2_tf_vector = [3, 4] #[apple:3, juice:4]

query_vector = np.maximum.reduce([doc1_tf_vector, doc2_tf_vector])

#[apple:3, juice:4] 

doc1_score = cos_sim(query_vector, doc1_tf_vector)
doc2_score = cos_sim(query_vector, doc2_tf_vector)

print("Relevance Scores:\n doc1: " + num2str(doc1_score) + "\n doc2: " +

num2str(doc2_score))

Relevance Scores:
 doc1: 0.9899
 doc2: 1.0
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Document 1:

Document 2:

Document 3:

Let’s now map these documents into their corresponding (sparse) vector representations and
calculate a similarity score.  demonstrates a code example for ranking text similarityListing 3.5
based upon term frequencies.

Listing 3.5 Ranking text similarity based upon Term Frequency.

In light of the big reveal in the interview, the interesting thing is that

the person in the wrong probably made the right decision in the end.

My favorite book is the cat in the hat, which is about a crazy cat in a hat

who breaks into a house and creates a crazy afternoon for two kids.

My careless neighbors apparently let a stray cat stay in their garage

unsupervised, which resulted in my favorite hat that I let them borrow

being ruined.

doc1 = "In light of the big reveal in the interview, the interesting thing

is that the person in the wrong probably made the right decision in

the end."
doc2 = "My favorite book is the cat in the hat, which is about a crazy cat

in a hat who breaks into a house and creates a crazy afternoon for two

kids."
doc3 = "My careless neighbors apparently let a stray cat stay in their

garage unsupervised, which resulted in my favorite hat that I let them

borrow being ruined."

def tf(content, term):
    tokenized_content = tokenize(content)
    term_count = tokenized_content.count(term.lower())
    return float(term_count)

doc1_tf_vector = [ tf(doc1,"the"), tf(doc1,"cat"), tf(doc1,"in"),

tf(doc1,"the"), tf(doc1,"hat") ]
doc2_tf_vector = [ tf(doc2,"the"), tf(doc2,"cat"), tf(doc2,"in"),

tf(doc2,"the"), tf(doc2,"hat") ]
doc3_tf_vector = [ tf(doc3,"the"), tf(doc3,"cat"), tf(doc3,"in"),

tf(doc3,"the"), tf(doc3,"hat") ]

print ("labels: [the, cat, in, the, hat]")
print ("doc1_vector: [" + ", ".join(map(num2str,doc1_tf_vector)) + "]")
print ("doc2_vector: [" + ", ".join(map(num2str,doc2_tf_vector)) + "]")
print ("doc3_vector: [" + ", ".join(map(num2str,doc3_tf_vector)) + "]\n")

query = "the cat in the hat"
query_vector = np.maximum.reduce([doc1_tf_vector, doc2_tf_vector,

doc3_tf_vector])
print ("query_vector: [" + ", ".join(map(num2str,query_vector)) + "]\n")

doc1_score = cos_sim(query_vector, doc1_tf_vector)
doc2_score = cos_sim(query_vector, doc2_tf_vector)
doc3_score = cos_sim(query_vector, doc3_tf_vector)

print("Relevance Scores:\n doc1: " + num2str(doc1_score) + "\n doc2: " +

num2str(doc2_score)+ "\n doc3: " + num2str(doc3_score))
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1.  
2.  
3.  

Results:

While we at least receive different relevance scores now for each document based upon the
number of times each term matches, the ordering of the results doesn’t necessarily match our
intuition about which documents are the best matches.

Intuitively, we would instead expect the following ordering:

doc2: because it is actually about the book The Cat in the Hat
doc3: because it matches all of the words , , , and the cat in hat

doc1: because it only matches the words  and , even though it contains them manythe in

times

The problem here, of course, is that since every occurrence of any word is considered just as
important, the more times ANY term appears, the more relevant that document becomes. In this
case,  is getting the highest score, because it contains 16 total term matches (the first  sixdoc1 the

times,  four times, and the second  six times), yielding more total term matches than anyin the

other document.

It doesn’t really make sense that a document containing a word 16 times should actually be
considered 16-times as relevant, though. Usually real-world TF calculations dampen the effect of
each additional occurrence of a word by calculating TF as the square root of the number of
occurrences of each term. Additionally, term frequency is often also normalized relative to
document length by dividing that dampened TF by the total number of terms in each document.
Since longer documents are naturally more likely to contain any given term and to contain terms
more often, this helps ensure that the score is normalized to the document length so that shorter
and longer documents are treated equally. This final, normalized TF calculation can be seen in
Figure 3.3.

labels: [the, cat, in, the, hat]
doc1_vector: [6.0, 0.0, 4.0, 6.0, 0.0]
doc2_vector: [2.0, 2.0, 2.0, 2.0, 2.0]
doc3_vector: [0.0, 1.0, 2.0, 0.0, 1.0]

query_vector: [6.0, 2.0, 4.0, 6.0, 2.0]

Relevance Scores:
 doc1: 0.9574
 doc2: 0.9129
 doc3: 0.5
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Figure 3.3 Term Frequency Calculation.  represents a term and  represents a document. TF equals thet d

square root of the number of times the term appears in the current document, divided by the number of
terms in the document. The numerator dampens the additional relevance contribution of each
additional occurrence of a term, while the denominator normalized that dampened frequency to the
document length so that longer documents with more terms are comparable to shorter documents with
less terms.

Going forward, we’ll use this dampened TF calculation to ensure additional occurrences of the
same term continue to improve relevance, but without having an outsized impact on the overall
score, as it is generally better to match multiple different terms from a query than simply the
same terms over and over.

With this improved TF calculation now in place, let’s re-calculate our relevance ranking to see if
there is any improvement in .Listing 3.6

Listing 3.6 Ranking text similarity based upon Term Frequency.

Results:

def tf(content, term):
    tokenized_content = tokenize(content)
    term_count = tokenized_content.count(term.lower())
    vector_length = len(tokenized_content)
    return float(np.sqrt(term_count)) / float(vector_length)

doc1_tf_vector = [ tf(doc1,"the"), tf(doc1,"cat"), tf(doc1,"in"),

tf(doc1,"the"), tf(doc1,"hat") ]
doc2_tf_vector = [ tf(doc2,"the"), tf(doc2,"cat"), tf(doc2,"in"),

tf(doc2,"the"), tf(doc2,"hat") ]
doc3_tf_vector = [ tf(doc3,"the"), tf(doc3,"cat"), tf(doc3,"in"),

tf(doc3,"the"), tf(doc3,"hat") ]

print ("labels: [the, cat, in, the, hat]")
print ("doc1_vector: [" + ", ".join(map(num2str,doc1_tf_vector)) + "]")
print ("doc2_vector: [" + ", ".join(map(num2str,doc2_tf_vector)) + "]")
print ("doc3_vector: [" + ", ".join(map(num2str,doc3_tf_vector)) + "]\n")

query = "the cat in the hat"
query_vector = np.maximum.reduce([doc1_tf_vector, doc2_tf_vector,

doc3_tf_vector])
print ("query_vector: [" + ", ".join(map(num2str,query_vector)) + "]\n")

doc1_score = cos_sim(query_vector, doc1_tf_vector)
doc2_score = cos_sim(query_vector, doc2_tf_vector)
doc3_score = cos_sim(query_vector, doc3_tf_vector)

print("Relevance Scores:\n doc2: " + num2str(doc2_score) + "\n doc1: "
                                   + num2str(doc2_score)+ "\n doc3: "
                                   + num2str(doc3_score))
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The normalized TF clearly helped, as  is now ranked the highest, as we would expect. Thisdoc2

is mostly because of the dampening effect on number of term occurrences in  (whichdoc1

matched  and  so many times), such that each additional occurrrence contributes less to thethe in

feature weight than prior occurrences. Unfortunately,  is still ranked second highest, so evendoc1

the improved  function wasn’t enough to get the better matching  to the top.tf doc3

Your intuition is probably also screaming right now, "Yeah, but nobody really cares about the
words  and . It’s obvious that the words  and  should be given the most weight herethe in cat hat

instead!" And you would be right. Let’s modify our scoring calculation to fix this oversight by
introducing a new variable that takes the importance of each term into consideration.

While Term Frequency has proven useful at measuring how well a document matches each term
in a query, it unfortunately does little to differentiate between the importance of the terms in the
query. In this section, we’ll introduce a technique leveraging the significance of specific
keywords based upon their frequency of occurrence across documents.

Document Frequency (DF) for a term is defined as the total number of documents in the search
engine that contain the term, and it serves as a good measure for how important a term is. The
intuition here is that more specific or rare words (like  and ) tend to be more importantcat hat

than common words (like  and ). The function used to calculate document frequency isthe in

shown in Figure 3.4.

Figure 3.4 Document Frequency Calculation. D is the set of all documents, and  is the input term.  ist DF

simply the number of documents containing the input term, and the lower the number, the more
specific and important the term is when seen in queries.

labels: [the, cat, in, the, hat]
doc1_vector: [0.0942, 0.0, 0.0769, 0.0942, 0.0]
doc2_vector: [0.0456, 0.0456, 0.0456, 0.0456, 0.0456]
doc3_vector: [0.0, 0.0385, 0.0544, 0.0, 0.0385]

query_vector: [0.0942, 0.0456, 0.0769, 0.0942, 0.0456]

Relevance Scores:
 doc2: 0.9222
 doc1: 0.9559
 doc3: 0.5995

3.1.5 Inverse Document Frequency (IDF): measuring the importance of a term in
the query
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1.  
2.  
3.  
4.  

Since we would like words which are more important to get a higher score, we take an inverse of
the document frequency (IDF), typically defined through function in Figure 3.5.

Figure 3.5 Inverse Document Frequency. |D| is the total count of all documents, t is the term, and DF(t)
is the count of all documents containing the term. The lower the number, the more insignificant a term,
and the higher, the more a term in a query should count toward the relevance score.

Carrrying forward our  example from the last section, a vector of IDFsthe cat in the hat

would thus look as shown in .Listing 3.7

Listing 3.7 Calculating Inverse Document Frequency (IDF)

Simulating that we have a representative sample of docs with meaningful
real-world statistics

The IDF function, which dictates the importance of a term in the query

IDF is term-dependent, not document dependent, so it is the same for both queries
and documents

Results:

These results look encouraging. The terms are all now ranked based upon their relative
descriptiveness or significance/importance to the query:

hat: 6.2785,
cat: 5.5952,
in: 1.1052,
the: 1.0512

With a way to differentiate which documents are better matches for specific terms (TF) and a

df_map = {"the": 9500, "cat": 100, "in":9000, "hat":50}
totalDocs = 10000 

def idf(term):
     return 1 + np.log(totalDocs / (df_map[term] + 1) )

idf_vector = np.array([idf("the"), idf("cat"), idf("in"), idf("the"),

idf("hat")]) 

print ("labels: [the, cat, in, the, hat]\nidf_vector: " +

vec2str(idf_vector))

labels: [the, cat, in, the, hat]
idf_vector: [1.0512, 5.5952, 1.1052, 1.0512, 6.2785]
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way to determine which specific terms should matter the most in any given query (IDF), we can
now combine these two features together to generate a much more balanced relevance-ranking
feature called TF-IDF.

We now have the two principle components of text-based relevance ranking:

TF (measures how well a term describes a document)
IDF (measures how important each term is)

Most search engines, and many other data science applications, leverage a combination of each
of these factors as the basis for textual similarity scoring, using a variation of the function in
Figure 3.6.

Listing 3.8 TF-IDF score. Combines both the term frequency and inverse document
frequency calculations together into a balanced text-ranking similarity score.

With this improved feature-weighting function in place, we can finally calculate a balanced
relevance score (that weights both number of occurrences and usefulness of terms) for how well
each of our documents match our query, as shown in .Listing 3.8

3.1.6 TF-IDF: a balanced weighting metric for text-based relevance

"TF-IDF" = TF * IDF^2
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Listing 3.9 TF-IDF Ranking Code for the query the cat in the hat

Results:

Finally our search results make intuitive sense!  gets the highest score, since it matches thedoc2

most important words the most, followed by , which contains all the words, but not as manydoc3

times, followed by , which only contains an abundance of insignificant words.doc1

def tf_idf(tf,idf):
    return tf * idf**2

query = "the cat in the hat"

print ("labels: [the, cat, in, the, hat]")
doc1_tfidf = [
               tf_idf(tf(doc1, "the"), idf("the")),
               tf_idf(tf(doc1, "cat"), idf("cat")),
               tf_idf(tf(doc1, "in"), idf("in")),
               tf_idf(tf(doc1, "the"), idf("the")),
               tf_idf(tf(doc1, "hat"), idf("hat"))
             ]
print("doc1_tfidf: " + vec2str(doc1_tfidf))

doc2_tfidf = [
               tf_idf(tf(doc2, "the"), idf("the")),
               tf_idf(tf(doc2, "cat"), idf("cat")),
               tf_idf(tf(doc2, "in"), idf("in")),
               tf_idf(tf(doc2, "the"), idf("the")),
               tf_idf(tf(doc2, "hat"), idf("hat"))
             ]
print("doc2_tfidf: " + vec2str(doc2_tfidf))

doc3_tfidf = [
               tf_idf(tf(doc3, "the"), idf("the")),
               tf_idf(tf(doc3, "cat"), idf("cat")),
               tf_idf(tf(doc3, "in"), idf("in")),
               tf_idf(tf(doc3, "the"), idf("the")),
               tf_idf(tf(doc3, "hat"), idf("hat"))
             ]
print("doc3_tfidf: " + vec2str(doc3_tfidf))

query_tfidf = np.maximum.reduce([doc1_tfidf, doc2_tfidf, doc3_tfidf])

doc1_relevance = cos_sim(query_tfidf,doc1_tfidf)
doc2_relevance = cos_sim(query_tfidf,doc2_tfidf)
doc3_relevance = cos_sim(query_tfidf,doc3_tfidf)

print("\nRelevance Scores:\n doc2: " + num2str(doc2_relevance)
                       + "\n doc3: " + num2str(doc3_relevance)
                       + "\n doc1: " + num2str(doc1_relevance))

labels: [the, cat, in, the, hat]
doc1_tfidf: [0.1041, 0.0, 0.094, 0.1041, 0.0]
doc2_tfidf: [0.0504, 1.4282, 0.0557, 0.0504, 1.7983]
doc3_tfidf: [0.0, 1.2041, 0.0664, 0.0, 1.5161]

Relevance Scores:
 doc2: 0.9993
 doc3: 0.9979
 doc1: 0.0758
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SIDEBAR Cosine similarity vs. TF-IDF matching score

You may have noticed that for our query vectors, we’ve been using the
"maximum" possible score for each feature, instead of calculating a TF-IDF
value based upon the query. The reason for this is that we want documents
which are better matches (i.e. more matches of each term) for the query to
get higher cosine similarity scores, not documents which "contain the query
words roughly the same number of times", which would occur since every
word in the query occurs only once and cosine similarity only cares about the
angle of vectors and not the magnitude. In practice, instead of normalizing
the query to the maximum values from all documents like we have (which is
challenging at scale), search engines will typically just sum the calculated
values for all the feature weights to arrive at a final relevance score. This
closely approximates a cosine similarity that is normalized for "best match"
on each term, and it is a much easier calculation than trying to perform an
actual cosine similarity calculation. The BM25 relevance calculation, which
we’ll introduce in the next section, will flip to this optimized method of
calculating similarity.

This TF-IDF calculation is at the heart of many search engine relevance calculations, including
the default similarity algorithm in Apache Lucene-based search engines - called BM25 - which
we will introduce in the next section.

In the last section, we showed how queries and documents can be represented as vectors, how
cosine similarity can be used as a relevance function to compare queries and documents, and
how TF-IDF ranking can be used to create a feature weight that balances both the strength of
occurrence (TF) and significance of a term (IDF) for each term in a term-based vector.

In this section, we’ll show how a full relevance function can be specified and controlled in a
search engine (Apache Solr), including common query capabilities, modeling queries as
functions, ranking vs. filtering, and applying different kinds of boosting techniques.

In section 3.1, we used a cosine similarity calculation to determine the relevance ranking of
documents relative to queries, ultimately arriving at TF-IDF as our balanced keyword-weighting
metric. We discovered from , however, that we can’t simply use a value of  as theListing 3.3 1

term frequency of each of our terms in the query vector, because then documents are largely
ranked based upon how well they maintain a similar proportion of keywords. This is a side effect
of using the cosine similarity, which only looks at the difference in  between two vectorsangle
and ignores the magnitude of the distance. Specifically, for the query of , if theapple juice

query vector was  then documents containing ,  …​  would all have a[1 1] [2 2] [3 3] [N N]

cosine of  because they all have the keywords in the same relative proportion as the query,1.0

3.2 Controlling the relevance calculation
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even though a document containing more occurrences like  intuitively seems more relevant[3 4]

than a document only containing  and  once ( ) or twice ( ).apple juice [1 1] [2 2]

To fix this, search engines typically utilize different scoring functions than pure cosine similarity
for text-based ranking. In our previous examples from  to , we modified theListing 3.4 Listing 3.8
weights for each term in our query vector to represent the "best possible" TF ranking for each
term in any document, such that an "ideal" document would be one containing the top possible
score for each keyword. This approach works well for our simple examples, but doesn’t scale
well in a larger production environment, so search engines instead typically take approaches
which can iteratively calculate relevance one document at a time. One option is to use something
like a , which is a cosine calculation that is multiplied by the magnitude of eachdot product
dimension in the vector. We won’t cover that technique here, but will instead dive straight into
the more common technique that is used by default in most search engines - to calculate a
relevance score per keyword and then simply sum up the weights for each keyword.

Let’s start by showing off the default similarity calculation (which uses this summing up
approach) leveraged by all Lucene-based search engines: BM25.

BM25 is the name of the default similarity algorithm in Apache Lucene, Apache Solr,
Elasticsearch, Lucidworks Fusion, and other Lucene-based search engines. BM25 (short for
Okapi "Best Matching" version 25) was first published in 1994, and it demonstrates
improvements over standard TF-IDF cosine similarity ranking in many real-world, text-based
ranking evaluations.

BM25 still uses TF-IDF at its core, but it also includes several other parameters which make it
easier to control things like term frequency saturation point and document length normalization,
and it sums up the weights for each matched keyword instead of calculating a cosine. The full
BM25 calculation is shown in Figure 3.7.

3.2.1 BM25: Lucene’s default text-similarity algorithm
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Figure 3.6 BM25 Scoring Function. It still leverages TF and IDF prominently, but provides more control
over how much each additional occurrence of a term contributes to the score (the  parameter), andk

how much scores are normalized based upon document length the  parameter).b

Instead of reimplementing all of this math in Python to explain it, let’s now switch over to using
our search engine and see how it performs the calculation. Let’s start by creating a collection in
Solr ( ) and adding some documents (using our previous Listing 3.9 the cat in the hat

example), as shown in .Listing 3.10

Listing 3.10 Creating a collection. A collection contains a specific schema and
configuration for holding a group of documents, and is the unit upon which we will add
documents, search, rank, and retrieve search results.

Response:

import sys
sys.path.append('..')
from aips import *

collection = "cat_in_the_hat"
create_collection(collection)

#Ensure the fields we need are available
upsert_text_field(collection, "title")
upsert_text_field(collection, "description")
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Listing 3.11 Adding documents to a collection

Response:

With our documents added to the search engine, we can now issue our query and see the full
BM25 scores.  demonstrates how to run our search for the query Listing 3.11 the cat in the

 and to request the detailed relevance calculation back with each document.hat

Wiping 'cat_in_the_hat' collection
Status: Success

Creating cat_in_the_hat' collection
Status: Success

Adding 'title' field to collection
Status: Success

Adding 'description' field to collection
Status: Success

docs = [
    {
        "id": "doc1",
        "title": "Worst",
        "description": "The interesting thing is that the person in the

        wrong made the right decision in the end."
    },
    {
        "id": "doc2",
        "title": "Best",
        "description": "My favorite book is the cat in the hat, which is

        about a crazy cat who breaks into a house and creates a crazy

        afternoon for two kids."

    },
    {
        "id": "doc3",
        "title": "Okay",
        "description": "My neighbors let the stray cat stay in their garage,

        which resulted in my favorite hat that I let them borrow being

        ruined."
    }
]
print("\nAdding Documents to '" + collection + "' collection")
response = requests.post(solr_url + collection + "/update?commit=true",

json=docs).json()
print("Status: " "Success" if response["responseHeader"]["status"] == 0

else "Failure" )

Adding Documents to 'cat_in_the_hat' collection
Status: Success
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Listing 3.12 Ranking by and inspecting the BM25 similarity score

Response:

query = "the cat in the hat"
request = {
  "query": query,
  "fields": ["id", "title", "description", "score", "[explain style=html]"],
  "params": {
    "qf": "description",
    "defType": "edismax",
    "indent": "true"
  }
}

from IPython.core.display import display,HTML
display(HTML(
    "<br/><strong>Query: </strong><i>" + query
    + "</i><br/><br/><strong>Ranked Docs:</strong>"))

response = str(requests.post(solr_url + collection + "/select",

json=request).json()
        ["response"]["docs"]).replace('\\n', '').replace(", '", ",<br/>'")
display(HTML(response))

Query: the cat in the hat

:Ranked Docs

[{'id': 'doc2',
'title': ['Best'],
'description': ['My favorite book is the cat in the hat, which is about a

crazy cat who breaks into a house and creates a crazy afternoon for

two kids.'],
'score': 0.6823196,
'[explain]': '
    0.6823196 = sum of:
        0.15655403 = weight(description:the in 1) [SchemaSimilarity], result of:
            0.15655403 = score(freq=2.0), product of:
                2.0 = boost
                0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    3 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.58620685 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    2.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    28.0 = dl, length of field
                    22.666666 = avgdl, average length of field
        0.19487953 = weight(description:hat in 1) [SchemaSimilarity], result of:
            0.19487953 = score(freq=1.0), product of:
                0.47000363 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    2 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.4146341 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    1.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    28.0 = dl, length of field
                    22.666666 = avgdl, average length of field
        0.27551934 = weight(description:cat in 1) [SchemaSimilarity], result of:
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            0.27551934 = score(freq=2.0), product of:
                0.47000363 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    2 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.58620685 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    2.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    28.0 = dl, length of field
                    22.666666 = avgdl, average length of field
        0.05536667 = weight(description:in in 1) [SchemaSimilarity], result of:
            0.05536667 = score(freq=1.0), product of:
                0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    3 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.4146341 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    1.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    28.0 = dl, length of field
                    22.666666 = avgdl, average length of field
'}, {'id': 'doc3',
'title': ['Okay'],
'description': ['My neighbors let the stray cat stay in their garage,

which resulted in my favorite hat that I let them borrow being ruined.'],
'score': 0.62850046,
'[explain]': '
    0.62850046 = sum of:
        0.120666236 = weight(description:the in 2) [SchemaSimilarity], result of:
            0.120666236 = score(freq=1.0), product of:
                2.0 = boost
                0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    3 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.45182723 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    1.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    23.0 = dl, length of field
                    22.666666 = avgdl, average length of field
        0.21236044 = weight(description:hat in 2) [SchemaSimilarity], result of:
            0.21236044 = score(freq=1.0), product of:
                0.47000363 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    2 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.45182723 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    1.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
                    0.75 = b, length normalization parameter
                    23.0 = dl, length of field
                    22.666666 = avgdl, average length of field
        0.21236044 = weight(description:cat in 2) [SchemaSimilarity], result of:
            0.21236044 = score(freq=1.0), product of:
                0.47000363 = idf, computed as log(1 + (N - n + 0.5) / (

          n + 0.5)) from:
                    2 = n, number of documents containing term
                    3 = N, total number of documents with field
                0.45182723 = tf, computed as freq / (freq + k1 * (

          1 - b + b * dl / avgdl)) from:
                    1.0 = freq, occurrences of term within document
                    1.2 = k1, term saturation parameter
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0.75 = b, length normalization parameter
23.0 = dl, length of field
22.666666 = avgdl, average length of field

0.08311336 = weight(description:in in 2) [SchemaSimilarity], result of:
0.08311336 = score(freq=2.0), product of:

0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

n + 0.5)) from:
3 = n, number of documents containing term
3 = N, total number of documents with field

0.6224256 = tf, computed as freq / (freq + k1 * (

1 - b + b * dl / avgdl)) from:
2.0 = freq, occurrences of term within document
1.2 = k1, term saturation parameter
0.75 = b, length normalization parameter
23.0 = dl, length of field
22.666666 = avgdl, average length of field

'}, {'id': 'doc1',
'title': ['Worst'],
'description': ['The interesting thing is that the person in the wrong made

the right decision in the end.'],
'score': 0.3132525,
'[explain]': '
    0.3132525 = sum of:

0.2234835 = weight(description:the in 0) [SchemaSimilarity], result of:
0.2234835 = score(freq=5.0), product of:

2.0 = boost
0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

n + 0.5)) from:
3 = n, number of documents containing term
3 = N, total number of documents with field

0.83682007 = tf, computed as freq / (freq + k1 * (

1 - b + b * dl / avgdl)) from:
5.0 = freq, occurrences of term within document
1.2 = k1, term saturation parameter
0.75 = b, length normalization parameter
17.0 = dl, length of field
22.666666 = avgdl, average length of field

0.089769006 = weight(description:in in 0) [SchemaSimilarity], result of:
0.089769006 = score(freq=2.0), product of:

0.13353139 = idf, computed as log(1 + (N - n + 0.5) / (

n + 0.5)) from:
3 = n, number of documents containing term
3 = N, total number of documents with field

0.6722689 = tf, computed as freq / (freq + k1 * (

1 - b + b * dl / avgdl)) from:
2.0 = freq, occurrences of term within document
1.2 = k1, term saturation parameter
0.75 = b, length normalization parameter

17.0 = dl, length of field
22.666666 = avgdl, average length of field

'}]
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While the BM25 calculation is more complex than the TF-IDF feature weight calculations we
saw in the last section, it is fundamentally still leverages TF-IDF at its core. Therefore it should
be no suprise that the ranked search results actually return in the same relative order as our
TF-IDF calculations from the :Listing 3.8

Our query for  can still very much be thought of as a vector of the BM25the cat in the hat

scores for each of the terms: ["the", "cat", "in", "the", "hat"].

What may not be obvious, however, is that the feature weights for each of these terms are
actually just overridable functions. Instead of thinking of our query as simply a bunch of
keywords, we can think of our query as a mathematical function composed of other functions,
where some of those functions take keywords as inputs and return numerical values (scores) back
to be used in the relevance calculation. For example, our query could alternatively be expressed
as the vector:

In Solr query syntax, this would be:

If we execute this "functionized" version of the query, we will get the exact same relevance score
as if we had just executed the query directly.  shows the code to perform this versionListing 3.12
of the query.

Ranked Results (Listing 3.8: TF-IDF Cosine Similarity)
 doc2: 0.998
 doc3: 0.9907
 doc1: 0.0809

Ranked Results (Listing 3.9: BM25 Similarity)
 doc2: 0.6878265
 doc3: 0.62850046
 doc1: 0.3132525

[ query("the"), query("cat"), query("in"), query("the"), query("hat") ]

q={!func}query("the") {!func}query("cat") {!func}query("in")

{!func}query("the") {!func}query("hat")
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Listing 3.13 Text Similarity using the Query Function

Response:

As expected, the scores are exactly the same as before - we’ve simply substituted in explicit
functions where implicit functions were previously assumed. Once we realize that every term in
a query to the search engine is actually just a configurable scoring function, it opens up
tremendous possibilities for manipulating that scoring function!

Now that we’ve seen that the relevance score for each term in our queries is simply a function
operating on that term to generate a feature weight, the next logical question is "what  kindsother
of functions can I use in my queries?".

We’ve already encountered the  function (at the end of section 3.2.1), which is effectivelyquery

the default calculation that executes whenever no explicit function is just specified, and which
uses the BM25 similarity algorithm by default.

But what if we want to consider some other features in our scoring calculation, perhaps some
that are not text-based?

query = '{!func}query("the") {!func}query("cat") {!func}query("in")

{!func}query("the") {!func}query("hat")'
request = {
    "query": query,
    "fields": ["id", "title", "score"],
    "params": {
      "qf": "description",
      "defType": "edismax",
      "indent": "true"
    }
}
display(HTML("<strong>Query</strong>: <i>" + query + "</i><br/><br/>

<strong>Results:</strong>"))
response = str(requests.post(solr_url + collection + "/select",

json=request).json()["response"]["docs"]).replace('\\n', '').replace(

", ", ",<br/>'")
display(HTML(response))

Query: {!func}query("the") {!func}query("cat") {!func}query("in")

{!func}query("the") {!func}query("hat")

Results:
[{'id': 'doc2',
''title': ['Best'],
''score': 0.6823196},
'{'id': 'doc3',
''title': ['Okay'],
''score': 0.62850046},
'{'id': 'doc1',
''title': ['Worst'],
''score': 0.3132525}]

3.2.2 Functions, functions, everywhere!
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Here is a partial list of common relevance techniques:

Geospatial Boosting: Documents near the user running the query should rank higher.
Date Boosting: Newer documents should get a higher relevancy boost
Popularity Boosting: Documents which are more popular should get a higher relevancy
boost.
Field Boosting: Terms matching in certain fields should get a higher weight than in other
fields
Category Boosting: Documents in categories related to query terms should get a higher
relevancy boost.
Phrase Boosting: Documents matching multi-term phrases in the query should rank
higher than those only matching the words separately.
Semantic Expansion: Documents containing other words or concepts that are highly
related to the query keywords and context should be boosted.

Many of these techniques are built into specific query parsers in Solr, either through query
syntax or through query parser options. For example, field boosting can be accomplished through
the  parameter on the  query parser. The following query, for example, provides aqf edismax

10X relevancy boost for matches in the title field, and a 2.5X relevancy boost for matches in the 
 field.description

Boosting on full phrase matching, on two-word phrases, and on three-word phrases is also a
native feature of the edismax query parser:

Boost docs containing the exact phrase  in the  field:"the cat in the hat" title

Boost docs containing the two-word phrases , , , or "the cat" "cat in" "in the" "the

 in the  or  field:hat" title description

Boost docs containing the three-word phrases  or  in the "the cat in" "in the hat"

 field:description

Many of the relevancy boosting techniques will require constructing your own features
leveraging function queries, however. For example, if we wanted to create a query that did
nothing more than boost the relevance ranking of documents geographically closest to the user
running the search (relevance based on distance away), we could issue the following query:

q={!type=edismax }the cat in the hatqf="title^10 description^2.5"

q={!type=edismax qf="title description" }the cat in the hatpf=title

q={!type=edismax qf="title description" }thepf2="title description"

cat in the hat

q={!type=edismax qf="title description" }the cat in the hatpf3=description
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That last query is using the  parameter to strictly order documents by the calculated valuesort

from the  function. This works great if we want to order results by a single feature, butgeodist

what if we want to construct a more nuanced sort based upon multiple features? To accomplish
this, we would just update our query to include each of these function in each document’s
relevance calculation, and then sort by the relevance score:

That query does a few interesting things:

It constructs a query vector containing four features: BM25 Keywords relevance score
(higher is better), geo distance (lower is better), publication date (newer is better), and
popularity (higher is better).
Each of the feature values is scaled between  and  so that they are all comparable,0 25

with the best keyword/geo/publication date/popularity score getting a score of , and the25

worst getting a score close to .0
Thus a "perfect score" would add up to  (25 + 25 + 25 + 25), and the worst score100

would be approximately .0
Since the relative contribution of  is specified as part of the query for each function, we25

can easily change the weights of any feature on the fly to give preference to certain
features in the final relevance calculation.

With the last query, we have now fully taken the relevance calculation into our own hands by
modeling our relevance features and giving them weights. While this is very powerful, it still
requires significant manual effort and testing to figure out which features matter for a given
domain, and what their relative weights should be. In chapter 10 we will walk through building
Machine-learned Ranking models to automatically make those decisions for us (a process known
as "Learning to Rank"). For now, however, our goal was to ensure you understood the mechanics
of modeling features in query vectors, and controlling their weights.

q=*:*&
 &sort=geodist(location, $user_latitude, $user_longitude) asc
 user_latitude=33.748&
 user_longitude=-84.39

q={!func}scale(query($keywords),0,25)
  {!func}recip(geodist($lat_long_field,$user_latitude,$user_longitude),

  1,25,1)
  {!func}recip(ms(NOW/HOUR,modify_date),3.16e-11,25,1)
  {!func}scale(popularity,0,25)
  &keywords="basketball"&
  lat_long_field=location&
  user_latitude=33.748&
  user_longitude=-84.391
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SIDEBAR Deeper dives on function queries

If you’d like to learn more about how to utilize function queries, we
recommend reviewing chapter 15 of  (Trey Grainger and TimothySolr in Action
Potter, Manning, 2014) on " ", for a much fullerComplex Query Operations
exposition. For a full list of available function queries in Solr, you can also
check out the documentation in the  section of the Solrfunction query
Reference Guide.

While we’ve seen the power of utilizing functions as features in our queries, thusfar all of our
examples have been what are called "additive" boosts, where the sum of the values of each
function calculation comprise the final relevance score. It is also frequently useful to combine
functions in a fuzzier, more flexible way through "multiplicative" boosts, which we’ll cover in
the next section.

One last topic to address concerning how we control our relevance functions is the idea of using
multiplicative vs. additive boosting of relevance features.

In all of our examples to this point, we have added multiple features together into our query
vector to contribute to the score. For example, the following queries will all yield equivalent
relevance calculations assuming they are all filtered down to the same result set (i.e. fq=the cat

):in the hat

The kind of relevance boosting in each of these examples is known as , andadditive boosting
maps well to our concept of a query as nothing more than a vector of features that needs to have
its similarity compared across documents.

In many cases, however, we are likely to want to specify what are known as multiplicative boosts
as part of our relevance calculations. Instead of inserting additional features into our vector,
multiplicative boosts increase the relevance of an entire document by multiplying the document’s

3.2.3 Choosing multiplicative vs. additive boosting for relevance functions

Text query (score + filter)
  q=the cat in the hat

Function Query (score only, no filter)
  q={!func}query("the cat in the hat")

Multiple Function Queries (score only, no filter)
  q={!func}query("the")
    {!func}query("cat")
    {!func}query("in")
    {!func}query("the")
    {!func}query("hat")

Boost Query (score only, no filter)
  q=*:*&bq=the cat in the hat

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

82

https://livebook.manning.com/book/solr-in-action/chapter-7/
https://lucene.apache.org/solr/guide/8_3/function-queries.html
https://livebook.manning.com/#!/book/ai-powered-search/discussion


full score by some calculated value.

For example, if we wanted to query for , but wanted the popularity ofthe cat in the hat

documents (those with a higher number in the  field) to have a less constrainedpopularity

effect, we can’t easily do this by just adding another feature into our query vector - at least not
without modifying the weights of all the other features, plus any additional normalization that
may be applied by the BM25 ranking function. If we wanted to apply multiple boosts like this
(for example, boosting both on popularity AND on publication date), then the option of modeling
this as an additive boost becomes unreasonably complex and harder to control.

In section 3.2.2, we were able to successfully utilize additive boosting by explicitly constraining
the minimum and maximum values for the features in our query vector so that each feature
provides a known contribution to the overall relevance function.

Multiplicative boosting enables boosts to "pile up" on each other, however, because each of the
boosts is multiplied against the overall relevance score for the document, resulting in a much
fuzzier match and preventing the need for the kind of tight constraints we had to supply for our
additive boost example.

To supply a multiplicative boost, you can either use the  query parser ( ) in yourboost {!boost}

query vector or, if you are using the  query parser, the simplified  query param.edismax boost

For example, to multiply a document’s relevance score by ten times the value in the popularity
field, you would do either:

OR

In general, multiplicative boosts enable you greater flexibility to combine different relevance
features without having to explicitly pre-define and exact relevance formula accounting for every
potential contributing factor. On the other hand, this flexibility can lead to unexpected
consequences if the multiplicative boost values for particular features get too high and
overshadow other features. In contrast, additive boosts can be a pain to manage, because you
have to explicitly scale them so that they can be combined together and maintain a predictible
contribution to the overall score, but once you’ve done this you maintain tight control over the
relevance scoring calculation and range of scores.

Both additive and multiplicative boosts can be useful in different scenarios, so it’s best to
consider the problem at hand and experiment with what gets you the best results. We’ve now
covered the major ways to control relevance ranking in the search engine, but matching and

q=the cat in the hat&
  defType=edismax&
  boost=mul(popularity,10)

`q= the cat in the hat{!boost b=mul(popularity,10)}
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filtering of documents can often be just as important, so we’ll cover them in the next section.

We opened up this chapter by stating that search engines fundamentally do three things: ingest
content, return content matching incoming queries, and sort the returned content based upon
some measure of how well it matches the query. Thusfar, we’ve only talked about the third
capability (relevance ranking), however.

We’ve only really spoken of queries as feature vectors, and we’ve only discussed relevance
ranking as a process of either calculating a cosine similarity or of adding up document scores for
each feature (keyword or function) in the query. This may seem a bit strange, since most search
books start with coverage of matching keywords in the search engine’s inverted index to filter
result sets well before discussing relevance.

We’ve delayed the discussion of filtering results until this point on purpose, however, in order to
focus on relevance and the idea of queries and documents as vectors of features to be compared
and ranked based upon similarity.

A pre-requisite for comparing queries with documents, of course, is that the search engine has
already ingested some content from which those features are derived. Once content is ingested,
there are then two steps involved in executing a query:

Matching: Filtering results to a known set of possible answers
Ranking: Ordering all of the possible answers by relevance

In reality, we can often completely skip step 1 (matching/filtering) and still see the exact same
results on page one (and for many pages), since the most relevant results should generally rank
the highest and thus show up first. If you think back to chapter 2, we even saw some vector
scoring calculations (comparing feature vectors for food items - i.e. "apple juice" vs. "donut")
where we would have been unable to filter results at all, and we instead had to first score every
document to determine which ones to return based upon relevance alone. In this scenario, we
didn’t even have any keywords or other attributes which could be leveraged as a filter.

So if the initial matching phase is effectively optional, then why do it at all? One obvious answer
is that it provides a significant performance optimization. Instead of iterating through every
single document and calculating a relevance score, we can greatly speed up both our relevance
calculations and the overall response time of our search engine by first filtering the initial result
set to a smaller set of documents which are logical matches.

Of course, there are also additional benefits to filtering our results sets, in that the total document
count is reduced and we can provide analytics (facets) on the set of logically-matching
documents in order to help the user further explore and refine their results set. Finally, there are
plenty of scenarios where "having logical matches" should actually be considered among the

3.2.4 Differentiating matching (filtering) vs. ranking (scoring) of documents
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1.  
2.  
3.  
4.  

most important features in the ranking function, and thus simply filtering on logical matches
up-front can greatly simplify the relevance calculation. We’ll discuss these tradeoffs in the next
section.

We just mentioned that filtering results before scoring them is primarily a performance
optimization and that the first few pages of search results would likely look the same regardless
of whether you filter the results or just do relevance ranking.

This only holds true, however, if your relevance function successfully contains features which
already appropriately boost better logical matches. For example, consider the difference between
expectations for the following queries:

"statue of liberty"

statue AND of AND liberty

statue OR of OR liberty

statue of liberty

From a logical matching standpoint, the first query will be very precise, only matching
documents contain the  phrase . The second query will only matchexact statue of liberty

documents containing all of the terms , , and , but not necessarily as a phrase.statue of liberty

The third query will match any document containing any of the three terms, which means
documents  containing  will match, but that documents containing  and only of statue liberty

should rank much higher due to TF-IDF and the BM25 scoring calculation.

In theory, if phrase boosting is turned on as a feature then documents containing the full phrase
should rank highest, followed by documents containing all terms, followed by documents
containing any of the words. Assuming that happens, then you should see the same ordering of
results regardless of whether you filter them to logical, Boolean matches, or whether you only
sort based on a relevance function.

In practice, though, users often consider the logical structure of their queries to be highly
relevant to the documents they expect to see, so respecting this logical structure and filtering 

 ranking allows you to remove results which users' queries indicate are safe to remove.before

Sometimes the logical structure of user queries is ambiguous, however, such as with our fourth
example: the query . Does this logically mean statue of liberty statue AND of AND

, , or something more nuanced like liberty statue OR of OR liberty (statue AND OF) OR

, which essentially means "match at least two(statue AND liberty) OR (of AND liberty)

of three terms". Using the "minimum match" ( ) parameter in Solr enables you to control thesemm

kinds of matching thresholds easily, even on a per-query basis:

100% of query terms must match (equivalent to ):statue AND of AND liberty

3.2.5 Logical matching: weighting the relationships between terms in a query
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At least one query term + 0% of additional query terms must match (equivalent to 
):statue OR of OR liberty

At least two query terms must match (equivalent to (statue AND of) OR (statue
):AND liberty) OR (of AND liberty)

The  parameter in Solr allows you to specify a minimum match threshold as either amm

percentage (0% to 100%) of terms, a number of terms (1 to N terms), or as a step function like 
, which means "All terms are required if there are less than 2 terms, up to 30%mm=2<-30% 5<3

of terms can be missing if there are less than 5 terms, and at least 3 terms must exist if there are 5
or more terms. The  parameter works with the  query parser, which is the primarymm edismax

query parser we will use for text-matching queries in this book. You can consult the edismax
 of the Solr Reference Guide for more details on how to fine-tune your logical matchingsection

rules with these minimum match capabilities.

When thinking about constructing relevance functions, the idea of filtering and scoring can often
get mixed up, particularly since Solr itself mixes concerns in the query parameter. We’ll attempt
to separate these concerns in the next section.

In section 3.2.4 we differentiated between the ideas of "matching" and "ranking". Matching of
results is logical and is implemented by filtering search results down to a subset of documents,
whereas ranking of results is qualitative, and is implemented by scoring all documents relative to
the query and then sorting them by that calculated score. In this section, we’ll cover some
techniques to provide maximum flexibility in controlling matching and ranking by cleanly
separating out the concerns of filtering and scoring.

Solr has two primary ways to control filtering and scoring, the "query" (  parameter) and theq

"filters" (zero or more  parameters). Consider the following request:fq

In this query, Solr is being instructed to filter the possible result set down to only documents with

q=statue of liberty&
 mm=100%

q=statue of liberty&
 mm=0%

q=statue of liberty&
 mm=2

3.2.6 Separating concerns: filtering vs. scoring

q=the cat in the hat&
 =category:books&fq
 =audience:kid&fq
 defType=edismax&
 mm=100%&
 qf=description
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1.  

2.  

a value of  in the  field and also a value of  in the  field. In additionbooks category kid audience

to those filters, however, the query itself also acts as a filter, so the result set gets further filtered
down to only documents also containing (100%) of the values , , , and  in the the cat in hat

 field.description

The logical difference between the  and  parameters is that the  only acts as a filter,q fq fq

whereas the  acts as  a filter and feature vector for relevance ranking. This dual use of the q both q

parameter is helpful default behavior for queries, but mixing the concerns of filtering and scoring
in the same parameter can be suboptimal for more advanced queries, especially if we’re simply
trying to manipulate the relevance calculation and not arbitrarily removing results from our
document set.

There are a few ways to address this:

Model the  parameter as a function (functions only count toward relevance and do notq

filter):

Make your query match all documents (no filtering or scoring) and apply a Boost Query (
) parameter to influence relevance without scoring:bq

Between these three parameters,  both filters and then boosts based upon relevance,  onlyq fq

filters, and  only boosts. As such, both of these approaches are logically equivalent, but we’llbq

go with option 2 throughout this book since it is a bit cleaner to use the dedicated  parameterbq

which was designed to contribute toward the relevance calculation without filtering.

You may have noticed that both versions of the query also contain a filter query which filters on
the query:

Since the  parameter intentionally no longer filters our search results, this  parameter is nowq fq

required if we still want to filter to the user-entered query. By constructing our queries this way,
we allow our relevance function to be entirely separated from the filtering logic, which often
makes it much easier to construct complex ranking functions. The special cache=false
parameter there is used to turn off caching of the filter. Caching of filters is turned on by default
in Solr since filters tend to be reused often across requests. Since the  parameter is$query

user-entered and wildly variable in this case (not frequently reused across requests), it doesn’t

q={!func}query("{!type=edismax qf=description mm=100% v=$query}")&
  fq={!cache=false v=$query}&
  query=the cat in the hat

q=*:* 
  &&bq={!type=edismax qf=description mm=100% v=$query}
  fq={!cache=false v=$query}&
  query=the cat in the hat

q=*:*
  &bq={!type=edismax qf=description mm=100% v=$query}&
  &fq={!cache=false v=$query}
  query=the cat in the hat
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make sense to pollute the search engine’s caches with these values. If you try to filter on
user-entered queries without turning the cache off, it will waste system resources and likely slow
down your search engine.

The overarching theme here is that it is possible to cleanly separate logical filtering from ranking
features in order to maintain full control and flexibility over your search results. While going
through this effort may be overkill for simple text-based ranking, separating out these concerns
becomes critical when attempting to build out more sophisticated ranking functions.

Now that you understand the mechanics of how to construct these kinds of purpose-built ranking
functions, let’s wrap up this chapter with a brief discussion of how to apply these techniques to
implement user and domain-specific relevance ranking.

In section 3.2, we walked through how to easily and dynamically modify the parameters of our
query-to-document similarity algorithm, including passing in our own functions as features
which contribute to the score, in addition to just text-based relevance ranking.

While text-based relevance ranking using BM25, TF-IDF vector cosine similarity, or some other
kind of statistics-based approach on word occurrences can provide decent "general" search
relevance out of the box, it can’t hold its own against good domain-specific relevance factors.
For example, if you travel to Boston, Massachusetts in the United States and you open up a
restaurant finding app on your phone and search for , you probably won’t be veryhamburger

happy with the search engine if the top answers are for Five Guys Burgers and Fries in
, , and Austin, Texas McDonald’s in Anchorage, Alaska Hungry Jack in Sydney,

. Even if these were the best keyword matches and even if they were the most popularAustralia

results for the query, the expectation from users is that you will consider "distance from my
location" as one of the most (if not  most) important of factors in the relevance determination.the

In fact, most people would probably intuitively be able to tell you that the following attributes
matter the most to them within these various domains:

Restaurant Search: , geographical proximity user-specific dietary

, , and restrictions user-specific taste preferences price range

News Search:  (date), , and freshness popularity geographical area

Ecommerce:  (click-through, add-to-cart, and/or purchase)likelihood of conversion

Movie Search:  (title, actor, etc.),  of document, ,name match popularity release date

critic review score

Job Search: , , , job title job level compensation range geographical proximity

, job industry
Web Search: , , keyword match on page popularity of page popularity of

,  (in title, header, body, etc.), website location of match on page quality of

 (duplicate content, spammy content, etc.), topic match between page and query.page

3.3 Implementing user and domain-specific relevance ranking
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Obviously these are just examples, and you can probably think of many more factors that would
matter and impact relevance for each use case. The point, however, is that every search engine
and domain has unique features which need to be considered to deliver an optimal search
experience.

Instead of walking through how to manually construct queries for each of the scenarios above
(hopefully the last section gave you the tools you need to figure that out), this book will instead
focus on showing you how to use machine learning to build an AI-powered search engine that
can automatically learn how to both generate and weight these kinds of features to determine the
optimal relevance algorithm.

This chapter has barely scratched the surface on the myriad ways that you can control and
manipulate the matching and ranking functions in order to return the best content and
domain-specific relevance-ranked search results. An entire profession exists - called "relevance
engineering" - that is dedicated to tuning search relevancy using techniques like this within many
organizations. If you’d like to dive deeper, I highly recommend the book  byRelevant Search
Doug Turnbull and John Berryman (Manning, 2016), which provides an expert guide on this
kind of relevance engineering.

The purpose of this chapter was to give you the base knowledge and tools you’ll need in the
coming chapters to impact relevance ranking as we begin integrating more automated machine
learning techniques into our search applications. We’ll begin applying all of this in our next
chapter on crowdsourced relevance.

We can map queries and documents to dense or sparse numerical vectors and then assign
a relevance rank to documents based upon either a cosine similarity between the vectors
or some other similarity scoring calculation
Leveraging TF-IDF or the BM25 similarity calculations (based upon TF-IDF) for our text
similarity scores provides us with a more meaningful measure of feature (keyword)
importance in our queries and documents, enabling improved text ranking over just
looking at term matches alone.
Text similarity scoring is just one of many kinds of functions we can invoke as a feature
within our queries for relevance ranking. We can inject functions within our queries
along with keyword matching and scoring, as each keyword phrase is effectively just a
ranking function anyway.
It is useful to separate "filtering" and "scoring" as separate concerns in order to have
better control when specifying our own ranking functions.
In order to optimize relevance, we need to create domain-specific relevance functions and
also leverage user-specific features instead of relying just on keyword matching and
ranking. We’ll focus on doing this through automated learning approaches throughout the
rest of this book.

3.4 Summary
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4
This chapter covers

In chapter one, we introduced the dimensions of user intent as "content understanding", "user
understanding", and "domain understanding". In order to create an optimal AI-powered search
platform, we need to be able to combine each of these contexts to understand our users' query
intent. The question, though, is how do we derive these understandings?

Many different sources of information may exist from which we can learn documents, databases,
internal knowledge graphs, user behavior, domain experts, and so on. Some organizations have
teams that manually tag documents with topics or categories, and some even outsource these
tasks using tools like Amazon Mechanical Turk, which allows them to crowdsource answers
from people all around the world. For identifying malicious behavior or errors on websites,
companies often allow their users to report problems and even suggest corrections. All of these
are examples of crowdsourcing - relying upon the inputs from many people to learn new
information.

When it comes to search relevance, crowdsourcing can play a vital role, though it is usually
important not to annoy your valued customers by constantly asking them for help. Fortunately, it
is often possible to learn from your users implicitly based upon their behaviors without having to

Crowdsourced relevance

Harnessing your users' collective insights to improve the relevance of your search
platform
Collecting and working with user behavioral signals
Leveraging Reflected Intelligence to create self-tuning models like signals boosting,
collaborative recommendations and personalization, and machine-learned ranking
Building an end-to-end signals boosting model
Crowdsourced learning from content-based signals
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bother them by explicitly asking for input. For example, if you are trying to find the best
documents to return for a given search, why not examine your logs to determine which
documents other users most often clicked on in response to the same query?

Every time a customer takes an action - whether it be issuing a query, clicking on a result,
purchasing a product, or otherwise taking some action on the search results - this provides a
signal of that user’s intent. We can log each of these signals and then process them in order to
learn insights about each user, about groups of users, and about an entire user base. This section
introduces you to the power of leveraging user signals, introduces a sample ecommerce dataset
we will use throughout the book, and walks you through the mechanics of collecting, storing, and
processing the user signals.

When building search engines, we have two high-level types of data - "content" and "signals".
Most of the content we deal with is in the form of documents. Documents can represent web
pages, product listings, computer files, images, facts, or any other type of information that we
may want to search through. Content documents usually contain fields with some kind of text
through which we can search and find relationships, along with additional fields representing
other attributes related to the content (author, size, color, dates, and so on). The defining
characteristic of these content documents is that they contain the information through which
people are searching (and hopefully also the answers for which they are searching). In addition to
traditional documents, however, many other kinds of content can be incorporated into a search
experience. An externally-built knowledge graph, a list of entities (people, places, things),
customer or employee-created comments, tags, or attributes that are added to the documents, and
so on, are all forms of content.

"Signals", on the other hand, reflect how users engage with content. When someone issues a
query, they receive a set of documents with content. Perhaps they click on a result, add it to their
shopping cart, bookmark the document, or take other similar actions. We refer to these
interactions as signals, and their defining characteristic is that they provide external insights that
can be used to understand how users want to interact with content. Of course, those signals can
also later be added to documents along with the pre-existing content, and if you are building an
application that allows for searching through the signals, those signals actually then become new
content for that application. Notwithstanding that in some cases signals can also be treated as
content depending on the use case, the point here is that there are two key sources of information
we can use to improve search: the attributes of the items being searched upon (content), and the
observed user interactions with the items (signals).

For many of the important tasks we undertake when building AI-powered search, we can derive
similar outcomes by using either the content or the signals, but they give us two different

4.1 Working with User Signals

4.1.1 Signals vs. Content
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perspectives of relevance. In ideal cases, we can actually bring in both of those perspectives to
build an even smarter system, but it is useful to understand the strengths and weaknesses of each
approach to understand how to best leverage them.

As an example, if we are trying to find a synonym for the word "driver", we can look through all
the text content for words that commonly appear in the same documents. We may, in this case,
find words in priority order (by percentage of documents they appear within) like "taxi" (40%),
"car" (35%), "golf" (15%), "club" (12%), "printer"(3%), "linux" (3%), and "windows" (1%).
Similarly, we could look at our collected signals for all users who searched for  anddriver

aggregate the most common other keywords for which they searched, and find similar words in
priority order like "screwdriver" (50%), "printer" (30%), "windows" (25%), "mac" (15%), "golf"
(2%), "club" (2%). The lists derived from signals versus content might be similar, or they could
look very different. The content-based approach tells us the most represented meanings within
our documents, whereas the signals-based approach tells us the most represented meanings being
looked for by our .users

Since our end goal is to present users what they are looking for, we would tend to favor the
signals-derived meanings over the content-derived meanings in most cases. However, what if we
don’t actually have good content that maps to the signals-derived meaning? Do we use the
content-derived meaning, or do we try to suggest other related searches based upon the signals
data? What if we don’t have enough signals or if the signals data is not very clean? Can we
somehow clean up the signals-derived data using the content-derived data?

We run into similar questions with recommendations: content-based recommendations leverage
attributes in documents but don’t understand users, whereas signals-based recommendations
don’t understand content attributes and don’t work at all on items which don’t have sufficient
interactions. Content-based recommendations may recommend on features that are unimportant
to users, whereas signals-based recommendations may create self-reinforcing loops where people
only interact with items they are recommended, and then only those items get recommended
because they were the only ones with which users interacted.

Ideally, we want to create a balanced system that can leverage the best of both content-derived
and signals-derived intelligence. While this chapter focuses primarily on signals-derived,
crowdsourced intelligence, a major goal of this book is to show how to balance and combine
both content-based and signals-based approaches to yield an optimal AI-powered search
experience.

We leverage various datasets throughout this book as we explore different use cases, but it is also
valuable to have a consistent example that we can build on as we progress. We will set that
central dataset up in this section and will continue to build upon it for many chapters to come.

4.1.2 Setting up our product and signals datasets (RetroTech)
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Web search and Ecommerce are two of the most universally-recognizable use cases for
AI-powered search today. We feel that of the two, Ecommerce presents the best opportunity for
exploring the widest variety of AI-powered search techniques. Ecommerce examples will also
map more easily to the real-world use cases being delivered by the largest portion of the readers
of this book. It’s worth noting that most techniques in this book apply across use cases - web
search, enterprise search, site search, desktop search, mail search, ediscovery, job search, product
search, support portal search - you name it. The deciding factor for when to use any given
technique typically relates more to the volume and variety of content and signals than it does to
the particular use case.

With that said, let’s introduce our example use case and dataset: RetroTech!

Throughout much of the book, we will benefit by having a robust search use case with lots of
data and user interactions. Ecommerce search provides one of the most concrete use cases for the
value of AI-powered search techniques, and it is also one of the most well understood problems
among readers, so we’ve created an ecommerce dataset to help us explore this domain: the
RetroTech dataset.

With aggressive competition among retailers selling the latest and greatest electronics,
multimedia, and tech products, it is hard for a small online business to compete. However, a
niche but emerging segment of the population chooses to avoid the latest and greatest products
and instead falls back to the familiar technology of decades past. The RetroTech company was
launched to meet the needs of this unique group of consumers, offering vintage hardware,
software, and multimedia products that may be hard to find on today’s shelves.

Let’s load the dataset so we can get started learning about the relationships between documents
and user signals, and how crowdsourced intelligence can improve our search relevance.

The RetroTech website has around 50,000 products available for sale, so we’ll need to load those
into our search engine to get started so that we can search through them. If you built the 

 code base to run the chapter 3 examples, then your search engine is alreadyAI-Powered Search
up and running. If you haven’t yet done that, the instructions for building and running all of the
book’s examples are found in Appendix A, which you can run through now to get setup.

With your search engine up and running, the next thing we need to do is download the Retrotech
dataset that accompanies this book. The dataset includes two CSV files, one containing all of
Retrotech’s products, and another containing one year of signals data from Retrotech’s users. 

 shows a few rows of the product catalog dataset to get you familiar with the format.Listing 4.1

THE RETROTECH USE CASE

LOADING THE PRODUCT CATALOG
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Listing 4.1 Exploring the RetroTech product catalog

You can see that products are identified by a UPC (Universal Product Code) number and then
have a name, a manufacturer, and both a short description (used as a teaser in search results) and
a long description (the full description used on product details pages).

Since our goal is to search for products, our next step will be to send them to the search engine to
be indexed. To enable search on our RetroTech product catalog, let’s run the document indexing
code in  to send the product documents to the search engine.Listing 4.2

Listing 4.2 Send product documents to the search engine

Results:

"upc","name","manufacturer","shortDescription","longDescription"
"096009010836","Fists of Bruce Lee - Dolby - DVD",\N,\N,\N
"043396061965","The Professional - Widescreen Uncut - DVD",\N,\N,\N
"085391862024","Pokemon the Movie: 2000 - DVD",\N,\N,\N
"067003016025","Summerbreeze - CD","Nettwerk",\N,\N
"731454813822","Back for the First Time [PA] - CD","Def Jam South",\N,\N
"024543008200","Big Momma's House - Widescreen - DVD",\N,\N,\N
"031398751823","Kids - DVD",\N,\N,\N
"037628413929","20 Grandes Exitos - CD","Sony Discos Inc.",\N,\N
"060768972223","Power Of Trinity (Box) - CD","Sanctuary Records",\N,\N

#Create Products Collection
products_collection="products"
create_collection(products_collection)

#Modify Schema to make some fields explicitly searchable by keyword
upsert_text_field(products_collection, "upc")
upsert_text_field(products_collection, "name")
upsert_text_field(products_collection, "longDescription")
upsert_text_field(products_collection, "manufacturer")

print("Loading Products...")
csvFile = "../data/retrotech/products.csv"
product_update_opts={"zkhost": "aips-zk", "collection": products_collection,

"gen_uniq_key": "true", "commit_within": "5000"}
csvDF = spark.read.format("com.databricks.spark.csv").option(

"header", "true").option("inferSchema", "true").load(csvFile)
csvDF.write.format("solr").options(**product_update_opts).mode(

"overwrite").save()
print("Products Schema: ")
csvDF.printSchema()
print("Status: Success")
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Finally, to verify that the documents are now indexed and searchable, let’s run an example
keyword search.  shows an example search for , a true classic device!Listing 4.3 ipod

Listing 4.3 Running a search on the product catalog

The results of the  search from  are shown in Figure 4.1, demonstrating that ouripod Listing 4.3
products are now indexed and searchable. Unfortunately, the relevance of the results is quite
poor, however.

Wiping 'products' collection
Creating 'products' collection
Status: Success
Adding 'upc' field to collection
Status: Success
Adding 'name' field to collection
Status: Success
Adding 'longDescription' field to collection
Status: Success
Adding 'manufacturer' field to collection
Status: Success
Loading Products...
Products Schema:
root
 |-- upc: long (nullable = true)
 |-- name: string (nullable = true)
 |-- manufacturer: string (nullable = true)
 |-- shortDescription: string (nullable = true)
 |-- longDescription: string (nullable = true)

Status: Success

query = "ipod"

collection = "products"
request = {
    "query": query,
    "fields": ["upc", "name", "manufacturer", "score"],
    "limit": 5,
    "params": {
      "qf": "name manufacturer longDescription",
      "defType": "edismax",
      "sort": "score desc, upc asc"
    }
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()["response"]["docs"]
display(HTML(render_search_results(query, search_results)))
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Figure 4.1 Product Search Results. We can see that the product catalog has been indexed and a query
for  now returns search results.ipod

While the quality of the search results ranking is not very good, we at least now have an out of
the box "keyword matching" search engine that we can begin improving. We’ll use this as our
base and start introducing more intelligent AI-powered search features throughout the rest of the
book. Our next step will be to introduce our signals data.
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Since RetroTech is running on your computer, you’re not going to have real users visiting,
running searches, clicking and purchasing, and otherwise generating signals. Because of that,
we’ve generated a dataset for you to use that approximates the kind of signal activity you’d
expect in similar real-world datasets.

For simplicity, we will store our signals in the search engine to enable them to be leveraged both
in real-time search scenarios and for external processing. Running  will simulate andListing 4.4
index some sample signals that we can leverage throughout the rest of the chapter.

Listing 4.4 Indexing the User Signals Dataset

Results:

With our Retrotech product and signals data all loaded, we’ll soon begin exploring ways to use
the signals data to enhance our search relevance. Before we dive into these crowdsourced
relevance techniques, though, let’s first explore the signals data a bit so we can understand how
signals are structured, used, and collected in real-world systems.

LOADING THE SIGNALS DATA

#Create Signals Collection
signals_collection="signals"
create_collection(signals_collection)

print("Loading Signals...")
csvFile = "../data/retrotech/signals.csv"
signals_update_opts={"zkhost": "aips-zk", "collection": signals_collection,

"gen_uniq_key": "true", "commit_within": "5000"}
csvDF = spark.read.format("com.databricks.spark.csv").option(

"header", "true").option("inferSchema", "true").load(csvFile)
csvDF.write.format("solr").options(**signals_update_opts).mode(

"overwrite").save()
print("Signals Schema: ")
csvDF.printSchema()
print("Status: Success")

Wiping 'signals' collection
Creating 'signals' collection
Status: Success
Loading Signals...
Signals Schema:
root
 |-- query_id: string (nullable = true)
 |-- user: string (nullable = true)
 |-- type: string (nullable = true)
 |-- target: string (nullable = true)
 |-- signal_time: timestamp (nullable = true)

Status: Success

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

97

https://livebook.manning.com/#!/book/ai-powered-search/discussion


1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  

Different types of signals have different attributes which need to be recorded. For example, for a
"query" signal, we want to record the user’s keywords. For a "click" signal, we want to record
which document was clicked upon, as well as which query resulted in the click. For later
analysis, we’d also want to record which documents were returned to and possibly viewed by a
user after a query.

In order to make things more extensible and avoid custom code for every new signal type, we’ve
adopted a generic format for representing signals in this book. This will likely differ from how
you log your signals, but as long as you can subsequently map your signals into this format, then
all of the code in this book should work without requiring use-case specific modifications.

The signals format we use in this book is as follows:

query_id: a unique id for the query signal that originated this signal.
user: an identifier representing a specific user of the search engine
type: what kind of signal (query, click, purchase, and so on)
target: the content to which the signal at this  applies.signal_time

signal_time: the date and time the signal occurred

As an example, assume a user performed the following sequence of actions:

issued a query for  and had three documents ( , , and ) returned.ipad doc1 doc2 doc3

clicked on .doc1

went back and clicked on .doc3

added  to the shopping cart.doc3

went back and searched for  and had two documents returned ( , ).ipad cover doc4 doc5

clicked on .doc4

added  to the shopping cart.doc4

purchased the items in the shopping cart ( , ).doc3 doc4

These interactions would result in the following signals:

4.1.3 Exploring the signals data
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1.  

2.  

3.  

4.  

A few things to note about the signals format:

The  type and the  type signal are broken up into separate signals.query results

This isn’t necessary, as they occur at the same time, but this allows us to keep the table
structure consistent and not have to add an extra  column that only applies to the results

 signal. Also, if the user hits the "next page" link or scrolls down the page and seesquery

additional results, this structure will allow us to append a new signal at the new time for
those results being returned without having to go back and modify the original signal.
Every signal ties back to the  of the original  signal that started thequery_id query

series of content interactions. The  is not just a reference to the keywordsquery_id

entered by the user, but is instead a reference to the specific  signal identifying aquery

time-stamped instance of the user’s query. Because results for the same query keywords
can change over time, this enables us to do more sophisticated processing of how users
reacted to the specific set of results they were shown for a query.
Most signal types contain one item in the , but the  type contains antarget results

ordered list of documents. The reason is that it’s important to preserve the exact
ordering of the search results, so the "target" is really an ordered list of documents in this
case instead of independent documents. The order of results will matter for some
algorithms we introduce later in the book to measure relevance.
The checkout resulted in a separate  signal for each item instead of justpurchase

one  signal.checkout  This is because we need to track that the two items that were
purchased originated from separate queries. You could, of course, also add a checkout
signal type if you wanted to track the transaction, and possibly list the two purchases as
the , but this is superfluous for our needs in this book, so we’ll avoid this addedtarget

complexity.

With these raw signals available as our building blocks, we can now start thinking about how to
link the signals together to begin learning about our users and their interests. In the next section,
we’ll discuss ways to model users, sessions, and requests within our search platform.

Table 4.1 Example signals formatm
query_id user type target signal_time

1 u123 query ipad 2020-05-01-09:00:00

1 u123 results doc1,doc2,doc3 2020-05-01-09:00:00

1 u123 click doc1 2020-05-01-09:00:10

1 u123 click doc3 2020-05-01-09:00:29

1 u123 add-to-cart doc1 2020-05-01-09:03:40

2 u123 query ipad cover 2020-05-01-09:04:00

2 u123 results doc4,doc5 2020-05-01-09:04:00

2 u123 click doc4 2020-05-01-09:04:40

2 u123 add-to-cart doc4 2020-05-01-09:05:50

1 u123 purchase doc3 2020-05-01-09:07:15

2 u123 purchase doc4 2020-05-01-09:07:15
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In the last section, we looked at the structure of user signals as a list of independent interactions
tied back to an original query. We assumed that a "user" was present with a unique ID, but how
does one identify and track a unique user? Furthermore, once you have identified how to track
unique users, what is the best way to break their interactions up into sessions to understand when
their context may have changed?

The concept of a user in web search can be very fluid. If your search engine has authenticated
(logged-in) users, then you already have some kind of an internal user ID to track them. If your
search engine supports unauthenticated access or is publicly available, however, then you will
have many running searches with no formal user ID. That doesn’t mean you can’t track them,
however; it just requires a more fluid interpretation of what a "user" means. The reason we want
to track a user is so that we can relate different signals together to learn interaction patterns, and
without some shared identifier representing that the same user is issuing multiple requests, it is
not easy to tie those interactions together.

If we think of the known information as a hierarchy from "best" representation of a user to
"worst," it will look something like the following:

User ID: a unique user ID that persists across devices (authenticated)
Device ID: a unique id that persists across sessions on the same device (such as a device
ID or an IP address + device fingerprint)
Browser ID: a unique ID that persists across sessions in the same application/browser
only (a persistent cookie id)
Session ID: a unique ID that persists across a single session (such as cookie in a
browser’s incognito mode)
Request ID: a unique ID that only persists for a single request (a browser with cookies
turned off)

In most modern search applications, and certainly in most ecommerce applications, we typically
have to deal with all of these. As a rule of thumb, you want to tie a user to the most durable
identifier - the one as high up the list as possible. Both the links between request IDs and session
IDs, as well as the links between session IDs and browser IDs, are through the user’s cookie, so
ultimately the browser ID (persistent unique ID stored in the cookie) is the common denominator
for each of these.

Specifically,

If a user has persistent cookies enabled, one browser ID can have many session IDs,
which can have many request IDs.
If a user clears cookies after each session (such as by using incognito mode), each
browser ID has only one session ID, which can have many request IDs.
If a user turns off cookies, then each request ID has a new session ID and a new browser
ID.

4.1.4 Modeling users, sessions, and requests

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

100

https://livebook.manning.com/#!/book/ai-powered-search/discussion


When building search platforms, most organizations do not properly plan for and design their
signals tracking mechanisms. By not being able to correlate visitors' queries with specific
resulting actions (order of result viewed, which results were clicked, and any subsequent
interactions with the clicked items), many organizations make it difficult to maximize the
relevance of their search platform through enhanced analytics and through automated search
relevance approaches. In some cases, it is possible to derive missing signals tracking information
after the fact (such as modeling signals into likely sessions using timestamps), but it is usually
best to design the system to better handle user tracking upfront to prevent potential information
loss. Richer signals will allow you to optimally relate user interactions such that they can add
maximum value to your AI-powered search efforts. In section 4.2, we’ll introduce how these rich
signals actually get used to improve relevance through a process known as "Reflected
Intelligence"

In the last section, we covered how to capture signals from users as they interaction with your
search engine. While the signals themselves are useful to help us understand how our search
engine is being used, they also serve as the primary inputs for building models that can
continually learn from user interactions and enable your search engine to self-tune its relevance
model. In this section we’ll introduce how these self-tuning model work through the concept of
Reflected Intelligence.

Imagine you are an employee at a hardware store and someone asks you where they can find a
hammer, and you tell them "aisle two". A few minutes later you see the same person walk from
aisle two to aisle five without a hammer, and then walk out of aisle five holding a hammer. The
next day someone else asks for a hammer, you also tell them "aisle two", and you observe a
nearly identical pattern of behavior. You would be a pretty lousy employee if you didn’t spot this
pattern and adjust your advice going forward to provide a better experience for your customers.
Now imagine if you continued to give the same, poor answer hundreds or even thousands of
times to every new customer who came through the door looking for a hammer.

Unfortunately, this is exactly how most search engines tend to work - they have a fairly static set
of documents that are returned for each query, regardless of who each user is or how prior users
have reacted to the list of documents shown. Thankfully, we can improve upon this substantially
by applying machine learning techniques to the collected signals from user interactions. This
enables us to learn about users' intent from their signals and then reflect that knowledge back to
improve future search results. This process is called .Reflected Intelligence

Reflected Intelligence is all about creating feedback loops that constantly learn and improve
based on evolving user interactions. Figure 4.2 demonstrates a high-level overview of

4.2 Introduction to Reflected Intelligence

4.2.1 What is Reflected Intelligence?
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implementing a Reflected Intelligence process.

Figure 4.2 Reflected Intelligence Process. A user issues a query, sees results, and takes a set of actions.
Those actions (signals) are then processed to create learned relevance models that improve future
searches.

Let’s walk through the Reflected Intelligence process shown in Figure 4.2. A user named Alonzo
runs a search, entering the term  in the search box. A query signal is logged, containing theipad

list of all search results displayed to Alonzo. Alonzo then sees the list of search results, and takes
some actions. In the figure, Alonzo clicks on a document ( ) and then purchases the productdoc22

that document represents, resulting in two additional corresponding signals. All of Alonzo’s
signals, along with the signals from every other user, can then be aggregated and otherwise
processed by various machine learning algorithms to create learned relevance models.

These learned relevance models may boost the most popular results for specific queries,
personalize results for each specific user and their interests, or even learn which general
attributes of the documents being searched tend to matter the most and tune the ranking
algorithms to factor those attributes. The models could also learn how to better interpret user
queries, such as identifying common misspellings, phrases, synonyms, or other linguistic
patterns and domain-specific terminology.

Once these learned relevance models are generated, they can then be deployed back into the
production search engine and immediately be applied to enhance the outcomes of future queries.
The process then begins again, with the next user running a search, seeing (now hopefully
improved) search results, and interacting with those results. This process creates a self-learning
system which improves with every additional user interaction, getting continually smarter and
more relevant over time, and also automatically adjusting as user interests and content evolve.
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In the following sections, we explore a few categories of reflected intelligence models, including
signals boosting (popularized relevance), collaborative filtering (personalized relevance), and
learning to rank (generalized relevance). We’ll start with one of the simplest and also most most
impactful: signals boosting models.

The most popular queries sent to your search engine tend to also be the most important ones to
optimize from a relevance standpoint. Thankfully, since more popular queries generate more
signals, this means that they are generally much easier to crowdsource reflected intelligence
models for in order to improve relevance.

Signals boosting is one of the simplest forms of Reflected Intelligence, but also one of the most
impactful for improving relevance of your most popular, highest-traffic queries.

Signals boosting models operate well on the most common and highest volume queries, making
them an ideal way to learn a "popularized relevance" model.

Listing 4.5 demonstrates an out of the box search for the query  in our RetroTech searchipad

engine.

Listing 4.5 Sending a keyword search for the query  to the search engine.ipad

As expected, the results of this query will return many documents containing the keyword ipad
in them, and, based upon what we learned in chapter 3 about how keyword relevance is scored
leveraging TF-IDF and the BM25 ranking algorithm, the documents containing the term ipad
the most times will typically rank the highest. Figure 4.3 shows the results of the query from 

.Listing 4.5

4.2.2 Popularized Relevance through Signals Boosting

query = "ipad"

collection = "products"
request = {
    "query": query,
    "fields": ["upc", "name", "manufacturer", "score"],
    "limit": 5,
    "params": {
      "qf": "name manufacturer longDescription",
      "defType": "edismax"
    }
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()["response"]["docs"]
display(HTML(render_search_results(query, search_results)))
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Figure 4.3 Results of a keyword search for the query . Results are returned primarily based uponipad

number of occurrences of the keyword, so accessories mentioning the keyword multiple times rank
higher than the actual product the user intended to see.

While these results all contain the word "ipad" in their content multiple times, most users would
be disappointed with these results since they are secondary accessories as opposed to the main
product type that was the focus of the search. As you can probably guess, it is very hard to figure
out the main product versus the secondary accessories just from the text in the product
documents. For very popular queries, however, it is likely that many customers will run the same
queries over and over again and fight through the frustrating search results to ultimately find the
real products they are seeking. Signals Boosting is a technique for leveraging this aggregate user
behavior from popular queries in order to automatically learn and return the best products.

Figure 4.4 demonstrates how how signals boosting works as a continuous feedback loop.
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Figure 4.4 Signals Boosting Feedback Loop. A user’s search is logged, and the current signals boosting
model is applied to return boosted results. After users take action on those results, the signals from all
user interactions with documents are aggregated by originating query to generate an updated signals
boosting model to further improve future searches.

Once your products are indexed and you’ve started collecting signals for your users' queries and
document interactions, the only additional steps necessary for implementing signals boosting are
to aggregate your signals, and then to add your aggregated signals as boosts to either your
queries or your documents.  demonstrates a simple model for aggregating signals intoListing 4.6
a side-car collection.

SIDEBAR Sidecar Collections

Sidecar collections are additional collections that sit in your search engine
alongside a primary collection and which contain other useful data to improve
your search application. In our ecommerce example, our primary collection is
the  collection, and we’ve already introduced our  collection,products signals

which can be considered a sidecar collection. In this section we will also
introduce a  sidecar collection, which we will leverage atsignals_boosting

query time to enhance our queries. Throughout the book, we’ll introduce
several other sidecar collections to store the inputs for and outputs of our
self-learning models.
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Listing 4.6 Generating a signals boosting model through aggregating signals.

Results:

The most important part of  is the , which we’veListing 4.6 signals_aggregation_query

actually just defined as a SQL query to keep the example more readable. For every query, we are
getting the list of documents that users have clicked on in the search results for that query, along
with a count of how many times the document has been clicked on. By ordering the documents
by the count of times clicked for each query, we now have an ordered list of the documents that
users tended to choose to interact with for each query.

The intuition here is that users tend to choose the products they believe are the most relevant, so
if we were to boost these documents, then we would expect our top search results to become
more relevant. We’ll test this theory out in  by using these aggregated counts asListing 4.7
Signals Boosts on our next query. Let’s revisit our previous query for .ipad

products_collection="products"
signals_collection="signals"
signals_boosting_collection="signals_boosting"

create_collection(signals_boosting_collection)

signals_opts={"zkhost": "aips-zk", "collection": signals_collection}
signals_boosting_opts={"zkhost": "aips-zk", "collection":

signals_boosting_collection, "gen_uniq_key": "true",

"commit_within": "5000"}

df = spark.read.format("solr").options(**signals_opts).load()
df.registerTempTable("signals")

print("Aggregating Signals to Create Signals Boosts...")

signals_aggregation_query = """
select q.target as query, c.target as doc, count(c.target) as boost
  from signals c left join signals q on c.query_id = q.query_id
  where c.type = 'click' AND q.type = 'query'
  group by query, doc
  order by boost desc
"""

spark.sql(signals_aggregation_query).write.format("solr").options(

**signals_boosting_opts).mode("overwrite").save()
print("Signals Aggregation Completed!")

Wiping 'signals_aggregation' collection
Creating 'signals_aggregation' collection
Status: Success
Aggregating Signals to Create Signals Boosts...
Signals Aggregation Completed!

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

106

https://livebook.manning.com/#!/book/ai-powered-search/discussion


Listing 4.7 Generating a Signals Boosting Query to improve search relevance ranking for
top queries and documents.

Boost Documents:

Boost Query:

query = "ipad"

signals_boosts_query = {
    "query": query,
    "fields": ["doc", "boost"],
    "limit": 10,
    "params": {
      "defType": "edismax",
      "qf": "query",
      "sort": "boost desc"
    }
}

signals_boosts = requests.post(solr_url + signals_boosting_collection +

"/select", json=signals_boosts_query).json()["response"]["docs"]
print("Boost Documents: \n")
print(signals_boosts)

product_boosts = ""
for entry in signals_boosts:
    if len(product_boosts) > 0:  product_boosts += " "
    product_boosts += '"' + entry['doc'] + '"^' + str(entry['boost'])

print("\nBoost Query: \n" + product_boosts)

collection = "products"
request = {
    "query": query,
    "fields": ["upc", "name", "manufacturer", "score"],
    "limit": 5,
    "params": {
      "qf": "name manufacturer longDescription",
      "defType": "edismax",
      "indent": "true",
      "sort": "score desc, upc asc",
      "qf": "name manufacturer longDescription",
      "boost": "sum(1,query({! df=upc v=$signals_boosting}))",
      "signals_boosting": product_boosts
    }
}

search_results = requests.post(solr_url + collection + "/select", json=request)

.json()["response"]["docs"]
display(HTML(render_search_results(query, search_results)))

[{'doc': '885909457588', 'boost': 966}, {'doc': '885909457595',

'boost': 205}, {'doc': '885909471812', 'boost': 202},

{'doc': '886111287055', 'boost': 109}, {'doc': '843404073153',

'boost': 73}, {'doc': '635753493559', 'boost': 62}, {'doc':

'885909457601', 'boost': 62}, {'doc': '885909472376', 'boost': 61},

{'doc': '610839379408', 'boost': 29}, {'doc': '884962753071',

'boost': 28}]
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1.  

2.  

The query in  does two noteworthy things:Listing 4.7

It queries the  sidecar collection to look up the ordered (by boost) listsignals_boosting

of documents that received the highest signals boosts for the query, and it transforms
those signals boosts into a query to the search engine
It then passes that boosting query to the search engine with the following relevance
boosting parameters:

"boost": "sum(1,query({! df=upc v=$signals_boosting}))"

"signals_boosting": product_boosts where  is the "Boost Query"product_boosts

output generated from .Listing 4.7

Once the query is executed, we can look at how it improves our search results. If you remember
from Figure 4.3, our original keyword search for  returned mostly iPad accessories, asipad

opposed to actual iPad devices. Figure 4.5 demonstrates the new results based upon signals
boosting being applied on top of the keyword query.

"885909457588"^966 "885909457595"^205 "885909471812"^202 "886111287055"^109

"843404073153"^73 "635753493559"^62 "885909457601"^62 "885909472376"^61

"610839379408"^29 "884962753071"^28
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Figure 4.5 Search results with Signals Boosting Enabled. Instead of iPad accessories showing up as
before, we now see actual iPads, because we have crowdsourced the answers based upon the
documents with which users actually choose to interact.

The new results after applying signals boosting are significantly better than the keyword-only
results. We now see actual iPads, the product the user typed in and almost certainly intended to
find. You can expect to see similarly good results from most of the other popular queries in your
search engine, since the more people that interact with them, the greater the reliability of this
crowdsourcing approach for figuring out relevance. Of course, as we move further down the list
of popular products, the relevance improvements from signals boosting will start to decline, and
with insufficient signals we may even reduce relevance in many cases. Thankfully, we’ll
introduce many other techniques that can better handle the queries without adequate signals
volume.
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The goal of this section was to walk you through an initial, concrete example of implementing an
end-to-end reflected intelligence model. The signals aggregation used in this impelementation
was very simple, though the results speak for themselves. There are many considerations and
nuances to consider when implementing a signals boosting model - whether to boost at query
time or on documents, how to increase the weight of newer signals versus older signals, how to
avoid malicious users trying to boost particular products in the search results by generating
bogus signals for the system to interpret, how to introduce and blend signals from different
sources, and so on. We’ll cover each of these topic in detail in chapter 8, Signals Boosting
Models.

Let’s move on from Signals Boosting for now, however, and discuss a few other types of
Reflected Intelligence models.

In the section 4.2.2, we covered signals boosting, which we referred to as "popularized
relevance", since it determines the most popular answers to common queries across all users. In
this section, we’ll introduce a Reflected Intelligence approach called collaborative filtering,
which would be better described as "personalized relevance". Whereas popularized relevance
determines which results are usually the most popular across many users, personalized relevance
focuses on determining which items are most likely to be relevant for a specific user.

Collaborative filtering is the process of using observations about the preferences of some users
to predict the preferences of other users. You’ve no doubt seen collaborative filtering in action
many times before. It is the most popular type of algorithm used by recommendation engines,
and it is the source of the common "users who liked this item also liked these items"
recommendations lists that appear on many websites. Figure 4.6 demonstrates how collaborative
filtering follows this same Reflected Intelligence feedback loop that we saw for signals boosting
models.

4.2.3 Personalized Relevance through Collaborative Filtering
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Figure 4.6 Collaborative filtering for user-to-item recommendations. Based upon his past behavior, our
user (Alonzo) receives recommendations based upon items other users liked, where those users also
interacted with the same items as Alonzo.

Like signals boosting, collaborative filtering is built leveraging a continuous feedback loop,
where signals are collected, models are built based upon those signals, those models are then
used to generate relevant matches, and the results of those interactions are then logged again as
additional signals. Just as in other Reflected Intelligence models, the interactions between users
and items are logged as signals, as also shown in Figure 4.6. Collaborative filtering approaches
will typically generate a user-item interaction matrix mapping each user to each item
(document), with the strength of relationship between each user and item being based upon the
strength of the positive interactions (clicks, purchases, ratings, and so on).

If the interaction matrix is sufficiently populated, it is possible to infer recommendations from it
for any particular user or item by directly looking up the other users who interacted with the
same item and then boosting other items (similar to signals boosting) with which those users also
interacted. If the user-item interaction matrix is too sparsely populated, however, then a matrix

 approach will typically be applied.factorization

Matrix factorization is the process of breaking the user-item interaction matrix into two matrices:
one mapping users to latent "factors", and another mapping those latent factors to items. This is
similar to the dimensionality reduction approach we mentioned in chapter 3, where we switched
from mapping phrases associated with food items from exact keywords (a vector including an
element for every word in the inverted index), to a much smaller number of dimensions that
described the food items and allowed us to match the meaning without having to map to every
specific item (keyword). This dimensionality reduction makes it possible to derive preferences of
users for items, as well as similarity between items, based upon very sparse data.
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In the context of matrix factorization for collaborative filtering, the latent factors represent
attributes of our documents which are learned to be important indicators of shared interests
across users. By matching other documents based upon these factors, we are using
crowdsourcing to find other similar documents matching the same shared interests.

You can generate recommendations in other ways, which we’ll explore later in the book, such as
through content-based recommendations. Collaborative filtering is unique, however, in that it can
learn preferences and tastes of users for other documents without having to know anything about
the content of the documents - all decisions are made entirely by observing the interactions of
users with content and determining the strength of the similarity based upon those observations.
We will dive much more deeply into collaborative filtering, including code examples, when we
discuss implementing Personalized Search in chapter 9.

As powerful as collaborative filtering can be for learning user interests and tastes based entirely
on crowdsourced relevance, it unfortunately suffers from a major flaw known as the cold start

.problem

The cold start problem describes a scenario where returning results is dependent upon the
existance of signals, but where new documents that have never generated signals are not getting
displayed. This creates a catch-22 situation where new content is unlikely to be shown to users (a
prerequisite for generating signals) because it has not yet generated any signals (which are
required for the content to be shown). To some degree, signals boosting models demonstrate a
similar problem, where documents that are already popular tend to receive higher boost, resulting
in them getting even more signals, while documents that have never been seen get no signals
boosting. This process creates a self-reinforcing cycle that can lead to a lack of diversity in
search results.

Instead of only having popularized relevance or personalized relevance, which are dependent
upon user interactions with specific items, it is generally also necessary to leverage a more
generalized relevance model that can apply to all searches and documents and not just the most
popular ones. This goes a long way toward solving the cold-start problem. In section 4.2.4, we
explore how crowdsourced relevance can be generalized through a technique called Learning to
Rank.

Since signals boosting (popularized relevance, section 4.2.2) and collaborative filtering
(personalized relevance, section 4.2.3) only work on documents which already have signals. This
means that a substantial portion of queries and documents will not benefit from these approaches
until they start receiving traffic and generating signals. This is where Learning to Rank proves
valuable as a form of generalized relevance.

4.2.4 Generalized Relevance through Learning to Rank
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Learning to Rank, also known as Machine-learned Ranking, is the process of building and using
a ranking classifier that can score how well any documents (even those never seen before) match
any arbitrary query. You can think of the ranking classifier as a trained relevance model. Instead
of manually tuning search boosts and other parameters, the Learning to Rank process trains a
machine learning model that can learn the important features of your documents and then score
search results appropriately. Figure 4.7 shows the general flow for rolling out Learning to Rank

Figure 4.7 Learning to Rank (Generalized Relevance). A ranking classifier is built from user judgments
about the known relevance of documents for each query (training set). That more advanced classifier
model is then used to re-rank search results so that the top ranked documents are more relevant.

In a learning to rank system, the same high-level Reflected Intelligence process applies (refer to
Figure 4.2) that we saw in signals boosting and collaborative filtering. The difference is that
Learning to Rank can use relevance judgments lists (maps of queries to their ideal ranked set of
documents) to automatically train a relevance model that can be applied generally to all queries.
You’ll see that the output of the "Build Ranking Classifier" step is a model of relevance features
( , , , ), and that modeltitle_match_any_terms is_known_caegory popularity content_age

gets deployed into the production search engine periodically to enhance search results. The
features in a very simple machine-learned ranking model might be readable like this, but there is
no requirement that a ranking classifier actually be interpretable and explainable like this, and
many advanced, deep-learning-based ranking classifiers are not.

Additionally, notice in Figure 4.7 that the live user flow goes sequentially from searching on the
word  to an initial set of search results, to running through the deployed learning to rankipad

classifier, to returning a final set of re-sorted search results. This final set of results is re-ranked
based upon the learned ranking function in the ranking classifier. Since the ranking classifier is
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typically much more intelligent and leverages more complicated ranking parameters than a
traditional keyword-ranking relevance model, it is usually way too slow to use the ranking
classifier to score all of the matching documents in the search engine. Instead, Learning to Rank
will often still use an initial, faster ranking function (such as BM25) to find a the top-N
documents (usually hundreds or thousands of documents) and then only run that subset of
documents through the ranking classifier to get a better relevance ordering for the top results. It
is possible to leverage the ranking classifier as the main relevance function instead of applying
this re-ranking technique, but it is more common to see a re-ranking approach, since it is
typically much faster while still yielding approximately the same resuls.

Learning to Rank can leverage either explicit relevance judgements (created manually by
experts) or implicit judgements (derived from user signals), or some combination of the two.
We’ll dive deep into examples of implementing Learning to Rank from both explicit and implicit
judgements lists in chapter 10 and 11.

In section 4.2.5, we discuss a few additional examples of useful signals-based Reflected
Intelligence models.

In addition to diving deeper into Signals Boosting (chapter 8), Collaborative Filtering (chapter
9), and Learning to Rank (chapter 10), we explore many other kinds of reflected intelligence
throughout this book. In chapter 6, we explore mining user queries to automatically learn
domain-specific phrases, common misspellings, synonyms, and related terms, and in chapter 11
we explore automated ways of learning relevance judgments from users from their interactions
so we can automatically generate training data for interesting machine learning approaches.

In general, every interaction between a user and some content creates a connection - an edge in a
graph - that we can use to understand emerging relationships and derive deeper insights. Figure
4.8 demonstrates some of the various relationships we can learn by exploring this interaction
graph.

4.2.5 Other reflected intelligence models
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Figure 4.8 Many Reflected Intelligence models. The first box represents user-to-item similarity for
recommendations, the second shows learning of specific attribute-based preferences for a user’s profile,
the third shows learning item-to-item based similarity for recommendations, and the last shows learning
query-to-item recommendations.

Figure 4.8 shows how the same incoming signals data can be processed differently through
various signal aggregation and machine learning approaches to learn similarity between users
and items, to learn specific attribute-based preferences to generate a profile of a user’s interests,
to learn similarity between items, and to generate query to item recommendations. We’ll
continue to explore these techniques in the chapters to come, but it is good to keep in mind that
the signals data contains a treasure trove of potential insights that often provide just as much
benefit as the documents from which their interactions are derived. Reflected Intelligence is the
concept of learning from your users and mirroring that back what was learned, so it is not
constrained to only the signals boosting, collaborative filtering, and the Learning to Rank
techniques we’ve described. In section 4.2.6, we even even discuss a few ways to derive
Reflected Intelligence from content instead of signals.

While we typically think of crowdsourcing as asking people to provide input, we’ve seen thus far
in this chapter that implicit feedback can often provide as much or even more value in aggregate
across many user signals. While this chapter has been entirely focused on leveraging user signals
to do this crowdsourcing, it’s also important to point out that it is often possible to use content
itself to crowdsource intelligence for your AI-powered search platform.

For example, if you are trying to figure out the general quality of your documents, you may be
able to look at customer reviews to either get product rating or to see if the product has been
reported as abusive or spam. If the customer has left comments, you may be able to run a 

4.2.6 Crowdsourcing from content
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 algorithm on the text, which is a type of algorithm that can determine if thesentiment analysis
comments are positive, neutral, or negative. Based upon the detected sentiment, you can then
boost or penalize the source documents accordingly.

We mentioned that in chapter 6 we’ll walk through how to mine user signals to automatically
learn domain specific terminology (phrases, misspellings, synonyms, and so on). Just as we can
take user queries and interactions to learn this terminology, we should also realize that our
documents were themselves typically written by people, and that very similar kinds of
relationships between terminology are therefore reflected in the written content, as well. We’ll
explore these content-based relationships further in the next chapter.

One of the most well-known search algorithms in existence is the Page Rank algorithm - the
breakthrough algorithm which enabled Google to rise to prominence as the most relevant search
engine and stay there for many years. Page rank essentially goes beyond the text in any given
document and looks at the behavior of all other web page creators to see how they have linked to
other documents within their own documents. By measuring the incoming and outgoing links, it
is then possible to create a measure of "quality" of a website based upon the assumption that
people are more likely to link to higher-quality, more authoritative sources, and that those
higher-quality sources are less likely to link to lower quality sources. This idea of going beyond
the content that exists within a single document and instead relating it to external content -
whether it be direct user interactions (signals), comments and feedback posted on a forum, links
between websites, or even just the usage of terminology in different, nuanced ways across other
documents is incredibly powerful. The art and science of leveraging all the available information
about your content and from your users, is key to building a highly-relevant AI-powered search
engine. In chapter 5, we look at the concept of knowledge graphs and how we can leverage some
of these relationships embedded in the links between documents to automatically learn domain
understanding from our content.
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Content and signals are the two sources of "fuel" to power an AI-powered search engine,
with signals being the primary source for crowdsourced relevance.
Reflected Intelligence is the process of creating continuously-learning feedback loops
that improve from each user interaction and reflect that learned intelligence back to
automatically increase the relevance of future results.
Signals boosting is a form of "popularized" relevance, which usually has the biggest
impact on your highest-volume, most popular queries.
Collaborative filtering is a form of "personalized" relevance, which is able to use patterns
of user interaction with items to learn preferences of users or the strength of relationship
between items, and to then recommend similar items based upon those learned
relationships.
Learning to Rank is a form of "generalized" relevance, and is the process of training a
ranking classifier based upon relevance judgements lists (queries mapped to
correctly-ranked lists of documents) that can be applied to rank all documents and avoid
the cold start problem.
Other kinds of Reflected Intelligence exist, including some techniques for leveraging
content (instead of just signals) for crowdsourced relevance.

4.3 Summary
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5
This chapter covers

In the last chapter we focused on learning relationships between documents based upon
crowdsourced interactions linking those documents. While these interactions were primarily user
behavioral signals, we closed out the chapter also discussing links between documents that
appear within the documents themselves - for example, leveraging hyperlinks between
documents. In chapter 2, we also discussed how the textual content in the documents, rather than
being "unstructured data", is really more like a giant graph of "hyperstructured data" containing a
rich graph of semantic relationships connecting the many character sequences, terms, and
phrases that exist across the fields within our collections of documents.

In this chapter, we will demonstrate how to leverage this giant graph of rich relationships within
our content in order to better interpret your domain-specific terminology. We’ll accomplish this
through the use of both traditional knowledge graphs - which enable explicit modeling of
relationships within a domain, and through semantic knowledge graphs, which enable real-time
inference of nuanced semantic relationships within a domain.

We’ll also play with several fun datasets in this chapter in order to show some variety in how
knowledge graphs can be built and applied to improve query undertanding across different
domains.

Knowledge graph learning

Building and working with knowledge graphs
Implementing open information extraction to generate knowledge graphs from text
Using semantic knowledge graphs for query expansion and rewriting and arbitrary
relationship discovery
Interpreting documents with semantic knowledge graphs to power content-based
document recommendations
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In section 1.4, we introduced the idea of  and discussed how they relate toknowledge graphs
other types of knowledge models such as ontologies, taxonomies, synonyms, and alternative
labels. Knowledge graphs, if you recall, integrate each of the other types of knowledge models
together, so we are discussing them all collectively as we build out and refer to "knowledge
graphs" in this chapter.

A knowledge graph (or any graph, for that matter), is represented through the concept of nodes
and edges. Nodes are often also referred to as vertices, but we’ll use the terminology "node" in
this book. A  is an entity represented in the knowledge graph (such as a term, a person,node
place, thing, or concept), whereas an  represents a relationship between two nodes. Figureedge
5.1 shows an example of a graph displaying nodes and edges.

Figure 5.1 A Graph Structure. Graphs are composed of "nodes" (also known as "vertices") that represent
entities, and edges which represent a relationship with another node. Graphs provide a way to model
knowledge and infer new insights by traversing (or "following") the edges between nodes.

In this figure, you can see four nodes representing authors, one node representing a research
paper they wrote together, one node representing the academic conference at which the paper
was presented and published, and then nodes representing the city, province, country, and dates
during which the conference was held. By traversing (or "following") the independent edges
between nodes, you could for example, infer that one of the authors was in Canada in Montreal
in October 2016. While any structure with nodes and edges like this is considered a graph, this
particular graph represents factual knowledge and is therefore also considered a knowledge
graph.

5.1 Working with knowledge graphs
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1.  

2.  
3.  

There are numerous ways to build and represent knowledge graphs, both through explicitly
modeling data into a graph containing nodes and edges, as well as through dynamically
materializing (discovering) nodes and edges from your data on the fly though what’s known as a 

. In this chapter, we’ll walk through examples of building an explicitsemantic knowledge graph
knowledge graph by hand, of auto-generating an explicit knowledge graph, and of leveraging a
semantic knowledge graph that is already present within your search index.

To get started with knowledge graphs, you have essentially three options:

Build your own knowledge graph from scratch using a graph database (Neo4j,
ArangoDB, etc.)
Plug in a pre-existing knowledge graph (ConceptNet, DBPedia, etc.)
Auto-generate a knowledge graph from your data, leveraging your content directly to
extract knowledge.

Each approach has its strengths and weaknesses, and they are not necessarily mutually exclusive.
If you are building a general knowledge search engine (such as a web search engine), then
leveraging the second option of leveraging a pre-existing knowledge graph is a great place to
start. If your search engine is more domain-specific, however, there is a good chance that your
domain-specific entities and terminology will not be present, and that you will really need to
create your own bespoke knowledge graph.

In this chapter we will focus primarily on the third option - auto-generating a knowledge graph
from your content. The other techniques (manually generating a knowledge graph and leveraging
a pre-existing knowledge graph) are already covered well in external materials - just do a web
search for technologies like SPARQL, RDF Triples, and Apache Jena or for pre-existing
knowledge graphs like DBPedia and Yago. That being said, you will ultimately need to be able
to override your knowledge graph and add your own content, so we will include examples of
how you can integrate both explicitly-defined (built with a specific list of pre-defined
relationships) and implicitly-defined knowledge graphs (auto-generated relationships discovered
dynamically from the data) into your search platform. We’ll start off with an overview of how to
integrate an explicitly-defined knowledge graph.

Many organizations spend considerable resources building out knowledge graphs for their
organizations, but then end up having trouble figuring out the best way to integrate those
knowledge graphs within their search engines. We have fortunately chosen a search engine
(Apache Solr) for our examples that has explicit graph traversal capabilities directly built in, so
there is no need to pull in a new, external system to implement or traverse our knowledge graphs
in this book.

While there may be some advantages to using a different tool such as Neo4J or ArangoDB, such

5.2 Building a knowledge graph explicitly into your search engine
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as more sophisticated graph traversal semantics, using an external graph database like this makes
coordinating requests, keeping data in sync, and infrastucture management more complex.
Additionally, because some kinds of graph operations can only be done effectively in the search
engine, like the semantic knowledge graph traversals we’ll encounter shortly, leveraging the
search engine as a unified platform search and knowledge graph capabilities enables us to
combine the best of both worlds.

We will focus extensively on implementing a semantic search search system in chapter 7,
including semantic query parsing, phrase extraction, misspelling detection, synonym expansion,
and query rewriting, all of which will be modeled into an explicitly-built knowledge graph. Since
the purpose of this chapter is to focus on knowledge graph , we’ll save the discussion oflearning
explicit knowledge graph building and traversal until chapter 7 when we can tie everything from
this chapter and chapter 6 (Learning Domain-specific Language) together into the appropriate
knowledge graph structure.

While it is necessary to be able to manually add nodes and edges to your knowledge graphs, as
we mentioned in the previous section, maintaining a large scale knowledge graph manually is
very challenging. It requires substantial subject matter expertise, must be actively kept up to date
with changing information, and is subject to the biases and errors of those maintaining it.

Open Information Extraction is an evolving area of Natural Language Processing (NLP)
research. Open Information Extraction aims to extract facts directly out of your text content. This
is often done using NLP libraries and language models to parse sentences and assess the
dependency graph between them. A  is a break down of the parts of speech fordependency graph
each word and phrase in a sentence, along with an indication of which words refer to which other
words. In this section, we’ll use a language model and dependency graphs to extract two
different types of relationships: arbitrary relationships and hyponym relationships.

Given the "hyperstructured" nature of text and the rich relationships expressed within typical
sentences and paragraphs, it stands to reason that we should be able to identify both the subjects
of sentences and the ways in which they are related. In this section, we’ll focus on extracting
arbitrary relationships between the entities descibed within the sentences of our text content.

By analyzing the nouns and verbs within a sentence, it is often possible to infer a fact that is
present in the sentence by mapping the subject, verb, and object of the sentence into an RDF
triple. An  is a three part-datapoint representing a subject (starting node), relationshipRDF triple
(edge), and object (ending node). For example, in the sentence "Colin attends Riverside High
School", the verb "attends" can be extracted as relationship type connecting the subject ("Colin")

5.3 Automatic extraction of knowledge graphs from content

5.3.1 Extracting arbitrary relationships from text
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with the object ("Riverside High School"). The RDF triple is therefore ("Colin", "attends",
"Riverside High School").

Listing 5.1 walks through an example of using the Python-based SpaCy library to extract facts
from text content. Spacy is leading Natural Language Processing library that ships with state of
the art statistical neural network models for part of speech tagging, dependency parsing, text
categorization, and named entity recognition.

Listing 5.1 Extracting arbitrary relationships using SpaCy NLP to relate nouns and verbs

"they" becomes "Data Scientists"

"Data Scientists also write code." maps to ['nsubj, 'advmod', ROOT', 'dobj', 'punct']

Fact are generated like: (subj:Companies, rel:employ, obj:"data scientists")

Results:

As you can see, the example code has taken the text content, parsed it into sentences, and then
determined the subjects, relationships, and objects within those sentences. Those

text = """
Data Scientists build machine learning models. They also write code.

Companies employ Data Scientists.
Software Engineers also write code. Companies employ Software Engineers.
"""

def generate_graph(text):
    parsed_text = lang_model(text)
    parsed_text = resolve_coreferences(parsed_text) 
    sentences = get_sentences(parsed_text) 
    facts=list()
    for sentence in sentences:
        facts.extend(resolve_facts(sentence)) 
    return facts

graph = generate_graph(text)
for i in graph: print(i)

sentence: Data Scientists build machine learning models.
dependence_parse: ['nsubj', 'ROOT', 'dobj', 'punct']
---------------------
sentence: Data Scientists also write code.
dependence_parse: ['nsubj', 'advmod', 'ROOT', 'dobj', 'punct']
---------------------
sentence: Companies employ Data Scientists.
dependence_parse: ['nsubj', 'ROOT', 'dobj', 'punct']
---------------------
sentence: Software Engineers also write code.
dependence_parse: ['nsubj', 'advmod', 'ROOT', 'dobj', 'punct']
---------------------
sentence: Companies employ Software Engineers.
dependence_parse: ['nsubj', 'ROOT', 'dobj', 'punct']
---------------------
['Data Scientists', 'build', 'machine learning models']
['Data Scientists', 'write', 'code']
['Companies', 'employ', 'Data Scientists']
['Software Engineers', 'write', 'code']
['Companies', 'employ', 'Software Engineers']
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subject/relationship/object tuples can then be saved off into a explicitly-built knowledge graph
and traversed.

Figure 5.2 provides a visualization of this extracted graph.

Figure 5.2 Extracted Knowledge Graph. The nodes and edges in this graph were automatically extracted
from textual content based upon part of speech patterns.

The example in Figure 5.2 is very simple, and much more involved algorithms exist to extract
facts from more sophisticated linguistic patterns. While we are using the SpaCy library in the
code example, which leverages a deep-learning-based neural language model to detect parts of
speech, phrases, and dependencies and co-references with the input text, the mechanism we
leverged for then parsing those linguistic ouputs was more rule-based, following known semantic
patterns within the English language.

Unfortunately, when parsing arbitrary verbs into relationships this way, the extracted
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relationships can become quite noisy. Since verbs conjugate differently, have synonyms, and
have overlapping meanings, it is often necessary to prune, merge, and otherwise cleanup any list
of arbitrary extracted relationships.

In contrast, some relationship types are much simpler, such as statistical relationships ("is related
to") and hyponyms ("is a"). We’ll spend the rest of the chapter covering these two special types,
starting with hyponyms.

While it can be challenging mapping arbitrary verbs to clean lists of relationships within a
knowledge graph, extracting hyponyms and hypernyms can be much easier.  areHyponyms
entities that maintain an "is a" or "is instance of" relationship with a more general form of the
entites, with the more general form being called a . For example, for the relationshipshypernym
between the terms , , and , we would say that  is aphillips head screwdriver tool phillips head
hyponym of , that  in a hypernym of , and that  is both ascrewdriver tool screwdriver screwdriver
hypernym of  and a hyponym of .phillips head tool

One common and fairly accurate way to extract hyponym / hypernym relationships from text is
through the use of Hearst patterns. . These patterns describe common linguistic templates that2

reliably indicate the presence of hyponyms within sentences.  demonstrates a fewListing 5.2
examples of such patterns.

Listing 5.2 Example Hearst Patterns which identify hyponym relationships to their
hypernyms

Each of these five simple patterns are represented as a Python tuple, with the first entry being a 
, and the second being a position within the pattern match (i.e.  or ). Ifregular expression first last

you are unfamiliar with regular expressions, they provide a common and powerful syntax for

5.3.2 Extracting hyponyms from text

simple_hearst_patterns = [
    (  '(NP_\\w+ (, )?such as (NP_\\w+ ?(, )?(and |or )?)+)',
        'first'
    ),
    (
        '(such NP_\\w+ (, )?as (NP_\\w+ ?(, )?(and |or )?)+)',
        'first'
    ),
    (
        '((NP_\\w+ ?(, )?)+(and |or )?other NP_\\w+)',
        'last'
    ),
    (
        '(NP_\\w+ (, )?include (NP_\\w+ ?(, )?(and |or )?)+)',
        'first'
    ),
    (
        '(NP_\\w+ (, )?especially (NP_\\w+ ?(, )?(and |or )?)+)',
        'first'
    ),
]
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pattern matching within strings. Anywhere you see the  characters, this stands for theNP_
existence of a  within a sentence, and the position specified in the second element ofnoun phrase
the tuple (  or ) indicates which noun phrase in the sentence represents the hypernym, withfirst last
all other noun phrases matching the pattern considered the hyponyms.

In our example code in , we run through almost 50 of these Hearst patterns to matchListing 5.3
many combinations of "is a" relationships within our content.

Listing 5.3 Extracting hyponym relationships using Hearst Patterns

Response:

As you can see from , by focusing on extracting a fixed type (and the most prevalentListing 5.3
type of relationship - the "is_a" relationship), we are able to generate a nice, clean list of

text_content = """
Many data scientists have skills such as machine learning, python,

deep learning, apache spark, or collaborative filtering, among others
Job candidates most prefer job benefits such as commute time, company

culture, and compensation.
Google, Microsoft, or other tech companies might sponsor the conference.
Big cities, such as San Francisco, New York, and Miami appeal to new

graduates.
Many job roles, especially software engineering, registered nurse, and

DevOps Engineer are in high demand.
There are such job benefits as 401(k) matching, work from home, and

flexible spending accounts.
Programming languages, i.e. python, java, ruby and scala.
"""

h = HearstPatterns()
extracted_relationships = h.find_hyponyms(text_content)

facts = list()
for pair in extracted_relationships:
    facts.append([pair[0], "is_a", pair[1]])

print(*facts, sep="\n")

['machine learning', 'is_a', 'skill']
['python', 'is_a', 'skill']
['deep learning', 'is_a', 'skill']
['apache spark', 'is_a', 'skill']
['collaborative filtering', 'is_a', 'skill']
['commute time', 'is_a', 'job benefit']
['company culture', 'is_a', 'job benefit']
['compensation', 'is_a', 'job benefit']
['Google', 'is_a', 'tech company']
['Microsoft', 'is_a', 'tech company']
['San Francisco', 'is_a', 'big city']
['New York', 'is_a', 'big city']
['Miami', 'is_a', 'big city']
['software engineering', 'is_a', 'job role']
['registered nurse', 'is_a', 'job role']
['DevOps Engineer', 'is_a', 'job role']
['python', 'is_a', 'programming language']
['java', 'is_a', 'programming language']
['ruby', 'is_a', 'programming language']
['scala', 'is_a', 'programming language']
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taxonomical relationships with the more specific term (the hyponym) pointing to the more
general term (the hypernym) with an "is_a" edge. Figure 5.3 demonstrates this generated graph
visually.

Figure 5.3 Knowledge graph derived from Hearst Patterns. We can see that all nodes are connected to
other nodes through an "is_a" edge.

The inconsistency and noise that exists with arbitrary relationship extraction in the last section is
now gone. We could still have ambiguity about the relationship between similar terms (for
example, misspellings, alternative spellings, known phrases, or synonyms), but those are much
easier to resolve. In fact, we’ll spend the entire next chapter discussing how to learn this kind of
domain-specific language from your signals and content in order to leverage it when interpreting
incoming user queries.

While it can be useful to extract information from our text into an explicit knowledge graph for
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later traversal, the reality is that this kind of extraction is a lossy process, as the representation of
the items gets disconnected from the originating context of those items within our content (the
surrounding text and documents containing the text). In the next section, we’ll introduce an
entirely different kind of knowledge graph - a semantic knowledge graph - that is optimized to
enable real-time traversal and ranking of the relationships between terms and phrases within our
content without having to be explititly built and without having to even separate terms from their
original textual context.

In chapter 2, sections 2.1-2.2, we discussed the myth of text content being "unstructured data",
and how in reality text documents represent hyper-structured data. We discussed the
distributional hypothesis ("a word shall be known by the company it keeps"), and walked
through how character sequences, terms, and phrases (or other arbitrary term sequences) can be
thought of as fuzzy foreign keys relating similar concepts between documents. We also discussed
how these links between documents can be thought of as edges in a giant graph of relationships,
enabling us to learn the contextual meaning of the terms and entities present within our corpus of
documents.

In this section, we introduce a semantic knowledge graph, a tool and technique which will enable
us to traverse that giant graph of semantic relationships present within our documents.

A semantic knowledge graph is a "compact, auto-generated model for real-time traversal and
ranking of any relationship within a domain".  Whereas a search engine typically finds and ranks3

documents relative to a query (a query to documents match), we can think of a semantic
knowledge graph as a search engine that instead finds and ranks  that best match a query.terms

For example, if we indexed a collection of documents about health topics and we searched for
the pain reliever , instead of returning documents that contain the term , a semanticadvil advil

knowledge graph would automatically (with no manual list creation or data modeling required)
return values like:

Results like these could be though of as "dynamic synonyms", but instead of the terms having
the same meaning, they are more like conceptually-related terms. You could expand a traditional

5.4 Learning intent by traversing semantic knowledge graphs

5.4.1 What is a semantic knowledge graph?

advil  0.71
motrin  0.60
aleve  0.47
ibuprofen  0.38
alleve  0.37
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search engine query for "advil" to include these other terms, for example, in order to improve the
recall of your search results or boost documents that conceptually match the meaning of ,advil

instead of just those containing the 5-letter string of - - - - .a d v i l

In addition to finding related terms, a semantic knowledge graph is able to traverse between
fields in your inverted index ("find most related skills to this job title"), to traverse multiple
levels deep ("find most related job titles to this query, and then find the most related skills for
this query and each of those job titles"), and to use any arbitrary query you can send to the search
engine as a node in the graph traversal to find semantically-related terms in any field.

The use cases for a semantic knowledge graph are diverse. It can be used for query expansion,
for generating content-based recommendations, for query classification, for query
disambiguation, for anomaly detection, for data cleansing, and for predictive analytics. We’ll
explore several of these throughout the remainder of this chapter, as soon as we get our datasets
for testing our semantic knowledge graphs set up.

A semantic knowledge graph works best on datasets where there is a decent overlap of terms
being used together across documents. The more often two words tend to appear within
documents the better we are able to determine whether those terms appear statistically more
often we would expect.

While Wikipedia is often a good starting dataset for many use cases, since Wikipedia usually has
a single page about a major topic that is supposed to be authoritative, there is actually not a ton
of overlap across douments, making Wikipedia a less than optimal dataset for this use case.

That being said, any kind of website where users submit the content (questions, forum posts, job
postings, reviews) will tend to make for an excellent dataset for a semantic knowledge graph use
case.

For this chapter, we have selected two primary datasets, a  dataset (job board postings) and ajobs
series of StackExchange data dumps including posts from the following forums:

health
scifi
devops
outdoors
travel
cooking

In order to index the datasets, please run through the  prior toIndex Datasets Jupyter notebook
running any of the semantic knowledge graph examples

5.4.2 Indexing the datasets

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

128

http://localhost:8888/notebooks/ch5/2.index-datasets.ipynb
https://livebook.manning.com/#!/book/ai-powered-search/discussion


In order to make best use of a semantic knowledge graph, it is useful to understand how the
graph works based upon its underlying structure.

Unlike a traditional knowledge graph, which must be explicitly modeled into nodes and edges, a
semantic knowledge graph is  from the underlying inverted index of your searchmaterialized
engine. This means that all you have to do to use a semantic knowledge graph is to index
documents into your search engine. No extra data modeling is required.

The inverted index and a corresponding forward index then serve as the underlying data structure
which enables real-time traversal and ranking of any arbitrary semantic relationships present
within your collection of documents. Figure 5.4 demonstrates how documents get mapped into
both the forward index and the inverted index.

Figure 5.4 Inverted Index and Forward Index. Documents get mapped into an inverted index, which
maps documents lists of terms, and a forward index, which maps terms back to lists of documents.
Having the ability to map both directions will prove important for graph traversal and relationship
discovery.

On the left of the figure, you can see three documents, each of which have a  field, a job_title

 field, and a  field. The right side of the figure shows how these documents aredesc skills

mapped into your search engine. We see that the inverted index maps each field to a list of terms,
and then maps each term to a postings list containing a list of documents (along with positions in
the documents, as well as some other data not included in the figure). This makes it quick and
efficient to look up any term in any field and find the set of all documents containing that term.

5.4.3 Structure of a semantic knowledge graph
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In addition to the well-known inverted index, however, you will also see the less-well known 
 in the center of Figure 5.4. A forward index can be thought of as an forward index uninverted

: for each field, it maps each document to a list of terms contained within that document. Aindex
forward index is what search engines use to generate facets on search results. In Lucene-based
search engines like Solr and Elasticsearch, a forward index is usually generated at index time for
a field by enabling a feature called  on the field. Alternatively, Apache Solr alsodocValues

allows you to generate the same forward index by "uninverting" the inverted index in memory on
the fly at query time, enabling faceting even on fields for which  weren’t added to thedocValues

index.

If you have the ability to search for any arbitrary queries and find sets of documents through an
inverted index, and then you also have the ability to take arbitrary sets of documents and look up
terms in those documents, this means that by doing two traversals (terms to documents to terms)
that you can find all of the related terms that also appear together in documents containing the
original query. Figure 5.5 demonstrates how such a traversal would occur, including a data
structure view, a set theory view, and a graph view.

Figure 5.5 Three Representations of a semantic knowledge graph. The Data Structure View shows terms
mapped to sets of documents, the Set-theory View shows how the intersection of sets of documents
actually forms the relationship between them, and the Graph View, showing the nodes and edges.

In the data structure view, which represents our inverted and forward indices, we see how terms
are related to documents based upon whether they appear within them. Those "links" are
ultimately only present if there is an intersection between the docs that any two nodes (terms)
appear within in the set-theory view. The graph view, finally, demonstrates a third view into the
same underlying data structures, but in this case we see nodes (instead of document sets) and
edges (instead of intersecting document sets). Essentially, our semantic knowledge graph exists
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as an abstraction on top of the inverted index that is already built and updated anytime our search
engine indexes content.

We typically think of the primary function of search engines being to accept a query, to find
matching documents, and to return those documents in a relevance-ranked order. We devoted all
of chapter 3 to discussing this process, walking through matching (sections 3.2.4 - 3.2.6),
TF*IDF ranking (section 3.1), and the commonly-used BM25 ranking function (section 3.2).
However, with a semantic knowledge graph we focus on matching and ranking related , asterms
opposed to related documents.

Any arbitrary query (anything you can express in Solr syntax) can be a node in your graph, and
you can traverse from that node to any other term (or arbitrary query) in any field. Additionally,
since each traversal of an edge between two nodes leverages both an inverted index (terms to
docs) and a forward index (docs to terms), it is trivial to chain these traversals together into a
multi-level graph traversal, as shown in Figue 5.6.

Figure 5.6 Multi-level Graph Traversal. In the data structure view, we see two traversals, through the
inverted index and then the forward index each time. In the graph structure view, we see the
corresponding two-level traversal from skills, to skills, to job titles.

In the figure, you see a traversal from a skill ( ) to a layer of other skills ( , , java java oncology
, and ), to a layer of job titles ( , , ).hibernate scala software engineer data scientist java developer

You an see that not all nodes are connected - the node for , for example, does not appearoncology
in the graph traversal view because none of the original nodes can connect to it through any
edges since there are no overlapping documents.

Given that not all possible nodes are going to be relevant for any given traversal, it is also
important for semantic knowledge graphs to be able score and assign a weight to the
relationships between nodes so that those edges can be prioritized during any graph traversal. We
will cover the scoring and assignment of weights to edged in the next section.
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Given that the primary function of a semantic knowledge graph is to discover and score the
strength of the semantic relationship between nodes (where the nodes can represent any word,
phrase, or arbitrary query), the ability to generate a semantic similarity score is critical. But what
does "semantic similarity" actually mean?

If you recall the Distributional Hypothesis, which was introduced in chapter 2, it says that words
that appear together in the same contexts and with similar distributions tend to share similar
meanings. Intuitively this makes sense - the terms "pain" or "swelling" will be more likely to
occur in documents that also mention "advil", "ibuprofen", or "ice pack" than in some random
documents. Interestingly, though, "ice pack" may also occur in documents containing terms like
"cooler", "road trip", or "cold", whereas "advil" and "ibuprofen" likely would not.

These examples show words with similar meanings with their contexts, but let’s also consider
words like "a", "the", "of", "and", "if", "they", and countless other very common/stop words.
Indeed, these words will also appear heavily within the same contexts of "pain", "swelling",
"advil", "ibuprofen", or any of the other words we examined. This points to the second part of
the distributional hypothesis - that the words must also occur with similar distributions. In
essence, this means that given some number of documents containing a first term, any second
term tends to be semantically similar to the first term if it co-occurs in the same documents as the
first term more often that it co-occurs in documents with other random terms.

Practically, since "the" or "a" tend to co-occur commonly with almost all other terms, they are
not considered semantically similar to those terms even though their level of co-occurrence is
high. For terms like "pain" and "ibuprofen", however, they occur together statistically way more
often than either term appears with random other terms, and therefore they are considered
semantically similar.

One easy way to measure this semantic relatedness is through the relatedness calculation ( ) thatz

follows:

This relatedness calculation (conceptually similar to a "z-score" in a normal distribution) relies
on the concept of a "foreground" set of documents and a "background" set of documents, and
enables the distribution of the term " " to be statistically compared between the two sets. Forx
example, if the foreground set was all documents matching the query "pain", and the background
set was all documents, then the relatedness of the word "advil" would be a measure of how much
more often "advil" occurs in documents also containing the word "pain" (foreground set) versus
in any random document (background set).

5.4.4 Calculating edge weights to score relatedness of nodes

z = (countFg(x) - t\otalDocsFG * probBG(x)) / sqrt(t\otalDocsFG * probBG(x)

* (1 - probBG(x))
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If two terms are highly related, their relatedness will be a positive number approaching . If1.0

the terms are highly unrelated (they tend to occur in divergent domains only) then the score
would be closer to . Finally, term that just aren’t semantically related at all - like stopwords,-1.0

will tend to have a relatedness score close to zero.

Apache Solr has semantic knowledge graph capabilities built directly into its faceting API.
Faceting provides the ability to traverse from terms to sets of documents to terms, and a 

 aggregation function implements the semantic similarity calculation we justrelatedness
described.  demonstrates a search for "advil" within a dataset of Stack ExchangeListing 5.4
Health forum discussions, and enables us to find the most semantically-related terms.

Listing 5.4 Discovering related nodes. We traverse from our original query of "advil" to the
most semantically-related terms (nodes) in the "body" field of our documents.

Results:

collection="health"

request = {
    "params": {
        "qf": "title body",
        "fore": "{!type=$defType qf=$qf v=$q}",
        "back": "*:*",
        "defType": "edismax",
        "rows": 0,
        "echoParams": "none",
        "omitHeader": "true"
    },
    "query": "advil",
    "facet": {
        "body": {
            "type": "terms",
            "field": "body",
            "sort": { "relatedness": "desc"},
            "mincount": 2,
            "limit": 8,
            "facet": {
                "relatedness": {
                    "type": "func",
                    "func": "relatedness($fore,$back)"
                }
            }
        }
    }
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()

for bucket in search_results["facets"]["body"]["buckets"]:
  print(str(bucket["val"]) + "  " + str(bucket["relatedness"][

  "relatedness"]))
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As you can see, out of all terms within any of the text of the forum posts in the Stackexchange
Health dataset, the ranked order of the most semantically related terms to "advil" was a nice,
clean list of other pain killers which are most similar to "advil". This is the magic of leveraging
the distributional hypothesis to discover and rank terms by semantic similarity - it provides us
with the ability to automatically discover relationships on the fly that can be used to further
improve our understanding of incoming queries. In the next section, we’ll discuss how we can
apply this understanding to improve query relevance.

Matching and ranking on only the keywords entered during a search does not always provide
sufficient context to find and rank the best results. In these cases, you can significantly improve
the quality of search results by expanding or otherwise augmenting queries to include
conceptually-related terms. In this section, we’ll walk through how to generate these related
terms, and we’ll demonstrate several strategies for applying those term to enhance they quality of
your search results.

Given the ability to start with any keyword or query and to find highly-related other terms in any
field, one obvious use case for a semantic knowledge graph is for dynamically expanding queries
to include related terms. This enables documents to match which do not necessarily contain the
exact keywords entered by the user but which do contain other terms which carry a very similar
meaning.

For example, instead of a user’s query for "advil" (from our last example) only matching
documents with the string "advil" in them, we could use the semantic knowledge graph to
automatically discover related terms and then match additional documents and boost the
relevance score based upon the relatedness score of each expanded term. The final query
submitted to the search engine, instead of being , might instead be something like advil advil

.OR motrin^0.59897 OR aleve^0.4662 OR ibuprofen^.3824 OR …

Let’s walk through the steps needed to implement this kind of query expansion, leveraging a
dataset from a different domain this time (our scifi dataset).  provides the first step inListing 5.5
this process, running a search for the obscure search term "vibranium" on our scifi dataset.

advil  0.70986
motrin  0.59897
aleve  0.4662
ibuprofen  0.38264
alleve  0.36649
tylenol  0.33048
naproxen  0.31226
acetaminophen  0.17706

5.4.5 Using semantic knowledge graphs for query expansion
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Listing 5.5 Discovering context for unknown terms. In this case, an obscure query for
"vibranium" brings back useful context for anyone unfamiliar with the fictional term.

Response:

For anyone unfamiliar with the term "vibranium", it is a strong, fictional metal that exists in
Marvel comic books and movies (best popularized through the 2018 Hollywood hit Black

). The most related terms that came back were related to "Wakanda", the fictionalPanther
country from which vibranium originates, "adamantium", another strong (fictional) metal from
Marvel comics, and the words "panther" (from the name Black Panther) and the name Klaue and
alternative spelling Klaw, a character in the Black Panther comic books and movie that is heavily
associated with the metal vibranium.

query = "vibranium"

collection = "stackexchange"

request = {
    "query": query,
    "params": {
        "qf": "title body",
        "fore": "{!type=$defType qf=$qf v=$q}",
        "back": "*:*",
        "defType": "edismax",
        "rows": 0,
        "echoParams": "none",
        "omitHeader": "true"
    },
    "facet": {
        "body": {
            "type": "terms",
            "field": "body",
            "sort": { "relatedness": "desc"},
            "mincount": 2,
            "limit": 8,
            "facet": {
                "relatedness": {
                    "type": "func",
                    "func": "relatedness($fore,$back)"
                }
            }
        }
    }
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()

for bucket in search_results["facets"]["body"]["buckets"]:
  print(str(bucket["val"]) + "  " + str(bucket["relatedness"][

  "relatedness"]))

vibranium  0.92227
wakandan  0.75429
wakanda  0.75295
adamantium  0.7447
panther's  0.69835
klaue  0.68083
klaw  0.65195
panther  0.65169
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You may or may not have any familiarity with vibranium or any of these related pieces of
information - and the fact that you don’t need to is exactly why an auto-generated knowledge
graph is so useful. By leveraging a semantic knowledge graph and expanding your query to
include additional related context, you can drastically improve the recall of your search requests,
and by boosting results that best match your query conceptually (as opposed to just the text), you
may also be able to improve the precision of your top-ranked search results.

Listing 5.6 demonstrates an example of translating this original query along with the semantic
knowledge graph output into an expanded query.

Listing 5.6 Generation of an expanded query from the related nodes returned from the
semantic knowledge graph.

Results:

In this case, we are doing a simple Boolean OR search for any of the keywords related to the
original query ( ), boosting the original query term’s weight by a factor of 5x andvibranium

weighting each subsequent term’s impact on the relevance score based upon it’s semantic
similarity score. The choice to boost the original term by 5x is arbitrary - you can choose any
value here to assign a relative relevance boost versus the other (expanded) terms.

You might also notice that the term vibranium appears twice - first as the original term and then
again as an expanded term (since the term is  the most semantically similar to itself). Thisalso
will almost always be the case if you are searching for individual keywords, but since your query
might have phrases or other constructs that make the original query different than the terms that
actually come back (if any), it is usually a good idea to still include the original query as part of
the expanded/rewritten query so users don’t get frustrated by it being ignored.

While the prior expanded query should rank results pretty well (prioritizing documents matching
multiple related terms), it is also heavily focused on recall (expanding to include anything

query_expansion = ""

terms = search_results["facets"]["body"]["buckets"]
for bucket in search_results["facets"]["body"]["buckets"]:
  term = bucket["val"]
  boost = bucket["relatedness"]["relatedness"]
  if len(query_expansion) > 0:
    query_expansion += " "
  query_expansion += " " + term + "^" + str(boost)

expanded_query = query + "^5" + query_expansion

print("Expanded Query:\n" + expanded_query)

Expanded Query:
vibranium^5 vibranium^0.92228  wakandan^0.75429  wakanda^0.75295

adamantium^0.7447  panther's^0.69835  klaue^0.68083  klaw^0.65195

panther^0.65169
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relevant) as opposed to precision (ensuring everything included is relevant). There are many
different ways to construct an augmented query, depending on yout primary goals.

Rewritten queries can perform a simple expansion, require a minimum percentage or number of
terms to match, require specific terms like the original query to match, or even just change the
ranking of the same initial results set.  demonstrates several examples, leveragingListing 5.7
minimum match thresholds and percentages, which can tilt the scale between precision and recall
as needed.

Listing 5.7 Different Query Augmentation Strategies.

The final queries for each of these different query expansions techniques are as follows:

Simple Query Expansion:

This simple query expansion is the same as previously described, matching any documents
containing either the original query or any of the semantically-related terms.

Increased Precision, Reduced Recall Query:

This example specifies a "minimum match" threshold of 30% ( ), meaning that in ordermm=30%

for a document to match it must contain at least 30% (rounded down) of the terms in the query.

Increased Precision, No Reduction in Recall:

simple_expansion = 'q={!edismax qf="title body" mm="0%"}' + query + " " +

query_expansion
increase_conceptual_precision = 'q={!edismax qf="title body" mm="30%"}' +

query + " " + query_expansion
increase_precision_reduce_recall = 'q={!edismax qf="title body" mm="2"}' +

query + " AND " + ( query_expansion + )
same_results_better_ranking = 'q={!edismax qf="title body" mm="2"}' + query

\ + "&boost=" + "query($expanded_query)&expanded_query=" +

query_expansion

print("Simple Query Expansion:\n" + simple_expansion)
print("\nIncreased Precision, Reduced Recall Query:\n" +

increase_conceptual_precision)
print("\nIncreased Precision, No Reduction in Recall:\n" +

increase_precision_reduce_recall)
print("\nSlightly Increased Recall Query:\n" + slightly_increased_precision)
print("\nSame Results, Better Conceptual Ranking:\n" +

same_results_better_ranking)

q={!edismax qf="title body" mm="0%"}vibranium vibranium^0.92227

wakandan^0.75429  wakanda^0.75295  adamantium^0.7447  panther's^0.69835

klaue^0.68083  klaw^0.65195  panther^0.65169

q={!edismax qf="title body" mm="30%"}vibranium vibranium^0.92227

wakandan^0.75429  wakanda^0.75295  adamantium^0.7447  panther's^0.69835

klaue^0.68083  klaw^0.65195  panther^0.65169
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This query requires the original query term ( ) to match, and  requires that at leastvibranium also
two terms match (  plus one more term). This means that a document must contain anvibranium

additional terms beyond just the original query, but must also still match the original query.

Slightly Increased Recall Query:

This query requires two terms to match, but does not explicitly require the original query, so it
can expand to other documents which are conceptually similar but don’t necessarily have to
contain the original query term. Since the term  is repeated twice, any documentvibranium

containing just the word  will also match.vibranium

Same Results, Better Conceptual Ranking:

This final query returns the exact same documents as the original query for , but itvibranium

ranks them differently according to how well they match the semantically-similar terms from the
knowledge graph. This ensures the keyword exists in all matched documents and that all
documents containing the user’s query are returned, but it then enables the ranking to be greatly
improved to better understand the domain-specific context for the term to boost more relevant
documents.

Of course, there are an unlimited number of possible query permutations you can explore when
rewriting your query to include enhanced semantic context, but the above examples should
provide a good sense of the kinds of options available and tradeoffs you’ll want to consider.

In the last section, we explored how to augment queries by discovering and leveraging related
nodes from the semantic knowledge graph, including multiple ways of structuring rewritten
queries to optimize for precision, recall, or even improved conceptual ranking over the same
results. In addition to expanding queries with semantically-related terms, it is also possible to use
the semantic knowledge graph to generate content-based recommendations by translating
document into queries based upon semantic similarity of the terms within the documents.

q={!edismax qf="title body" mm="2"}vibranium AND (vibranium^0.92227

wakandan^0.75429  wakanda^0.75295  adamantium^0.7447  panther's^0.69835

klaue^0.68083  klaw^0.65195  panther^0.65169)

q={!edismax qf="title body" mm="2"}vibranium vibranium^0.92227

wakandan^0.75429  wakanda^0.75295  adamantium^0.7447  panther's^0.69835

klaue^0.68083  klaw^0.65195  panther^0.65169

q={!edismax qf="title body" mm="2"}vibranium
&boost=query($expanded_query)
&expanded_query=vibranium^5 vibranium^0.92227  wakandan^0.75429

wakanda^0.75295  adamantium^0.7447  panther's^0.69835  klaue^0.68083

klaw^0.65195  panther^0.65169

5.4.6 Using semantic knowledge graphs for content-based recommendations
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Since nodes in the semantic knowledge graph can represent any arbitrary query, we can take the
content from documents (individual terms, phrases, or other values) and model them as arbitrary
nodes to be scored relative to some known context about the document. This means we can take
dozens or hundreds of terms from a document, score them all relative to the topic of the
document, and then take the top most semantically-similar terms and use them to generate a
query best representing the nuanced, contextual meaning of the document.

Listing 5.8 walks through an example of translating a document that is classified as a "star wars"
document and ranking all the terms in the document relative to that topic.
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Listing 5.8 Content-based Recommendations. We can pass the terms and phrases of a
document to the semantic knowledge graph, score their semantic similarity to the topic of
the document, and generate a query representing the most semantically-important
elements of the document.

Generated Knowledge Graph Lookup:

import collections
from mergedeep import merge

print(solr_url)
collection="stackexchange"
classification="star wars"

document="""this doc contains the words luke, magneto, cyclops, darth vader,
           princess leia, wolverine, apple, banana, galaxy, force, blaster,
           and chloe."""

#run an entity extractor to parse out keywords to score
parsed_document = ["this", "doc", "contains", "the", "words", "luke", \
                   "magneto", "cyclops", "darth vader", "princess leia", \
                   "wolverine", "apple", "banana", "galaxy", "force", \
                   "blaster", "and", "chloe"]

request = {"query": classification, "params": {}, "facet": {}}

i=0
for term in parsed_document:
    i+=1
    key = "t" + str(i)
    key2 = "${" + key + "}"
    request["params"][key] = term
    request["facet"][key2] = {
        "type": "query",
        "q": "{!edismax qf=${qf} v=" + key2 + "}",
        "facet": {"stats": "${relatedness_func}"}
    }

print(json.dumps(request,indent="  "))

full_request = merge(request_template, request)
search_results = requests.post(solr_url + collection + "/select",

json=full_request).json()

def parse_scores(search_results):
    results = collections.OrderedDict()
    for key in search_results["facets"]:
        if key != "count" and key != "" and "stats" in search_results[

        "facets"][key]:
            relatedness = search_results["facets"][key]["stats"][

            "relatedness"]
            results[key] = relatedness
    return list(reversed(sorted(results.items(), key=lambda kv: kv[1])))

scored_terms = parse_scores(search_results)

for scored_term in scored_terms:
    print (scored_term)
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Scored Nodes:

From these results, you can see a list of terms from the document that is nicely ordered based
upon semantic similarity to the topic of "star wars". Terms with lower scores will have no
relatedness or a negative relatedness with the specified topic. If we filter to terms above a 0.25

{
  "query": "star wars",
  "params": {
    "t1": "this",
    "t2": "doc",
    "t3": "contains",
    "t4": "the",
    "t5": "words",
    "t6": "luke",
    "t7": "magneto",
    "t8": "cyclops",
    "t9": "darth vader",
    "t10": "princess leia",
    "t11": "wolverine",
    "t12": "apple",
    "t13": "banana",
    "t14": "galaxy",
    "t15": "force",
    "t16": "blaster",
    "t17": "and",
    "t18": "chloe"
  },
  "facet": {
    "${t1}": {
      "type": "query",
      "q": "{!edismax qf=${qf} v=${t1}}",
      "facet": {
        "stats": "${relatedness_func}"
      }
    },
    ...
    "${t18}": {
      "type": "query",
      "q": "{!edismax qf=${qf} v=${t18}}",
      "facet": {
        "stats": "${relatedness_func}"
      }
    }
  }
}

('luke', 0.66366)
('darth vader', 0.6311)
('force', 0.59269)
('galaxy', 0.45858)
('blaster', 0.39121)
('princess leia', 0.25119)
('this', 0.13569)
('the', 0.12405)
('words', 0.08457)
('and', 0.07755)
('contains', 0.04734)
('banana', -0.00128)
('doc', -0.00185)
('cyclops', -0.00418)
('wolverine', -0.0103)
('magneto', -0.01112)
('apple', -0.01861)
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positive relatedness, as performed in , we get a very clean list of relavant terms fromListing 5.9
the document.

Listing 5.9 Mapping scored phrases from the document to a query, filtering out low
relatedness scores.

Expanded Query:

Listing 5.10 demonstrates the last step in this process, actually running the search to return the
top ranked documents most semantically-similar to the original document.

Listing 5.10 Content-based Recommendations Request passing in the scored terms as the
query.

Response:

rec_query = ""

for scored_term in scored_terms:
  term = scored_term[0]
  boost = scored_term[1]
  if len(rec_query) > 0:
    rec_query += " "
  if boost > 0.25:
    rec_query += term + "^" + str(boost)

print("Expanded Query:\n" + rec_query)

luke^0.66366 "darth vader"^0.6311 force^0.59269 galaxy^0.45858

blaster^0.39121 "princess leia"^0.25119

import collections

collection="stackexchange"

request = {
    "params": {
        "qf": "title body",
        "defType": "edismax",
        "rows": 5,
        "echoParams": "none",
        "omitHeader": "true",
        "mm": "0",
        "fl": "title",
        "fq": "title:[* TO *]" #only show docs with titles to make the example readable
    },
    "query": rec_query
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()
print(json.dumps(search_results, indent="  "))
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As you can see, we have just created a content-based recommendations algorithm. We discussed
the idea of leveraging user behavioral signals (searches, clicks, etc.) to generate
recommendations (collaborative filtering) in chapter 4, but we will not always have sufficient
signals to rely solely on signals-based recommendations approaches. As a result, having the
ability to take a document and find other similar documents based upon content of the starting
document provides us with an excellent additional tool with which we can provide context- and
domain-aware recommendations without relying on user signals.

While the example in this section generated a content-based recommendations query based upon
terms actually in the starting document, it is worth keeping in mind that the semantic knowledge
graph is not restricted to using the terms passed in. You could add an extra level to the traversal
to find additional terms that are semantically-related to the terms in the original document, but
not actually contained within it. This can be particularly useful for niche topics where not enough
documents match the recommendations query, as traversing further will open up new
possibilities for exploration.

In the next section, we’ll take a quick step beyond the "is_related_to" relationships and see if we
can leverage the semantic knowledge graph to also generate and traverse some more interesting
edges.

{
  "response": {
    "numFound": 2511,
    "start": 0,
    "docs": [
      {
        "title": "Did Luke know the &quot;Chosen One&quot; prophecy?"
      },
      {
        "title": "Why couldn't Snoke or Kylo Ren trace Luke using the Force?"
      },
      {
        "title": "Was Darth Vader at his strongest during Episode III?"
      },
      {
        "title": "Was/is Darth Vader the most powerful force user?"
      },
      {
        "title": "Who/what exactly does Darth Vader believe taught Luke

        between the events of “The Empire Strikes Back” and “Return of

        the Jedi?”"
      }
    ]
  }
}
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Thus far, all of our semantic knowledge graph traversals have leveraged an "is_related_to"
relationship. That is to say, we’ve been finding the strength of the semantic relationship between
two words or phrases using the relatedness function, but we have only measured that the nodes
are "related", not how they are related. What if we could find other kinds of edges between nodes
instead of just "is_related_to" type edges? In this section, we’ll explore how to do exactly that.

If you recall, the nodes in a semantic knowledge graph are materialized on the fly by executing a
query that matches a set of documents. If the node you start with is , that node isengineer

internally represented as the set of all documents containing the word . If the node isengineer

labeled as , that node is internally represented as the set of all documentssoftware engineer

containing the term  intersected with all documents containing the term . Ifsoftware engineer

the search is for  then it is internally represented as the set of"software engineer" OR java

all documents containing the term  one position before the term  (a phrase)software engineer

unioned with the set of all documents containing the term . All queries, regardless of theirjava

complexity, are internally represented as a set of documents.

You may also recall that an edge is formed by finding the set of documents which two nodes
share in common. This means that  nodes and edges are internally represented using theboth
same mechanism - a set of documents. Practically speaking, this means that if we can construct a
node using a query that approximates an interesting relationship (as opposed to an entity), that
we can relate two nodes together through the "relationship node" in a similar way to how an edge
would be used to relate the nodes together in a traditional graph structure.

Let’s work through an example. Revisiting our scifi dataset let’s say we wanted to ask a question
about "Jean Grey", one of the popular characters from Marvel Comics X-Men comic books, TV
shows, and movies. Specifically, let’s say that we wanted to figure out who was in love with Jean
Grey.

We can accomplish this by using a starting node of "Jean Grey", traversing to the node "in love
with", and then requesting the top related terms associated with "in love with" within the context
of "Jean Grey".  demonstrates this query. By traversing through a node designed toListing 5.11
capture an explicit linguistic relationship ("in love with" in this case), we can use the
intermediate node to model an edge between the starting and terminating node.

5.4.7 Using semantic knowledge graphs to model arbitrary relationships
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Listing 5.11 Materializing an edge through a "relationship node".

Response:

If the X-Men comics or the names coming back in the response are unfamiliar to you, here’s a
quick crash course: Jean Grey has recurring relationships with two mutants, one named Cyclops

collection = "scifi"

starting_node = '"jean grey"'
relationship = '"in love with"'

request = {
    "query": starting_node,
    "params": {
        "qf": "body",
        "fore": "{!type=$defType qf=$qf v=$q}",
        "back": "*:*",
        "defType": "edismax",
        "rows": 0,
        "echoParams": "none",
        "omitHeader": "true"
    },
    "facet": {
        "in_love_with":{
            "type": "query",
            "query": "{!edismax qf=body v=$relationship}",
            "facet": {
                "terminating_nodes": {
                    "type": "terms",
                    "field": "body",
                    "mincount": 25,
                    "limit": 9,
                    "sort": { "body_relatedness": "desc"},
                    "facet": {
                        "body_relatedness": {
                            "type": "func",
                            "func": "relatedness($fore,$back)"
                        }
                    }
                }
            }
        }
    }
}

search_results = requests.post(solr_url + collection + "/select",

json=request).json()

for bucket in search_results["facets"]["in_love_with"][

"terminating_nodes"]["buckets"]:
  print(str(bucket["val"]) + "  " + str(bucket["body_relatedness"][

  "relatedness"]))

jean  0.85044
grey  0.74965
cyclops  0.61313
summers  0.60624
xavier  0.54697
wolverine  0.49361
x  0.46596
mutant  0.46248
magneto  0.43692
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(real name: Scott Summers) and one named Wolverine. Additionally, and unknown to most fans,
two of Jean Grey’s mentors, Professor Charles Xavier and Magneto, were known to have a love
interest in Jean Grey at points throughtout the comic books.

If we examine the results from , we see all of these expected names listed. The firstListing 5.7
two terms  and  are obviously the most related, since we are searching for jean grey in love

relative to , so her name is obviously going to be highly semantically related to itself.jean grey

The next two terms,  and  both refer to the same person, Jean’s most prominentcyclops summers

love interest. Then we see  and , and the final result in the list is for .xavier wolverine magneto

Figure 5.7 demonstrates the underlying graph relationships for this traversal visually.

Figure 5.7 Traversing arbitrarily-defined edge types. By materializing a new node with the combined
context of both the originating node ("jean grey") and a new node ("in love with"), we can traverse from
that combined node ("jean grey" + "in love with") to other nodes. This is equivalent saying we are
traversing from "jean grey" through an edge of "in love with" to the other nodes.

By using an intermediate node (i.e. ) to model a relationship between other nodes,in love with

we can form any arbitrarily-typed edge between nodes, as long as we can express that edge as a
search query.

While the results of our graph traversal in  were pretty good overall, we do see,Listing 5.11
however, that the terms  (presumably from "x-men") and  also show up. Jean Grey andx mutant

all of the other listed people are mutants in the X-Men comics, which is why these terms are so
semantically related. They are clearly not great answers to the question "Who is in love with Jean
Grey?", however.

This brings up an important point: the semantic knowledge graph is a statistical knowledge
graph. The existence of the "in love with" relationship is purely based upon statistical
correlations of terms within our collection, so just like with any ontology learning approach,
there is going to be noise. That being said, for an auto-generated graph with no explicit modeling
of entities (we just indexed inidividual keywords, with no sense that they represent people), these
results are actually quite good.

If we wanted to improve the quality of these results, one of the easiest things to do would be to
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run pre-processing on the content to extract out entities (people, places, and things) and index
those instead of just single-term keywords. This would cause actual people’s names (i.e. "Scott
Summers", "Charles Xavier", "Jean Grey") to be returned instead of just individual keywords (

, , , ).summers xavier jean grey

It is also worth pointing out that the traversal of relationships depends entirely on whether those
relationships were discussed in the underlying corpus of documents. In this case, plenty of forum
posts exist discussing each of these peoples' relationships with Jean Grey. Had insufficient
documents existed, the results returned may have been poor or non-existent. In order to avoid
noise in our results, we set a  threshold of , indicating that at least 25 documents mustmincount 25
exist discussing "jean grey", "in love with", and the other terms found and scored. We
recommend setting a , as well, to some number greater than  to avoid false positives.mincount 1

While exploring arbitrary linguistic relationships like  can be useful for anin love with

exploratory standpoint, it is usually sufficient from a query understanding standpoint to stick
with the default "is related to" relationship and just leverage the relatedness scores between terms
for most semantic search use cases. It can still be useful to traverse through multiple levels of
relationships to generate better context, however. Specifically, it can be useful to traverse from a
term to a classification field to provide some additional context, and then to related meanings of
the term within that category. We’ll cover this strategy in more detail chapter 6, where we’ll
focuse on disambiguating terms with multiple meanings.

By providing the ability to accept arbitrary queries and dynamically discover related terms on the
fly in a very context sensitive way, semantic knowledge graphs become a key tool for query
interpretation and relevance ranking. We’ve seen that not only can semantic knowledgege graphs
help interpret and expand queries, but that they also provide the ability classify queries and
keywords on the fly, as well as to disambiguate multiple senses of the terms in each query.

We also explored early in the chapter how to build expicit knowledge graphs, both manually and
through open information extraction techniques, and how to traverse those graphs to pull in
useful facts. What may not be obvious yet, however, is how to actually parse arbitrary incoming
queries and look up the appropriate pieces in the knowledge graph. We’ll spend the majority of
chapter 7 covering how to build out an end-to-end semantic search system which can parse
queries and integrate each of these knowledge graph capabilities. Before we do that, however,
there are some very specific kinds of relationships we need to add to our knowledge graph that
are particularly important for search engines, such as misspellings, synonym, and
domain-specific phrases. We’ll cover how to automatically learn each of these sources of
domain-specific terminology from your user signals or your content as we move into the next
chapter on learning domain-specific language.

5.5 Using knowledge graphs for semantic search
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Knowledge graphs model the relationships between entities within your domain and can
be built explicitly with known relationships or can be extracted dynamically from your
content.
Open information extraction, the process of extracting facts from your content (subject,
relationship, object triples) can be used to learn arbitrary relationships (typically results in
noisy data) or to extract hyponym/hypernym relationships (less noisy) from text into an
explicit knowledge graph.
Semantic knowledge graphs enable traversal and ranking of arbitrary semantic
relationships between any content within your search index. This allows you to use your
content directly as a knowledge graph without any data modeling required beyond just
indexing your content.
Content-based recommendations that don’t rely on user signals can be generated by
ranking the most semantically-interesting terms and phrases from documents and using
them as a query to find and rank other related documents.
Semantic knowledge graphs enable better understanding of user intent by powering
domain- and context-sensitive query expansion and rewriting, relationship discovery.

5.6 Summary
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6
This chapter covers

In chapter 5 we demonstrated both how to generate and leverage a semantic knowledge graph,
and how to extract entities, facts, and relationships explicitly into a knowledge graph. Both of
these techniques relied upon navigating either the linguistic connections between terms in a
single document or the statistical cooccurrences of terms across multiple documents and
contexts. We showed how you can use knowledge graphs to find related terms, and how those
related terms can integrate into various query rewriting strategies to increase recall or precision
while implementing a conceptual search as opposed to just a text-based keyword match.

In this chapter, we’ll dive deeper into the idea of understanding query intent and into the nuances
of using different contexts to interpret domain-specific terminology in queries. We’ll start off by
exploring query classification and then showing how those classifications can be used to
disambiguate queries with multiple potential meanings. Both of these approaches will extend our
usage of semantic knowledge graphs from the last chapter.

While those semantic-knowledge-graph-based based approaches are great at better
contextualizing and interpreting queries, they continue to rely upon having high-quality
documents that accurately represent your domain. As such, their efficacy for interpreting user
queries depends on how well the queries overlap with the content being searched.

Using context to learn domain-specific
language

Classifying query intent
Query sense disambiguation
Learning related phrases from user signals
Identifying key phrases from user signals
Learning misspellings and alternate term variations from user signals
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For example, if 75% of your users are searching for clothing, but most of your inventory is films
and digital media, then when they search for "shorts" and all the results are videos with short
run-time (known as "digital shorts" in the film industry), most of your users will be confused
with the results. Given the data in your query logs, it would be better if "shorts" could map to
other related terms most commonly found in your query signals like "pants", "clothing", and
"shirts".

It can thus be very beneficial to not only rely on the content of your documents to learn
relationships between terms and phrases, but to also leverage your user-generated signals. For
the second half of this chapter, we’ll thus explore how to learn related phases from user signals,
how to extract key phrases from user signals, and how to identify common misspellings and
alternate spellings from use signals.

By leveraging both content-based approaches and real user interactions to drive your
understanding of domain-specific terminology, your search engine will be able to better
understand true user intent and react appropriately.

The goal or intent of a query can often matter as much as the keywords themselves. A search for
"driver crashed" can mean two  different things in the context a search for news or travelvery
content, versus in a technology context. Similarly, someone searching in ecommerce for a
specific product name or product id may have an intent to see that very specific item and a high
liklihood to want to purchase that item, whereas as more a general search like "kitchen
appliances" may signal the intent to just browse results and research what kinds of products may
be available.

In both contexts, building a query classifier can prove useful to determine the general kind of
query being issued. Depending on the domain, this query context could be automatically applied
(limiting the category of documents), or it could be used to modify the relevance algorithm
(automatically boost specific products or even skip the results page altogether and just go straight
to the product page). In this section, we’ll show how to use the semantic knowledge graph from
chapter 5 as a classifier for incoming queries to build a query classifier.

K-Nearest Neighbor classification is a type of classification which takes a datapoint (such as a
query or term) and tries to find the top K other datapoints that are the most similar in a vector
space. A semantic knowledge graph traversal essentially does a k-nearest neighbor search at each
level of the graph traversal. This means that if we have a "category" or "classification" field
present on our documents, that we can actually ask the semantic knowledge graph to "find the
category with the highest relatedness to my starting node". Since the starting node is typically a
user’s query, this means we can use a semantic knowledge graph to classify the query.

6.1 Classifying query intent

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

150

https://livebook.manning.com/#!/book/ai-powered-search/discussion


To continue our momentum from the last chapter, let’s continue to leverage the Stackexchange
datasets for this section and the next, as we’ve already assembled them into a semantic
knowledge graph that can be extended for query classification (this section) and query-sense
disambiguation (section 6.2).

Listing 6.1 demonstrates running a search for different sets of keywords and then returning
category classifications. For simplicity, since we have indexed multiple different Stack Exchange
categories (scifi, health, cooking, devops, etc.), we’ll use those categories as our classifications.
Let’s find the most semantically-related categories for a few queries.
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Listing 6.1 Query classification leveraging the semantic knowledge graph.

def run_query_classification(query,keywords_field="body",

classification_field="category",classification_limit=5,

min_occurrences=5):

    classification_query = {
        "params": {
            "qf": keywords_field,
            "fore": "{!type=$defType qf=$qf v=$q}",
            "back": "*:*",
            "defType": "edismax",
            "rows": 0,
            "echoParams": "none",
            "omitHeader": "true"
        },
        "query": query,
        "facet": {
            "classification":{
                "type": "terms",
                "field": classification_field,
                "sort": { "classification_relatedness": "desc"},
                "mincount": min_occurrences,
                "limit": classification_limit,
                "facet": {
                    "classification_relatedness": {
                        "type": "func",
                        "func": "relatedness($fore,$back)"
                    }
                }
            }
        }
    }

    search_results = requests.post(solr_url + collection + "/select",

    json=classification_query).json()

    print("Query: " + query)
    print("  Classifications: ")
    for classification_bucket in search_results["facets"][

    "classification"]["buckets"]:
        print("    " + str(classification_bucket["val"]) + "  " +

        str(classification_bucket["classification_relatedness"][

        "relatedness"]))
    print("\n")

run_query_classification( query="docker", classification_field="category",

classification_limit=3 )
run_query_classification( query="airplane", classification_field="category",

classification_limit=1 )
run_query_classification( query="airplane AND crash",

classification_field="category", classification_limit=2 )
run_query_classification( query="camping", classification_field="category",

classification_limit=2 )
run_query_classification( query="alien", classification_field="category",

classification_limit=1 )
run_query_classification( query="passport", classification_field="category",

classification_limit=1 )
run_query_classification( query="driver", classification_field="category",

classification_limit=2 )
run_query_classification( query="driver AND taxi",

classification_field="category", classification_limit=2 )
run_query_classification( query="driver AND install",

classification_field="category", classification_limit=2 )
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Results:

This request leverages the semantic knowledge graph to find the top K nearest neighbors based
upon a comparison of the semantic similarity between the query and each available classification
(within the category field). As you can see, each query was assigned one or more potential
classifications based upon its semantic similarity with each classification.

We see classification scores for each potential category classification for each query, with 
 and  classified to ,  classified to , and airplane passport travel camping outdoors alien

classified to . When we refine the  query to a more specific query like scifi airplane airplane

, however, we see that the category changes from  to , becauseAND crash travel scifi

documents about airplane crashes are more likely to occur within  documents than scifi travel

documents.

Similarly, we can see a word like , which can have multiple polysemous (ambiguous)driver

meanings, returns two potential classifications (  or ), but with the travel devops travel

category being the clear choice when no other context is provided. When additional context is

Query: docker
  Classifications:
    devops  0.8376

Query: airplane
  Classifications:
    travel  0.20591

Query: airplane AND crash
  Classifications:
    scifi  0.01938
    travel  -0.01068

Query: camping
  Classifications:
    outdoors  0.40323
    travel  0.10778

Query: alien
  Classifications:
    scifi  0.51953

Query: passport
  Classifications:
    travel  0.73494

Query: driver
  Classifications:
    travel  0.23835
    devops  0.04461

Query: driver AND taxi
  Classifications:
    travel  0.1525
    scifi  -0.1301

Query: driver AND install
  Classifications:
    devops  0.1661
    travel  -0.03103
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1.  
2.  

3.  
4.  
5.  

provided, however, we can see that the query  gets appropriately classified todriver AND taxi

the  category, while  gets appropriately classified to the travel driver AND install devops

category.

Because of the ability for the semantic knowledge graph to find semantic relationships using the
context of any arbitrary query, this makes it an ideal tool for on-the-fly classification of
arbitrarily-complex incoming queries. Based upon this classification, you can then auto-apply
filters on those categories, route queries to a specific type of algorithm or landing page, or even
disambiguate the meaning of the terms within the query. We’ll explore applying the query intent
further to improve some live queries in chater 7.

Not only can queries benefit from being classified, but we just saw an example of an ambiguous
term ( ) that further needs to have its multiple meanings differentiated so the searchdriver

engine uses the correct interpretation. This can be accomplished by adding just one more graph
traversal to our query, which we’ll walk through next.

One of the hardest challenges in interpreting users' intent from their queries is understanding
exactly what they mean by each word. The problem of polysemy, or ambiguous terms, can
significantly affect your search results.

For example, if someone comes to your search engine and searches for the term "driver", this
could have many different possible meanings. Some of these meanings include:

A vehicle operator (the taxi driver)
Software which makes part of a computer work (install a printer driver or other device
driver)
A kind of golf club (swing the driver)
A kind of tool (i.e. screwdriver)
Something that moves an effort forward (key driver of success)

Likewise if someone searches for a "server", this could mean someone who takes orders and
waits on tables at a restaurant, or it could mean a computer that runs some software as a service.
Figure 6.1 demonstrates these two potential contexts, annd the kinds of related terms one might
find within each context.

6.2 Query sense disambiguation
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Figure 6.1 Differentiating multiple senses of the ambiguous term "server"

Ideally we want our search engine to be able to disambiguate each of these word senses and
generate a unique list of related terms within each disambiguated context. It is not sufficient to
simply blend multiple potential meanings together within a single list of related terms, as the
searcher clearly has a particular intent in mind that we should try to understand and represent.

In section 6.1, we demonstrated how to use the semantic knowledge graph to automatically
classify queries into a set of known categories. Given that we already know how to classify our
queries, it is trivial to add an additional traversal after the query classification to contextualize
the list of related terms to each specific query classification.

In other words, by traversing from query to classification and then to terms, we are able to
generate a list of terms that describe a contextualized interpretation of the original query within
each of the top classifications.

Listing 6.2 demonstrates a function which will execute this kind of disambiguating query against
the semantic knowledge graph.
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Listing 6.2 Disambiguating a query’s intent across different contexts

By traversing first to a specific context (  field) and then to keywords (  field), wecategory body

can find the most related contexts and then the most related terms to the original query that are
specific to that context. You can see from this listing that a  field (the  field bycontext category

default) and a  field (the  field by default) are used as part of a two-level traversal.keywords body

def run_disambiguation_query(query,keywords_field="body",context_field="category",

    keywords_limit=10,context_limit=5,min_occurrences=5):

    disambiguation_query = {
        "params": {
            "qf": keywords_field,
            "fore": "{!type=$defType qf=$qf v=$q}",
            "back": "*:*",
            "defType": "edismax",
            "rows": 0,
            "echoParams": "none",
            "omitHeader": "true"
        },
        "query": query,
        "facet": {
            "context":{
                "type": "terms",
                "field": context_field,
                "sort": { "context_relatedness": "desc"},
                "mincount": min_occurrences,
                "limit": context_limit,
                "facet": {
                    "context_relatedness": {
                        "type": "func",
                        "func": "relatedness($fore,$back)"
                    },
                    "keywords": {
                        "type": "terms",
                        "field": keywords_field,
                        "mincount": min_occurrences,
                        "limit": keywords_limit,
                        "sort": { "keywords_relatedness": "desc"},
                        "facet": {
                            "keywords_relatedness": {
                                "type": "func",
                                "func": "relatedness($fore,$back)"
                            }
                        }
                    }
                }
            }
        }
    }

    search_results = requests.post(solr_url + collection + "/select",

    json=disambiguation_query).json()

    print("Query: " + query)
    for context_bucket in search_results["facets"]["context"]["buckets"]:
        print("  Context: " + str(context_bucket["val"]) + "  " +

        str(context_bucket["context_relatedness"]["relatedness"]))
        print("    Keywords: ")
        for keywords_bucket in context_bucket["keywords"]["buckets"]:
            print("      " + str(keywords_bucket["val"]) + "  " +

            str(keywords_bucket["keywords_relatedness"]["relatedness"]))
        print ("\n")
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For any query that is passed in, we first find the most semantically-related category, and then
within that category we find the most semantically related terms to the original query within that
category.

Listing 6.3 demonstrates how to call this function, passing in three different queries containing
ambiguous terms for which we want to find differentiated meanings, and Table 5.1 demonstrates
the results of these three graph traversals.

Listing 6.3 Running Query Disambiguation for Several Queries. Each disambiguation
context (  field) is scored relative the query, and each discovered keyword (category body

field) is scored relative to both the query and the disambiguation context.

The results of the queries in  can be found in Tables 6.1 - 6.3.Listing 6.3

Table 6.1 shows the top most semantically-related categories for the query , followed byserver

the most semantically-related keywords from the  field within each of those contexts. Basedbody

upon the data, we see that the category of  is the most semantically related (positive scoredevops

of 0.787), whereas the next two categories both contained substantially negative scores (-0.27326
for  and 0.28334 for ). This indicates that when someone searches for the query scifi travel

, the devops category is overwhelmingly the most likely category in which that term isserver

going to be meaningful.

If we look at the different terms lists that come back for each of the categories, we also see
several distinct meanings arise. In the  category a very specific meaning of the term devops

 is intended, specifically focused on tools related to managing, building, and deployingserver

run_disambiguation_query( query="server", context_field="category",

keywords_field="body" )
run_disambiguation_query( query="driver", context_field="category",

keywords_field="body", context_limit=2 )
run_disambiguation_query( query="chef", context_field="category",

keywords_field="body", context_limit=2 )

Table 6.1 Contextualized related terms lists by category for the query "server"m
Query: server

 Context: devops  0.787

   Keywords:
server  0.91786
servers  0.69526
docker  0.66753
code  0.65852
configuration  0.60976
deploy  0.60332
nginx  0.5847
jenkins  0.57877
git  0.56514
ssh  0.55581

 Context: scifi  -0.27326

   Keywords:
server  0.56847
computer  0.16903
computers  0.16403
servers  0.14156
virtual  0.12126
communicate  0.09928
real  0.098
storage  0.09732
system  0.08375
inside  0.0771

 Context: travel  -0.28334

   Keywords:
server  0.74462
tipping  0.47834
tip  0.39491
servers  0.30689
vpn  0.27551
tips  0.19982
restaurant  0.19672
bill  0.16507
wage  0.1555
restaurants  0.15309
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code to a computer server. In the  category, a more general understanding of a server isscifi

communicated, but still related to computing. In the travel category, on the other hand, the
overwhelming sense of the word server is related to someone working in a restaurant, as we see
terms like , , and  showing up. Interestingly, one particular kind oftipping restaurant bill

computer server, a  also shows up, because this is the one kind of server that is highlyvpn

recommended for people to use when traveling to protect their internet communications.

When implementing an intelligent search application using this data, if you know the context of
the user is related to travel, it would make sense to use the specific meaning within the travel
category. Absent that kind of context, however, the best choice is typically to choose either the
most semantically-related category or the most popular category among your users.

Table 6.2 demonstrates a query disambiguation for the query "driver". In this case, there are two
related categories, with  being the most semantically-related (score: 0.23835) and travel devops

being much less semantically-related. We can see two very distinct meanings of driver appear
within each of these contexts, with driver in the travel category being related to , , taxi car

, , and , whereas within the  category driver is related to , license driving vehicle devops ipam

, , and so on, which are all different kinds of computer-related drivers.aufs overlayfs

If someone searches for the word  in your search engine, they clearly do not intend todriver

find documents about both of these meanings of the word driver, and they might be confused if
you included both meanings in your search results by only searching for the string  indriver

your inverted index. There are several ways to deal with multiple potential meanings for queried
keywords, such as grouping results by meaning to highlight the differences, choosing only the
most likely meaning, carefully interspersing different meanings within the search results to
provide diversity, or providing alternative query suggestions for different contexts, but usually an
intentional choice here is much better than just lazily lumping multiple different meaning

Table 6.2 Contextualized related terms lists by category for the query "driver"m
Query: driver

Context: travel  0.23835
  Keywords:
    driver  0.91524
    drivers  0.68676
    taxi  0.6008
    car  0.54811
    license  0.51488
    driving  0.50301
    taxis  0.45885
    vehicle  0.45044
    drive  0.43806
    traffic  0.43721

Context: devops  0.04461
  Keywords:
    driver  0.71977
    ipam  0.70462
    aufs  0.63954
    overlayfs  0.63954
    container_name  0.63523
    overlay2  0.56817
    cgroup  0.55933
    docker  0.54676
    compose.yml  0.52032
    compose  0.4626
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together. By leveraging a semantic interpretation of the query like this section demonstrates, you
can much better understand your users' intent and deliver more relevant, contextualized search
results.

As a final example, Table 6.3 demonstrates the query disambiguation for the query .chef

The top two contexts for the query  both show reasonably positive relatedness scores,chef

indicating that both meanings are likely interpretations. While the  context has a higherdevops

score (0.4461) than the  context (0.15151), it would still be important to take the user’scooking

context into consideration as best as possible when choosing between these two meanings. The
meaning of  within the  context is related to the Chef configuration managementchef devops

software used to build and deploy servers (related terms include , , etc.) whereaspuppet ansible

within the cooking context it is referring to a person who prepares food ( , , cooking taste

, , etc.).restaurant ingredients

Interestingly, the Chef software makes used of the idea of "recipies" and "cookbooks" in its
terminology, which was originally borrowed from the idea of a chef in a kitchen, so we may
even see overlap between terms as we go further down the list, even though those other terms are
actually also ambiguous across the two broad classifications we are using (  and )devops cooking

Of course, if you have a more fine-grained classification available on your documents, you may
be able to derive even more nuanced, contextualized interpretations of your users' queries,
making a semantic knowledge graph highly effective at nuanced query interpretation and
expansion. By combining query classification, term disambiguation, and query expansion (see
section 5.4.5) together, a semantic knowledge graph can power enhanced domain-specific and
highly contextualized semantic search capabilities within your AI-powered search engine. We’ll
dive into using these techniques further in chapter 7 when we apply them in a live semantic
search use case.

Table 6.3 Contextualized related terms lists by category for the query "chef"m
Query: chef

Context: devops  0.4461
  Keywords:
    chef  0.90443
    cookbooks  0.76403
    puppet  0.75893
    docs.chef.io  0.71064
    cookbook  0.69893
    ansible  0.64411
    www.chef.io  0.614
    learn.chef.io  0.61141
    default.rb  0.58501
    configuration  0.57775

Context: cooking  0.15151
  Keywords:
    chef  0.82034
    cooking  0.29139
    recipe  0.2572
    taste  0.21781
    restaurant  0.2158
    cook  0.20727
    ingredients  0.20257
    pan  0.18803
    recipes  0.18285
    fried  0.17033
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In chapter 5 and in this chapter thusfar, you’ve seen how to leverage your content as a
knowledge graph to discover related terms, to classify queries, and to disambiguate nuanced
meanings of terms. While these techniques are powerful, they are also entirely dependent upon
the quality of your documents and how well they represent what your user’s queries. Throughout
the rest of this chapter, we’ll explore the other major source of knowledge about your domain -
your user queries and signals. In many use cases, your user signals may provide similar, if not
more useful insights for interpreting queries than your content.

As a starting point for learning domain-specific terminology from real user behavior, let’s
consider what your query logs represent. For every query to your search engine, a query log
contains an identifier for the person running the search, the query that was run, and the
timestamp of the query. This means that if a single user searches for multiple terms, you can
group those searches together and also tell in which order the terms were entered.

While not always true, one reasonable assumption is that if someone entered two different
queries within a very close time-span of each other, that the second query is likely to be either a
refinement of the first query, or about a related topic. Figure 6.1 demonstrates a realistic
sequence of searches you might find for a single user in your query logs.

Figure 6.2 A typical sequence of searches from query logs for a particular user

When looking at these queries, we intuitively understand that "iphond" is a misspelling of
"iphone", that "iphone accesories" is a misspelling of "iphone accessories", and that "iphone",
"pink phone case", and "pink iphone case" are all related terms. We’ll deal with the misspellings
in later section, so we can just consider those to also be related terms for now.

While it is not wise to depend on a single user’s signals to deduce that two queries are related, if
you see the same combinations of queries entered by many different users then it is probably a
safe bet that those queries are related. As we demonstrated in chapter 5, queries can be expanded
to include related terms and improve recall. Whereas in section 5.4.5 we expanded queries based

6.3 Learning related phrases from query signals
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upon related terms found within our collection of documents, in this section, we’ll instead find
related terms based upon query signals.

Before mining user signals for related queries, let’s first convert our signals into a simpler format
for processing.  provides a transformation from our generic signal structure to aListing 6.4
simple structure that maps each occurrence of a query term to the user who searched for that
term.

Listing 6.4 Mapping signals into keyword, user pairs

Results:

You can see from Figure 6.4 that there are over 725K queries occurrences represented, along
with the user who sent each query. Our goal is ultimately to find related queries, so the next
processing step is to find all query pairs where both queries were submitted by a shared user. In
other words, assuming individual users tend to search for related keywords, let’s find the number
of coocurrences of each pair of keywords among users, since more occurrences likely means the
keywords are more related.

Listing 6.5 shows each query pair where both queries were searched by the same user, along with
the number of users that searches for both queries ( ).users_cooc

6.3.1 Mining query logs for related queries

#Calculation:
signals_collection="signals"
signals_opts={"zkhost": "aips-zk", "collection": signals_collection}
df = spark.read.format("solr").options(**signals_opts).load()
df.createOrReplaceTempView("signals")
spark.sql("""
select lower(searches.target) as keyword, searches.user as user
from signals as searches
where searches.type='query'
""").createOrReplaceTempView('user_searches')

#Show Results:
spark.sql("""select count(*) from user_searches """).show(1)
print("Simplified signals format:")
spark.sql("""select * from user_searches """).show(3)

+--------+
|    rows|
+--------+
|  725459|
+--------+

Simplified signals format:
+----------------+-------+
|         keyword|   user|
+----------------+-------+
|             gps| u79559|
|surge protectors|u644168|
|      headphones| u35624|
+----------------+-------+
only showing top 3 rows
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Listing 6.5 Total occurrences and coocurrences of queries, sorted by how many users
searched for the queries.

Results:

#Calculation:
spark.sql('''
select k1.keyword as keyword1, k2.keyword as keyword2,

count(distinct k1.user) users_cooc
from user_searches k1 join user_searches k2 on k1.user = k2.user where

k1.keyword > k2.keyword
group by k1.keyword, k2.keyword ''').createOrReplaceTempView(

'keywords_users_cooc')

spark.sql('''
select keyword ,  count(distinct user) users_occ
from user_searches
group by keyword ''').createOrReplaceTempView('keywords_users_oc')

#Show Results:
spark.sql('''select * from keywords_users_oc order by users_occ desc''').

show(10)
spark.sql('''select count(1) as keywords_users_cooc from

keywords_users_cooc''').show()
spark.sql('''select * from keywords_users_cooc order by users_cooc desc''').

show(10)

+-----------+---------+
|    keyword|users_occ|
+-----------+---------+
|     lcd tv|     8449|
|       ipad|     7749|
|hp touchpad|     7144|
|  iphone 4s|     4642|
|   touchpad|     4019|
|     laptop|     3625|
|    laptops|     3435|
|      beats|     3282|
|       ipod|     3164|
| ipod touch|     2992|
+-----------+---------+
only showing top 10 rows

+-------------------+
|keywords_users_cooc|
+-------------------+
|             244876|
+-------------------+

+-------------+---------------+----------+
|     keyword1|       keyword2|users_cooc|
+-------------+---------------+----------+
|green lantern|captain america|        23|
|    iphone 4s|         iphone|        21|
|       laptop|      hp laptop|        20|
|         thor|captain america|        18|
|   skullcandy|          beats|        17|
|    iphone 4s|       iphone 4|        17|
|         bose|          beats|        17|
|      macbook|            mac|        16|
|      laptops|         laptop|        16|
|         thor|  green lantern|        16|
+-------------+---------------+----------+
only showing top 10 rows
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The first result from  shows the most search for queries. While these may be the mostListing 6.5
popular queries, they aren’t necessarily the queries that coocur the most often with other queries.
The second result from  shows the total number of query pairs ( ) where bothListing 6.6 244,876

queries were searched by the same user at least once.

The final result shows the top query pairs, sorted by number of users who search for both
queries. Of the top results, you’ll notice that , , and  are highlyiphone 4s iphone iphone 4

related and that , , and  are also highly related. Specifically, laptop laptops hp laptop iphone

is a more gneneral search for , which is a more general search for , and iphone 4 iphone hp

 is a more general form of , for which  is a spelling variation. You’ll alsolaptop laptop laptops

notice that , , and  are all related (comic book superthor captain america green lantern

heroes), as well as , , and  (all related to headphones).skullcandy beats bose

You’ll also notice, however, that the top result only has  coocurring users, which means the23

number of data points is fairly sparse and that as we move further down the list, the reliance of
coocurrence is going to be challenging and likely include a lot of noise. In the next section, we’ll
explore a technique to combine signals together along a different axis (product interactions),
which can help with this sparsity problem.

While directly aggregating the number of searches into coocurrences by users helps find the most
popular query pairs, poplarity of searches isn’t the only metric useful for finding relatedness. The
keywords  and  are highly coocurring, as are , , , and and of phones movies computers

, because they are all general words that many people search. In order to also focuselectronics

on the strength of the relationship between terms independent of their individual popularity, we
can leverage a technique called Pointwise Mutual Information.

Pointwise Mutual Information (PMI) is a measure of the correlation between any two events. In
the context of natural language processing, PMI tells the liklihood of two words occurring
together because they are related versus the liklihood of them occurring together by chance.
There are multiple functions that can be used to calculate and normalize PMI, but we’ll use a
variation called PMI , where , which does a better job than PMI at keeping scoresk = 2

consistent regardless of word frequencies.

The formula for calculating PMI  is as follows:

Figure 6.3 AciiMath

In our implementation,  and  represent two different keywords which we want to compare. k1 k2

 represents how often the same user searches for both keywords, whereas  and P(k1,k2) P(k1)

 represent how often a users only searches for the the first keyword or second keyword,p(k2)

k

2
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respectively. Intuitively, if the keywords appear together more often than they would be expected
to based upon their likelihood of randomly appearing together, then they will have a higher PMI
score. The higher the score, the more likely the terms are to be semantically related.

Listing 6.6 demonstrates the PMI  calculation on our coocurring query pairs dataset.

Listing 6.6 PMI2 calculation on user searches

Results:

The results from  are sorted by PMI  score (highest to lowest), and we set a minimumListing 6.6
occurrences threshold at >5 to help remove noise. You can now see some results like hp

2

2

2

#Calculation:
spark.sql('''
select k1.keyword as k1, k2.keyword as k2, k1_k2.users_cooc, k1.users_occ

as n_users1,k2.users_occ as n_users2,
log(pow(k1_k2.users_cooc,2) / (k1.users_occ*k2.users_occ)) as pmi2
from keywords_users_cooc as k1_k2
join
keywords_users_oc as k1 on k1_k2.keyword1= k1.keyword
join
keywords_users_oc as k2 on k1_k2.keyword2 = k2.keyword
''').registerTempTable('user_related_keywords_pmi')

#Show Results:
spark.sql( '''
select * from user_related_keywords_pmi where users_cooc >10 order by pmi2

desc
''').show(10)

+-----------------+--------------------+----------+--------+--------+

------------------+
|               k1|                  k2|users_cooc|n_users1|n_users2|

              pmi2|
+-----------------+--------------------+----------+--------+--------+

------------------+
|  iphone 4s cases|      iphone 4 cases|        10|     158|     740|

-7.064075033237091|
|     sony laptops|          hp laptops|         8|     209|     432|

-7.251876756849249|
|otterbox iphone 4|            otterbox|         7|     122|     787|

-7.580428995040033|
|    green lantern|     captain america|        23|     963|    1091|

-7.593914965772897|
|          kenwood|              alpine|        13|     584|     717|

-7.815078108504774|
|      sony laptop|         dell laptop|        10|     620|     451|

-7.936016631553724|
|   wireless mouse|           godfather|         6|     407|     248|

-7.938722993151467|
|       hp laptops|        dell laptops|         6|     432|     269|

 -8.07961802938984|
|      mp3 players|        dvd recorder|         6|     334|     365|

-8.127519408103081|
|          quicken|portable dvd players|         6|     281|     434|

 -8.12788026497804|
+-----------------+--------------------+----------+--------+--------+

------------------+
only showing top 10 rows
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, , and  showing up as related, as well as brands like laptops dell laptops sony laptops

 and . Notably, however, there is also noise in the pairs like kenwood alpine wireless mouse

with  and  with . One caveat of using PMI is that agodfather quicken portable dvd players

small number of occurrences together across a few users can lead to noise more easily than when
using coocurrence, which is based upon the assumption of many coocurrences.

One way to blend the benefits of both the coocurrence model and the PI  models is to create a
composite score. This will provide a blend of popularity and liklihood of occurrence together,
which should move query pairs that match on both scores to the top of the list. Listing 6.7
demonstrates one way to blend these two measures together. Specifically, we take a ranked list
of all coocurrence scores (r1) and a ranked list of all PMI  scores (r2) and blend them together to
generate a composite ranking score as shown in Figure 6.4.

Listing 6.7 Composite Ranking Score combining coocurrence and PMI  ranking

The , or composite rank score,shown in Figure 6.4 assigns a high score query pairscomp_score

where their rank in the coocurrence list ( ) and their rank in the PMI  list ( ) is high, and ar1 r2

lower rank as the terms move further down in the rank lists. The end results is a blended ranking
that considers both the populartiy (coocurrence) and the liklihood of relatedness of queries
despite their popularity (PMI ).  shows how to calculate the  with ourListing 6.7 comp_score

query data.

Listing 6.8 Calculate a composite score, blending coocurrence and PMI

Results:

2

2

2

2

2

text{comp_score}(q1,q2) = \frac{((r1(q1,q2) + r2(q1,q2))/(r1(q1,q2) \times

r2(q1,q2)) )}2

#Calculation:
spark.sql('''
select  *, (r1 + r2 /( r1 * r2))/2 as comp_score from (
 select *,
   rank() over (partition by 1 order by users_cooc desc )  r1 ,
   rank() over (partition by 1 order by pmi2 desc )  r2
  from user_related_keywords_pmi ) a  '''
).registerTempTable('users_related_keywords_comp_score')

#Show Results:
spark.sql( '''
  select k1, k2, users_cooc, pmi2, r1, r2, comp_score
  from users_related_keywords_comp_score
  where users_cooc >= 10
''').show(20)
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Overall, the composite rank score does a reasonable job blending our coocurrence and PMI
metrics to overcome the limitations of each. The top results shown in  all lookListing 6.7
reasonable. One items we already noted as problematic in this section, however, is that the
coocurrence numbers are very sparse. Specifically, the highest coocurrence of any query pairs,
out of over 700,000 query signals, was  overlapping users for for  and 23 green lantern

, per .captain america Listing 6.5

In the next section, we’ll show a way to overcome this sparse data problem, where there is a lack
of overlap between users for specific query pairs. We’ll accomplish this by aggregating many
users together into a larger group with similar behaviors. Specifically, we’ll switch our focus to

2

+-------------+---------------+----------+-------------------+---+------+

------------------+
|           k1|             k2|users_cooc|               pmi2| r1|    r2|

        comp_score|
+-------------+---------------+----------+-------------------+---+------+

------------------+
|green lantern|captain america|        23| -7.593914965772897|  1|  8626|

               1.0|
|    iphone 4s|         iphone|        21|-10.216737746029027|  2| 56156|

              1.25|
|       laptop|      hp laptop|        20| -9.132682838345458|  3| 20383|

1.6666666666666667|
|         thor|captain america|        18| -8.483026598234463|  4| 13190|

             2.125|
|         bose|          beats|        17|-10.074222345094169|  5| 51916|

               2.6|
|    iphone 4s|       iphone 4|        17| -10.07559536143275|  5| 51964|

               2.6|
|   skullcandy|          beats|        17|  -9.00066454587719|  5| 18792|

               2.6|
|         thor|  green lantern|        16| -8.593796095512284|  8| 14074|

            4.0625|
|      laptops|         laptop|        16|-10.792204327465662|  8| 80240|

            4.0625|
|      macbook|            mac|        16| -9.891277373272931|  8| 45464|

            4.0625|
|   headphones|   beats by dre|        15|  -9.98923457501079| 11| 49046|

 5.545454545454546|
|  macbook air|        macbook|        15| -9.442537922965805| 11| 26943|

 5.545454545454546|
|  macbook pro|        macbook|        15|  -9.73733746318645| 11| 39448|

 5.545454545454546|
|  macbook pro|    macbook air|        13| -9.207068753875852| 14| 21301|

 7.035714285714286|
|         nook|         kindle|        13| -9.661503425798296| 14| 36232|

 7.035714285714286|
|       ipad 2|           ipad|        13| -11.76529194320276| 14|196829|

 7.035714285714286|
|      kenwood|         alpine|        13| -7.815078108504774| 14|  9502|

 7.035714285714286|
|   ipod touch|           ipad|        13|-11.829117705935245| 14|200871|

 7.035714285714286|
|   skullcandy|     headphones|        12| -9.318865873777165| 19| 23317|

 9.526315789473685|
|      macbook|          apple|        12|-10.465639011826868| 19| 62087|

 9.526315789473685|
+-------------+---------------+----------+-------------------+---+------+

------------------+
only showing top 20 rows

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

166

https://livebook.manning.com/#!/book/ai-powered-search/discussion


the products with which the user queries interact, as opposed to each individual user.

The technique used to find related terms in section 1.3.1 depends upon lots of users searching for
overlapping queries. As we saw, with over  query signals, the highest overlap of any query700K

pair was  users. Because the data can be so sparse, it can often make sense to aggregate on23

something other than users.

In this section, we’ll show how to use the same technique (leveraging coocurrence + PMI ), but
rolling up based upon product click signals instead.

In section 1.3.1, we looked exclusively at query signals, but in this section we want to actually
map every keyword to both the user who searched for it and also any products the user clicked
on as a result of the search, which is demonstrated in .Listing 6.8

Listing 6.9 Mapping raw signals into keyword, user, product pairs

Find every keyword + user + click combination

Results:

2

6.3.2 Finding related queries through product interactions

#Calculation:
spark.sql("""select lower(searches.target) as keyword,

searches.user as user, clicks.target as product
from signals as searches right join signals as clicks on searches.query_id

= clicks.query_id
where searches.type='query' and clicks.type = 'click'""").

createOrReplaceTempView('keyword_click_product')

#Show Results:
print("Original signals format: ")
spark.sql(''' select * from signals where type='query' ''').show(3)
print("Simplified signals format: ")
spark.sql(''' select * from keyword_click_product ''').show(3)
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The transformation in  combines separate query and click signals into single rowsListing 6.8
with three key columns: , , and . Using this data, we’ll now be able tokeyword user product

determine the strength of the relationship between any two keywords based upon their use across
independent users to find the same products.

Listing 6.9 generates pairs of keywords to determine their potential relationship for all keyword
pairs where both keywords were used in a query for the same document. The intuition behind
looking for overlapping queries per user in section 1.3.1 was that each user is likely to search for
related items, but it’s also the case that each product is likely to be searched for by related
queries. This shifts our mental model from "find how many users searched for both queries" to
"find how many documents were found by both queries across all users".

The results of this transformation transformation in  includes the following colums:Listing 6.9

k1,  : the two keyword that are potentially related because they both resulted in a clickk2

on the same product
n_users1 : the number of users who searched for  that clicked on a product the wask1

also clicked on after a search by some user for k2
n_users2: the number of users who searched for  that clicked on a product that wask2

also clicked on after a search by some user for k1
users_cooc :  + . Represents the total number of users who searchedn_users1 nusers2

for either  or  and visited a product visited by other searchers for  or .k1 k2 k1 k2

n_products : the number of products that were clicked on by searchers of both  and k1

.k2

Original signals format:
+--------------------+-----------+--------------------+-----------+-----+

-------+
|                  id|   query_id|         signal_time|     target| type|

   user|
+--------------------+-----------+--------------------+-----------+-----+

-------+
|00001ba7-b74c-421...|u164451_0_1|2020-02-20 14:24:...|MacBook pro|query|

u164451|
|0001465f-cfe1-427...|u608945_0_1|2019-06-15 18:08:...|        g74|query|

u608945|
|000173d5-f570-485...| u93764_0_1|2019-11-30 19:56:...|Pioneer avh|query|

 u93764|
+--------------------+-----------+--------------------+-----------+-----+

-------+
only showing top 3 rows

Simplified signals format:
+-----------------+-------+------------+
|          keyword|   user|     product|
+-----------------+-------+------------+
|lord of the rings|u100793|794043140617|
|        subwoofer|u100953|713034050223|
|         game boy|u100981|841872143378|
+-----------------+-------+------------+
only showing top 3 rows
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Listing 6.10 Creating a view of the signals just for processing queries

Results:

The  and  calculations are two different ways to look at overall signalusers_cooc n_products

quality for how confident we are that two terms  and  are related. The results are sorted by k1 k2

 currently, and you can see that the list of relationships at the top of the list is quiten_products

clean, containing:

#Calculation:
spark.sql('''
select k1.keyword as k1, k2.keyword as k2, sum(p1) n_users1,sum(p2) n_users2,
sum(p1+p2) as users_cooc, count(1) n_products
from
(select keyword, product, count(1) as p1 from keyword_click_product group by

keyword, product) as k1
join
(select keyword, product, count(1) as p2 from keyword_click_product group by

keyword, product) as k2
on k1.product = k2.product
where k1.keyword > k2.keyword
group by k1.keyword, k2.keyword
''').createOrReplaceTempView('keyword_click_product_cooc')

#Show Results:
spark.sql('''select count(1) as keyword_click_product_cooc from

keyword_click_product_cooc''').show()
spark.sql('''select * from keyword_click_product_cooc order by

n_products desc''').show(20)

+--------------------------+
|keyword_click_product_cooc|
+--------------------------+
|                   1579710|
+--------------------------+

+--------------+-------------+--------+--------+----------+----------+
|            k1|           k2|n_users1|n_users2|users_cooc|n_products|
+--------------+-------------+--------+--------+----------+----------+
|       laptops|       laptop|    3251|    3345|      6596|       187|
|       tablets|       tablet|    1510|    1629|      3139|       155|
|        tablet|         ipad|    1468|    7067|      8535|       146|
|       tablets|         ipad|    1359|    7048|      8407|       132|
|       cameras|       camera|     637|     688|      1325|       116|
|          ipad|        apple|    6706|    1129|      7835|       111|
|      iphone 4|       iphone|    1313|    1754|      3067|       108|
|    headphones|  head phones|    1829|     492|      2321|       106|
|        ipad 2|         ipad|    2736|    6738|      9474|        98|
|     computers|     computer|     536|     392|       928|        98|
|iphone 4 cases|iphone 4 case|     648|     810|      1458|        95|
|        laptop|    computers|    2794|     349|      3143|        94|
|       netbook|       laptop|    1017|    2887|      3904|        94|
|       netbook|      laptops|    1018|    2781|      3799|        91|
|    headphones|    headphone|    1617|     367|      1984|        90|
|        laptop|           hp|    2078|     749|      2827|        89|
|        tablet|    computers|    1124|     449|      1573|        89|
|       laptops|    computers|    2734|     331|      3065|        88|
|           mac|        apple|    1668|    1218|      2886|        88|
|     tablet pc|       tablet|     296|    1408|      1704|        87|
+--------------+-------------+--------+--------+----------+----------+
only showing top 20 rows
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Spelling variations: laptops  laptop ; headphones  head phone ; etc.
Brand associations: tablet  ipad ; laptop  hp ; mac  apple ; etc.
Synonyms/Alternate Names: netbook  laptop ; tablet pc  tablet
General/Specific Refinements: tablet  ipad ; iphone  iphone 4 ; computers  tablet ;
computers  laptops

You can write custom, domain-specific algorithms to identify some of these specific types of
relationships, as we’ll do for spelling variations in section 1.5, for example.

It is also possible to use the  and  to identify which of the two keywords isn_users1 n_users2

the more popular. In the example of a spelling variation, for example, we see that  isheadphones

used more commonly than  (  vs.  users), and is also more common than head phone 1829 492

 (  vs.  users). Likewise, we see that  is much more common in usageheadphone 1617 367 tablet

than  (  vs.  users).tablet pc 1408 296

While our current list of keywords pairs looks clean, it currently only represents the keyword
pairs that both occurred together in searches that led to the same products. Getting a sense of the
actual popularity of each keyword overall will provide a better sense of which specific keywords
are the most important for our knowledge graph.  calculates the most popularListing 6.10
keywords from our query signals that resulted in at least one product click.

Listing 6.11 Computing the popularity of each keyword

Results:

#Calculation:
spark.sql('''
select keyword, count(1) as n_users from keyword_click_product group by

keyword
''').registerTempTable('keyword_click_product_oc')

#Show Results:
spark.sql('''select count(1) as keyword_click_product_oc from

keyword_click_product_oc''').show()
spark.sql('''select * from keyword_click_product_oc order by

n_users desc''').show(20)
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This list is identical to the list from , but now instead of showing number of users whoListing 6.5
searched for a keyword, it is showing number of users who searched for a keyword and also
clicked on a product. We’ll use this as our master list of queries for the PMI  calculation.

With our query pairs list and query popularity now generated based upon queries and product
interactions, the rest of our calculations (PMI  and Composite Score) are exactly the same as in
section 1.3.1, so we’ll omit them here (they are included in the notebooks for you to run). After
caclulating the PMI  and final composite scores,  shows the final results of ourListing 6.11
product-interaction-based related terms calculations.

Listing 6.12 Final related terms scoring based upon product interactions

Results:

2

2

2

+------------------------+
|keyword_click_product_oc|
+------------------------+
|                   13744|
+------------------------+

+------------+-------+
|     keyword|n_users|
+------------+-------+
|        ipad|   7554|
| hp touchpad|   4829|
|      lcd tv|   4606|
|   iphone 4s|   4585|
|      laptop|   3554|
|       beats|   3498|
|     laptops|   3369|
|        ipod|   2949|
|  ipod touch|   2931|
|      ipad 2|   2842|
|      kindle|   2833|
|    touchpad|   2785|
|   star wars|   2564|
|      iphone|   2430|
|beats by dre|   2328|
|     macbook|   2313|
|  headphones|   2270|
|        bose|   2071|
|         ps3|   2041|
|         mac|   1851|
+------------+-------+
only showing top 20 rows

# ...calculate PMI2, per Listing 6.6
# ...calculate comp_score, per Listing 6.7

#Show Results
spark.sql( '''
  select count(1) product_related_keywords_comp_scores from

  product_related_keywords_comp_score
''').show()

spark.sql( '''
  select k1, k2, n_users1, n_users2, pmi2, comp_score
  from product_related_keywords_comp_score
  order by comp_score asc
''').show(20)
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The results of 6.11 show the benefit of aggregating at a less granular level. By looking at all
queries that led to a particular product being clicked, the list of query pairs is now much larger
than in section 1.3.1, where aggregated query pairs down to the individual users. You can see
that there are now  query pairs under consideration versus  ( )1,579,710 244,876 Listing 6.5
when aggregating by user.

+------------------------------------+
|product_related_keywords_comp_scores|
+------------------------------------+
|                             1579710|
+------------------------------------+

+----------+-----------+--------+--------+------------------+

------------------+
|        k1|         k2|n_users1|n_users2|              pmi2|

        comp_score|
+----------+-----------+--------+--------+------------------+

------------------+
|      ipad|hp touchpad|    7554|    4829|1.2318940540272372|

               1.0|
|    ipad 2|       ipad|    2842|    7554| 1.430517155037946|

              1.25|
|    tablet|       ipad|    1818|    7554|1.6685364924472557|

1.6666666666666667|
|  touchpad|       ipad|    2785|    7554|1.2231908670315748|

             2.125|
|   tablets|       ipad|    1627|    7554|1.7493143317791537|

               2.6|
|     ipad2|       ipad|    1254|    7554|1.9027023623302282|

3.0833333333333335|
|      ipad|      apple|    7554|    1814|1.4995901756327583|

3.5714285714285716|
|  touchpad|hp touchpad|    2785|    4829|1.3943192464710108|

            4.0625|
|      ipad|  hp tablet|    7554|    1421|1.5940745096856273|

 4.555555555555555|
|ipod touch|       ipad|    2931|    7554|0.8634782989267505|

              5.05|
|      ipad|      i pad|    7554|     612| 2.415162433949984|

 5.545454545454546|
|    kindle|       ipad|    2833|    7554| 0.827835342752348|

 6.041666666666667|
|    laptop|       ipad|    3554|    7554|0.5933664189857987|

 6.538461538461538|
|      ipad| apple ipad|    7554|     326|2.9163836526446025|

 7.035714285714286|
|    ipad 2|hp touchpad|    2842|    4829|1.1805849845414993|

 7.533333333333333|
|   laptops|     laptop|    3369|    3554|1.2902371152378296|

           8.03125|
|      ipad|         hp|    7554|    1125| 1.534242656892875|

 8.529411764705882|
|     ipads|       ipad|     254|    7554|3.0147863057446345|

 9.027777777777779|
|      ipad|  htc flyer|    7554|    1834|1.0160007504012176|

 9.526315789473685|
|      ipad|    i pad 2|    7554|     204| 3.180197301966425|

            10.025|
+----------+-----------+--------+--------+------------------+

------------------+
only showing top 20 rows
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1.  

2.  

Further, you can see that the related queries include more fine-grained variations for top queries
(ipad, ipad 2, ipad2, i pad, ipads, i pad 2). Having more granular variations like this will come in
handy if combining this related term discovery with other algorithms, like misspelling detection,
which we’ll cover in section 1.5.

Between the semantic knowledge graph techniques in the last chapter and the query log mining
in this chapter, you’ve now seen multiple techniques for discovering related terms. Before we
can apply related terms to a query, however, it is is important to be able to first identify the terms
already present in a query. In the next section, we’ll cover how to identify known phrases from
our query signals.

In section 5.3 we showed how to extract arbitrary phrases and relationships from your documents
leveraging open information extraction. Those extracted phrases can be a gold mine, as they help
define a list of important phrases to look for in users queries.

In section 5.3, we implemented open information extraction techniques to build a knowledge
graph from text documents. In that process, we using Natural Language Processing (NLP)
models to extract entities from noun phrases in text. While this can go a long way toward
discovering all of the relevant domain-specific phrases within your content, this approach suffers
from two different problems:

It generates a lot of noise: not every nouns phrase across your potentially massive set of
documents is important, and the odds of identifying incorrect phrases (false positives)
increases as your number of documents increases.
It ignores what your users care about: The real measure of user interest is communicated
by what they search. They may only be interested in a subset of your content, and they
may be looking for things that aren’t even represented well within your content.

In this section, we’ll focus on how to also identify important domain-specific phrases from your
user signals.

The easiest way to extract entities from queries is to just treat the full queries themselves as
entities. In use case like our RetroTech ecommerce site, this works very well, as many of the
queries are actual product names, categories, brand names, company names, or people’s names
(actors, musicians, etc.). Given that context, most of the high-popularity queries end up being
entities that can be used directly as phrases without needing any special parsing.

If you look back the output of , you’ll find the following the most popular queriesListing 6.10
(by number of users issuing them):

6.4 Phrase detection from user signals

6.4.1 Treating queries as entities
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Each of these represent entities that belong in a known-entities list, with many of them being
multi-word phrases. In this case, the simplest method for extracting entities is also the most
powerful - just leverage the queries as your entities list. The higher the number of unique users
issue each query, the higher the confidence you can have that it should be added to your entities
list.

If you can cross-reference the queries with you documents to find phrases that overlap in both,
that is one way to reduce potential false positives from noisy queries. Additionally, if you have
different fields in your documents, like product name or company, you can cross-reference your
queries with those fields to assign a type to the entities found within your queries.

Ultimately, depending ond the complexity of your queries, simply leveraging the most common
searches as your key entities and phrases may be the simplest possible approach to generate a list
of known phrases to extract in future queries.

In some use cases, the queries may contain more noise (boolean structure, advanced query
operators, etc.) and therefore may not be directly usable as entities. In those cases, the best
approach to extracting entities may be to re-apply the entity extraction strategies from chapter 5,
but on your query signals.

Out of the box, our search engine parses queries as individual keywords, and looks those
individual keywords up in the inverted index, which also contains individual keywords. For
example, a query for  will be automatically interpreted as the boolean query new york city new

 (or if you set the default operator to  then ), andAND york AND city OR new OR york OR city

then the relevance ranking algorithms will score each keyword individually instead of
understanding that certain words combine to make phrases that then take on a different meaning.

Being able to identify and extract domain-specific phrases from queries can enable more accurate
query interpretation and relevance, however. We already demonstrated one way to extract
domain-specific phrases from documents in section 5.3, using the Spacy NLP library to do a
dependency parse and extra out noun phrases. While queries are often too short to perform a true
dependency parse, it still possible to apply some part of speech filtering on any discovered
phrases in queries to limit to noun phrases. If you need to split sections of queries apart, you can

+------------+-------+
|     keyword|n_users|
+------------+-------+
|        ipad|   7554|
| hp touchpad|   4829|
|      lcd tv|   4606|
|   iphone 4s|   4585|
|      laptop|   3554|
|      ...
+------------+-------+

6.4.2 Extracting entities from more complex queries
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also tokenize the queries (see 6.14) and remove query syntax ( , , etc.) prior to looking forand or

phrases to extract. Handling the specific query patterns for your application may might require
some domain-specific query parsing logic, but if your queries are largely single phrases or easily
tokenizable into multiple phrases, your queries likely represent the best source of
domain-specific phrases to extract and add to your knowledge graph.

We’ve covered detecting domain-specific phrases and finding related phrases, but there are two
very important sub-categories of related phrases that typically require special handling:
misspellings and alternative spellings. When entering queries, users will commonly misspell
their keywords, and the general expectation is that an AI-powered search system will be able to
understand and properly handle those misspellings.

Whereas some general related phrases for "laptop" might be "computer", "netbook", or "tablet",
misspellings would look more like "latop", "laptok", or "lapptop". Alternate spellings are
functionally no different than misspellings, but occur when multiple valid variations for a term
exist (such as "specialized" vs. "specialised" or "cybersecurity" vs. "cyber security"). In the case
of both misspellings and alternative spellings, the end goal is usually to normalize the less
common variant into the more common, canonical form and then search for the canonical
version.

Spell checking can be implemented in multiple ways. In this section, we’ll cover out-of-the box
document-based spell checking that is found in most search engines, and we’ll also show how
user signals can be mined to find more fine-tuned spelling corrections based upon real user
interactions with your search engine.

Most search engines contain some form of spell checking capabilities out of the box based upon
the terms found within a collection’s documents. Apache Solr, for example, provides a file-based
spell checking component, a dictionary-based spell checking component, and an index-based
spellchecking component. The file-based spell checker requires assembling a list of terms that
can be spell corrected to, the dictionary-based spellchecking component can build a list of terms
to be spell corrected to from fields in an index, and the index-based spell checker can use a field
on the main index to spell check against directly without having to build a separate spellchecking
index. Additionally, if someone has built a list of spelling correction offline, one can leverage a
synonym list in Solr to directly replace or expand any misspellings to their canonical form.

Elasticsearch and OpenSearch have some similar spellchecking capabilities, even allowing
specific contexts to be passed in to refine the scope of the spelling suggestions to a particular
category or geographical location.

6.5 Misspellings and alternative representations

6.5.1 Learning spelling corrections from documents
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While we encourage you to test out these out-of-the-box spell checking algorithms, they all
unfortunately suffer from a major problem: lack of user context. Specifically, anytime a keyword
is searched that doesn’t appear a minimum number of times in the index, the spell checking
component begins looking at all terms in the index that are "off by the minimum number of
characters", and they then return the most prevalent keywords in the index that match that
criteria.  shows an example of where Solr’s out-of-the-box index-basedListing 6.12
spellchecking configuration falls short.

Listing 6.13 Using out-of-the-box spelling corrections on documents.

Results:

collection="products"
query="moden"

request = {
    "params": {
        "q.op": "and",
        "rows": 0,
        "indent": "on"
    },
    "query": query,
}

search_results = requests.post(solr_url + collection + "/spell",

json=request).json()
print(json.dumps(search_results["spellcheck"]["collations"], indent=4))
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In , you can see a user query for . The spell checker returns back the suggestedListing 6.12 moden

spelling corrections of , , and , plus a few other suggestions that only appearmodern model modem

in a single document and which we’ll ignore. Since our collection is tech products, it may be
obvious which of these is likely the best spelling correction: it’s . In fact, it would bemodem

pretty unlikely that a user would intentionally search for  or  as standalone queries,modern model

as those are both fairly generic terms that would only make sense within a context containing
other words.

The content-based index has no way to distinguish easily that end users would be unlikely to
actually search for  or , though, despite those terms occurring many times in themodern model

[
    "collation",
    {
        "collationQuery": "modern",
        "hits": 42,
        "misspellingsAndCorrections": [
            "moden",
            "modern"
        ]
    },
    "collation",
    {
        "collationQuery": "model",
        "hits": 40,
        "misspellingsAndCorrections": [
            "moden",
            "model"
        ]
    },
    "collation",
    {
        "collationQuery": "modem",
        "hits": 29,
        "misspellingsAndCorrections": [
            "moden",
            "modem"
        ]
    },
    "collation",
    {
        "collationQuery": "modena",
        "hits": 1,
        "misspellingsAndCorrections": [
            "moden",
            "modena"
        ]
    },
    "collation",
    {
        "collationQuery": "modes",
        "hits": 1,
        "misspellingsAndCorrections": [
            "moden",
            "modes"
        ]
    }
]
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1.  
2.  

documents being searched. As such, while the content-based spell checkers can work quite well
in many cases, it can often be more accurate to learn spelling corrections from users' query
behavior.

Returning to our core thesis from section 6.3 that users tend to search for related queries until
they find the expected results, it is obvious that a user who misspelled a particular query and
received bad results would try to then correct their query.

We already know how to find related phrases (section 6.3), but in this section we’ll cover how to
specifically distinguish a misspelling from user signals. This task largely comes down to two
goals:

Find terms with similar spellings.
Figure out which term is the correct spelling vs. he misspelled variant.

For this task, we’ll rely solely on query signals, though perform some up-front normalization to
make the query analysis case insensitive and to limit to avoid signal spam. You can read more
about this kind of signals normalization in sections 8.2-8.3.  shows this query to grabListing 6.13
our normalized query signals.

Listing 6.14 Get all queries from the user signals, removing duplicates per user and
ignoring case

Lowercasing the queries makes the query analysis ignore uppercase vs. lowercased
variants

Grouping by user prevents spam from a single user entering the same query many
times

For purposes of this section, we’re going to assume that the queries contain multiple different
keywords and that we want to treat each individual keywords as a potential spelling variant. This
will allow individual terms to be found an substituted within a future query, as opposed to
treating the entire query as a single phrase. It will also allow us to throw out certain terms that
are likely to be noise, such as stopwords or standalone numbers.

Listing 6.14 demonstrates the process of tokenizing each query to generate a word list upon
which we can do further analysis.

6.5.2 Learning spelling corrections from user signals

query_signals = spark.sql("""
  select lower(searches.target) as keyword, 
  searches.user as user
  from signals as searches where searches.type='query'
  group by keyword, user""" 
  ).collect()
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Listing 6.15 Tokenize and filter the terms within each query to generate a cleaned up word
list

Define stopwords which shouldn’t be considered as misspellings or corrections

Split the query on whitespace into individual terms

Remove noisy terms including stopwords, very short terms, and numbers

Count the occurrences of each remaining token

Once the list of tokens has been cleaned up, the next step is to determine high-occurrency tokens
versus infrequently-occurring tokens. Since misspellings will occur relatively infrequently and
correct spellings will occur more frequently, we will use the relative occurrences to determine
which version is the most likely canonical spelling and which variations are the misspellings.

In order to ensure our spell correction list is as clean as possible, we’ll set some thresholds for
popular terms and some thresholds for low-occurrence terms that are more likely misspellings.
Because some collections may contain hundreds of documents and other collections could
contain millions, we can’t just look at an absolute number for these thresholds, so we’ll use
quantiles instead.  shows the calculations for each of the quatiles between 0.1 andListing 6.15
0.9. You can imagine the quantiles like a bell curve, where 0.5 shows the median number of
searches for a term overall, the 0.2 shows the number of searches for the term for which 20% of
other terms occur less frequently.

Listing 6.16 Get all queries from the user signals, removing duplicates per user

Results:

stop_words = set(stopwords.words('english')) 
word_list = defaultdict(int)

for row in query_signals:
    query = row["keyword"]
    tokenizer = RegexpTokenizer(r'\w+') 
    tokens   = tokenizer.tokenize(query) 

    for token in tokens:
        if token not in stop_words and len(token) > 3 and not

        token.isdigit():  
            word_list[token] += 1 

quantiles_to_check = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
quantile_values = np.quantile(np.array(list(word_list.values())),

quantiles_to_check)
quantiles = dict(zip(quantiles_to_check, quantile_values))
quantiles
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Here, we see that 80% of terms are searched for 142.2 times or less (so 20% of terms are
searched for this many times or more). Likewise only 20% of terms are searched for 6.0 times or
less. Using the Pareto principle, let’s assume that the most of our misspellings fall within the
least-searched 20% of our terms and that the majority of our most important terms fall within the
top 20% of searched queries. If you want higher precision (only spellcheck high-value terms and
only correct if there’s a low probability of false positives), you can push these to the 0.1 quartile
for misspellings and the 0.9 quartile for for correctly-spelled terms, or you can go the other
direction to attempts to generate a larger misspelling list with a higher change of false positives.

In , we’ll divide the terms into buckets, assigning low-frequency terms to theListing 6.16
"misspell_candidates" bucket and the high-quantity terms to the "correction_candidates" bucket.
These buckets will he be starting point for finding high-quality spelling corrections when enough
users search for both the misspelling candidate and the correction candidate.

Listing 6.17 Get all queries from the user signals, removing duplicates per user

Terms at or below the 0.2 quantile are added to the  candidates listmisspell

The number of searches is kept to keep track of popularity

The length of the term will be used later to set thresholds for edit distance
calculations

the first letter of the term is stored to limit the scope of the misspellings checked

{0.1: 5.0,
 0.2: 6.0,
 0.3: 8.0,
 0.4: 12.0,
 0.5: 16.0,
 0.6: 25.0,
 0.7: 47.0,
 0.8: 142.20000000000027,
 0.9: 333.2000000000007}

misspell_candidates = []
correction_candidates = []
misspell_counts = []
correction_counts = []
misspell_length = []
correction_length = []
misspell_initial = []
correction_initial = []

for k, v in word_list.items():
    if v <= quantiles[0.2] : 
        misspell_candidates.append(k) 
        misspell_counts.append(v) 
        misspell_length.append(len(k)) 
        misspell_initial.append(k[0]) 
    if v >= quantiles[0.8]: 
        correction_candidates.append(k) 
        correction_counts.append(v) 
        correction_length.append(len(k)) 
        correction_initial.append(k[0]) 
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The top 20% of terms has the same data stored, but in the 
 listcorrection_candidates

In order to efficiently compare all of the  and the misspell_candidates

, we’ll first load them into dataframes in . You cancorrection_candidates Listing 6.17
imagine that the  is a pristine list of the most popular searched terms.correction_candidates

The more interesting list is the  list, which upon an initial sampling (alsomisspell_candidates

in ) should provide a good sense of how many of the less-commonly-searched termsListing 6.14
actually represent misspellings.

Listing 6.18 Get all queries from the user signals, removing duplicates per user

Results

You can see in Listin 6.17 that of the 10 samples misspelling candidates, at least three ("singin",
"nintendogs", and "tosheba") are clearly misspellings. You can also see that the terms vary in
misspell_length, and that the longer the term is the more likely it is to have multiple incorrect
characters. For example,  is a misspelling of , so it is off by twonintendogs nintendo

characters, whereas if "singin" and "tosheba" are both less than 8 characters, and only off by one
character.

When we compare misspell candidates with correction candidates, it is important that we
consider the term lenght when deciding how many character differences (or edit distances) are

misspell_candidates_df = pd.DataFrame({
  "misspell":misspell_candidates,
  "misspell_counts":misspell_counts,
  "misspell_length":misspell_length,
  "initial":misspell_initial})

correction_candidates_df = pd.DataFrame({
  "correction":correction_candidates,
  "correction_counts":correction_counts,
  "correction_length":correction_length,
  "initial":correction_initial})

misspell_candidates_df.head(10)

    misspell    misspell_counts        misspell_length        initial
    --------    ---------------     ---------------     -------
0    misery        5                    6                    m
1    mute        6                    4                    m
2    math        6                    4                    m
3    singin        6                    6                    s
4    thirteen    5                    8                    t
5    nintendogs    6                    10                    n
6    livewire    6                    8                    l
7    viewer        6                    6                    v
8    gorillaz    6                    8                    g
9    tosheba        6                    7                    t
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allowed.  shows a  function which we’ll use as a general heuristic forListing 6.18 good_match

how many edit distances a term match can be off by while still considering the misspelling a
likely permutation of the correction candidate.

Listing 6.19 Get all queries from the user signals, removing duplicates per user

With our misspell_candidates and our correction_candidates loaded into dataframes and our 
 function ready to go, it’s time to actually generate our spelling correction list. Justgood_match

like in section 1.6.1 where spelling corrections were generated from edit distances and counts of
term occurrences within our collection of documents, in  we’ll be generating spellingListing 6.19
corrections based upon edit distances and term occurrences within out query logs.

Listing 6.20 Generate final list of misspellings mapped to corrections

Join the misspell list with the correction list based on whether they start with the
same initial character. This drastically reduces matching time.

Calculated the edit distance between each misspell candidate and correction
candidate

Apply the  function based upon the lengths of the terms and the editgood_match

distance

Sample 20 of the results sorted from highest popularity to lowest

Results:

def good_match(len1, len2, edit_dist): #allow longer words have more

edit distance
    match = 0
    min_length = min(len1, len2)
    if min_length < 8:
        if edit_dist == 1: match = 1
    elif min_length < 11:
        if edit_dist <= 2: match = 1
    else:
        if edit_dist == 3: match = 1
    return match

matches_candidates = pd.merge(misspell_candidates_df, correction_candidates_df, on="initial") 

matches_candidates["edit_dist"] = matches_candidates.apply(lambda row:

nltk.edit_distance(row.misspell,row.correction), axis=1) 
matches_candidates["good_match"] = matches_candidates.apply(lambda row:

good_match(row.misspell_length, row.correction_length, row.edit_dist),

axis=1) 

matches = matches_candidates[matches_candidates["good_match"] == 1].drop(

["initial","good_match"],axis=1)

matches_final.sort_values(by=['correction_counts'], ascending=[False])[

["misspell", "correction", "misspell_counts", "correction_counts",

"edit_dist"]].head(20) 
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As you can see, we now have a relatively clean list of spelling corrections based upon user
signals as opposed to just term occurrences with documents. In fact, our query earlier of moden
now maps correctly to  as opposed to unlikely search terms like  and  like wemodem model modern

saw in the document-based spelling correction in .Listing 6.12

There are numerous other ways that one could go about creating a spelling correction model. If
you wanted to generate multi-term spelling corrections from documents, you could generate
bigram and trigrams and perform chained Bayesian analysis on probabilities of consecutive
terms occurring. Likewise to generate multi-term spelling correction from query signals, you
could simply choose not to tokenize queries before applying the algorithm in this section, and
then you’d be spell correcting an entire query instead of the individual terms. For example, if you
replace  with , then you’ll get spelling corrections for entire queries asListing 6.14 Listing 6.20
opposed to just individual keywords.

Listing 6.21 Remove tokenization of queries, and find misspellings on entire query strings

Results:

    misspell    correction        misspell_counts    correction_counts    edit_dist
81    latop        laptop            5                14258                1
156    touxhpad    touchpad        5                11578                1
21    cape        case            5                7596                1
85    loptops        laptops            5                5628                1
11    bluetooh    bluetooth        5                4499                1
178    wats        wars            5                4196                1
77    kimdle        kindle            5                4159                1
96    moden        modem            5                3598                1
106    phono        phone            5                3073                1
111    poker        power            5                2993                1
159    transfomer    transformers    5                2889                2
95    mircosoft    microsoft        5                2265                2
141    sistem        system            5                2185                1
97    motorla        motorola        5                2022                1
12    blur        blue            5                1916                1
177    walls        wall            5                1818                1
167    turttle        turtle            5                1583                1
135    share        sharp            5                1531                1
84    logictech    logitech        5                1488                1
151    teater        theater            5                1430                1

stop_words = set(stopwords.words('english'))
word_list = defaultdict(int)

for row in query_signals:
    query = row["keyword"].strip()

    if query not in stop_words and len(query) > 3 and not query.isdigit():
        word_list[query] += 1

#run Listing 16.12-16.15 again...
...
matches_final.sort_values(by=['correction_counts'], ascending=[False])[

["misspell", "correction", "misspell_counts", "correction_counts",

"edit_dist"]].head(20)
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Note that the single-term words are largely the same, but now multi-word queries have also been
spell corrected. This is a great way to normalize product names such as , iphone4 s iphone4 s

and  all being correctly mapped to the canonical . Note that in some casesiphone s4 iphone 4s

this can be a lossy process, though, as  maps to , and hp touchpad 32 hp touchpad iphone3

maps to . As such, depending on your use case, you may find it beneficial to only spelliphone

correct individual terms, or otherwise to include special handling in your  functiongood_match

for brand variations to ensure the spellcheck code doesn’t mistakenly delete relevant query
context.

                misspell        correction        misspell_counts

              correction_counts    edit_dist
181                ipad.            ipad            6                    7

749                1
154                hp touchpad 32    hp touchpad        5

7144                3
155                hp toucpad        hp touchpad        6

7144                1
153                hp tochpad        hp touchpad        6

7144                1
190                iphone s4        iphone 4s        5

4642                2
193                iphone4 s        iphone 4s        5

4642                2
194                iphones 4s        iphone 4s        5

4642                1
412                touchpaf        touchpad        5

4019                1
406                tochpad            touchpad        6

4019                1
407                toichpad        touchpad        6

4019                1
229                latop            laptop            5

3625                1
228                laptopa            laptops            6

3435                1
237                loptops            laptops            5

3435                1
205                ipods touch        ipod touch        6

2992                1
204                ipod tuch        ipod touch        6

2992                1
165                i pod tuch        ipod touch        5

2992                2
173                ipad 2            ipad 2            6

2807                1
215                kimdle            kindle            5

2716                1
206                ipone            iphone            6

2599                1
192                iphone3            iphone            6

2599                1

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

184

https://livebook.manning.com/#!/book/ai-powered-search/discussion


In this chapter, we dove deeper into understand the context and meaning of domain-specific
language. We showed how to use semantic knowledge graphs to classify queries and
disambiguate terms that have different or nuanced meanings based upon the context. We also
explored how to mine relationships from user signals, which usually provides a better context for
understanding your users than looking at your documents alone. We also showed how to extract
phrases, misspellings, and alternate spellings from query signals, enabling domain-specific
terminology to be learned directly from users as opposed to only from documents.

At this point, you should feel confident being able to learn domain specific phrases from
documents or use signals, to learn related phrases from documents or user signals, to classify
queries to your available content, and to disambiguate the meaning of terminology based upon
the query classification. Each of these techniques are now critical tools in your toolbox for
interpreting query intent.

Our goal isn’t just to assemble a large toolbox, though. Our goal is to leverage each of these tools
where appropriate to build an end-to-end semantic search layer. This means we need to model
known phrases into our knowledge graph, to be able to extract those phrases from incoming
queries in real-time, to handle misspellings, query classifications, and disambiguation on the fly
for incoming terms, and to ultimately generate a rewritten query to the search index that uses
each of our AI-powered search techniques. In the next chapter, we’ll show you how to assemble
each of these techniques into a working semantic search system designed to best interpret and
model query intent.

Classifying queries using a semantic knowledge graph can help interpret query intent and
improve query routing and filtering
Query-sense disambuguation can help determine nuanced understanding of a user’s
query, particularly for terms with significantly divergent meanings across different
contexts.
In addition to learning from douments, domin-specific phrases and related phrases can
also be learned from user signals.
Misspellings and alternate spelling variations can be learned from both documents and
from user signals, with document-based approaches being more robust, but
user-signal-based approaches better representing user intent.

6.6 Pulling it all together

6.7 Summary
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8
This chapter covers

In chapter 4, we covered three different categories of reflected intelligence: Signals Boosting
(popularized relevance), Collaborative Filtering (personalized relevance), and Learning to Rank
(generalized relevance). In this chapter, we’ll dive deeper into the first of these, implementing
Signals Boosting to enhance the relevance ranking of your most popular queries and documents.

In most search engines, you will find that a relatively small number of queries tend to make up a
large portion of your total query volume. These popular queries, called , also tend tohead queries
lead to more signals (such as clicks and purchases in an ecommerce use case), which enable
stronger inferences about the popularity of top search results.

Signals boosting models directly harness these stronger inferences and are the key to ensuring
your most important and highest-visibility queries are best tuned to return the most relevant
documents.

Signals boosting models

Aggregating user signals to create a popularity-based ranking model
Normalizing signals to best enhance relevance for noisy query input
Fighting signal spam and user manipulation of crowdsourced signals
Applying time decays to prioritize recent signals as more relevant
Blending multiple signal types together into a unified signals boosting model
Scaling signals boosting for flexibility and performance using query time vs. index-time
signals boosting.
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In section 4.2.2, we built our first signals boosting model on the Retrotech dataset, enabling a
significant boost in relevance for the most frequently searched and clicked search results. In this
section, we’ll quickly recap the process of creating a simple signals boosting model, which we
will build upon in the upcoming sections to cater to some more advanced needs.

You’ll recall from section 4.2.2 that signals boosting models aggregate all useful activity signals
on documents (such as click signals) that occur as the result of a specific query. We used a
search for , and boosted each document based upon how many total times it was previouslyipad

clicked in the results for that searc. Figure 8.1 demonstrates the before (no signal boosting) and
after (signals boosting on) search results for the query  previously demonstrated in sectionipad

4.3.2.

Figure 8.1 Before and after applying a signals boosting model. Signals boosting improves relevance by
pushing the most popular items to the top of the search results.

The signals boosting model that led to the improved relevance in Figure 8.1 is a basic signals
boosting model. It looks at all documents ever clicked for a given query, and then applies a boost
equal to the total number of past clicks on that document for that query.

While the basic signal boosting model covered in section 4.3.2 provides greatly improved
relevance, it is unfortunately succeptible some data biases and even manipulation. In section 8.2,
we’ll discuss some techniques for removing noise in the signals to maximize the quality your
signals boosting models and reduce the opportunity for undesirable biases.

8.1 Basic signals boosting
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It is important to normalize incoming user queries prior to aggregation so that variations are
treated as the same query. Given that end users can enter any arbitrary text as a query, this means
that the aggregated signals are inherently noisy. The basic signals boosting model from chapter 4
(and recapped in section 8.1) does no normaliation. It generates aggregated boosts for each query
and document pair, but since incoming queries haven’t been normalized into a common form,
this means that variations of a query will be treated as entirely separate queries. Listing 8.1
demonstrates a list of all queries that boosted the most popular iPad model in their search results.

Listing 8.1 Find the most popular queries associated with the most popular iPad model

Results:

8.2 Normalizing Signals

query = "885909457588" #most popular iPad model

def show_raw_boosted_queries(signals_boosting_collection):
    signals_boosts_query = {
        "query": "\"" + query + "\"",
        "fields": ["query", "boost"],
        "limit": 20,
        "params": {
          "defType": "edismax",
          "qf": "doc",
          "sort": "boost desc"
        }
    }

    signals_boosts = requests.post(solr_url + signals_boosting_collection
                     + "/select", json=signals_boosts_query).json()[

                     "response"]["docs"]

    boosted_queries = ""
    for entry in signals_boosts:
        boosted_queries += '"' + entry['query'] + '" : ' +

        str(entry['boost']) + "\n"

    print("Raw Boosted Queries")
    print(boosted_queries)

signals_boosting_collection = "basic_signals_boosts"
show_raw_boosted_queries(signals_boosting_collection)
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You can see from the output of  that many variations of the same queries exist in theListing 8.1
basic signals boosting model. The biggest culprit of the variations seems to be case-sensitivity, as
we see , , , and  as common variants. Spacing appears to be another issue,iPad ipad Ipad IPad

with  vs  vs. . We even see singular vs. plural representations in  vs. ipad 2 i pad 2 ipad2 ipad

.ipads

Given that most keyword search fields are case insensitive, and that many also ignore plural
representations of terms and split on case changes and letter to number transitions between
words, keeping separate query terms and boosts for variations that are non-distinguishable by the
search engine can be counter productive. Not only is it unnecessary, but is actually diffuses the
value of your signals, since the signals are divided across different variations of the same
keywords with lower boosts as opposed to being coalesced into more meaningful queries with
stronger boosts.

It is up to you to figure out how sophisticated your query normalization should be prior to signals
aggregation, but even just lowercasing incoming queries to make the signals aggregation case
insensitive can go a long way.  demonstrates the same basic signals aggregation asListing 8.2
before, but this time with the queries lowercased first.

Raw Boosted Queries
"iPad" : 1050
"ipad" : 966
"Ipad" : 829
"iPad 2" : 509
"ipad 2" : 347
"Ipad2" : 261
"ipad2" : 238
"Ipad 2" : 213
"I pad" : 203
"i pad" : 133
"IPad" : 77
"Apple" : 76
"I pad 2" : 60
"apple ipad" : 55
"Apple iPad" : 53
"ipads" : 43
"tablets" : 42
"apple" : 41
"iPads" : 38
"i pad 2" : 38
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Listing 8.2 Basic case-insensitivity normalization of boosted queries. Now "iPad", "Ipad",
and "IPad" be treated as the same query and share signals boosts.

Normalizing case by lowercasing each query

Grouping by normalized query increases the count of signals for that query,
increasing the signal boost

Results:

That list of raw boosted queries is already looking much cleaner! Not only is there less
redundancy, but you’ll notice that the strength of the signals boosts has increased, because more
signals are being attributed to a canonical form of the query (the lowercased version).

Often just lowercasing the queries, and maybe removing whitespace or extraneous characters, is
sufficient normalization of queries prior to signals aggregation. The important takeaway from
this section, though, is that the signals boosting model becomes stronger the better you are able
to ensure that identical queries are treated identically when they are aggregated together.

signals_collection = "signals"
signals_boosting_collection = "normalized_signals_boosts"

normalized_signals_aggregation_query = """
      select  as query, lower(q.target)
          c.target as doc,
          count(c.target) as boost 
        from signals c left join signals q on c.query_id = q.query_id
        where c.type = 'click' AND q.type = 'query'
        group by query, doc 
        order by boost desc
        """

aggregate_signals(signals_collection, signals_boosting_collection,

normalized_signals_aggregation_query)

show_raw_boosted_queries(signals_boosting_collection)

Raw Boosted Queries
"ipad" : 2939
"ipad 2" : 1104
"ipad2" : 540
"i pad" : 341
"apple ipad" : 152
"ipads" : 123
"apple" : 118
"i pad 2" : 99
"tablets" : 67
"tablet" : 61
"ipad 1" : 52
"apple ipad 2" : 27
"hp touchpad" : 26
"ipaq" : 20
"i pad2" : 19
"wi" : 19
"apple computers" : 18
"apple i pad" : 15
"ipad 2 16gb" : 15
"samsung galaxy" : 14
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Variations in queries aren’t the only kind of noise we need to worry about in our data, however.
In the next section, we’ll talk about how to overcome significant potential problems caused by
spam in our user-generated click signals.

Anytime we use crowdsourced data, such as click signals, to influence the behavior of the search
engine, we need to ask ourselves "How might our users manipulate the data inputs to create an
undesirable result?". In this section, we’ll demonstrate how a user could spam the search engine
with click signals to manipulate search results, and we’ll show you how to stop it.

Let’s imagine we have a user who, for whatever reason, really hates Star Wars and thinks that
the most recent movies are complete garbage. They feel so strongly, in fact, they they want to
ensure any searches for  always return a physical trash can for purchase as the topstar wars

search result. This user knows a thing or two about search engines and has noticed that your
killer relevance algorithms seem to be leveraging user signals and signals boosting. Figure 8.2
shows the default response for the query , with signals boosting bringing the moststar wars

popular products to the top of the search results.

8.3 Fighting Signal Spam

8.3.1 Using signal spam to manipulate search results
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Figure 8.2 The most popular search results for the query "star wars", with signals boosting turned on.
These are the expected results when there is no malicious signal spam.

The user decides that since your search engine ranking is based upon popular items, that they
will spam the search engine with a bunch of searches for  and follow up with a bunchstar wars

of fake clicks on the Star Wars themed trash can they found, in order to try to make the trash can
show up at the top of the search results.

In order to simulate this scenario, we’ll run a simple script in  to generate 5000Listing 8.3
queries for  and 5000 corresponding clicks on the trash can after running that query.star wars

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

192

https://livebook.manning.com/#!/book/ai-powered-search/discussion


Listing 8.3 Generating spam queries and clicks to manipulate the ranking of a document
due to signals boosting.

Document for trash can the spammer wants to move to the top of the search results

Send 5,000 query and click signals to the search engine

Commit the signals to the index

Run the signals aggregation to generate the signals boosting model including the
spammy signals

Listing 8.3 sends thousands of spammy query and click signals to our search engine, modeling
the same outcome we would see if a user searched and clicked on a particular search result
thousands of times. The listing then re-runs the basic signals aggregation to see the impact those
signals have on our signals boosting model.

import datetime

spam_user = "u8675309"
spam_query = "star wars"

spam_signal_boost_doc_upc = "45626176" 

num = 0
while (num < 5000): 
    query_id = "u8675309_0_" + str(num)

    next_query_signal = {
        "query_id": query_id,
        "user": spam_user,
        "type":"query",
        "target": spam_query,
        "signal_time": datetime.datetime.now().strftime(

        "%Y-%m-%dT%H:%M:%SZ"),
        "id":"spam_signal_query_" + str(num)
    }

    next_click_signal = {
        "query_id": query_id,
        "user": spam_user,
        "type":"click",
        "target": spam_signal_boost_doc_upc,
        "signal_time": datetime.datetime.now().strftime(

        "%Y-%m-%dT%H:%M:%SZ"),
        "id":"spam_signal_click_" + str(num)
    }

    collection = "signals"
    requests.post(solr_url + collection + "/update/json/docs",

    json=next_query_signal) 
    requests.post(solr_url + collection + "/update/json/docs",

    json=next_click_signal) 
    num+=1

requests.post(solr_url + collection + "/update/json/docs?commit=true") 

signals_collection = "signals"
signals_aggregation_collection = "signals_boosts_with_spam"
aggregate_signals(signals_collection, signals_aggregation_collection,

normalized_signals_aggregation_query) 
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To see the impact on our search results,  runs a search for the query , nowListing 8.4 star wars

incorporating the manipulated signals boosting model in order to see the effect of the malicious
user’s spammy click behavior.

Listing 8.4 Search results for query "star wars" using the manipulated signals boosting
model

Load signals boosts from the signals boosting model that included the spammy
signals

Boost the "star wars" using the signals boosting model

Display the search results

Figure 8.3 shows the new manipulated search results generated from , with the StarListing 8.4
Wars trash can returned in the top spot.

query = "star wars"
collection = "products"

signals_boosts = get_query_time_boosts(query, "signals_boosts_with_spam") 
boosted_query = get_main_query(query, signals_boosts)  

search_results = requests.post(solr_url + collection + "/select",

json=boosted_query).json()["response"]["docs"]
print(search_results)
display(HTML(render_search_results(query, search_results))) 
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Figure 8.3 Search results manipulated by a user spamming the search engine with fake signals to affect
the top result. The user was able to modify the top result just by clicking on it many times.

The spammer was successful, and these manipulated search results will now be seen by every
subsequent visitor to the Retrotech website who searches for ! Looks like we’re goingstar wars

to need to make our signals boosting model more robust to combat this kind of signal spam from
malicious users.

If you are going to use crowdsourced data like user signals to influence your search engine
ranking, then it is important to take steps to minimize the ability for your users to manipulate
your signals-based ranking algorithm.

In order to combat the "Star Wars trash can" problem we just demonstrated, the simplest
technique to start would be to ensure that duplicate clicks by the same user only get one "vote" in
the signals boosting aggregation. That way, whether a malicious user clicks one time or a million

8.3.2 Combatting signal spam through user-based filtering
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times, their clicks only count as one signal and therefore have no material impact on the signals
boosting model.  reworks the signals aggregation query to only count unique clickListing 8.5
signals from each user.

Listing 8.5 Deduplicating signals per user to prevent undue influence by a single user

Group by user the limit each user to only one "vote" per query/doc pair in the
signals boosting model

Signal date is the most recent signal from the user only if there are duplicates

If we re-run the  query from  with this new star wars Listing 8.5 signals_boosts_anti_spam

model, we’ll now see that our normal search results have returned and look the same again as
Figure 8.2. This is because the extra, spammy signals from our malicious user have now all been
reduced to a single bad signal, which we show in Table 8.1.

You can see that the aggregated signal count in the "signals_anti_spam" model has a total much
closer to the  model that we built before the spam signals werenormalized_signals_boosts

generated. Since each user is limited to one signal per query/document pair in the 
 model, the ability for users to manipulate the signal boostingsignals_boosts_anti_spam

model is now substantially reduced.

You could, of course, identify any user accounts that appear to be spamming your search engine

signals_collection = "signals"
signals_aggregation_collection = "signals_boosts_anti_spam"

anti_spam_aggregation_query = """
  select query, doc, count(doc) as boost from (
    select , lower(q.target) as query, c.target as doc,c.user
     as boost max(c.signal_time)
    from signals c left join signals q on c.query_id = q.query_id
    where c.type = 'click' AND q.type = 'query'
    , group by c.user
      q.target, c.target
  ) as x
  group by query, doc
  order by boost desc
"""

aggregate_signals(signals_collection, signals_aggregation_collection, anti_spam_aggregation_query)

Table 8.1 The 5000 spammy signals have been deduplicated to one signal in them
antispam signal boosting model model
model query doc boost

before spam signals (
)normalized_signals_boosts

star wars 400032015667 0 (no signals yet)

after spam signals (
)normalized_signals_boosts

star wars 400032015667 5000

after spam signals (
)signals_boosts_anti_spam

star wars 400032015667 1
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and remove their signals entirely from your signals boosting aggregation, but reducing the reach
of the signals through deduplication is simpler and often accomplishes the same end goal of
restoring a good crowdsourced relevance ranking.

In our example from , we leveraged user IDs as the key identifier to deduplicateListing 8.5
spammy signals, but any identifier will work here: user ID, session ID, browser ID, IP address,
or even some kind of browser fingerprint. As long as you find some identifier to uniquely
identify users or to otherwise identify low-quality traffic (like bots and web scrapers), then you
can use that information to deduplicate signals. If none of those techniques work and you have
too much noise in your click signals, you can also choose to only look at click signals from
known (authenticated) users who you presumably have much more confidence in being
legitimate traffic.

One final way to mitigate signal spam is to find a way to separate the important signal types from
the noisy ones that can be easily-manipulated. For example, generating signals from running
queries and clicking on search results is easy. Signals from purchasing a product are much harder
to manipulate, however, as they require users to log in or enter payment information before a
purchase will be recorded. The odds of someone maliciously purchasing 5,000 Star Wars trash
cans are quite low, because there are multiple financial and logistical barriers to doing this.

Not only is it valuable to weight purchases as stronger signals than clicks from the standpoint of
fighting spam, it is also valuable from a relevance standpoint to give purchases a higher weight,
because they are more clear indicators of intent than just clicks. In the next section, we’ll walk
through exactly how to combine different signal types into a signals boosting model that
considers the relative importance of each different signal type.

Thusfar we’ve only worked with two signals types - queries and clicks. For some search engines
(such as web search engines), click signals may be the only good source of crowd-sourced data
available to build a signals boosting model. Often times, however, many different signal types
exist that can provide additional and often much better inputs for building a signals boosting
model.

In our Retrotech dataset, we have several signal types that are common to ecommerce use cases:

query
click
add-to-cart
purchase

While clicks in response to queries are helpful, they don’t necessarily imply a strong interest in
the product, as someone could just be browsing to see what’s available. If someone adds a

8.4 Combining multiple signal types
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product to their shopping cart, this typically represents a much stronger signal of interest than a
click. A purchase is then an even stronger signal that a user is interested in a product, as the user
is willing to pay money to receive the item for which they searched.

While some ecommerce websites may receive enough traffic to ignore click signals entirely and
only focus on add-to-cart and purchase signals, it is often more useful to make use of all signal
types when calculating signals boosts. Thankfully, combining multiple signal types is as simple
as just assigning relative weights as multipliers to each signal type when performing the signals
aggregation:

By counting each click as 1 signal, each add-to-cart as 10 signals, and each purchase as 25
signals, this makes each purchase carry 25 times as much weight in the signals boosting model
than just a click. In other words, 25 different people would need to click on a product in response
to a query to count as much as one person actually purchasing the product as a result of the same
query.

This helps reduce noise from less reliable signals and boost more reliable signals, while still
making use of the large volume of less reliable signals in cases (like new or obscure items)
where better signals are less prevalent.  demonstrates a signals aggregation designedListing 8.6
to combine different signal types with different weights.

Listing 8.6 Combining multiple signal types with different weights

signals_boost = (1 * sum(click_signals)) + (10 * sum(add_to_cart_signals)) +

(25 * sum(purchase_signals))

signals_collection="signals"
signals_aggregation_collection="signals_boosts_weighted_types"

mixed_signal_types_aggregation = """
select query, doc,
( (1 * click_boost) + (10 * add_to_cart_boost) + (25 * purchase_boost) )

as boost 
from (
  select query, doc,
    , sum(click) as click_boost
    , sum(add_to_cart) as add_to_cart_boost
     sum(purchase) as purchase_boost
  from (
      select lower(q.target) as query, cap.target as doc,
        if(cap.type = 'click', 1, 0) as ,click
        if(cap.type = 'add-to-cart', 1, 0) as  ,add_to_cart
        if(cap.type = 'purchase', 1, 0) as purchase
      from signals cap left join signals q on cap.query_id = q.query_id
      where (cap.type != 'query' AND q.type = 'query')
    ) raw_signals
  group by query, doc
) as per_type_boosts
"""

aggregate_signals(signals_collection, signals_aggregation_collection,

mixed_signal_types_aggregation)
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Multiple signals combined with different relative weights toward to total boost
value

Each signal type gets summed up independently before being combined

You can see from the SQL query that the overall boost for each query / document par is
calculated by counting all clicks with a weight of 1, counting all add-to-cart signals and
multiplying them by a weight of 10, and then counting all purchase signals and multiplying them
by a weight of 25.

These suggested weights of 10x for add-to-cart signals and 25x for purchase signals should work
well in practice in many ecommerce scenarios, but these relative weights are also fully
configurable for each domain. Your website may be set up such that almost everyone who adds a
product to their cart purchases the product (for example, a grocery store delivery app, where the
only purpose of using the website is to fill a shopping cart and purchase). In these cases, you
could find that adding an item to a shopping cart adds no additional value, but that  anremoving
item from a shopping cart should actually carry a negative weight indicating the product is a bad
match for the query.

In this case, you may want to introduce the idea of . Just as we’venegative signals boosts
discussed clicks, add-to-carts, and purchases as signals of user intent, your user experience may
also have numerous ways to measure user dissatisfaction with your search results. For example,
you may have a thumbs-down button, a remove from cart button, or you may be able to track
product returns after a purchase. You may even want to count documents in the search results
which were skipped over, and record a "skip" signal for those documents to indicate the user saw
them but didn’t show interest. We’ll cover the topic of managing clicked versus skipped
documents further in chapter 11 when we discuss click modeling.

Thankfully, handling negative feedback is just as easy as handling positive signals: instead of
just assigning increasingly positive weights to signals, you can also assign increasingly negative
weights to negative signals. For example:

This simple, linear function provides a highly configurable signals-based ranking model, taking
in multiple input parameters and returning a ranking score based upon the relative weights of
those parameters. You can combine as many useful signals as you want into this weighted
signals aggregation to improve the robustness of the model. Of course, tuning the weights of

positive_signals = (1 * sum(click_signals) ) + ( 10 * sum(

add_to_cart_signals) ) + ( 25 * (purchase_signals) ) + ( 0.025 * sum(

seen_doc_signals) )

negative_signals = ( -0.025 * sum(skipped_doc_signals) ) + ( -20 * sum(

remove_from_cart_signals) ) + ( -100 * sum(returned_item_signals) ) +

( -50 * sum(negative_post_about_item_in_review_signals) )

type_based_signal_weight = positive_signals + negative_signals
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each of the signal types to achieve an optimal balance may take some effort. You can do this
manually, or you can leverage a machine learning technique called Learning to Rank to do this.
We’ll explore Learning to Rank in-depth in chapters 10 and 11.

Not only is it important to weight different kinds of signals relative to each other, but it can also
sometimes be necessary to weight the  kind of signals differently against each other. In thesame
next section, we’ll discuss one key example of doing this: assigning higher value to more recent
interactions.

Signals don’t always maintain their usefulness indefinitely. In the last section, we showed how
signals boosting models can be adjusted to weight different kinds of signals as more important
than others. In this section, we’ll address a different challenge - factoring in the "temporal value"
of signals as they age and become less useful.

Imagine three different search engine use cases:

an ecommere search engine with stable products,
a job search engine, and
a news website.

If we have an ecommerce search engine, like Retrotech, the documents (products) often stay
around for years, and the best products are often those that have a long track record of interest.

If we have a job search engine, the documents (jobs) may only stick around for a few weeks or
months until the job is filled, and then they disappear forever. While the documents are present,
however, newer clicks or job applications aren’t necessarily any more important as signals than
older interactions.

In a news search engine, while the news articles stick around forever, newer articles are
generally way more important than older articles, and newer signals definitely are more
important than older signals, as people’s interests change on a daily, if not hourly basis.

Let’s dive into these usecases and demonstrate how to best handle signals boosting for
time-sensitive documents vs. time-sensitive signals.

8.5 Time decays and short-lived signals
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In our Retrotech use case, our documents are intentionally old, having been around for a decade
or more, and interest in them likely only increases as the products become older and more
"retro". As such, we don’t often have massive spikes in popularity for items, and newer signals
don’t necessarily carry significantly more importance than older signals. This type of use case is
a bit atypical, but plenty of search use cases do deal with more "static" document sets like this.
The best solution in this case is the strategy we’ve already taken thusfar in this chapter: to
process all signals within a reasonable time period of months or years and give them fairly equal
weight. When all time periods carry the same weight, this also means that the signals boosting
model likely doesn’t need to be rebuilt that often, since the model only changes slowly over time
and the frequent processing of signals is unnecessary computational overhead.

In a job search use case, however, the scenario is very different. For the sake of argument, let’s
say that on average it takes 30 days to fill a job opening. This means the document representing
that job will only be present in the search engine for 30 days, and that any signals collected for
that document are only useful for signals boosting during that 30 days window. When a job is
posted, it will typically be very popular for the first few days since it is new and is likely to
attract many existing job seekers, but all interactions with that job at any point during the 30 days
are just as useful. In this case, all click signals should get an equal weight, and all job application
signals should likewise receive an equal weight (at a weight higher than the click signals, of
course). Given the very short lifetime of the documents, however, it is important that all signals
are used as quickly as possible in order to make the best use of their value.

Use cases with short-lived documents, like in the job search use case, don’t usually make good
candidates for signals boosting, as the documents often get deleted by the time the signals
boosting model becomes any good. As a result, it can often make more sense to look at
personalized models (like collaborative filtering, covered in chapter 9) and generalizable
relevance models (like Learning to Rank, covered in chapters 10 and 11) for these use cases
instead.

In both the Retrotech use case and the job search use case, the signals were just as useful for the
entire duration of the document’s existence. In the news search use case, which we’ll see next,
the time sensitivity is more related to the age of the documents and the signals themselves.

8.5.1 Handling time-sensitive documents
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In a news search engine use case, the most recently published news gets the most visibility and
usually the most interaction, so most recent signals are considerably more valuable than older
signals. Some news items may be very popular and relevant for days or longer, but generally the
signals from the last ten minutes are more valuable than the signals from the last hour, which are
more valuable than the signals from the last day, and so on. News search is an extreme use case
where signals both need to be processed quickly and where more recent signals need to be
weighted as substantially more important than older signals.

One easy way to model this is by using a decay function, such as a half-life function, which cuts
the weight assigned to a signal by half (50%) over equally-spaced time spans. For example, a
decay function with a half-life of 30 days would assign 100% weight to a signal that happens now
, 75% weight to a signal from 15 days ago, 50% weight to a signal from 30 days ago, 25%
weight to a signal from 60 days ago, 12.5% weight to a signal from 90 days ago, and so on. The
math for implementing a decay function is:

When applying this calculation, the  will usually be the relative weight of astarting_weight

signal based upon it’s type, for example a weight of  for clicks,  for add-to-cart signals, and 1 10

 for purchase signals. If you are not combining multiple signal types then the 25

 will just be .starting_weight 1

The  is how old the signal is, and the  is how long it takes for the signalsignal_age half_life

to lose half of it’s value. Figure 8.4 demonstrates how this decay function impacts signals
weights over time for different half-life values.

8.5.2 Handling time-sensitive signals

time_based_signal_weight = starting_weight * 0.5^(signal_age/half_life)
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Figure 8.4 Signal decay over time based upon various half life values. As the halflife increases,
individual signals maintain their boosting power for longer.

The one day half-life is very aggressive and is pretty impractical in most usecases, as it is
unlikely you would be able to collect enough signals in a day to power meaningful signals
boosting, and the liklihood of your signals becoming irrelevant that quickly is low.

The 30 day, 60 day, and 120 day half-lifes do a good job of aggressively discounting older
signals, but keeping their residual value contributing to the model over a six to twelve month
period. If you have really long-lived documents, you could push out even longer, making use of
signals over the course of many years.  demonstrates an updated signal aggregationListing 8.7
query that implements a half-life of 30 days for each signal:
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Listing 8.7 Appling a time decay function to the signals boosting model

This decay function has a few unique configurable parameters:

It contains a  parameter, which calculates a weighted average using ahalf_life_days

configurable half-life, which we’ve set as 30 days to start.
It contains a  parameter, which can be replaced with a function returningsignal_weight

a weight by signal type, as shown in the last section (click = 1, add to cart = 10, purchase
= 25, etc.).
It contains a  parameter, which is the date at which a signal gets the fulltarget_date

value of . Any signals before this date will be decayed based upon the half-life, and any1

signals after this date will be ignored (filtered out).

Your  will usually be the current date, so that you are making use of your mosttarget_date

up-to-date signals and assigning them the highest weight. However, you could also apply it to
past periods if your documents have seasonal patterns that repeat monthly or yearly.

While our product documents don’t change very often, and the most recent signals aren’t
necessarily any more valuable than older signals, there are potentially annual patterns we could
find in a normal ecommerce data set. For example, certain types of products may tend to be more
popular around major holidays like Mother’s day, Father’s day, and Black Friday. Likewise,
searches for something like a "shovel" may take on a different meaning in the summer (shovel
for digging dirt) versus the winter (shovel for removing snow from the sidewalk). If you explore
your signals, any number of trends may emerge for which time sensitivity should impact how
your signals are weighted.

signals_collection="signals"
signals_boosting_collection="signals_boosts_time_weighted"

 = 30half_life_days
 = '2020-06-01 00:00:00.0000' #Will usually be now(), but can be any past timetarget_date

    you want to emphasize signals from.
signal_weight = 1 #can make this a function to differentiate weights for different signal types

time_decay_aggregation = """
select query, doc,  from (sum(time_weighted_boost) as boost
    select user, query, doc, """ + signal_weight + """ * pow(0.5, (

    datediff('""" + target_date + "', signal_time) / "

 from (    + str(half_life_days) + """)) as time_weighted_boost
        select c.user as user, lower(q.target) as query, c.target as doc,
        max(c.signal_time) as signal_time
        from signals c left join signals q on c.query_id = q.query_id
        where c.type = 'click' AND q.type = 'query'
        AND c.signal_time <= '""" + target_date + """'
        group by c.user, q.target, c.target
    ) as raw_signals
) as time_weighted_signals
group by query, doc
order by boost desc
"""

aggregate_signals(signals_collection, signals_boosting_collection,

time_decay_aggregation)
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1.  

2.  

3.  

Ultimately, Signals are a lagging indicator. They are a reflection of what your users just did, but
they are only useful as predictions of future behavior if the patterns learned are likely to repeat
themselves.

Having now explored techniques for improving our signals models through query normalization,
mitigating spam and relevance manipulation, combining multiple signal types with different
relative weights, and applying time decays to signals, you should be able flexibly implement the
signals boosting models most appropriate for your use case. When rolling out signals boosting at
scale, however, there are two different approaches you can take to optimize for flexibility versus
performance. We’ll cover these two approaches in the next section.

All the the signals boosting models in the chapter have been demonstrated using query-time
, which loads signal boosts from a separate  collection for each userboosting signals_boosts

query at query time and modifies the user’s query to add the boosts prior to sending it to the
search engine. It is also possible to implement boosting models using , whereindex-time boosting
boosts are added directly to documents for the queries to which those boosts apply. In this
section, we’ll discuss the benefits and tradeoffs of each of these approaches.

Query-time boosting, as we’ve seen, turns each query into a two step process, where each
incoming user query is looked up in the  collection, and then any foundsignals_boosting

boosted documents are used to modify the user’s query. Query-time boosting is the most
common way to implement signals boosting, but it comes with both its benefits and drawbacks.

Query-time boosting’s primary architecural characteristic is that it keeps the main search
collection ( ) and the signals boosting collection ( ) separate. Thisproducts *_signals_boosts

separation provides a number of benefits, including:

Allowing the signals for each query to be updated incrementally by only modifying the
one document representing that query
Allowing boosting to be turned on or off easily by just not doing a lookup or modifying
the user’s query
Allowing different signals boosting algorithms to be swapped in at any time

Ultimately, by boosting specific documents for a given query at query time, the flexibility to
change the boosts at any point in time based upon the current context is the major advantage of
query-time signals boosting.

8.6 Index-time vs. Query-time boosting: balancing scale vs. flexibility

8.6.1 Tradeoffs when using query-time boosting

BENEFITS OF QUERY-TIME BOOSTING
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1.  

2.  

3.  

While flexible, query time boosting also introduces some significant downsides with regard to
query performance, scale, and relevance which may make it inappropriate for certain use cases.
Specifically, query-time boosts:

Require an extra search to lookup boosts before the boosted search is executed, adding
more processing (executing two searches) and latency (the final query has to wait on the
results of the signals lookup query before being processed)
Doesn’t handle long-lists of documents to boost for a query in a scalable way, requiring
tradeoffs between user experience and relevance versus query speed and scale
Doesn’t support search results pagination very well

The first downside is straight-forward, as each query essentially becomes two queries executed
back-to-back, which increases the total search time. The second downside may not be as
obvious, however, so it is worth exploring a bit further.

In query-time boosting, we look up a specific number of documents to boost higher in the search
results for a query. For example, in our  search example from Figure 8.1 (see Listing 4.7 foripad

the code), the boost for the query ultimately becomes:

"885909457588"^966 "885909457595"^205 "885909471812"^202 "886111287055"^109 
 "843404073153"^73 "885909457601"^62 "635753493559"^62 "885909472376"^61

"610839379408"^29 "884962753071"^28

This boost contains 10 documents, but only because that is the number of boosts we requested.
Assuming we only showed ten documents on the first page, then the whole first page will look
good…​ but what if the user navigates to page 2? In this case there won’t be any boosted
documents shown, because only the first 10 documents with signals for the query were boosted!

In order to boost documents for the second page, we would need to ensure we have at least
enough document boosts to cover the full first two pages, which means increasing from 10
boosts to 20 boosts (modifying the "limit" parameter to 20 on the boost lookup query):

"885909457588"^966 "885909457595"^205 "885909471812"^202 "886111287055"^109 
 "843404073153"^73 "635753493559"^62 "885909457601"^62 "885909472376"^61

 "610839379408"^29 "884962753071"^28 "635753490879"^27 "885909457632"^26

 "885909393404"^26 "716829772249"^23 "821793013776"^21 "027242798236"^15

"600603132827"^14 "886111271283"^14 "722868830062"^13 "092636260712"^13

You can thus mostly solve this problem by increasing the number of boosts looked up every time
someone navigates to the "next" page, but this will very quickly slow down subsequent queries,
as page 3 will require looking up and applying 30 boosts, page 10 will require 100 boosts, and so
on. For a use case where only a small number of boosted documents exists for each query this is

DRAWBACKS OF QUERY-TIME BOOSTING
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not a big problem, but for many use cases, there may be hundreds or thousands of documents
that would benefit from being boosted. In our query example of , for example, there areipad

more than 200 documents which contain aggregated signals, so most of those documents will
never be boosted at all unless someone pages very deep into the search results, and at that point
the queries are likely to be slow, and at some point could even time out.

Only including a subset of the boosts presents another problem, as well: search results aren’t
always strictly ordered by the boost value! We’ve made the assumption that requesting the top
10 boosts will be enough for the first page of 10 results, but in reality the boost is only one of the
factors that affects relevance. It could be that documents further down in the boost list have a
higher base relevance score and that if their boosts were also loaded that they would jump up to
the first page of search results.

As a result, as a user navigates from page one to two and the number of boosts loaded increases,
some of the results might jump up to page one and never be seen or jump down to page two and
be see again as a duplicate. When someone then moves on to page three, the results from all
three pages could further get shuffled around.

Even if these results are much more relevant than search results without signals boosting applied,
it doesn’t make a very optimal user experience. Index-time signals boosting can help overcome
these drawbacks, as we’ll show in the next section.

Index-time signals boosting turns the signals boosting problem on its head - instead of boosting
popular documents for queries at query time, we boost popular queries for documents at indexing
time. This is accomplished by adding popular queries to a field in each document, along with
their boost value. Then, at query time, we simply search on the new field, and if the field
contains the term from our query then it it gets automatically boosted based upon the boost value
indexed for the term.

When implementing index-time boosting, we leverage the exact same signals aggregations to
generate pairs of documents and boost weights for each query. Once those signals boosts have
been generated, we just have to add one additional step to our workflow: updating the products
collection to add a field onto each document containing each term for which the document
should be boosted, along with the associated numeric boost weight.  demonstrates thisListing 8.8
additional step in our workflow.

8.6.2 Implementing Index-time signals boosting
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Listing 8.8 Mapping signals boosts from a separate query-time collection to a field in the
main collection

Load a previously-generated signals boosting model

Register the product table so we can load from it and save back to it with boosts
added

Insert all keywords with signals boosts for each document into a new
"signals_boosts" field on the document

Save the products back to the products collection, with the updated
"signals_boosts" added

The code in  reads all previously-generated signals boosts for each document and thenListing 8.9
maps the queries and boosts into a new  field on each product document as asignals_boosts

comma-separated list to terms (user queries) with a corresponding signals boosting weight for
each term.

This  field is a specialized field in Solr containing asignals_boosts

DelimitedPayloadBoostFilter, which allows for terms (queries) to be indexed with associated
boosts that can be used to influence query-time scoring. For example, for the most popular iPad,
the product document will now be modified to look as follows:

signals_boosts_collection="normalized_signals_boosts"
signals_boosts_opts={"zkhost": "aips-zk", "collection":

signals_boosts_collection}
df = spark.read.format("solr").options(**signals_boosts_opts).load()
df.registerTempTable(signals_boosts_collection) 

products_collection="products_with_signals_boosts"
products_read_boosts_opts={"zkhost": "aips-zk", "collection":

products_collection}
df = spark.read.format("solr").options(**products_read_boosts_opts).load()
df.registerTempTable(products_collection) 

boosts_query = """ 
SELECT p.*, b.signals_boosts from (
  SELECT doc, concat_ws(',',collect_list(concat(query, '|', boost))) as

  signals_boosts FROM """ + signals_boosts_collection + """ GROUP BY doc
) b inner join """ + products_collection + """ p on p.upc = b.doc
"""

products_write_boosts_opts={"zkhost": "aips-zk", "collection":

products_collection, "gen_uniq_key": "true", "commit_within": "5000"} 
spark.sql(boosts_query).write.format("solr").options(

**products_write_boosts_opts).mode("overwrite").save()

{...
   "id": "885909457588",
   "name": "Apple® - iPad® 2 with Wi-Fi - 16GB - Black"
   "signals_boosts": "ipad|2939,ipad 2|1104,ipad2|540,i pad|341,apple ipad|

   152,ipads|123,apple|118,i pad 2|99,tablets|67,tablet|61..."
 ...
 }
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At query time, this  field will be searched upon, and if the query matches onesignals_boosts

or more of the values in the field, the score for that document will be boosted relative to boost
value.

Listing 8.9 demonstrates how to perform a query utilizing index-time signals boosts, harnessing
the  function in the search engine to boost based upon the indexed payload (the boostpayload

value) associated with the user’s query.

Listing 8.9 Performing a query that ranks based upon index-time signals boosts

Boosting the relevance score based upon the indexed signals boosts for the query

Figure 8.5 shows the results of the index-time signals boosting. As you can see, the results now
look similar to the query-time signals boosting output shown previously in Figure 4.1.

query = "ipad"

def get_query(query, signals_boosts_field):
    request = {
        "query": query,
        "fields": ["upc", "name", "manufacturer", "score"],
        "limit": 3,
        "params": {
          "qf": "name manufacturer longDescription",
          "defType": "edismax",
          "indent": "true",
          "sort": "score desc, upc asc",
          "qf": "name manufacturer longDescription",
          "boost": "payload(" + signals_boosts_field + ", \"" 
                              + query + "\", 1, first)" 
        }
    }

    return request

collection = "products_with_signals_boosts"
boosted_query = get_query(query, signals_boosts_field)
print("Main Query:")
print(boosted_query)

search_results = requests.post(solr_url + collection + "/select",

json=boosted_query).json()["response"]["docs"]
print("\nSearch Results (Basic Signals Boosting): ")
print(search_results)
display(HTML(render_search_results(query, search_results)))
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Figure 8.5 Index time signals boosting, demonstrating similar results as query-time index boosting.

The relevance scores will likely not be identical when using the  function to boostpayload

index-time boosts versus adding document boosts for query-time signals boosting, because the
relevance scoring math is a little different. The relative ordering of results should be very similar,
though. The index-time signals boosting will apply to all documents with a signals boost as
opposed to only the top documents with a signals boost, making index-time boosting more
comprehensive, among other benefits.

Index-time boosting solves for most of the drawbacks of query-time boosting:

BENEFITS OF INDEX-TIME BOOSTING
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3.  

because the boost query is a single keyword search against the boost field as opposed to a
boost query for an increasing number of documents which need to be boosted.
Results paging is no longer a problem, because ALL documents matching the query are
boosted, not just the top-N that can be efficiently loaded and added to the query.

Given these characteristics, index-time boosting can substantially improve relevance and
consistency of results ordering by ensuring all queries receive consistent and complete boosting
of all their matching documents, and it can substantially improve query speed by making queries
more efficient and removing extra lookups prior to execution of the main query to the search
engine.

If index-time boost solves all of the problems of query-time boosting, they why wouldn’t we
always use index-time signals boosting over query-time signals boosting?

The main drawback of index-time boosting is that since the boost values for a query are indexed
onto each document (each document contains the terms for which that document should be
boosted), this means that adding or removing a keyword from the signals boosting model
requires reindexing all documents associated with that keyword. If signals boosting aggregations
are updated incrementally (on a per-keyword basis), then this means potentially reindexing all of
the documents within your search engine on a continuous basis. If your signals boosting model is
updated in batch for your entire index, then at a minimum this means reindexing potentially all
of your documents every time your signals boosting model is regenerated.

This kind of indexing pressure adds operational complexity to your search engine. In order to
keep query performance fast and consistent, you will likely want to separate indexing of
documents onto separate servers from where the search indexes are hosted for serving queries.

DRAWBACKS OF INDEX-TIME BOOSTING

1.

2.

  The query workflow is simpler and faster because it doesn’t require doing two queries -
one to look up the signals boosts and another to run a boosted query using those signals
boosts.

  Each query is more efficient and faster per boost as the number of boosts increases,
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SIDEBAR Separation of Concerns: Indexing vs. Querying

In Apache Solr, indexes are broken into one or more "shards", which are
partitions containing a subset of the documents in a collection. Each shard
can have one or more replicas, which are each exact copies of all the data
belonging to their shard. When a search is run, Solr sends the query to one
replica of each shard, the query is run in parallel on each of those replicas,
and the results are aggregated and returned as a full set of results to the end
users. The primary purpose of adding more shards is to allow for more
documents to be searched in less time, and the primary purposes of adding
more replicas are to add fault tolerance and to enable a larger number of
searches to be run against the same number of shards.

Solr has three different types of replicas: NRT (Near-realtime), TLOG
(transaction log), and PULL replicas. By default, all replicas are NRT, which
means every replica indexes every document update when it comes in. This
allows document updates to be available immediately on each replica, but it
can also very negatively impact query time on those replicas if lots of
documents are being indexed constantly. The other replica types (TLOG and
PULL) are able to pull indexes from an NRT replica instead of doing the
indexing work in duplicate, which can allow a separation of concerns within
the cluster to allow indexing on the NRT replica that is isolated from the
querying operations on the TLOG and PULL replicas.

If you plan to do index-time signals boosting and expect to be constantly
reindexing signals, you should strongly consider isolating index and query
time operations to ensure your query performance isn’t negatively impacted
by the significant additional indexing overhead from ongoing indexing of
signals boosts.

The other drawback of index-time boosting, which is also related to the requirement that all
documents affected by a signal be reindexed upon changes, is that making changes to your
signals boosting function can require more planning. For example, if you would like to change
your weight for click vs. purchase signals from 1:25 to 1:20, then you may want to create a 

 field with the new weights, reindex all of your documents adding the newsignals_boosts_2

boosts, and then flip over your query to use the new field instead of the original 
 field. Otherwise, your boost values and ranking scores will fluctuatesignals_boosts

inconsistently until all of your documents scores have been updated.

If those drawbacks can be worked around, however, then implementing index-time signals
boosting can solve all of the drawback of query-time signals boosting, leading to better query
performance, full support for results paging, and use of all signals from all documents as
opposed to just a sampling from the most popular documents.
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Signals boosting is a type of ranking algorithm which aggregates user signal counts per
query and uses those counts as relevance boosts for that query in the future. This ensures
the most popular items for each query are pushed to the top of the search results.
Normalize queries by treating different variations (case, spelling, etc.) as the same query
helps clean up noise in user signals and builds a more robust signals boosting model.
Crowdsourced data is subject to manipulation, so it is important to explicitly prevent
spam and malicious signals from impacting the quality of your relevance models.
You can combine different signal types into a single signals boosting model by assigning
relative weights to each signal type and doing a weighted sum of values across signal
types. This enables you to give more relevance to stronger signals (positive or negative)
and reduce noise from weaker signals.
Introducing a time-decay function enables recent signals to carry more weight than older
signals, allowing older signals to phase out over time.
Signal boosting models can be productionized using query-time signals boosting (more
flexible) or index-time signals boosting (more scalable and more consistent relevance
ranking).

8.7 Summary
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10
This chapter covers

It’s a random Tuesday. You review your search logs. The searches range from the frustrated
runner’s -  - to the worried hypochondriac’s - polar m430 running watch charger weird

 - to the curious cinephile’s - .bump on nose - cancer? william shatner first film

Despite the fact that many are one-off queries, you know each user expects nothing less than
amazing search results.

You feel hopeless. You know many query strings, by themselves, are distressingly rare. You
have very little click data to know what’s relevant for these searches. Every day gets more
challenging: trends, use cases, products, user interfaces, and even languages evolve. How can
anyone hope to build search that amazes when users seem to constantly surprise us with new
ways of searching?

Despair not, there is hope! In this chapter, we introduce .generalizable search systems
Generalizable search learns the underlying patterns that drive relevance. Instead of memorizing
that the article entitled "Zits: bumps on nose" is the answer for the query weird bump on nose

, we observe the underlying pattern - that a strong title match corresponds to high- cancer?

probability of relevance. If we can learn these patterns, encoding them into a model, then we can
give relevant results .even for search queries we’ve never seen

This chapter explores  (LTR): a technique using machine learning to createLearning to Rank

Learning to rank for generalizable search
relevance

Using machine learning to build generalizable search systems
Ranking within the search engine using machine learning models
How learning to rank is different from other machine learning methods
Building a robust and generalizable ranking model
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generalized relevance ranking models. We’ll prepare, train, and search with LTR models using
the search engine.

Let’s explore what LTR does exactly. We’ll see how LTR creates generalized relevance by
finding patterns that predict relevance. We’ll then explore more of the nuts and bolts of building
a model.

Recall manual relevance tuning from Chapter 3. We observe factors that correspond with
relevant results and we combine those factors mathematically into a . Theranking function
ranking function returns a relevance score that orders results as closely as possible to our ideal
ranking.

For example, consider a movie search engine, with documents like the one in :Listing 10.1

Listing 10.1 A document for the movie The Social Network showing potentially useful fields
for use in a ranking function.

This document comes from TheMovieDB (tmdb) corpus ( ), which we’llhttp://themoviedb.org
use in this chapter. If you wish to follow along with the code for this chapter please use this
chapter’s first notebook to listing x.y.

Through endless iterations and tweaks, we might arrive at a generalizable movie ranking
function that looks something like .Listing 10.2

Listing 10.2 A manual ranking function combining title, overview, and release year weights
as searched keywords

Manually optimizing generalized ranking to work over many queries takes effort. Such an
optimization is perfect for machine learning.

This is where LTR comes in.  (LTR) takes our proposed relevance factors, andLearning to Rank

10.1 What is Learning to Rank?

{'title': ['The Social Network'],
 'overview': ['On a fall night in 2003, Harvard undergrad and computer

   programming genius Mark Zuckerberg sits down at his computer and

   heatedly begins working on a new idea. In a fury of blogging and

   programming, what begins in his dorm room as a small site among

   friends soon becomes a global social network and a revolution in

   communication. A mere six years and 500 million friends later,

   Mark Zuckerberg is the youngest billionaire in history... but for

   this entrepreneur, success leads to both personal and legal

   complications.'],
 'tagline': ["You don't get to 500 million friends without making a few

   enemies."],
 'release_year': 2010}

q=title:(${keywords})^10 overview:(${keywords})^20 {!func}release_year^0.01
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learns an optimal ranking function. Learning to Rank takes several forms: from a simple set of
linear weights (like the boosts here) to a complex deep learning model.

To learn the ropes, we’ll build a simple LTR model in this chapter. We’ll find the optimal
weights for , , and  in a scoring function like the one above. Withtitle overview release_year

this relatively simple task, however, we’ll see the full lifecycle of developing a Learning to Rank
solution.

As we continue to define LTR at a high level, let’s quickly clarify where LTR fits into the
overall picture of a search system. Then we can look at the kinds of data we’ll need to build an
LTR model.

We focus on building LTR for production search systems, which can be quite different from a
research context. We not only need relevant results, but results returned suitably fast, with
mainstream, well-understood search techniques.

For this reason, our examples focus on building Learning to Rank with Solr’s Learning to Rank
plugin. This plugin reranks using models within the search engine, improving performance and
scaling learning to rank to true 'big data' problems. These lessons go beyond Solr, though -
Elasticsearch also has a community provided plugin (

). The Elasticsearch plugin has nearlyhttps://github.com/o19s/elasticsearch-learning-to-rank
identical concepts, and other search systems will tend to follow the same general steps outlined
in this chapter.

Figure 10.1 outlines the workflow for developing a practical Learning to Rank solution.

10.1.1 Implementing learning to rank in the real-world
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Figure 10.1 LTR systems transform our training data (judgment lists) into models that generalize
relevance ranking. This type of system lets us find the underlying patterns in our training data.

In Figure 10.2, you may notice similarities between LTR and traditional machine-learning-based
classification or regression systems. But the exceptions are what make it interesting. Table 10.1
maps definitions between traditional machine learning objectives and learning to rank.
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1.  

2.  

3.  

4.  

5.  

6.  

This chapter follows the steps in Figure 10.2 to train an LTR model, as outlined in greater depth
below:

Gather judgments: we derive judgments from clicks or other sources. We’ll cover this
step in depth in Chapter 11.
Feature logging: to train a model, we must combine the judgments with features to see
the overall pattern. This step requires us to ask the search engine to store and compute
queries representing the features.
Transform to traditional machine learning problem: you’ll see that most LTR really is
about translating the ranking task into something that looks more like the "Traditional
Machine Learning" column in Table 10.1
Train and evaluate model: here we construct our model and confirm it is, indeed,
generalizable, and thus will perform well for queries it hasn’t even seen yet.
Store the model: we upload the model to our search infrastructure, tell the search engine
which features to use as input, and enable it for users to use in their searches
Search using the model: we finally can execute searches using the model!

The rest of the chapter will walk through each of these steps in detail to build our first LTR
implementation. Let’s get cracking!

Table 10.1 Classic Machine Learning vs Learning to Rank.m
Concept Traditional Machine Learning Learning to Rank

Training Data Set of historical or "true" examples the
model should try to predict. IE stock
prices on past days, like "Apple" was
$125 on June 6th, 2021

A : A  simplyjudgment list judgment
labels a document as relevant or
irrelevant for a query. In Figure 10.2,
"Return of the Jedi" is labeled relevant
(grade of ), for the query 1 star wars

Feature The data we can use to predict the
training data. IE Apple had 147,000
employees and revenue of $90 billion

Data used so that relevant results rank
higher than irrelevant ones, ideally
values the search engine can compute
quickly. Our features are search queries
like the  from title:(${keywords})

Listing 10.2

Model The algorithm that takes features 
as input to make a prediction. 
Given Apple has 157,000 
employees on July 6th, 2021 with 
$95 billion in revenue, the model 
might predict a stock price of 
$135 for that date

Combines the ranking 
features (search queries) 
together to assign a 
relevance score to each 
potential search result. 
Results are sorted by score 
descending, hopefully placing 
more relevant results first
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You saw what LTR is at a high level, let’s begin to get into the nitty gritty. Before implementing
LTR we must first learn about the data used to train an LTR model: the judgment list.

A  is a list of relevance labels or , which each indicate relevance of ajudgment list grades
document to a query. Grades can come in a variety of forms. For now we’ll stick to simple 

 - a 0 to indicate an irrelevant document, and a 1 for a relevant one.binary judgments

Using a  class provided with this book’s code, we label "The Social Network" asJudgment

relevant for the query  by creating a  below:social network Judgment

It’s more interesting to look over multiple queries. In , we have Listing 10.3 social network

and  as two different queries, with movies graded as relevant or irrelevant.star wars

Listing 10.3 Labeling movies relevant (grade=1) or irrelevant (grade=0) for queries social
 and network star wars

You can see that in , we labeled "Star Trek" and "Battlestar Galactica" as irrelevantListing 10.3
for , but "Return Of The Jedi" as relevant.star wars

You’re hopefully asking yourself - where did these grades come from!? Hand labeled by movie
experts? Based on user clicks? Good questions! Creating a good training set, based on user
interactions with search results, is crucial for getting LTR to work well. To get training data in
bulk, we usually derive these labels from click traffic using an algorithm known as a .click model
As this step is so foundational, we dedicated all of Chapter 11 to diving deeper into the topic.

10.2 Step 1: A judgment list, starting with the training data

from ltr.judgments import Judgment
Judgment(grade=1, keywords='social network', doc_id=37799)

mini_judg_list=[
    # for 'social network' query
    Judgment(grade=1, keywords='social network', doc_id='37799'),

    # The Social Network
    Judgment(grade=0, keywords='social network', doc_id='267752'),

    # #chicagoGirl
    Judgment(grade=0, keywords='social network', doc_id='38408'),

    # Life As We Know It
    Judgment(grade=0, keywords='social network', doc_id='28303'),

    # The Cheyenne Social Club

    # for 'star wars' query
    Judgment(grade=1, keywords='star wars', doc_id='11'),

    # Star Wars, A New Hope
    Judgment(grade=1, keywords='star wars', doc_id='1892'),

    # Return of the Jedi
    Judgment(grade=0, keywords='star wars', doc_id='54138'),

    # Star Trek Into Darkness
    Judgment(grade=0, keywords='star wars', doc_id='85783'),

    # The Star
    Judgment(grade=0, keywords='star wars', doc_id='325553'),

    # Battlestar Galactica
]
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Each judgment also has a  vector, which can be used to train a model. The first featurefeatures

in the  vector could be made to correspond to the  BM25 score, the second to thefeatures title

 BM25 score, and so on. We haven’t populated the  vectors yet, however, sooverview features

they’ll currently be empty if you try to inspect them:

Let’s use the search engine to gather some features!

With our training data in place, we now need to learn what predicts relevance. For example, by
noting a pattern like "relevant results in our judgments correspond to strong title matches". How,
exactly, you define "title match" is what feature engineering is all about. In this section you’ll see
what, exactly, a feature is and how to use a modern search engine to engineer and extract these
features from a corpus.

For the purposes of LTR, a  is some numerical attribute of the document, the query, or thefeature
query-document relationship. Features are the mathematical building blocks we use to build a
ranking function. You’ve already seen a manual ranking function with features from Listing 10.2
: the keyword’s score in the  field is one such feature. As are the  and title release_year

 keyword scores.overview

Of course, the features you end up using could be more complex or domain-specific, such as
commute distance in job search, or some knowledge graph relationship between query and
document. Anything you can compute relatively quickly when a user searches might be a
reasonable feature.

Feature logging takes a judgment list and computes features for each labeled query-document
pair. If we computed the values of each component of  for the query Listing 10.2 social

 we would arrive at something like Table 10.2.network

10.3 Step 2 - feature logging and engineering

In: mini_judg_list[0].features
Out: []

q=title:(${keywords})^10 overview:(${keywords})^20 {!func}release_year^0.01
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A machine learning algorithm might examine feature values from Table 10.2 and converge on a
good ranking function. From just the data in Table 10.2, it seems such an algorithm might
produce a ranking function with a higher weight for the  feature and lower weights for thetitle

other features.

Before we get to the algorithms, however, we need to examine the feature logging workflow in a
production search system.

Modern search engines that support LTR, like Solr and Elasticsearch, help us store, manage, and
extract features. Let’s examine how Solr, in particular, performs this task.

Solr LTR tracks the features logged in a  - a list of named features. It’s crucial thatfeature store
we log features for training in a manner consistent with how the search engine will execute the
model. Much of the LTR plugin’s job is to help store and manage features and keep things
consistent.

As shown in , creating a feature store in Solr is a simple HTTP PUT. Here we createListing 10.4
three features: a title field relevance score , an overview field relevance score, title_bm25

, and the value of the  field. BM25 here corresponds to the BM25overview_bm25 release_year

based scoring defined in Chapter 3, Solr’s default method of scoring term matches in text fields
using term frequency and other index statistics.

Table 10.2 Features logged for the keywords  for relevant (grade=1) /m social network

irrelevant (grade=0) documents
Grade Movie title:(${keywords}) overview:(${keywords}) {!func}release_year

1 Social Network 8.243603 3.8143613 2010.0

0 #chicagoGirl 0.0 6.0172443 2013.0

0 Life As We Know It 0.0 4.353118 2010.0

0 The Cheyene Social 
Club

3.4286604 3.1086721 1970.0

10.3.1 Storing features in a modern search engine
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Listing 10.4 Creating three features for Learning to Rank.

The name of the feature

The feature store where the feature will be saved

A parametrized feature, taking the keywords (i.e. ), and searching thestar wars

title field

A second feature, searching a different field

A document-only feature, the  of the movierelease_year

The first two features are parameterized: they each take the search keywords (i.e. social
, ) and execute a search on the corresponding field. The final feature simplynetwork star wars

retrieves the release year of the movie (purely a document feature). Note the syntax used in 
 is simply a Solr query, letting you leverage the full power of Solr’s extensive Queryparams

DSL to craft features.

With features loaded into Solr, our next focus will be to log features for every row in our
judgment list. After we get this last bit of plumbing out of the way, we can then train a model
that can observe relationships between relevant and irrelevant document for each query.

For each unique query in our judgment list, we need to extract the features for the query’s graded
documents. For  in the mini judgment list above, we have one relevantsocial network

feature_set = [
    {
      "name" : "title_bm25", 
      "store": "movies", 
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "title:(${keywords})" 
      }
    },
    {
      "name" : "overview_bm25", 
      "store": "movies",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "overview:(${keywords})"
      }
    },
    {
      "name" : "release_year", 
      "store": "movies",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "{!func}release_year"
}}]

requests.put('http://aips-solr:8983/solr/tmdb/schema/feature-store',
             json=feature_set)

10.3.2 Logging features from our Solr corpus
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document ( ) and three irrelevant documents ( , , and ).37799 267752 38408 28303

An example of feature logging for the query  is shown in .social network Listing 10.5

Listing 10.5 Logging the values from our feature store for the docs present in our judgment
list for the query .social network

The feature store to execute and parameters to use when executing each feature

Relevant and irrelevant documents for the  querysocial network

Results

Each feature value logged for this movie for social network

The import syntax in  is the square brackets passed to  (field list). This syntax tellsListing 10.5 fl

Solr to add a computed field to each document response, containing the feature data, for the
specified feature store (here ). The  parameter stands for movies efi external feature information
and is used to pass query keywords (here ) and any additional query-timesocial network

information needed to compute each feature. Notice in the response, we retrieve each of the 4
documents we requested, along with every feature computed for that document.

With some mundane Python book-keeping (listing x.y), We can fill-in the features for the query 
 in our training set from this response. We end up with , a partiallysocial network Listing 10.6

filled out training set. Here, features are filled in for the query ; features aresocial network

still needed for the query star wars

logging_solr_query = {
 "fl": "id,title,[features store=movies efi.keywords=\"social network\"]", 
 'q': "id:37799 OR id:267752 OR id:38408 OR id:28303", 
 'rows': 10,
 'wt': 'json'
}

resp = requests.post('http://aips-solr:8983/solr/tmdb/select',
                     data=logging_solr_query)
resp.json()

'docs': [{'id': '38408',
  'title': 'Life As We Know It',
  '[features]': 'title_bm25=0.0,overview_bm25=4.353118,

  release_year=2010.0'}, 
 {'id': '37799',
  'title': 'The Social Network',
  '[features]': 'title_bm25=8.243603,overview_bm25=3.8143613,

  release_year=2010.0'},
 {'id': '28303',
  'title': 'The Cheyenne Social Club',
  '[features]': 'title_bm25=3.4286604,overview_bm25=3.1086721,

  release_year=1970.0'},
 {'id': '267752',
  'title': '#chicagoGirl',
  '[features]': 'title_bm25=0.0,overview_bm25=6.0172443,

  release_year=2013.0'}]}}
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Listing 10.6 The judgment list, with features appended for just the query social network

The judgment for movie "The Social Network" relative to query ,social network

including the logged feature values

An irrelevant document for the query  (note the low social network title_bm25

score)

We have yet to log features for the  judgmentsstar wars

In , as we might expect, the first feature value corresponds to the first feature in ourListing 10.6
feature store ( ); the second value to the second feature in our feature store (title_bm25

), and so on. We then repeat  for the query , log theoverview_bm25 Listing 10.6 star wars

corresponding graded documents, resulting in a fully logged training set as shown in Listing 10.7
.

Listing 10.7 The judgment list with features appended for both the queries  and star wars

.social network

[Judgment(grade=1,qid=1,keywords=social network,doc_id=37799,features=[

8.243603, 3.8143613, 2010.0],weight=1), 
 Judgment(grade=0,qid=1,keywords=social network,doc_id=267752,features=[

 0.0, 6.0172443, 2013.0],weight=1),
 Judgment(grade=0,qid=1,keywords=social network,doc_id=38408,features=[

 0.0, 4.353118, 2010.0],weight=1), 
 Judgment(grade=0,qid=1,keywords=social network,doc_id=28303,features=[

 3.4286604, 3.1086721, 1970.0], weight=1),
 Judgment(grade=1,qid=2,keywords=star wars,doc_id=11,features=[],

 weight=1), 
 Judgment(grade=1,qid=2,keywords=star wars,doc_id=1892,features=[],

 weight=1), 
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=54138,features=[],

 weight=1), 
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=85783,features=[],

 weight=1), 
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=325553,features=[],

 weight=1)] 

[Judgment(grade=1,qid=1,keywords=social network,doc_id=37799,

features=[8.243603, 3.8143613, 2010.0],weight=1),
 Judgment(grade=0,qid=1,keywords=social network,doc_id=267752,

 features=[0.0, 6.0172443, 2013.0],weight=1),
 Judgment(grade=0,qid=1,keywords=social network,doc_id=38408,

 features=[0.0, 4.353118, 2010.0],weight=1),
 Judgment(grade=0,qid=1,keywords=social network,doc_id=28303,

 features=[3.4286604, 3.1086721, 1970.0],weight=1),
 Judgment(grade=1,qid=2,keywords=star wars,doc_id=11,

 features=[6.7963624, 0.0, 1977.0],weight=1), 
 Judgment(grade=1,qid=2,keywords=star wars,doc_id=1892,

 features=[0.0, 1.9681965, 1983.0],weight=1),
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=54138,

 features=[2.444128, 0.0, 2013.0],weight=1),
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=85783,

 features=[3.1871135, 0.0, 1952.0],weight=1),
 Judgment(grade=0,qid=2,keywords=star wars,doc_id=325553,

 features=[0.0, 0.0, 2003.0],weight=1)]
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We have now logged features for query star wars

Just two queries with a few judgments per query isn’t that interesting, however. In this chapter,
we’ll use a judgment list with about a hundred movie queries, each with about 40 movies graded
as relevant / irrelevant. Code for loading and logging features for this larger training set
essentially repeats the Solr request shown in . We won’t repeat the lengthy code hereListing 10.7
(you can find it in the listing x.y). The end result of this feature logging looks just like Listing

, just created from a much larger judgment list.10.7

We’ll next move on to consider how to handle the problem of ranking as a machine learning
problem.

In this section we’re going to explore ranking as a machine learning problem. This will help us
understand how to apply existing, classic machine learning knowledge to our Learning to Rank
task.

The task of Learning to Rank is to look over many relevant / irrelevant training examples for a
query, and to then build a model to bring relevant documents to the top, and push irrelevant ones
to the bottom. Each training example doesn’t have much value by itself, but only in relation to
how its ordered alongside its peers in a query. Figure 10.2 shows this task, with two queries. The
goal is to find a scoring function that can use the features to correctly order results.

10.4 Step 3 - transforming LTR to a traditional machine learning
problem
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Figure 10.2 Learning to Rank is about placing each query’s result set in the ideal order, not predicting
individual relevance grades. That means we need to look at each query as a case unto itself.

Contrast LTR with a more classic  task: a task like predicting apoint-wise machine learning
company’s stock price as mentioned in Table 10.2 earlier. Here, we can evaluate the model’s
accuracy on each training example in isolation. We know, just by looking at one company, how
well we predicted that company’s stock price. Compare Figure 10.3 showing a point-wise task to
Figure 10.2. Notice in Figure 10.3 that the learned function attempts to predict the stock price
directly, whereas with LTR, the function’s output is only meaningful for ordering items relative
to their peers for a query.
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Figure 10.3 Point-wise Machine Learning tries to optimize predictions of individual points (such as a
stock price or the temperature). Search relevance is a different problem than point-wise prediction.
Instead we need to optimize a ranking of examples grouped by search query.

LTR appears to be a very different animal than point-wise machine learning. But most LTR
methods use clever alchemy to transmogrify ranking into a point-wise machine learning task like
stock price prediction.

We’ll take a look at one model’s method for transforming the ranking task in the next section by
exploring a popular LTR model named SVMRank.

At the core of LTR is the model: the actual algorithm that learns the relationship between
relevance / irrelevance and the features like , , etc. In this section,title_bm25 overview_bm25

we’ll explore one such model, SVMRank, first understanding what "SVM" even stands for, then
digging in to how it can be used to build a great, generalizable LTR model.

SVMRank transforms relevance into a binary classification problem.  simplyBinary Classification
means classifying items as one of two classes (like 'relevant' vs 'irrelevant'; 'adult' vs 'child'; 'cat'
vs 'dog') using the available features.

An  or  is one method of performing binary classification. While weSVM Support Vector Machine
won’t go in-depth into SVMs, you need not be a machine learning expert to follow the
discussion. Nevertheless, you might want to get a deeper overview of SVM’s from a book like 

 by  Luis  Ser rano  (Grokk ing  Machine  Learn ing
).https://www.manning.com/books/grokking-machine-learning

10.4.1 SVMRank: Transforming ranking to binary classification
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Intuitively an SVM finds the best, most generalizable line (or really hyperplane) to draw between
the two classes. If trying to build a model to predict whether an animal is a dog or cat, we might
look the heights and weights of known dogs or cats and draw a line separating the two classes as
shown in Figure 10.4.

Figure 10.4 SVM Example: Is an animal a dog or a cat? This hyperplane (the line) separates these two
cases based on the two features height and weight. Soon you’ll see how we might do something similar
to separate relevant and irrelevant search results for a query.

A good line drawn between the classes, or , attempts to minimize theseparating hyperplane
mistakes it makes in the training data (fewer dogs on the cat side and vice versa). We also want a
hyperplane that is , meaning that it will probably do a good job of classifyinggeneralizable
animals that weren’t seen during training. After all, what good is a model if it can’t make
predictions about new data? It’s not very AI-powered!

Another detail to know about SVMs is they can be sensitive to the range of our features. For
example, imagine if our height feature was millimeters instead of centimeters like in Figure 10.5.
It forces the data to stretch out on the x-axis, and the separating hyperplane looks quite different!

Figure 10.5 Separating hyperplane impacted by range of one of the features. This causes SVMs to be
sensitive to the range of features, and thus we need to normalize the features so one feature doesn’t
create undue influence on the model.
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SVMs work best when our data is . Normalization just means forcing features to anormalized
comparable range. We’ll normalize our data by mapping 0 to the mean of the feature values. So
if the average  is 1990, movies released in 1990 will by normalized to 0. We’llrelease_year

also map +1/-1 to one standard deviation above or below the mean. So if the standard deviation
of movie release years is  years, then movies in 2012 turn into a ; movies in 1968 turn into22 1.0

a . We can repeat this for  and  using those feature’s means-1.0 title_bm25 overview_bm25

and standard deviations in our training data. This helps makes features a bit more comparable
when finding a separating hyperplane.

With that brief background out of the way, could an SVM help us somehow separate relevant
from irrelevant documents? Even for queries it hasn’t seen before? Yes! That’s exactly what
SVMRank hopes to do. Let’s walk through how SVMRank works.

With LTR, we must reframe the task from ranking to a traditional machine learning task. In this
section, we’ll explore how SVMRank transforms ranking into a binary classification task suitable
for an SVM.

Before we get started, let’s inspect the fully logged training set from the end of step 2 for our two
favorite queries,  and . In this section, we’ll focus on just twostar wars social network

features (  and ) to help us explore feature relationships graphically.title_bm25 overview_bm25

Figure 10.6 shows these two features for every graded  and star wars social network

document, labeling some prominent movies from the training set.

Figure 10.6 Logged feature scores for  and  queriessocial network star wars

10.4.2 Transforming our LTR training data to binary classification
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We’re first going normalize each feature.  takes the logged output from Step 2 andListing 10.8
normalizes features into .normed_judgments

Listing 10.8 Normalize our logged LTR training set to a normalized one

Results

Unnormalized example, with raw title_bm25, overview_bm25, and release_year

Same example, normalized

You can see that the output from  shows first the logged BM25 scores for title andListing 10.8
overview (8.243603, 3.8143613), alongside the release year (2010). These features are then
normalized, where 8.243603  corresponds to 4.4829 standard deviations above thetitle_bm25

mean , and so on for each feature.title_bm25

We plot the normalized features in Figure 10.7. This looks very similar to Figure 10.6, with only
the scale on the each axis differing.

FIRST, NORMALIZE THE LTR FEATURES

means, std_devs, normed_judgments = normalize_features(logged_judgments)
logged_judgments[360], normed_judgments[360]

(Judgment(grade=1,qid=11,keywords=social network,doc_id=37799,

  features=[8.243603, 3.8143613, 2010.0],weight=1, 
 Judgment(grade=1,qid=11,keywords=social network,doc_id=37799,

   features=[4.482941696779275, 2.100049660821875, 0.8347155270825962],

   weight=1) 
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Figure 10.7 Normalized  and  graded movies. Each increment in the graph isstar wars social network

a standard deviation above or below the mean.

Next we’ll turn ranking into a binary classification learning problem to separate the relevant
from irrelevant results.

With normalized data, we’ve forced features to a consistent range. Now our SVM should not be
biased by features that just so happen to have very large ranges. In this section we’re ready to
transform the task into a binary classification problem, setting the stage for us to train our model!

SVM Rank uses a  transformation to reformulate LTR to a binary classificationpair-wise
problem.  simply means turning ranking into the task of minimizing out-of-order pairsPair-wise
for a query.

In the rest of this section, we’ll carefully walk through SVMRank’s pair-wise algorithm, outlined
in the psuedocode in . Before we do that, let’s discuss the algorithm at a high level.Listing 10.9

SECOND, COMPUTE THE PAIR-WISE DIFFERENCES
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This algorithm takes every query’s judgment, and compares it to every other judgment for that
same query. It computes the feature differences ( ) between every relevant andfeature_deltas

irrelevant pair for that query. When adding to , if the first judgment is morefeature_deltas

relevant than the second, it’s labeled with a  in  - and vice versa. In the+1 predictor_deltas

end, the algorithm builds a brand new training set from the old one: the  and feature_deltas

, which is more suitable to binary classification.predictor_deltas

Listing 10.9 Pseudocode for SVMRank training data transformation.

Store a label of +1 for 1 more relevant than 2

Store the feature deltas

Store a label of -1 for 1 less relevant than 2

Figure 10.9 plots the resulting  for the  and  datafeature_deltas social network star wars

from Figure 10.8, with some prominent pair-wise differences highlighted.

Figure 10.8 Pair-wise differences after SVMRank’s transformation for  and social network star wars

documents along with a candidate separating hyperplane.

foreach query in queries:
   foreach judged_document_1 in query.judgments:
      foreach judged_document_2 in query.judgments:
         if judged_document_1.grade > judged_document_2.grade:
            predictor_deltas.append(+1) 
            feature_deltas.append( judged_document_1.features -

              judged_document_2.features) 
         else if  judged_document_1.grade < judged_document_2.grade:
            predictor_deltas.append(-1) 
            feature_deltas.append( judged_document_1.features -

              judged_document_2.features) 
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You’ll notice the relevant minus irrelevant pair-wise deltas ( ) tend to be towards the upper right.+

Meaning relevant documents have a higher  and  when compared totitle_bm25 overview_bm25

irrelevant ones.

Ok, that’s a lot to digest! Fret not - baby steps! If we walk through a few examples carefully,
step-by-step, you’ll see how this algorithm constructs the data points in Figure 10.9. This
algorithm compares relevant and irrelevant documents for each query. So, first let’s compare two
documents ("Network" and "The Social Network") within the query , as insocial network

Figure 10.9.

Figure 10.9 Comparing "Network" to "The Social Network" for query social network

The features for "The Social Network" are:

The features for "Network" are:

We then insert the delta between "The Social Network" and "Network" in .Listing 10.10

Listing 10.10 Labeling "The Social Network" vs "Network" delta into feature_deltas

[4.483, 2.100]  # title_bm25 is 4.483 stddevs above mean, overview_bm25 is

2.100 stddevs above mean

[3.101, 1.443]  # title_bm25 is 3.101 stddevs above mean, overview_bm25 is

1.443 stddevs above mean

predictor_deltas.append(+1)
feature_deltas.append( [4.483, 2.100] - [3.101, 1.443]) # appends [

1.382, 0.657]
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Restating  in English, we might say, here is one example of a movie, "The SocialListing 10.10
Network", that’s more relevant than another, "Network" for this query .social network

Interesting! Let’s look at what makes them different! Of course "difference" in math means
subtraction, which we do here. Ah yes, after taking the difference we see "The Social Network"'s

 is 1.382 standard deviations higher than "Network"'s;  is 0.657title_bm25 overview_bm25

standard deviations higher. Indeed, note the  for "The Social Network - Network" in Figure 10.8+

showing the point [1.382, 0.657] amongst the deltas.

The algorithm would also note "Network" is less relevant than "The Social Network", as shown
in Figure 10.10.

Figure 10.10 Comparing "Network" to "The Social Network" for the query social network

Just as in , we capture in code this difference in relevance between these twoListing 10.9
documents. This time, however, in the opposite direction (irrelevant minus relevant). So no
surprise we see the same values, but in the negative.

In Figure 10.11, we move onto another relevant-irrelevant comparison of two documents for the
query , appending another comparison to the new training set.social network

predictor_deltas.append(-1)
feature_deltas.append([3.101, 1.443] - [4.483, 2.100] ) # [-1.382, -0.657]
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Figure 10.11 Comparing 'Social Genocide' to 'The Social Network' for the query social network

We show appending both directions of the comparison from Figure 10.11 in ,Listing 10.11
adding both a positive value (when the more relevant document is listed first) and a negative
value (when the less relevant document is listed first).

Listing 10.11 Adding "Social Genocide" and "The Social Network" to point-wise training
data

Once we iterate every pair-wise difference between documents matching the query social
 to create a point-wise training set, we move on to also logging differences for othernetwork

queries. Figure 10.12 shows differences for a second query, this time comparing the relevance of
documents matching the query .star wars

# Positive example
predictor_deltas.append(+1)
feature_deltas.append( [4.483, 2.100] - [2.234, -0.444]) # [2.249, 2.544]
# Negative example
predictor_deltas.append(-1)
feature_deltas.append([2.234, -0.444] - [4.483, 2.100]  ) # [-2.249, -2.544]
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Figure 10.12 Comparing 'Rogue One: A Star Wars Movie' to 'Star!' for the query 'star wars'. Now we’ve
moved on from  and have begun to look at patterns within another query.social network

Rogue One minus Star!

Star! minus Rogue One

We continue this process of calculating differences between feature values for relevant vs.
irrelevant documents, until we have calculated all the pairwise differences together for our
training and test queries.

You could see back in Figure 10.8 that the positive examples show a positive  delta,title_bm25

and possibly a slightly positive  delta. This becomes even more clear if if weoverview_bm25

calculate deltas over the full dataset of 100 queries, as shown in Figure 10.13.

# Positive example
predictor_deltas.append(+1)
feature_deltas.append( [2.088, 1.024] - [1.808, -0.444]) 
# Negative example
predictor_deltas.append(-1)
feature_deltas.append([1.808, -0.444] - [2.088, 1.024]) 
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Figure 10.13 Full training set with hyperplane separating relevant from irrelevant documents. We see a
pattern! Relevant documents have a higher  and perhaps a modestly higher .title_bm25 overview_bm25

Interesting! It is now very easy to visually identify that a larger Title BM25 score match is highly
correlated with a document being relevant for a query, and that having a higher Overview BM25
score is at least somewhat positively correlated.

It’s worth taking a step back and asking whether this formulation of ranking is appropriate for
your domain. Other LTR methods have their own ways of performing this trick of mapping
pair-wise comparisons into classification problems, but it’s important to get under the hood to
see how your chosen solution performs. Other methods, like LambdaMART, perform their own
tricks, but they may alternatively directly optimize for classic search relevance ranking metrics
like precision or Discounted Cumulative Gain (DGC).

Next up, we’ll cover how to train a robust model to capture the patterns in our fully-transformed
ranking data set.

Good machine Learning clearly requires a lot of data preparation! Luckily, you’ve arrived at the
section where we actually train a model! With the  and feature_deltas predictor_deltas

from the last section, we now have a training set suitable for training a classic machine learning
model. This model will let us predict when documents might be relevant: even for queries and
documents it hasn’t seen yet!

10.5 Step 4—Training (and testing!) the model
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We’ve seen how SVMRank’s separating hyperplane can classify and separate irrelevant
examples from the relevant ones. You might be thinking, "that’s cool, but our task was actually
to find 'optimal' weights for our features, not just to classify documents!". Let’s look at how to
actually  search results using this hyperplane!score

It turns out the separating hyperplane also gives us just what we need to learn optimal weights.
Any hyperplane is defined by the vector orthogonal to the plane. So when an SVM machine
learning library does it’s work, it actually gives us a sense of the weights that each feature should
have, as shown in Figure 10.14.

Figure 10.14 Full training set with candidate separating hyperplane, showing the orthogonal vector
defining the hyperplane. Note the orthogonal vector points in the direction of relevance.

Think about what this orthogonal vector represents. This vector points in the direction of
relevance! It says relevant examples are this way, and irrelevant ones are in the opposite
direction. This vector  points to  having a strong influence on relevance,definitely title_bm25

with some smaller influence from . This vector might be something like:overview_bm25

We used the algorithm in  to compute the deltas needed to perform classificationListing 10.9
between irrelevant / relevant examples. If we train an SVM on this data, as in , theListing 10.12
model gives us the vector defining the separating hyperplane.

10.5.1 Turning a separating hyperplane’s vector into a scoring function

[0.65, 0.40]
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Listing 10.12 Training a linear SVM with scikit learn

Create a Linear Model with sklearn

Fit to deltas using an SVM

The vector that defines the separating hyperplane

Results:

Listing 10.12 trains an SVM to separate the  (remember they’re  and  s)predictor_deltas +1 -1

using the corresponding  (the deltas in normalized , feature_deltas title_bm25

 and  features). The resulting model is a vector orthogonal to theoverview_bm25 release_year

separating hyperplane. As expected, it shows a strong weight on , a more modesttitle_bm25

one on , and a weaker weight on .overview_bm25 release_year

How does this model work as a ranking function? Let’s suppose the user types in the query 
. How might this model score the document "Star Trek II: The Wrath of Khan"wrath of khan

relative to the keywords  using this model? The unnormalized feature vectorwrath of khan

indicates a strong title and overview match for :wrath of khan

Normalizing it, each feature value is this many standard deviations above/below each feature’s
mean:

We simply multiply each normalized feature with its corresponding  value. Summing themcoef_

together, gives us a relevance score:

How would this model rank "Star Trek III: The Search for Spock" relative to "Star Trek II:
Wrath of Khan" for our query ? Hopefully not nearly as highly! Indeed itwrath of khan

doesn’t:

from sklearn import svm
model = svm.LinearSVC(max_iter=10000, verbose=1) 
model.fit(feature_deltas, predictor_deltas) 
model.coef_ 

array([[0.40512169, 0.29006365, 0.14451721]])

10.5.2 Taking the model for a test drive

[5.9217176, 3.401492, 1982.0]

[3.099, 1.825, -0.568]

(3.099 * 0.405) + (1.825 * 0.290) + (-0.568 * 0.1445) = 1.702
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The model seems to be getting what we suspect to be the right answer towards the top.

Kicking the tires on 1-2 queries helps us spot problems, but we’d prefer a more systematic way
of checking if the model is generalizable. After all, we want to sleep at night knowing search will
work on queries this model hasn’t seen yet!

One difference between LTR and classic machine learning is we usually evaluate queries, not
individual data points, to prove our model is effective. So we’ll perform a test/training split at the
query level. It will let us spot types of queries with problems. We’ll evaluate using a simple
precision metric, counting the proportion of results in the top N (with N=4 in our case) that are
relevant. You should choose the relevance metric best suited to your own use case.

First we will randomly put our queries into a test or training set, as shown in .Listing 10.13

Listing 10.13 Simple test/training split at the query level.

Place some queries in a training on test set

Place the judgments in either the training or test set based on their associated query
id

With training data split, we can perform the pairwise transform trick from Step 3. We can then
retrain on just the training data in .Listing 10.14

Listing 10.14 Train just on training data

[0.0,0.0,1984.0] # Raw Features
[-0.432, -0.444, -0.468] # Normalized features
(-0.432 * 0.405) + (-0.444 * 0.290) + (-0.468 * 0.1445) = -0.371

10.5.3 Validating the model

all_qids = list(set([j.qid for j in normed_judgments]))
random.shuffle(all_qids)
proportion_train=0.1

test_train_split_idx = int(len(all_qids) * proportion_train) 
test_qids=all_qids[:test_train_split_idx]
train_qids=all_qids[test_train_split_idx:]

train_data = []; test_data=[]
for j in normed_judgments: 
    if j.qid in train_qids:
        train_data.append(j)
    elif j.qid in test_qids:
        test_data.append(j)

train_data_features, train_data_predictors = pairwise_transform(train_data)

from sklearn import svm
model = svm.LinearSVC(max_iter=10000, verbose=1)
model.fit(train_data_features, train_data_predictors) 
model.coef_[0]
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Fit only to training data

Now we have held back the test data. Just like a good teacher, we don’t want to give the
"student" all the answers. We want to see if the model has learned anything beyond rote
memorization of training examples.

In  we evaluate our model using the test data. This code loops over every test queryListing 10.15
and ranks every test judgment using the model (  function omitted). It then computesrank

precision for the top 4 judgements.

Listing 10.15 Can our model generalize beyond the training data?

For each test query

Score each example and rank this query using the model

Compute precision for this query

On multiple runs, you should expect a precision of approximately 0.3 - 0.4 . Not bad for our first
iteration, where we just guessed at a few features ( , , and title_bm25 overview_bm25

)!release_year

In LTR, you can always look back at previous steps to see what might be improved. This
precision test is the first time we’ve been able to systematically evaluate our model, so it’s a
natural time to revisit the features to see how the precision might be improved in subsequent
runs. Go all the way back up to Step 2. See what examples are on the wrong side of the
separating hyperplane. For example, if you look at Figure 10.8, the 3rd Star Wars movie, "Return
of the Jedi", fits a pattern of a relevant document that doesn’t have a keyword match in the title.
In the absence of a title, what other features might be added, to help capture that a movie belongs
in a specific collection like Star Wars? Perhaps there is a TMDB movie property indicating this
we could experiment with?

def eval_model(test_data, model):

    tot_prec = 0
    num_queries = 0

    for qid, query_judgments in groupby(test_data, key=lambda j: j.qid): 
        query_judgments = list(query_judgments)

        ranked = rank(query_judgments, model) 

        tot_relevant = 0
        for j in ranked[:4]: 
            if j.grade == 1:
                tot_relevant += 1
        query_prec = tot_relevant/4.0
        tot_prec += query_prec
        num_queries += 1

    return tot_prec / num_queries
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For now, though, let’s take the model we just built and see how to deploy it to production.

In this section, let’s finally tell Solr about our model. Then we can see the fruit of our efforts:
actual search results!

Originally we presented our objective to be finding 'ideal' boosts for a manual ranking function
like the one in :Listing 10.2

This manual function indeed multiplies each feature by a weight (the boost), and sums the
results. But it turns out we actually don’t want Solr to multiply the  feature values. Insteadraw
we need the feature values to be normalized.

Luckily, Solr LTR lets us store a linear model along with feature normalization statistics. We
saved off the  and  of each feature, which Solr can use to normalize values formeans std_devs

any document being evaluated. We just need to provide this information to Solr when storing a
model, as we do in .Listing 10.16

10.6 Steps 5 and 6 - upload a model and search

q="title:(${keywords})^10 overview:(${keywords})^20

{{!func}}release_year^0.01"
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Listing 10.16 Uploading model to Solr with normalization and weights for each feature.

Feature store to locate the features

Which feature to execute before evaluating this model

How to normalize this feature before applying the weight

The weight of this feature in the model

Note that the model is associated with a feature store so it can lookup feature names to compute
them when evaluating the model in Solr.

Finally, we can issue a search using Solr’s LTR query parser in .Listing 10.17

PUT http://aips-solr:8983/solr/tmdb/schema/model-store
{
  "store": "movies", 
  "class": "org.apache.solr.ltr.model.LinearModel",
  "name": "movie_titles",
  "features": [
    {
      "name": "title_bm25", 
      "norm": {
        "class": "org.apache.solr.ltr.norm.StandardNormalizer", 
        "params": { 
          "avg": "1.5939970007512951", 
          "std": "3.689972140122766" 
        }
      }
    },
    {
      "name": "overview_bm25",
      "norm": {
        "class": "org.apache.solr.ltr.norm.StandardNormalizer",
        "params": {
          "avg": "1.4658440933160637",
          "std": "3.2978986984657808"
        }
      }
    },
    {
      "name": "release_year",
      "norm": {
        "class": "org.apache.solr.ltr.norm.StandardNormalizer",
        "params": {
          "avg": "1993.3349740932642",
          "std": "19.964916628520722"
        }
      }
    }
  ],
  "params": {
    "weights": {
      "title_bm25": 0.40512169, 
      "overview_bm25": 0.29006365,
      "release_year": 0.14451721
    }
  }
}
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Listing 10.17 Rank 60,000 documents with our model to search for harry potter

Execute our model over 60000 documents with the specified parameters

Results:

Notice in  the use of the term 'rerank'. As this implies, LTR usually happens as aListing 10.17
second phase on top of another query. In  there’s not an initial query. So whatListing 10.17
happens in this case? The model is applied to the documents in the order they were indexed
(essentially random). You can see from the results that the model seems effective at our query,
since it ranked a full 60,000 documents.

Usually, we don’t want to rerank over such a large set of results, though. We’d rather have a
quick, baseline match with simple scoring (such as BM25 or a simple edismax query), and
THEN choose to do a more expensive rerank leveraging LTR over a smaller number of candidate
documents.  demonstrates how to implement a baseline search, reranking the topListing 10.18
500 using our LTR model.

request = {
    "fields": ["title", "id", "score"],
    "limit": 5,
    "params": {
      "q": "{!ltr reRankDocs=60000 model=movie_model efi.keywords=\

      "harry potter\"}", 
    }
}

resp = requests.post('http://aips-solr:8983/solr/tmdb/select', json=request)

resp.json()["response"]["docs"]

{'id': '570724', 'title': ['The Story of Harry Potter'], 'score': 2.786719,

'_score': 2.786719}
{'id': '116972', 'title': ['Discovering the Real World of Harry Potter'],

'score': 2.5646381, '_score': 2.5646381}
{'id': '672', 'title': ['Harry Potter and the Chamber of Secrets'],

'score': 2.3106465, '_score': 2.3106465}
{'id': '671', 'title': ["Harry Potter and the Philosopher's Stone"],

'score': 2.293983, '_score': 2.293983}
{'id': '393135', 'title': ['Harry Potter and the Ten Years Later'],

'score': 2.2162843, '_score': 2.2162843}
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1.  

2.  

3.  

4.  

Listing 10.18 Rerank top 500 with  to search for  after the topmovie_model harry potter

results from the initial, quick ranking calculation.

Rerank top 500 of first pass Solr query

First pass Solr query - a simple edismax query

Phew, you’ve done it! As you can see, there’s many steps required to building a real-world LTR
model. Let’s close the loop with some thoughts on additional practical performance constraints
in LTR systems:

Model complexity - the more complex the model, the more accurate it  be. Amight
simpler model can be faster and easier to understand, though perhaps less accurate. Here
we’ve stuck to a very simple model (a set of linear weights). Imagine a complex
deep-learning model, how well would that work? Would the complexity be worth it?
Would it be as generalizable?
Rerank depth - the deeper you rerank, the more you might find additional documents that
could be hidden gems. On the other hand, the deeper you rerank, the more compute
cycles your model spends scoring results in your live search engine cluster.
Feature complexity - if you compute very complex features at query time, they might
help your model. However they’ll slow down evaluation and search response time.
Number of features - a model with many features might lead to higher relevance.
However it will also take more time to compute every feature on each document, so ask
yourself which features are crucial. Many academic LTR systems use hundreds. Practical
LTR systems usually boil these down to dozens. You will almost always see diminishing
returns as you continue adding additional features, so choosing the right cut-off threshold
on number of features is important.

Congrats! You’ve done one full cycle of Learning to Rank! Like many data problems though,
you’ll likely need to continue iterating on the problem. There’s always something new you can
do to improve.

10.7 Rinse and repeat

request = {
    "fields": ["title", "id", "score"],
    "limit": 5,
    "params": {
      "rq": "{!ltr reRankDocs=500 model=movie_model efi.keywords=\

      "harry potter\"}", 
      "qf": "title overview", 
      "defType": "edismax", 
      "q": "harry potter" 
    }
}

resp = requests.post('http://aips-solr:8983/solr/tmdb/select', json=request)
resp.json()["response"]["docs"]

10.6.1 A note on LTR performance
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1.  

2.  

3.  

On your second iteration, you might begin thinking through some of the following
considerations:

New and better features. Are there types of queries or examples on which the model
performs poorly? Such as  searches where there’s no  mention (title title star wars

is not mentioned in the title of "Return of the Jedi". What features could capture these?).
Could we incorporate lessons from chapters 1-9 to construct more advanced features?
Training data coverage of all features. The flip-side of more features is more training
data. As you increase features you’d like to try, you should be wondering whether your
training data has enough examples of relevant / irrelevant documents across each
different combination of your features. Otherwise your model won’t know how to
leverage features to solve the problem.
Different model architectures. We used a relatively simple model that expects features to
linearly correlate with relevance. Yet relevance can often be non-linear. A shopper
searching for iPads might expect the most recent Apple iPad release, except when they
add the word 'cable', as in 'iPad cable'. For that query, they might just want the cheapest
cable they can find.

In the next chapter, we will focus in on the foundation of good LTR: great judgments! This will
give you even greater confidence in your iterations, pushing the boundaries on automating this
process as your maturity increases.

Learning to Rank (LTR) builds generalized ranking functions that can apply across all
searches, using robust machine learning techniques
In Solr LTR, features generally correspond to Solr queries. Solr LTR lets you store and
log features for the purposes of training, and later applying, a ranking model.
We have tremendous freedom in what features might be used to generalize relevance.
Features could be properties of queries (like number of terms), properties of documents
(like a popularity), or relationship between queries and documents (like BM25 or other
relevance scores).
To do LTR well, and apply well known machine learning techniques, we typically
reformulate the relevance ranking problem into a classic machine learning problem.
SVMRank creates simple linear weights on normalized feature values, a good first step
on your LtR journey
To be truly useful, we need our model to generalize beyond what it’s learned! We can
confirm LTR can generalize by placing some training data into a test set. Then later, we
can evaluate the model’s generalizability by using test data.
Once a LTR model is loaded into your search engine, be sure to consider performance (as
in speed) tradeoffs with relevance. Real-life search systems require both!

10.8 Summary
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11
This chapter covers

In Chapter 10, we went step-by-step to train a Learning to Rank (LTR) model. Like walking
through the mechanics of building a car, we saw the underlying nuts and bolts of LTR model
training. In this chapter we treat the LTR training process as a black box. In other words, we step
away from LTR internals, instead treating LTR more like a self-driving car, fine tuning its trip
toward a final destination.

Recall that LTR relies on accurate training data in order to be effective. LTR training data
describes how users expect search results to be optimally ranked. The training data provides the
directions we input into our LTR self-driving car. As you’ll see, knowing what’s relevant based
on user interactions comes with many challenges. If we can overcome these challenges and gain
high confidence in our training data, though, then we can build : aAutomated Learning to Rank
system that regularly retrains LTR to capture the latest user relevance expectations.

As training data is so central to automated LTR, the challenges become not "what
model/features/search engine should we use?" but more fundamentally: "What do users want

", " ", and "from search? How do we turn that into training data? How do we know whether that
". By improving our confidence in the answers to these questions, wetraining data is any good?

can put LTR (re)training on autopilot, as shown in Figure 11.1

Building learning to rank training data
from user clicks

Automating Learning to Rank (LTR) retraining from user behavioral signals (clicks, etc.)
Transforming user signals into implicit LTR training data using click models
Why raw clicks alone don’t work well to build LTR training data
Compensating for the user’s tendancy to click farther up the search results page,
regardless of relevance
Handling documents with fewer clicks in the training data
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Figure 11.1 An Automated Learning to Rank system automatically learns and retrains from the user’s
signals. This helps build models based on what actual users consider relevant over a many queries.

To briefly walk through each step in the Automated LTR process:

Step 1 - Input New Destination: we input into the LTR system training data that
describes ideal relevance based on our understanding of user behavioral signals such as
searches, clicks, and conversions (covered in this chapter).
Step 2 - Drive To Destination: our LTR system retrains an LTR model using the
provided training data (as covered in Chapter 10).
Step 3 - Are We There Yet?: Is the model truly is helping users? And should future
models perhaps explore alternate routes? (covered in Chapter 12).

Automated LTR repeats steps 1-3 continuously to automatically optimize relevance. The search
team monitors Automated LTR’s performance and intervenes as needed. This is the maintenance
portion in Figure 11.1. During maintenance, we open the hood to explore new LTR features and
other model adjustments. Maintenance could also mean revisiting Step 1 to correct our
understanding of user behaviors to build more reliable, robust training data. After all, without
good training data, we could follow Chapter 10 to the tee, and still fail to satisfy our users.

This chapter starts our exploration of automated LTR by focusing on Step 1. To learn about Step
1, we’ll first define the task of deriving training data from user clicks. We’ll then spend this
chapter overcoming common challenges with search click data. At the end of this chapter, you’ll
be able to build models with reliable training data. Chapter 12 finishes our automated LTR
exploration by observing the model interact with live users. In particular, Chapter 12 teaches you
how to overcome search data’s most fundamental flaw:  we’ll never knowpresentation bias
whether certain results are relevant unless we give them a chance to be clicked!
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1.  

We mentioned that we need to overcome biases when creating LTR training data from clicks.
However, before we dig into those biases, we’ll explore the implications of using clicks instead
of manual labels for LTR training data. We’ll then take a naive, first stab at crafting training data
in this section, finally reflecting on what went well or not so well. This will set us up for the rest
of the chapter to explore debiasing these results is sections 11.2 and beyond.

Let’s lay a foundation for how to use behavioral signals as LTR training data. Then we’ll dive
into the nitty gritty of constructing reliable judgment list.

In chapter 10 we discussed LTR training data, referred to as  or . Thesejudgment lists judgments
are labels or  for how relevant potential search results are for a given query. In chapter 10grades
we used movies as our example. We labeled movies with either grade of 1 (relevant) or 0
(irrelevant), such as the example in .Listing 11.1

Listing 11.1 Labeling movies relevant or irrelevant

There are many techniques for generating judgment lists. This isn’t a comprehensive chapter on
judgment lists and their many applications - instead we are specifically focused on LTR training
data. For this reason, we only discuss judgments generated from user click signals, called implicit

. We call these judgments  because they derive from real user interactions withjudgments implicit
the search application as they search and click. This is in contrast to  judgments whereexplicit
raters directly label search results as relevant / irrelevant.

Implicit judgments are ideal for automating LTR for these reasons:

11.1 (Re)creating judgment lists from signals

11.1.1 Generating implicit, probabilistic judgments from signals

mini_judg_list=[
    # for 'social network' query
    Judgment(grade=1, keywords='social network', doc_id='37799'),
    [CA]# The Social Network
    Judgment(grade=0, keywords='social network', doc_id='267752'),
    [CA]# chicagoGirl
    Judgment(grade=0, keywords='social network', doc_id='38408'),
    [CA]# Life As We Know It
    Judgment(grade=0, keywords='social network', doc_id='28303'),
    [CA]# The Cheyenne Social Club

    # for 'star wars' query
    Judgment(grade=1, keywords='star wars', doc_id='11'),
    [CA]# Star Wars, A New Hope
    Judgment(grade=1, keywords='star wars', doc_id='1892'),
    [CA]# Return of the Jedi
    Judgment(grade=0, keywords='star wars', doc_id='54138'),
    [CA]# Star Trek Into Darkness
    Judgment(grade=0, keywords='star wars', doc_id='85783'),
    [CA]# The Star
    Judgment(grade=0, keywords='star wars', doc_id='325553'),
    [CA]# Battlestar Galactica
]
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1.  

2.  

3.  

Recency: we have ready access to user traffic. We can automate training today’s LTR
model on the latest user search expectations.
More data at less cost: setting up a task to capture explicit judgments, even with
crowdsourcing, is time consuming and expensive to do well at scale. Capturing
judgments from live users allows us to leverage the existing user base to do this work for
us.
Capturing real use cases: implicit judgments capture real users doing actual tasks with
your search app. Contrast this with the artificial setting of a lab where explicit raters think
carefully, perhaps unrealistically so, about artificial tasks.

However, clicks come with much more fuzziness. We don’t know why a user clicked on a given
search result. Further, users are not homogeneous, some will interpret one result as relevant,
while others think otherwise. Search interactions also contain biases that need to be overcome,
creating additional uncertainty around a model’s calculations, which we’ll discuss in great detail
in this chapter and the next.

For these reasons, instead of a binary judgment, click models create . Theprobabilistic judgments
grade represents the probability (between 0.0 to 1.0) that a random user would consider the result
to be relevant or not. As an example, a good click model might restate the judgments from 

 with something more like .Listing 11.1 Listing 11.2

Listing 11.2 Labeling movie query relevance probabilistically

Notice the Star Wars movies in  - the  has become quite a bit more interesting.Listing 11.2 grade

The original Star Wars movie now has a very high probability of relevance ( ). The sequel0.99

"Return of The Jedi" has a slightly lower probability. Other science fiction movies ("Star Trek
Into Darkness" and "Battlestar Galactica") have ratings a bit higher than , as likely the Star0

Wars fan might also enjoy these movies. "The Star" is completely unrelated - it’s a children’s
animated movie about the first Christmas - so it receives a low  relevance probability.0.01

mini_judg_list=[
    Judgment(grade=0.99, keywords='social network', doc_id='37799'),
    [CA]# The Social Network
    Judgment(grade=0.01, keywords='social network', doc_id='267752'),
    [CA]# chicagoGirl
    Judgment(grade=0.01, keywords='social network', doc_id='38408'),
    [CA]# Life As We Know It
    Judgment(grade=0.01, keywords='social network', doc_id='28303'),
    [CA]# The Cheyenne Social Club

    # for 'star wars' query
    Judgment(grade=0.99, keywords='star wars', doc_id='11'),
    [CA]# Star Wars, A New Hope
    Judgment(grade=0.80, keywords='star wars', doc_id='1892'),
    [CA]# Return of the Jedi
    Judgment(grade=0.20, keywords='star wars', doc_id='54138'),
    [CA]# Star Trek Into Darkness
    Judgment(grade=0.01, keywords='star wars', doc_id='85783'),
    [CA]# The Star
    Judgment(grade=0.20, keywords='star wars', doc_id='325553'),
    [CA]# Battlestar Galactica
]
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We just introduced the idea a relevance grade could be probabilistic, that is between 0-1. Now,
let’s consider how to apply the lessons from Chapter 10 to train a model using these fuzzier,
probabilistic judgments.

Generally, you might consider these options when training a model:

Quantize the grades - quite simply you can set arbitrary cut-offs before training to
convert the grades to an acceptable format. You might assign a grade > 0.75 as relevant
(or ). Anything less than 0.75 is considered irrelevant (or ). Other algorithms, like1 0

LambdaMART, accept a range of grades like 1 - 4, and these could have cutoffs as well,
such as assigning anything < 0.25 to a grade of 1, anything >= 0.25 but < 0.5 a grade of
2, and so on. With these algorithms, you could create 100 such labels, assigning 0.00 a
grade of 0, 0.01 a grade of 1, and so on until 1 is assigned to a grade of 100 prior to
training.
Just use the floating point judgments - the SVMRank algorithm from chapter 10
subtracted a more relevant item’s features from a less relevant item’s features (and vice
versa) and built a classifier to tell relevant from irrelevant. We did this with binary
judgments, but there would be nothing preventing us from also doing this with
probabilistic judgments. Here if "Return of The Jedi" (grade = 0.8) is considered more
relevant than "Star Trek Into Darkness" (grade = 0.2), then we simply note "Return of
The Jedi" as more relevant than "Star Trek Into Darkness" (labeling the difference as +1).
Then we perform the same pairwise subtraction we would perform from chapter 10,
subtracting features of "Star Trek Into Darkness" from those of "Return of The Jedi" to
create a full training example.

Retraining the model with judgments in this chapter would extensively repeat the code from
Chapter 10. We have included a full end-to-end LTR training example using the click model we
arrive at by the end of this chapter. To view this example, visit the Notebook entitled listing x.y
(as a reminder - see Appendix A for how to set up your environment).

Time to get back to the code and see our first click model!

Now that you see the judgments a click model generates, and how to use them to train a model,
next we’ll examine a first, naive, pass at a click model. After that, we’ll take a step back to focus
primarily on a more sophisticated, general purpose click model, finally exploring the core biases
inherent in processing search click signals. As we focus on a single click model to automate
LTR, we encourage you to read the book  by Chuklin, Markov, andClick Models for Web Search
de Rijke to see a broader selection of click models you could use.

We’ll return to the RetroTech dataset. This data conveniently comes bundled with user click
signals. We’ve also reverse-engineered from these signals the kind of raw session data you need
to build high-quality judgments. We’ll make use of the  library to perform tabularpandas

11.1.2 Training an LTR model using probabilistic judgments

11.1.3 Click-through Rate: Your First Click Model
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computations on session data.

In  we examine a sample search session for the movie "Transformers Dark of TheListing 11.3
Moon". This raw session information is your starting point, the bare minimum information
needed to develop a judgment list from user signals.

Listing 11.3 Examining a search session

Select sessions for query transformers dark of the moon

Examine a single search session shown to the user

Output:

Listing 11.3 corresponds to a single search session,  2, for query sess_id transformer dark

. This session includes the query , the rankedof the moon transformers dark of the moon

results seen by the user, and whether each result was clicked. These three elements (query, top N
results given to user, what was clicked) are the core ingredients a click model needs to do its
work.

Search sessions will frequently differ. Another session, even seconds later, could have a slightly
different ranking presented to the user. The search index might have changed or a new relevance
algorithm been deployed to production. We encourage you to retry  with another Listing 11.2

 to compare sessions.sess_id

Let’s consume this data into judgments using our first click model: simple Click-Through Rate.

QUERY='transformers dark of the moon'
query_sessions = sessions[sessions['query'] == QUERY] 
query_sessions[query_sessions['sess_id'] == 2] 

sess_id query                           rank    doc_id          clicked
2        transformers dark of the moon    0.0        47875842328        False
2        transformers dark of the moon    1.0        24543701538        True
2        transformers dark of the moon    2.0        25192107191        False
2        transformers dark of the moon    3.0        47875841420        False
2        transformers dark of the moon    4.0        786936817218    False
2        transformers dark of the moon    5.0        47875842335        False
2        transformers dark of the moon    6.0        47875841406        False
2        transformers dark of the moon    7.0        97360810042        False
2        transformers dark of the moon    8.0        24543750949        False
2        transformers dark of the moon    9.0        36725235564        False
2        transformers dark of the moon    10.0    47875841369        False
2        transformers dark of the moon    11.0    97363560449     False
2        transformers dark of the moon    12.0    400192926087    False
2        transformers dark of the moon    13.0    97363532149     False
2        transformers dark of the moon    14.0    93624956037     False
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Now that we understand the input, let’s build a simple click model. We’ll start simple to get
comfortable with the data, and then we can step back to see the flaws from our first pass. This
will allow us to think carefully about the quality of the generated judgments for Automated LTR
in the rest of this chapter.

Our first click model is Click-Through Rate.  or  is the number of clicksClick-Through Rate CTR
received on a search result divided by the number of times it appeared in search results. If a
result is clicked every single time the search engine returns the result, the CTR will be 1. If it’s
never clicked, CTR will be 0. Sounds simple enough - what could go wrong?

Let’s see CTR in action. We can look over every result for our query transformers dark of
 and consider clicks with respect to the number of sessions in which the  wasthe moon doc_id

returned.  shows a CTR computation and the resulting CTR value per document.Listing 11.4

Listing 11.4 Computing Click-Through Rate

Select sessions for query transformers dark of the moon

Sum all clicks for each product identifier ( )doc_id

Count the sessions that product occurs in

Determine the proportion of sessions that received clicks (CTR)

Display top clicked results

Output:

BUILDING JUDGMENTS FROM CLICK-THROUGH RATE

QUERY='transformers dark of the moon'
query_sessions = sessions[sessions['query'] == QUERY] 

click_counts = query_sessions.groupby('doc_id')['clicked'].sum() 
sess_counts = query_sessions.groupby('doc_id')['sess_id'].nunique() 
ctrs = click_counts / sess_counts 

ctrs.sort_values(ascending=False) 

doc_id          CTR
97360810042     0.0824
47875842328     0.0734
47875841420     0.0434
24543701538     0.0364
25192107191     0.0352
786936817218    0.0236
97363560449     0.0192
47875841406     0.0160
400192926087    0.0124
47875842335     0.0106
97363532149     0.0084
93624956037     0.0082
36725235564     0.0082
47875841369     0.0074
24543750949     0.0062
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1.  

2.  

In  we look over every session to sum the clicks per  computing Listing 11.4 doc_id

. We also count the number of unique sessions for that document in clicks_per_count

. Finally, we compute  by dividing . We seesess_counts ctrs click_count / sess_counts

that document  has the highest CTR and  the lowest.97360810042 24543750949

The snippet outputs the  according to the click model. That is, if our LTRideal search results
model did everything right, it would produce this exact ranking. Throughout this chapter and the
next, we’ll frequently visually display this ideal ranking to understand whether the click model
builds reasonable training data. We can see CTR’s rendered ideal for transformers dark of

 in Figure 11.2.the moon

Figure 11.2 Ideal search results according to click-through rate for "Transformers Dark Of The Moon".
Viewing a click model’s ideal search results lets us see where our LTR model will be steered.

Examining the results of Figure 11.2, a couple things jump out:

The CTR for our top result (The blu ray of the movie "Transformers: Dark of the Moon")
seems rather low (0.0824, only a little better than the next 0.0734 judgment). We might
expect the blu ray’s relevance grade to be much higher than other results.
The DVD for "Transformers: Dark of The Moon" doesn’t even show up. It sits far below
seemingly unrelated movies and secondary video games about the movie Dark of The
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2.  

1.  
2.  
3.  

4.  
5.  

Moon. We would expect the DVD to rank higher, maybe as high or higher than the Blu
Ray.

But perhaps  is just a weird query. Let’s repeat fortransformers dark of the moon

something completely unrelated. This time  in Figure 11.3.dryer

Figure 11.3 Ideal search results according to click-through rate for "Dryer". Here we note the strange
movie "The Independent" that perhaps isn’t actually relevant for this query?

In Figure 11.3 we see other odd looking results:

First two results are clothes dryers, this seems good
Following the clothes dryers are clothes dryer parts. Hmm OK?
A movie called "The Independent" shows up? This seems completely random. Why
would this be rated so highly?
Next there’s a washer accessory. Kind of related.
Finally, hair dryers, which, perhaps is another meaning of the word dryer

What do you think of the judgments produced by CTR? Think back to what you learned in
Chapter 10. Remember this is the foundation, the very target, of your LTR model. Do you think
they would lead to a good LTR model that would ultimately succeed if put into production?

We also encourage you to ask yourself a more fundamental question: how could we even tell if a
judgment list is good? Our subjective interpretation could be as flawed as the data in a click
model! We’ll consider this in more depth in Chapter 12. For this chapter, we’ll let our instincts
guide us to possible issues.
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1.  
2.  

3.  

1.  

2.  

We’ve seen so far that we can create probabilistic judgments - those with grades between 0-1 -
simply by dividing the number of clicks on a product by the number of times that product is
returned by search. The output, however, seemed to be a bit wanting as it included movies
actually unrelated to the "Transformers" franchise. We also saw a movie placed in the search
results for !dryer

It turns out search click data is full of biases. Here we’ll briefly define what we mean by 'bias',
before going step-by-step to explore each of these biases in the RetroTech click data.

With click models, a  is a reason raw user click data can have nothing to do with thebias
relevance of search results. Instead biases define how clicks (or lack of clicks) reflect user
psychology, search user interface design, or noisy data. We separate biases into two broad
groups.  and  biases. Algorithmic biases are biases inherent in theNon algorithmic algorithmic
ranking, display, and interaction with search results. Non algorithmic biases occur for reasons
only indirectly related to search ranking.

Algorithmic biases can include:

Position Bias: Users click on higher ranked results more than lower ranked results
Confidence Bias: Documents with little signal data influence the judgments the same as
documents with much more data
Presentation Bias: If search never surfaces results, users never click them. So the click
model won’t know whether they’re relevant!

Non-algorithmic biases, on the other hand, are biases like:

Attractiveness Bias: Some results appear attractive and generate clicks (perhaps due to
better images or wording selection), but turn out to be spammy or just irrelevant
Performance Bias: Users give up on slow search, get distracted, and end up not clicking
anything

This book is  Search after all, so we will focus our discussion on  biasesAI-Powered algorithmic
in search clickstream data. But, of course, non-algorithmic biases matter too! Search is a
complex ecosystem that goes beyond relevance ranking. If results are frequently clicked, but
follow on actions like sales or other conversions don’t occur, it might not quite be a ranking
problem, but perhaps you have a problem with spammy products. Or you might have an issue
with the product pages or checkout process. You may find yourself asked to improve 'relevance'
when the limiting factor is actually the user experience, the content, or the speed of search. For
more, we recommend the article "An Introduction to Search Quality" by Max Irwin (

)https://opensourceconnections.com/blog/2018/11/19/an-introduction-to-search-quality/

As we explore additional click models, we’ll cover position bias and confidence bias in the rest
of this chapter. Presentation bias will be covered in Chapter 12. For an additional, comprehensive

11.1.4 Common biases in judgments
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1.  

2.  

3.  

perspective on overcoming biases, we recommend the paper Click Probability, Certainty and
Context: A practical Bayesian approach to deriving search relevance judgments from web

 by René Kriegler.tracking

Now that we’ve reflected on our first click model, let’s work to overcome the first bias.

In the previous section, we saw our first click model in action: simple Click-Through Rate. This
divided the number of times a product was clicked in search by the number of times it was
returned in the top results. We saw that this was quite a flawed approach, noting numerous
reasons this could be biased. It’s time to begin tackling those issues!

Let’s work hands-on with a click model designed to overcome position bias, often the first bias
click models work to overcome.

Position bias is present in of most search systems. If users are shown search results, they tend to
prefer highly ranked search results over lower ones - even when those lower results are in fact
more relevant. Joachims, et. al in their paper Evaluating the Accuracy of Implicit Feedback from

 (Clicks and Query Reformulat ions in Web Search
) discuss several reasonshttps://www.cs.cornell.edu/people/tj/publications/joachims_etal_07a.pdf

for position biases to exist:

Trust bias - users trust the search engine must know what it’s doing, so they interact with
higher results more
Scanning behaviors - users examine search results in specific patterns, such as
top-to-bottom, and often don’t explore everying in front of them
Visibility - higher ranked results are likely to be rendered in the users screen, so users
need to scroll to see the remaining results

With these factors in mind, let’s see if we can detect position bias in the RetroTech sessions.

How much position bias exists in the sessions in the RetroTech dataset? If we can quantify this,
then we can consider how exactly to remedy this issue. Let’s assess the bias quickly before we
consider a new click model for overcoming these biases.

By looking across all sessions, across all queries, we can compute an average CTR per rank. This
will tell us how much position bias exists in the RetroTech click data. We do this in Listing 11.5

11.2 Overcoming Position Bias: The Search Engine Returned it
higher, it must be better!

11.2.1 Defining Position Bias

11.2.2 Position bias in RetroTech data

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

257

https://www.cs.cornell.edu/people/tj/publications/joachims_etal_07a.pdf
https://livebook.manning.com/#!/book/ai-powered-search/discussion
https://livebook.manning.com/#!/book/ai-powered-search/discussion


Listing 11.5 Click-through rate per rank in search sessions across all queries

Total number of sessions

Total clicks per position per session

Output:

You can see in  that users click higher positions more. The CTR of results at Listing 11.5 rank=0

is 0.25, followed by  at 0.143 and so on.rank=1

Further, we can see position bias when we compare the CTR judgments from earlier to the
typical ranking for each product in a query. If position bias is present, then our judgment’s ideal
ranking will end up resembling the typical ranking shown to users. We can analyze this by
averaging the rank of each document over every session to see where they appear.

In , we show the typical search results page for Listing 11.6 transformers dark of the moon

sessions.

Listing 11.6 Examining rank of documents for transformers dark of the moon

Select sessions for transformers dark of the moon

Take the average displayed position of each product in these sessions

Output:

num_sessions = len(sessions['sess_id'].unique()) 
global_ctrs = sessions.groupby('rank')['clicked'].sum() / num_sessions 
global_ctrs

rank
0.0     0.249727
1.0     0.142673
2.0     0.084218
3.0     0.063073
4.0     0.056255
5.0     0.042255
6.0     0.033236
7.0     0.038000
8.0     0.020964
9.0     0.017364
10.0    0.013982

QUERY='transformers dark of the moon'
query_sessions = sessions[sessions['query'] == QUERY] 

avg_rank = query_sessions.groupby('doc_id')['rank'].mean() 

avg_rank.sort_values(ascending=True)
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In , some documents, like  and  historically occurListing 11.6 24543701538 47875842328

towards the top of the search results for this query. They will simply get clicked more due to
position bias. The typical results page, shown in Figure 11.5, overlaps quite a lot with the CTR
ideal results in Figure 11.2.

doc_id           mean historical rank
47875842328      0.9808
24543701538      1.8626
25192107191      2.6596
47875841420      3.5344
786936817218     4.4444
47875842335      5.2776
47875841406      6.1378
97360810042      7.0130
24543750949      7.8626
36725235564      8.6854
47875841369      9.5796
97363560449     10.4304
93624956037     11.3298
97363532149     12.1494
400192926087    13.0526
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Figure 11.4 Typical search result page for  query. Notice the overlaptransformers dark of the moon

of irrelevant movies like "The A team" and "Fast Five". Also note the high ranking of the Wii game.
These explain why the CTR click model seems to erroneously think these are relevant.

Unfortunately, CTR is primarily influenced by position bias. Users click on the odd movies in
Figure 11.4 because the search engine returns them highly for this query, not because they are
relevant. If we train an LTR model just on CTR, we would be asking the LTR model to optimize
for what users already see and interact with.

We must account for position bias when automating LTR. Next let’s see how we could overcome
position bias in a more robust click model that compensates for position bias.
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You’ve seen the harm position bias can do in action! If we just use clicks directly, we will just
train our LTR model to reinforce the ranking already shown to users. It’s time to introduce a
click model that can overcome position bias. We’ll start by discussing a key concept to modeling
position bias, that of an "examine". We’ll then introduce one particular click model that uses this
"examine" concept to adjust raw clicks to overcome position bias.

In our first attempt with click-through rate, we didn’t  think about how users scan searchreally
results. The user likely considered only a few results - biased by position - finally deciding to
click one or two. If we can capture which results users consciously consider before clicking, we
might be able to overcome position bias. Click models do exactly this by defining the concept of
an . We’ll explore this concept before building a click model that overcomes positionexamine
bias.

What is an ? You may be familiar with  - a UI element rendered on theexamine impressions
visible part of a user’s screen. In click models, we consider instead an , the probability aexamine
search result was actually consciously considered by the user. As we know, users often fail to
notice something right in front of their eyes. You may have even been that user! Figure 11.6
captures this concept, contrasting impressions with examines.

Figure 11.5 Impressions are whatever gets rendered in the viewport (the monitor shaped square) while
examines are what the the user actually consider (the results with eyeballs adjacent). Modeling what
users actually examine helps correctly account for how users interact with search results. Every click
model does this differently.

11.2.3 A Click Model that Overcomes Position Bias: Simplified Dynamic
Bayesian Network

HOW CLICK MODELS OVERCOME POSITION BIAS WITH AN "EXAMINE" EVENT
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You can see in Figure 11.5, the user fails to notice the Nintendo game in the 2nd position - even
though it’s being rendered on their monitor. If the user didn’t examine it, a click model shouldn’t
penalize the Nintendo Game’s relevance.

Why does tracking examines help overcome position bias? Examines are how a click model
understands position bias. Another way of saying "position bias" is "we think whether users
examine search results depends on the position." So modeling examines right is a core activity of
most click models. Some click models, like the  (or PBM) attempt toPosition-Based Model
determine an examine probability per position across all searches. Others, like the Cascading

, or as we’ll see soon, the  models, assume that if a result wasModel Dynamic Bayesian Network
above the last click on the search page, it likely was examined.

For most click models, the top position usually has a higher examine probability than lower ones.
This allows click models to adjust for clicks correctly. Items examined frequently and clicked are
rewarded, and seen as more relevant. Those examined but not clicked are seen as less relevant.

To make this more concrete, let’s dive deeper into one of those Dynamic Bayesian Network click
models to see how it overcomes position bias.

It’s time to get back to the algorithms! We discussed how a click model can overcome position
bias by modeling the concept of an examine. Each click model defines this concept differently,
and you’ll next to see how one popular click model solves this problem. That will complete our
position bias discussion and set us up to close the chapter understanding the final problem we’ll
discuss: confidence bias.

A  (or ) is a slightly less accurate version of theSimplified Dynamic Bayesian Network SDBN
more complex  click model (or ). These click models make theDynamic Bayesian Network DBN
assumption that, within a search session, the probability a user examined a document depends
heavily on whether it was positioned at or above the lowest clicked document.

SDBN’s algorithm first marks the last click of each session, and then considers every document
at or above this last click as examined. Finally, it computes a relevance grade by simply dividing
the total clicks on a document by its total examines. We effectively get a kind-of dynamic CTR,
tracking per session when users likely examined a result, and carefully using this to account for
how users evaluated it’s relevance.

Let’s follow this algorithm step-by-step. We will first mark the last click of each session in 
.Listing 11.7

DEFINING SIMPLIFIED DYNAMIC BAYESIAN NETWORK
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Listing 11.7 Mark which results were examined in each session

Select all sessions for query 'dryer'

Compute last_click_per_session, the max rank where clicked is  per sessionTrue

Mark the last click rank in each session

Set every position at or above last click to  (otherwise its )True False

Examine session 3 to observe which positions are considered examined

Output (truncated):

In  we find the max rank where  is true by storing it in Listing 11.7 clicked

. We then mark positions at or above  aslast_click_per_session last_click_rank

examined in our sessions for , as you can see in the output for .dryer sess_id=3

With every session updated with examines set to True/False, we now sum the total clicks &
examines counts per document across all sessions in .Listing 11.8

Listing 11.8 Sum clicks and examines per doc_id for this query

Total number of clicks and examines per product for this query

Output (truncated):

QUERY='dryer'
sdbn_sessions = sessions[sessions['query'] == QUERY].copy().set_index(
[CA]'sess_id') 
last_click_per_session = sdbn_sessions.groupby(['clicked', 'sess_id'])[
[CA]'rank'].max()[True] 
sdbn_sessions['last_click_rank'] = last_click_per_session 
sdbn_sessions['examined'] = sdbn_sessions['rank'] <= sdbn_sessions[
[CA]'last_click_rank'] 

sdbn_sessions.loc[3] 

sess_id    query   rank    doc_id          clicked last_click_rank    examined
3       dryer   0.0     12505451713     False   9.0             True
3       dryer   1.0     84691226727     False   9.0             True
3       dryer   2.0     883049066905    False   9.0             True
3       dryer   3.0     48231011396     False   9.0             True
3       dryer   4.0     74108056764     False   9.0             True
3       dryer   5.0     77283045400     False   9.0             True
3       dryer   6.0     783722274422    False   9.0             True
3       dryer   7.0     665331101927    False   9.0             True
3       dryer   8.0     14381196320     True    9.0             True
3       dryer   9.0     74108096487     True    9.0             True
3       dryer   10.0    74108007469     False   9.0             False
3       dryer   11.0    12505525766     False   9.0             False
3       dryer   12.0    48231011402     False   9.0             False

sdbn = sdbn_sessions[sdbn_sessions['examined']].groupby('doc_id')[
[CA]['clicked', 'examined']].sum() 
sdbn
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In ,  filters only to examinedListing 11.8 sdbn_sessions[sdbn_sessions['examined']]

rows. Then, per , we compute the total  and  counts. You can see somedoc_id clicked examined

results like  clearly were examined a lot with relatively few clicks fromdoc_id=36172950027

users.

Finally, we finish the SDBN algorithm in  by computing clicks over examines.Listing 11.9

Listing 11.9 Compute final SDBN grades

Compute  as the proportion of clicks over examinesgrade

Output (truncated):

In the output of , we see document  is seen as most relevant, with aListing 11.9 856751002097

grade of  or 133 clicks out of 323 examines.0.4118

Let’s revisit our two queries to see how the ideal results now look for  and dryer transformers

. Figure 11.7 shows results for , with Figure 11.8 showing dark of the moon dryer

transformers dark of the moon

doc_id         clicked examined
12505451713    355.0   2707.0
12505525766    268.0   974.0
12505527456    110.0   428.0
14381196320    217.0   1202.0
36172950027    97.0    971.0
36725561977    119.0   572.0
36725578241    130.0   477.0
48231011396    166.0   423.0
...

sdbn['grade'] = sdbn['clicked'] / sdbn['examined'] 

sdbn = sdbn.sort_values('grade', ascending=False)

doc_id          clicked examined    grade
856751002097    133.0   323.0       0.411765
48231011396     166.0   423.0       0.392435
84691226727     804.0   2541.0      0.316411
74108007469     208.0   708.0       0.293785
12505525766     268.0   974.0       0.275154
36725578241     130.0   477.0       0.272537
48231011402     213.0   818.0       0.260391
12505527456     110.0   428.0       0.257009
...
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Figure 11.6 Ideal search results for query  according to SDBN. Notice how SDBN seems to zero indryer

more on results that have more to do with washing clothes.
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Figure 11.7 Ideal search results for query  according to SDBN. We’vetransformers dark of the moon

now surfaced the DVD, blu ray movie, and CD soundtrack.

Subjectively examining Figure 11.7 and 11.8, both sets of judgments appear more intuitive than
the CTR judgments. In our  example, the emphasis appears to be on washing clothes.dryer

There’s some accessories (such as the dryer balls) that score roughly the same as the dryers
themselves.

For , we note the very high grade for the blu-ray movie. Wetransformers dark of the moon

also see the DVD and CD soundtrack ranking higher than other secondary "Dark Of The Moon"
items such as video games. Somewhat oddly, the soundtrack CD is ranked higher than the movie
DVD, perhaps we should look into this more.

Of course, as we’ve said earlier, we’re using our subjective sense for now. In Chapter 12, we’ll
think more objectively about how we might evaluate judgment quality.

Nevertheless, with position bias more under control, we’ll move on to fine tune our judgments to
handle another crucial bias you’ll need to overcome when using a click model to automate LTR:
confidence bias.

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

266

https://livebook.manning.com/#!/book/ai-powered-search/discussion
https://livebook.manning.com/#!/book/ai-powered-search/discussion


In the game of baseball, a player’s batting average tells us the proportion of hits they get for
every at bat. A great professional player has a batting average > 0.3. Consider, however, a lucky
little league baseball player stepping up to the plate for their first at-bat, getting a hit. Their
batting average is technically 1.0! We can conclude, then, that this young child is a baseball
prodigy, and will certainly have a great baseball career. Right?

Not quite! In this section, we’re going to explore the relevance side of this lucky little leaguer.
What do we do with results that, perhaps simply out of luck, have been examined only a few
times, each resuting in a click? These should get a grade of 1.0, right? Indeed, we’ll see this
problem in our data! With this problem definition in place, we can then work on solving the
issue.

Let’s look at the data to see where low confidence data points are biasing the training data. Then
we’ll see how we can compensate for low confidence issues in the SDBN dataset. To define the
problem, let’s take time to look at SDBN results for  andtransformers dark of the moon

another, rarer query to see common low-confidence situations.

If you recall, it was a bit suspicious that the soundtrack CD for the "Transformers Dark of The
Moon" ranked so highly according to SDBN. When we examine the raw data underlying the
rankings, we can see a possible problem. In , we reconstruct the SDBN data for Listing 11.10

 to debug this issue, combining Listings 11.7-11.9 into atransformers dark of the moon

single code snippet.

Listing 11.10 Recomputing SDBN statistics for transformers dark of the moon

Select  search sessionstransformers dark of the moon

Recompute SDBN clicks, examines, and grades as per Listings 11.7-11.9

11.3 Handling Confidence Bias: not upending your model from a
few lucky clicks

11.3.1 The Low Confidence Problem in RetroTech Click Data

QUERY='transformers dark of the moon'
sdbn_sessions = sessions[sessions['query'] == QUERY].copy().set_index(
[CA]'sess_id') 

last_click_per_session = sdbn_sessions.groupby(['clicked', 'sess_id'])
[CA]['rank'].max()[True] 
sdbn_sessions['last_click_rank'] = last_click_per_session 
sdbn_sessions['examined'] = sdbn_sessions['rank'] <= sdbn_sessions[
[CA]'last_click_rank'] 
sdbn = sdbn_sessions[sdbn_sessions['examined']].groupby('doc_id')[
[CA]['clicked', 'examined']].sum() 
sdbn['grade'] = sdbn['clicked'] / sdbn['examined'] 

sdbn = sdbn.sort_values('grade', ascending=False)
sdbn
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Output (truncated):

From the output of , note the top result, the Blu-ray movie ( ),Listing 11.10 doc_id=97360810042

has far more examines (642) than the soundtrack CD (  with 129doc_id=400192926087

examines). The Blu-ray’s grade is more reliable, given it has had more opportunities to receive
clicks. It’s unlikely to be dominated by noisy, spurious clicks. The CD, on the other hand, has far
fewer examines. Shouldn’t the Blu-ray’s relevance grade be weighed higher, given it’s a more
reliable data point compared to the CD with more limited data?

Typically this situation is even starker. Consider the query . You’ll note this is ablue ray

common misspelling of . As a common mistake, it likely mixes documents with ablu-ray

modest number of examines with documents receiving very few.

In  we compute the SDBN statistics for .Listing 11.11 blue ray

Listing 11.11 SDBN judgments for a typical torso or long-tail query with little click data to
build judgments from.

Randomly sample a few sessions to simulate a typical long-tail case

Recompute SDBN clicks, examines, and grades as per Listings 11.7-11.9

Output (truncated):

doc_id          clicked examined    grade
97360810042     412.0   642.0       0.641745
400192926087    62.0    129.0       0.480620
97363560449     96.0    243.0       0.395062
97363532149     42.0    130.0       0.323077
93624956037     41.0    154.0       0.266234
47875842328     367.0   1531.0      0.239713
...

QUERY='blue ray'

sdbn_sessions = sessions[sessions['query'] == QUERY]
sdbn_sessions = sdbn_sessions[sdbn_sessions['sess_id'] < 50050] 
sdbn_sessions = sdbn_sessions.set_index('sess_id')

last_click_per_session = sdbn_sessions.groupby(['clicked', 'sess_id'])[
[CA]'rank'].max()[True] 
sdbn_sessions['last_click_rank'] = last_click_per_session 
sdbn_sessions['examined'] = sdbn_sessions['rank'] <=
[CA]sdbn_sessions['last_click_rank'] 
sdbn = sdbn_sessions[sdbn_sessions['examined']].groupby('doc_id')[
[CA]['clicked', 'examined']].sum() 
sdbn['grade'] = sdbn['clicked'] / sdbn['examined'] 

sdbn = sdbn.sort_values('grade', ascending=False)
sdbn
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Looking at the output of  we see something unsettling. Like the most extreme caseListing 11.11
of our lucky little league baseball player, the most relevant result, doc , receives a600603132872

grade of 1 (perfectly relevant) after being examined by only one user! This grade of 1 trumps the
next result, which has a grade of 0.411 based on 34 examines. When you consider doc 

 is a set of Blu-ay cases and  is a Blu-ray player, this feels more600603132872 827396513927

troubling. Our subjective interpretation might rank the player above the cases. Shouldn’t the fact
that the second result was examined much more count for something?

What we’ve seen in these examples is  - when a judgment list has many gradesconfidence bias
based on statistically insignificant, spurious events. We say these spurious events with few
examines have low , whereas those with more examines provide a higher level ofconfidence
confidence. No matter your click model, you’re most likely not working at Google where user
search click traffic abounds. You likely have many situations where queries have only a modest
amount of traffic. To automate LTR, you’ll need to adjust your training data generation to
account for the confidence you have in the data.

Now that you’ve seen the impact of low confidence data, we can move onto some solutions to
apply when building your click model.

We’ve just seen a few issues created by valuing low confidence data too highly. Without
adjusting your models based on your confidence in the data, you won’t be able to build a reliable
Automated LTR system. We could just filter these low-confidence examples out, but can we
perhaps do something smarter? We’ll discuss an approach to preserving all the click-stream data
in this section as we introduce the concept of beta distributions. But first, let’s discuss why using
all data is preferred over simply filtering out the low-confidence examples.

In our click model, should we just remove the low-confidence examples? Let’s consider why we
don’t advocate for that, before taking a step back to a more mature solution. We can then finish
off strong with a confidence-adjusted SDBN that helps us maximally leverage all of our training
data.

Filtering training data, such as below some minimum threshold of examines, reduces the amount

doc_id          clicked examined    grade
600603132872    1.0        1.0         1.000000
827396513927    14.0    34.0        0.411765
25192073007     8.0     20.0        0.400000
885170033412    6.0     19.0        0.315789
600603141003    8.0     26.0        0.307692
24543672067     8.0     27.0        0.296296
813774010904    2.0     7.0         0.285714
...

11.3.2 Using a Beta Prior to Model Confidence Probabilistically

SHOULD WE FILTER OUT LOW CONFIDENCE JUDGMENTS?
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of training data you have. Even with a reasonable threshold, documents for a query are typically
examined on a power law distribution. Users examine some documents very frequently, while
examining the vast majority very infrequently. A threshold can thus remove too many good LTR
examples, and cause an LTR model to miss important patterns (remember you’re probably not
Google!). Even with a threshold, you would be left with the challenge of how to weigh
medium-confidence examples against high confidence ones, such as the transformers dark

 query from earlier.of the moon

Instead of a hard cutoff, we advocate for weighing examples based on our confidence in the data.
We will do this using a beta distribution prior on the computed relevance grades, we’ll then
zoom out to apply this solution to fix our SDBN click model judgments.

Beta distributions help us draw conclusions from our clicks and examines based on probabilities
instead of just biased occurences. However, before we dive straight into using the beta
distribution for judgments, let’s first examine the usefulness of a beta distribution using a fun and
more intuitive example: baseball statistics.

In baseball, a batting average of 0.295 for a player means that when this player goes to bat,
there’s roughly a 29.5% chance they will get a hit. But if we wanted to know "What’s the batting
average for that player batting in Fenway Park in September on rainy days", we’d probably have
very little information to go on. The player may have only batted in those conditions a handful of
times. Maybe they made 2 hits out of 3 tries in those conditions. So we would conclude their
batting average in these cases is  or 0.67. We know by now this conclusion would be a2/3

mistake: Do we really think, based on only 3 chances to bat, we can conclude the player has an
improbably high 66.7% chance of making a hit? A better way would be to use the 0.295 general
batting average as an initial belief, moving slowly away from that assumption as we gradually
gain more data on "Fenway Park in September on rainy days" at bats.

The  is a tool used to manage beliefs. It turns a probability, like batting average,beta distribution
or judgment grade, into two values,  and  that represent that probability as a distribution. The a b a

and  values can be interpreted as:b

a, the successes: the number of at bats with hits we’ve observed, the number of examines
with clicks
b, the failures: the number of at bats without hits we’ve observed, the number of
examines without clicks

With the beta distribution, the property  holds, where  is the initial pointmean = a / (a+b) mean

value like a batting average. Given a , notice we can find many  and  values that satisfy mean a b

USING THE BETA DISTRIBUTION TO ADJUST FOR CONFIDENCE
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. After all  as does mean = a / (a+b) 0.295 = 295 / (295 + 705) 0.295 = 1475 / (1475

 and so on. Yet each represents a different beta distribution. Keep this property in mind+ 3525)

as we move along.

Let’s put these pieces together to see how beta distribution prevents us from jumping to
conclusions on spurious click (or batting) data.

We could declare our initial belief about any document’s relevance grade as . This is0.125

similar to declaring the baseball player’s batting average to be  as our initial belief of their0.295

performance. We can use the beta distribution to update the initial belief for specific cases like
"Fenway Park in September on rainy days" or a specific document’s relevance for a search
query.

The first step is to pick an  and  that captures our initial belief. For our relevance case, wea b

could choose many a’s and b’s that satisfy . Perhaps we choose 0.125=a/(a+b). a=2.5,b=17.5

as our relevance belief on documents with no clicks, Graphing this, we would see the distribution
in Figure 11.9.

Figure 11.8 Beta distribution for a relevance grade of 0.125. The mean corresponds to our default
relevance grade. We see the distribution of most likely relevance grades.

We can observe now what happens when we observe a document’s first click, incrementing that
document’s  to 3.5. In Figure 11.10 we have .a a=3.5,b=17.5
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Figure 11.9 Beta distribution for a relevance grade after adding one click, now grade is 0.1666.
Updating with a click 'pulls' the probability distribution a little one direction, updating the initial belief.

The new mean relevance grade for the updated distribution is now  or 0.16666,3.5/(17.5+3.5)

effectively "pulling" the initial belief a little higher given its first click. Without the beta
distribution, this document would have 1 click and 1 examine, resulting in a grade of 1.

We refer to the 'starting point' probability distribution (the chosen  and ) as the a b prior
 or just a . This is our initial belief in what we think will happen. Thedistribution prior

distribution after updating  and  for a specific case, like a document, is a a b posterior distribution
or just . This is our updated belief.posterior

Recall that we said earlier that many initial  and  values could be chosen. This has significancea b

as the magnitude of the initial  and  make our prior weaker or stronger. We could choose anya b

value for  and  where . But note what happens if we choose a very smalla b a / (a+b) = 0.125

value . Then we go to update  by incrementing it by 1. The new expected valuea=0.25,b=1.75 a

of the posterior distribution is  or ~ . That’s a major impact for just1.25 / (1.25+1.75) 0.416

one click. Conversely, using very high  and  would make a prior so strong it would barelya b

budge. So when we use the beta distribution, you’ll want to tune the magnitude of the prior so
updates have the desired effect.

Now that you’ve seen this handy tool in practice for capturing SDBN grades, lets see the beta
distribution help with our SDBN confidence problems.

Let’s finish the chapter by updating the SDBN click model using the beta distribution. Of course,
if you use another click model, like the ones alluded to earlier in this chapter, you’ll need to
reflect on how confidence can be solved in those cases. The beta distribution might be a useful
tool there, as well.

USING A BETA PRIOR IN SDBN CLICK MODELS
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If you recall, the output of SDBN was a count of  and  for each document. In clicks examines

 we pick up from  which computed SDBN for the  query.Listing 11.12 Listing 11.11 blue ray

We will choose a prior grade of  for use with our SDBN model. This is our default grade0.3

when we don’t have information about the document - possibly derived from the typical grade
we see in our judgments. We then compute a prior beta distribution (  and )prior_a prior_b

using this prior grade.

Listing 11.12 Compute prior beta distribution using an initial, default grade of 0.3

Default, prior relevance grade

How much confidence to place in the prior (weight = a + b)

Resulting a and b satisfying prior grade = prior_a / (prior_a + prior_b)

Output (truncated):

In , with a weight of 100, you can confirm that Listing 11.12 PRIOR_GRADE = prior_a /

 as  is 0.3. So this has captured an initial probability(prior_a + prior_b) 30 / (30+70)

distribution for our prior.

Next up, in , we need to compute a posterior distribution and correspondingListing 11.13
relevance grade. We do this by incrementing  for clicks (our 'successes'), and prior_a prior_b

for examines with no clicks (our 'failures'). Finally we compute an updated grade in beta_grade
.

Listing 11.13 Compute a posterior beta distribution for relevance grade

Update our belief about the documents relevance by incrementing a by number of
clicks

PRIOR_GRADE=0.3 
PRIOR_WEIGHT=100  
sdbn['prior_a'] = PRIOR_GRADE*PRIOR_WEIGHT   
sdbn['prior_b'] = (1-PRIOR_GRADE)*PRIOR_WEIGHT    

doc_id          clicked     examined   grade       prior_a prior_b
600603132872    1.0      1.0        1.000000    30.0    70.0
827396513927    14.0     34.0       0.411765    30.0    70.0
25192073007     8.0      20.0       0.400000    30.0    70.0
885170033412    6.0      19.0       0.315789    30.0    70.0
...

sdbn['posterior_a'] = sdbn['prior_a'] +  sdbn['clicked'] 
sdbn['posterior_b'] = sdbn['prior_b'] + (sdbn['examined'] -
[CA]sdbn['clicked']) 

sdbn['beta_grade'] = sdbn['posterior_a'] / (sdbn['posterior_a'] +
[CA]sdbn['posterior_b']) 

sdbn.sort_values('beta_grade', ascending=False)
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Update our belief about the documents lack-of-relevance by incrementing b
examines without clicks

Compute a new grade from posterior a and b

Output (truncated,  and  omitted, see above):prior_a prior_b

In 's output notice our new ideal results for "blue ray" by sorting on . Listing 11.13 beta_grade

 clusters closer the prior grade of 0.3. Notably our Blu Ray cases have slid to the 3rdbeta_grade

most relevant slot - the single click not pushing the grade much past 0.3.

When we repeat this calculation judgments for  and dryer transformers dark of the moon

in Figures 11.11 and 11.12, we note the order is the same, however the grades themselves stay
closer to the prior of 0.3 depending on our confidence in the data.

doc_id          clicked examined    grade      ... posterior_a posterior_b
[CA]beta_grade
827396513927    14.0    34.0        0.411765   ... 44.0        90.0
[CA]0.328358
25192073007     8.0     20.0        0.400000   ... 38.0        82.0
[CA]0.316667
600603132872    1.0     1.0         1.000000   ... 31.0        70.0
[CA]0.306931
885170033412    6.0     19.0        0.315789   ... 36.0        83.0
[CA]0.302521
600603141003    8.0     26.0        0.307692   ... 38.0        88.0
[CA]0.301587
24543672067     8.0     27.0        0.296296   ... 38.0        89.0
[CA]0.299213
813774010904    2.0     7.0         0.285714   ... 32.0        75.0
[CA]0.299065
...
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Figure 11.10 Beta-adjusted SDBN ideal results for . Notice the grades now are more tighly focuseddryer

around the prior grade 0.3, with some above or below this prior.

Figure 11.11 Beta-adjusted SDBN ideal results for . Earlier we notedtransformers dark of the moon

the soundtrack seemed oddly high in its relevance grade despite fewer clicks than the blu ray movie.
Here we see the soundtrack’s relevance closer to the prior of 0.3.

Examining Figure 11.12 notably shows less confidence in the soundtrack when compared to the
SDBN judgments without modeling confidence (Figure 11.10). The grade has dropped from 0.48
to 0.4. Notably, the DVD grade following the CD has not changed much, only changing from
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1.  

2.  
3.  
4.  

5.  
6.  

0.39 to 0.36 given our higher confidence in that observation.

Most of your queries won’t be like  or . They’ll bedryer transformers dark of the moon

more like . To meaningfully work with these queries in LTR, you’ll need to be able toblue ray

handle these "small data" problems like lower confidence.

We are beginning to have a more reasonable training set for automating LTR, but there’s still
work to do. In the next chapter, we will move to look at the complete search feedback loop. This
includes working on presentation bias. Recall this is the bias where users never examine what
search never returns to them! How can we add surveilance to the automated LTR feedback loop
to both overcome presentation bias and ensure our model - and by extension the judgments - are
working as expected? But before we examine those topics in the next chapter, let’s revisit
training an LTR model, and invite you to experiment with what you’ve learned so far.

Great work! You’ve made it through both Chapter 10 and 11. You now have what you need to
develop reasonable LTR training data and train an LTR model. You’re likely to eager to train a
model from your work. Instead of repeating the extensive code from chapter 10 here, we’ve
created an listing x.y notebook to allow you to experiment with LTR on the RetroTech data.

In this notebook you can fine-tune the inner LTR engine - the feature engineering and model
creation that attempts to satisfy the training data. You can also explore the implications of
altering the automated inputs to this engine: the training data itself. All together, this notebook
has every step you’ve learned about so far:

Processing raw click session data into judgments, using the SDBN click model and a beta
prior.
Transforming the dataframe into the  we used in Chapter 10.Judgments

Loading a selection of LTR features to use with the Solr LTR plugin.
Logging these features from Solr, then performing pair-wise transformation of the data
into a suitable training set
Training and uploading a model.
Searching!

In the Markdown you’ll see "What you should play with" as an invitation to tune, like in Figure
11.13:

11.4 Exploring your training data in an LTR System
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Figure 11.12 Notebook exploring the full LTR system. You can take the model for a test drive.

We invite you to tune click-model parameters, think of new features, and different ways of
arriving at the final LTR model, discovering which ones seem to yield the best results. While you
do this tuning, please be sure to question your own subjective assumptions compared to what the
data is showing you!

With out-of-the box tuning, we leave you with Figure 11.14, showing the current search results
for the query . Try different queries here. How can you help the model bettertransformers dvd

discriminate between relevant and irrelevant documents? Are the issues you encounter due to the
training data used? Or is it the features used to construct the model?
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Figure 11.13 Trained model ranks . Do you think you could improve this?transformers dvd

In the next chapter, we’ll finish fleshing out the automated LTR system by performing
surveilance on the model. Most crucially, we’ll consider how to overcome .presentation bias
Even with the adjustments in this chapter, users will still only ever have a chance to act on what
the search shows them. So we still have a feedback loop biased heavily by the current relevance
ranking. How can we look out for this problem and overcome it? In the next chapter we’ll
consider these issues as our LTR model interacts with real life users.
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We can automate Learning to Rank (LTR) if we can reliably transform user click data
into relevance judgments using a . However, the click model itself isclick model
something that must be evaluated using A/B testing or other forms of testing to ensure the
reliability of the Automated LTR system.
Learned (implicit) relevance judgements lists can be plugged into existing learning to
rank training processes to either replace or augment manually-created judgements.
Raw clicks are usually problematic in automated LTR models due to common biases in
how algorithms rank and present search results to users
Among the visible search results,  says users prefer results ranked near theposition bias
top. We overcome position bias by using a click model that tracks the probability a user
has examined a document or a position in the search results.
Most search applications have a lot of spurious click data. When training data is biased
towards these spurious results, we have . We can overcome confidenceconfidence bias
bias by using the beta distribution to create a prior that we update gradually with new
observations as they come in.

11.5 Summary
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12
This chapter covers

So far our Learning to Rank work has happened in the lab. In previous chapters, we built models
using automatically constructed training data from user clicks. In this chapter, we’ll take our
model into the real world for a test drive with (simulated) live users!

Recall that we compared the full Automated Learning to Rank system to a self-driving car.
Internally, the car has an engine: the end-to-end model retraining on historical judgements as
discussed in Chapter 10. In Chapter 11 we compared our model’s training data to self driving car
directions: what  we optimize to automatically learn judgements based on previousshould
interactions with search results? We built training data, and overcame key biases inherent in click
data.

In this chapter, we leave the lab! We monitor our model in the real world. We see where the
model does well and understand whether the work in the previous two chapters failed or
succeeded. This means exploring a new kind of testing to validate our model: . In A/B testing A/B

 we randomly assign live users to different models and examine business outcomes (liketesting
sales, etc.), to see which performs best. You might be familiar with A/B testing in other contexts,
but here we’ll zero-in on the implications for an Automated LTR system.

Live users help us not just validate, they also aid in escaping dangerous negative feedback loops

Overcoming bias in learned relevance
models

Using live users to get feedback on our LTR model
A/B testing search relevance solutions with live users
Exploring possible relevant results beyond the top results we always show users
Balancing  what we’ve learned from historical data and  what mightexploiting exploring
be relevant
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our models can find themselves in, as shown in Figure 12.1.

Figure 12.1 Presentation bias’s negative feedback loop. Users never click on what search never returns,
thus relevance models can never grow beyond the current model’s knowledge.

In Figure 12.1, our model can only learn what’s relevant ! Inwithin results shown to the user
other words our model will often parrot back what users see. We have an unfortunate
chicken-and-egg problem. Good LTR attempts to optimize for the most clicked results, but users
will only click on what’s right in front of them. How could LTR possibly get better when
training data seems hopelessly biased towards search’s current ranking? This bias in training
data, to parrot back the current, displayed results, is called .presentation bias

After we explore A/B testing, we’ll fight presentation bias for the rest of the chapter. Much like a
self-driving car that has only learned one suboptimal path, we’ll have to strategically explore
alternate, promising paths - in our case new types of search results - to learn new patterns for
what’s relevant to users. If Figure 12.2 we see the Automated LTR loop augmented with
exploration.
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Figure 12.2 Automated LTR meets live users. To be useful, our Automated LTR system must overcome
presentation bias by exploring yet to be seen results with users to expand training data coverage.

Before we get to this all important subject, we must first wrap everything we learned in chapters
10 and 11 into a few lines of code. Then we’ll be able to iterate quickly, exploring A/B testing
and overcoming presentation bias.

Before we begin to A/B test, we’ll gather all our knowledge from chapters 10 and 11 into a small
handful of Python helper functions. First we’ll define a function to let us rebuild training data
from raw session clicks using an SDBN click model (all of chapter 11). Next we’ll create an
equally simple snippet of code to train a model with that training data (all of chapter 10). We’ll
very quickly sum up these functions before diving into A/B testing and overcoming presentation
bias in the rest of the chapter.

In Chapter 11 we turned clicks into training data. In this section, we briefly revisit that code to
create a convenient helper function.

Recall in Chapter 11 We overcame biases in how users click on search results. You learned
about the SDBN (Simplified Dynamic Bayesian Network) click model. Now, we simply wrap
that code up into a convenience function in this section to regenerate training data as needed.

As a reminder, our click model turns raw clicks into training labels or  mapping howgrades
relevant a document is for a keyword. The raw input we need to build the training data includes a
query string, the rank of the result as displayed, the document in that position, and whether it was

12.1 Our Automated LTR engine in a few lines of code

12.1.1 Turning clicks into training data (Chapter 11 in one line of code)
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clicked. We can see that data stored in this dataframe:

Given this input, we can wrap all of Chapter 11 into a function that computes our training data.
Recall we use the term  or  to refer to our training data. We see ourjudgment list judgments
judgments computation in .Listing 12.1

Listing 12.1 Turn sessions into training data (chapter 11 in one line!)

How strong the prior should be (see confidence bias chapter 11)

The default probability of a results relevance when we have no evidence

Output (truncated):

Let’s briefly revisit what we learned in Chapter 11 by looking at the output of . AsListing 12.1
you can see in the output, we compute a dataframe where each query-document pair has
corresponding  and  counts. Clicks is what it sounds like: the sum of rawclicked examined

clicks this product received for this query. Recall that  corresponds to number of timesexamined

the click model thinks the user noticed the result.

The statistics  and  are the training labels. These correspond to the probabilitygrade beta_grade

a document is relevant for the query. Recall that  simply divides  by :grade clicked examined

the naive, first implementation of the SDBN click model. However, we learned in Chapter 11
that it would be better to account for how much information we have (see section 11.3). We
don’t want one click with one examine (1/1 = 1.0) to be counted as strongly as a hundred clicks
with a hundred examines (100/100 = 1.0). For this reason  places a higher weight onbeta_grade

    sess_id    query        rank    doc_id            clicked
0    50002    blue ray    0.0        600603141003    True
1    50002    blue ray    1.0        827396513927    False
2    50002    blue ray    2.0        24543672067        False
3    50002    blue ray    3.0        719192580374    False
4    50002    blue ray    4.0        885170033412    True

sdbn = sessions_to_sdbn(sessions,
                        prior_weight=10, 
                        prior_grade=0.2) 
sdbn

                                        clicked    examined    grade    beta_grade
query                doc_id
blue ray            27242815414            42.0    42.0    1.000000    0.846154
                    600603132872        46.0    88.0    0.522727    0.489796
                    827396513927        1304.0    3381.0    0.385685    0.385137
                    600603141003        978.0    2620.0    0.373282    0.372624
                    885170033412        568.0    2184.0    0.260073    0.259799

...    ...    ...    ...    ...    ...
transformers dvd    47875819733            24.0    1679.0    0.014294    0.015394
                    708056579739        23.0    1659.0    0.013864    0.014979
                    879862003524        23.0    1685.0    0.013650    0.014749
                    93624974918            19.0    1653.0    0.011494    0.012628
                    47875839090            16.0    1669.0    0.009587    0.010721
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results with more information (preferring the hundred clicks example). We’ll therefore use 
 as opposed to  when retraining LTR models.beta_grade grade

This data serves as training data to the models we trained in Chapter 10. Let’s next see how we
can easily take this training data, train a model, and deploy it to users.

In addition to regenerating training data, we also need to retrain our model before deploying to
live users. In this section, we’ll explore the convenience functions for our core LTR model
training engine. This sets us up to quickly experiment with models through the rest of this
chapter.

We wrap model training and offline evaluation in a few simple lines in .Listing 12.2

Listing 12.2 Train and evaluate the model on a few features

Random seed so results are reproducible

Define two features searching RetroTech long/short descriptions

Split the sdbn data with 80% of queries in training set

Train and upload RankSVM model to Solr using the train set

Search Solr to evaluate the model on the test queries Output

12.1.2 Model training & evaluation in a few function calls

random.seed(1234) 

feature_set = [ 
    {
      "name" : "long_description_bm25",
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "longDescription:(${keywords})"
      }
    },
    {
      "name" : "short_description_constant",
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "shortDescription:(${keywords})^=1"
      }
    }
]

train, test = test_train_split(sdbn, train=0.8) 
ranksvm_ltr(train, model_name='test1', feature_set=feature_set) 
eval_model(test, model_name='test1', sdbn=sdbn) 

{'blue ray': 0.0,
 'dryer': 0.0,
 'headphones': 0.0,
 'dark of moon': 0.0,
 'transformers dvd': 0.003258006235976338}
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By looking at , let’s briefly revisit what we learned in Chapter 10. We define aListing 12.2
feature set: the set of Solr queries we want to use to learn a ranking function. We must choose
carefully: hoping to find features that can learn the training data from .Listing 12.1

How would we know if our model learned the training data well? Also recall from Chapter 10
that we performed a test-train split at the query level. This reserves some of the training data for
evaluation in a test set. We’re like the professor giving the student (here the model) a final exam.
You might give students many sample problems to study for the test (the training data). But to
see if students truly learned the material, you give them a final exam (the test queries). This helps
you evaluate whether the student knows what you’ve taught them before sending them off into
the real world.

(As we all know, of course, success in the classroom does not always equate to success in the
real world. Graduating our model into the real world, with live users in an A/B test, might show
it does not perform as well as we hoped! More on this in a bit.)

Finally, what is the statistic next to each test query? How do we evaluate the students success on
the test queries? Recall from chapter 10, we simply used precision (the proportion of relevant
queries). This statistic sums the top N grades and divides by N (for us N=10), effectively the
average relevance grade. We recommend exploring additional statistics for model training and
evaluation that bias towards getting the top positions correct, such as Discounted Cumulative
Gain (DCG), Normalized DGC (NDCG), or Expected Reciprocal Rank (ERR). For our purposes,
though, your brain is already quite full, so we’ll stay with the simpler precision statistic.

Just looking at the relevance metrics for our test queries from , our model does quiteListing 12.2
poorly in offline testing. Certainly by improving our offline metrics, we would see quite an
improvement with live users in an A/B test.

In this section, we’ll simulate running an A/B test and compare 's model to a modelListing 12.2
that seems to perform better in the lab. We’ll reflect on the results of the A/B test, setting us up
to complete the Automated LTR feedback loop we introduced in Chapter 11. We’ll finish by
reflecting on what didn’t go so well, spending the remainder of the chapter adding a crucial,
missing piece to our Automated LTR feedback loop.

Our original LTR model hasn’t performed very well, as seen in 's output. In thisListing 12.2
section we’ll train a new model, and once it looks promising, we’ll deploy the model in an A/B
test against the model we trained in .Listing 12.2

Let’s introduce an improved model in .Listing 12.3

12.2 A/B testing a new model

12.2.1 Taking a better model out for a test drive
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Listing 12.3 A new and improved model by changing the features

Random seed so results are reproducible

Three new features for searching RetroTech

Feature performing fuzzy search on name field

Feature searching for terms and phrase bigrams in name field

Feature searching for terms and phrase bigrams in shortDescription field

Train, deploy, and evaluate new model,  Outputtest2

The first thing we notice about  is its output. On the same set of test queries, ourListing 12.3
model seems to perform much better. This seems promising! Indeed, we’ve chosen a set of
features that seems to capture the text-matching aspects of relevance better!

random.seed(1234) 

feature_set_better = [ 
    {
      "name" : "name_fuzzy",        
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "name_ngram:(${keywords})"
      }
    },
    {
      "name" : "name_pf2",  
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "{!edismax qf=name name pf2=name}(${keywords})"
      }
    },
    {
      "name" : "shortDescription_pf2",   
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "{!edismax qf=shortDescription pf2=shortDescription}(

        ${keywords})"
      }
    },
]

sdbn = sessions_to_sdbn(sessions)

train, test = test_train_split(sdbn, train=0.8)
ranksvm_ltr(train, 'test2', feature_set_better) 
eval2 = eval_model(test, 'test2', sdbn=sdbn)     

eval2

{'blue ray': 0.0,
 'dryer': 0.07068309073137659,
 'headphones': 0.06426395939086295,
 'dark of moon': 0.25681268708548066,
 'transformers dvd': 0.10077083021678328}
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The astute reader might notice we’ve kept the test queries the same as . We’veListing 12.2
intentionally done this for clarity purposes. It’s "good enough" to teach you fundamental
AI-powered search skills. In real-life, however, we would want a truly random test-train split to
better evaluate the model’s performance. We might even take things further, performing 

 - the resampling and training of many models on different test/train datasetcross-validation
splits to ensure the models generalize well without overfitting to the training data. If you’d like
to dive deeper into offline model evaluation, we recommend a more general machine learning
book, such as  by Alexey Grigorov (Machine Learning Bootcamp

).https://www.manning.com/books/machine-learning-bookcamp

Perhaps your search team feels the model trained in  has promise, and is goodListing 12.3
enough to deploy to production! The team’s hopes are up, so let’s see what happens when we
deploy to production for deeper evaluation with live users.

With an Automated LTR retraining loop setup, we can easily deploy promising new models. But
a few questions remain unanswered: how do we know whether what we built in the lab actually
performs in the real world? It’s quite a different thing to handle live, real-world scenarios.

In this section, we’ll explore the results of A/B testing with (simulated) live users. We’ll see how
the A/B test serves as the ultimate arbiter of our Automated LTR system’s success: a chance to
correct issues in our offline automated LTR model training so our feedback loop can grow
increasingly reliable.

You may know about A/B tests. Here we’ll learn how they factor into an Automated LTR
system. As illustrated in Figure 12.3, an  randomly assigns users to two . Each A/B test variants

 contains a distinct set of application features. This might include anything from differentvariant
button colors to new relevance ranking algorithms. Because users are randomly assigned to the
variants, we can more reliably infer which variant performs best on chosen business outcomes
such as sales, time spent on the app, user retention, or whatever else the business might choose to
prioritize.

12.2.2 Defining an A/B test in the context of automated LTR

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

287

https://www.manning.com/books/machine-learning-bookcamp
https://www.manning.com/books/machine-learning-bookcamp
https://livebook.manning.com/#!/book/ai-powered-search/discussion


Figure 12.3 A search A/B test. Search users are randomly assigned to two relevance solutions (here two
LTR models) with outcomes tracked.

Next up, we’ll deploy our promising new model  from  into an A/B test. We’lltest2 Listing 12.3
then explore the implications of the test results. Hopes are high, and your team thinks this model
might knock the socks off the competition: the poorly performing model from ,Listing 12.2
which we’ll call .test1

In this section we’ll simulate an A/B test, assigning 1000 users randomly to each model. In our
case, these simulated users have specific items they want to buy. If they see those items, they’ll
make a purchase, and leave our store happy. If they don’t, they might browse around, and most
likely leave without making a purchase. Our search team, of course, doesn’t know what users
hope to buy - this information is hidden from us. We only see a stream of clicks and purchases,
which, as we’ll see, is heavily influenced by presentation bias.

In , we have a population of users seeking the newest Transformer’s movies byListing 12.4
searching for . We’ll stay focused on this single query during our discussion.transformers dvd

Of course, with a real A/B test, we’d look over the full query set. The user population wouldn’t
be this static. But by zeroing into one query, we can more concretely understand the implications
of our A/B test for Automated LTR. For a deeper overview of good A/B testing experimentation,
we recommend the Manning book "Tuning Up" by David Sweet (

).https://www.manning.com/books/tuning-up-from-a-b-testing-to-bayesian-optimization

12.2.3 Graduating the better model into an A/B test

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

288

https://www.manning.com/books/tuning-up-from-a-b-testing-to-bayesian-optimization
https://www.manning.com/books/tuning-up-from-a-b-testing-to-bayesian-optimization
https://livebook.manning.com/#!/book/ai-powered-search/discussion


Returning back to , for each run of , a model is assigned at random.Listing 12.4 a_or_b_model

Then the function  simulates a user searching with the query and selectedlive_user_query

model, scanning the results, possibly clicking and making a purchase. Unbeknownst to us, our
user population has hidden preferences behind their queries: they hope to purchase items in 

 in  with a lower probability of purchasing an item in wants_to_purchase Listing 12.4
. We run  1000 times, collecting the purchases made by usersmight_purchase a_or_b_model

that use each model.

Listing 12.4 Simulated A/B test, focusing only on 'transformers dvd' query

Random seed so results are reproducible

Transformer movies our user population actually wants to buy (unknown to our
team)

Randomly each user to model a or b

Simulate user searching and buying: user decides whether to buy if
wants_to_purchase/might_purchase in results

Simulate NUM_USERS users performing 'transformers dvd' search

Count total number of purchases made by each model Output

random.seed(1234)  

wants_to_purchase = ['97360724240', '97363560449', '97363532149',

'97360810042'] 
might_purchase = ['97361312743', '97363455349', '97361372389'] 

def a_or_b_model(query, a_model, b_model):
    draw = random.random()

    user_made_purchase = False 
    model_name = None
    if draw < 0.5:
        model_name=a_model  
    else:
        model_name=b_model  

    purchase_made = live_user_query(query=query,  
                                   model_name=model_name,
                                   desired=wants_to_purchase,
                                   meh=might_purchase)
    return (model_name, purchase_made)

NUM_USERS=1000
purchases = {'test1': 0, 'test2': 0}
for _ in range(0, NUM_USERS): 

    model_name, purchase_made = a_or_b_model(query='transformers dvd',
                                             a_model='test1',
                                             b_model='test2')
    if purchase_made: 
        purchases[model_name]+= 1

purchases

{'test1': 21, 'test2': 15}

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

289

https://livebook.manning.com/#!/book/ai-powered-search/discussion


As we see in 's output, our golden student, model , actually performs  inListing 12.3 test2 worse
this A/B test! How can this be? What could have gone wrong to have such good offline test
metric performance but poor outcomes in the real world? For the rest of this chapter, we’ll dive
into what’s happening and attempt to address the problem. Thus you’ll learn how live users can
increase the accuracy of your Automated LTR system, allowing you to retrain with confidence!

As we saw in , a lot can change when our model enters the real world. In this section,Listing 12.4
we reflect on the implications of the A/B test we just ran to see what next steps would be
appropriate.

What does it mean when a model performs great in the lab, but fails an A/B test? It means,
according to our training data, we built a 'correct' LTR model. Unfortunately that training data
misled us. We built a good model, but to the wrong specification. We need to correct issues with
the training data itself: the judgments generated from our click model.

But how might problems creep in in our click model based judgments? We saw several issues in
Chapter 11:  and . Depending on your goals, UX, and domain,position bias confidence bias
additional biases can creep in. In e-commerce, users might be enticed to click an item on sale,
skewing the data towards those items. In a research setting, one article might provide a richer
summary in the search results than another. Some biases blur the line between 'bias' and actual
relevance for that domain. A product with a missing image, for example, might get fewer clicks.
It might be technically identical to another 'relevant' product without an image. However to users
a product missing an image seems less trustworthy and thus won’t be clicked. Is that a bias? Or
simply an actual indicator of 'relevance' for this domain, where product trustworthiness is a
factor?

To make better judgments, should clicks be ignored or discounted, and instead should we use
other behavioral signals? Perhaps follow-on actions after clicking such as a 'like' button, adding
an item to a cart, or a "read more" button ought to be included? Perhaps we should ignore 'cheap'
or accidental clicks when the user immediately hits the back button after clicking?

Using post-click actions can be valuable. However, we must ask how strongly search ranking
influences events like a purchase or add-to-cart, or whether we should attribute other factors. For
example, a lack of purchases could indicate an issue with a product display page, or with a
complex checkout process, not just the search result’s relevance for a specific query.

This seems to go against the A/B test we just ran. Counterintuitively, we might use an outcome
like total purchases, in aggregate over all queries, to evaluate an A/B test. All other things in the
app remain unchanged except the ranking algorithm. Thus we know any significant change, at
the macroscopic, system level, must be caused by the one thing we changed. However, when you

12.2.4 When 'good' models go bad: what we can learn about a failed A/B test?
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zero in to the microscopic: the specific query to document relationship, and away from the big
picture, the causality gets complicated. Any single product will have very few purchase (many
people view a $1000 television, but very few buy). The data may simply not be there in enough
quantity to know whether the purchase related to a product’s specific relevance for a query.

Accounting for all of the variations in search UX, domains, and behaviors would fill many
books, and still fall short. The search space constantly evolves, with new ways of interacting
with search results coming in and out of fashion. In the final analysis, for most scenarios, using
clicks and standard click models suffices. Clicks in search UIs has been heavily studied. Still,
arriving at good judgments is both an art and science: you may find a slight modification to a
click model that accounts for extra signals is important to your domain and may provide
tremendous gains in how your model performs in an A/B tests. You can spend as much time
perfecting your click model as you spend doing search itself.

However, there is one, universally pernicious training data issue that challenges all click models: 
. Regardless of whether we use clicks, or more complex signals, users neverpresentation bias

interact with what they can’t see! We saw in our A/B test, our user population wants to buy a
certain set of movies. We might ask: are these movies present in the training data? Would any
Automated LTR system even be able to learn they’re relevant if users never see them? After all,
if they’re never shown to users, they’ll never be clicked, we’ll never know whether they’re
relevant or not!

Next up we will dive into this difficult problem and learn how to automate optimization of our
training data AND models in tandem.

Search experts will commonly remark that "users won’t click, what they can’t find!". In other
words, underneath Automated LTR is a chicken and egg problem. If the relevant result is never
returned by the original, poorly tuned system - how could any click-based machine learning
system learn that result is relevant? This is .presentation bias

In this section, you’ll learn about one machine learning tool that selects documents to explore 
. This final missing piece of your Automated LTRdespite those results having no click data

system helps not just build models optimized for the training data, but actively participates in its
own learning to grow the breadth of the available training data. We call a system that participates
in its own learning an  system.Active Learning

Figure 11.15 captures presentation bias. The items on the right could feasibly be relevant for our
query, but with no traffic, we have no data to know either way. It would be nice to give some
traffic to these results to learn whether or not they are relevant.

12.3 Overcoming Presentation Bias: Knowing When to Explore vs
Exploit
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Figure 12.4 Presentation bias

To overcome presentation bias, we must carefully balance  our model’s current,exploiting
hard-earned, knowledge and  beyond that knowledge. This is the exploring explore vs exploit
tradeoff. Exploring lets us gain knowledge, growing the coverage of our click model to new and
different types of documents. However, if we always explore, we will never take advantage of
our knowledge. When we , we optimize for what we currently know performs well.exploit
Exploiting corresponds to our current LTR model that aligns to our training data. Knowing how
to systematically balance exploring and exploiting is key - something we’ll discuss in the next
few sections, using a machine learning process built for this tool.

Let’s first analyze the current training data to get a lay of the land. What kinds of search results
does the training data lack? Where is our knowledge incomplete? Another way of saying
"presentation bias" is that there are potentially relevant search results excluded from the training
data: blind spots we must detect and fight against. Once we’ve defined those blind spots in this
section, we can then actively step back to work against them. This will set us up to retrain with a
more robust model.

In  we create a new  named , in which we’ve created threeListing 12.5 feature_set explore

simple features: , , and , telling us whether along_desc_match short_desc_match name_match

given field match occurs or not. These correspond to features our model has already learned. In
addition, we’ve added a feature . This feature becomes a  if the product is onhas_promotion 1.0

sale and being promoted through marketing channels. We haven’t explored this feature before;
perhaps it’s a blind spot?

12.3.1 Presentation bias in RetroTech training data
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Listing 12.5 Analyzing missing types of documents from  judgmentstransformers dvd

Build SDBN judgments from current raw sessions

Features correspond to fields already used to train LTR model

New feature we’re exploring for blind spot: promotions

Log the feature values and return the sdbn judgments joined with the feature values

Examine the properties of current  training datatransformers dvd

Output:

sdbn = sessions_to_sdbn(sessions,   
                        prior_weight=10,
                        prior_grade=0.2)

feature_set = [
    {
      "name" : "long_desc_match",   
      "store": "explore",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "longDescription:(${keywords})^=1"
      }
    },
    {
      "name" : "short_desc_match",   
      "store": "explore",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "shortDescription:(${keywords})^=1"
      }
    },
    {
      "name" : "name_match",     
      "store": "explore",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "name:(${keywords})^=1"
      }
    },
    {
      "name" : "has_promotion",   
      "store": "explore",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "promotion_b:true"
      }
    },
]

sdbn_ftrs = sdbn_with_features(sdbn, feature_set)  
transformers_dvds = sdbn_ftrs[sdbn_ftrs['query'] == 'transformers dvd'] 
transformers_dvds
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We see some gaps in our training data’s knowledge in the output of :Listing 12.5

Every item includes a name match
No "promotions" are present
There’s a range of long_desc_match and short_desc_match values

Intuitively, if we want to expand our knowledge, we would show users searching for 
 something completely outside the box from what’s in 's output.transformers dvd Listing 12.5

That would mean showing users a promoted item, possibly one with no name match. In other
words we need to get search out of its own echo chamber by explicitly diversifying what we
show to the user away from what’s in the training data. The only question is: how much of a risk
are we willing to take to improve our knowledge? We don’t want to blanket the search results
with random products just to broaden our training data.

What we’ve done so far has not been systematic: we’ve only eyeballed a single query to see what
was missing. How might we automate this? Next up we’ll discuss one method for automating
exploration using a tool called a Gaussian Process.

A  is a statistical model that makes predictions along with a probabilityGaussian Process
distribution capturing the certainty of that prediction. In this section we’ll use a Gaussian Process
to select areas for exploration. After this section, we’ll create a more robust way of finding gaps
in our data than just eyeballing.

    query grade long_desc_match    short_desc_match name_match    has_promotion
618    transformers dvd    0.0 1.0    0.0    1.0    0.0
623    transformers dvd    0.0 1.0    1.0    1.0    0.0
622    transformers dvd    0.0    1.0    1.0    1.0    0.0
621    transformers dvd    0.0    1.0    0.0    1.0    0.0
620    transformers dvd    0.0    1.0    0.0    1.0    0.0
619    transformers dvd    0.0    1.0    0.0    1.0    0.0
617    transformers dvd    0.0    0.0    0.0    1.0    0.0
610    transformers dvd    0.3    0.0    0.0    1.0    0.0
615    transformers dvd    0.3    0.0    0.0    1.0    0.0
614    transformers dvd    0.3    0.0    0.0    1.0    0.0
613    transformers dvd    0.3    0.0    0.0    1.0    0.0
612    transformers dvd    0.3    0.0    0.0    1.0    0.0
611    transformers dvd    0.3    0.0    0.0    1.0    0.0
624    transformers dvd    0.0    0.0    0.0    1.0    0.0
616    transformers dvd    0.0    0.0    1.0    1.0    0.0
625    transformers dvd    0.0    1.0    0.0    1.0    0.0

12.3.2 Beyond the ad-hoc: thoughtfully exploring with a Gaussian Process
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To get at intuition for Gaussian Processes, let’s use a concrete example of real-life exploration.
This sets you up for understanding what the underlying math is doing, giving you a sense for
how to make explore vs exploit tradeoffs. Bare with us, this analogy will pay off, we promise!
You’ll be setup to think more deeply about how we might, mathematically, make explore vs
exploit tradeoffs.

Imagine you’re a scientist planning to survey a rarely explored river deep in the wilderness. As
you plan your trip, you have only spotty river depth observations from past expeditions to know
when its safe to travel. For example, one observation shows the river is two meters deep in April,
another time in August it’s one meter deep. You’d like to pick an ideal date for your expedition
optimizing for ideal river conditions (i.e. not monsoon season, but also not during a dry spell).
However, you’re also scientist - you’d also like to make observations during yet unobserved
times of the year to increase the knowledge of the river. So you want to be somewhat
adventurous. Figure 12.5 shows us river depth measurements that have been made throughout
the year you might use to plan your trip

Figure 12.5 Exploring a river, uncertain of the river’s depth grows from past observations. How would we
pick the best time of year that was both safe and also maximally increased our knowledge of the river’s
depth?

How might we choose a date for the expedition? If you observed a river depth of two meters on
April 14th, you would guess that the April 15th depth would be very close to two meters.
Traveling during that time might be pleasant: you know the river wouldn’t be excessively
flooded. However, you wouldn’t gain much knowledge about the river. What about trying to go
several months away from this observation, like January? January would be too far from April to
understand the river’s likely depth. We might travel during a treacherous time of the year.

GAUSSIAN PROCESS BY EXAMPLE: EXPLORING A NEW RIVER BY EXPLOITING EXISTING
KNOWLEDGE
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However we’d almost certainly gain new knowledge—perhaps far more than we bargained for!
With so little to go on, there’s too much risk exploring this time of the year.

In Figure 12.5 we see an educated guess at the river level, based on an expected correlation
between adjacent dates (April 15th and 14th should be very close). Our level of certainty
decreases as we move away from direct observations: the widening gray zone in Figure 12.5.

Figure 12.5 is a Gaussian Process. It mathematically captures a prediction, along with our
uncertainty in each prediction. How does this relate to relevance ranking? Just as nearby dates
have similar river levels, similar search results would be similar in their relevance . Consider our 

 features from . Those with strong name matches for ,explore Listing 12.5 transformers dvd

not promoted, and no short/long description matches would likely have similar relevance grades
- all moderately relevant. As we move away from these well trod examples - perhaps adding in
promoted items - we grow less certain in our educated guesses. If we go very far, something way
outside the box, like a search result with no name match, that’s promoted, but with strong
short/long description field matches, our uncertainty grows very high. Just like the scientist
considering a trip in January, we have almost no ability to make a good guess whether those
results could be relevant. It might involve too much risk to show those results to users.

We use Gaussian Processes to balance exploiting existing relevance knowledge with riskier
exploration to gain knowledge. Gaussian Processes use incomplete information to make careful
tradeoffs in likely quality and the knowledge gained. For example, trading off ideal river
conditions or a likely relevant search result with learning more about river conditions or learning
about the relevance of a new kind of search result. We can carefully choose how far away from
known, safe search results we want to venture to gain new knowledge.

In our  case, what kind of search result would have high upside, likely alsotransformers dvd

be relevant/safe to explore, but also maximally increase our knowledge? Let’s train a Gaussian
Process and find out!

Next we’ll get hands-on to see how a Gaussian Process works. We’ll train a Gaussian Process on
the  query. We’ll then use it to generate the best exploration candidates.transformers dvd

You’ll see how we score those exploration candidates to maximally reduce our risk and increase
the likelihood we’ll gain knowledge.

In  we train a Gaussian Process, using the  (aka )Listing 12.6 GaussianProcessRegressor gpr

from . This code creates a GaussianProcess that attempts to predict the relevance sklearn grade

as a function of the  features we logged.explore

12.3.3 Training and Analyzing a Gaussian Process
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Listing 12.6 Train a  on our training dataGaussianProcessRegressor

Predict relevance grades

We use the features logged from the  set aboveexplore

Create and train the gpr model

Once we’ve trained a , we can use it to make predictions.GaussianProcessRegressor

Remember for  that means not only predicting an actual value, itGaussianProcessRegressor

also means the probability distribution of that prediction. This helps us gauge the model’s
certainty.

In  we generate candidate feature values we’d like to possibly explore. With our riverListing 12.7
exploration example, these values correspond to a possible exploration dates for our scientist’s
expedition. In our case, as each feature can either be 0 or 1, we look at each possible feature
value as a candidate.

Listing 12.7 Predicting a set of candidates to explore

Generate candidates: each feature value we want to explore 0 or 1 for the listed
features

Predict grade and standard deviation for those candidates based on gpr’s
probability distribution

Store the predicted grade and standard deviation from the gpr

Output:

from sklearn.gaussian_process import GaussianProcessRegressor

y_train = transformers_dvds['grade'] 
x_train = transformers_dvds[['long_desc_match', 'short_desc_match',
                             'name_match', 'has_promotion']] 

gpr=GaussianProcessRegressor() 
gpr.fit(x_train, y_train) 

zero_or_one = [0,1]

index = pd.MultiIndex.from_product([zero_or_one] * 4,
                  names = ['long_desc_match', 'short_desc_match',
                      'name_match', 'has_promotion']) 
explore_options = pd.DataFrame(index=index).reset_index()

predictions_with_std = gpr.predict(explore_options[

['long_desc_match', 'short_desc_match', 'name_match',

'has_promotion']], return_std=True) 
explore_options['predicted_grade'] = predictions_with_std[0]  
explore_options['prediction_stddev'] = predictions_with_std[1] 

explore_options.sort_values('prediction_stddev')
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In the output of  we see a  - the Listing 12.7 predicted_grade gpr’s educated guess on the

, which captures therelevance of that example. We also have `prediction_stddev

gray band in Figure 12.5 - how much uncertainty is in the prediction.

We note in the output of  that the standard deviation is 0 for name matches. In otherListing 12.7
words: the  has a lot of information about when =1, as we should expect fromgpr name_match

our earlier ad-hoc analysis. We see after these observations that the standard deviation drops off
a cliff. We lack a great deal of knowledge beyond these strong name match examples.

The output begins to show the presentation biases we intuitively detected in . AListing 12.5
tremendous amount of knowledge about name matches, but little knowledge about other cases.
Which case would be worth exploring with live users that also minimizes the risk we’ll show
users something completely strange in the search results?

In  we generate and score exploration candidates.Listing 12.8

Listing 12.8 Scoring the exploration candidates with Expected Improvement algorithm

Quantify the 'opportunity' whether the prediction grade is likely to be above or
below the typical grade

Probability we’ll improve over mean, considering the amount of uncertainty in the
prediction

    long_desc_match short_desc_match  name_match  has_promotion

    predicted_grade    prediction_stddev
2   0               0                 1           0

2.250003e-01    0.000000
6   0               1                 1           0

-3.569266e-08   0.000000
10  1               0                 1           0

-2.853953e-07   0.000000
14  1               1                 1           0

-2.458225e-07   0.000000
8   1               0                 0           0

-2.042939e-07   0.795059
11  1               0                 1           1

-2.042939e-07   0.795059

from scipy.stats import norm

theta = 0.6
explore_options['opportunity'] = explore_options['predicted_grade'] -

sdbn['grade'].mean() - theta 

explore_options['prob_of_improvement'] = norm.cdf( (explore_options[

'opportunity']) / explore_options['prediction_stddev'])  

explore_options['expected_improvement'] = explore_options['opportunity'] *

explore_options['prob_of_improvement'] \
 + explore_options['prediction_stddev'] * norm.pdf( explore_options[

 'opportunity'] / explore_options['prediction_stddev'])  

explore_options.sort_values('expected_improvement', ascending=False).head() 
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How much there is to gain given the probability and improvement and the
magnitude of the improvement

Sort to show best exploration candidates

Output:

Listing 12.8 uses an algorithm called "Expected Improvement" to select the best candidate. We
won’t dive into the nuts and bolts of this algorithm beyond the basic intuition, so we recommend
a distil.pub article entitle "Exploring Bayesian Optimization" (

) if you’d like to learn more.https://distill.pub/2020/bayesian-optimization/

The basic intuition behind the Expected Improvement algorithm is to select candidates that have
the highest upside. How do we define this? It’s either the case that we know to a high degree of
certainty there’s an upside (standard deviation is low and the predicted grade is high) OR we
know that there’s a high degree of uncertainty but the predicted grade is still high enough to take
a gamble. We can see this on the following line of code from :Listing 12.8

More of a 'sure thing' with exploration is covered by:

Meanwhile the unknown opportunity with wide variance is covered by the second clause (after
the ):+

In the first clause, you’ll notice is opportunity (how much we expect to gain) times the
probability that improvement happens corresponds to feeling confident in an outcome. On the
other hand, the second clause depends much more on the standard deviation. The higher the
standard deviation  opportunity, the more likely it will be selected.and

long_desc_match short_desc_match  name_match  has_promotion opportunity

...   prob_of_improvement expected_improvement
0               0                 0           1             -0.697673

...   0.226541            0.121908
1               0                 0           1             -3.660364e-08

...   0.200650            0.104241
1               1                 0           1             -4.993262e-08

...   0.200650            0.104241
0               1                 0           1             -6.792379e-08

...   0.200650            0.104241
0               0                 0           0              1.364694e-01

...   0.208978            0.093904

explore_options['expected_improvement'] = explore_options['opportunity'] *

explore_options['prob_of_improvement'] \
 + explore_options['prediction_stddev'] * norm.pdf( explore_options[

   'opportunity'] / explore_options['prediction_stddev'])

explore_options['opportunity'] * explore_options['prob_of_improvement']

explore_options['prediction_stddev'] * norm.pdf( explore_options[

'opportunity'] / explore_options['prediction_stddev'])
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We can calibrate our risk tolerance with a parameter called : the higher this value, thetheta

more we prefer candidates with a higher standard deviation. A high  causes theta opportunity

to diminish towards 0. This biases scoring to the second clause - the unknown, higher standard
deviation cases.

If we set  too high our  operates purely in a mode of selecting candidates entirely totheta gpr

learn about them with no thought for whether they might be useful to the user. If  is tootheta

low, we won’t burst out of the bubble very much, and instead we’d bias towards existing
knowledge. A high  is analogous to a scientist willing to take a high degree of risk (exploretheta

in January) in Figure 12.5, while a very low  would be like traveling during a risk aversetheta

time (April 14th). Because we’re using this algorithm to augment an existing LTR system, we
chose  of 0.6, a bit high, to give us more knowledge.theta

In the output of , we see that  confirms our earlier ad-hoc analysis: we shouldListing 12.8 gpr

show users items with promotions. These products will more likely yield greater knowledge,
with possibly a high upside from the gamble.

Knowing what we should explore, let’s gather products from Solr to show users! Listing 12.9
shows how we might go about selecting products for exploration from Solr. We’ll then
intersperse one or more "explore" products into the existing model’s search results to observe
whether these new results get clicks.
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Listing 12.9 Selecting a RetroTech product to explore from Solr

Extract the best exploration candidate based on expected_improvement

Translate the explore candidate into a Solr query, such as promoted_b:true to get
promoted items

Issue query to solr, and rank results in random order

Select the first UPC for exploration

Output

In , we take the best exploration candidate - promoted items - then issue a Solr queryListing 12.9
to fetch documents with those characteristics. We omit some nitty gritty translation of the
candidate into a Solr query, but you can imagine if  is set to 1.0 in the candidate,has_promotion

then we would issue a query searching for any item with a promotion:  and+promotion_b:true

so on.

We see in 's output, that for the query , the randomly selectedListing 12.9 transformers dvd

promoted product for exploration is UPC 97360810042. This corresponds to "Transformers Dark

random.seed(1234)

explore_vect = explore_options.sort_values('expected_improvement',

ascending=False).head().iloc[0][['long_desc_match','short_desc_match',

'name_match', 'has_promotion']] 

def explore(query, explore_vect, log=False):
    """ Explore according to the provided explore vector, select
        a random doc from that group."""
    query = explore_query(explore_vect, query) 

    draw = random.random()

    request = {
            "fields": ["upc", "name", "manufacturer", "score"],
            "limit": 1,
            "params": {                     
              "q": query,                   
              "sort": f"random_{draw} DESC" 
            }
        }

    if log:
        print(request)

    resp = requests.post('http://aips-solr:8983/solr/products/select',
                                   json=request).json()

    print(resp)

    return resp['response']['docs'][0]['upc'] 

explore_upc = explore('transformers dvd', explore_vect)
explore_upc

97360810042
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of The Moon: Two Disc-Blu Ray DVD Combo". Interesting!

What should we do with this document? This comes down to a design decision. A common
choice is to slot it into the 3rd position of the results. This is what we’ll do, creating a new
session like the one below. Note our UPC  in the 3rd slot (  == 2.0).97360810042 rank

In the notebook for this chapter, we’ve simulated many exploration sessions. Each adds a
random exploration candidate based on , simulates whether the added explorationListing 12.9
result was clicked, and appends it to a new set of sessions . Recallwith_explore_sessions

these sessions serve as the input we need to compute LTR training data (the SDBN based
judgments from Chapter 11 / ).Listing 12.1

Finally, we’re coming back up for air: we have the data we need to rerun our Automated LTR
training loop. We’ll see what happens with these added training examples to our training data,
and finally how we can fit this exploration into the overall Automated LTR algorithm.

We’ve explored by showing some outside-the-box search results to live users. We now have new
sessions appended to the original session data stored in the  dataframe.with_explore_sessions

In this section, we’ll run the session data through our Automated LTR functions to regenerate
training data and train a model. We’ll conclude by running this new model in an A/B test to see
the results.

As you’ll recall, our Automated LTR helpers can regenerate our training data using the 
 function. We do this in , but this time with our augmentedsessions_to_sdbn Listing 12.10

sessions that include exploration data.

Listing 12.10 Regenerate SDBN judgments from new sessions

Build new SDBN judgments with given beta distribution prior

Output  judgments Outputtransformers dvd

    sess_id query             rank  doc_id        clicked
400 100049  transformers dvd  0.0   93624974918   False
401 100049  transformers dvd  1.0   879862003524  False
402 100049  transformers dvd  2.0   97360810042   False   <-- INSERTED
403 100049  transformers dvd  3.0   708056579739  False

12.3.4 Examining the outcome of our explorations

new_sdbn = sessions_to_sdbn(with_explore_sessions,
                            prior_weight=10,
                            prior_grade=0.2) 
new_sdbn.loc['transformers dvd']  
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We see in 's output a new product has been included. Note in particular the additionListing 12.10
of upc . Interestingly, this movie has  set to , meaning it was one97368920347 promoted_b true

of the newly selected "explore" candidates from the previous section:

It seems users do seem drawn to promoted products. So let’s move our  featurehas_promotion

from the explore feature set to our main model and retrain to see the impact. In  weListing 12.11
train a model with this new feature added to the mix to see the effect.

doc_id      clicked examined  grade    beta_grade
97360724240    19.0    21.0      0.904762  0.677419
97360810042 78.0    87.0      0.896552  0.824742
97368920347 27.0    32.0      0.843750  0.690476
97363455349 731.0   2116.0    0.345463  0.344779
97361312804 726.0   2112.0    0.343750  0.343073
97363560449 733.0   2133.0    0.343647  0.342977

{
    "upc":"97368920347",
    "name":"The Transformers: The Movie - DVD",
    "name_ngram":"The Transformers: The Movie - DVD",
    "name_omit_norms":"The Transformers: The Movie - DVD",
    "name_txt_en_split":"The Transformers: The Movie - DVD",
    "manufacturer":"\\N",
    "shortDescription":"\\N",
    "longDescription":"\\N",
    "promotion_b":true,
    "id":"71a8850d-9295-4a31-a4ef-ccae356be014",
    "_version_":1710117634561802242
}
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Listing 12.11 Rebuild model using updated judgments

Adding  to the LTR model we’re traininghas_promotion

Perform a test-train split at the query level

Train a Rank SVM model on the training data

Evaluate the model on the test data

Output

Wow! We see comparing the output of the earlier  to 's that adding aListing 12.3 Listing 12.11
promoted product to the training data creates a significant improvement in our offline test

random.seed(1234)

feature_set_better = [
    {
      "name" : "name_fuzzy",
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "name_ngram:(${keywords})"
      }
    },
    {
      "name" : "name_pf2",
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "{!edismax qf=name name pf2=name}(${keywords})"
      }
    },
    {
      "name" : "shortDescription_pf2",
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "{!edismax qf=shortDescription pf2=shortDescription}(

        ${keywords})"
      }
    },
    {
      "name" : "has_promotion",  
      "store": "test",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "promotion_b:true^=1.0"
      }
    }
]

train, test = test_train_split(new_sdbn, train=0.8)   
ranksvm_ltr(train, model_name='test3', feature_set=feature_set_better)  
eval_model(test, model_name='test3', sdbn=new_sdbn)  

{'blue ray': 0.16923076923076924,
 'dryer': 0.05754359864451608,
 'headphones': 0.2385279187817259,
 'dark of moon': 0.25398773006134967,
 'transformers dvd': 0.563385595947119}
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evaluation. The precision of  jumped significantly! If we issue a search for transformers dvd

, we see this reflected in our data:transformers dvd

Output

The proof, however, is in the pudding! We’ve been here before. We know great looking offline
results don’t always translate to the real world. What happens when we rerun the A/B test from 

? If you recall we created a function  that randomly selects a modelListing 12.4 a_or_b_model

for a user’s search. If the results contained an item the user secretly wanted to purchase, a
purchase would likely occur. If we use this function to resimulate an A/B test in ,Listing 12.12
we see our new model appears to have hit the jackpot! Woohoo!

Listing 12.12 Rerun A/B test on new  modeltest3

Simulate 1000 users

Compare searches of transformers dvd between  and  modelstest1 test3

Save purchases made per model

Output:

We’ve added automated exploration to our training data, making an Automated LTR system that
not only relearns from the latest user behaviors, but leverages user interactions to explore what
else might be relevant. The full system here acts like an attentive young child: often using the
knowledge it has, but also eager to play and experiment. The child asks: what will my parents do
when I drop milk on the floor? What might it feel like to pick up an insect? How might this rock
taste? As adults, we know not to do these things! But when training new models, we need to
think like the child: always the student, eager to learn and explore!

search('transformers dvd', 'test3', at=10)

[{'name': 'The Transformers: The Movie - DVD'},
 {'name': 'Transformers Animated: Transform and Roll Out - DVD'},
 {'name': 'Transformers: Revenge of the Fallen - Widescreen - DVD'},
 {'name': 'Transformers/Transformers: Revenge of the Fallen: Two-Movie Mega

 Collection [2 Discs] - Widescreen - DVD'},
 {'name': 'Transformers: Dark of the Moon - Blu-ray Disc'}]

NUM_USERS=1000
purchases = {'test1': 0, 'test3': 0}
for _ in range(0, NUM_USERS):      

    model_name, purchase_made = a_or_b_model(query='transformers dvd',  
                                             a_model='test1',  
                                             b_model='test3') 
    if purchase_made:
        purchases[model_name]+= 1  

purchases

{'test1': 14, 'test3': 227}
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With the final pieces in place, we see how exploring new features helps us to overcome
presentation bias. Feature exploration and training data exploration go hand-in-hand, as we learn
our presentation biases by understanding the features we lack and may need to engineer into
search. In this chapter, we used a simple example with 'promotions', but what other, more
complex, features might show blind spots in your training data? In this section, let’s conclude by
augmenting the full Automated LTR algorithm to include not just training a model with training
data, but also exploration beyond the training data’s current bubble.

To summarize our new, auto-exploring Automated LTR algorithm, we follow these three main
steps:

We can summarize the past three chapters by gathering them up in one final code listing. Listing
 puts all the pieces together (with some internals omitted). Our main decision points in this12.13

algorithm are the features used to explore and exploit. We can also go under the hood to change
the chosen click model, the LTR model architecture, and our tolerance for risk (the theta
parameter).

12.4 Explore, exploit, gather, rinse, repeat: the full Automated LTR
loop

1. Exploit: gather known features and train the LTR model for ranking using

existing training data
2. Explore: use hypothesized, 'explore' features to eliminate training data

blind spots
3. Gather: with a deployed model, and a trained `gpr` model, show

explore/exploit search results, and gather clicks to build judgments
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Listing 12.13 Fully Automated LTR algorithm summarized

Train LTR model on known-good features and current training data

Hypothesized new features to explore for blind spots

Choose a new candidate for exploration (using "Expected Improvement"
algorithm)

Gather more session data and regenerate training data using SDBN click model

Goto "exploit" to rebuild, deciding whether to promote any explore features

In this loop, we capture a better Automated LTR process. We actively learn our training data
blinds spots by theorizing the features that might be behind them. Letting the loop run we
observe its performance, deciding when to promote explore features to the full, production

# =========
# EXPLOIT

exploit_feature_set = [       
    {
      "name" : "name_fuzzy",
      "store": "exploit",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "name_ngram:(${keywords})"
      }
    }
    ... # more features for exploitation
]

train, test = test_train_split(sdbn, train=0.8) 
ranksvm_ltr(train, model_name='exploit', feature_set=exploit_feature_set) 
eval_model(test, model_name='exploit', sdbn=new_sdbn) 

# ===============
# EXPLORE

explore_feature_set = [     
    {
      "name" : "manufacturer_match",
      "store": "explore",
      "class" : "org.apache.solr.ltr.feature.SolrFeature",
      "params" : {
        "q" : "manufacturer:(${keywords})^=1"
      }
    }
    ... # more features for exploitation w/ existing features from exploit
]

explore_vect = best_explore_candidate(sdbn, explore_feature_set, theta=0.6) 
explore_upc = explore('transformers dvd', explore_vect) 

# =========
# GATHER                                     
sdbn = sessions_to_sdbn(sessions,            
                        prior_weight=10,     
                        prior_grade=0.2)     

# GOTO "exploit" and repeat full loop  
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"exploit" feature set. As we retire old click data, we also can note when old features no longer
matter, and when new features become important due to trends and seasonality.

Taken together, this algorithm gives you a robust mechanism for arriving at an ideal ranking that
considers a full spectrum of options that could be shown to users. It lets you choose new features
to investigate blind spots, arriving at a relevance algorithm that maximizes what users expect to
see for their searches.

Performing well in an offline test shows our features can approximate the training data.
However, that’s no guarantee of success. An A/B test can show us situations where the
training data itself was misleading.
Training data must monitored for biases and carefully corrected.
Presentation bias is one of search’s most pernicious issues. Presentation bias happens
when our models can’t learn what’s relevant from user clicks. This happens when our
search never shows the truly relevant result, so users never click on them!
We can overcome presentation bias by making the Automated LTR process an active
participant in finding blind spots in the training data. Models that do this particpate in 

.active learning
A  is one way to select promising opportunities for exploration. Using aGaussian Process
set of features, we can find what’s missing in the training data, selecting those to show
users. We can experiment with different ways of describing the data via features to find
new and interesting blind-spots and areas of investigation.
When we put together exploiting existing knowledge with exploring blind spots, we have
a better, Automated LTR - reflected intelligence that can automatically explore and
exploit features with little internal maintenance.

12.5 Summary
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13
This chapter covers

In this chapter, we’ll start our journey into the emerging future of search, where we see the swell
wave of hypercontextual vectors soak into the beaches of information retrieval.

Our story begins with what you have already learned in section 2.5, that we can represent context
as numerical vectors, and we can compare these vectors to see which are closer using a similarity
metric. In chapter 2 we demonstrated the concept of searching on dense vectors, a technique
known as "dense vector search", but our examples were simple and contrived (searching on
made-up food attributes). In this chapter we pose the question - how can we convert real world
unstructured text into a high dimensional dense vector space that attempts to model the actual
meaning of the text representation. And how can we leverage this representation of knowledge
for advanced search applications?

We’re going to use language translation as an example to understand what we mean by "dense
vectors", to get us in the mood for an advanced computational representation of knowledge. Take
the following two sentences of "Hello to you!" (English), and "Barev Dzes" (Armenian). These
two expressions hold approximately the same meaning: each is a greeting, with some implied
sense of formality.

Semantic search with dense vectors

Representing the meaning of text with dense vectors
An introduction to Transformers, and their impact on text representation and retrieval
Building a fast and accurate autocomplete using transformer models
Using approximate nearest neighbor (ANN) search to speed up dense vector retrieval
Semantic-search using dense vectors

13.1 Language Translation as an Analogy for Text Representation
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Computationally, to successfully respond to the greeting of "Hello to you!", the machine must
both comprehend the meaning of the prompt and also comprehend all the possible ideal
responses, in the same vector space. When the answer is decided, the machine must then express
it back to a person by generating the label from the answer’s vector representation.

We’ll call this representation of meaning the . Embeddings are used interchangablyembedding
between natural language processing tasks, and can be further molded to meet specific use cases.
In this chapter we will introduce techniques and tools to get embeddings from text, and then use
them to significantly enhance query and document interpretation within our search engine.

SIDEBAR Natural Language Processing (NLP)

Natural Language Processing (NLP) is the set of techniques and tools that
converts unstructured text into machine actionable data. The field of NLP is
quite large, and includes many areas of application. A comprehensive list of
the problem areas are maintained at https://nlpprogress.com/

We will be focussing specifically on applying NLP to information retrieval,
an important requirement of AI Powered Search!

One important point is worth noting upfront: Behind the two short English and Armenian
greetings we mentioned, there are deep cultural nuances. Each of them carries a rich history, and
learning them thus carries the context of those histories. This was the case with the semantic
knowledge graphs we explored in chapter 5, but those only leveraged the context of documents
within the search engine as their model. Transformers are usually trained on much larger
corpuses of text, bringing in significantly more of this nuanced context from external sources.

How did you, as a baby, child, teen, and beyond, actually learn the meaning of words? You were
told, and you consumed knowledge and its representation! People who taught you already had
this knowledge and the power to express it. Aside from someone pointing out a cat and saying
"kitty" to you, you also watched movies and videos, and then moved on to literature and
instructional material. You read books, blogs, periodicals, and letters. Through all this and more,
you incorporated the knowledge into yourself, creating in your brain a dense representation of
concepts and how they relate to one another and allow you to reason.

Can we impart to machines the very same content from which we obtained this power of
language, and then expect them to understand and respond sensibly when queried? Hold on to
your hats!

13.1.1 Representation of Meaning through Text Embeddings
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The general theory behind using dense vectors for search instead of sparse vectors requires a
general shift in understanding how to process and relate text. This section briefly reviews how
sparse vector search works in comparison with dense vector search. We will also introduce 

 as one type of similarity used for dense vector search as compared tonearest-neighbor search
BM25 (the most common similarity function used for sparse vector search).

SIDEBAR Nearest-Neighbor Search

Also known as kNN (k-nearest-neighbor), nearest-neighbor search is the
problem space of indexing numerical vectors of a uniform dimensionality into
a data structure, and searching that data structure with a query vector for the
closest 'k' related vectors. We will use cosine similarity (covered in section
1.2.2) to calculate the similarity between 2 vectors.

Sparse vectors require the use of an inverted index. An inverted index is like what you find in the
back of any text book - a list of terms that reference their location in the source content. To
efficiently find text, we structure information in an index by processing and normalizing tokens
into a dictionary with references to the postings (the document identifiers and positions in which
they occur). The resulting data structure (the inverted index) allows for fast lookup of those
tokens. At search time we tokenize and normalize the query terms and, using the inverted index,
match the document hits for retrieval and then apply the BM25 formula to score the documents
and rank by similarity, as covered in section 3.2. Applying scores for each query term and
document feature gives us a fast and relevant search, but this model suffers from the 'query term
dependence' model of relevance, in which the terms (and normalized forms) are retrieved and
ranked. The problem is that it uses the presence (and count) of query term strings to search and
rank and not the  behind those strings. Therefore, the relevance scores are only useful inmeaning
a relative sense to tell you which documents best matched the query, but not to objectively
measure if any of the documents were actually good matches. Dense vector approaches, as we’ll
see, can supply a more global sense of relevance that is also comparable across queries.

We want to capture the meaning of content when we are processing documents, and when
searching we want to retrieve and rank based on the meaning and intent of the query. With this
goal in mind, we will process documents and get the , and store them in some kindembeddings
of embedding index. Then, at search time, we will process the query to get embeddings, and use
those query embeddings to search the indexed document embeddings. Figure 13.1 shows a
simplified diagram of this process, which will be expanded upon in Section 1.4.

13.2 Search using Dense Vectors

13.2.1 A brief refresher on sparse vectors

13.2.2 A conceptual dense vector search engine
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SIDEBAR Embeddings

An Embedding is a dense vector of numeric features that persist a
representation of knowlege learned from text. Embeddings can span different
lengths of content. Different embeddings can be made to represent a single
word, sentence, paragraph, or even a whole document.

Figure 13.1 Building and searching the embeddings index. The content is processed and added to the
index from the left, and from right a user queries the index to retrieve results.

The embeddings for both documents and queries exist in the same vector space. This is very
important. If you map documents to one vector space, and queries to another vector space, you’ll
be matching apples to oranges! So the embeddings must belong to the same space for this to
work effectively.

But what is an embedding exactly, and how do we search one? Well, an embedding is a vector of
some set number of dimensions. Based on this, we use cosine similarity (which was covered
in-depth in Chapters 2 and 3), or some other similar distance measurement, to compare two
vectors to each other and get a similarity score. This allows us to compare the vector of a query,
to the vectors of all the documents in the content we want to search. The document vectors that
are the most similar to the query vector are referred to as . Figure 13.2nearest-neighbors
illustrates this with three 2-dimensional vectors.
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Figure 13.2 Three vectors (a, b, and c) plotted on a cartesian plane. The similarites as cos between a
and b, and b and c are illustrated.

From figure 13.2, these are the cosine similarities between all the vectors ordered by highest
similarity first.

cosine similarity (b,c) = 0.9762
cosine similarity (a,b) = 0.7962
cosine similarity (a,c) = 0.6459

It is clear that  and  are closest to each other, so we say that  and  are the most similar of theb c b c
three vectors.

Given this basic understanding of similarity and nearest-neighbors, we can easily apply cosine
similarity to vectors of any length. So in 3 dimensional space, we’d be comparing vectors with
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three features (x,y,z). In our dense vector embedding space, we use vectors with hundreds of
dimensions! But no matter the number of dimensions, the formula is the same:

Figure 13.3 Formula for the cosine similarity of two vectors

See section 3.1 for a recap of using this cosine similarity calculation to score the similarity
between vectors. With this fundamental understanding of dense vector search and nearest
neighbor similarity now in place, the next critical step is to figure out a way to get these
mysterious embeddings!

This section will introduce what a Transformer is, what its encoder is, and why to use it.

Transformers are a class of deep neural network architectures, that are optimized towards
encoding meaning as vectors, and decoding the meaning into a transformed representation of that
meaning. They do this by first representing term labels as dense vectors by using their contexts
in a sentence (the encoding part), and then leveraging an output model to translate the vectors
into different text representations (the decoding part). One beautiful aspect of this approach is the
separation of concerns between encoding and decoding. We will take advantage of this feature
and use the encoding mechanism just to obtain the embeddings, which we can then leverage as a
semantic representation of meaning independent of any decoding steps.

For you buzzwordians out there, you’ve probably heard of at least one type of Transformer
Encoder: BERT.

13.3 Getting Text Embeddings by using using a Transformer
Encoder

13.3.1 What is a Transformer?
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SIDEBAR Representing Meaning

Recall the example English and Armenian greetings from the introduction in
Section 1.1.

Using a specialized transformer and dataset for English to Armenian
language translation, it would be possible to train a model to encode the two
phrases "Hello to you!" and "Barev Dzes" into similar dense vectors.

However, we’re going to illustrate representation similarities in English
only. Since you are reading this book in English, we can assume you already
understand it!

Natural Language Processing lies at an intersection between computing, linguistics, and
psychology. These areas are all important because of the way language has evolved in the world,
and how we’ve engineered machines. Transformers aim to bridge the language-machine gaps
through sophisticated techniques using a vast amounts of computing power.

Let’s start our journey with Transformers by understanding how transformer encoder models are
trained and what they ultimately learn. To understand the motivations behind Transformers and
the mechanisms behind them, it is important to know some history of the underlying concepts.

The year is 1953. Everything is dark. You open your eyes and find yourself sitting in a classroom
with 20 other students at their own desks. On your desk is a pencil and a sheet of paper. On the
sheet of paper, you see the sentence Q: I went to the ________ and bought some

 You already know what to do, and you write down "store" in the blank. You peekvegetables.

over at a classmate sitting at the desk next to you, and they have written "market". A chime rings,
and the answers are tallied. The most common answer is "store", and there are several with
"market" and several with "grocer". This is the Cloze test. It is meant to test reading
comprehension.

You are transported now to the year 1995. You are sitting in another classroom with students
taking another test. This time, your sheet of paper has a very long paragraph. It looks to be about
60 words long, and is somewhat complicated. It reads:

Ours was the marsh country, down by the river, within, as the river wound, twenty miles of the
sea. My first most vivid and broad impression of the identity of things seems to me to have been
gained on a memorable raw afternoon towards evening. At such a time I found out for certain
that this bleak place overgrown with nettles was the churchyard."'

After the paragraph there is a question listed with a prompt for an answer: Q: How far away
 You write in the blank: "twenty miles".from the sea is the churchyard? A:________

You have just completed one of a dozen questions in the Regents English reading comprehension
test. Specifically, this tested your attention.
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These two tests that you just witnessed are foundational to how we measure written language
comprehension. To be able to pass these tests, you have to read, read, read, and read some more.
In fact, by the time most people take these tests in school, they have already practiced reading for
about 14 years and have amassed a huge amount of contextual knowledge.

These theories form the basis for what are known as Large Language Models - NLP models
trained on lots and lots of text (for example, the entirety of Wikipedia, or the entirety of the
Common Crawl dataset of the world wide web).

Major breakthroughs in the NLP field culminated in a 2018 paper by Google Research titled
"Bidirectional Encoder Representations from Transformers" (aka BERT), which made use of the
Cloze test and attention mechanisms to reach state of the art performance on many language
comprehension benchmarks. See  for the groundbreakinghttps://arxiv.org/abs/2007.01127v1
BERT paper.

BERT, specifically, performs self-learning by presenting Cloze tests to itself. The training style
is 'self-supervised'. This means it is supervised learning, framed as an unsupervised task. This is
ideal because it does not require data to be manually labelled beforehand for the initial model
pretraining. You can just give it any text, and it will make the tests itself. In the training context,
the Cloze test is known as . The model starts with a more basicmasked language modeling
embedding (for example, using the well-known word2vec or GloVe libraries) for each word in
the vocabulary, and will randomly remove 15% of the tokens in a sentence for the test. The
model then optimizes a loss function that will result in a higher Cloze test success rate. Also
during the training process, it uses the surrounding tokens and contexts (the attention). Given a
vector in a single training example, the resulting trained output vector is an embedding that
contains a deeply learned representation of the word and the surrounding contexts.

We encourage you to learn more about Transformers and BERT if you are interested, by reading
the paper. The good news is that aside from that basic understanding - you won’t really need to
know how BERT works under the covers to be able to get started using it.

What you do need to understand however, is how to get embeddings from a BERT encoder. The
basic concept is shown in figure 13.4.
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Figure 13.4 The Transformer encoder.

In Figure 13.4, we process text by first passing it through a tokenizer. The tokenizer will split
text into , which are predefined parts of words that are represented in a vocabulary.word pieces
This vocabulary is established for the model before it is trained. For example, the term  willIt’s

be split into three word pieces during tokenization: , , and . The vocabulary used in theit ' s

BERT paper used 30,000 word pieces. BERT also uses special word pieces to denote the
beginning and end of sentences:  and , respectively. Once tokenized, the token[CLS] [SEP]

stream is passed into the BERT model for encoding. The encoding process then outputs a tensor
which is an array of vectors (one vector for each token).
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While Transformers enable state of the art language models to be built, having the knowledge
and resources to build them from scratch can present a large hurdle for many. One very
important aspect of working with Transformers is the large community and open toolsets that
make it possible for any engineer to quickly get up and running with the technology. All it takes
is some knowledge of Python and an internet connection.

The models that are trained by this process from scratch are very large, and are greater than
500Mb on average. The training itself also takes a large amount of expensive computing power
and time, so being able to leverage pre-existing models as a starting point provides a significant
advantage. We’ll leverage this advantage in the next section as we begin applying one of these
models to search.

In this section, we will build a highly accurate natural language autocomplete for search, which
will recommend more precise and otherwise related keywords based on a prefix of terms. We
will do this by first passing our corpus text through a transformer to get an index of embeddings.
Then we will use this index at query time to get the query embedding and return the
nearest-neighbor concepts.

To visualize how this all works and what we’re building, figure 13.5 shows an architecture
diagram that explains all the pieces.

Figure 13.5 A conceptual architecture for end-to-end search using transformer encoded vectors.

13.4 Applying Transformers to Search

13.3.2 Openly available pre-trained transformer models
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We have a content source, a nearest neighbor index, a way to retrieve vectors from a transformer,
and a similarity formula. We can then build pipelines for all these pieces to process and index
content, and then retrieve and rank documents with a query.

In chapter 5, we introduced the Outdoors dataset from Stack Exchange. We’re choosing to use
this dataset again in this chapter for a very important reason: the vocabulary and contexts in the
outdoor question and answer domain already have good coverage in the transformer models
we’ll be using. Specifically, Wikipedia is used when training many transformer models, and
Wikipedia has a section specifically on outdoors content ( ).https://en.wikipedia.org/wiki/Outdoor

Listing 13.1 walks through creating an outdoors dataset collection and indexing data into it.

Listing 13.1 Indexing the outdoors dataset

This is the schema for the outdoors collection that is created in the accompanying source code
inside the  method referenced :add_outdoors_fields_to_schema Listing 13.1

The indexed dataset contains documents representing both questions and answers, with answers
linked to the original questions through a hierarchical structure.

All documents contain a  field, which differentiates question documents (post_type_id

) from answer documents ( ), as shown in .post_type_id=1 post_type_id=2 Listing 13.2

13.4.1 Using the Outdoors StackExchange dataset

outdoors_collection="outdoors"
create_collection(outdoors_collection)
add_outdoors_fields_to_schema(outdoors_collection)
index_dataset_to_search_engine(outdoors_collection,

process_outdoors_dataset())

* url _(string)_
* post_type_id _(integer)_
* accepted_answer_id _(integer)_
* parent_id _(integer)_
* score _(integer)_
* view_count _(integer)_
* body _(text)_
* title _(text)_
* tags _(keyword)_
* answer_count _(integer)_
* owner_user_id _(integer)_
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Listing 13.2 Querying the outdoors dataset with a noun phrase.

This is a question ( )post_type_id=1

Document  is marked as the accepted answer to the question21

The  field (only on question documents) summarizes the questiontitle

These are answer documents ( )post_type_id=2

These documents answer the question in the first document ( )id=7

Answers are provided in the  field on answer documentsbody

This is the document marked as the accepted answer on the question docuument (
)accepted_answer_id=21

In the listing, the first document is the question document ( ) with the questionpost_type_id=1

being represented by the  field ( ), and thetitle What is the safest way to purify water?

accepted answer to the question marked as document .21

All documents answering that question are represented as answer documents ( )post_type_id=2

with a  corresponding to the id of the original question document ( ).parent_id=7 id=7

Answers are always associated with a question and answers don’t contain a title. The  fieldbody

of question documents contains elaborations on the question, and the  field of answerbody

[
    {
        "id": "7",
        "post_type_id": 1, 
        "accepted_answer_id": 21, 
        "body": "There are a number of ways to purify water, off the top of

        my head we have filters, iodine, and boiling... Which of these

        is the safest? ...",
        "title": "What is the safest way to purify water?" 
    },
    {
        "id": "15",
        "post_type_id": 2, 
        "parent_id": 7, 
        "body": "I have no science to back me up, but the SAFEST way would ,

        be boiling..." 
    },
        {
        "id": "21", 
        "post_type_id": 2, 
        "parent_id": 7, 
        "body": "When you're asking for the safest way to purify water,

        you're asking for the method that removes the most harmful

        stuff from the water, like bacteria, viruses and larger

        impurities like mud or sand. No one method is really perfect

        at removing everything, so I usually use a two-stage approach:

        Filter ... Boil ..."
    },

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

320

https://livebook.manning.com/#!/book/ai-powered-search/discussion


documents contain the answer text. Several other fields (such as , ,view_count answer_count

and ) are omitted here, but are available in the dataset as metadata fields whichowner_user_id

can help with search relevance using BM25 mixed with other signals.

With our outdoors dataset indexed, we can now query it. Take a moment to try out some queries
and see what types of questions come back.  searches through the question documentListing 13.3
titles and provides a good baseline for our search.

Listing 13.3 Querying the outdoors dataset with a noun phrase.

Response:

We’ve now verified we can query the corpus, and see that these are somewhat relevant titles for
this noun phrase query. But this is just a basic search. Other queries do not perform nearly as
well, for example the query  in  shows very irrelevant results.What is DEET Listing 13.4

Listing 13.4 Querying the outdoors dataset with a question.

Response:

This shows that traditional keyword-based text search fails for some common natual language
use cases. Specifically, the inverted index suffers from the query-term dependency problem. This
means that the terms in the query are being matched as strings to the dictionary of the content.
This is why you see strong matches for "what is" in the results in ! The  ofListing 13.4 meaning
the query is not comprehended, so the retrieval can only be based on string matching.

The rest of this chapter will provide the fundamentals needed for using transformers for natural
language search, and in chapter 14 we will solve the question answering problem evident in 

.Listing 13.4

query_collection("climbing knots")

Query: climbing knots

Ranked Docs:
Question Title:What are the four climbing knots used by Jim Bridwell?
Question Title:What's a good resource for learning to tie knots for climbing?
Question Title:How to tie a figure eight on a bight?
Question Title:Can rock climbers easily transition to canyoning?
...

query_collection("What is DEET?")

Query: What is DEET?

Ranked Docs:
Question Title:What is Geocaching?
Question Title:What is bushcrafting?
Question Title:What is "catskiing"?
Question Title:What is a tent skirt and what is its purpose?
...
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Using a pre-trained transformer model out of the box is not recommended, because the initial
training was done in a general language context without any specific use case in mind. In
essence, it is "untuned", and using models this way is akin to indexing content in any search
engine and not tuning for relevance.

Therefore, to realize the full potential of Transformers, they need to be refined to accomplish a
specific task. This is known as . Fine-tuning is the process of taking a pre-trainedfine-tuning
model, and training it on more fit-for-purpose data to achieve a specific use case goal. For both
autocomplete and semantic search, we are interested in fine-tuning to accomplish text similarity
discovery tasks.

That brings us to the 'Semantic Text Similarity Benchmark' (STS-B) training and testing set (
). This benchmark includes passages thathttps://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

are semantically similar and dissimilar, and labeled accordingly. Using this dataset, a model can
be fine-tuned to improve the accuracy of nearest-neighbor search between a set of terms and
many passages in a corpus, which will be our use case in this chapter. In Chapter 14, however,
we will fine-tune our own question-answering model so you can see how it is done.

For our purposes throughout the rest of this chapter, however, we’ll choose to use a project that
already includes a previously fine-tuned model for this task: SBERT.

SBERT, or  is a technique and Python library based on Transformers that is builtSentence-BERT
on the idea that a BERT model can be fine-tuned in such a way that two semantically similar
sentences, and not just tokens, should be represented closer in vector space. Specifically, SBERT
uses  of all the BERT embeddings in one sentence to a single vector. Pooling is a fancypooling
way of saying it combines the values. Once SBERT pools the values, it then trains for similarity
between sentences by using a special purpose neural network that learns to optimize for the
STS-B task. If you’d like to dive into the specifics, please check out the SBERT paper further.
Here is the paper summary written by the authors:

"In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained
BERT network that uses siamese and triplet network structures to derive semantically
meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the
effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds
with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa
on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art
sentence embeddings methods." https://arxiv.org/abs/1908.10084

13.4.2 Fine-tuning and the Semantic Text Similarity Benchmark (STS-B)

13.4.3 Introducing SBERT, a transformer library built around similarity between
sentences
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The upcoming listings will give an overview of how to use SBERT via the 
 Python library. We start by importing the sentence transformerssentence_transformers

library using a pre-trained model named . The model isroberta-base-nli-stsb-mean-tokens

based on an architecture called RoBERTa. It’s helpful to think of RoBERTa as an evolved and
improved version of BERT, with optimized hyperparameters and slight modifications to the
original techniques. A  is like a knob that you turn to make the implementationhyperparameter
more or less accurate.

SIDEBAR Hyperparameters

In machine learning, hyperparameters are any parameter values that can be
changed before training, that will alter the learning process and impact the
final resulting model.

Unfortunately you never know what the hyperparameter values should be
when you start, so they obtain optimized values over time using iteration and
measurement.

Looking at the model name, we also see some terms that you may not recognize including "nli"
and "mean-tokens". NLI stands for natural language inference (a subdomain of NLP used for
language prediction), and mean-tokens refers to the whole sentence tokenization being pooled
together as a mean of the floating point values of the token embeddings. Using mean-tokens
returns a single 768 dimension embedding for the entire sentence. Some context might be lost in
this process, but it is made up for when the model is trained for the task.

Listing 13.5 imports the  library, loads the model, and displays the fullsentence_transformers

network architecture.

Listing 13.5 Loading the RoBERTa sentence_transformers model.

Now, the PyTorch object  holds the neural network architecture for the transformer as wellstsb

as all the model weights.

With our model loaded, we can now retrieve embeddings from text. This is where the fun really
begins. We can take sentences and pass them through the neural network architecture using the
pre-trained model and get the embeddings as a result. We have four sentences that we will
encode and assess in the upcoming listings, starting with .Listing 13.5

Listing 13.6 demonstrates how to encode multiple phrases into dense vector embeddings.

from sentence_transformers import SentenceTransformer
stsb = SentenceTransformer('roberta-base-nli-stsb-mean-tokens')
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Listing 13.6 Encoding phrases as dense vector embeddings.

Our 4 sentences we want to encode. We will pass all of these in to be encoded as a
single batch.

Just call stsb.encode, and the abstraction of sentence_transformers does all the
heavy lifting for you!

Response:

Collapsed for brevity - there are 768 floating points inside this tensor.

In the listing, we take each sentence and pass it to the encoder. This results in a tensor for each
sentence. A 'tensor' is Python object that contains a multidimensional matrix (an array of vectors)
that is defined by its dimensionality. Tensors are produced by Transformer encoders, such as
SBERT, when encoding text. For our use case, the tensor in  is an embeddingListing 13.6
containing 768 dimensions represented as floating point numbers.

With our embeddings, we can now perform cosine similarities to see which phrases are closest
neighbors of each other. We’ll compare each phrase to every other phrase, and sort them by
similarity to see which are most similar. This process is covered step by step in  and Listing 13.7

.Listing 13.8

We use a Pytorch built-in library for cosine similarity to do these comparisons, which allows us
to just a pass in the embeddings with a single function call. We can then sort the resulting
similarities and see which two phrases are most similar to one another and which two are most
dissimilar.  calculates the similarities between each of the phrase embeddings.Listing 13.7

Listing 13.7 Comparing all the phrases to each other.

phrases = ["it's raining hard","it is wet outside","cars drive fast",

"motorcycles are loud"] 
embeddings = stsb.encode(phrases, convert_to_tensor=True) 
print('Number of embeddings:',len(embeddings))
print('Dimensions per embedding:',len(embeddings[0]))
print('The embedding feature values of "it\'s raining hard":')
print(embeddings[0])

Number of embeddings: 4
Dimensions per embedding: 768
The embedding feature values of "it's raining hard":
tensor([ 1.1609e-01, -1.8422e-01,  4.1023e-01,  2.8474e-01,  5.8746e-01,
         7.4418e-02, -5.6910e-01, -1.5300e+00, -1.4629e-01,  7.9517e-01,
         5.0953e-01,  3.5076e-01, -6.7288e-01, -2.9603e-01, -2.3220e-01,
         ... 
         5.1413e-01,  3.0842e-01, -1.1862e-01,  5.9565e-02, -5.5944e-01,
         9.9763e-01, -2.2970e-01, -1.3132e+00])

from sentence_transformers import util as STutil
similarities = STutil.pytorch_cos_sim(embeddings, embeddings)
print('The shape of the resulting similarities:',similarities.shape)
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Response:

We print the shape of the similarities object in  to see how many comparisons weListing 13.6
have. The shape of the similarities object in  is 4x4. This is because we have 4Listing 13.6
phrases, and each phrase has a similarity score to every other phrase and itself. All the similarity
scores are between 0.0 (least similar) and 1.0 (most similar). The shape is included here to help
show the complexity of comparing many phrases. If there were 100 phrases, the similarities
shape would be 100x100. If there were 10000 phrases, the similarities shape would be
10000x10000. So as you add phrases to compare, note that the computational and space costs
will increase with complexity , where  is the number of phrases.n n

With the similarities for our 4 phrases computed, we sort and print them in in listing .Listing 13.8

Listing 13.8 Sorting by similarities and printing the results.

Append all the phrase pairs to a dataframe

We don’t bother appending a phrases similarity to itself, as it will always be 1.0

Get the score for each pair

Sort the scores (remember to use ascending=False for highest scores first)

Response:

We can now see that the two phrases that are most similar to one another are "it’s raining hard"
and "it is wet outside". We also see strong similarity for cars and motorcycles.

The two phrases that are most dissimilar are "it is wet outside" and "cars drive fast". It’s very

2

The shape of the resulting similarities: torch.Size([4, 4])

a_phrases = []
b_phrases = []
scores = []

for a in range(len(similarities)-1): 
    for b in range(a+1, len(similarities)): 
        a_phrases.append(phrases[a])
        b_phrases.append(phrases[b])
        scores.append(float(similarities[a][b])) 

df = pandas.DataFrame({"phrase a":a_phrases,"phrase b":b_phrases,

"score":scores})
df.sort_values(by=["score"],ascending=False,ignore_index=True) 

    phrase a            phrase b                score
0   it's raining hard   it is wet outside       0.669060
1   cars drive fast     motorcycles are loud    0.590783
2   it's raining hard   cars drive fast         0.281166
3   it's raining hard   motorcycles are loud    0.280801
4   it is wet outside   motorcycles are loud    0.204867
5   it is wet outside   cars drive fast         0.138172
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clear from these examples that this semantic encoding process is working - we can associate rain
with it being moist and wet outside. The dense vector representations captured the context, and
even though the words are different the meaning is still there. Note the scores: the top two
similar comparisons have a score of greater than 0.59, and the next closest comparison has a
score of less than 0.29. This is because only the top two comparisons seem to be similar to one
another, as we would perceive them in a natural language understanding task. As intelligent
people, we can group rain and wet ('weather'), and we also group cars and motorcycles
('vehicles'). Also interestingly, cars likely drive slower when it is wet on the ground, so that
likely explains the low similarity of the last pair.

Now that we know our vector encoding and similarity process is working well, its time to put
this embedding technique to work in a real search use case - natural language autocomplete!

In this section, we will show a practical use for sentence transformers at search time, with a basic
and fast autocomplete implementation. Using what we’ve learned thus far, we will apply it to the
outdoors dataset. Using SpaCy (the same Python NLP library used in Chapter 5) we will chunk
nouns and verbs to get outdoors' concepts. We will then put these concepts in a dictionary and
process them to get their embeddings. Then we will use the dictionary in an approximate nearest
neighbor index to query in real time. This will give us the ability to enter a prefix or a term and
get the most similar concepts that exist in the dictionary. Finally, we will take those concepts and
present them in order of similarities to the user, demonstrating a smart, natural language
autocomplete.

Experience and testing show that this works much better than even a well tuned suggester in
Solr. We will see that it’s much less noisy, and also that similar terms that are not spelled the
same will be automatically included in the suggestions. This is because, as follows from listings
13.5 through 13.7, we are not using term strings to compare to one another. Rather, we are
comparing the embeddings, and the embeddings contain meaning and context. This is the
embodiment of searching for "things not strings".

Using what we learned in the knowledge graph chapter, we will write a simple method to extract 
 from the corpus. We won’t include any hierarchy, and we won’t be building aconcepts

knowledge graph here. Rather, we just want a reliable list of frequent nouns and verbs.

The concepts in our example are the important "things" and "actions" that people usually search
for. We also need to understand the data set, which is best accomplished by spending time
reviewing the the concepts and how they relate to one another. Understanding the corpus is

13.5 Natural Language Autocomplete

13.5.1 Getting noun phrases and verb phrases for our nearest-neighbor
vocabulary
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critical when building any search application, and there’s no exception when using advanced
natural language processing technology.

Listing 13.9 provides a strategy that will provide a decent quality baseline of candidate concepts
for our vocabulary while removing significant noise from the autocomplete results.

Listing 13.9 uses the SpaCy matcher to look for patterns as part of speech tags. We also
explicitly remove the verb 'to be' from the verb concepts. The verb 'to be' is used frequently in
many unuseful situations, and we don’t want that cluttering up our concept suggestions. We
could also further improve quality by removing other noisy verbs like 'have' and 'can' but this is
just an example for now. Also introduced in this listing is the SpaCy pipe. The SpaCy pipe
method accepts a batch size and a number of threads as parameters, then processes text batches
in parallel. This increases the throughput and processes text more quickly.

Listing 13.9 The spacy matcher makes quick work of getting the parts of text that we want.

All the normalized noun/verb phrases ("concepts") in the corpus

The original text labels that were normalized to the concept

Use the spacy matcher to chunk patterns into concept labels

Part of speech tags that match Nouns

Part of speech tags that match Verbs

Add a noun phrase matching pattern to the SpaCy analysis pipeline

   ...

   phrases = [] 
   sources = [] 

   matcher = Matcher(nlp.vocab) 
   nountags = ['NN','NNP','NNS','NOUN'] 
   verbtags = ['VB','VBD','VBG','VBN','VBP','VBZ','VERB'] 
   matcher.add("noun_phrases", [[{"TAG":{"IN": nountags}, "IS_ALPHA":

   True,"OP":"+"}]]) 
   matcher.add("verb_phrases", [[{"TAG":{"IN": verbtags}, "IS_ALPHA":

   True,"OP":"+", "LEMMA":{"NOT_IN":["be"]}}]]) 
   for doc,idx in nlp.pipe(yieldTuple(df,"body",total=total),

   batch_size=40, n_threads=4, as_tuples=True): 
       text = doc.text
       matches = matcher(doc)
       for matchid,start,end in matches: 
           span = doc[start:end]
           phrases.append(normalize(span))
           sources.append(span.text)

   concepts = {}
   labels = {}
   for i in range(len(phrases)):
       phrase = phrases[i]
       if phrase not in concepts:
           concepts[phrase] = 0
           labels[phrase] = sources[i] 
       concepts[phrase] += 1

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

327

https://livebook.manning.com/#!/book/ai-powered-search/discussion


Add the verb phrase matching pattern. You can add more NOT_IN patterns to
exclude other "stop word" verbs

Process the  field for each Outdoors question, in batches of 40 documentsbody
using 4 threads.

Gets all the noun and verb phrase matches and keeps them in the sources and
phrases lists

Aggregate the normalized concepts by term frequency

With the method in , we can now get the list of concepts. When running this on yourListing 13.9
machine it may take some time, so be patient.  returns the most prominent conceptsListing 13.10
and labels from the Outdoors corpus.

Listing 13.10 Examining the most frequent concepts in our corpus.

Response:

Aside from getting the concepts for the Outdoors dataset,  filtered the total datasetListing 13.10
to  which only includes concepts with a frequency greater than five. Filtering will limittopcons

# Set load_from_cache=False to re-extract all the concepts from the corpus.
concepts,labels = getConcepts(outdoors_dataframe,load_from_cache=True)
topcons = {k:v for (k,v) in concepts.items() if v>5 }
print('Total number of labels:',len(labels.keys()))
print('Total number of concepts:',len(concepts.keys()))
print('Concepts with greater than 5 term frequency:',len(topcons.keys()))
print(json.dumps(topcons,indent=2))

Total number of labels: 124260
Total number of concepts: 124366
Concepts with greater than 5 term frequency: 12375
{
  "have": 32782,
  "do": 26869,
  "use": 16793,
  "get": 13412,
  "go": 9899,
  "water": 9537,
  "make": 9476,
  ...
  "second": 340,
  "job": 339,
  "chemical": 338,
  "adult": 338,
  "cat": 337,
  "jump": 336,
  "coat": 336,
  ...
  "dyeing": 6,
  "amp hour": 6,
  "molle": 6,
  "rigor mortis": 6,
  "mortis": 6,
  "hydroxide": 6,
  ...
}
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noise from terms that don’t appear as often in the corpus. Such noise may include misspellings
and rare terms that we don’t want to suggest in an autocomplete scenario, for example.

We’re going to perform a complex normalization that will normalize similarly related concepts.
But instead of algorithmic normalization (like stemming), we are normalizing to a dense vector
space of 768 feature dimensions. Similar to stemming, the purpose of this is to increase recall
(the percentage of relevant documents successfully returned). But instead of using a stemmer,
we’re finding and mapping together closely related concepts. As a reminder, we’re only
normalizing noun phrases and verb phrases. Ignoring the other words is similar to stopword
removal, but that’s OK, because we want to suggest similar concepts as concisely as possible.
We’ll also have a much better representation of the meaning of the kept phrases and their
contexts, so in many ways, the surrounding non-noun and non-verb terms are implied.

Now that we have a list of concepts from the last section, we’re going to process them through
our SBERT/RoBERTa transformer architecture and model to retrieve the embeddings. This takes
quite a while if you don’t have a GPU (about 25 minutes on an average 2019 Macbook Pro), so
after we calculate the embeddings the first time, we’ll persist them to a pickle file. A pickle file
is a serialized Python object that can be easily stored and loaded to and from disk. If you ever
have to re-run the notebook, you can just load the previously created pickle and not waste
another half hour re-processing the raw text.

Hyperparameter alert! the term frequency minimum is a hyperparameter, and is set to be greater
than five (>= 6) in  in order to minimize noise from rare terms. We’ll encounterListing 13.11
more hyperparameters in other listings in this chapter and the next, especially when we get into
fine-tuning. After finishing the rest of the listings in this chapter, we encourage you to come back
and change the value of , and see how it alters the results that are retrieved.minimum_frequency

Indeed you may find a value that’s more suitable and more accurate than what we’ve arrived at
here.

13.5.2 Getting embeddings
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Listing 13.11 Retrieving the embeddings of our concept vocabulary.

We are ignoring terms that occur less than this number of times in the entire
corpus. Lowering this threshold may lower precision, and raising it may lower
recall.

Response:

From  you can see that one embedding was generated from each of our 12375Listing 13.11
concepts. All embeddings have the same dimensionality from the same dense vector space and
can therefore be directly compared with one another.

Figure 13.6 demonstrates what these embeddings actually look like and how they related to one
another when plotted in 3d.

def get_embeddings(concepts,minimum_frequency,load_from_cache=True):
  phrases = [key for (key,tf) in concepts.items() if tf>=minimum_frequency]
  if not load_from_cache:
      embeddings = stsb.encode(phrases, convert_to_tensor=True)
      with open('data/outdoors_embeddings.pickle','wb') as fd:
          pickle.dump(embeddings,fd)
  else:
      with open('data/outdoors_embeddings.pickle','rb') as fd:
          embeddings = pickle.load(fd)
  return phrases,embeddings

minimum_frequency = 6 

#set load_from_cache=False to regenerate the embeddings rather than

loading from pickle
phrases,embeddings = get_embeddings(concepts, minimum_frequency,

load_from_cache=True)

print('Number of embeddings:',len(embeddings))
print('Dimensions per embedding:',len(embeddings[0]))

Number of embeddings: 12375
Dimensions per embedding: 768
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Figure 13.6 The vector space for the concept embeddings mapped to a 3d visualization.

The similarity of some concepts in the figure have been labelled to show neighborhoods of
meaning. Concepts related to  and  illustrate where they are located in relation to eachwind block
other in the vector space. We used  to reduce the 768 dimensions fordimensionality reduction
each embedding into 3 dimensions (x,y,z) so they could be easily plotted. Dimensionality
reduction is a technique to condense one vector with many features into another vector with
fewer features. During this reduction the relationships in the vector space are maintained as much
as possible.

SIDEBAR Dimensionality Reduction loses context.

A lot of context is lost when performing dimensionality reduction, so the
visualization in Figure 13.6 is only presented to give you an intuition of the
vector space and concept similarity, not to suggest that reducing to three
dimensions is an ideal way to represent the concepts.
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With the embeddings calculated from , we can now perform a massive comparisonListing 13.11
to see which terms are more closely related to one another. We will do this by calculating cosine
similarity for each embedding related to every other embedding. Note that we’re limiting the
number of embeddings that we’re comparing in this example. This is because the high number of
calculations that are required to be performed might melt your laptop if you’re not careful. If
you’re not sure what I mean, let’s do some quick math. Each embedding has a dimensionality of
768 floating point values. Comparing the top 500 embeddings all against each another results in
500×500×768==192,000,000 floating point calculations. Were we to compare the full list of
12375 embeddings, that would be 12375x12375x768==117,612,000,000 floating point
calculations. Not only would this be slow to process, it would take a very large amount of
memory.

Listing 13.12 Performs a brute force comparison of the top 505 concepts, to assess how
similarities scores are distributed.

Listing 13.12 Explore similarity scores from the head of the vocabulary.

Find the pairs with the highest cosine similarity scores

Appends the similarities for phrase a and phrase b to the list

Sorts the phrase pairs from most to least similar

Response:

similarities = STutil.pytorch_cos_sim(embeddings[0:505],

embeddings[0:505]) 

a_phrases = []
b_phrases = []
scores = []
for a in range(len(similarities)-1):
    for b in range(a+1, len(similarities)):
        a_phrases.append(phrases[a])
        b_phrases.append(phrases[b])
        scores.append(float(similarities[a][b])) 

comparisons = pandas.DataFrame({"phrase a":a_phrases,"phrase b":b_phrases,

"score":scores,"name":"similarity"})
comparisons = comparisons.sort_values(by=["score"], ascending=False,

ignore_index=True) 
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From , the  dataframe now holds a sorted list of all phrases comparedListing 13.12 comparisons

to one another, with the most similar being  and  with a cosine similarity ofprotect protection

0.928.

Now that we’ve calculated the similarities, let’s take a look at the distribution of the resulting
similarity scores. Seeing the distribution in Figure 13.7 is helpful in understanding the
percentage of concepts that are most similar to one another. You see that very few comparisons
have a similarity score greater than 0.6, and the vast majority have similarity scores less than
that.

Note that the index of  is arbitrary and can be changed to larger values for more data to505
visualize. Remember from what we learned in : Using  concepts yields a tensor of [Listing 13.7 n

, ] in shape. This yields a total of  similarities for the example in n n 505*505 = 255025 Listing
.  plots the distribution of the top 505 concept comparison similarity scores.13.12 Listing 13.13

Listing 13.13 The distribution of similarities.

The output of  is shown in Figure 13.7Listing 13.13

    phrase a    phrase b    score
0   protect     protection  0.928150
1   climbing    climber     0.923570
2   camp        camping     0.878894
3   climb       climbing    0.833662
4   something   someone     0.821081
5   hike        hiking      0.815187
6   people      person      0.784663
7   climb       climber     0.782961
8   go          leave       0.770643
9   keep        stay        0.768612
10  life        live        0.739865
11  trip        travel      0.730623
12  snow        winter      0.719569
13  fire        burn        0.713174

candidate_synonyms = comparisons[comparisons["score"]>0.0]
{
    ggplot(candidate_synonyms, aes('name','score')) +
    geom_violin(color='blue')
}

©Manning Publications Co. To comment go to   
https://livebook.manning.com/#!/book/ai-powered-search/discussion

333

https://livebook.manning.com/#!/book/ai-powered-search/discussion


Figure 13.7 Distribution of how the top 505 concepts score with a cosine similarity when compared with
each other. Note that very few comparisons result in a score higher than 0.6, and most scores are less
than 0.4 (a very low confidence).

We plot the distribution of scores so we can assess them and use our intuition for choosing a
baseline similarity threshold at query time (used later in ).Listing 13.15

The visualization in Figure 13.7 is very promising. Since most concepts are noted as dissimilar,
we can reliably choose a high enough number as a threshold of quality suggestions (such as 0.6
in this example). Remember, when we’re performing an autocomplete during search, we’re only
interested in seeing the top five to ten suggested terms. So this distribution shows us that we can
do that reliably.

Before implementing the working autocomplete, we have one more imporant problem to solve
first. The problem is that at query time, we ideally don’t want to compare our search terms to all
12,375 other terms. That would be inefficient and slow due to the dimensionality and
computational overhead as we witnessed when using the  method.STutil.pytorch_cos_sim

Even if we were willing to caclulate cosine similarities for all of our documents, this will just get
slower and slower as we scale to millions of documents, so we ideally would only score
documents which have a high chance of being similar.

13.5.3 Approximate Nearest-Neighbor search
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We can accomplish this goal by performing what is known as an approximate-nearest-neighbor
(ANN) search. Using ANN search will efficiently give us the most closely related concepts when
given a term, without the overhead of calculating embedding similarites across the entire
dictionary.

ANN search is meant to trade some accuracy in exchange for a logarithmic computational
complexity, and also memory and space efficiencies. To implement our ANN search, we will be
using an index-time strategy to store searchable content vectors ahead of time in an specialized
data structure. Just like our good old friend the inverted index, think of approximate
nearest-neighbor search as the "inverted index" for dense vector search.

For our purposes, we will use  to index andHierarchical Navigable Small World (HNSW) graphs
query our dense vectors. HNSW is described in the abstract of the paper (

):https://arxiv.org/abs/1603.09320

_We present a new approach for the approximate K-nearest neighbor search based on navigable
small world graphs with controllable hierarchy (Hierarchical NSW, HNSW)…​

Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of
proximity graphs (layers) for nested subsets of the stored elements._

What this means, is that HNSW will cluster similar vectors together as it builds the index.
Navigable Small World graphs work by organizing data into neighborhoods, and connecting the
neighborhoods with one another with probable relationships. When a dense vector is being
indexed, the most appropriate neighborhood and its potential connections are identified, and
stored in the graph data structure.

SIDEBAR Different ANN Approaches

In this chapter, we implement the HNSW algorithm for ANN search. HNSW
provides a great balance between recall and query throughput, and is
currently (as of writing) among the most popular ANN approaches. However,
many other ANN approaches exist, including much simpler techniques like
Locality Sensitive Hashing (LSH). LSH breaks the vector space into hash
buckets (representing neighborhoods in the vector space) and encodes
(hashes) each dense vector into one of those buckets. While recall is typically
much higher for HNSW versus LSH, HNSW is dependent upon your data to
generate the neighborhoods and the neighborhoods can shift over time to
better fit your data, whereas LSH neighborhoods (hashes) are generated in a
data-independent way, which can better meet some use cases requiring a

 sharding in distributed systems. It may be worthwhile for you to lookpriori
into different ANN algorithms to find the one that best suit your application.

When an HNSW search is initiated using a dense vector query, it finds the best cluster entry
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point for the query, and searches for the closest neighbors. There are many other optimization
techniques that HNSW implements, and we encourage you to read the paper if you want to learn
more.

For our approximate nearest neighbor search implementation we’re going to use a library called
Non-Metric Space Library (NMSLIB). This library includes a canonical implementation of the 

 algorithm.HNSW

We’ve chosen this library because not only is it fast, it’s easy to use and requires very little code.
We will also point out that Lucene recently introduced a new feature in version 9 that includes a
dense vector field type and native HNSW calculations. This is not readily available in Solr or
Elasticsearch, but an implementation of HNSW is available in engines such as Vespa.ai,
Weaviate, Milvus, and others.

NMSLIB is robust and well tested, and is used by many teams for ANN applications. NMSLIB
is also more appropriate to show the simplicity of approximate nearest neighbor search without
getting into the details of the implementation. There are many other ANN libraries available, and
I encourage you to investigate some of them listed on this excellent benchmarking site: 
http://ann-benchmarks.com/

As shown in , to begin using NMSLIB we simply import the library, initialize anListing 13.14
index, add all of our embeddings to the index as a batch, and then commit. Autocomplete is an
ideal use case when building an index in this way, because the vocabulary is rarely updated.

Even though this and other libraries may suffer from write-time performance in certain
situations, this won’t impact our read-heavy autocomplete application. From a practical
standpoint, we can update our index as an evening or weekend offline job, and roll out to
production when appropriate.  Creates our HNSW index from all 12375Listing 13.14
embeddings and then performs an example search for concepts similar to the term 'bag'.

Listing 13.14 Approximate nearest neighbor search using NMSLIB.

Initialize a new index, using a HNSW in the cosine similarity space

13.5.4 Approximate Nearest-Neighbor index implementation

import nmslib
index = nmslib.init(method='hnsw', space='cosinesimil') 
index.addDataPointBatch(embeddings) 
index.createIndex(print_progress=True) 

# Example query for the new index.  The embedding in index 25 is

the term 'bag'
ids, distances = index.knnQuery(embeddings[25], k=10) 
matches = [labels[phrases[idx]].lower() for idx in ids] 
print(matches)
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Adding all the embeddings is easy! The ID for each embedding is its index in the
dictionary terms list

This commits the index to memory. This must be done before you can query for
nearest neighbors.

Get the top  nearest neighbors (10 in this case). The 25th embedding is the termk

'bag' in our dictionary

Lookup the label for each term. Labels have not been lemmatized, which looks
nicer during display. For example, the term 'summer months' is the label for the
phrase 'summer month'.

Response:

Once the index is created and committed, we run a small example comparing the term  andbag

seeing what comes back. Interestingly, all of these terms are hyponyms, which reveals another
ideal result. We are interested in suggesting more precise terms to the user during autocomplete
time. This has a higher likelihood of giving the user the chance to select the term most closely
associated with a particular information need.

With our index in place and our example confirmed, we can now construct a straightforward
query method that accepts any term, and returns the top suggestions. The technique behind
SBERT has been trained to provide similar terms from a given set of tokens. Importantly, this
method accepts any query whether or not it’s already in our dictionary. We first take the query,
and retrieve the embeddings by passing the query through the same SBERT encoder. With these
embeddings we then get the nearest neighbors from the index. If the similarity score is greater
than 0.75 we count it as a match and include that as a suggestion.

With this method we can then try to get suggestions for complete terms such as ,mountain hike

as well as prefixes such as .  shows our autocomplete dehyd Listing 13.15 semantic_suggest

method implementation, which performs an approximate nearest neighbor search for concepts.

We will use the threshold dist>0.75 to only return similar terms for which we see a high
confidence in similarity.

SIDEBAR Chose a good similarity threshold

We arrived at the 0.75 threshold by looking at the distribution from Figure
13.7, and going with our gut. This should be further tuned by looking at actual
examples for actual user queries.

Our query might not be in the dictionary, but that’s OK! We can get the embeddings on demand.

['bag', 'bag ratings', 'bag cover', 'bag liner', 'garbage bags', 'wag bags',

'bag cooking', 'airbag', 'paper bag', 'tea bags']
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Note that this may be a CPU bottleneck in production. It is advised to measure the throughput at
scale, and add hardware accordingly.

Listing 13.15 Our autocomplete method encodes a query and returns the
K-nearest-neighbor concepts.

We set k=20 for illustration. In a production application this would likely be 5 to
10.

Get the embeddings for the query

We’re only returning the terms with 0.75 or higher cosine similarity.

No neighbors found! Return just the original term.

Response:

We’ve done it! We can now efficiently serve up an autocomplete based on transformer
embeddings and approximate-nearest-neighbor search.

Overall, the accuracy of results for many queries with this model is quite impressive. But

def semantic_suggest(query,k=20): 
    matches = []
    embeddings = stsb.encode([query], convert_to_tensor=True) 
    ids, distances = index.knnQuery(embeddings[0], k=k)
    for i in range(len(ids)):
        text = phrases[ids[i]]
        dist = 1.0-distances[i]
        if dist>0.75: 
            matches.append((text,dist))
    if not len(matches):
        matches.append((phrases[ids[1]],1.0-distances[1])) 
    return matches

Results for: mountain hike

mountain hike   1.0
mountain hiking 0.9756487607955933
mountain trail  0.8470598459243774
mountain guides 0.7870422601699829
mountain terrain    0.7799180746078491
mountain climbing   0.7756213545799255
mountain ridge  0.7680723071098328
winter hikes    0.7541308999061584

Results for: dehyd

dehydrated  0.9417487382888794
dehydration 0.9317409992218018
rehydration 0.852516770362854
dehydrator  0.8514857292175293
hydration   0.8362184166908264
hydrating   0.8358256816864014
rehydrating 0.8222473859786987
hydrated    0.8123505115509033
hydration pack  0.7883822917938232
hydration system    0.7768828868865967
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1.  
2.  
3.  
4.  
5.  

beware, it’s extremely important to use a labeled data set to calculate accuracy before deploying
a solution like this to real customers. When implementing question-answering in chapter 14, we
will demonstrate using labeled data in this way for a real accuracy measurement.

Try out some more autocomplete values on your own if you’d like. Which ones work well?
Which ones don’t?

Using what we’ve learned so far, we will now take dense vector search to the next level: we are
going to query the document embeddings with the query embeddings as a recall step at search
time.

We specifically started with autocomplete as our first implementation, because it was helpful to
understand the basics of language similarity. It is essential that you have strong intuitions about
why things are similar or dissimilar in a vector space, because otherwise you will endlessly chase
recall issues when using language embeddings. To build that intuition we started with matching
and scoring basic concepts only a few words in length each.

With that intuition, we will now move on to comparing entire sentences. We’re going to do this
to perform semantic search for titles, starting with a query and then return a list of documents.
Remember that we’re searching on the Outdoors Stack Exchange dataset, so the document titles
are really the summary of the questions being asked by the contributor. As a bonus, we can
actually use the same implementation from the last section to search for question titles that are
similar to one another.

This section will be quick, because it is for the most part, a repeat of the encoding and similarity
methods from the previous section. In fact, the code in this section is even shorter, since we don’t
need to extract concepts!

Here are the steps we’ll follow:

Get the embeddings for all the titles in the outdoors dataset.
Create an NMSLIB index with the embeddings.
Get the embeddings for a query.
Search the NMSLIB index.
Show the nearest neighbor titles.

Our NMSLIB index will be made up of title embeddings. We’re using the exact same method as
we did in the autocomplete example, but instead of transforming concepts now we’re
transforming the titles of all the questions that the outdoors community has asked. Listing 13.16
shows the process of encoding the titles into embeddings.

13.6 Semantic Search with large language model embeddings

13.6.1 Getting titles and their embeddings
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Listing 13.16 Encode the titles into embeddings

We get the titles for every question in the outdoors corpus.

Get the embeddings for the titles (this takes a little while)

Response:

We have encoded 5331 titles into embeddings, and we will plot the title embedding similarity
distribution in figure 13.8.

Figure 13.8 The similarities of all the title embeddings to each another

Compare Figure 13.8 to the concept similarity distributions from from Figure 13.7. Note the
slightly different shape and score distributions, due to the difference between titles and concepts.
Figure 13.7 has a longer 'needle' on top. This is because titles are more specific, and therefore

titles = list(filter(None, list(outdoors_dataframe['title']))) 
embeddings = get_embeddings(titles) 

print('Number of embeddings:',len(embeddings))
print('Dimensions per embedding:',len(embeddings[0]))

Number of embeddings: 5331
Dimensions per embedding: 768
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will relate differently than broader noun and verb phrases.

Now that we have generated the the embeddings for all the question titles in the corpus, we can
easily create the nearest-neighbor index, as shown in Listing 13.17

Listing 13.17 Create the ANN title embeddings index

With our newly created index, searching is easy! Shown in  is the new method Listing 13.18
, which implements ANN search for question titles given a query. Note thatsemantic_search

the this is very similar to that of the  from  that wesemantic_suggest Listing 13.15
implemented for autocomplete.

Listing 13.18 Perform a semantic search for titles

Accepts a query and defaults k to the 10 closest neighbors

Hyperparameter alert! Changing this value to something other than 0.6 alters the
recall for the search.

Perform an ANN Search against the titles index!

Response

13.6.2 Creating and searching the nearest-neighbor index

import nmslib
index = nmslib.init(method='hnsw', space='cosinesimil')
index.addDataPointBatch(embeddings)
index.createIndex(print_progress=True)

def semantic_search(query,k=10,minimum_similarity=0.6): 
    matches = []
    embeddings = stsb.encode([query], convert_to_tensor=True)
    ids, distances = index.knnQuery(embeddings[0], k=k)
    for i in range(len(ids)):
        text = titles[ids[i]]
        dist = 1.0-distances[i]
        if dist>minimum_similarity: 
            matches.append((text,dist))
    if not len(matches):
        matches.append((titles[ids[1]],1.0-distances[1]))

    print_labels(query,matches)

semantic_search('mountain hike') 
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Yay! That was easy. Now let’s take a good moment and reflect on these results. Are they all
relevant? Yes - they are all absolutely questions related to the query . BUT, andmountain hike

this is very important, are they the MOST relevant documents? We don’t know! The reason we
don’t know, is that  does not provide much context at all. So while the titles aremountain hike

all semantically similar to the query, we don’t have enough information to know if they are the
documents we should surface for the user.

That said, it is clear that this embedding-based approach to search brings interesting new
capabilities to our matching and ranking tool box, providing the ability to conceptually relate
results. Whether those results are better or not depends on the context, though.

SIDEBAR Reranking results found with dense vector similarity

Note that in  we chose the default  distanceListing 13.17 minimum_similarity

score threshold to be greater than 0.6. Examine the title similarity
distributions in Figure 13.8, would you change this number to be something
different than 0.6?

We can set  to a value lower than 0.6 (for exampleminimum_similarity

0.5) to potentially increase recall, and change  to be a value higher than 10k

as a rerank window size (for example 250). Then, using this larger resultset
you can perform a rerank using cosine similarity with one feature among
many in a Learning to Rank reranking step.

While Solr does not provide this as a capability yet, it is possible in some
other engines such as Vespa.ai. Using what you learned in Chapter 10, think
how would you go about incorporating dense vector similarity into a
learning-to-rank model.

And thus we return back to the game of automating relevance tuning. Cosine similarity of
embeddings is one of many signals or features in a mature AI-powered search stack. This
similarity is a feature that will be used alongside Personalization, Learning-to-Rank, and

Results for: mountain hike
0.725 | How is elevation gain and change measured for hiking trails?
0.706 | Hints for hiking the west highland way
0.698 | Fitness for hiking to Everest base camp
0.697 | Which altitude profile and height is optimal for Everesting by

hiking?
0.678 | How to prepare on hiking routes?
0.678 | Long distance hiking trail markings in North America or

parts thereof
0.675 | How far is a reasonable distance for someone to hike on

their first trip?
0.668 | How to plan a day hike
0.666 | How do I Plan a Hiking Trip to Rocky Mountain National Park, CO
0.665 | Is there special etiquette for hiking the Appalachian Trail

(AT) during AT Season
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Knowledge Graphs, for a robust search experience. The trend is that nearest neighbor dense
vector search is rapidly growing in popularity, and will likely eventually supplant BM25 as the
foundational retrieval and ranking techniques used when searching unstructured text.

With what you’ve learned in this chapter, you should now be able to do the following with your
own content: * Assess and choose an existing fine-tuned transformer encoder model that matches
your use case * Encode important text from your documents and add them to an embeddings
index * Build an autocomplete pipeline to accept plain text queries and quickly return the most
closely related concepts * Add a powerful high-recall Semantic-Search to your product

The technology underlying dense vector search still needs improvement, as embeddings are
heavy and slow, and sparse term vectors are much smaller and faster. But, tremendous forward
progress continues to be made towards productionizing these dense vector search techniques, and
for good reason. Not only does searching on vectors enable better semantic search on text, it also
enables cutting edge approaches to image search, question answering, and other more advanced
search use cases. In the next chapter, we’ll discuss several of these emerging use cases on the
frontier of AI-Powered Search.
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A
This Appendix covers:

During your journey through , we’ll walk through a lot of code and runningAI-Powered Search
software examples demonstrating the techniques within this book. This appendix will show you
how to easily setup and run the accompanying source code so that you can interact and
experiment with live, running examples as you work through the material.

In order to build an AI-powered search system, it is necessary to integrate many components and
libraries. For our core search engine, we will leverage Apache Solr, which internally leverages
Apache Zookeeper. For significant data processing and machine learning tasks, we’ll leverage
systems like Apache Spark and Tensorflow. We’ll leverage Python as our primary programming
language for code examples, and will thus need to install and manage many Python library
dependencies, in addition to other system dependencies (like Java) which several of our systems
require. Of course, we also need the ablity to actually execute our code examples and see the
results in a user-friendly way, which we’ll accomplish through the use of Jupyter notebooks.

Instead of having you install dozens of software libraries and hundreds of dependencies to make
this all work, however, we are making this process as easy as possible for readers by packaging

Appendix A: Running the code examples

How this book’s source code examples are packaged
Pulling the AI-Powered Search source code
Building and running the examples
Working with Jupyter
Working with Docker

A.1 Overall Structure of Code Examples
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all of the examples in this book into Docker containers which are already fully-configured and
and ready to use. This means that there is a single prerequisite you must install before running
the code examples in this book: Docker.

Docker enables the creation and running of tiny containers - fully-functioning virtual machines
that run only a light-weight operating system with all of the needed software and dependencies
already installed and configured.

Once all of the services are running, all of the code listings in the book will be available through
Jupyter notebooks, which will serve as the interface for walking through and experimenting with
the code examples and seeing the resulting outputs.

The source code accompanying this book is available at: 
github.com/treygrainger/ai-powered-search

To pull the code, either use an installed Git client or open up a terminal into your preferred
development folder and run one of the following commands:

or

You should now have a new folder in your current directory called , whichai-powered-search

contains all of the source code for the book.

If you do not have Git installed or can’t pull the code through one of the above commands, there
is also an option to download the source code as a zip through your web browser, which you
would then just need to unzip into your development folder.

Feel free to rename or move this  folder if you wish; throughout the rest ofai-powered-search

this book, we’ll simply refer to this directory using the variable .$AIPS_HOME

As previously mentioned, Docker is the one key dependency you must install on your system in
order to build and run the AI-Powered Search examples. We will not cover this installation
process here as it is system-dependent and changes from time to time, so please visit
www.docker.com for download and installation instructions.

Once you have Docker installed, all you need to do is run the following command:

A.2 Pulling the source code

A.3 Building and running the code

git clone https://github.com/treygrainger/ai-powered-search.git

git clone git@github.com:treygrainger/ai-powered-search.git
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TIP The  command in the foreground of your console, whichdocker-compose up

allows you to see all logs streaming by in real-time, but which also means
your containers will all die if you close the console. If you would like to
instead run the containers in the background and continue using your
console, you can pass in the  or  parameter (-d --detach docker-compose

). If you launch like this, be sure to explicitly run -d docker-compose down

when you are finished to stop the containers from running indefinitely in the
background consuming resources.

This is helpful for seeing live logs, but also means the containers will be stopped as soon as you
close the console. If you’d like to start them up to continue running in the back

This command will take a while to run the first time, as it is pulling in all of the software,
operating systems, and dependencies needed to build and run the software accompanying this
book.

Once the command finishes, however, you will have all of the necessary services (Jupyter, Solr,
Zookeeper, Spark, etc.) running in separate Docker containers. Now, to get started, simply open
up your web browser and go to:

Figure A.1 Welcome screen. Once you see this, the AI-Powered Search containers are
built and the Jupyter notebooks are running.

cd $AIPS_HOME/docker
docker-compose up

http://localhost:8888/notebooks/welcome.ipynb
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Once you load the  notebook, you’ll see a few data cells on the screen, includingwelcome.ipynb

an introduction message, a "health check" script, and a table of contents to various notebooks
containing executable examples from the book.

If you’ve never used Jupyter before, it is a tool that lets you mix markup (usually instructions
and explanation) and code in your browser, and to edit, run, and interact with the output from the
code examples. This makes learning much easier, as you don’t have to use command line tools
and can instead interact entirely with ready-to-execute examples with the push of a button.

You’ll notice a toolbar near the top of the screen (below the menu bar), which allows you to
interact with the sections of content (called "cells") within the notebook. You can use these to
navigate up and down, to stop and restart the notebook, or to execute each cell sequentially using
the "Run" button.

Figure A.2 Running code examples. Clicking "Run" in the toolbar will execute any
examples in the current cell (if any) and proceed to the next cell.

In Figure A1.2, clicking "Run" while the healthcheck code cell is highlighted will result in the
healthcheck executing to confirm that all Docker containers are running and that the services
running within them are healthy and responding.

Figure A1.3 shows the response you will see when everything is running as expected.

A.4 Working with Jupyter
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Figure A.3 Healthcheck Success. You should see this message if everything is running
correctly.

At this point you can scroll down to the table of contents and proceed through the notebooks for
each chapter. Of course, since the explanation behind the examples is contained within the book,
you’ll probably prefer to work through the examples as you’re reading through the book so that
you have the appropriate background understanding when running them. The Jupyter notebooks
are not intended to be stand-alone examples, so you’ll probably want to keep the book close by
to provide context.

All Jupyter notebooks are designed to be independently idempotent. This means that, while all
steps in a notebook need to be executed in order to guarantee a successful result, that you can
always start back over at the beginning of any notebook and it will "reset" to the expected results
necessary to make the following steps succeed. If ever you experience errors in a notebook, just
go back to the first cell on the page and run through the whole notebook again!

While everything in the previous sections should work as expected, it’s of course possible you
could run into problems along the way. The most likely challenge you’ll face is for one of your
Docker containers, or the service running inside of it, to fail. It’s also possible, if you’re making
changes to underlying data or config in one of the services, for example, that you could put it in a
bad state.

When this happens, you can always tear down your containers and start over. To do this, just run:

Keep in mind that if you’re doing anything on your cluster  than running through theother
examples, that any work you’ve done will be lost. In general, the examples are designed to be

A.5 Working with Docker

cd $AIPS_HOME/docker
docker-compose down && docker-compose up
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transient. If you want to preserve your work across container stops and starts, you can modify the
 file to make your data volumes  and thus persistent. Pleasedocker-compose.yaml external

refer the the Docker documentation if you plan to make changes there, as the mechanisms and
APIs can change from time to time.

If you ever modify the code examples or your configuration, it is also possible you may need to
rebuild your Docker images. When you run  the first time, it will build yourdocker-compose up

images and start them, but it doesn’t rebuild with changes made since the first build. To rebuild
everything prior to starting, you can instead run:

This should give you everything you need to run through all of the notebooks and code in 
. Happy searching!AI-Powered Search

cd $AIPS_HOME/docker
docker-compose build && docker-compose up
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