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Preface

Quite honestly, I never thought I would write a book for a

first controls course. So, what happened? Well, in my

teaching career I have taught out of the textbooks by Ogata

[1], Kuo [2], Franklin et al. [3], and Phillips and Harbor [4]

with lecture notes taken from Qiu and Zhou [5] and Goodwin

et al. [6]. I did find many great ideas in these texts that I do

use.1 However, I was also disappointed that the modeling

was not done using first principles of physics, but rather the

model was simply stated without a derivation. To address

this I made up my own lecture notes on rigid body dynamics

(Chapter 05), DC motors (Chapter 06), and the inverted

pendulum and magnetic levitation systems (Chapter 13). I

realize that my emphasis on detailed modeling may be a

“bug” to some (rather than a “feature”) as students find it

difficult and it takes away from doing control “stuff”.

However, as a colleague of mine put it, students develop

important insight when they understand where the dynamic

models come from and any linearization, approximation, or

simplification used to obtain them.

It seemed to me early in my career that teaching the first

controls course seemed to be more about its techniques,

i.e., manipulating block diagrams, drawing root locus, Bode

and Nyquist plots, doing the Routh–Hurwitz test, etc. Yet I

think the course should be about making some physical

system do what you want it to do such as having a robot

arm rotate  despite the weight of the object in its end

effector, or ensure a magnetic bearing maintains an air gap

despite various loads on it, keeping a pendulum rod pointing

straight up, etc. I recall a colleague commenting on a

lecture he gave in which he referred to the standard unity

feedback controller block diagram (Figure 1) and told the



class that the controller  was to be designed so that 

 A student then simply asked why not just get

rid of the blocks and set  It seems that in

teaching the first controls course we end up manipulating

block diagrams so much and so easily that students get lost

in the abstraction not understanding what they represent.

Figure 1 Control system in standard block diagram form.

Figures such as Figure 2 on the next page are included to

help the students remember what a block diagrams

represents.

Spending the time to do detailed derivations of a few

models helps the student to understand and remember

what the transfer function models represent. A similar

confusion arises in the modeling of disturbances. When a

disturbance is shown on the block diagram model, it is

typically placed as input to the physical system. For

example, one might have a load torque on a motor, but in

the block diagram this disturbance  is modeled coming

into the motor input, which is a voltage (Figure 1). I explain

how this load torque is modeled as an equivalent voltage

disturbance which has the same effect on the

position/speed of the rotor as the actual load torque. This

sort of understanding seems to be lost in the standard



manipulations of converting a differential equation model

into a block diagram model. Of course, some good

laboratory work can really help to clarify these ideas as well.

Figure 2 Position control of a DC motor.

Chapter 01 presents a qualitative description of the

operation of an aircraft, a quadrotor, an inverted pendulum,

and a magnetically levitated steel ball to motivate the need

for modeling and control.

Chapter 02 is a standard presentation of the Laplace

transform theory with an emphasis on partial fractions as a

way to connect the time domain to the Laplace domain.

Chapter 03 on differential equations introduces stability by

giving special attention to the final value theorem (FVT).

This is important as it is used over and over again to

determine asymptotic tracking and/or disturbance rejection

of step inputs by showing the error  via the FVT 

. This chapter also explains how to check

a differential equation for stability using the Routh–Hurwitz

test.

Chapters – are modeling chapters. Chapter 04 develops

mass–spring–damper systems and uses them to introduce

simulation using SIMULINK. Chapter 05 presents rigid body



dynamics applied to gears and rolling motion. Chapter 06 on

DC motors uses the first principles of physics to develop the

equations that model a DC motor and explains how both an

optical encoder and a tachometer work.

Chapter 07 on block diagrams is pretty standard. It is

emphasized that a block diagram is simply a graphical

representation of the relationships between the various

(Laplace transformed) variables of a physical system. It is

shown how to rearrange and simplify them using block

diagram reduction which provides a straightforward and

simple way to manipulate all the block diagrams considered

in the textbook.

Chapter 08 on system responses is also pretty standard. The

objective here is to make connections between the s‐domain

and the time domain.

Chapter 09 covers PID control that is explained using the

internal model principle. It provides the understanding of

why the controller must have an integrator to reject

constant disturbances with the P and D parts (typically)

needed to make the closed‐loop system stable. It is very

important to leave the student with an understanding of

why PID control works in so many applications.

After covering Chapters – one typically covers root locus,

Bode, and Nyquist to finish the term. The students seemed

to catch on to root locus just fine, but the approach didn't

seem that helpful in designing a controller. That is, one has

to propose some form for a controller (seemingly out of thin

air) and then vary a single gain to see if the closed‐loop

poles can be moved to a location that results in a good

response. A typical example is to have an open‐loop model

of the form , propose a controller of the form 

 and then do a root locus to choose the gain

 so the two “dominant” poles of the closed‐loop system



result in a desired response. However, using this controller

one can actually place all three closed‐loop poles arbitrarily!

The root locus method is then usually followed by teaching

Bode diagrams, Nyquist plots, and Nyquist stability. In my

experience Nyquist theory has always been harder for the

students to grasp. After all that hard work of understanding

Nyquist theory the design of a controller using the Bode

diagram (lead, lag, lead–lag, etc.) to obtain desired gain and

phase margins is still a trial and error approach. Further, the

connection between gain and phase margins to system

performance (settling time, overshoot, etc.) is not so direct.

This leaves the students without much confidence in

designing controllers.

Rather than proceeding directly to root locus, Bode, and

Nyquist after PID control, my approach is to first cover

Chapter 10 on output pole placement and two degree of

freedom (2DOF) controllers. Starting with a transfer function

model, these methods provide a straightforward systematic

way to design an output feedback controller to achieve

tracking and disturbance rejection objectives while often

being able to also eliminate overshoot in step responses.

Before I added the material of Chapter 10 (pole placement

and 2DOF controllers), the first semester course ended by

covering Bode and Nyquist (Chapter 11) and root locus

(Chapter 12). After covering Chapter 10 there is typically not

enough time in one semester to also cover Chapters and 12.

Consequently, I now cover Chapter 11 at the beginning of

the second course. Nyquist theory is fundamental to

understanding robustness and sensitivity of control systems.

Using the unity output feedback controller for the inverted

pendulum designed in Chapter 10 a Nyquist analysis is

presented to show that the resulting stability margins are

too small for this control system to work in practice. The

point here is show that there is more to control than just



making the closed‐loop system stable. Chapter 17

elaborates on these ideas.

Chapter 12 is a standard presentation of root locus. It ends

with an example showing how to design a notch filter that

cancels out stable open‐loop poles close to the  axis and

is also robust with respect to small perturbations in the

location of these poles.

Chapter 13 derives the differential equation model of an

inverted pendulum, a magnetically levitated steel ball, and

a cart on a track using first principles of physics. It is shown

how to obtain linear models of the inverted pendulum and

the magnetically levitated steel ball, as well as how to

control them using the methods of Chapters and 10.

Chapter 14 on state variables gives the elementary linear

(matrix) algebra background needed for the state feedback

theory of Chapter 15.

Chapter 15 on state feedback starts out by giving a detailed

derivation of a state trajectory tracking controller for the

cart on the track system. This is followed a general

approach to state feedback for linear statespace models

including the development of a statespace pole placement

algorithm. Also, based on the internal model principle, a

detailed presentation of a disturbance rejection statespace

controller for a servo system (DC motor) is given. An

important goal here is to show that trajectory tracking

accomplished by trajectory generation, pole placement, and

state estimation (Chapter 16) provides a systematic

procedure for designing feedback controllers in the

statespace. This is to be compared with the systematic

procedure for pole placement in the Laplace domain given

in Chapter 10.

Chapter 16 is on state and parameter estimation. State

estimation (state observer) is presented as “what to do”



when one doesn't have full state measurements. An

observer is presented that provides a smooth estimate of

the speed of a motor using the output of an optical encoder

in comparison to the noisy estimate found by differentiation

of the encoder's output. Parameter estimation via least‐

squares is explained by going through the detailed

calculations to estimate the model parameters of a DC

motor.

Chapter 17 discusses robustness and sensitivity. Nyquist

theory and the Bode sensitivity integrals are used to make

the reader aware of the fundamental problems of controlling

systems whose open‐loop models have right half‐plane

poles. Specifically, the robustness and sensitivity of four

different stabilizing controllers for the inverted pendulum

are considered: (i) output feedback of the cart position, (ii)

output feedback of a linear combination of cart position and

pendulum rod angle, (iii) full state feedback, and (iv) output

feedback of the cart position followed by state estimation

and state feedback.

Supplementary Materials

There is a solutions manual for the end of chapter problems

and a set of slides for each chapter. Further, there is also a

complete set of MATLAB/SIMULINK files for the examples

and problems that require them. These are all available on

the book's companion website provided by Wiley.

Prerequisites

The prerequisites for this book are elementary differential

equations, Laplace transforms, and a freshman/sophomore

course in (calculus‐based) physics. Chapters , 15, and 16

assume some familiarity with matrix algebra (matrix

multiplication, determinants, inverses, etc.).



Typical coverage in the first semester

course

Chapter 01, All sections

Chapter 02, All sections

Chapter 03, All sections except subsections 3.51 and 3.52

Chapter 04, All sections

Chapter 05, Sections 5.1 through 5.3

Chapter 06, Sections 6.1 through 6.4

Chapter 07, All sections

Chapter 08, All sections

Chapter 09, Sections 9.1 through 9.4

Chapter 10, Sections 10.1 through 10.3

Possible coverage in a second

semester course

Chapter 11, All sections

Chapter 12, All sections

Chapter 13, Sections, and either 13.3 or 13.4

Chapter 14, Sections 14.1 through 14.4

Chapter 15, Sections 15.1 through 15.8

Chapter 16, Section 16.1

Chapter 17, Sections 17.1 through 17.3

Logical Dependence of the Chapters



The logical dependence of the chapters is given in the figure

below.
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1 

Introduction

In this chapter we simply want to present some examples of

physical control systems. The intent here is to show why

feedback control is necessary and to give the “big picture”

of what must be done to control physical systems.

1.1 Aircraft

Figure 1.1 is a drawing of a simple propeller powered

airplane. There are four forces on the airplane: lift which is

primarily provided by the wings, drag which is basically wind

resistance, thrust which is provided by the propeller, and

gravity.



Figure 1.1 The four forces on an aircraft.

Lift is due to the difference in air pressure between the top

and bottom of an airfoil. The airfoil is a generic term that

here refers to the wings, horizontal tail or the vertical tail of

the aircraft. Figure 1.2 on the next page shows streamlines

of air moving past an airfoil (wing). The air going over the

top travels faster (as it goes a greater distance) than the air



on the bottom of the wing. Because of this speed difference,

it turns out that the air pressure on the top of the wing is

then less than the air pressure on the bottom of the wing.

The resulting upward force is what we call lift. We call lift an

aerodynamic force. Figure 1.3 on the next page shows the

air flow streamlines across an airfoil in a wind tunnel.

Figure 1.2 A lift force is due to the shape of the airfoil that

results in the pressure above the airfoil being less than the

pressure below it.



Figure 1.3 Airflow streamlines on a wing in a wind tunnel.

Source: Screenshot from http://www.decodedscience.com/how-does-an-

airplane-fly-lift-weight-thrust-and-drag-in-action/5200.

The horizontal cylindrical glass tube (Venturi tube) in Figure

1.4 on the next page is used to experimentally demonstrate

that air pressure decreases as the air speed increases. The

original flow of air from the right in the Venturi tube is

forced to flow through a bottleneck into a reduced diameter

tube. Although not obvious, at speeds below supersonic, air

is essentially incompressible so here its density is the same

on both sides of the bottleneck.1 The bottleneck results in

http://www.decodedscience.com/how-does-an-airplane-fly-lift-weight-thrust-and-drag-in-action/5200


increasing the air speed as it goes through it. That is, the

same mass of air per unit time is flowing in both tubes

(because the air does not compress) so it must speed up on

the left side as the tube cross section is smaller there. The 

‐shaped columns below the Venturi tube are filled with

water (called a manometer) and show the experimental fact

that the air pressure on the left side is less than the air

pressure on the right side. As air speeds up its pressure

drops! This is referred to as Bernoulli's principle. The key

point for airfoils is that the shape of the wing causes the air

speed on the top of the wing to increase resulting in lower

pressure on the top of the wing and therefore producing lift.



Figure 1.4 Venturi tube showing air flow through a

bottleneck reducing the cross‐section of the tube. In this

situation the air is essentially incompressible. So the air

speeds up going through the bottleneck as the mass flow is

constant. The ‐shaped tube below the Venturi tube (called

a manometer) is filled with water to show the pressure on

the left‐side is reduced compared to the pressure on the

right‐side.

Source: ComputerGeezer and Geof [8]. “Venturiflow”,

https://commons.wikimedia.org/wiki/File:Venturi-Flow.png, 2010, Licensed

under CC BY‐SA 3.0.

https://commons.wikimedia.org/wiki/File:Venturi-Flow.png


The left side of Figure 1.5 shows the centerline of the wing

aligned with the air speed  The air speed is simply the

speed of the aircraft with respect to the air. The right side of

Figure 1.2 shows the centerline of the wing at an angle 

with respect to the air speed. As long as  is not too large

(8 to 20 degrees depending on the plane), the lift force

increases with . We refer to  as the angle of attack.

Figure 1.5 Angle of attack.

Let's go back to the airplane as shown in Figure 1.6. The

wings, horizontal tail, and vertical tail are generically

referred to as airfoils. The ailerons on the wings, the

elevators on the horizontal tail, and the rudder on the

vertical tail are referred to as control surfaces.





Figure 1.6 The airfoils and the control surfaces on the

aircraft.

As indicated in Figure 1.7, the control surface is connected

by a hinge to the airfoil. The pilot can rotate the control

surface about the hinge. As shown in Figure 1.7, if the

control surface is rotated down (relative to the centerline)

then the airfoil will pitch down due to the (aerodynamic)

force on the control surface. Conversely, if the control

surface is rotated up, it will cause the airfoil to pitch up.

Figure 1.7 Control surface used to pitch the airfoil up or

down. With the control surface down, the airfoil pitches

down.

Control of Pitch Using the Elevators

As a first example of how control surfaces are used, we

consider the elevators on the horizontal tail. Figure 1.8

shows the elevator (control surface) on the horizontal wing

rotated up, which results in the aircraft being pitched up

about its center of mass. By moving the elevator up or

down, the pilot can cause the aircraft to pitch up or down,

respectively.



Figure 1.8 Using the elevators to pitch the aircraft up.

Control of Roll Using the Ailerons

Figure 1.9 shows the aircraft with its left aileron down and

its right aileron is up. The aerodynamic forces on the two

ailerons then cause the airplane to roll to the pilot's right. By

adjusting the angle of the ailerons, the pilot can roll right or

left.



Figure 1.9 Using the ailerons to roll the aircraft.

Control of Yaw Using the Rudder



The final control surface is the rudder on the vertical tail. As

indicated in Figure 1.10, if the pilot rotates the rudder to the

right, then the plane will yaw (rotate) to the right and vice

versa.





Figure 1.10 Using the rudder to change the heading of the

aircraft.

Controlling the Airplane

The pilot has the four input controls:

The elevator to control pitch.

The ailerons to control roll.

The rudder to control yaw.

An engine connected to a propeller to control forward thrust.

Figure 1.11 depicts how a pilot in a small airplane controls

the elevator, ailerons, and rudder. In Figure 1.11 the pilot's

hands are shown on the yoke or center stick (looks like a bit

like a car's steering wheel). If the pilot pulls the yoke toward

himself, the plane will pitch up while alternatively pushing

the yoke away from himself the plane will pitch down. See

the YouTube animation at [9].

If the pilot turns the yoke to the right, the plane will roll to

the right and conversely if the pilot turns the yoke to the left

the plane will rotate to the left.

Figure 1.11 shows the pilot with each foot on a pedal.

Pushing on the right pedal the plane will yaw to the right

while pushing on the left pedal the plane will yaw to the left.

Not shown in Figure 1.11 is a throttle2 that the pilot can use

to control the engine speed and therefore the propeller

thrust.



Figure 1.11 Pilot using a yoke, pedals, and throttle to control

the aircraft.

Source: Courtesy of Steve Karp [9]. “How It Works Flight Controls”, October

12, 2013, https://www.youtube.com/watch?v=AiTk5r-4coc.

The angular position of the airplane as specified by its pitch,

roll, and yaw is referred to as the attitude of the aircraft. The

pilot uses the thrust input (propeller) to maintain air flow

https://www.youtube.com/watch?v=AiTk5r-4coc


over the wings. On take off, the propeller must accelerate

the airplane to a speed such that the flow of the air across

the wings is fast enough to produce the necessary lift. The

pilot will then adjust the pitch angle (using the elevators) to

obtain an angle of attack that provides the necessary lift to

get to the desired altitude. During the climb the pilot may

bank (roll) and yaw using the ailerons and rudder,

respectively to head off in the direction of the destination.

At a cruising speed at some fixed altitude the propeller is

primarily producing enough thrust to cancel out the drag

force so the plane can maintain air speed (and therefore the

lift force). The first aircraft required a lot of physical effort on

the part of the pilot to control them using mechanical

linkages to move the control surfaces. However, using these

inputs the pilot can make the airplane take off, cruise, and

land safely even though there are cross winds, air gusts,

etc. disrupting the plane's motion.

Automatic Control (Autopilot)

The basic idea of automatic control is to replace the human

pilot with an autopilot. The autopilot is simply a computer

with inputs to it being the air speed, the aircraft

acceleration, and the aircraft attitude (roll, pitch, and yaw

angles). The autopilot obtains the airspeed measurement

from a Pitot tube mounted on the outside of the plane, the

acceleration from a three‐axis accelerometer set mounted

on the airplane and the angular rates from a three‐axis

gyroscope set also mounted on the plane. Using these

measurements, the autopilot continuously (typically every

millisecond) determines what angles the rudder, elevators

and ailerons should be at in order to keep the plane at a

proper attitude as well as the throttle value so the engine

thrust is able to maintain the required air speed. The

autopilot sends out the required control surface positions to

the control surfaces where motors move these surfaces to



these commanded values. The autopilot also sends the

required throttle value to the engine where another motor

maintains the throttle at this value. Such an autopilot can

maintain level flight despite wind gusts acting on the plane.

1.2 Quadrotors

Figure 1.12 is a picture of a quadrotor, which basically

consists of four propellers all in the same plane and 90

degrees apart connected to a main body. By adjusting the

speed of each propeller one can control the thrust

(aerodynamic force) produced by each propeller. The

propeller speeds are managed by an on board

microprocessor that controls the electric motor of each

propeller.



Figure 1.12 Photo of a PARROT quadrotor in hover.

Source: Courtesy of Professor Aykut Satici.

First let's look at a single propeller connected to an electric

motor as indicated in Figure 1.13. For the purposes of this

discussion think of the propeller/motor system as being on a

frictionless surface. Thus the bottom of the motor is free to



slide or rotate without being stopped by any friction from

the table.

Figure 1.13 Conservation of angular momentum requires 

Let the propeller have a moment of inertia  about the

spin axis and the motor have a moment of inertial  about

same axis. As indicated by the curved arrows in Figure 1.13,

if the propeller rotates counterclockwise then , while

if the motor rotates clockwise then  The angular

velocity of the propeller is denoted by  and it has angular

momentum . The angular velocity of the motor is

denoted by  and it has angular momentum 

. With no external forces acting on the

motor–propeller system of Figure 1.13, the principle of

conservation on angular momentum tells us that its total



(1.1)

angular momentum is constant, i.e.  constant.

At startup the propeller is off and the motor is stationary so

this constant is zero. After turning on the propeller we must

continue to have  or

Consequently, if the propeller is spinning counterclockwise

the motor must spin clockwise. Typically  so 

Figure 1.14 is a schematic representation of a quadrotor in

flight. The unit orthogonal vectors  represent

earth (inertial) coordinates fixed to the earth.3  points

straight up from the earth while  are tangent to the

earth and orthogonal to each other. We have 

so  form a right‐handed coordinate system. Let 

 be unit orthogonal vectors attached to the

quadrotor (rigid body) with their origin at the center of mass

of the quadrotor. The unit vector  points to the front of

the quadrotor, the unit vector  points to the left side of

the quadrotor, and the unit vector  points up (from the

point of view of the quadrotor). Note that  so

that they also form a right‐handed coordinate system. 

is a vector from the origin of the  coordinate

system to the center of mass of the quadrotor, which is the

origin of the  coordinate system. Both sets of

vectors span Euclidean 3‐ , which we denote as .



Figure 1.14 Quadrotor with the inertial and body coordinate

systems shown.



(1.2)

Figure 1.15 is a schematic of a quadrotor in hover, i.e., 

 with all the propellers rotating at the same angular

speed  and thus each producing the same upward thrust

(force)  where  with  the mass of the

quadrator. Note in Figure 1.15 that the front and rear

propellers rotate counterclockwise, while the left and right

propellers rotate clockwise. As a result the total angular

momentum  of the four propellers about the  axis is

zero as

where  is the moment of inertia of a propeller. As 

 in hover the body of the quadrotor must also have

zero angular momentum and thus it does not rotate about

the  axis.



Figure 1.15 A hovering quadrotor. The front and back

propellers spin counter clockwise, while the left and right

propellers spin clockwise.

Due to the construction of the quadrotor its thrust is always

in the direction of the  axis. As a consequence, the

quadrotor body must be rotated to have a component of its

thrust point in the direction of travel. This is done by roll,

pitch, and yaw motions.

Figure 1.16 on the next page shows how the quadrotor

performs a roll motion, that is, rotates about its  axis. In

Figure 1.16  denotes the angular velocity of the quadrotor

body about the  axis. For the quadrotor to roll to its right

the propeller speed on the right side is decreased by 

with a consequential decrease of  in its thrust, while the

left propeller has its rotor speed increased by  with an

increase in its thrust of  With this approach for rolling



(1.3)

the quadrotor the total angular momentum  of the four

propellers about the  axis is zero as

By conservation of angular momentum the body of the

quadrotor does not rotate about the  axis during this roll

motion.

Figure 1.16 The quadrotor executing a roll motion.

Figure 1.17 shows how the quadrotor performs a pitch

motion, which is a rotation about its  axis. In Figure 1.17 

 denotes the angular velocity of the quadrotor body about



(1.4)

the  axis. For the quadrotor to pitch down the propeller

speed of the rear propeller is increased by  with a

consequential increase in its thrust of , while the front

propeller has its rotor speed decreased by  with an

decrease in its thrust of  With this way of pitching the

quadrotor the total angular momentum of the four

propellors about the  axis is zero as

As in the case of a roll motion, during a pitch maneuver the

body of the quadrotor does not rotate about the  axis.



Figure 1.17 The quadrotor executing a pitch motion.

Finally Figure 1.18 shows how to get the quadrotor body to

rotate about its  axis, which is referred to as a yaw

motion. In Figure 1.18  denotes the angular velocity of the

quadrotor body about the  axis. For the quadrotor to yaw

to the left (counterclockwise from above), the front and rear

propeller speeds are decreased by  with a

consequential decrease in each of their thrusts by ,

while the left and right propellers have their speeds

increased by  with an increase in their thrusts of 

each. In contrast to the pitch and roll motions, the total

angular momentum about the  axis of the four propellers

is not zero. Specifically, their total angular momentum is



(1.5)

(1.6)

 negative tells us that the net angular momentum of the

propellers is in the clockwise direction. As angular

momentum is conserved, the body of the quadrotor will

rotate counterclockwise (left). With  the moment of

inertia of the quadrotor body about the  axis its angular

momentum must be  so that 

 The angular

velocity of the quadrotor body is then



Figure 1.18 The quadrotor executing a yaw motion.

Automatic Control

We can consider the inputs to the quadrotor to be the four

propeller speeds.4 Typically a quadrotor has an inertial

measurement unit (IMU), which consists of a three axis

accelerometer, a three axis rate gyro, and a three axis

magnetometer. The three accelerometers provide the

inertial acceleration (i.e., the acceleration with respect to

the earth) of the quadrotor in the  directions. The

three axis rate gyro gives angular velocity vector  of

the quadrotor in the  coordinate system. The

three axis magnetometer gives the ambient magnetic field5

in the  directions. Using an IMU there are methods

to estimate the orientation of the quadrotor relative to the

earth coordinate system (orientation of  with

respect to ) as well as the velocity vector of the



(1.7)

(1.8)

center of mass of quadrotor with respect to earth. Based on

the quadrotor's orientation, velocity, and position, a

feedback controller (an algorithm on a microprocessor)

figures out how fast each propeller should spin to make the

quadrotor follow a reference trajectory.

1.3 Inverted Pendulum

A classic control problem in academia is the inverted

pendulum on a cart. It consists of a rod of length  which is

free to rotate about a pivot as shown in Figure 1.19. The

idea is to apply the appropriate force  to the cart to keep it

under the pendulum rod, i.e., to the keep the rod vertical.

Specifically, one can get a measurement of  and  (say

every millisecond) and wants to determine the value of 

(also every millisecond) that keeps the pendulum at a fixed

position in  and keeps . In Chapter 13 we will derive

the nonlinear differential equations of motion of this

pendulum. For now we just state them as follows:

The point here is that for any input  the solution to

these differential equations gives position of the cart 

and the angle  of the pendulum rod.



(1.9)

Figure 1.19 Inverted pendulum.

These equations may look complicated, but that is only

because they are! To simplify them consider the situation for

which  and  remain small. Then 

 and  so

that Eqs. (1.7) and (1.8) can be approximated by the linear

differential equations



(1.10)

(1.11)

(1.12)

(1.13)

In your first differential equations course you primarily

studied linear differential equations. The reason for this is

that we know how to solve them! As we will show in later

chapters, it is also known how to control a physical system

with a linear differential equation model. By the control of

the inverted pendulum we mean that given the

measurements  the input value  can be

chosen to keep the pendulum rod vertical. If this controller

based on the linear model keeps  and  small, then

the linear model is a valid approximation to the actual

pendulum and the controller will also work on the actual

pendulum.

We can use Laplace transforms to convert linear differential

equations into algebraic equations. In Chapters 2 and 3 we

will do a comprehensive review of Laplace transforms. For

now we just note that the Laplace transfer function model of

the inverted pendulum is

Control Problem



The control problem is to use the measured values of 

and  to determine the force  applied to the cart so

that the pendulum rod does not fall. The control algorithm is

simply a function that gives the value of  given the

values of  and . A controller can be designed using

the above transfer function model or the above differential

equation model. In the first half of the book we base the

control design on the transfer function model, while in later

chapters of the book a differential equation model is used.

1.4 Magnetic Levitation

In this example we consider a magnetic levitation system.

The schematic given in Figure 1.20 shows a wire wrapped

around a cylindrical core of iron making an electromagnet.



Figure 1.20 A simple magnetic levitation system.

Applying a voltage  to the coil results in a current .

This current along with the iron core produces a magnetic

field that extends below the electromagnet. This magnetic

field then magnetizes the steel ball, i.e., makes it into a

magnet. It turns out that the magnetic force of attraction

between the steel ball and the electromagnet is upward and

proportional to the square of the current and inversely

proportional to the square of the distance. Mathematically,

we write that  where  is a constant.

Note in the figure that positive  is downward and 

corresponds to the bottom of the iron core.



(1.14)

(1.15)

(1.16)

Mathematical Model

There are current‐command amplifiers that allow one to

have the amplifier put out a desired current. Using such an

amplifier we can consider the input to the magnetic

levitation system to be the current  The differential

equation model of this magnetic levitation system is then

(see Chapter 13)

Here  is the force constant,  is the mass of the steel

ball, and  is the acceleration of gravity. This differential

equation model is important because for any given input

current  to the coil, the solution of these differential

equations then gives the response of the position  and

velocity  of the steel ball. However this model is

nonlinear. As in the case of the inverted pendulum, we can

obtain an approximate linear model. Specifically, let the

desired (constant) position of the steel ball be  and

choose the current  to make the ball's acceleration zero,

i.e.,

With  we will

show in Chapter 13 that



(1.17)

(1.18)

is a valid linear model for  and  small. After

studying Chapter 3 you will be able to show that the

corresponding Laplace transform model is

Figure 1.21 is a magnetic levitation system built by W. Barie

[10]. It shows light being shone across the top of the ball to

a photodetector sensor. Using this setup the position of the

ball beneath the electromagnet can be found.



Figure 1.21 A laboratory magnetic levitation system.

Source: Barie and Chiasson [10]. “Linear and nonlinear state‐space

controllers for magnetic levitation”, International Journal of Systems Science,

vol. 27, no. 11, pp. 1153–1163, November 1996. DOI‐

https://doi.org/10.1080/00207729608929322.

Control Problem

Based on measurements of  and , one wants to

choose the input voltage  so the ball maintains a fixed

position  below the electromagnet, i.e., it does not fall nor

https://doi.org/10.1080/00207729608929322


gets sucked into the magnet. A procedure to choose 

based on the values of  and  is called the control

algorithm or controller. The control algorithm is found using

either the differential equation model or the Laplace

transform model.

1.5 General Control Problem

In general there is some physical system that needs to be

controlled. The steps involved are:

Determine a mathematical model of this system (typically a

set of differential equations). The model describes how the

output variables behave for any given input.

Design the control algorithm. The feedback control

algorithm processes measurements of the output through a

differential equation to produce the inputs to the physical

system that force the output to a desired value.

Simulate the combined controller and mathematical model

to check if the system outputs are controlled as desired. If

not, modify or (if necessary) redesign the controller. If the

controller doesn't work in simulation, then it won't work in

practice!

The final step is to implement the controller on the actual

physical system.

Notes

1 Another way to say this is that the air is not compressed

going through the bottleneck.

2 A throttle controls the amount of fuel to the engine.

3 The “hat” over the vectors is to denote them as unit

vectors.



4 There is an “inner” controller that controls the propeller

speeds by controlling the voltage of the motor connected

to the propeller.

5 Same as the earth's magnetic field if there are not power

lines close by.



(2.1)

2 

Laplace Transforms

In Chapter 01 we gave examples of physical systems

modeled by differential equations. For each such physical

system we will use the differential equation model to design

algorithms to control the system. Furthermore, it turns out

that these algorithms will also be described by differential

equations. To ease the difficulty of working with differential

equations, classical control uses the Laplace transform. This

transform converts a differential equation to an algebraic

equation greatly simplifying mathematical calculations. In

Chapters 9 and 10 we will present specific approaches to

the design of feedback controllers for physical systems

based on their Laplace transform model. All of this requires

a thorough background knowledge of Laplace transforms

which we cover in this chapter.

Definition 1 Laplace Transform

Let  for  denote a time function. Define the

Laplace transform  of  as

where  is a complex number.

Notation The symbol “ ” means by definition. So 

is by definition the quantity 



We also use  to denote  i.e., 

Remark Region of Convergence

The integral in (2.1) does not exist for all  

The region of convergence is the set of values of  for

which the integral exists. This is illustrated in the following

examples.

Example 1 Unit Step Function 

The unit step function  is defined as

We compute its Laplace transform according to the

definition as

Now

Recalling Euler's formula



(2.2)

this becomes

Thus

Example 2 

Consider the function . Using the definition of a

Laplace transform, we have

As



(2.3)

we have

Example 3 

In this example we consider the Laplace transform of the

complex‐valued function

We compute



Now, as

it follows for  that



(2.4)

(2.5)

(2.6)

(2.7)

Example 4  (continued)

For  we just showed that

This implies that

In particular, for  we have



(2.8)

2.1 Laplace Transform Properties

We next recall some properties of the Laplace transform

that will simplify many calculations. The first property is

differentiation with respect to the Laplace variable 

Property 1 

Let

then

Proof

then

As an example of this property, we show how to obtain the

Laplace transform of  for arbitrary .

Example 5 



(2.9)

(2.10)

We have already shown in a previous example that

Then

or

Thus

Continuing with

we differentiate both sides with respect to  to obtain

or

In a similar fashion, we have for any  that



(2.11)

(2.12)

(2.13)

Example 6 

We showed in a previous example that

Then by the property (2.8) we have

Property 2 

Let

then

Proof



(2.14)

(2.15)

Example 7 

Knowing

it follows immediately that

Property 3 

Let

then

Proof

By definition of the Laplace transform we have



We next integrate by parts by letting

and

so that

Now for , the Laplace transform of  exists so

that  for .1 Thus this last

equation becomes

Example 8 

Consider  and its derivative, that is,

The Laplace transforms of  exist for 

Then using



we have

or, after some rearrangement, we obtain

Example 9 Solving a Differential Equation

Consider the first‐order differential equation given by

where the input  is a step input. With

we have

and



Taking the Laplace transform of both sides of the differential

equation, that is,

we obtain

Collecting terms with  to the left side this becomes

or finally

To determine  we compute

where the second equation followed by doing a partial‐

fraction expansion, which is our next topic.



2.2 Partial Fraction Expansion

In solving differential equations using the Laplace transform,

the final step is often finding the inverse Laplace transform

of a rational function2 in the Laplace variable . In the

previous example, we used the fact that

That is, the rational function  was decomposed into

two simpler functions whose inverse transforms are known.

This decomposition process is known as a partial fraction

expansion. We illustrate how to do this by a series of

examples.

Example 10 

Write

Then

so that



Thus

Similarly,

so that

or

We then have

By the table of Laplace transforms we know that

and thus

Example 11 



We want to find the inverse Laplace transform of

The roots of

are

We call the roots of the denominator of  the poles of 

 We may now write

From the Laplace transform table we know

Identify  and rewrite  as follows:



Using the Laplace transform table we have

We can check this result using MATLAB:

 

  %Compute the Inverse Laplace Transform 

  

  syms F2 s t 

  

  F2 = (2*s+12)/(s^2+2*s+5) 

  

  ilaplace(F2,s,t) 

MATLAB should return:

We will need to manipulate complex numbers so we now

give a brief review of such computations.

Digression on Complex Numbers

Let

denote a complex number where  and  are real and 

 The complex conjugate of  is denoted by 



and defined as

Note that

The magnitude of  is defined as

and this equals the magnitude of  as

We can also represent complex numbers in polar coordinate

form. We define

as indicated in Figure 2.1. The expression  is

expressed in most computer languages as atan2(b,a) . This

gives the angle of  in the correct quadrant. For

example, let  then

In contrast, if we consider  then



Figure 2.1  and 

We can now write  in polar coordinate form as

Then we have



That is,

We show that 

Similarly,

End of Digression on Complex Numbers

Example 12  (continued)



We redo the previous example by doing a partial fraction

expansion in terms of the complex conjugate pair of poles of

Then

and

Therefore

and also



Thus  Similarly,

An important point to note here is that

This will always be the case! Returning back to the partial

fraction expansion, we have shown

This result can be checked using MATLAB:

 

  %Compute the Partial Fraction Expansion 



  

  % F2(s) = (2s+12)/(s^2+2s+5) 

  

  Fnum = [2 12]; 

  

  Fden = [1 2 5]; 

  

  [beta,poles,k] = residue(Fnum,Fden) 

 

MATLAB should return:

 

  beta = 

  

  1.0000 ‐ 2.5000i 

  

  1.0000 + 2.5000i 

  

  poles = 

  

  ‐1.0000 + 2.0000i 

  

  ‐1.0000 ‐ 2.0000i 

  

  k = [] 

 

We now put  into polar coordinate form (see

Figure 2.2).



Figure 2.2 Converting  to polar coordinate form.

We have

We again check our answers using MATLAB:

 

  c = 1.0000 ‐ 2.5000i 



  

  c_mag = abs(c) 

  

  c_angle = angle(c) 

  

  c_angle2 = atan2(imag(c),real(c)) 

  

  c_angle3 = c_angle*180/pi 

 

MATLAB should return:

 

  c = 1.0000 ‐ 2.5000i 

  

  c_mag = 2.6926 

  

  c_angle = ‐1.1903 

  

  c_angle2 = ‐1.1903 

  

  c_angle3 = ‐68.1986 

 

Putting  in polar coordinate form we have

In Example 11 we obtained



So it better be that

which does indeed hold (Use MATLAB to check this!).

Example 13 Multiple Roots

Let

The partial fraction expansion of  is written as

We first multiply through by  to obtain

or

Equating coefficients of  we have

Thus



and finally3

Example 14 

A simpler way to compute the partial fraction expansion of

Example 13 is as follows:

Multiply through by  to obtain

and then set , which gives . Then we

have

which is rearranged to give

or



(2.16)

(2.17)

As in Example 13 this results in 

Example 15 

Using the quadratic formula we can solve

to obtain

Then  can be written as

We can then do the expansion in terms of the complex

conjugate poles using (2.16). However there is an

alternative approach using (2.17), which we now show. We

write4



(2.18)

Multiplying through by  to clear fractions, we

obtain

or

This results in

so that

Example 16  (again)

Let's redo the previous example the “hard” way using

(2.16). We have



Then

and

Of course



To obtain the same form of the answer given in Example 15

we must convert  to polar coordinate form (Figure 2.3).

We have

and

Figure 2.3 .



(2.19)

Recall we defined  to be the same as the

computer language command atan2(b,a) . Finally

which is the same as (2.18).

Non Strictly Proper Rational Functions

In all of the examples with partial fractions we had strictly

proper rational functions. That is, we had

Suppose we considered



where  is proper as  but not

strictly proper as . To have the

partial fraction expansion method work, we must first divide

the numerator by the denominator as follows:

In MATLAB we would write the program

 

  Fnum = [1 5 6] 

  

  Fden = [1 5 4] 

  

  [beta,poles,k] = residue(Fnum,Fden) 

 

and it should return



 

  beta = ‐0.6667 0.6667 

  

  poles = ‐4 ‐1 

  

  k = 1 

 

Example 17 

As another example let  which is not

proper. We first use long division to divide  into 

 as follows:

Thus

We next do a partial fraction expansion of  to obtain

Finally



In MATLAB we would write the program

 

  Fnum = [1 0 0 0] 

  

  Fden = [1 5 4] 

  

  [beta,poles,k] = residue(Fnum,Fden) 

 

and it should return

 

  beta = 21.3333 ‐0.3333 

  

  poles = ‐4 ‐1 

  

  k = 1 ‐5 

 

Remark In our application of Laplace transforms to physical

systems  will always turn out to be strictly proper.

2.3 Poles and Zeros

In the above we computed the inverse Laplace transforms of

and



Both of these are the ratio of two polynomials (rational

functions) in  Note also that the degree of the numerator

polynomial is less than or equal to the degree of the

denominator.

In general, we write

where  is the numerator polynomial and  is the

dominator polynomial. In practice we are dealing with

physical systems and, as a consequence, it will turn out that

Definition 2 Poles of

The poles of  are the roots of 

Definition 3 Zeros of

The zeros of  are the roots of 

Example 18 

The poles of

are



 has no zeros as the numerator can never be zero.

Example 19 

The poles of

are

 has one zero at

2.4 Poles and Partial Fractions

Consider  to have the form

With  distinct, a partial fraction expansion of 

gives

and



The point here is that we only needed to know the poles of 

 in order to determine the form of the time response.

By form of the time response is simply meant the functions 

. The zeros play a role in the values of 

 but do not have any role in the form of the time

response.

Similarly, if

then

Without evaluating  we know that

Again, the point here is that we only needed to know the

poles of  in order to determine the form of the time

response.

Example 20 

By the partial fraction expansion method we know that

That is, the expansion is in terms of the poles of .

Without even evaluating  we know that



and thus that  dies out as 

Example 21 

By the partial fraction expansion method we know that

That is, the expansion is in terms of the poles of 

Without even evaluating  we know that

and thus that  does not die out as 

Example 22 

Figure 2.4 on the next page is a pole–zero plot for ,

that is, it marks the two poles at  by an  and the

zero at  by an . By the partial fraction expansion

method we know that

Without even evaluating  we know that

and thus that  dies out as .



The poles of  are  where the real part of the

pole determines the rate of decay as  and the imaginary

part of the pole determines the oscillation rate as 

Figure 2.4 Location of the poles and zero of 

Example 23 



The pole–zero plot for this  is shown in Figure 2.5 on

the next page.

By the partial fraction expansion method we know that

Without even evaluating  we know that

and thus that  does not die out as  The real

parts of the poles of  are both 1 resulting in 

having the factor  which grows without bound.



Figure 2.5 Location of the poles and zero of 

Definition 4 Open Left Half‐Plane

Let  so that  and . As

illustrated in Figure 2.6, the open left half‐plane is where



(2.20)

Figure 2.6 The open left half‐plane is where .

Theorem 1 Asymptotic Response of 

Let  be strictly proper and rational. Then

if and only if all the poles of  are in the open left half‐

plane.

Proof



By the above examples this follows from the method of

partial fractions in computing the inverse Laplace transform.

Appendix: Exponential Function

One way to define the exponential function  is as a power

series. We follow this approach here as follows:

As this infinite series converges for all values of 

 (not proven here) this definition is valid for

all . With  it follows from this definition that 

Next note that

Recall from elementary algebra that, for example,



This is a property of the exponents of numbers with the

same base (the base is 2 in this example). We now show

this property holds for  First we calculate

Next we calculate

By inspection we see that

This property is the reason we call 

 the exponential function.

In particular, we have

or



Euler's Formula

Let  be a purely imaginary number. Then

as the power series expansion for  and  are

The expression

is referred to as Euler's formula.

Remark With  a non‐negative integer, i.e., 

 and using Euler's formula we may write



It turns out that linear time‐invariant differential equations

have solutions composed only of terms of the form 

 and  This is the reason why

the exponential function appears so much in linear systems

theory!

Real Valued Exponential Function

Let's look at  with  a real number.

As shown above for  we have  Also we have

simply because each term in the power series expansion is

positive for  Still with  we have (as previously

shown)

Therefore

Figure 2.7 on the next page is a graph of the exponential

function where  has been replaced by  From the point of

view of the stick man in the figure is the graph of the

inverse of 





Figure 2.7 Graph of .

Natural Logarithm Function

As was just shown, the exponential function that takes 

 to  is always positive. For any  define

the natural logarithm function  as the inverse function

of  A graph of  is shown in Figure 2.8. As 

 we have 



Figure 2.8 Graph of 

We now show that

To explain, the exponential function takes  to  so

its inverse must take  to  that is,



This just says the natural logarithm is the inverse function of

 Then differentiating both sides of 

 with respect to  we obtain

or

Problems

Problem 1 Euler's Identity

    

   

    

Problem 2 Trigonometry

        

 

       

 



Problem 3 Complex Numbers

 

    

   

   

Problem 4 Calculus

 

Problem 5 Inverse Laplace Transform

Let

and compute  Check your result using

MATLAB.

Problem 6 Inverse Laplace Transform

Let

and compute its inverse Laplace transform. Check your

result using MATLAB.



Problem 7 Inverse Laplace Transform

Let

and find its inverse Laplace transform. Check your result

using MATLAB.

Problem 8 Inverse Laplace Transform

Let

and find its inverse Laplace transform. Check your result

using MATLAB.

Problem 9 

Let

Show that

Hint: Let  and apply property 3 of the

Laplace transform to .



Problem 10 

Let

Show that

Hint:

Problem 11 Inverse Laplace Transform

Compute the inverse Laplace transform of

Problem 12 Inverse Laplace Transform

Compute the inverse Laplace transform of



Problem 13 Inverse Laplace Transform

Compute the inverse Laplace transform of

Problem 14 Inverse Laplace Transform

Compute the inverse Laplace transform of

Problem 15 Inverse Laplace Transform

Compute the inverse Laplace transform of

Problem 16 Inverse Laplace Transform

Compute the inverse Laplace transform of

Problem 17 Inverse Laplace Transform

Compute the inverse Laplace transform of

by first computing 



Problem 18 Inverse Laplace Transform

Compute the inverse Laplace transform of

by first computing 

Laplace Transform Pairs

5

5



5

Laplace Transforms and the ROC

Any strictly proper rational function 
 corresponds to a unique time

function  defined on the semi‐infinite time
interval . Because of this fact we will usually
not be concerned with the region of convergence.
That is, we will convert differential equations into
algebraic equations using the Laplace transform to
work in the  domain for the design of feedback
controllers. After the design is completed in the 
domain, a Laplace transform table is used to find the
corresponding (unique) time function on 
However, the region of convergence must be (and is)
taken into account in the Overshoot and Undershoot
appendices of Chapter 10.

Laplace Transform Properties



Trigonometric Table





Trigonometric Identities

Notes



1 To be precise, we will only be concerned with functions

that are of the form  where  is

an integer and  are constants. For all such

functions we have  for 

2 A rational function is simply the ratio of two polynomials.

3 Recall that  and  so

that with  we have 

4 In partial fraction expansion theory it is often taught to

write

This is equivalent to writing

by setting 

However,  and  are in the Laplace

transform table making it easier doing the expansion in

terms of .

5 Region Of Convergence.



(3.1)

3 

Differential Equations and Stability

In later chapters we will derive models of motors, carts,

inverted pendulums, etc. using first principles of physics.

The model of each of these systems will turn out to be a

differential equation. To later deal with these models we use

this chapter to see how differential equations are solved

using Laplace transforms. We will next look at the stability

of these differential equation system models. For example,

keeping an inverted pendulum upright is the problem of

making sure the closed‐loop differential equation describing

the inverted pendulum is stable.

3.1 Differential Equations

Consider the differential equation

Recall that if  then 

It then follows that

We next take the Laplace transform of both sides of (3.1) to

obtain



(3.2)

(3.3)

or

Collecting terms this becomes

or finally

The zero input response is the inverse Laplace transform of

If the initial conditions are zero, i.e., , then

The transfer function is defined to be the ratio

That is, the transfer function is the ratio of  with

the initial conditions set to zero.



(3.4)

(3.5)

The order of a transfer function is the degree of its

denominator. The transfer function  given in (3.3) has

order 2.

With zero initial conditions let's set the input to be a step

function, i.e.,  Then

and, by (2.18) or (2.19) of Chapter 2, we have

Note that .

Sinusoidal Steady‐State Response

Let's now consider an example with a sinusoidal input. That

is, consider the differential equation

with input

and initial conditions

We have



(3.6)

so that

By the assumption of zero initial conditions this becomes

or

In order to do a partial fraction expansion of  we factor

its denominator to obtain

A partial fraction expansion results in

We next explicitly compute  and  while we won't be

interested in the explicit values of  and  We have



(3.7)

(3.8)

Then

where we used the fact that

We now have

and therefore



(3.9)

(3.10)

Since  as  we have

If the poles of the transfer function  have negative real

parts and a sinusoidal input  is applied to

the system, the sinusoidal steady‐state output  is

simply the input with its magnitude multiplied by 

and its phase offset by . In Chapter 04 the

SIMULINK simulation tool is introduced and Problem 10 of

that chapter asks you to simulate this example. (Or ask your

instructor to run this simulation for you now!)

Example 1 Unstable System

Suppose our system is



(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where

and

Then

A partial fraction expansion of  gives1

Note that the poles of  are in the right half‐plane. The

time response is given by



(3.16)

In this example  does not have a sinusoidal steady‐

state response as  does not die out with the result that

the term  eventually

oscillates between  Problem 11 of Chapter 4 asks you

to do a SIMULINK simulation of this example. (Or, again, ask

your instructor to run this simulation for you now!)

3.2 Phasor Method of Solution

Previously we applied the input  to a

couple of differential equations and showed that

was part of the solution. With  the transfer function

of the differential equation, we now show that this

expression is always a solution to the differential equation

with special initial conditions. This is done using phasors.

Example 2 Phasor Method of Solution

Let's again consider the differential equation example given

by (3.4) and (3.5), but this time using the complex phasor

method of solution. To proceed, consider the differential

equation

with input

We first solve this differential equation by letting the input

be the complex phasor function given by



(3.17)

(3.18)

(3.19)

The bold  is used to signify it is complex valued. Our

original input  is simply given by

We now look for a complex phasor solution of the form

where  is a complex constant.2 That is,

we want to find  such that  is a

solution to the differential equation

Substituting (3.17) and (3.18) into this equation gives

As the derivative of  is simply  this becomes

The simplicity of this computation is the reason for the

phasor approach! Combining terms we have

so that



(3.20)

That is, the solution to the differential equation (3.19) with

the complex function input  is simply

Consequently, the solution to (3.16) with input 

 is

In more detail write

We just showed that  satisfy



Equating real and imaginary parts of both sides we have

As  it follows that 

 is a solution of

(3.16).

Now we want to look at solutions to (3.16), but starting at 

 For  and input  it follows

that

satisfies the differential equation (3.16) with the initial

conditions simply given by

That is,  given by (3.21) is the unique solution to the

differential equation (3.16) with these initial conditions at 

 and input . On the other hand, 

given by (3.9) is the unique solution to (3.16) with zero

initial conditions.3



(3.22)

(3.23)

(3.24)

Example 3 Phasor Method of Solution

Let's reconsider the differential equation given by (3.11)

with input (3.12) using the complex phasor method of

solution. That is, consider

with input

In order to solve this equation we first take the input to be

the complex phasor function given by

With  we look for a solution  of the

differential equation

in the phasor form

Substituting (3.24) into (3.23) gives

Computing the derivatives gives



or

The complex phasor  is given by

Then the solution is simply

and the solution to (3.22) with input  is

Finally, starting at  with input 

the solution of the differential equation

is

with initial conditions



In contrast, (3.15) is the solution to the same differential

equation, but with zero initial conditions. In (3.15) the part

of the response due to the poles of  (i.e. )

does not die out so the solution obtained from the phasor

method is not a sinusoidal steady‐state solution.

Summary

Consider a general differential equation

with transfer function

With , the phasor solution  is given

by

However, starting at time  with 

 it follows that

is a solution to the above differential equation with the

special initial conditions



Further, if the poles of  are in the open left half‐plane,

then this is also the sinusoidal steady‐state solution

meaning that for any solution  with arbitrary initial

conditions we have

Remark If  then with 

we set

Similar to the above (see Problem 10) it then follows that

and

Definition 1 Frequency Response

With  the transfer function of a differential equation,



is the frequency response function.

For any sinusoidal input  the

frequency response function  can be used to obtain

the solution  to

the corresponding differential equation. The frequency

response plays a large role in the analysis of control

systems as explained in Chapter 11.

3.3 Final Value Theorem

We now present the final value theorem (FVT) as it will turn

out to be a key tool used throughout this text. We do this

presentation using a series of examples.

Example 4 

With  we want to look at the behavior of 

as  Doing a partial fraction expansion of  gives

We know immediately that

and therefore



By the method of partial fractions we know that we can

evaluate  as

and thus

Example 5 

With  we want to look at the behavior of 

as  Doing a partial fraction expansion of  gives

We know immediately that

which shows that  does not exist. Again, by the

method of partial fractions, we evaluate  as

In this example  is simply the coefficient

of the unit step function in the computation of the inverse

Laplace transform. However, the time behavior of  as 

 is dominated by the growing exponential term 



Example 6 

We want to look at the behavior of  as  A

partial fraction expansion of  gives

We know immediately that

and therefore

Again, by the method of partial fractions, we evaluate  as

Thus

The point here is that  is simply the coefficient

of the  term in the partial fraction expansion of . In

this example it is also the final value, i.e., 

because the part of the response due to the poles at 

and  die out.

Example 7 



We want to look at the behavior of  as  A

partial fraction expansion of  gives

We know immediately that

which shows that  does not exist. Again, by the

method of partial fractions, we know that we can evaluate 

 as

The point here is that  is simply the coefficient

of the  term in the partial fraction expansion of 

(equivalently, the coefficient of the unit step function in the

time response). However, the time behavior of  as 

 is dominated by the growing exponential term 

and so  does not have a final value.

Example 8 

We look at the behavior of  as  By the partial

fraction expansion method, we have

Immediately we have



showing that  does not exist. However, we still

have that

Again, the point here is that  is simply the

coefficient of the  term in the partial fraction expansion

of  However, the time behavior of  as  is

dominated by the term , which does not die

out.

Example 9 

In this example  does not have a pole at  The

partial fraction expansion has the form

and immediately we have

Thus . Also,  as there is

no pole at  in the partial fraction expansion.

We can finally state the FVT that will be used throughout the

remainder of this book.

Theorem 1 Final Value Theorem (FVT)



Let

be a rational function4 and strictly proper, i.e.,

Let  denote the inverse Laplace transform of .

Then  exists and is given by

if and only if all the poles of  are in the open left half‐

plane.

Proof (sketch) Let

Then

The poles of  are  and  and 

So  if and only if the real parts of  and 

 are negative or, equivalently, if and only if  are in

the open left half‐plane.

Alternatively consider



Then

The poles of  are  and  and 

So  if and only if 

and  which is true if and only if  and  are in

the open left half‐plane.

Remark Another way to state the FVT is to say that 

 exists if and only if  has at most one pole

at  and the rest of its poles are in the open left half‐

plane.

Example 10 

In this example

and the pole of  is in the open left half‐plane.

Therefore . This is seen directly

by seeing that the partial‐fraction expansion of  has

the form

with corresponding time function



Then  is the coefficient of the unit step

and also is the final value because the second term dies out

(its pole is at  that is in the open left half‐plane).

Example 11 

In this example

and the pole of  is not in the open left half‐plane. As a

result the  does not exist. To see this directly

note that partial‐fraction expansion of  has the form

with corresponding time function

Here  is simply the coefficient of the unit

step. It is not the final value because the second term does

not die out (its pole is at 1 which is in the right half‐plane).

Example 12 

In this example



showing the poles of  are in the open left half‐plane.

By the FVT . We can show

directly by noting that  has the partial‐fraction

expansion

with corresponding time function

The two terms due to the complex conjugate pair of poles

die out as these poles are in the open left half‐plane. The

limit  as there is not a  term in the

partial fraction expansion.

Example 13 

In this example

and the poles of  are not in the open left half‐plane.

Therefore  does not exist. This is shown directly

by seeing that the partial‐fraction expansion of  has

the form

with corresponding time function



The limit  as there is not a  term in

the partial fraction expansion. However, the two terms due

to the complex conjugate pair of poles do not die out as

these poles are in the right half‐plane.

Example 14 

In this example

and  has a pole at , which is not in the open left

half‐plane. Therefore  does not exist. We can

also see this directly from the partial expansion of ,

which has the form

with corresponding time function

The  showing  does not have a final

value. In this example  is not even the

coefficient of the  term in the partial fraction expansion.

3.4 Stable Transfer Functions

Consider the general third‐order differential equation given

by



With zero initial conditions, i.e., 

 we have

or

This is a typical example of a transfer function considered in

this book. That is, for the physical models we consider the

transfer function will be rational and strictly proper. In other

words,

where  and  are polynomials in  (making 

rational) and  (making  strictly

proper).

Definition 2 Stable Transfer Functions

We say that a strictly proper rational transfer function 

 is stable if the poles of  i.e., the

roots of  are in the open left half‐plane.

Example 15 Let



 is not stable as its poles are , which are

not in the open left half‐plane.

Let

 is not stable as its poles are  and the pole at 0

is not in the open left half‐plane.

Let

 is stable as its poles are , which are in

the open left half‐plane.

Definition 3 Stable Polynomial

We say that a polynomial  is stable if the roots of 

 are in the open left half‐plane.

Example 16

Let

 is not stable as its roots are , which are

not in the open left half‐plane.

Let



 is not stable as its roots are  and the root at 0 is

not in the open left half‐plane.

Let

 is stable as its roots are , which are in

the open left half‐plane.

Final Value Theorem and Stable Transfer

Functions

Consider the differential equation

with transfer function

This transfer function is not stable as it has a pole at 

Suppose  so that  is given by

Then  has a pole at  and the FVT tells

us the  does not exist.

Now consider the stable transfer function



which corresponds to the differential equation

Then with a step input  we have

and

The usual situation is to apply an input to a differential

equation and use the FVT on its output (solution).

Summary

Let a system have the differential equation model

Taking the Laplace transform of both sides gives5

Rearranging we have



(3.25)

Let  be stable so the roots of

are in the open left half‐plane. By partial fraction expansion

theory we have, for any initial conditions, that

Apply a step input 

Then

is stable. By the FVT

If  is not stable then (3.25) is not valid!



(3.26)

Apply a sinusoidal input 

A partial fraction expansion of the first term (with the input)

is

The inverse Laplace transform has the form

That is, as  is stable, we have

If  is not stable then (3.26) is not valid!

3.5 Routh–Hurwitz Stability Test



(3.27)

(3.28)

(3.29)

We now present the Routh–Hurwitz test for stability. Given

any polynomial this test allows us to straightforwardly check

whether or not its roots are in the open left half‐plane.

Recall that a strictly proper transfer function

is stable if and only if the roots of

are in the open left half‐plane. With reference to Figure 3.1

on the next page this is the same as saying  is stable if

and only if



Figure 3.1  is stable if and only if all of its roots are in 

, that is, in the open left half‐plane.

For an arbitrary polynomial of the form

it is not obvious where its roots are located.

Let's first consider the second‐order polynomial



Suppose  is stable and its roots are

Then

Note that both coefficients of  are positive.

On the other hand, suppose  is not stable and its roots

are

Then

Note that the coefficient  is negative.

More generally, let  have the complex conjugate pair of

roots

so that

Then  is stable if and only if , which in this case

means both coefficients  are

positive.

Now any polynomial can be factored down into its real roots

and its complex conjugate pairs of roots. For example,

suppose  has degree 3 with one real root  and one



(3.30)

(3.30)

pair of complex conjugate roots . Then we can

write

If  is stable, then  and . Clearly then 

 and  resulting in all the coefficients in

each factor of (3.30) being positive. Thus, after this is

multiplied out, we have

The coefficients  must be positive. We have just shown

the following theorem.

Theorem 2 Necessary Condition for

Stability

Let

be a polynomial of degree  A necessary condition that 

 for  (all its roots are in the open left

half‐plane) is that all of its coefficients be positive, that is, 

 for .

Remark 1 The Condition  is NOT Sufficient for

Stability



Consider

which has all of its coefficients positive. However, it factors

as

showing that it has two roots at  and it is therefore not

stable.

The polynomial

has roots  and  showing that it is not

stable.

Routh–Hurwitz Criterion for Stability

We now present a necessary and sufficient condition for

stability known as the Routh–Hurwitz condition. We start

with a general fourth order polynomial given by

Next we form the Routh array defined as



We can now state (but won't prove!) the important Routh–

Hurwitz stability criterion.

Theorem 3 Routh–Hurwitz Stability

Criterion

Main result: Form the Routh array. Then  has all its

roots in the open left half‐plane (i.e.  for 

) if and only if all the elements of the first column

of the Routh array are positive.

Secondary result: If all the elements of the first column of

the Routh array are non zero, the number of sign changes in

the first column equals the number of roots of  in the

right half‐plane.

Proof The proof is omitted. A nice explanation of this result

is given in [11].

Remark In practice a control system must be stable to

work. If this is not the case we are not typically interested in



the number of poles it has in the right half‐plane.

Example 17 Routh–Hurwitz Stability Criterion

Consider the polynomial

To determine whether or not all of its roots are in the open

left half‐plane we first form the Routh array.

The first column has a negative element in the  row equal

to . Thus  is not stable.

 has two roots in the right half‐plane. This is because

there are two sign changes in the first column. The first sign

change is from 1 to  (going from the  row to the 

row) and the second sign change is from  to 3.5 (going

from the  row to the  row).



The roots of

can be found numerically and are

Example 18 Routh–Hurwitz Stability Criterion

[12]

Let

We use the Routh–Hurwitz criterion to determine the values

of  for which the roots of  are in the open left half‐

plane. To do so, we first form the Routh array.

The first column is positive if and only if

and



This reduces to

or finally

So for ,  is stable, that is, all three of its roots are

in the open left half‐plane.

For  there are two sign changes in the first

column. That is, going from the  row to the  row the sign

changes from  to  and then going from the  row to 

row the sign changes from  to . Thus for 

there are two roots of  in the right half‐plane.

Example 19 Routh–Hurwitz Stability Criterion

[12]

We use the Routh–Hurwitz test to check for which values of 

 the roots of

are all in the open left half‐plane. First form the Routh array.



The elements of the first column are positive if and only if

or

or

For  there are two sign changes in the first column

so that for these values of  there are two roots of  in

the right half‐plane.

Example 20 Routh–Hurwitz Stability Criterion

Let



We use the Routh–Hurwitz criterion to determine for which

values of  the roots of  are all in the open left half‐

plane. To do so, we first form the Routh array.

Looking at the  row we must have  for  to be

stable. The  row requires

or, as  is already required for stability, this condition

reduces to

Using the quadratic formula we solve

to obtain



Then

and

So the  row requires  while the  row requires

either  or . Thus for both rows to

have positive elements in the first column we must have 

 for  to be stable.

For , in the first column the  row is

positive while the  row is negative. Thus there are two sign

changes showing that  has two roots in the right half‐

plane.

What happens at ? We reason that  has two

roots on the  axis as follows. For  a little less than 

  has two roots in the right half‐plane while for 

 just greater than 0.528 it has no roots in the right half‐

plane. So at  these two of the roots of  are

on the  axis.

Example 21 General Second‐Order Polynomial

Let

We use the Routh–Hurwitz criterion to determine for which

values of  and  that  is stable. The Routh array is



The first column is positive if and only if

That is, a second‐order polynomial is stable if and only if

both of its coefficients are positive.

Example 22 General Third‐Order Polynomial

Let

We use the Routh–Hurwitz criterion to determine the values

of  and  for which  is stable. The Routh array is

The first column is positive if and only if



Equivalently, this reduces to

Special Case – A Row of the Routh Array Has All

Zeros*

Here we consider the special case where the Routh array

has all zeros in a row. Of course this means it has a zero in

the first column and therefore the polynomial  is not

stable. In this case we will show that  must have roots

on the  axis. As previously mentioned we are usually

only interested if a system is stable or not so this result

does not have a lot value. However, in Chapter 12 it is one

of several tools for sketching the root locus of a closed‐loop

system.

Example 23 Row of Zeros [12]

Recall Example 18 where we considered

Its Routh array is

and it was shown to be stable for  Further it was also

shown to have two right half‐plane roots for .



What about ? Well for  just less than 1 there are two

roots in the open right half‐plane while for  just greater

than 1 all the roots are in the open left half‐plane. We guess

that at  two of the roots of  are on the  axis.

This is indeed true, but the proof will not be given. We now

show how to find the location of the two roots on  axis

for . With  the Routh array becomes

Note that now the  row only has 0s in it. We go to the row

above it, which is the  row. Recalling how the Routh array

is formed (see page ), the first element of the  row is 1,

which corresponds to  while the second element of the 

row is also  and corresponds to  We use these two

coefficients to form the auxiliary polynomial defined by

The roots of this auxiliary polynomial are

and they are also the locations of the two roots of  that

are on the  axis for  Specifically, with  we

have

explicitly showing that the roots of the auxiliary equation

are also roots of .



Example 24 Row of Zeros [12]

Recall Example 19 where we considered the stability of

Its Routh array is

which shows  is stable for  For 

there are two roots of  in the right half‐plane.

What about  Well for  just less than 18 all the

roots of  are in the open left half‐plane while for 

greater than 18 it has two roots in the right half‐plane. So

for  we expect to have two roots on the  axis. To

find the location of these two roots we set  in the

Routh array to obtain

Note that the  row only has 0s in it. We go to the row

above it, which is the  row. The first element in the  row

is 5 corresponding to  and the second element in the 

row is 10 corresponding to  We use these two elements

to form the auxiliary polynomial defined by



The roots of this auxiliary polynomial are

and these are also the locations of the two roots of ,

which are on the  axis for  Explicitly, with 

 we have

showing that the roots of the auxiliary polynomial are also

roots of .

What about  The Routh array for  is

For  there is one root in the open right half‐plane

while for  just greater than 8 all the roots are in the open

left half‐plane. So we expect that for  there is one

root on the  axis. This is easy to see as

showing that  has a root at 

Example 25 Row of Zeros

Recall Example 20 where we considered



Its Routh array is

Using this array it was shown that  is stable for 

. For  it was shown that  has

two roots in the right half‐plane.

What happens at ? We reasoned that  has

two roots on the  axis. This is because for  a little less

than 0.528 the polynomial  has two roots in the right

half‐plane while for  just greater than 0.528 it has no

roots in the right half‐plane. We expect that at 

two of the roots of  are on the  axis. To find these

roots we set  into the Routh array to obtain

Note that the  row only has 0s in it. We go to the row

above it, which is the  row and form the auxiliary

polynomial defined by

The roots of this auxiliary polynomial are



and these are also the locations of the two roots of 

that are on the  axis for . In fact for 

 we have

showing explicitly that the roots of the auxiliary polynomial

are also roots of .

Example 26 Row of Zeros

Consider the polynomial

The Routh array is then

The  row is a row of zeros. We form the auxiliary equation

which has roots

As the roots of the auxiliary equation are also roots of 

it follows that  are the roots of  on the  axis. In



fact

Special Case – Zero in First Column, but the Row

Is Not Identically Zero*

Here we consider the situation where there is zero in the

first column, but the row is not identically zero. Let's

consider this case by doing some examples.

Example 27 Zero in the First Column

Consider the polynomial

We use the Routh–Hurwitz criterion to determine if it is

stable or not. If it is not stable, we will also find out how

many roots are in the right half‐plane. The Routh array is

Due to the zero in the  row we cannot complete the Routh

array. However, we do know that  is not stable. We now

want to find out how many roots are in the right half‐plane.

To proceed one replaces the 0 in the first column of the 

row with a small  and uses this to complete the array.

We have



With  small we have  and therefore there are

two sign changes in the first column that tells us that 

has two roots in the right half‐plane.

Example 28 Zero in the First Column

Consider

We know immediately that it is not stable because the

coefficient of the  term is negative and the coefficient of 

 is zero. We use the Routh–Hurwitz criterion to find out

how many roots are in the right half‐plane. The Routh array

is

We cannot continue to fill out the Routh array due to the

zero in first column of the  row. To proceed we replace the

0 in the first column of the  row with a small  and

then complete the array as follows.



With  and small there are two sign changes in the first

column telling us that  has two roots in the right half‐

plane. In fact,  in

agreement with the Routh–Hurwitz test.

Example 29 Routh–Hurwitz Criterion

Consider again

Again we know immediately that it is not stable because the

coefficient of the  term is negative and the coefficient of

the  is zero. Next we define the new polynomial

Of course we still know that  is not stable because the 

 and  terms have negative coefficients. We also know

that  has the same number of right half‐plane zeros as 

. The Routh array is below.



There are two sign changes in the first column that tell us

that  and therefore  have two roots in the right

half‐plane.

Problems

Problem 1 Differential Equations

Given the differential equation

with initial conditions  use Laplace

transforms to find the solution. Check your result using

MATLAB.



Problem 2 Differential Equations

Given the differential equation

with initial conditions  use Laplace

transforms to find the solution. Check your result using

MATLAB.

Problem 3 Laplace Transform and the Final Value Theorem

Let

Find  by the method of partial fraction

expansion. Check your result using MATLAB.

Can you use the final value theorem to find  If

so, do so and explain. If not, explain why not.

Problem 4 Laplace Transform

Let

Find 

Can you use the final value theorem to find  If

so, do so and explain. If not, explain why not.



Problem 5 Differential Equations

Consider the differential equation

Compute the transfer function of this differential equation.

Assuming zero initial conditions and with  a

step input, find the solution to this differential equation

using the partial fraction expansion method of Laplace

transforms. Check your result using MATLAB.

Can you use the final value theorem to find  If

so, do so and explain. If not, explain why not.

Problem 6 Laplace Transform

Let

Find  using the partial‐fraction expansion

method. Check your result using MATLAB.

Can you use the final value theorem to find  If

so, do so and explain. If not, explain.



Problem 7 Differential Equations

Consider the differential equation

Compute the transfer function of this differential equation.

Assuming zero initial conditions and with  a

step input, find the solution to this differential equation.

Check your result using MATLAB.

Can you use the final value theorem to find  If

so, do so. If not, explain why not.



Problem 8 Transfer Functions and Stability

Let a system be modeled by the differential equation

which has transfer function

Is this transfer function stable? Explain and show work.

With   is given by

Can you use the final value theorem to find  If

so, do so and explain. If not, explain why not.

With   is given by

Can you use the final value theorem to find  If

so, do so and explain. If not, explain why not.



Problem 9 Differential Equations

Consider the differential equation

with  the unit step function and initial condition 

Use Laplace transforms to find the solution.

Consider again the differential equation in part (a), that is,

Compute the transfer function  of this

system.

In your answer to part (b) let  a step input so

that

Can you use the final value theorem to find 

Explain why or why not.



(3.32)

(3.33)

Problem 10 Phasor Method

Consider the general third‐order differential equation given

by

Let

where

Compute the transfer function  of this system.

With  the input to the above differential

equation set  and show that 

makes  a solution. Use this to show that

is a solution to (3.32) with input (3.33).



(3.34)

Problem 11 Phasor Solution vs. Sinusoidal Steady‐State

Solution

Consider the differential equation

with input

To solve this equation, first consider the complex valued

input given by . Note that

With  the input to the above differential equation and 

 a constant complex number, show that a solution of the

form

is possible. Give your steps on how you obtained 

What is the relationship between  and the transfer

function  of the differential equation?

With  compute the phasor solution 

 to (3.34). With input 

 it follows that 

 is the solution to

(3.34) for  with a particular value for the initial

condition  Find that value.



Is your answer in part (c) the sinusoidal steady‐state

solution for the input  Explain why

or why not. Hint: Is  stable?

Problem 12 Phasor Solution vs. Sinusoidal Steady‐State

Solution

Let a system be defined by the transfer function

Compute the phasor solution with input 

for 

With , use the phasor solution to find the sinusoidal

steady‐state response of this system with input 

? Hint: Is  stable?

With , use the phasor solution to find the

sinusoidal steady‐state response of this system with input 

? Hint: See your answer to part (a).

Now let  but still with the input 

. With  what is the sinusoidal

steady‐state response of this system due to this input? Hint:

No computation is needed.



Problem 13 Phasor Method

Consider the differential equation

with input

Let

so that

With  the input to the above differential equation, show

that a solution of the form

is possible. Show your steps on how you obtained 

What is the relationship between  and the transfer

function  of the differential equation?

Use your answers in parts (a) and (b) to give an expression

for the phasor solution when the input is .

Suppose you start the system at  with input 

 What condition on  is needed

for the phasor solution to be the sinusoidal steady‐state

solution?



Problem 14 Sinusoidal Steady‐State Response

Let a system be given by

so that its transfer function is

Is  stable?

Let the input be  so that

Compute a solution using the phasor approach. Is this also

the sinusoidal steady‐state solution to the system? Explain

briefly.

Now consider the system

with transfer function

Is  stable?



For the system of part (c) let the input be 

 so that

Compute a solution to the system of part (c) using the

phasor approach. Is this also a sinusoidal steady‐state

solution? Explain briefly.



Problem 15 Stability

Suppose

so that

where  is the transfer function.

Compute  from the differential equation.

Let  i.e., . Is 

 a solution to the above

differential equation? Explain briefly. No calculations are

needed.

Let , i.e.,  With  the solution

to the above differential equation with arbitrary initial

conditions, is it true that

Explain briefly.

Let  i.e., . With 

the corresponding solution and arbitrary initial conditions, is

it true that

Explain briefly.



Let , i.e.,  With  the solution

to the above differential equation with zero initial

conditions, is it true that

Explain briefly.



Problem 16 Stability

Suppose

so that

where  is the transfer function.

Compute  from the differential equation.

Let  i.e., . Is 

 a solution to the above

differential equation? Explain briefly. No calculations are

needed.

Let , i.e.,  With  the solution

to the above differential equation with arbitrary initial

conditions, is it true that

Explain briefly.

Let  i.e., . With 

the corresponding solution and arbitrary initial conditions, is

it true that

Explain briefly.



Let , i.e.,  With  the solution

to the above differential equation with zero initial

conditions, is it true that

Explain briefly.



Problem 17 Stability

Suppose

so that

where  is the transfer function.

Compute  from the differential equation.

Let  i.e., . Is it always

true that

is a solution to the differential equation? Explain briefly.

Let , i.e.,  With  the solution

to the differential equation with arbitrary initial conditions is

it always true that

Explain briefly.

Suppose  is stable, , i.e., 

 and let  be the solution to the above

differential equation with zero initial conditions. Is it always

true that

Explain briefly.



Let  i.e.,  and

suppose  is given by

With  is it true that 

 Explain briefly.



Problem 18 Stability

Suppose

so that

where  is the transfer function.

Compute  from the differential equation.

Let  i.e., . Is it always

true that

is a solution to the differential equation? Explain briefly.

Let , i.e.,  With  the solution

to the differential equation with arbitrary initial conditions is

it always true that

Explain briefly.

Let  i.e., . As 

is it always true that

Explain briefly.



Let , i.e.,  With  the solution

to the differential equation with zero initial conditions is it

always true that

Problem 19  is stable iff  and 

Use the quadratic formula to show that the solutions of the

polynomial equation

are in the open left half‐plane if and only if  and 

Problem 20 Stability Tests [12]

If you can determine the stability of the following

polynomials without using the Routh–Hurwitz criterion or

solving for the roots, do so. Otherwise use the Routh–

Hurwitz criterion.

Problem 21 Routh–Hurwitz Test [12]

For what values of  is the polynomial 

stable?



Problem 22 Routh–Hurwitz Test [12]

For what values of  is the polynomial 

stable?

Problem 23 Routh–Hurwitz Criterion [12]

Let

Find the range of values of  for which  is stable.

Problem 24 Final Value Theorem

Let

Find the final value of  as a function of .

Problem 25 Final Value Theorem

Let

Find the final value of  in terms of  and . Show

work.

Problem 26 Routh–Hurwitz Criterion

Consider the polynomial

Use the Routh–Hurwitz criterion to show whether or not 

is stable.



Problem 27 Routh–Hurwitz Criterion

Let

Use the Routh–Hurwitz criterion to show whether or not 

is stable.

Problem 28 Routh–Hurwitz Criterion

For what values of  does

have all its roots in the open left half‐plane?

Problem 29 Routh–Hurwitz Criterion

Let

For what values of  is  stable?

With  let

For what values of  will ?



Problem 30 Final Error

Let

and, with , let

For what values of  will ? Explain

and show work.

Problem 31 Routh–Hurwitz Criterion

Let

For what values of  is  stable?

Problem 32 Row of Zeros in the Routh Array

Let

For what values of  does  have poles of the 

axis? What are the values of these poles on the  axis?



Problem 33 Row of Zeros in the Routh Array

Let

Find any roots of  on the  axis.

Problem 34 Row of Zeros in the Routh Array

Consider the polynomial

Find any roots of  on the  axis.

Problem 35 Row of Zeros in the Routh Array [12]

Let

Find the values of  for which  has roots on the 

axis. Also find the corresponding roots.

Notes

1 Note that 

.

2 The terminology “phasor” can refer to either  or

just to .

3 Equations (3.16) and (3.4) are the same differential

equation.

4 Rational function simply means it is the ratio of two

polynomials.



5 

.



4 

Mass–Spring–Damper Systems

A key first step in control design is to find a mathematical

model (usually as a differential equation) of the physical

system. In this chapter we apply Newton's laws of motion to

derive differential equation models of masses connected to

springs and dampers (dashpots). We also take a first look at

simulating differential equations in software.

4.1 Mechanical Work

Let a mass  be moving in one dimension along the ‐axis

with a force  acting on it as indicated in Figure 4.1.

Figure 4.1 Force acting on a mass .

With  the mass's position at time   its

velocity, and  its acceleration, recall that

Newton's law says that  or equivalently



(4.1)

(4.2)

(4.3)

Also recall that by definition, the work  done on the mass

as the force acts on it while the mass goes from  to  is

In this integral we are assuming we know the force as a

function of the position .

We next make a change of variables in this integral to make

the integrand a function of time . To do this, let  be the

time that mass is at position  so that .

Correspondingly, the velocity at time  is given by 

. Similarly, with  the time the mass is

at  we have  .

We now rewrite the work  as follows:

Then

The kinetic energy (KE) of the mass is defined to be 

So we have shown that the work done on  equals the

change in its KE. That is,



(4.4)

4.2 Modeling Mass–Spring–Damper

Systems

Example 1 Horizontal Mass–Spring–Damper System

Consider the spring–mass–damper system in Figure 4.2.

Figure 4.2 (a) Mass–spring–damper system. (b) Damper

cross section.

If  then the spring is neither compressed nor

stretched. In this case we say the spring is relaxed. The



(4.5)

force on the mass  due to the spring is

Note that if  the spring is pulling  to the left while if 

 the spring is pushing  to the right.

A cross section of the damper (dashpot) pictured in Figure

4.2b shows that it consists of a piston encased in a sealed

cylinder which is filled with a viscous fluid. If the piston is to

move, it must do so by forcing the fluid around its outer

surface from one side to the other. The force of the damper

on  is proportional to its velocity  and is given by

Note that if  then the mass  along with the cylinder

is moving to the right with the piston providing a resistive

force in the  direction to oppose this motion. Similarly, if

 then the mass  along with the cylinder is moving

to the left with the piston providing resistive force now in

the  direction to oppose this motion. This damper force

whose opposing force is proportional to speed is also

referred to as viscous friction.

 denotes an external force. The equation of motion is

then

which is rearranged to obtain



(4.6)

(4.7)

Taking the Laplace transform with zero initial conditions

gives

or

If the initial conditions are not zero, you may show that

Example 2 Vertical Mass–Spring–Damper System

Figure 4.3 shows a mass‐spring‐damper system hung from a

ceiling.



(4.8)

Figure 4.3 Vertical mass–spring–mass–damper system.

The equations of motion are then

which are rearranged to obtain

Taking the Laplace transform with zero initial conditions

gives



(4.9)

(4.10)

(4.11)

or

If the initial conditions are not zero, you may show that

Equilibrium Conditions

Suppose  so that the equations of motion are now

Equilibrium means the mass  is at rest (not moving) so

that . At equilibrium we have

or the mass is at

This just says the spring has to be stretched so that it can

provide an upward force to cancel out the gravitational

force.



Equations of Motion About the Equilibrium

Point

Let

and substitute  into (4.8) to obtain

Rearranging

or finally

So if we write the equations of motion with respect to the

equilibrium position, the gravity term is gone. However, we

have to remember that the solution  to this equation is

with respect to the equilibrium position as indicated in

Figure 4.4.



Figure 4.4 Equations of motion about the equilibrium point.

Often books interpret the reference position for  in Figure

4.3 to be with respect to the equilibrium position. Then the

equations of motion are simply

but one must remember to interpret  in this way!

Example 3 Mass–Spring–Damper System with Two

Masses



Figure 4.5 shows two masses  and  connected

together by a spring and a damper.

Figure 4.5 Two masses connected by a spring and a damper.

We consider the external force  to be the input and the

position  of mass  to be the output.

The references  and  for the positions of  and ,

respectively, are interpreted that if  the spring is

relaxed (neither compressed nor stretched). So the spring

forces  and  on  and , respectively, are given

by

That is, if  then the spring is pulling  in the 

direction and pulling  in the  direction.

Let's consider the damper (dashpot) forces  and 

on  and , respectively. These depend on the relative



velocity  between  and . We have

For example, if  then the cylinder is moving to the

right faster than the piston. Thus the piston is producing a

resistive force on the cylinder (and therefore ) to oppose

its motion to the right. Under these same conditions, the

cylinder is dragging the piston (and therefore ) to the

right.

The equations of motion are then

or

We rearrange this to obtain



Taking Laplace transforms with zero initial conditions we

obtain

As we are taking the input to be  and the output to be 

, we want to eliminate  from these two equations.

Solving for  in the first equation and substituting into

the second equation we obtain

We next solve this for  as follows:

or

Example 4 Mass–Spring–Damper System with

Massless Point

Figure 4.6 shows a spring–mass–damper system all

connected in series.



Figure 4.6 Mass–spring–damper system all connected in

series.

The point  showing the connection point of the spring and

piston is referenced by . Here we consider  as the

input and the position  of  as the output.

There is no mass at point  and this is a problem in terms

of using Newton's equations. To get around this, we simply

consider the point  to have a small mass . After

setting up the equations, we will let . We have

or



We let  and take the Laplace transforms with zero

initial conditions to obtain

As  is given to be the output, we eliminate  as

follows:

or

or

Example 5 Position Input and Massless Point

In Figure 4.7 the input to the spring–mass–damper system is

the position  and the output is the position  of the mass 



. The right side of the spring  does not show any mass

so we will let  denote the mass of the piston to which the

spring is attached. Then later we will let .

We let  denote the position of the piston (mass ). If 

 then the spring is relaxed. The relative velocity

between the piston and the cylinder of the damper is .

Figure 4.7 Mass–spring–damper system with the position 

as input.

We now compute the equations of motion for  and .

We have

or

Remember that  is the input and  is the output. We now

take the Laplace transforms of these equations to obtain

Eliminating  gives



or

Letting  and solving for  we finally obtain

4.3 Simulation

Consider a first‐order differential equation system given by

To implement this equation on a digital computer, it needs

to be converted to discrete time. Let  denote

the values of  at time . We approximate the

derivative at time  using the backward difference

given by

Then the discrete time version of the system is taken to be



Rearrange to obtain

For example, suppose  and  Then

This recursive discrete‐time model is used to implement the

original continuous‐time system on a digital computer.

With the input  taken to be a unit step input, a SIMULINK

diagram for this system is given in Figure 4.8.



Figure 4.8 SIMULINK block diagram for 

.

When the simulation is run, SIMULINK converts the block

diagram to a discrete‐time form and runs the program. The

input  was chosen to be a unit step input where the block

above with  in it is a constant block from the SIMULINK

library with a “1” inside. Even though SIMULINK uses a 

block (integrator), the simulation is a time domain process!

Perhaps the block should have the integral sign  rather

than , but the tradition is to use .

We can also represent



in the Laplace domain (assuming zero initial conditions) as

The SIMULINK block diagram can then be drawn as shown in

Figure 4.9.

Figure 4.9 SIMULINK block diagram for .

SIMULINK then converts this to

and then generates  code to run on a digital computer.

When using a transfer function block, SIMULINK assumes

zero initial conditions.

In these two examples we are taking  to be a unit step

input so a “1” is put inside the constant block from the

SIMULINK library so that  for .

Figure 4.10 shows the SIMULINK block diagram for

simulating the horizontal spring–mass–damper system of

Example 1. Note that the upper left‐hand side of this block

diagram shows Simulation selected. To the right of this is

DEBUG followed by MODELING . Click on MODELING to select it and

then click on Model Settings to open up the

Configuration_Parameters dialog box shown in Figure 4.11.





Figure 4.10 Simulation of 





Figure 4.11 Dialog box for the configuration parameters.

In the Simulation time block of Figure 4.11 we have set Start

time: 0.0 and Stop time: 10 (seconds). Note that the Solver

options are set as Type: fixed‐step , and Solver: ode1(Euler)

and Fixed‐step size (fundamental sample time): 0.001

(seconds). The vertical black bar going into the To File block

of Figure 4.10 is a Mux block and is found in the Signal Routing

folder of the SIMULINK Library. Double clicking on the To File

block opens up the dialog box shown in Figure 4.12. The

data is stored in a MATLAB data file called output.mat . The

data in this file is called outputdata and consists of an array

(matrix) of three rows. The first row is the time, the second

row is the position  and the third row is the input force .





Figure 4.12 Dialog box for the To File block.

Before running the SIMULINK file, run the following MATLAB

program:

 

  % Data file 

  

  m = 2; b = 4; k = 16; f = 8; 

 

Run the SIMULINK program, then go to MATLAB and run the

following program to plot the data.

 

% Data Processing file 

  

load output.mat % Brings the outputdata into the workspace 

  

t = outputdata(1,:); x = outputdata(2,:); f_input = 

outputdata(3,:); 

  

% t is the time, x is the position output and f_input is the 

force input. 

  

% The following lines plot the position output 

  

p1 = plot(t,x,’b.’); % For more plotting options type "help 

plot" 

  

set(gca,’FontSize’,11) 

  

title(’x(t)’,’FontSize’,18) 

  

ylabel(’x(t)’,’FontSize’,16) 

  

xlabel (’Time in seconds’,’FontSize’,16) 

  

% Set the line width for plotting 

  

set(p1,’LineWidth’,2); set(p1,’MarkerSize’,10); 

 



Problems

Problem 1 Vertical Mass–Spring System

Consider the spring–mass–damper system in Figure 4.13.

Write down the equations of motion of the mass  using

Newton's laws of motion.

With  compute the equilibrium point  of the

system.

Let  and rewrite the equations of motion in

terms of 

Figure 4.13 Vertical mass–spring system.



Problem 2 Vertical Mass–Spring–Damper System

Figure 4.14 shows a spring–mass–damper system with the

spring attached to the ceiling and the mass  and the

damper attached to the floor and the mass .  is an

external input force. The position of  is  and, as usual, 

 means the spring is relaxed.

Figure 4.14 Vertical mass–spring–damper system.



Write the equations of motion for . Compute the transfer

function from the input  to the output .

Remember that in computing a transfer function the initial

conditions are set to zero.

With , find the equilibrium position  of .

With  and  rewrite the equations of

motion in terms of the position  relative to the

equilibrium point. Compute the transfer function from the

input  to the output . Remember that in

computing a transfer function the initial conditions are set to

zero.

With     and the

input  does  have a final value?

Explain why or why not. If it does have a final value,

compute it using the final value theorem.

Make a SIMULINK simulation of this system. Hand in a print

out of the SIMULINK diagram, and a plot of  with the

initial conditions set to zero. Does  settle out to the

final value found in part (d)?



Problem 3 Moving Mass–Spring–Damper System

Figure 4.15 shows a spring–mass–damper system in the

back of a truck where the position  of the truck is the

input and the position  of the mass  is the output.

Figure 4.15 Moving mass–spring–damper system.

Find the equations of motion of the mass .



Compute the transfer function from the input  to the

output .

Set     and let the

input be

Does  have a final value? Explain why or why not. If it

does have a final value, compute it using the final value

theorem.

Make a SIMULINK simulation of this system. Hand in a print

out of the SIMULINK diagram, and a plot of  and 

with the initial conditions set to zero. Does  settle out to

the final value found in part (c)?



Problem 4 Vertical Mass–Spring–Damper System

Consider the mass–spring–damper system of Figure 4.16.

Let  be the mass of the damper's piston which we will

later let go to zero.

Write down the equations of motion for this spring–mass–

damper system.

Find the equilibrium point ( ) for this system.

Rewrite the equations of motion in terms of  and  given

by

Let  and further let  and 

 but  be arbitrary. Compute .

Make a SIMULINK simulation of this system. Let  kg, 

 N/(m/s),  N/m, and  N/m. Hand in a

print out of the SIMULINK diagram, and a plot of  and 

 with  but .



Figure 4.16 Vertical mass–spring–damper system.



Problem 5 Mass–Spring–Damper Model for a Wheel

Assembly [1]

Figure 4.17 shows a model of a car wheel attached to the

body of the car.



Figure 4.17 Vertical mass–spring–damper modeling a

suspension system.

The spring  is used to model the tire's flexibility with the

mass  modeling wheel assembly to which the tire is



attached. The wheel assembly is attached to the car body

using a spring (modeled by ) and a shock absorber

(modeled by ). Finally  is the mass of that part of the

car body suspended by this assembly. The (disturbance)

input is  which is the height of the road above some fixed

position and the output is  which gives the position of the

car body. As usual, if  then the spring  is relaxed,

while if  then the spring  is relaxed.

Write down the equations of motion.

With the input , find the equilibrium point ( )

for this system.

Let

and find the equations of motion in terms of  and .

Find the transfer function from the input  to the output .

With  

 and zero initial conditions, make a

SIMULINK simulation of this system. Hand in a print out of

the SIMULINK diagram and a plot of .



Problem 6 Horizontal Mass–Spring–Damper System

Consider the spring–mass–damper system in Figure 4.18.

Figure 4.18 Horizontal mass–spring–damper system.

Write down the equations of motion of the two masses 

 using Newton's laws of motion.

Compute the transfer function from the input  to the

output 

With  

 and zero initial conditions, make a SIMULINK

simulation of this system. Hand in a print out of the

SIMULINK diagram and a plot of  and .



Problem 7 Vertical Mass–Spring–Damper System

Consider the spring–mass–damper system in Figure 4.19.

Write down the equations of motion of the two masses 

 using Newtons's laws of motion.

With  compute the equilibrium point  of

the system.

Rewrite the equations of motion in part (a) in terms of 

given by

With  

 and zero initial conditions, make a SIMULINK

simulation of this system. Hand in a print out of the

SIMULINK diagram and a plot of  and .



Figure 4.19 Vertical mass–spring–damper system.



Problem 8 Final Value Theorem

In Example 5 we showed the transfer function of the system

given in Figure 4.7 was given by

Recall that  is the (input) position of the left side of the

spring while  is the (output) position of the mass .

Let  kg,  N/(m/s),  N/m.

Use MATLAB to compute the poles of  Is  stable?

Let  be a step input. Can you use the final

value theorem to compute  If so, do so. If not,

explain why not.

In Example 5 it was shown that

or (setting )

Can you use the final value theorem to compute 

 If so, do so. If not, explain why not.

Give a physical interpretation of your answers in parts (b)

and (c).



(4.12)

Problem 9 Simulation of a DC Motor

The differential equations describing a DC (direct current)

motor are

The parameter values are  kg/

 Nm/A (V/rad/s), 

Nm/rad/s, ,  Henrys,  V, 

 A. For a step input voltage set  V and for

a ramp input voltage set . Set the start time to 0

and the stop time to 0.2 seconds. Use a fixed‐step Euler

integration with a step size of 0.001 second. The SIMULINK

block diagram is shown in Figure 4.20.



Figure 4.20 SIMULINK simulation of a DC motor.

The saturation block is found in the SIMULINK library in the

Discontinuities folder. If you double click on this block the

dialog window shown in Figure 4.21 comes up.



Figure 4.21 Dialog box for the Saturation block.

The manual switch block is found in the SIMULINK library in

the Signal Routing folder.



Write a .m MATLAB file named DC_sim:data.m to set all the

parameter values.

Write a .slx SIMULINK file named DC_sim.slx that reproduces

the block diagram of Figure 4.20.

Run your simulation with the start time set to 0 and the stop

time set to 0.2 seconds. Use a fixed‐step Euler integration

with a step size of 0.001 seconds.

With the simulation debugged, add a To File SIMULINK block

(in the Sinks folder of the library) to store the input voltage,

the current, the speed, and the position.

For the step input case, hand in a printout of your .m file, a

screenshot of your SIMULINK block diagram (should look

similar to Figure 4.20), and a MATLAB plot of each of the

stored variables vs. time.

Remark Notice that the simulation diagram of Figure 4.20

does not use . Usually, for protection, an amplifier has a

current sensor inside to measure the current. If the

magnitude of the current exceeds  the amplifier is

designed to immediately shut down.



(4.13)

Problem 10 Simulation of a Stable Differential Equation

In Chapter 3 we found a solution to the differential equation

using the phasor method. With

the phasor solution is given by 

 This is in fact the

unique solution to (4.13) with the initial conditions

As  is stable,  is also the steady‐state solution,

i.e., for arbitrary initial conditions  Figure

4.22 is a SIMULINK block diagram for this system. To run this

simulation you will need to first run the following .m file.

 

U0 = 2; omega = 2; 

  

% G(jw) = 1/(jw)^2+jw+1) 

  

G = 1/((i*omega)^2 + i*omega + 1); 

  

Gmag = abs(G); Gphase = angle(G); Gphase_deg = Gphase*180/pi; 

 



Figure 4.22 SIMULINK block diagram for 

To implement the input  open the dialog box of

the Sine Wave block labeled as U0cos(wt) and fill it in as shown

in Figure 4.23.





Figure 4.23 Dialog block for the Sine Wave source block for 

To implement the input phasor solution 

 open the dialog box of the

Sine Wave block labeled as |G(jw)|U0cos(wt+<G(jw)) and fill it in

as shown in Figure 4.24.





Figure 4.24 Dialog block for Sine Wave source for 

Implement this simulation and run it for 15 seconds. Hand in

the plot from the output scope.

Set the initial conditions to zero and run the simulation for

15 seconds. Hand in the plot from the output scope.



(4.14)

(4.15)

(4.16)

Problem 11 Simulation of an Unstable Differential Equation

This problem is similar to Problem 10 except with an

unstable differential equation. In Chapter3 we found a

solution to the differential equation

using the phasor method. With

the phasor solution is given by 

. This is the unique

solution to (4.14) with the initial conditions

As  is unstable, there is no steady‐state solution, i.e.,

for arbitrary initial conditions  Modify your

SIMULINK simulation from Problem 10 to simulate this

system. In particular, you will need to run the following .m

file.

 

  U0 = 2; omega = 2; 

  

  % G(jw) = 1/(jw)^2‐jw+1) 

  

  G = 1/((i*omega)^2 ‐ i*omega + 1); 

  



  Gmag = abs(G); Gphase = angle(G); Gphase_deg = Gphase*180/pi; 

 

In the Simulation/Model Configuration Parameters dialog box

make sure that fixed step size is 0.001. Run it for

10 seconds. Hand in the plot from the output scope. You

should see that the simulation starts to diverge from the

phasor solution at about five seconds.

In the Simulation/Model Configuration Parameters dialog box

change the fixed step size to 0.0001. Run it for 10 seconds.

Hand in the plot from the output scope. You should see that

the simulation starts to diverge from the phasor solution at

about 10 seconds.

Remark  is the solution to

(4.14) with the initial conditions (4.15) and (4.16). However,

because the numerical integration of the differential

equation is not exact, the SIMULINK solution diverges from 

. As a consequence the

output response contains terms corresponding to the

unstable poles of the transfer function which grow

unbounded. As part (b) shows, even if the step size is very

small, the integration is still not exact and the numerically

computed output response in SIMULINK of this unstable

differential equation again goes unbounded.



5 

Rigid Body Rotational Dynamics

5.1 Moment of Inertia

The equations of motion of a rigid body that is constrained

to rotate about a fixed axis are reviewed here briefly.

Consider the cylinder shown in Figure 5.1.

Figure 5.1 Cylinder constrained to rotate about a fixed axis.

The approach here is to obtain the equations of motion of

the cylinder by first obtaining an expression for its kinetic

energy. To do so, denote the angular speed of the cylinder

by  and the mass density of the material making up the

cylinder by . Then consider the cylinder to be made up of

a large number  of small pieces of material  where

the th piece has mass



This is illustrated in Figure 5.2. Each piece of mass  is

rotating at the same angular speed  so that the linear

speed of  is  where  is the distance of 

from the axis of rotation. The kinetic energy  of 

is given by

Figure 5.2 Cylinder is considered to be made up of small

masses 

The total kinetic energy is then

Dividing the cylinder into finer and finer pieces so that 

 and , the sum



becomes the integral

The quantity  is called the moment of inertia. Using  the

kinetic energy of the cylinder may now be written as

Taking the axle radius to be zero, the moment of inertia of

the cylinder (assuming the mass density  is constant) is

computed to be

where  is the total mass of the cylinder.

5.2 Newton's Law of Rotational

Motion

The kinetic energy is now used to derive a relationship

between torque and angular acceleration. Recall from

elementary mechanics that the work done on a mass by an

external force equals the change in its kinetic energy. In

particular, consider an external force  acting on the

cylinder as shown in Figure 5.3.



Figure 5.3 Force  applied to the cylinder is resolved into a

normal and tangential component using polar coordinates.

The cylinder is on an axle and therefore constrained to

rotate about the  axis. Figure 5.3 shows the force 

applied to the cylinder at the position  (in polar

coordinates) resolved into a tangential component 

(tangent to the rotational motion) and a normal component 

. Using polar coordinates, we write this force as 

 where  is a unit vector in the increasing 

 direction and  is a unit vector in the increasing 

direction. Similarly,  and  are unit vectors in the

increasing  directions, respectively. The torque about



(5.1)

an axis is defined as the cross product  where 

is the vector from the axis to the point of application of the

force and  is the applied force. We then have

where  is the angle from  to . Recall from elementary

mechanics that the magnitude of the cross product  is

defined as  and the direction of 

 is perpendicular to both  and  along the axis of

rotation determined by the right‐hand Rule.1 

 is the tangential component and we have

just shown the torque is given by

or in scalar form by

The motivation for the definition of torque as given by (5.1)

is that it is the cause of rotational motion (angular

acceleration). Specifically, the rotational motion about an

axis is caused by the applied tangential force  and the

further away from the axis of rotation that the tangential

force  is applied, the easier it is to get rotational motion.

That is, the torque (cause of rotational motion) increases if



(5.2)

either  or  increases, which corresponds to one's

experience (e.g. opening doors).

To summarize,  is a vector pointing along the axis of

rotation with its magnitude given by

(Recall that the angular velocity vector  also points

along the axis of rotation where  is the angular speed.)

Let the external force  act on the cylinder to move (rotate)

it by a displacement . The change in work

done on the cylinder by this force is then

Dividing by , the power (rate of work) delivered to the

cylinder is given by

As the rate of work done equals the rate of change of kinetic

energy, it follows that

or

This gives the fundamental relationship between torque and

angular acceleration:



(5.3)

That is, the applied torque equals the moment of inertia

times the angular acceleration. This is the basic equation for

rigid body rotational dynamics about a fixed axis.

Viscous Rotational Friction

Almost always there are frictional forces, and therefore,

frictional torques acting between the axle and the

bearings.2 This is illustrated in Figure 5.4.

Figure 5.4 Viscous friction torque.



Often the frictional force is proportional to the angular

speed and this model of friction is called viscous friction,

which is expressed mathematically as

or, in scalar form,

where  is the coefficient of viscous friction.

Sign Convention for Torque

Suppose the axis of rotation is along the  axis. The torque

is

where  is the angle from  to . The cross product 

 has the component  in the  direction.

Notice that direction of  is perpendicular to both 

and .

In engineering applications, the systems are designed so

that the applied force is tangential to the rotational motion,

i.e.,  so that . Further, in

engineering texts the sign convention for torque is indicated

by a curved arrow as shown in Figure 5.5.



Figure 5.5 Sign convention for torque.

If  then the torque will cause the cylinder to

rotate around the  axis in the direction indicated by the

curved arrow. On the other hand, if  then the

torque will cause the cylinder to rotate around the  axis in

the direction opposite to that indicated by the curved arrow.

Physics texts prefer to write .

Example 1 Rack and Pinion System

A rack and pinion system is illustrated in Figure 5.6, which is

used to convert rotary motion to linear motion and vice

versa. In Figure 5.6 the axis of the pinion (gear wheel) is

considered to be fixed in space. A torque  applied to the

shaft causes the pinion to rotate, which moves the rack in

the  direction through the contact of their teeth.



Figure 5.6 Rack and pinion system.  is the force of the

pinion tooth on the rack tooth.  is the reaction force of

the rack tooth on the pinion tooth.

We take the input to be the torque  (produced by a motor)

and the output to be the position . Because the teeth on

the pinion wheel and rack are meshed together, there is an

algebraic relationship between the angle  and position 

given by   is the mass of the rack and  is the

inertia of the pinion gear wheel. Let  be the force of the

pinion tooth on the rack tooth in the  direction so that 

is the reaction force of the rack tooth on the pinion tooth.

Applying Newton's law to the mass of the rack we have



Applying Newton's law for rotational motion to the pinion

gear we have

where  is the reaction torque on the pinion gear

produced by the rack. Multiply the first equation by  and

add to the second to obtain

In this equation we eliminate  using the algebraic

constraint  and rearrange it to obtain

The transfer function is then

Conservation of Energy

Let's rederive this transfer function of the rack and pinion

system using conservation of energy. The kinetic energy of

the rack and pinion system is

As shown in (5.2), the rate of work done equals the rate of

change of kinetic energy. Consequently we have,



or

or

The transfer function from  to  is then

Example 2 Rack and Pinion System Connected to a

Spring

Figure 5.7 shows a rack and pinion system with the rack

connected to the wall through a spring and also some

viscous friction damping between the rack and the support

surface. We consider the torque  (produced by a motor) to

be the input and we take the position  to be the output. 

is the radius of the pinion (gear),  is the moment of

inertia of the pinion about its center,  is the moment of

inertia of the motor,  is the viscous friction coefficient

between the rack and the surface it is on,  is the spring

constant, and  is the mass of the rack.



Figure 5.7 Rack and pinion system.

The input is the torque  and the position  is the output.

Let's first find the transfer function using Newton's laws. Let 

 be the force of the pinion wheel tooth on the rack gear

tooth. Then the reaction force of the rack gear tooth on the

pinion wheel is  resulting in a reaction torque on the

pinion wheel of . The equations modeling this system

are then



along with the algebraic constraint

 is not known and typically not measurable.

Consequently, we eliminate  from these two equations to

obtain

Substituting  (and thus  and ) we

obtain

Rearranging this becomes

Taking the Laplace transform with zero initial conditions

gives

The transfer function is then

Let's now find the equations of motion using conservation of

energy. Referring back to (5.3), we see that if the external

torque  rotates the system by , the work  done on

the system is . By conservation of energy, this is equal

to the change in the kinetic energy of  and  plus

the change in the spring's potential energy plus the heat

dissipated due to the viscous friction. In terms of the input



power  put into the system by  we have 

 so that

Using the algebraic constraint  this becomes

Multiplying through by  and canceling the common factor 

 we have

which will result in the same transfer function as before.

Example 3 Satellite with Solar Panels

Following [3] and [13] let's consider a simple model of a

satellite, which has solar panels attached to it to provide

electric power as shown in Figure 5.8a. The panels are

flexible in order to make them light as possible for launching

into orbit. The two solar panels are attached to the same

shaft going through the satellite main body and a motor

produces a torque  to turn the panels to line them up with

sun. However, as the panels are not rigid, the torque causes

the panels to oscillate about their axis of rotation.  is the

angle of the motor shaft with respect to the satellite body



while  is the angle of the end of the solar panel with

respect to the satellite body. We model this system using a

torsional spring and rotational damper system as shown in

Figure 5.8b.

Figure 5.8 (a) Satellite with solar panels for power. (b)

Lumped parameter model.

The torsional spring constant is , the rotational damper

constant is  (typically very small), the moment of inertia of

the satellite main body is  and  is the moment of

inertia of both solar panels. The solar panels are not rigid so

they really do not have a moment of inertia. However  is

taken to be an “equivalent” moment of inertia with the



(5.4)

(5.5)

expectation that this lumped parameter model is a “good”

approximation for the dynamics of the flexible solar panels.3

  The torsional spring constant  is used to model the

torque produced when the shaft of the solar panels is

twisted by the motor's torque. This torque on the motor

shaft is  while the (reaction) torque on the solar

panel shaft is  When the motor turns (twists) the

solar panel shaft, the panel oscillates (twists back and forth)

with smaller and smaller amplitude until it finally stops. The

rotational damper is used to model this internal damping

mechanism. The energy loss due to this damping is

dissipated as heat. This damping torque on the motor shaft

is  while the (reaction) torque on the solar

panel shaft is  Putting this altogether the

dynamic equations of this satellite system are

Computing the Laplace transforms (with zero initial

conditions) and rearranging gives

Some more rearrangement gives



(5.6)

(5.7)

(5.8)

(5.9)

Eliminating  we obtain

Solving for  we have

Then  is simply found as

Summarizing we have

Suppose the angle  of the motor shaft is measured. Then

the sensor for  is located on the same rigid body as the

actuator (motor) and we refer to this as the collocated



sensor and actuator case. On the other hand, suppose the

solar panel angle  is measured. Then this angle sensor is

located at the end of one of the solar panels. As the

actuator and sensor are not on the same rigid body we refer

to this as the noncollocated sensor and actuator case.

5.3 Gears

This presentation is adapted from that given in [1]. Using

the elementary rigid body dynamics developed previously,

the model of the two gear system illustrated in Figure 5.9 is

now developed.



Figure 5.9 Two gear system.

Source: Courtesy of Sharon Katz.

In Figure 5.9,

 is the torque exerted on gear 1 by gear 2.

 is the force exerted on gear 1 by gear 2.

 is the torque exerted on gear 2 by gear 1.

 is the force exerted on gear 2 by gear 1.



 is the angle rotated by gear 1.

 is the angle rotated by gear 2.

 is the number of teeth on gear 1.

 is the number of teeth on gear 2.

 is the radius of gear 1.

 is the radius of gear 2.

In Figure 5.9 we have written  and 

since by Newton's third law  and  are equal in

magnitude, but opposite in direction. With  we

see that  means the force on gear 1 is in the 

direction as shown in Figure 5.9. Also, let  so

that 

. That is,  where  and  is a unit

vector. Similarly, with  we see that  means

the force on gear 2 is in the  direction. Writing  it

follows that  with 

.

Algebraic Relationships Between Two Gears

There are three important algebraic relationships between

the gears.



The gears have different radii, but the teeth on each gear

are the same size in order that they mesh together properly.

Consequently, the number of teeth on the surface of each

gear is proportional to the radius of each gear. For example,

if  then . In general,

As  and  it then follows that

As the teeth on each gear are meshed together at the point

of contact, the distance traveled along the circumference of

each gear is the same. In other words,  or

The first two algebraic relationships can be summarized as

and these ratios are easily remembered by thinking of gear

2 as larger in radius than gear 1. Then the number of teeth

on gear 2 must also be larger (because its circumference is

larger) and the torque on gear 2 is also larger (because its

radius is larger).

The last algebraic relationship is summarized as



but it is more easily remembered by writing ,

which just states the distance traveled along the surface of

each gear is the same as they are meshed together.

Dynamic Relationships Between Two Gears

Consider the two gear system shown in Figure 5.10 on the

next page. The motor torque  acts on gear 1 and the

torque  is a load torque acting on gear 2.



Figure 5.10 Dynamic equations for a two gear system.

Source: Courtesy of Sharon Katz.

In Figure 5.10, the following notation is used.

 is the moment of inertia of the motor shaft.

 is the moment of inertia of the output shaft.

 is the viscous friction coefficient of the motor shaft.

 is the viscous friction coefficient of the output shaft.



 is the angle rotated by gear 1.

 is the angle rotated by gear 2.

 is the angular speed of gear 1.

 is the angular speed of gear 2.

 is the torque exerted on gear 1 by gear 2.

 is the torque exerted on gear 2 by gear 1.

The sign conventions for the torques  are

indicated in Figure 5.10. In particular, if  then

they oppose each other and similarly, if  then

these two torques oppose each other. A load torque is

illustrated in Figure 5.11 in which the load torque on gear 2

is  with  the radius of the pickup reel (gear 2).



Figure 5.11 Illustration of load torque.

Source: Courtesy of Sharon Katz.

We now put everything together to write down the

differential equations that characterize the dynamic

behavior of the gears. Recall that the fundamental equation

of rigid body dynamics is given by

where  is the total torque on the rigid body,  is the

moment of inertia of the rigid body and  is its angular

acceleration about the fixed axis of rotation. The equations

of motion for the two gears are given by



(5.10)

(5.11)

(5.12)

Typically, the input (motor) torque  is known, and the

output position  and speed  are measured.

Consequently, the variables  need to be eliminated,

which is done as follows:

Substituting this expression for  into the second equation

of (5.10) results in

Rearranging, the desired result is

Let  denote the gear ratio,  denote

the total moment of inertia reflected to the output shaft,

and  denote the total viscous friction



(5.13)

coefficient reflected to the output shaft. Equation (5.12) can

now be written succinctly as

The net effect of the gears is to increase the motor torque

from  on the motor shaft to  on the output shaft, to

add the quantity  to the moment of inertia of the

output shaft and to add  to the viscous friction

coefficient of the output shaft.

Remark

Everything could have been referred to the motor shaft

instead of the output (load) shaft. To do so, first substitute 

 into (5.12) to obtain

Multiplying both sides by  results in

or finally



In this formulation, the load torque on the input shaft is

reduced by  from that on the output shaft, and 

 has been added to the inertia of the motor shaft

and  has been added to the viscous friction

coefficient of the motor shaft.

Example 4 Rolling Mill (Adapted from [3])

Figure 5.12 illustrates a rolling mill where, e.g., aluminum

comes into the rollers at the thickness  and exits with

thickness  The motor torque  exerted on gear 1 results

in the torque  being exerted on gear 2, which in turn

produces the force  on the rack and top roller. The force 

 reduces the aluminum sheet to the thickness  The

control problem is measure the output thickness  and use

this value to choose the motor torque  so that 

 where  is the desired thickness. We now

derive a mathematical model of this system. The upward

(reaction) force by the rolled sheet on the top roller is

where  is a constant. The gear ratio is 

and the viscous friction forces on the gear shafts are taken

to be zero, i.e.,  Let  be the coefficient of

viscous friction between the rack and the structure (not

shown) holding it so that  is the viscous

friction force on the rack.



(5.14)

Figure 5.12 Rolling mill.

With  and  we use the gear

equation (5.12) to write



where  As  the angular

velocity  and acceleration  may be written as

Substituting this expression for  into (5.14) along

with  gives

Using Newton's equation applied to the rack and top roller,

which have a combined mass , we have

Eliminating  from these last two equations we finally have

a differential equation model for the thickness  given by

With 

and  the model is simply expressed by

The transfer function is



As  this transfer function is stable. This rather

complex mechanical device is described by a second‐order

transfer function. This can then be used to design a

feedback controller that regulates the thickness of the

aluminum sheet. Such controllers will be designed in

Chapters 9 and 10.

Tension

Figure 5.13 shows a block of mass  tied to a ceiling

through a rope or cable. The tension  next to the block of

mass  is the upward force on the block by the cable while

the tension  next to the ceiling is the downward force on

the ceiling by the cable. As the mass  is stationary, the

tension must equal  to cancel out gravity. Think of

tension in a rope, cable, etc. as a spring that can only be

stretched (not compressed), but with a spring constant that

is essentially infinite ( ). So when the two ends of a

cable are pulled apart, the cable does not stretch any

distance, but produces restoring forces.



Figure 5.13  is the tension in the cable or rope.

Example 5 Single Pulley

Figure 5.14 shows two masses  and  connected about

a pulley by a rope of length .



Figure 5.14 Massless pulley.

With the masses on either side the rope is under tension so

it imperceptibly stretched providing a restoring force. On the

right side of the pulley  means there is an upward

force on  and a downward force  on the right side of

the pulley. Similarly, on the left side,  is an upward

force on  and there is also a downward force  on the

left side of the pulley.



The rope of length  is such that when  we have 

 as well. This implies that . Also,  when 

 The rope does not slip as the pulley rotates so

the algebraic constraint is

The equations of motion are

We will often take a pulley to be massless and we do so

here, that is, we set  Then immediately we have 

 and using  the equations of motion reduce to

Adding these two equations to cancel  we finally obtain

Problem 6 shows why pulleys are so useful.



5.4 Rolling Cylinder

We now develop the equations of motion for a cylinder

rolling on a surface without slipping.

Combined Translational and Rotational Motion

Figure 5.15a shows a cylinder of mass  and inertia 

moving to the right with translational velocity , but no

rotational velocity about its main axis, i.e., . Its kinetic

energy is . In Figure 5.15b the same cylinder is

rotating about its main axis, but with no translational

velocity, i.e., . Its kinetic energy is then 

Figure 5.15 (a) A cylinder moving at velocity  with no

angular velocity about its axis. (b) A cylinder rotating at

angular velocity  about its axis, but no translational

motion.

Figure 5.16 shows this same cylinder with its center of mass

(which is on the axis of rotation) moving to the right at

velocity  while it also rotating about its main axis with

angular velocity .



Figure 5.16 Translational and rotational motion.

The point  at the top of the cylinder is moving at velocity 

 with respect to the axis of rotation, but the axis of

rotation is moving at velocity  to the right. So the total

velocity of the point  is

The point  of the bottom of the cylinder is moving at

velocity  with respect to the axis of rotation, but the

axis of rotation (center of mass) is moving at velocity 

to the right. So the total velocity of the point  is

The total kinetic energy is

Rolling on a Flat Surface Without Slipping



We now insert the no slip condition. Consider the cylinder in

Figure 5.17, which has mass  and moment of inertia 

about its axis of rotation (  direction in Figure 5.17).

Figure 5.17 Cylinder rolling on a flat surface with no slip.

The center of mass of the cylinder is on the axis of rotation

in the midpoint of the cylinder. To say that the cylinder rolls

without slipping means that

where  is the angle the cylinder has rotated and  is the

distance the cylinder has rotated along the surface.

Differentiating both sides of this with respect to the time 

gives

The surface provides an upward normal force  to cancel

the downward force  of gravity.



As Figure 5.17 indicates, the velocity  of the center of

mass of the cylinder is given by

This is simply because the cylinder's center of mass is

directly above the point of contact  of the cylinder with

the level surface and this point of contact is moving to the

right at velocity .

The cylinder rotates about its center of mass with angular

rate

Using the no slip condition we have

Note that the point of contact  of the cylinder's surface

with the flat surface has zero speed. As there are no forces

or torques on the cylinder its kinetic energy is given by

Cylinder Rolling Down an Inclined Plane

Figure 5.18 shows a cylinder rolling down an inclined plane.

The cylinder has mass  and moment of inertia . The 

direction is taken to be positive going up the inclined plane

and the  direction is perpendicular to the inclined plane.



There is a component of gravity  that is pushing

the cylinder in the  direction down the inclined plane.

Due to friction there is a force  produced on the cylinder

at the point of contact with the inclined plane (and by

Newton's third law a force  produced by the cylinder on

the inclined plane). It is this force  that produces the

torque to turn the cylinder.

Figure 5.18 Cylinder rolling down an incline under the

influence of gravity.

As illustrated in Figure 5.19 we can think of the force  as

that in a rack and pinion system. Here the rack is the

surface of the incline, the pinion is the cylinder, and their

meshed teeth model the surfaces interacting.



Figure 5.19 The interaction of the surfaces of the incline and

cylinder modeled as a rack and pinion system.

We continue to assume the no slip condition so the point of

contact between the cylinder and inclined plane has zero

velocity. Thus the friction there is static not viscous and so

there is no energy loss. (Think of viscous friction as two

bodies rubbing/slipping against each other.) As the cylinder

rolls without slipping we have

In this case  as it is rolling down the inclined plane

with  decreasing.

Static and Kinetic Friction

The friction  in Figure 5.18 is static friction. We have

already discussed viscous friction in Chapter 4, which is the

friction between two lubricated surfaces sliding against each

other. For example, between the piston and cylinder of a

damper is a fluid (oil/lubricant).4 However, when two dry

(non‐lubricated) surfaces are sliding against each other, the

friction is modeled as kinetic friction as we now describe.



Consider Figure 5.20 that shows a box of mass  on an

incline.

Figure 5.20 Static friction.

From experience we know that if the angle  is too small

the box will not slide down the incline. This is explained by

saying there is a static friction force  between the bottom

surface of the box and the surface of the incline. This

friction cancels out the gravitational force . The

static friction  is limited to  where

 is the maximum static friction between the surfaces, 

 is the normal (to the incline) force on the

box and  is an empirically5 determined constant called

the coefficient of static friction. As long as the gravitational

force  is less than  the box



will sit on the incline and not move. As the angle 

increases the static friction will also continue to increase to

cancel out the gravitational force .

However, if  is increased enough so that the gravitational

force  is now greater than the maximum possible

static friction  the box will slide down

the incline. As the box slides down, it is opposed by kinetic

friction between the two dry (not lubricated) surfaces. The

kinetic friction  is modeled as

where  is also an empirically determined constant. It

turns out that  so the kinetic friction is much less

than the static friction. That is, after the box starts to slide,

the friction against it decreases dramatically. As already

mentioned, this kinetic friction model is for two dry (not

lubricated) surfaces sliding against each other.

Equations of Motion Using Newton's Laws

Newton's three laws of motion are valid with respect to non‐

accelerating coordinate systems. The rotational law 

 was derived from the three laws so it also

valid in non‐accelerating coordinate systems. However, it

also turns out that  still holds in an

accelerating coordinate system as long as the axis of

rotation is through the center of mass of the rigid body [14].

Let's go back to the rolling cylinder in Figure 5.18. The

cylinder is not moving in the  direction as there is a

normal force  in the  direction that

cancels out the gravity component  in the 

direction. There is a static friction force  at the point of



(5.15)

(5.16)

(5.17)

(5.18)

contact of the cylinder with the inclined plane.6 Let 

be the coordinates of the center of mass of the cylinder. The

equations of motion of the cylinder are

Though the axis of rotation of the cylinder is accelerating, it

goes through the center of mass of the cylinder so 5.17 is

valid. To eliminate the force  we multiply the second

equation by  and add it to the third equation to obtain

Using the no slip condition  to eliminate  results

in

or



(5.19)

Summary of Using Newton's Equations of

Motion for a Rigid Body

For translational motion of a rigid body Newton's law 

 is used in an inertial coordinate system7 to obtain

the motion of the center of mass of the rigid body.  is the

sum of all forces acting on the rigid body. For example, in

equations (5.15) and (5.16) the three external forces acting

on the cylinder are  and  with  the

coordinates of its center of mass.

For rotational motion of a rigid body we use 

where  is the sum of all torques (with respect to its axis of

rotation) acting on the rigid body whose moment of inertia

is  This equation can be used even if axis of rotation is

accelerating as long as the axis of rotation goes through the

center of mass of the rigid body [14]. For example, in (5.17)

we are taking the axis of rotation to be the axis of the

cylinder, which is accelerating. With respect to this axis the

only torque is  as the gravitational force  acts

through the center of mass of the cylinder and so its

moment arm is zero.

Equations of Motion Derived from Conservation

of Energy

The kinetic energy of the cylinder is given by



(5.20)

Referring to Figure 5.21, we see that the axis of the cylinder

(which the center of mass lies on) is at the position 

 With  it follows that the axis of the

cylinder is at a height  above the

horizontal (see Problem 18). Thus the gravitational potential

energy of the cylinder is

Figure 5.21 Height of the cylinder axis above the horizontal.

The total energy of the cylinder is then



(5.21)

As the total energy is constant we have

Canceling out  and rearranging this becomes

Remark Figure 5.22 shows a block of mass  sliding down

an inclined plane with a frictionless surface.

Figure 5.22 Block of mass  sliding down a frictionless

inclined plane.



(5.22)

Again with  denoting the coordinates of the center of

mass of the block, the equations of motion are

or simply

Comparing (5.21) with (5.22) we see that the rolling cylinder

accelerates down the inclined plane slower than the box of

the same mass  in Figure 5.22. This is because in the

case of the rolling cylinder, some of gravitational potential

energy goes into rotational motion (kinetic energy) as well

as translational motion (kinetic energy) rather than all of it

going into translational motion as in the case of the box in

Figure 5.22.

Motorized Cylinder Going Up an Inclined Plane

Suppose the cylinder has a motor inside to produce a torque

. Figures 5.23 and 5.24 on the next page are the same as

Figures 5.18 and 5.19, respectively, except that the motor

torque  has been added.



Figure 5.23 Cylinder going up an incline using a motor.

Figure 5.24 The interaction of the surfaces of the incline and

cylinder modeled as a rack and pinion system.



As above  are the coordinates of the center of mass of

the cylinder. The equations of motion for the motorized

cylinder are then

Multiplying the second equation by  and adding to the

third equation to eliminate  we obtain

Using the no slip condition  to eliminate  we have

or finally

Equations of Motion Derived from Conservation

of Energy

Using the expressions for the kinetic and potential energies

in (5.19) and (5.20), respectively, the mechanical energy of



the cylinder in Figure 5.23 is given by

The rate of change of the cylinder's energy is equal to the

mechanical power  put into the cylinder by the motor,

i.e.,

Thus we have

Canceling out  from both sides and rearranging this

becomes

Problems



Problem 1 Moments of Inertia

Moment of Inertia of a Pendulum Rod About Its Endpoint A

cylindrical rod of uniform mass density  has length  and

a circular cross section of area . It is allowed to rotate

about a pivot as shown in Figure 5.25.

Figure 5.25 Uniform density rod rotating on a pivot at one

end.

Show that its moment of inertia about the pivot axis is 

where  is the mass of the pendulum rod. Compute

the torque on the rod due to gravity about the pivot and use

this to give the equations of motion of the rod about the

pivot.



Moment of Inertia of a Rod About Its Center of Mass

A cylindrical rod of uniform mass density  has length 

and a circular cross section of area . It is allowed to rotate

about a pivot at the origin through its center of mass as

shown in Figure 5.26.

Figure 5.26 Rod of length  rotating about its center of

mass.

Show that the moment of inertia of the rod about this axis of

rotation is  Compute the torque on the rod due to

gravity about the pivot and use this to give the equations of

motion of the rod about the pivot.



Problem 2 Transfer Function

In the mechanical system shown in Figure 5.27 the cable

wraps around the disk without slipping. The input is the

force  and the output is the displacement  of . 

locates the left side of spring  The spring constants 

and  are for linear springs while the spring constant  is

for a torsional spring. The springs are relaxed if 

. There is a viscous friction force between

the mass  and the floor that has coefficient of friction .

There is a torsional friction force between the cable disk and

its guide with a coefficient of friction .

Figure 5.27 Torsional and linear mass–spring–damper

system.



Write down the equations of motion for  and . Hints:

Use  to find the input torque. What is the relationship

between  and ?

With  and  compute the

transfer function



Problem 3 Wind up Cable

In Figure 5.28 a shaft with a steel drum of total inertia  is

used to wind up a cable in order to raise a mass . The

back end of the shaft is connected to a wall through a rotary

damper with damping coefficient . The input to the shaft is

the torque  while the weight  produces a disturbance

(input) torque on the shaft as well. The output is taken to be

the angular position of the shaft , which has the same sign

convention as  and . Ignore the mass of the cable, and

assume there is no slip between the cable and the steel

drum so that  and ,



Figure 5.28 Winding up a cable with a load on it.

Give the equation of motion of the shaft. The tension in the

cable is 

The output is the position  and the inputs are the torque 

and the (disturbance) gravitational force . With zero

initial conditions find an expression for the Laplace

transform  in terms of the Laplace transform of these

two inputs.



Problem 4 Gear Equation

The gear equation (5.13) can be derived in the Laplace

domain starting with the set of Eqs. (5.10). To do so, let the

initial conditions be zero and compute the Laplace transform

of each of the two equations in (5.10). Eliminate  and 

 in the first equation by substituting 

 and ,

respectively. Then eliminate  to have a single

(algebraic) equation for  in terms of  and 

To simplify your final expression let  and 



Problem 5 Modeling a Gear System

Figure 5.29 shows a gear system for an elevator car. The

input shaft has a moment of inertia  and a torque (from a

motor)  applied to it. The output shaft consisting of gear

2 and a pulley has a moment of inertia . As the pulley is

rotated the elevator car of mass  can be raised or

lowered (assume the cable does not slip on the pulley). The

counter weight has mass , the pulley has radius  and

the position of the elevator car is denoted by  As there is

no slip between the pulley and the cable we may write 

. At  the elevator is on the ground floor and

the counterweight is a distance L above the ground. The

position  of the counterweight above the ground may

thus be written as . The algebraic gear

relationships are





Figure 5.29 Gear system for an elevator.

Source: Adapted from Palm [15]. System Dynamics, Second Edition, McGraw‐

Hill, 2010.

Write down Newton's equation of rotational motion for the

input (motor) shaft.

The load torque is τL = rp(T1 − T2) where T1, T2 are the

tensions in the cable as indicated in Figure 5.29. Using

Newton's equations of motion

it follows that

Use this expression for the load torque to write down the

equation of rotational motion for the output shaft angle θ2.

Using your answers in parts (a) and (b), give a single

differential equation for  with input . That is, eliminate 

 from your equations.

Using your answer in part (c) write down the differential

equation for the elevator car position  with the motor

torque  as input.



Problem 6 Why Pulleys?

Figure 5.30 shows a two pulley system used to lift a mass 

. We can apply a downward force  to the left pulley in

order to raise the right pulley along with the mass . The

setup of this system is such that if  then  and 

 Further  and the

length of the cable is , which

is constant.





Figure 5.30 Two pulley system.

Set up the equations of motion for the mass  and the two

pulleys with moment of inertia  in terms of  and

 That is,  and  should be eliminated from your

set of equations.

With  simplify your answer to part (a) by eliminating 

 and 

What force  is needed to keep  If you only had

a single pulley (as in Figure 5.14 of the text), how much

force  is needed to maintain  The point here is

that if you want to lift a weight of , the two pulley

system only requires a force of 

Suppose the right pulley starts at  so the left

pulley is at  The force  is then used to lift the

mass  up to  at time  i.e.,  Show that 

 The point here is that if you lift a weight  a

distance  then the force  must pull the cable down a

distance 



Problem 7 Tension [16]

Figure 5.31 shows a solid cylinder of uniform density of

radius  and mass . The moment of inertia of such a

cylinder is  Two cords are wrapped around the

cylinder near each of the ends with the top of the cords

attached to the ceiling. By symmetry the tension in each

cord is the same and is denoted as  Note that the

tension  is the force exerted on the cylinder by the cord.

There is also the downward gravitational force  on the

cylinder.  locates the axis of rotation of the cylinder from

the ceiling.



Figure 5.31 Cable wire unwinding due to gravity.



Write down the equations of motion for the cylinder. (Hint:

There should be two equations:  and 

)

Remark Newton's equations for motion are correct if used

with respect to an inertial (non‐accelerating) coordinate

system. However, in this problem we are using 

 with respect to the axis of the cylinder

(contains the center of mass), which is accelerating

downward. It turns out that  is still valid if the

rigid body is accelerating as long as it is computed about

the center of mass of the rigid body.

As the cylinder falls under the force of gravity assume that

the cords unwrap with no slip, that is, . Use this to

eliminate  in your answer to part (a) and give the equation

of motion for . Your answer should have  eliminated as

well.

What is the linear acceleration of the cylinder downward?

(Answer: .)

What is the value of ? (Answer: 



Problem 8 Rotational Mass–Spring–Damper System

The left side of Figure 5.32 shows a rotational fluid system

used to damp out angular oscillations of a pulley wheel due

to a crankshaft that is not completely rigid.

Figure 5.32 Rotational mass–spring–damper System.

Source: Adapted from Palm [15]. System Dynamics, Second Edition, McGraw‐

Hill, 2010.

The crankshaft angle  is the input and angular position 

of the pulley wheel is the output. The cylinder inside the

pulley wheel has inertia  and is surrounded by a fluid that

has the effect of damping out vibrations caused by the

crankshaft. The rotational mass–spring–damper system

shown on the right side of Figure 5.32 is used to model the

system. The spring constant  is for the torsional spring,

which produces a torque when twisted.

Write down the differential equation model of this system.



Compute the transfer function from  to  i.e., 

Problem 9 Simulation of the Satellite System

In the text a differential equation model of the satellite with

solar panels was given as

Using the parameters from [13] given by  kg‐ , 

 kg‐   N‐m/rad,  Nm/rad/s

make a SIMULINK simulation of this system with 

 Give plots of  for

50 seconds.



Problem 10 Simulation of the Satellite System

In the text it was shown that a transfer function model of

the satellite system is given by

Using the parameters from [13] given by  kg‐ , 

 kg‐ ,  N‐m/rad,  Nm/rad/s

make a SIMULINK simulation of this system with 

 Give plots of  for 50

seconds.

Problem 11 Simulation of the Satellite System

In the text it was shown that a transfer function model of

the satellite system is given by

Using the parameters from [13] given by  kg‐ , 

 kg‐   N‐m/rad,  Nm/rad/s

make a SIMULINK simulation of this system with 

 Give plots of  for 50

seconds.



Problem 12 Suspended Beam (Adapted from [17])

As shown in Figure 5.33 a beam is attached to a wall

through a pivot and is held up by a spring  attached to it

and the ceiling. The beam has a moment of inertia  about

the pivot. The applied input force  is always

perpendicular to the beam. The deflection angle of the

beam is denoted by  with  corresponding to the

beam being horizontal. The deflection angle is assumed to

be small so that  The spring  is attached at a

distance  from the pivot and the spring  is attached at a

distance  from the pivot. With  and  both

springs are relaxed (neither compressed nor stretched).



Figure 5.33 Beam attached to a wall and suspended from

the ceiling.



Show that the equations of motion of the beam and box are

As  is assumed to be small,  and .

Rewrite the equations of motion using these

approximations.

With the external force  set to 0 the equilibrium point of

the system is defined by

Setting  and  compute the

equilibrium values of  Your solution should show that

both  and  Can you give a physical reason

why this must hold?



Let

where  are the angle of the beam and position of

the box relative to their equilibrium positions. Note that

By substituting  and  into your

answer in part (b), rewrite the equations of motion in terms

of  and 

Compute the transfer function from the external force 

to .



Problem 13 Rotational Motion

Figure 5.34 shows a cylinder and box each on their own

incline and connected by a rope passing over a pulley. The

pulley has radius  and is massless so  The

cylinder of radius  has mass  and moment of inertia 

 about its axis of rotation. Assume the center of mass of

the cylinder is also on the axis of rotation and that the

cylinder rolls without slipping. There is a friction force 

exerted on the cylinder by the incline. If  then the

friction force is producing a torque on the cylinder in the

clockwise direction. Because the pulley is massless, the

tension force  by the rope on the cylinder axis is the same

as the tension force by the rope on the box. The constraint 

 must hold because we assume the rope

stretches negligibly under tension. Notice that the no slip

condition requires 

Write down the equations of motion for the box of mass .

On the incline plane with the box the friction between it and

the box is taken to be zero. Your answer should be in terms

of  with  and  eliminated from the final equation.



Figure 5.34 Cylinder pulled up an incline by a sliding mass.

Source: Adapted from Palm [15]. System Dynamics, Second Edition, McGraw‐

Hill, 2010.



Problem 14 Rigid Body Dynamics

In Figure 5.35 the cylinder has mass  moment of

inertia  radius  and rolls without slip so 

The box of mass  is located at  where  is

constant. The total length of the pulley cord is  and is

constant, i.e.,  with  constant. Then

Pulley 1 has radius  and is massless so 

Similarly, pulley 2 has radius  and is also massless so 

 as well.



Figure 5.35 Mass, cylinder, and pulley system.

Source: Adapted from Palm [15]. System Dynamics, Second Edition, McGraw‐

Hill, 2010.

Using Newton's law of rotational motion explain why 



Using  show that the equations of motion for

the cylinder and box system are

Eliminate the tension forces, the static friction force,  and 

 from your equations in part (b) to obtain a single equation

for the mass  of the form .



Problem 15 Rigid Body Dynamics via Conservation of

Energy

In Figure 5.36 the cylinder has mass  moment of

inertia  radius  and rolls without slip so 

The box of mass  is located at  where  is

constant. The total length of the pulley cord is  and is

constant, i.e.,  with  constant. Then

Pulley 1 has radius  and is massless so 

Similarly, pulley 2 has radius  and is also massless so 

 as well.



Figure 5.36 Mass, cylinder, and pulley system.

Using Newton's law of rotational motion explain why 



By conservation of energy the kinetic energy of the cylinder

(rotational and translational) plus the kinetic and potential

energy of the mass  is constant. Use this to derive the

equation of motion of the mass  You final answer should

have  eliminated.



Problem 16 Box on an Incline with Kinetic Friction

Figure 5.37 shows a box sliding on an incline. The coefficient

of kinetic friction between the dry surfaces of the box and

incline is 

Figure 5.37 Box sliding on an incline being pulled up by 

The two pulleys are massless so  and the

pulleys rotate without slipping against the rope. With  the

length of the rope we have the constraints



Give the equations of motion for  and 

Eliminate the tension and  from the equations of motion

and give a single equation in the form

Derive your answer in part (b) using conservation of energy.

Note that the center of mass of  is  above the

horizontal and the center of mass of  is 

above the horizontal.



Problem 17 Static and Kinetic Friction [16]

Figure 5.38 shows a cylinder of mass  moment of inertia 

 and radius  rolling without slip on a level surface at

constant angular velocity .

Figure 5.38 Cylinder rolling on a flat surface.

What is the velocity  of the center of mass (axis of

rotation) of the cylinder?



What is the value of the static friction 

Now consider Figure 5.39. Figure 5.39a shows a cylinder

rotating at a constant angular velocity , but zero

translational velocity ( ). Figure 5.39b shows the

same cylinder just after it has been let down onto a dry flat

surface. The cylinder continues to rotate, but with slip. The

kinetic friction force  between the two dry

surfaces slows down the angular velocity of the cylinder

until it rotates without slip.

Figure 5.39 Kinetic friction and a slipping cylinder.



The kinetic friction force is constant so the torque on the

cylinder is constant. That is, we have

with initial condition . Further

with initial condition  Solve these equations for

the time  that the cylinder stops slipping, that is, the time

 Simplify your expression by using the

fact that  for a cylinder.

Use your answer in part (c) to compute  and 



Problem 18 Cylinder Rolling Down an Incline

Figure 5.40 shows a cylinder of radius  rolling down an

incline. With  show that the center of mass is

a distance  above the horizontal.

Hint: The location of the axis of the cylinder is at 

The vertical line through the center of the cylinder

intersects the incline at  that is, at the point 

Figure 5.40 Calculation of the vertical height of the axis of

rotation.



Problem 19 Vehicle Equations Via Conservation of Energy

Consider a vehicle rolling down an incline as shown in Figure

5.41. The body of the vehicle has mass . The front set of

wheels has total mass  total moment of inertia  and

radius . The back set of wheels has total mass , total

moment of inertia  and radius . The vehicle rolls

down the incline without slipping. Let  be the

coordinates of the center of mass of the vehicle body. The

center of mass of the front wheels is on its axis and similarly

the center of mass of the back wheels is on its axis. The

incline is at an angle . Figure 5.41 shows that the back

wheels are at  along the incline where  is

the location of the center of mass of the cart along the 

axis. Similarly, the front wheels are at  along

the incline.



Figure 5.41 Vehicle rolling down an incline.



Figure 5.42 Vertical heights of the vehicle's axels and center

of mass.

Write down the total kinetic energy of the two wheels and

the vehicle body.



Write down the total potential energy of the two wheels and

the vehicle body. Hint: Look at Figure 5.42 and note the

following:

The height of the center of mass of the vehicle body is (see

Problem 18)

The height of the center of mass of the back wheels is

The height of the center of mass of the front wheels is

Using the no slip condition write down the relationships

between  and 

Write down the total energy  with  and 

eliminated from the expression.

Using the fact that the total energy is constant, that is, 

 to show that the equation of motion is



Problem 20 Equations of Motion of a Vehicle

Redo Problem 19 using Newton's equation for rotational

motion for the front and back wheels and Newton's equation

for translational motion for the front wheels, the back

wheels, and the cart. This means you will start by writing

down five differential equations. Figure 5.43 shows the

geometric relationships between the vehicle center of mass

and the wheels on the incline. The  coordinate of the

center of mass of the back wheel is  and the 

 coordinate of the center of mass of the front wheel is 

 You must eliminate  and 

from your final answer. The no slip condition tells us that

Figure 5.43 Vehicle rolling down an incline.



Does your answer look right? Specifically, is  positive or

negative? Are  positive or negative?

Notes

1 Curl the fingers of your right hand in the direction from

the first vector  to the second vector . Then your

thumb points in the direction of .

2 An interesting exception are magnetic bearings where the

axel is levitated by magnetic fields so that there is no

mechanical contact.

3 The values of  that (approximately) model the

mechanical dynamics of the flexible panels can be found

experimentally using measured data.

4 Axels supported by ball bearings are lubricated and so are

modeled using viscous friction.

5 By “empirically” we simply mean it is an experimentally

determined constant.

6 Remember that at the point of contact of the cylinder with

the inclined plane, the bottom of the cylinder has zero

speed. Thus this is static not viscous friction. As long as

the cylinder rolls without slipping, there will be no viscous

friction.

7 A coordinate system that is not accelerating.



6 

The Physics of the DC Motor

The principles of operation of a direct current (DC) motor

are presented based on fundamental concepts from

electricity and magnetism contained in any basic physics

course. In order to do this we review the concepts of

magnetic fields, magnetic force, Faraday's law, and induced

electromotive forces (emfs) as they apply to modeling the

DC motor. All of the physics concepts referred to in this

chapter are contained in the book Physics by Halliday and

Resnick [18].

6.1 Magnetic Force

Motors work on the basic principle that magnetic fields

produce forces on wires carrying a current. In fact, this

experimental phenomenon is what is used to define the

magnetic field. If one places a current carrying wire between

the poles of a magnet as in Figure 6.1, a force is exerted on

the wire.



Figure 6.1 Magnetic force law.

Source: Adapted from Haber‐Schaim et al. [19]. PSSC Physics, 7th Edition,

Kendall/Hunt, Dubuque, IA, 1991.

Experimentally, the magnitude of this force is found to be

proportional to both the amount of current  in the wire and

to the length  of the wire that is between the poles of the

magnet. That is,  is proportional to . The

direction of the magnetic field  at any point is defined to

be the direction that a small compass needle would point at

that location. This direction is indicated by arrows in

between the north and south poles in Figure 6.1. With the

direction of  perpendicular to the wire, the strength



(magnitude) of the magnetic induction field  is defined to

be

where  is the magnetic force,  is the current, and 

 is the length of wire perpendicular to the magnetic field

carrying the current. That is,  is the proportionality

constant so that  As illustrated in Figure 6.1,

the direction of the force can be determined using the right‐

hand rule. Specifically, using your right hand, point your

fingers in the direction of the magnetic field and point your

thumb in the direction of the current. Then the direction of

the force is out of your palm.

Further experiments show that if the wire is parallel to the 

 field rather than perpendicular as in Figure 6.1, then no

force is exerted on the wire. If the wire is at some angle 

with respect to  as in Figure 6.2, then the force is

proportional to the component of  perpendicular to the

wire; that is, it is proportional to . This is

summarized in the magnetic force law: Let  denote a

vector whose magnitude is the length  of the wire in the

magnetic field and whose direction is defined as the positive

direction of current in the bar; then the magnetic force on

the bar of length  carrying the current  is given by

In scalar terms we have 

Again,  is the component of  perpendicular

to the wire.1



Figure 6.2 Only the component  of the magnetic field

that is perpendicular to the wire produces a force on the

current.

Example 1 A Linear DC Machine [20]

Consider the simple linear DC machine in Figure 6.3 where a

sliding bar rests on a simple circuit consisting of two rails.

An external magnetic field is going through the loop of the

circuit into the page indicated by the  in the plane of the

loop. Closing the switch results in a current flowing around

the circuit and the external magnetic field produces a force

on the bar, which is free to move. The force on the bar is

now computed.



Figure 6.3 A linear DC motor.

The magnetic field is constant and points into the page

(indicated by ) so that written in vector notation, 

 with . By the right hand rule, the magnetic

force on the sliding bar points to the right. Explicitly, with 

, the force is given by

To find the equations of motion for the bar, let  be the

coefficient of viscous (sliding) friction of the bar so that the



friction force is given by . Then, with 

denoting the mass of the bar, Newton's law gives

Just after closing the switch at , but before the bar

starts to move, the current is . However,

it turns out that as the bar moves the current does not stay

at this value, but instead decreases due to electromagnetic

induction. This will be explained later.

6.2 Single‐Loop Motor

As a first step to modeling a DC motor, a simplistic single‐

loop motor is considered. It is first shown how torque is

produced and then how the current in the single loop can be

reversed (commutated) every half turn to keep the torque

constant.

Torque Production

Consider the magnetic system in Figure 6.4 on the next

page, where a cylindrical core is cut out of a block of a

permanent magnet and replaced with a soft iron core. The

term “soft” iron refers to the fact that material is easily

magnetized (a permanent magnet is referred to as “hard”

iron). An important property of soft magnetic materials is

that the magnetic field at the surface of such materials

tends to be normal (perpendicular) to the surface.

Consequently, the cylindrical shape of the surfaces of the

soft iron core and the stator permanent magnet has the

effect of making the field in the air gap radially directed;

furthermore, it is reasonably constant (uniform) in

magnitude.



Figure 6.4 Soft iron cylindrical core placed inside a hollowed

out permanent magnet to produce a radial magnetic field in

the air gap.

A mathematical description of the magnetic field in the air

gap due to the permanent magnet is simply

where  is the magnitude or strength of the magnetic

field and  is an arbitrary location in the air gap.



Figure 6.5 on the next page shows a rotor loop wound

around the iron core of Figure 6.4. The length of the rotor is 

 and its diameter is . The torque on this rotor loop is

now calculated by considering the magnetic forces on sides 

 and  of the loop. On the other two sides of the loop,

that is, the front and back sides, the magnetic field has

negligible strength so that no significant force is produced

on these sides. As illustrated in Figure 6.5b, the rotor

angular position is taken to be the angle  from the

vertical to side  of the rotor loop.



Figure 6.5 A single‐loop motor.

Source: Adapted from Matsch and Morgan [21]. Electromagnetic and

Electromechanical Machines, 3rd edition, John Wiley & Sons, New York, 1986.

Figure 6.6 shows the cylindrical coordinate system used in

Figure 6.5. Here  denote unit cylindrical coordinate

vectors. The unit vector  points along the rotor axis into

the page in Figure 6.5b,  is in the direction of increasing 

, and  is in the direction of increasing .



Figure 6.6 Cylindrical coordinate system used in Figure 6.5.

Referring back to Figure 6.5, for , the current in side 

of the loop is going into the page (denoted by ) and then

comes out of the page (denoted by ) on side . Thus, on

side ,   (as  points in the direction of positive

current flow) and the magnetic force  on side  is

then

which is tangential to the motion as shown in Figure 6.5b.

The resulting torque is

Similarly, the magnetic force on side  of the rotor loop is



so that the corresponding torque is

The total torque on the rotor loop is then

The torque points along the  axis, which is the axis of

rotation. In scalar form,

where  The force is proportional to the

strength  of magnetic field  in the air gap due to the

permanent magnet.

Wound Field DC Motor

In order to increase the strength of the magnetic field in the

air gap, the permanent magnet can be replaced with a soft

iron material with wire wound around its periphery as shown

in Figure 6.7a. This winding is referred to as the field

winding, and the current it carries is called the field current.

In normal operation, the field current is held constant. The

strength of the magnetic field in the air gap is then

proportional to the field current  at lower current levels

(i.e., ) and then saturates as the current

increases. This may be written as  where  is

a saturation curve satisfying  as

shown in Figure 6.7b.



Figure 6.7 (a) DC motor with a field winding. (b) Radial

magnetic field strength in the air gap.

Commutation of the Single‐Loop Motor

In the derivation of the torque expression  we

assumed that the current in the side of the rotor loop2 under

the south pole face is into the page and the current in the

side of the loop under the north pole face is out of the page

as in Figure 6.8a. In order to make this assumption valid, the

direction of the current in the loop must be changed each



time the rotor loop passes through the vertical. The process

of changing the direction of the current is referred to as

commutation and is done at  and  through

the use of the slip rings  and the brushes  shown

in Figure 6.8. The slip rings are rigidly attached to the loop

and thus rotate with it. The brushes are fixed in space with

the slip rings making a sliding electrical contact with the

brushes as the loop rotates.

Figure 6.8a .

Source: Adapted from Matsch and Morgan [21]. Electromagnetic and

Electromechanical Machines, 3rd edition, John Wiley & Sons, New York, 1986.



To see how the commutation of the current is accomplished

using the brushes and slip rings, consider the sequence of

Figures . As shown in Figure 6.8a, the current goes through

brush  into the slip ring . From there, it travels down

(into the page ) side  of the loop, comes back up side 

 (out of the page ) into the slip ring  and, finally,

comes out the brush . Note that side  of the loop is

under the south pole face while side  is under the north

pole face. Figure 6.8b shows the rotor loop just before

commutation where the same comments as in Figure 6.8a

apply.



Figure 6.8b Rotor loop just prior to commutation where 

.

Figure 6.8c shows that when , the slip rings at the

ends of the loop are shorted together by the brushes forcing

the current in the loop to drop to zero.



Figure 6.8c The ends of the rotor loop are shorted when 

Subsequently, as shown in Figure 6.8d, with ,

the current is now going through brush  into slip ring .

From there, the current travels down (into the page ) side 

 of the loop and comes back up (out of the page ) side 

. In other words, the current has reversed its direction in

the loop from that in Figures 6.8a and 6.8b. This is precisely

what is desired, as side  is now under the north pole face

and side  is under the south pole face. As a result of the

brushes and slip rings, the current direction in the loop is

reversed every half‐turn.



Figure 6.8d Rotor loop just after commutation where 

6.3 Faraday's Law

Figure 6.9 on the next page shows a magnet moving

upwards into a wire loop producing a changing magnetic

flux in the loop.



Figure 6.9 A magnet moving upwards produces a changing

flux in the loop that in turn results in an induced emf and

current in the loop.

Recall that a changing flux within a loop produces an

induced emf  in the loop according to Faraday's law.3 That

is,

where



is the flux in the loop and  is any surface with the loop as

its boundary. Faraday's law is now reviewed in some detail.

The Surface Element Vector 

The surface element  is a vector whose magnitude is a

differential (small) element of area  and whose direction

is normal (perpendicular) to the surface element. As there

are two possibilities for the normal to the surface, one must

choose the normal in a consistent manner. Furthermore,

depending on the particular normal chosen, a convention is

used to characterize the positive and negative directions of

travel around the surface boundary. To describe this,

consider Figure 6.10a, which shows a small surface element

with the normal direction taken to be up in the positive 

direction. In this case, with  , the surface

element vector is defined by

The corresponding direction of travel around the surface

boundary is indicated by the curved arrow in the figure.



Figure 6.10 (a) Positive direction of travel around a surface

element with the normal up. (b) Positive direction of travel

around a surface element with the normal down.

In Figure 6.10b a surface element with the normal direction

taken to be down in the negative  direction is shown. In

this case  so that the surface element

vector is defined as

The direction of positive travel around the surface element

is indicated by the curved arrow in Figure 6.10b and is

opposite to that of Figure 6.10a.

As illustrated in Figure 6.10, the vector differential surface

element  is defined to be a vector whose magnitude is

the area of the differential surface element and whose



direction is normal to the surface. One may choose either

normal, and the corresponding direction of positive travel

around the surface is then determined.

Two surface elements may be connected together as in

Figure 6.11 and travel around the total surface is defined as

shown. Note that along the common boundary of the two

joined surface elements, the directions of travel “cancel”

out each other, resulting in a net travel path around both

surface elements. The normals for the surface elements

must both be up or both be down; that is, the normal must

be continuous as one goes from one surface element to the

next.

Figure 6.11 Positive direction of travel around two joined

surface elements.

Figure 6.12 shows a surface in the –  plane with a

rectangular boundary made up of small surface elements 

. The  in the middle of each

surface element just indicates the normal is  (out of

the page). Only those surface elements that have sides on

the rectangular boundary do not get their direction of travel



“cancelled” by a neighboring surface element.

Consequently, the net direction of travel about the

rectangular boundary of this surface is counterclockwise,

which is taken to be the positive direction of travel around

the surface.

Figure 6.12 Positive direction of travel around a surface

boundary.

Interpreting the Sign of 

The interpretation of positive and negative values of the

induced emf  can now be given. Faraday's law says that

the induced emf (voltage) in a loop is given by



where

If , the induced emf will force current in the positive

direction of travel around the surface while if , the

induced emf will force current in the opposite direction.

Faraday's law is now illustrated by some examples.

Specifically, it is used to compute the induced emf in the

linear DC machine, the induced emf in the single‐loop

machine, and the self‐induced voltage in the single‐loop

machine.

Back Emf in a Linear DC Machine

Figure 6.13 shows the linear DC machine where the back

emf it generates is now computed. The magnetic field is

constant and points into the page, that is, , where

. The magnetic force on the bar is .

To compute the induced voltage in the loop of the circuit, let

 be the normal to the surface so that ,

where . Then

The induced (back) emf is therefore given by



Figure 6.13 With , the direction of positive

travel is in the counterclockwise direction.

In the flux computation, the normal for the surface was

taken to be in  direction. By putting together the

differential flux surfaces  in a fashion similar to Figure

6.11, the positive direction of travel around the surface is

counterclockwise around the loop as indicated in Figure

6.13. Here the sign conventions for source voltage  and

the back emf  are opposite so that, as the back emf 

, it is opposing the applied source voltage .



Remark  is the flux in the circuit due to the

external magnetic field . There is also a flux 

 due to the current  in the circuit. For this

example, the inductance is small and one just sets .

Electromechanical Energy Conversion

As the back emf  opposes the current , electrical

power is being absorbed by this back emf. Specifically, the

electrical power absorbed by the back emf is 

while the mechanical power produced is .

That is, the electrical power absorbed by the back emf

reappears as mechanical power, as it must by conservation

of energy. Another way to view this is to note that  is

the electrical power delivered by the source and, as 

, one may write

In words, the power  from the source has the amount 

 dissipated as heat in the resistance  and the amount 

 converted into mechanical power.

Equations of Motion for the Linear DC Machine

The equations of motion for the bar in the linear DC

machine are now derived. With the inductance  of the

circuit loop taken to be zero,  the mass of the bar,  the

coefficient of viscous friction, it follows that



(6.1)

(6.2)

Eliminating the current , one obtains

or

This is the equation of motion for the bar with  as the

control input and the position  at the measured output.

Back Emf in the Single‐Loop Motor

The back emf induced in the single loop motor by the

external magnetic field of the permanent magnet is now

computed. To do so, consider the flux surface for the rotor

loop shown in Figure 6.14 on the next page. The surface is a

half‐cylinder of radius  and length  with the rotor loop

as its boundary. The cylindrical surface is in the air gap,

where the magnetic field is known to be radially directed

and constant in magnitude, that is,

On the cylindrical part of the surface, the surface element is

chosen as

which is directed outward from the axis of the cylinder as

illustrated in Figure 6.15 on the next page. The

corresponding direction of positive travel is also indicated in



Figure 6.15. On the two ends (half‐disks) of the cylindrical

surface, the  field is quite weak making the flux through

these two half‐disks negligible.

Figure 6.14 Flux surface for the single loop motor.



Figure 6.15 Surface element vector for the flux surface of

Figure 6.14.

Neglecting the flux through the two ends of the surface, the

flux  for  is given by



(6.3)

(6.4)

This derivation is based on the fact that the  field is

directed radially outward over the length 

and radially inward over the length  (see Figure

6.14). In Problem 8, the reader is asked to show that

A plot of the flux versus the rotor angle  is given in

Figure 6.16.



Figure 6.16 The rotor flux  due to the external

magnetic field vs. .

By (6.3) and (6.4), the induced emf in the rotor loop is

calculated as



where  is called the back emf constant.

The total emf in the rotor loop due to the voltage source 

and external magnetic field is . How does one

know to subtract  from the applied voltage ? As shown

in Figure 6.15, the positive direction of travel around the

loop is in opposition to , so that if , it is opposing

the applied voltage . The standard terminology is to call 

 the back emf of the motor.

Self‐Induced Emf in the Single‐Loop Motor

The computation of the flux in the rotor loop produced by its

own (armature) current is now done. To do so, consider the

flux surface shown in Figure 6.17.



Figure 6.17 Computation of the inductance of the rotor loop.

The surface element vector is  with a

resulting positive direction of travel as indicated by the

curved arrow. This direction coincides with the direction of

positive current, that is, .

Let  denote the radius of the rotor and note that

the magnetic field on the flux surface due to the armature

current has the form

where



(6.5)

The exact expression for  is not easy to

compute, but it is not needed for the analysis here. Rather,

the point is that with , the magnetic field 

 due to the current in the rotor loop is

radially in on the flux surface shown in Figure 6.17 for 

. For convenience, the surface element is

chosen to be  so that positive direction of

travel around the surface coincides with the positive

direction of the current  in the loop.

The flux  in the rotor loop is then computed as4

where

This last equation just says the flux in the loop (due to the

current in the loop) is proportional to the current  in the

loop. The proportionality constant  is the called the

inductance of the loop. If , then

the induced emf will force current into the page  on side 

 and out of the page  of side  in Figure 6.17. That is,



this induced emf has the same sign convention as the

armature current  and the source voltage .

With the rotor locked at some angle  so that the external

magnetic field cannot induce an emf in the rotor loop, the

equation describing the current  in the rotor loop is given

by Kirchhoff's voltage law

or

Here  is the resistance of the loop and  is the source

voltage applied to the loop. The loop and its equivalent

circuit are shown in Figure 6.18.

Figure 6.18 (a) Rotor loop. (b) Equivalent circuit.



6.4 Dynamic Equations of the DC

Motor

The complete set of equations for a DC motor can now be

given. The total voltage in the loop due to the voltage

source , the external permanent magnet, and the

changing current  in the rotor loop is

This voltage goes into building up the current in the loop

against the loop's resistance, that is,

or

This relationship is often illustrated by the equivalent circuit

given in Figure 6.19. Recall that the torque  on the loop

due to the external magnetic field acting on the current in

the loop is

where  is called the torque constant. By

connecting a shaft and gears to one end of the rotor, this

motor torque can be used to do work (lift weight, etc.). Let 

 model the friction torque (due to the brushes,

bearings, etc.) where  is the coefficient of viscous friction



(6.6)

and let  be the load torque (e.g., due to a weight being

lifted).

Figure 6.19 Equivalent circuit of the armature electrical

dynamics.

Then, by Newton's law,

where  is the moment of inertia of the rotor. The system of

equations characterizing the DC motor is then

A picture of a DC motor servo system and its associated

schematic is shown in Figure 6.20. In the schematic,  is

the resistance of the rotor loop,  is the inductance of the



rotor loop,  is the back emf,  is the

motor torque,  is the rotor moment of inertia, and  is the

coefficient of viscous friction. The positive directions for 

 and  are indicated by the curved arrows. The

fact that the curved arrow for  is opposite to that of 

just means that if the load torque is positive then it opposes

a positive motor torque .

Figure 6.20 DC motor drawing and schematic.

Electromechanical Energy Conversion

The mechanical power produced by the DC motor is 

 while the electrical power

absorbed by the back emf is . We

showed above by direct calculation that 

and this simply shows that conservation of energy holds.

That is, the electrical power  absorbed by the back

emf equals (is converted to) the mechanical power 

produced. Another way to view this energy conversion is to

write the electrical equation as



The power out of the voltage source  is given by

Thus the power  delivered by the source goes into

heat loss in the resistance , into stored magnetic energy

in the inductance  of the loop, and the amount  goes

into the mechanical energy .

Remark Voltage and Current Limits

The amount of voltage  that may be applied to the input

terminals ,  of the motor is limited by capabilities of

the amplifier supplying the voltage, that is, 

With  be the voltage commanded to the amplifier, the

actual voltage  out of the amplifier to the motor is

limited by  as illustrated in Figure 6.21.



Figure 6.21 Saturation model of an amplifier.

In addition, there is a limit to the amount of current the rotor

loop can handle before overheating or causing problems

with commutation as previously mentioned. Typically there

are two current limits (ratings), the continuous current limit 

 and the peak current limit . The

continuous current limit  is the amount of current

the motor can handle if left in use indefinitely. That is, the

amount of heat dissipated in the rotor windings due to

ohmic losses is equal to the amount of heat taken away by

thermal conduction through the brushes and thermal

convection with the air so as to be in a thermal equilibrium.

The peak current limit  is the amount of current the

motor can handle for short periods of time (typically only a

few seconds).

6.5 Optical Encoder Model

A common position sensor used in industry is the optical

encoder, which is illustrated in Figure 6.22 on the next page

[22, 23]. An optical encoder consists of a set of windows



spaced equally around a circular disk with a light source

shining through the window when it is aligned with the

source. A detector puts out a high voltage when there is

light and a low voltage otherwise. For the setup of Figure

6.22a, there are 12 windows (lines or slots) so that for every

complete revolution of the circular disk (i.e., of the motor),

there will be 12 pulses. Using digital electronic circuitry one

can detect a pulse going high or low so that in one

revolution with 12 pulses there will be a total of  times

that a pulse went either high or low. Note that each time a

pulse goes high or low the motor has rotated  radians

or . By simply counting the number  of

rising and falling edges of the pulse, one can obtain the

position of the rotor to within .



Figure 6.22 Schematic diagram of an optical encoder.

Source: Adapted from deSilva [23]. Mechatronics: An Integrative Approach,

CRC Press, Boca Raton, FL, 2004.

In order to detect the direction of rotation, two light

detectors are used as shown in Figure 6.22b. In detail, the

length of the windows is the same as the length of the



distance between windows. The two light detectors are

placed a distance apart equal to  of a window length.

One period of the voltage waveform coming out of the light

detector corresponds to the distance from the beginning of

one window to the next and this cycle of the voltage

waveform is considered to be  as illustrated in Figure

6.22b. Consequently, the two light detectors are considered

to be  apart or, equivalently, they are said to be in

quadrature.

Figure 6.23a on the next page shows the voltage waveforms

out of the two light detectors when the rotor is turning

clockwise. The vertical dashed lines in Figure 6.23 refer to a

time with the encoder disk at the position shown in Figure

6.22b. As shown in Figure 6.23a, for clockwise rotation the

voltage of light detector 1 is  behind that of light

detector 2, that is, the voltage from light detector 2 goes to

zero first and then a quarter of a cycle later, the voltage

from light detector 1 goes down.



Figure 6.23 (a) Voltage waveforms for clockwise rotation. (b)

Voltage waveforms for counterclockwise rotation.

In contrast, Figure 6.23b shows the voltage waveforms out

of the two light detectors when the rotor is turning

counterclockwise. In this case the voltage waveform of light

detector 2 is  behind that of light detector 1.

The encoder has electronic circuits to detect the relative

phase of the two light detector voltage signals and uses that

information to determine whether the rising or falling edges

of a pulse should increase the count (clockwise motion) or

decrease the count (counterclockwise motion).

If an optical encoder has  windows (lines/slots), then

there are  rising and falling edges per revolution giving

a resolution of ) radians. If one counts the voltage

pulses from both light detectors, there will be  (equally

spaced) rising and falling edges per revolution so that a

resolution of ) radians is achieved. For example,



with , the resolution of the encoder is 

 rad or 

Encoder Model

Let  denote the number of counts per revolution put

out by the encoder. Then the position of the shaft is given

by

which is a conversion of the integer counts  to angular

position.

Backward Difference Estimation of Speed

The optical encoder gives the position measurement, but

not the speed of the cart. However, one can use this

measurement to deduce the speed. The most

straightforward way is to compute the backward difference

of the position and divide by the sample period, i.e.,

where  is the time between samples and  is the

optical encoder count at time .

The error in estimating the speed by differentiation of the

position measurements can be found as follows: At any

discrete time  is in error by at most one encoder

count. In particular,  can be only too small by at

most one encoder count.  is never too large because

of the way the encoder works as shown in Figure 6.24.





Figure 6.24 Plot of  and the encoder output 

.

Thus, with  the true position in radians, we have

where  represents the positive fractional count that

the encoder cannot sense, that is,  for all 

The speed may then be written as

As  and , it follows that

It is now straightforward to compute a bound on the error in

estimating the speed. As the speed estimate is given by

and the difference  is bounded by , it

follows that



As the sampling rate increases (  gets smaller), the error

gets larger. On the other hand, as the sampling rate

decreases this error becomes smaller, but the backward

difference approximation

becomes less valid. The error in computing  is due to

the encoder resolution  and the accuracy of the

finite difference in approximating the derivative. One way to

decrease this error would be to use an encoder with a

higher resolution. Such encoders are typically more

expensive and cannot operate at higher speeds (as the

speed increases, a large number of pulses are coming in so

fast that the pulse detection circuitry cannot keep up).





Figure 6.25 DC tachometer (generator).

6.6 Tachometer for a DC Machine*

A tachometer is a device for measuring the speed of a DC

motor by putting out a voltage proportional to the motor's

speed. A tachometer for the simple linear DC machine is

considered first.

Tachometer for the Linear DC Machine

Figure 6.25 shows a tachometer added to the linear DC

machine. The magnetic field in the DC motor is 

with  while in the tachometer it is  with 

 The two bars are rigidly connected together by the

insulating material. The motor force (the magnetic force on

the upper bar) is , and the induced (back) emf

in the motor is , where  is the speed of

the motor (bar).

The induced (back) emf in the tachometer is given by 

 so that by measuring the voltage

between the terminals  and , the speed  of the motor

can be computed. Note that the tachometer and motor have

the same physical structure. In fact, the tachometer is

nothing more than a generator putting out a voltage

proportional to the speed.

Tachometer for the Single‐Loop DC Motor

A tachometer for the single loop DC motor is constructed by

attaching another loop to the shaft and rotating it an

external magnetic field to act as a DC generator. That is, the

changing flux in the tachometer loop produces (generates)

an induced emf according to Faraday's law and this emf is



proportional to the shaft's speed. To see this, consider Figure

6.26, where a motor loop is driven by a voltage  and,

attached to the same shaft, is a second loop called a

tachometer.

Figure 6.26 Single loop motor and tachometer.

Source: Courtesy of Sharon Katz.

Both loops rotate in an external radial magnetic field, which

is not shown in Figure 6.26, but is shown for the tachometer

loop in Figure 6.27. It is important to point out that no

voltage is applied to the terminals  and  of the



tachometer as was the case for the motor. Instead, the

voltage  between the terminals  and  of the

tachometer is measured. Specifically, in the same way the

back emf was computed for the DC motor, one can calculate

the flux in the loop of the tachometer due to the external

magnetic field. This computation is (see Figure 6.27)

The induced emf is then

where  is a constant depending on the

dimensions of the tachometer rotor and the strength of the

external magnetic field of the tachometer. This shows that

the voltage between the terminals  and  is proportional

to the angular speed and therefore can be used to measure

the speed.



Figure 6.27 Cutaway view of the DC tachometer.

Source: Adapted from Matsch and Morgan [21]. Electromagnetic and

Electromechanical Machines, 3rd edition, John Wiley & Sons, New York, 1986.

6.7 The Multiloop DC Motor*

The single loop motor of Figure 6.5 was used to illustrate the

basic physics of the DC motor. However, it is not a practical

motor. This is rectified with the placement of rotor loops

around the complete periphery of the rotor so as to produce

much more torque. However, these additional rotor loops



require a more involved way to commutate their current as

will be explained shortly.

Increased Torque Production

Figure 6.28 shows the addition of several loops to the motor

with each loop similar in form to the loop in Figure 6.5.

There are now eight slots in the rotor with two loops placed

in each pair of slots (  apart) for a total of eight loops.

Figure 6.28 A multiloop armature for a DC motor.

The torque on the rotor is now , where 

is the number of rotor loops and  is the strength of the



radial magnetic field in the air gap produced by the external

magnetic field. Of course, some method must be found to

ensure the current in each loop is reversed every half‐turn

so that (for positive torque) all the loop sides under the

south pole face will have their current going into the page 

 and all the loop sides under the north pole face will have

their current coming out of the page . This process is

referred to as commutation and is considered next.

Commutation of the Armature Current

As seen in Figure 6.28, as a rotor loop rotates clockwise past

the vertical position, the current in the top side of the loop

must change direction from coming out of the page to going

into the page. That is, each rotor loop must have the current

in it reversed every half‐turn. This is done using a

commutator that is illustrated in Figure 6.29 for the rotor

shown in Figure 6.28. The commutator for this rotor consists

of eight copper segments (labeled a–h in Figure 6.31a),

which are separated by insulating material. By connecting

each of the ends of the rotor loops of Figure 6.28 to the

appropriate copper segments of the commutator, the

current will be reversed every half‐turn as it rotates past the

vertical. To explain all of this, consider Figure 6.31a, which

shows explicitly how the ends of the rotor loops are

connected to the segments of the commutator. The eight

rotor loops of Figure 6.28 are labeled as 

in Figure 6.31a with the ends of each such loop electrically

connected (soldered) to a particular pair of commutator

segments. For example, the ends of loop 1–  are

connected to commutator segments a and b, respectively.

The commutator and rotor loops all rotate together rigidly

while the two brushes (labeled  and ) remain

stationary. The brushes are typically made of a carbon

material and are mechanically pressed against the



commutator surface, making electrical contact.5 That is, as

the commutator rotates, the particular segment that is

rubbing against the brush makes electrical contact. Figure

6.30 is a photograph of the rotor of an actual DC motor with

a tachometer.

Figure 6.29 Commutator for the rotor in Figure 6.28.



Figure 6.30 Photo of the rotor of a DC motor (left) and its

tachometer (right). Note that the slots for the windings of

the DC motor are skewed.

Source: Photo courtesy of Professor J. D. Birdwell of the University of

Tennessee.

As previously explained, to obtain positive torque, it must be

that whenever a side of a loop is under a south pole face,

the current must be into the page ( ) and the other side of

the loop, which is under the north pole face, must have its

current out of the page ( ). When the loop side rotates

from being under one pole face to the other pole face, the

current in that loop must be reversed (commutated). The

mechanism of how this connection between the armature

loops, the commutator, and the brushes can reverse the

current in each rotor loop every half turn is now explained.

With reference to Figure 6.31a, the armature current 

enters brush  and into commutator segment c. By

symmetry, half of this armature current (i.e., ) goes

through loop 3–  into commutator segment d, then

through loop 4–  into commutator segment e, then

through loop 5–  into commutator segment f, then through



loop 6–  into commutator segment g, and, finally, out

through brush . This path (circuit) of the current is

denoted in bold. Similarly, there is a parallel path for the

other half of the current armature current. Specifically, the

other half of the armature current  goes through loop 

–2 into commutator segment b, then through loop –1 into

commutator segment a, then through loop –8 into

commutator segment h, then into loop –7 into

commutator segment g, and finally, out through brush .

This path (circuit) is denoted without bold. So, for the rotor

in the position shown in Figure 6.31a, there are two parallel

circuits from  to  each made up of four loops connected

in series and each circuit carries half of the armature

current. The sides of the loops under the south pole face

have their current into the page while the other side of

these loops (which are under the north pole face) have their

current out of the page so that positive torque is produced.

The sides of the loops in Figure 6.31a are  apart.





Figure 6.31a (a). Rotor loops and commutator for four sets

of rotor loops. Brushes remained fixed in space, that is, they

do not rotate.

Source: Adapted from Chapman [20]. Electric Machinery Fundamentals,

McGraw‐Hill, New York, 1985.

Figure 6.31b shows the rotor turned  with respect to

Figure 6.31a. In this case, brush  shorts the two

commutator segments b and c together while the brush 

shorts together the two commutator segments f and g.



Figure 6.31b Rotor turned  with respect to Figure 6.31.

Source: Adapted from Chapman [20]. Electric Machinery Fundamentals,

McGraw‐Hill, New York, 1985.



The ends of loop 2–  are connected to commutator

segments b and c (which are now shorted together) so that

the current in this loop is now zero. Similarly, the ends of

loop 6–  are connected to commutator segments f and g

and the current in this loop is also zero. For the remaining

loops,  goes through loop 3–  into commutator

segment d, then through loop 4–  into commutator

segment e, then into loop 5–  into commutator segment f,

and finally, out brush . These loops are denoted in bold

in the figure. Similarly,  goes through loop 1–  into

commutator segment a, then through loop –8 into

commutator segment h, then into loop –7 into

commutator segment g, and finally out brush .

The motor continues to rotate and consider it now after it

has moved additional  so that it has the position

shown in Figure 6.31c. Now the current enters brush  and

into commutator segment b. By symmetry, half the current 

 goes through loop 2–  into commutator segment c,

then through loop 3–  into commutator segment d, then

through loop 4–  into commutator segment e, then

through loop 5–  into commutator segment f, and finally

out through brush . This path (circuit) of the current is

denoted in bold. Similarly, the other half of the current goes

through loop –1 into commutator segment a then through

loop –8 into commutator segment h then through loop –

7 into commutator segment g then into loop –6 into

commutator segment f and finally, out through brush .

This path (circuit) is denoted without using bold.



Figure 6.31c Rotor turned  with respect to Figure 6.31a.

Source: Adapted from Chapman [20]. Electric Machinery Fundamentals,

McGraw‐Hill, New York, 1985.



As the sequence of Figures shows, the current in loops 2–

and 6–  were reversed as these two loops rotated past the

vertical position. In summary, there are two parallel paths,

each consisting of four loops, and when any loop goes to the

vertical position, the current in that loop is reversed. In this

way, all sides of the loop under the south pole have their

current going into the page and all sides under the north

pole have their current coming out of the page for positive

torque production.

Remark The scheme for current commutation presented

here is from [20]. However, there are other schemes and

the reader is referred to [20, 21, 24, 25] for an introduction

to them.

Brushless DC Motors

The commutator assembly of DC machines requires periodic

cleaning and the brushes themselves wear down and must

be periodically replaced. Permanent magnet synchronous

machines do not have such drawbacks. With the advent of

modern power electronics and powerful digital signal

processors permanent magnet synchronous machines have

been made into precision motion control actuators. Their

manufacturers provide internal control loops so that to the

end user the equations describing this actuator have the

same form as the system of equations (6.6) for the DC

motor [7]. For this reason they are called brushless DC

motors. For quite some time now they have replaced the DC

motor as the industry standard for motion control actuation.

Problems



Problem 1 Faraday's Law

Consider Figure 6.32 where a magnet is moving up into a

square planar loop of copper wire.

Figure 6.32 Induced emf in a loop due to a moving magnet.

Using the normal , roughly sketch the loop's flux  as

a function of  while the magnet is below the copper loop.

Is the flux  in the loop produced by the magnet

increasing or decreasing?

Using the normal , what is the direction of positive travel

around the surface whose boundary is the loop (clockwise or

counterclockwise)?

What is the direction of the induced current in Figure 6.32

(clockwise or counterclockwise)? Let  be the flux in the

loop due to the induced current. Is  positive or

negative while the magnet is below the loop? Is 

increasing or decreasing while the magnet is below the loop,

but moving up?



Using the normal , roughly sketch the loop's flux  as

a function of  while the magnet is below the copper loop.

Is the flux in the loop produced by the magnet increasing or

decreasing?

Using the normal , what is the direction of positive travel

around the surface whose boundary is the loop (clockwise or

counterclockwise)?

What is the direction of the induced current in Figure 6.32

(clockwise or counterclockwise)? Let  be the flux in the

loop due to the induced current. Is  positive or

negative while the magnet is below the loop? Is 

increasing or decreasing while the magnet is below the loop,

but moving up?



Problem 2 Faraday's Law

Consider Figure 6.33 on the next page where a magnet is

below a planar loop of copper wire and moving down away

from the loop.

Figure 6.33 Induced emf in a loop due to a moving magnet.

Using the normal , roughly sketch the loop's flux  as

a function of . Is the flux in the loop produced by the

magnet increasing or decreasing?

Using the normal , what is the direction of positive travel

around the surface whose boundary is the loop (clockwise or

counterclockwise)?

What is the direction of the induced current in Figure 6.33

(clockwise or counterclockwise)? Let  be the flux in the

loop due to the induced current. Is  positive or

negative while the magnet is below the loop? Is 

increasing or decreasing while the magnet is moving down

below the loop?



Using the normal , roughly sketch the loop's flux  as

a function of  Is the flux in the loop produced by the

magnet increasing or decreasing?

Using the normal , what is the direction of positive travel

around the surface whose boundary is the loop (clockwise or

counterclockwise)?

What is the direction of the induced current in Figure 6.33

(clockwise or counterclockwise)? Let  be the flux in the

loop due to the induced current. Is  positive or

negative while the magnet is below the loop? Is 

increasing or decreasing while the magnet is moving down

below the loop?



Problem 3 The Linear DC Motor

Consider the simple linear DC motor of Figure 6.34 where 

. Take the normal to the surface enclosed by the loop

to be .

Figure 6.34 A linear DC motor.

What is the magnetic force  on the bar?

What is the flux through the surface?

What is the direction of positive travel around this flux

surface? (CW or CCW)



What is the induced emf  in the loop in terms of , 

and the speed  of the bar?

Do  and  have the same sign convention? Is  positive

or negative?

Let  denote the resistance of the circuit,  denote the

mass of the bar, and  be the viscous friction coefficient

between the sliding bar and the rails. Assume the

inductance of the circuit loop is zero. Write down the

equation for the current  in the machine and the

differential equation for the position  of the bar. Similar to

(6.1), eliminate the current to obtain the equation of motion

of the bar with input .



Problem 4 The Linear DC Motor

Consider the simple linear motor in Figure 6.35 where the

magnetic field  ( ) is up out of the page.

Closing the switch causes a current to flow in the wire loop.

Figure 6.35 Linear DC machine with , .

What is the magnetic force  on the sliding bar in

terms of , , and ? Give both the magnitude and

direction of .

Take the normal to the surface enclosed by the loop to be 

. What is the flux through the surface?

What is the induced emf  in the loop in terms of , 

and the speed  of the bar?



What is the sign convention for the induced emf  drop

around the loop? (That is, if , would it act to push

current in the clockwise or counterclockwise direction?)

Do  and  have the same sign convention? Draw  and 

 signs above and below  to indicate the sign convention

for .



Problem 5 Torque in a DC Motor

Figure 6.36 shows a single loop DC motor.

Figure 6.36 Computing the torque produced by a DC motor.

Using the magnetic force law, compute the force  on

side  produced by the radial magnetic field acting on the

current in side .

Give the definition of the torque  on side  due to 

 and compute it.



Use the fact that  to compute the total

torque on the rotor and give the expression for the torque

constant  of the motor.



Problem 6 Back Emf in the Single‐Loop Motor

Consider the single loop motor with the flux surface as

indicated in Figure 6.37. A voltage source connected to the

brushes is forcing current down side  ( ) and up side  (

).

Figure 6.37 Computing the flux with .

With the motor at the angular position  shown, that is,

with , and using the inward normal ( ),

compute the flux through the surface in terms of the

magnitude  of the radial magnetic field in the air gap, the

axial length  of the motor, the diameter  of the motor

and the angle  of the rotor.



What is the positive direction of travel around the flux

surface  (  or )?

What is the emf  induced in the rotor loop? What is the

sign convention for the induced emf  drop around the

loop? (That is, if , would it act to push current in 

direction or the  direction?) Do  and  have the same

sign convention? Explain why  is now negative. Draw an

equivalent circuit of the form in Figure 6.19 for the rotor

loop.

Problem 7 Gauss's Law and Conservation of Flux

The flux surface in Figure 6.14 was chosen as the half‐

cylindrical surface with two half disks at either end because

the  field is known on the cylindrical surface being given

by (6.2) and can be taken to be zero on the two half disks. If

the flux surface had been taken to be a flat planar surface

with the rectangular loop as its boundary, then it would not

be clear how to compute the flux on this surface as the 

field is not known there. Show, using Gauss's law 

 that both surfaces give the same flux.

In general, by Gauss's law, one can compute the flux using

any surface as long as its boundary is the loop.



Problem 8 Flux in the Single‐Loop DC Motor

Figure 6.38 shows the rotor loop with .

Figure 6.38 Rotor loop where 



Using the flux surface shown in Figure 6.39 with 

, show that

Figure 6.39 Flux surface with the normal radially out.

Plot  for  (note that  for 

 is computed in the text). Compute the back

emf  and give its sign convention, that is, if 

 will it force current in the CW or the

CCW direction? Do  and  have the same sign

convention? (Yes! Explain!) Draw an equivalent circuit



diagram of the form of Figure 6.19 to illustrate the sign

convention.



Using the flux surface shown in Figure 6.40 with 

, show that

Figure 6.40 Flux surface with the normal radially in.

A plot of this is given in Figure 6.16. Compute the back emf

and give its sign convention, that is, if  

will it force current in the CW or the CCW direction.

Do  and  have the same sign convention? (No, they are

opposite! Explain!) Draw an equivalent circuit diagram of

the form of Figure 6.19 to illustrate the sign convention.



Note that in part (b) the normal to the flux surface is taken

to be radially in while with  it was taken to be

radially out (see Figure 6.15). Explain why reversing the

normal of the flux surface each half turn in this way results

in an equivalent circuit of the form shown in Figure 6.19,

which is valid for all rotor angular positions.

Hint: Note that the  side of  is now electrically

connected to side  of the loop through brush  while

when  in Figure 6.15 , the  side of  was

electrically connected to side  of the loop through brush 

. That is, the sign convention for  in the loop changes

every half‐turn. Thus it is also necessary to change the sign

convention for the flux and therefore for  every half‐turn

in order that the sign conventions for  and  have the

same relationship to each other for all .

Show by taking  for  and 

 for  that 

 for all  and that 

 has the sign convention given in Figure

6.19 for all .



Problem 9 Simulation of the DC Motor

Figure 6.41 is a SIMULINK block diagram for the DC motor.

Let  V,  A,  V/rad/s (=

N‐m/A),  kg‐ ,  ,  mH, 

and  N‐m/rad/s. Implement this simulation with

a step input of  V. Give plots of (a)  (b) 

 (c)  and (d) .





Figure 6.41 DC motor SIMULINK block diagram.



Problem 10 Simulation of a DC Motor with an Optical

Encoder

Figure 6.42 shows a SIMULINK block diagram for an open‐

loop DC motor with an encoder model. Let 

 V/rad/s (= N‐m/A),  kg‐ ,  , 

 mH,  and  N‐m/rad/s. Further, let 

 be the number of pulses (rising

and fall edges) out of the optical encoder per revolution.

The angle  is denoted in MATLAB as “ pi ”. The gray Gain

block of  converts the angle into counts. The

floor function (denoted by ) in the gray

Rounding Function block converts  into the largest

integer less than .





Figure 6.42 SIMULINK block diagram for a DC motor and

optical encoder.

Figure 6.43 Dialog box for the Rounding Function block.

Figure 6.43 is the dialog box for the Rounding Function box.



Figure 6.44 is the dialog box for the Discrete Transfer

Function block.





Figure 6.44 Dialog box for the Discrete Transfer Fcn block.

Figure 6.45 is the dialog box for the Zero‐Order Hold block.

Figure 6.45 Dialog box for the Zero Order Hold block.

Implement the simulation of Figure 6.42.

Show in the simulation that the backward difference error is

bounded by 



Problem 11 DC Motor with a Field Winding and Gear

System

Figure 6.46 is a schematic diagram for a DC motor with a

field winding (see Figure 6.7 in the text) and a gear system

attached. The schematic shows the symbol of a battery

attached to a winding producing the field current . The

reason for this is to indicate that the voltage applied to the

field winding is constant. As a result the current in the field

winding  is constant. Then the back emf

“constant” is given by

What must the torque constant equal? Write down the

differential equations that model this system. Your final

answer must have  and  eliminated.

Figure 6.46 DC motor with a field winding and gear system.



Problem 12 DC Motor and Rolling Mill

In Example 4 of Chapter the mechanical model of the simple

rolling mill shown in Figure 6.47 was developed. The

thickness of the incoming material is denoted as  and the

thickness of the material leaving the rollers is denoted as 

making  is the distance the rack moves. The

mechanical model of the roller system was derived to be

where  Here  is the

coefficient of viscous friction between the rack and the

structure (not shown) holding it so that  is

the corresponding friction force on the rack.



Figure 6.47 Rolling mill powered by a DC motor.



Add the equation for the motor current to this model. Your

final answer should be two coupled differential equations

with the motor voltage  as input, and the output 

and the motor current  as the variables. That is, it should

be of the form

Set the motor inductance  and compute the transfer

function from  to  Is this transfer function

stable?

Notes

1 Motors are designed so that the conductors are

perpendicular to the external magnetic field.

2 The rotor loop is also referred to as the armature winding

and the current in it as the armature current.

3  is the Greek letter “xi” and is pronounced “ksee.”

4 The notation  is used to distinguish this flux from the

flux  in the loop due to the external permanent

magnet. However, the total flux using an inward normal

would be  as the outward normal was used to

compute  in Section 6.3.



5 The figure shows a gap between the brushes and the

commutator, but this was done for illustration and there

is no gap in reality. Also, for illustrative purposes, the

brushes are shown inside the commutator when in fact

they are normally pressed against the commutator from

the outside.



(7.1)

7 

Block Diagrams

The reason for using Laplace transforms is to convert

differential equations into algebraic equations. The point of

this chapter is to convert these algebraic equations into a

block diagram representation, which will be the starting

point for the design of feedback controllers for these

systems as shown in Chapters 9 and 10.

7.1 Block Diagram for a DC Motor

A DC motor servo (positioning) system typically consists of a

DC motor, an amplifier and sensors for position and current.

The interest here is to understand how to model this system

in the  domain for control purposes. Recall the dynamic

equations of the DC motor given as

Let's take the Laplace transform of the DC machine

equations (7.1) with zero initial conditions to obtain



(7.2)

(7.3)

After some rearrangement we have

A block diagram of these equations is given in Figure 7.1 on

the next page and is simply a graphical way to illustrate the

relationships between the Laplace transform variables.

Figure 7.1 Block diagram of a DC motor.

That is, the block diagram represents



(7.4)

In Figure 7.1 an unfilled circle “ ” denotes a summing

junction while a filled circle “ ” is a node indicating the

same variable is being sent to different blocks.

For a DC motor it often turns out (but not always, see

Example 6) that the inductance  is negligible so we set 

 and the block diagram of Figure 7.1 becomes that of

Figure 7.2.

Figure 7.2 Block diagram of the DC motor with .

We next move the load torque (disturbance input)  to

the left side of the  block to obtain the equivalent

block diagram of Figure 7.3.



Figure 7.3 Equivalent block diagram of the DC motor with

the disturbance torque moved toward the input.

Finally, we can just put the disturbance  into the

same summing junction as  to end up with the

equivalent block diagram of Figure 7.4.



Figure 7.4 Equivalent block diagram of the DC motor with

the disturbance torque moved to the input.

Remark Note that  has units =(Ohms)

(amperes)=Volts. This makes sense as  is going

into the same summing junction as the input voltage .

The interpretation here is that if a voltage equal to 

 is put into the motor then it has the same effect

on the outputs  and  as the actual load torque .

7.2 Block Diagram Reduction

In many control systems, the block diagram can be reduced

to combinations of the basic block diagram shown in Figure

7.5.



(7.5)

Figure 7.5 Standard block diagram.

For example, the block diagram of Figure 7.4 is of this form

if we make the identification

If we want the transfer function from  to , we

compute

Rearrange the last equation to obtain



(7.6)

(7.7)

or

We will see that (7.6) is a common expression when dealing

with control systems.

We next compute the transfer function from the input 

to the error  Proceeding, we have

which upon rearrangement becomes

Finally, the error  is given by

We will also see that (7.7) is used over and over again to

analyze control systems.

Example 1 Transfer Function of the DC Motor

Let's look at the block diagram of the DC motor given in

Figure 7.4 using the identification given in (7.5). We then

have



Then setting   and  the

block diagram of the DC motor reduces to that of Figure 7.6.

Figure 7.6 Block diagram of a DC motor.

Interestingly, we will show how a simple experiment can be

done to estimate the values of  and  so we don't need to

know all the individual parameter values of the motor, i.e., 

, and .

The control problem is to measure the position  and use

this to figure out the voltage  to apply to the motor at

each time  to get the rotor to turn to the desired angle 

It must do this even with a load torque  acting on it. This

will be done in the following chapters.



Figure 7.7 is a block diagram model of a simple control

system using a DC motor with voltage as input and angular

position as output. A sensor (optical encoder) is attached to

the motor shaft to provide the position measurement. Inside

the dashed box of Figure 7.7 is the DC motor model from

Figure 7.6. The dashed box encloses the physical model of

the motor including any load torque on it.

Figure 7.7 Block diagram of simple proportional feedback

for a DC motor.

From a control perspective, all we can do is input voltage to

the motor and then measure the angular position of the

rotor shaft. In the diagram,  is the desired position. For

many applications, we will choose  to be a step input

given by



or

At the initial time , we take  and we want the

motor shaft to rotate to the angular position  The error

signal is given by

or, in the Laplace domain, it is

The controller structure shown in Figure 7.7 shows the

voltage applied to the motor is simply

or

That is, the voltage applied to the motor is proportional

(through the gain ) to the error between the desired rotor

position  and it actual (measured) position . For this

reason, this control structure is called proportional

feedback. We will study this in great detail later.

A general control system can often be put in the form of

Figure 7.8 on the next page.



Figure 7.8 Typical block diagram of a control system.

In particular, the control system for the DC motor given in

Figure 7.7 has this form with the identification

Let's use block diagram reduction to compute the output

and error transfer functions. To do this, we simply rearrange

the block diagram of Figure 7.8 to obtain the equivalent

block diagram of Figure 7.9.



(7.8)

Figure 7.9 Equivalent block diagram of Figure 7.8.  is

no longer available on this equivalent block diagram.

Then, just as we derived the expression given in (7.6), we

have



Example 2 Closed‐Loop Transfer Function

Let's use expression (7.8) to compute the output  of the

simple proportional control system of Figure 7.7. We have

For the DC motor the parameters  are positive, that is, 

 and  So, with  it follows that

is stable. By the final value theorem

If the load torque is zero, i.e.,  then the angular

position of the motor goes to the desired value  On the

other hand, if  it does not. We will see in later

chapters how to deal with non‐zero load torques. For now

the point was simply to show how to obtain the closed‐loop

transfer function from the block diagram.

We will also be making extensive use of the error 

when we consider the design of control systems. With



(7.9)

reference to Figure 7.8 and using the expression (7.8), the

error signal  is computed as1

Also, we will mostly use unity feedback, which just means

that . In this case the last expression reduces to

We will use this last expression over and over again in

Chapters 9 and 10 to design a feedback controller .

For the remainder of the chapter we do more examples

computing the closed‐loop transfer function from a block

diagram.

Example 3 Block Diagram Reduction

Consider the block diagram of Figure 7.10 on the next page.

Moving  out of the feedback loop gives the block

diagram of Figure 7.11 on the next page. Figure 7.11 is

straightforwardly reduced to be the equivalent block

diagram of Figure 7.12 on the next page.



Figure 7.10 Block diagram reduction example.



Figure 7.11 Equivalent block diagram to that of Figure

7.10.

Figure 7.12 Reduction of the block diagram of Figure 7.11

Finally, Figure 7.12 reduces to the block diagram of Figure

7.13.



Figure 7.13 

Example 4 Block Diagram Reduction

Consider the block diagram of Figure 7.14. We first remove

the feedback loop containing  out of the other two

feedback loops to obtain the block diagram of Figure 7.15.

We next simplify the two bottom feedback loops in Figure

7.15 to obtain the block diagram of Figure 7.16. Some

simple rearrangement of Figure 7.16 gives the block

diagram of Figure 7.17.



Figure 7.14 Block diagram reduction example.

Figure 7.15 Block diagram equivalent to Figure 7.14.



Figure 7.16 Block diagram equivalent to Figure 7.15.

Figure 7.17 Block diagram equivalent to Figure 7.16.

From the block diagram of Figure 7.17 we obtain the output

response  as



Example 5 Block Diagram Reduction

Consider the block diagram of Figure 7.18.

Figure 7.18 Block diagram reduction.

We first rearrange this block diagram so that there are two

inputs with  as shown in Figure 7.19.



Figure 7.19 Block diagram equivalent to Figure 7.18

Then we move the disturbance input  and the second 

 input to the first summing junction to obtain the block

diagram of Figure 7.20.



Figure 7.20 Block diagram equivalent to Figure 7.18.

From this last block diagram we obtain the output response 

 as

Example 6 Current Command Amplifier for a DC Motor

The input to a DC motor is the voltage . However, the

torque equation is  where the



motor torque  is proportional to the current. Thus, it

would be convenient if the current was the input since we

could then specify the motor's torque by specifying the

current. To get around the fact that the voltage is the input,

an inner current control loop is added that allows direct

current command. Specifically, as shown in Figure 7.21, the

current is sensed and fed back (typically using analog

electronics inside the amplifier) through a proportional

controller. Such an amplifier is referred to as a current

command amplifier. The voltage is forced by this controller

to go to whatever value necessary to obtain the desired

current. To analyze this setup we go back to Eqs. (7.4) of the

DC motor, which are repeated here for convenience.



Figure 7.21 DC motor with an inner current control loop.

In Figure 7.21  is the reference (desired) current, 

is the measured current in the motor, and  is a

proportional gain. We want to show that the gain  can be

chosen to force  To do this we must compute

the transfer function  which is done by

rearranging the block diagram of Figure 7.21 to be the

equivalent block diagram of Figure 7.22.



Figure 7.22 Equivalent block diagram.

Computing the transfer function of the inner loop, the block

diagram of Figure 7.22 reduces to that of Figure 7.23 on the

next page.

The load torque  is then moved to the same node as 

 to obtain equivalent block diagram of Figure 7.24 on

the next page.



Figure 7.23 Simplified block diagram.



Figure 7.24 Reduced block diagram.

With  the output, the block diagram of Figure 7.24

immediately gives



We now use high‐gain feedback meaning we let 

The expression for  then reduces to

The corresponding block diagram is shown in Figure 7.25.

Figure 7.25 Current command model of a DC motor.

To summarize, if the gain  can be made large enough,

the actual current  is forced to track  quite fast so

that  is essentially equal to . However, note that one

cannot make the gain  arbitrarily large. This is easily

seen by noting that the voltage commanded into the

amplifier is

For large gains  this could result in  being greater

than  causing the amplifier to saturate. That said,

typically a current controller can be designed to force 

 fast enough that  can be considered equal

to . The following reduced‐order system is then be used

to design a speed or position controller for the DC motor.



Problems

Problem 1 Block Diagram Reduction

Use the block diagram reduction method to compute the

transfer function  for the system of Figure 7.26.

Show work!

Figure 7.26 Block diagram reduction.



Problem 2 Block Diagram Reduction

Compute the transfer function  of the system

given in Figure 7.27 using block diagram reduction.

Figure 7.27 Block diagram reduction.



Problem 3 Block Diagram Reduction

A block diagram of a control system is shown in Figure 7.28

on the next page.

Figure 7.28 Block diagram reduction.

Compute the transfer function  using block

diagram reduction. Hint: Note this block diagram is

equivalent to the block diagram of Figure 7.29.

Figure 7.29 Block diagram equivalent to Figure 7.28.



Problem 4 Modeling and Block Diagram Reduction

Figure 7.30 is a schematic diagram for a servo motor with

moment of inertia  connected by a flexible shaft to

another rigid body whose moment of inertia is . The

flexible shaft is modeled by with a torsional spring whose

constant is  There is viscous friction on the motor shaft

(viscous friction coefficient ) and viscous friction on the

output shaft (viscous friction coefficient ). The motor

torque is  and the back emf is .  is the

torque on the output shaft produced by the spring and is

given by 

Figure 7.30 Motor whose output shaft is flexible.

Write down the differential equations that describe this

model.



(7.10)

With zero initial conditions take the Laplace transform of the

differential equations in part (a) and show they are written

in the Laplace domain as

A block diagram for the equations in part (b) is given in

Figure 7.31. Redraw the block diagram with an equivalent

block diagram so that the two loops do not intersect. Hint:

Move the line connected at  to the right of 

Figure 7.31 Block diagram of a motor whose output shaft is

flexible.



Let

Compute the transfer function from  to  in terms

of  and  Hint: First compute 

.

Problem 5 Block Diagram Reduction

Compute the transfer function  of the system

given in Figure 7.32 using block diagram reduction.

Figure 7.32 Block diagram reduction.



Problem 6 High‐Gain Proportional Plus Integral Current

Control

Consider a proportional plus integral (PI) current controller

given by  where .

This is illustrated in the block diagram of Figure 7.33.

Figure 7.33 PI current controller.

Let  in parts (a)–(c).

Using block diagram reduction compute .

Show that  as 

Compute the transfer function  and show that 

 as .



Problem 7 Simulation Diagram

Use block diagram reduction on the simulation diagram of

Figure 7.34 to show that

We use the terminology simulation diagram when each

block is either an integrator or a constant.

Hint: Move the blocks with the  to the left

side of the diagram out of the feedback loops.





Figure 7.34 Simulation diagram for a third‐order transfer

function.

Problem 8 Block Diagram Reduction for a DC Motor

Consider the block diagram shown in Figure 7.35. Use block

diagram reduction to find the output  in terms of 

and . Hint: First step is to move  to the node for 

Figure 7.35 Block diagram for a DC motor control system.



Problem 9 Simulation

Compare a simulation of the DC motor using the equations

given in (7.1) with a simulation using the block diagram of

Figure 7.6. A SIMULINK block diagram to do this is shown in

Figure 7.36.

Figure 7.36 SIMULINK block diagram for the DC motor.



Let  V,  A,  V/rad/s (=

N‐m/A),  kg‐ ,  ,  mH, and 

 N‐m/rad/s. Set  and  Put a

step input voltage of  V into the motor and plot

out the two speeds  from the simulation together on

the same plot. Recall that in the block diagram model of

Figure 7.6 the inductance was set equal to zero. Are the

plots close? (Answer: Yes, if you did the simulation

correctly!) Hand in your .m file, which should set all the

values of the motor parameters and it should compute the

values of  Also hand in a screenshot of your

SIMULINK block diagram.

Note

1 Note in Figure 7.9 the signal going into  is no longer 

. Thus we cannot use Eq. (7.7) applied to Figure 7.9

to compute .



8 

System Responses

8.1 First‐Order System Response

Recall the block diagram of a DC motor shown in Figure 8.1.

Figure 8.1 Block diagram of a DC motor.

Setting     and,

along with a block diagram reduction, this simplifies to the

block diagram of Figure 8.2.



Figure 8.2 Simplified block diagram of a DC motor.

Our interest now is the response of the motor's angular

speed  to a step input voltage. Removing the integrator

for  and defining

we obtain a first‐order system whose block diagram is given

in Figure 8.3.

Figure 8.3 Time constant form for a first‐order transfer

function.

The open‐loop transfer function from input voltage to speed

is



(8.1)

(8.2)

(8.3)

Notice that the denominator's leading coefficient is 

rather than 1. This is called the time constant form of the

transfer function where  is the time constant.

For the present set  and so  is given by

Let the input voltage be the step input  The

speed response  is

where the last expression follows from a partial‐fraction

expansion. Computing the inverse Laplace transform, 

is given by

Let's plot  by making a table of its values.

0



These values are then used to make the graph of Figure 8.4.

Figure 8.4 Step response of a first‐order system.

Note that the time constant  has units of time. It is a

measure of how fast the system responds to an input. The

smaller the value of  the faster the system responds. For

example, if  is the desired final angular speed, we would

choose



(8.4)

(8.5)

(8.6)

Then the step input voltage of  gives a speed

response of

For ,  is within  of  That is, 

. Hence the smaller the

value of , the faster  is within  of its final value 

Identification

Suppose the motor has a sensor that can be used to

measure the angular speed (e.g., an encoder or a

tachometer). Then apply a constant voltage  to the motor

and record its speed to obtain a curve similar to that of

Figure 8.4. The measured speed curve gives  and the

parameter  is given by

The speed curve is also used to determine the time  such

that . This is the time

constant, i.e., by (8.4) we have

From the experimentally determined values of  and ,

the motor's transfer function is 

8.2 Second‐Order System Response

Let's now consider the response of the angular position  of

the motor using the setup of Figure 8.5. As indicated in



Figure 8.5, a position sensor (encoder) is attached to the

motor and used to bring the value of rotor angle into the

computer. With  the desired rotor angle, the

voltage

Figure 8.5 Position control of a DC motor.

is commanded to the amplifier using a digital to analog

(D/A) converter.

To study the response  we need only use the block

diagram model of Figure 8.5, which is given in Figure 8.6.



(8.7)

Figure 8.6 Proportional feedback position control of a DC

motor.

Before analyzing this simple feedback control system, let's

switch to a more general notation by setting 

and . Also, for now, set  The transfer

function from the input reference position  to the

output position  is calculated as

We refer to



(8.8)

(8.9)

as the closed‐loop transfer function.

For this DC motor we have  and we choose 

 With  (so 

), the transfer function (8.7) can be rewritten in the

standard form

 is referred to as the damping ratio and  is

referred to as the natural frequency. The quantity

is stable so that by the final value theorem

That is,  as 

Transient Response and Closed‐Loop Poles

We just showed that  goes to the desired final value of 

. To find the complete solution  we will do a partial

fraction expansion of . Our system is



(8.10)

(8.11)

and, to do the partial fraction expansion, we must first find

the poles  of the transfer function. These are the roots

of

By the quadratic formula we have

We are interested in the case where  and  so

that these poles are in the open left‐half plane. Including 

 we consider the following:

With  both poles are in the open left half‐plane and

the closed‐loop transfer function

is stable. If , then the poles are on the  axis at 

.



(8.12)

Figure 8.7 on the next page shows the pole locations for 

 for the case . In the figure 

 is called the damped frequency. Notice

that for  we have

That is, for  the poles are on a semicircle centered

at the origin with a radius of . This is illustrated in Figure

8.8 on the next page. In more detail, Figure 8.8 shows that

for  the two poles are at . As  increases from 

 to 1 the two poles trace out a semicircle in the left half‐

plane. At  the two poles are on top of each other at 

 As  increases greater than 1 one of the poles heads

toward the origin while the other one goes off to 



Figure 8.7 The closed‐loop poles  for .





(8.13)

(8.14)

Figure 8.8 The locus of the closed‐loop poles  for 

 

Let's now proceed with the partial fraction expansion for the

case where  In this case we have a complex‐

conjugate pair of poles given by

Then

In the time domain this becomes

Note that the transient part of the response dies out

exponentially according to the real part  of the poles

of the transfer function. We want the transient part to die



(8.15)

out fast so the  fast. That is, we want both poles

to have their real parts as far in the left half‐plane as

possible. From Figure 8.8 this indicates we should take 

 which results in both poles being at . If we take 

 then one of the poles heads out toward , but the

other one heads toward the origin.

It is now a rather messy affair to compute the expressions

for  and  in (8.13) and (8.14). So we take a different

approach to the partial fraction expansion by rewriting 

as

Multiplying through by  we have

Equating terms in  requires  and  satisfy

Then



(8.16)

(8.17)

(8.18)

(8.19)

Identifying  and  the relevant

Laplace transforms are

For  we then have

where

so that



This is the angle  indicated in Figure 8.7. The transient

part of (8.17) decays as  where  is the real

part of the closed‐loop poles and it oscillates with frequency

, which is the imaginary part of the closed‐

loop poles. Recall that  is called the damped frequency.

Figure 8.9 shows a plot of the unit step response  for

values of  between 0.1 and 2.





Figure 8.9 The unit step response  for .

For  the response is not oscillatory and just steadily

increases up to the final value of 1 (see Problems 1 and 2).

On the other hand, for  the response is oscillatory

and becoming more so as  gets closer to 0.

Peak Time  and Percent Overshoot 

For  the output response is oscillatory with

frequency . Figure 8.10 shows the

response of such a second‐order system to a unit step input.

The peak time  is the time when the response 

obtains its peak value. Using (8.16) we now derive

expressions for the peak time and the corresponding peak

value . We will later show how these expressions can

be used to estimate the parameters  and  of the transfer

function model  from experimental data.





(8.20)

(8.21)

(8.22)

Figure 8.10 Rise time , peak time  and settling time 

.

With  the output response is oscillatory and the

peak overshoot occurs at a time  when  With 

 and , we rewrite (8.16) as

Differentiating we have

The solutions to  are the solutions to

The smallest non zero solution is

The value of  at  is then



(8.23)

(8.24)

(8.25)

Note that  The fractional overshoot  is

defined by

where we used the fact that . The percent

overshoot is simply  However, we will often refer

to  as the percent overshoot and the reader should

understand that  is given by (8.23).

If we plot the step response and then measure  and 

then  and  can be found. To explain, take the natural

logarithm of both sides of (8.23) to obtain

After some algebra we obtain

Next, using (8.22) for the peak time,  is given by



(8.26)

(8.27)

With these values of  and  we can compute the values

of  and  To do, recall

so that

Finally, as we set the value of the gain  we use its value

to then compute 

Settling Time 

By (8.17) the second‐order step response for  is

The settling time is usually defined as the time when  is

within  of its final value and stays within  of its final

value. See Figure 8.11.

To compute the time that  intersects one of the lines 

 and stays within these lines is difficult. One

way to simplify the calculation is to compute the time that

the envelope of  intersects one of the lines 

. The envelope of  is given by



and is indicated along with a step response in Figure 8.11.





(8.28)

Figure 8.11 Using the envelope of the step response to

compute an approximate settling time.

Let's now use the envelope to obtain an upper bound  on

the settling time. For the  criterion we set

to determine  We solve this as follows.

Finally, the upper bound  for the settling time is given by

However, note that the upper bound  goes to  as

either  or as  Consequently, it is not a useful

approximation method for these two limiting cases. This is a

problem because for  we are interested in the

case when  is close to 1 in order to keep the overshoot

small. To deal with this, let's consider another approach for

obtaining an upper bound on the settling time. As we are

interested in the case when  is close to 1 we simply do the

settling time calculation for . We have



(8.29)

Then  is given by

When  we have

The output response  is within  of the final value 

 at this settling time rather than . However, if we use 

 then  or  of the final value

while  gives  making it within 

 of the final value. We define the time constant of the

complex‐conjugate pair of closed‐loop poles to be

With  close to 1, taking  or  results in 

 being within , or  respectively, of its final

value.

Important Remark The further in the left half‐plane the

closed‐loop poles are located, the faster the transients die

out and thus the faster the system reaches its final value.

Rise Time 



(8.30)

(8.31)

As indicated in Figure 8.10, the rise time is defined as the

amount of time for the response  to go from  to

the first time it reaches 1 As a crude approximation, one

sees for those step responses in Figure 8.9 with 

the step response  reaches  at  and

reaches  for the first time at  Then the rise

time is given by

Remark Although this gives us a formula to plug numbers

into, it is not very useful because we typically want  to be

close to 1 (so that the overshoot is not too large) while

(8.30) is based on .

Summary of 

With

the percent overshoot, the peak time, and the settling time

of  are as follows.



(8.32)

(8.33)

The expressions for  assume  is close to 1. In general,

we will be concerned about overshoot, settling time, and

rise time. However, Eqs. (8.31)–(8.33) are only for second‐

order systems without zeros making their usefulness quite

limited.

Choosing the Gain of a Proportional Controller

Let's go back to our proportional control system for the

angular position of a DC motor with no load torque. This is

shown in Figure 8.12. The closed‐loop transfer function is

given by



(8.34)

Figure 8.12 Simple proportional feedback control.

Suppose  and  so that for a step input of

we have

With  the roots of  are in the open left

half‐plane so that

is stable. By the final value theorem we have



However, the behavior of the  as it goes to  is

determined by the location of the closed‐loop poles in the

left half‐plane. Let's look at these pole locations as the

control gain  is varied from 0 to . We set

and by the quadratic formula we have

The closed‐loop poles are conveniently written as

We can then easily construct the following table of values

for the closed‐loop poles.

Closed‐Loop Poles

0

2

4

8

13

From this table we obtain the sketch of the closed‐loop poles

shown in Figure 8.13, which is referred to as a root locus.

See Problem 10 on how to use MATLAB to generate the plot

of Figure 8.13. (The root locus is studied in detail in Chapter

12).



Figure 8.13 Sketch of closed‐loop poles as  is varied

from  to .

Some Observations of the Root Locus

Both poles are in the open left half‐plane for 

For  we have a pair of complex‐conjugate closed‐loop

poles and thus the response will be oscillatory.

We typically want the poles as far in the left half‐plane as

possible which means we would want to have .

The value of  must be small enough so the response is

not too oscillatory and to avoid saturating the amplifier.



Finally, suppose we want to choose  so that the damping

ratio  is equal to 0.8. That is, from (8.34) we want to have

with  chosen so that  Equating coefficients gives

Solving for  gives

We can also obtain this from the geometry of Figure 8.14 as



Figure 8.14 Choose  so that 

8.3 Second‐Order Systems with Zeros

Instead of position control, let's now consider speed control

of a DC motor as illustrated in Figure 8.15 on the next page.

Here  is the desired final speed and the angular speed 

 is found by (numerically) differentiating the position

measurement obtained from the encoder. The voltage

commanded to the amplifier is



Figure 8.15 Speed control system for a DC motor.

In the Laplace domain the error  is

and voltage  is

This setup is called a proportional plus integral (PI)

controller. The block diagram model of this system is given

in Figure 8.16.



(8.35)

Figure 8.16 Block diagram of a PI speed control system for

a DC motor.

The speed  is given by

The motor parameters are positive so  and 

Taking  and  the roots of

are in the open left half‐plane. Thus



(8.36)

(8.37)

is stable and by the final value theorem we have

This is the reason for choosing . In Problem

12 you are asked to show that if  then 

Now set  and define

Note that  We may now rewrite

(8.35) as

We would like to know the effect of the zero at 

 on the transient response. Proceeding,

the closed‐loop transfer function

is second‐order with a zero at . With  a

plot of the zero and the two complex‐conjugate poles of 

 is given in Figure 8.17.



Figure 8.17 Pole–zero plot of  with

.

With  and  Figure 8.18 on the next

page is a plot of the unit step response  for 

and 100. For  we see that the step response

has much more overshoot compared with a second‐order

system without a zero. To see why there is more overshoot,

we first decompose  as



(8.38)

Note that as  this expression for  reduces to

that of a second‐order system without a zero considered

previously. In particular, Figure 8.18 shows the plot for 

 is essentially the response of a second‐order

system without a zero.





(8.39)

Figure 8.18 Unit step responses for  (

).

Next let

so that

In the time domain  may be written as

Figure 8.19 is a plot of  its scaled derivative 

 and their sum . We see that the derivative

term  is the source of the increased overshoot

which results in larger overshoots as  gets smaller.

Here  so that the zero  is in the open left half‐

plane (see Figure 8.17). A closed‐loop system with all of its

zeros in the open left half‐plane is referred to as a minimum

phase system.





Figure 8.19 Unit step response of a second‐order system

with a zero in the open left half‐plane.

Right Half‐Plane Zero

If  then the zero  is in the open right half‐

plane. A closed‐loop system with any of its zeros in the open

right half‐plane is referred to as a non‐minimum phase

system. A pole–zero plot for this case is shown in Figure

8.20. Recall that zeros have nothing to do with stability, only

the poles do. This system is still stable and  as 

.



Figure 8.20 Pole–zero plot for  with 

.





(8.40)

Figure 8.21 Unit step response of a second‐order system

with a zero in the open right half‐plane ( ).

Figure 8.21 shows the step response where we see that 

first goes negative before coming back and going to its final

value of 1. That is, the response goes in the opposite

direction of that desired, but then comes back and settles

out to the desired value. This type of response is referred to

as undershoot.

Remark Any stable closed‐loop transfer function with an

odd number of real right half‐plane zeros will have a step

response with undershoot [26].

8.4 Third‐Order Systems

Finally, let's consider a third‐order system which has one

real pole and a pair of complex‐conjugate poles. Specifically,

with  and  consider the third‐order closed‐

loop transfer function given by

The poles of this system are then (see Figure 8.22)

Let's look at its unit step response



Figure 8.22 Pole–zero plot for 

As  and , it follows that

is stable. By the final value theorem we have 



(8.41)

Figure 8.23 shows the step responses for various values of

the real pole location. Next we rewrite  as





Figure 8.23 Unit step responses of a third‐order system

which has one real pole and a pair of complex conjugate

poles for  and .

As  this expression for  reduces to the second‐

order system without a zero studied previously. For

example, in Figure 8.23, it turns out that the plot for 

essentially corresponds to that of just a second‐order

system. Notice that as  decreases, the pole at 

moves closer to the  axis and the response becomes

more sluggish in that it takes longer to settle out to its final

value.

Appendix: Root Locus Matlab File

 

  % RootLocus for G(s) = K*b/(s*(s+a)) 

  close all; clear; clc 

  a = 4;b = 1; 

  % Open loop transfer function G(s) = b/(s*(s+a)) = b/(s 

^2+a*s) 

  den = [1 a 0]; num = [b]; tf_openloop = tf(num,den); 

  % Plot the CLPs for K going from 0 to 100 in steps of 1. 

  K = [0:1:100]; 

  rlocus(tf_openloop,K) 

  % The input to the rlocus command is the OPEN LOOP transfer 

fn. 

  % It plots the poles of the CLOSED LOOP transfer fn. 

  % G_cl(s) = KG(s)/(1 + KG(s)) = Kb/(s^2 + as + Kb) 

  % Make the linewidth thicker, the marker size and font size 

bigger. 

  h = findobj(gca, ’Type’, ’line’); 

  set(h, ’LineWidth’, 4); set(h, ’MarkerSize’, 15); 

set(gca,’FontSize’,20) 

  % Set range of x‐axis [‐5,0] and y‐axis [‐10,10] 

  v = [‐5 0.5 ‐10 10]; axis(v); 

  title(’G(s)= b/(s^2+as)’,’FontSize’,20) 

  xlabel(’Re(s)’,’FontSize’,20); ylabel (’Im(s)’,’FontSize’,20) 

  K = 6.25 

  % The next command gives the CLPs for this value of K 



  p = rlocus(num,den,K) 

 

Problems

Problem 1 Step Response for 

With , compute the inverse Laplace transform of

Show that  for all 

Problem 2 Step Response for 

With , show that the inverse Laplace transform of

is

where

Show that  for all 



Problem 3 Step Response for 

With , recall the partial fraction expansion given

in (8.13), i.e.,

Compute  and  and then simplify to show that

becomes

with



Problem 4 Second‐Order Under Damped Systems

Let

and

It is given that  Give the answer along with a brief

explanation to the following:

For what value(s) of  is  stable?

For what value(s) of  does  have a peak overshoot?

For what value(s) of  does  not have a peak

overshoot?

For what value(s) of  are both poles furthest in the left

half‐plane?

For what value(s) of  are the poles at 



Problem 5 ‐Plane Regions

The standard second‐order transfer function is given by

Sketch the region in the ‐  where  and 

.

For parts (b) and (c) assume that a unit step input is applied

to the above transfer function to produce a unit step output

response.

What are the values of  and  in the region specified in

part (a) that result in the minimum fractional overshoot 

in the output response? What is the value of the minimum 

?

What are the values of  and  in the region specified in

part (a) that have the longest settling time  for the unit

step output response? What is the value of this settling

time?



Problem 6 Model Parameters from the Transient Response

The step input  ( ) is applied to

a system whose block diagram model is given in Figure

8.24. The corresponding step response measurement is

shown in Figure 8.25. In this step response, the peak time is 

 with peak value . The open‐loop

transfer function  is

where  and  to be determined. The value of 

 was used to obtain the step response shown in

Figure 8.25.

Figure 8.24 Step response of a second‐order system.

What are the values of  and ?

Compute the output  in terms of the closed‐loop

transfer function and the reference input 

What are the corresponding values of  and ?

What are the values of  and ? (Answer: .)





Figure 8.25  and .



Problem 7 Identification of the Motor Model from the Speed

Response

Problem 9 of Chapter 7 compared two different ways to

simulate a DC motor. In this problem we use the transfer

function model  where  

 As in Problem 9 of Chapter 7, set  V, 

 A,  V/rad/s

(N‐m/A),  kg‐ ,  , and 

 N‐m/rad/s. Figure 8.26 is a SIMULINK block diagram to

simulate how the direct identification of the parameters 

and  in the transfer function model  can be

carried out. The idea is to put a step input voltage and

measure the angular position response of the motor using

an optical encoder. The angular position is then

differentiated to compute the angular speed  From

knowing the input and measuring/calculating the output

speed, the parameters  and  of the transfer function

model can be computed as shown in the first section of this

chapter. (See Chapter 6 and especially Problem 10 of that

chapter for details on modeling an optical encoder.)



Figure 8.26 SIMULINK simulation using the output of an

optical encoder to calculate speed.



Build the SIMULINK simulation illustrated in Figures 8.26 and

8.27. The inside of the subsystem block entitled Open Loop

Motor & Encoder Model of Figure 8.26 is the SIMULINK block

diagram given in Figure 8.27.

To start the build of SIMULINK system, first draw the four

blocks (Transfer Fcn, Integrator, Gain, and Rounding Function) of

Figure 8.27 without the (oval‐shaped) input port and the

(oval‐shaped) output port. Then select these four blocks,

right‐click and select Create Subsystem from Selection. This

action will automatically create the input and output ports.

Then do the rest of the diagram as shown in Figure 8.26.

The code needed to run this SIMULINK simulation is

 

  clear;clc;close all 

  N_enc = 4*1024;resolution = 360/N_enc;Vmax = 40;Imax = 5; 

  % step size of the simulation 

  T = 0.001; 

  % motor Parameters 

  R = 2;KT = 0.07;Kb = KT;L = 0.002;f = 0.0004;J = 6e‐5; 

  speed_error = 2*pi/N_enc/T;

  a = (f + Kb*KT/R)/J;b = KT/(R*J); 

 

Figure 8.27 SIMULINK setup for a DC motor and optical

encoder.



Put a step input voltage  V and run the simulation

for 0.2 seconds. Then open up the omega_bd scope and find

the final speed  of the motor and the time  that 

. Use Eqs. (8.5) and (8.6) to

identify  in the transfer function model 

 Then  and  in the

transfer function model 

Let the parameter values computed in part (b) be denoted

as  where “est” is short for “estimated”. Compare

these with the values used in the simulation of part (a) by

computing the normalized errors  and 

Problem 8 Proportional Feedback

Consider the proportional feedback system of Figure 8.12

with  and . It was shown that a gain of 

resulted in damping ratio of .

What is the value of  for ?

Simulate this system and plot  for an input of 

. From the plot, determine the value of 

and . From these measured values, compute  and .

Is this value of  equal to 0.8? Does the value of  agree

with the value computed in part (a)? (Answer: Yes and yes,

but show your work!)



Problem 9 Proportional Feedback

Consider a satellite tracking antenna whose equation of

motion is given by

where  is the angle of elevation the antenna is pointing

with respect to the ground,  is the moment of inertia of

the antenna,  is the viscous friction of the bearings

supporting the antenna, and  the torque produced by the

motor that rotates the antenna. The open‐loop transfer

function from  to  is

Feedback of the elevation angle is needed to keep the

antenna pointing in the correct direction. Consider the

proportional feedback given by

where the  is the reference (desired) angle of elevation

the antenna is to point at. The block diagram for this

feedback system is shown in Figure 8.28



Figure 8.28 Block diagram of an antenna pointing system.

Give the closed‐loop transfer function from  to .

With  and  sketch in the ‐plane the possible

root locations as  varies from 0 to infinity.

Let

be a step input reference. For what value(s) of  will the

final value of  equal ? Explain briefly.

For what value(s) of  will the response  oscillate

before reaching its final value?

For what value of  will the damping ratio  equal 0.6 ?

Problem 10 Root Locus Plot

Run the MATLAB file Chapter8_RootLocus.m given in the

appendix of this chapter to make the plot of Figure 8.13.



Problem 11 Effects of Right Half‐Plane Zeros

Consider the closed‐loop system given in Figure 8.29.

Figure 8.29 System with a right half‐plane zero.

Compute the closed‐loop transfer function  and

show that it has the form of (8.36) (page 219) with 

 and .

Let  and show that  can be written in the

form of (8.38).

Figure 8.30 is a plot of  On this plot,

sketch both

 and the complete response 





Figure 8.30 



Problem 12 Proportional Speed Control of a DC Motor

Consider the speed control of a DC motor using just a

proportional controller as indicated in Figure 8.31.

Figure 8.31 Proportional speed control of a DC motor.

The corresponding block diagram is given in Figure 8.32.



Figure 8.32 Block diagram for proportional speed

controller.

Compute 

With  and  show that  is stable for .

For  show that 

With  and  simulate this

system in SIMULINK. For  and  plot  and 

 on the same graph. For each value of 

how close is  to  For each value of  what is the

value of the closed‐loop pole? Suppose  V, i.e.,

the input voltage is limited to  What is the

largest value of  one can choose before the saturation

limit is reached?



Problem 13 Disturbance Rejection Using a PI Speed

Controller

Consider again the proportional plus integral (PI) speed

controller for the DC motor shown in Figure 8.33. However,

now the load torque  is not zero.

Figure 8.33 Block diagram for PI speed control of a DC

motor.

With  and  use block diagram

reduction to compute 

With  and , show that  is stable for 

and 

Show that  for any value of . That is, the PI

controller eliminates the effect of the load torque on the

final speed!



Set 

and simulate this system. Plot  and  on

the same graph. Does  What are the values of

the closed‐loop poles? You should find that 

 and this fits the form of (8.36) with 

 and  Thus significant

overshoot is expected.

Redo part (d) with  You should find that

Thus no overshoot is expected.



Problem 14 Right Half‐Plane and Left Half‐Plane Zeros

In this problem we again consider speed control of the DC

motor. The transfer function is  where 

  with  V/rad/s (=

N‐m/A),  kg‐ ,  ,  N‐

m/rad/s,  V, and  A. Figure

8.34 is a SIMULINK block diagram of the closed‐loop system.

With these parameter values, it turns out that  

 and  Take 

Figure 8.34 Values  and  can result in left‐half or right‐

half plane zeros.

The closed‐loop transfer function is then



The point of this problem is observe the effect that the

location of the zero at  has on the step response .

Set  and  so that

That is,

Simulate this system for  so the poles of 

 are both  You should find that 

and  Note the undershoot.

Simulate this system for  so the poles of 

 are both  You should find that  and 

 Is there overshoot?

Simulate this system for  so the poles of 

 are both  You should find out that 

 and  Is there overshoot?

Note

1 Remember that  is the value of the step input and also

equals the final value of 



9 

Tracking and Disturbance Rejection

9.1 Servomechanism

Before developing tracking and disturbance rejection

feedback controllers, we first review how a physical system

described by a differential equation model is abstracted to a

block diagram. In this and following chapters, feedback

controllers will be developed using such block diagram

models so it is important to keep in mind where they come

from and what they represent. Specifically, consider a

servomechanism (servo system) used for positioning

applications such as robot arms and machine tools. The

physical hardware consists of a servomotor (DC motor in our

case), power amplifier, and a position sensor (encoder) as

shown in Figure 9.1. A schematic diagram of a complete

servomechanism is given in Figure 9.2 including a simple

proportional feedback controller.



Figure 9.1 DC motor, power amplifier, gears. and encoder

of a servo system.

Note that the encoder (position sensor) is on the output

shaft rather than the motor shaft. This simple controller

does the following: The position of the output shaft  ( )

is obtained from the encoder1 and is subtracted from the

desired (reference) position . This difference 

 is called the error. The error is then

multiplied by a gain and output as the commanded voltage

to the amplifier using a Digital to Analog (D/A) converter.

The whole point of control theory is to give a procedure for

computing this output voltage based on the error signal. The

procedure just described is called proportional control.



Figure 9.2 Schematic diagram of a servomechanism.

To determine the value of  to be used in this controller,

we must first develop a model of the system that captures

its dynamic behavior. Using the schematic of the

servomechanism given in Figure 9.2, a model is now

developed. In the schematic, we have

 is the motor torque constant ( ).

 is the back‐emf constant ( ).

 is the amplifier gain.

 where  is the number of encoder

pulses per revolution ( ).

 is the moment of inertia of the motor shaft.



(9.1)

(9.2)

(9.3)

 is the moment of inertia of the output shaft.

 is the viscous‐friction coefficient of the motor shaft.

 is the viscous‐friction coefficient of the output shaft.

 is the number of gear teeth on the motor shaft.

 is the number of gear teeth on output shaft.

 is the gear ratio.

 is total inertia reflected to motor shaft.

 is the total viscous friction coefficient

reflected to the motor shaft.

To proceed with the mathematical model of this system,

recall from Chapter 5 the equations of motion for the two

gears given by

 is the torque exerted on gear 1 by gear 2, while  is the

torque exerted on gear 2 by gear 1. The torques between

the two gears are related by

Further, as  and thus , we also have



(9.4)

(9.5)

(9.6)

In particular, the angular velocity of the motor shaft  is

related to the output angular velocity  by

Referring everything to the input (motor) shaft, we have

Substituting this expression for  into the first equation of

(9.1) results in

With  the total inertia reflected to the

input shaft and  the total viscous



(9.7)

friction coefficient reflected to the input shaft, this can be

written compactly as

where  are now used. The motor

electrical equations are given by

This servo system is then described by

It is easier to work with these equations in the  domain.

Taking the Laplace transform of these equations and using

the more generic notation  gives



(9.8)

The block diagram shown in Figure 9.3 is simply a pictorial

way to represent the algebraic relationships given in (9.8).

Figure 9.3 Block diagram for the servo system.

One way to simplify this block diagram is to consider the

armature inductance to be negligible by setting  and

moving the load  to the same summing junction as 

. This results in the equivalent block diagram given in Figure

9.4.



Figure 9.4 Equivalent block diagram of the servo system

with 

The transfer function of the inner loop, i.e., from 

 to  is

where

We then have the equivalent block diagram shown in Figure

9.5.



Figure 9.5 Block diagram equivalent to Figure 9.4.

Finally, with

the system block diagram simplifies to that of Figure 9.6.

Figure 9.6 A simplified block diagram of the servo system.

It is important to point out that a rather complicated control

system has been reduced to this simple block diagram by

making the approximation  and some algebraic (block



diagram) manipulations. In particular, the system composed

of the amplifier, motor, and gears in Figure 9.7a is modeled

by the simple block diagram in Figure 9.7b.

Figure 9.7 (a) DC motor servo system. (b) Block diagram

representation.

However, though this system is mathematically equivalent

(with ) from input  to output  of the original

system, there is not a one‐to‐one equivalence inside the

block diagram. For example, consider the disturbance 

. The constant  has the units 

 so that 

has the units of volts! This is consistent with the previous

drawing, since at the same summing junction the input

voltage  is added to the quantity 

. This is not to say that the load is a voltage!

Instead, it says that if a voltage given by  is applied



to the DC motor then the effect on the output position 

is the same as the actual load torque.

Finally, let

so that the block diagram of the servo system is abstracted

to that of Figure 9.8.

Figure 9.8 Block diagram of servo system in standard form.

The controller gain  is typically replaced by a more

general controller specified by a transfer function 

 where the subscript “ ” denotes

controller. In fact, the whole point of automatic control

theory is to provide a methodology to choose  so that

the output  goes to any specified angle despite a load

torque acting on the system. The block diagram of Figure

9.9 is a standard form for the analysis of tracking and

disturbance rejection of control systems. For example, note

that the block diagram for the servo system of Figure 9.8 is

in this form with .



Figure 9.9 Control system in standard block diagram form.

The transfer functions from  and  to  and 

 in Figure 9.9 are needed to design feedback

controllers. To compute them, the block diagram of Figure

9.9 is redrawn as shown in Figure 9.10.

Figure 9.10 Equivalent block diagram to Figure 9.9.



(9.9)

(9.10)

By inspection of Figure 9.10 we have

The error  is given by

Fundamentally, a controller  is designed to achieve

two objectives for the closed‐loop system:

Tracking: If the reference is set as  so 

, then it is required that  as 

, i.e., the output must track the input.

Disturbance rejection: With the reference set as ,

then  no matter what load is on the motor. For

example, if a robot arm is to move , it must do so no

matter how much weight it is carrying.

9.2 Control of a DC Servo Motor



The ideas of tracking and disturbance rejection are now

illustrated through a series of examples. Specifically,

consider a DC servo system with open‐loop model 

 Various controllers are considered for both

tracking and disturbance rejection.

Tracking

A simple proportional controller given by  is

considered first.

Example 1 Tracking a Step Input

Consider the unity feedback control system given in the

block diagram of Figure 9.11 with , a

constant gain controller , and .

Figure 9.11 Tracking a step input with .

The output and error transfer functions are, respectively,



Suppose the objective is to track a step input. With 

 so that , the objective is to

have the error  as  as this implies that 

. Evaluating  we obtain

Note that the poles of the forward open‐loop transfer

function  reappear in the numerator of 

 after clearing the fractions in the denominator. In

particular the “ ” in  canceled the “ ” in . For 

,  is a stable polynomial and thus it

follows  is stable. By the final value

theorem we have

This controller works in terms of our objective as 

Where does stability come in? Let  so that



with . Then

a partial fraction expansion of  gives

where  and 

In the time domain we have

Recall that the poles of the closed‐loop transfer function

determine the form of the transient response. As the closed‐

loop poles  are in the open left half‐plane, the

transients die out. The real part of the closed‐loop poles 

 determine how fast the

transient  dies out and, as a consequence, one typically

chooses the gain  such that the poles of the closed‐loop

system are as far as possible in the left half‐plane.



Example 2 Tracking a Ramp Input

Consider the same system as in the previous example, but

now let the reference input  be a ramp function in

Figure 9.12. Specifically, let  where  is a

constant  with .

Figure 9.12 Tracking a ramp input with .

The error  is then

Note again that the pole of  at  canceled one

of the poles at  of . For  it follows that 

 is stable and thus  is stable.

By the final value theorem we have



Consequently, asymptotic tracking is not achieved as 

does not go to  as . However, as illustrated in

Figure 9.13, the motor does follow the input with a finite

error, which can be made small by taking  large.

Where does stability come in? Of course we needed stability

to be able to use the final value theorem. In more detail, let 

 so that

As the poles are in the open left half‐plane 

, it follows that

Again, with the closed‐loop poles in the left‐hand plane, the

transients die out.



Figure 9.13 Error with a ramp input and using a

proportional controller.

The simple proportional controller was not adequate to track

a ramp input  with zero final error. The answer to

asymptotically achieving zero error for this system lies in

considering a different controller!

Example 3 Integral Controller

Consider the system of Figure 9.14 with the controller 

, i.e., an integrator.



Figure 9.14 An integral controller.

Then

where we note that the denominator of  reappeared

in the numerator of  after clearing fractions. As a

consequence, the factor  in the numerator of  then

cancels the  in denominator of the input . If 

 was stable the final value theorem would give

The difficulty here is that  is not stable for any

value of . To see this, just note that 

 and recall that a

necessary condition for stability is that all the coefficients be

positive. To emphasize the stability aspect, let  for

which  has roots . The error

response is found by doing a partial fraction expansion of 

 as



The time response is then

The error  does not go to zero due to the complex‐

conjugate pair of unstable closed‐loop poles at 

. Remember, the fact that  says nothing

about the final value unless  is stable!

As we have shown by example, the difficult problem is not in

getting , but rather it is in making the

closed‐loop system stable. As shown earlier, a constant gain

(proportional) controller will give closed‐loop stability, but

not  with a ramp input. On the other

hand, an integral controller gives , but not

closed‐loop stability. Let's combine the two and see if that

will work. Specifically, let

This is called a proportional ( ) plus integral ( )

controller or PI controller.

Example 4 PI Controller



Again, consider the same system as in the previous

examples, except we use a PI controller as illustrated in

Figure 9.15.

Figure 9.15 A proportional plus integral (PI) controller.

From the block diagram, the error  is seen to be given

by

The denominator of the forward open‐loop system 

 reappears in the numerator of .

Consequently, the factor of “ ” in the numerator of 

cancels the “ ” in the denominator of . Then, if 

 is stable, the final value theorem gives

To check stability of  we use the Routh–

Hurwitz test. The Routh table is



The first column is positive if and only if  and 

 or

For example, with  and , the denominator of 

 is

Then, with  and , the

partial fraction expansion of  gives

The corresponding time response is then

In general, adding integrators to the controller tends to

destabilize (make unstable) the closed‐loop system while

adding proportional (constant gain) control tends to stabilize

the closed‐loop system.

Disturbance Rejection



Consider now the problem of getting the motor (robot arm)

to move a specified number of degrees with an external

load (weight) acting on it.

Example 5 Constant Load Torque with a Proportional

Controller

Consider the control system in the block diagram of Figure

9.16. Let

and let the disturbance be the constant load torque (see

Figure 9.17).

Set .

Figure 9.16 A proportional controller with a load acting on

the system.

It was shown in (9.10) that  where



Figure 9.17 Examples of torque loads on DC motors.

For  and  Example 1 showed that 

 The interest here is disturbance

rejection, that is, whether or not 

as .  is explicitly given by

 is the error in the position response due to the load

torque. The load torque is  and, as 



 is stable for , the final position error due

to this load torque is

The error

Rearranging, we have

The conclusion here is that the final output position depends

on the value of the load torque . This is usually not

acceptable as typically the load torque is unknown and it is

important to precisely position the motor regardless of the

load.2

We now show that a PI controller can achieve zero final error

for this system even with an unknown constant load torque

acting on it.

Example 6 Constant Load Torque with a PI Controller

Let  where 

. This is illustrated in the block diagram

of Figure 9.18.



Figure 9.18 PI controller for disturbance rejection.

The error  is given by

Note that, in contrast to the tracking case, only the

denominator of  i.e., “ ”, reappears in the numerator

after clearing the fractions in . This “ ” cancels the 

 in . Now, by the Routh test, 

is stable for  and , and so  is also

stable. The final value theorem then gives



(9.11)

Consequently, the load torque  has no effect on the final

position.

Interpretation of the PI Controller

We just analyzed the system given in the block diagram of

Figure 9.19. Specifically, with  

 and  can be chosen so that the closed‐loop system is

stable resulting in 

Figure 9.19  to cancel out the effect of the

load torque.

 is the voltage applied to the motor and is given by

In the time domain we have



(9.12)

To compute  we need to know the error . With 

 and  we have

and we note that  is stable as we are taking 

and . Then  is also

stable and by the final value theorem we have

which is due only to the output of the integrator. As 

 we see that the output of the integrator

goes to exactly that voltage needed to cancel the load

torque disturbance (see Figure 9.20)!



Figure 9.20 Shaded area is  and 

Summary of the PI Controller for a DC Servo

It has been shown that the controller 

with  and  will force the motor with

transfer function  to track inputs of the form

 with zero final error in spite of any

constant load disturbances. The control system designer

then wants to choose  and  so that the closed‐loop

poles are far in the left half‐plane in order have the

transients die out quickly. Remember, the closed‐loop poles

determine the transient response! Recall from (9.9) and

(9.10) that

Evaluating the error  gives



The gains  and  are chosen so that the poles of the

closed‐loop transfer function

satisfy . The error  is then

or, in the time domain, we have

As  and  it follows that

Proportional plus Integral plus Derivative

Control

A proportional plus integral plus derivative (PID) controller is

defined by

or, in the time domain,



This is illustrated in the block diagram of Figure 9.21.

Figure 9.21 A proportional plus integral plus derivative

controller.

The advantages of proportional plus integral controllers 

 have already been discussed. The derivative

control term  is used to force the transients to die out

faster. That is, as will be shown in the following, the term 

 allows the control designer to put the closed‐loop

poles further in the left half‐plane. However, before this is

done, a practical issue concerning the derivative controller 

 is discussed.

Practical Problem with Derivative Controllers

Differentiation of a signal with noise amplifies the noise!

Most signals contain high‐frequency low‐amplitude noise.

For example, a DC power supply takes a 60 Hz AC signal and

rectifies it into a DC voltage. Due to this process (full‐wave

rectification) there is a small amplitude 120 Hz signal (i.e.,

noise) on the DC output (see Figure 9.22).



Figure 9.22 (a) An error signal. (b) An error signal with

high‐frequency low‐amplitude noise.

If one measures the error signal  in the DC servomotor

system, the signal  is actually obtained where 

 is a noise term. Numerically differentiating this signal

gives the approximation

As the difference  may be of the same

order (or higher) of magnitude as , it

follows that  can be of the same order of magnitude as 

. For example, let this noise3 be given by 

. Thus, even

though  is quite small,  is

significant. In Chapter 6 optical encoders for measuring

angular position were discussed and modeled. With  the

time between samples of  it was shown the angular

speed  can be calculated using 



 but that this estimate does

contain high frequency noise.

Practical Implementation of Derivative Feedback

One possibility to deal with the fact that differentiation

amplifies high frequency noise is to replace  with 

 as shown in Figure 9.23. With 

(typically small) we have

At low frequencies  acts as a differentiator,

while at high frequencies it acts as a proportional gain. This

PID controller is illustrated in Figure 9.23.

Figure 9.23 Differentiation followed by low pass filtering.

The closed‐loop transfer function (taking ) is then



(9.13)

Note that the closed‐loop transfer function now has two

zeros due to the zeros of the PID controller. Recall from

Chapter 8 that zeros in the open left half‐plane contribute to

overshoot in the step response.

With the reference  a step input, the PID control setup

of Figure 9.23 results in differentiating this step function

which is not differentiable at  This is avoided by using

the PI‐D control architecture shown in Figure 9.24. The PI‐D

notation is used to indicate the PI controller is in the forward

path while the D controller is in the feedback path.



Figure 9.24 PI‐D implementation of derivative feedback.

To analyze this setup we first do a simple block diagram

manipulation to obtain the equivalent system of Figure 9.25.



Figure 9.25 Equivalent block diagram of Figure 9.24.

In order to set the values of  and , we take 

as it is small. Of course in the implementation 

 is used. As a result the block diagram of

Figure 9.25 reduces to that of Figure 9.26.

Taking  the closed‐loop transfer function is



Figure 9.26 Equivalent block diagram of Figure 9.25 with 

Note that using PI‐D control architecture there is now only

one zero in the closed‐loop transfer function in contrast to

the two zeros in (9.13) using the PID architecture of Figure

9.23.

Using the PI‐D controller  and  are,

respectively, given by

and



As the parameters  and  are chosen by the control

engineer, the coefficients of 

may be chosen arbitrarily. In other words, the location of the

closed‐loop poles can be placed anywhere in the left half‐

plane by the control system designer! This is the reason for

using derivative feedback in a DC servomotor controller.

In summary, the PI‐D controller for a DC servomotor allows

one to achieve tracking of step and ramp inputs, rejection of

constant load torque disturbances, and the capability to

place the closed‐loop poles at any desired location.

Typically, one desires the closed‐loop poles to be as far in

the left half‐plane as possible so that the transients die out

quickly. However, this usually means the control gains must

be quite large. To explain, let's put in some actual numbers

in the equations. The error  is given by

Suppose it is desired to put the closed‐loop poles at 

 and . Set

This means we must choose  or 

, and  or  as shown in

Figure 9.27. Let the system start from rest with 

and  Apply the step reference input 



 at  we have 

 and

Figure 9.27 Example of a PI‐D controller design.

Then the voltage at  applied to the motor is given by

This shows that just after the reference input 

 is applied, the output of the amplifier (the



(9.14)

input to the motor) is required to be . In particular, if 

 rad (  the amplifier is required to put out

40 V, which is about the saturation limit of a small DC servo

amplifier. The point here is that, in practice, one cannot

place the closed‐loop poles arbitrarily, but is limited by

physical constraints such as amplifier saturation. These

physical constraints were not included in the model on

which the design was based.

9.3 Theory of Tracking and

Disturbance Rejection

The examples of the previous section give the background

to present a general approach to tracking and disturbance

rejection of step inputs. The following definitions are needed

to present the general approach to tracking and disturbance

rejection.

Definition 1 Type Number

Let

where  Then  is said to be a type  system

which simply means it has  poles at the origin.

Example 7 Transfer Functions and Their Type Numbers

The following table gives some transfer functions and their

type numbers.



Definition 2 Type Number of Inputs

If the reference input  to a system is given by

then  is said to be a type  reference input.

Similarly, if the disturbance input  to a system is given

by

then  is said to be a type  disturbance input.

Theorem 1 Tracking with Zero Steady‐State Error

Consider now the general tracking problem as set up in the

block diagram of Figure 9.28.



Figure 9.28 Block diagram for tracking a type  input.

Here the transfer function of the plant (physical system)

is assumed to be strictly proper and the transfer function of

the controller

is assumed to be proper. The tracking error  is given

by

For some positive integer  let the reference input be

Then the error  goes to  i.e.,



if

The closed‐loop system is stable, i.e.,

has all of its roots in the open left half‐plane.

The type number of the forward open‐loop transfer function 

 is  or greater.

Remark The input is , and condition 

says that the forward open‐loop transfer function 

 must also contain at least a factor of .

Proof. We are given that conditions (1) and (2) hold. To

show that  as  we compute the error 

given by

By condition (2)  is at least type , so that 

. The factor  cancels the denominator

of  resulting in

By condition (1) the closed‐loop system is stable. That is,

the roots of the polynomial



satisfy  for  A partial fraction

expansion of  then gives4

In the time domain this becomes

Again, as  for  it follows that 

Theorem 2 Disturbance Rejection with Zero Steady‐State

Error

Consider now the disturbance rejection problem. The block

diagram of Figure 9.29 illustrates the setup.

The transfer function  is assumed to be strictly proper,

i.e.,



(9.15)

Figure 9.29 Block diagram for rejecting a type 

disturbance.

The controller transfer function is assumed to be proper,

i.e.,

The error  is then

The error  due to the disturbance is



For some positive integer  let the disturbance be given by

Then the error  goes to  i.e.,

if

The closed‐loop system is stable, i.e.,

has all of its roots in the open left half‐plane.

The type number of the controller transfer function  is

 or greater.

Remark In contrast to the tracking problem where 

 must be type  the controller  by itself

must be type 

Proof. We are given that conditions (1) and (2) above

hold. The error  is given by

By condition (2) of this theorem  and

therefore



By condition (1) the closed‐loop system is stable so 

 for . Consequently, as 

9.4 Internal Model Principle

The proofs of the tracking and disturbance rejection

theorems suggest how one can achieve the same results

with more general types of reference and disturbance

signals. This is illustrated in the following example.

Example 8 Rejecting a Sinusoidal Disturbance

The control system of Figure 9.30 has open‐loop transfer

function  A controller is to be designed that

tracks  and rejects the sinusoidal disturbance 

 i.e.,  Consider the controller 

, which was chosen so that its poles

contained the poles of 



Figure 9.30 Asymptotically rejecting a sinusoidal

disturbance.

With this choice for  the error  due to the

disturbance is

The factor  in the denominator of  reappears in

the numerator of  to cancel the factor  in the

denominator of  Then  if 

 is stable. To check this we

form its Routh table.



Stability requires  and  or

For example, choose  and  so that 

 has roots 

. The error response is

However, the transients die out slowly. We also have



 has the same denominator as  which is

stable for  and so  as well.

Remark   isn't a very good controller

as the transient response dies out slowly. The reader should

work Problem 11, which previews Chapter 10 by showing

how a controller can be designed to place the closed‐loop

poles at any location in the open left half‐plane.

This example and the previous examples can be

summarized as the Internal Model Principle [27–29]. This

just says that in order to track a given reference signal, the

forward open‐loop transfer function  must

contain the same unstable poles as the reference signal and

the closed‐loop system must be stable. Similarly, in order to

achieve asymptotic rejection of a disturbance, the forward

open‐loop controller  must (by itself) contain the same

unstable poles as the disturbance signal along with the

closed‐loop system being stable.

An approach to feedback design for phase‐locked loops from

the point of view of the internal model principle is nicely



presented in [30].

9.5 Design Example: PI‐D Control of

Aircraft Pitch

In [31] the transfer function from the elevator angle  in

radians to the pitch angle  in radians of a small aircraft

is given to be (see Figure 9.31)

Figure 9.31 Using the elevators to pitch the aircraft up.



With a step input of  rad, the design specifications are (i)

overshoot less than , (ii) rise time less than two

seconds, (iii) settling time less than 10 seconds, (iv) final

error less than . We take the maximum elevator

deflection to be  (0.436 rad), that is, 

This is a type one system so the final error should be zero as

long as the closed‐loop system is stable. However, an

integrator is desired to reject disturbances. Air turbulence

on the aircraft body and wings causes its pitch to change.

As shown in Figure 9.32 this disturbance is modeled as an

equivalent (unknown) deflection of the elevator angle. We

consider a unity‐feedback PI‐D controller as given in Figure

9.32. Let  with  rad or 

 degrees, and take .

How does one choose the feedback gains? We want the

closed‐loop poles far in the left half‐plane so that the

transients die out quickly, but we want to make sure the

controller gains are not so big as to saturate the actuator

(elevator angle). There can be significant overshoot due to

complex conjugate closed‐loop poles or due to the zeros of

the closed‐loop system. To start, notice that commanded

elevator angle  (output of the controller) is



Figure 9.32 PI‐D unity feedback control system.

where we set  to simplify the presentation. At 

this becomes

Now, as  and  rad it follows

that  to avoid saturation of the

actuator. We next compute the closed‐loop transfer function

 (again with  to simplify the calculations). First

set



The closed‐loop transfer function is then

The zeros of  consists of the open‐loop zero of 

and the zero of the PI‐D controller. The closed‐loop poles are

the roots of

Note that we could use  to set the value of the last

coefficient, then use  to then set the value of the



coefficient of  term, and finally set the coefficient of the 

term using  However, we then cannot set the value of

the  term. More generally, we can arbitrarily set only

three of the four coefficients of  A fundamental

problem in feedback control is to figure out how to choose

the gains. In this application we want to find the values of

the gains that achieve the above specifications.5 One

procedure to choose the gains is given in [32] as follows.

Set  and adjust the value of  “until the

closed‐loop response oscillates.”

This assumes the closed‐loop system can be made stable

for small values of .

With this value of  adjust the value of  so that the

error goes to zero.

Typically, the output will become even more oscillatory as 

 is increased and may even go unstable.

With these values of  and  adjust the value of 

to damp out the oscillatory response and reduce overshoot.

There is no assurance that this heuristic procedure will

result in a satisfactory response.

Set the proportional gain as , which is the largest

value it can have without saturating the actuator with a step

reference of 0.2 rad. With  fixed at this value,  is

varied from 0.2 to 2. Choosing  gives the response

shown in Figure 9.33.





Figure 9.33 Output responses in radians for the P and PI

controllers.

Finally the derivative gain  is varied from 1 to 2 (with 

) and the value  is chosen. The output

response is shown in Figure 9.34.

The response shown in Figure 9.34 does not quite meet

specifications. The fractional overshoot is 

 or  (not the specified 

) and at 10 seconds the output is within 

 or  of the final value (not

the  specified). However, the rise time is about

1.6 seconds, which is within the two seconds specification.

The corresponding command to the elevator is given in

Figure 9.35, which does not saturate.





Figure 9.34 Output response in radians of the PI‐D

controller with no actuator constraint.





Figure 9.35 Elevator command  in degrees.

The main difficulty in trying to achieve the specification is

the limitation on the proportional gain in order to prevent

saturation of the elevator angle. It turns out one could meet

the specifications by just increasing the gains and allowing

the elevator angle to saturate. However, as soon as an

actuator is in saturation, its output is stuck at the maximum

value until it gets out of saturation. For example, if the pilot

pitched up and then decided to immediately pitch down

instead, the plane would not react to the new command

until the actuator left saturation.

Rather than saturate the actuator, another approach is to

simply have the reference ramp up to 0.2 rad. Set the

reference input as

With this reference and, after many trials, the gains were set

as . Note that using a ramp

as reference input allowed the proportional gain to be much

larger. The pitch angle response  and reference  are

as shown in Figure 9.36. The corresponding elevator angle

for this response is given in Figure 9.37. The closed‐loop

transfer function is

Note that  so that







Figure 9.36 Pitch angle and ramp reference.





Figure 9.37 Elevator angle vs. time when using the ramp

reference input.

Of course, as the open‐loop system is type 1, we already

knew step reference input would be tracked. Substituting

the values of the gains gives

An important observation of  is that its two zeros at 

 essentially cancel its two poles at 

 and , respectively.6 This means that in the

partial fraction expansion of  the

coefficients of the  and  terms will be small

(why?). In fact, the inverse Laplace transform is

where the coefficient 0.0029 of  and the coefficient 

 of  are more than 20 times smaller in

magnitude than the coefficient  in front of 

Thus, though  and  die out slowly, their

effect on the transient response are relatively insignificant.

Parametric Uncertainty (Robustness)



(9.16)

Up to this point we have emphasized that feedback control

can provide tracking and disturbance rejection. However, an

extremely important property of feedback control is that it

will often work quite well even if the model parameters used

in the design are uncertain (as they almost always are). For

example, suppose the truth model7 of the transfer function

is

Using the same gains found using the design model ,

Figure 9.38 shows the pitch angle response using the both

the truth model  and the original model 

Figure 9.39 shows the corresponding elevator command

angles for the two models.





Figure 9.38 Pitch response using the design model 

and the truth model 

The two responses are quite close even though the

parameters (numerator and denominator coefficients of 

 and ) are quite different. This is a fundamental

advantage of using closed‐loop feedback! That is, even if

the controller is designed using a model whose parameter

values are somewhat off their actual values, the response of

the actual system can still be quite good. Problem 17 asks

you to show that the specifications can be met for a step

input (without saturating the actuator) if an I‐PD control

architecture is used.





Figure 9.39 Elevator commands  using the design model

 and the truth model 

9.6 Model Uncertainty and Feedback*

We have seen how feedback can provide a way to force a

system to asymptotically track a step or ramp input and

reject a constant disturbance, that is, to do tracking and

disturbance rejection. We now take a look at another reason

why feedback is such an important tool in the control of

practical systems; it significantly reduces the effect of

uncertainty in the model on the performance of the system.

To explain we again look at the DC motor of Figure 9.40

whose block diagram model is given in Figure 9.41.8

Figure 9.40 DC motor servo system.

Taking the speed as output, setting  and defining 

,  the block

diagram of Figure 9.41 reduces to that of Figure 9.42.



Figure 9.41 Block diagram of the DC motor servo system.

Source: Adapted from G. F. Franklin, J. D. Powell, and A.

Emami-Naeini, Feedback Control of Dynamic Systems,

Addison Wesley, Reading, MA, 1986.

Figure 9.42 Simplified block diagram of a DC motor servo

system.

Open‐Loop Control

Let's first look at open‐loop speed control. With 

 and   is given by



As  it follows that  is stable and therefore

The first problem we see is that the final speed depends on

the load torque  For now let's take  Then, with 

 the desired final speed, set

so that  We see that an accurate value of 

is required for this open‐loop control to work.

Closed‐Loop Control

Figure 9.43 is a block diagram of a simple proportional

feedback control system for speed. Note that this requires

adding a sensor (tachometer or optical encoder) to the

motor in order to measure/calculate speed.



Figure 9.43 Simple proportional feedback control of speed.

With  and  we have

As  and taking  it follows that 

 is stable and therefore

Taking  large enough so that  and 

 we have



Thus we have approximate tracking even though there is

uncertainty in the value of  and a load torque acting on

the system.

Speeding Up the Response

To continue comparing open‐loop with closed‐loop control,

let's look at speeding up response of the output. Figure 9.44

shows an open‐loop control system where the open‐loop

controller is . With  the desired final

speed and  set  Then

Figure 9.44 Open‐loop controller to speed up the response.

As  this was a stable pole–zero cancellation. In the

time domain we have



Without the open‐loop controller  but the

same reference input  the output response is

To be specific set  so that

Then  ten times faster using the open‐loop

controller . However, an accurate value of 

 is needed to obtain this speed up in the response in

addition to an accurate value of  Most importantly, if

there is a load torque the open‐loop controller cannot

reduce its effect on the output response.

On the other hand, let's go back to the closed‐loop control

system of Figure 9.43 (with  and )

where

Taking  it follows that



Thus  much faster due to the

feedback. With this closed‐loop feedback we do not need

accurate values of  or ; we need only take the

feedback gain  to be large. This is often referred to as

high‐gain feedback.

Sensitivity Reduction via Feedback

Let's continue to look at the speed control of the DC motor

with output

Suppose the actual value of  is  making 

 the error in our estimate of  Then

With the open‐loop controller  the presumed

response is  (see Figure 9.45).

Figure 9.45 Open‐loop speed control.



However, as illustrated in Figure 9.46, it is actually

Figure 9.46 Open‐loop speed control with uncertainty in 

The error is then

making the fractional error

The fractional change in the (Laplace transform of the)

output response is the same as the fractional change in 

 In particular consider the final values of the speed due

to the step input  We have



The fractional (percentage) error in the final speed is the

same as the fractional (percentage) error in 

Let's repeat this calculation, but using a proportional

feedback controller. The feedback structure is shown in

Figure 9.47. With  and   is

given by

Figure 9.47 Proportional feedback speed control.

Again consider an error in the value of  given by 

so that  Let's first compute the change in

the closed‐loop transfer function due to a change  in

the open‐loop system in a more general setting. To proceed

the closed‐loop transfer function is



and

The change in  due to a change in  is

where we computed

Then we can write

so that

Rearranging this last equation gives



(9.17)

For the proportional speed control feedback system of

Figure 9.47 this reduces to

With a step reference input  and 

 we have

The important observation of

is that the left side is the percentage change in the final

speed for the closed‐loop system while the right side is the

percentage change in the motor speed for the open‐loop

system.

Conclusion

The effect of parameter uncertainty  on the final

speed response  is much less for the closed‐loop

system compared with the open‐loop system.



Remark The quantity  in Eq. (9.17) is

called the sensitivity function. We have much more to say

about this function in Chapter 17.

Example 9 Operational Amplifiers

Consider the simplified model of an operational amplifier

(Op Amp) feedback control system given in Figure 9.48.

Figure 9.48 Operational amplifier feedback system.

The amplifier gain is written as

where  is positive and very large (  or higher) and  is

very small (  or smaller). We first compute the transfer

function  Let  be the voltage drop from

the  to the  terminals of the operational amplifier where



(9.18)

(9.19)

we note that  is very small (  Volts). Proceeding,

the current  into the  terminal of the Op Amp is

However, the input impedance of an Op Amp is very large (

 or larger) so . Using  and

setting  Eq. (9.18) becomes

Upon solving for  we obtain

As  is very large we have for 



On the other hand, for  it follows that 

Summarizing we have

With  Eq. (9.19) can be represented in block

diagram form as shown in Figure 9.49.

Figure 9.49 Block diagram representation of feedback for

an Op Amp.

Using the block diagram we get back the transfer function 

 as follows.



This is stable as  Further, as  is very large, for 

 this reduces to

With the values of the resistors  and  known, we

have a constant gain amplifier over the range 

despite not accurately knowing the values of  and  For

example, with  we have  though 

 and  vary considerably with temperature. In summary,

we have given up having a large gain ( ) that varies

with temperature to having a lower gain ( ) that is

reliably constant. What we have just discussed is known as

the negative feedback amplifier invented by Harold S. Black

in 1927 for use on vacuum tube amplifiers. This was a

critical invention for the Bell Telephone company at the time

for them to be able to transmit telephone calls over long

distances without distortion. It remains a critical invention

now for use with operational amplifiers.

Problems



Problem 1 Tracking

The open‐loop transfer is a double integrator given by 

 set in the unity feedback control system of

Figure 9.50.

Figure 9.50 Block diagram for a double integrator control

system.

With  the error is given by

Consider the controller with transfer function

For what values of  is the closed‐loop transfer function 

 stable?



Let the reference input be

For what values of  does



Problem 2 Tracking and Disturbance Rejection

Consider the control system of Figure 9.51 where 

Figure 9.51 Tracking and disturbance rejection of an

unstable system.

With  and  compute 

. For what values  does  Show work to

explain!

With  and  compute 

. What is value of the final error 

in terms of  Show work to explain!

With  and  compute 

. What is value of the final error 

in terms of  Show work to explain!



Problem 3 Tracking and Disturbance Rejection

Consider the control system of Figure 9.52 where the open‐

loop system is

Figure 9.52 Pole‐placement and disturbance rejection.

With  compute . For what values  does 

 Show work to explain!

With  compute . For what values 

and  are the closed‐loop poles at  where 

 Note that

Using the controller designed in part (b), what is the final

error  if the disturbance is a ramp

given by 



Problem 4 Tracking and Disturbance Rejection

Consider the control system in Figure 9.53 where the open‐

loop system is

Figure 9.53 Pole‐placement and disturbance rejection.

Let  and compute . For what values of 

does the error due the step disturbance go to zero? Show

work to explain.

Let  and compute .

For what values of  and  are the closed‐loop poles

at  where  Note that

Using the controller designed in part (b), compute the final

error  with  and 



Problem 5 Tracking and Disturbance Rejection

With  and  consider the control system in Figure

9.54.

Figure 9.54 Pole‐placement and disturbance rejection.

Let  and compute  For what values of

 and  does 

For what values of  and  does  with 

Now suppose  is a ramp input, i.e., . For

what values of  and  does 

Now suppose  is a step input, i.e.,  but

with disturbance given by  Compute 

 as a function of  and 



Problem 6 Tracking and Disturbance Rejection

In the feedback control system of Figure 9.55 let the

controller be 

Figure 9.55 Controller design for a non‐minimum phase

system.

Let  and  For what values of  will 

Let  and  For what values of 

will  Just give the answer and a brief explanation.

No new calculations are needed!

Let  and . For what values of 

will  Just give the answer and a brief explanation.

No new calculations are needed!



Problem 7 Disturbance Rejection

Figure 9.56 shows the setup for a DC motor servo control

system.

Figure 9.56 Disturbance rejection for a DC motor.

In parts (a)–(d), consider just the error due to the

disturbance 

Let  and . Compute 

Let  and . Compute 

Let  and . Compute 

Let  and . Compute 



Problem 8 Tracking and Disturbance Rejection for a

Satellite

The satellite is at just the right distance from the earth such

that it revolves around the earth at the same rate as the

earth rotates about its own axis. Consequently, the satellite

is always over the same position of the earth. It is required

that the antenna always point at the same position on the

earth so that signals are relayed between the United States

and Europe correctly (see Figure 9.57).

Figure 9.57 Geosynchronous satellite. 

 rev/day.

A mathematical model of the satellite is given by

where  is the moment of inertia of the satellite, 

is the torque due to the jets, and  is the angular position

of the satellite's antenna. The torque produced by the jets is

the control input (see Figure 9.58). In the  domain, the

model is



Figure 9.58 Satellite control jets.

A block diagram for this control system is shown in Figure

9.59 where  represents a disturbance torque such as

radiation pressure.



Figure 9.59 Block diagram for the satellite pointing control

system.

. Find  in terms of 

.

. Find  in terms of 

.

Tracking: Assume  in parts (c)–(i).

Let , i.e., . What type number must 

 have to track this input?

Will the controller  work to track  in

part (c)? Explain.

Will the controller  work to track 

 in part (c)? Explain.

Consider a gyroscope to stabilize the closed‐loop system.

The gyroscope is an instrument that measures angular

speed. The new control structure is shown in Figure 9.60.

Assume  and .



Figure 9.60 Satellite pointing control system with a

gyroscope added.



Show that  and, as a

consequence, the block diagram of Figure 9.60 reduces to

that of Figure 9.61.

Figure 9.61 Block diagram reduction of the satellite control

system with gyro.

What type number must  have to track ,

i.e., 

Will  work to track  in part (g)?

Explain.

Will  work to track  in part

(g)? For what values of  and ?

Disturbance rejection: For parts (j)–(k) use the block

diagram of Figure 9.61 with 

What type number must  have to reject  ?

Will  work to reject  in part (j)?

Explain.



Will  work to reject  in

part (j)? Explain. No need to use the Routh–Hurwitz test as

you can use the controller parameters to place the three

closed‐loop poles at 

Problem 9 Internal Model Principle

Consider the control system given in Figure 9.62.

Figure 9.62 Tracking of stable reference signals.

Let , i.e., . Will 

 work to asymptotically track ?

Explain.

Let  Will  work to

track ? Explain.

What conclusion can you reach about tracking stable

reference signals that asymptotically go to zero? Give a

brief explanation of your conclusion.



Problem 10 Rejecting a Sinusoidal Disturbance

Consider the feedback system of Figure 9.63 with a step

reference input  and a sinusoidal disturbance

Figure 9.63 Rejection of a sinusoidal disturbance.

Consider the controller  which was chosen to

have a denominator that was the same as that of the

disturbance. For what values of  and  will the final

disturbance error  be zero?

Keeping  and using the same controller

designed in part (a), let . For what values of 

 and  is  finite? Compute  in terms of 

 and .



Problem 11 Rejecting a Sinusoidal Disturbance

Let's reconsider Example 8 whose block diagram is repeated

in Figure 9.64.

Figure 9.64 Asymptotically rejecting a sinusoidal

disturbance.

We give a “sneak preview” of the next chapter by letting the

controller have the form

Note that  is proper, but not strictly proper. The factor 

 is required by the internal model principle in order to

asymptotically reject the disturbance. As explained in

Chapter 10, the factor  will allow us place the closed‐

loop poles in any desired location.

Compute 



Use your answer in part (a) to show that the controller

parameters  can be chosen so that the

denominator of  is 

 where coefficients 

 can be arbitrarily specified.



Problem 12 Tracking and Disturbance Rejection

Consider the missile in Figure 9.65 where the control

problem is to keep the angle  zero so the missile axis is

aligned with its velocity vector  The control input is the

thrust angle .

Figure 9.65 Missile attitude control.

The block diagram for this missile control system is given in

Figure 9.66.



Figure 9.66 Missile control system.

The transfer function between the thrust angle  and  is

The gyro feedback is given by  The problem is

to keep the missile pointing in the same direction as its

velocity, that is, keep  by varying the thrust angle .

Due to aerodynamic forces on the missile, the velocity and

attitude get misaligned. We can model these aerodynamic

forces as the disturbance  as shown in the block

diagram. In all that follows, let . The objective is

design a controller that eliminates (or at least reduces the

effect of) the disturbance  on maintaining 



Show that

Let  and . Compute 

 Explain and show work.

Let  and . Compute 

 Explain and show work.

Let  and . Can 

 be made to go to zero? Explain and show work.



Problem 13 Tracking and Disturbance Rejection

Consider the control system given in Figure 9.67.

Figure 9.67 Unity feedback control system.

The error can be written in the form 

. Find  and  in

terms of  and .

Let  in the remaining parts (b)–(g).

With , what is the minimum type number 

must have to track 

With , will the controller 

 work to make  Explain why or why

not. Show work.

With  so that , will

the controller  work to make  If

so, for what values of ? Explain and show work.

Let  so that . What

is the minimum type number that  must have to reject

this disturbance?



Let  and  Will the controller 

 work to make  Explain and

show work.

Let  and  Using the controller 

, compute  Explain and show work.



Problem 14 A Lead Controller Approximates a PD

Controller

A lead controller  is given by

For , i.e., , we have 

 showing that it is

approximately a proportional plus derivative (PD) controller.

For , .

In other words, at low frequencies,  acts as a

proportional plus derivative controller while at high

frequencies it is a proportional controller. This is in contrast

to a differentiator  whose gain goes to  as 

. Consider the control system given in Figure 9.68.

Figure 9.68 Control system with both a lead and an

integral controller.

As indicated in Figure 9.69, for the purposes of design use

the approximation



Figure 9.69 Lead controller replaced by a PD controller to

determine the gain values.

For the controller  compute  and 

 that place the closed‐loop poles at .

For the values of , and  found in (a), use MATLAB

to find the closed‐loop poles of the actual system, that is,

with the controller .

In the following use 

Set  and  Is  Explain.

Set  and  (

Compute 

Set  and  Is  Explain.

Simulate this system with  and 

Plot the error  and  on separate graphs.



Problem 15 Internal Model Principle

Consider the control system in Figure 9.70.

Figure 9.70 Internal model principle.

With  and  can the controller 

 be used to have  Explain your

reasoning.

With  and  can the controller 

 be used to have  Explain your

reasoning.



With the input , consider the controller

Show that the error  is given by

Using the  the closed‐loop poles can be chosen as

desired. The procedure to obtain this controller  will

be given in Chapter 10.



Problem 16 Internal Model Principle

Consider the DC motor control system of Figure 9.71 with

open‐loop transfer function . Let 

or . Using the controller  it was

shown in Example 8 that this reference input could be

asymptotically tracked. However, the performance was poor

as the transient response died out slowly.

Figure 9.71 Tracking a sinusoidal signal.

Let's add a tachometer to the shaft of the DC motor to

provide a speed measurement and see if it can be used to

obtain better performance. The output of the tachometer is

a voltage  proportional to the motor's speed, i.e., 

 where  is an adjustable gain. See Figure

9.72.



Figure 9.72 Using a tachometer to speed up the system

response.

Along with the tachometer, let . Show

that using the gains  and  the closed‐loop

poles may be placed at any desired location.

Repeat (a) with . What is the

advantage of including an integrator in 



Problem 17 Pitch Control with a I‐PD Controller

As in the text, again consider the pitch control of the aircraft

with transfer function

The design specifications are still (i) overshoot less than

10%, (ii) rise time less than two seconds, (iii) settling time

less than 10 seconds, (iv) final error less than 2%. We take

the maximum elevator deflection to be  (0.436 rad ,

that is,  Here the controller is using the I‐

PD architecture shown in Figure 9.73. This results in the

elevator command being given by (taking τ = 0)

In particular, at  this becomes 

 As a

consequence,  and  may be taken to be much larger

without saturating the actuator compared with their

corresponding values in the PI‐D controller. Further, the

closed‐loop system will have only the single zero of the

open‐loop transfer function 



Figure 9.73 I‐PD unity feedback control system.

Let  with  rad (11.5 degrees) and

take .

Compute the inner loop transfer function 

Compute the overall closed‐loop transfer function 

Are the closed‐loop poles the same as those obtained using

the PI‐D and PID controllers?



Make and run a simulation of this system. What are the

values of  and  you chose? What was the rise

time (time to ), settling time (  criterion), and

overshoot of the response with 

Compute  with the values of gains you chose in part

(d). Give it in pole–zero form. Are there any stable pole–zero

cancellations?

Notes

1 An encoder puts out a pulse every time the rotor rotates a

certain distance. For example, an encoder with 

 pulses/rev puts out a pulse everytime the

motor shaft turns  rad. These pulses are counted

by the encoder and this (integer) value is sent to the

computer controller. Multiplying this integer number of

pulses by  gives the position of the motor

in radians. See Chapter 6.

2 Note that if the gain  can be made large, then the

disturbance term  could be made negligible.

3 This could be a model for the noise on the DC bus of an

amplifier when it uses a full‐wave rectifier to convert the

120 Hz AC outlet to DC.

4 This is assuming the poles are distinct. If they are not, the

proof is easily modified with the same final result.

5 Presumably these specifications are considered necessary

by pilots of the aircraft. When such specifications are first

presented it is not obvious that a controller can be found

to meet them.



6 This cancellation is between stable poles and zeros. This

situation is not uncommon and can be best understood

from root locus theory. See Chapter 12.

7 By “truth” model we simply mean we are taking this to be

the exact model of  However, the “exact”

model is never known.

8 This presentation is adapted from [33].
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Pole Placement, 2 DOF Controllers,

and Internal Stability

Given a transfer function model  we first show how to

design a controller  so that the closed‐loop poles can

be placed at any desired location! It turns out to be a quite

straightforward procedure. However, the zeros of 

along with those of  often result in significant

overshoot in the closed‐loop step response. Consequently,

we also show how this overshoot can often be eliminated by

passing the step reference input through a filter 

(transfer function). This use of two transfer functions 

and  is referred to as a two degree of freedom (2

DOF) controller. Finally we present the notion of internal

stability, which requires there be no unstable pole–zero

cancellations between the controller transfer function 

and the model transfer function .

10.1 Output Pole Placement

In using the internal model principle to track a reference

signal  or reject a disturbance , the fundamental

difficulty was to make the closed‐loop system stable as it is

straightforward to make  contain the poles of 

, and  contain the poles of . Given a

physical system described by a strictly proper transfer

function, we now show how to design a controller that

guarantees closed‐loop stability while achieving our tracking

and disturbance rejection objectives.



Example 1 Pole Placement for a Second‐Order Control

System

Consider the control system of Figure 10.1 with the open‐

loop transfer function given by .

Figure 10.1 Pole placement for a second‐order system.

In this example we just want to be able to track a step input.

Because  is type 1 this is accomplished by simply

designing  so that the closed‐loop system is stable.

The pole placement controller is given by

To explain, the denominator of  is chosen to be a

monic1 polynomial of degree 1 less than the denominator

polynomial of . The numerator of  is

then chosen to have the same degree as its denominator.2

Choosing  to have this form we now show that ,

and  can be found to put the closed‐loop poles at any

arbitrarily chosen location. We have



With

the desired denominator of  we must set

Equating coefficients of the powers of  gives

or

If we want the three closed‐loop poles at  we

simply set



Going from the second to the third line we did a multinomial

expansion of third order. See the Appendix on Multinomial

Expansions at the end of this chapter for multinomial

expansions of orders 2 through 7. This control system is

illustrated in Figure 10.2.

Figure 10.2 Pole placement for a second‐order system.

Example 2 Disturbance Rejection for a Second‐Order

Control System

Let's consider the previous example where we also want to

reject a constant disturbance as well. The control system is

shown in Figure 10.3.



Figure 10.3 Disturbance rejection for a second‐order

system.

In order to arbitrarily place the closed‐loop poles,  is

chosen to have the form

To explain,  is written as the product of the two factors

 and . It must have the factor  to reject the

step disturbance according to the internal model principle.

The factor  is determined as follows. We look at 

 and note the denominator of  has

degree 2. The denominator of  is then set to be a

polynomial of degree 1 less than the denominator of ,

which in this case is . The denominator of  is

now , which is degree 2. The numerator of 

 is then set to be a polynomial of this same



degree, which in this example is . Note that 

 is proper, but not strictly proper.

Let's compute . We have

With

the desired denominator of  set

This requires setting the coefficients of  as

Example 3 Tracking a Sinusoid



Consider the control system shown in Figure 10.4. It is

required that this system asymptotically track the reference

signal , i.e., .

Figure 10.4 Asymptotic tracking of a sinusoidal input.

In order to arbitrarily place the closed‐loop poles,  is

chosen to have the form

To explain,  must have the factor  to track the

sinusoidal reference input according to the internal model

principle. The denominator of  is chosen to have

degree 1 less than the denominator of . Finally, the

numerator of  is set to have the same degree as its

denominator. Note that  is proper. Proceeding, the

error is given by



With

the desired denominator of  set

This requires setting the coefficients of  as



Example 4 Pole Placement

Consider the control system given in Figure 10.5 where

It is required to track step inputs and reject step

disturbances.

Figure 10.5 An unstable system with a right half‐plane

zero.



To arbitrarily place the closed‐loop poles,  is chosen to

have the form

 must have the factor  to track the step input and

reject the step disturbance according to the internal model

principle. The denominator of  is chosen to have

degree 1 less than the degree of . Finally, the

numerator of  is set to have the same degree as its

denominator. Then

The equation that must then be solved is

In matrix form this is written as



(10.1)

Solving for the coefficients of  we obtain

This simplifies to

To set the closed‐loop poles at  we

simply set3



(10.2)

Using (10.1) with the four closed‐loop poles all placed at 

 the controller is

Figure 10.6 shows the unit step response of the closed‐loop

system. The overshoot is unacceptably high and will be

addressed in Section 10.2. See Figure 10.24 and Problem 9.

Figure 10.6 Step response with all poles at .

Disturbance Model

Our approach to disturbance rejection depends on being

able to model the disturbance as going into the system at

the same location as the control input. Though this may

seem quite restrictive, it is often possible to do this as is

now shown. Recall the equations of the DC motor given by



Here the physical input is the voltage  in the first

equation while the disturbance (load torque) is in the

second equation. In this model the disturbance does not

enter the physical system at the same place as the input 

. We now show how to determine an equivalent

disturbance that enters in the same place as the input

voltage. Taking the Laplace transform of these equations

with zero initial conditions we obtain

After some rearrangement this set of equations can be

written as

The corresponding block diagram is given in Figure 10.7.



Figure 10.7 Block diagram of a DC motor.

A simple block diagram manipulation results in Figure 10.8.

Figure 10.8 Block diagram with the disturbance entering

via the input.

From Figure 10.8 the equations of the DC motor can be

written in the equivalent form



The equivalent disturbance at the voltage input is now 

. As  making 

 for  we take . The equations

of the DC motor with an equivalent voltage disturbance are

given by

Remark A constant load torque  is equivalent to a

constant current disturbance of , which in turn is

equivalent to a constant voltage disturbance of 

Effect of the Initial Conditions on the Control

Design

We have always taken the initial conditions to be zero to

design a feedback controller. Let's see what happens if they

are not zero. Let a system be described by



The Laplace transform of this equation is then

or

A key observation here is that the denominator of the initial

condition term is the same as the denominator of the open‐

loop transfer function. A block diagram representation is

given in Figure 10.9.

Figure 10.9 Including the initial conditions in the block

diagram of a system.

Consider a unity feedback controller for this system as

shown in Figure 10.10.



Figure 10.10 Feedback control system with the initial

conditions included.

Let's design  so that the closed‐loop transfer function 

 is stable. The controller

places the closed‐loop poles at . With nonzero

initial conditions we then have

Solving for  we have



The initial condition response  is then

Note the cancellation of the denominator of the initial

condition term by the denominator of the open‐loop transfer

function. We have

Further



Conclusion

The closed‐loop initial condition response  will

always have the same denominator as closed‐loop transfer

function . So, as long as the closed‐

loop system is stable, the initial condition response

asymptotically goes to zero.

Figure 10.11 is an equivalent block diagram to that of Figure

10.10. In this block diagram it looks like the initial condition

term  is now a “disturbance”. Does 

 need to contain a pole at  to reject this

“disturbance”? The answer is no!

Figure 10.11 Block diagram equivalent to Figure 10.10.

In this example the initial condition “disturbance” 

 has a pole at . However,  has a

zero at  so that the closed‐loop transfer function 

 also has a zero at , i.e.,



This cancellation of the factor  is simply because we

divided  by  so that Figure

10.11 would be equivalent to Figure 10.10. It may perhaps

be helpful to keep with the block diagram of Figure 10.10 for

representing initial conditions in order to avoid confusion

with disturbance rejection.

Example 5 Inverted Pendulum

Figure 10.12 shows an inverted pendulum on a cart. The

pendulum rod of length  is free to rotate about the cart

pivot. The control objective is to apply an input force  to

the cart to keep the pendulum angle at .



Figure 10.12 Inverted pendulum on a cart. The center of

mass of the pendulum rod is at 

In Chapter 13 we derive a mathematical model of the

inverted pendulum. To summarize that model,  is the

mass of the cart,  is the mass of the pendulum rod of

length  is the moment of inertia of the

pendulum rod about its center of mass at 

and  is the input force. The position  of the cart and the

angle  of the rod are both measured. With  small the

center of mass of the rod is well approximated to be at 

. With an abuse of notation we also let  denote

the system output as defined by



As shown in Chapter 13 the transfer function from  to 

 is

where

Consider the unity feedback control system for the inverted

pendulum shown in Figure 10.13.

Figure 10.13 Closed‐loop controller for the inverted

pendulum.



With no reference or disturbance input, the controller need

only stabilize the closed‐loop system. We design a minimum

order controller that allows arbitrary pole placement to

stabilize the closed‐loop system. This requires choosing 

 to have the form

With  the output  satisfies

Solving this for  we obtain

Collecting terms in  the denominator of  is rewritten

as



With  the

desired denominator of  we must set

In matrix form this becomes

Inverting the matrix gives



The parameter values for the QUANSER [34] inverted

pendulum results in  so

Choosing the seven closed‐loop poles to be at  the

controller is given by

See Problem 22 where you are asked to simulate this control

system.

Warning

This controller results in a closed‐loop system having what

are called small stability margins (see Section 11.9). This

means that if the parameter values of  are off by a

little bit from their actual values, this controller, which was

designed based on , may not stabilize the closed‐

loop system. Further, this closed‐loop system also has a



high sensitivity which means small disturbances may cause

the pendulum angle to swing so far from  that the

linear model  is no longer a valid approximation of

the nonlinear pendulum model. Consequently this controller 

 based on  may not be able to return the

pendulum to the upright position. Don't despair! Chapters

13 and 15 show how to design a statespace controller for

the inverted pendulum which has good stability margins and

low sensitivity as explained in Chapter 17.

Remarks on Pole Placement In all of the examples the

controller was proper, but not strictly proper. Often it is

desirable to have a strictly proper controller (see Section

11.6). This is easy to do as shown in Problems 13 and 14.

The general statement and proof of the pole placement

algorithm is given in the Appendix Output Pole Placement of

this chapter.

10.2 Two Degrees of Freedom

Controllers

We have seen that a proportional plus integral (PI) controller

typically results in a left half‐plane zero in the closed‐loop

transfer function and in Chapter 8 we saw that such a zero

indicates there will be overshoot in the step response. More

generally,  having zeros implies significant

overshoot in the closed‐loop step response. In this section

we show how this overshoot can often be eliminated by

passing the step reference input through a filter 

(transfer function). This use of two transfer functions 

and  is referred to as a 2 DOF controller. To show how

this is done, consider the PI‐D servo motor control system

given in Figure 10.14. You may think of the measurement of 



 as being obtained from a tachometer (see Figures 6.26

and 6.30) or from the backward difference computation of

an optical encoder signal (see Section 6.5).

Figure 10.14 PI‐D controller.

A simple block diagram manipulation gives the equivalent

system block diagram of Figure 10.15.



Figure 10.15 Equivalent block diagram of Figure 10.14.

First let . We have

As the parameters , and  are chosen by the control

engineer, the coefficients of 

may be chosen arbitrarily. In other words, using the

controller gains , and  we can place the closed‐loop

poles at any desired location. Let the desired location of the

closed‐loop poles be , which requires

choosing these controller gains so that

That is, we set



(10.3)

Let's now take a look at the output  due to a step

input. In particular we are interested in whether or not there

is overshoot in the step response. With  we have

Using the fact that  is stable the final value theorem

gives

We are able to put the closed‐loop poles at 

and achieve asymptotic tracking. However, as seen in Figure

10.16,  will exhibit overshoot.

As we now explain, this control system will always have

overshoot in a step response.



Figure 10.16 Step response of the system of Figure 10.14

with the three closed‐loop poles all at .

Stable Type 2 Systems Have Overshoot

The step response of a type 2 closed‐loop stable system will

have overshoot. With



Figure 10.15 may be redrawn as shown in Figure 10.17.

 is type 2 and the closed‐loop transfer function given

by  is stable by choosing the controller gains ,

and  as previously shown. By Theorem 2 in the

Overshoot Appendix of this chapter, the step response of

this system must have overshoot.

Figure 10.17 Stable type 2 system with a step input.

Stable Systems with Real Poles and No Zeros

Do Not Have Overshoot

What kind of closed‐loop systems do not have overshoot in

their step responses? Theorem 4 of the Overshoot Appendix

shows that a step response will not overshoot if the closed‐

loop transfer function is (i) stable, (ii) has real poles, and (iii)

no zeros. In our example the closed‐loop system is

We choose the  to be real and positive, but we

need to get rid of the zero at  where .



As  the transfer function

is stable and we use it as an reference input filter.

Specifically, consider the 2 DOF control system shown in

Figure 10.18.

Figure 10.18 Two degree of freedom controller to eliminate

overshoot.

With , we then have



(10.4)

(Note that this final expression for  involved a stable

pole–zero cancellation.) The step response of the control

system of Figure 10.18 is shown in Figure 10.19. This has no

overshoot as guaranteed by Theorem 4 in the Overshoot

Appendix.



Figure 10.19 Step response of the system of Figure 10.18

with the closed‐loop poles at .

We still have asymptotic tracking because, as  is

stable, it follows by the final value theorem that



Another way to see this asymptotic tracking is to define

so that  is the input to

feedback loop and . Also, as the

controller  is type 1, this controller also rejects

constant disturbances! This method works as long as the

poles of the closed‐loop transfer function are real and the

zeros are in the open left half‐plane.

Will this 2 DOF controller still track a ramp input? Let 

 be the ramp input so that

 is the input to the feedback

loop and, as  is type 2, the output  will

asymptotically track . However, if the

reference input is  then the output will

asymptotically track  (why?).



Stable Systems with Real Poles and a Single

Right Half‐Plane (RHP) Zero Do Not Have

Overshoot

Let's now consider an example with a right half‐plane zero.

Example 6 One Right Half‐Plane Zero

Consider the feedback control system of Figure 10.20 where

the open‐loop system transfer function is

To arbitrarily place the closed‐loop poles,  is chosen to

have form

Figure 10.20 Open‐loop system with a right half‐plane

zero.



 is type 1 and, with a stable closed‐loop, step inputs

will be tracked. Set  and calculate

Let the desired closed‐loop poles be at , which

requires

Solving the set of linear equations



the coefficients of the controller  are

The closed‐loop response  is then

Choose the location of the closed‐loop poles so that the zero

at  is in the open left half‐plane.4 Then the transfer

function

is stable, and used as a reference input filter as shown in

Figure 10.21.



Figure 10.21 Two degree of freedom controller to eliminate

overshoot.

The closed‐loop response  is now

As  is stable with all real poles and only one right

half‐plane zero, Theorem 5 in the Overshoot Appendix of

this chapter guarantees there will be no overshoot.



However, the system will have undershoot. Recall from

Chapter 8 (see page 222) that any stable closed‐loop

transfer function with an odd number of real right half‐plane

zeros will have a step response with undershoot [26].

Example 7 Two Right Half‐Plane Zeros

Recall Example 4 where we considered the control system

shown in Figure 10.22.

Figure 10.22 Closed‐loop system with two right half‐plane

zeros.

We found that a controller of the form

allows us to place the closed‐loop poles arbitrarily in the

open left half‐plane while being able to track step inputs

and reject constant disturbances. However, as shown in

Figure 10.6, the overshoot in the step response was

unacceptable. We now show how a reference input filter can

be used to eliminate overshoot. With , and

choosing the gains as in (10.1) of Example 4, we have



Note that the zeros of the closed‐loop transfer function

consists of the zeros of the controller  and those of

the open‐loop model . As usual let

Setting  the closed‐loop response 

 is now

As shown in (10.2), with the four closed‐loop poles all set at 

, the controller is

Thus the closed‐loop transfer function has two right half‐

plane zeros at  and  and one left half‐



(10.5)

plane zero at . To develop a reference filter for

the two right half‐plane zeros , we form the polynomial

Then the filter

will prevent overshoot from the two right half‐plane zeros at

2 and  (see Theorem 6 in the Overshoot Appendix).

Finally the filter

will prevent overshoot due to the left half‐plane zero at 

. The complete block diagram for this control

system is given in Figure 10.23.

Figure 10.23 Reference filter for a system with 2 right half‐

plane zeros.



Figure 10.24 on the next page is the unit step response of

this 2 DOF controller with the closed‐loop poles at .

Problem 9 asks you to simulate the step response of this

system with and without the reference input filter.





Figure 10.24 Step response of the 2 DOF control system of

Figure 10.23.

Important Remarks

Given any open‐loop model of a physical system, there are

fundamental limitations that a feedback controller cannot

overcome. These limitations especially are revealed as a

robustness issue when trying to control a system which has

poles in the open right half‐plane [35, 36]. This means that

a controller designed based on the model 

may result in the closed‐loop system being unstable if the

actual system is only a little different. For example, Problem

9 part (c) asks you to use the same controller  as

earlier, but set . You should see that the

closed‐loop system is unstable. This will be discussed in

more detail later after studying Nyquist theory. (See Problem

30 of Chapter 11.)

This “toy” example also has a zero in the open RHP which is

close to the two poles there. As explained in Chapter 17 this

is a strong indication there is no controller that can achieve

a robust closed‐loop system.

Eliminating Overshoot with a 2 DOF Controller

With reference to Figure 10.25, which is a block diagram of a

2 DOF controller, let's look more generally at how a

reference filter  is used to eliminate overshoot [5, 6,

37, 38].



Figure 10.25 Two DOF controller.

Let  be at least type 1 and let

where  has real roots which are all in the open left half‐

plane.

 has no right half‐plane zeros.

Let  have all of its roots in the open left half‐plane. Set

Then the inverse Laplace transform of

will not have overshoot and . See Theorem 4 in

the Overshoot Appendix for the proof.

Note that the roots of  may be real or complex; they

need only be in the open left half‐plane.



 has one right half‐plane zero.

Let  where the roots of  are all in

the open left half‐plane and . That is,  has one

right half‐plane zero. Set

Then the inverse Laplace transform of

will not have overshoot and . See Theorem 5 in

the Overshoot Appendix for the proof. However, this step

response will have undershoot. Also, the further one places

the closed‐loop poles in the left half‐plane (to decrease the

settling time) the larger the magnitude of the undershoot.

See Theorem 10 in the Undershoot Appendix for the proof.



 has two right half‐plane complex conjugate zeros.

Let  with  and

with the roots of  in the open left half‐plane. Then 

 has a complex pair of zeros in the open right half‐

plane at . Set the reference input filter

as

Then the inverse Laplace transform of

will not have overshoot and . See Theorem 6 in

the Overshoot Appendix for the proof.



 has two right half‐plane real zeros.

Let  where the roots of  are

all in the open left half‐plane and . That is, 

 has two real zeros in the open right half‐plane. With

and  set the reference input filter as

Then the inverse Laplace transform of

will not have overshoot and . See Theorem 6 in

the Overshoot Appendix for the proof.

Remark Actually part (d) can be taken into account in part

(c) by simply letting . That is, set  and 

 so that



 Overshoot can always be eliminated [37].

Let  be the open‐loop transfer function model of the

system with . Then there exists a 2 DOF controller

such that the step response does not have overshoot and 

.

The proof of this is given in [37]. Also see page 163 of [5].

The proof of this result is constructive, but it turns out that

in general one cannot arbitrarily place the closed‐loop poles

as in cases (a)–(d).

Remark If  has all its zeros in the open left half‐plane

and the reference input  is smooth enough (it can be

continuously differentiated enough times), then there is a 2

DOF controller that can track the reference input with zero

error with the closed‐loop poles arbitrarily placed in the

open left half‐plane. This is shown in [39] (see pages –).

However, in general, such a design is not robust to changes

in the controller parameters [38].

10.3 Internal Stability

Figure 10.26 shows the standard unity feedback control

system.



(10.6)

(10.7)

(10.8)

Figure 10.26 Unity feedback control system.

There are two external inputs to this system, the reference

input , and the disturbance input . We are

interested in their effect on , and , which is

a total of six transfer functions. These six transfer functions

are given in Eqs. (10.6)–(10.8). This is the first time we have

considered the transfer functions from the external inputs 

 and  to the input  of the physical system.

These transfer functions must also be stable as we don't

want the input to the physical system to go unbounded. In

fact we require all six of these transfer functions to be

stable.



(10.9)

Remark There are six transfer functions in (10.6)–(10.8)

with two of them equal and two of them differing by a minus

sign. So there are in effect only four different transfer

functions and these four transfer functions are referred to as

the “gang of four” [40].

Definition 1 Internal Stability

The system of Figure 10.26 is said to have internal stability

(or be internally stable) if the six transfer functions of

(10.6)–(10.8) are stable.

Let the system model transfer function and the controller

transfer function be, respectively,

 is assumed to be strictly proper, i.e. 

 and  is assumed to be

proper, i.e., . Let's now substitute

the expressions (10.9) into (10.6)–(10.8) and clear the

fractions to obtain



The polynomial

is called the characteristic polynomial of the closed‐loop

system.5 This shows that all of the transfer functions of

(10.6)–(10.8) are stable if all the roots of the characteristic

polynomial are in the open left half‐plane.

Observation Note that , which

shows that the zeros of the closed‐loop are simply the zeros

of the open‐loop system  and the zeros of the

controller . Feedback does not change the locations of

the zeros.

Though up to now we have not stated it explicitly, we have

been assuming that both  and 

are coprime. We now define what we mean by coprime.

Definition 2 Coprime Polynomials



Two polynomials  are coprime if there is no 

such that .

Example 8 Coprime Polynomials

Let

Then the polynomials  and  are not coprime as

Note they both have the factor .

Example 9 Coprime Polynomials

Let

Then the polynomials  and  are coprime as 

 only if  and .

Note that  and  are coprime if and only if they do

not have a common factor. When we write



and say that  are coprime, this is the same as

saying that  and  have no factors in common.

Similarly for .

Definition 3 Coprime Transfer Functions

We say that the transfer function

is a coprime transfer function if  and  are coprime.

Remark As mentioned previously we are going to always

assume that the transfer functions  and  are

each coprime transfer functions, but we will use this

terminology at times just for emphasis. This is a very

sensible assumption. For example, suppose the transfer

function of a physical system is

Then there is no sense in writing this as

and the same holds for a controller transfer function.

Unstable Pole–Zero Cancellation Inside the

Loop (Bad)



Recall that we are assured all transfer functions are stable if

all the roots of

are in the open left half‐plane. However, we have to be

careful that when computing the closed‐loop transfer

functions we actually have the full characteristic polynomial

in the denominator. We can sometimes be fooled when

there is a pole–zero cancellation between the controller

transfer function  and the model transfer function 

. We explain this issue in the following examples.

Example 10 Unstable Pole–Zero Cancellation

With  and  consider the control

system of Figure 10.27 whose open‐loop transfer function is

Figure 10.27 Unstable pole–zero cancellation.

The error  is



Suppose we choose the controller to be

The error  becomes

First note that the closed‐loop characteristic polynomial

is not stable. However, in computing  we calculated



This calculation used an unstable pole–zero cancellation to

get rid of the pole at . This is also seen in

where the unstable zero in  cancels the unstable pole

in .

On the other hand, in computing  we calculated

There is no unstable pole–zero cancellation and thus 

is unstable resulting in  due to the unstable

pole of  at . Recall in Definition 1 that internal

stability requires all the transfer functions of (10.6)–(10.8) to

be stable. In this example,  is stable (due to

unstable pole–zero cancellation), but  is not

stable.

Example 11 Unstable Pole–Zero Cancellation

Let's reconsider the previous example with . Even

with the disturbance zero we show that this pole–zero

cancellation will not work. To explain, the model of the

physical system is

However, no model is perfect and, in particular, we do not

know the pole is exactly at . Our model is really



where . That is, the model used for the system says

that  while we only know that , i.e., it is close

to, but not exactly equal to 1. In the previous example we

chose the controller as

We then have

The polynomial

is unstable for all  as the coefficient of the  term is

negative (Routh–Hurwitz criterion). Further

so that the numerator term  cancels the 

 in the denominator only if  is exactly equal to 1.

This will not happen in practice!

Example 12 Unstable Pole–Zero Cancellation

Consider the closed‐loop control system of Figure 10.28 in

which the open‐loop system has transfer function



Figure 10.28 Unstable pole–zero cancellation.

The error  is given by

Suppose we make the (unrealistic) assumption that this

model of the system is exact. Then, if one chooses

it follows that



With  and this “perfect” unstable pole–zero

cancellation between the numerator of  and the

denominator of  we have  stable so that by the

final value theorem

We might think that if we choose the gain  large enough,

then our final error will be insignificant and this controller

will be acceptable. However, this is not so! To explain,

consider



This shows that a step reference input  will

cause the actual input  to the physical system to be

unbounded. Again, even with perfect (impossible) pole–zero

cancellation, the controller  is not viable.

Example 13 Unstable Pole–Zero Cancellation

Again consider the previous example where

In reality our model is

where  is known to be close to 1, but it will not be exactly

1. With  we have



which is clearly unstable. Only if  does  equal 

 and the unstable pole and zero cancel.

To reiterate, by definition the system of Figure 10.26 is

internally stable if and only if the six transfer functions of

(10.6)–(10.8) are stable. Even if there is an “exact” unstable

pole–zero cancellation in , at least one of the six

transfer functions will be unstable. (See the Appendix to this

chapter on Unstable Pole–Zero Cancellations.) On the other

hand, if there are no unstable pole–zero cancellations and

one of the six transfer functions is stable, then all of the

others will be stable as well.

Unstable Pole–Zero Cancellation Outside the

Loop (Good)

We showed earlier that unstable pole–zero cancellation

between the model transfer function  and the

controller transfer function  will never result in a

stable control system. However, we have been doing

unstable pole–zero cancellations between the closed‐loop

transfer function  and  & , i.e., outside

the closed‐loop. Let's look into this in some more detail.

Consider the control system depicted in Figure 10.29.



Figure 10.29 Cancellation between the closed‐loop

transfer function and the disturbance.

The internal model principle instructs us to choose a

controller of the form

Then



Based on the internal model principle we forced  to

have the factor  in its denominator so that it ends up

in the numerator of the closed‐loop transfer function 

 to cancel the  in the denominator of .

Though this is an unstable pole–zero cancellation, it goes on

outside the closed‐loop. What happens if there is not an

exact cancellation? For example, suppose the disturbance is

really

so that



As  is stable the steady‐state response is

The error  does not go to zero, but it does remain

bounded and small (assuming  is small). The closed‐loop

characteristic polynomial

remained the same so that the six closed‐loop system

transfer functions are stable.

Summarizing, we are making the following points.

No physical system can handle unbounded reference or

disturbance inputs; thus we consider them to be bounded in

applications.



Bounded disturbances  have simple poles on the 

axis, e.g., . So an

inexact cancellation between zeros of a stable closed‐loop

transfer function and the poles of the disturbance still

results in a bounded error signal as shown.

Bounded reference inputs also have simple poles on the 

axis such as . As in the

case of bounded disturbances an inexact cancellation

between the zeros of the closed‐loop transfer function and

the reference input poles results in the error signal

remaining bounded. We have also considered ramp

reference inputs that are unbounded, i.e.,  or

equivalently . However, in any application, the

ramp will only be applied for a finite time. For example, a

typical reference input with a ramp component is

This is a bounded reference signal.

10.4 Design Example: 2 DOF Control

of Aircraft Pitch

As in Chapter 9 consider control of the pitch angle of a small

aircraft (Figure 10.30) whose transfer function is as follows

[31]:



Figure 10.30 Using the elevators to pitch the aircraft up.

With a step input of  rad (11.5 degrees) the design

specifications are (i) overshoot less than , (ii) rise time

less than 2 seconds, (iii) settling time less than 10 seconds,

and (iv) final error less than . We take the maximum

elevator deflection to be  (0.436 rad), that is, 

. The elevator angle  is in radians as is

the pitch angle . Any disturbances to the pitch

angle due to wind gusts, etc. on the aircraft are modeled as

an equivalent disturbance input to the elevator.

Figure 10.31 shows the 2 DOF control architecture that will

be used.  will be used to place the closed‐loop poles

and  is used to eliminate the effect of left half‐plane

zeros on the pitch response.



Figure 10.31 2 DOF controller using pole placement.

The minimum order controller to achieve arbitrary pole

placement has the form

Then

where



Set the desired closed‐loop characteristic polynomial as

where the  are still to be determined. The

parameters of the controller are chosen to satisfy

and thus



(10.10)

Important Comments on Pole Placement

It turns out that when using the pole placement algorithm

the choice of location for the closed‐loop poles is crucial for

good performance. Though one can arbitrarily place the

closed‐loop poles, the zeros of the controller cannot be

chosen. If possible we don't want the controller to have any

zeros in the right half‐plane as this will result in undershoot.

The basic objective is to put the closed‐loop poles far

enough in the left half‐plane to obtain a fast response

(without saturating the actuator) while still having the zeros

of the controller in the open left half‐plane so their effect on

the response can be eliminated by a reference input filter.

For these reasons it is often not any easy task to choose the

location of the closed‐loop poles.

Let's proceed with choosing the closed‐loop poles. We put

one of the closed‐loop poles at  to



cancel the zero of  at this location. Then the closed‐

loop characteristic polynomial has the form

Note that choosing  results in two poles at , i.e.,

identical and real. The MATLAB code to convert this

expression to the form

is given in the Appendix entitled Multinomial Expansions.

The “tuning” process now consists of varying 

. After a choice of these values one must

first check if the zeros of the controller , i.e., the roots

of , are in the open left‐half

plane. If not, then a new set of values for 

are chosen. If the zeros of  are in the open left‐half

plane then next check if the specifications are met and that

the actuator does not saturate. Effort was given to having

all the closed‐loop poles real and negative, but this kept

resulting in zeros of  in the open right half‐plane. This

forced the consideration of having complex conjugate pairs

of poles. After quite a bit of trial and error the closed‐loop

characteristic polynomial was chosen to be

The controller is then



Note that the zeros of  are all in the open left‐half

plane. As already mentioned we used the controller 

to place one of the closed‐loop poles at the zero  of

. This results in  having a pole at this zero as

expected by Problem 16.

The reference input filter is then chosen as

to cancel the zeros of . Using this 2 DOF controller the

pitch angle response  and the corresponding elevator

command  are as shown in Figure 10.32 on the next

page. The rise time is about  seconds, the overshoot is

zero and the  settling time is 3.1 seconds. As done in

Chapter 9 (see (9.16) on page 264), let's replace the model 

 by a “truth” model 

. Figure 10.33 on the next page

shows the controller still achieves the given specifications

with a rise time of 1.53 seconds, zero overshoot, and a 

settling time of 3.15 seconds.





Figure 10.32 (a) Pitch angle . (b) Elevator command 

.





Figure 10.33 Truth model. (a) Pitch angle . (b) Elevator

command .

10.5 Design Example: Satellite with

Solar Panels (Collocated Case)

In Chapter 5 a simple mass–spring–damper model of a

satellite with solar panels was developed (see Figure 10.34

on page 321). The differential equations characterizing this

lumped parameter model are



(10.11)

(10.12)

Figure 10.34 (a) Satellite with solar panels for power. (b)

Lumped parameter model.

Taking Laplace transforms this reduces to

For the collocated case the sensor is located on the

actuator, that is, the motor shaft angle  is measured.

Solving (10.11) and (10.12) for  gives



with the obvious definitions for . We take 

 kg‐ ,  kg‐ ,  N‐m/rad, 

 Nm/rad/s with  as in [13].

A 2 DOF control system is to be used whose block diagram

is shown in Figure 10.35. Using (10.12) the extra block is

included in Figure 10.35 in order to obtain  from .

Though only  is being fed back, the goal is to design 

 and  to obtain a “good” response for . It

turns out that a good response is obtained by having  turn

slowly in order to “gently” turn  to the desired value.

Figure 10.35 Two DOF controller for the collocated case.

The minimum order controller that achieves arbitrary pole

placement and rejects constant disturbances has the form



We choose two (of the seven) closed‐loop poles to be placed

at the two zeros of , i.e. the roots of 

. This is done to prevent overshoot

from these open‐loop zeros. This cancellation is done inside

the loop as this is less sensitive to the uncertainty in the

zeros of .(See Section 9.6 on Model Uncertainty and

Feedback.) The remaining six closed‐loop poles are chosen

to obtain a “good” response for  meaning a “fast” rise

time with “small” overshoot, and a “short” settling time.

The quotes around “good”, “fast”, “small”, and “short”

mean that we don't have a precise specification for them

because one doesn't know a priori how fast, small, or short

we can make them. The difference  is the

amount the solar panel shaft is twisted and it is also of

utmost importance that this be kept small so the shaft does

not break.

With the input denoted as  the error 

 may be written as



Expanding the denominator of  in powers of  gives

With the desired closed‐loop polynomial chosen to be 

the controller coefficients  must

satisfy

We choose 

by setting it equal to

Substituting in the given parameter values the zeros of 

 are 



. There are still have six more closed‐loop

poles to place. However, before doing this, note that Figure

10.35 shows  is the input to the transfer function 

 which has output . This suggests a smooth

non‐oscillatory response for  might result in a response

for  that is not very oscillatory. Thus, to keep  from

oscillating, we choose the reference input  to rise up to

1 in 50 seconds and then hold constant at 1 as shown in

Figure 10.36. The “tuning” process now consists of varying 

. As in the pitch control design, after

making a choice of these values, one must check if the

zeros of the controller  (i.e., the roots of 

) are in the open left‐half

plane. If not, then a new set of values for 

 are considered. If the zeros of 

are in the open left‐half plane, we then check if the

specifications are met, and that the actuator does not

saturate. After some iterations, it was found that 

 (i.e.,

placing six closed‐loop poles all at ) gave the response

for  and  shown in Figure 10.36. The resulting zeros of

the controller  are 

. The ramp for the reference is critical in having  be a

low amplitude oscillation. Note that difference 

is kept small. With the given values for the model

parameters the open‐loop transfer function is



With the closed‐loop poles chosen as just discussed the

controller transfer function is

Note that poles of  include the two zeros of 

which, by Problem 16, is to be expected. For the

noncollocated case see Problem 24.

Observation The forward transfer function  is

type 3, yet  is not tracking the type 2 reference input 

 in Figure 10.36. Why? Would it track  if you set 

? (Hint: See page 301.)





Figure 10.36 The responses  and  due to the

reference input .

Appendix: Output Pole Placement

All of the signals  and the transfer functions 

 that have been considered up to this point have had

Laplace transforms that are the ratio of two polynomials in 

. That is, they are of the form 

, 

 where , 

 are all polynomial functions in .

We refer to  and  as rational signals and  as

a rational transfer function. We will continue to assume we

are working with rational signals and transfer functions. We

also assume that  is strictly proper (true of models of

physical systems), and the same for  and  (the

author cannot think of a physical situation where this is not

true). Recall that we have previously considered inputs of

the form

and disturbances  of the same form. Of course we

could also have signals such as

We also assume that  are monic, that is, their

leading (highest degree) coefficient is 1. For example, if 



 we rewrite it as  and let 

.

Let  be the monic polynomial that we must include

in the denominator of  to achieve our tracking and

disturbance objectives. For example, suppose 

 and . Then by the

internal model principle the controller  must contain 

 in its denominator to track  and reject .

Thus .

Consider the general single‐input single‐output (SISO)

control system of Figure 10.37.

Figure 10.37 General tracking and disturbance rejection

problem.

We are looking at asymptotic tracking, that is, we want 

 as . We have the following theorem (see

[5, 6, 17]).

Theorem 1 Tracking and Disturbance Rejection with Pole

Placement



(10.13)

(10.14)

Let the transfer function model of the open‐loop system be

where  and  are coprime. Let  be the monic

polynomial that the controller must have in its denominator

to achieve the tracking and disturbance rejection objectives.

With

let the controller have the form

Note that we have set . We also require that 

 and  be coprime so that there is no unstable

pole‐zero cancellation between the controller and model

transfer functions. As a consequence the polynomials

and

are coprime (have no factors in common).

Then one can choose the controller parameters



of  in such a way that the closed‐loop poles can be

arbitrarily assigned.

Remark Note that  is chosen to have degree ,

which is 1 less than the degree of the denominator of .

Thus the degree of the denominator of , i.e. the

degree of  is . The numerator of 

, i.e.  is chosen to have the same degree

as its denominator, which is .

Proof. For purposes of exposition we do the proof

assuming  (so that ) and let

Then the controller is chosen to have the form

The error is then



(10.15)

To assign the closed‐loop poles, we must have

for arbitrarily chosen . Equation (10.15) is referred to as

the Diophantine equation. Equating powers of  this last

equation is equivalent to the matrix equation



(10.16)

(10.17)

The matrix  is referred to as the Sylvester resultant

matrix. If  is invertible then we can solve (10.16) for

coefficients of the controller and achieve pole placement.

We now show that the matrix  is invertible if and only if

the two polynomials 

and  are coprime.

(If) Suppose  and 

 are coprime. We show that  is

invertible. Consider the minor modification of (10.15)

obtained by replacing  with .

Then we may write

Equation (10.16) becomes



(10.18)

Note that this is the same Sylvester resultant matrix  as in

(10.16). The proof is by contradiction. Suppose  is not

invertible so that its columns are linear dependent. Then

there is a nonzero vector

such that

For these particular values of  (which

are not all zero) we have



(10.19)

It follows immediately that  so this reduces to

or

We have already pointed out that . If 

 then this last equation

obviously holds. However, the assumption that  is singular

means that we could (and did) choose them such that they

are not all zero.

Now the roots of  (in general 

 with degree ) must divide the right side

of (10.19). However  (in general 

 with degree ) has only three factors (in

general  factors) while 

has four factors (in general  factors). Thus the four

factors of  cannot all divide out the

three factors of . So at least one of

them must divide  which contradicts the

assumption that  and 

 are coprime. With  singular we

have a contradiction. Thus  must be nonsingular.

(Only If) Let  be invertible and we show that 

 and 

 are coprime. The proof is by



contradiction. Suppose they are not coprime so there is an 

 such that  and 

. Setting , the left side of

(10.15) will be zero no matter what we choose for 

 and  To obtain a

contradiction, let  be any number that is not a common

zero of these same two polynomials (in particular, ).

Choose the coefficients  such that 

. The

fact that  is invertible means the right side of

exists and thus we can find the coefficients of the

polynomials  and  such

that (10.15) holds. However, the right side of (10.15) is now 

 which is not zero for  while the left side is

zero for . This contradiction shows that if  is

invertible then  and 

 must be coprime.

Appendix: Multinomial Expansions

See the Chapter10_students folder in the MATLAB/SIMULINK

files for the .m files for the multinomial expansions of orders



3 through 7. The first two are

Next consider the coefficients for a 4th-order expansion.

That is, compute the coefficients  for

or

The MATLAB code to do this is as follows.

 

 % Fourth‐Order Multinomial Expansion 

 close all; clc; clear 

 s = sym(’s’); 

 r1 = 2; r2 = 2; r3 = 2; r4 = 2; 

 zeta1 = 0.5; wn1 = 5; zeta2 = 0.6; wn2 = 4; 

 a_cl = (s+r1)*(s+r2)*(s+r3)*(s+r4); 

 % a_cl = (s^2+2*zeta1*wn1*s+wn1^2)*(s^2+2*zeta2*wn2*s+wn2^2); 

 a_cl = expand(a_cl); pretty(a_cl) 

 ff = sym2poly(a_cl); 

 f3 = ff(2); f2 = ff(3); f1 = ff(4); f0 = ff(5); 

 f = [f3; f2; f1; f0]; 

 

Appendix: Overshoot

Theorem 2 Overshoot in Type 2 Systems [5, 6]

Consider the block diagram of Figure 10.38 where 

 is a coprime transfer function of type 2,

that is,



with . (Note that  as  and 

are coprime.) Further, suppose the closed‐loop system is

stable.

Figure 10.38 Stable type 2 system with a step input.

Then the step response of this system will always have

overshoot. That is, the step response

will have overshoot no matter where the closed‐loop poles

are situated in the open left half‐plane.

Proof.

We are given that the closed‐loop system is stable, which

means that the roots  of 

satisfy  for . Assuming these roots

are distinct we then have



Computing the inverse Laplace transform gives 

 as

As  is stable it follows that 

(see Figure 10.39). Thus for  the integral

exists. In particular, the integral exists for  and so

Now  with  if .

Thus the only way the integral  can be zero is

that  must eventually become positive

which means that  must eventually be greater than 

and therefore there is overshoot. A similar argument applies

for .



Figure 10.39 As  is stable it follows that 

. Thus for  the integral 

  exists, which includes .

Theorem 3 Cascade of Stable Systems without Overshoot

[5]

Let  and  be two stable transfer functions.

Suppose

and

Then the unit step response of the system  has

no overshoot, that is,  given by



has no overshoot.

Proof. Now  and, as  is stable, it follows by

the final value theorem that 

. So saying that  has

no overshoot is the same as writing

As  is stable we have

with . We want to show that

To do this we write

As  and  for all  it

follows that

Then



Therefore  does not have overshoot.

Theorem 4 Stable System with Real Poles and No Zeros [5]

Suppose the closed‐loop transfer function  is stable

with real poles and no zeros.

Then the step response has no overshoot.

Proof. We are given that the closed‐loop transfer function

is of the form

where for  the  (real and negative). The

step response is the inverse Laplace transform of

Let



Then

and, as  is real and negative,  given by

does not overshoot. Thus, by the previous theorem

(Theorem 3),  given by

does not overshoot. We then continue by applying Theorem

3 to  and  to

conclude that

has no overshoot. Continuing in this manner it follows that

has no overshoot.

Theorem 5 Stable System with Real Poles and One RHP

Zero [5]



Suppose the closed‐loop transfer function  is stable

with real poles and has one zero in the open right half‐

plane.

Then the step response has no overshoot.

Remark Though this step response will not have

overshoot, it will have undershoot as it has a single right

half‐plane zero (see page of Chapter 8).

Proof. We are given that the closed‐loop transfer function

is of the form

where for  the  (real and negative) and 

. The step response is the inverse Laplace transform

of

With

we see that

and



As  it follows that  increases monotonically

from  to 1 as  goes from 0 to . Thus  has

no overshoot. Again using Theorem 3 it follows that

has no overshoot. Continuing in this manner we see that

has no overshoot.

Theorem 6 Stable System with Real Poles and Two RHP

Zeros [5]

Suppose the closed‐loop transfer function  is stable

with real poles and two right half‐plane zeros. That is,

where . With the addition of the reference

input filter

the unit step response  has no

overshoot.



Remark If  then the two right half‐plane zeros

are a complex conjugate pair. If  then the two right

half‐plane zeros are real.

Proof. We want to show that the unit step response of

has no overshoot. To prove this we first show that the unit

step response

has no overshoot. Any extrema point of this step response is

a root of

The only solution is at  which corresponds to the

minimum value of this step response. It has a maximum

value of 1 at both  and . Thus it does not have

overshoot. With

Theorem 3 again applies to show that

has no overshoot. Continuing in this manner it follows that



has no overshoot.

Theorem 7 Overshoot Due to Left Half‐Plane Zeros [6]

Let  be the transfer function of a physical system.

Suppose the controller  makes  stable with

the closed‐loop poles  satisfying  for all 

 and some . Further, let  be a zero of 

  with . In words,  is a

zero of  in the open left‐half plane, but is to the right of

all the closed‐loop poles. Then

will have overshoot.

Proof. We have

and for 

In particular, as  and , it follows that



Then

As  and  it follows that . So 

 starts out positive, but its integral over all time is

negative so  itself must go negative. Finally 

negative means  and thus there is

overshoot.

Appendix: Unstable Pole‐Zero

Cancellation

Theorem 8 Unstable Pole‐Zero Cancellation

Let the model transfer function and the controller transfer

function be, respectively,

 is assumed to be strictly proper and  is assumed

to be proper.

In the unity feedback control system of Figure 10.40

suppose there is an unstable pole‐zero cancellation between

 and . Then, even with exact pole‐zero

cancellation, one (or more) of the following six transfer

functions will be unstable:



Figure 10.40 Standard unity feedback control system.

Proof. Suppose

so that in the expression  the unstable pole

of  is canceled by an unstable zero of . The six

transfer functions may then written as



After the “exact” cancellations we have

Even with exact cancellation, both  and 

 have a pole at  and are therefore

unstable. Similarly, if

we have



Thus  has a pole at  and is therefore

unstable.

Appendix: Undershoot

It was remarked in Chapter 8 (page 222) that the step

response of a stable system will exhibit undershoot if it has

an odd number of right half‐plane zeros. For example,

suppose  then by undershoot it was meant that

this response initially (immediately) goes negative at time 0

before going positive to ultimately converge to 1. See

Vidyasagar [26] for a precise statement and proof of this

result. However, here we will consider undershoot to simply

mean that the unit step response of a type 1 (or higher)

system went negative at any time before converging to its

final value of 1.

Theorem 9 Undershoot in Systems with Right Half‐Plane

Zeros [5, 6]

Consider the block diagram of Figure 10.41 where 

 is type 1 or higher. With the closed‐loop

system stable let  denote a zero of  in the open right



half‐plane, i.e.,  with .

Then the unit step response will have undershoot.

Figure 10.41 Step response of a stable system with a right

half‐plane zero.

Proof. With a unit step input we have 

 with . As the closed‐loop

system is stable there is an  such that all the closed‐

loop poles  satisfy . Consequently

In particular

The initial value is  and, as  is at least type 1,

we also have  as . This shows  starts at

 and ends up positive. So there must be some length of

time that  is negative in order to satisfy 

. That is, the step response  will

have undershoot no matter where the closed‐loop poles are

placed in the open left half‐plane.



In the step response of a stable closed‐loop system with a

single right half‐plane zero, there is a tradeoff between the

magnitude of the undershoot  and the settling time 

, where  and  are as shown in Figure 10.42.





Figure 10.42 Relation between  and the settling

time .

Let  denote the error tolerance which is often taken to be

0.02 or . Further, let  denote the final value of ,

i.e., . Recall that the settling time is the

smallest time  such that for  we have

We can rewrite this condition as

We have the following theorem connecting  and .

Theorem 10 Magnitude of Undershoot vs. Settling Time [5,

6]

Let

where the roots of  are in the open left half‐plane and 

. Let  be the error tolerance for the settling time.

Then

Note that as  we have  for  and 

 as . Thus putting the closed‐loop poles



further in the left half‐plane to make  small results in 

Proof. With a unit step input the output is given by

At  we have

Then

Further

Thus

or



or

As there is undershoot we have  so then 

 and finally

Problems



Problem 1 Minimum Order Controller

A system with open‐loop transfer function  is in a unity

feedback control architecture as shown in Figure 10.43. In

parts (a)–(d), give the form of the minimum order controller 

 that allows arbitrary pole placement while achieving

asymptotic tracking of the reference signal and asymptotic

rejection of the disturbance input.

Figure 10.43 Standard unity feedback control system.

.

.

.

.



Problem 2 Minimum Order Controller

A system with open‐loop transfer function  is in a unity

feedback control architecture as shown in Figure 10.44. For

parts (a)–(d), give the form of the minimum order controller 

 that allows arbitrary pole placement while achieving

asymptotic tracking of the reference signal and asymptotic

rejection of the disturbance input.

.

Figure 10.44 Standard unity feedback control system.

.

.

.



Problem 3 Pole Placement

Consider the feedback system in Figure 10.45 where 

.

Figure 10.45 Pole placement for an unstable system.

With , compute .

Find the values of , and  such that the closed‐loop

poles are at . Note that

With  and using the controller designed in part (b),

calculate . Is  stable? Explain briefly. If  is

stable what is the value of 



Problem 4 Pole Placement for a First‐Order Control System

Consider the block diagram of Figure 10.46 that shows a

control system for the system

This could model the transfer function of a DC motor from

voltage input to speed output.

With  let the desired closed‐loop

characteristic polynomial be

Figure 10.46 Tracking and disturbance rejection with pole

placement.

Design the minimum order controller  that rejects a

step disturbance and places the poles at .



Compute the closed‐loop transfer function .

Show that it has a zero at 

. Thus

for  the zero is in the open LHP while for 

 the zero is in the open RHP.

Simulate this control system with 

. Do the simulation for two

cases: (i) The zero is in the open left half‐plane. (ii) The zero

is in the open right half‐plane. Which of these two has

undershoot in the step response? Note: In practice

undershoot is not desirable.



Problem 5 Stable Type 2 Systems and Overshoot

Let a control system be as given in Figure 10.47.

Figure 10.47 Unity feedback control system.

Then

Let

Compute the closed‐loop transfer function . Will a

step response have overshoot?

Figure 10.48 shows a reference filter added to the control

system. Can you design a reference filter  so that a

step response does not have overshoot? If so, do so.



Figure 10.48 Reference input filter for a 2 DOF controller.



Problem 6 Rejecting a Sinusoidal Disturbance

Consider the control system shown in Figure 10.49.

Figure 10.49 Control system with a sinusoidal disturbance.

Give the form of the minimum order controller  that

will result in tracking the step input, rejecting the sinusoidal

disturbance while allowing one to arbitrarily place the

closed‐loop poles.

Compute . Your final answer must be the ratio of two

polynomials.

Compute the values of the controller parameters so that the

closed‐loop characteristic polynomial is 

. Explicitly solve for the

controller parameters in terms of , and the 

.

With  place all of the closed‐loop poles at .

Simulate the closed‐loop system.



Problem 7 Eliminating Overshoot Using a 2 DOF Controller

Consider the control system shown in Figure 10.50 with

Figure 10.50 Elimination of overshoot with a 2 DOF

controller.

Compute the closed‐loop transfer function from  to 

.

Show how to specify the controller parameters , , and 

 so that the closed‐loop characteristic polynomial is

Show how to choose the  such that the closed‐loop

poles are at  with . With

this choice, add a reference input filter (2 DOF controller) to

ensure that the step response has no overshoot. Draw a

block diagram that includes your reference input filter. Is

your designed reference input filter stable for the values of 

 you chose?

Simulate your 2 DOF controller design with ,

and .



Problem 8 Control Design

Consider the control system shown in Figure 10.51.

Figure 10.51 Elimination of overshoot.

With  and , for what values of 

will 

For what values of  does the closed‐loop system have

stable real poles?

With  and  compute .

Recall that the step response of any stable type 2 system

will have overshoot. With  can you add a reference

input filter to the control system of Figure 10.51 to ensure

there will be no overshoot? If so, draw a block diagram of

your new control system and briefly explain why it works.



In part (c) you computed the response  due to a step

reference input  and a step disturbance 

. Let  denote the output response due

to just the disturbance, i.e., set the reference input  to

zero. Can you add a filter to the disturbance input so that

the response  to a step disturbance has no

overshoot? If so, draw a block diagram to show how. If not,

explain briefly why not.



Problem 9 Eliminating Overshoot Using a 2 DOF Controller

Consider the control system shown in Figure 10.52 which

was considered in Example 4 on page 289. Let  in

this problem.

Figure 10.52 Elimination of overshoot for a system with a

RHP zero.

Simulate the step response of this system with 

chosen as in Example 4 that places all the closed‐loop poles

at . Plot r(t) and c(t) on the same graph.

Add to the simulation the reference input filter given in

Example 7 on page 304. Simulate the step response as in

part (a). Plot r(t) and c(t) on the same graph.



Using the same  designed in part (a) and the

reference input filter from part (b), let .

Simulate the step response. You should see that it is

unstable! The point here is that the controller was designed

based on the model being , but if 

 is closer to representing the actual

open‐loop system, the closed‐loop system will be unstable.

We say this control system is not robust because a small

change in the open‐loop system model can result in the

closed‐loop system being unstable. Whenever the open‐loop

system has a pole in the open right half‐plane, it should be a

“red flag” to the control designer that robustness will be a

problem. This will be explained later after studying Nyquist

theory.



Problem 10 Tracking and Disturbance Rejection with Pole

Placement

Consider the control system given in Figure 10.53 with 

 and .

Figure 10.53 Tracking a step input while rejecting a

sinusoidal disturbance.

Design a controller of minimum order that achieves tracking

and disturbance rejection of  and , respectively,

while allowing arbitrary pole placement.

Simulate your design with ,

and . Plot  and  on the same graph.



Set the disturbance  to 0 and using the controller

designed in part (a), add an input reference filter that

results in no overshoot (nor undershoot) in the step

response. Did your design result in any zeros being in the

open right half‐plane? If so, try changing the location of your

closed‐loop poles. (Hint: You should find putting all the

closed‐loop poles at  results in all the zeros being in the

open left half‐plane. However, putting all the poles at 

results in all the zeros being in the open right half‐plane!)

Simulate your design and plot  and  on the same

graph.



Problem 11 Tracking and Disturbance Rejection with Pole

Placement

Consider the control system given in Figure 10.54.

Figure 10.54 Tracking a step input while rejecting a

sinusoidal disturbance.

Design a controller of minimum order which achieves

tracking and disturbance rejection of  and ,

respectively, while allowing arbitrary pole placement.

Simulate this control with , and 

. Plot  and  on the same graph.

Add a reference input filter that results in no overshoot in

the step response with the disturbance set to zero. Plot 

and  on the same graph.

Remark Rejecting sinusoidal disturbances is a practical

problem in motion control systems. See, e.g., Aerotech Inc.

[41, 42]. This approach based on the internal model

principle is referred to as harmonic cancellation [43, 44].



Problem 12 Pole Placement for a Double Integrator System

Consider the control system in Figure 10.55 where

The objective is to track step inputs and reject step

disturbances.

Figure 10.55 Pole placement for a double integrator

system.

Give the form of the minimum order controller that will track

step inputs, reject step disturbances while allowing one to

arbitrarily assign the closed‐loop poles.

Compute . You must reduce  to be the ratio of

two polynomials.

Choose the parameters of your controller so that the closed‐

loop characteristic polynomial is 

.



Choose the four closed‐loop poles to all be at  so 

. Note that

Use this expression to find the numerical values of the

parameters of the controller you designed in parts (a)–(c),

and explicitly give .

With  and , compute .

With  so  can you design a reference input

filter to ensure that the step response  due to 

 has no overshoot? If so, do so by drawing a

block diagram of your complete control system and explain

briefly why it works. That is, what conditions ensure there is

no overshoot and does your design fulfill those conditions?

On the other hand, if it is not possible to prevent overshoot

with a reference input filter explain why not.



Problem 13 Strictly Proper 

Figure 10.56 is a unity feedback control system for the

open‐loop system .

Figure 10.56 Pole placement with a strictly proper .

One often desires a strictly proper controller so that 

 dies out fast for large  to avoid any effect of

model uncertainty at high frequencies. To do this consider

the controller

To explain, a step input is to be tracked and  has the

factor  so the controller is not required to have this

factor. The denominator of  is chosen to be a monic

polynomial of the same degree as the denominator

polynomial of . The numerator of  is

then chosen to have degree one less than its denominator

to make it strictly proper.



Find the values of the controller parameters  so

that the closed‐loop characteristic polynomial is given by

Using the controller of part (a), simulate this control system

with  and the closed‐loop poles at 

.



Problem 14 Strictly Proper 

Figure 10.57 shows a unity feedback control system for 

. Let's design a strictly proper pole placement

controller that also rejects constant disturbances. To do this,

let the controller have the form

Figure 10.57 Disturbance rejection with a strictly proper 

.

To explain,  is written as the product of the two factors

 and . It must have the factor  to reject the

step disturbance according to the internal model principle.

The factor  is determined as follows. We look at 

 and note the denominator of  has

degree two. The denominator of  is then set to be a

polynomial of the same degree as the denominator of .



The numerator of  is then set to be a

polynomial of one degree less than its denominator so that

it is strictly proper.

Find the controller parameters  so that the

closed‐loop characteristic polynomial is

Using the controller of part (a), simulate this control system

with , and the closed‐loop

poles at .



Problem 15 Stable Pole‐Zero Cancellation

Consider the closed‐loop control system of Figure 10.58 in

which the open‐loop system has transfer function

Figure 10.58 Stable pole–zero cancellation.

Let

Show that the six transfer functions that characterize

internal stability are stable for . Note that you need

only show that the four transfer functions 

 are stable.



Now let the open‐loop system have the transfer function 

 where  is known to be close to 2, but

not necessarily equal to 2. With  show that all

six transfer functions characterizing internal stability are

stable for  and . This means that though

we took  it can vary as  with the closed‐loop

system still being stable.



Problem 16 Stable Pole‐Zero Cancellation

Consider the closed‐loop control system of Figure 10.59 in

which the open‐loop system has transfer function

Figure 10.59 Stable pole‐zero cancellation.

Design a minimum order controller that places the closed‐

loop poles at , and . Note that one of

the closed‐loop poles was chosen to cancel the open‐loop

zero at .



If you did part (a) correctly you should have found out that

The point here is that the denominator of  must

contain the factor  in order to cancel the open‐loop

zero at . Show why this must be so. Hint: We want

This requires finding  such that

Explain why it must be that .



Problem 17 Unbounded References and Disturbances

It has been pointed out that no control system can track

unbounded references or disturbances. Let's look at a

control system of Figure 10.60.

Figure 10.60 Unbounded references and disturbances.

Let  and  so that  is an

unbounded reference input. Let the controller be

Compute  and show, assuming perfect cancellation

between the pole of  and the zero of the closed‐loop

transfer function, that  can be chosen to achieve 

.

Compute  and show  goes unbounded.



Show that with  and  this

closed‐loop system is internally stable.

Remark The control system is not able to track 

because  goes unbounded. That is, the problem with

not being able to track  is that it is unbounded as the

closed‐loop system is internally stable.



Problem 18 Non‐Minimum Phase System

Consider the control system of Figure 10.61 with the open‐

loop system from [45] given by

Figure 10.61 Pole placement for an unstable non‐minimum

phase system.

In this problem we look at just stabilizing the closed‐loop

system. Tracking a step input and rejecting a step

disturbance are considered in the next problem.

Design a first order controller so that the closed‐loop

transfer function has a characteristic polynomial given by



With  put all the closed‐loop poles at . Compute 

 and . Simulate this control system with 

 and the closed‐loop poles at .

Figure 10.62 Reference input filter to eliminate overshoot.

Now consider a 2 DOF controller as indicated in Figure

10.62. With  can you design a reference input

filter so that there is no overshoot in a step response? If so,

do so.

With  and using the control system of part (c), will

there be undershoot? Explain why or why not.

Simulate the control system of part (c) with 

and the closed‐loop poles at .



Problem 19 Non‐Minimum Phase System

Consider the control system of Figure 10.63 with the open‐

loop transfer function from [45] given by

Figure 10.63 Tracking and disturbance rejection of an

unstable non‐minimum phase system.

Design a controller that tracks step inputs, rejects constant

disturbances, and with the closed‐loop characteristic

polynomial given by

With  put all the closed‐loop poles at . Compute 

 and . Simulate this control system with 

 and . Plot  and  on the same plot.



With  and using the controller designed in parts

(a) and (b), can you design a reference input filter so that

there is no overshoot in a step response. If so, do so. If not,

explain why not (see Figure 10.64).

Figure 10.64 Reference input filter to eliminate overshoot.

With  and using the control system of part (b), will

the step response have undershoot? Explain why or why

not.

Simulate the control system of part (c) with , 

 and the closed‐loop poles at . Plot  and 

on the same plot.



Problem 20 Noncollocated Control [46]

Two masses  and  are connected by a spring and

damper as shown in Figure 10.65. The mass  has a force

(control) input . The objective is to control the position 

 of the second mass.

In this setup the actuator (control input ) is on the mass 

 while we are assuming there is a sensor to measure the

position of , i.e., the output is . This case

where the actuator and sensor are not located on the same

rigid body is referred to as noncollocated control.

Figure 10.65 Control of a mass–spring–damper system.

Show that the transfer function is



Let . Give the minimum

order unity feedback controller  that

will track a step input  and allow arbitrary

placement of the closed‐loop poles.

Using the minimum order controller find the error .

With the desired closed‐loop polynomial of the form 

, write down the

set of linear equations for the coefficients  in terms of the

coefficients of your minimum order controller and the

coefficients of .

Rewrite your answer from part (d) in matrix form.

In a MATLAB program specify the coefficients 

 so that the seven closed‐loop poles are at 

. Then add to this program the

code to solve the matrix equation of part (e) for the

coefficients of  and .

Make a SIMULINK simulation of the complete system. The

plant model  and the controller  should be in

separate SIMULINK blocks.

If all the closed‐loop poles are set to  then the zeros of

the  turn out to be −0.145, −0.484, 0.498.



Problem 21 Collocated Control

Two masses  and  are connected by a spring and

damper as shown in Figure 10.66 on the next page. The

mass  has a force (control) input . The objective is to

control the position  of the first mass.

In this setup the actuator (control input ) is on the mass 

 and we are assuming there is a sensor to measure the

position of , i.e., the output is . This

situation where the actuator and sensor are located on the

same rigid body is referred to as collocated control.

Figure 10.66 Control of a mass–spring–damper system.

Show that the transfer function is



Let , , , . What is the minimum

order unity feedback controller  that

will track a step input  and allow arbitrary

placement of the closed‐loop poles?

Using the minimum order controller find the error .

With the desired closed‐loop polynomial of the form 

 write down the

set of linear equations for the coefficients  in terms of the

coefficients of your minimum order controller and the

coefficients of .

Rewrite your answer from part (d) in matrix form.

In a MATLAB program specify the coefficients 

 so that the closed‐loop poles are at 

. Then add to this program the

code to solve the matrix equation of part (e) for the

coefficients for .

Do a SIMULINK simulation of the complete system. The plant

model  and the controller  should be in separate

SIMULINK blocks.

If all the closed‐loop poles are set to  then the zeros of

the  turn out to be .

If all the closed‐loop poles are set to be  then the zeros

of the  turn out to be .

If all the closed‐loop poles are set to be  then the zeros

of the  turn out to be .



Problem 22 Inverted Pendulum

Simulate the inverted pendulum feedback control system of

Example 5. Take  and .

These values correspond to the parameters of the inverted

pendulum of QUANSER [34]. Figure 10.67 is a SIMULINK

block diagram to carry out the simulation.

SIMULINK assumes zero initial conditions when using the

transfer function blocks. In order to excite the system away

from the zero initial conditions, an impulsive force6 is

applied to the horizontal motion of the cart as shown in

Figure 10.67. When placing the closed‐loop poles make sure

the maximum commanded horizontal force is no more than

10 N in absolute value, i.e., . Hint: Try placing all

the closed‐loop poles at .



Figure 10.67 SIMULINK block diagram for the inverted

pendulum.



Problem 23 Control of Aircraft Pitch

In Section 10.4 a controller for the pitch of a small aircraft

was designed based on the transfer function model given by

[31]

In this problem the controller is not required to reject step

disturbances.  is a type one system so the final error

with a step reference input will be zero as long as the

closed‐loop system is stable.

The design specifications are (i) overshoot less than 10%,

(ii) rise time less than two seconds, (iii) settling time less

than 10 seconds, (iv) final error less than 2%.

As in [31] take the reference input to be 0.2 rad (11.5

degrees). The elevator angle (actuator) is limited to 

 rad or .

Using the unity feedback control structure given in Figure

10.68, design a minimum order controller  that places

the closed‐loop poles at  where .

Figure 10.68 Unity feedback control system.



Let  for  so the closed‐loop poles are all

at . What are the values of the three zeros?

For the design in parts (a) and (b) can you find a reference

input filter so there is no overshoot in the step response? If

so, do so.

Simulate your design. Does it meet the specifications? If

not, how close is it to meeting the specifications? See Figure

10.42 for a definition of rise time when undershoot is

present. See Figure 4.6 on page 134 of [5] for a more

general definition of rise time.



Problem 24 Satellite with Solar Panels (Noncollocated

Case)

Consider the control of the solar panels of a satellite as in

the text, but for the noncollocated case. That is, the sensor

is located at the end of a solar panel to measure . It was

shown in the text that the Laplace transform variables 

 satisfy

The transfer function from  to  is then

with the obvious definitions for . Again set 

 kg‐ ,  kg‐ ,  N‐m/rad, 

 Nm/rad/s as in [13]. The zero of  is the root of 

 which is .

The objective of this problem is to design a 2 DOF controller

for the control of the satellite solar panels. That is, to

determine  in the block diagram of Figure

10.69 to obtain a satisfactory step input response for .



Figure 10.69 Two DOF controller for the non‐collocated

case.

Use the simplified block diagram of Figure 10.70 to design 

.

Figure 10.70 Two DOF controller for the non‐collocated

case.

Give the minimum order controller  that allows

arbitrary placement of the closed‐loop poles and will provide

asymptotic rejection of constant disturbances.

With , the expression for  from

part (a) and with  for now, compute 

written as the ratio of two polynomials.



Let the desired closed‐loop polynomial taken to be 

and define

Let  be the controller coefficients written as

Find the matrix  and vector  such that

Choose locations for the closed‐loop poles and do a

SIMULINK simulation using the same reference input  as

shown in Figure 10.36 for the collocated case. You should

choose the closed‐loop poles such that the zeros of the

controller , i.e., the roots of 

, are all in the open left‐

half plane. Choose the reference input filter to be

Can you choose the closed‐loop poles to all be real? How far

in the open left‐half plane can you place the poles without

saturating the torque ? Show  together on

a single plot. On a separate plot show the difference 

.



Problem 25 DC Motor with a Flexible Shaft [3]

In [3] a DC motor with a flexible shaft is modeled by a

transfer function from voltage input to the angular position

of the flexible shaft given by

In this problem use a 2 DOF control system as illustrated in

Figure 10.71.

Figure 10.71 Two DOF control system for a DC motor with

a flexible shaft.

Give the form of the minimum order that rejects constant

disturbances and allows for arbitrary pole placement.

With  and , compute the transfer

function .



Let the desired closed‐loop polynomial taken to be 

and define

Let  be the controller coefficients written as

Find the matrix  and vector  such that

Choose locations for the closed‐loop poles so the settling

time (  criterion) is one second or less with no more than 

 overshoot. This can take some time as one must try

choosing real poles, complex conjugate poles, or some

mixture of them with the objective that the zeros of the

controller are in the open left‐half plane as well as meeting

the specifications. So try choosing four of them at  and

two sets of complex conjugate poles with  and 

. That is, set

with 

. You will need to modify code in the Appendix of this

chapter for Multinomial Expansions to have MATLAB

automatically solve for the . Check that the

zeros of  are in the open left‐half plane.



Make a SIMULINK simulation using the reference input 

. You should choose the closed‐loop poles such

that the zeros of the controller , i.e., the roots of

are all in the open left‐half plane. Choose the reference

input filter to be

Plot  and  on the same graph.



(10.20)

(10.21)

Problem 26 DC Motor with a Flexible Shaft [3]

In [3] a DC motor with a flexible shaft is modeled by the

transfer function from voltage input to the angular position

of the flexible shaft given by

Further the controller chosen in [3] was a cascade of a lead,

a lag, and a notch controller given by

This controller still works well if the lag controller  is

replaced by the PI controller . Doing this the controller

is now

Consider the control system of Figure 10.72.



(10.22)

Figure 10.72 Cascade of a lead, a PI, and a notch

controller.

This results in the closed‐loop characteristic polynomial

being

with the closed‐loop poles at



The minimum order pole placement controller that achieves

rejection of constant disturbances is

Using the control setup of Figure 10.73 compute the

controller coefficients that place the closed‐loop poles as

given in (10.22). It will turn out that  is given by

(10.21).

Figure 10.73 Pole placement controller.



Simulate the system of part (a) with a unit step reference

input.

Remark The controller  for a single‐input single‐

output system in unity feedback form is uniquely specified

by the location of the closed‐loop poles. As another

example, compute the eight closed‐loop poles using the

controller given in (10.20). Then the pole placement

algorithm with  of the form (not minimum order)

and designed to have these same eight closed‐loop poles

would result in the controller being given by (10.20).



Problem 27 Control of Pitch Angle

The transfer function model of a small aircraft from elevator

angle  in degrees to pitch angle  in degrees is given in

[3] to be

For a 5 degree step input reference the performance

specification is that the rise time is one second or less and

no more than 10% overshoot. In [3] (pages 260–267) their

design resulted in the feedback controller (and no reference

input filter)

That is, it is an approximate PID controller. In the following

you are to design a 2 DOF controller using pole placement

as indicated in Figure 10.74.



Figure 10.74 Two DOF controller.

Design a minimum order controller  that

asymptotically rejects constant disturbances and allows

arbitrary placement of the closed‐loop poles.

Let the desired closed‐loop characteristic polynomial have

the form

Determine the coefficients of your controller in terms of 

.



As in the pitch control design in the text, the choice of

location of the closed‐loop poles is critical to meeting the

performance specifications. An approach is to let 

have the form

Note that two of the closed‐loop poles are specified to

cancel (stable pole/zero cancellations) the two zeros of the

open‐loop pitch model in the hope of eliminating their effect

on the step response. As in the pitch control example of

Section 10.4, there are an additional two pairs of complex

conjugate poles which need to be placed “far enough” in the

left half-plane. This requires a few iterations to get it right.

Try setting ,  so that

Note the real part of these two pairs of complex poles are 

 and . Then put the two real poles at  (or

replace them with another complex conjugate pair of poles).

Finally

With  chosen this way compute the zeros of ,

that is, the roots of , and

verify they are in the open left‐half plane. Use this fact to

specify an input reference filter  to cancel the zeros of

. With this 2 DOF design the closed‐loop transfer



function will not have zeros, but the step response could still

have overshoot because the closed‐loop poles are not all

real.

With  (5 degrees of pitch angle), simulate your

designed 2 DOF control system. Show the reference input

and output on the same plot in degrees. On a different plot

show the elevator angle in degrees.

Remark For the actual issue addressed in [3] the 2 DOF

controller designed in this problem is not applicable. In [3]

the application requires that the final controller have the

form . That is, a PI controller can be

factored out of  and this is not the case with the 2

DOF controller as it has no real zeros. In the 2 DOF design

the elevator command is . However, in

[3] there are two elevators with  set by the pilot and 

(trim) set by the autopilot. These two elevator commands

are given by  and 

 so the total elevator command is 

.

Notes

1 A monic polynomial is one whose leading coefficient is 1.

2 So  is proper, but not strictly proper.

3 See the Appendix at the end of this chapter on Multinomial

Expansions.



4 For example if  then 

 and some calculations

show that  for . Thus for  we have 

 and the zero  is in the open left half‐

plane.

5 The word “characteristic” comes from working with control

systems in the statespace (see Chapter 15) rather than

with transfer functions. A characteristic value

(eigenvalue) is simply a root of the characteristic

equation.

6 A force that acts for only a very short time, in this case,

from  to  seconds.



11 

Frequency Response Methods

11.1 Bode Diagrams

In Chapter 3 transfer functions of differential equations were

introduced. For example, consider the third‐order differential

equation given by

Taking the Laplace transform with zero initial conditions, i.e.,

, we have

resulting in the transfer function

With the input given by  for 

 it was also shown in Chapter 3 that

is a solution to the differential equation.1

The frequency response  shows how the differential

equation processes any sinusoidal input  It has

been found that considerable insight into a system

(differential equation) can be found by plotting its frequency



(11.1)

(11.2)

(11.3)

(11.4)

response. Specifically, let  be written in polar

coordinate form as

To plot  we do it in the form of the Bode diagram

(Bode plot) due to H.W. Bode [47]. The Bode diagram is a

plot of

and

We will call the units of  decibels or dB

(named after Alexander Graham Bell) and the units of 

 will be degrees.

Let's consider a specific example of a first‐order system with

a stable pole given by

Notice that we have written  in time constant form in

contrast to , which is pole–zero form. It

turns out that the time constant form is more convenient for

drawing Bode diagrams. The pole  is referred to as

the break point or corner frequency.

Bode Magnitude Plot



A table of values of  vs.  are given

below. Note that the frequencies in the table are chosen to

be powers of 10 multiples of the break point 

0

Semilog Graphs

With  given in (11.4) and using the previous table,2 a

plot  vs.  is as shown in Figure 11.1.

This plot is a semilog graph, which simply means the

distance along the abscissa (horizontal axis) is 

while the ordinate (vertical axis) is a linear scale. However,

though the horizontal distances are  the label is

the value of  as shown in Figure 11.1. For example the

point labeled  has  so it is the

zero point of the abscissa. The point labeled  has 

 so it is drawn a distance of 0.7 from the



point labeled  Similarly, the point labeled  has 

 so it is drawn a distance of 1 from the point

labeled 





(11.5)

Figure 11.1. Bode magnitude plot of  where 

Asymptotic Magnitude Plot

To better understand the Bode magnitude plot of Figure

11.1, we note that

The asymptotic magnitude plot is given by (11.5) for the

two regions  and  and is drawn in Figure

11.2.

Every factor of 10 is referred to as decade. For example, 

 would be two decades above  while 

 would be one decade below  With  so

that  is  decades above  we have

and





Figure 11.2. Asymptotic magnitude plot of 

where 

This says that for every decade above  the magnitude

goes down by 20 dB. Again, for emphasis, Figure 11.2 shows

that the graph goes down  dB for every decade (factor

of 10) past the break point .

Bode Phase Plot

The Bode phase plot is  vs. . We first make

the following table.

0

The phase plot is shown in Figure 11.3.





Figure 11.3. Bode phase diagram of  where 

Simple Examples

Bode Diagram of a First‐Order Unstable Pole

Let's now consider the Bode diagram of 

In particular, let  so that  and 

 In this case

and so the magnitude plot is the same as Figure 11.2. For

the angle plot we have

which is the negative of angle plot of Figure 11.3. Thus the

Bode diagram of  is as shown in Figure

11.4.





Figure 11.4. Magnitude and phase plots of 

with 

Bode Diagram of a First‐Order Zero

Let's now consider the Bode diagram of

In this case

With  this is the negative of the magnitude plot of

Figure 11.2. For the angle plot we have

which is the negative of angle plot of Figure 11.3. Thus the

Bode diagram of  is as shown in Figure

11.5.

With  Problem 1 asks the reader to sketch the Bode

diagram of





Figure 11.5. Bode magnitude and phase plots of 

 with 

Bode Diagram of a Pole at the Origin

Let's now consider  We have

and

An easy way to do the magnitude plot is to start at 

 where 

and go to  where 

 Then just draw a

straight line through these two points. See Figure 11.6.

More Bode Diagram Examples

Example 1 

Let's now consider the transfer function,

The first step to remember in graphing a Bode diagram is to

put any real poles in time constant form, that is, we rewrite 

 as  Then, by a property of logarithms, we

have





Figure 11.6. Bode diagram of 





Figure 11.7. Bode plot of  and 

Figure 11.7 shows the magnitude plot of  and 

As shown in Figure 11.8 the next step is to graph

One simply does the plot of  until the break

point at  because  for 

. (The asymptotic plot of  is

zero for .) After the break point the graph now

goes down at  dB/decade because both 

and  are going down at  dB/decade

and we are adding them.





Figure 11.8. Bode plot of 





Figure 11.9. Bode magnitude plot 

To finish the plot we simply add the constant term 

 dB to the graph of Figure 11.8 to

obtain the Bode diagram of Figure 11.9. In Figure 11.9 we

also show the plot of Figure 11.8 to indicate that Figure 11.9

is obtained by lowering the plot in Figure 11.8 by 14 dB.

To do the Bode phase plot of , note that

Thus we need only shift the Bode phase plot of Figure 11.3

down by  to obtain the Bode phase plot of 

This is shown in Figure 11.10. In particular, at the break

point  we have





Figure 11.10.  vs. 

Example 2 

Let's now do the Bode diagram of the lag compensator3

given by . We have

The asymptotic approximations to each term are





Figure 11.11.  vs. 

so that the asymptotic magnitude plot is given by

The asymptotic magnitude plot along with the actual

magnitude plot are shown in Figure 11.11.

We now consider the phase plot, that is,

This is given in Figure 11.12. Because the pole at 

and the zero at  are separated by a decade (factor of

10), the angle plot is straightforward to plot by using the

following table.

0.001

0.01

0.1

1

Though the table did not capture this point, Figure 11.12

shows that the phase is at a minimum at approximately 







Figure 11.12.  vs. 

Example 3 

Let's now do the Bode diagram of a lead compensator given

by

We have

The asymptotic approximations to each term are

The asymptotic magnitude plot is then



and is drawn in Figure 11.13.





Figure 11.13.  vs. .





Figure 11.14.  vs. 

Figure 11.14 is a plot of 

vs. 

The plot also includes  and 

.

These phase plots are sketched using the following table.

0.2

2

4 18.2

20

40

The maximum phase occurs for  between 2 and 4.

Example 4 

Let's consider the transfer function

The first step to remember is to put it into time constant

form which is



We plot

which is shown on the top half of Figure 11.15. Let's outline

how we did the asymptotic magnitude plot.

Starting at  only the constant term contributes so

the magnitude is  dB.

At the first (zero) breakpoint at  we go up at the

rate of 20 dB/decade until the second breakpoint at 

We are then at  dB/decade  decade

 dB.

Due to the triple (pole) breakpoint at , we now go

down at  dB/decade. (We were going up at

20 dB/decade and the triple breakpoint has us go down at 

 dB/decade so the sum is going down at 

dB/decade.) At  we are at 16 dB  dB/decade

 decade  dB.

Then due to the (zero) breakpoint at  we go down at 

 dB/decade until  The magnitude is then 

 dB  dB/decade  decade  dB.

The final (pole) breakpoint at  has the magnitude

go down an additional  dB/decade so that at 

the magnitude is at  dB  dB/decade

decade  dB.



To see that the phase plot makes sense we make the

following table.

0.04

0.4

4

40

400

4000





Figure 11.15. Bode diagram of 

In the phase plot (the bottom plot of Figure 11.15) it is seen

at  that the angle is not close to the approximate

angle of . This is because at  we have 

 and we took 

. However, 

 so that

Similarly, at  in the expression

we used  but actually it is 

. Further, we took 

 but it is actually 

 Thus the phase at  is

Bode Diagram with Complex Poles

Let's now look at the Bode diagram of



where  so the poles form a complex conjugate

pair. Then

We have directly

and, as

the asymptotic magnitude plot is given by

The Bode magnitude plot is given in Figure 11.16. We still

consider  as a (double) breakpoint and note that the

magnitude plot decreases at  dB/decade after the

breakpoint.





Figure 11.16.  vs.  for 

.

Peak and Resonant Values

The resonant frequency  is the frequency at which the

Bode magnitude plot is a maximum. Setting

and solving for  gives the resonant frequency at

The corresponding peak value of the magnitude plot is then

found to be

For  we have  and  Figure

11.17a shows the Bode magnitude plots for 





Figure 11.17. (a)  vs. 

 (b)  vs. 

Phase Plot

The phase diagram is a plot of

Figure 11.18 indicates how  is computed.



Figure 11.18. .

We next make a table of values.

0



The phase plot with  and  is shown in Figure

11.19. Figure 11.17b shows the Bode phase plots for 





Figure 11.19.  vs. 

with 

Example 5 

We consider the Bode diagram of

There is a breakpoint at 3 due to the zero. We have to

match up

which requires   or 

As shown in Figure 11.20, with  (double pole

breakpoint), the magnitude decreases at  dB/decade

until the (zero) breakpoint is reached and then it decreases

at only  dB/decade. The phase diagram of 

 is shown in Figure 11.21.





Figure 11.20.  vs. 





Figure 11.21.  vs. .

11.2 Nyquist Theory

Nyquist theory is concerned with stability. It allows us to

check closed‐loop stability of a system by inspection of the

open‐loop Bode diagram. H. Nyquist [48] developed this

fundamentally important test for stability. What makes

Nyquist theory so important is that it provides a measure of

the relative stability of the closed‐loop system. By this is

meant that it can be used to find out if the controller will

keep the closed‐loop system stable despite uncertainty in

the open‐loop model  that was used to design the

controller.

To develop the Nyquist stability test, we first need to

understand the principle of the argument for complex

rational functions. We do this by looking at a series of

examples.

Principle of the Argument

Let

and consider the curve  shown on the left side of Figure

11.22. The right side of the same figure is a plot of  as

“ ” goes around . In more detail, let “ ” travel around 

once in the clockwise direction so it successively goes

through  and back to  with 

 respectively. The

image  goes around the origin once in the clockwise

direction where successively 



Figure 11.22. .

As a second example, let

and consider the curve  shown on the left side of Figure

11.23. The right side of this figure is a plot of  as “ ”

goes around . Specifically, let “ ” travel around  once in

the clockwise direction so it successively goes through 

 and back to  with 

respectively. The image  goes around the origin once in



the counterclockwise direction where successively 

.

In this third example we again let

but consider the closed curve  shown in Figure 11.24.

Figure 11.23. .



Figure 11.24. .

Figure 11.24 is similar to that of Figure 11.22 except 

is no longer inside the curve. The right side of the same

figure is a plot of  as “ ” goes around . As “ ”

travels around  once in the clockwise direction, it

successively goes through  and back to  with 

 respectively. The image 

 does not go around the origin as the angle 

does not change by  as “ ” goes around .



As a more general example consider Figure 11.25 and the

transfer function

Note that  is outside the curve, while  are all

inside the closed contour.

The following table gives the change in angle for each pole

and zero of  as “ ” goes around the contour.





Figure 11.25. 

.

Pole/zero Change in

angle

Causes  to go around the

origin

Once in the CCW direction

Once in the CCW direction

Once in the CW direction

0 Zero

From the table we see that as “ ” goes around the closed

curve once in the clockwise direction the image  goes

around the origin once in the counterclockwise direction.

Theorem 1 Principle of the Argument

Let  be a rational function of  (ratio of two

polynomials in ). For example

Let  be a simple closed curve4 in the complex plane. Let 

go around the curve  once in the clockwise direction. Then

the number of times  the image  of the curve goes

around the origin in the clockwise direction is

where  is the number of zeros inside the closed curve 

and  is the number of poles inside the closed curve 



Proof The general proof is a straightforward generalization

of that given for the example in Figure 11.24.

Example 6 Principle of the Argument

Let

and choose the closed curve  to enclose the right half‐

plane as shown in Figure 11.26.

For  we have

We calculate

On the semicircle part of the curve  we have 

with  and we may write

Let's now make a table of values of  for 



Finally, for  the image  is simply the complex

conjugate of the image for 



Figure 11.26. .

We now apply the principle of the argument to this example.

There are no poles or zeros of  inside the closed curve 

 so  Further, by inspection of the right side of

Figure 11.26 we see the image of  on this curve does



not go around the origin so  Thus we have directly

verified that 

Example 7 Principle of the Argument

We again consider the transfer

but we now choose the closed curve  to enclose the left

half‐plane as shown in Figure 11.27.



Figure 11.27. Nyquist polar plot of 

For  the image  is the same as

Example 6 except with the direction arrows reversed as we

are going in the opposite direction along the  axis

compared with the previous example. On the semicircle part

of the curve , we have  with 

 and we may write



We make a table of values of  for 

We now apply the principle of the argument to this example.

There are two poles of  inside the closed curve  and

no zeros so  Further, by inspection of the

right side of Figure 11.26, we see the image of  along

this curve does go around the origin twice in the

counterclockwise direction so  Thus 

as both sides equal 

Example 8 Principle of the Argument

Let

This transfer function has a pole at  and  As

shown in Figure 11.28, the closed curve  is taken to

enclose the right half‐plane. To avoid the pole at  we



take the path to be  with  and

then we let  To enclose the right half‐plane let 

 with  and 

For  we have

Therefore

For  we have



Figure 11.28. Nyquist polar plot of  The plot

of  (blue) is asymptotic to the vertical line 

 as 



Making a table of values of  for 

gives

Finally, for  with , we have

A table of values is then

0

Using these results we get the image  as shown on the

right side of Figure 11.28.

We now apply the principle of the argument to this example.

There is one pole of  inside the closed curve  and no

zeros of  inside . So  Further, by

inspection of the right side of Figure 11.28 we see the image

of  on this curve does go around the origin once in the



counterclockwise direction so  Thus 

as both sides equal 

Nyquist Polar Plots

Definition 1 Nyquist Contour

The Nyquist contour is a simple closed‐curve that encloses

the right half‐plane and has its direction of travel oriented to

be in the clockwise direction.

Example 9 Nyquist Contour

Figure 11.29 shows two examples of Nyquist contours. In

both examples we let  The example on the right

side shows the case of an open‐loop pole on the  axis at

the origin, which is bypassed using a semicircular detour to

the right for which we let 



Figure 11.29. Examples of Nyquist contours.

Definition 2 Nyquist Polar Plot

The Nyquist polar plot is a plot of  as  goes around

the Nyquist contour in a clockwise fashion.



Example 10 Nyquist Polar Plot

Let  as in Example 6, which has the polar

plot shown on the right side of Figure 11.30. This is the

same as Figure 11.26 except we have set  so that

the image of  is mapped to the origin, that is, 

Figure 11.30. Nyquist polar plot of 



A key observation of the Nyquist polar plot is that the part

due to the  axis can be drawn from the Bode diagram of 

 which is given in Figure 11.31.

See the Appendix to this chapter entitled Bode and Nyquist

Plots in Matlab, which gives the MATLAB code to graph polar

plots. The MATLAB command nyquist only does the part of

the polar plot corresponding to  for 

(If  has a pole at  the nyquist command will not

draw the part of the polar plot corresponding to 

with 





Figure 11.31. Bode diagram of 

Example 11 Nyquist Polar Plot

Let  as in Example 8.

Figure 11.32 is the same as Figure 11.28 except we have set

 as the image of  is mapped to the origin,

that is,  As pointed out in Example 10,

the part of the Nyquist polar plot due to the  axis can be

sketched using the Bode diagram of  which is given in

Figure 11.33. As explained in the appendix use the MATLAB

command nyquist to draw the polar plot and compare it with

the sketch in Figure 11.32.



Figure 11.32. Nyquist polar plot of 





Figure 11.33. Bode diagram of  

Nyquist Test for Stability

Let the open‐loop transfer function be  and

let's consider a simple proportional control in a unity

feedback system as shown in Figure 11.34.

The closed‐loop transfer function is

We see that the values of  for which

are the closed‐loop poles. Thus the closed‐loop system is

stable if and only if



Figure 11.34. Proportional feedback control system.

or, equivalently,

The Nyquist stability test is carried out by applying the

principle of the argument to

Specifically, let the curve  enclose the right half‐plane as

shown on the left side of Figure 11.35. The corresponding

polar plot is shown on the right side of Figure 11.35. We

have let  in order to enclose the complete right

half‐plane inside  and therefore  is mapped

to the origin on the right side of Figure 11.35.

With  we next shift the polar plot to the right by 

 to obtain the plot of Figure 11.36.

By inspection we see that the poles of  are just

the poles of  and they are not inside the curve 

Further, with  we see that the image 



does not go around the origin so  By the principle of

the argument we have

Figure 11.35. Nyquist plot of 



Figure 11.36. Nyquist plot of  for 

Consequently

So  has no zeros in the right half‐plane and

therefore the closed‐loop system is stable.

There is a slightly easier way to do the test as indicated in

Figure 11.37. We simply observe that  goes



around the origin if and only if  goes around 

Thus, as shown in Figure 11.37, we draw the Nyquist plot of 

 and then mark the  point on the plot. We see

that with  the polar plot of  does not go around 

 and thus 

Figure 11.37. Nyquist plot of  for 

Example 12 Nyquist Stability Test [3]



Let

As always we take the curve  to enclose the right half‐

plane as shown on the left side of Figure 11.38. The image

of  as  is traversed once is shown on the right side of

Figure 11.38. Figure 11.38 is the same as Figure 11.28

except we have set  so  The Nyquist

stability test is carried out by applying the principle of the

argument to

The polar plot is shown on the right side of Figure 11.38. 

 and therefore  has one pole inside  at 

 Therefore  The number of times 

 goes around the origin is the same as the

number of times  goes around  We break up

the Nyquist test into two cases:

Case (1): As shown on the right side of Figure 11.38,

consider  . Then 

as  goes around  once in the clockwise

direction.

The principle of the argument tells us that

so



and therefore  has two zeros in the right

half‐plane. The closed‐loop system is unstable for 

Figure 11.38. Nyquist plot of  for  or 



Case (2): Now consider   as

shown in Figure 11.39. Then  as  goes around 

 once in the counterclockwise direction. By the

principle of the argument  so

Therefore  has no zeros in the right half‐

plane. The closed‐loop system is stable for 

Check: Apply the Routh–Hurwitz test to 



Figure 11.39. Nyquist plot of  for  or 

Remark The Nyquist stability test seems (because it is)

much more complicated compared with the Routh–Hurwitz

test. However, as explained shortly, the Nyquist test based



on the polar plot will give us a measure of the relative

stability of the closed‐loop system.

Example 13 Nyquist Stability Test

In this example we take the open‐loop system to be 

 where we note that 

We want to know for what values of  are the roots of

all in the open left half‐plane. Equivalently, for what values

of  are the zeros of  not in the right

half‐plane.

To proceed consider the closed curve  shown on the left

side of Figure 11.40, which encloses the right half‐plane.

The right side of Figure 11.40 shows the image  as 

goes around the curve  As  we see that 

 With  we use the Bode diagram given

in Figure 11.41 to sketch  for  In particular, the

Bode diagram shows that  

 dB or 



Figure 11.40. Nyquist plot of 





Figure 11.41. Bode diagram of 

Case (1): Consider  . From

the right side of Figure 11.40, we see that  and, as 

 we have

Thus  has no zeros in the right half‐plane for 

 and the closed‐loop system is stable.

Case (2): Next consider   as

indicated in Figure 11.42. From the right side of Figure 11.42

we see that  and, as  we have

Thus  has two zeros in the right half‐plane for 

 and thus the closed‐loop system is unstable.



Figure 11.42. Nyquist plot of 

Check: Apply the Routh–Hurwitz test to 

Example 14 Nyquist Stability Test

In this example we take the open‐loop system to be



We want to know for which values of  does 

have all of its zeros in the open left‐half plane. Equivalently,

we want to know for which values of  does 

have no zeros in the right half‐plane. The left side of Figure

11.43 shows the closed curve  which contains the right

half‐plane as we let  and  As  we

see that  With  small we have



Figure 11.43. Nyquist plot of 

The sketch of  for  given on the right side of

Figure 11.43 is done using the Bode diagram of Figure

11.44. Specifically, the Bode diagram shows that 

starts out with  and  At 

 we have  or 



 dB. As  we have  and 

 To complete the plot of  we write

Making a table of values of  for 

gives

Putting this all altogether we obtain the Nyquist plot on the

right side of Figure 11.43.

Case (1) Consider   as shown in

Figure 11.43. Then we see that  so that

which tells us that  has two zeros in the right

half‐plane for 

Case (2) Next consider   as

shown in Figure 11.45. Then we see that  so

that



which tells us that  has no zeros in the right

half‐plane for  The closed‐loop system is stable

for 





Figure 11.44. Bode diagram of 

Figure 11.45. Nyquist plot of 

Example 15 Nyquist Stability Test [3]

Let a system have an open‐loop transfer function given by



We want to determine the values of  for which the zeros

of

are in the open left half‐plane. Equivalently, we want to

ensure that

has no zeros in the right half‐plane. As usual, we choose a

closed curve in the  plane that encloses the right half‐

plane as shown on the left side of Figure 11.46. We of

course let  and .

For  we have

We use the Bode diagram in Figure 11.47 to sketch 

for  For  small we have  (  due



to the pole at  and  due to the constant )

and  As  increases, the magnitude 

decreases while the angle  increases to  at 

 with  As shown in Figure 11.46, as

 the angle  ends up at  while 



Figure 11.46. Nyquist plot of 

For  we see that  for  To go

around the pole at the origin we set  Then







Figure 11.47. Bode plot of  

To plot  for  we

make the following table of its values.

This table is then used to complete the Nyquist plot as

shown on the right side of Figure 11.46. We now consider

two cases to check for closed‐loop stability.

Case (1): Consider  ( ). Then 

 (as there is an open‐loop pole at 1) and  Thus

showing that  has two zeros in the right half‐

plane. The closed‐loop system is unstable for 

Case (2): Next consider  ( ). Then 

 (as there is an open‐loop pole at 1) and 

Thus



showing that  has no zeros in the right half‐

plane. The closed‐loop system is stable for 

11.3 Relative Stability: Gain and

Phase Margins

We first observe the following equivalent ways of looking at

the Nyquist encirclement criterion. Specifically, for 

the following statements are equivalent:

 goes around the  point 

 times.5

 goes around the origin 

times.

 goes around the origin 

times.

 goes around the  point 

times.

Remember that we are thinking of  as the open‐loop

transfer function in a feedback system as given in Figure

11.48.

Figure 11.48. Unity feedback controller.



Statement  was the original formulation we used to

describe the Nyquist stability test. This requires the most

effort in terms of redrawing  each time 

changes. Then we observed statement  was equivalent

to statement , which means we draw 

 and then shift this plot by 

Finally we did the Nyquist stability tests using statement 

because we just draw  once and then

shift around  Statement  provides the most

straightforward way to explain the notions of gain and

phase margins, i.e., of relative stability. To do so, consider

an open‐loop system given by

which is the same as Example 13 except for the factor of 2

in the numerator. Figure 11.49 shows the Nyquist plot of 

 In this example  As the right side

of Figure 11.49 shows, the Nyquist plot does not encircle the

 point for  so  does

not have any zeros in the right half‐plane. In words, the

closed‐loop system is stable for  As the gain 

 can be increased up to 2.4 before the system becomes

unstable, we say the gain margin is 2.4. Typically the gain

margin is given in decibels which is  dB.

The right side of Figure 11.49 shows a dashed circle of

radius 1 centered at the origin. A line from the origin to the

point where this dashed circle intersects  is also

shown. The angle  between this line and the negative

real axis is called the phase margin. It is the amount the



Nyquist plot can be rotated before it encloses the 

point. We can also write

Figure 11.49.  

 



where  is the value of  for which  Note

that in Figure 11.49 that  which is the typical

case.

We have the following definition.

Definition 3 Gain Crossover Frequency 

A gain crossover frequency is a frequency  at which

Example 16 Gain Crossover Frequency  and the Phase

Margin

With reference to the Bode diagram of Figure 11.50 on the

next page, we see that at the gain crossover frequency 

  dB and  so

that phase margin is

We can also obtain the gain margin from the open‐loop

Bode diagram. We first make the definition of the phase

crossover frequency.

Definition 4 Phase Crossover Frequency 

A phase crossover frequency is a frequency  at which 

Example 17 Gain and Phase Margins



With reference to the Bode diagram of Figure 11.50 we see

that the phase crossover frequency is  and 

 dB. So the

gain margin is 7.6 dB.





Figure 11.50.  

and 

Example 18 Gain and Phase Margins

Let's consider again Example 14 where the open‐loop

transfer function is  Figure 11.51 is the

Nyquist plot of  (not just  as in Example 14).



Figure 11.51. Nyquist plot of   

In this example  and for  it follows from

the right side of Figure 11.51 that  so the closed‐loop



system is stable as  For  we see

that the Nyquist plot encircles the  point. Thus the

gain margin is 2 or  dB. The phase margin is

The Bode diagram in Figure 11.52 shows the crossover

frequency is . We may write





Figure 11.52. Bode diagram of 

Summarizing, the important information at the crossover

frequencies is

Example 19 Gain and Phase Margins

Now we consider Example 15 where 

In Figure 11.53 we give the Nyquist plot of  (not 

 as in Example 15). The difference in this example

compared with the previous example is that 

 now encloses the left half‐plane

as shown on the right side of Figure 11.53. The gain

crossover and phase crossover frequencies along with 

 and 

 are given by



Figure 11.53.   



As  stability requires the Nyquist plot encircle 

 once in the counterclockwise direction, that is, we

must have  Therefore  is required for

closed‐loop stability.

The gain margin in this case must be interpreted as the

amount  can reduced before the closed‐loop system

becomes unstable. This amount is 

 dB. (Compare with the previous examples in which  can

be increased by no more than the gain margin to maintain

closed‐loop stability.) This gain margin is indicated on the

Bode diagram given in Figure 11.54, but note that it is

shown with an arrow going down to emphasize that 19 dB is

how much than gain can be reduced before the closed‐loop

system becomes unstable.

At the gain crossover frequency  so that

the Nyquist polar plot can be rotated by  before the

Nyquist plot no longer encircles  and thus the

closed‐loop system would no longer be stable. The phase

margin is 40∘ and is indicated on the Bode diagram given in

Figure 11.54.



Figure 11.54. Bode diagram of 



Relative Stability

The gain and phase margins give a measure of relative

stability. That is, the larger the gain margin the more we can

increase the gain before the closed‐loop system becomes

unstable. Similarly, the larger the phase margin the more

the Nyquist plot can be rotated before the closed‐loop

system becomes unstable. As a simple example, let the

nominal model of the physical system be

But, unknown to the control designer, the transfer function

is the “true” model of the system. (Note that  and 

 have the same number of right half‐plane poles.) To

characterize this difference we write

The controller is designed based on  but the actual

system is  Figure 11.55 is the Bode diagram for 

The Nyquist plot is done with  The quantity 

 both rotates and scales the

original Nyquist plot  If the phase and gain

margins are too small, it can happen that the closed‐loop

system is unstable due to the (unknown) uncertainty 



of the model. It is desired that the gain and phase margins

be “large enough” to ensure the closed‐loop system is

stable despite uncertainty in the model  of the physical

system. How large should these margins be? Well it is

impossible to know! If a specification is given that the

system have a phase margin of at least  it just means

that the specifier thinks that this will ensure closed‐loop

stability despite uncertainty in the model.





Figure 11.55. Bode diagram of 

Problem 30 considers a Nyquist analysis for this system

using the controller designed in Chapter 10 (see page 289

and page 304) that placed all the closed‐loop poles at .

There it is seen that this controller results in very small

stability margins. In fact, if this controller is used for the

system model  the

resulting closed‐loop system is unstable! The more model

uncertainty a controller can deal with (by keeping the

closed‐loop system stable), the more robust we say it is. As

long as  has the same number of right half‐plane poles

as  and  encircles  the same

number of times as  the closed‐loop system

will be stable.

As an alternative to gain and phase margins, let Figure

11.56 be the Nyquist plot of a system that is closed‐loop

stable. To take into account uncertainty in the model 

 it is important to make sure  isn't

too close to  The vector (complex number) from 

 to the Nyquist plot is 

 With

the definition

the criteria is to find  so that  is large enough. The

size of  (just like the amount of gain and phase margin)

that ensures closed‐loop stability in spite of model

uncertainty is not known. However, for each controller

choice one can compute  as a relative measure of how

well the controller will deal with model uncertainty.



Figure 11.56. The vector (complex number) from 

to  is 

The area of  (H‐infinity) control was developed to give

quantitative conditions to ensure the closed‐loop system is

stable despite model uncertainty. The designer develops a

model of the uncertainties expected for the application at

hand and  control theory gives testable conditions to

determine if the closed‐loop system remains stable despite

these uncertainties. Elementary introductions to this theory

are given in [5, 49].

11.4 Closed‐Loop Bandwidth



(11.6)

With  the transfer function of a physical system, let 

 be the transfer function of a controller that stabilizes

the closed‐loop system with the closed‐loop transfer

function  given by

In Section 11.5 we discuss designing the controller based on

the open‐loop Bode diagram of  That is, we are

looking at the design problem based just on the frequency

response  To do so we need to

introduce the Fourier transform. Let the closed‐loop system

be third‐order and write

With  the reference input and  the output, the

closed‐loop system is represented in the time domain by the

differential equation

The Fourier transform of  and  are, respectively,

defined by



Though the definition of the Fourier transform is with 

 we continue to take all signals to be zero for

 i.e.,  for  and  for  With

this convention it seen that

The signals  and  can be recovered using the

inverse Fourier transform given by (see [50, 51])

The interpretation here is that  is made up of the sum

(integral) of the pure sinusoids  from 

 to   is the frequency content

of  between  and  A similar interpretation

holds between  and . Differentiating both

sides of these inverse Fourier transforms with respect to 

gives



That is, the Fourier transform of  is  and the

Fourier transform of  is  As a consequence,

taking the Fourier transform of both sides of (11.6) gives

or

This is simply the transfer function  evaluated at 

 The Fourier transform is now used to interpret how

the closed‐loop system (differential equation) processes the

reference input  to produce the output 

Specifically, the output  may be written as

 is the frequency content of  between  and 

 This expression shows that the frequency content

of  in this same interval is simply  That

is  is the sum (integral) of the pure sinusoids 

 from  to 



(11.7)

Let the goal be to have  track . To do this we now

show that a controller  must be found so that the

closed‐loop transfer function

satisfies

We refer to  as the bandwidth of the closed‐loop system.

See Figure 11.57. To see how tracking is achieved, suppose 

 for . Then we have



Figure 11.57.  vs. 

That is, if the controller can be designed so that 

(  for  with 

outside this frequency interval, then we should have good

tracking. With  stable and , it was

shown in Chapter 3 that

However, a typical input reference is a step input. If 

 is a unit step, then its Fourier transform does

not exist as

To get around this let's replace  with 

 and think of  as very small so that 



 for the time interval of interest. The Fourier

transform of  is

If the controller is designed so that closed‐loop bandwidth is

 then for  it follows that 

 where  is the peak value of 

 (remember that  is very small). In words, if the

designed controller results in a closed‐loop bandwidth of 10,

then we expect good tracking of step functions.

Remark Using Cauchy's residue theorem it can be shown

that  [52].

Definition 5 Closed‐Loop Bandwidth

Let a stable closed‐loop system have a magnitude plot of

the type shown in Figure 11.57. That is, 

 for  and 

rapidly for  Define the closed‐loop bandwidth 

as the frequency that satisfies

or, equivalently,

Example 20 Closed‐Loop Bandwidth



Take a look at Figure 11.2 which is the Bode diagram of (

)

Let's consider this to be the Bode diagram of a closed‐loop

system. At the pole (break point)  we see that

magnitude plot is down  dB (a factor of ) from its

low frequency value of 0 dB (magnitude 1). So the

bandwidth of this system is  If  so 

then the bandwidth would be  The further the pole

 resides in the left‐half plane, the larger the

bandwidth.

Figure 11.3 shows that the frequency must be below 

for  That is,  is only reasonable for 

Example 21 Closed‐Loop Bandwidth

With  and  Figure 11.16 is the Bode diagram

of

The closed‐loop poles are at 

The magnitude peak in Figure 11.16 is quite large because

the damping coefficient  is small. In placing the

closed‐loop poles one would normally not let  be any

smaller than about 0.6. At the (double) break point  we

have  If  is close to  the magnitude plot



is down by  (  dB), while if  the magnitude

plot is down by  (  dB). Rather than compute the

3 dB bandwidth for each value of  we just take the

bandwidth to be  Then  for 

 and  rapidly as  increases

past . The larger  the further the poles are in

the left half‐plane and the larger the bandwidth. For 

 the phase plot Figure 11.17 shows that the

frequency must be below  for 

That is,  is only reasonable for 

The Bode diagrams of Figures 11.2 and 11.16 used in

Examples 20 and 21, respectively, have the desired shapes

for a closed‐loop system as given by (11.7). Let's now look

at the properties the open‐loop transfer function 

should have so the closed‐loop transfer function 

 has the desired shape. Consider the

general unity feedback control system of Figure 11.58.

Figure 11.58. Closed‐loop control system.



We have included the additive sensor noise  in the block

diagram. Such noise is typically bounded and of high‐

frequency. The output  is

As  is strictly proper and  is (at least) proper, we

have

Another way to look at the bandwidth  is as the

frequency such that  for  If

this holds it follows that

In particular, if the controller is designed to have an

integrator for disturbance rejection then, as , we

have  and 

For  we want  fast as 

increases so that

Recall  represents a physical system so it is strictly

proper. In Chapter 10, using the pole placement algorithm,

we took  to be just proper. One may want to specify



that  be strictly proper so that  goes

to zero faster for . As shown in Problems 13 and

14 of Chapter 10, it is straightforward to modify the pole

placement method so that  is strictly proper.

We want the bandwidth  to contain most of the

frequency content of  that is,  for 

 If this holds it follows that

In words, the closed‐loop system will do a good job tracking

a reference input  as long as the frequency content of

 is within the bandwidth  of 

Disturbance rejection follows if  for 

as

Further,  as  and so 

 as well. Consequently 

as 

Conclusion

Good tracking and disturbance rejection is achieved if a

stabilizing controller  is designed with 

for  and  rapidly for 

The effect of the measurement noise on the output is



This shows the low‐frequency noise on the output is

attenuated by feedback while the high frequency noise is

essentially unchanged. However, even with the feedback,

the low‐frequency sensor noise is a problem for the

actuator. To explain, the output of the controller 

(actuator command) due to just the measurement noise of

the sensor is

As  is strictly proper,  is non proper resulting in

the low‐frequency noise being differentiated.6 As explained

in Chapter 9 this amplifies the noise (see page 249).

Consequently it is very important to have sensors with

essentially no noise for  In other words, the

closed‐loop bandwidth must be chosen so that it does not

contain any significant frequency content of 

11.5 Lead and Lag Compensation

Consider the standard unity feedback controller

configuration given in Figure 11.59.



Figure 11.59. Standard unity feedback control configuration.

Let's first consider the case where  so it is simply

a proportional feedback control problem. Then 

 To be more concrete, let

If the closed‐loop system is stable, then

The larger the gain the smaller the steady‐state error as

long as the closed‐loop system is stable. However,

increasing the open‐loop gain  usually decreases the

phase margin. If the gain is increased enough the closed‐

loop system will go unstable. This is illustrated in Figure

11.60 where  showing the phase margin decreases

for  compared with 





Figure 11.60. How increasing the gain can decrease the

phase margin.

Lag Compensation

Consider a compensator given by

We then have

Then

The Bode diagram of  is shown in Figure 11.61 on

the next page where  and  A lag

compensator (controller) has both of its break points at low

frequencies with the pole first (i.e., ) and both are

well below the gain crossover frequency  ( ),

i.e.,  Figure 11.62 shows Bode diagram of 

 along with the Bode diagram of 

The factor  has gain  and phase 0 at low

frequency while it has gain  and phase 0

for frequencies a decade above  Consequently, as Figure

11.62 shows, the gain crossover frequency of 

 is reduced compared to that of 

resulting in an increase in the phase margin.





Figure 11.61. Bode diagram of a lag compensator 

 





Figure 11.62.  and  for lag

compensation.

Lead Compensation

A lead compensator  is of the form

where

At low frequencies where  we have

This is approximately a proportional plus derivative or PD

controller. At high frequencies we have

which becomes a proportional controller and thus we avoid

the amplification of high‐frequency noise (due to a

derivative controller). In summary, the lead compensator

can be considered an approximation to a PD compensator

without the noise amplification problem at high frequencies.

The Bode diagram of  is shown in Figure

11.63 where (in contrast to the lag compensator) we have 



It turns out that the maximum value of , denoted by

, occurs at  or 

. Note that

The key observation of a lead compensator (in contrast to

the lag compensator) is to have the gain crossover

frequency  of  to be above 

and below  that is,

Figure 11.64 shows the lead compensated Bode diagram of 

 along with the uncompensated Bode

diagram of  As Figure 11.64 shows, 

adds positive phase around the (original) gain crossover

frequency  but is also adds gain  so that the

(new) gain crossover frequency  of 

moves to the right just past  However, enough phase is

added that the phase margin of  is greater

than the phase margin of 





Figure 11.63. Lead compensator  





Figure 11.64.  and  for lead

compensation.

11.6 Double Integrator Control via

Lead‐Lag Compensation

Let the open‐loop system be a double integrator, i.e.,

Consider the unity feedback control structure of Figure

11.65.

Figure 11.65. Unity feedback control structure.

The Bode diagram of  is given in Figure 11.66.





Figure 11.66. Bode diagram of 

The open‐loop system is unstable and we need to make the

closed‐loop system stable. Consider a lead controller 

 to do this. The gain crossover frequency is 

 rad/s so we choose the zero to be  so that

it is a decade below the gain crossover frequency. We next

choose the pole to be  so that it is a decade above

the gain crossover frequency. This way  contributes

about  (actually only ) at  and has

corresponding gain of  We choose 

 so that the gain of the lead compensator is 1 thus

keeping the gain crossover frequency at  That is,

choose the controller to be

The Bode diagram of  is given Figure 11.67. It

shows that at  we have 

 so the phase margin is 





Figure 11.67. Bode diagram for 

Let's now sketch the Nyquist plot. The Nyquist contour for 

 is given in Figure 11.68.

On the part of the Nyquist contour where  with 

small, we have

which we use to compute the following table of values.



Figure 11.68. Nyquist contour for 

From the table and the Bode diagram we obtain the sketch

of the polar plot shown in Figure 11.69.7

From the Nyquist contour of Figure 11.68 it is seen that 

 The polar plot of Figure 11.69 shows  so we

have  For all  the polar plot of 

 has the same form as in Figure 11.69 and thus

the gain margin is infinite. The Nyquist plot is not drawn to

scale, but it turns out the phase margin is 

Let's look at the step response. With a unit step input we

have







Figure 11.69. Polar plot for 

The closed‐loop poles are  and  The partial

fraction expansion of  has the form

With a closed‐loop pole at  it is a concern that the

part of the transient response  due to it dies out

slowly. However there is a zero at  which

approximately cancels the pole at  resulting in 

being small. Specifically,

The complete response is

The lead controller is  with  The

root locus method given in Chapter 11 shows that the larger

the value  the closer one of the closed‐loop poles is to

the zero of  Thus this approximate pole/zero

cancellation is not surprising after studying the root locus

method.

The error  due to a step disturbance  is



giving a final error of

Quite big! Let's now include a lag compensator  for its

disturbance attenuation capability. This lag compensator

was chosen because

and

That is, it provides a gain of 10 at low frequencies, but does

not change the gain crossover point or phase margin. The

(lead‐lag) controller is now

With a step disturbance we see that



so

The final disturbance error has been reduced by a factor of

10. The closed‐loop response due a unit step input is now

Note that the two closed‐loop poles  and  are

close to the two zeros at  Let's look at the new gain

and phase margins. The Bode diagram for 

 is given in Figure 11.70 on the

next page.

This Bode diagram shows the phase margin is  Note

that  However, 

 which accounts for the 



decrease in phase margin compared with Figure 11.67. To

understand the gain margin let's take a look at the Nyquist

plot. The Nyquist contour is shown in Figure 11.71.





Figure 11.70. Bode diagram for 

Figure 11.71. Nyquist contour for 

In this case

which has the same shape as in Figure 11.69. Using this and

the Bode diagram of Figure 11.70, the polar plot is as

sketched in Figure 11.72.8 Figure 11.71 shows that 



Figure 11.72 shows that the polar plot encircles 

once in the counterclockwise direction and once in the

clockwise direction so  We then have 

 and thus the closed‐loop system is stable.

If we multiply  by any factor less than 

 the polar plot no longer encircles the 

 in the counterclockwise direction, only in the

clockwise direction resulting in  In this case 

 making the closed‐loop system unstable.

Thus the gain margin is 0.0408 or 

 dB. The negative sign indicates that the gain plot can be

decreased by this amount before the closed‐loop system is

unstable. However, it is usual to indicate this gain margin as

the positive number 27.8 dB and use an arrow as in Figure

11.70 to indicate that if the gain plot is lowered by this

amount (or more) the closed‐loop system becomes

unstable. The addition of the lag compensator reduces the

error due to a constant disturbance by a factor of 10, but

the gain margin is now 27.8 dB instead of being infinite as it

was without the lag compensator.

Why are we concerned about gain and phase margins? The

model above is  but with the sensor it might

be  where  is nominally 1. That is, the model is

accurate and the sensor is calibrated accurately to have 

 but perhaps over time the electronic components

degrade so  is no longer exactly 1. The gain margin tells

us that as long as  the closed‐loop system

remains stable.





Figure 11.72. Polar plot of 

11.7 Inverted Pendulum with Output 

In Example 5 of Chapter 10 a feedback controller using pole

placement was designed for the inverted pendulum using

the output

The transfer function from  to  is (see Chapter 13)

where

We considered a unity feedback control system for the

inverted pendulum as shown in Figure 11.73. Using the

QUANSER parameter values, the open‐loop transfer function

of the inverted pendulum is ( )



In order to arbitrarily place the closed‐loop poles with a

minimum order controller,  was chosen to be of the

form

Figure 11.73. Closed‐loop controller for the inverted

pendulum.

With the closed‐loop poles all placed at , it was shown in

Example 5 of Chapter 10 to result in the controller



We now look at what Nyquist theory can tell us about this

controller design. Figure 11.74a is the Nyquist contour and

Figure 11.74b is the corresponding Nyquist plot of 

. From the Nyquist plot it is seen that the

closed‐loop transfer function

is stable for  or 

 The phase margin turns

out to be about  These small gain and phase margins

indicate it would be difficult (probably unlikely) that this

controller would work in practice, i.e., if the model

parameters are a bit off then the closed‐loop system will

likely not be stable using this controller. We will say much

more about this in Chapter 17, and show that a statespace

controller (Chapter 15) for the inverted pendulum turns out

to be quite robust!





Figure 11.74. (a) Nyquist contour. (b) Nyquist plot.

Appendix: Bode and Nyquist Plots in

Matlab

 

  % Example  Magnitude and Phase on a single plot 

  close all; clear; clc 

  % Open‐loop transfer function G(s) = (s+0.1)/(s+0.01) 

  den = [1 0.01]; num = [1 0.1]; sys = tf(num,den); 

  [mag phase wout] = bode(sys,{0.0001 100}); 

  h = 

plotyy(wout,20*log10(squeeze(mag)),wout,squeeze(phase),’semilog

x’,’semilogx’); 

  grid on; set(h(1),’FontSize’,20);set(h(2),’FontSize’,20) 

  set(get(h(1),’Children’),’LineWidth’,5) 

  %set(get(h(1),’Children’),’LineStyle’,Dashed) 

  set(get(h(2),’Children’),’LineWidth’,5) 

  set(h(1),’YTick’,[‐10, 0,5,10,15,20]); set(h(2),’YTick’,[‐90, 

‐67.5, ‐45,‐22.5 0]) 

  set(h(1),’Ycolor’,[0 0 1]) 

  % Set color of right side to same color as left side 

  h1_color = get(h(1),’YColor’); set(h(2),’YColor’,h1_color) 

  set(get(h(2),’Children’),’Color’,h1_color) 

  title(’Bode Diagram of G(j\omega)= (1+j0.1\omega) / 

(1+j0.01\omega)’,’FontSize’,20) 

  xlabel(’\omega rad/sec’,’FontSize’,20) 

  set(get(h(1),’Ylabel’),’String’,’Magnitude in 

dB’,’FontSize’,20) 

  set(get(h(2),’Ylabel’),’String’,’Phase in 

degrees’,’FontSize’,20) 

 

  % Example  Separate Magnitude and Phase Plot 

  close all; clear; clc 

  % Gc(s) = (s+0.1)/(s+0.01) 

  den = [1 0.01]; num = [1 0.1];tf_openloop = tf(num,den); 

  h = bodeplot(tf_openloop); grid on 

  ax = findobj(gcf,’type’,’axes’); set(ax,’LineWidth’,0.5); 

  ax = findall(gcf,’Type’,’axes’); set(ax,’GridColor’,’black’) 

  options = getoptions(h); 

  options.MagVisible = ’on’; options.PhaseVisible = ’on’; 

  options.Title.String = ’Bode Diagram of G(j\omega)= 

(1+j0.1\omega) / (1+j0.01\omega)’; 



  options.XLabel.String = ’omega’; options.YLabel.String = 

{’Magnitude’, ’Phase’}; 

  options.Xlim ={[0.0001,100]}; 

  options.TickLabel.FontSize = 25; 

  options.Title.FontSize = 25; options.XLabel.FontSize = 25; 

options.YLabel.FontSize = 25;

  setoptions(h,options); 

  % workarounds for line width 

  lin_width = findobj(gcf,’type’,’line’); 

  set(lin_width,’linewidth’,4); 

 

  %Example  Nyquist 

  close all; clear; clc 

  % Gc(s) = 1/(s+1)(s+3) 

  den1 = [1 4 3]; num1 = [1];tf1 = tf(num1,den1);w = 

{0.01,100}; 

  nyquist(tf1,w) 

 

  % Example  Nyquist 

  figure 

  % Gc(s) = 10*(s+1)/s(s‐10) 

  den2 = [1 ‐10 0]; num2 = [10 10];tf2 = tf(num2,den2);w = 

{0.1,1000}; 

  nyquist(tf2,w); 

 

Problems



Problem 1 Bode Diagram of a First‐Order Unstable Zero

Draw the Bode diagram (magnitude and phase) of 

 with  You should be able to

do this quickly based on the examples given in the text.

In Problems 2–7 find the transfer function 

corresponding to the given Bode plot. Using MATLAB,

replot the Bode diagram from the expression you

found for . In each of these Bode plots the

breakpoints for the poles and zeros are integers, and

are separated by at least a decade. This means, e.g.,

there cannot be a Bode diagram of 

as the breakpoints at 2 and 6

are not separated by a decade.



Problem 2 Bode Plot

In Figure 11.75  has a single real pole.





Figure 11.75.  ?

Problem 3 Bode Plot

 has two real poles. Use the Bode diagram of Figure

11.76 on the next page to determine .

Problem 4 Bode Plot

 has two real poles. Use the Bode diagram of Figure

11.77 on the next page to determine .

Problem 5 Bode Plot

 has a complex conjugate pair of poles with a

breakpoint at 10. Use the Bode diagram of Figure 11.78 on

page 431 to determine . From the Bode diagram 

.



Problem 6 Bode Plot

 has a real zero and a complex conjugate pair of poles

whose breakpoint is at 10. Use the Bode diagram of Figure

11.79 on page 431 to determine .





Figure 11.76.  ?





Figure 11.77.  





Figure 11.78.  





Figure 11.79.  



Problem 7 Bode Plot

 has a real zero and two real poles. Use the Bode

diagram of Figure 11.80 to determine .





Figure 11.80.  



Problem 8 Bode Plot

Consider a transfer function  whose asymptotic Bode

magnitude plot is shown in Figure 11.81.

Figure 11.81. Asymptotic Bode magnitude plot.

Let  have the asymptotic Bode magnitude plot given

in Figure 11.81. Suppose all the poles and zeros of 

are in the open left half‐plane or on the  axis. Find the

transfer function .



Let  have the asymptotic Bode magnitude plot given

in Figure 11.81. Suppose all the poles and zeros of 

are in the open right half‐plane or on the  axis. Find the

transfer function .



Problem 9 Principle of the Argument

Let  and consider the Nyquist contour of

Figure 11.82. Following the procedure of Example 6, draw

the corresponding Nyquist plot and use it to verify the

principle of the argument.

Figure 11.82. Nyquist contour.



Problem 10 Principle of the Argument

Let  and consider the Nyquist contour of

Figure 11.83. Following the procedure of Example 7, draw

the corresponding Nyquist plot and use it to verify the

principle of the argument.

Figure 11.83. Nyquist contour.

Problem 11 Routh–Hurwitz Test of 

Check the answer of Example 12 using the Routh–Hurwitz

test.



Problem 12 Polar Plot of 

The phase crossover frequency is the value of frequency 

such that  For the transfer function in

Example 13 show that  and 

by computing  and setting the imaginary part to 0.

Show that 

Problem 13 Routh–Hurwitz Test of 

Check Example 13 using the Routh–Hurwitz test.

Problem 14 Polar Plot of 

The phase crossover frequency is the value of frequency 

such that  For the transfer function of

Example 14 show that  and 

The gain crossover frequency is the value of  such that 

 For the transfer function of Example 14 show

that  and 

Problem 15 Routh–Hurwitz Test of 

Check the results of Example 14 using the Routh–Hurwitz

test.



Problem 16 Polar Plot of 

The phase crossover frequency is the value of frequency 

such that  For the transfer function of

Example 15 show that  and 

The gain crossover frequency is the value of  such that 

 For the transfer function of Example 15

compute  and 

Problem 17 Routh–Hurwitz Test for 

Check the results of Example 15 using the Routh–Hurwitz

test.



Problem 18 Nyquist Stability Test

Consider the simple proportional feedback system in Figure

11.84.

Figure 11.84. Proportional feedback control system.

The Bode diagram for  is given in Figure 11.85.

Draw the Nyquist contour for  in the ‐plane.

Draw the Nyquist plot for  in the ‐plane.

Do a stability analysis using Nyquist theory to find the

values of  for which the closed‐loop transfer function has

zero poles in the open right half‐plane, one pole in the open

right half‐plane, and two poles in the open right half‐plane.

Hint: Plot  and then check how many times it goes

around the  point for 





Figure 11.85. 



Problem 19 Nyquist Stability Test for a Non-Minimum

Phase System

Consider the simple proportional feedback system in Figure

11.86.

Figure 11.86. Proportional feedback control system.

The Bode diagram for  is given in Figure 11.87.

Draw the Nyquist contour for  in the ‐plane.

Draw the Nyquist plot for  in the ‐

plane.

Do a stability analysis using Nyquist theory to find the

values of  for which the closed‐loop transfer function has

zero poles in the open right half‐plane, one pole in the open

right half‐plane, and two poles in the open right half‐plane.

Hint: Plot  and then check how many times it goes

around the  point for 





Figure 11.87.  and .



Problem 20 Nyquist Stability Test

Consider the simple proportional feedback system in Figure

11.88.

Figure 11.88. Simple proportional feedback control system.

The Bode diagram for  is given in Figure

11.89.

Draw the Nyquist contour for  in the ‐plane.

Draw the Nyquist plot for  in the ‐plane.

Do a stability analysis using Nyquist theory to find the

values of  for which the closed‐loop transfer function has

zero poles in the open right half‐plane, one pole in the open

right half‐plane, and two poles in the open right half‐plane.

Hint: Plot  and then check how many times it goes

around the  point for 





Figure 11.89. 



Problem 21 Nyquist Stability Test for a Non-Minimum

Phase System

Let

Make a Bode diagram for  Use this Bode diagram to

help draw the Nyquist polar plot for this transfer function.

Do a stability analysis using Nyquist theory to find the

values of  for which the closed‐loop transfer function has

zero poles in the open right half‐plane, one pole in the open

right half‐plane, and two poles in the open right half‐plane.

Hint: Plot  and then check how many times it goes

around the  point for 

Check your answer to part (b) using the Routh–Hurwitz test.



If you did part (c) correctly you found that the system is not

closed‐loop stable for  In order to give the system a

standard gain and phase margin interpretation we simply

put a minus sign in the open‐loop system block and proceed

with . See Figure 11.90.

Figure 11.90. Gain and phase margin.

Draw the Bode diagram for  and use it to sketch the

Nyquist plot of  Then find the gain and phase

margins of the closed‐loop system.



Problem 22 Gain and Phase Margin

Figure 11.91 is the Bode diagram of some open‐loop system.





Figure 11.91. Bode diagram of an open‐loop system.

Find the transfer function of this system.

Let  be in a unity feedback configuration as shown in

Figure 11.92.

Figure 11.92. Unity feedback control configuration.

With  compute the closed‐loop gain and phase

margins.

Problem 23 Gain and Phase Margin

Consider a system similar to Example 12 given by

Draw the Nyquist contour and Nyquist polar plot for .

Fill in the following table.

What are the gain and phase margins? Mark the gain and

phase margins on your Bode diagram.



Problem 24 Gain and Phase Margin

Let 

Make a Bode diagram for  Use the Bode diagram to

draw the Nyquist polar plot for this transfer function. Fill in

the following table.

What are the gain and phase margins for this system. Mark

them on your Bode diagram.

Problem 25 MATLAB command nyquist

Use the nyquist command from MATLAB to draw the polar

plot of Example 13 (see the Appendix to this chapter).

Compare this plot with the sketch in Figure 11.40.

Problem 26 MATLAB command nyquist

Use the nyquist command from MATLAB to draw the polar

plot of Example 14 (see the Appendix to this chapter).

Compare this plot with the sketch in Figure 11.43.

Problem 27 MATLAB Command nyquist

Use the nyquist command from MATLAB to draw the polar

plot of Example 15 (see the Appendix to this chapter).

Compare this plot with the sketch in Figure 11.46.



Problem 28 Gain and Phase Margin for a Double

Integrator Using Pole Placement

In Chapter 10 a pole placement controller was designed for

the double integrator system shown in Figure 11.93.

Figure 11.93. Pole placement for a double integrator system.

There it was shown that the controller

placed all four closed‐loop poles at .

Plot the Bode diagram for  and

use this to compute the gain and phase margin.

Sketch the Nyquist contour for 



Show that  for  small and

use this to fill out the following table.

Use your answers for parts (a),(b), and (c) to sketch the

polar plot for 



Problem 29 Bode Plots and Nyquist Theory

Figure 11.94 shows the Bode magnitude plot for some

system.

Figure 11.94. 

Find the transfer function . Assume that all the poles

and zeros are in the open left‐half plane.

It turns out that  and 

 Sketch the Nyquist plot.

Is the closed‐loop system stable? Explain why or why not

using Nyquist theory.



Problem 30 System with Two Right Half‐Plane Poles and a

Right Half‐Plane Zero.

In Example 7 of Chapter 10 the control system of Figure

11.95 was considered.

Figure 11.95. System with right half‐plane poles and zeros.

The open‐loop system model is  and the

controller

places all four closed‐loop poles at  It was pointed out

that this controller was not robust, that is, a small change in

 results in the closed‐loop system not being stable (see

page 306). Nyquist theory is now used to look at this in

more detail.

The Bode diagram for  is given in Figure 11.96.

The Nyquist contour and the corresponding Nyquist plot for 

 are given in Figure 11.97 on the next page. On

the three loops of the Nyquist plot encircling . There are

frequencies where  is quite close to 1 and 



is quite close to  (The Nyquist plot is not drawn to

scale!) This of course corresponds to the part of Bode plot

where the magnitude is about 0 dB and the phase is about 

.





Figure 11.96. Bode diagram for 





Figure 11.97. Nyquist contour and Nyquist plot for 

.

Using Nyquist theory find the values of  such that the

closed‐loop system  is stable.

Find the intervals of  for which the closed‐loop system is

unstable. For each interval give the number of closed‐loop

poles in the right half‐plane.



Problem 31 Gain and Phase Margin of the Satellite with

Solar Panels (Collocated Case)

In Chapter 10 a satellite with solar panels with the sensor

and actuator collocated had the transfer function model

A feedback controller was designed whose transfer function

was

which placed the eight closed‐loop poles at 



The Nyquist contour for  is given in Figure 11.98.

Figure 11.98. Nyquist contour for 

The corresponding polar plot is given in Figure 11.99.





Figure 11.99. Polar plot of 

Use Nyquist theory to determine if the closed‐loop system is

stable or not. That is, determine  and  to compute 

Use MATLAB to plot the Bode diagram of  for 

 Using the Bode diagram and the polar plot,

compute the gain and phase margins of the system and

indicate them on the Bode diagram. The margin command in

MATLAB will also be helpful.



Problem 32 Gain and Phase Margins of a 2 DOF Controller

for the DC Motor with a Flexible Shaft

In Problem 25 of Chapter 10 a 2 DOF controller for a DC

motor with a flexible shaft was considered. This control

system is given again in Figure 11.100. The transfer function

model from voltage input to the angular position of the

flexible shaft is (see [3]) (Figure 11.100)

Figure 11.100. Two DOF control system for a DC motor with

a flexible shaft.

The controller turned out to be

with the zeros of the controller at 

 The Nyquist

contour for  is given in Figure 11.101 and the

Nyquist plot is shown in Figure 11.102.



Figure 11.101. Nyquist contour for 

Using the Nyquist contour and polar plot, determine  and 

 to compute  to show the closed‐loop system is stable.

Graph the Bode diagram of  and use it along with

the polar plot to determine the gain and phase margins.



Problem 33 Gain and Phase Margins for a PID Notch

Controller of a DC Motor with a Flexible Shaft

In Problem 26 of Chapter 10 a PID controller with a notch

filter for a DC motor with a flexible shaft was considered.

The transfer function from input to the angular position of

the flexible shaft is (see [3])





Figure 11.102. Polar plot for 

The controller is

and is a modification of the controller given in [3] (see

Problem 26 of Chapter 10). Figure 11.103 is a block diagram

for this control system.

Figure 11.103. PID controller with the notch filter 

.

Graph the Bode diagram of  and determine the

gain and phase margins.

Graph the Bode diagram of  for 

 to see the “notch” in the amplitude plot at 

 rad/s.

Notes



1   If  is stable then it is also the steady‐state solution

for any set of initial conditions.

2   Actually, using MATLAB!

3   Compensator is just another word for controller.

4   The terminology “simple” means that the curve  does

not cross itself, e.g., it is not a figure 8.

5     is the same as  We write the term 

 to emphasize we are in the complex plane.

6   For example with  then 

 so the sensor noise 

 is differentiated twice.

7   Here's a little more detail on the Nyquist plot as 

We have

This calculation shows (see Figure 11.69) the imaginary

part of  is negative for all . At 

the plot  for  and the plot 

 for  connect to 

 and 

respectively.



8   A bit more detail on the Nyquist plot as  We have

This calculation shows (see Figure 11.72) the imaginary

part of  for  is positive as .

From the Nyquist contour shown in Figure 11.71 this

connects to 



(12.1)

(12.2)

12 

Root Locus

With  let an open‐loop transfer function  be

given by

Consider a proportional feedback controller as given in

Figure 12.1.

Figure 12.1. System block diagram.

The closed‐loop transfer function is

In this simple proportional feedback control system we are

interested in the movement of the closed‐loop poles as the



value of  is varied. Specifically, as  varies from 0 to 

 we want to determine the location of the roots of

If one desires the root locations for  simply replace 

 by  and still take 

We refer to the polynomial  as the closed‐loop

characteristic polynomial and its roots are the closed‐loop

poles. The root locus is a plot of the roots of 

 as  is varied from 0 to  Let's do a

simple example by “brute force,”that is, by directly solving

for the roots.

Example 1 Root Locus for 

Let

so that the closed‐loop transfer function is then

We want to compute the roots of

for  Using the quadratic formula these roots are



The closed‐loop poles as function of  are

A table of values for  is

0

2

4

8

Using this table we sketch the root locus shown in Figure

12.2.



Figure 12.2. A plot of the roots of  for 

12.1 Angle Condition and Root Locus

Rules

We would like to have a procedure to sketch the root locus

without having to solve for the roots. Of course a computer

can be used to numerically find the roots and draw the root

locus. However, by learning to sketch it we will gain insight

into the information it contains. This procedure is based on

the angle condition due to W. Evans [53]. To explain, let's



look back at (12.2) and consider the return difference

defined by

In regards to the return difference we make the following

straightforward observations:

The zeros of the return difference are the roots of

and are the closed‐loop poles.

The poles of the return difference are the roots of

and are the open‐loop poles.

The root locus is a plot of the zeros of  for 

 If  satisfies

then, equivalently, it satisfies

In general,  and  are complex numbers. For  to be

on the root locus we must have  equal to a negative

real number. That is, in polar coordinates,  must satisfy



That is, if  is on the root locus, then  satisfies the

angle condition given by

and the corresponding value of  is simply given by

The key observation here is we need only know the open‐

loop transfer function  to determine whether or not 

is a closed‐loop pole.

Let's redo Example 1 using this observation.

Example 2 Angle Condition for 

We have

so that

Figure 12.3a shows a point “ ” on the root locus. We are

now thinking of  and  as vectors where  is a vector

from the origin to  while  is a vector from

 to  Figure 12.3b shows the angles  and 



Figure 12.3. (a) The vectors “ ” and “ ”. (b) The

angles  and .

From Figure 12.3b we see that

so that

For example, choosing



which is on the root locus we have

The angle is

On the other hand, choosing

which is not on the root locus we have

where  So

Now let  so that  and thus 

 Thus  is on the

root locus.

On the other hand, if  then 

 and thus 

 which is not on the

root locus.

Let's summarize what we now know from this example. The

return difference is given by



and its zeros are the closed‐loop poles.

The root locus starts on the open‐loop poles. This is simply

because for  the closed‐loop poles are the roots of

The number of branches of the root locus is 2, which is

simply the degree of the closed‐loop characteristic

polynomial 

The root locus is symmetric with respect to the real axis

simply because the complex roots of

come in complex conjugate pairs.

For any  on the root locus,



A breakaway point occurs at  for  which is

where the closed‐loop characteristic polynomial 

 has a double root. That is,

This is simply because when the root locus breaks away

from the real axis, the two roots must come together so

they can leave the real axis as a complex conjugate pair.

Note that at this breakaway point

Let's consider another (rather long) example to illustrate

how the angle condition is used to sketch a root locus.

Example 3 Root Locus for 

Consider the closed‐loop system of Figure 12.4.



Figure 12.4. System block diagram.

The open‐loop transfer function is

The closed‐loop poles are the zeros of

or, equivalently,

Let's sketch the root locus.

 Then

shows that  The root locus starts on the

open‐loop poles.



 From

we see that as  results in the three roots going to

infinity, i.e.,  Notice that as 

We say that  has three zeros at infinity.



Real axis root locus

Consider  real with  (see Figure 12.5). Then 

 and therefore

so these values of  are on the root locus. This is indicated

by the thick line between  and 0 in Figure 12.5.

Figure 12.5. Real axis root locus.

Consider  real with  so that 

 and therefore

so these values of  are not on the root locus.



Consider  real with  so that 

 and therefore

so these values of  are on the root locus. This is indicated

by the thick line from  to  in Figure 12.5.

Finally, consider  real with  so that 

 and therefore

so these values of  are not on the root locus.



Breakaway point

A breakaway point occurs at a value of  for which

has multiple zeros. That is,  is a breakaway point for a

value of  such that

This is simply because two branches breaking away from

the real axis must first come together (double root) and

then leave the real axis as a complex conjugate pair. We see

immediately that

So at a double root  we have

At a breakaway point we must have  and 

 In this example the candidate breakaway

points are the solutions to



Solving

results in the candidate breakaway points

As shown in Figure 12.6, only  is on the real axis

root locus and is therefore the only breakaway point. That is,

only  also satisfies  for some 



Figure 12.6.  at 



 axis intercepts

We now use the Routh–Hurwitz test to check if any of the

branches of the root locus intercepts (crosses) the  axis.

That is, are there any values of  such that the zeros

of

are on the  axis? To find out we apply the Routh–Hurwitz

test to

The Routh table is

which is stable for  and has two right half‐plane

poles for  Thus at  there are two poles on

the  axis. It turns out that to find these poles we first set 

 in the Routh table noting that the  row is all zeros.

Just above this row is the  row and we use it to form the

auxiliary equation



The roots of this equation are  and

are the poles on the  axis.1   These are indicated on

Figure 12.7.

Figure 12.7.  axis intercepts at 



At this point we can give a sketch of the root locus, which is

shown in Figure 12.8. Actually this plot was done using the

MATLAB code given on the next page.





Figure 12.8. Root locus plot of 

 

  % Root Locus of G(s) = 1/(s(s+2)(s+4)) = 1/(s^3+6s^2+8s) 

  den = [1 6 8 0]; 

  num = [1]; 

  rlocus(tf(num,den)) 

  % Pretty up the plot by making the linewidth thicker, 

  % the marker size and font size bigger. 

  h = findobj(gca, ’Type’, ’line’); 

  set(h, ’LineWidth’, 6) 

  set(h, ’MarkerSize’, 20) 

  set(gca,’FontSize’,24) 

  % Set range of x‐axis [‐10,0] and y‐axis [‐2,2] 

  v = [‐10 10 ‐10 10]; 

  axis(v) 

  axis square 

  % Title the plot and label the axes 

  str_G = ’G(s) = 1/(s(s+2)(s+4))’; 

  title(str_G,’FontSize’,20) 

  xlabel(’Re(s)’,’FontSize’,20) 

  ylabel (’Im(s)’,’FontSize’,20) 

 

This example illustrated a sequence of rules to draw a root

locus. The root locus rules found so far are:

The root locus starts on the open‐loop poles.

The root locus ends on the open‐loop zeros.

The root locus is symmetric with respect to the real axis.

Any  on the root locus satisfies the angle condition.

A breakaway point from the real axis is a solution to 

The  axis intercepts may be found using the Routh–

Hurwitz test.



12.2 Asymptotes and Their Real Axis

Intersection

We next consider the root locus asymptotes and their

intersection on the real axis.

With  let the open‐loop transfer function be written

as

For large values of the magnitude of  i.e., for  large,

the branches of the root locus are asymptotic to straight

lines called asymptotes whose angles with respect to the

real axis are given by

Further these asymptotes intersect on the real axis at (see

[1, 2], or [5] for a proof)

In the special case where  that is,



we take  so that

This rule is best explained by an example.

Example 4 Asymptotes for 

Let

be put in the closed‐loop system of Figure 12.9.

Figure 12.9. System block diagram.

The angles of the asymptotes with respect to the real axis

are ( )



and these asymptotes intersect the real axis at

Figure 12.10 shows the two asymptotes at  and 

added to Figure 12.7. From the geometry we see that these

asymptotes intersect the  axis at 

 The third asymptote has

an angle of  and just follows the real axis root locus

branch at 



Figure 12.10. Asymptotes and their intercept on the real

axis.

We can also add these two asymptotes to Figure 12.8 to

obtain Figure 12.11.





Figure 12.11. Root locus plot with the three asymptotes

showing their intersection at 

Figure 12.12. System block diagram.

Example 5 Root Locus of 

Consider the closed‐loop system given in Figure 12.12.

The open‐loop transfer function is given by

The closed‐loop poles are the zeros of

In terms of the angle condition the closed‐loop poles satisfy



Let's sketch the root locus.

 Then

shows that  The root locus starts on the open‐

loop poles.

 From

we see that as  we must have the open‐loop

transfer function . This requires  or 

 Notice that as 

Thus the open‐loop transfer function  has one zero at 

 and one zero at . The root locus ends on the

open‐loop zeros.



Real axis root locus

Consider  real with  (see Figure 12.13). Then 

 and therefore

These values of  are on the root locus. This is indicated by

the thick line between  and 0 in Figure 12.5.

Figure 12.13. Real axis root locus.

Consider  real with  so that 

 and therefore

These values of  are not on the root locus.



Consider  real with  so that 

 and therefore

These values of  are on the root locus. This is indicated by

the thick line from  to  in Figure 12.5.

Finally, consider  real with  so that 

 and therefore

These values of  are not on the root locus.



Breakaway point

A breakaway point occurs at a value of  for which

has multiple zeros. As shown in the previous two examples,

this implies a breakaway point satisfies

As

any breakaway point must be a solution to

The candidate breakaway points are then

As shown in Figure 12.14 both roots of  are on

the real axis root locus and therefore both are breakaway

points.



Figure 12.14.  at 



 axis intercepts

We now use the Routh–Hurwitz test to check if any of the

branches of the root locus intercepts the  axis. That is,

are there any values of  such that the zeros of

are on the  axis? To find out we apply the Routh–Hurwitz

test to

Note this is a second‐order polynomial so it is stable for 

 As we are only interested in the root locus for 

 it follows that the root locus cannot intercept the 

 axis.



Asymptotes

As  we have

Thus there is only one asymptote which makes an angle 

 with respect to the real axis. The intersection with

the real axis is

In this example the asymptote tells us nothing new because

we already knew from the real axis root locus that the root

locus went out along the negative real axis.



Sketch

To sketch the root locus set  to see that the two

branches start at the open‐loop poles  respectively.

Increasing  we then have the two branches move toward

each other on the real‐axis root locus to the breakaway

point at . Next the two branches break off the

real axis and must go toward the other breakaway point at 

 After coming together at the second breakaway

point, one of the branches heads toward the open‐loop zero

at  while the other heads toward the open‐loop zero at 

 However, using the root locus rules we cannot

ascertain the shape of the branches off of the real axis. We

drew it as a circle in Figure 12.15, but this is not obvious.



Figure 12.15. Root locus plot of 

Using the angle condition we can prove that the root locus

that is off the real axis is a circle! To do so note that the

circle in Figure 12.15 may be written as

To show that these points are on the root locus we compute



That is,

so that  and thus the points

are on the root locus.

12.3 Angles of Departure

We introduce the final root locus rule known as the angles of

departure. We do this through the following example.



Example 6 Root Locus of 

Consider the closed‐loop system of Figure 12.16.

Figure 12.16. Closed‐loop system block diagram.

The open‐loop transfer function is

The closed‐loop poles are the zeros of

In terms of the angle condition the closed‐loop poles must

satisfy

or



Let's sketch the root locus.

 Then

shows that  The root locus starts on the open‐

loop poles.

 From

we see that as  we must have the open‐loop

transfer function . This requires  Notice

that as 

Thus the open‐loop transfer function  has three zeros

at . The root locus ends on the open‐loop zeros.



Real axis root locus

Consider  real with  as indicated in Figure

12.17. Then 

 and

therefore

These values of  are on the root locus.



Consider  real with  so that 

 and

therefore

These values of  are not on the root locus.



Figure 12.17.  on

the real axis.

Figure 12.18 shows the real axis root locus.



Figure 12.18. Real axis root loci.



Breakaway point

A breakaway point occurs at a value of  for which

has multiple zeros. As previously explained, a breakaway

point must satisfy

We have

which requires solving

We obtain

which are not on the real axis. Thus there are no breakaway

points.



 axis intercepts

We now use the Routh–Hurwitz test to check if any of the

branches of the root locus intercepts (crosses) the  axis.

That is, are there any values of  such that the zeros

of

are on the  axis? To find out we apply the Routh–Hurwitz

test to

The Routh table is

which shows that closed‐loop system is stable for 

 and has two right half‐plane roots for 

Thus for  there are two roots on the  axis. The

auxiliary equation for these two roots is constructed using

the s2 row of the Routh table. We have

which gives



These intercept points are indicated in Figure 12.19.



Asymptotes

The angles of the asymptotes with respect to the real axis

are given by ( )



Figure 12.19.  axis intercept points.

The angles of the three asymptotes are

Their intersection with the real axis is at



Figure 12.20 shows the two asymptotes at  and .

From the geometry we see that these two asymptotes

intersect the  axis at  The

third asymptote has an angle of  and just follows the

branch at  found from the real axis root loci.



Figure 12.20. Asymptotes and their real axis intercept.



Angles of departure

The fact that the open‐loop transfer function has a complex

conjugate pair of poles leads to the idea of computing the

angles of departure from these poles using the angle

condition. As the name suggests, we are going to determine

the angle that a root locus branch leaves an open‐loop

complex pole. For  the roots are at 

 and  As  is increased

slightly, the closed‐loop poles (root locus branches) will

leave these open‐loop poles. We want to compute the

angles that the two branches starting on the complex‐

conjugate pair of poles leave them. Consider  just greater

than zero so that the root locus branch that starts at 

 is slightly away from this point. This is indicated by

the point “ ” in Figure 12.21. The key observation here is

that  is taken to be very close  (think of  being

much closer to  than as drawn in Figure 12.21). Then

we have



Figure 12.21. Angle of departure from the open‐loop pole at 

The angle condition is

As we are considering  just greater than zero, the point “

” on the root locus is close to  The angle condition

becomes



Solving for  results in

We can take  to be any integer, so let's just take it to be 0.

Then

or  Since the root locus is

symmetric with respect to the real axis, we have 

 Figure 12.22 indicates the angles

of departure on the full root locus.





Figure 12.22. The angles of departure from a complex

conjugate pair of open‐loop poles.

Sketch

The root locus starts on the open‐loop poles. As there are no

breakaway points, the root locus branch that started at 

 just continues out along the negative real axis to 

 This is just the real axis root locus. The root locus

branch that starts at  leaves that point at an angle

of  However, as  increases it must intercept the 

 axis at  and then as  it must approach its

asymptote. Similar comments apply to the branch that

starts at  Of course Figure 12.22 was drawn using a

computer program (MATLAB), but knowing the root locus

rules allows us to not be surprised by the computer plot!

Example 7 Root Locus of 

Consider the closed‐loop system of Figure 12.23.

Figure 12.23. System block diagram.

The open‐loop transfer function is given by



The closed‐loop poles are the zeros of

or, equivalently,

The angle condition is then

Let's sketch the root locus.

 Then the roots of  with K =

0 are  The root locus starts on the open‐loop

poles.

 From

we see that as  we must have the open‐loop

transfer function . This requires either  or 

 Thus the open‐loop transfer function  has

one zero at  and another zero at . The root

locus ends on the open‐loop zeros.



Real axis root locus



Consider  real with  Then 

 as

indicated in Figure 12.24. Then

These values of  are on the root locus.



Figure 12.24.  on

the real axis.



Consider  real with  so that 

 and

therefore

These values of  are not on the root locus.

The real axis root locus is given in Figure 12.25.



Figure 12.25. Real axis root locus.



Breakaway point

A breakaway point occurs at a value of  for which

has multiple zeros. This implies

We have

which requires solving

We obtain

where only  is on the real axis root locus and thus

is the only breakaway point.



 axis intercepts

We now use the Routh–Hurwitz test to check if any of the

branches of the root locus intercepts (crosses) the  axis.

That is, are there any values of  such that the zeros

of

are on the  axis? Note that the roots of

are in the open left half‐plane for all  so there are no 

 axis intercepts.



Asymptotes

The angles of the asymptotes with respect to the real axis

are given by

There is a single asymptote whose angle with respect to the

real axis is  Its intercept on the real axis is

There is only one asymptote and it coincides with the real‐

axis root locus.



Angles of departure

For  the roots are at  and 

 As  is increased slightly, the closed‐loop

poles will leave these roots and we compute the angle that

the two branches leave the two complex conjugate poles.

Consider  just greater than zero so that the root locus

branch that starts at  is slightly away from this point

which is indicated by the point “ ” in Figure 12.26. The key

observation here is that  is taken to be very close 

(think of  being much closer to  than as drawn in

Figure 12.26). As a result we have



Figure 12.26. Angle of departure from the open‐loop pole at 

The angle condition is



For  just greater than zero we can write the angle

condition approximately as

Solving for  gives

We can take  to be any integer, so let's just take it to be 0.

Then

or  Since the root locus is

symmetric with respect to the real axis, it follows that 

 Figure 12.27 indicates the

angles of departure on the full root locus.



Sketch

The root locus starts on the open‐loop poles at 

leaving them at the calculated angles of departure. We don't

really know the shape off of the real axis, which we have

drawn as circular in Figure 12.27 on the next page.

However, the branches must be symmetric with respect to

the real axis and they must come together at the breakaway

(or break‐in) point at  After that, one of

the branches must head out on the real axis to  and

the other one must go to the open‐loop zero at 

Using the angle condition we show the part of the root locus

that is off the real axis is circular! Specifically, we show that

the points given by

are on the root locus.



Figure 12.27. Root locus plot of 

We have



Now  for  so that we

can summarize this calculation as

That is, for  we have

showing that the points

are on the root locus.



Example 8 Root Locus of 

We have the closed‐loop system of Figure 12.28.

Figure 12.28. Proportional control of 

The open‐loop transfer function is given by

The closed‐loop poles are the zeros of

Equivalently, the closed‐loop poles must satisfy



This immediately gives the angle condition

or

 With  we have

with roots  The root locus starts on

the open‐loop poles.

 From

we see that as  the open‐loop transfer function 

. This requires either  or  Notice

that as  we have

Thus the open‐loop transfer function  has one zero at 

 and four zeros at . The root locus ends on

the open‐loop zeros.



Real axis root locus

Consider  real with  (see Figure 12.29). Then 

and therefore

These values of  are on the root locus.

Consider  real with  so that 

and therefore

These values of  are not on the root locus.

Consider  real with  so that 

and therefore

These values of  are on the root locus.



Consider  real with  so that 

and therefore

These values of  are not on the root locus.

Finally, with  real and  we see that

and therefore these values are not on the root locus.

The real axis root locus is given in Figure 12.29.



Figure 12.29. Real axis root locus.



Breakaway point

A breakaway point occurs at a value of  for which

has multiple zeros. As a consequence any breakaway point

must satisfy

After some calculations this reduces to solving

The roots of this are 

 so that the only

breakaway point is  as indicated on Figure 12.30.

We could have guessed this answer without having to solve 

 To do so recall that breakaway points can only

occur on the real‐axis root locus. For  on the real axis root

locus and between  and  we make the table of values

of  given by

  

    

Note that  changes sign going from  to  and thus

must have a root in that interval.



Figure 12.30. Breakaway point,  axis intercepts, and

asymptotes.



Similarly, for  on the real axis root locus and between 0

and  we make the table of values of  given by

0

In this case there is no change in sign of  and thus we

would guess that  does not have a root in this interval

and thus the root locus does not have a breakaway point

between 0 and 



 axis intercepts

We now use the Routh–Hurwitz test to check if any of the

branches of the root locus intercepts (crosses) the  axis.

That is, are there any values of  such that the roots

of

are on the  axis? We form the Routh table:

For stability the  row requires  As 

the  row requires  while the last row requires 

 Thus for

the system is stable. For both  and 

there are two sign changes in the first column and thus two

right half‐plane poles. Set  in the  row of the

Routh table to obtain the auxiliary equation



This has roots

These intercepts are indicated on Figure 12.30.

Asymptotes

The open‐loop transfer function is

The angles of the asymptotes with respect to the real axis

are given by ( )

or

Their intersection on the real axis is

These asymptotes are drawn on Figure 12.30.



Angles of departure

We now compute the angles of departure from the complex

conjugate pair of open‐loop poles at  We consider

the branch that starts at  with  just greater than 0

so that the root is still close to this point (except think of the

point  as much closer to  than as drawn in Figure

12.31). We then may write (approximately)



Figure 12.31. Angle of departure from 

Rearranging we have





Sketch

Figure 12.30 is used to sketch the root locus shown in Figure

12.32.





Figure 12.32. Root locus plot of 

The two branches that start at open‐loop poles at  and 

 respectively, come together to the breakaway point at 

 These two branches then asymptotically go to the

two asymptotes whose angles are  and 

respectively. The branch that starts on the open‐loop pole at

0 just goes to the open‐loop zero at  Finally, the two

branches that start at the complex‐conjugate pair of poles

at  and  respectively, depart from them at 

 and  respectively. They then cross the 

axis at  and , respectively, and go toward the

two asymptotes at  and  respectively.

Figure 12.32 was drawn using a computer program

(MATLAB), but again knowing the root locus rules allows us

to not be surprised by the computer plot!

12.4 Effect of Open‐Loop Poles on the

Root Locus

Figure 12.33 shows the root locus for different open‐loop

systems using proportional control. Each system has a

different set of open‐loop poles and no zeros. These four

examples are:







Figure 12.33. Effect of open‐loop poles on the root locus.

12.5 Effect of Open‐Loop Zeros on the

Root Locus

Figure 12.34 shows the root locus for each of four different

controllers for the open‐loop system . These

four examples are:

 Proportional control.

 Proportional plus derivative

control.

 Lead controller.

 Proportional plus integral

controller.





Figure 12.34. Effect of open‐loop zeros on the root locus.

12.6 Breakaway Points and the Root

Locus

Figure 12.35 shows the root locus of four open‐loop systems

of the form  each using the same controller 

 The value of the open‐loop pole at  has

a big effect on the location of the breakaway point [2].

These four examples are:





(12.3)

(12.4)

Figure 12.35. Effect of the breakaway point on the root

locus.

Source: Adapted from Kuo [2]. Automatic Control Systems, Prentice‐Hall,

Englewood Cliffs, NJ, 1987.

12.7 Design Example: Satellite with

Solar Panels (Noncollocated)

In Chapter 5 a model of a satellite with solar panels was

developed and given by (see Figure 12.36)

 is the angle of the actuator (motor) with respect to the

satellite,  is angle of the tip of the solar panels with

respect to the satellite, and  is the motor torque used to

turn the panels. We now consider the root locus approach to

design a controller for this system. We take the sensor to be

located at the end of a solar panel, that is, the angle of the

solar panel angle  is measured (noncollocated case).

Solving (12.3) and (12.4) for  gives the transfer

function from  to  as



Figure 12.36. (a) Satellite with solar panels for power. (b)

Lumped parameter model.

Again with  kg‐   kg‐   N‐

m/rad,  Nm/rad/s,  as in [13] it follows that

A block diagram for the closed‐loop system is given in Figure

12.37.



Figure 12.37. Controller for 

As a first step consider a notch filter  by

We then have

The notch filter was chosen to cancel the two lightly‐

damped poles of  at  (roots of 

) and replace them by two real poles

at  The location  was chosen simply to cancel the

zero of  The transfer function model  is not

known exactly so these stable pole–zero cancellations are

not exact. In Chapter 11 it was seen that a lead

compensator of the form  can be used to

stabilize a double integrator  so this motivates the use

of using a lead compensator to stabilize 

 The proposed controller is then



The next step would be to do a root locus of 

to pick a value for  However, we first must deal with the

fact that there is not exact cancellation. In doing so we will

see the important insight the root locus gives to determining

the notch filter. To proceed we modify the notch filter to be

The nominal value of  is 1 and we have now put the poles

of  at  so that they are little further in the

left half‐plane than the zero of  at  We consider 

 and  to see the effect of  on the location

of the closed‐loop poles. With  the notch filter is

then

A root locus of 

 for 

 is given in Figure 12.38 on the next page.

Figure 12.39 on the next page is a zoomed in version of

Figure 12.38 around the  axis. Look at the part of Figure

12.39 showing the two closed‐loop poles which start at 

 (open‐loop poles of ) and migrate to

the zeros of the notch filter at  as 

increases from 0. These two poles stay in the left‐half plane

as  increases. Thus, even with uncertainty in the poles of



 there is confidence that the closed‐loop poles will

not cross over to the right half‐plane as  is varied.





Figure 12.38. Root locus of 





Figure 12.39. Zoomed in root locus of 

 with 





Figure 12.40. Root locus of  with 

With  ( ) the closed–loop poles are at

Let's now redo the root locus with  In this case

where the zeros of  are now  The

root locus (zoomed in around the  axis) is shown in

Figure 12.40. The point here is to look at the two closed‐loop

poles which start at  (open‐loop poles of 

) and migrate to the zeros of the notch filter at 

 As  increases from 0 these two poles

cross into the right half‐plane before looping back to the

zeros of the notch filter! Thus, with uncertainty in the (open‐

loop) poles of  we cannot be confident that the

closed‐loop poles will be in the left half‐plane for our chosen

value of  For this reason  is chosen.

With   the simulated responses of 

and  along with the reference input  are shown in

Figure 12.41. Note that the difference  is small

which is important because the larger  the

more mechanical stress within solar panel shaft and we

don't want the shaft to break! It turns out that ,

which is well within the torque limit of 5.





Figure 12.41. Simulation of the responses  and 

along with the reference input .

Problems

Problem 1 

Consider the closed‐loop system of Figure 12.42.

Figure 12.42. Root locus of 

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway point

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 2 

Consider the closed‐loop system of Figure 12.43.

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Figure 12.43. Root locus of 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 3 

Consider the closed‐loop system of Figure 12.44.

Figure 12.44. Root locus of 

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 4 

 has the transfer function form for a

magnetically levitated steel ball. Consider the closed‐loop

control system of Figure 12.45.

Figure 12.45. Control system for a magnetically levitated

steel ball.

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 5 

 has the transfer function form for a

magnetically levitated steel ball. Consider the closed‐loop

system of Figure 12.46.

Figure 12.46. Control system for a magnetically levitated

steel ball.

An integrator has been included in the controller in the hope

of being able to track step inputs.

Use the Routh–Hurwitz test that there is no value of  that

will result in the closed‐loop system being stable.



As illustrated in Figure 12.47, consider the controller

Figure 12.47. Pole placement controller for a magnetic

levitation system.

Show that the controller parameters  can be

chosen such that closed‐loop transfer function has its

denominator equal to .



Problem 6 

Consider the control system of Figure 12.48.

Figure 12.48. Root locus for a PI controller.

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 7 

 is a lag controller. It is used to provide

high gain at low frequency. Consider the control system of

Figure 12.49.

Figure 12.49. Root locus with a lag controller.

To see its use, we compute

If the closed‐loop system is stable for some  then



If we only had a simple gain  for the controller, then

So, for the same value of the gain  the lag controller

decreases the final error by a factor of 10.

Using the lag controller sketch the root locus of the closed‐

loop poles for  by using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus



Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 8   [46]

Consider the closed‐loop system of Figure 12.50.

Figure 12.50. Root locus for 

Note that  with 

 A controller of the form  with 

 is called a lead controller. Note that

showing that a lead controller is an approximate PD

controller.

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes



Angles of departure

Sketch the root locus

Problem 9   [46]

Consider the closed‐loop system of Figure 12.51.

Figure 12.51. Root locus for 

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus

In [46] the design chooses  Where are the closed‐

loop poles for this value of 



Problem 10   [46]

Consider the closed‐loop system of Figure 12.52.

Figure 12.52. Root locus for 

In this control system there is a stable pole‐zero cancellation

between  and  so that  reduces to

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



In [46] the design chooses  Where are the closed‐

loop poles for this value of 

Problem 11 Root Locus of 

Consider the closed‐loop system of Figure 12.53.

Figure 12.53. Root locus for 

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 12 

Consider the closed‐loop control system of Figure 12.54.

Figure 12.54. Root locus of 

Sketch the root locus of the closed‐loop poles for  by

using the root locus rules as listed.

Closed‐loop poles for 

Closed‐loop poles for 

Real axis root locus

Breakaway points

 axis intercepts

Asymptotes

Angles of departure

Sketch the root locus



Problem 13 

In Problem 5 we considered the control system of Figure

12.55.

Figure 12.55. Control system for a magnetically levitated

steel ball.

It was noted that a controller of the form  ( ) is

referred to as a lead controller. Consider the controller 

 shown in Figure 12.56, where we make the

identification .

Figure 12.56. Pole placement controller for the magnetic

levitation system.

Show that the controller gains  can be chosen so

the closed‐loop poles of  are at 



Problem 14 Notch Filter

In the design example for the satellite with solar panels (see

page 484) the notch filter  is used.

Graph its Bode diagram for  to see the

“notch” in the amplitude plot at  rad/s.

Note

1   See [1, 2], or [5] for a proof.



13 

Inverted Pendulum, Magnetic

Levitation, and Cart on a Track

13.1 Inverted Pendulum

Figure 13.1 shows a rod on a cart that is free to rotate about

a pivot. The objective is to keep the rod upright ( ) by

pushing/pulling on the cart using the input force . We

will refer to this as the inverted pendulum control problem.

The first thing to do is to derive the mathematical model of

this system.



Figure 13.1. (a) Inverted pendulum. (b) Free body diagram.

(c)  and .

Mathematical Model of the Inverted Pendulum

Let  denote an external force on the cart in the

horizontal direction. The cart has mass  and the angle

between the vertical and the pendulum rod of length  is

denoted by . The center of mass of the rod is a distance 

from the pivot. The rod is free to rotate about the pivot and

it is assumed that there is a sensor to measure the angle .

With  denoting the mass of the rod, the force 

exerted by the pivot on the pendulum rod is written as



There is (of course) the reaction force 

 that the pendulum rod exerts on

the cart of mass  through the pivot. The rod has a

uniform density  uniform cross section , and a length 

 so its mass is given by  The quantity 

 is the horizontal position of the center of mass

of the rod and  is the vertical position of the center

of mass of the rod. The translational motion of the center of

mass of any rigid body is determined by the sum of the

external forces acting on it. As 

locates the center of mass of the pendulum rod, Newton's

equations for the rod's translational motion are

We take the axis of rotation of the rod to be in the 

direction through its center of mass.1 The moment of inertia

of the rod about this axis of rotation is

Newton's equation for rotational motion tell us that the sum

of the torques acting on a rigid body equals its moment of

inertia times its angular acceleration, that is,



This equation holds in an inertial reference frame (a

reference frame that is not accelerating) or in an

accelerating frame if the computations are done with

respect to an axis of rotation that goes through the center of

mass of the rigid body. As we have chosen the axis of

rotation to be through the center of mass of the rod, this

equation is valid here. This was necessary to do as the

pendulum rod will be accelerating.

The gravitational force  does not produce any torque

on the pendulum rod as it acts through its center of mass

making its moment arm zero (see Figure 13.1c). The vector 

  is a vector from

the center of mass of the rod to the point of contact of the

force  acting on the rod. The torque

about the rod's center of mass due to this force is then

As indicated in Figure 13.1c, the component of the force 

 perpendicular to the rod is  producing the

torque  This will turn the rod in the positive 

direction if . Similarly, the component of the force 

 perpendicular to the rod is  producing the

torque  and will turn the rod in the 

direction if . Newton's equation of rotational motion

about the rod's center of mass is then



(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

The equation of motion for the cart is simply

The equations of motion for the inverted pendulum system

are

To eliminate the (unknown) reaction forces, we substitute

the expressions for  and  from (13.1) and (13.2)

into (13.3) and (13.4) to obtain



These equations are nonlinear due to the 

etc. so we cannot use the Laplace transform yet. Before we

make a linear approximation of these equations, let's first

rewrite them in a more standard form. Equations (13.5) and

(13.6) can be written in matrix form as

Digression Inverse of a  matrix

Proof: Simply compute  to find out it equals 

End of Digression

Solving for the second‐order derivatives results in



(13.7)

(13.8)

With  we may rewrite (13.7) as



Remark This is called a statespace model and refers to

the fact that on the left side of each equation is only a first‐

order derivative, while on the right side of each equation

there are no derivatives. The state  is simply the vector

where  and  are called the state variables.

Linear Approximate Model

The reason for modeling the inverted pendulum is to use it

to design a feedback controller that keeps the rod upright.

However, to design such a controller based on the nonlinear

differential equation model is not available. To get around

this a linear statespace approximate model of the inverted

pendulum is found, which is valid for  small. A

controller can then be designed that stabilizes this linear

model. As long as this controller keeps  close to 

(where the linear model is valid), it will also work for the

nonlinear model. To develop the linear model we use the

following approximations for  small.



(13.9)

(13.10)

The idea here is the following. Suppose  which is

small, then  is very small. So we keep a term

with just  but not the really small term . Using these

approximations the model in (13.8) becomes

In matrix form we have



(13.11)

(13.12)

This is a linear statespace (approximate) model of the

inverted pendulum. The adjective linear refers to fact that

the right side of

is linear in  and  That is,  is a linear in  and  is

linear in . The control problem is to use the measured

angle  and the measured cart position  to

determine the input  that keeps  close to ,

i.e., keeps the pendulum rod upright.

Transfer Function Model

Using the last equation of (13.11) with , we have

Computing the Laplace transform gives2



(13.13)

With the definitions

we can write  as

The open‐loop poles of the transfer function 

 are

showing it is unstable. Similarly, using the second equation

of (13.11) with , we have

Computing the Laplace transform gives



(13.14)

or

Substitution of the expression for  in (13.13) and a lot

of algebra results in (see Problem 3)

where

Note that  has poles at  and zeros at 

In Chapters 9 and 10 we only considered controller designs

for single‐input single‐output (SISO) systems. To obtain the

SISO model of the inverted pendulum considered in

Example 5 of Chapter 10, take the output to be [49]

After some algebraic manipulation one obtains (see Problem

3)



(13.15)

where

Note that  does not have any zeros. This turns out to

be the reason for this particular choice of output as

explained in Chapter 17.

Inverted Pendulum Control Using Nested

Feedback Loops

To obtain a workable controller we go back to the transfer

function (13.14) and factor it as

This suggests the nested loop feedback structure shown in

Figure 13.2. (See page 119 of [5] or Problem 5.39 of [3].)



Figure 13.2. Control structure to feedback  and 

separately.

Note that  and  are each fed back to the input through a

proportional plus derivative (PD) controller with low pass

filtering (see Chapter 9). The time constants  and  are

taken to be small so we can write

In the time domain this is

This nested loop controller for the inverted pendulum turns

out to be a state feedback controller. By this is meant that



the feedback part of  given by 

 is a linear combination

of the state variables of the system (13.11).3 To simplify the

analysis we set  and  The inner loop of Figure

13.2 reduces to

resulting in the equivalent block diagram of Figure 13.3.

Figure 13.3. Block diagram equivalent to Figure 13.2.

The closed‐loop transfer function  is given by



(13.16)

With  the desired closed‐loop

characteristic polynomial set

or

Then



(13.17)

As done in Chapter 10, to have closed‐loop poles at 

 ( ), we set the closed‐loop

characteristic polynomial to be

Referring to Figure 13.2 or 13.3 it is seen that the forward

path of this control system is type 2. However this is not in

unity feedback form due to  in the

feedback path. To account for this the reference input filter 

 is added to the control system as shown in

Figure 13.4.



Figure 13.4. Reference input filter added for output tracking

of steps and ramps.

A simple rearrangement of the block diagram of Figure 13.4

gives the equivalent block diagram shown in Figure 13.5.



Figure 13.5. Block diagram used to compute 

With  and  the error  is

given by

We see that  is stable so that by the final value

theorem we have  Similarly, if  we



have  That is, the cart will track step or ramp

inputs while keeping the pendulum rod upright.

Remark Problem 4 asks you to simulate this control

system using the linear statespace model of the inverted

pendulum while Problems 5 and 6 have you do this using

the nonlinear statespace model. Problem 13 shows you how

to modify the control structure of Figure 13.4 so that the

pendulum cart tracks the sinusoidal reference 

 As explained in Chapter 17, this

state feedback controller using nested loops results in a

control system for the inverted pendulum that is robust.

This means it will keep the pendulum rod upright in spite of

inaccurate model parameters or small disturbances acting

on the cart. This is in contrast to the unity feedback

controller of Example 5 of Chapter 10 which was shown in

Section 11.9 to have small stability margins.

13.2 Linearization of Nonlinear

Models

In the model of the inverted pendulum we were able to use

our knowledge of trigonometric functions to come up with a

linear model of the inverted pendulum about 

The reason linear models are so important is because it is

known how to design stabilizing feedback controllers for

them. In this section we present a systematic way to obtain

a linear approximation of a nonlinear model.

Suppose we are given the nonlinear system



An equilibrium point (operating point) for this differential

equation is a constant value  for which . An

equilibrium point is a solution to the differential equation as

The equilibrium points (operating points)  of this

differential equation are

The general definition is now given.

Definition 1 Equilibrium Point

Consider the differential equation

An equilibrium (operating) point is any value  such that 

.

Remark If  is an equilibrium point of the differential

equation, then  is a solution with the initial

condition .

Example 1 Equilibrium Point

Let



Then  is the only equilibrium point.

Example 2 Equilibrium Point

Let

Then  is the only equilibrium point.

Example 3 Equilibrium Point for a System with an Input

Let

where now we have an input to the system. Suppose it is

desired to have the system operate at , that is, the

desired equilibrium point is . Then we must choose 

 so that

Solving gives

 is an equilibrium point with the constant input 

. In other words



is a solution to

with

Let's next look at how to construct a linear approximate

model about an equilibrium point. Consider again the

differential equation

whose equilibrium point is . With  a

Taylor series expansion of  about  is

The first term  is zero because  is an equilibrium

point. We want an approximate model for  close to . If 

 is small, then  etc. are very

small. We refer to the terms containing  for 

 as the higher‐order terms. Setting the higher‐order

terms to zero we have



Then

To make this look simpler set

so that the linear approximate model becomes

Example 4 Linearization of a Nonlinear System

Consider the system

and suppose it is desired to have the system operate at 

. Then we require  so that  is

an equilibrium point. With

a Taylor series expansion of  about  is



Neglecting the higher‐order terms we have

Set

so that the linear approximate model is then given by

Example 5 Linearization of a Nonlinear System

Consider the system

and suppose it is desired to have the system operate at 

 This requires  With



a Taylor series expansion of  about 

 is

Neglecting the higher‐order terms results in

Set

so that the linear approximate model is then written as



13.3 Magnetic Levitation

Here we consider the problem of levitating a steel ball under

an electromagnet. A schematic diagram is shown in Figure

13.6. The electromagnet consists of a wire (coil) wrapped

around a cylindrical core of soft iron. A voltage  applied to

the coil results in a current which produces a magnetic field

that attracts the steel ball upwards against the gravitational

force pulling down on it. A photograph of such a magnetic

levitation system is shown in Figure 1.21.

Figure 13.6. Schematic diagram of a magnetically levitated

steel ball.



(13.18)

To develop a differential equation model of this system, we

first model the flux linkage in the coil. The flux linkage is the

sum of all the fluxes in each of the coils wound around the

iron core. It is given by

To explain this expression for  consider the center of

mass of the steel ball fixed at some position  The coil is

just like an inductor so we expect the flux linkage  to be

proportional to the current  based on elementary physics.

The dependence of  on the ball position  is not as easy

to motivate. It is explained in Section 13.3.1 that a

reasonable model for the inductance is given by

where  is the radius of the steel ball. Note that  locates

the center of mass of the steel ball with respect to the

bottom of the electromagnet and increases in the downward

direction. Further  can be no smaller than the radius of the

steel ball, i.e., . It is typically true that  and

will be assumed here. By Faraday's law and Ohm's law we

have

With the self‐inductance of the coil given by (13.18), a

conservation of energy argument (see below) shows that

the magnetic force has the form



(13.19)

(13.20)

(13.21)

(13.22)

where  is a constant parameter. Conversely, if the force 

 has the form (13.19), then the self‐inductance of the

coil must have the form (13.18). The expression (13.19) for

the magnetic force says that if you double the coil current

then the force will increase by a factor of 4. On the other

hand, if you double the distance of the steel ball from the

bottom of the electromagnet, then the force goes down by a

factor of 4.

Putting this all together the model we consider for the

suspension of a steel ball beneath the electromagnet is

given by

Conservation of Energy

We now show that if (13.20) holds with  given by

(13.18) then conservation of energy implies (13.22) must

hold with  To proceed, we multiply (13.20) by

the current  to obtain the electrical power into the

electromagnet given by



(13.23)

(13.24)

(13.25)

The quantity

is the energy stored in the magnetic field of the coil

produced by the current in the coil. The rate of change of

this magnetic energy is

We next solve for  in (13.24) and substitute this

expression into (13.23) to obtain

Equation (13.25) shows that the electrical power 

supplied by voltage source goes into changing the magnetic

field energy  of the coil and steel ball, dissipation as

heat  and a third term . By conservation of

energy this third term must represent the mechanical power

supplied to the steel ball. To model the mechanical energy

of the steel ball we take its gravitational potential energy 

 to be zero at  so that it may be written as



(13.26)

Note that  is decreasing as  increases, i.e., as it

should as the ball goes downward. The total mechanical

energy of the steel ball is then

The rate of change of this mechanical energy is the

mechanical power and therefore

or

Canceling the velocity  and rearranging we have

which verifies (13.22) with  Summarizing,

conservation of energy requires the magnetic force be given

by (13.19) with  if the flux linkage is given by 

. We can turn this argument

around by doing some experiments in which we measure

the force as a function of . We would find out

experimentally that the force has the form given by (13.19)

for some constant  Then, as a consequence of



(13.27)

(13.28)

(13.29)

(13.30)

(13.31)

(13.32)

conservation of energy,  with 

 (see Problem 8).

Statespace Model

Our model is now

Upon some rearrangement this becomes

where  and we substituted 

. The system of Eqs. (13.30), (13.31),

and (13.32) is a nonlinear differential equation model of the

magnetic levitation system.

Remark The model (13.30), (13.31), and (13.32) is called

a statespace model. As in the case of the inverted



(13.33)

(13.34)

(13.35)

pendulum, this refers to the fact that only first‐order

derivatives are on left side of these equations, while the

right side of these equations has no derivatives. The state is

simply

and  and  are called the state variables.

We can simplify the equations a little by recalling our

assumption that  and  so that

Substituting  for  in (13.30) we obtain

The expressions  in (13.33) and  in (13.34) are

nonlinear and thus this is still a nonlinear model.

Current Command Input Model

Before developing a linear model we can first simplify the

model by using a current command amplifier. This is simply



(13.36)

(13.37)

an amplifier that allows one to command a current to it

rather than a voltage. Such an amplifier is indicated in

Figure 13.7.

Figure 13.7. Current command amplifier for the magnetic

levitation system.

That is, a PI controller forces  so fast (compared

with the motion of the steel ball) that the current  can

be considered as the input. With  the input the model

reduces to

Linearization About an Equilibrium Point



(13.38)

An equilibrium point for the system is a constant solution to

the system Eqs. (13.36) and (13.37). We choose an

equilibrium point to be where the steel ball is at a set

distance  below the electromagnet and not moving, that

is, we have  and . Then (13.36) and

(13.37) are simply

The first equation holds because  is a constant and 

. In the second equation the left side is zero because

 is constant. For the right side to be zero we must

have

The model (13.36) and (13.37) is nonlinear due to the

expression  in (13.37). To find a linear approximate model

a Taylor series expansion of

is done about the equilibrium point  with input 

 First note that



(13.39)

(13.40)

(13.41)

as  was chosen to make this true. The Taylor series

expansion of  about  is then (dropping

higher‐order terms)

where in the third line we used (13.38) to obtain

The model (13.36) and (13.37) becomes



(13.42)

(13.43)

(13.44)

(13.45)

(13.46)

(13.47)

As  we can rewrite this as

With  and  we

have

or

Remark The model (13.47) is called a linear statespace

model. The adjective linear refers to fact that it is written in

the form



where the right side is a linear matrix equation. Here the

state is

with  and  the state variables and  the

input.

Transfer Function Model

Going back to (13.45) and (13.46), rewrite the model as a

single equation given by

The Laplace transform is

or

This expression leads to the block diagram of Figure 13.8. As

always, the denominator of the transfer function is the same



as the denominator of the initial condition term. The transfer

function has a pole at  and is therefore unstable.

Figure 13.8. Block diagram of the linear model of the

magnetic levitation system.

13.4 Cart on a Track System

We now develop a model for the QUANSER [34] cart on a

track system illustrated in Figure 13.9. The smaller wheel is

powered by a DC motor. The larger wheel is connected to an

encoder that gives the position of the cart.



Figure 13.9. Cart on a track with one end of the track raised

an angle .

The following notation is used.

 is the motor torque constant ( ).

 is the motor back‐emf constant ( ).

 is the motor armature resistance.

 is the motor armature inductance (negligible).

 is the mass of the cart and wheels.

 is the radius of the powered (motor) wheel.



 is the radius of the gear on the motor shaft.

 is the radius of the gear on the wheel shaft.

 is the moment of inertia of the motor shaft.

 is the moment of inertia of the output shaft and powered

wheels.

 is the radius of the encoder wheel.

 is the moment of inertia of the encoder shaft and

wheels.

 is the number of gear teeth on the motor shaft.

 is the number of gear teeth on the output shaft.

 is the gear ratio.

 is the (disturbance) force of gravity along

the direction of the track.

Mechanical Equations

To model the mechanical part of the system, both the

rotational motion of the motor, gears, and wheels as well as

the translational motion of cart must be taken into account.

Denote by  the force exerted on the powered wheels

by the track so that (Newton's third law)  is the force

exerted on the track by the powered wheels. Similarly, let 

 be the force exerted on the encoder wheels by the

track so that  is the force exerted on the track by

the encoder wheels. The motor shaft with gear 1 has

moment of inertia , while the wheel shaft with gear 2 has

moment of inertia . The equations of motion for the motor

and wheel shafts are, respectively,



(13.48)

(13.49)

(13.50)

(13.51)

(13.52)

where  is the torque exerted on gear 1 by gear 2 and  is

the (reaction) torque exerted on gear 2 by gear 1. The

quantity  is the torque exerted on the powered wheel

by the track. Using the gear relationships  and 

 Eqs. (13.48) and (13.49) reduce to

or

The encoder wheels have a moment of inertia , radius 

 and angular velocity . The equation of motion for

the encoder wheel is

where the quantity  is the torque exerted on the

encoder wheels by the track. However, it turns out that 

 is negligible so we take it to be zero. The equation for



(13.53)

(13.54)

(13.55)

(13.56)

the encoder wheel given by (13.52) then simply goes away

as  results in .

The linear velocity along the circumference of the encoder

wheels is  and is the same as the linear velocity

along the circumference of the powered wheels  as

they both make contact with the inclined plane without

slipping. This common linear velocity is simply the cart

velocity . Putting this together we have

With  the force of gravity on the cart the

equation of motion for the cart body is

We put Eqs. (13.51) and (13.54) together to describe the

mechanical motion as

Using the no slip condition (13.53) for the powered wheel,

i.e.,  and eliminating  from (13.55) and

(13.56), we obtain a single equation for the velocity  of

the cart given by



Electrical Equations

The motor electrical equations are given by (see Figure

13.10)

with the motor torque given by 

Figure 13.10. DC motor schematic.  and 

With no slip between the powered wheel and the track, we

use the gear relationships to obtain

The electrical equation may now be rewritten as



(13.57)

Equations of Motion and Block Diagram

Collecting all of the equations together, the cart on the track

system is described by4

It is easier to work with these equations in the  domain.

With zero initial conditions we take the Laplace transform of

the system (13.57) to obtain

Simplifying the notation by setting



(13.58)

these equations are equivalently represented by the block

diagram of Figure 13.11 on the next page.

Setting  (negligible) and moving the disturbance force

 to the input summing junction, the

block diagram of Figure 13.11 reduces to that of Figure

13.12 on the next page where

Figure 13.11. Block diagram of the cart on a track.



(13.59)

Figure 13.12. Equivalent block diagram for the cart and

track system.

We can simplify this block diagram further by defining 

as

where



(13.60)

Using the parameters  and  we may now write 

 as

 is an input voltage disturbance that has the same

effect on the output as the actual load force disturbance 

. Note that

has units of (dimensionless)

 The block

diagram Figure 13.12 reduces to that given in Figure 13.13.

As  we

can write (13.60) in the time domain as



Figure 13.13. Equivalent transfer function model of the cart

and track system.

The equivalent disturbance  is simply the

linear acceleration of the cart due to gravity.

Problems



Problem 1 Pendulum Down

In the text it was shown that  is an

equilibrium point of the inverted pendulum for any value of 

 that is, of the system of Eq. (13.8).

Show that 

 with 

 is also an equilibrium point of the system of Eq.

(13.8) for any value of .

Write  so  Compute the linear

approximate model around

 in terms of the state variables 

 and 



(13.61)

Problem 2   and Reference Systems

Newton's law for rotational motion of a rigid body about a

single axis is  It has been pointed in this chapter

(as well as Chapter 5) that this equation is valid if the torque

is computed in an inertial (non‐accelerating) coordinate

system or if the torque is computed about the center of

mass of the rigid body (even if the center of mass is

accelerating). Parts (a), (b), and (c) refer to the inverted

pendulum on the cart system.

Suppose the cart is held stationary so that the pivot axis is

stationary and therefore in an inertial reference frame. With

respect to the pivot axis show that the total torque on the

pendulum rod is  where  is the mass of

the rod.

With  the cross sectional area of the rod,  the mass

density of the rod, and  the length of the rod, show that

its mass is given by  and its moment of inertia

about the pivot axis is 

By parts (a) and (b) the rotational motion of the pendulum

rod on the stationary cart is described by

Let the cart no longer be held stationary so it can move

under the influence of the applied force . Suppose

(incorrectly!) that we still compute the motion of the

pendulum angle about the pivot axis with the cart being

accelerated by the force  (cart is no longer an inertial

reference system). What equation would you get for the

motion of the pendulum angle? Answer: Same as Eq.

(13.61). Explain why this cannot be correct.



Problem 3 Pendulum Transfer Functions

Verify the expressions for  and 

 given on page in the text.



Problem 4 Inverted Pendulum Control via Nested

Feedback Loops – Linear Model

A SIMULINK block diagram for the nested loop control

system is shown in Figure 13.14. Use the linear statespace

model shown in Figure 13.14 for the open‐loop inverted

pendulum. This model is valid for  and  small. A

SIMULINK block diagram to simulate this linear model is

shown in Figure 13.15.

The parameter values for the QUANSER [34] inverted

pendulum system are given by  kg (cart mass), 

 kg (pendulum rod mass), 

 m (pendulum rod half‐length),  m/  (acceleration

due to gravity), and  kg‐

(moment of inertia of the pendulum rod about its center of

mass). Use the Euler integration algorithm with a step size

of  second. You will need to write a .m file to set

these parameter values, to set the time constants 

 and  and to compute the gains 

 according to (13.17). Run your simulation for

both a step and a ramp input. Plot  and 





Figure 13.14. Control of the inverted pendulum using nested

loops.





Figure 13.15. Inside the Linear Statespace Model of Figure

13.14.



Problem 5 Inverted Pendulum Control via Nested

Feedback Loops – Nonlinear Model

Redo Problem 4 replacing the linear statespace model with

the nonlinear statespace model given in (13.8). Figure 13.16

is a SIMULINK block diagram for nested loop control

structure, while Figure 13.17 on page 524 is a SIMULINK

block diagram for the nonlinear inverted pendulum model.

Simulate both a step and a ramp input.



Figure 13.16. Nested loop control system with nonlinear

statespace model of the inverted pendulum.





Figure 13.17. Inside the Pendulum on Cart block.





Figure 13.18. A zero_order_hold bock followed by a gain block

added to model optical encoders.





Figure 13.19. A gain block followed by a floor block added to

model optical encoders.



Problem 6 Inverted Pendulum Control via Nested

Feedback Loops – Nonlinear Model with Encoders

The inverted pendulum system built by QUANSER [34] uses

optical encoders to measure the pendulum rod angle and

the cart position. In this problem you are to add models of

these optical encoders to the simulation of Problem 5. (See

Chapter 6 for details on the operation of optical encoders.)

With  the number of counts from the encoder wheel, 

 the radius of the encoder wheel, and  the number

of pulses/rev produced by the encoder, the cart position 

is given by  Similarly, with 

the number of counts out of the pendulum rod encoder, the

angular position of the pendulum is given by 

The QUANSER encoders have  pulses/rev and

their encoder wheel has a radius of  m.

Figure 13.18 on page 525 is a SIMULINK block diagram of

the nested loop controller for the inverted pendulum. The

upper right side of Figure 13.18 shows a zero order hold

block followed by a gain block of  to convert the

position counts to meters. Similarly the lower right side of

Figure 13.18 shows a zero order hold block followed by a gain

block of  to convert the rod angle counts to

radians.

Figure 13.19 on page 526 is a SIMULINK block diagram of

the nonlinear differential equation model of the inverted

pendulum. The upper right side of Figure 13.19 shows a gain

block  followed by a floor block to model the counts

(pulses) from the cart position encoder. The lower right side

of Figure 13.19 shows a gain block of  followed by

a floor block to model the counts (pulses) from the

pendulum rod angle encoder.



Run the simulation for both a step and a ramp input.



Problem 7 Inverted Pendulum Controller with Three

Nested Loops

Figure 13.20 shows an integrator added to the forward path

of the nested loop controller to provide the capability to

reject disturbances in the input. For example, raising one

end of the track would be such a disturbance.

Show how to compute  so that the closed‐

loop characteristic polynomial is 

 where the  can be

specified arbitrarily. Hint: Start with the transfer function

given in (13.16), which is the transfer function 

in Figure 13.20.

Figure 13.20. Controller for the inverted pendulum with

three nested loops.



Modify the simulation from Problem 5 or Problem 6 to

implement this controller.

Problem 8 Flux Linkage for the Magnetic Levitation

System

Suppose empirically one could measure the magnetic force

of the magnetic levitation system. For example, consider the

procedure in [10, 54]. Put the ball on a (non‐magnetic)

pedestal with the ball's center of mass a distance  below

the magnet. Then increase the current until the ball just lifts

off the pedestal. As the mass  is known and the

gravitational constant  is known,  equals the

electromagnet force for that (measured) position and that

(measured) current. Carrying this out for several positions

and currents it is found that  is a good fit to

the data for some constant . With this empirically found

value of  conservation of energy requires

For what value of  does  satisfy this

equation.



Problem 9 Linearization About an Equilibrium Point

In this problem the third‐order model of the magnetic

levitation system represented by (13.33)–(13.35) is to be

linearized. That is, you are asked to find a linear

approximate model for it.

With the steel ball required to be at the fixed location 

below the electromagnet, show that the equilibrium point

and equilibrium input voltage are given by

The equation for the current  is given by (13.33) and

repeated here.

Compute the Taylor series expansion of  about

the equilibrium point and drop higher‐order terms.

The equation for the acceleration of the steel ball is given

by (13.35) and repeated here.

Compute the Taylor series expansion of  about the

equilibrium point and drop the higher‐order terms.



(13.62)

Show that the approximate linear model about the

equilibrium point is then

Remark The model (13.62) is called a linear statespace

model. The adjective linear refers to fact that it is written in

the form

where the right side is a linear matrix equation. The state is 

 with  and 

 the corresponding state variables and  the

input.



Problem 10 Simulation of the Nonlinear Magnetic

Levitation System Model

This problem asks you to simulate a control system for the

magnetic levitation system.

Figure 13.23 is a SIMULINK block diagram of the overall

control system consisting of two nested loops. The inner

loop is a current command controller given by 

where  As shown in Figure 13.21, with

 and  the transfer function

from  to  is given by  where 

 Figure 13.24 shows the inside of

the Maglev Model block in Figure 13.21. This is a SIMULINK

block diagram of Eqs. (13.30)–(13.32) given in the text. The

parameter values from QUANSER [34] are  H, 

 ,  m (  mm),  kg, 

 m/ ,  m,  

 A, and  V. Set 

 / .5



With the open loop transfer function 

 use the controller 

 to place the three closed‐loop poles

at 

Figure 13.21. Output feedback controller for the magnetic

levitation system.



Figure 13.22. Steel ball resting on a pedestal to start.





Figure 13.23. SIMULINK block diagram for the closed‐loop

controller.



With reference to Figure 13.21, set the PI current controller

gains as  and the saturation limits

on the integrator and input voltage to be . As shown

in Figure 13.24, the QUANSER steel ball is set on a pedestal

to start. Sitting on the pedestal the center of mass of the

steel ball is  meters below the bottom of the

magnet. Set the initial conditions as 

 and 

Simulate the complete control system of Figure 13.21 with

the controller  designed in part (a). Use the Euler

integration algorithm with a step size of  second.

Plot  in millimeters and  in amperes.





Figure 13.24. SIMULINK model for the open‐loop magnetic

levitation system.



Problem 11 Control of the Third‐Order Magnetic

Levitation System

Reconsider Problem 10 by designing the controller based on

the third‐order linear statespace model of Problem 9 part (c)

given by

The overall block diagram of the control system is shown in

Figure 13.25 on the next page.

With , and 

 show that the transfer function from 

to  is  where 

   

Design an output pole placement controller to stabilize the

closed‐loop system. Where do you place the three closed‐

loop poles?



Simulate this control system with the same parameter

values given in Problem 10. Set  m, 

 and  As in Problem 10 set

 meters, and  Also set 

 Plot  in millimeters and  in

amperes. The inside of the SIMULINK block Maglev Model in

Figure 13.25 is given in Figure 13.22.





Figure 13.25. Controller for the third‐order magnetic

levitation model.



Figure 13.26 shows a SIMULINK block diagram using the

transfer function model for the control system simulation.

Since the initial conditions are set to zero in the transfer

function model, a 2 V input voltage disturbance was applied

from  to  seconds to move the steel ball from

its equilibrium position. Do the simulation. Plot  in

millimeters and  in volts.



Figure 13.26. Simulation of the transfer function control

system model.



Problem 12 Simulation of the Cart on the Track

This problem asks you to simulate the cart on the track

control system shown in Figure 13.27.





Figure 13.27. SIMULINK block diagram for the open loop cart

model.

The inside of the Linear Cart block of Figure 13.27 is shown

in Figure 13.28. The parameter values from QUANSER [34]

are   Nm/A,  ,  mH, 

 kg,  m,  

  

 counts/rev, 

 m,  m/ , 

 m/count, 

 V, and  second.

Use (13.59) to set the values of  and  in the cart transfer

function  Set  according to (13.58). See Chapter

6, Section 6.5 as well as Problem 10 of that chapter for how

to simulate an optical encoder and the backward difference

calculation.



Implement the cart on the track simulation as shown in

Figures 13.27 and 13.28. In the dialog block for the Repeating

Sequence Stair (Figure 13.27) set the input voltage to the cart

motor as given in Figure 13.29.

Figure 13.28. Inside the Linear Cart block of Figure 13.27.



Figure 13.29. Voltage input to the cart motor.

Plot the speed calculated by the backward difference

computation and, from the plot, show that the error is

bounded by 



Design a minimum order controller  for the cart on the

track system that rejects constant disturbances and allows

for arbitrary pole placement. Then add this controller to the

simulation of part (a). To set the reference input for the

position of the cart use the Repeating Sequence Stair block

and set its dialog block as given in Figure 13.30. This

reference input commands the cart to move forward  m,

move backward 0.1 m, and then repeat.



Figure 13.30. Reference input for the cart position.



Problem 13 Inverted Pendulum Tracking a Sinusoidal

Reference Input

Figure 13.31 shows the controller transfer function 

added to the forward path to be able track the sinusoidal

reference signal  as required by the

internal model principle. Note that 

Figure 13.31. Sinusoidal tracking of cart position by the

inverted pendulum.



Compute  and show that the gains 

 can be used to place the closed‐loop

poles at any desired location in the open left‐half plane.

Hint: Note that the transfer function  has

already been computed in the text. Use it to compute 

With  simulate this control system using

the QUANSER parameter values.

Notes

1   If your right thumb is pointing in the  direction, then

your fingers are pointing in the positive  direction.

2   

.

3   In Chapter 15 it is shown how to design a state feedback

controller based directly on the statespace model (13.11).

4   Remember that  is the cart velocity, while 

 and  are the input and back‐emf voltages,

respectively.



5   QUANSER denotes the force constant as  instead of 

 with the value   / .

However, in the magnetic force expression QUANSER

considers the position  of the steel ball to be the

distance from the bottom of the magnet to the top of the

steel ball rather than to its center of mass. Instead of

setting  equal to this value of  we set 

 (or ) to compensate for this

difference in the reference point for .



14 

State Variables

14.1 Statespace Form

Consider the mass–spring–damper system in Figure 14.1.

Figure 14.1. (a) Spring–mass–damper system. (b) Damper

cross section.

If  then the spring is neither compressed nor

stretched, which is to say the spring is relaxed. The force on

the mass  due to the spring is



Note that if  the spring is pulling  to the left while if

 the spring is pushing  to the right. The damper

(dashpot) is illustrated in more detail on Figure 14.1b. The

force of the damper on  is proportional to its velocity 

and is given by

Note that if  then the mass  along with the cylinder

is moving to the right with the piston providing a resistive

force in the  direction to oppose this motion. Similarly, if 

 then the mass  along with the cylinder is moving

to the left with the piston providing resistive force now in

the  direction to oppose this motion.  denotes an

external force. The equations of motion are given by

Let

so that we may write

This is called the statespace form. By statespace form we

mean that the left‐side of the equation has only first‐order



derivatives and the right‐side has no derivatives. The output

equation is

Using matrix notation, these statespace equations may be

written as

More compactly we write

The quantities  and  are called the state variables and

is called the state of the system.

Example 1 DC Motor

Figure 14.2 shows a DC motor with its schematic diagram.



Figure 14.2 DC motor and its schematic diagram.

The equations of motion are

or



Rewritten in statespace form we have

Using matrix notation this becomes

We consider  as the control input and  as the

disturbance input. More compactly we have

The quantities  are called the state variables and



(14.1)

(14.2)

is the state of the system.

14.2 Transfer Function to Statespace

Consider the transfer function

Clearing fractions in (14.1) we have

In the time domain this is

This is referred to as an input–output representation since

the differential equation contains only the input  and the

output . To put this model into statespace form we let the

state variables be

so that



(14.3)

(14.4)
This statespace representation can also be represented by

the following simulation block diagram of Figure 14.3. The

adjective “simulation” refers to being able to immediately

write down the statespace Eqs. (14.2), (14.3) by inspection

from the block diagram.

Figure 14.3. Simulation block diagram for 

The outputs of the two integrators are the state variables 

and  Observe that the block diagram of Figure 14.3

consists of two nested loops. A straightforward block

diagram reduction shows that its transfer function 

 is simply (14.1). In matrix notation we have



However, this approach to finding a statespace

representation only works if the transfer function has no

zeros. To see this let

We may write

which in the time domain is

with . Proceeding as before, we let

which gives



(14.5)

(14.6)

or, in matrix form we have

This is not a statespace representation due to the derivative

 on the right‐hand side.

Control Canonical Form

We now give a method that converts any strictly proper

transfer function into statespace form.1 To proceed, let

and consider the transfer function

Using transfer function (14.6) we can draw the simulation

diagram shown in Figure 14.4. A simulation diagram is a

special case of a block diagram in which only integrators 

 or constants are allowed in each block. Furthermore,



the integrator blocks are cascaded in series as shown in the

block diagram. Observe that the simulation block diagram of

Figure 14.4 consists of three nested loops. Using block

diagram reduction the reader should verify that 

Figure 14.4. Simulation diagram for 

As Figure 14.4 indicates, we are taking the state variables to

be the outputs of the integrators so that 

and  We see from (14.5) that



which leads to the simulation diagram for  given in

Figure 14.5.



Figure 14.5. Simulation diagram 



(14.7)

(14.8)

From the simulation diagram we have

or

We call this statespace representation a realization of ,

that is, starting from a transfer function  and ending up

with a statespace model is a realization of . This

special form of the  and  matrices is referred to as the

control canonical form. As will be shown later, this form is

very convenient for state feedback control.

Example 2 Transfer Function Realization

Let



and

Then .

We first draw the simulation diagram for  and

then use the outputs of the two integrators to form .

The simulation diagram is as shown in Figure 14.6.



Figure 14.6 Simulation diagram for 

The equations of the system is statespace form are



(14.9)

or, in matrix notation, they may be written as

Example 3 Discrete‐Time Implementation of a Transfer

Function

The derivative of the state variables in Example 2 may be

approximated by

This is referred to as the Euler approximation for the

derivatives. Using this approximation a discrete statespace

realization for the system of Example 2 is

or

More explicitly we have



(14.10)

For example, in SIMULINK when a transfer function block

with  inside of it is used, it is converted to a recursive

equation like (14.10) and the simulation runs this recursion.

We can check that the correctness of the simulation block

diagram of Figure 14.6 using block diagram reduction.

Taking the constant “10” outside the feedback loops gives

the equivalent block diagram of Figure 14.7.



Figure 14.7. First step of a block diagram reduction of Figure

14.6.

Simplifying the inner feedback loop results in Figure 14.8.



Figure 14.8. Second step of a block diagram reduction of

Figure 14.6.

Simplifying the feedback loop in Figure 14.8, and combining

the remaining blocks gives the block diagram of Figure 14.9.

Figure 14.9. Block diagram reduction of Figure 14.6.

This shows



We can also check the statespace realization directly. Before

doing this we digress to recall the computation of the

inverse of a  matrix.

Digression – Computation of the Inverse of a  Matrix

Let

and assume its determinant , that is,

Then  has an inverse given by

To check this we simply compute

End of Digression



We now compute the transfer function of the statespace

model

Taking the Laplace transform of both sides gives

We are computing the transfer function  so we

set the initial conditions to zero, i.e., .

Rearranging gives

Solving for  and  we obtain



Finally,

We next consider a transfer function that is proper, but not

strictly proper.

Example 4 Transfer Function Realization

Let

which is proper, but not strictly proper. We rewrite this as



We let

denote the strictly proper part of . We then do a

realization (find a statespace model) of . We let

and draw a simulation diagram for  (see Figure

14.10). Then we use the outputs  of the two

integrators to make the simulation diagram for 

 Finally, as  we simply

add a feed forward signal line from the input  to sum it

with  to obtain a simulation diagram for 

as shown in Figure 14.10.



Figure 14.10 Simulation diagram of 

The statespace realization is



or

We can check this as follows:

or

with



Finally we have

Example 5 Implementing a Feedback Controller

Consider the feedback system in Figure 14.11.

Figure 14.11 Unity feedback control system.

Suppose we want to implement the controller 

 on a microprocessor. The first thing we do is

obtain a realization (statespace model) of . We have

The simulation diagram is given in Figure 14.12.



Figure 14.12 Simulation diagram for the controller given

Figure 14.11.

The corresponding statespace equations are then

with

Since this is to be implemented on a digital computer it

must be converted to a discrete‐time model. To do so, let 

denote the sample period and let's approximate the

derivative  by



Substituting this into the statespace equations along with

setting  we obtain

These are the equations that are implemented using

(perhaps) the  programming language. The value of 

 comes from the output sensor and we consider the

reference  to be stored in the computer's memory.

Example 6 Implementing a Transfer Function

Consider the unity feedback control system of Figure 14.13.

Figure 14.13 Unity feedback control system.

Suppose a controller was designed and has the form



A statespace realization of  is given by

To implement this controller in software we can use an Euler

discretization approach which means we approximate the

derivative of the state by

Then



Rearranging we have

where

 is the measured output brought into the computer

(e.g., an A/D, optical encoder, etc.) and  is stored in

the computer memory. Then a programming language such

as  can be used to implement this in software.

14.3 Laplace Transform of the

Statespace Equations

A second‐order linear statespace model has the form



(14.11)

(14.12)

(14.13)

(14.14)

(14.15)

As before we can use the Laplace transform to solve this set

of equations. We have

which upon some rearrangement gives

or

Computing we have



(14.16)

(14.17)

where

More compactly we write

Then

Let's look at an example.

Example 7 Inverse Laplace Transform of the Statespace

Equations [4]

Consider the statespace model

Then



Now as

we have

Perform partial fraction expansions to obtain

and

Thus



Suppose . Then the solution  is

Now let the initial conditions be zero, that is, 

 and let the input be

Then  and we have



Thus

Finally suppose . The

complete solution is



(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

14.4 Fundamental Matrix 

We have considered a second‐order statespace model given

by

or, more compactly,

With  we have



(14.23)

(14.24)

(14.25)

Letting  it follows that the solution to

is

 is called the fundamental matrix. We now develop an

explicit expression for it.

Exponential Matrix 

Recall that the Taylor series expansion for  is

Next note that



For  define the exponential matrix  by

where we recall that  and . Then we have



(14.26)

Also note that

Writing  we have 

and , that is,  satisfies (14.23) and

(14.24).

This shows that the exponential matrix is the fundamental

matrix, i.e.,

Example 8 Exponential Matrix

Let



Then

Note that

Example 9 Exponential Matrix

Let

Then



Note that

Example 10 Exponential Matrix

Let

Then

Now



In general we have

We may then write  as



Note that

The fundamental matrix is the exponential matrix, that is,

We have computed  by using its definition as a

Taylor series expansion. This was done in order to obtain

familiarity with the concept of the exponential matrix. We

can also compute  using Laplace transforms. We

do an example of this next.

Example 11 Exponential Matrix

Let

As

it follows that



Then

Recall that

for  Using this expression we then have

or

or



(14.27)

(14.28)

(14.29)

Properties of the Exponential Matrix

Problem 4 at the end of this chapter asks you to show for

matrices :

 if and only if 

14.5 Solution of the Statespace

Equation*

Given the statespace model

we have shown that the Laplace transform of the solution 

 is

We now give an explicit expression for .

To start, we first do the scalar case.

Scalar Case

Consider the scalar case, that is,



with . Multiply both sides by  to obtain

or

or finally

Changing the symbol  to  in this last equation and

integrating results in

or

or

Multiplying through by  and rearranging gives the result



We can confirm that this is a solution to (14.27) by direct

computation. But first we need to digress and explain the

Leibniz rule of differentiation.

Digression – Leibniz's Rule for Differentiation

Both Newton and Leibniz showed that

where  is an antiderivative of , i.e., 

. Then

Combining this with the chain rule for differentiation gives

Similarly



This gives the Leibniz rule

Finally suppose we want to compute the derivative of

It follows immediately that

End of digression

Applying Leibniz's rule to

gives



Also

Matrix Case

The matrix case is similar. Multiply both sides of (14.27) by 

 to obtain

or



By property (1) of the exponential matrix we have 

 and thus

Replacing  by  and integrating both sides gives

Rearranging we have

where, as  and  commute, we were able to use

Similar to the scalar case we compute



(14.30)

(14.31)

14.6 Discretization of a Statespace

Model*

We have shown that the solution to

is given by

with arbitrary initial condition . To run this

statespace model on a digital computer, we must find a

discrete‐time model. Previously we have considered the

approximation



(14.32)

(14.33)

where  is the sample period. Then the state equation can

be discretized as

or

However, there is a more accurate way to discretize the

equations. We rewrite (14.31) as

Then we let  and assume the input is

constant over each sample period of length , that is,

This results in



(14.34)

With

we have the discrete‐time statespace model

Typically in a computer controlled system (14.33) holds so

that the discrete‐time model gives the exact values of

(14.31) at the sampling instants .

Note that for  small



Also for  small

With  small the discrete‐time model (14.34) reduces to

(14.32).

Problems



Problem 1 Statespace Form of a Mass–Spring–Damper

System

In Figure 14.14, the input to the mass–spring–damper

system is the position  and the output is the position  of

the mass . The right‐side of the spring  does not show

any mass so we will let  denote the mass of the piston to

which the spring is attached. Later we will let .

We let  denote the position of the piston (mass ). If 

 then the spring is relaxed. The relative velocity

between the piston and the cylinder of the damper is .

Figure 14.14. Mass–spring–damper system.

The equations of motion for  and  are

Remember that  is the input and  is the output. With

zero initial conditions the Laplace transform of these

equations are



Eliminating  gives

Letting  and solving for  finally results in

Draw a simulation diagram for this system.

Use the simulation diagram from part (a) to find a

statespace representation of this system.

Use the Routh–Hurwitz test to show

is stable. With  show that  for any 

Note that  has a zero at 

Can you explain physically why  for every

constant input ? That is, every constant

input results in the output asymptotically going to zero.

Hint: Note that  also results in 



Problem 2 Statespace Realization

Consider the transfer function

Find a statespace realization of this system in control

canonical form. Show work which should include a

simulation diagram.

Problem 3 Statespace Realization of a PI Controller

Let

Draw a simulation diagram for 

Use the simulation diagram in part (a) to give the

statespace equations for the PI Controller.

With  and  give a

discrete‐time version of the statespace model found in part

(b).

Problem 4 Properties of the Exponential Matrix

Show 

Show  if and only if 

Show that  for any matrix .



(14.35)

(14.36)

Problem 5 Solution of the Statespace Equations

With

compute  using the Laplace transform method. Show

work.

What are the roots of ?

Use your answer in part (a) to find the solution to (14.35).

Show work!

Does  as ? Just answer yes or no.

Problem 6 Solution of the Statespace Equations

With

compute  using the Laplace transform method. Show

work.

Use your answer in part (a) to find the solution to (14.36).

Show work!

Does  as ? Just answer yes or no.



Problem 7 Transfer Function

Suppose that the statespace model of a system is given by

Compute the transfer function . Show work!

Problem 8 Transfer Function

Suppose that the statespace model of a system is given by

Compute the transfer function . Show work!



(14.37)

Problem 9 Solution of the Statespace Equations

With

compute  using the Laplace transform method. Show

work!

Use your answer in part (a) to find the solution to (14.37).

Show work.

Does  as ? Just answer yes or no.

Problem 10 Statespace Realization

Consider the transfer function

Find a statespace realization of this system in control

canonical form. Show work which should include a

simulation diagram.

Use the Euler approximation to find a discrete‐time

representation of the statespace realization of part (a). Such

a representation would be used to implement this system

model in a software program.



Problem 11 Statespace Realization of an Inverted

Pendulum

In Chapter 13 a transfer function model for the inverted

pendulum was found to be

where  is the output  is

the cart position and  is the angle of the pendulum rod

,  is the horizontal force on the cart, and

Compute a statespace representation of this transfer

function in control canonical form. Be sure to draw the

simulation diagram.



Problem 12 Realization of a Non‐Strictly Proper Controller

Recall from Chapter 10 the output pole placement feedback

controller for the inverted pendulum given in Figure 14.15

where (see Chapter 13)

Figure 14.15. Output feedback controller for the inverted

pendulum.

The minimum order controller that allows arbitrary pole

placement has the form



Find the statespace realization of  in control canonical

form.

Hint: Add and subtract  to the

numerator of  as follows

That is,

is written as a strictly proper part and a direct feed through

part.

Give the Euler discretization of your answer in (a) which can

then be use to implement  on a microprocessor.



Problem 13 Computing the Transfer Function from the

Statespace Representation

A third‐order statespace representation is given by

Compute the transfer function 

Note

1   See Problem 14.12 for the case of a proper, but not

strictly proper transfer function.



(15.1)

15 

State Feedback

In Chapter 14 we discussed statespace models. We now

show how these models can be used to design very

effective controllers.

15.1 Two Examples

Let's do two examples to see how statespace models and

state feedback are used in control systems.

Example 1 Stabilization of an Inverted Pendulum

Figure 15.1 shows the inverted pendulum on a cart. Recall

the transfer function model of the inverted pendulum given

by (see 13.13)

where



(15.2)

Figure 15.1. Inverted pendulum on a cart.

Let

so that a statespace representation is given by

Recall that the input  is the force on the cart and our

objective is to keep  and . Let's try a state

feedback controller defined by



(15.3)

(15.4)

(15.5)

(15.6)

Applying this feedback to the inverted pendulum system

results in

The solution to this system is

For any values of the initial conditions 

 we want

This requires



(15.7)

(15.8)

Let's look at how to choose  using a direct computation.

Recall that we can compute  using the Laplace

transform as follows.

We compute

With  and  choose  and  so that

That is, set

Then



(15.9)

After doing a partial fraction expansion, we have

The key observation here is that by our choice of  and 

we have

This shows that every component of the  matrix 

 has its poles at . Consequently,

the inverse Laplace transform of each component will go to

0 as  Summarizing, the row vector  must be

chosen so that the roots of

are in the open left half‐plane. We then say that 

 is a stable matrix.

Example 2 Trajectory Tracking by a Cart on a Track



Recall from Chapter 13 the cart on a track system as shown

in Figure 15.2. In this example we describe how to design a

state feedback controller to force the cart to track a

trajectory.

Figure 15.2. Cart on track system.

In Chapter 13 a transfer function model of this system was

derived and is shown again in Figure 15.3 where



(15.10)

Figure 15.3. Transfer function model of the cart on a track

system.

 is the voltage applied to the DC motor of the cart's

powered wheel,  is the cart position along the track and 

 is the cart's velocity.  is the

disturbance force acting on the cart due to gravity as the

cart moves up an incline at an angle .  is the

equivalent voltage input to the motor that has the same

effect on  as the disturbance force. A statespace model

for the cart system is



(15.11)

The quantity  is

the (disturbance) acceleration of the cart body and wheels

due to gravity. The objective is to design a state feedback

trajectory tracking controller based on this statespace

model. Specifically, we want the cart's position and speed to

follow (track) a specified trajectory .

Setting the disturbance  for now and letting ,

the statespace model becomes

In matrix form this is

Trajectory Design

We first design a trajectory for the cart to track. Denote the

position reference trajectory by  with 

and  where  is the final time and  is the

final desired position. This is referred to as a point‐to‐point

move. Consider the simple reference trajectory shown in

Figure 15.4. To have a smooth trajectory for  the

speed and acceleration references are required to be

continuous functions of time.



Figure 15.4. Reference speed and position profiles.

We require the reference trajectory for the speed to satisfy

the following conditions.

As shown on the left‐side of Figure 15.4, the velocity

reference  is to be symmetric with respect to the

midpoint of the trajectory. The requires  so the

time required to decelerate the motor is the same as the

amount of time to accelerate with the final time given by 

. Further, the velocity reference 

must satisfy



(15.12)

As the final position is to be , we must have

There are still many ways to define a reference trajectory

and still satisfy all these conditions. Let's do this with a

polynomial reference trajectory given by

This clearly satisfies . The

conditions at  become

or

This has the unique solution

The velocity reference trajectory is then completely

specified by



(15.13)

(15.14)

with  given by (15.12).

We now specify the reference trajectory for the position. The

distance traveled at time  is

By symmetry  As the total

distance traveled at time  must be , it follows that

This then puts a constraint on the choices of  and .

For example, if  and  are specified, then .

The corresponding position reference is just the integral of

the velocity reference. Consequently, with 

we have (see Problem 6)



The acceleration reference  is just the derivative of

the velocity reference and is given by

Differentiating  gives the jerk reference 

  and  are

shown in Figure 15.5. Note that  is discontinuous at 

 and .

Figure 15.5. Acceleration reference and jerk reference.



(15.15)

(15.16)

(15.17)

(15.18)

(15.19)

By construction

The input voltage reference  must be chosen to satisfy

That is, simply set

For later reference note that for  we have

and

Design of a State Feedback Tracking Controller

The system equations are



(15.20)

(15.21)

(15.22)

(15.23)

(15.24)

(15.25)

where  is the input voltage and 

 is the

(disturbance) acceleration due to gravity. The reference

trajectory and reference input have been chosen to satisfy

Define the error state variables by

Subtracting (15.20) from (15.21) results in

where

Finally we write



(15.26)

If we take  for now, (15.26) reduces to

We want to find  such that the feedback

results in the closed‐loop system

being stable, i.e.,

The state feedback control setup is shown in Figure 15.6.



Figure 15.6. State feedback trajectory tracking controller.

We now determine  by a direct computation. Specifically

we compute  using the Laplace transform as

follows.



(15.27)

Furthermore

With  and , choose  and  so that

That is, set

Then



After a partial fraction expansion we see that

Again, the key observation here is that by the choice of 

and  we have

Therefore every component of the  matrix 

 has its poles at  and .

Consequently, the inverse Laplace transform of each

component will die out.

Summarizing, the row vector  must be chosen so that the

roots of

are in the open left half‐plane resulting in 

being a stable matrix. In Problem 3 a you are asked to

simulate this state feedback trajectory tracking system.



(15.28)

(15.29)

(15.30)

15.2 General State Feedback

Trajectory Tracking

Let's now set up the general state feedback trajectory

tracking control problem. Consider the model of a system in

statespace form given by

Let  be a state trajectory and  be a reference input

designed to satisfy these system equations, that is,

Define the error state as

and the input error by

Subtracting (15.28) from (15.29) results in

or

Using the state feedback  we have



(15.31)

A block diagram of this feedback system is shown in Figure

15.7.

Figure 15.7. General setup for state feedback trajectory

tracking.

The solution to (15.31) is

The key to this feedback controller working is to be able to

choose  such that

As in the aforementioned examples, this holds if and only if 

 can be chosen such that the roots of



(15.32)

are in the open left half‐plane.

Remark If we let  then the block

diagram of Figure 15.7 is equivalent to the block diagram of

Figure 15.8.

Figure 15.8. Equivalent setup for state feedback trajectory

tracking.

15.3 Matrix Inverses and the Cayley–

Hamilton Theorem

Before going further with state feedback we need to discuss

matrix inverses and the Cayley–Hamilton theorem which are

used in the remainder of this chapter.

Matrix Inverse



(15.33)

(15.34)

(15.35)

We review how to find the inverse of a matrix by computing

its adjoint matrix and its determinant. The procedure is

given without proof. Let  be given by

Its corresponding sign matrix is defined by

That is, the  component  of  is defined to be 

. The cofactor matrix is defined by

where



(15.36)

(15.37)

(15.38)

(15.39)

The adjoint matrix of  is simply the transpose of its

cofactor matrix, that is,

where  denotes the transpose of . Finally,

the inverse of  is given by

The determinant  is found as follows (expanding along

the first row of ).

We can compute  by expanding along any row or

column. For example, expanding along the second column,

we have

We are assuming that . If  then 

does not have an inverse.

Though this approach was done for a  matrix, the

procedure will work for any matrix .



This approach for finding the inverse of a matrix is not

efficient for (and should not be used to) numerically

computing the inverse. The key use of this approach is for

theoretical purposes.

Example 3 Inverse of a Matrix

Let

and let's compute the inverse of  We have

and its determinant is (expanding along the first column of 

)

To compute the adjoint of  we first compute the

components of the cofactor matrix of  These are



The cofactor matrix is then

The adjoint matrix is then

Finally, the inverse of  is given by

Remark We can also write  in the form



Theorem 1 Properties of Matrix Inverses and Determinants

Let  be two matrices. Then

Let  be invertible, that is, 

. Then

Let  with . Then

Proof.

Omitted.

showing that  is the inverse of .



(15.40)

(15.41)

(15.42)

(15.43)

As  it follows that 

or 

Cayley–Hamilton Theorem

Let  be a matrix with

Then

where  is the adjoint of . The adjoint 

 may be written in the form

Multiply both sides of (15.41) by  to obtain

Multiplying this last expression through by  we

have

or



Equating powers of  gives

Then

Rearranging this last line gives the Cayley–Hamilton

theorem, i.e.,

In other words, in the equation 

, we replace the

scalar  by the matrix  (  by the identity matrix 

) and the scalar 0 by the zero matrix  to have 

Example 4 Cayley–Hamilton Theorem

Let



where it was shown above that

We compute

Definition 1 Characteristic Polynomial and Eigenvalues

Given a matrix   is called the

characteristic polynomial of . The roots of



(15.44)

(15.45)

(15.46)

(15.47)

(15.48)

are called the characteristic values or eigenvalues of .

15.4 Stabilization and State Feedback

Consider the third‐order statespace model of a system given

by

with  chosen to be

The closed‐loop system is then

with solution

Recall that

The components of the adjoint matrix



(15.49)

(15.50)

are polynomials in  Each element of the  matrix 

 will have the same denominator given

by . Consequently writing  as

we see that each component of  will go zero if and

only if the roots of the characteristic polynomial

are in the open left half‐plane. If this is the case we say that 

 is a stable matrix. In other words,

if and only if  is a stable matrix.

Example 5 Control Canonical Form

Consider the statespace model

where



(15.51)

(15.52)

(15.53)

and  is the scalar input. Note that the pair  are in

control canonical form (see Section 14.2.1).

Now let the input be given by

where

The closed‐loop system is

with solution

We want to choose  such that

The characteristic polynomial of  is



(15.54)

(15.55)

(15.56)

With  and , let's place the closed‐loop

poles at  and  That is, we want

To do this simply set

or



(15.57)

(15.58)

As  and  are in control canonical form it turns out that 

 has a special form. To see this we

compute

Some tedious calculations show that



(15.59)

Note the special form of the third column of 

 Finally, we have

The inverse Laplace transform of each component (via

partial fraction expansions) of this  matrix will be of

the form  and therefore go to 0

as . Consequently



(15.60)

(15.61)

and thus  for any initial condition .

Example 6 Magnetic Levitation

In Problem 9 of Chapter 13 (page 528) a third‐order linear

statespace model of the magnetic levitation system was

found to be

where

To simplify notation let

and



(15.62)

(15.63)

Note that  are not in control canonical form. With

the closed‐loop system is

Its solution is then

where

We want to choose  such that  As

explained above, this means we must choose  such that

the roots of

are in the open left half‐plane. We have



(15.64)

(15.65)

With  and  choose  so that

That is, set

to obtain



(15.66)

With these values of the gains  and  we have

Thus

As

the actual voltage applied to the coil is



(15.67)

(15.68)

15.5 State Feedback and Disturbance

Rejection

We now show how a state feedback controller can be

designed to reject constant disturbances.

Example 7 Let's return to the controller for the cart on

track system discussed earlier in Section 15.1 on page .

There we had the statespace model

Here  is the input voltage and 

 is the

(disturbance) acceleration of the cart body and wheels due

to gravity. A position and velocity reference trajectory 

 and reference input  were

designed to satisfy

The error state variables



(15.69)

(15.70)

(15.71)

(15.72)

(15.73)

satisfy (subtract (15.67) from (15.68))

where

In matrix form we write

As in Chapters 9 and 10, it is necessary to feed back the

integral of the position error in order to have a controller

that rejects constant disturbances. Specifically, the error

system (15.71) is augmented with the new error state

variable defined by

The error system is now



(15.74)

(15.75)

Note the pair  is not in control canonical form

because  is not equal to 1. Let  be the state feedback

The setup for this state feedback control system is shown in

Figure 15.9.

The closed‐loop system is

Denote the Laplace transform of the error state variables by



Figure 15.9. Trajectory tracking and disturbance rejection

by state feedback.

Take the Laplace transform of (15.75) to obtain



(15.76)

(15.77)

With  and , we show below that 

can be chosen such that

so that the poles are at  and  First we note

that  given by

is stable so that by the final value theorem we have

It turns out that , but 

which can be found directly by substituting in the above

expressions  (see Problem 4). However, let's

do this by going back to (15.76). Rearranging (15.76) we

may write



(15.78)

The inverse of  is

Multiplying both sides of (15.77) on the left 

 we have

The characteristic polynomial of  given by

appears in the denominator of all three of these Laplace

transforms. To make



(15.79)

the gains  and  are chosen as

With this choice of gains, the closed‐loop poles are 

  . Assuming these poles are

distinct,  in (15.78) becomes

where  and  are constants. The inverse Laplace

transform of  is then

Similarly, for some constants  and  we have



(15.80)

The further the closed‐loop poles are in the left half‐plane,

the faster  and thus the faster 

 and . However, note that the

further in the left half‐plane the closed‐loop poles are

chosen, the larger  and thus by (15.79) the larger

the gains . The difficulty with choosing large values

for the feedback gains is that the resulting feedback voltage

(see Figure 15.9)

can be quite large and saturate the amplifier, even if the

errors  are small. It is up to the control engineer to

choose the closed‐loop pole locations, or equivalently, the

gains. Typically, if the poles are not far enough in the left

half‐plane, the response is too slow. If the poles are chosen

too far in the left half‐plane, the amplifier will saturate. This

procedure of varying the location of the closed‐loop poles

(thus varying the gains) is referred to as “tuning the

system”.

Finally, let's look at . We have

We then have



(15.81)

However, recall that

and thus the final voltage  into the

motor is1

Figure 15.9 shows that  is exactly the voltage

needed to cancel the constant disturbance ! In Problem

3b you are asked to simulate this state feedback trajectory

tracking system.

15.6 Similarity Transformations

If you compare Example 5 with Example 6, Example 5 was

easier to work with because the system was in control

canonical form. Consequently, given a statespace model

we would like to put it into the control canonical form



(15.82)

(15.83)

(15.84)

(15.85)

This is done using a statespace transformation of the form

with

Let's first find the system equations in terms of the state 

 Differentiating (15.83) with respect to  and using

(15.81) we have

As ,  has an inverse so that

Substituting this into (15.84) results in

The transformation  that takes A to TAT−1 is an example of

a similarity transformation. Our goal is find  such that 

 are in the control canonical form given in (15.82).

However, let's try a simpler transformation first.

Example 8 Similarity Transformation



(15.86)

(15.87)

(15.88)

(15.89)

(15.90)

Consider again the general third‐order statespace model

Define

and suppose that  so that  has an inverse. The

matrix  is called the controllability matrix of the system

(15.86). Consider the transformation

With

the statespace model in the  coordinate system is

What do  look like? We write

or



(15.91)

Substituting the expression (15.88) for  gives

or

Note that, by inspection, this last set of matrix equations

requires  and  to have the form

where  and  must be found to satisfy 

 We do this as follows. Let

be the characteristic polynomial of the matrix . By the

Cayley–Hamilton theorem we know that

Multiplying on the right by  and rearranging gives



(15.92)

Thus, again by inspection of (15.91), we have

The pair  given in (15.92) is not quite in control

canonical form. We next show how to transform  to

control canonical form. Note that by a direct calculation (or

see Theorem 3) we have 

Example 9 Similarity Transformation

Now consider a statespace model already in control

canonical form, i.e.,

With  define

We know that



As shown in Example 8 the coordinate transformation

results in

On the other hand, the inverse of this transformation given

by

takes this system back to its original control canonical form

as

That is, if a system is in the form

then  takes it into the control canonical

form



Theorem 2 Transformation to Control Canonical Form

Let a system be given by

and define the controllability matrix to be

Further, let

If  then the above system is transformed to the

control canonical form

by the transformation



where

Proof.

By the two previous examples.

Definition 2 Similarity Transformation

Let a linear statespace system be

Using an invertible matrix  i.e., 

consider the change of state variables

The statespace representation in terms of  is then

The transformation of a matrix , according to

is called a similarity transformation.

Theorem 3 Property of Similarity Transformations

Let

Then



(15.93)

Proof. We have 

 Then

as .

15.7 Pole Placement

Consider the system

where  are in the control canonical form, i.e.,

The characteristic polynomial of  is (expanding along the

third column)



Also, with

and the feedback

the closed‐loop system becomes

Explicitly,  is given by



The closed‐loop characteristic polynomial is then

Choosing

results in the closed‐loop characteristic polynomial being

For example, let  and suppose we

want

so the closed‐loop poles are at . Then



Thus if the system is in control canonical form, it is pretty

easy to find the feedback gain (row) vector  to put the

poles wherever it is desired. Now suppose the system is

which is not necessarily in control canonical form. Let the

open‐loop characteristic polynomial be written as

Assume that

Then by the Theorem 2 we know the transformation

transforms this system to the control canonical form

The feedback



results in

In the original coordinate system the feedback

results in

Problem 18 gives the MATLAB code to compute 

.

Example 10 Cart on the Track System

Recall the equations of the error system for the cart on the

track system given in (15.26) on page and repeated here for

convenience.

Then



and

As

we have

With the desired closed‐loop characteristic polynomial given

by

the feedback gain  to place the poles at  is given

by



This is the same result as given in (15.27).

Example 11 Magnetic Levitation

Let's now apply the pole placement procedure to the third‐

order linear statespace model of the magnetic levitation

system in Example 6 (page 587). The system matrices 

and  have the form

where

Then

with



Further, with  and 

 the control canonical form for  is

The corresponding controllability matrix is

Set the desired closed‐loop characteristic polynomial to be

The gain matrix  to achieve this is



This is the same gain (row) vector  calculated in (15.66).

State Feedback Does Not Change the System

Zeros

We end this section showing that feedback does not change

the location of the system's zeros. Recall in Chapter 14 that

a statespace realization for the transfer function

in control canonical form is given by



With the state feedback

we have

The closed‐loop transfer function is then



The closed‐loop system has the same zeros as the open‐

loop system!

15.8 Asymptotic Tracking of

Equilibrium Points

We have looked at using state feedback for trajectory

tracking. A special case of this is to (asymptotically) track

an equilibrium point of the system as the equilibrium point

is simply a constant trajectory. To explain, consider the

linear system

The constant vector  is an equilibrium point of this

system if there is a constant input  such



We develop a state feedback controller that forces 

 The dynamics of the error system  is

given by

With the state feedback

we obtain

Given the pair  is controllable, the feedback gain

vector  is chosen to place the closed‐loop poles in the

open left half‐plane with the result that

Note that the input  is given by

Example 12 Inverted Pendulum

In Chapter 13 a linear approximate model of the inverted

pendulum was found to be



(15.94)

It is easy to see that any equilibrium point of this linear

approximate model has the form

This equilibrium point corresponds to the cart at  with 

 The pair  is controllable so  can be

found so that the state feedback 

 forces 

Noting that  the right side of Figure 15.10

shows an equivalent implementation using the reference 

 Problem 11 asks the reader to write a MATLAB

program to compute the feedback gain vector  and then

simulate the stabilized system in SIMULINK.



Figure 15.10. Equivalent state feedback setups for

tracking step inputs.

As explained in Chapter 17 this state feedback control

system for the inverted pendulum is robust. This means the

controller will keep the pendulum rod upright in spite of

inaccurate model parameters and small disturbances acting

on either the cart or pendulum rod.

15.9 Tracking Step Inputs via State

Feedback

In Chapters 9 and 10 we considered asymptotic tracking of

step inputs using transfer functions. We now look at this

problem using the statespace approach. We do this by

considering the inverted pendulum as given in Example 12.

Here the objective is to have the cart position track a step

input while maintaining the pendulum upright. To the

statespace model of (15.94) let's now take the cart position

as output by setting



(15.95)

(15.96)

(15.97)

We already have seen that the pair  is controllable

and in Chapter 13 we showed that the open‐loop transfer

function from input  to output  is given

by

where

For later reference we note that  i.e., 

In Example 12 we discussed how to choose  to

place the closed‐loop poles of the inverted pendulum at any

desired location. Figure 15.11 shows the setup for the state

feedback stabilization of the inverted pendulum.



Figure 15.11. Stabilizing the inverted pendulum using

state feedback.

We now show how to make this system (asymptotically)

track step reference inputs  for the position

of the cart while keeping the pendulum upright. To proceed,

we first redraw Figure 15.11 to obtain the equivalent system

of Figure 15.12.

Figure 15.12. This diagram is equivalent to Figure 15.11.

The output of this system is the cart position. Figure 15.13 is

a transfer function representation of Figure 15.12.

Figure 15.14 shows the cart's position error  is

now put through an integrator as feedback. This control

setup is suggested by the internal model principle of

Chapter 9. Specifically, if ,  can be chosen so



that the closed‐loop system is stable, then  as 

Figure 15.13. Transfer function representation of Figure

15.12.

Figure 15.14. Use integrator feedback to asymptotically

track step inputs.

The fact that the integrator in Figure 15.14 results in the

tracking of step inputs can be shown directly as follows.

Write

where  and 

 (state feedback does not

change the system zeros). The overall transfer function of

the system of Figure 15.14 is



It is shown in the Appendix to this chapter that  can be

found to make the closed‐loop system stable. As a result 

 is a stable polynomial and therefore 

 is stable. By the final value theorem

To address the stability problem we redraw the block

diagram of Figure 15.14 as shown in Figure 15.15.

Figure 15.15. Statespace tracking of step inputs.

With  the output of the integrator, the equations

describing Figure 15.15 are



(15.98)

(15.99)

(15.100)

We then can then reformulate this as the augmented

system

The pair  in the system (15.94) is controllable in 

and the numerator of the open‐loop transfer function 

given in (15.96) is not zero at , i.e.,  By

Theorem 4 at the end of this chapter (see the Appendix:

Disturbance Rejection in the Statespace), these two

conditions ensure that the pair of augmented matrices



(15.101)

(15.102)

is controllable in . Therefore we can choose 

 to place the closed‐loop poles of 

at any desired location.

This analysis guarantees  but do 

and  go to zero? To look into this consider the compact

representation of the closed‐loop system (15.98) given by

The equilibrium points  and their corresponding inputs 

 of (15.101) are solutions to

These solutions are given by

where  is arbitrary. This is easily verified by

substituting these expressions for  and  into

(15.101) as follows:



The statespace equations for the error are found by

subtracting (15.102) from (15.101) to obtain

As the pair  is controllable,  can then be chosen

so that the state feedback

results in

being stable. As a consequence



What about the value of  Well in Figure 15.15 we are

feeding back

not

These are the same if we choose  to satisfy

or

Another way to explain this is to say that the feedback 

 applied to the system (with  chosen so that 

 is stable)

results in



This equilibrium point satisfies  Also see

Problem 17.

As explained in Chapter 17 this control system for the

inverted pendulum is robust. This means the controller will

keep the pendulum rod upright in spite of inaccurate model

parameters and small disturbances acting on either the cart

or pendulum rod.

Pole Placement Procedure

Let

and

Then setting



(15.103)

results in

This procedure for computing the feedback gain vector  is

to be used in Problem 12 to simulate a state feedback

controller that forces the inverted pendulum to track step

inputs.

Step Response of an Inverted Pendulum*

A straightforward (but tedious) calculation using

shows that (see Problem 17)

Notice that the numerator has zeros at 

. Recall from

Chapter 8 that the step response for  will have

undershoot due to the right half‐plane zero. With the

parameter values chosen to be those of the QUANSER

system (see Problem 12 of this chapter) and using the



feedback setup of Figure 15.15, let's choose 

 to put all five closed‐loop poles at 

Then the position  of the cart due to a step input of 

 (closed‐loop response) is given by

The two zeros of this system are 

. The zero at  in

the open right half‐plane indicates we will have undershoot.

With the step reference input 

applied to the system, Figure 15.16 is a plot of the response 

 showing the undershoot. The cart indeed goes

backwards before going forwards to end up at  m.





Figure 15.16. Step response  with the input applied at

 second.

Remark The closed‐loop poles were chosen to be at .

We could put them further in the left half‐plane for a faster

response with the trade‐off being more undershoot in 

(see Theorem 10 of Chapter 10).

Figure 15.17a shows the cart at  with the pendulum at

 At  second the step input is applied and the

cart moves backwards (the cart acceleration ). This

results in the pendulum rod rotating forward slightly (with

respect to the cart) as shown in Figure 15.17b. This was

necessary in order to get the pendulum pointing in the right

direction for the move to the right! At  the cart's

acceleration becomes positive (see Figure 15.18) so that by 

 the cart's position becomes positive as well (see

Figures 15.16 and 15.17c). Figure 15.19 shows the

corresponding response of the pendulum angle  There

we see that the pendulum angle starts out positive and

comes back to zero at  but then it goes negative

as shown in Figure 15.17d. Then, as Figure 15.18 shows, the

cart's acceleration becomes negative at  resulting in

the pendulum rod rotating forward to go back upright as

indicated in Figure 15.17d. Finally, for  Figure 15.17e

shows that   with zero acceleration.



Figure 15.17. The cart and pendulum as it goes from

 to 





Figure 15.18. Cart acceleration.





Figure 15.19. Response of the pendulum angle  to a

step input in position.

15.10 Inverted Pendulum on an

Inclined Track*

Figure 15.20 shows the inverted pendulum with the cart's

track at an incline. Note that the  direction is along the

track with the  direction perpendicular to the track. As

shown the angle  is measured with respect to the 

coordinate axis.

Figure 15.20. Inverted pendulum with the track raised at

one end.

The (unknown) forces  and  exerted on the rod at

the pivot by the cart are taken to be along the 



coordinate axis, respectively. Newton's equations for the

translational motion of the pendulum rod of mass  are

then

The axis of rotation for the pendulum rod is the 

direction through its center of mass. With  denoting the

pendulum rod's moment of inertia with respect to its center

of mass we have

As in the case of the flat track, the gravitational force 

 does not produce any torque on the rod as it acts

through its center of mass so its moment arm is zero. The

torque on the pendulum rod is only due to  and 

The equation of motion for the rod is

The equation of motion for the cart is simply

The complete set of equations for the pendulum on the cart

are



(15.104)

(15.105)

(15.106)

(15.107)

Linearization About an Equilibrium Point

To compute the equilibrium points of the inverted pendulum

on the inclined plane we set all the derivatives to zero in

Eqs. (15.104)–(15.104) and eliminate  to obtain

Solving gives  and  The set

of equilibrium points along their corresponding input

reference are given by



(15.108)

Note that  can be set arbitrarily. Eliminating the forces 

 and , Eqs. (15.104)–(15.107) in statespace form

are

With



the (nonlinear) equations of motion in terms of 

 and  are

To linearize this system of equations about  substitute in

the approximations

and drop second‐order or higher terms in  to obtain



(15.109)

(15.110)

Here  The

controllability matrix and its determinant are, respectively,



Remark The linear statespace model (15.109) is

controllable as  for  Also, one can

check the open‐loop transfer function 

satisfies 

State Feedback Control

To track a step reference  in position an integrator

is added to the forward path as shown in Figure 15.21. This

integrator will also provide disturbance rejection of the

gravity force  acting on the cart and

pendulum system. (Note that in Figure 15.21 

not 

and  is the full input not )



Figure 15.21. Control structure to reject the gravity force

disturbance  on the cart.

The augmented system is

By these remarks and the Appendix Disturbance Rejection

in the Statespace at the end of this chapter, it follows that

the pair  of the augmented system is



(15.111)

(15.112)

controllable. Consequently, we can (and do) choose 

so that  is stable.2 With 

chosen arbitrarily, an equilibrium point requires 

 and  The feedback structure of

Figure 15.21 shows  so that at equilibrium

it is necessary that

The equilibrium value for output of the integrator  is then

The error state  satisfies

More compactly we have

Set



(15.113)

to obtain

The feedback gain  is used to place the eigenvalues of

at any desired location in the open left‐half plane. The

feedback  to the pendulum is

and will result in  However, by (15.111), we

have  so

The feedback  to the pendulum is simply given by

as shown in Figure 15.21.

The Incline Angle  Is Unknown

A final issue is that  is computed using  and ,

which depend on the unknown value of  To deal with this

we choose the feedback gains  to

place the closed‐loop poles of the flat track model, that is,

using



(15.114)

If applying these (flat track computed) feedback gains to the

inclined track linear model results in

being stable, then the controller will keep the pendulum

upright, i.e.,  while tracking step

reference inputs, i.e. . It turns out that

there is a range of values  such that (15.114)

is stable. You are asked to simulate this system in Problem

19.

15.11 Feedback Linearization

Control*

For both the inverted pendulum and the magnetic levitation

systems we used an approximate linear model of each

system around their respective equilibrium points to design

their controllers. For some nonlinear systems there is a

much more powerful technique that allows us to control the

system and does not require its state to be close to an

equilibrium point. We illustrate this approach with the

magnetic levitation system.



(15.115)

(15.116)

(15.117)

(15.118)

(15.119)

(15.120)

The nonlinear statespace model of the magnetic levitation

system is (see Chapter 13)

Here  is a disturbance force (perhaps due to air flow) on

the steel ball acting in the  direction and 

. Define new state variables as

We then have



 is the position of the steel ball and  is its velocity. The

acceleration of the steel ball is  We calculate  as

follows.

In terms of the state variables  and  the nonlinear

statespace model is

Let  for now so this model reduces to



The point of going into this new coordinates system is that

the nonlinearites are in the same equation as the input.

Setting

we obtain the linear system

This approach is referred to as feedback linearization as we

made the system linear by feedback rather than computing

an approximate linear model valid only near an operating

point.

Before proceeding further with this idea, let's first design a

trajectory for the system. Let  be the position reference, 

 be the speed reference,  be

the acceleration reference, and  be the jerk

reference so that



By the definitions (15.118)–(15.120) we have

We want

so we set the reference input voltage  to be

With  the error

system is



(15.121)

Then choose the input  to satisfy

That is, let the input voltage be given by (see Figure 15.22)



Figure 15.22. Block diagram for feedback linearization.

The error system is then



In matrix form we have

with

We can choose the feedback gains  to place the

poles of  at any desired location in the open left

half‐plane. The feedback voltage  to the amplifier is then

In real‐time we must sample the state variables  and,

along with the stored variables  and 

 compute  in real‐time according to (15.121) as the

voltage commanded to the amplifier. This nonlinear

controller allows for trajectory tracking and we do not

require  to be close to an equilibrium state.

However, we must still make sure that the controller does

not violate the voltage limit of the amplifier, that is, we



must choose the feedback gains  in such a way

that

Problem 16 asks you to simulate this feedback control

system.

Disturbance Rejection

Let's return to the nonlinear statespace model with the

disturbance.

The error system is then

We add the new error state variable



to obtain

Set

to obtain



In matrix form we have

Then

Let  and set



Then

With  it follows that

Remark Feedback Linearization Control

It turns out that the approach of feedback linearization,

which was used above for the magnetic levitation system is

not possible for the inverted pendulum [55–57]. That is,

there is no transformation to a new coordinate system in

which the nonlinearities can be canceled out by state

feedback. However, it can be used for synchronous motors

(brushless DC and stepper motors), power electronic

converters, and series DC motors [7, 58, 59, 60, 70]. There

is a related approach referred to as input–output

linearization, which is applicable to induction machines [7].

Appendix: Disturbance Rejection in

the Statespace

The proof of the following theorem is adapted from Chen

[17].



Theorem 4 Controllability of the Augmented System

Consider the system  where 

and  are controllable in  i.e.,

Let the output be given by   Define the

augmented system matrices

The corresponding controllability matrix is

Then

if and only if the open‐loop transfer function

satisfies

That is, if the pair  is controllable and  then

one can choose  to arbitrarily assign the

eigenvalues of



Proof. The controllability matrix of the augmented system

is

For clarity of exposition let  To (slightly) simplify the

presentation we multiply the last row by  to obtain the

matrix , which has the same rank as . We now show

the matrix

has full rank, i.e., it satisfies  The original

(unaugmented) open‐loop system has a transfer function of

the form

Note that  is the same as  As the pair 

 is given to be controllable in , we can transform

the (unaugmented) system  to control canonical

form. That is, there is a  such that



where

and

Using these relationships we may write  as

A direct computation gives



More computation gives

Then

To show this has full rank if  multiply the third row

by  and add to the last row to obtain the matrix



Next, multiplying the second row of this matrix by  and

adding it to the last row gives the matrix

Finally, multiply the first row of this matrix by  and add

to the last row to obtain the matrix

This last matrix is full rank if and only if  This is the

same as saying that  is not zero at  With the

assumption that  we can choose  so that

is stable.



Problems



Problem 1 Trajectory Tracking for a Double Integrator

System

Consider the system

We can interpret  as angular or linear position,  as

velocity and the input  as acceleration. In such an

application the physical input would be torque or force

making the acceleration input either torque divided by the

moment of inertia or force divided by the mass.

Remark If  then, as the reader can show, 

 and this is the reason for the

terminology double integrator system.

Let  be the desired position trajectory and speed

trajectory and  be the corresponding input which satisfy

Define the error state as

or



The error state satisfies

where

We let

so that

The feedback setup is illustrated in Figure 15.23.



Figure 15.23. Block diagram for a state feedback

trajectory tracking controller.

By direct calculation find the values of  such that the

roots of  are at  In particular, if

 what are the values of 



Problem 2 State Feedback Control of the Magnetic

Levitation System

Recall from Chapter 13 the magnetic levitation system with

the amplifier configured for current command. The

schematic is again shown in Figure 15.24.

Figure 15.24. Current command amplifier for the magnetic

levitation system.

With  chosen so that  fast compared

with the motion of the steel ball we can consider the current

 as the input. As shown in Chapter 13, the nonlinear

statespace model for this system is



Let  denote the desired distance below the

electromagnet we want the steel ball to be located. The

desired equilibrium point is

where the reference input (current in the electromagnet) 

satisfies

It was also shown in Chapter 13 that a linear statespace

model valid about this equilibrium point is

With

the linear statespace model may be written as

Let



and find the values of  such that the closed‐loop poles

are at .



Simulate the state feedback current controlled magnetic

levitation system of part (a). A SIMULINK block diagram for

doing this is shown in Figure 15.25.

From QUANSER [34] set  H,  , 

 m (1.27 cm),  kg,  m/

,  m,  and 

 V. Also set  /  so 

 As in Problem 10 of Chapter 13 (see Figure

13.24) let the initial conditions be 

 with  set to satisfy 

 Try using  and

consider placing the two closed‐loop poles for position and

speed at 

Hint: Modify the SIMULINK block diagrams shown in Problem

10 of Chapter 13.



Figure 15.25. Statespace controller for the magnetic

levitation system.

Remark QUANSER denotes the force constant as 

instead of  with the value   



/ . However, in the magnetic force expression QUANSER

considers the position  of the steel ball to be the distance

from the bottom of the magnet to the top of the steel ball

rather than to its center of mass. Instead of setting 

equal to this value of  we set  (or 

) to compensate for this difference in the

reference point for measuring 



Problem 3 State Feedback Tracking Control of the Cart

Consider the cart on a track system of Example 2 (page

571). Use the QUANSER [34] parameter values given as 

  Nm/A,  ,  mH, 

 kg,  m, 

and  in the expressions for  and  Set the

maximum voltage as  V and the simulation step

size as  second. If you include the encoder in

your model, use  counts/rev, 

 m,  9.8 m/ , 

 m/count. You may

have already done all of this if you did Problem 12 of

Chapter 13. Implement the SIMULINK simulation given in

Figure 15.26) and run the simulation for the four cases (a),

(b), (c), and (d). In each case, hand in your .m file, a

screenshot of your SIMULINK block diagram, a plot of  and

 and a plot of  The SIMULINK block

diagram for the trajectory generator is available in the

student simulation files for this chapter.

In the simulation implement the state feedback controller

shown in Figure 15.6 of Example 2 of this chapter. Adjust the

location of the closed‐loop poles until you achieve good

tracking without saturating the amplifier.

In your simulation of part (a), remove (or zero out) the

voltage reference  and the gain  The feedback is

then given by  i.e., a simple

proportional controller. Run the simulation and you should

still get very good tracking. (If you don't, increase the gain 

.)



Go back to the state feedback trajectory tracking controller

simulation in part (a) and add to the input of the cart the

equivalent voltage disturbance given by 

 with  or 

 (i.e., add  to the input in Figure 15.6 as shown

in Figure 15.9). Run the simulation. You should see error in

the position tracking.

To the simulation of part (c) add the integrator as shown in

Figure 15.9 of Example 7. With appropriately chosen

feedback gains  and  run the simulation to show

that  Add a scope that plots 

 and  together to show that 





Figure 15.26. SIMULINK diagram for cart on the track state

feedback controller. See Figure 13.28 of Chapter 13 for the

inside of the Linear Cart block.

Problem 4 Disturbance Rejection for the Cart on the Track

System

The augmented cart model has system matrices (see

(15.73))

With  show by direct computation that



Problem 5 Control Canonical Form

Let a general fourth‐order statespace system be given by

where

and

It is desired to find an invertible matrix  such that with

the statespace model in the  coordinates is in control

canonical form. That is,



Define the controllability matrix

and assume . Let

Find the statespace representation in the  coordinates.

Explain your steps. (Hint: See Section 15.6.)

Now let

where

It can be straightforwardly shown that

Show that the statespace transformation  with 

 results in the statespace representation in the 

 coordinates being in control canonical form.

Problem 6 Trajectory Design

Integrate the velocity reference given in (15.13) to obtain

the position reference given in (15.14).



Problem 7 State Feedback

Consider the model of a system in statespace form given by

Let  be a desired reference trajectory and  be the

corresponding reference input where the pair  satisfy

the system equations as well, that is,

Define the error state by  and the error input by 

Give the state equations for 

Using the state feedback  write down the solution

to your answer in part (a) in terms of an exponential matrix.

Draw a block diagram of the complete state feedback

trajectory tracking system. Be sure to label the signals and

what is inside each block.

Answer yes or no.  if and only if all the

roots of the th degree characteristic polynomial 

 have negative real parts.



Problem 8 Pole Placement

Suppose that the statespace trajectory tracking error model

of a system is given by

Using the state feedback , show how to choose

the state feedback gain vector  so that the closed‐loop

poles are at  and . Show work!

Using the  chosen in part (a), will  as 

. Just answer yes or no.

Problem 9 Pole Placement

Suppose that the statespace trajectory tracking error model

of a system is given by

Using the state feedback , show how to choose

the state feedback gain vector  so that the closed‐loop

poles are at  and . Show work!

Using the  chosen in part (a), will  as 

? Just answer yes or no.



Problem 10 Pole Placement

Suppose that the statespace trajectory tracking error model

of a system is given by

Using the state feedback , show how to choose

the state feedback gain vector  so that the closed‐loop

poles are at  and . Show work!

Using the  chosen in part (a), will  as 

? Just answer yes or no.



Problem 11 Pole Placement for the Inverted Pendulum

Recall the linear statespace model for the inverted

pendulum around the equilibrium point 

 given by

The QUANSER [34] parameter values are

Use MATLAB for parts (a)–(d).

Compute the controllability matrix  for the system 

A simple computation shows that 

with  Use this to compute the control

canonical form  for the inverted pendulum.



Use your answer in part (b) to compute the controllability

matrix  for the system matrices  in control

canonical form.

Compute the feedback gain  that places the poles at 

 Use the pole placement procedure

given in Section 15.7.



Using Figure 15.27 as a guide, simulate this feedback

control system in SIMULINK using the nonlinear statespace

model of the inverted pendulum given in Figure 13.19 of

Problem 6 in Chapter 13.





Figure 15.27. SIMULINK block diagram for state feedback

control of the inverted pendulum. The inside of the Pendulum

on Cart block is given in Figure 13.19 of Chapter 13.



Problem 12 Tracking Step Inputs in the Cart Position of the

Inverted Pendulum

This problem asks you to simulate the controller of Section

15.9 that has the cart of the inverted pendulum track step

inputs. Do this by following parts (a)–(f) using the same

parameter values while keeping the rod vertical as in

Problem 11.

With  for the inverted pendulum given as in Problem 11

and , the augmented model for tracking

step inputs is

Rewrite this system of equations by inserting the explicit

matrices for  and 

Compute 

 to

find the values of 

Using your answer to part (b) give the control canonical

form  for 

In a MATLAB .m file code  and compute the

controllability matrix  for the pair 

Add to your MATLAB .m file the code to compute the control

canonical form of  and  denoted as  and 

respectively. Also add code to compute the controllability

matrix  for the pair 



Add to your MATLAB .m file the code to compute the

feedback gain  that places the poles of  at 

In SIMULINK simulate this feedback control system using the

nonlinear statespace model of the inverted pendulum given

in Figure 13.19 of Chapter 13. Let the step reference input

be 

Problem 13 Disturbance Rejection and Tracking in the

Statespace

Redraw Figure 15.9 to have the form of Figure 15.15.



Problem 14 Inverted Pendulum Control Using the Motor

Voltage Input

The QUANSER [34] inverted pendulum system uses the cart

on a track system with a pendulum rod mounted on the cart

as described in Section 13.4. The physical input is not the

force on the cart, but instead a voltage applied to a DC

motor. This voltage produces current in the armature of the

motor, which in turn produces torque to turn the powered

wheel. The equation for the current  in the DC motor is

where  is the input voltage,  is the angular velocity of

the motor shaft,  is the back emf constant, and  are

the resistance and inductance of the armature loops,

respectively. The powered wheel has radius  so its

angular velocity is  The motor shaft is connected to

the powered wheel by a set of gears with gear ratio 

so the angular velocity of the motor shaft is

The inductance of the QUANSER DC motor is negligible and

thus is taken to be zero. With  the motor current is

given by

The torque put out by the motor is  where  

 is the torque constant. The torque exerted on the

powered wheel is then  which exerts a force on



the teeth of the track. Denoting the reaction force of the

track teeth on the powered wheel by  this reaction

force exerts a torque  on the powered wheel of the

cart (see Figure 13.9). The moments of inertia of the

powered wheel and motor shafts are negligible so 

 Putting this altogether the force 

exerted on the cart by the track is

Modify the linear statespace model of Problem 11 by

substituting in this expression for  so that the input is now

the voltage . Show that the model is now



Write a MATLAB program to compute the controllability

matrix  for the system . Use the parameter values

given in Problem 11 along with , 

 V/(rad/s),  gear ratio, and 

 H.

Show that

Use your answer in part (c) to find the control canonical

form  of the system found in part (a). Add code to

your MATLAB program of part (b) to compute the

controllability matrix  for the system .

Add code to your MATLAB program of part (d) to compute

the feedback gain  that places the poles of  at 

 Use the pole placement procedure

given in Section 15.7.

In SIMULINK simulate this feedback control system using the

nonlinear pendulum model given in Figure 13.17 of Problem

5 in Chapter 13.

Problem 15 Inverted Pendulum Control Using Motor

Voltage Input

Using the model developed in Problem 14 for the voltage

controlled inverted pendulum, simulate the controller

described in Section 15.9 of this chapter that achieves

tracking of step reference inputs of the cart position.



Problem 16 Feedback Linearization Control of the Magnetic

Levitation System

Simulate the feedback linearization controller for the

magnetic levitation system shown in Figure 15.22. Figure

13.22 of Problem 10 in Chapter 13 is a SIMULINK model of

the nonlinear open‐loop magnetic levitation system. As in

Problem 2, use the QUANSER [34] parameter values given

by  H,  ,  m (1.27

cm),  kg,  m/ ,  m, 

 A, and  V. Finally set 

 / .

Remark QUANSER denotes the force constant as 

instead of  with the value   

/ . However, in the magnetic force expression QUANSER

considers the position  of the steel ball to be the distance

from the bottom of the magnet to the top of the steel ball

rather than to its center of mass. Instead of setting 

equal to this value of  we set  (or 

) to compensate for this difference in the

reference point for measuring 

As in Problem 10 of Chapter 13 (see Figure 13.24) set the

initial conditions as 

 and set the

final conditions to be 

The SIMULINK trajectory generator for the cart on the track

system of Problem 3 can be modified for use in this

problem. In the SIMULINK trajectory generator the position

reference  goes from 0 to  So add x0 to x_ref



outside the trajectory block so that the trajectory now starts

at x0. In the MATLAB code for the trajectory generator set

xf=x_eq‐x0 so that at the final time  the output of the

trajectory block is xf+x0=x_eq. (Better yet, ask your instructor

to give you the MATLAB/SIMULINK student files for this

problem which has the modified trajectory generator and

the nonlinear open‐loop magnetic levitation model.)



(15.122)

Problem 17 Equilibrium Point for the Augmented Inverted

Pendulum Model

In designing a feedback scheme to keep the pendulum rod

upright while the cart tracks step inputs, the following

augmented system was developed.

More compactly we write

or



Show that equilibrium point  of the closed‐loop system

(15.122) is



The Laplace transform of (15.122) has the form

Show that

where

and

Hint: Use a symbolic manipulation software package such as

MATHEMATICA, MAPLE, or SYM in MATLAB.



Use your answer to part (b) to show

Compare this with your answer to part (a).

Remark Note that  so that 

.



Problem 18 MATLAB Code for Computing 

Run the following MATLAB program for computing 

 

% Compute k = kc*Cc*inv(C) 

  

% Set up two arbitrary (random) A and b matrices. 

  

A = rand(4,4);b = rand(4,1); 

  

C = [b A*b A^2*b A^3*b]; det(C); 

  

% Compute the control canonical form for A using Equation  on 

page 595. 

  

% That is, A_prime = inv(C)*A*C and Ac = transpose(A_prime) 

  

Ac = transpose(inv(C)*A*C)); 

  

% Control canonical form for b 

  

bc = [0; 0; 0; 1]; 

  

% det(sI‐A) = s^4 + alpha3*s^3 + alpha2*s^2 + alpha1*s + alpha0 

  

% The coefficients of det(sI‐A) are the negatives of the last 

row of Ac. 

  

alpha0 = ‐Ac(4,1); alpha1 = ‐Ac(4,2); alpha2 = ‐Ac(4,3); alpha3 

= ‐Ac(4,4); 

  

% Compute the controllability matrix of (Ac,bc) 

  

Cc = [bc Ac*bc Ac^2*bc Ac^3*bc]; 

  

det(Cc); 

  

% Set the location of the desired closed‐loop poles. 

  

% The desired poles are ‐r1, ‐r2, ‐r3, ‐r4. 

  

r1 = 5; r2 = r1; r3 = r2; r4 = r3; 



  

% Set the coefficients of the desired closed‐loop 

characteristic polynomial. 

  

alphad3 = r1 + r2 + r3 + r4; 

  

alphad2 = r1*r2 + r1*r3 + r1*r4 + r2*r3 + r2*r4 + r3*r4; 

  

alphad1 = r1*r2*r3 + r1*r2*r4 + r1*r3*r4 + r2*r3*r4; 

  

alphad0 = r1*r2*r3*r4; 

  

% Compute the feedback gain Kc for the control canonical form. 

  

Kc = [alphad0 ‐ alpha0; alphad1 ‐ alpha1; alphad2 ‐ alpha2; 

alphad3 ‐ alpha3]’; 

  

% Check the computation of K 

  

ceig(Ac‐bc*Kc); 

  

% Compute the feedback gain K for A,b. 

  

K = Kc*Cc*inv(C); 

  

% Check the computation of K.

  

eig(A‐b*K) 

 

Problem 19 Inverted Pendulum on an Inclined Track

Modify the open‐loop nonlinear SIMULINK model of the

inverted pendulum to account for an inclined track at an

angle  with respect to the horizontal. Apply the same

feedback controller designed in Problem 12 based on the

linearized flat track model. Run the simulation and you

should see that the controller still stabilizes the pendulum

for angles  less than about . In particular, you should

see that 



Problem 20 Tracking a Sinusoidal Reference for the

Inverted Pendulum

Consider the problem of having the cart position track a

sinusoidal reference while keeping the pendulum rod

upright. That is, we want 

 for any given  and 

. By the internal model principle this requires a transfer

function in the forward path of the form

The feedback architecture is shown in Figure 15.28.

Figure 15.28. Feedback architecture for tracking a

sinusoidal reference.

We can write the equations describing Figure 15.28 as



More compactly this is written as

The open‐loop transfer function of the inverted pendulum is

With

the closed‐loop dynamic system is given by



It turns out that  can be chosen to

arbitrarily place the closed-loop poles. Specifically, using the

fact that the pair  describing the inverted pendulum is

controllable in  and the numerator  of the open‐loop

transfer function  does not contain the

factor  the pair

is controllable in . (The proof is similar to that given in the

Appendix Disturbance Rejection in the Statespace of this

chapter and is detailed in the Solutions Manual.) The

procedure to compute the feedback 

to place the closed‐loop poles is as follows. Set



Letting

results in

Simulate this feedback control system using the parameter

values given in Problem 11 with 

and the closed‐loop poles all at .



Notes

1 See Eqs. (15.17)–(15.19) on page to see that 

.

2  depends on  because  and  depend on 

We will remedy this at the end of the section.



16 

State Estimators and Parameter

Identification

16.1 State Estimators

A problem with state feedback is that one needs the full

state measurement, i.e., values of all the state variables. If

we do not have a measurement of the full state, then we

need to estimate the state variables that are not directly

measured. Let's see how to do this by starting with a

concrete example.

Example 1 Speed Estimator for the Cart

Consider the cart on the track system from Chapters 6 and

15 where an optical encoder was used to measure position.

With  the sample period the speed at time  is

computed by numerically differentiating the position

measurement according to

This is the backward difference speed estimate and it is

noisy due to the finite resolution of the encoder. Another

approach is to estimate the rotor speed using an observer to

obtain a hopefully smoother (less noisy) estimate of speed.

In this example we will assume the cart is on a flat track.

From Example 2 of Chapter 15 (page 568) the equations

describing the cart on the track are



(16.1)

(16.2)

(16.3)

(16.4)

(16.5)

In matrix form we have

The system (16.2), (16.3) is of the form

with the obvious definitions for  and . A speed

observer is then defined by

That is, we sample the output  to bring it into the

computer and then numerically integrate the set of Eqs.

(16.4) and (16.5) in real‐time. If the observer gain vector 

is zero the observer is simply a real‐time simulation of the



(16.6)

(16.7)

(16.8)

cart system. However the correction term  in (16.4)

is the key to having the observer actually work. Specifically,

we now show that the gains  and  can be chosen such

that . To do so, define the estimation errors to be 

 and  Upon subtracting (16.4) from

(16.2) we obtain

More compactly, the error system is given by

If we can choose the column vector  such that  is

stable, then

A block diagram for the combined state feedback trajectory

tracking controller and speed observer is shown in Figure

16.1.

Figure 16.1 shows the addition of a state observer to the

block diagram of Figure 15.6. The gains  for the state



feedback in Figure 16.1 are chosen as given in Eq. (15.27).

We now choose the gains  for the state observer.

A direct way to determine the observer gains  is to

simply compute

If we want the poles at  then we set

which requires

Problem 5a asks you to simulate the combined state

feedback and state observer system of Figure 16.1.





Figure 16.1 Combined state feedback trajectory tracking

controller and speed observer. The position  is sampled.

The observer equations are then numerically integrated in

real time and the solution  are used as the estimates of 

, respectively.

Example 2 Position Cannot Be Estimated from Speed

Suppose a tachometer is available to measure speed, but

there is no position measurement. Can the position be

estimated from the speed measurements? Well, the answer

is no. An easy way to understand this is to realize that 

, but that 

 for any constant . That is, there

are an infinite number of position signals with the same

speed signal. Consequently, the speed signal does not

contain enough information to obtain an estimate for the

position. From the point of view of observer theory, again

consider the cart on the track system. We have

The output  is now the speed  Let's try an observer

given by



With  the error system is

The characteristic polynomial of  is

which cannot be made stable for any choice of the observer

gains 

Example 3 Speed and Disturbance Estimator for the Cart

Let's again look at the cart on the track system still using an

optical encoder to measure position, but now the cart is

considered to be on an incline so it has a (gravitational

force) disturbance acting on it. The disturbance must also

be estimated in order to obtain an unbiased estimate of the



(16.9)

(16.10)

(16.11)

speed. To proceed we model this disturbance on the cart as

a state variable and consider it to be constant over the time

we are estimating its value. (This method will also work if

the disturbance is “slowly varying”.) The equations

describing the cart on the track are then

where  is the

(acceleration) disturbance on the cart due to gravity (see

Section 15.5). In matrix form we write

The system (16.10), (16.11) is of the form



(16.12)

(16.13)

with the obvious definitions for  and . A speed

and disturbance observer is defined by

Figure 16.2 shows the addition of this state observer to the

block diagram of Figure 15.6 of Chapter 15. The gains 

 for the state feedback in Figure 16.2 are chosen as

given in Eq. (15.79). The output  is sampled to bring

it into the computer. The set of Eqs. (16.12), (16.13) is

integrated in real‐time with the solutions  and  used

as the estimates of the speed and disturbance. As we now

show, the correction term  in (16.12) is the key to

making the estimates  and  converge to  and 

, respectively. Specifically, we show the gains 

and  can be chosen to force  and .

To proceed, define the estimation errors to be 

 and  Subtracting

(16.12) from (16.10) results in



(16.14)

(16.15)

(16.16)

This error system is written compactly as

With the column vector  chosen so that  is stable,

it follows that





Figure 16.2 Combined state feedback trajectory tracking

controller and speed observer. The position  is sampled.

The observer equations are then numerically integrated in

real‐time and the solutions  are used as the estimates

of  respectively.

To find the gains  and  that make  is stable

we compute

To place the observer poles at  and  set

The observer gains are then

Problem 5b asks you to simulate the combined state

feedback and state observer system of Figure 16.2.

General Procedure for State Estimation

The open‐loop statespace model is



Given  and  can we estimate  in a

practical manner? Let's first just try a real‐time simulation of

our system model. That is, using the values of the known

input  we integrate the system model equations

in real‐time to obtain . Figure 16.3 is a block diagram of

this real‐time simulator.



Figure 16.3 Simulation of the system.

The question is how good will  be as an estimate of ?

Remember that we do not know the initial state  We

have

with  and  assumed to be known. The estimation

error  satisfies



(16.17)

(16.18)

The solution is

If  is stable, then  for any (unknown)

initial state . However, if  is unstable we are out of

luck. Further, even if  is stable, the rate that 

goes to zero is fixed by the eigenvalues of . To get around

these issues we use the measurement  in the estimator.

To develop a general procedure for state estimation we go

back to the open‐loop statespace model given as

Define a state estimator by

or



(16.19)

Figure 16.4 is a block diagram of the system and observer.

Again, the idea here is that we know the value of the input 

 and the sampled output , and we use them to

integrate (in real‐time) the observer Eq. (16.19). The

solution  is then used as our estimate of the state 



Figure 16.4 State estimator.

To show that this setup works we subtract (16.18) from

(16.17) to see that the estimation error satisfies

With  we have



The solution is

If  is stable then  for

arbitrary .

The key problem is to find  such that  is

stable. We show how to do this by going through some

examples.

Example 4 System Matrices in Observer Canonical Form

Let

We say that the pair  is in observer canonical form.

We compute

With



we have

With the desired closed‐loop characteristic polynomial given

by , simply choose



to have

Digression on Matrix Multiplication

Note that

That is, we can view the multiplication of the square matrix 

 on the left by the row vector  as simply a linear

combination of the rows of 

Similarly, we have

Each row of  is a linear combination of the rows of .

End of Digression



Example 5 System Matrices Not in Observer Canonical

Form

We are given the system

with . Suppose the pair

 is not in observer canonical form. The previous

example indicates that we could easily compute the gain

vector  if we could transform the pair  into observer

canonical form. To do this, define the observability matrix 

 as

Suppose  is invertible, i.e.,  Define the

statespace transformation

In terms of  the statespace model becomes

That is,



(16.20)

or

The pair  have a special form as we now show. Write

With reference to the above digression on matrix

multiplication this can be rewritten as

By inspection it follows that  and  must have the form

where  must be found to satisfy



(16.21)

(16.22)

To do this we use the characteristic polynomial of  which

is . By the Cayley–

Hamilton theorem it follows that

Multiplying this on the left by  and rearranging gives

That is,  and  so that we

may now write

This is not observer canonical form, but we are almost

there. Continuing, consider

with  already in observer canonical form, i.e.,

Define



(16.23)

We just showed that the transformation  results

in

with

Thus the inverse transformation

will take a system in the form (16.23) to the observer

canonical form (16.22).

Theorem 1 Transformation to Observer Canonical Form

Consider the linear statespace system given by



(16.24)

(16.25)

Let

Define

Then the transformation

takes the system (16.24) and (16.25) to the observer

canonical form given by



Proof. This follows from the previous two examples.

Theorem 2 Placement of the Observer Poles

Let a linear time invariant system be given by

with

and

Define

Let the desired closed‐loop characteristic polynomial be

Then choosing



results in

Proof. The observer is

Using the transformation  this becomes

The pair  is in observer canonical form. By Example

4 taking

results in 

Example 6 State Estimation



Suppose that the system model is given by

Based on the measurement  we design an observer to

estimate the full state. The observability matrix is

The open‐loop characteristic polynomial is

The observer (state estimator) is given by

Using Theorem 2 we now compute the gain vector  that

will place the two closed‐loop poles at . First note that

the desired characteristic polynomial of the observer is

The observer canonical form and the observability matrix for

the pair  are



By Theorem 2 we have

As a check we compute

The observer is then

Separation Principle

Consider the statespace model given by



(16.26)

(16.27)

The reference trajectory  and the reference input  are

designed to satisfy

We are given that the pair  is observable and thus

assume  is chosen so that  is stable.

We are also given that the pair  is controllable so we

also assume a row vector  is chosen so that 

  is stable. The input to the physical system

is

Figure 16.5 illustrates the feedback setup.



Figure 16.5 Trajectory tracking with a state estimator.

With  Figure 16.5 is equivalent to Figure

16.6.



Figure 16.6 Equivalent setup to Figure 16.5.

A statespace model for the system of Figure 16.6 is given by



(16.28)

(16.29)

(16.30)

In matrix form this is

With  define the statespace (similarity)

transformation

where

Then applying the transformation  to the system (16.29)

and (16.30), we have



(16.31)

(16.32)

(16.33)

or

As  is in block diagonal form it follows

that

The eigenvalues of the system matrix (16.31) are the union

of the eigenvalues of  and the eigenvalues of 

. Next we show that the trajectory tracking error 

 goes to zero. Substituting  into

(16.31) gives

Using the expression for  given in (16.27), it is seen

that the trajectory tracking  satisfies



(16.34)

Putting this all together the statespace system for the error

states  is

From (16.33) we see this error system is stable with the

consequence that both  and 

 The gain vector  is used

to place the poles of  of the trajectory tracking error

while separately the gain vector  is used to place the

poles of  of the state estimation error. This is

referred to as the separation principle.

16.2 State Feedback and State

Estimation in the Laplace Domain*

We now look at state feedback using state estimation in the

Laplace domain. Let the statespace model of the open‐loop

system be

with  We assume (A, b) is

controllable and (c, A) is observable. We choose 

so that  is stable and  so that  is

stable. The state trajectory  and reference input  are

designed to satisfy



With reference to Figure 16.6 let

so that the input  may be written as 

The state observer is

With  the Laplace transform of  is

With the definitions

we may write



In the  domain the block diagram of Figure 16.6 becomes

that of Figure 16.7.

Figure 16.7 Transfer function representation of Figure 16.6.

 in Figure 16.7 are each of order  so

the complete system appears to be of order  That is, in

going from the statespace block diagram of Figure 16.6 to

the transfer function block diagram of Figure 16.7, it seems

we have gone from a  order system to a  order

system. However, with , a statespace implementation

of the feedback  is



This is verified by the computation

That is,  and  are implemented with the same 

 integrators. So, with this implementation, Figure 16.7

represents a  order system as well. A simple

rearrangement of Figure 16.7 gives the block diagram of

Figure 16.8.



Figure 16.8 Block diagram equivalent to Figure 16.7.

Finally, rearrange Figure 16.8 to obtain the block diagram of

Figure 16.9.



Figure 16.9 Block diagram equivalent to Figure 16.8.

With reference to Figure 16.9, the closed‐loop transfer

function is

As  is chosen so that  is stable

the cancellation in the last step would be a stable pole–zero

cancellation. However, as explained above,  and 

 are implemented with the same  integrators so

this cancellation is just an artifact of the transfer function



(16.35)

block diagram representation that was used and does not

actually occur. With  the

separation principle allows us to write

The closed‐loop transfer function then becomes

where a stable pole–zero cancellation occurred. We end up

with the same closed‐loop transfer function as if full state

feedback was used!

Remark In Chapters 9 and 10 a transfer function model of

an open‐loop system was placed in a unity feedback

configuration to design a controller for it. This section

indicates that it would be better to start with the control

structure of Figure 16.9. This is because starting with this

control structure the end result is (16.35) showing the

closed‐loop system has only the zeros of the open‐loop

model and the closed‐loop poles can be placed at any

desired location in the open left‐half plane. Specifically, the

designer freely choooses  and  to be th order

stable polynomials. Then, with  and  polynomials

of degree  or less, the controllers  and 

are specified to have the forms  and 

 respectively. As shown in Kailath [61] (see

pages 208 and 276–277 of [61]), the polynomials  and 

 can be found such that 



 This then

results in the expression for  given in (16.35).

16.3 Multi‐Output Observer Design

for the Inverted Pendulum*

The observer design procedure in this chapter has been

done assuming a single output. In the case of the inverted

pendulum with both the cart position  and the pendulum

rod angle  measured, we have two outputs. Rather than

combine them into a single output, e.g., as 

, we now present an approach for the

state estimate based on the vector output measurement

given by

The starting point for the observer design is the linear

model of the inverted pendulum about the equilibrium point 

 That is, the model given

by



where  The gain

matrix  for this vector output is

The observer for this system has the form

The system model is



The state estimation error  satisfies

With  chosen so the eigenvalues of  are in

the open left‐half plane, it follows that

The key to making this work is being able to choose the gain

matrix  to place the poles of  To do so we

first compute

Next choose  so that

 becomes



Notice that  is now block diagonal consisting of two

 matrices on the main diagonal. As a result

Finally, choosing 

 it

follows that

Summarizing, the observer gain matrix given by

places the poles of  at  This

state estimator is implemented using the observer equation

where



Problem 9 asks you to add this simulation to a state

feedback controller of the inverted pendulum.

Remark This is an example of a multi‐output observer. In

this particular example we were able to pick the gain matrix

 to place the closed‐loop poles anywhere we choose. Note

that we did not change to a new coordinate system in order

to do this. This was possible because the pair 

happened to be in multi‐output observer form, i.e., we were

lucky! See Section 6.4.6 of Kailath [61] for the theory of

transforming multi‐input multi‐output (MIMO) control

systems into their canonical forms.

16.4 Properties of Matrix Transpose

and Inverse

For both the section on Duality and the section on

Parameter Identification we need to use some more matrix

results about transpose and inverse. We present them now.

Theorem 3 

For any two matrices we have

Proof.



Example 7 Transpose of the Product of Two Matrices

Let

Then

while

Example 8 Transpose of the Product of Two Matrices

Let

then



and

Theorem 4 

For any two matrices of the same dimensions we have

Proof. Hopefully this is obvious.

Theorem 5 

Let  be an invertible matrix, i.e., . Then

Proof. Writing  means that

Take the transpose of both sides to obtain

By Theorem 3 we may rewrite this as



or

This means that

Finally, take the transpose of both sides of this last equation

to obtain

Let's do an example.

Example 9 Transpose and Inverse Commute

Let

Then

while



Theorem 6 

For any two square invertible matrices  we have

Proof. By the definition of inverse  satisfies

The computation

shows that  is the inverse of .

16.5 Duality*

The observer pole placement problem is to find  to

place the poles of

Taking the transpose we have



Make the definitions1

where the pair  is referred to as the

dual of  With

the observer canonical form for  is

The control canonical form for dual system  is

With  it follows that

This shows that placing the closed‐loop poles of the

observer system  is equivalent to placing the closed‐

loop poles of the dual system  That is, we need

only find  to assign poles of  and then 

 will place the poles of  at the same



locations. Continuing, the controllability matrix of the dual

system is

Thus the dual system is controllable if and only if the

original system is observable. Further, the controllability

matrix for the control canonical form  of the dual

system is

This is simply the transpose of observability matrix of 

.

Then, by results of Section 15.7, we have

results in



Equivalently, we have

and

16.6 Parameter Identification

In this section we want to present a method to estimate the

parameters of the open loop model of the cart. In order to

do this we first must do some more matrix theory.

Symmetric and Positive Definite Matrices

Definition 1 Symmetric Matrix

A matrix  is symmetric if

Definition 2 Positive Semidefinite Matrix



A symmetric matrix  is positive semidefinite if

for all ,

Definition 3 Positive Definite Matrix

A symmetric matrix  is positive definite if for all 

and

if and only if  is the zero vector, i.e., 

Example 10 Positive Definite Matrix

Let

and note that . Then

and the only way it can equal zero is if  and .

That is,  is positive definite.

Example 11 Positive Semidefinite Matrix



Let

and note that . Then

Thus  is positive semidefinite. However, in this example, 

 results in , that is,  is not positive

definite.

Example 12 Indefinite Matrix

Let

and note that . Then

In this example,  can be positive if , or

negative if . Consequently,  is neither positive

definite nor positive semidefinite.



(16.36)

(16.37)

Least‐Squares Identification

Recall the model of the cart on the track system from

Chapter 13 given by

In order to design a controller based on these equations the

values of the parameters  need to be found. This can be

done by an experiment in which a voltage  is applied to

the motor and it, along with the cart position  are

recorded. This data is then used to determine the

parameters. To understand how this is accomplished we

rewrite the second equation of (16.36) as

This is a linear equation in the unknown parameters .

The coefficients of this linear equation are found from the

measured/calculated data .

Let



(16.38)

(16.39)

(16.40)

be the speed, acceleration, and voltage, respectively, at

time . At each time  (16.37) should hold, that is,

With

(16.38) may be written as

Here  is referred to as the regressor matrix. The desire

here is to find the constant vector  that satisfies this for

all ! To do so, multiply both sides of (16.39) by 

to obtain

where



(16.41)

(16.42)

and

Then (16.40) is

Note that , that is, it is a square

matrix. It would then be nice if it was possible to multiply

both sides of (16.40) (or (16.42)) by 



(16.43)

(16.44)

(16.45)

to solve for . However,  is never

invertible! To see this, we simply compute

Something else has to be done. As (16.40) must hold for all 

 with  a fixed parameter vector we sum up it for 

time instants to obtain

Define

so that (16.43) may be rewritten as

Now suppose the matrix sum 

 is invertible. Then we may



(16.46)

multiply both sides of (16.45) by 

 to obtain  as

This solution is called the least‐squares solution. The key to

this method is making sure  is invertible. This is

dependent on choosing an input voltage that results in 

being invertible, as any arbitrary input voltage will not work.

For example, suppose  so that  and thus 

. In this case,  for all  so that 

 and is therefore not

invertible. It is up to the control engineer to find an input 

 so that  has an inverse.

Remark Recall from Chapter 8 that the parameters  and 

 can be found by applying a step input and measuring the

peak time and peak overshoot. However, the least‐squares

approach uses all of the data rather than a single time

point. That is, the model parameters determined using the

least‐squares approach are the best fit for all time, not just a

single point in time. Further, the method based on the peak

time and peak overshoot is only valid for second order

systems whose closed loop transfer function can be written

in the form  while it

turns out that the least‐squares approach is applicable to

any linear or nonlinear system whose regressor is linear in

the parameters.

Least‐Squares Approximation

The analysis to derive  was based on the

equation



being true for all . However, in the “real‐world” that

engineers work this is never true. The model (16.36) is not

an exact description of the cart. For example, the motor

inductance was assumed to be zero,  and  cannot

be measured perfectly, and the derivatives 

 cannot be computed exactly. Thus there

will not be a single fixed parameter vector  that satisfies 

 for all .

One can still run an experiment and collect the data 

 to compute  and thus determine

The key question is then “How well does 

satisfy  for all ?” To answer this

question recall the definitions

Then the error between the output  and its predicted

value  is



(16.47)

The problem is to find the value of  that makes this

difference as small as possible for all . Specifically, we

want to find the value of  that minimizes

where

In the jargon of identification theory  is considered

the output while  is the predicted

output based on  as the estimate of the parameters.

Consequently  is the error and

is the total squared error. If a parameter vector  can be

found that minimizes , then it is referred to as the

least‐squares estimate.



It is now shown that there is a unique solution and it equals 

. To do so, expand this expression for  to

obtain (recall )

Adding to the definitions given in (16.44), we define

Note that . For a fixed  the matrices 

 and  are constant and known from

data measurements.  is written compactly as



(16.48)

To verify (16.48) we first show that  is a symmetric

positive semidefinite matrix. We have

is symmetric as

 is positive semidefinite as

Under the assumption that  has an inverse we verify

(16.48) as follows.



Thus

The control engineer will design the experiment, i.e., the

specification of  so that  is invertible (see Problem

15). It turns out that if a symmetric, positive semidefinite

matrix is also invertible, then it must be positive definite.

Consequently  is positive definite. Looking at

we want to choose  so that  is as small as

possible. As  is positive definite we have for 



This term equals zero if and only if .

That is, by inspection of (16.48),  is minimized for 

! Choosing  results

in the squared error having its least value, that is, the least‐

squares error.

Error Index

How good is the least‐squares estimate? Well, the exact

value of  is not known so the error between the “exact”

value of the parameter vector and its estimate, i.e., 

is unknown. However, an indication of how good the

estimate  is can be found by comparing it with a given

(and thus known) value of . Specifically, if , then

the squared error is  as seen by putting 

in (16.48). Using the least‐squares estimate , that is,

setting  in (16.48), the error is

This is called the residual error, that is, it is the total

squared error after using the value of  which minimizes

the squared error. As  is positive definite, it turns out

that its inverse  must also be positive definite. Further,

as  and , it follows

that  so that 



. As a result,

the quantity

 is a measure of the minimum squared error

relative to the squared error obtained from taking the

parameter vector  to be the zero vector. By taking the

square root, a measure of the relative error rather than

squared error is obtained. This motivates the definition of

the so‐called error index as

Note that if the error index is close to 1, then our estimate is

not much better than taking all the parameter values equal

to zero! Thus, the error index must be much less than one

for the estimate to be of any value. If the error index is close

to one, then we would suspect that the original parametric

model of the system is incorrect.

How does the error index help in determining a good

estimate for ? Well, in using the formula 

to compute , it is necessary to measure the data 

 and then calculate  to compute

. However, for example, to calculate  using

the backward difference approximation defined by



requires specifying a sample period  and then filtering to

remove the noise. What kind of filter should one use? What

order of filter is needed? What should the cutoff frequency

of the filter be? Well, one can “head in the right direction”

by using the error index! That is, one could consider a

particular filter with two different cutoff frequencies. Then 

 is computed twice, once having the noisy speed filtered

using the first cutoff frequency and the second time with the

other cutoff frequency. The  with the smaller error index

would be the one to use. Using this approach one can

“home in” on a good choice for the cutoff frequency.

Problems



Problem 1 State Estimation

Let a statespace model be given by

Compute the observability matrix and the open‐loop

characteristic polynomial, i.e., . Is the system

observable?

Write down the equations for a state estimator.

Compute the gain vector  that will place the two closed‐

loop poles of your state estimator from part (b) at . Use

Theorem 2.

Using the  chosen in part (c), will  as 

Just answer yes or no.



Problem 2 State Estimation

Let a statespace model be given by

Compute the observability matrix and the open‐loop

characteristic polynomial, i.e., . Is the system

observable?

Write down the equations for a state estimator.

Compute the gain vector  that will place the two closed‐

loop poles of your state estimator from part (b) at . Use

Theorem 2.

Using the  chosen in part (c), will  as 

? Just answer yes or no.



Problem 3 State Estimation

Let the statespace model be given by

Compute the observability matrix. Is the system

observable?

Let  Can  be chosen so that  is

stable?

Can a state estimator be designed to have ? Explain

briefly.



Problem 4 State Estimation

Let the statespace model be given by

Compute the observability matrix. Is the system

observable?

Let  Can  be chosen so that  is

stable? Explain. Hint: The answer is yes! Explain.

Can a state estimator be designed to have . Explain

briefly.

Can  be chosen to arbitrarily place the poles of 

Explain.

Problem 5 State Estimators for the Cart on the Track

System

Speed estimator Starting with the simulation of the state

feedback controller for the cart on the track system of

Problem 3a in Chapter 15, add the state estimator given in

Figure 16.1 to that simulation and use it for state feedback.

Speed and disturbance estimator Starting with the

simulation of the state feedback controller for the cart on

the track system of Problem 3(c) in Chapter 15, add the

state estimator given in Figure 16.2 to that simulation and

use it for state feedback.



Problem 6 State Estimator for the Inverted Pendulum with

Output 

The linear statespace model of the inverted pendulum

around the equilibrium point

 is

Let the output equation be

Compute the observability matrix  for the system 

Compute the open‐loop characteristic polynomial, i.e., 

Use your answer in part (b) to compute the observability

canonical form  for the inverted pendulum.

Use your answer in part (c) to compute the observability

matrix  for the pair 



Give the observer gain  that places the poles at 

 Use the pole placement procedure

given in Theorem 2 of this chapter.

In the simulation of Problem 11 of Chapter 15 use this state

estimator to implement the state feedback.

Remark It will be shown in Chapter 17 that this particular

controller, i.e., state feedback combined with a state

estimator based on the output   results

in the closed‐loop system being very sensitive to small

disturbances. This means that small disturbance inputs can

cause the pendulum rod to swing so far from its equilibrium

angle of  that the linear model of the inverted

pendulum is no longer a valid approximation to the

nonlinear model. Consequently this controller will most

likely not be able to return the pendulum rod to the upright

position.



Problem 7 State Estimator for the Inverted Pendulum with

Output 

The linear statespace model for the inverted pendulum

around the equilibrium point

 is

Let the output equation be

Compute the observability matrix  for the system 

Compute the open‐loop characteristic polynomial, i.e., 

Use your answer in part (b) to compute the observability

canonical form  for the inverted pendulum.

Use your answer in part (c) to compute the observability

matrix  for the pair 



Give the observer gain  that places the poles at 

 Use the pole placement procedure

given in the text.

In the simulation of Problem 11 of Chapter 15 add this

observer to implement the state feedback.

Remark It will be shown in Chapter 17 that this particular

controller (state feedback using a state estimator based on

the cart position ) results in the closed‐loop system being

extremely sensitive to small disturbances. Specifically, small

disturbance inputs can cause the pendulum angle to swing

so far from its equilibrium angle  that the linear model

is no longer a valid approximation of the nonlinear model.

Though one can make a working simulation of this system,

there is no chance this controller will ever work in practice!



Problem 8 State Estimator for the Inverted Pendulum with

Output 

The linear statespace model for the inverted pendulum

around the equilibrium point

 is

Let the output equation be

Compute the observability matrix  for the system 

With  can an observer be designed to estimate the

full state? Explain why or why not.



(16.49)

(16.50)

Problem 9 Multi‐Output Observer for the Inverted

Pendulum Tracking Step Inputs in 

Add the multi‐output observer of Section 16.3 to the

inverted pendulum controller of Problem 12 of Chapter 15. It

is recommended you use the SIMULINK State‐Space block to

implement this observer as follows. The state estimator

equation to be implemented is

where

The SIMULINK block called Vector Concatenate combines the

input  to the cart and the measurements  into a single

vector  The vector  is the quantity going into the

State‐Space block of Figure 16.10. Double clicking on the

State‐Space block opens up the dialog box shown in Figure

16.11 on the next page.



Figure 16.10 The SIMULINK state‐space block.





Figure 16.11 Dialog box for State‐Space block.

With reference to Eqs. (16.49) and (16.50), in the dialog box

set     and 

Along with the SIMULINK block diagram of Figure 16.10, you

will need to add the following MATLAB code to your

simulation from Problem 12 of Chapter 15.

 

% Observer 

A = [0 1 0 0; 0 0 ‐kappa*m*g*m*Lp^2 0; 0 0 0 1; 0 0 

kappa*m*g*Lp*(M+m) 0]; 

b = [0 kappa*(Jp+m*Lp^2) 0 ‐kappa*m*Lp]’; 

z0 = [x_0 0 theta_0 0]; ro1 = 10; ro2 = ro1; ro3 = ro1; ro4 = 

ro1; 

C = [1 0 0 0; 0 0 1 0]; 

l_11 = ro1+ro2; l_12 = 0; l_21 = ro1*ro2; l_22 = ‐g*kappa*

(m*Lp)^2; 

l_31 = 0; l_32 = ro3+ro4; l_41 = 0; l_42 = alpha_sq + ro3*ro4; 

L = [l_11 l_12; l_21 l_22; l_31 l_32; l_41 l_42]; 

eig(A‐L*C) 

B = horzcat([b,L]); D = [0 0 0; 0 0 0; 0 0 0; 0 0 0]; 



Problem 10 Velocity Observer for the Magnetic Levitation

System

In Chapter 13 the nonlinear equations modeling the

magnetically levitated steel ball are given by

where  In the physical setup of this

system the current and position are available

measurements, but the velocity is not. This problem looks at

designing a velocity estimator. Consider

where  is known as  are measured. Define an

observer by



Let  and  Give the system of

differential equations satisfied by these error state

variables.

Show how to choose the gains  and  so that the

observer has its poles at  and 

Add this observer to the simulation of magnetic levitation

system of Problem 2 of Chapter 15.

Problem 11 State Estimator for the Inverted Pendulum with

In Problem 6 of this chapter you developed an observer for

the inverted pendulum using the measurement 

 Add this observer to the state

feedback controller given in Problem 12 of Chapter 15 that

provides tracking of step inputs in the cart position.

Problem 12 State Estimator for the Inverted Pendulum with

In Problem 7 of this chapter you developed an observer for

the inverted pendulum using the measurement  Add

this observer to the state feedback controller given in

Problem 12 of Chapter 15 that provides tracking of step

inputs in the cart position.



Problem 13 Multi‐Output Observer for the Voltage

Controlled Inverted Pendulum

In Problem 14 of Chapter 15 the following linear model of

the voltage controlled QUANSER inverted pendulum system

was developed

With  and  measured, along with the obvious definition

for the  we may write



Then

Choosing  and  it is seen

that  becomes

Unlike the example in Section 16.3,  is not in block

diagonal form due to . However,

That is, the determinant does not depend on  Choosing 

 and 



, it follows that

In summary, the observer gains are set as

Add this observer to the simulation of Problem 14 of Chapter

15. See Problem 9 of this chapter for a straightforward

procedure to implement this observer in SIMULINK.



(16.51)

(16.52)

(16.53)

Problem 14 Canonical Form for the Multi‐Output Observer

As shown in Problem 13 the observer model the voltage

controlled pendulum on a cart is

Define a change of coordinates by

where

We now show this transformation puts the state estimator

(16.51) into multi‐output observer canonical form.

Multiplying (16.51) on the left by  and replacing  by 

 the state estimator (16.51) becomes

Explicitly we have



(16.54)

and 

Then

We say that  is in observer canonical form because,

as (16.54) shows, we can set the first and third columns of 



 to anything we like using . Further the

second and fourth columns are zero except for a “1” in the

“right spots”.

In (16.54) set  so

that  becomes

Note that  is now block diagonal. The

characteristic polynomial is then

Setting  and

 this becomes

In summary setting



places the poles of results in  at 

 Finally, as  the gain matrix in

the original coordinate system is

Add this observer to the simulation of Problem 14 of Chapter

15. See Problem 9 of this chapter for a straightforward

procedure to implement this observer in SIMULINK.



Problem 15 Parameter Identification of the Cart on the

Track System

Figure 16.12 is a SIMULINK block diagram for collecting

(simulated) data to identify the parameters of the linear cart

model of Chapter 15. The cart has the transfer function

model  where  are to be estimated from

measurements of the voltage  and the position  Set 

 in the simulation of this system and set the

saturation limits to  V. The voltage input is

chosen to be a chirp signal given by 

where  and 

 That is,  is a sinusoidal

voltage whose instantaneous frequency  increases

linearly from  to .



Figure 16.12 SIMULINK block diagram for collecting data.

Figure 16.13 is the dialog box for the chirp signal block. Set 

 and 



Figure 16.13 Dialog box for the chirp signal. The Initial

Frequency and the Frequency at target time are in hertz.



The (simulated) data is collected using a zero‐order hold

block to simulate an analog‐to‐digital converter. The dialog

box for the zero‐order hold block is given in Figure 16.14 with

the sample period  set to 0.001 seconds.

Figure 16.14 Dialog box for the zero‐order hold block.

The data is stored using the To Workspace block. The dialog

box for the To Workspace block is shown in Figure 16.15.





Figure 16.15 Dialog box for the To Workspace block.

Implement this SIMULINK simulation and then write a

program to use the time , position  and voltage 

stored in simout to compute  The following code should

be useful. It is standard to filter the measured signals with a

low‐pass filter. The low‐pass filtered signals have a delay

due to the filter itself. This makes it important to filter all

signals used in the calculation of the parameters with the

same filter so they all have the same delay.

 

t = simout(:,1); x = simout(:,2); V = simout(:,3); 

derv = [1 ‐1]/T; 

% Compute the velocity by differentiating position 

xdot = filter(derv,1, x); 

% Compute the acceleration by differentiating velocity 

acc = filter(derv,1,xdot); 

% Put all signals through a low‐pass Butterworth filter to 

remove 

% high‐frequency noise. 

fs = 1/T; 

% Sampling frequency in Hz 

fsc = (1/2)*fs; 

% Nyquist frequency in Hz defined as 1/2 of the sampling freq. 

wn = 10/fsc; 

% wn is the cutoff freq (= 10 Hz) divided by the Nyquist freq. 

[bf,af] = butter(2,wn); 

% Second‐order Butterworth filter with a cutoff freq of 10 Hz. 

xdot_f = filter(bf,af,xdot); 

acc_f = filter(bf,af,acc); 

Vf_f = filter(bf,af,V); 

 

Plot xdot_f and xdot vs. time on the same plot.

Plot acc_f and acc vs. time on the same plot.

Plot V_f and V vs. time on the same plot.

In each of these plots you will see a small delay between

the signal and its filtered version.



Add to your program of part (a) the calculations of 

and  Then use them to compute the estimates  of 

 according to

Compare your estimates  with the values used in your

simulation by computing the fractional error  and 

Add to your program of part (b) the calculation of the

residual error

and the residual error index



Problem 16 Parameter Identification of the Cart on the

Track System with an Encoder

This problem uses the SIMULINK model of an optical encoder

as given in Problem 10 of Chapter 13. Figure 16.16 is a

SIMULINK block diagram for collecting (simulated) data to

identify the parameters of the linear cart system with the

position measured using an optical encoder. The key reason

for including the encoder is that it is a chief source of the

noise in the computation of the velocity  and acceleration 

 of the cart position. The cart has the transfer function

model  where  are to be estimated from

measurements of the voltage  and the position  You can

set  in the simulation of the cart and set the

saturation limits to  V. The conversion from

encoder counts to the cart position in meters is given by 

 where 

 is the radius of the encoder wheel and  is the

number of counts the encoder puts out per revolution.

The voltage input is chosen to be a chirp signal given by 

 where  and

 That is,  is a sinusoidal

voltage whose instantaneous frequency  increases

linearly from  to . Set 

 and  The (simulated) data is

collected using a zero‐order hold block to simulate an

analog‐to‐digital converter. Set the sample period  be

0.001 seconds. The data is then stored using the To

Workspace block.

Rather than do the differentiation and filtering in a MATLAB

program, they can be done in the SIMULINK simulation as



shown in Figure 16.16.

There are three identical low‐pass Butterworth filters in

Figure 16.16 shown as  discrete filter blocks. The

dialog box for these discrete filter blocks is shown in Figure

16.17. The filter parameters af and bf given in the dialog

box of Figure 16.17 are computed as given in part (a) of

Problem 15.

There are two differentiators shown as  blocks in Figure

16.16. The dialog box for the differentiation filters is shown

in Figure 16.18. The sample period  is set to 

seconds.

Implement this SIMULINK simulation. Either use the program

from part (a) of Problem 15 or the simout_filter from the

simulation to obtain  and  which are low‐pass

filtered versions of  and  respectively. The low‐pass

filtered signals have a delay due to the filter itself. So it is

important to filter all signals used in the calculation of the

parameters with the same filter so they all have the same

delay.

Plot xdot_f and xdot vs. time on the same plot.

Plot acc_f and acc vs. time on the same plot.

Plot V_f and V vs. time on the same plot.

In each of these plots you will see a small delay between

the signal and its filtered version.



Add to your program of part (a) the calculations of 

 and

Compare your estimates  with the values used in your

simulation by computing the fractional errors  and



Add to your program of part (b) the calculation of the

residual error

and the residual error index





Figure 16.16 SIMULINK block diagram for collecting data.





Figure 16.17 Dialog box for the discrete filter block.





Figure 16.18 Dialog box for the differentiation filter.

Note

1 The subscript  stands for “dual.”



17 

Robustness and Sensitivity of

Feedback

Chapters 8, 9, 11, and 12 of this text make up “classical

control theory”. These methods of Bode [47], Nyquist [48],

and Evans [53] (root locus) were developed in the 1930s

and 1940s. Most applications of these techniques were to

single‐input single‐output (SISO) control loops. The

statespace approach appeared in the 1960s and 1970s and

is usually referred to as “modern control theory”. A great

advantage of the statespace method was that it could easily

deal with multi‐input multi‐output systems. However, design

for robustness (i.e., good gain and phase margins) was not

so manageable in the statespace. The 1980s and 1990s saw

the return of the frequency domain as the Nyquist theory

gives a way to measure robustness.

An alternative way to view classical control has been given

by Bruce Francis [62] as follows.

The subject of this first course is classical control. That

means the systems to be controlled are single‐input,

single‐output and stable except possibly for a single pole

at the origin, and design is done in the frequency domain,

usually with Bode diagrams.

We make a slight addition to this view by letting the open‐

loop system (system to be controlled) have up to two poles

at the origin along with the inclusion of root locus as a usual

design method. Controllers for such systems can be

designed using the methods of output pole placement

(Chapter 10), Bode/Nyquist (Chapter 11), root locus

(Chapter 12), or the statespace (Chapters 15 and 16). These



(17.1)

(17.2)

systems constitute the majority of the examples in this text

(as well as other elementary texts) and the designs result in

good stability margins. However, if the system to be

controlled has poles in the open right‐half plane then things

are quite different. Though we can always stabilize such a

system (e.g., using output pole placement), it can be very

difficult or even impossible to obtain adequate stability

margins. For example, the output feedback controller

designed for the inverted pendulum in Chapter 10 (page

295) was shown to have small stability margins in Section

11.9. In this chapter it is shown that controllers designed for

systems with poles in the open right‐half plane are

fundamentally limited in terms of the amount of robustness

that can be achieved. We demonstrate this by looking at the

stability margins of four different controllers designed to

stabilize the inverted pendulum (see Woodyatt et al. [63],

Stein [36], Goodwin et al. [6], and Doyle et al. [49]). The

starting point is the model of the inverted pendulum derived

in Chapter 13, which is valid for  and  both close to zero.

Given as a transfer function the model is



(17.3)

where  

17.1 Inverted Pendulum with Output

x

Let's now look at the control of the inverted pendulum using

just the measurement of the cart position  as feedback.

Using the pole placement method of Chapter 10 a controller

can be designed that keeps the simulated pendulum rod

upright (see Problem 1 of this chapter). As pointed out on

page 256 of Goodwin et al. [6], this controller is essentially

doomed to failure when implemented on an actual cart and

pendulum system. To explain, Figure 17.1 shows a unity

feedback control architecture where  is designed to

make the closed‐loop system stable. In Figure 17.1 

 denotes the numerator of the

initial condition term in (17.1). Note that the transfer

function  has a pole and a zero in the

open right half‐plane which are, respectively,



(17.4)

(17.5)

Figure 17.1 Output pole placement controller.

To be specific, consider the QUANSER inverted pendulum on

a cart. It has a pendulum rod of length  m

whose center of mass is at the midpoint of the rod. As in

Chapter 13, we take the axis of rotation of the rod be in the 

 direction going through its center of mass (Figure 13.1).

The moment of inertia of the rod about this axis of rotation

is  where  The pole and zero in (17.3)

simplify to



(17.6)

(17.7)

The QUANSER values  and  result in 

 showing that the right

half‐plane pole is only slightly greater than the right half‐

plane zero. With these values of the parameters, the open‐

loop transfer function of the inverted pendulum evaluates to

By the pole placement method a controller of the form

will allow arbitrary placement of the closed‐loop poles.

Choosing the seven closed‐loop poles to all be at  results

in

Problem 1 asks you to simulate this controller where you will

see that it keeps the pendulum rod vertical. We now use

Nyquist theory to show that this controller has no chance of

working in practice, that is, if you try implement this

controller on the actual inverted pendulum it will not be able

to keep the rod vertical! The Nyquist contour is given in

Figure 17.2a where the two poles of  at the

origin and the two in the open right half‐plane are indicated.



This shows that  as  has two poles inside

the Nyquist contour. The corresponding Nyquist plot of 

 is shown in Figure 17.2b. (For  small 

.)





Figure 17.2 (a) Nyquist contour. (b) Nyquist plot.

From the Nyquist plot it is seen that  so the closed‐

loop system is stable. (Of course we knew this already as

the seven closed‐loop poles are all at ) However, the

gain margin is very small with  stable only for 

 or 

 The phase

margin is only of the order  radians or

1.15 degrees! That is, if the polar plot is rotated by this

amount, the number of encirclements of  changes.

One might argue that with  accurately implemented

using a microprocessor then we should be okay. But the

parameter values of transfer function  may not be

known accurately enough that the controller 

designed based on this model will be able to stabilize the

actual inverted pendulum. In other words, this controller is

not robust to small uncertainties in the model of the

inverted pendulum.

The situation is even worse than just model uncertainty!

Even if the linear model  is very accurate around the

(pendulum up) operating point, this controller will not work

in practice. To show this we need to discuss the sensitivity of

a control system. We start by magnifying the part of the

Nyquist plot around the  point as shown in Figure

17.3, but showing only the part of  for 

 As seen in this figure the quantity

is a vector (complex number) from  to 

 For some frequencies the length of this



vector is very small (about ). The Bode diagram for 

 is given in Figure 17.4 and shows for the

frequency range  that  is close

to  or, equivalently,  is quite

small.





Figure 17.3 Nyquist plot of 





(17.8)

(17.9)

Figure 17.4  For  

 is close to  and  is close to 

The sensitivity function is defined to be

The Bode diagram of the sensitivity is shown in Figure 17.5.

From the Bode diagram of  it is found that

Let's now use the sensitivity function to explain why trying

to control the pendulum by only feeding back the cart

position  won't work in practice. The closed‐loop transfer

function is

In the frequency range  we have 

 so 

 or, equivalently, 

 As a consequence







(17.10)

Figure 17.5 Bode diagram of 

The track of the QUANSER pendulum system is 1 m long.

With the initial cart position at the center of the track we

apply the reference input  with 

and  (0.13 Hz). Then

With the amplitude of the reference input equal to 0.1 m,

the sinusoidal steady‐state position response has an

amplitude of 0.9 m. That is, the cart hits the end of the

track! In the frequency range where  is large, the

steady‐state output response will be large. In other words, a

small amplitude input can cause a large output response if

the input contains these frequencies.

Even if the track was longer one should still not expect the

pendulum to stay upright! To explain we look at the

response of  The transfer function from  to  is

Solving for  and using 

the closed‐loop transfer function from  to  is



(17.11)

(see Problem 2)

The Bode magnitude diagram of  is given in

Figure 17.6.





Figure 17.6 Bode diagram of 

For  the Bode diagram shows that 

 and 

(39.7 dB) with the maximum value achieved at . With 

 we have

For example, with  m and  (1.1 Hz) it

follows that

That is,  is oscillating between  rad or 

The linearized model of the inverted pendulum from which 

 and  were found are only valid for a variation

in  of perhaps as much as  (  rad). If 

varies too far from its equilibrium angle 0 then the transfer

function  no longer accurately represents the

nonlinear model of the pendulum. As a consequence the

controller  designed using the approximate linear

model is no longer guaranteed to (and in all likelihood

won't) keep the pendulum rod vertical. Though the

discussion here used a pure sinusoidal reference input,

typically  is a step input that contains a whole range of

frequencies where  is large.

Even if there is no reference input there will be small

disturbances between the cart and the track. The block



diagram of Figure 17.1 indicates a disturbance 

between the track and the cart. With a flat track we don't

expect to have a constant disturbance. However, to give an

idea of the kind of disturbances that can arise, Figure 17.7

shows a close up of the QUANSER cart used to carry the

pendulum rod [34]. The small front gear on the right is

powered by a DC motor to propel the cart backwards and

forwards along the track. (The large back gear is connected

to an optical encoder which is used to compute the cart

position  along the track.) The interaction of the teeth of

these gears with the teeth of the track can result in small (in

magnitude) disturbances forces acting on the cart. We let 

 denote (the Laplace transform of) any such

disturbance.



Figure 17.7 Close up of the QUANSER cart used to carry

the pendulum bar [34]. The small front gear is powered by a

DC motor to propel the cart backwards and forwards along

the track.

Source: Quanser – Real Time Control Experiments for Education and Research,

www.quanser.com.

The corresponding effect of the disturbance  on the

cart position and pendulum angle are given by

http://www.quanser.com/


(17.12)

(17.13)

Both transfer functions  and 

 are stable by design (see Problem 3)

and they both have the sensitivity  as a

factor. Figure 17.8 shows the Bode diagram for 

where it is seen for  ( ) that 

 (23 dB).





Figure 17.8 Bode diagram of 





Figure 17.9 Bode diagram of 

Figure 17.9 shows the Bode diagram for  where it is

seen for  ( ) that 

 (14 dB).

For example, the disturbance  will

result in  where 

 radians or  A

small disturbance can cause the pendulum angle to swing

so far from  that the controller based on the linearized

model is no longer able to bring it back upright.

Right Half‐Plane Poles and Zeros and the

Control Problem

The above robustness and sensitivity problems of controlling

an inverted pendulum are not due to the particular

controller we chose, i.e.,  being chosen to put all the

closed‐loop poles at . These problems will emerge for

any controller  that stabilizes the inverted pendulum

based on cart position feedback [35, 63, 64]. That is, any

controller based on the model

will not work in practice. This open‐loop model has a pole at

5.408 and a zero at  which are both in the open

right‐half plane. Using this information, we show that any

stabilizing controller results in the closed‐loop system being

so sensitive to modeling errors, disturbance inputs,



(17.14)

reference inputs, etc. that it will not work in practice. Before

we can explain all this we need more background starting

with Bode's sensitivity integral.

Theorem 1 Bode's Integral Theorem [47]

Let

Suppose the following conditions hold.

 is stable.

 has no poles in the open right half‐plane.

 has relative degree of at least

2, i.e.,

Then

Proof. See [47] for the original work. Perhaps the simplest

proof is given in [65].

We first work out an example to illustrate this theorem.

Example 1 Double Integrator 



In Chapter 11 we stabilized the system  with

the lead controller . The closed‐loop

transfer function is

The sensitivity is given by

which is stable.  has no poles in the open right

half‐plane and it has relative degree 2.

Thus the conditions of the Theorem 1 are satisfied resulting

in

A plot of  for  is given in

Figure 17.10. Note that the horizontal axis is a linear scale in

 not  as it is for Bode diagrams. Figure 17.11 on

the next page zooms into this plot where it is seen to be

positive for . For  it shows that 

 . In this example the Bode



sensitivity integral tells us that the (negative) area under

the curve  for  has the same magnitude

as the area under this curve for  Also, in this

example, the magnitude of the sensitivity is small for all 

In fact,  (  dB). The key

takeaway of this example is that  has no poles in

the open right‐half plane, which corresponds to the

sensitivity being small for all 





Figure 17.10 Plot of  where 





Figure 17.11 Plot of  for . The

horizontal axis is  (not ).

Let's return to the inverted pendulum whose transfer

function has a pole and a zero in the open right‐half plane.

With  the controller that places the closed‐loop poles

at  we have

The relative degree of  is two and 

 is stable by our choice 

However  has a right half‐plane pole at 

 from the pendulum model and another right half‐

plane pole at 66.2137 from the controller. Bode's sensitivity

integral was generalized by Freudenberg and Looze [35] to

handle such a case.

Theorem 2 Generalization of Bode's Integral theorem

Freudenberg and Looze [35]

Let

Suppose the following conditions hold.

 is stable.

 has  poles in the open right half‐plane at 

.



(17.15)

 has relative degree of at least

2, i.e.,

Then

Note .

Proof. See [35] or [65].

Remarks As   this result may

also be written as .

The poles come in complex conjugate pairs so 

Note that the open‐loop system  may have poles

on the  axis, but they make no contribution to the right‐

hand side of (17.15).

Example 2 Inverted Pendulum 

Let's now go back to the unity feedback pole placement

controller for the inverted pendulum where

By the Theorem 2 we have



(17.16)

Figure 17.12 on the next page is the plot of  vs.

 where  for .1 This plot shows, as

already pointed out earlier, that  (

) with the maximum value achieved

at  Typically it is desired to have 

or, equivalently,  (see

page 97 of [49]).

Some important points are to be made here.

As  is proper and  is strictly proper it follows

that  and so



As  it follows that





Figure 17.12 Plot of  for the inverted pendulum

with the closed‐loop poles all at 

The theorem tells us that  having right half‐

plane poles means that  has more positive area

than negative area. This positive area must be at lower

frequencies as  by point (1) above.

No matter what stabilizing controller  is used, the

right‐hand side of (17.16) must be greater or equal to 

 This is a fundamental limitation in

designing a controller to reduce  and is a

consequence of  having a pole in the open right‐half

plane.

Equations (17.4) and (17.5) show that  It turns out

that this implies that any stabilizing controller  must

have a right half‐plane pole.2 Further, this right half‐plane

pole of  must be to the right of the zero of 

[67].3 Consequently, for any controller it follows that

One must expect that a small disturbance will cause the

pendulum rod angle to swing far from  with the result

that the linear controller will not be able to return it back to

0.

Poisson Integral for Sensitivity

Theorem 2 tells us to expect the sensitivity to be large if the

system model has poles in the open right‐half plane. The

Poisson integral for sensitivity is a constraint on the



(17.17)

(17.18)

sensitivity in terms of the poles and zeros of 

that are in the open right half‐plane. In particular, if a right

half‐plane pole is close to right half‐plane zero, it shows that

any controller in the setup of Figure 17.1 will result in the

sensitivity being large. To explain, recall  is

given by

 has two poles in the open right half‐plane

(RHP): one at  from  and a second at 

 from . It also has two zeros in the open

RHP: one at  from  and a second at 

 from . There is a Poisson integral for

each of the zeros in the open RHP. Specifically (see [68, 69])

and

As  and  are quite close together, the first integral is

the most illuminating at showing why we should expect the

sensitivity to be large regardless of the controller.

Evaluating the first Poisson integral gives



(17.19)

(17.20)

(17.21)

Multiplying both sides by  we rewrite this last

equation as

 in (17.20) is (of course) the same sensitivity function

as in (17.16). Multiplying (17.17) by z1 it follows that, no

matter what stabilizing controller is designed, we must have

Further, as  drops off rapidly toward 0 for 

 we see that  must be sufficiently

large at the lower frequencies in order to satisfy (17.21). No

feedback controller can make this Poisson integral less than



7.996 leading us to expect that  will be

large for any controller.

The takeaway from this example is that a different scheme4

is needed to control the inverted pendulum. We consider

this in the next sections. For more discussion of the Poisson

integral constraint see Section 9.2 of Goodwin et al. [6].

 Norm

Looking back at Figure 17.1 the transfer function from the

reference input  to the error  is

The quantity

is the upper bound on the maximum amplitude of the error

response due to a sinusoidal input. We have seen that it is

this upper bound that must not be too large if we are to be

able to have the controller work in practice. More

specifically, recall (17.11) for the transfer function for angle

of the pendulum rod given by

It was shown that for any controller  that stabilized

the closed‐loop system, the quantity



was large. It is so large that, in practice, the pendulum rod

would not remain upright during step changes in the cart's

position. This discussion motivates the following definition.

Definition 1  Norm

Let  be a stable and strictly proper transfer function.

The  norm of  is defined by

Remark If the closed‐loop system has a small  norm

then we should expect to have the controller work in

practice. In other words, not only must the feedback

controller stabilize the closed‐loop system, but it must not

have too large of an  norm so that it works when

implemented. Designing  controllers (controllers that

stabilize the closed‐loop system and minimize the 

norm taking into account model uncertainty) is involved and

we refer you to [49] for an elementary introduction to the

approach.

17.2 Inverted Pendulum with Output 

Let's now put a sensor to measure the pendulum rod angle

and combine that measurement with the cart position.

Specifically we take the output to be



Then using (17.1) and (17.2) we have

with the obvious definition for  Note that the transfer

function  no longer has any zeros. This is the reason

for choosing this output! Figure 17.13 shows the unity

feedback control configuration using this new output of the

inverted pendulum.



Figure 17.13 Output pole placement controller.

Using the QUANSER parameter values (

), the open‐loop transfer function

of the inverted pendulum is

In order to arbitrarily place the closed‐loop poles with a

minimum order controller we choose  to be of the

form

In Example 5 of Chapter 10 the details of this design were

presented. There it was chosen to place closed‐loop poles at

 and resulted in the controller



(17.22)

Note that  has no RHP poles or zeros.

We first look at what Nyquist theory can tell us about this

controller design. Figure 17.14a is the Nyquist contour and

Figure 17.14b is the corresponding Nyquist plot for 

.





Figure 17.14 (a) Nyquist contour. (b) Nyquist plot.

From the Nyquist plot it is seen that the closed‐loop transfer

function

is stable for  or 

 Though this is a

much larger gain margin compared the control system when

the output was just  it is still quite small! The phase

margin turns out to be about  (small, but much larger

than the phase margin of  using only  as the

feedback). Let's look at the sensitivity of this controller. 

 is given by

The sensitivity function is

Theorem 2 tell us that

A plot of  is given in Figure 17.15, which shows 

 or 

This maximum sensitivity is 7 times smaller compared with

the sensitivity with only  as the feedback. However 



 is still large making it questionable if

this controller will actually work in practice.





(17.23)

Figure 17.15  vs. 

17.3 Inverted Pendulum with State

Feedback

We now consider the sensitivity of a control system for the

inverted pendulum that uses state feedback. In Chapter 13

a linear statespace model of the inverted pendulum was

found to be

where  This model is valid as long as

both  and  are not too far from 0. In Chapter 15 it was

shown that one can choose  such that the

feedback

will force  A

block diagram of such a state feedback controller is shown

in Figure 17.16a. An equivalent transfer function block



diagram of the state feedback controller is shown in Figure

17.16b where . Using the QUANSER parameter

values and placing the closed‐loop poles at  results in

Figure 17.16 (a) State feedback controller. (b) Equivalent

transfer function representation.

 has a single pole at 5.409 in the open right‐half

plane, but no right half‐plane zeros.

The Nyquist contour and corresponding Nyquist plot of 

 are shown in Figure 17.17. (For  small 



.)

The pole at 5.409 of  is inside the Nyquist contour so 

 The Nyquist plot goes around  once in the

counter‐clockwise direction making  Thus 

 showing the closed‐loop system is stable

(as we already knew!). Next, if we multiply  by the

scalar gain  the Nyquist plot shows that 

is stable for  or 

 The Nyquist plot is not drawn to

scale so the phase margin cannot be read from it. However,

using MATLAB it is found that the phase margin is  We

shouldn't have any trouble getting this controller to work in

practice!





Figure 17.17 Nyquist contour and plot for 

The sensitivity function for the control system shown in

Figure 17.16b is

As shown above  has one right half‐plane pole and no

right half‐plane zeros. However,  has relative degree

1 and so Theorem 2 does not apply. We need the following

generalization of it.

Theorem 3 

Define

and suppose the following conditions hold.

 is stable.

 has  poles in the open right half‐plane at 

 has relative degree 1 or higher.

Then



(17.24)

Note .

Proof. See [65].

Example 3 Inverted Pendulum Controlled by State

Feedback

We apply the Theorem 3 to the transfer function model 

 of the inverted pendulum. From above we have

which has relative degree 1 and a single pole in the open

right half‐plane at 5.409. Also  so

by Theorem 3 it follows that

The integral of the logarithm of the sensitivity is negative

and thus we do not expect  to be large. In fact, 

 However, this is the sensitivity of the

output

and we are really interested in the sensitivity of the output 

 We don't want small disturbances in the input or small



non zero initial conditions to cause  to vary far from its

equilibrium value of 0. That is,  and  must be kept small

for all time so that this controller based on the inverted

pendulum's linear statespace model is able to ensure

closed‐loop stability of the actual (nonlinear) system. Let's

look at the response with the output being  Our setup is

or, equivalently,

The transfer function for  is then

In Figure 17.18 the reference input  is a force as is the

feedback . In this context  better models a force

disturbance input (perhaps due to the cart wheels

interacting with the track). With the closed‐loop poles all at 

 it turns out that (see Problem 5)



Figure 17.18 

where  A Bode plot of  reveals that

Consequently, if there is any additive disturbance 

acting at the input  (acting on the cart body) this

controller will keep  close to 0. In particular, if there is a

step disturbance  in the input we see that



The pendulum rod angle is still kept at 

17.4 Inverted Pendulum with an

Integrator and State Feedback

In Chapter 15 the control architecture of Figure 17.19 was

used to show that the pendulum rod could be kept upright

while having the cart position track step inputs. We now

consider the sensitivity of this feedback scheme.

Figure 17.19 Statespace tracking of step inputs.

With  as given in (17.23) and ,

define

To do a Nyquist stability analysis of this control system

consider the equivalent block diagram of Figure 17.19 given

in Figure 17.20.



Figure 17.20 Equivalent block diagram of Figure 17.19.

It was shown in Chapter 15 that 

 can be chosen to

place the closed‐loop poles at any desired set of values.

Choosing the closed‐loop poles to be at  results in

and

With  the sensitivity function is

A plot of  vs.  is given in Figure 17.21. It is

seen that  (  dB) with the



maximum value achieved at 





Figure 17.21 Plot of  vs. .

Let's compute the closed‐loop transfer function from 

to . From Section 15.9 the statespace setup is

where  and .

Taking  as the output we write

Then

with  We can make a Bode plot of  to

find  This shows the pendulum

rod angle  is not sensitive to step reference inputs.



17.5 Inverted Pendulum with State

Feedback via State Estimation

In Example 12 of Chapter 15 state feedback control of the

inverted pendulum was considered. In Problem 6 of Chapter

16 a state estimator using the output 

was used to estimate the state for the feedback control. The

setup is shown in Figure 17.22 where  is the desired

cart position.5 In this section we see if state feedback

control using a state estimator (this approach is still output

feedback) helps with the robustness and sensitivity of the

closed‐loop system.6



Figure 17.22 State feedback control of the inverted

pendulum using a state estimator.

The statespace model of the pendulum around the upright

position is



(17.25)

In Section 16.2 it was shown that Figure 17.22 is equivalent

to Figure 17.23 where

A disturbance  has also been included acting at the

input.



Figure 17.23 Block diagram equivalent to Figure 17.22.

Using the QUANSER parameter values and choosing  to

place all four poles of  at  and  to place the four

poles of  at  results in (see Problem 6 of Chapter

16)



In Problem 7 you are asked to show that the transfer

functions of Figure 17.23 are

Some block diagram reduction shows that Figure 17.23 is

equivalent to that of Figure 17.24 where



Figure 17.24 Block diagram equivalent to Figure 17.23.

The transfer function from  to  is

The sensitivity function is

and, by Theorem 2, it follows that



This indicates that the output  is very

sensitive to input disturbances. The point here is that using

an observer to estimate the state is still an output feedback

controller and Theorem 2 is applicable. Consequently, for

this example, the fact that   and 

 have right half-plane poles tells us to expect

the sensitivity to be large.

This state feedback with an observer approach resulted in

the transfer function  having two poles in the

open right‐half plane at  (the roots of 

) along with the pole of  in

the open right‐half plane. Compare this with the output pole

placement approach of Section 17.2 that fed back 

 using the controller given in

(17.22) whose poles and zeros are all in the open left half‐

plane.

Problems



Problem 1 Output Position Feedback for the Inverted

Pendulum

The objective of this problem is to design an output pole

placement controller for the inverted pendulum feeding

back just the cart position . Use the parameter values of

the QUANSER [34] inverted pendulum system given by



With the output taken to be , Eq. (17.1) shows  is

given by

Let  denote the numerator of the

initial condition term and consider the control system of

Figure 17.25.

Figure 17.25 Pole placement controller using cart position

for feedback.

Design the lowest order unity feedback controller that

stabilizes the closed‐loop system of Figure 17.25 and allows

arbitrary pole placement.



Figure 17.26 is a SIMULINK block diagram of a unity

feedback control system using cart position as feedback.

Simulate the linear statespace pendulum model along with

the stabilizing controller designed in part (a). Set the initial

conditions as  The

pendulum angle  should not vary by more than about 

 so that the linear model remains a valid

representation of the nonlinear model. The variable den in

Figure 17.27 is  Further, in

Figure 17.27, Lp corresponds to  and Jp corresponds to .

The reason for using the statespace model to simulate the

pendulum is so that both  and  can be plotted. Use

the Euler integration algorithm with a step size of 

 second.



Figure 17.26 SIMULINK simulation to control the inverted

pendulum using cart position feedback.





Figure 17.27 Inside the Linear Statespace Model block of

Figure 17.26.

With the reference input  m (2 cm), the simulation

should show that  swings out past 

Problem 2 

Show that

where  was chosen to place the seven closed‐loop

poles at , i.e.,  is given by (17.7).



Problem 3  and 

Let

Show that

where  was chosen to place the seven closed‐loop

poles at , i.e.,  is given by (17.7).



Show that

where  was chosen to place the seven closed‐loop

poles at , i.e.,  is given by (17.7).



Problem 4 Poisson Integral for the Inverted Pendulum

System

In the Poisson integral for the inverted pendulum given in

(17.17) the quantity

is large due to the closeness in value of  and  Using

Eqs. (17.4) and (17.5) where  and  show that

as  (or ) this quantity reduces to 

 Then show, similar to

(17.20), that

The point here is that one would still expect the sensitivity

to be so large that any unity feedback controller using just

position feedback won't be able to keep the rod upright.



Problem 5 

Using state feedback and taking the output to be the

pendulum angle , the system equations are

with

and  The transfer function from  to

 is



Some computation shows that

Show how to choose  and  so that

Some more computation shows that

The notation “adj” stands for the adjoint of a matrix. See

Chapter 15 (page 569) for an explanation of the adjoint of a

matrix as well as the inverse and determinant of a matrix.

Use parts (a) and (b) to show that



Problem 6 Inverted Pendulum – Root Locus of 

The unity feedback control structure of Figure 17.1 with 

 given by

results in the seven closed‐loop poles placed at  The

real‐axis root loci for  is shown in Figure

17.28 on next page. Breakaway points at  and 12.8

are also indicated. Note that the pole  of 

and the pole  of  come together and

breakaway from the real axis at 12.8. As  is increased

these poles migrate to the left half‐plane. For  all the

poles are at  by design of  The pole  of 

 is to the right of the zero  of  As 

 it turns out that any stabilizing controller  must

have a pole  to the right of the zero  In this

example  is the unstable pole of 

To show why any stabilizing controller must have a pole to

right of  we use a root locus argument. By contradiction,

suppose that there is no pole  of  to the right of 

The pole‐zero plot of  along with a pole  of 

closest to  is shown in Figure 17.29 on the next page. As 

 (stable or not) is to the left of  it follows that the

interval from  to  is part of the real‐

axis root locus. There can be no breakaway point in this

interval because there is only a single pole that starts at 

(unlike the case shown in Figure 17.28). This means there is

a closed‐loop pole in this interval for all  This contradicts 



 being a stabilizing controller and so the assumption 

 cannot hold.

Figure 17.28 Real axis root locus for 

Figure 17.29 Pole–zero plot of  along with a

presumed right half‐plane pole  of  with 



Plot the root locus of 

Problem 7 Output Feedback via State Estimation for the

Inverted Pendulum

Consider the statespace model of the inverted pendulum

given in (17.25) with the QUANSER parameter values as

given in Problem 1. Write a MATLAB program to compute the

state feedback vector  that places all the poles of 

at  Also compute the state estimator vector  that

places all the poles of  at  Then append to your

MATLAB program the code to compute 

 and  as given in Section 17.5.

Hint: The following MATLAB code shows how to compute 

 from the  matrices.

 

A = [1 2; 3 4]; b = [5; 6]; c = [7 8]; 

sympref(’FloatingPointOutput’,true); 

syms s; 

G = simplify(c*inv((s*eye(2)‐A))*b) 

G_num = c*adjoint((s*eye(2)‐A))*b 

G_den = det((s*eye(2)‐A)) 

 

Notes

1 This same information is shown in the top of Figure 17.5,

which is a plot of  vs. 

2 This follows from the parity interlacing property, which

implies the controller  must be unstable [46, 49,

66].

3 This is based on the real‐axis root locus for 

 See Problem 6.



4 That is, different from just feeding back the measured cart

position in a unity feedback configuration.

5 Note the abuse of notation in that ℓ is used to denote the

half length of the pendulum rod as well as the observer

gain vector.

6 Spoiler alert. It won't!
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motorized rolling cylinder, 133

Newton's law of rotational motion, 112
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torque

definition, 113
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inverted pendulum, 426
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flat surface, 128

up an incline, 133

Rolling mill, 124, 183



Root locus, 447

angle of departure, 463

asymptotes and their intercept, 457

breakaway points, 482

effect of open‐loop poles on the root locus, 480

effect of open‐loop zeros on the root locus, 481

proportional control, 224

root locus rules, 449

satellite with solar panels

non collocated, 484

Routh‐Hurwitz stability test, 65

main result, 68

Routh array, 67

second‐order polynomial, 71

secondary result, 68

special cases

row of zeros in the Routh array, 72

zero in the first column, but not a row of zeros, 75

third‐order polynomial, 71

Satellite positioning system

tracking and disturbance rejection, 276



Satellite with solar panels

collocated case, 321

differential equation model, 119

simulation, 140

non collocated case, 353, 484

transfer function model, 119

simulation, 140

Second‐order systems

effects of zeros, 219

peak overshoot, 210

peak time, 210

rise time, 214

settling time, 212
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Bode integral, 702
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Simulation, 96
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DC motor, 201
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pole placement, 352
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feedback linearization control, 636

parameter identification

with optical encoder, 689

without optical encoder, 686

pitch control, 258, 316
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Simulink

cart on the track, 532

DC motor, 105, 180, 201

identification of the model, 227

inverted pendulum

nested loops, 522

output position feedback, 720

pole placement, 352

magnetic levitation, 529

3rd order model, 531

mass‐spring‐damper system, 96
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parameter identification

with optical encoder, 689
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speed control of a DC motor, 230
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cart on a track, 643

on an inclined track, 646
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general procedure, 649
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Laplace domain, 660
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placement of the observer poles, 655

position cannot be estimated from speed, 645

separation principle, 657
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odd number of real right half‐plane zeros, 222

Unstable pole‐zero cancellation, 311, 312
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