
ASYNC JS,
PROMISES,
& REQUESTS

THE
CALL
STACK

CALL STACK
The mechan ism the JS in terpreter uses to keep t rack
of i t s p lace in a scr ipt that ca l l s mu l t ip le funct ions .

How JS "knows" what funct ion i s current ly be ing run
and what funct ions are ca l led f rom wi th in that
funct ion , e tc .

CALL STACK

Let 's see . . .
where was I?

LAST
THING
IN. . .

FIRST
THING
OUT. . .

When a script calls a function, the interpreter adds it to the

call stack and then starts carrying out the function.

Any functions that are called by that function are added to

the call stack further up, and run where their calls are

reached.

When the current function is finished, the interpreter takes

it off the stack and resumes execution where it left off in

the last code listing.

HOW IT WORKS

i sR ightTr iangle(3,4,5)
square(3)+square(4)
=== square(5)

i sR ightTr iangle(3,4,5)
square(3)+square(4)
=== square(5)

square(3)
mul t ip ly (3 ,3)

i sR ightTr iangle(3,4,5)
square(3)+square(4)
=== square(5)

square(3)
mul t ip ly (3 ,3)

mult ip ly(3,3)
9

i sR ightTr iangle(3,4,5)
square(3)+square(4)
=== square(5)

square(3)
9

i sR ightTr iangle(3,4,5)

9+square(4) === square(5)

i sR ightTr iangle(3,4,5)

9+square(4) === square(5)

square(4)
mul t ip ly (4,4)

i sR ightTr iangle(3,4,5)

9+square(4) === square(5)

square(4)
mul t ip ly (4,4)

mult ip ly(4,4)
16

i sR ightTr iangle(3,4,5)

9+square(4) === square(5)

square(4)
16

i sR ightTr iangle(3,4,5)

9+16 === square(5)

i sR ightTr iangle(3,4,5)

9+16 === square(5)

square(5)
mul t ip ly (5 ,5)

i sR ightTr iangle(3,4,5)

9+16 === square(5)

square(5)
mul t ip ly (5 ,5)

mult ip ly(5,5)
25

i sR ightTr iangle(3,4,5)

9+16 === square(5)

square(5)
25

i sR ightTr iangle(3,4,5)

9+16 === 25

i sR ightTr iangle(3,4,5)

t rue

true

JS IS
SINGLE
THREADED

WHAT DOES
THAT MEAN?
At any given point in time, that
single JS thread is running at
most one line of JS code.

Can you p lease send
me a l l mov ies that

match the query "Bat"

Can you p lease send
me a l l mov ies that

match the query "Bat"

BATES

MOTEL

BATMAN

THIS
TAKES
TIME

IS OUR APP
GOING TO
GRIND TO
A HALT?

What happens when
something takes a

long time?

Fortunately...
We have a workaround

CALLBACKS???!

THE
BROWSER
DOES THE

WORK!

TO THE
RESCUE

Browsers come with Web APIs that
are able to handle certain tasks in
the background (like making
requests or setTimeout)

The JS call stack recognizes these
Web API functions and passes them
off to the browser to take care of

Once the browser finishes those
tasks, they return and are pushed
onto the stack as a callback.

OK BUT HOW?

A CLOSER LOOK

> I print first!

Hey browser, can you
set a timer for 3

seconds?

OKEEEDOKEEE

> I print first!

> I print first!

> I print second!

> I print first!

> I print second!

Time's Up!!!
Make sure you run
that callback now!!

Will do!
Thanks, browser!

> I print first!

> I print second!

> I print after 3 seconds!

Callback Hell

ENTER
PROMISES
A Promise is an object representing
the eventual completion or failure
of an asynchronous operation

PROMISES
A pattern
for writing
async code.

PROMISES

RESOLVE REJECT

A promise is a returned object to
which you attach callbacks, instead
of passing callbacks into a function

loadRedditPosts (not shown)
returns a promise

This function returns a Promise which
is randomly resolved/rejected.

