

Architecting Vue.js 3
Enterprise-Ready Web Applications

Build and deliver scalable and high-performance,
enterprise-ready applications with Vue and JavaScript

Solomon Eseme

BIRMINGHAM—MUMBAI

Architecting Vue.js 3 Enterprise-Ready Web Applications
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Aaron Tanna
Senior Content Development Editor: Rakhi Patel
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Prashant Ghare
Marketing Coordinators: Namita Velgekar, Nivedita Pandey, and Anamika Singh

First published: April 2023
Production reference: 1170323

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-390-5

www.packtpub.com

http://www.packtpub.com

To my parents Mr/Mrs. Eseme Adaada, family, and friends, for their sacrifices and for exemplifying
the power of determination and resilience.

– Solomon Eseme

Contributors

About the author
Solomon Eseme is an experienced software engineer, content creator, and the founder of Mastering
Backend, with 5+ years of experience working across multiple frontend and backend technologies
to design and build high-performing, scalable, and innovative applications, following best practices
and industry standards in a variety of workplaces, from start-ups to larger consultancies. He started
using Vue when it was first integrated with Laravel and has never looked back. He is also a panelist
on the ViewsOnVue podcast and a technical writer with Vue.js developers.

I want to thank the people who have been close to me and supported me, especially my parents, family,
and close friends, Success Ibekwe, Moses Anumadu, and Godknows Eseme(Boikay) (brother).

.

About the reviewer
Brice Chaponneau is a freelance solution architect and also offers his services as an auditor or lead
in current frameworks, such as Vue, React, Svelte, and Solid. He has worked in various domains,
with clients such as Arcelor Mittal, Caisse d’Epargne, SNCF, Société Générale, Natixis, Edmond de
Rothschild, Carrefour, Galeries Lafayette, KPMG, and Louis Vuitton. He has written a book on Vue
2, published by Eyrolles in 2019. He participated as a reviewer on the book Building Vue.js Application
with GraphQL for Packt in 2020.

Preface xiii

Part 1: Getting Started with Vue.js�

1
Getting Started with Vue.js 3� 3

Technical requirements� 3
Overview of Vue.js� 3
Introducing Vue.js 3� 4
Vue 3 performance� 4
Tree-shaking support� 4

The Composition API� 5

Building your first Vue.js 3 app� 8
Creating a Vue 3 app with Vite� 8
What is the Strapi CMS?� 10

Summary 12

2
Using Libraries for Large-Scale Applications� 13

Technical requirements� 13
Exploring large-scale Vuex� 14
Vuex modules� 14
The Vuex state� 16
Vuex getters� 18
Vuex mutations� 18
Vuex actions� 19

Structuring with the repository
pattern 21
Overview of the repository pattern� 21

Creating a repository folder� 23
Creating a clients folder� 23
Creating an xxxClient.js class� 23
Creating an individual repository class� 24
Creating a RepositoryFactory.js class� 26
Using the repository pattern� 26

Structuring Vue navigation with Vue
Router 27
The folder structure� 28
The index.js file� 28
Hash mode� 29

Table of Contents

Table of Contentsviii

HTML5 mode� 29
The combine.js file� 29

Adding the router to Vue� 30

Summary� 30

Part 2: Large-Scale Apps and Scaling
Performance in Vue.js 3�

3
Scaling Performance in Vue.js 3� 33

Technical requirements� 33
Why do we need Vue.js performance
optimization?� 33
The primary reasons for poor Vue
performance� 34
Checking your Vue application’s
bundle size� 35
Generating a report� 35

Running the npm build command� 36

Optimizing the performance of an
enterprise Vue application� 37
Asynchronous/lazy component loading� 37
WebP images and image compression� 41
Code splitting� 42

Summary� 43

4
Architecture for Large-Scale Web Apps� 45

Technical requirements� 46
Understanding file architecture and
structure� 46
Predictability in Vue 3� 46

Different frontend architectural
patterns� 54
Micro frontend architecture� 54
Atomic Design� 56
Storybook� 58

Implementing Storybook in Vue.js 3� 59
Implementing internationalization
and localization� 64
Benefits of internationalizing software� 64
Installing Vue I18n� 64

Summary� 68

Table of Contents ix

Part 3: Vue.js 3 Enterprise Tools�

5
An Introduction to GraphQL, Queries, Mutations, and RESTful APIs� 71

Technical requirements� 71
An introduction to GraphQL� 72
What is GraphQL?� 72
Features of GraphQL� 73
Why use GraphQL instead of REST?� 74
The difference between GraphQL and
RESTful APIs� 76

Understanding queries and
mutations in GraphQL� 77
Using queries� 77

Using mutations� 78

Integrating GraphQL Apollo Client
with Vue 3� 80
Installation� 81
Structuring GraphQL� 82
JWT authentication for sign in/sign up� 84

Summary� 88

6
Building a Complete Pinterest Clone with GraphQL� 89

Technical requirements� 90
An introduction to Strapi� 90
Scaffolding a Strapi project� 90
Building the collections� 92
Seeding data� 95

Building a Vue 3 Pinterest app� 97
Generating the Cards component� 98

Connecting the frontend and backend�100
The auth folder� 101
The photos folder� 102
The users folder� 102

Summary� 106

7
Dockerizing a Vue 3 App� 107

Technical requirements� 107
Overview of Docker� 108
What is Docker?� 108

Implementing Docker with Vue.js 3� 111
Prerequisite� 111
Example project� 112

Table of Contentsx

Dockerizing Vue.js and Node.js with
Docker Compose� 116
Overview of Docker Compose� 117

Running the app on Docker Compose� 122

Summary� 123

Part 4: Testing Enterprise Vue.js 3 Apps�

8
Testing and What to Test in Vue.js 3� 127

Technical requirements� 127
Overview of testing� 128
What is software testing?� 128
Why software testing is important� 129
The benefits of software testing� 130

Testing in software engineering� 131
Types of software testing� 131

What to test� 133
Testing strategy� 133

What you should test� 133
What you should not test� 134

Testing a basic Vue.js 3 app� 135
Creating a test folder� 135
Writing a basic unit test� 138

Component testing in Vue.js 3� 141
Writing a basic component test� 141

Summary� 144

9
Best Practices in Unit Testing� 145

Technical requirements� 145
Introduction to unit testing� 146
What is unit testing?� 146
The importance and benefits of unit testing� 147

Best practices in unit test creation� 148
Arrange, act, and assert� 149
Write deterministic tests� 150
Write good test names and descriptions� 150

Write tests before or during development
(TDD)� 150
Using mocks and stubs� 151
Leverage automation testing� 151

JavaScript unit testing� 151
Popular JavaScript testing frameworks� 152

Unit testing a Vue.js 3 app� 153
What to test� 154
Running unit tests manually� 156

Summary� 157

Table of Contents xi

10
Integration Testing in Vue.js 3� 159

Technical requirements� 159
Introduction to integration testing� 160
What is integration testing?� 160
Importance of integration testing� 160
Benefits of integration testing� 161
Best practices when creating integration tests� 163

JavaScript integration testing� 165

Testing a basic Vue app� 166
Writing a basic integration test� 166

Testing integrated components� 169
Summary� 172

11
Industry-Standard End-to-End Testing� 173

Technical requirements� 174
Introduction to E2E testing� 174
What is E2E testing?� 174
Importance of E2E testing� 175
Benefits of E2E testing� 175
Best practices in E2E test creation� 176

JavaScript E2E testing� 177
Selenium WebDriver� 177

Cypress� 178
Playwright� 179
Puppeteer� 179
Karma� 180

E2E testing a Vue.js 3 app� 180
Setting up Cypress� 181
Creating the test file� 182
Running the test� 184

Summary� 185

Part 5: Deploying Enterprise-ready Vue.js 3�

12
Deploying Enterprise-Ready Vue.js 3� 189

Technical requirements� 189
Introduction to CI/CD� 190
Overview of CI/CD� 190
Continuous integration� 191
Continuous delivery� 191
Continuous deployment� 192

What is a deployment pipeline?� 192
Elements of a deployment pipeline� 193
Overview of a deployment pipeline� 195

Overview of GitHub Actions� 196
Jobs in the deployment pipeline� 197

Table of Contentsxii

Creating the deployment pipeline
with GitHub Actions� 201
Deploying to AWS� 204
Using Docker� 204

Provisioning AWS resources� 206
Pipeline for the production environment� 211

Summary 213

13
Advanced Vue.js Frameworks� 215

Technical requirements� 216
Introduction to Vue frameworks� 216
Top Vue frameworks� 216

Understanding Nuxt.js and how it
works 218
Uses of Nuxt.js� 219
How does Nuxt.js work?� 219
Benefits of Nuxt.js� 222

Creating a Nuxt.js app� 223
Nuxt.js pages and routing system� 226

What is Gridsome?� 231
What is Gridsome used for?� 231
How does Gridsome work?� 232
Benefits of Gridsome� 233
Creating a Gridsome app� 235

Summary 239

Index 241

Other Books You May Enjoy� 250

Preface

Building enterprise-ready Vue.js apps entails following best practices to create high-performance and
scalable Vue.js applications.

This book is a must for any developer who works with a large Vue.js code base where performance
and scalability are important. You’ll learn how to configure and set up Vue.js 3 and Composition API,
and how to build real-world applications with it. You’ll then learn to create reusable components in
Vue.js 3 and scale performance in Vue.js 3 applications.

You will then learn to scale performance with asynchronous lazy loading, image compression, code
splitting, and tree shaking. Next, you’ll learn how to use RESTful API, Docker, GraphQL, and different
types of testing to ensure that your Vue.js 3 application is scalable and maintainable. By the end of
this book, you will be able to build and deploy your enterprise-ready Vue.js 3 application using best
practices in implementing RESTful API, Docker, GraphQL, and different testing methods with Vue.js 3.

Who this book is for
The book is intended for Vue.js developers and professional frontend developers who want to build
high-performance, production-grade, and enterprise-scalable Vue.js apps from design to deployment.
The book assumes a working knowledge of Vue.js and JavaScript programming.

What this book covers
Chapter 1, Getting Started with Vue.js 3, covers Vue.js, Options API, the new Vue.js 3, and Composition
API. Thus, it establishes and fosters an understanding of Vue.js. In addition, this chapter will explore
the Vue.js 3 Composition API in depth and serve as a guide to understanding the other chapters.

Chapter 2, Using Libraries for Large-Scale Application, covers the essential aspects of Vuex, Axios, and
Vue Router and how to integrate them with Vue 3 to develop an enterprise application. This background
information will put you in a better position to grasp the terms and concepts of these libraries and
help you understand how to build and scale an enterprise-ready application.

Prefacexiv

Chapter 3, Scaling Performance in Vue.js 3, dives deeper into scaling an extensive Vue application.
You will learn how to scale performance with asynchronous lazy loading, image compression,
code splitting, tree shaking, and many other tricks to increase the performance of your Vue.js 3
enterprise-ready application.

Chapter 4, Architecture for Large-Scale Web Applications, teaches you how to handle a sizable enterprise-
ready project, from managing larger file structures to using the micro-frontend architecture. You will
also learn how to handle the internationalization and localization of your Vue.js 3 project.

Chapter 5, An Introduction to GraphQL, Queries, Mutations, and RESTful APIs, explores GraphQL, Apollo
Server 2, queries, mutations, and how to integrate these technologies into your Vue.js 3 application. In
addition, you will learn how to utilize GraphQL to deliver scalable and high-performance applications.

Chapter 6, Building a Complete Pinterest Clone with GraphQL, discusses how to build a complete
Pinterest clone with Vue 3 and GraphQL. You will utilize the knowledge of GraphQL to develop and
deliver an enterprise application, such as Pinterest, using Vue 3 and GraphQL.

Chapter 7, Dockerizing a Vue 3 App, examines the nitty-gritty involved in dockerizing your Vue
project. In addition, you will learn the best practices and industry standards to dockerize and deploy
an enterprise Vue.js 3 web application. This chapter will also go more practical by dockerizing a full-
stack web application and deploying a container to a cloud platform using Docker Compose. You will
learn how to handle larger projects with this tool.

Chapter 8, Testing and What to Test in Vue.js 3, explores the whole concept of testing. You will learn
what to test from an available array of components and methods. In addition, you will learn the best
practices and industry standards for testing libraries and how to integrate them with Vue.js 3.

Chapter 9, Best Practices in Unit Testing, dives into everything related to unit testing. You will learn
how to unit-test a Vue.js 3 component and the components and pages’ methods. You will also learn
unit tools such as Jest and Mocha and use them to effectively unit-test an enterprise project.

Chapter 10, Integration Testing in Vue.js 3, covers everything related to integration testing. You will
learn in depth how to perform an integration test on a Vue.js 3 component and pages. You will also
learn about integration testing tools such as Vue-Test-Library and how to use them to test an enterprise
project effectively.

Chapter 11, Industry Standard End-to-End Testing, explores everything related to end-to-end testing.
You will learn in depth how to perform end-to-end testing on a Vue.js 3 component and pages. In
addition, you will also learn about end-to-end testing tools, such as Cypress and Puppeteer, and how
to use them to test an enterprise project end to end effectively.

Chapter 12, Deploying Enterprise-Ready Vue.js 3, shows you how to deploy Vue.js 3 projects to the
AWS cloud. You will learn the best practices in deploying to AWS. In addition, you will learn how big
companies deploy their enterprise Vue applications.

Preface xv

Chapter 13, Advanced Vue.js Frameworks, offers a definitive guide to Nuxt.js. You will learn the nitty-
gritty of Nuxt.js and how to build and deliver enterprise SSR projects with Vue.js 3. We will also offer a
definitive guide to Gridsome. You will learn the nitty-gritty of Gridsome and how to build and deliver
enterprise CSR projects with Vue.js 3.

To get the most out of this book

Software/hardware covered in the book Operating system requirements

Node.js 16.0 or higher Windows, macOS, or Linux
Familiarity with command line Windows, macOS, or Linux
JavaScript, ECMAScript 11 Windows, macOS, or Linux
Vue.js 3 Windows, macOS, or Linux
Docker and AWS Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

You will need knowledge of Docker and containerization to run the code presented in Chapter 7.

You will need knowledge of AWS and cloud computing to run the code presented in Chapter 12.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications.
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/4Lgta.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/4Lgta

Prefacexvi

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “If you’re
following along, create a new file called staging.yml inside the .github/workflows folder.”

A block of code is set as follows:

lint:

  runs-on: ubuntu-latest

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn lint

Any command-line input or output is written as follows:

npm install --save graphql graphql-tag @apollo/client @vue/
apollo-composable

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click on the Next: Permissions option
on the other options, and finally, click the Create User button.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com

Preface xvii

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Architecting Vue.js 3 Enterprise-Ready Web Applications, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1801073902

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801073905

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801073905

Part 1:
Getting Started with Vue.js

This first part gives you a theoretical and historical background for the rest of the book. It covers
Vue.js, Options API, the new Vue.js 3, and Composition API. You will also learn how to create a new
Vue app using Vue CLI, and then, we will dive deeper into using Vuex, Vue Router, and Axios to
build an enterprise-ready app.

This part comprises the following chapters:

•	 Chapter 1, Getting Started with Vue.js 3

•	 Chapter 2, Using Libraries for Large-Scale Applications

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=24f7a5c3-bcc5-3d01-67b5-61d6c93c0b03
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=f8110ed5-ecdd-316b-b151-61d6c97da1e6

1
Getting Started with Vue.js 3

Before we start learning how to develop enterprise-ready applications with Vue.js 3, you need to
understand Vue 3 and the different features it is bundled with to help you navigate through building
scalable and enterprise-ready applications.

In this chapter, we will cover the essential aspects of Vue 3 that will directly influence how we
develop an enterprise application with Vue.js 3. This background information will put you in a better
position to grasp the terms and concepts of Vue 3 and help you understand how to build and scale
an enterprise-ready application.

We will cover the following key topics in this chapter:

•	 Overview of Vue.js

•	 Introducing Vue.js 3

•	 Building your first Vue.js 3 app

Once you’ve worked through each of these topics, you will be ready to get started with building your
first enterprise-ready Vue.js 3 application.

Technical requirements
To get started, we recommend that you have a basic knowledge of JavaScript with Node.js installed
on your computer and must have built projects using Vue.js before.

Overview of Vue.js
Vue.js is an open source progressive JavaScript frontend web framework used to develop interactive
frontend web interfaces. It is a very popular and simplified JavaScript framework that focuses on the view
layer of web development. It can be easily integrated into big and enterprise web development projects.

Vue.js is a framework that opens the door for developers to create and manage large and scalable
projects with ease, as the code structure and development environment are developer-friendly.

Getting Started with Vue.js 34

In the next section, we will introduce you to the wonders of Vue 3 and the Composition API.

Introducing Vue.js 3
The official Vue.js 3 version was released in September 2020 with highly documented, highly readable,
well-structured resources to help you start using Vue 3. Evan You in his article The process: Making
Vue 3 (https://increment.com/frontend/making-vue-3/) mentioned that one of the
key reasons for the rewrite was to leverage a new language feature, Proxy.

Proxy allows the framework to intercept operations on objects. A core feature of Vue is the ability to
listen to changes made to the user-defined state and reactively update the DOM. In Vue 3, using the
Proxy feature is the key to resolving the reactivity-related issues in Vue 2.

Most importantly, Vue 3 was completely rewritten in TypeScript and has all the advantages of a modern
framework that come with using TypeScript.

In this section, we will explore some of the features and improvements that resonate with building an
enterprise application and, most importantly, the new Composition API.

We’ll cover the following topics:

•	 Vue 3 performance

•	 Tree-shaking support

•	 The Composition API

These topics give you a glimpse at the features of Vue.js 3 and we will start with what we are already
familiar with in Vue in this book.

Vue 3 performance

The performance increase in Vue 3 is excellent for enterprise applications because any lag in the core
framework can result in a loss of funds given the gigantic nature of an enterprise project.

Vue 3 has sped up performance by 55% compared to previous versions. Also, the updates are up to 133%
faster, which is excellent for developing and testing large enterprise projects before deployment. Also,
memory usage is reduced by 54%, cutting down computing costs drastically on enterprise projects.

Tree-shaking support

Tree-shaking is the process of eliminating dead, useless, or unused code, which drastically decreases
the build size of an application if you compare this to an enterprise application with thousands of files
and—sometimes unknowingly—unused files that can lead to a bloated and heavy project.

https://increment.com/frontend/making-vue-3/

Introducing Vue.js 3 5

Vue 3 supports tree-shaking right out of the box, eliminating unused files and code, thereby decreasing
the build size and increasing the project’s performance.

The Composition API

The Composition API is an entirely new addition and the most significant change to Vue 3. It requires
relearning the concepts and total discarding the Options API used in Vue 2. While the Composition
API advances, the previous Options API will continue to be supported. In this book, we use the
Composition API because of the readability and performance improvements that come with it.

Why the Composition API?

When building a simple application, the component-based architecture alone has proven to be the best
approach to developing such an application where individual components can be reused to improve
maintainability and flexibility.

However, when building enterprise-ready applications with hundreds of components, from collective
experience, it is proven that component-based architecture alone might not be enough, especially
when your application is getting big but sharing and reusing code even within components becomes
very important, and thus the introduction of the Composition API.

Code example

Let’s imagine we are building an enterprise to-do application with unique features such as filters and
search capabilities. Using the Options API, we will approach this project using the traditional data,
computed, and watch methods.

The following code block shows how to create and manage a Vue component using the Options API
from Vue 2:

// src/components/TodoRepositories.vue

export default {

  components: { RepositoriesFilters, RepositoriesSortBy,

                RepositoriesList },

  props: {

    todo: {

      type: String,

      required: true,

    },

  },

  data() {

Getting Started with Vue.js 36

    return {

      repositories: [], // 1

      filters: {}, // 3

      searchQuery: '', // 2

    }

  },

  computed: {

    filteredRepositories() {}, // 3

    repositoriesMatchingSearchQuery() {}, // 2

  },

  watch: {

    todo: 'getTodoRepositories', // 1

  },

  mounted() {

    this.getTodoRepositories() // 1

  },

  methods: {

    getTodoRepositories() {

      // using `this.Todo` to fetch Todo repositories

    }, // 1

    updateFilters() {}, // 3

  },

}

The preceding component handles many responsibilities, as you can see in the following points:

•	 Getting the Todo repository from an external API and refreshing it on user changes

•	 Searching the Todo repository using the searchQuery string

•	 Filtering the Todo repository using the filters object

Organizing your component’s logic as in the previous example works perfectly, but at the same time
poses a huge challenge to readability and maintainability for larger and enterprise projects with bigger
components’ logic.

Wouldn’t it be perfect if we could collocate code related to the same logical concern? That’s exactly
what the Composition API enables us to do.

Introducing Vue.js 3 7

Let’s rewrite the same component using the Composition API to see the improvement and readability
benefits gained by using it:

<script setup>

import { fetchTodoRepositories } from '@/api/repositories'

import { ref, watch, computed } from 'vue'

const props = defineProps({

    todo: {

        type: String

        default:""

    }

})

  const repositories = ref([])

  const getTodoRepositories = async () => {

    repositories.value =

        await fetchTodoRepositories(props.todo)

  }

  getTodoRepositories()

  // set a watcher on the Reactive Reference to user todo

  // prop

  watchEffect(getTodoRepositories)

  const searchQuery = ref('')

  const repositoriesMatchingSearchQuery = computed(() => {

    return repositories.value.filter(

      repository =>

          repository.name.includes(searchQuery.value)

    )

Getting Started with Vue.js 38

  })

</script>

The Composition API is a great addition, especially for developing enterprise-ready applications. We
can move the computed, mounted, and watch lifecycle hooks into a standalone composition
function and import it into the script with setup, making it readable, flexible, and maintainable. To
learn more about the Composition API, visit the official documentation (https://v3.vuejs.
org/guide/composition-api-introduction.html#why-composition-api),
which is outside the scope of this book.

So far, we have covered an overview of Vue 3 and the newly introduced features of Vue that are handy
for building enterprise-ready and scalable production-grade applications. We have also covered the
basics of the Composition API to foster your understanding of building your modern enterprise
application with Vue 3.

In the next section, we will put your knowledge to the test by learning how to build your first Vue 3
application using Vite as the build tool.

According to the official documentation (https://vitejs.dev/guide/), Vite is a build tool
that aims to provide a faster and leaner development experience for modern web projects. It is based
on Rollup, and it’s configured to support most sensible defaults for modern JavaScript frameworks.

Building your first Vue.js 3 app
Vue.js can be integrated into projects in multiple ways depending on the requirements because it is
incrementally adaptable.

We will create a completely blank new Vue 3 project, or you can use the migration guide (https://
v3.vuejs.org/guide/migration/migration-build.html#overview) to migrate
your Vue 2 project to Vue to follow along.

In this section, we are going to cover how to build our Vue 3 application using the Vite command-
line interface (CLI).

Creating a Vue 3 app with Vite

To create our first Vue 3 application, we will use the recommended Vite web development tool. Vite is
a web development build tool that allows for lightning-fast code serving due to its native ES Module
import approach.

In this book, we will be building an enterprise-ready Pinterest clone project, and all the backend data
management of the project will be developed and hosted with Strapi.

https://v3.vuejs.org/guide/composition-api-introduction.html#why-composition-api
https://v3.vuejs.org/guide/composition-api-introduction.html#why-composition-api
https://vitejs.dev/guide/
https://v3.vuejs.org/guide/migration/migration-build.html#overview
https://v3.vuejs.org/guide/migration/migration-build.html#overview

Building your first Vue.js 3 app 9

Type along with these simple commands:

npm init @vitejs/app pinterest-app-clone

cd pinterest-app-clone

npm install

npm run dev

// If you're having issues with spaces in username, try using:

npx create-vite-app pinterest-app-clone

The preceding commands will create a pinterest-app-clone folder with Vue 3 installed and set
up properly. Once done, open your favorite browser and access the web page with localhost:3000.
This is what the web page will look like:

Figure 1.1 – A screenshot of the newly installed Vue 3

In this section, we explored Vue 3, the Composition API, and how to get started building your first
application with Vue 3. In the next section, we will learn about the Strapi CMS that we will use for
data and content management.

Getting Started with Vue.js 310

What is the Strapi CMS?

Strapi is an open source headless CMS based on Node.js that is used to develop and manage content
or data using RESTful APIs and GraphQL.

With Strapi, we can scaffold our API faster and consume the content via APIs using any HTTP client
or GraphQL-enabled frontend.

Scaffolding a Strapi project

Scaffolding a new Strapi project is very simple and works precisely like installing a new frontend
framework. Follow these steps to scaffold a new Strapi project:

1.	 Run either of the following commands and test them out in your default browser:

npx create-strapi-app strapi-api --quickstart

OR

yarn create strapi-app strapi-api --quickstart

The preceding command will scaffold a new Strapi project in the directory you specified.

2.	 Next, run yarn build to build your app and, lastly, yarn develop to run the new project
if it doesn’t start automatically.

Building your first Vue.js 3 app 11

The yarn develop command will open a new tab with a page to register your new admin
of the system:

Figure 1.2 – The registration page

3.	 Go ahead and fill out the form and click on the Submit button to create a new admin.

As we progress in this book, we will customize our Strapi backend instance to reflect Pinterest
data modeling.

Getting Started with Vue.js 312

Summary
This chapter started with an overview of Vue.js and why Vue.js can be used to develop enterprise-ready
applications. We discussed the latest release of Vue.js and how it improves the performance aspect
of the framework by introducing a tree-shaking feature right out of the box. We then introduced the
Composition API, a Vue 3 feature that improves the readability, maintainability, and scalability of
Vue 3 for building and deploying enterprise applications. We also looked at creating our first Vue 3
application using Vite and the fundamental reasons for using Vite instead of the other available options.

Finally, we introduced the Strapi CMS, the backend stack and a headless CMS for building and
modeling backend applications and APIs. With Strapi, we will only focus on building and scaling our
enterprise frontend Pinterest-clone application using Vue 3 while the Strapi CMS handles the backend.

In the next chapter, we will dive deeper into using Vuex, Vue Router, and Axios to build an enterprise-
ready app. You will learn how to properly utilize these libraries to develop large-scale applications
with maintainability and scalability, and by the end of the chapter, you will have learned how to set
up your backend with Strapi and connect it to Vue 3.

2
Using Libraries for Large-Scale

Applications

Before you start learning how to use different libraries to develop large-scale and enterprise-ready
applications with Vue.js 3, you need to understand these individual libraries and the various features
they are bundled with to help you navigate through building scalable and enterprise-ready applications.

In this chapter, we will cover the essential aspects of Vuex, Axios, and Vue Router and how to integrate
them with Vue 3 to develop an enterprise application. This background information will put you in
a better position to grasp the terms and concepts of these libraries and help you understand how to
build and scale an enterprise-ready application.

We will cover the following key topics in this chapter:

•	 Exploring large-scale Vuex

•	 Structuring with the repository pattern

•	 Creating a repository folder

•	 Structuring Vue navigation with Vue Router

Once you’ve mastered each of these topics, you will be ready to get started with building your first
enterprise-ready application with Vue 3.

Technical requirements
To get started with this chapter, we recommend reading through Chapter 1, Getting Started with Vue.js
3, and its overview of Vue 3 and the Composition API, which will be intensively used in this chapter.

Using Libraries for Large-Scale Applications14

Exploring large-scale Vuex
Vuex is the state management library for Vue applications. It serves as a central store for all the
components in a Vue application. It is also a library implementation tailored specifically to Vue.js to
take advantage of its granular reactivity system for efficient updates.

Significant benefits can be derived when using Vuex for the state management of a Vue application.
Still, it can easily be misused and overwhelmed if not adequately structured—especially when building
a large-scale enterprise application—due to the size of the project and the number of components and
features that will be introduced in the project.

To tackle this structure problem, we will introduce you to different structures to arrange your Vuex
store and the law of predictability discussed in Chapter 4, Architecture for Large-Scale Web Applications,
to accommodate large-scale Vue applications.

In this section, we will discuss Vuex states, getters, mutations, and actions.

Practically, the usual way to structure your Vuex store is to have every piece of code inside a single
index.js file called a single state tree. This method works perfectly for a small project and helps
to avoid navigating through different files to find a single method.

However, when developing an enterprise project using Vuex, using single state trees becomes very
bloated and difficult to maintain.

To reduce this large file and split the file into different features, Vuex allows us to divide our store
into Vuex modules.

Before we dive in, the Vue community has introduced a new state management system called Pinia
that fixes the problems of Vuex and is directly compatible with Vue 3. As of the time of writing, Pinia
was still in the development and beta phase. You can learn more about Pinia and how to integrate it
into your Vue 3 application here: https://pinia.vuejs.org/.

Vuex modules

A Vuex module is a way to split our store based on features, where each module can contain its states,
getters, actions, mutations, and even nested modules.

This method allows us to split our store into features and create different files and folders to arrange
the store correctly.

We’ll learn how we can split our store into features in the next subsection.

Assuming our Pinterest application will have different states such as photos, users, comments, and so
on, we can split the store into separate modules as opposed to having it in a single file.

https://pinia.vuejs.org/

Exploring large-scale Vuex 15

Using Vuex modules

As stated in the previous section, using Vuex modules comes with great benefits, and we will stick to
it throughout this book. Firstly, let’s look at the folder structure of our Vuex module store:

const moduleA = {

  state: () => ({ ... }),

  mutations: { ... },

  actions: { ... },

  getters: { ... }

}

const moduleB = {

  state: () => ({ ... }),

  mutations: { ... },

  actions: { ... }

}

const store = createStore({

  modules: {

    a: moduleA,

    b: moduleB

  }

})

store.state.a // -> `moduleA`'s state

store.state.b // -> `moduleB`'s state

As you can see in the preceding code block, we have created different modules to wrap our Vuex state,
actions, and mutations respectively. It can be useful to structure our project into different features.

Now that we understand how to structure our Vuex store for enterprise projects, let’s discuss how to
access and manage the store from a component in Vue in the next section.

Using Libraries for Large-Scale Applications16

The Vuex state

First and most importantly, let’s discuss states and how we can manage the state of a module Vuex store.

The Vuex state is the data you stored inside your Vuex store and can be accessed anywhere in your
Vue application.

The Vuex state follows the single-state-tree pattern. This single object contains all your application-
level states. It serves as the “single source of truth”. But, since we’re adopting modularity to manage our
enterprise-ready application, we are going only to learn how to access and manage our module states.

The following code snippet shows how to create a simple Vuex state:

// initial state

const state = () => ({

  photos: [],

})

In addition, you can access a Vuex store outside of components. For example, you access Vuex inside
of Vue services, helper files, and so on. However, in the next section, we will explore different ways
to access our state in the components.

Accessing state without mapping

Assuming this is our store for all photos in our Pinterest application and we have that photos state,
how do we access it in our components?

To access the Photos array, we will use our module name with the store name, as shown in the
following code snippet:

const Photos = {

  template: `<div v-for="(photo, index) in photos"

              :key="index"> </div>`,

  computed: {

    photos () {

      return this.$store.photos.state.photos

    }

  }

}

The previous code snippet shows how to access a moduled store by creating a new Photos component
and displaying all the photos in the photo’s state.

Exploring large-scale Vuex 17

To access the Photos state array, we used the name of the module it belongs to and accessed the
state property before the photos array.

Next, we’re going to explore how to access the Vuex state using the mapping approach.

Accessing the state with mapping

The best way to access the store is to use Vuex state maps, (https://vuex.vuejs.org/guide/
state.html#the-mapstate-helper), which we will use throughout this book. You can go
to the official Vuex documentation (https://vuex.vuejs.org/) to learn more.

Using Vuex mappers is great when your components need to make use of multiple store-state properties
or getters. Declaring all these states and getters can get repetitive and verbose, and that’s exactly what
a Vuex mapper tends to solve.

Let’s take an example of creating a simple Photos component and using the Vuex state to display
different images:

import { mapState } from 'vuex'

const Photos = {

  template: `<div v-for="(photo, index) in photos"

              :key="index"> </div>`,

  computed: mapState({

    photos: state => state.photos.photos,

    }

  })

}

The preceding snippet creates a Photos component, loops through the data from our Vuex state,
and displays the images in the store.

There you have it.

We will use this method in further discussion with actions, mutations, and getters. You should never
forget the names of your modules.

We now have a fair understanding of the Vuex state and modules and how we will structure our
enterprise and large-scale Vuex application for easy maintainability and accessibility.

Let’s discuss getters and how we can manipulate our Vuex state using Vuex getters and map getters
in the next section.

https://vuex.vuejs.org/guide/state.html#the-mapstate-helper
https://vuex.vuejs.org/guide/state.html#the-mapstate-helper
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/

Using Libraries for Large-Scale Applications18

Vuex getters

Vuex getters are very useful for manipulating the Vuex state. Sometimes, you might want to filter or
sort the Vuex state before returning the data to the components.

Vuex allows us to create getters that manipulate the state just as computed properties in Vue will do.
It also caches the result and updates the cache when data changes.

In each module, we will define its specific getters to manipulate the state in that module. For example,
we will create a getter to filter photos based on user ID in our Photos module, like so:

  getters: {

    getPhotoByID: (state) => (id) => {

      return state.photos.find(photo => photo.id === id)

    }

  }

The preceding code snippet shows how to create a getter that filters all the photos added by a particular
user whose ID is passed to the getters method.

Next, let’s access the getter in our component using the map helper. See the following code snippet:

...mapGetters({

  // map `this.getPhotoByID` to

  // `this.$store.getters.getPhotoByID`

  getPhotoByID: 'getPhotoByID'

})

Vuex getters are a great way to manipulate and manage Vuex states before they go out to our components
and can come in handy for filtering, sorting, updating, and deleting records from our Vuex state.

Next, we will discuss Vuex mutations and how we can use them in an enterprise-ready application.

Vuex mutations

The only way to change the state of a Vuex state is by committing a mutation.

A Vuex mutation is similar to an event. It takes a string called type and a function called handler.
The handler function is where you perform the mutation.

Exploring large-scale Vuex 19

Assuming we’re still working with our Pinterest photo store, we can add a new Photo object to our
state with the following code snippet:

const store = createStore({

  state: {

    photos: []

  },

  mutations: {

    ADD_NEW_PHOTO (state, photo) {

      // mutate state

      state.photos.push(photo)

    }

  }

})

Next, we will look at accessing the Vuex mutation module. We can access it using Vuex map helpers,
which is the recommended way for enterprise projects:

import { mapMutations } from 'vuex'

export default {

  methods: {

    ...mapMutations({

      addPhoto: 'photos/ADD_NEW_PHOTO'

    })

  }

}

Lastly, we can call the addPhoto() method anywhere in our component, pass the Photo object
as the only argument, and let Vuex do its thing.

In addition, the most comprehensive place to use Vuex mutations is in Vuex actions. In the next section,
we will discuss Vuex actions in detail and demonstrate how they can be used in enterprise applications.

Vuex actions

Vuex actions are similar to Vuex mutations, but instead, they are asynchronous and are primarily
used to commit Vuex mutations.

Vuex actions can make API calls to our backend server and commit the response to our Vuex state
using Vuex mutations.

Using Libraries for Large-Scale Applications20

Traditionally, to make an API call with Vuex actions, we will do it directly inside the store, as the
following code snippet shows.

Using our Pinterest photo example, we will have a store similar to this one:

const store = createStore({

  state: {

    photos: []

  },

  mutations: {

    ADD_NEW_PHOTO (state, photo) {

      state.photos.push(photo)

    }

  },

  actions: {

   async getPhoto (context, id) {

       const photo = await Axios.get('/photos/'+id);

       context.commit('ADD_NEW_PHOTO', photo)

    }

  }

})

Next, to dispatch the action in our component, we will stick with using Vuex maps to dispatch the
action and retrieve a new photo corresponding to the ID passed into the getPhoto() method:

import { mapActions } from 'vuex'

export default {

  methods: {

    ...mapActions({

      getPhoto: 'photos/getPhoto' // map `this.getPhoto()`

      // to `this.$store.dispatch('photos/getPhoto')`

    })

  }

}

So far, we have covered a lot on building large-scale applications with Vuex, and we have
elucidated Vuex modules, states, getters, mutations, and actions and how to apply them in building
enterprise-ready applications.

Structuring with the repository pattern 21

To further solve the problem of structure, we will introduce you to the use of the repository pattern
in arranging your Vuex store, structuring all your API calls into a repository, and accessing them in
your Vuex actions.

Structuring with the repository pattern
When building a large-scale, enterprise-ready Vue application, you must get the project’s structure
right from the ground up.

Separating your Vuex store into individual modules based on an application’s features is excellent and
provides direct access to files, making debugging and maintenance a breeze.

Using this method alone poses a problem. Your Vuex actions become extremely large with many API
calls, extracting API data, and handling errors all happening in the Vuex actions.

Introducing the repository pattern helps eliminate this bloated code base and separates the API calls
and management from Vuex.

In this section, we will first get an overview of the repository pattern. Then, we will create a repository
folder for our Vue application.

Firstly, before we explore how to use the repository pattern in Vuex, let’s get a clear overview of the
repository pattern and what can be achieved with it.

Overview of the repository pattern

The repository pattern is a significant pattern used in creating an enterprise-level application, either
the frontend or the backend of any enterprise application.

It restricts us from working directly with data in the application and creating a new layer for database
operations, business logic, and the application UI.

The following is a list of a few reasons you should use the repository pattern in your frontend
development, especially when building enterprise applications:

•	 The data access code is reusable everywhere across the entire project

•	 It is effortless to implement the domain logic

•	 You can unit-test your business logic quickly without any form of tight coupling

•	 It aids in the decoupling of business logic and the application UI

Using Libraries for Large-Scale Applications22

Dependency injection (DI) is good when writing testable enterprise code, and repository patterns
help you achieve DI even in your frontend projects.

DI
DI is a programming technique that makes a class independent of its dependencies.

In the repository pattern, you write an encapsulated code base by hiding the details of how your data
is retrieved and processed in your Vuex store.

To implement the repository pattern, we will follow the Consuming APIs Using the Repository Pattern
in Vue.js article I wrote (https://medium.com/backenders-club/consuming-apis-
using-the-repository-pattern-in-vue-js-e64671b27b09).

To consume our backend APIs in Vue.js using the repository pattern, let’s demonstrate doing so with
an example. Let’s assume we have a Vuex store action making different API calls, such as the one in
the following code snippet, and we want to implement the repository pattern on it:

  actions: {

    async all({ commit }, { size = 20, page = 0 }) {

      const response = await

          Axios.get(`/photos?size=${size}&page=${page}`);

      const { data } = response;

      if (data.success) {

        commit("STORE_PHOTOS", data.photos);

      } else {

        commit("STORE_ERROR", data.message);

      }

    },

    async getPhoto({ commit }, id) {

      const response = await Axios.get('/photos/'+id);

      const { data } = response;

      if (data.success) {

        commit("STORE_PHOTO", data.photo);

      } else {

        commit("STORE_ERROR", data.message);

      }

https://medium.com/backenders-club/consuming-apis-using-the-repository-pattern-in-vue-js-e64671b27b09
https://medium.com/backenders-club/consuming-apis-using-the-repository-pattern-in-vue-js-e64671b27b09

Creating a repository folder 23

    },

  },

Now, we can follow the upcoming steps to improve the Vuex store by implementing the repository pattern.

Creating a repository folder
First, create a folder in the root directory or src folder by running the following command:

mkdir repositories

We will call ours repositories. This folder will contain all your repositories and the HTTP
client configurations.

Creating a clients folder

We will create a Clients folder inside the newly created repositories folder. What will be
inside this folder are the different HTTP clients used.

Sometimes, due to the nature of the project, some projects might require several HTTP clients to make
API calls due to different reasons. One can be a fallback if the default refuses to connect.

Hence, creating a Clients folder is crucial to configure all the HTTP clients at once. Run the
following command to create one:

cd repositories && mkdir Clients

Creating an xxxClient.js class

You can create a class file corresponding to the HTTP client you are using. The naming is subjective,
and for Axios, we will create an AxiosClient.js file and put it in all default configurations.

Axios
Axios is a promise-based HTTP client for Node.js and the browser. It can run in the browser
and Node.js with the same code base.

Run the following command to create the folder:

touch AxiosClient.js

Using Libraries for Large-Scale Applications24

In summary, you might want to use many HTTP clients, so you create different xxxClient.js
files for each with their specific configuration.

For Axios, these are my default configurations just for this test:

import axios from "axios";

const baseDomain = "https://localhost:1337"; //For Strapi

const baseURL = `${baseDomain}`; // Incase of /api/v1;

// ALL DEFAULT CONFIGURATION HERE

export default axios.create({

  baseURL,

  headers: {

    // "Authorization": "Bearer xxxxx"

  }

});

You can add more default configurations for Axios in the preceding file and export the Axios instance.

Creating an individual repository class

Next, we will create an individual repository based on the number of features we have in our
enterprise application.

For instance, we are building a Pinterest clone application, and we are sure the application will have
the Photos and Users features. So, we can start by creating a repository for the mentioned features
by running the following command:

cd repositories && touch PhotoRepository.js UserRepository.js

These repositories will contain all API calls for the individual features. We will start by creating a
Create, Read, Update, and Delete (CRUD) operation for the respective repositories to give us an
overview. In contrast, we will update the repositories as we progress along in the book.

Open the PhotoRepository.js file and add the following scripts:

import Axios from './Clients/AxiosClient';

const resource = '/photos;

export default {

    get() {

        return Axios.get(`${resource}`);

Creating a repository folder 25

    },

    getPhoto(id) {

        return Axios.get(`${resource}/${id}`);

    },

    create(payload) {

        return Axios.post(`${resource}`, payload);

    },

    update(payload, id) {

        return Axios.put(`${resource}/${id}`, payload);

    },

    delete(id) {

        return Axios.delete(`${resource}/${id}`)

    },

    //b MANY OTHER RELATED ENDPOINTS.

};

Next, we are going to open the UserRespository.js file and add the following scripts:

import Axios from './Clients/AxiosClient';

const resource = '/users;

export default {

    get() {

        return Axios.get(`${resource}`);

    },

    getUser(id) {

        return Axios.get(`${resource}/${id}`);

    },

    create(payload) {

        return Axios.post(`${resource}`, payload);

    },

    update(payload, id) {

        return Axios.put(`${resource}/${id}`, payload);

    },

    delete(id) {

        return Axios.delete(`${resource}/${id}`)

    },

Using Libraries for Large-Scale Applications26

    //b MANY OTHER RELATED ENDPOINTS.

};

We have created two repositories for our Pinterest clone application, and any API-related code will
go into the individual repository.

Creating a RepositoryFactory.js class

Create a RepositoryFactory factory class inside the repositories folder by running the
following command to export all the different individual repositories you may have created so that
they’re easy to use anywhere across your application:

touch RepositoryFactory.js

Once done, paste in the following code:

import PhotoRepository from './PhotoRepository';

import UserRepository from './UserRepository';

const repositories = {

    'Photos': PhotoRepository,

    'Users': UserRepository

}

export default {

    get: name => repositories[name]

};

Now that we have improved our Vuex store by creating repositories, let’s see how to use these in the
next section.

Using the repository pattern

Let’s see how to utilize the repositories we have created in our Vuex store. Open your Vuex store
photos file created earlier and replace the getPhoto action method with the following code to
utilize the repository pattern:

import Repository from "@/repositories/RepositoryFactory";

const Photos = Repository.get("Photos");

const Users = Repository.get("Users");

Structuring Vue navigation with Vue Router 27

actions: {

   async getPhoto (context, id) {

     const photo = await Photos.getPhoto(id);

     context.commit('ADD_NEW_PHOTO', photo)

    }

   async getUsers(context) {

     const users = await Users.get();

     context.commit('ADD_USERS', users)

    }

  }

Using the repository pattern eliminates the need to handle errors, manipulate the data retrieved from
the API in the Vuex store, and only return the actual data needed in Vuex. This approach also utilizes
the Don’t Repeat Yourself (DRY) principle of software engineering as the repositories can be used
across the project by creating a new one.

Structuring doesn’t end when you have your HTTP API calls sorted out with repository patterns. It
extends to the way you arrange your navigation. The navigation file should not be bloated with a large
code base that’s difficult to understand.

In the next section, we will arrange and structure our navigation using Vue Router to ensure
maintainability and scalability in our enterprise project.

Structuring Vue navigation with Vue Router
When building an enterprise-ready application, it’s evident that the navigation system will be massive
since there will be many navigations, routes, and pages.

This section will show you how to structure Vue Router in your enterprise project properly. To achieve
this, we will use the split-by-feature approach to organizing Vue Router so that it’s easy to navigate, as
we achieved with Vuex earlier in the chapter.

This approach will create a structure where public and private routes will be separated, and more
routes can also be separated individually.

Using Libraries for Large-Scale Applications28

The folder structure

The folder will comprise an index file, a public file, and a private file containing all the routes belonging
to each category.

In the root of your src folder, create a router folder and create the following files inside the folder
by typing in the following commands one after the other in your terminal:

cd src && mkdir router

touch index.js

mkdir routes && cd routes

touch public.js private.js combine.js

The current folder structure is pretty straightforward, and we will customize it more as we progress
with the book. Here’s what each file will contain:

•	 index.js: This file will contain the beforeEach logic and assembling of all the other routes

•	 public.js: This file will contain all the public-facing routes that do not need restrictions,
such as the login page, registration page, and so on

•	 private.js: This file will contain all the private routes used for authenticated users and
many restrictions and metadata

•	 combine.js: This file will combine private and public files and make it easy to concatenate
it with the main router file

Next, let’s create an index file to contain the setup of our newly created project.

The index.js file

The index file is the powerhouse. Open the index.js file and add the following code to export all
the routes created in the public and private files:

import { createRouter, createWebHistory } from "vue-router";

import routes from '@/router/routes/combine.js'

const routes = [

    {

      path: '/',

      redirect: '/'

    }

  ].concat(routes)

Structuring Vue navigation with Vue Router 29

const router = createRouter({ history: createWebHistory(),
routes });

//

// BeforeEach code here

//.....

export default router

In Vue Router, there are two different history modes mostly in use when developing Vue applications
with Vue Router:

•	 Hash mode

•	 HTML5 mode

Hash mode

This uses a # (hash) symbol before the actual URL to simulate a full URL so that the page won’t be
reloaded when the URL changes. This is possible because the pages or sections after the hash never
get sent to the server. The implication is that it does not impact the SEO of the page but is the default
setup for Vue Router.

HTML5 mode

As seen in the preceding example, this is created using the createWebHistory() function, and
it is the recommended method for enterprise and production-ready applications. It requires a bit of
tedious configuration on the server for it to work properly.

The combine.js file

This is a single utility file that combines all the routes in a single file to be exported to the main router
file. Open the file and add the following code:

import publicRoutes from '@/router/routes/public.js'

import privateRoutes from '@/router/routes/private.js'

export default publicRoutes.concat(privateRoutes)

After adding the routes to the utility file, we will import them into the main.js file, as shown in
the next section.

Using Libraries for Large-Scale Applications30

Adding the router to Vue

Lastly, we will add our router to the Vue instance, as shown in the next snippet. Open the main.js
file and add the following code:

import { createApp } from "vue"

import App from "./App.vue"

import router from "./router/index.js"

import store from "./store"

createApp(App).use(router).use(store).mount("#app")

As we progress in this book, we will revisit the public.js and private.js files to add more
routes based on the Pinterest clone application we develop.

Summary
This chapter started by exploring the different libraries to develop large-scale and enterprise-ready
applications with Vue.js 3. We discussed the individual libraries and their different features in detail
to foster our understanding of building scalable and enterprise-ready applications. We also covered
the essentials of Vuex, discussing how to structure our large-scale Vuex store by splitting Vuex actions,
modules, getters, and states using the split-by-feature approach.

Next, we discussed the essentials of separation of concerns (SoC) by using the repository pattern to
split large Vuex actions into individual repositories and make our enterprise application maintainable.
The repository pattern is essential in creating an enterprise application, and we demonstrated how
to implement it in Vue 3.

Lastly, we discussed how to structure Vue Router to avoid bloated and large router files as it will be
difficult to maintain when the project becomes larger. We discussed strategic patterns to split the Vue
Router files into different files to enable maintainability and ease of debugging.

In the next chapter, we will dive deeper into scaling the performance of enterprise Vue 3 applications. We
will explore different performance and scalability hacks to build an enterprise-ready Vue 3 application,
such as asynchronous components’ loading/lazy loading, tree shaking, image compression, and so
on. You will learn how to properly increase the performance of your Vue 3 application by applying
the tricks in the next chapter to develop large-scale applications with maintainability and scalability.

Part 2:
Large-Scale Apps and Scaling

Performance in Vue.js 3

In this part, you will learn best practices in building large-scale applications, with scalability and
performance as first-class citizens. In addition, you will learn and explore different techniques in
scaling large application performance.

This part comprises the following chapters:

•	 Chapter 3, Scaling Performance in Vue.js 3

•	 Chapter 4, Architecture for Large-Scale Web Applications

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=e17b2903-7123-3af0-d559-61d6c930c89c
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=2a7a717b-e1bb-58f4-e12f-61d6c9e83477

3
Scaling Performance in Vue.js 3

This chapter depends solely on the knowledge of the previous chapters, where we explored the different
libraries to develop large-scale and enterprise-ready applications with Vue.js 3. This chapter will
dive deeper into scaling an extensive Vue application. You will learn how to scale performance with
asynchronous lazy loading, image compression, code splitting, tree shaking, and many other tricks
to better increase the performance of your Vue.js 3 enterprise-ready application.

We will cover the following key topics in this chapter:

•	 Why do we need Vue.js performance optimization?

•	 The primary reasons for poor Vue performance

•	 Checking your Vue.js application’s bundle size

•	 Optimizing the performance of an enterprise Vue application

Once you’ve mastered each of these topics, you will be ready to get stuck into building your first
enterprise-ready application with Vue 3.

Technical requirements
To get started with this chapter, I recommend you read through Chapter 1, Getting Started with Vue.js
3, where you will get an overview of Vue 3 and the Composition API, intensively used in this chapter.

Why do we need Vue.js performance optimization?
In this section, we will learn why performance stability in an application is important and how to
develop an application with performance in mind.

Developing an application without taking actionable steps to ensure the stable performance of the
application can cost the application a lot. Developing an application that takes a while to load, navigate,
submit, or take any user actions will result in losing users, thereby gradually losing on the initial plan
of the application.

Scaling Performance in Vue.js 334

Suppose the end users are not satisfied with the enterprise application’s user experience and load time,
Vue.js performance, and efficiency. In this case, the time invested and the lines of code written don’t
matter; the user might not return to the application.

Here are some different facts from Kinsta that show how poor performance can affect the performance
of an enterprise application on the market: https://kinsta.com/blog/laravel-caching/.

An online study (https://kinsta.com/learn/page-speed/#slow-how-slow) found
that it cost Amazon $1.6 billion in sales per year for every 1 second of load lag time.

Another Google study (https://www.thinkwithgoogle.com/future-of-marketing/
digital-transformation/the-google-gospel-of-speed-urs-hoelzle/) reported
that if search results are slow even by a fraction of a second, people will search less. What this means
is that a 400-millisecond delay leads to a 0.44% drop in search volume.

A further study shows that four out of five internet users will click away if a video stalls while loading.

The preceding study shows that a slight sluggishness in your web page load time can have a massive
impact on your users’ experience and the loss of a huge amount of funds.

Now that we know why we need performance stability in our application, in the next section, let’s
look at the primary reasons behind poor Vue performance.

The primary reasons for poor Vue performance
There are many known reasons behind poor Vue performance, and we will explore the primary and
most notable reasons in this section.

The apparent reason for a Vue application slowing down is in the structure. As an enterprise application,
it’s evident that the bigger the application, the slower the application becomes.

For example, one of the significant reasons behind poor performance in enterprise Vue applications
may vary in different projects and how they deal with server-side rendering (SSR).

The primary reason for poor performance in any Vue single-page application (SPA) or SSR enterprise
application is the bundle size. The larger the bundle size, the slower the Vue performance.

There are other common reasons behind poor performance in enterprise Vue applications, such as
the following:

•	 Not structuring the CSS and JS files properly

•	 Not using third-party libraries wisely

•	 Unwanted hits to API requests

•	 Overlooking code splitting and lazy loading

https://kinsta.com/blog/laravel-caching/
https://kinsta.com/learn/page-speed/#slow-how-slow
https://www.thinkwithgoogle.com/future-of-marketing/digital-transformation/the-google-gospel-of-speed-urs-hoelzle/
https://www.thinkwithgoogle.com/future-of-marketing/digital-transformation/the-google-gospel-of-speed-urs-hoelzle/

Checking your Vue application’s bundle size 35

There are more reasons for poor performance, and we have just listed a few. Before we discuss how
to resolve them, let’s explore how to check for the bundle size of an enterprise Vue application in the
next section.

Checking your Vue application’s bundle size
The bundle size is the total size of your Vue application that will be loaded by the browser. The larger
the size, the slower your application loads.

There are two different ways to check your Vue bundle size when working with the Vue framework.

Let’s go through each of these methods in more detail.

Generating a report

You can use the build command with the --report flag to generate your application report. This
method gives a visual representation of all the packages used and each bundle size. Further, with the
information generated from this visual report, you can figure out how to replace any package that
takes up more space and size than expected.

Also, note that the build command will only build a report when webpack-bundle-analyzer
is installed.

To generate a report for your application, follow these steps:

1.	 First, install the package with the following command:

npm install webpack-bundle-analyzer

2.	 Next, create a script for the command in your package.json file:

"build-report": "vue-cli-service build --report"

3.	 And lastly, execute the following command to generate the report:

npm run build-report

Scaling Performance in Vue.js 336

After running the preceding command, a file named report.html is created inside the dist
folder. When you open the file, you will see the following:

Figure 3.1 – Application bundle-size report

Running the npm build command

Running the build method of your Vue application will generate a list of different chunks and bundle
sizes. From this information, you can see additional warnings concerning which chunk has a bigger
bundle size and how you can improve it. Here’s how it looks:

Figure 3.2 – Chunks and bundle sizes

Optimizing the performance of an enterprise Vue application 37

In this section, we learned why we need Vue.js performance optimization, the primary reasons for
poor performance, and the different ways to check Vue.js bundle size.

In the next section, we will learn how to optimize the performance of a Vue application using different
standard methods.

Optimizing the performance of an enterprise Vue
application
One of the downsides of creating an enterprise application is the size of the application regarding the
code base, the data size, and the speed it takes to respond to users’ actions.

One solution could be to implement a proper caching mechanism on both the backend and frontend
of the enterprise application.

You will agree that it’s challenging to develop an application. Still, it is more challenging to create
an application with optimized performance or even solve the performance bottleneck of an
enterprise application.

In this section, we will look at some tips that you can implement to improve the performance of your
enterprise Vue application.

Asynchronous/lazy component loading

We will start with asynchronous/lazy components loading to lessen your challenges to explore Vue.
js performance optimization.

Asynchronous/lazy components loading in Vue.js is a term used to describe loading modules/
components when the user needs a module/component. In an enterprise application, it is unnecessary
to load all the modules from the JavaScript bundle whenever the user visits the website, as doing so
will cause a performance bottleneck.

In enterprise projects, you will agree that there are complex components with many modals, tooltips,
and other interconnected components that will slow down the performance of your application if
not lazy loaded.

Scaling Performance in Vue.js 338

Before we explore how to lazy load components, you can check the actual JavaScript code used on
your web page by following these simple steps:

1.	 Click on DevTools. The following screen will appear:

Figure 3.3 – Sample of live DevTools in Chrome

2.	 Press Cmd + Shift + P.

3.	 Type Coverage. Once you type it, the following message will appear at the bottom of the screen:

Optimizing the performance of an enterprise Vue application 39

Figure 3.4 – A screenshot showing the Coverage tab

4.	 Click Record.

After recording and analyzing the web page, it will highlight some URLs in red, which shows
that the URLs are not in use and can be lazy-loaded:

Scaling Performance in Vue.js 340

Figure 3.5 – A screenshot showing different URLs when analyzing with DevTools

If lazy loading is appropriately implemented, the bundle size of your enterprise application can
be reduced to 60%, thereby increasing the speed of your application.

Lastly, let’s explore how to enforce lazy loading. We can use Webpack dynamic imports over regular
imports to separate the chunk of lazily loaded modules.

Traditionally, this is how components/modules are imported in JavaScript:

// photo.js

const Photo = {

  testPhoto: function () {

    console.log("This is just a Photo Component!")

  }

}

export default Photo

// app.js

import Photo from './photo.js'

Photo.testPhoto()

By importing this module this way, Webpack will create a file named photo.js as a node to the
app.js file in its dependency graph and bundle it together even when the user doesn’t need to use
the module.

Optimizing the performance of an enterprise Vue application 41

But to improve things a little, we can use dynamic imports or lazy loading to achieve and overcome
the performance bottleneck with the previous method. The following code block shows dynamic/
lazy loading in action:

// app.js

const getPhoto = () => import('./photo.js')

// later when some user action tasks place as hitting the

// route

getPhoto()

  .then({ testPhoto } => testPhoto())

Lazy loading in Vue.js is one of the best practices to reduce the bundle size and optimize performance.
Vue recommends that bundles should not exceed a size of 244 KiB, but you can also try to optimize
your web page to make sure that it’s not very slow in performance, even with a bundle size a little
higher than recommended. Develop a habit of knowing which modules you don’t need unless there’s
an explicit user action, and download them lazily for better performance.

WebP images and image compression

One of the primary reasons for large bundle sizes and slow applications is that images contribute a lot
to an application’s bundle size. If images are not correctly optimized, it can increase the loading time
of an application when the application renders images of considerable sizes.

There are different ways to achieve image optimization, and we are going to discuss two of the
popular methods:

•	 Compressing images

•	 Optimizing content delivery network (CDN) images

Compressing images

If your enterprise application contains small images in number, these images will be served locally
while applying a different compression algorithm to reduce the sizes of each image.

There are thousands of online tools to compress images, and the following is the list of some popular ones:

•	 TinyPNG

•	 Compressnow

Scaling Performance in Vue.js 342

•	 Image Compressor

•	 Adobe Photoshop

Also, the best compression algorithm used to reduce the sizes of an image is the WebP image format
(https://developers.google.com/speed/webp), which is developed and maintained
by Google.

Optimizing CDN images

A CDN is used to optimize images. It provides transformation features for reducing image sizes by up
to 70% without affecting the UI and pixelating. It’s also advisable to use a CDN when your enterprise
application deals with extensive media use.

The most popular CDN tools for image optimization are Cloudinary and ImageKit.

Media takes a considerable amount of space in any enterprise application and therefore can cause
lagging and slow performance if not optimized and served appropriately.

Code splitting

MDN explains the following (https://developer.mozilla.org/en-US/docs/Glossary/
Code_splitting):

“Code splitting is the splitting of code into various bundles or components which
can then be loaded on demand or in parallel.

As an application grows in complexity or is maintained, CSS and JavaScripts files
or bundles grow in byte size, especially as the number and size of included third-

party libraries increases.”

When creating an enterprise application, there will always be many routes, files, and bundles that will
increase the byte size of the enterprise application. Code splitting is the answer to separating and only
loading smaller and on-demand files, thereby increasing the load time of your enterprise application.

Let’s our enterprise application has two pages and we implement it with the popular vue-router
library, as we have here:

```

// routing.js

import Dashboard from './Dashboard.vue'

import Photo from './Photo.vue'

const routes = [

https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting
https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting
https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting
https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting


Summary 43

  { path: '/', component: Dashboard }

  { path: '/photo, component: Photo }

]

```

Due to the coding standard in Vue.js, all the components in our script will be downloaded when the
user visits any page. This activity causes slow performance due to the number of pages, the complexity
of each page, and the large bundle size.

To avoid this issue, we can implement a proper route code splitting that will separate our large bundle
into different route bundles, meaning each page will have its small bundle to download when a user
visits that page.

With the technique of dynamic imports, rather than importing the components directly as demonstrated
previously, we can pass the dynamic route and lazy-load the component, as shown in the following
code block:

```

// routing.js

const routes = [

  { path: '/', component: () => import('./Dashboard.vue') }

  { path: '/photo, component: () => import('./Photo.vue') }

]

```

By following this method, you can halve your bundle size. Also, it is important to be sure which
components can be used with dynamic imports.

Summary
In this chapter, we dove deeper into scaling an extensive Vue application. We discussed how to scale
performance with asynchronous lazy loading, image compression, code splitting, tree shaking, and
many other tricks to better increase the performance of your Vue.js 3 enterprise-ready application.

We also covered in detail why performance optimization is needed and what your enterprise application
can lose if performance is not deliberately built into the application. We also discussed the reasons
for poor performance in an enterprise application and how to fix them.

Scaling Performance in Vue.js 344

Next, we discussed how to check our Vue.js application’s bundle size, demonstrating this with simple
instructions on how to generate package reports using Webpack and commands. We also discussed
how to understand the report and discover how to improve an application from the generated report
to further boost our enterprise application’s performance.

In the next chapter, we will learn how to handle a sizable enterprise-ready project, from managing
larger file structures to using a micro frontend architecture. You will also learn how to handle the
internationalization and localization of your Vue.js 3 project.

4
Architecture for

Large-Scale Web Apps

In the previous chapter, we explored building and scaling large-scale applications in Vue 3. We discussed
why we need Vue.js performance optimization, the primary reasons behind poor Vue performance,
how to check your Vue.js application’s bundle size, and optimizing the performance of an enterprise
Vue application using different methods such as asynchronous/lazy component loading, WebP images,
and image compression and code splitting.

In this chapter, we will learn how to handle a sizable enterprise-ready project, from managing
larger file structures to using the micro frontend architecture. We will also learn how to handle the
internationalization and localization of our Vue.js 3 project.

We will cover the following key topics in this chapter:

•	 File architecture and structure

•	 Micro frontend architecture

•	 Internationalization and localization

By the end of this chapter, you will know how to architect large-scale web apps with Vue 3, how to
implement structures and file architecture using the law of predictability, and how to use community-
recommended packages to inform predictability in your Vue.js 3 enterprise-ready application.

You will also learn how to use micro frontend architecture to your advantage and how to implement
an Atomic Design with Storybook to streamline your component directory and make your enterprise
project less difficult to understand.

And lastly, you will learn how to add and properly integrate internationalization in to your Vue
application and about the benefits this brings.

Architecture for Large-Scale Web Apps46

Technical requirements
To get started with this chapter, I recommend you read through Chapter 3, Scaling Performance in
Vue.js 3, where we elucidate the building and scaling of large-scale applications in Vue 3.

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-4.

Understanding file architecture and structure
Structuring your project depends solely on the preference of your organization and how easy it is to
access files and folders when fixing bugs and adding new features.

In this section, we will explore different principles that will give you an idea of how you can structure
your project to incorporate best practices, standards, and easy-to-access files.

What is the most effective way to structure your project to scale and keep it maintainable and extendable
the more it grows?

This is a common question in the software development industry but there is no one-size-fits-all
method. It all depends on the principle of predictability, as discussed in this article: https://
vueschool.io/articles/vuejs-tutorials/how-to-structure-a-large-
scale-vue-js-application/.

The principle of predictability is simply the ability to go from point A to point B in any code base to
intuitively go from a feature request or bug report to the location in the code base where the said task
can be addressed. Furthermore, it’s the ability to quickly or easily understand a particular code base
based on the standard use of community or popular libraries and tools.

To elaborate, when a code base uses standard, community-agreed, and popular libraries or tools, it
gives a great developer experience as developers are already familiar with these tools.

In the next section, we will delve deeper into discussing predictability and how we can achieve it in
Vue 3.

Predictability in Vue 3

How to achieve predictability in Vue 3 is very simple, as stated previously; it boils down to using Vue
3 standards and style guides.

For example, just imagine buying a new iPhone 13 ProMax in a different size; it will be awkward since
you must have certainly predicted the size to stay the same from your reviews.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-4
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-4
https://vueschool.io/articles/vuejs-tutorials/how-to-structure-a-large-scale-vue-js-application/
https://vueschool.io/articles/vuejs-tutorials/how-to-structure-a-large-scale-vue-js-application/
https://vueschool.io/articles/vuejs-tutorials/how-to-structure-a-large-scale-vue-js-application/

Understanding file architecture and structure 47

The approach applies to the mindsets of developers toward a new code base; we expect most libraries,
component names, files, and folder structures to follow Vue 3 community standards and style guide
with a little adjustment to suit the organization’s use case (if any).

So how can we achieve predictability in Vue 3? In the following subsections, we will look at a few ways
to achieve standards in your enterprise Vue 3 application.

Community-wide standards for predictability

If you’re coming from Vue 2, you should already be familiar with the standards that exist within it.
We will discuss adding more Vue 3 specific standards from there.

Vue has the following pages where you can look out for community standards:

•	 Start by reviewing the official Vue.js style guide (https://v3.vuejs.org/style-
guide/#rule-categories)

•	 Always use the scaffolding generated by the Vue command-line interface (CLI) or Vite in Vue
3 (https://vuejs.org/guide/quick-start.html)

•	 The official Vue.js libraries are found under the Community Guide (https://vuejs.org/
about/community-guide.html)

•	 Use one of the most popular component frameworks such as Vuetify (https://vuetifyjs.
com/en/) or Quasar (https://quasar.dev/)

Official libraries and component libraries

Using official libraries and component libraries not only brings functionality to your project but also
enforces standards and allows you to build applications following standard and generally acceptable
patterns according to the Vue community.

For example, Vuex is a state management system that prides itself on implementing a pattern and a
library together because it enforces a standard to follow when building Vue applications.

Another great example is Vue Router, which enables developers to build routing systems in ways that
are adaptable to other projects.

And the good thing about all of this is when a developer who has built with these libraries is added
to a new code base, using these tools, it becomes predictable.

Standard file structure

Another important aspect of project standards is the file structure. The file structure is an arguable
aspect of project standards because different organizations and projects use different structures and
Vue does not provide detailed documentation specifying a structure.

https://v3.vuejs.org/style-guide/#rule-categories
https://v3.vuejs.org/style-guide/#rule-categories
https://vuejs.org/guide/quick-start.html
https://vuejs.org/about/community-guide.html
https://vuejs.org/about/community-guide.html
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
Quasar https://quasar.dev/

Architecture for Large-Scale Web Apps48

However, when you use the official Vue CLI, it provides a starting point for creating a standard folder
and file structure that is widely used in the Vue.js world, and it’s most familiar for Vue developers
around the world.

The following code block shows how to create a new Vue 3 project using the official Vue 3 standalone
CLI called Vite:

npm create vite@latest

npm create vite@latest my-vue-app --template vue

The following screenshot shows the official project scaffolding using the Vue 3 official CLI called Vite:

Figure 4.1 – Official Vue CLI file structure

The initial structure used in the preceding screenshot should already be familiar to many developers,
therefore making it predictable. Always stick with Vue’s initial structure, build on it, and only change
it for a good reason.

Understanding file architecture and structure 49

Recommended component rules

The Vue component directory is where the confusion begins because thousands of files and Vue
components can be created, and it becomes very difficult to manage with time.

Adapting your code base to follow the official Vue 3 style guide is a starting point for a predictable
code base and you can learn a lot about making your folder and file structure more predictable for
developers from there. The style guide provides lots of community-wide standards and best practices
for the Vue ecosystem.

Some of the most important points are listed here:

•	 First, we have the Single-File Component (SFC) style guide, which states a lot of points to
follow, with the important one being that your components should be named in PascalCase.

•	 Secondly, an SFC (https://vuejs.org/guide/scaling-up/sfc.html) should
always order the <script>, <template>, and <style> tags consistently, with <style>
at the end. This is because the script and template tags are always necessary while the
style tag is optional.

•	 It also states that, when possible, each component should be defined in its own dedicated file
(SFC). This is where Storybook or Atomic Design, in general, comes in to play as we will see
in the following sections.

•	 Additionally, component names should always be multi-worded to not conflict with any
existing or future HTML elements. Don’t create a Table component or a Button component
since there are HTML tags with those names already; you can create a multi-word such as the
following DataTable or CustomButton.

•	 Most importantly, tightly coupled child components should be prefixed with their parent
component’s name, such as TodoListItem in a TodoList component. The method also
helps in debugging, as developers can easily spot components with names in error messages.

Vue.js has a full style guide at https://vuejs.org/style-guide/ with a number of other
standards that will help your project be more predictable for a community-wide audience of developers.

Recommended community-wide standards for predictability

Over the years, the Vue community has developed and argued on numerous different standards that
should be used by Vue developers for a more predictive code base.

In the following subsections, we will discuss a handful of these standards and how to implement them
in your enterprise project.

https://vuejs.org/guide/scaling-up/sfc.html
https://vuejs.org/style-guide/

Architecture for Large-Scale Web Apps50

A flat component directory

A flat component directory entails giving a specific naming convention to your Vue components and
your team, sticking with that convention throughout application development.

You can use a single or nested directory structure, but the naming convention should stay the same.
The next two screenshots show different ways to implement the flat component directory. The following
screenshot shows a single flat component directory:

Figure 4.2 – Single flat component directory

Understanding file architecture and structure 51

The following screenshot shows a nested flat component directory:

Figure 4.3 – Nested flat component directory

Standardized route/page naming convention

Another important improvement to the principle of predictability is having proper and well-defined
route/page naming conventions throughout your team and project.

For instance, using routes/page naming conventions used in Laravel or AdonisJS makes it easy for
developers who have prior knowledge of these frameworks to quickly predict the code base. The same
is applicable if you define your custom convention and stick with it through your team. It allows new
members to easily predict and understand your code base.

Architecture for Large-Scale Web Apps52

The following screenshot shows how you can structure your routes to be predictable based on routing
standards from Laravel and AdonisJS:

Figure 4.4 – Showing the pattern that can be adopted

You should always reference your routes properly with their name when using them in router links
and programmatically for more consistency and flexibility.

For example, see the following:

<router-link :to="{name: PhotosIndex}">Photos</router-link>

Also, note that not all routes will fit this pattern exactly, as some routes will be cruddier than others.
If this happens, a good recommendation is to continue using PascalCase for your route names
for consistency.

A more comprehensive file structure

Using the basic file structure from the Vue CLI is a great starting point for predictability and can be
extended from there to include other files and directories in a way that standardizes our enterprise
project for better predictability.

The following screenshot shows how to extend the file structure to include other necessary files
and directories:

Understanding file architecture and structure 53

Figure 4.5 – Extending the file structure from the default Vue CLI structure

The additional files and folders will solely depend on your team, organization, or project, but the
additional folders in Figure 4.5 are the structure we have defined for the project we are building, and
extending it from the default Vue CLI structure makes it more predictable.

Also, providing a README.md file (https://changelog.md/) in the root of a standard directory
explaining the purpose of the directory and any rules for what should be included in it or how to
use the directory files is very useful. This comes in handy, especially for those standards that aren’t
community-wide standards.

While we tend to make our code base predictable enough for developers, no matter how well the
project uses community-wide standards and Vue style guides, there are cases where we need to define
specific files and folders that are generic to our project or team.

While creating a predictable code base is great for larger projects and teams using the steps and
patterns discussed in the previous sections, there is still a lot to explore, and in the next section, we
will explore different patterns, architectures, and structures that can be used to structure your larger-
scale enterprise projects.

https://changelog.md/

Architecture for Large-Scale Web Apps54

Different frontend architectural patterns
In this section, we will explore different architectural patterns we can use to structure our enterprise
Vue 3 applications.

Micro frontend architecture

Micro frontend is the first architecture that comes to mind when it comes to structuring enterprise
frontend projects. As expressed in the official documentation, it extends the concept of microservices
in the backend to the frontend world.

The concept of a micro frontend comes from the buzzword microservices (https://martinfowler.
com/articles/microservices.html) used in a backend web application to split gigantic
blocks into a smaller, more manageable code base.

This approach to software development makes it easier for teams to manage, maintain, and deploy
larger and enterprise applications faster.

This concept, which has changed the way backend applications have been developed over many years,
is introduced into frontend projects in the form of micro frontends.

According to Martin Fowler (https://martinfowler.com/articles/micro-frontends.
html), “Micro Frontend is an architectural style where independently deliverable frontend applications
are composed into a greater whole.”

In recent years, since the initial adoption, there has been tremendous adoption of this concept in larger
projects, thereby bringing the benefits of microservices into frontend projects.

The following are some key benefits that come with implementing the micro frontend architecture:

•	 It comes with more scalable organizations with decoupled and autonomous teams

•	 It brings smaller, more cohesive, and maintainable code bases

•	 The provides the ability to upgrade, update, or even rewrite parts of the frontend in a more
incremental fashion

As much as there are tremendous benefits to using this architecture in your enterprise project as
outlined in the official documentation, the pattern requires a steep learning curve, a higher number
of team expatriates, and a large number of team members.

The following diagram shows an end-to-end example of teams using a micro frontend for the Pinterest
demo application:

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html

Different frontend architectural patterns 55

Figure 4.6 – An end-to-end example of teams using a micro frontend

Here’s a diagram of how structuring the Pinterest demo application will look using the micro
frontend architecture:

Figure 4.7 – A screenshot of a micro frontend in action

Architecture for Large-Scale Web Apps56

From the screenshot, we can easily separate each of the features into a different service and have a
dedicated team of frontend engineers to work on it.

Micro frontend is one of the best architectural patterns to use in enterprise applications because
the core ideas behind a micro frontend are having isolated team code, it being technology-agnostic,
ownership, and so on. These features make developing enterprise applications a breeze. However,
other patterns are also widely used, and we will explore them in the next section.

Atomic Design

Atomic Design (https://bradfrost.com/blog/post/atomic-web-design/) is a
methodology for crafting design systems. Brad Frost first introduced it for creating scalable design
systems using ideas from chemistry.

From chemistry class, we know that matter comprises atoms that bond together to form molecules, which
in turn combine to form more complex organisms and ultimately create all the matter in the universe.

Similarly, we can break down our components into fundamental building blocks and work up from
there. These building blocks can be divided into five components from the chemistry example, as
listed here:

•	 Atoms

•	 Molecules

•	 Organisms

•	 Templates

•	 Pages

This diagram from Rohan Kamath (https://blog.kamathrohan.com/atomic-design-
methodology-for-building-design-systems-f912cf714f53) gives a clear illustration
of the Atomic Design elements:

https://bradfrost.com/blog/post/atomic-web-design/
https://blog.kamathrohan.com/atomic-design-methodology-for-building-design-systems-f912cf714f53
https://blog.kamathrohan.com/atomic-design-methodology-for-building-design-systems-f912cf714f53

Different frontend architectural patterns 57

Figure 4.8 – Atomic Design elements explained (source: https://blog.kamathrohan.

com/atomic-design-methodology-for-building-design-systems-f912cf714f53)

Let’s explore each of these components to understand them.

Atoms

In science class, we learned that atoms are the basic building blocks of matter. But when applied to web
interfaces, atoms are the HTML tags such as input, label, and so on. They can also be customized
to include abstract elements such as color palettes, fonts, or animations.

Atoms are not very useful on their own except when combined with other elements to form molecules.

Molecules

When we start combining atoms, things start to get a little interesting and tangible.

The smallest unit of a compound is called a molecule, and it comprises groups of atoms bonded
together. In web interfaces, these molecules take on their own properties and serve as the backbone
of any design system.

For instance, a form input, label, or button is not very useful as standalone functionality, but when
combined as a form, they become very useful because they can actually do something. Furthermore,
by combining atoms to form useful components, these components become reusable and can also be
combined to form organisms.

Organisms

An organism is the combination of different molecules used to form a relatively complex and distinct
section of a component.

Architecture for Large-Scale Web Apps58

An organism is designed to consist of different or similar molecule types. For instance, a molecule can
consist of a primary navigation, a list of social media channels, a search form, and a logo.

The wonderful part of building an organism from molecules is that it encourages creating standalone,
portable, or reusable components.

Templates

Templates will already be familiar to the web development world; they are predefined groups of
organisms stitched together to form a page. In templates, the designs start to come together, and the
layout of the page becomes structured and visible.

Each template contains all related abstract molecules, organisms, and atoms in some cases. Since
templates are visible pages or part of a page, clients can start to see the final design.

With templates, you can create different versions of your design, whether high fidelity, low fidelity,
and so on. Templates are more HTML wireframes and can also become the final deliverable.

Pages

A page is a specific instance of a template; in some cases, a complex page can contain more than one
template combined to form a bigger page.

A page gives an accurate depiction of what the user will ultimately see, and they are the highest level of
fidelity and most tangible. It is typically where most time is spent, and more reviews revolve around it.

In Vue.js, pages represent the different routes users access when navigating your application.

Using Atomic Design principles gives us the ability to traverse from abstract pages or templates to
concrete ones. Because of this, we can create systems that promote consistency and scalability while
simultaneously showing things in their final context.

In this book, we will learn how to use the Atomic Design pattern to structure our enterprise project
and use Storybook for the design system.

Tip
A design system is a set of interconnected patterns and standards to manage design at scale by
reducing redundancy while creating a shared language and visual consistency across different
pages and channels.

Storybook

Storybook can be implemented with any architectural pattern, such as Atomic Design, to build
component-driven user interfaces (UIs) faster. According to the official website (https://
storybook.js.org/), Storybook is an open-source tool for building UI components and pages
in isolation. It streamlines UI development, testing, and documentation.

https://storybook.js.org/
https://storybook.js.org/

Implementing Storybook in Vue.js 3 59

Storybook allows us, the developers, to create and test components in isolation.

In the next section, we will learn how to implement Storybook into our project and start using the
Atomic Design principles to create a maintainable Vue.js 3 project.

Implementing Storybook in Vue.js 3
Visit the official documentation for Vue implementation (https://storybook.js.org/docs/
vue/get-started/introduction) to follow along with the implementation. In Storybook,
everything revolves around stories. A story describes the state of a rendered component and captures
everything a component should/can do when rendered.

Installing Storybook

You can use the Storybook CLI to install it in a single command by running it inside your existing
Vue.js project’s root directory.

Storybook will look into your project’s dependencies during installation and provide you with the
best configuration available.

Next, depending on your framework, first, build your app and then check that everything works by
running the following command:

npx sb init

npm run storybook

The preceding command will start a new development server and open a browser window showing
you a welcome screen:

Figure 4.9 – The welcome screen

https://storybook.js.org/docs/vue/get-started/introduction
https://storybook.js.org/docs/vue/get-started/introduction

Architecture for Large-Scale Web Apps60

Creating a story is as easy as telling the computer what a particular component will do, the properties
needed to carry out the task, and the different designs a particular component can have. In the next
section, we will explore how to create a story in Storybook.

Creating a story

Before we delve into creating stories (components), let’s make sure we’re in sync with our folder
structure for this project using Atomic Design and Storybook.

The following screenshot shows the complete folder structure for implementing Atomic Design and
the stories folder for Storybook:

Figure 4.10 – A screenshot showing the Vue 3 component and the Storybook structure

Implementing Storybook in Vue.js 3 61

From the screenshot example, we have restructured our Vue.js project to use the Atomic Design
principle and folder structures (the red indicator), and Storybook added the stories folder (the
yellow indicator) to help us understand how to write our own stories. We can delete the stories
folder and follow the pattern in Figure 4.10 to create our story inside the component folder.

Now, we can start creating stories; remember, a story has to depict a particular action or group of
related actions.

Here is a story we created for the Button component we will use throughout the project:

import MyButton from "./Button.vue";

// More on default export:  https://storybook.js.org/docs/vue/
writing-stories/introduction#default-export

export default {

  title: "/Button",

  component: MyButton,

  // More on argTypes:

  // https://storybook.js.org/docs/vue/api/argtypes

  argTypes: {

    backgroundColor: { control: "color" },

    onClick: {},

    size: {

      control: { type: "select" },

      options: ["small", "medium", "large"],

    },

  },

};

// More on component templates: https://storybook.js.org/docs/
vue/writing-stories/introduction#using-args

const Template = (args) => ({

  // Components used in your story `template` are defined

   // in the `components` object

  components: { MyButton },

  // The story's `args` need to be mapped into the template

  // through the `setup()` method

  setup() {

    return { args };

Architecture for Large-Scale Web Apps62

  },

  // And then the `args` are bound to your component with

  // `v-bind="args"`

  template: '<my-button v-bind="args" />',

});

export const Primary = Template.bind({});

// More on args: https://storybook.js.org/docs/vue/writing-

// stories/args

Primary.args = {

  primary: true,

  label: "Button",

};

export const Secondary = Template.bind({});

Secondary.args = {

  label: "Button",

};

export const Large = Template.bind({});

Large.args = {

  size: "large",

  label: "Button",

};

export const Small = Template.bind({});

Small.args = {

  size: "small",

  label: "Button",

};

For instance, a button will be created in the atoms directory because it is a single element, though it
can have different properties and actions, such as being a blue button, white button, clickable button,
disabled button, and so on. It’s still a button.

From the story, we can see that the Button component will have two sizes (small and large),
also, it will have two designs, which are primary and secondary, and additionally, it will accept
two properties, namely primary and label.

Implementing Storybook in Vue.js 3 63

You can learn how to write a story to test the properties and actions of the button using the official
documentation (https://storybook.js.org/docs/vue/get-started/whats-a-
story).

Once you have created all your components and stories, you should have a directory like the one
shown in the following screenshot:

Figure 4.11 – A screenshot showing a complete directory including Storybook stories

Furthermore, with your project arranged like this, it becomes easy for developers to understand the
structure and where to find components easily. Members of the team can easily test out components
with different properties before even using them in the real project using Storybook.

https://storybook.js.org/docs/vue/get-started/whats-a-story
https://storybook.js.org/docs/vue/get-started/whats-a-story

Architecture for Large-Scale Web Apps64

In the next section, we will explore how to create an internationalized application in Vue.js 3, which
allows your application to not be limited to a single language and cultural setting.

Implementing internationalization and localization
The essence of building an enterprise application is to support local markets around the world and to
achieve this, that’s where internationalization comes into place.

The process of preparing software to support local languages and the cultural settings of other
geographical locations is called internationalization (I18n).

I18n is often misrepresented as localization (L10n) and sometimes even translation.

While Il8n is a product development approach that is focused on making one code base capable of
supporting worldwide languages and locale-specific formatting and behaviors, L10n makes a product
specific to a target market or region(s), including translation of the interface and possible adaptation
of terminology and more.

In this section, we will first look into the benefits of internationalizing the software and further explore
how to implement I18n in Vue 3.

Benefits of internationalizing software

The benefits of creating internalized software are enormous and some of these are listed here:

•	 It creates higher-quality software that meets the technical and cultural needs of multiple locales

•	 It provides greater in-country customer acceptance and satisfaction

•	 It provides a single source code for all languages of the product

•	 Internalized software reduces time, cost, and effort for L10n

•	 Internalized software is simpler, and supports easier maintenance for future iterations of
the product

Market acceptance is one of the major problems that arises when software is not fully internalized
before or after release.

Therefore, we will look at how to implement I18n in our enterprise Vue 3 application right from the
development phase.

Installing Vue I18n

In Vue 3, Vue-I18n is a great compatible plugin that is used to implement I18n, and it easily integrates
some localization features into your Vue.js application.

Implementing internationalization and localization 65

Follow these steps to internationalize your app:

1.	 There are different ways to install the package according to the official documentation (https://
vue-i18n.intlify.dev/installation.html), but we will install it using the npm
command, as shown here:

npm install vue-i18n@9

2.	 After installation, inside the Vue 3 main.js file, add the following script:

import { createApp } from 'vue'

import { createI18n } from 'vue-i18n'

const i18n = createI18n({

  // something vue-i18n options here ...

})

const app = createApp(App)

app.use(i18n)

app.mount('#app')

With the preceding setup, you should have internalization added to your Vue project, but it
will easily get bloated when developers start adding translations. So, we recommend creating
a locales folder where every locale-related configuration will be added.

3.	 Let’s create the folder and the files inside the root directory like so:

mkdir src/locales

touch src/locales/index.js src/locales/en.json src/
locales/fr.json src/locales/de.json

4.	 Next, inside each of the translation files, add the following codes and other translations:

{

  "welcomeMsg": "Welcome to Your Vue.js App",

    ….

}

https://vue-i18n.intlify.dev/installation.html
https://vue-i18n.intlify.dev/installation.html

Architecture for Large-Scale Web Apps66

5.	 Inside the index.js file, add the following scripts to import different locales:

import en from «./en.json»;

import fr from "./fr.json";

import de from «./de.json»;

const messages = {

 en,

 fr,

 de,

};

export default messages;

6.	 Lastly, add the files to your createI18n configuration in your main.js file:

import locales from "./locales/index.js";

const i18n = createI18n({

 locale: "en", // set locale

 fallbackLocale: "en", // set fallback locale

 messages: locales, // set locale messages

});

Arranging your files and folder in this structure allows for easy adoption and maintainability. Let’s
look at the final structure of our project, including internationalization, in the following screenshot:

Implementing internationalization and localization 67

Figure 4.12 – The final structure of the Vue 3 application

Architecture for Large-Scale Web Apps68

Summary
This chapter reviewed in more depth architecting large-scale web apps with Vue 3. We discussed the
structure and file architecture by diving deeper into the law of predictability and how to use community-
recommended packages to inform predictability in your Vue.js 3 enterprise-ready application.

We also covered in detail how to use micro frontend architecture to your advantage. Also, we discussed
how to implement an Atomic Design with Storybook to streamline your component directory and
make your enterprise project less difficult to understand.

Next, we discussed how to add I18n to your Vue application. We also discussed the benefits and how
to properly integrate I18n into your Vue 3 application.

In the next chapter, we will explore GraphQL, GraphQL Apollo Server 2, queries, mutations, and how
to integrate these technologies into your Vue.js 3 application. In addition, you will learn how to utilize
GraphQL to deliver scalable and high-performing applications.

5
An Introduction to GraphQL,

Queries, Mutations,
and RESTful APIs

In the previous chapters, we explored different libraries and methods to develop large-scale enterprise
applications using Vue 3. In this chapter, we will first understand what GraphQL is and how it is different
from REST. Next, we will explore GraphQL, GraphQL Apollo Server 2, queries, and mutations, and
how to integrate these technologies into your Vue.js 3 application. In addition, you will learn how to
utilize GraphQL to deliver scalable and high-performing applications.

We will cover the following key topics in this chapter:

•	 An introduction to GraphQL

•	 Understanding queries and mutations

•	 Integrating GraphQL Apollo Client with Vue 3

Also, in this chapter, you will learn how to integrate GraphQL into Vue 3 and structure it properly
following the law of predictability by implementing a login and register authentication system using
the GraphQL Apollo client and Vue 3.

Technical requirements
To get started with this chapter, we recommend you read through Chapter 4, Architecture for Large-
Scale Web Applications, where we explored building large-scale enterprise applications with different
industry-standard structuring, architecture, and standards.

All the code files for this chapter can be found at: https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs70

An introduction to GraphQL
GraphQL is the new buzzword in the API development industry. While REST remains the most
popular way to expose data from a server, it comes with many limitations that GraphQL tends to solve.

GraphQL is a query language created and maintained by Facebook. The purpose of creating GraphQL is
to build client applications based on intuitive and flexible syntax for describing their data requirements
and interactions.

One of the benefits of GraphQL is that we have a single endpoint to access all data from the server
instead of having multiple endpoints in REST.

In this section, we will explore everything you need to know about GraphQL, the different unique
features of GraphQL, and why you should consider GraphQL instead of the RESTful API design pattern.
Lastly, we will work you through creating and setting up your first GraphQL server with Express.

What is GraphQL?

As per the official documentation (https://graphql.org/),

GraphQL is a query language for APIs and a runtime for fulfilling those queries
with your existing data. GraphQL provides a complete and understandable

description of the data in your API, gives clients the power to ask for exactly what
they need and nothing more, makes it easier to evolve APIs over time, and enables

powerful developer tools.

GraphQL is a server-side runtime for executing queries using the type system you define for your
data. Also, GraphQL is not tied to any specific database or storage engine but instead backed by your
existing code and data.

Figure 5.1 – A diagram explaining GraphQL (Source: https://www.wallarm.

com/what/what-is-graphql-definition-with-example)

An introduction to GraphQL 71

The GraphQL type system defines various data types that can be used in a GraphQL application. This
type system helps to define the schemas that will be used in the GraphQL application.

To create a GraphQL service, you need to start by defining schema types and creating fields on those
types, then providing functions to be executed on each field.

For example, we can define a new schema type called Photo in the following code snippet to
demonstrate how types work in GraphQL:

type Photo {

 id: ID!

 name: String!

url: String!

description: String

}

Now we have an idea of GraphQL and have seen how to define a GraphQL schema type. Next, let’s
explore the features of GraphQL before we dive deeper into creating GraphQL queries and resolvers.

Features of GraphQL

GraphQL comes with excellent features. We are going to explore a few of the features of GraphQL in
the following subsections.

Easy to get started

The learning curve of GraphQL is easy, especially for developers who are familiar with building APIs
with RESTful design patterns.

Users can get started with GraphQL with small queries for fetching data right away and learn about
the advanced features a bit later.

Built for interactive apps

GraphQL is built for real-time and interactive applications because changes between the client and
the server happen almost immediately, giving a swift response.

Small and flexible

GraphQL allows users to request and receive the exact data that was requested. This feature solves the
problem of over- and under-fetching with RESTful APIs.

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs72

Universally compatible

GraphQL Apollo is built to be compatible with any build setup, any GraphQL server, and any
GraphQL schema.

Incrementally adoptable

GraphQL is built to make integrating into a new or existing project effortless without breaking any
changes. It is easily adaptable.

Why use GraphQL instead of REST?

In this section, we will identify some properties of GraphQL and discuss why you should use GraphQL
for your subsequent API development instead of RESTful APIs. We will discuss a few of these properties.
Additionally, we will get into a detailed comparison of these technologies with the GraphQL versus
RESTful API guide in this section.

The following subsections mention the top five reasons why you should use GraphQL instead of
RESTful API.

Strongly-typed schema

In GraphQL, Schema Definition Language (SDL) is used to define the contract between the client
and the server and to define how the client accesses the data in the server. GraphQL uses a strong
type system to define the capabilities of the API. All the APIs exposed to the client are written down
in a schema called the SDL.

Once these schemas are defined, both the frontend and the backend can communicate separately
without any further changes or assistance since the frontend knows that the data in the schema is
always going to be in sync or consistent across the system.

This solves the data inconsistency problem in REST. The frontend expects a specific dataset but retrieves
a different one due to changes since no consistent schema is defined.

No over-fetching or under-fetching

The issue of over- or under-fetching is a known problem with RESTful APIs where clients download
data by hitting endpoints that return fixed data structures or retrieve either excessive amounts of data
or less than what they expected.

Over-fetching is the problem of fetching more data than what is required in the app. It can also mean
fetching more data than what is required to fulfill the request. With a RESTful API, you have to fetch
all the user’s details or create a new endpoint that returns only the names of all the users of your
application just to display only the name of the user on your frontend application. While in GraphQL,
you can use just a single query to return only the name of all the users or any other details by creating
a separate query or endpoint.

An introduction to GraphQL 73

Under-fetching is rare, but it happens when the specific endpoint does not provide all the required
information. The client must make additional requests to access the other information as needed.

GraphQL solves this problem by providing a medium for the client to specify the information needed,
and it returns exactly the required information.

Saving time and bandwidth

The problem of over-fetching can result in higher bandwidth consumption for clients, which may, in
time, cause lagging in your application. Using RESTful API design patterns, it is more time-consuming
to sort out the information needed from an enormous payload.

GraphQL allows you only to select what you need, thereby reducing the amount of payload transferred
over the network.

Multiple endpoints

One of the significant problems of RESTful APIs is having too many endpoints to access information.
For instance, if a client wants to access a particular user by their ID, you will be presented with /
users/1. Also, if you’re going to access that user’s photos, you will have to send a request to another
endpoint, /users/1/photos.

In GraphQL, you have a single endpoint, and you don’t need to send multiple requests to retrieve
different information about the user.

With GraphQL, you can access all the user’s information in a single request, as shown here:

{

    me {

        name,

        photos {

            title,

url

        }

    }

}

The preceding script will only access name of the user and title and url of all the user’s photos.

Versioning is not required

Versioning is a feature of RESTful APIs where different versions are assigned to an API when changes
and updates are made to it. This is done to avoid breaking changes in production that might cause
issues for the user.

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs74

If we want users to use our new features in the latest version, we have to force them to update the
application, which is not a good user experience.

In GraphQL, there is no need to worry about versioning and forcing users to update their application
to use the new changes since it happens automatically, and clients only implement the features available
in the SDL.

Here, we have discussed the different features and benefits of using GraphQL and why you should
consider using GraphQL instead of RESTful APIs. In the next section, we will further discuss the
difference between GraphQL and RESTful APIs.

The difference between GraphQL and RESTful APIs

The core difference between GraphQL and REST is that GraphQL is a specification and a query
language, while REST APIs are an architectural concept for network-based applications.

Both concepts play an important role in creating and maintaining scalable microservices and large-
scale enterprise applications.

Therefore, choosing a particular technology to go with will depend on your level of expatriation
in each technology, which one your team is comfortable with, and which one makes your product
development easier and faster.

The following points show you the other differences you might want to consider:

•	 GraphQL is a query language used to solve problems by integrating APIs, while REST API is
an architectural style that describes the conventional standard for designing APIs

•	 Additionally, with GraphQL, you can use a single endpoint to access all the data in your server
without the need for multiple endpoints, while REST API allows multiple endpoints and a set
of URLs that each exposes a single resource, which can be confusing to understand

•	 GraphQL uses a client-driven architecture and lacks an in-built caching mechanism, while
REST API uses a server-driven architecture and uses caching automatically

•	 No API versioning is required in GraphQL, and its response is only in JSON format, while REST
APIs support multiple API versioning and allow response output in XML, JSON, or YAML

•	 GraphQL offers type safety and auto-generated documentation and it also allows schema
stitching and remote data fetching, while REST API ​​doesn’t offer type safety or auto-
generated documentation, and simplifying work with multiple endpoints requires expensive
custom middleware

•	 GraphQL is also an application-layer server-side technology used for executing queries with
existing data, while REST is a software architectural style used to define a set of constraints
for creating web services

Understanding queries and mutations in GraphQL 75

•	 GraphQL can be organized in terms of a schema, while REST is not arranged or organized in
schemas but is arranged in terms of endpoints

•	 The development speed in GraphQL is faster when compared with REST APIs

•	 The message format for GraphQL mutations should be a string, while the message format for
REST APIs can be anything

•	 GraphQL uses metadata for query validation, while REST does not have cacheable
machine-readable metadata

We have explored the difference between GraphQL and REST API to give you an insight into which is
better for your enterprise application. We will allow you to make a choice, but we will explore GraphQL
in more depth in the following sections. In the next section, we will discuss queries and mutations,
expanding more on how to create your first query and mutation.

Understanding queries and mutations in GraphQL
Queries and mutations are vital in GraphQL because they are the only way to access or send data to
the GraphQL server from your frontend.

Using queries

GraphQL queries define all the queries that a client can run on the GraphQL API. If you’re familiar
with REST APIs, it is synonymous with the popular GET requests.

You can define GraphQL queries in many ways, but defining a root query to wrap all your queries
is recommended.

The following code snippet shows you how to define a root query called RootQuery:

type RootQuery {

  user(id: ID): User    # Corresponds to GET /api/users/:id

  users: [User]         # Corresponds to GET /api/users

  photo(id: ID!): Photo #Corresponds to GET/api/photos/:id

  photos: [Photo]        # Corresponds to GET /api/photos

}

You can also define individual queries for User and Photo like so:

type User {

id: ID!

name:String!

email: String!

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs76

}

type Photo {

id: ID!

title:String!

description: String

url: String!

user: User

}

With the preceding queries, we have successfully defined endpoints to retrieve users and photos
corresponding to how it can be done with REST API using the GET method.

Next, we will explore how to create or update data on our GraphQL API using mutations.

Using mutations

Mutations in GraphQL are used to create, update, and delete data from our GraphQL API, and are
synonymous with REST API’s POST, PUT, and DELETE methods, respectively.

Creating mutations in GraphQL is simple; take a look at the following snippet:

type RootMutation {

  createUser(input: UserInput!): User

  # Corresponds to POST /api/users

  updateUser(id: ID!, input: UserInput!): User

  # Corresponds to PATCH /api/users

  removeUser(id: ID!): User

  # Corresponds to DELETE /api/users

  createPhoto(input: PhotoInput!): Photo

  updatePhoto(id: ID!, input: PhotoInput!): Photo

  removePhoto(id: ID!): Photo

}

The preceding snippet shows how to create mutations. Furthermore, we have created createUser,
updateUser, and removeUser to create, update, and delete users from the GraphQL API.

Most importantly, for GraphQL to connect to our database and carry out the operations in both queries
and mutations, we need to define a resolver, which we will cover in the next subsection.

Understanding queries and mutations in GraphQL 77

Resolvers

A GraphQL resolver connects our queries and mutations to the right methods for execution. It informs
GraphQL what to do when each of these queries/mutations is requested. It is a basic function that
does the hard work of hitting the database layer to do the CRUD operations, hitting an internal REST
endpoint, or calling a microservice to fulfill the client’s request.

Let’s map the queries/mutations we have created in the preceding sections to a resolver that will be
called when any of the queries/mutations are requested:

import sequelize from '../models';

export default function resolvers () {

  const models = sequelize.models;

  return {

// Resolvers for Queries

    RootQuery: {

      user (root, { id }, context) {

        return models.User.findById(id, context);

      },

      users (root, args, context) {

        return models.User.findAll({}, context);

      }

    },

// Resolvers for Mutations

RootMutation: {

  createUser (root, { input }, context) {

    return models.User.create(input, context);

  },

  updateUser (root, { id, input }, context) {

    return models.User.update(input, { ...context,

                                      where: { id } });

  },

  removeUser (root, { id }, context) {

    return models.User.destroy(input, { ...context,

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs78

                                       where: { id } });

  },

  // ... Resolvers for Photos

}

};

}

To foster understanding, we imported our model from sequelize, which is a database object-
relational mapping (ORM) to manipulate database tables with defined methods.

Next, we created and exported a resolver function, which returns an object containing RootQuery
and RootMutation.

Next, inside the RootQuery and RootMutation objects, we resolve each of the methods with
the appropriate business logic to be executed.

For example, when a client requests all users, the GraphQL frontend client will call the user’s queries
defined in the Queries section, and the GraphQL engine will call the user’s resolver to retrieve all the
users using the sequelize ORM. The same logic applies to all the mutations.

In this section, we explained of how GraphQL works and how you can create your own GraphQL API
to understand the best way to structure your GraphQL client in the frontend for enterprise projects.

In the next section, we are going to explore the best way to structure your enterprise Vue.js application
with GraphQL for scalability and faster team adoption. Remember the law of predictability for your
teams that we discussed in Chapter 3, Scaling Performance in Vue.js 3.

Integrating GraphQL Apollo Client with Vue 3
It is tempting to ask what the best way to integrate GraphQL client into Vue 3 is and how to structure
it in an enterprise project to foster faster adoption by team members, including new team members.

In my career as a full-stack software engineer, I recently joined a fintech company using Vue 3 and
GraphQL to disrupt the fintech industry in Germany, and I was so impressed at the arrangement of
such a large code base and how easy it was for me to jump right into solving my first task.

There are many ways to structure your Vue 3 project with GraphQL, but I want to outline the best way I
have seen that works for small- or large-scale enterprise projects, including the fintech one I worked on.

GraphQL Apollo Client is a JavaScript library used to connect to the GraphQL server to interchange data.
With the library, you can connect to the server, send requests, and receive responses from the server.

First, we will start by listing and installing the necessary packages for GraphQL and the GraphQL
client in Vue 3.

Integrating GraphQL Apollo Client with Vue 3 79

Installation

Follow these steps to install all the necessary packages:

1.	 Type in the following commands to install graphql, graphql-tag, apollo-composable,
and apollo client. These are the recommended libraries from the official documentation
used to communicate with the GraphQL server using Vue 3:

npm install --save graphql graphql-tag @apollo/client @
vue/apollo-composable

2.	 After installation, we will create a new file called apollo.config.js inside our plugins
folder from the folder structure we created in Chapter 3, Scaling Performance in Vue.js 3 and
add the following scripts to configure the graphql client:

```js

import { ApolloClient, createHttpLink, InMemoryCache } 
from '@apollo/client/core'

// HTTP connection to the API

const httpLink = createHttpLink({

  // You should use an absolute URL here

  uri: 'http://localhost:3020/graphql',

})

// Cache implementation

const cache = new InMemoryCache()

// Create the apollo client

const apolloClient = new ApolloClient({

  link: httpLink,

  cache,

})

export default apolloClient

```

3.	 Lastly, inside your Vue 3 main.js file, add the following script to the existing one:

```js

import { createApp, provide, h } from 'vue'

import apolloClient from "./plugins/apollo.config";

import { DefaultApolloClient } from '@vue/apollo-
composable'



An Introduction to GraphQL, Queries, Mutations, and RESTful APIs80

…

const app = createApp({

  setup () {

    provide(DefaultApolloClient, apolloClient)

  },

  render: () => h(App),

})

…

```

In the preceding steps, we demonstrated how to install the GraphQL client and completely set it up
with the other libraries in our Vue 3 enterprise application. In the next section, we will discuss the
best practices for structuring our Vue 3 application with GraphQL.

Structuring GraphQL

After successfully installing and configuring Apollo Client with Vue 3, let’s structure our queries and
mutations around the law of predictability to enable old and new team members to easily adapt to
the project.

Create a new folder inside the src folder called graphql. This new folder will contain all our
queries and mutations grouped in to different directories according to the features of the application.

Let’s take an example from the schema we developed in the previous section. From the schema, it
is clear that our project has User and Photo features, so we will create different folders inside the
general graphql folder for these specific features.

Create new folders using the following command line or manually from your code editor:

mkdir src/graphql

mkdir graphql/users graphql/photos

Integrating GraphQL Apollo Client with Vue 3 81

You should have a new folder structure, as shown in the following screenshot:

Figure 5.2 – The folder structure after installing and setting up GraphQL

After installing and setting up GraphQL, your folder structure should look like the preceding screenshot,
containing each feature with its corresponding queries and mutations file.

Structuring your GraphQL API this way makes it easy for your team to automatically understand
where to find anything related to GraphQL queries or mutations and in which feature they are looking
for them.

Now that we have our folder structure figured out for predictability, in the next section, we will
demonstrate with a practical exercise using the structure we learned about in the previous sections
to authenticate a user into our application using GraphQL Apollo Client and JWT installed on our
GraphQL server.

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs82

JWT authentication for sign in/sign up

With the structure we have on the ground, it becomes easy to add new features and write our queries/
mutations without scattering them in the code base.

Let’s demonstrate how to implement the login and register authentication process with GraphQL and
Vue 3 by following these steps:

1.	 Firstly, create a new folder called auth inside the graphql folder and add mutations.
js inside it:

mkdir graphql/auth

touch graphql/auth/mutations.js

2.	 Inside the newly created mutation file, add the following script for registration and login endpoints:

import { gql } from "graphql-tag";

export const LOGIN_USER = gql`

 mutation loginUser($input: LoginUserInput!) {

   loginUser(data: $input) {

     id

     name

     email

     token

   }

 }

`;

export const REGISTER = gql`

 mutation register($input: RegisterUserInput!) {

   register(data: $input) {

     id

     name

     email

   }

 }

`;

Integrating GraphQL Apollo Client with Vue 3 83

3.	 Next, export the mutation inside the graphql/index.js file we created earlier to make it
available throughout our Vue application:

export * from "./auth/mutations";

The export script makes importing our GraphQL queries and mutations a lot easier.

Next, we will look at how to call the authentication mutation inside the Vue 3 component and
retrieve the user’s information.

With the vue-composable library we installed earlier, we can use different GraphQL hooks,
such as useMutation and useQuery, to manipulate the GraphQL API.

4.	 Create a login component inside the organisms folder and add the following code:

<template>

 <form @submit.prevent="login">

   <TextField

     v-model="email"

     required

     type="email"

     class="mb-6"

     name="email"

     label="Email Address"

     placeholder="Enter your email address"

  />

   <TextField

     v-model="password"

     required

     minlength="6"

     class="mb-6"

     type="password"

     maxlength="50"

     placeholder="Enter your full password"

     label="Password"

   ></TextField>

   <div class="flex justify-between mb-6">

     <CheckField id="remember" v-model="remember">

      Remember me</CheckField>

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs84

   </div>

   <div class="flex justify-center my-9 w-full">

     <Button>Sign In</Button>

   </div>

 </form>

</template>

The first code snippet shows the template and the view part of the component; it has a form component
with four child components, including TextField, CheckField, and Button:

<script>

import { LOGIN_USER } from "../../graphql";

export default {

 setup(props) {

   const email = ref("");

   const password = ref("");

   const remember = ref(false);

   const { mutate: loginUser } =

     useMutation(LOGIN_USER, () => ({

     variables: {

       email: email,

       password: password,

       remember,

     },

   }));

   const login = () => {

     const user = loginUser();

     if (!user) return

    // Save State and Redirect to Dashboard

   };

   return {

Integrating GraphQL Apollo Client with Vue 3 85

     login,

     email,

     password,

     remember,

   };

 },

};

</script>

The script section of the component performs the business logic; it has many properties and a function
called Login, which performs the authentication process for your application.

The preceding snippet shows how to implement the login functionality for our project. You can
implement the registration component or take a look at the repository (https://github.
com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-
Applications/tree/chapter-5) for the complete code base for this chapter.

Figure 5.3 – A screenshot showing the implementation of a login form

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-5

An Introduction to GraphQL, Queries, Mutations, and RESTful APIs86

Summary
This chapter delved deeper into GraphQL, GraphQL Apollo Server 2, queries, mutations, and how
to integrate these technologies into your Vue.js 3 application. In addition, we learned how to utilize
GraphQL to deliver scalable and high-performing applications.

We also covered in detail how to integrate GraphQL into Vue 3 and properly structure it following
the law of predictability.

Lastly, we demonstrated how to implement a login and register authentication system using GraphQL
Apollo Client and Vue 3.

In the next chapter, you will learn how to build a complete Pinterest clone with Vue 3 and GraphQL.
You will utilize your knowledge of GraphQL to develop and deliver an enterprise application such as
Pinterest using Vue 3 and GraphQL.

6
Building a Complete Pinterest

Clone with GraphQL

In the previous chapter, we explored GraphQL, GraphQL Apollo Server 2, queries, mutations, and
how to integrate these technologies into your Vue.js 3 application. In addition, we learned how to
utilize GraphQL to deliver scalable and high-performing applications. This chapter will demonstrate
how to build a complete Pinterest clone with Vue 3 and GraphQL. You will utilize your knowledge of
GraphQL to develop and deliver an enterprise application such as Pinterest using Vue 3 and GraphQL.
Furthermore, you will learn how to create and manage your backend APIs using a popular headless
content management system (CMS) called Strapi.

We will cover the following key topics in this chapter:

•	 An introduction to Strapi

•	 Scaffolding a Strapi project

•	 Building the collections

•	 Building a Vue 3 Pinterest app

•	 Connecting the frontend and backend

•	 Testing the app

By the end of this chapter, you will have learned how to create a scalable and high-performing Pinterest
clone application with GraphQL.

Building a Complete Pinterest Clone with GraphQL88

Technical requirements
To start with this chapter, I recommend you read through Chapter 5, An Introduction to GraphQL,
Queries, Mutations, and RESTful APIs, where we explored GraphQL, GraphQL Apollo Server 2, queries,
mutations, and how to integrate these technologies into your Vue.js 3 application.

All the code files required for this chapter can be found at https://github.com/
PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-
Applications/tree/chapter-6.

An introduction to Strapi
Strapi is an open-source headless CMS based on Node.js that is used to create and manage different
forms of content using a RESTful API and GraphQL.

Additionally, Strapi makes developing, deploying, and maintaining APIs faster and can be configured
to consume content via APIs using any HTTP client or GraphQL-enabled frontend.

These benefits are the reason we will use Strapi to create the backend of our Pinterest clone application,
so we can focus more on the frontend without having to pay much attention to scaling the backend.

In the next section, we will work through scaffolding a Strapi project, building out all the collections
we need in our project, and seeding out the Strapi account with dummy data.

Scaffolding a Strapi project
Starting a new Strapi backend project is very easy and works precisely like installing a new framework
using the CLI tool.

We will scaffold a full-blown backend application by running any of these simple commands and
testing it in our default browser:

  ```bash

npx create-Strapi-app strapi-pinterest-api --quickstart

    # OR

yarn create straps-app strapi-pinterest-api --quickstart

```

The preceding command scaffolds a new Strapi API into the specified folder. Next, run the following
command to build and deploy your newly created backend API with Strapi:

```bash

npm run build

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6


Scaffolding a Strapi project 89

npm run deploy

```

These preceding two commands should build your app and deploy it so you can easily test it out by
typing the following URL (localhost:) in your default browser if it doesn’t open automatically.

Most importantly, the last command will also open a new tab with a page to register your new admin
user of the system. Go ahead and fill out the form and click on the LET’S START button to create a
new admin user.

Here is what the page looks like:

Figure 6.1 – The Strapi registration page

After signing up as the admin of the platform, you will have admin access to create different collections
and set up different users and permission levels for your API.

Building a Complete Pinterest Clone with GraphQL90

In the next section, we will explore how to create different collections that will correspond to our
Pinterest API resources. We will also set up different permission levels to limit what each user in our
Pinterest application can access.

Building the collections
Strapi uses collections to denote resources; for example, if your application is a news application and
you want to create a backend that will process posts, comments, and so on, you will create it as a Posts,
Comments collection in Strapi.

However, since we are building a Pinterest clone, we will create the following collections: Photo(Pin),
Board, and User, and each of these collections will contain their respective fields, as demonstrated
in the following steps.

To demonstrate, we will create a simple Photo(Pin) collection that will store the details of a specific
photo in our app. In Pinterest, it is called PIN, but we will prefer to call it as PHOTO since we started
with that in the previous chapters.

Now to store the details of our photo, we will create a new Collection Type called photos in the
Strapi dashboard.

The photos collection will have the following fields: title, url, user_id, and description. These fields
are imaginative and can change as we process them into the book:

1.	 To create our first Collection Type, log into the Admin dashboard and click Collection Type
Builder on the left side of the page. Next, click on Create New Collection Type still on the
left side of the page and fill in photos as the display name.

Figure 6.2 – The Strapi collection dashboard

Building the collections 91

2.	 Next, choose the data type for your field, as shown in the following screenshot:

Figure 6.3 – The Strapi Photos collection

3.	 Next, enter the name of the field for your Photos collection and click on + Add another field
to enter another field:

Figure 6.4 – Strapi | Add new Text field

Building a Complete Pinterest Clone with GraphQL92

4.	 Repeat the process until you exhaust the list of fields for your collection and click on Finish.

Figure 6.5 – The Strapi Photos dashboard

5.	 Lastly, click on Save and repeat the process for Users, Boards, and other collections you might
want to add. You should have all the collections listed, as shown here:

Figure 6.6 – Strapi | User fields

Building the collections 93

Important note
You can learn more about Strapi collections here – https://docs.strapi.io/user-
docs/latest/content-types-builder/introduction-to-content-
types-builder.html – or watch this video – https://www.youtube.com/
watch?v=bStlyMB0NEw – to see how we created all the collections we will use in the project.

In the next section, we will explore how to seed fake data into the Strapi collection to enable us to
display some photos before we start adding new ones.

Seeding data

After successfully creating the collections, we will seed some data so that we have plenty of photos,
boards, and users to work with.

Take the following steps to seed some data into the collections we have created. First, we will seed
some photo information, including the photos, and create a board that will house some of these photos
and a user who is taking these actions:

1.	 To seed dummy data for our Pinterest project, we will click on each of the collections we have
created and click + Add New Users, as shown in this screenshot:

Figure 6.7 – Strapi | Add New Users

https://docs.strapi.io/user-docs/latest/content-types-builder/introduction-to-content-types-builder.html
https://docs.strapi.io/user-docs/latest/content-types-builder/introduction-to-content-types-builder.html
https://docs.strapi.io/user-docs/latest/content-types-builder/introduction-to-content-types-builder.html
https://www.youtube.com/watch?v=bStlyMB0NEw
https://www.youtube.com/watch?v=bStlyMB0NEw

Building a Complete Pinterest Clone with GraphQL94

2.	 Next, fill in the information needed to create a single user of our Pinterest application and click
on Save, as shown in this screenshot:

Figure 6.8 – Strapi | Create an entry

3.	 Click on Publish, and you should have your new user added to the Users collection, as seen here:

Figure 6.9 – List all users

Create more fake data by repeating the process for all other collections, such as Photos and Users,
for testing. Later in the next section, we will learn how to programmatically create data in the Strapi
collection and build our Pinterest clone using Vue 3.

Building a Vue 3 Pinterest app 95

Building a Vue 3 Pinterest app
In the previous section, we explored creating the backend of our Pinterest application using Strapi.
In this section, we will create the frontend using Vue 3.

However, it is important to note that since this is a demo, we will only abstract the slightest part of
Pinterest to represent the application. Developing the full Pinterest application will require effort,
teams, and resources.

We will continue by using the official project we created for this book. In the previous chapters, we
added internationalization, structured the project, and built out the login form, and we will continue
by including other necessary files to make up a full-blown Pinterest clone application.

Most importantly, I will be using Tailwind CSS as my CSS framework for this project, and since it’s
beyond the scope of this book, you can visit the official documentation to set it up with Vue 3.

You can clone the project from this repository – https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications – to jump right in.

Here is a demo of what we are building:

Figure 6.10 – Pinterest preview

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications

Building a Complete Pinterest Clone with GraphQL96

We have everything separated properly and structured in a scalable format for our application. The
following shows how we structure the HomeOverview component that represents the home page:

<template>

 <main>

   <Header></Header>

   <section style="mt-20">

     <Cards />

   </section>

 </main>

</template>

<script setup>

import Header from '../organisms/Header.vue'

import Cards from '../organisms/Cards.vue'

</script>

It contains the Header and Cards components. We could use alias to import these components
making the import URL shorter, but I preferred to show you the relative path.

In the next section, we will start building out the frontend project by creating the Cards component
and implementing the logic to display all the photos we have created previously.

Generating the Cards component

Let us take a look at the Cards component first to explore the content in it. The Cards component
houses the logic behind displaying the photo we have created and stored in our Strapi instance, and
you can see this in the following code snippet:

<template>

 <div class="pin_container sm:justify-center">

   <div class="card card_small h-[16.25rem] relative">

     <!-- // Medium -->

     <Card />

   </div>

   <div class="card card_medium h-[20.625rem] relative">

     <!-- // Small -->

     <Card />

Building a Vue 3 Pinterest app 97

   </div>

   <div class="card card_large h-[28.125rem] relative">

     <!-- // Smaller -->

     <Card />

   </div>

   <div class="card card_smaller h-[11.063rem] relative">

     <!-- // Medium -->

     <Card />

   </div>

   <div class="card card_small h-[16.25rem] relative">

     <!-- // Large -->

     <Card />

   </div>

 </div>

</template>

<script setup>

import Card from '../molecules/Card.vue';

</script>

The Cards component is where the magic happens, as it represents the collections of each Photo
(Pin) in the application.

Building a Complete Pinterest Clone with GraphQL98

Here is a preview of the code:

Figure 6.11 – Cards preview

Firstly, we display the cards based on their sizes (smaller, small, medium, and large). This helps us to
get the same previews as Pinterest.

You can clone the full frontend code and the Strapi backend from the chapter 6 branch in the
repository here: https://github.com/PacktPublishing/Architecting-Vue.js-3-
Enterprise-Ready-Web-Applications/tree/chapter-6.

In the previous section, we demonstrated how to build a simple Pinterest clone by creating different
Card components to represent the Pin information. In the next section, we will learn how to connect
our Strapi backend to the Pinterest frontend we have created using Vue 3.

Connecting the frontend and backend
The most interesting part is how we structure our API requests to accommodate maintainability and
easy adaptability, following the best practices we have learned from the previous chapters.

The following screenshot shows our folder structure containing the GraphQL endpoints according to
the features we currently have in our application and in the Strapi backend we developed for this project:

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6

Connecting the frontend and backend 99

Figure 6.12 – A screenshot of the new folder structure with GraphQL and Strapi

In the graphql folder, we have defined three folders, namely auth, photos, and users, which
represent the features our current project will have. Let’s look at what these folders contain.

The auth folder

The auth folder contains only a single mutation which will handle all the authentication and
authorization functionalities. It will contain mutations, such as register, login, forgotPassword,
sendForgotPasswordEmail, and so on.

Building a Complete Pinterest Clone with GraphQL100

The photos folder

The photos folder is the most complex because it contains all the functionalities of the Pinterest
application demo. It contains both mutations and queries, which is why we have created different
files for it.

Some of the mutations are createPin, createBoard, updatePin, updateBoard, deletePin,
and so on. These mutations send different actions to our Strapi backend server to perform different actions.

Additionally, we have the queries.js file, which contains all the queries to retrieve the different
types of data from our Strapi backend server.

Some of the queries found in this file include getPin, getBoard, getBoards, getPins,
getUserPins, getUserBoards, and so on.

The users folder

The users folder contains all the user-related functionalities of the Pinterest application demo. It
contains both mutations and queries.

Some of the mutations are createUser, updateUser, deleteUser, and so on. These mutations
send different actions to our Strapi backend server to perform different user-related actions.

Additionally, we have the queries.js file, which contains all the queries to retrieve the different
types of user-related information from our Strapi backend server.

Some of the queries found in this file include getUser, getUsers, and so on.

Implementing a login example with GraphQL

The code snippet for each of the methods inside each of the mutations and queries can be found on
the official GitHub repository for the respective chapter.

However, the following is an example of how to log in to our application using the GraphQL mutation
we have defined inside the auth folder.

First, we import the respective mutation we want to use inside any component or page, as shown here:

```js

import { LOGIN_USER } from '../../graphql';

Because of the index.js file inside the graphql folder, the folder location is shortened a little; 
you can reduce it more depending on your use case.

This is why it is important to always add an export inside the index.js file for any GraphQL 
mutation or query created.



Connecting the frontend and backend 101

The following steps show you how to implement logging authentication with GraphQL in our Pinterest 
clone application example.

Step 1

When a user tries to log in, we execute the loginUser function to retrieve some user-specific data:

const login = () => {

 const user = loginUser();

 if (user) {

   // Save State and Redirect to Dashboard

   logged.value = true;

 }

};

Step 2

The loginUser function executes the LOGIN_USER mutation we imported using the useMutation 
hook imported from the Apollo Composable library as follows:

import { useMutation } from '@vue/apollo-composable';

const { mutate: loginUser } = useMutation(LOGIN_USER, () => ({

 variables: {

   email: email,

   password: password,

   remember,

 },

}));

Code walkthrough

If you haven’t used GraphQL with Vue.js before, here is a quick walkthrough.

useMutation executes any mutation using the information passed in the variables object:

variables: {

   email: email,

   password: password,

   remember,

 },



Building a Complete Pinterest Clone with GraphQL102

Every useMutation execution returns the mutate function, which we rename to the name of 
the executed mutation called when our users try to log in. The loginUser function executes the 
LOGIN_USER mutation and returns the data.

This example demonstrates how we execute a single mutation; we will use this approach throughout 
the project to execute all the mutations.

Implementing queries with a Photo example

Next, we are going to learn how to implement a query operation, and we will look at how to handle 
GraphQL queries in Vue 3. To do this, follow these steps:

1.	 First, let’s define the GET_PINS query inside the /graphql/photos/queries.js file 
to retrieve all the pins for a particular board:

export const GET_PINS = gql`

 mutation getPins($size: Int, $skip: Int, $filters:

   PinFiltersInput) {

   getPins(size: $size, skip: $skip,

           filters: $filters) {

     id

     title

     url

   }

 }

`;

2.	 Next, we will use the useQuery hook to execute this GraphQL query and return the data to 
a variable. As usual, we imported the GET_PINS query and the useQuery hook from their 
respective locations:

<script setup>

import { useQuery } from '@vue/apollo-composable';

import { GET_PINS } from '../../graphql/photos/queries';

3.	 Next, we created a user-facing function called getBoardPins, which executes our query to 
retrieve and return the respective queries:

const getBoardPins = () => {

 return getPins();

};



Connecting the frontend and backend 103

4.	 Lastly, the getPins function executes the GraphQL query with the required variables and 
returns the result, as shown in the following snippet:

const { query: getPins } = useQuery(GET_PINS, () => ({

 variables: {

   size: 20,

   skip: 0,

   filters: {

     boardId: board.id,

   },

 },

}));

This is a typical example of how we can implement GraphQL queries throughout the code base for 
our Pinterest demo application.

If you followed along from each chapter,  you will have cloned the repository from the URL provided 
in the previous section, set it up locally, and seeded some data into the Strapi backend server.

You should be presented with a Pinterest-like demo application, as shown here:

Figure 6.13 – Final Pinterest preview



Building a Complete Pinterest Clone with GraphQL104

Important note
The images might differ based on the data you seed into your Strapi backend database. However, 
the repository contains instructions on getting the dummy data and seeding them into your 
Strapi backend.

You can check out the complete implementation in the official GitHub repository here: https://
github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-
Web-Applications/tree/chapter-6. Additionally, you can learn how to implement the 
same API pattern with a RESTful API using the repository pattern here: https://medium.com/
backenders-club/consuming-apis-using-the-repository-pattern-in-vue-
js-e64671b27b09.

In conclusion, we created the frontend of our Pinterest clone using Vue 3 and the Composition API; 
we also created the backend using a very popular headless CMS called Strapi to store our data. Lastly, 
we integrated this into a single enterprise application using GraphQL.

Summary
This chapter dived deeper into how to utilize GraphQL to deliver scalable and high-performing 
applications and how to build a complete Pinterest clone with Vue 3 and GraphQL. In addition, we 
utilized the knowledge of GraphQL to develop and deliver enterprise applications such as Pinterest 
using Vue 3 and GraphQL.

We explored Strapi – the headless CMS that manages our backend APIs and data, and we also scaffolded 
a new Strapi project, learned how to create Strapi collections, and also seeded some dummy data to 
ease the development time.

We also covered in detail how to integrate the Strapi CMS and easily spin up a backend server for our 
Pinterest demo application using GraphQL into Vue 3.

In the next chapter, you will learn about the nitty-gritty involved in dockerizing your Vue 3 project. In 
addition, you will learn about the best practices and industry standards for dockerizing and deploying 
an enterprise Vue.js 3 web application.

This chapter will also go more practical by dockerizing a full-stack web application and deploying the 
container to a cloud platform using Docker Compose. Finally, you will learn how to handle larger 
projects with Docker Compose.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://medium.com/backenders-club/consuming-apis-using-the-repository-pattern-in-vue-js-e64671b27b09
https://medium.com/backenders-club/consuming-apis-using-the-repository-pattern-in-vue-js-e64671b27b09
https://medium.com/backenders-club/consuming-apis-using-the-repository-pattern-in-vue-js-e64671b27b09


Part 3:  
Vue.js 3 Enterprise Tools

In this part, you will learn about DevOps and Docker. You will containerize your web app and deploy 
a container to Google Cloud Run using CLI tools. Then, you will leverage advanced CI techniques to 
build a container-based CI environment, leveraging a multi-stage Dockerfile.

This part will also explore GraphQL and how it can be implemented and integrated with Vue.js 3 to 
deliver an enterprise-ready web application. In addition, we will build an enterprise Pinterest clone 
to demonstrate our knowledge of GraphQL at an enterprise level.

This part comprises the following chapters:

•	 Chapter 5, An Introduction to GraphQL, Queries, Mutations, and RESTful API

•	 Chapter 6, Building a Complete Pinterest Clone with GraphQL

•	 Chapter 7, Dockerizing a Vue 3 App

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=77e2136f-e753-5cdf-9030-61d6c9075a4b




7
Dockerizing a Vue 3 App

In the previous chapter, we demonstrated how to build a complete Pinterest clone with Vue.js 3, 
GraphQL, and Strapi for the backend. You also utilized your knowledge of GraphQL to develop an 
enterprise Pinterest clone application. In this chapter, you will learn the nitty-gritty details of the steps 
involved in dockerizing your Vue.js 3 project. In addition, you will learn about best practices and 
industry standards to dockerize and deploy an enterprise Vue.js 3 web application. This chapter will 
also take a more practical approach by covering how to dockerize a full stack web application and 
deploy the container to a cloud platform using Docker Compose.

We will cover the following key topics in this chapter:

•	 Overview of Docker

•	 Dockerizing the app

•	 Running the app on Docker

•	 Dockerizing Vue.js 3 and Node.js with Docker Compose

•	 Running the app on Docker Compose

By the end of this chapter, you will have learned about best practices and industry standards to 
dockerize and deploy an enterprise Vue.js 3 web application. You will also have gained practical 
experience by dockerizing a full stack web application and deploying the container to a cloud platform 
using Docker Compose.

Technical requirements
To get started with this chapter, I recommend you read through Chapter 6, Building a Complete Pinterest 
Clone with GraphQL, first, where we built a complete Pinterest clone using Vue.js 3, GraphQL, and 
the Strapi CRM for the backend. We will be using that application a lot in this chapter to learn about 
Docker and Docker Compose.



Dockerizing a Vue 3 App108

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7.

Overview of Docker
Docker has evolved over the years and knowing how to use it has become one of the most critical 
and in-demand skills for anyone interested in DevOps. Therefore, whether you’re a seasoned DevOps 
engineer or a beginner, you definitely need to add Docker to your collection of skills.

Docker is the new buzzword in the DevOps and container orchestration industry. It was created in 
2013 and was developed by the parent company, Docker, Inc.

Docker can package an application and its dependencies in a virtual container that can run on any 
Linux, Windows, or macOS computer. A container refers to an isolated or bundled application with 
the tools, libraries, and configuration files needed to execute the application.

One of the benefits of Docker is that it is a toolkit that enables developers to build, deploy, run, update, 
and stop containers using simple commands and work-saving automation through a single API across 
different operating systems and platforms.

This chapter explores everything you need to know about Docker, the different unique features of 
Docker, and why you should consider dockerizing your applications. We will also work through 
creating and setting up your first Docker application.

In the next section, we will explore Docker and its benefits to give us insights into why we need it in 
our development pipeline.

What is Docker?

Docker is an open source platform that allows developers to build, test, and deploy applications 
quickly. Docker achieves this by packaging your application in standardized units called containers. 
These containers have everything the software needs to run, including libraries, system tools, code, 
and a runtime environment. It also virtualizes the operating system of the computer on which it is 
installed and running.

To further explain this, let’s say we have developed two different instances of our application, that is, 
the frontend and the backend.

The backend is developed with a Node.js stack, including a PostgreSQL database and other tools that 
make the Node.js backend execute properly on your local server.

Next, your frontend is created with Vue.js 3 and the necessary tools and configuration that make your 
Vue.js 3 application run smoothly.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7


Overview of Docker 109

Here are a couple of problems that might arise when working in a team or individually if you aren’t 
using Docker:

•	 If a new team member joins, it might be tedious to onboard the member into the code base 
since the member needs to install and configure the correct version of the project and download 
the exact versions of the files required.

•	 When deploying the application, provisioning different servers for all the services used by 
your application will be a lot of work. For instance, you will have to provision different servers 
for the database, frontend, and backend. You may also need to provision different servers for 
different environments, such as staging, testing, and production, or use one server with lots 
of configurations each time.

With Docker, you can solve these problems by configuring, provisioning, and packaging all these 
services with a simple configuration file called a Dockerfile or a YAML file to define and run multi-
container Docker applications using Docker Compose.

To understand how Docker will solve these problems, take a look at the following screenshot:

Figure 7.1 – A screenshot of the Docker host and layers (source: freeCodeCamp 

[freecodecamp.org/news/docker-simplified-96639a35ff36/])

The preceding screenshot shows the internal layers and structure of Docker, where your application is 
bundled into containers with all the required resources to run smoothly. Additionally, each container 
uses your shared system resources.

This allows each container to be isolated from the others present on the same host. Thus, it allows 
multiple containers with different application requirements and dependencies to run on the same 
host, as long as they have the same operating system requirements.



Dockerizing a Vue 3 App110

Therefore, with Docker, you can run multiple applications as containers and use commands and a single 
configuration file to control everything. In the next section, we will carefully examine the benefits of 
Docker to our development pipeline.

The benefits of Docker

Some of the key benefits of using Docker are listed here:

•	 Optimized storage system: Containers are usually a few megabytes in size and consume very 
little disk space. Therefore, a large number of applications can be hosted on the same host.

•	 Cost-effective: Docker is less demanding when it comes to the hardware required to run it. 
Therefore, it reduces the cost of acquiring expensive hardware for different setups drastically.

•	 Robustness: Docker has a faster boot time as it consumes very little memory in comparison 
to a virtual machine since it does not have an operating system installed.

•	 Multiple containers: With the same operating requirements, Docker supports multiple 
applications with different application requirements and dependencies, to be hosted together 
on the same host.

These are the benefits of using Docker to manage and ship your enterprise applications. Let’s next 
explore why you should use Docker in your enterprise-level application.

Why use Docker

Docker enables you to publish your code quickly and efficiently. It standardizes the operations of 
an application, allows you to move code seamlessly, and saves revenue by improving the utilization 
of resources.

Here are some of the reasons you should start using Docker in scalable enterprise applications:

•	 Ship more software faster: According to Amazon (https://aws.amazon.com/docker/), 
Docker users ship products 7x faster than non-Docker users. Docker enables you to ship 
isolated services as often as needed. When building enterprise-level and scalable applications, 
features and bug fixes happen in hours, if not minutes. Therefore, urgent building, testing, and 
deployment are needed and Docker comes in handy in this area.

•	 Standardize operations: Docker follows industry-standard application development practices. 
Isolated standardized units called containers make it easy to deploy, identify issues, and roll 
back for remediation.

https://aws.amazon.com/docker/
https://aws.amazon.com/docker/


Implementing Docker with Vue.js 3 111

•	 Seamlessly move: Developers can move applications between different environments and systems 
without worrying about installing any libraries or missing configuration files. Docker-based 
applications can be moved seamlessly from local development to a production environment.

•	 Save money: Docker-based applications are cost-effective since you can run multiple applications 
on one server in the form of containers. Docker containers make it easier to run more code on 
each server, improving your utilization of CPU resources and saving you money.

Now you know why you should use Docker in your enterprise applications and the benefits you can 
incur from using Docker. With Docker, you can ship products faster and more efficiently. When 
combined with other industry-standard tools, you can completely remove the hassle of manual 
deployment by instead adopting automated deployment. In the next section, we are going to explore 
how to dockerize your first application.

Implementing Docker with Vue.js 3
Docker is an enterprise-ready container platform that enables organizations to seamlessly build, share, 
and run any application, anywhere. Almost all enterprise-level companies containerize their applications 
for faster production workloads so that they can deploy anytime, sometimes several times a day.

One way to build an enterprise-level application is to dockerize the project from the beginning. 
Therefore, we are going to dockerize the Pinterest Vue.js 3 app with the Strapi backend we developed 
in Chapter 6, Building a Complete Pinterest Clone with GraphQL, and create a Docker image so that 
we can deploy that image any time or sometimes several times a day.

Prerequisite

Most importantly, you must download and install Docker in your local development system for local 
testing. You can go to this link to download and install it on different operating systems: https://
docs.docker.com/install/.

https://docs.docker.com/install/
https://docs.docker.com/install/


Dockerizing a Vue 3 App112

Example project

In Chapter 6, Building a Complete Pinterest Clone with GraphQL, we developed a Pinterest clone using 
Vue.js 3 and Strapi for the backend. In this section, we will learn how to dockerize the project from 
scratch. Here is a demo of the application:

Figure 7.2 – A screenshot of the Pinterest clone demo

The application displays images in a masonry grid layout based on the number of images we have 
stored in our Strapi database.

The Strapi backend allows you to manage and control the entire backend of the application, from 
adding pins and boards to creating new users.

We will dockerize both the Vue.js 3 Pinterest app and the Strapi backend using individual Dockerfiles 
and multi-stage builds to create efficient Docker images.

Dockerizing the Pinterest app

We will start by dockerizing the Pinterest Vue.js 3 application. In this multi-stage build, building a 
Vue.js 3 project and putting those static assets in the dist folder is the first step. So, let’s create a 
Dockerfile and configure our Vue.js 3 application.



Implementing Docker with Vue.js 3 113

Create a Dockerfile in the root directory of your Pinterest clone Vue.js 3 app. If the Strapi backend is 
still inside the frontend folder as you clone from the Chapter 6 repository (https://github.
com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-
Applications/tree/chapter-6), you can create a parent folder and move the Strapi backend 
folder side by side with the frontend folder, as shown in the following screenshot:

Figure 7.3 – A screenshot of the current folder structure

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-6


Dockerizing a Vue 3 App114

Moreover, you can clone the completed Chapter 7 (https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-
7) repository from this link, which contains the complete code base.

Lastly, let’s explore the configuration file to dockerize the Vue.js 3 enterprise application. Open your 
Dockerfile and add the following code:

# Use the official Node.js 14 Alpine image from https://hub.
docker.com/_/node.

# Using an image with specific version tags allows 
deterministic builds.

FROM node:16.17.0-alpine

# Create and change to the app directory.

WORKDIR /usr/src/frontend

# Copy important root files to the builder image.

COPY package*.json ./

# Install production dependencies.

RUN npm install

# Copy the Vue 3 source to the container image.

COPY . .

# Expose container port

EXPOSE 3000

# Run the Vue service on container startup.

CMD ["npm", "run", "dev"]

The code snippet is self-explanatory with the comments explaining every command we used in 
the Dockerfile.

Let’s build the image with the following command:

// build the image

docker build -t pinterest-vue-frontend .

// check the images

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7


Implementing Docker with Vue.js 3 115

docker images

```

In summary, we have successfully dockerized our Vue.js 3 Pinterest application. In the next section,
we will dockerize the Strapi backend application separately.

Dockerizing the Strapi backend app

In this section, we will follow the same approach used in dockerizing the Vue.js 3 frontend project to
create a Docker instance for the Strapi backend.

Therefore, create a Dockerfile inside the Strapi backend folder of your project and add the following
configuration code:

Use the official Node.js 14 Alpine image from https://hub.
docker.com/_/node.

Using an image with specific version tags allows
deterministic builds.

FROM node:14.16.1 AS builder

Create and change to the app directory.

WORKDIR /usr/src/backend

Copy important root files to the builder image.

COPY package*.json ./

Install production dependencies.

RUN npm install

Copy the Backend source to the container image.

COPY . .

build app for production with minification

RUN npm run build

EXPOSE 1337

Init final image generation.

FROM node:14.16.1

Run the Strapi service on container startup.

CMD ["npm", "start"]

We copied the previous configuration and changed the building process for the backend app. The code
snippet is self-explanatory with comments explaining every command we used in the Dockerfile. In
the next section, we are going to run the applications on Docker and test them separately.

Dockerizing a Vue 3 App116

Running the images on Docker

After building the Docker image, next, we need to run the image on Docker using the following command:

```bash

// run the Frontend image

docker run -d -p  3000:3001 --name pinterest-frontend 
pinterest-vue-frontend

// run the Strapi Backend Image

docker run -d -p  1337:3002 --name pinterest-backend pinterest-
strapi-backend

// check the container

docker ps

```

The ps command checks the container for the list of images currently running in your Docker engine.
You should see two images with the names specified in the preceding Docker run command.

If the run command is successful, you can access the frontend application on the web at the address
http://localhost:3001 and the backend instance at port 3002. This port change is possible
because the -p option exposes our internal frontend Vue.js 3 server port 3000 to the external port
3001, which makes it possible to access our internal Docker application in our browser.

At this point, if everything is successful, you should be greeted with your demo Vue.js 3 application.
However, following this approach poses a problem. Developers need to build, test, and deploy
applications in isolation, which can be avoided with Docker Compose.

In this section, we explored how to dockerize the Pinterest clone application we have developed in
this book. We learned how to create, build, and run the Dockerfile we used in dockerizing the project
using different Docker commands. In the next section, we will explore how to use Docker Compose
to build, test, and deploy multiple applications at once.

Dockerizing Vue.js and Node.js with Docker Compose
In the previous section, we explored how to dockerize Vue.js 3 applications and how to dockerize a
Node.js application using Strapi, which was done separately. In this section, we are going to explore
how to build, test, and deploy bundled applications. Furthermore, we are going to build and dockerize
both applications as a single unit.

Dockerizing Vue.js and Node.js with Docker Compose 117

Overview of Docker Compose

Docker Compose is a tool designed to enable users to easily define and share multi-container
applications. By creating a YAML file, Compose allows us to quickly launch or shut down all services
with a single command.

With Docker Compose, developers can build, test, and deploy multiple containers and images bundled
together to form a single application.

In the next section, we are going to explore how to bundle the frontend and backend applications that
we demonstrated in the previous section.

Dockerizing the Pinterest clone app

To bundle a deployable application, we are going to start by creating a central Dockerfile and Docker
Compose YAML file inside the root directory that contains the different configurations to bundle our
application with Docker Compose.

Before you start, rename your strapi-pinterest-api folder to backend. The following
screenshot shows the current folder structure:

Figure 7.4 – A screenshot of the current folder structure with Docker and Docker Compose files

Next, create a Dockerfile inside the root directory and add the following script:

FROM node:14.15.0

ARG PACKAGE_PATH=

ARG WORKING_DIR=

WORKDIR ${WORKING_DIR}

COPY ${PACKAGE_PATH}/package*.json ${WORKING_DIR}

RUN npm install --silent

COPY ${PACKAGE_PATH} ${WORKING_DIR}

Dockerizing a Vue 3 App118

VOLUME $WORKING_DIR/node_modules

CMD ["npm", "start"]

Code walk-through

Let’s walk through the code together and understand the nitty-gritty of it.

Step 1: Import Node.js

The first step in every Dockerfile is to specify the build image. In this case, we specify Node.js as
our image.

This will install Node.js with the specified version number and set up the environment to run
Node.js properly.

Step 2: Create the required arguments

The second step is to create the arguments required by Docker Compose when building individual
images of our frontend and backend applications:

ARG PACKAGE_PATH=

ARG WORKING_DIR=

WORKDIR ${WORKING_DIR}

Additionally, we create a working directory specifying the argument we created earlier. This will auto-
inject the specified working directory in the Docker Compose YAML file.

Step 3: Copy, install, and run commands

Lastly, we copy files from the specified working directory into the Docker virtual working directory.
We start by copying package*.json files, running the install command, and copying the
remaining files later. This approach utilizes the Docker caching system:

COPY ${PACKAGE_PATH}/package*.json ${WORKING_DIR}

RUN npm install --silent

COPY ${PACKAGE_PATH} ${WORKING_DIR}

VOLUME $WORKING_DIR/node_modules

CMD ["npm", "start"]

Furthermore, after mounting the node_modules folder of the specified working directory, Docker
will execute the npm start command to start the application.

Now that we have created a central Dockerfile for both the frontend and backend, let’s continue by
creating a YAML Docker Compose file to bundle our separate applications together.

Dockerizing Vue.js and Node.js with Docker Compose 119

Create a docker-compose.yaml file inside the root directory and add the following script:

version: "3.5"

services:

 api:

   build:

     context: .

     dockerfile: Dockerfile

     args:

       PACKAGE_PATH: backend

       WORKING_DIR: /usr/src/

   expose:

     - 1337

   ports:

     - 1337:1337

   environment:

     - NODE_ENV=development

     - HOST=0.0.0.0

     - PORT=1337

     - BASE_URL=http://api:1337

   env_file:

     - ./.env

   volumes:

     - ./backend:/usr/src

   command: >

     sh -c "npm install"

 frontend:

   build:

     context: .

     dockerfile: Dockerfile

     args:

       PACKAGE_PATH: frontend

       WORKING_DIR: /usr/src/

   expose:

     - 3000

   ports:

     - 3000:3000

Dockerizing a Vue 3 App120

   environment:

     - APP_ENV=production

     - APP_BACKEND=http://0.0.0.0:1337/api

     - NODE_PATH=/usr/src/

     - APP_TOKEN=eyJhbGciOiJIUzI1NiJ9.c29sb[STRAPI_TOKEN]

   env_file:

     - ./common.env

   volumes:

     - ./frontend:/usr/src

   depends_on:

     - api

   command: ["npm", "start"]

Code walk-through

Let’s walk through the code together and understand the nitty-gritty of it.

Step 1: Versioning and services

Every Docker Compose file always starts with a version number of the version of Docker Compose
you intend to use when building and bundling the application. In this demo, we specify version 3.5.

Furthermore, every Docker Compose YAML is always split into different services. You can add as
many services as required that each application depends on. For instance, if the backend of your
project depends on a database (PostgreSQL), you can specify that as a service.

In this demo, we have specified only two services, namely the following:

•	 Backend

•	 Frontend

Each of the services contains configurations that enable them to run smoothly. Let’s explore the
configurations we have added to the frontend service.

Step 2: The build section

The build section includes configurations that help in building the application. It contains commands
such as the context, working directory, and defined arguments:

 build:

    context: .

     dockerfile: Dockerfile

     args:

Dockerizing Vue.js and Node.js with Docker Compose 121

       PACKAGE_PATH: frontend

       WORKING_DIR: /usr/src/

The context command specifies the part of the directory where the Dockerfile we created earlier
is stored. In our case, it was stored in the root directory.

Next, we call the Dockerfile with the dockerfile command and specify the required parameters
with the args command. Lastly, we specify the PACKAGE_PATH and WORKING_DIR values.

Step 3: Exposing the port

In this step, we exposed the internal Docker port used to run the application to the outside world:

   expose:

     - 3000

   ports:

     - 3000:3000

Step 4: Creating environment variables

In this step, we use the environment command to add the required environment variables, such
as APP_BACKEND and APP_ENV:

  environment:

     - APP_ENV=production

     - APP_BACKEND=http://0.0.0.0:1337/api

     - NODE_PATH=/usr/src/

     - APP_TOKEN=eyJhbGciOiJIUzI1NiJ9.c29sb[STRAPI_TOKEN]

   env_file:

     - ./.env

Then, we create an env file in the root directory using the env_file command to store the details
we specified previously.

Step 5: Running the app

Lastly, we mount the frontend directory and specify that the frontend project depends on our
backend API service, which is our Strapi backend. This allows Docker to execute the project in sequence
from the backend first before the frontend:

 volumes:

     - ./frontend:/usr/src

   depends_on:

Dockerizing a Vue 3 App122

     - api

   command: ["npm", "start"]

Finally, we call the command to execute the project. This same approach is repeated for the backend
service. In the next section, we are going to learn how to run the project using Docker Compose.

Running the app on Docker Compose

After creating a successful Docker Compose YAML configuration file, let’s run our Pinterest clone
project using Docker Compose.

Before you start running the project, make sure to set up and install Docker and Docker Compose.
Next, type docker compose up in your terminal root directory to deploy the project. Alternatively,
type docker-compose up to use Docker Compose directly. The application will be served
at http://localhost:3000/.

If everything is properly configured, you should be presented with a full stack Pinterest application,
as shown in the following screenshot:

Figure 7.5 – Preview of Pinterest application demo

Summary 123

If you are unsure about anything, please refer back to the code base of this chapter (https://
github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-
Web-Applications/tree/chapter-7) to see the working and complete project setup.

In this section, we explored how to use Docker Compose to create and manage many services using
the Dockerfile that we created in the previous section. We also learned how to bundle our full stack
application, including the frontend, backend, and a database, using Docker Compose.

Summary
This chapter dove deeper into the nitty-gritty steps involved in dockerizing your Vue.js 3 project. In
addition, we explored best practices and industry standards to dockerize and deploy an enterprise Vue.js
3 web application. We also learned how to dockerize a full stack web application using Docker Compose.

Using a Dockerfile, we were able to dockerize our Pinterest clone demo application so that it can be
deployed and managed by other team members or on any cloud provider easily. Also, we learned how
to bundle and manage a full stack application that includes the backend, the frontend, a database
service, as well as many more features, all in a single file, using Docker Compose.

In the next chapter, you will explore the concept of testing. You will learn what to test from an array
of available components and methods. In addition, you will learn about best practices and industry
standards related to testing libraries and how to integrate them with Vue.js 3.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-7

Part 4:
Testing Enterprise Vue.js 3

Apps

Testing an enterprise project can be daunting and unnecessarily complex. This part will explore
everything relating to enterprise testing and what to test precisely to eliminate time spent on testing
the wrong code.

This part comprises the following chapters:

•	 Chapter 8, Testing and What to Test in Vue.js 3

•	 Chapter 9, Best Practices in Unit Testing

•	 Chapter 10, Integration Testing in Vue.js 3

•	 Chapter 11, Industry Standard End-to-End Testing

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=b958045c-cbca-b3c1-9404-61d6c95961a4
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=b5bd1ffc-0280-c217-aa63-61d6c9ee0198
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=907b43f6-1d49-47b3-a4ac-63835de51e8f

8
Testing and What to Test

in Vue.js 3

In the previous chapter, you learned the nitty-gritty details of the steps involved in dockerizing your
Vue.js 3 project. In addition, you learned about the best practices and industry standards to dockerize
an enterprise Vue.js 3 web application.

In this chapter, you will explore the concept of software testing. You will learn what to test from an array
of available components and methods. In addition, you will learn about best practices and industry
standards related to testing libraries and how to integrate them with Vue.js 3.

We will cover the following key topics in this chapter:

•	 Overview of testing

•	 Testing in software engineering

•	 What to test

•	 Testing a basic Vue.js 3 app

•	 Component testing in Vue.js 3

Technical requirements
To get started with this chapter, I recommend you read through Chapter 7, Dockerizing a Vue 3 App,
first, where we took a more practical approach by dockerizing a full stack web application using Docker
Compose. We will be using the application a lot in this chapter to learn about Vue.js 3 enterprise testing.

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8

Testing and What to Test in Vue.js 3128

Overview of testing
Anyone who has studied computer science should be familiar with the concept of SDLC. If you are
not aware, SDLC stands for software development life cycle.

Synopsys (https://www.synopsys.com/glossary/what-is-sdlc.html) provides
the following definition:

Software Development Life Cycle (SDLC) is a structured process that enables the
production of high-quality, low-cost software, in the shortest possible production

time. The goal of the SDLC is to produce superior software that meets and exceeds
all customer expectations and demands.

If you explore the SDLC further, you’ll see that it defines and outlines eight detailed plans with stages
or phases that quality and enterprise-level software must pass through to produce software that meets
and exceeds all customer expectations and demands.

Each stage is crucial, including planning, coding, building, and testing. However, the testing phase is
particularly important, especially when you need to build a bug- or defect-free enterprise-level application.

To elaborate further, the testing phase evaluates the created software against any bugs, any potential
errors, and the requirements of the software from the planning phase.

Next, we will see what we mean by software testing.

What is software testing?

Software testing is the method of checking whether the software in production matches the expected
requirements and, most importantly, whether it is defect free. The method used to carry out software
testing differs depending on the organization. However, the method is divided into manual and
automated processes.

Individuals and organizations will have different names for software testing. It can also be categorized
as whitebox or blackbox testing. However, the end result of any approach is always the same, which is
identifying errors, gaps, or missing requirements in contrast to actual requirements.

Blackbox testing involves testing a system without knowing the internal workings of the system, while
whitebox testing is an approach of testing that allows the tester to inspect and verify the internal
workings of the system.

Regardless of the names, terms, or categories used when referring to software testing, in simple terms,
software testing means the verification of the Application Under Test (AUT), and it’s a critical and
crucial stage in producing high-quality enterprise-level software.

In the next section, we will go through the importance of software testing.

https://www.synopsys.com/glossary/what-is-sdlc.html

Overview of testing 129

Why software testing is important

The need to incorporate software testing into your application development pipeline cannot be
overemphasized. It is as important as the planning and development phases in the SDLC. In fact,
without a proper software testing strategy, it is likely that the end product of the software under
development will be filled with bugs, errors, and unmet software requirements.

Software testing is important because software bugs could be expensive and also very dangerous to
businesses, and organizations at large. Over the years, there have been numerous examples of potential
software bugs and monetary losses.

For instance, in April 2015, the Bloomberg terminal in London crashed due to a software glitch that
affected more than 300,000 traders in financial markets. It forced the UK government to postpone
a 3 billion pound debt sale, according to The Guardian (https://www.theguardian.com/
business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-
worldwide).

Also, according to Windows Report (https://windowsreport.com/windows-10-
vulnerability/), there was a vulnerability in Windows 10 that enabled users to escape from
security sandboxes through a flaw in the win32k system.

There have been many vulnerability reports on different malicious attempts on businesses that have
impacted revenue or monetary value, of which some could be avoided with proper software testing.
This indicates that software testing is a very important stage in the SDLC.

Though software testing costs money, I’m sure you will agree with me that the cost is nothing compared
to the millions per year in development and support companies would have to spend if they don’t
have a good testing technique and QA processes in place.

In addition, having early software testing in place uncovers problems before the products go to market.
Early testing also uncovers different defects, including but not limited to the following:

•	 Architectural flaws

•	 Poor design decisions

•	 Invalid or incorrect functionality

•	 Security vulnerabilities

•	 Scalability issues

Having proper testing processes in place along the software development pipeline improves software
reliability and means high-quality applications are delivered with few errors. In the next section, we
will further explore the benefits of software testing.

https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-worldwide
https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-worldwide
https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-worldwide
https://windowsreport.com/windows-10-vulnerability/
https://windowsreport.com/windows-10-vulnerability/

Testing and What to Test in Vue.js 3130

The benefits of software testing

In the previous section, we explained why enterprise applications need to include testing in their
development pipeline. In this section, we will explore the benefits of having a proper software testing
process. We will go through the following points in detail:

•	 Helps in saving money

•	 Satisfaction of customers

•	 Enhancing the development pipeline

•	 Quality of product

•	 Security

Helps in saving money

Launching buggy software to market can end up being more expensive than creating the entire
software. As stated previously, there have been many cases of company’s monetary value reducing
due to software defects and error-prone software.

This problem can be curtailed to some extent if there is a proper software testing process built into the
development pipeline to detect and rectify these errors before moving on to the next stage of the pipeline.

Satisfaction of customers

For users of your enterprise application to be satisfied, the software must work properly and in
accordance with the requirements.

Therefore, before launching the software to market, an acceptance test must be conducted to ensure
that the product works in accordance with the requirements and also to get a sense of how users will
access and use the product day to day.

While in the testing phase, if any issues or bugs are detected, the software under test can easily be
moved back to the development stage instead of finding out about the problems in the production
stage where real users are interacting with the application.

Enhancing the development pipeline

Including software testing in the development pipeline creates an enhanced development pipeline. Also,
it is an industry-standard practice to include software testing. In addition, it is simpler for developers
to fix errors in the development stage than in the production stage.

Thus, incorporating the software testing process in the development pipeline reduces the risk of
launching error-prone software to market and enhances the development pipeline.

Testing in software engineering 131

Quality of product

When the quality of the product drops, the company might lose customers, resulting in a loss of
revenue. However, one of the attributes of low-quality software is an untested and error-prone
software application.

Furthermore, if there is a proper software testing process built into the development pipeline, most
errors, bugs, and defects will be detected and fixed before production, thereby producing quality software.

Security

According to OWASP (https://owasp.org/www-project-top-ten/), security should
be an integral part of every software. Not considering it could result in a reduction in the monetary
value of the business.

Software testing is one way to detect security loopholes and fix them in the development stage. If a
product has undergone testing, the user can be assured that they are receiving a reliable product. They
will be assured that their personal details are safe. Users can receive products that are more likely to
be free from vulnerabilities with the aid of software testing.

In this subsection, we covered some benefits you can derive from implementing software testing into
your pipeline when building enterprise-ready applications.

In the next section, we will explore the different types of testing and different strategies you can
integrate into your development pipeline.

Testing in software engineering
As stated in the previous section, software testing is an integral part of the SDLC, and therefore, according
to ANSI/IEEE 1059, testing in software engineering is a method of evaluating the software under
test to discover whether it meets the requirements, as well as whether it is error, bug, and defect free.

The process involves evaluating the features of the software under test for requirements in terms of
any missing requirements, bugs or errors, security, reliability, and performance.

In this section, we explored the benefits of testing and why software testing is important, and in the
next section, we will understand different types of software testing. We will explore what to test and
how to write basic unit and integration tests.

Types of software testing

Software testing has been given different names. There are over 150 types of software testing according
to Guru99 (https://www.guru99.com/types-of-software-testing.html).

https://owasp.org/www-project-top-ten/
https://www.guru99.com/types-of-software-testing.html

Testing and What to Test in Vue.js 3132

However, we are going to classify software testing into two main categories and then explore each of
the categories and the different types within them. The following are the two main categories:

•	 Functional software testing

•	 Performance software testing (non-functional)

The following figure shows the high-level classification of software testing types:

Figure 8.1 – A high-level classification of software testing (source: softwaretestinghelp)

You can explore more about the different categories of software testing on Youtube. However, we will
only focus on three main categories of functional software testing, as follows:

•	 Unit testing

•	 Integration testing

•	 End-to-end testing

Unit testing

This basic approach to software testing is carried out by a programmer to test the unit or smallest part of
the program. It helps developers to know whether individual units of code are working properly or not.

Integration testing

This type of testing focuses on the construction and design of the software. You need to see whether
the integrated units are working without errors or not.

What to test 133

End-to-end testing

End-to-end testing is a methodology that assesses the working order of a complex product in a
start-to-finish process.

In the coming chapters, we will focus on exploring these different types of testing individually. Nevertheless,
you can explore more than 150 different types of software testing from Guru99 (https://www.
guru99.com/types-of-software-testing.html).

In summary, now that we know how important software testing is and the different types of software
testing, how do we know what to test in a large enterprise application? In the next section, we are
going to explore what to test and how to integrate a testing pipeline into the development workflow.

What to test
A popular question among software teams is what should we test and what should we not test? In this
section, we will explore the different things you should and shouldn’t test when considering software tests.

We will first explore different test strategies to employ when integrating software testing into your
development workflow.

Testing strategy

The best testing strategy to implement in your enterprise application is the combination of normal
(manual) testing and automated testing. In addition, normal testing should be done more extensively
by the Quality Assurance (QA) team.

To explain this further, when automated testing is written and implemented successfully, we usually
program it to look for fundamental errors and edge cases that may not properly assimilate how a real
customer will interact with the application.

What you should test

As much as software testing is important to the efficiency of an enterprise-ready application, knowing
what to test is paramount so that developers don’t waste time testing the wrong things.

The following is a list of some of the things you can look for when testing your enterprise project for
errors, bugs, and defects:

•	 Passed parameters: The collection of parameters or arguments passed into the method or
function to make sure that it has not changed. In some cases, the data type of the parameter
remains the same.

https://www.guru99.com/types-of-software-testing.html
https://www.guru99.com/types-of-software-testing.html

Testing and What to Test in Vue.js 3134

•	 Algorithm engines: Every method has a purpose, and the purpose is implemented using logic
or an algorithm. Your test case should test the algorithm to make sure it’s correct and it results
in the right output based on the input into the method.

•	 Simple database queries checking predicates: If your job as a developer is related to queries
and manipulating databases, you really want to test your database queries to make sure it
performs the right manipulation and queries.

•	 Utility methods: Utility methods are helpers in your project that are created for a specific task.
They are usually used when you need to do stuff that does not need an instance of a class. This
set of methods needs to be tested properly to ensure it produces the correct output when used.

•	 Testing less critical codes: Test the edge cases of a few unusually complex pieces of code that
you think will probably have errors. Additionally, carry out edge-case tests of less critical code
whenever someone has time to kill.

The preceding are a few things you can consider for your test cases. However, it is important to note
that writing tests and having 100% code coverage do not necessarily mean that your code is bug free.
In the next section, we will explore things you should not test in your project.

What you should not test

The following are the things that you should not be testing in your project:

•	 Constructors or properties (if they just return variables). Test them only if they contain validations.

•	 Methods that call another public method.

•	 If the code needs to interact with other deployed systems, then an integration test should be used.

•	 Configurations such as constants, read-only fields, configs, and enumerations.

•	 You should not test POJO classes or models; rather, you can test each of the methods inside
the class.

In summary, we have explored the software testing strategy, what to test, and what you should not test
to help you understand the relevance of software testing in your enterprise application. In the next
section, we will explore how to test a basic Vue.js application.

Testing a basic Vue.js 3 app 135

Testing a basic Vue.js 3 app
In the previous chapter, we created a Pinterest application using Strapi for the backend and Vue.js 3
for the frontend.

Previously, we added internationalization, structured the project, and built out a complete Pinterest
clone. In this section, we will continue by using the official project we created for this book to set up
software testing, resulting in a full-blown enterprise-ready Pinterest clone application.

You can clone the project from this repository, https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications, to jump right in.

Creating a test folder

It is always confusing knowing where to add your test files and folder when it comes to creating
enterprise applications. There are two methods for structuring your test files depending on the approach
you used for your enterprise project.

Method 1 – adding test files inside each component

First, you can create a specific test file inside each of the component folders. For instance, inside the
component folder in our Vue.js 3 project, we will create a folder for each component and move the
files of each component into the folder, including the test file for each component.

The following figure shows an example of how we could arrange our component folder to accommodate
our testing files and other files related to a particular component:

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications

Testing and What to Test in Vue.js 3136

Figure 8.2 – A screenshot showing our component structure

In the preceding figure, you can see how you can add any files related to any of the components. For
example, if you want to add an end-to-end testing or integration testing file for each component, you
just create the file within each specific component folder.

Also, because of the structure of our practice project and the introduction of the atomic pattern, we
can easily see how many files will be created in each component. The same goes for different areas we
will be testing throughout the project.

Testing a basic Vue.js 3 app 137

However, we can use the next method to arrange everything related to testing in a separate folder and
create all the files and folders inside the specific tests folder.

Method 2 – creating a tests folder

In this section, we will create a folder inside the src folder called tests, which will contain every
file and folder related to testing and test configurations.

The following figure shows the folder structure for implementing testing with this method:

Figure 8.3 – A screenshot of the folder structure

Testing and What to Test in Vue.js 3138

This method has a single folder that contains all the files and folders related to testing, including all
the configurations. It is a central place and single point of truth for all your software testing files and
folders. You can arrange this folder in a different structure as per your use case.

Furthermore, the method of structuring your test folder or files and folders related to testing does not
matter. What matters the most is implementing software testing properly and knowing exactly what
to test to avoid production bugs and errors.

We will use the second method in this demo in writing some basic unit tests to demonstrate. This is
because we don’t want the testing files to be scattered across different folders since we are using the
atomic pattern.

Writing a basic unit test

First, we will start by installing the new testing library for Vue.js 3. Since we are using Vite in the
project, we will also install the Vitest library for our test runner. You can read more about the new
Vue.js 3 test library at https://vitest.dev/guide/.

Installing the test library

Vitest is a blazing-fast unit test framework powered by Vite. Install the library by using any of
these commands:

```bash

# with npm

npm install -D vitest

# or with yarn

yarn add -D vitest

# or with pnpm

pnpm add -D vitest

```

Now that we have our testing library set up, let’s create a simple helper file to test our configuration.

https://vitest.dev/guide/

Testing a basic Vue.js 3 app 139

Creating a helper file

For our demonstration, we will create a helper file inside the src/helpers folder and add a simple
function to increment a value. The following snippet shows the code example we have added to the
newly created file:

// src/helpers/index.js

export function increment(current, max = 10) {

 if (current < max) {

   return current + 1;

 }

 return current;

}

The increment function written previously increments a value by 1 until the max value is reached. If
the max value is reached, it simply returns the current value. Next, let’s write a basic unit test for it.

Writing a basic test

In this section, we will write a simple unit test for this function. You can follow this by writing unit
tests for all the functions and methods of your enterprise project:

import { describe, it, expect } from 'vitest';

import { increment } from '../../helpers';

describe('increment', () => {

 it('increments the current number by 1', () => {

   expect(increment(0, 10)).toBe(1);

 });

 it('does not increment the current number over the max', () =>
{

   expect(increment(10, 10)).toBe(10);

 });

 it('has a default max of 10', () => {

   expect(increment(10)).toBe(10);

 });

});

Testing and What to Test in Vue.js 3140

We will explore unit testing in depth in the next chapter.

Let’s walk through the preceding code together and understand the nitty-gritty details of it:

•	 Step 1: Adding the required packages

First, we need the vitest package and the helper file to test. Next, we use the exported
functions to create a describe block, and so on:

import { describe, it, expect } from 'vitest';

import { increment } from '../../helpers';

describe('increment', () => {

….

});

The describe block is used to group related test cases, as demonstrated in the preceding
code snippet.

•	 Step 2: Using the it function

Next, we use the it function to test specific use cases of our function. For instance, we test to
make sure the number actually increases by 1 each time the function is called:

 it('increments the current number by 1', () => {

   expect(increment(0, 10)).toBe(1);

 });

•	 Step 3: Using the except function

Lastly, the expect function is used to test the use case. You pass in a value and expect the
value to be equal to another value, as shown in the example.

You can access different methods (https://vitest.dev/api/#expect) from the expect
object aside from the toBe() function.

In the next section, we will cover the process of running your test with Vitest and creating your first
component/integration testing examples.

Running a test with Vitest

We will now run the test to see whether it passes or not. Type the following command into your
root terminal:

yarn test

https://vitest.dev/api/#expect

Component testing in Vue.js 3 141

If your test is successful, you should see that the three cases passed, as shown in the following figure:

Figure 8.4 – A screenshot showing the test result

In this section, we have demonstrated how to configure and structure software testing with Vue.js 3
using the latest Vitest testing library for Vue.js 3. We have also learned how to write a basic unit test.
In the next section, we will learn how to create basic component-based testing.

Component testing in Vue.js 3
In Vue.js, components are the main building block of the UI and refer to a single unit of the application
that is shareable, testable, and reusable. Therefore, component testing sits between unit testing and
end-to-end testing. It can also be referred to as integration testing.

In the previous chapters, where we integrated atomic patterns using Storybook, we discussed creating
component stories and how to create them. If you created stories for all your components and configured
them to work properly as demonstrated, then you will have already implemented component testing
using Storybook stories.

However, Chapter 10, Integrating Testing in Vue.js 3 is dedicated to exploring component testing.
Nevertheless, we will briefly illustrate in this chapter how to implement simple component-based
testing to aid our understanding of the next chapters.

Writing a basic component test

We will start by installing the new testing library for Vue.js 3. Since we are using Vite in the project,
we will also install the Vitest library for our test runner. You can read more about the new Vue.js 3
test library (https://vuejs.org/guide/scaling-up/testing.html).

https://vuejs.org/guide/scaling-up/testing.html

Testing and What to Test in Vue.js 3142

Installing the test library

As of the time of writing, @testing-library/vue (https://github.com/testing-
library/vue-testing-library) is recommended for component testing, and we will install
it in our example. Run the following command to install it:

```bash

npm install -D vitest happy-dom @testing-library/vue

```

Next, open the vite.config.js file and add the following configuration:

import { defineConfig } from 'vite';

import vue from '@vitejs/plugin-vue';

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [vue()],

 test: {

   environment: 'happy-dom',

   globals: true,

 },

});

This configuration should allow us to run both unit and component tests at the same time. Next, let’s
create a simple component test.

Creating a basic component test

Here is a simple component test snippet to demonstrate the process:

import { render } from '@testing-library/vue';

import Button from '../../components/atoms/Button.vue';

test('mounted a button with custom label', async () => {

 // The render method returns a collection of utilities to

 // query your component.

 const { getByText } = render(Button, {

https://github.com/testing-library/vue-testing-library
https://github.com/testing-library/vue-testing-library

Component testing in Vue.js 3 143

   props: {

     label: 'Test',

   },

 });

 // getByText returns the first matching node for the

 // provided text, and Check if button is render with Label

 // from props

 const button = getByText('Test');

});

The test simply renders Button with a custom label value and also checks whether we can retrieve
the custom label added during the rendering process.

Running the test

Running the test will result in four passed test cases, including the unit test we created earlier:

Figure 8.5 – A screenshot showing the final test result with integration testing

In this section, we have demonstrated how to configure and structure component testing, also known
as integration testing, with Vue.js 3 using the latest Vitest testing library for Vue.js 3. We have also
written basic component tests to help us understand the process. In the next chapters, we will look
in-depth at the different types of testing we can perform when building enterprise projects with Vue.js 3.

You can clone the latest repository for this chapter here: https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-8

Testing and What to Test in Vue.js 3144

Summary
This chapter dove deeper into the concept of software testing to deliver scalable, high-performing,
and bug-free applications. We also explored what to test from an array of available components and
methods. In addition, we utilized our knowledge of software testing to create basic unit and component
test cases in Vue.js 3 using Vitest.

In the next chapter, we will explore everything related to unit testing. We will learn how to unit test
a Vue.js 3 component and the component and page methods. We will also learn about unit testing
tools such as Vitest and use them to effectively unit test an enterprise project.

9
Best Practices in Unit Testing

In the previous chapter, we learned about the concept of software testing. We learned what to test
from an array of available components and methods. In addition, we learned about the best practices
and industry-standard testing libraries and how to integrate them with Vue.js 3.

In this chapter, we will explore everything related to unit testing. We will learn how to unit test a Vue.
js 3 component and the component and page methods. We will also learn about unit testing tools such
as Jest and Mocha and how to use them to effectively unit test an enterprise project.

We will cover the following key topics in this chapter:

•	 Introduction to unit testing

•	 What is unit testing?

•	 The importance of unit testing

•	 The benefits of unit testing

•	 Best practices in unit testing

•	 JavaScript unit testing

•	 Testing a basic Vue.js app

Technical requirements
To get started with this chapter, I recommend you read through Chapter 8, Testing and What to Test
in Vue.js 3, first, where we explored the concept of software testing and what to test from an array of
available components and methods. We will rely heavily on the knowledge from that chapter when
learning about Vue.js 3 enterprise unit testing in this chapter.

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9

Best Practices in Unit Testing146

Introduction to unit testing
Unit testing is an important step in the development phase because it helps spot errors and defects at
the development stage if done correctly.

Unit testing is a method of software testing in which the smallest testable parts of the software under
test, called units, are individually or independently tested for proper operation and to make sure the
output corresponds with the required output.

The units can be said to be individual functions, objects, methods, procedures, or modules in the
software under test.

This software testing approach is developed by software engineers to test the units of the program. It
helps software engineers to know whether individual units of the code are working properly or not.

In this section, we will examine the definition of unit testing and explore how developers can create
and manage unit tests within their enterprise-ready Vue.js 3 applications.

What is unit testing?

Unit testing is a method of verifying the smallest piece of testable code against its purpose or
requirement. This method makes sure that the smallest part of your code base is tested and made to
conform to the requirements.

It is very important to discover and fix bugs during the development stage. Unit testing is the
responsibility of developers because it is done in the development phase by the developers, and it is
the developers that create unit tests for their production-ready code.

Software developers can approach unit testing in two different ways, either writing their code before
writing unit tests or before writing their actual code, where the developer first creates a failing unit
test. The second approach is called Test-Driven Development (TDD).

When exploring the Software Development Life Cycle (SDLC) for software engineering and
development, unit testing comes under development since it is the responsibility of the developers
and serves as the base and first level of testing to ensure bug-free and defect-free software.

Introduction to unit testing 147

Figure 9.1 – SDLC

In the next section, we will examine different best practices to create and manage unit tests.

The importance and benefits of unit testing

The importance of implementing unit testing in your development pipeline cannot be overemphasized.
It has been proven to have tremendous benefits. It has also helped in detecting errors early in the
development phase. We will go through some of the major benefits and the importance of unit testing
in this section.

Unit testing is used to design robust and enterprise-ready software components that help maintain
code and eliminate issues in code units. Finding and fixing bugs during development is important
compared to discovering them in production. Unit testing helps in fixing these errors early in the
development phases.

It is an integral part of the agile software development process. During the build process and deployment,
the unit test suite is automated to run and generate reports. If any of the unit tests fail, then the QA
team should not accept that build for verification and it should be returned to the development team
for more checking and validation.

Best Practices in Unit Testing148

Unit testing saves the QA and software testing teams a lot of time. If there is a proper standard and a
well-configured, automated software testing pipeline for the enterprise application, errors and defects
will be caught during development automatically.

Developers may avoid writing unit tests due to time constraints and tight deadlines. In most cases,
they may opt to write poor unit tests just to have a 100% pass rate. This is very bad practice; it is better
to avoid writing any tests instead of writing bad unit tests just to pass.

Here are some of the benefits of writing good unit test cases:

•	 Improved code quality: The quality of code shipped to production is automatically improved
if unit testing is strictly implemented into the development pipeline and it’s done right. Unit
testing is the earliest form of testing; therefore, any bugs identified during this testing are fixed
before they are sent to the integration testing phase. The result of this approach is a robust
design and development as developers write test cases by understanding the specifications and
tasks at hand first.

•	 Detects bugs early: Unit testing is the first level of testing in software development. Therefore,
it helps in identifying and fixing bugs early. This includes flaws, missing parts in the software
requirements and specifications, or bugs in the developers’ implementation.

•	 Saves development time: Code completion takes time, especially if proper software development
practices are in use. Therefore, when there are fewer bugs and errors in the system due to the
effectiveness of unit testing, the overall development time is reduced.

•	 Easy debugging process: Unit testing helps in simplifying the testing and debugging process
of an enterprise-ready application because if the test fails at any stage, the code needs to be
debugged; otherwise, the process can continue without any obstacles.

•	 Lower cost: The cost of development, including development time, is drastically reduced when
bugs are detected and resolved during development rather than during production. Without
this testing, if the same bugs are detected at a later stage after the code integration, they become
more difficult to trace and resolve, thereby making the development more costly and last longer.

The benefits and importance of unit testing are endless. Therefore, it’s a good practice to adopt and
implement it into your enterprise-ready Vue.js 3 application development pipeline. In the next section,
we will explore the best practices for creating unit test cases.

Best practices in unit test creation
When creating unit test cases, you should follow the best practices to produce consistent unit test
cases to test every possible case properly. Consider the following points to create good test cases:

•	 Arrange, Act, and Assert (AAA)

•	 Write deterministic tests

Best practices in unit test creation 149

•	 Write good test names and descriptions

•	 Write tests before or during development (TDD)

•	 Leverage automated tests

•	 Using mocks and stubs

Let’s understand each of these points in more detail in the next subsections.

Arrange, act, and assert

When structuring your unit test suite for enterprise applications, following the AAA approach is
recommended to improve readability and easy understanding of your unit test suite. It improves
the test readability by giving it a logical flow. It can also be referred to as the Given/When/Then
(GWT) strategy.

GWT is a semi-structured way of writing down test cases. These test cases can either be manually
tested or automated using LambdaTest (https://www.lambdatest.com/automation-
testing?fp_ref=solomon26).

You can use the AAA protocol to structure your unit test cases with the following steps:

1.	 Arrange: Arrange the setup and initialization for the test.

2.	 Act: Act on the unit for a given test.

3.	 Assert: Assert or verify the outcome.

The following code snippet shows a basic example of using the AAA style to create a simple unit test case:

it('test for positive number', async () => {

   // Arrange

   const positive = 6;

   // Act

   const answer = Math.abs(positive);

   // Assert

   assert.equal(answer, positive);

 });

The preceding snippet shows where to initialize variables and create the initial setup for the given
test, then where we act on the given test, and lastly, where we assert the result of the acted-on test.

https://www.lambdatest.com/automation-testing?fp_ref=solomon26
https://www.lambdatest.com/automation-testing?fp_ref=solomon26

Best Practices in Unit Testing150

Write deterministic tests

A unit test should have consistent output whenever and wherever tested to verify the desired function.
A deterministic test should have a consistent behavior every time the test is run provided the test
code hasn’t changed.

Inconsistencies in testing can be called flakiness in tests. If your test works or passes in development and
fails with continuous integration or during QA testing, it hinders development and slows down progress.

Flakiness in tests can be avoided if deterministic test cases are written as it helps in understanding the
output of every test case quickly and reduces hours of debugging for new team members.

Write good test names and descriptions

In software engineering, one of the best practices for writing clean code is to always have a good
naming ability. As a developer, your variables, functions, methods, or classes should have good and
descriptive names.

This best practice is also extended to writing test case names. It is important to have a clean and clear
description of your test case to capture exactly when the test is supposed to implemented and the
desired output.

For example, your test case names should describe the purpose of your test cases, as shown in the
following examples:

describe("Test Names", () => {

 it("is a Vue instance", () => {});

 it("initializes with correct elements", () => {});

 it("test for positive number", async () => {});

 it('has a default message', async () => {});

 it('can change message', async () => {});

)};

Write tests before or during development (TDD)

As a professional developer, you need to embed the concept of TDD into your development process
and workflow.

TDD is a software development process that enhances our test cases and software code in parallel.

The concept of TDD contradicts the traditional development process because in TDD, developers
have to first write test code before writing the actual software code to pass the test case written. This
approach ensures that when production code is written, it always complements the test code.

JavaScript unit testing 151

Additionally, Behavior-Driven Development (BDD) is another popular testing approach. This
approach works well in rapid development settings and encourages more team collaboration to build
a shared understanding of the problem.

Regardless of what approach you decide to adopt in your project, you can still integrate continuous
integration into your development pipeline to automate your software testing processes.

Using mocks and stubs

When creating test cases, you might be tempted to perform operations on the actual code. For instance,
if you made an API call to an external API, you might want to make such calls during testing, to make
sure everything works as planned. But that wouldn’t be considered best practice. What you can do is
use the mock and stub features of any test framework.

A stub is a dummy piece of code that lets the test run without worrying about what happens to it,
while a mock is a dummy piece of code that you verify is called correctly as part of the test. In short,
they are substitutes for real, working code.

The beauty of this is that you can set them up and use them to test and verify your actual code works
properly without making any expensive API calls or carrying out database manipulation.

Leverage automation testing

As a developer, integrating automated testing into your workflow saves a lot of time when compared
to manually executing your test case every time before deployment.

You can use different automated testing frameworks to set it up, but in this chapter, we will see
how to automate unit testing with Selenium Cloud Grid (https://www.lambdatest.com/
selenium-grid-online?fp_ref=solomon26).

Before we delve into automating our test cases, let’s explore how to write a clean and proper unit test
with JavaScript.

JavaScript unit testing
As a developer, writing unit tests for your task is your responsibility. It should be part of your day-to-
day activities as you code. In JavaScript, you can write unit tests the same way you write your real
code with the use of different testing libraries.

With these testing libraries, testing the functionalities and features of your project becomes very easy
because the libraries include different assertion methods to carry out your checks.

Let’s explore some of the most popular JavaScript testing frameworks you can use to write your unit
tests, integration tests, and even end-to-end tests.

https://www.lambdatest.com/selenium-grid-online?fp_ref=solomon26
https://www.lambdatest.com/selenium-grid-online?fp_ref=solomon26

Best Practices in Unit Testing152

Popular JavaScript testing frameworks

Various frameworks are helpful for unit testing in JavaScript. They are as follows:

•	 Jest

•	 Mocha

•	 Jasmine

•	 Cypress

•	 Vitest.js

Let’s explore these frameworks in more detail in the next subsections.

Jest

Jest is one of the most popular testing frameworks for JavaScript. It was designed to mostly work
with React and React Native-based applications. It is open source and easy to get started with. Jest
reduces the extensive time-consuming configuration needed to run software testing in the frontend
with JavaScript.

It is an assertion library for JavaScript that runs on Node.js and the browser. Jest can be configured to
work with any test runner and unit testing framework, such as Mocha or Jasmine.

The growth statistics of the Jest library according to GitHub, as of the time of writing, include more
than 40k GitHub stars and about 6.3 million GitHub usage, accumulating a total of 6.4 million
points, making Jest among the most popular testing frameworks.

Mocha

Mocha is a server-side and client-side testing framework for JavaScript and Node.js. The key features
of Mocha are simplicity, flexibility, and fun. It makes asynchronous testing in JavaScript easy and
fun. Mocha is designed to run serially, allowing for flexible and accurate test reporting and coverage.

The growth statistics of the Mocha library according to GitHub, as of the time of writing, include more
than 21.6k GitHub stars and about 1.6 million GitHub usage, accumulating a total of 1.66 million,
points, making Mocha a very popular testing framework.

Jasmine

Jasmine is a popular JavaScript BDD framework for unit testing JavaScript applications. It combines
the power of speed and support for Node.js and the browser to become a robust testing framework
for BDD.

Unit testing a Vue.js 3 app 153

The growth statistics of the Jasmine library according to GitHub, as of the time of writing, include
more than 15.4k GitHub stars and about 2.4 million GitHub usage, accumulating a total of 2.5
million points, making Jasmine among the most popular testing frameworks.

Cypress

Cypress is an end-to-end JavaScript-based testing framework that changes the way developers approach
software testing. It is built on top of Mocha, making asynchronous testing simple and convenient. In
Cypress, unit tests can be configured to execute without even having to run the web server.

This feature makes Cypress the ideal tool for testing a JavaScript/TypeScript library that is meant to
be used in the browser, and setting up automated testing in your enterprise project is a breeze.

The growth statistics of the Cypress library according to GitHub, as of the time of writing, include
more than 40.2k GitHub stars and about 535k GitHub usage, accumulating a total of 575k points,
making Cypress among the most popular testing frameworks.

Vitest

Vitest is a blazing-fast unit test framework powered by Vite. It is a Vite-native unit test framework
comprising Vite reusable configs, transformers, resolvers, and plugins. It is also Jest compatible and
uses ESM, TypeScript, and JSX out of the box.

It’s fairly new and has gained popularity among developers using Vue.js and the Vite CLI. The growth
statistics of the Vitest library according to GitHub, as of the time of writing, include more than 6.4k
GitHub stars and about 24.3k GitHub usage, accumulating a total of 30.7k points.

In the next section, we will explore how to write your unit tests with JavaScript and how to run
your tests manually. Additionally, we will explore how to automate your testing suite during the
deployment pipeline.

Unit testing a Vue.js 3 app
In the previous chapter, we created a Pinterest application using Strapi for the backend and Vue.js 3
for the frontend.

Previously, we added internationalization, structured the project, and built out a complete Pinterest
clone. In this section, we will continue by using the official project we created for this book to set up
unit testing, resulting in a full-blown enterprise-ready Pinterest clone application.

You can clone the project from this repository, https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications, to jump right in.

In the previous chapter, we set up basic unit testing using Vitest and demonstrated how to implement
basic unit testing with a helper file.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications

Best Practices in Unit Testing154

In this chapter, we will explore more advanced ways of testing the units of the Pinterest clone application
we are using as the example throughout this book.

What to test

In the previous chapter, we explored in detail what to test when setting up your testing suites. In this
section, we will examine our demo software under test and specify what should be unit tested.

In general, there are two things we could test for in Vue.js components: presentation and
(optionally) behavior.

Presentation

When fetching data using Apollo Client, components can be in either the loading, success, or
error state. For each of these states, it’s a good idea to test that the presentation is what we intend
it to be.

For example, consider having a component that presents details about a specific photo (performs a
GET_PIN query) from our Pinterest clone application.

We could have a simple component such as the following:

<template>

 <div v-if="status === 'loading'">Loading photo...</div>

 <div v-else-if="status === 'error'">An error occurred

 </div>

 <div v-else>

   <img src="/src/assets/kunal-img.jpg" alt=""

     data-testid="pin"

     class="w-full h-full object-cover rounded-2xl" />

 </div>

</template>

<script setup>

import Button from '../atoms/Button.vue';

defineProps({

 photo: { type: Object, default: () => { } },

 status: { type: String, default: "Loading" }

});

</script>

Unit testing a Vue.js 3 app 155

In this scenario, we will likely want to test the following:

•	 Loading: How the component renders when it’s fetching the pin (photo)

•	 Success: How the component renders after it’s successfully fetched the pin (photo)

•	 Error: How the component renders if it was unable to fetch the pin (photo)

To demonstrate this, let’s implement a unit test against each of the states mentioned in the preceding
points. We will be using the Pin(Photo) component:

import { render } from '@testing-library/vue';

import Card from '../../components/molecules/Card.vue';

test('displays a card with success status', async () => {

 const { getByTestId } = render(Card, {

   props: {

     status: 'success',

   },

 });

 const card = getByTestId('pin');

 expect(card).toBeDefined();

});

test('displays a card with error status', async () => {

 const { getByText } = render(Card, {

   props: {

     status: 'error',

   },

 });

 const card = getByText('An error occurred');

 expect(card.textContent).toEqual('An error occurred');

});

test('displays a card with loading status', async () => {

 const { getByText } = render(Card, {

   props: {

     status: 'loading',

   },

 });

 const card = getByText('Loading photo...');

Best Practices in Unit Testing156

 expect(card.textContent).toEqual('Loading photo...');

});

Behavior (optional)

We may also choose to place behavior in our Vue.js components. In client-side architecture, we call
this interaction logic—a form of decision-making logic executed after the user interacts with the page
somehow—such as a key press or a button click.

You can also unit test the behaviors of a single component by testing different actions that are performed
on the component and making sure the component reacts to it accordingly.

Let’s test this Photo component’s click event to be sure it responds to the appropriate action:

test('clicks a create pin button', async () => {

 const { getByTestId, emitted } = render(Card);

 await fireEvent.click(getByTestId('create_pin'));

 expect(emitted()).toHaveProperty('click');

});

You can follow the preceding sample code snippet to write unit tests for all the components you have
created in your enterprise Vue.js 3 application.

In the repository of this chapter (https://github.com/PacktPublishing/Architecting-
Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9), we have
created different components and also written the unit test for them. You can clone the repository here.

In the next section, we will run the unit testing manually and how to automate the process using
LambdaTest Cloud Grid. (https://www.lambdatest.com/automation-testing/?fp_
ref=solomon26)

Running unit tests manually

To run your test, type the following command into your root terminal:

npm run test:unit

// or

yarn test:unit

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-9
https://www.lambdatest.com/automation-testing/?fp_ref=solomon26
https://www.lambdatest.com/automation-testing/?fp_ref=solomon26

Summary 157

After successfully running the test, you should be greeted with green passes for your test, as in the
following screenshot:

Figure 9.2 – Unit test passing sample

In this section, we explored best practices in unit testing a Vue.js 3 component. We discussed,
most importantly, what to test and how to implement unit testing in Vue.js 3. We demonstrated
how to unit test a Vue.js app using Vitest (https://vitest.dev/) and the Vue.js testing
library. (https://github.com/testing-library/vue-testing-library)

Summary
This chapter explored everything related to unit testing, including how to unit test a Vue.js 3 component
and the component and page methods. We also learned about unit testing tools such as Jest, Mocha,
and Vitest and how to use them to effectively unit test an enterprise project.

In this chapter, we explored the benefits, importance, and best practices in writing and executing
effective unit testing strategies. We also learned how to write unit test cases based on the presentation
and behavior of the different units of the software under test.

This chapter shows you how to create, implement, and run your unit test cases manually during the
build process and deployment.

In the next chapter, we will explore everything related to integration testing. We will cover in depth how
to perform an integration test on a Vue.js 3 component and pages. We will also learn about integration
testing tools such as Vue.js Testing Library and how to use them to test an enterprise project effectively.

https://vitest.dev/
https://github.com/testing-library/vue-testing-library

10
Integration Testing in Vue.js 3

In the previous chapter, we learned about everything related to unit testing. We learned how to unit-
test a Vue.js 3 component and the components and pages’ methods. We also learned about unit testing
tools such as Jest and Mocha and used them to effectively unit-test an enterprise project.

In this chapter, we will explore everything related to integration testing. We will learn in depth
how to perform an integration test on a Vue.js 3 component and pages. We will also learn about
integration testing tools such as Vue Test Library (https://github.com/testing-library/
vue-testing-library) and how to use them to test an enterprise project effectively.

We will cover the following key topics in this chapter:

•	 Introduction to integration testing

•	 What is integration testing?

•	 Importance of integration testing

•	 Benefits of integration testing

•	 Best practices when creating integration tests

•	 JavaScript integration testing

•	 Testing a basic Vue app

Technical requirements
To get started with this chapter, I recommend you read through Chapter 9, Best Practices in Unit Testing,
where we explored the benefits, importance, and best practices in writing and executing effective unit
testing strategies. We will rely heavily on the knowledge acquired from that chapter in this one to
learn about Vue 3 enterprise integration testing.

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-10.

https://github.com/testing-library/vue-testing-library
https://github.com/testing-library/vue-testing-library
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-10
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-10

Integration Testing in Vue.js 3160

Introduction to integration testing
Engineers in a team develop applications in isolation, and after development and unit testing each unit
during development, the next phase in the software testing phase is integration testing. This form of
testing involves testing the modules/components when they are combined/integrated to make sure
that they work according to the requirement.

It is a type of testing where the units of software modules are integrated logically and tested completely
as a group.

In this section, we will examine the definition of integration testing and explore how developers can
create and manage integration test cases within their enterprise-ready Vue 3 application.

What is integration testing?

Integration testing is a type of testing in which the different units, modules, or components of the
software under test (SUT) are combined and tested as a single entity. In addition, these modules or
units are independent of the developers or team and can be coded by different programmers.

It is also known as component testing or integration and testing (I&T).

Integration testing is the first stage of combining individual modules to form components or combined
entities, and it is aimed at testing the interfaces between the modules to expose any defects that may
arise when these components are integrated and interact with each other.

In the next section, we will examine the importance and benefits of integration testing for agile and
enterprise-level teams.

Importance of integration testing

Integration testing is a critical phase of the software testing process. It is the process of testing the
interactions and interfaces between different components or modules of a system. It is important for
several reasons:

•	 It helps to ensure that different system components work together seamlessly and as expected

•	 It helps to identify and resolve conflicts between different system components

•	 It helps to identify and resolve bugs that may not have been uncovered during unit testing

•	 It helps to identify and resolve performance bottlenecks that may not have been uncovered
during unit testing

•	 It helps ensure the system can handle the expected load and usage patterns

•	 It helps ensure the system is secure and can protect sensitive data

•	 It helps to ensure that the system can be integrated with other systems or external components

Introduction to integration testing 161

•	 It helps to ensure that the system meets the requirements and specifications defined in the
design phase

•	 It helps to identify and resolve issues with data flow and data integrity between different
system components

•	 It can help to identify and resolve issues with user interfaces (UIs) and user interactions
between different system components

•	 It can help to identify and resolve issues with third-party APIs and services that the system
may need to interact with

•	 It can help ensure the system can handle different environments and configurations, such as
different operating systems or different hardware configurations

•	 It can help ensure the system is compatible with other systems it may need to interact with,
such as databases or external services

Overall, integration testing is an essential step in the software development process that helps to
ensure the quality and reliability of the final product. It is important to conduct integration testing
early in the development process so that any issues can be identified and resolved as soon as possible.

It’s also important to note that integration testing is not limited to testing between the different
components of the system. It also includes testing the system as a whole with other external systems
it will integrate with. It’s good practice to test the integration of the system with other systems before
releasing it to production.

In the next section, let’s look at some of the benefits of integration testing.

Benefits of integration testing

Integration testing is particularly important for enterprise software systems, as they are often complex,
multi-faceted systems that need to integrate with other systems and handle large amounts of data and
transactions. Some of the benefits of integration testing for enterprise software include the following.

Improved system reliability

By testing the interactions and interfaces between different components of the system, integration
testing helps to ensure that the system is reliable and can handle the expected load and usage patterns.
This can help to reduce downtime and improve the system’s overall performance.

Reduced risk of data loss

Enterprise systems often handle large amounts of sensitive data, and integration testing can help ensure
that data is properly protected and that data integrity is maintained between different system components.

Integration Testing in Vue.js 3162

Increased scalability

Integration testing can help to identify and resolve performance bottlenecks that may not have been
uncovered during unit testing, making it easier to scale the system as needed.

Improved security

Integration testing can help to ensure that the system is secure and can protect sensitive data, reducing
the risk of data breaches and other security incidents.

Better integration with other systems

Testing a system’s integration with other systems before it is released to production can help to
ensure that the system is compatible and able to communicate with other systems that it may need
to interact with.

Better compliance

By conducting integration testing, you can ensure that the system meets the requirements and
specifications defined in the design phase, which can help to ensure compliance with industry
standards and regulations.

Better customer satisfaction and ROI

By ensuring that the system is reliable, secure, and easy to use, integration testing can help to improve
customer satisfaction and increase system adoption. Ensuring that all the system components are
working seamlessly and without bugs can help to reduce development costs, improve the system’s
performance, and increase the overall return on investment (ROI) of the system.

Improved testing efficiency

Integration testing can identify issues early in the development process, which can help to reduce the
overall time and cost of testing.

Improved software quality

By thoroughly testing the interactions and interfaces between different components of the system,
integration testing can help to ensure that the software is of high quality and free of defects.

Improved team collaboration

Integration testing often involves collaboration between different teams, such as development, testing,
and operations teams. This can help to improve communication and collaboration between teams and
ensure that the system is developed and tested to meet the needs of all stakeholders.

Introduction to integration testing 163

Improved documentation

The integration testing process can lead to better documentation of test cases and test results, which
can be used to improve the system and for future reference.

Improved business continuity

By ensuring that the system is reliable and can handle the expected load and usage patterns, integration
testing can help to ensure that the system can continue to operate in case of unexpected events,
such as hardware failures or power outages, which can help to improve business continuity and
minimize disruption.

Improved data governance

By thoroughly testing the interactions and interfaces between different system components, integration
testing can help ensure that data is properly protected and that data integrity is maintained between
different components of the system, which can help improve data governance and compliance with
data protection regulations.

In this section, we explored the benefits of integration testing to enterprise projects and how it improves
development teams’ workflows. In the next section, we will learn about some of the best practices to
put in place during integration testing.

Best practices when creating integration tests

Now let’s look are some best practices for creating effective integration tests.

Starting early

Integration testing should be started as early as possible in the development process, ideally during
the design phase. This will help to identify and resolve issues early on and ensure that the system is
developed and tested to meet the needs of all stakeholders.

Defining clear objectives

Before starting integration testing, it’s important to define the objectives of the testing clearly. This
includes identifying what the system is supposed to do, the system’s interfaces and interactions, and
the expected outcomes.

Creating a test plan

Create a test plan that outlines the scope of the testing, the test cases to be executed, and the resources
and tools needed. The test plan should also include a schedule for testing, including when testing will
be completed and when the results will be reviewed.

.

Integration Testing in Vue.js 3164

Using a modular approach

Divide the system into smaller, more manageable modules and test them separately. This will help to
identify and resolve issues more quickly and efficiently.

Using automated testing

Automated testing can help to improve testing efficiency and reduce the time and cost of testing.
Automated testing can also be used to test the system under different conditions, such as different
environments and conf﻿igurations.

Testing the system as a whole

Test the system as a whole with the other external systems it will integrate with; this will ensure that
the system is compatible and able to communicate with other systems that it may need to interact with.

Testing for security vulnerabilities

Test the system for security vulnerabilities, such as SQL injection or cross-site scripting attacks. This
will help ensure the system is secure and can protect sensitive data.

Testing for performance bottlenecks

Test the system for performance bottlenecks and identify and resolve any issues that may arise. This
will help ensure the system can handle the expected load and usage patterns.

Documenting and reviewing the results

Document the results of the testing, including any issues that were identified and how they were
resolved. Review the results and use them to improve the system and the testing process.

Continuously testing and monitoring

Continuously test and monitor the system after it’s been released to production; this will help to ensure
that the system is reliable and that any issues are identified and resolved quickly.

In this section, we explored the best practices to put in place when making use of integration testing
into an enterprise. In the next section, we will learn how to implement integration testing within the
demo project using JavaScript.

Introduction to integration testing 165

JavaScript integration testing

There are several tools that can be used to perform integration testing in JavaScript. Some popular
choices include the following.

Mocha

Mocha is a widely used JavaScript testing framework well suited for integration testing. It is highly
customizable and can be used in conjunction with other libraries, such as Chai and Sinon, to perform
various types of testing.

Cypress

Cypress is a JavaScript-based end-to-end testing framework that can be used for integration testing.
It allows developers to test the entire flow of an application from the user’s perspective, and it has
built-in support for real-time debugging, automatic waiting, and time-traveling.

TestCafe

TestCafe is an end-to-end testing tool that runs on top of Node.js. It allows you to run tests in a real
browser and is easy to set up and use. It also offers the ability to test the UI of your application, which
is useful in integration testing.

Selenium

Selenium is a browser automation tool that can be used for integration tests for web applications.
Selenium WebDriver allows you to interact with web browsers and perform tasks such as clicking
buttons, filling out forms, and navigating through pages.

Vue Test Utils

Vue Test Utils is an official testing library provided by the Vue.js team. It is a lightweight library that
provides a set of utilities for testing Vue components. It can be used in conjunction with other testing
frameworks, such as Jest or Mocha, to perform integration testing.

Avoriaz

Avoriaz is a testing library specifically designed for Vue.js components. It provides a set of tools for
testing Vue components and allows you to easily mount and interact with your components in a
testing environment.

Vue Testing Library

This is a library built for testing Vue 3 applications. It provides a set of utilities for testing Vue 3
components and allows you to easily mount and interact with your components in a testing environment.

Integration Testing in Vue.js 3166

Nightwatch

Nightwatch is an automated testing framework for web applications and websites. It can be used for
integration tests for Vue 3 applications, and it allows you to write integration tests that simulate user
interactions with an application.

As with any other tool, you can pick the one that best suits your needs and the structure of your
application. Keep in mind that some tools may be better suited for certain types of testing or certain
types of applications.

These are some of the most popular tools available; you can use any depending on your needs and
what you are trying to test.

It’s also important to note that most of these tools can be integrated with other libraries and frameworks
to extend their functionality.

In the next section, we will explore how to write your integration test with JavaScript and how to run
your test manually. We will also explore how to automate your testing suite during a deployment pipeline.

Testing a basic Vue app
In the previous chapter, we created a Pinterest application using Strapi for the backend and Vue 3 for
the frontend.

Also, we added internationalization, structured the project, implemented unit and integration testing,
and built a complete Pinterest clone. In this section, we will continue by using the official project we
created for this book to set up integration testing to make up a full-blown enterprise-ready Pinterest
clone application.

You can clone the project from the GitHub link mentioned in the Technical requirements section.

In this chapter, we will explore more advanced ways of implementing integration testing within the
Pinterest clone application we use throughout this book.

Writing a basic integration test

First, we will start by installing the new testing library for Vue 3. Since we are using Vite in the project,
we will also install the Vitest library for our test runner. You can read more about the new Vue 3 test
library at https://vitest.dev/guide/.

https://vitest.dev/guide/

Testing a basic Vue app 167

Installing the test library

As of the time of writing, @testing-library/vue (https://github.com/testing-
library/vue-testing-library) and vitest (https://vitest.dev/guide/) are
recommended for integration testing, and we will install the test libraries using the following command:

npm install -D vitest happy-dom @testing-library/vue

Next, open your vite.config.js file and add the following configuration. Note that happy-
dom is a JavaScript implementation of a web browser without its graphical UI:

import { defineConfig } from 'vite';

import vue from '@vitejs/plugin-vue';

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [vue()],

 test: {

   environment: 'happy-dom',

   globals: true,

 },

});

In the preceding code, we configured the testing library to accommodate both unit and integration
testing using the Vite library. This means that if we want to run unit and integration testing, we only
need to use a single command, as shown when running the test.

Next, let’s create a simple integration test.

Creating a basic component test

Here is a simple integration test snippet to demonstrate. This is a general integration testing example
that tests the Button component inside the Pinterest demo application:

import { render } from '@testing-library/vue';

import Button from '../../components/atoms/Button.vue';

test('mounted a button with custom label', async () => {

https://github.com/testing-library/vue-testing-library
https://github.com/testing-library/vue-testing-library
https://vitest.dev/guide/

Integration Testing in Vue.js 3168

 // The render method returns a collection of utilities to

 // query your component.

 const { getByText } = render(Button, {

   props: {

     label: 'Test',

   },

 });

 // getByText returns the first matching node for the

 // provided text, and  if button is rendered with Label from

 // props

 const button = getByText('Test');

});

The test simply renders Button with a custom label value and also checks whether we can retrieve
the custom label added during the rendering process.

Running the test

Running the test will result in four passed test cases, including the unit test we created earlier. Here’s
a command to run this test sample:

```bash

yarn test

```

Figure 10.1 – A screenshot of the general test result

In this section, we have demonstrated how to configure and structure integration testing, also known
as component testing, with Vue 3 using the latest Vitest testing library for Vue 3. We have also written

Testing integrated components 169

basic component tests to help us understand the process of writing integration tests. In the next section,
we will explore testing integrated components with Vue 3 using Vitest.

Testing integrated components
In the previous example, we tested a simple Button component to make it render properly with the
required properties. In this section, we will test a completely integrated component that combines
different individual components. Let’s get started with the following steps:

1.	 Create a file inside the tests/components directory called HomeOverivew.vue since
we want to test the integration of the home page.

2.	 Open the file and add the following testing code or clone the repository using the GitHub link
mentioned in the Technical requirements section:

import { fireEvent, render } from "@testing-library/vue";

import { describe, expect, it } from "vitest";

import HomeOverview from "../../components/templates/
HomeOverview.vue";

describe("HomeOverview.vue", () => {

 it("renders component", async () => {

   const { getByText } = render(HomeOverview);

   getByText("Home");

 });

 it("creates pin on button click", async () => {

   const { getByTestId, emitted } =

     render(HomeOverview);

      await fireEvent.click(getByTestId("create"));

      // Fireevent is from "@testing-library/vue" for

      // calling different events such as click

   expect(emitted()).toHaveProperty("click");

 });

 it("dismisses notification", async () => {

   const { getByTestId, emitted } =

     render(HomeOverview);

Integration Testing in Vue.js 3170

   await fireEvent.click(getByTestId("dismissed"));

   expect(emitted()).toHaveProperty("click");

 });

 it("displays first 14 pins", async () => {

   const { getAllByText } = render(HomeOverview);

   const card = getAllByText("Quick save and organize

                              later");

   expect(card.length).toBe(14);

 });

 it("renders Search component", async () => {

   const { getByTestId } = render(HomeOverview);

   getByTestId("search");

 });

});

In each test case, we are testing components that were added to the HomeOverview component
to demonstrate how we can use integration testing to test integrated components as one.

3.	 Next, make sure the HomeOverivew page has been rendered correctly before testing for
other test cases:

it("renders component", async () => {

   const { getByText } = render(HomeOverview);

   getByText("Home");

 });

4.	 Next, test whether the Button component renders correctly and also check whether we can
perform some actions with it. For instance, when the button is clicked, the app is supposed to
create a new pin with photos. We will test to make sure that this functionality is implemented
correctly even after integration:

 it("creates pin on button click", async () => {

   const { getByTestId, emitted } =

     render(HomeOverview);

   await fireEvent.click(getByTestId("create"));

   expect(emitted()).toHaveProperty("click");

 });

Testing integrated components 171

5.	 Next, test the notification display component found inside the Header component. We are
testing it to make sure the users can dismiss notifications, and that it is also rendered correctly
both inside the Header component and the HomeOverview component:

it("dismisses notification", async () => {

   const { getByTestId, emitted } =

     render(HomeOverview);

   await fireEvent.click(getByTestId("dismissed"));

   expect(emitted()).toHaveProperty("click");

 });

6.	 Next, also test the Card component to make sure that it displays the total amount of pins on
the home page, and also that it renders the components correctly:

it("displays first 14 pins", async () => {

   const { getAllByText } = render(HomeOverview);

   const card = getAllByText("Quick save and organize

                              later");

   expect(card.length).toBe(14);

 });

7.	 Lastly, we will test the Search component to make sure it was properly rendered for users
and is available for users to search for pins:

it("renders Search component", async () => {

   const { getByTestId } = render(HomeOverview);

   getByTestId("search");

 });

8.	 Now, let’s run the test by running the following command in our root terminal:

```bash

yarn test:component

```

After successfully performing running the test, you should be greeted with green passes for
your test, as in the following screenshot:

Integration Testing in Vue.js 3172

Figure 10.2 – A screenshot of the integration test result

With all these test cases successful, we can easily see how integration testing helps developers to test
out integrated and combined components instead of testing these components in isolation.

Summary
This chapter explored everything related to integration testing. You also learned about integration
testing tools such as Cypress, Mocha, and Vue Testing Library and used Vue Testing Library to
effectively test an enterprise project.

In this chapter, we explored the benefits, importance, and best practices in writing and executing
effective integration testing strategies. In addition, you also learned how to write integration test cases.

In the next chapter, you will learn about everything related to end-to-end testing. You will learn in
depth how to perform end-to-end testing on a Vue.js 3 component and pages. In addition, you will
also learn about end-to-end testing tools such as Cypress and Puppeteer and how to use them to test
an enterprise project effectively from end to end.

11
Industry-Standard

End-to-End Testing

In the previous chapter, we learned about everything related to integration testing. We learned in
depth how to perform an integration test on a Vue.js 3 component and pages. Additionally, we learned
about integration testing tools such as Vue Test Library and how to use them to test an enterprise
project effectively.

In this chapter, we will explore everything related to end-to-end testing (E2E). We will learn how to
perform E2E testing on a Vue.js 3 component and pages. In addition, we will learn about E2E testing
tools, such as Cypress and Puppeteer, and how to use them to perform an E2E test in an enterprise
project effectively.

In this chapter, we will cover the following key topics:

•	 Introduction to E2E testing

•	 What is E2E testing?

•	 Importance of E2E testing

•	 Benefits of E2E testing

•	 Best practices in creating E2E test

•	 JavaScript E2E testing

•	 E2E-testing a Vue app

Industry-Standard End-to-End Testing174

Technical requirements
To get started with this chapter, I recommend you to read through Chapter 10, Integration Testing in
Vue.js 3, where we explored everything related to integration testing. Also, we learned in depth how to
perform an integration test on a Vue.js 3 component and pages. We will rely heavily on the knowledge
from that chapter in this chapter to learn about Vue.js 3 enterprise E2E testing.

All the code files for this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-11.

Introduction to E2E testing
E2E is a complex testing process that assesses the working order of a complex application from start
to finish. Additionally, you can use E2E testing to work through a complete application exactly how
you intend your end users to use the product and discover any bugs before pushing the code to
production for real users.

In most organizations, E2E testing is a standard used to access the complete features of an application
after developing them in isolation with different developers in your team.

E2E testing in large teams is possible by having a central repository system that is used to build and
combine the code base. Next, E2E testing runs through the completed features and ensures they work
as intended before approving and pushing them to the production stage.

In this section, we will examine the definition of E2E testing and explore how developers can create
and manage E2E test cases within their enterprise-ready Vue.js 3 application.

What is E2E testing?
E2E testing is a methodology that assesses the working order of a complex product in a start-to-finish
process. It ensures that the application behaves as expected and that the data is maintained and flows
in the same direction as expected for each task and process.

This testing aims to replicate real user scenarios to validate the system for integration and data integrity.
The test goes through every operation the application can perform, including communicating with
external devices, to make sure the actions of the end users are replicated and tested.

In the next section, we will examine the importance and benefits of E2E testing for agile and
enterprise-level teams.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-11
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-11

What is E2E testing? 175

Importance of E2E testing

E2E testing makes it simpler to catch problems before releasing the software to end users. Additionally,
it helps managers prioritize tasks in the development backlog by identifying the importance of a
workflow to end users.

Moreover, for enterprise-level applications, E2E testing improves the user experience for multiple
application interfaces such as web, desktop, and mobile apps because user expectations are the basis
for the test cases.

E2E testing has been widely adopted because it helps reduce the overall cost of building and maintaining
software by decreasing the time it takes to test software.

It helps a team expand its test coverage by adding more detailed test cases than other testing methods
such as unit and functional testing.

It also ensures that the application performs correctly by running the test cases based on an end
user’s behavior.

Benefits of E2E testing

E2E testing is a very complex form of testing as it tests the behaviors of the end user. Therefore, it is
crucial to follow the practices outlined in the following subsections to ensure smooth testing.

Reducing risks

The E2E testing process ensures rigorous testing of the software under test at the end of each iteration,
thereby reducing the risk of future failures in production.

Consistent user experience

E2E testing involves testing the frontend. It ensures that the software under test provides a user
experience that works across multiple devices, platforms, and environments.

Reducing cost and time

The cost and the number of times you need to test enterprise applications can be reduced by
automating your E2E tests This reduces the amount of time and money it takes to maintain and
improve the application.

Increasing confidence

E2E testing not only ensures that the application functions correctly but also increases confidence in
its performance because it has been tested across multiple devices and platforms.

Industry-Standard End-to-End Testing176

Less repetitive efforts

It reduces the chances of frequent breakdowns and, ultimately, reduces repetitive testing efforts due
to more thorough and rigorous E2E testing.

Ensuring the correctness of the application

E2E is an essential software testing methodology because it validates an application at all layers – data,
business rules, integration, and presentation. Therefore, it helps to ensure the correctness and health
of the application.

In this section, we discussed the importance and benefits of E2E testing, illustrating why companies
need to integrate it into their development pipelines. In the next section, we will explore the best
practices involved in creating E2E testing.

Best practices in E2E test creation

E2E testing mimics the actions, activities, and experiences of a real user using the application. When
creating E2E test cases, you should follow these best practices to produce consistent E2E test cases to
test every possible case properly. Consider the following points to create good test cases.

Prioritizing the end use

When creating test cases, test like the user, and get into the mindset of someone using the app for the
first time. Furthermore, ask and answer some of the user’s questions such as is it easy to find all the
options? Are the features marked? Can users get what they want in fewer steps?

Prioritizing the right aspects

It’s important to prioritize what you’re testing because this can easily become cumbersome and
complex. Therefore, it’s important to prioritize business-impacted features before going over other
less important edge cases.

Making testing realistic

Sometimes, you want to make E2E testing a little realistic. In most cases, real users stop by to look
at images, or pause and watch a few videos before moving on with their actions. E2E testing should
mirror real-life interactions as much as possible.

Testing repeated user scenarios

E2E testing is very complex and requires time to test out all the possible edge cases completely. Avoid
testing every possible edge case and focus only on the most common and important scenarios.

JavaScript E2E testing 177

Error monitoring

E2E testing is a very complex process because it encompasses the walk-through of the whole application
or, sometimes, only features that have been newly added. However, the complexity can be reduced by
making sure many errors are resolved during coding before E2E testing.

Optimizing the testing environment

You can facilitate the testing process by creating an optimum test environment. Creating an optimum
test environment allows for minimal setup when it’s time to test and clear out data for your next test.

We have explored the best practices when it comes to implementing E2E testing and discussed a few
points that you must consider when building E2E testing solutions. In the next section, we will learn
more about different JavaScript E2E testing libraries.

JavaScript E2E testing
Various frameworks are helpful for unit testing in JavaScript. They are as follows:

•	 Selenium WebDriver

•	 Cypress

•	 Playwright

•	 Puppeteer

•	 Karma

Next, we will explore each of the libraries, discuss their popularities, similarities, and differences, and
look at why you should choose any of these libraries for your E2E testing solution.

Selenium WebDriver

Selenium WebDriver is the most popular E2E testing software. It’s a web framework that allows you
to execute cross-browser tests by automating web-based application testing to verify that it performs
as expected:

Industry-Standard End-to-End Testing178

Figure 11.1 – A diagram showing Selenium statistics

Some of the growth statistics of the Selenium library at the time of writing, according to GitHub
(https://github.com/seleniumhq/selenium), include more than 25.4k GitHub Stars
and about 172k GitHub Usage, making Selenium among the most popular testing frameworks.

Cypress

Cypress is an E2E JavaScript-based testing framework that changes how developers approach software
testing. It is a testing framework that does not use Selenium or WebDriver, making it faster and easy
to set up for enterprise-level testing.

This feature makes Cypress the ideal tool for testing a JavaScript/TypeScript library that is meant to
be used in the browser, and setting up automated testing with it in your enterprise project is a breeze:

Figure 11.2 – A diagram showing Cypress statistics

Some of the growth statistics of the Cypress library at the time of writing, according to GitHub
(https://github.com/cypress-io/cypress), include more than 42.1k GitHub Stars
and about 648k GitHub Usage, making Cypress among the most popular testing frameworks.

https://github.com/seleniumhq/selenium
https://github.com/cypress-io/cypress

JavaScript E2E testing 179

Playwright

Playwright enables reliable E2E testing for modern web apps. It supports all modern rendering
engines including Chromium, Webkit, and Firefox. Additionally, it supports cross-platform testing
for Windows, Linux, and macOS including local, CI, headless, or headed testing. Most importantly,
you can test with mobile web and with different programming languages:

Figure 11.3 – A diagram showing Playwright statistics

Some of the growth statistics of the Playwright library at the time of writing, according to GitHub
(https://github.com/microsoft/playwright), include more than 46k GitHub Stars,
making Playwright among the most popular testing frameworks.

Puppeteer

Puppeteer is a Node.js library developed by Google that lets you control headless Chrome programmatically.
You can automate the testing of your web applications, run testing in the browser, and see the results
in real time on your Terminal session:

Figure 11.4 – A diagram showing Puppeteer statistics

https://github.com/microsoft/playwright

Industry-Standard End-to-End Testing180

Some of the growth statistics of the Puppeteer library at the time of writing, according to GitHub
(https://github.com/puppeteer/puppeteer), include more than 81.3k GitHub Stars
and about 271k GitHub Usage, making Puppeteer among the most popular testing frameworks.

Karma

Karma is an E2E testing framework that spawns a web server that executes source code against test
code for each of the browsers connected. The results are displayed to the developers to see whether
the test case failed or passed.

The Angular team created the Karma test library to fit their ever-changing testing requirements to
make life easier:

Figure 11.5 – A diagram showing Karma statistics

Some of the growth statistics of the Karma library at the time of writing, according to GitHub
(https://github.com/karma-runner/karma), include more than 11.8k GitHub Stars
and about 2.8m GitHub Usage, making Karma among the most popular testing frameworks.

In the next section, we will explore how to write your E2E test with JavaScript and how to run your test
manually. Additionally, we will explore how to automate your testing suite during a deployment pipeline.

E2E testing a Vue.js 3 app
In the previous chapter, we created a Pinterest application using Strapi for the backend and Vue.js 3
for the frontend.

In the previous chapters, we added internationalization, structured the project, implemented unit and
integration testing, and built out a complete Pinterest clone. In this section, we will continue by using
the official project we created for this book to set up E2E testing to make up a full-blown enterprise-
ready Pinterest clone application.

You can clone the project from https://github.com/PacktPublishing/Architecting-
Vue.js-3-Enterprise-Ready-Web-Applications and jump right in.

https://github.com/puppeteer/puppeteer
https://github.com/karma-runner/karma
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications

E2E testing a Vue.js 3 app 181

In the previous chapter, we set up basic unit testing using Vitest and demonstrated how to implement
basic unit testing with a helper file.

In this section, we will explore more advanced ways of implementing E2E testing on the Pinterest
clone application we use throughout this book. We will be using Cypress for our E2E testing.

Setting up Cypress

Writing an E2E test is simpler than you think using some of the popular testing frameworks listed
previously. In this section of the JavaScript E2E testing tutorial, we will use the Cypress framework
to write E2E test cases.

We will write some E2E test cases to log a user in to our Pinterest clone application and check whether
the user details are correct or not, but before that, let’s install and configure Cypress.

Installing and configuring Cypress

You can set up a new project and install and configure Cypress by following this chapter. However,
you can also clone the chapter 11 folder from the official repository to follow along. At the time
of writing, the following libraries will need to be installed:

```bash

yarn add cypress @cypress/vue @cypress/webpack-dev-server

```

Next, add the following script to your package.json file:

```bash

   "test:e2e": "cypress open --e2e",

   "test:e2e:ci": "cypress run --e2e"

```

The new script will allow you to run only the E2E test and see the outputs without running other
test cases.

Lastly, create a cypress.config.js file in the root directory of your project and add the
following configuration:

const { defineConfig } = require("cypress");

module.exports = defineConfig({

 component: {},

 env: {

   // HINT: here we read these keys from the .env file,

Industry-Standard End-to-End Testing182

   // feel free to remove the items that you don't need

   baseUrl: "http://localhost:3000",

   apiUrl: "http://localhost:1337",

   email: "admin@test.com",

   password: "Admin111",

 },

 e2e: {

   supportFolder: false,

   supportFile: false,

   specPattern: "src/tests/e2e/**/*.spec.js",

   // eslint-disable-next-line no-unused-vars

   setupNodeEvents(on, config) {

     // implement node event listeners here

   },

   baseUrl: "http://localhost:3000",

 },

});

The variables inside env are optional and only contain variables specific to my environment variables;
you should update this to reflect your environment variables.

Next, we will configure our E2E instance to read files from a specific pattern and set supportFolder
and supportFile to false because we don’t want to include any support files or folders for
this demo.

In the next section, we will create our first e2e test file and test out our login functionalities using
E2E testing.

Creating the test file

To create the test file, open or create a Login.spec.js file inside the e2e test folder and add the
following code:

/* eslint-disable no-under */

const loginFunction = () => {

 cy.visit(`${Cypress.env("baseUrl")}/login`);

};

describe("Login tests", () => {

 beforeEach(() => {

   loginFunction();

E2E testing a Vue.js 3 app 183

   cy.wait(5000);

 });

 it("Should show an success message if the email address

     and password is valid", () => {

   cy.get("#passwordField").type(`${Cypress.env("password")}`);

   cy.get("#emailField").type(`${Cypress.env("email")}`);

   cy.get("#loginForm").then(() => {

     cy.get("#submitButton").click();

     cy.wait(1000);

     cy.get("#loggedIn").should("be.visible");

   });

 });

 it("Should show an error message if the email address and

     password is not valid", () => {

   cy.get("#emailField").type("test@test.com");

   cy.get("#passwordField").type("test");

   cy.get("#loginForm").then(() => {

     cy.get("#submitButton").click();

     cy.wait(1000);

     cy.get("#failed").should("be.visible");

   });

 });

});

Code walk-through:

Let’s walk through the code together and understand the nitty-gritty of it:

•	 Step 1: Loading the login page inside beforeEach:

First, we create the function to visit our login page using the Cypress visit() method that
will be executed inside the beforeEach hook:

const loginFunction = () => {

 cy.visit(`${Cypress.env("baseUrl")}/login`);

};

Industry-Standard End-to-End Testing184

•	 Step 2: Creating the beforeEach block:

Inside the beforeEach block, we execute loginFunction to open the login page for
every test case:

describe("Login tests", () => {

  beforeEach(() => {

    afterLoginFunction();

    cy.wait(5000);

  });

•	 Step 3: Writing each test case:

Lastly, we start writing each test case and defining what we expect to test. The following is an
example of using E2E testing to submit a button in our login form to mimic how a user will
interact with the login form:

it("Should show a success message if the email address

    and password is valid", () => {

   cy.get("#passwordField").type(`${Cypress.
env("password")}`);

   cy.get("#emailField").type(`${Cypress.env("email")}`);

   cy.get("#loginForm").then(() => {

     cy.get("#submitButton").click();

     cy.wait(1000);

     cy.get("#loggedIn").should("be.visible");

   });

 });

After writing all your test cases, you can execute your test. Before you run your test, make sure that
your development server is up and running.

Running the test

To run your test, type the following command into your root Terminal session:

```bash

yarn test:e2e

yarn test:e2e:ci

```


Summary 185

The first command will visually show you how your users will interact with your application using a
headless browser, while the last command will only show you the result of your test such as unit tests.

After successfully running the test, you should be greeted with green passes for your test, as shown
in the following screenshot:

Figure 11.6 – A screenshot of the E2E test result

Summary
This chapter explored everything related to E2E testing. We learned about E2E testing tools such as
Cypress, Karma, and Selenium and used Cypress to effectively test an enterprise project.

Additionally, we explored the benefits, importance, and best practices in writing and executing effective
E2E testing strategies. We also learned how to write E2E test cases.

Industry-Standard End-to-End Testing186

In the next chapter, we will learn how to deploy Vue.js 3 projects to the AWS cloud. We will learn
about the best practices for deploying to AWS. In addition, we will learn how enterprise companies
deploy their enterprise Vue applications.

Additionally, we will learn about and explore different deployment options and master best practices
in deploying your Vue.js 3 project to various cloud providers. We will learn how to deploy to AWS
and Azure.

Part 5:
Deploying Enterprise-ready

Vue.js 3

In this part, you will learn and explore different deployment options and master best practices to deploy
your Vue.js 3 project to various cloud providers. You will learn how to deploy to AWS and Azure.

We will explore Nuxt.JS to build and deliver enterprise-ready, server-side rendering Vue.js 3 web
applications. We will also explore Gridsome to build and deploy high-, client-side rendering Vue.js
3 applications.

In this part, we will cover the following chapters:

•	 Chapter 12, Deploying Vue.js 3 to the Cloud

•	 Chapter 13, Advanced Vue.js Frameworks

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=88eb0800-c67f-3335-0e01-61d6c97f9301
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=451c03c4-2abc-f5b6-26ae-61d6c928e87d

12
Deploying Enterprise-Ready

Vue.js 3

In the previous chapter, we explored everything related to end-to-end (e2e) testing. We learned in
depth how to perform e2e testing on a Vue.js 3 component and pages. In addition, we also learned
about end-to-end testing tools such as Cypress and Puppeteer, and how to use them to test an enterprise
project effectively.

In this chapter, we will learn how to deploy Vue.js 3 projects to the AWS cloud. We will learn the best
practices for deploying to AWS. In addition, we will learn how enterprise companies deploy their
enterprise Vue.js 3 applications.

Additionally, we will learn about and explore different deployment options and best practices to deploy
your Vue.js 3 project to various cloud providers. We will learn how to deploy the app to AWS and Azure.

We will cover the following key topics in this chapter:

•	 Introduction to CI/CD

•	 Overview of CI/CD

•	 What is a deployment pipeline?

•	 Overview of GitHub Actions

•	 Deploying to AWS

Technical requirements
To get started, I recommend reading through Chapter 11, Industry Standard End-to-End Testing, where
we explored the concept of e2e testing and what to test from an array of components and methods
available. We will rely heavily on the knowledge of that chapter in this chapter to learn about Vue.js
3 enterprise unit testing.

Deploying Enterprise-Ready Vue.js 3190

All the code files of this chapter can be found at https://github.com/PacktPublishing/
Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-12.

Introduction to CI/CD
Developing an enterprise-level application is easy, but constantly deploying newly developed changes,
bug fixes, or features to your users is a daunting process, especially if done frequently, and especially for
enterprise-ready applications. In addition, as your application, teams, and deployment infrastructure
grows in complexity, continuously releasing and deploying new changes, features, and products to
customers can be a complicated process.

To solve the complicated process of developing, testing, and releasing software quickly and consistently,
three related but distinct strategies have been created by developers and organizations to manage and
automate these processes.

In the next section, we will explore these three pillars, called CI/CD, and explain each of these strategies
and how they relate to each other. Most importantly, we will explore how to build and incorporate these
strategies into our enterprise application life cycle so that it can transform our software development
and release practices.

Overview of CI/CD
CI/CD stands for continuous integration/continuous delivery. It is a strategy that allows enterprise
teams to ship software faster and more efficiently. It enables a streamlined approach for getting products
to the market more quickly than ever before, allowing for a steady stream of code to be released into
production and providing a steady stream of new features and bug fixes through the most efficient
means of delivery.

A CI/CD pipeline is written to automate the software delivery process from the development stage
to the production environment. It builds, tests, and safely deploys a new version of an application.

The main advantage of automated pipelines is that it removes the manual errors that can be detected
during deployment and provides standardized feedback loops to developers for faster product iterations.

CI/CD is a combination of different strategies and pillars that come together to create a strong pipeline
for delivering enterprise software; we will explore these strategies in detail in this section.

https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-12
https://github.com/PacktPublishing/Architecting-Vue.js-3-Enterprise-Ready-Web-Applications/tree/chapter-12

Overview of CI/CD 191

Figure 12.1 – CI/CD

Continuous integration

CI is a process that allows developers in a team to frequently integrate their code into a shared
repository. These developers can write their code in isolation and integrate it using a continuous
integration process. This practice encourages each developer to build in isolation and integrate code
with the shared repository multiple times throughout the day.

When code is integrated early in the development cycle, developers can discover conflicts at the
boundaries between new and existing code early. This process minimizes the cost of integration by
making it an early consideration.

By implementing a proper continuous integration strategy, development teams can reduce integration
costs and respond to defects early.

For an enterprise team to succeed in robust, automated, and fast integration, deployment, and
delivery of enterprise software, the culture of frequent iteration and responsiveness to build issues
must be cultivated.

Continuous delivery

CD is an extension of continuous integration that is aimed at streamlining the software delivery process
and allowing teams to deploy their code to production with ease and assurance. It seeks to reduce the
difficulty of the deployment or release process by automating the steps necessary to deploy a build,
thus enabling code to be released securely at any time.

Deploying Enterprise-Ready Vue.js 3192

Additionally, continuous delivery is a process that allows for the automated transfer of finished code
to various settings, such as testing and development. It provides a reliable and automated method for
the code to be sent to these areas.

In addition, continuous delivery encompasses the provisioning and deployment of infrastructure,
which can be done manually and involve multiple steps. This type of delivery usually automates these
processes with the involvement of the entire team.

Continuous delivery relies on a deployment pipeline to automate the process of running increasingly
comprehensive test suites against a build, with each stage being a sequential step. If the build fails the
test, the team is notified, but if it passes, it is automatically advanced to the next stage.

It is essential for enterprise software teams to implement continuous delivery, as it automates the process
between committing code to the repository and determining whether to deploy well-tested, functional
builds to the production environment. This step helps ensure that the quality and accuracy of the
code are automated, while the ultimate decision of what to release is left up to the engineering team.

Continuous deployment

Continuous deployment is an extension of continuous delivery that deploys each build that passes
the full test cycle without manual intervention. This is beneficial, as manual deployment can cause
delays and irregular deployment. A continuous deployment system will deploy any build that has gone
through the deployment pipeline that was set up during the continuous delivery stage.

In addition, deploying your code automatically doesn’t mean that new features cannot be activated or
deactivated conditionally. In fact, continuous deployment can be configured to only deploy a specific
feature to a subset of users or be activated conditionally at a later time.

The debate surrounding continuous deployment is often focused on the safety of automated deployment
and whether the risk it poses is worth the reward. Nevertheless, it can also be advantageous for
organizations, as they can receive constant feedback on new features and quickly detect any errors
before too much time and energy is wasted.

We have explored the concept of CI/CD and how to automate deploying and releasing enterprise
projects. In the next section, we will explore the deployment pipeline and how to create an enterprise-
ready deployment pipeline for the enterprise Vue.js 3 application.

What is a deployment pipeline?
The deployment pipeline streamlines the deployment and delivery of your enterprise application. It
compiles the code, executes all the tests, and securely deploys a new version of the application.

Automating your deployment and delivery processes using deployment pipelines removes manual
errors, provides standardized feedback loops to developers, and enables fast product iterations.

What is a deployment pipeline? 193

Furthermore, when building enterprise products, your organizational structure and development
team and pattern will determine the strategies used to create your deployment pipeline, as it can
differ from project to project.

However, there are different strategies already used in enterprise projects that can be adopted and
modified if necessary.

In deployment pipelines, there are required stages (or elements) that make up a CI/CD pipeline. In the
next section, we are going to explore these elements and learn how to set up our deployment pipeline
for our demo enterprise project.

Elements of a deployment pipeline

A deployment pipeline is composed of executable instructions that any developer must follow in order
to release a new version of a software product.

The beauty of an automated deployment pipeline is that it replaces the manual process of carrying out the
exact specification laid out for the deployment and delivery of enterprise software by automating the process.

The following figure shows the typical software release stages in most enterprise software:

Figure 12.2 – Elements of a deployment pipeline

Deploying Enterprise-Ready Vue.js 3194

These stages can be performed manually, provided each step is followed accordingly. However, the
downside is enormous, as you can see here:

•	 Time-consuming: Manual deployment can take a long time to complete, especially if there are
multiple components that need to be deployed

•	 Error-prone: Manual deployment is prone to human errors, which can lead to costly mistakes
and downtime

•	 Lack of scalability: Manual deployment is not easily scalable, as it requires manual intervention
for each component that needs to be deployed

To avoid this, an automated deployment pipeline has been created to carry out the stages and alert
the responsible developer of any errors, or to send notifications through email, Slack, and so on.
Additionally, the pipeline can also notify the whole team when a successful deployment to production
has been completed.

Now, let’s examine each of the stages to understand what goes in. This will aid us in understanding
how to develop a good deployment pipeline for our enterprise Vue.js 3 application.

Source stage

At the source stage, a pipeline is typically initiated by a source code repository. Whenever there is a
change in the code, it notifies the CI/CD process to execute the related pipeline. Additionally, other
common triggers include user-initiated workflows and automated scheduled workflows.

Build stage

In the build stage, we combine the source code and all its dependencies to build a runnable instance
of the project that is intended to ship to the users. At this stage, the software is compiled or bundled
together with its dependencies.

The build phase attempts to package the project to make it deployable. If the build stage encounters
any problems, this is a sign of an underlying issue with the project’s setup or configuration and should
be taken care of right away.

Test stage

Once the build stage is finished successfully, the next step is to conduct the test stage. This stage involves
running automated tests to make sure the code is accurate and the project is functioning correctly.
This stage serves as a safeguard to ensure that any bugs that can be easily reproduced are not sent to
the end users or passed through the pipeline.

At this stage, all the test cases written by developers (including, but not limited to, unit tests, integration
tests, e2e testing, etc.) are all tested and checked to make sure they all pass before allowing the current
build to proceed to the deployment stage.

What is a deployment pipeline? 195

The testing stage is critical for identifying any issues with the code that the developer may have
overlooked. This feedback is important to the developer as it is provided while the problem is still
fresh in their mind. If any failures occur during the test stage, they can reveal problems in the code.

Deploy stage

Prior to this stage, the pipeline has created a functioning version of the new code or modifications
that have passed all the predetermined tests and is now ready to deploy it.

Generally, there are multiple deployment environments that have been established for the development
team, such as a “staging” environment for the product team, a “development” environment for the
development team, and a “production” environment for the end users.

Depending on the team, organization, and model chosen, various deployment environments can
be established. Teams that have adopted the Agile model of development, which is based on tests
and real-time observation, often deploy to the staging environment for further manual testing and
examination before pushing out accepted modifications to production for the end users.

Overview of a deployment pipeline

In this section, we are going to explore a practical example of a deployment pipeline. Pipelines are
the reflection of the complexity of a project. Therefore, configuring a pipeline that runs on every code
change will save a team many pains and repetitive tasks in the future.

The following figure shows a clear example of a deployment pipeline and the different jobs that need
to be performed.

The source stage is triggered when changes are pushed to a specific branch that the CI/CD is
activated on and it moves to the build stage where it compiles that code using a compiler, if any, or
uses a docker build process to build the project’s image.

Next, the testing stage runs all the necessary and activated test cycles, such as unit tests, integration
tests, and end-to-end tests.

After successful testing, the pipeline moves to the deploy stage, where the code is deployed to a live
staging environment for further testing before finally deploying to the production environment.

Deploying Enterprise-Ready Vue.js 3196

Figure 12.3 – Example of a deployment pipeline

In the preceding figure, we have explored the overview of a deployment pipeline, the different stages,
and what goes under the hood of each different stage. In this section, we have explored deployment
pipelines and the different stages that are involved in them. Next, we will discuss how to deploy our
Pinterest demo to the AWS cloud using GitHub Actions.

Overview of GitHub Actions
In the world of CI/CD, there are numerous tools have been created to automate the process of building,
testing, and deploying projects. GitHub Actions happens to be one of those tools and has greatly
gained popularity.

GitHub Actions is a CI/CD platform that allows developers to automate the process of building,
testing, and running deployment pipelines.

GitHub Actions became popular because it is directly integrated into GitHub and can be configured
to create workflows that build and test every pull request to your repository or deploy merged pull
requests to production.

There are tons of concepts to learn about GitHub Actions: the different terminologies, concepts,
benefits, and advantages of using GitHub Actions over other CI/CD platforms. You can learn all this
from the official documentation at https://docs.github.com/en/actions/learn-
github-actions/understanding-github-actions.

Nevertheless, we will show you how to create a deployment pipeline for the Pinterest demo project
we developed in previous chapters.

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Overview of GitHub Actions 197

Deploying an enterprise project is tedious and requires lots of checks to make sure that frequent bugs
do not surface in production.

There are many factors to check before deploying an enterprise project, from linting, formatting, and
styling, to testing. The list is endless and sometimes depends on your team and how the development
workflow is set up.

In the next section, we are going to explore the different stages or checks the project needs to pass
before deploying to production.

Jobs in the deployment pipeline

The jobs in the deployment pipeline vary from project to project and from team to team. In the
following subsection, we look at some of the important jobs you can build into your deployment
pipeline to completely check your project before deploying to production.

Linting (Eslint, Stylelint, Prettier)

Linting is a process in which a linter program reviews the source code of a particular programming
language or code base to detect any potential issues such as errors, bugs, stylistic errors, and suspicious
constructs. This is beneficial in recognizing both common and uncommon mistakes that can be
made when coding. Furthermore, linting will go through your source code to identify any formatting
discrepancies, check for compliance with coding standards and conventions, and pinpoint potential
logical errors in your program.

Also, linting helps with developer experience in a team by creating a consistent code base throughout
the development team.

We are going to set up linting in our pipeline to enforce consistency between the style guide, formatting,
and naming conventions in our deployment pipeline, like so:

lint:

  runs-on: ubuntu-latest

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn lint

Lighthouse budget checks

Lighthouse is an open source, automated tool for improving the quality of web pages. This tool allows
you to run tests against web pages (public or requiring authentication). It helps developers audit web
pages for performance, accessibility, SEO, and more.

Deploying Enterprise-Ready Vue.js 3198

In addition, you can automate this process by adding it to your deployment pipeline to test for
performance of your web page before deploying it to the users. This process allows enterprise-ready
application developers to automate the process of testing the performance of the application in real time.

The action allows us to set numerous options, including the following:

•	 Testing against multiple paths

•	 Providing a budget path

•	 The number of runs (how many times the CI should audit an URL)

We are going to set up the Lighthouse bot (https://github.com/ebidel/lighthousebot)
with GitHub Actions to audit our deployment and User Experience (UX) integrity.

Here is a snippet of the job setup for Lighthouse:

lighthouse:

   runs-on: ubuntu-latest

   needs: deploy

   steps:

     - uses: actions/checkout@v2

     - name: Run Lighthouse on urls and validate with

             lighthouserc

       uses: treosh/lighthouse-ci-action@v7

       with:

         urls: |

           ${{ needs.deploy.outputs.preview-url }}

         budgetPath: ./budget.json

         runs: 3

The preceding code is used to add the Lighthouse plugin to the deployment pipeline, and the plugin
uses the actions/checkout plugin to access the repository workspace in other to access the
budget.json file, which contains the task that Lighthouse should perform. This Lighthouse GitHub
Action is extremely beneficial for websites that depend on Google search traffic. If not addressed
early on, it is very common for the bundle sizes to become larger as a website is developed, resulting
in a lower Lighthouse score. This action allows us to monitor any discrepancies with each commit.

Automated software testing

Software testing is a vital factor for determining the status of your enterprise application and making
sure it conforms to the project requirements. As explored in the previous chapters, we have developed
three major types of software testing and have practiced how to create better testing suites for our
Pinterest application demo.

https://github.com/ebidel/lighthousebot

Overview of GitHub Actions 199

Therefore, we are going to set up three jobs to run the entire software testing suites for our demo
application. In our demo, the software testing suite comprises the following:

•	 Unit testing

•	 Integration (component) testing

•	 E2e testing

The job will run each of these tests and respond accordingly. If the test fails, it will pause the deployment
and report the problem to the development team via Slack notifications or emails. Otherwise, if the
test passes, it will continue to the next stages.

Here is the snippet of all the test setups:

unit_test:

  runs-on: ubuntu-latest

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:unit

component_test:

  runs-on: ubuntu-latest

  needs: unit_test

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:component

e2e_test:

  runs-on: ubuntu-latest

  needs: component_test

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:e2e

Deploying Enterprise-Ready Vue.js 3200

The script sets up the testing stage, which contains scripts to run different testing cycles such as unit
testing, integration testing, and e2e testing. In each of the pipeline jobs, we use actions/checkout
to check out the workspace repository, and next, we run the yarn command to install all the packages
before proceeding to run the test command.

Netlify deployment for staging

Netlify is a comprehensive platform that enables you to integrate your preferred tools and APIs to
construct the fastest websites, stores, and applications for the composable web. It allows you to utilize
any frontend framework to construct, preview, and deploy to the worldwide network from Git.

You can deploy your enterprise application to several environments, such as development, staging,
and production, depending on your team’s setup.

GitHub Actions allows you to create several workflows for deploying to these different environments.
Within each environment, you can set up different jobs to be performed. For instance, you might
not want to check for Lighthouse performance again since it was already tested when deploying to
staging environments.

Here is a snippet to set up the job to deploy to Netlify:

deploy:

   runs-on: ubuntu-latest

   needs: e2e_test

   steps:

     - uses: actions/checkout@v2

     - name: Deploy to Netlify

       uses: nwtgck/actions-netlify@v1.2

       id: deploy-to-netlify

       with:

         publish-dir: './dist'

         production-branch: master

         github-token: ${{ secrets.GITHUB_TOKEN }}

         deploy-message: "Deploy from GitHub Actions"

         enable-pull-request-comment: false

         enable-commit-comment: true

         overwrites-pull-request-comment: true

       env:

         NETLIFY_AUTH_TOKEN: ${{ secrets.NETLIFY_AUTH_TOKEN

                              }}

         NETLIFY_SITE_ID: ${{ secrets.NETLIFY_SITE_ID }}

Creating the deployment pipeline with GitHub Actions 201

       timeout-minutes: 1

   outputs:

     preview-url:

       ${{ steps.deploy-to-netlify.outputs.deploy-url }}

The preceding script uses the Netlify GitHub Action plugin to deploy the Vue.js 3 application to
Netlify. It requires a Netlify token and secrets (which are added in the Secrets section of our GitHub
repository) and finally, it provides the preview URL after deployment.

In the next section, we are going to create a complete deployment pipeline with GitHub Actions to
set up a staging application for more manual testing before pushing it to the master branch, which
will trigger the production deployment pipeline.

Creating the deployment pipeline with GitHub Actions
To create a deployment pipeline with GitHub Actions, we need to create configuration files for each
pipeline configuration environment.

Follow the steps mentioned next to create your first deployment pipeline for your staging environment
using GitHub Actions.

Open the Pinterest demo application or clone it from the official repository for this chapter to see a
complete setup of the GitHub Actions.

If you’re following along, create a new file called staging.yml inside the .github/workflows folder.

It’s important to note that the name of the folders must be exactly the same for GitHub Actions to
pick the configuration up when pushing to your repository.

Pipeline for the staging environment

Open the staging.yml file and add the following scripts to create a deployment pipeline for the
staging environment:

on:

pull_request:

  branches:

    - chapter-12

jobs:

lint:

  runs-on: ubuntu-latest

  steps:

    - uses: actions/checkout@v3

Deploying Enterprise-Ready Vue.js 3202

    - run: |

        yarn

        yarn lint

unit_test:

  runs-on: ubuntu-latest

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:unit

component_test:

  runs-on: ubuntu-latest

  needs: unit_test

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:component

e2e_test:

  runs-on: ubuntu-latest

  needs: component_test

  steps:

    - uses: actions/checkout@v3

    - run: |

        yarn

        yarn test:e2e

deploy:

   runs-on: ubuntu-latest

   needs: e2e_test

   steps:

     - uses: actions/checkout@v2

     - name: Deploy to Netlify

       uses: nwtgck/actions-netlify@v1.2

Creating the deployment pipeline with GitHub Actions 203

       id: deploy-to-netlify

       with:

         publish-dir: './dist'

         production-branch: master

         github-token: ${{ secrets.GITHUB_TOKEN }}

         deploy-message: "Deploy from GitHub Actions"

         enable-pull-request-comment: false

         enable-commit-comment: true

         overwrites-pull-request-comment: true

       env:

         NETLIFY_AUTH_TOKEN: ${{ secrets.NETLIFY_AUTH_TOKEN }}

         NETLIFY_SITE_ID: ${{ secrets.NETLIFY_SITE_ID }}

       timeout-minutes: 1

   outputs:

     preview-url:

       ${{ steps.deploy-to-netlify.outputs.deploy-url }}

lighthouse:

   runs-on: ubuntu-latest

   needs: deploy

   steps:

     - uses: actions/checkout@v2

     - name: Run Lighthouse on urls and validate with

             lighthouserc

       uses: treosh/lighthouse-ci-action@v7

       with:

         urls: |

           ${{ needs.deploy.outputs.preview-url }}

         budgetPath: ./budget.json

         runs: 3

In this section, we discussed in detail how to automate the process of deploying your enterprise
applications. We learned about deployment pipelines and how to create one with GitHub Actions. In
the next section, we will learn how to deploy our app to AWS (Amazon Web Services) production
by automating the process using deployment pipelines.

Deploying Enterprise-Ready Vue.js 3204

Deploying to AWS
In this section, we are going to implement continuous deployment for the Vue.js 3 application with
GitHub Actions and AWS App Runner.

This process can be triggered manually after thoroughly checking the staging application to make
sure it satisfies all requirements before pushing it to production. However, it can also be automated
to happen immediately after the staging is completed.

In this demo, we are going to create the deployment pipeline for deploying to the AWS production
server using AWS App Runner and also automate the process at once.

Important note
It’s advisable to trigger the deployment process manually, which gives room to manually check
all the requirements on the staging environment before deploying a new release to production.

To deploy to AWS, you will need an AWS account and an AWS IAM account with proper permissions.
In this section, we explored how to create pipelines and deploy our project to AWS. In the next
section, we will continue deploying our project using Docker and the Dockerfile we created in the
previous chapters.

Using Docker

In Chapter 7, Dockerizing a Vue 3 App we discussed the nitty-gritty involved in Dockerizing your Vue.
js 3 project. In addition, we learned about the best practices and industry standards to Dockerize and
deploy an enterprise Vue.js 3 web application.

We will use the Dockerfile we created for this project so that we can run it on AWS infrastructure as
a containerized application.

Update the Dockerfile we created before with the following code snippet:

Use the official Node.js 14 Alpine image from https://hub.
docker.com/_/node.

Using an image with specific version tags allows
deterministic builds.

FROM node:fermium-alpine3.14 AS builder

Create and change to the app directory.

Deploying to AWS 205

WORKDIR /app

Copy important root files to the builder image.

COPY package*.json ./

Install production dependencies.

RUN npm install

Copy the Vue 3 source to the container image.

COPY . .

build app for production with minification

RUN npm run build

Production stage

FROM nginx:stable-alpine as production-stage

Copy the Vue 3 source to the container image.

COPY --from=builder /app/dist /usr/share/nginx/html

VOLUME /app/node_modules

EXPOSE 80

Run the Vue service on container startup.

CMD ["nginx", "-g", "daemon off;"]

This is the same Dockerfile we used in the previous chapter to Dockerize our project. You can refer
back to the chapter to learn more about Dockerizing your Vue.js 3 application.

The base image will be nginx:stable-alpine and the application will be listening on port 80. For
step-by-step Dockerizing guidelines, please refer to the official documentation from Vue.js at https://
v2.vuejs.org/v2/cookbook/dockerize-vuejs-app.html?redirect=true.

https://v2.vuejs.org/v2/cookbook/dockerize-vuejs-app.html?redirect=true
https://v2.vuejs.org/v2/cookbook/dockerize-vuejs-app.html?redirect=true

Deploying Enterprise-Ready Vue.js 3206

You can test the application container using the following Docker Compose command since we have
already defined the docker-compose.yml file in Chapter 7, Dockerizing a Vue 3 App:

docker build -t vue-paper-dashboard .

docker run -dt --name vue-paper-dashboard -p 8080:80 vue-paper-
dashboard:latest

After running the application container successfully, you should be able to access the dashboard via
the same address as the npm run dev command. Next, let’s provision AWS resources.

Provisioning AWS resources

We will use GitHub Actions to deploy our Vue.js 3 application to AWS continuously, so we need to
create an IAM account and a user-managed role on AWS, which will be used in the next steps.

Creating an IAM account

This IAM account will be used by GitHub Actions agents. Access the console at https://us-east-1.
console.aws.amazon.com/iamv2/home#/home and create an IAM account and a user-
managed role on AWS.

Figure 12.4 – Creating a new user in IAM for GitHub Actions

https://us-east-1.console.aws.amazon.com/iamv2/home#/home
https://us-east-1.console.aws.amazon.com/iamv2/home#/home

Deploying to AWS 207

Click on the Next: Permissions option and click the Create User button. Lastly, click on Download.
csv to download the credential for the new user and save it somewhere—we will need to use it soon.

Creating a role for the IAM user

In this demonstration, we will be making a new role called app-runner-service-role and
attaching the AWSAppRunnerServicePolicyForECRAccess policy. This role will be used
by AWS App Runner services to give them access to Elastic Container Register (ECR) in order to
manage our Docker image.

To create a service role, follow these steps:

1.	 Click on the Role menu.

2.	 Click on the Create Role button, select the Custom Trusted Policy option, and enter the
following JSON:

{

   "Version": "2012-10-17",

   "Statement": [

       {

           "Effect": "Allow",

           "Principal": {

               "Service":

                 "build.apprunner.amazonaws.com"

           },

           "Action": "sts:AssumeRole"

       }

   ]

}

This code snippet is a JSON file that is used to create a custom trusted policy for deploying to
Amazon Elastic Container Service (ECS).

After successfully creating app-runner-service-role, as shown in the following figure,
make sure to copy and note the Amazon Resourse Name (ARN), as it will be used later.

Deploying Enterprise-Ready Vue.js 3208

Figure 12.5 – Creating app-runner-service-role

In this section, we worked through the step-by-step process of creating app-runner-service-
role and the Amazon IAM permission for ECS deployment. In the next section, we will be creating
a policy for the IAM user.

Creating a policy for the IAM user

Navigate to the github-vue-pinterest-demo IAM permission and attach the following
inline policy, which will grant permission to GitHub Actions (via the IAM role) to work with ECR
and App Runner:

{

   "Version": "2012-10-17",

   "Statement": [

       {

           "Sid": "VisualEditor0",

           "Effect": "Allow",

           "Action": "apprunner:*",

           "Resource": "*"

       },

       {

Deploying to AWS 209

           "Sid": "VisualEditor1",

           "Effect": "Allow",

           "Action": [

               "iam:PassRole",

               "iam:CreateServiceLinkedRole"

           ],

           "Resource": "*"

       },

       {

           "Sid": "VisualEditor2",

           "Effect": "Allow",

           "Action": "sts:AssumeRole",

           "Resource": "{ENTER_YOUR_SERVICE_ROLE_ARN_HERE}"

       },

       {

           "Sid": "VisualEditor3",

           "Effect": "Allow",

           "Action": [

               "ecr:GetDownloadUrlForLayer",

               "ecr:BatchGetImage",

               "ecr:BatchCheckLayerAvailability",

               "ecr:PutImage",

               "ecr:InitiateLayerUpload",

               "ecr:UploadLayerPart",

               "ecr:CompleteLayerUpload",

               "ecr:GetAuthorizationToken"

           ],

           "Resource": "*"

       }

   ]

}

By updating the IAM policy to be more specific (i.e., ARN-specific instead of wildcard), the security
concerns associated with the preceding JSON can be addressed by creating a policy and attaching it
to the IAM user.

Deploying Enterprise-Ready Vue.js 3210

Creating an ECR private repository

We’re almost there; one final step is to create a private repository on ECR to manage our Docker
images. Add a repository name of your choice into the box provided, and click on the Create button,
leaving the remaining options as their defaults.

Figure 12.6 – Creating a private repository named vue-pinterest-demo

Deploying to AWS 211

After creating your ECR instance, head over to your GitHub repository and add all the secrets and
environment variables needed to deploy your application.

In this section, we created the ECR instance and added our secrets to our GitHub repository, along
with all the environment variables needed. In the next section, we will look at how to work with
GitHub Actions to automate the deployment process.

Working with GitHub Actions

In this section, we will be working with GitHub Actions and automating the process of deploying your
application to Amazon ECR. We will start by adding the Amazon secrets to our GitHub repository.
Follow these steps to add your secrets:

1.	 Go to Settings | Secrets | Actions in your GitHub repository and add all the necessary
secret variables.

2.	 Open the new_user_credentials.csv file you downloaded when you created the
IAM user.

3.	 Copy the values for AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and paste
them into your GitHub Secrets as your environment variable.

4.	 Additionally, you can use us-east-1 for AWS_REGION and your ARN of app-runner-
service-role for ROLE_ARN.

After adding your credentials successfully, in the next section, we will create a pipeline for deploying
the enterprise project to AWS App Runner using ECR to manage our Docker images.

Pipeline for the production environment

Open the production.yml file and add the following scripts to create a deployment pipeline for
the production environment:

name: PRODUCTION - Deploy container to AWS App Runner

on:

 push:

   branches:

     - master

 workflow_dispatch: # Allow manual invocation of the

                    # workflow

env:

 ENVIRONMENT_NAME: production

 ECR_REPOSITORY_NAME: vue-pinterest-demo

jobs:

Deploying Enterprise-Ready Vue.js 3212

 deploy:

   runs-on: ubuntu-latest

   steps:

     - name: Checkout

       uses: actions/checkout@v2

       with:

         persist-credentials: false

     - name: Configure AWS credentials

       id: aws-credentials

       uses: aws-actions/configure-aws-credentials@v1

       with:

         aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

         aws-secret-access-key:

           ${{ secrets.AWS_SECRET_ACCESS_KEY }}

         aws-region: ${{ secrets.AWS_REGION }}

     - name: Login to Amazon ECR

       id: ecr-login

       uses: aws-actions/amazon-ecr-login@v1

     - name: Build, tag, and push image to Amazon ECR

       id: build-image

       env:

         ECR_REGISTRY: ${{ steps.ecr-login.outputs.registry }}

         ECR_REPOSITORY: ${{ env.ECR_REPOSITORY_NAME }}

         IMAGE_TAG: ${{ github.sha }}

       run: |

         docker build -t

         $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .

         docker push

         $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG

         echo "::set-output name=

           image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"

Summary 213

     - name: Deploy to App Runner

       id: deploy-app

       uses: awslabs/amazon-app-runner-deploy@main

       with:

         service: erp-app-${{ env.ENVIRONMENT_NAME }}

         image: ${{ steps.build-image.outputs.image }}

         access-role-arn: ${{ secrets.ROLE_ARN }}

         region: ${{ secrets.AWS_REGION }}

         cpu : 1

         memory : 2

         port: 80

         wait-for-service-stability: false

     - name: App Runner output

       run: echo "App runner output

         ${{ steps.deploy-app.outputs.service-id }}"

If everything is successful, navigate to the App Runner service console; there will be a service with
the name you specified. You can click on the default domain name to preview your application or set
up a custom domain name.

Figure 12.7 – Preview of the Pinterest demo application

Summary
In this chapter, we learned how to deploy Vue.js 3 projects to the AWS cloud and some of the best
practices for deploying to AWS. We explored continuous integration and continuous delivery by
exploring deployment pipelines, showing the different deployment staging, and how to configure
each of them to perform specific jobs. We also examined how each stage performs and how to deploy
to a staging environment.

Additionally, we explored different deployment options and how to deploy using Docker with Amazon
ECR. We learned practically how to create an account and set up Amazon ECR with Docker and finally,
we implemented automated deployment using CI/CD, Docker, Amazon ECR, and GitHub Actions.

Deploying Enterprise-Ready Vue.js 3214

In the next chapter, we will explore the definitive guide to Nuxt.js. You will learn the nitty-gritty
of Nuxt.js and how to build and deliver enterprise SSR projects with Vue.js 3. We will explore the
definitive guide to Gridsome, and you will learn the nitty-gritty of Gridsome and how to build and
deliver enterprise CSR projects with Vue.js 3.

13
Advanced Vue.js Frameworks

In the previous chapter, we explored how to deploy Vue.js 3 projects to AWS Cloud. We learned about
the best practices for deploying to AWS. In addition, we learned how enterprise companies deploy
their enterprise Vue applications.

This chapter explores a definitive guide to Nuxt.js. We will learn about the nitty-gritty of Nuxt.js and
how to build and deliver enterprise SSR projects with Vue.js 3. Additionally, we will explore a definitive
guide to Gridsome where you will learn about the nitty-gritty of Gridsome and how to build and
deliver enterprise CSR projects with Vue.js 3.

In this chapter, we will cover the following key topics:

•	 Introduction to Vue frameworks

•	 Top Vue frameworks

•	 Understanding Nuxt.js and how it works

•	 Benefits of Nuxt.js

•	 Creating a Nuxt.js app

•	 What is Gridsome?

•	 What is Gridsome used for?

•	 How does Gridsome work?

•	 Benefits of Gridsome

•	 Creating a Gridsome app

Advanced Vue.js Frameworks216

Technical requirements
To get started with this chapter, you should read through Chapter 12, Deploying Enterprise-Ready
Vue.js 3, where we learned how to deploy Vue.js 3 projects to the AWS cloud and some of the best
practices for deploying to AWS. Additionally, we explored different deployment options and mastered
best practices in deploying our Vue.js 3 project to AWS. We will rely heavily on the knowledge from
that chapter in this chapter to learn about more advanced Vue frameworks.

Introduction to Vue frameworks
A single framework cannot solve all the problems of frontend engineering, as it will become bloated
and very heavy to load. Vue.js is not exempt; there are some issues that are not completely out-of-
the-box with Vue.js. Also, it will require harder configuration and can lead to a waste of development
time to implement some features into Vue.js right out of the box.

The pressing needs of developers make Vue.js the framework of all frameworks. In recent years, after
the release of the Vue.js framework, we have noticed a good number of other frameworks that have
been created out of Vue.js.

These frameworks offer different options to meet development needs such as Server-Side Rendering
(SSR), Static Site Generators (SSGs), Progressive Web Apps (PWAs), and more.

Frameworks can be divided into four distinct groups based on their purpose and capabilities. These
include the following:

•	 Vue.js UI frameworks: These provide tools to create modern, responsive websites

•	 Mobile frameworks: These help to construct hybrid mobile web apps

•	 Static site frameworks: These generate static websites

•	 SSR frameworks: These are used to create SSR applications

In this section, we are going to explore the top Vue.js frameworks, and later in this chapter, we will
explore the top two frameworks in more detail.

Top Vue frameworks

There are various Vue.js frameworks available for developers to utilize when creating universal Vue
applications. Let’s explore some of them in the following subsections.

Vue UI frameworks

Creating an attractive and user-friendly UI is a key part of frontend development. If the design of the
interface is not appealing or easy to use, it will be hard to keep a consistent user base.

Introduction to Vue frameworks 217

When designing a UI for a large enterprise product, it is beneficial to utilize a Vue UI framework that
offers pre-made Vue components and elements to create an attractive frontend.

The top UI component frameworks for Vue are as follows:

•	 Bootstrap Vue

•	 Vuetify

•	 Quasar Framework

•	 Vue Material

You can compare the popularity of each of the frameworks using this npm trends link: https://
npmtrends.com/bootstrap-vue-vs-quasar-vs-vue-material-vs-vuetify.

Mobile frameworks

Over the years, Vue.js has gained popularity in hybrid and robust web app development including
hybrid mobile development according to Monocubed (https://www.monocubed.com/blog/
why-vuejs-gaining-popularity/).

However, both hybrid and native mobile development can also be achieved with Vue.js using some of the
mobile frameworks listed here in conjunction with other mobile development libraries and frameworks:

•	 Vue Native

•	 Vux

•	 Mint UI

You can compare the popularity of each of the frameworks using this npm trends link: https://
npmtrends.com/mint-ui-vs-vue-native-core-vs-vux.

Static site frameworks

A SSG utilizes templates and raw data to create static HTML pages. One of the advantages of this
is that the website loads in the same manner each time, and the content does not vary dynamically,
meaning that the web pages do not need to be coded separately.

The following is a list of Vue frameworks used to generate static websites:

•	 Vue Press

•	 Gridsome

•	 Nuxt.js

Moreover, it’s important to note that Nuxt.js can be used to generate static websites. However, that is
not the main focus of Nuxt.js.

https://npmtrends.com/bootstrap-vue-vs-quasar-vs-vue-material-vs-vuetify
https://npmtrends.com/bootstrap-vue-vs-quasar-vs-vue-material-vs-vuetify
https://www.monocubed.com/blog/why-vuejs-gaining-popularity/
https://www.monocubed.com/blog/why-vuejs-gaining-popularity/
https://npmtrends.com/mint-ui-vs-vue-native-core-vs-vux
https://npmtrends.com/mint-ui-vs-vue-native-core-vs-vux

Advanced Vue.js Frameworks218

You can compare the popularity of each of the frameworks using this npm trends link: https://
npmtrends.com/gridsome-vs-nuxt-vs-vuepress.

SSR frameworks

According to the official documentation (https://vuejs.org/guide/scaling-up/ssr.
html#why-ssr), SSR applications have better and faster time-to-content conversion rates, better
SEO, and the same unified language and declarative component-oriented metal model for developing
your entire application.

A Vye.js application rendered server-side allows your application codes to run on both the server and
client side as opposed to SSGs, which will only run on the client side.

The following is a list of Vue frameworks used to implement SSRs:

•	 Nuxt.js

•	 Quasar

•	 Vite SSR

You can compare the popularity of each of the frameworks using this npm trends link: https://
npmtrends.com/nuxt-vs-quasar-vs-vite-ssr.

In this section, we explored the top Vue.js frameworks and their different categories. In the next
section, we will take a deep-dive into Nuxt.js and see how it works.

Understanding Nuxt.js and how it works
Nuxt.js is an open source, Vue.js-based framework that provides developers with the tools to create
frontend projects with confidence. It is designed to make web development simpler and more powerful,
and it also offers server-side rendering capabilities to help developers manage complex configurations
for asynchronous data, middleware, and routing:

Figure 13.1 – The official Nuxt.js logo

Vue.js applications can be organized using a well-known architecture, which can be used to create
either basic or complex applications. Furthermore, this structure can help to improve the development
of Vue.js applications.

In this section, we will learn about the different use cases of Nuxt.js and why you should consider
switching to Nuxt.js.

https://npmtrends.com/gridsome-vs-nuxt-vs-vuepress
https://npmtrends.com/gridsome-vs-nuxt-vs-vuepress
https://vuejs.org/guide/scaling-up/ssr.html#why-ssr
https://vuejs.org/guide/scaling-up/ssr.html#why-ssr
https://npmtrends.com/nuxt-vs-quasar-vs-vite-ssr
https://npmtrends.com/nuxt-vs-quasar-vs-vite-ssr

Understanding Nuxt.js and how it works 219

Uses of Nuxt.js

With Nuxt.js, you’re limitless in terms of the type of applications you can build, and Nuxt.js has been
used to develop high-performing and SEO-focused websites. In the following subsections, we will
look at the most popular types of websites you can use to build with Nuxt.js.

Statically generated pages

Statically generated pages are websites that do not require any outside data sources, as the content
is already included in the HTML. Nuxt.js can be used to create statically generated pages, such as
portfolios, demo sites, or tutorial pages.

SPAs

A single-page application (SPA) is a type of frontend development that retrieves data from an external
source and displays it on a user’s device. It is not surprising that many popular JavaScript frameworks
such as React.js, Vue.js, and Angular are all SPA frameworks.

The HTML 5 history Application Programming Interface (API) and the location hash are utilized to
create SPA routing systems. This capability allows developers to alter a website’s URL without needing
to reload the entire page.

Universal applications

This part of Nuxt.js is my favorite because almost all the applications I have developed with Nuxt.js
have been universal applications.

A universal application is a technique that utilizes SSR to obtain client-side data on the server before
completely displaying the page on the client’s web browser.

SSR is built into Nuxt.js right out of the box, and it solves the tedious configurations that are involved
in activating and enabling SSR in Vue.js.

Nuxt.js can be used to resolve the existing SSR issue in Vue.js, which is beneficial for SEO and can
even be extended to create a universal application that allows for a single code base to be used for
both the frontend and the backend of a monolithic application.

These were just some of the categories of applications you can use to build with Nuxt.js. In the next
section, we are going to explore how Nuxt.js actually works.

How does Nuxt.js work?

Depending on your settings, Nuxt.js can operate in two different ways. If you enable SSR or use the
universal mode, it will function in the same manner as a server-side framework. This means that every
time a user visits your website, the requests are processed on the server, and a server is required to
render and deliver the page.

Advanced Vue.js Frameworks220

However, if client-side rendering is enabled or universal mode has not been activated, the content
and the pages are rendered in the browser using JavaScript. This approach has the fastest load time
and performs well in terms of speed and page performance.

The Nuxt.js lifecycle gives a high-level overview of the different parts of the framework, their order of
execution, and how they work together. Also, it describes what happens after the build phase, where
your application is bundled, chunked, and minified.

There are three main actions and methods used in Nuxt.js depending on whether you enabled SSR
or not:

•	 The nuxtServerInit action is the initial hook that is executed on the server side if a
Vuex store is enabled. It is used to fill the store and is only called if the store has been enabled.
Additionally, this hook can be used to dispatch other actions in the Vuex store on the server.

•	 validate() is a function that validates the dynamic parameters of a page component. It is
called before rendering the page components.

•	 AsyncData and Fetch are functions utilized to acquire data and display it on the server
side (AsyncData) or to obtain data and fill the store before rendering the page (Fetch).

Here is a quick summary of how your requests are processed when you visit a Nuxt.js website. When
Nuxt.js receives an initial page visit, it calls out to the nuxtServerInit action to update the store or
dispatch necessary actions if your store is enabled; otherwise, Nuxt.js will ignore nuxtServerInit
and move to the next stage.

Next, Nuxt.js will look up your nuxt.config.js file for any global middleware and execute it
accordingly. After the execution, it will move to the layout pages and check for any middleware for
execution, and lastly, it will execute the page’s middleware including the page children.

After executing the middleware in order, it will check the routes and use the validate() function
to run validations against the params, queries, and more.

The asyncData method is then employed to acquire and display data on the server side if it had
been enabled previously. Afterward, the fetch method is used to fill Vuex on the client side.

At this point, the page should have all the required data to be displayed a proper web page. The following
diagram of a flowchart illustrates all the steps it takes to render a single page:

Understanding Nuxt.js and how it works 221

Figure 13.2 – An overview of Nuxt.js lifecycle hooks (source: https://

nuxtjs.org/docs/concepts/nuxt-lifecycle/)

Advanced Vue.js Frameworks222

The official Nuxt.js lifecycle (https://nuxtjs.org/docs/concepts/nuxt-lifecycle)
page gives a more detailed overview of the behind-the-scenes of how Nuxt.js renders and processes
your pages whether they are enabled server-side or client-side.

Having gone through the inner workings of Nuxt.js, it should now be simple to comprehend. In the
following section, let’s investigate the advantages of using Nuxt.js for your upcoming project.

Benefits of Nuxt.js

The benefits of Nuxt.js cannot be underestimated; you can easily spot a few of them with the introduction
of SSR and project structuring for enterprise-level projects.

However, in the following subsections, we will understand some of the benefits of the Nuxt.js framework
and why it’s becoming very popular for building SSR-enabled projects with Vue.

Creating universal apps easily

With Nuxt.js, you can create SSR applications very easily without needing to go through the painful route
of configuring Vue to support SSR. The SSR feature is already built into Nuxt.js and is very easy to use.

Nuxt.js exposes two important properties called isServer and isClient to determine the state
of the framework at runtime. It can be useful when checking whether your component should render
on the server side or the client side.

Statically rendering your Vue apps with universal benefits

Statically generated websites are actively gaining popularity with different frameworks developed to
focus only on them. However, you can easily generate a static website with Nuxt.js without installing
any additional frameworks or tools.

You can quickly create a static version of your website, complete with HTML and routes, by using the
nuxt generate command.

Nuxt.js enables the creation of a powerful universal application that does not require a server to utilize
the SSR feature, similar to building a statically generated website.

Automatic code-splitting

Frontend development that focuses on speed and performance has become a fundamental part of
enterprise software, and Nuxt.js stands out for its exceptional performance due to its code-splitting feature.

This feature allows each route to be given its own JavaScript file that only contains the code necessary
to run that route. This approach to building applications helps to reduce the amount of code that needs
to be loaded in order to render a single page, thus decreasing loading times.

Webpack’s built-in configuration enables code splitting when creating static web pages for your website.

https://nuxtjs.org/docs/concepts/nuxt-lifecycle

Understanding Nuxt.js and how it works 223

ES6/7 compilation

ES6 and 7 are enabled by default in Nuxt.js because Webpack and Babel are prebuilt into it for translating
and compiling the latest version of JavaScript to the versions that older browsers can execute.

Babel is set up to take all the .vue files and ES6 code within the script tags and convert them into
JavaScript, which is compatible with all browsers. This functionality eliminates the need to manually
set up and configure browser compatibility from the beginning.

In the next section, we will look at how to create our first Nuxt.js application and the practical approach
for developing enterprise-ready applications with Nuxt.js.

Creating a Nuxt.js app

This section will introduce you to a practical approach to developing applications with Nuxt.js. Before
we delve in, let’s explore some of the few critical concepts when it comes to developing enterprise-
ready applications with Nuxt.js.

Creating a Nuxt application

You can easily create a Nuxt.js application in different ways, but the recommended way is to use any
of the following commands:

Yarn create nuxt-app <project-name>

Or

npm init nuxt-app <project-name>

Or

npx create-nuxt-app <project-name>

Next, move into the created project folder and serve your newly created Nuxt.js project with the
following command:

cd <project-name>

npm run dev

Or

yarn dev

It’s important that you replace <project-name> with an actual project name.

Advanced Vue.js Frameworks224

Now that we have our new Nuxt.js project generated for us, let’s explore the different folders and files
that come with the project.

Understanding the Nuxt.js folder structure

When you create a new project using any of the preceding commands mentioned, it can feel quite
daunting due to the number of folders and files it comes with. In this section, we will take a look at
some of the key folders and files that are part of the Nuxt.js project. Additionally, some of these files
and folders are essential and must remain unchanged without any extra configuration. The following
figure shows the folder structure of Nuxt.js:

Figure 13.3 – A screenshot of the Nuxt.js folder structure

Let’s go over this folder structure in the following subsections.

.nuxt

When you start your development server, the .nuxt folder will be created automatically and will not
be visible. This folder is also known as the build directory and includes generated files and artifacts
that are used to serve your project during development.

Understanding Nuxt.js and how it works 225

assets

The assets directory holds all the raw materials such as pictures, CSS, SASS documents, fonts, and
more. Webpack will compile any file that is included in this folder while the page is being created.

components

This folder is analogous to the components folders in Vue. It is the repository of all your Vue
components. Components are the files that make up the various components of your pages and can
be reused and imported into any page, layout, or component.

layouts

The layouts folder is a great place for organizing the different page layouts of your application. It
can be used to differentiate between the page structure of the dashboard and the page structure for
users who are not logged in. This helps to keep the different parts of the application organized.

You can create different structures to correspond to different structures of your applications such as different
sidebars, menus, headers, footers, and more. You can achieve all these separations with Nuxt.js layouts.

middleware

Middleware can be defined as custom functions that are triggered before or after a page or set of pages
(layout) is rendered. These middleware functions can be stored in the middleware folder in Nuxt.js.

Middleware is important and handy when creating membership-only or authentication-enabled
applications. You can use it to restrict users from accessing certain authenticated pages.

plugins

The plugins directory is where all the JavaScript code you want to run before initializing the root Vue
application is stored. This is the place in which to add Vue plugins and inject functions or constants.

You will use this folder a lot to include different Vue plugins that have not been included in Nuxt.js
as a module.

It works by creating a JavaScript file in the plugins folder, using the Vue.use() function to
add the plugin to the Vue instance, and lastly, adding the file to the plugins array in the nuxt.
config.js file.

static

The static directory is a special one, housing all the static files of your application that are unlikely
to be altered or that will be displayed without any further processing by Nuxt.js or Webpack.

Any files located in the static folder will be provided by Nuxt.js and can be accessed through the
root URL of the project. This includes items such as favicon, robot.txt, and more.

Advanced Vue.js Frameworks226

store

The store folder holds all of your Vuex store documents, and it is automatically divided into modules.
The Vuex store is included in the package, but it has to be enabled by creating an index.js file in
the store folder before it can be used.

Nuxt.js is designed to help with the development of enterprise-level applications, and it comes pre-equipped
with Vuex for state management. This makes it easier to create and manage applications of this scale.

pages

The pages folder is very important as it is the bedrock of the Nuxt.js routing system. Therefore, it
cannot be renamed without updating the Nuxt.js configuration. Nuxt.js automatically reads all the
.vue files inside the pages directory and creates a corresponding route for the page.

The pages directory holds all the views and routes for your application, and each page component is
a regular Vue component that Nuxt.js automatically transforms into routes by adding special attributes
and functions to make the development of your application smooth and straightforward.

In the next section, we will explore how Nuxt.js automatically converts .vue files in the pages
folder into routes.

Nuxt.js pages and routing system

Nuxt.js simplifies the routing process by allowing users to create directories and files in the pages
folder, which will then automatically generate a router file based on the structure of the directory.

For example, if you have a posts.vue file in the directory, it will automatically be converted into
a route, and you can then access the route in your browser to view the content of the Posts page.

This routing system enables you to establish three distinct routes simply by creating files and folders.
Let’s take a closer look at these route types.

We will explore the different types of routing that are supported by Nuxt.js and see how each of the
routing types is used within Nuxt.js.

Understanding Nuxt.js and how it works 227

Basic routing

Routing is a process by which requests are routed or directed to the code that handles them. These
requests can come in the form of URLs and are redirected to the appropriate handler. It can be a
simple process, as no extra configuration is needed for it to function. Examples of this are /about,
/contact, /posts, and more. To set up a basic routing system, the pages directory should be
organized in the following manner:

pages/

 —| about.vue

 —| contact.vue

 —| posts.vue

Nuxt will generate a router file automatically similar to the following:

router: {

  routes: [

    {

      name: 'posts',

      path: '/posts',

      component: 'pages/posts.vue'

    },

    {

      name: 'about',

      path: '/about',

      component: 'pages/about'

    },

    {

      name: 'contact',

      path: '/contact',

      component: 'pages/contact'

    },

  ]

}

The preceding code snippet is automatically generated by Nuxt.js and is not available for editing
because everything is properly routed according to your folder structure in the pages directory.

Advanced Vue.js Frameworks228

Nested routing

Nested routes are routes that are embedded within a parent route. This type of routing is used to create
multiple levels of routing that are more detailed.

With Nuxt.js, you can easily create nested routes by creating a parent folder and placing all the route
files within that folder. Take a look at the following folder structure:

pages/

 --| dashboard/

 -----| portfolios.vue

 -----| settings.vue

 --| dashboard.vue

 --| posts.vue

 --| contact.vue

 --| index.vue

In the preceding code, we created a new file and folder with the same name as the dashboard in the
directory structure shown previously. Afterward, we placed the portfolios.vue and settings.
vue files as sub-items in the dashboard folder.

This straightforward organization of folders will create a router with routes that will look like the following:

router: {

  routes: [

    {

      name: 'index',

      path: '/',

      component: 'pages/index.vue'

    },

    {

      name: 'posts',

      path: '/posts',

      component: 'pages/posts'

    },

    {

      name: 'contact',

      path: '/contact',

Understanding Nuxt.js and how it works 229

      component: 'pages/contact'

    },

    {

      name: 'dashboard',

      path: '/dashboard',

      component: 'pages/dashboard.vue',

      children: [

        {

          name: 'dashboard-portfolios',

          path: '/dashboard/portfolios',

          component: 'pages/dashboard/portfolios.vue'

        },

        {

          name: 'dashboard-settings',

          path: '/dashboard/settings',

          component: 'pages/dashboard/settings.vue'

        }

      ]

    }

  ]

}

In Vue.js, nested routes are created manually and registered inside an index.js router file, which
can easily becomes complicated when creating many routes for an enterprise application, but with
Nuxt.js, it is made very simple and easy to create files and nested folders.

Dynamic routing

Dynamic routes can be generated with undefined route names either due to an API call or because
you don’t want to keep creating the same page. These routes are generated from a variable, such as a
name or ID, which is obtained from the data within the application.

In order to make a route dynamic, you must add an underscore at the end of the .vue file or directory
name. You can name the file or directory whatever you want, but an underscore must be included in
order for it to be dynamic.

For instance, if you define a _slug.vue file in the pages directory, you can access the value using
the params.slug object.

Advanced Vue.js Frameworks230

Using a dynamic route is advantageous when constructing a blog application; for instance, when the
ID or slug of the post that the user is going to select to read is unknown. However, with a dynamic
route, it is possible to obtain the ID/slug of the post and display the appropriate post with the ID/slug.

Using an example, we’ll demonstrate how to create a dynamic route:

pages/

--| posts/

-----| _slug.vue

-----| index.vue

--| services.vue

--| contact.vue

--| index.vue

Here, we add an underscore to slug in order to create a dynamic route for the page, as well as a
parent route with a string parameter and its respective child routes. This page structure will generate
a router with the following routes in the file:

    {

      name: 'index',

      path: '/,

      component: 'pages/index.vue'

    },

    {

      name: 'contact',

      path: '/contact',

      component: 'pages/contact.vue'

    },

    {

      name: 'services',

      path: '/services',

      component: 'pages/services.vue'

    },

    {

      name: 'posts',

      path: '/posts',

What is Gridsome? 231

      component: 'pages/posts/index.vue',

      children: [

        {

          name: 'posts-slug,

          path: '/posts/:slug,

          component: 'pages/posts/_slug.vue'

        }

      ]

    }

  ]

}

Now that we’ve explored the different routing systems that come built into the Nuxt.js framework, you
have a solid knowledge of how Nuxt.js works and can start building your enterprise-ready universal
application with it.

In the next section, we will explore Gridsome and learn about the nitty-gritty of Gridsome and how
to build and deliver enterprise CSR projects with Vue.js 3.

What is Gridsome?
Gridsome is a powerful static website generator. It is powered by Vue.js to build statically generated
websites and apps that are fast by default. It is also a Jamstack framework for building websites and
applications that delivers better performance, higher security, and lower cost of scaling.

Gridsome is focused on implementing the Jamstack approach to build fast and secure sites and
applications by pre-rendering files and serving them directly from a CDN – thereby increasing the
speed of your application and removing the requirement to manage or run web servers.

Jamstack is an architectural approach that decouples the web experience layer from data and business
logic, improving flexibility, scalability, performance, and maintainability.

What is Gridsome used for?

At the moment, Gridsome does not support SSR but focuses on creating faster websites and applications.
In the following subsections, we will look at the most popular types of websites you can build
with Gridsome.

Advanced Vue.js Frameworks232

Statically generated pages

These are the types of websites that do not require any external data sources – the content is already
embedded into the HTML. You can use Gridsome to create statically generated pages such as portfolios,
demo websites, or tutorial pages with different data sources and higher performance.

SPAs

A frontend development approach that utilizes dynamic data from an external API and displays it
on the client side is known as creating an SPA. It is not unexpected that the majority of JavaScript
frameworks, such as React.js, Vue.js, and Angular, are all SPA frameworks.

The HTML 5 history API and the location hash are utilized to create SPA routing systems. This capability
allows developers to alter a website’s URL without needing to reload the entire page.

In the next section, we will explore how Gridsome works and how can use it to create a statically
rendered website.

How does Gridsome work?

Gridsome is a Jamstack framework; therefore, it uses modern web development architecture based
on client-side JavaScript, reusable APIs, and prebuilt markup.

It works by generating static SEO-friendly HTML markup that is converted into a dynamic DOM
once loaded in the browser. This simple feature allows Gridsome to be a go-to Jamstack framework
for building both static and dynamic websites.

Internally, Gridsome builds one .html file and one .json file for every page that you create and
loads the .json files after the first page load to prefetch and load data for the next pages. Additionally,
it also builds a .js bundle for each page to take advantage of code splitting.

Additionally, the source plugins can obtain data from either local files or external APIs and store it
in a local database. A unified GraphQL data layer allows you to access only the required data from
the database and use it in your Vue components.

The following diagram explains the inner workings of Gridsome and how data is passed and processed
until it gets to your Vue component:

What is Gridsome? 233

Figure 13.4 – An overview of how Gridsome works (source: https://gridsome.org/docs/how-it-works/)

There are two ways to run Gridsome:

•	 gridsome develop: This command starts a local development server and watches for changes

•	 gridsome build: This command generates production-ready static files

You can learn more about how each command works and how they generate these static pages from
the official documentation at https://gridsome.org/docs/how-it-works/.

Next, let’s look at some benefits of using Gridsome.

Benefits of Gridsome

The benefits of using Gridsome are enormous and depend on the type of website and application
intended. For statically generated websites, Gridsome proves to focus on speed by default and has
good project structures for building enterprise-ready static websites and applications.

The following subsections describe some of the benefits of using Gridsome.

Serverless and statically generated

Gridsome uses the Jamstack approach of building websites thats, which provides better performance
and increased security, and reduces costs and complexity in your development stack. Gridsome
generates static pages and websites using the Jamstack philosophy where the final product is a folder
with static HTML files that can be deployed anywhere.

https://gridsome.org/docs/how-it-works/

Advanced Vue.js Frameworks234

Easy to install and use

Gridsome is very easy to install and simple to start using. It comes with a CLI, which is a command-
line tool that helps you to create Gridsome projects effortlessly.

You can install Gridsome by running the following command:

npm install –global @gridsome/cli

Once the CLI has been installed, you can use it to create as many Gridsome projects as you want in
the future.

Organized project structure

One of the challenges of enterprise projects is the project structure, as discussed in previous chapters.
Gridsome solves this problem by helping you structure your enterprise project with a predictive
project structure.

We will go over the important files and folders that make up the Gridsome project in the Understanding
the Gridsome folder structure section.

Automatic routing

Automatic routing is a very important feature in the frontend development industry, starting with
Nuxt where routes are automatically generated as you add files and folders to the pages folder.

Gridsome also makes it super easy to create routing with the automatic routing feature. Routes are
generated automatically whenever there’s a file or new folder in the src/pages folder. This is similar
to how Nuxt works, as discussed earlier.

Code splitting/pre-fetching

With the integration of code splitting and pre-fetching in Gridsome, navigation in a Gridsome website
becomes super fast because any link you click on has already been prefetched before you clicked on it.

Additionally, the code-splitting feature helps in increasing the performance and loading speed of a
Gridsome website because it allows the user to only load only the JavaScript that is needed to only
load the requested page and load the others on demand.

Markdown file support

Using markdown in Gridsome is the easiest way to automate your content management. You can
create content in the form of blog posts, articles, or anything described in its own .md (markdown
extension) file. These markdown files will be grouped and consumed by Gridsome to generate
individual HTML files.

What is Gridsome? 235

Now that we have seen the benefits of using Gridsome, let’s see how to create a Gridsome app in the
next section.

Creating a Gridsome app

This section will introduce you to a practical approach to developing applications with Gridsome.
Before we delve in, let’s explore a few critical concepts in developing enterprise-ready applications
with Gridsome.

Creating a Gridsome application

You can easily create a Gridsome application in different ways, but the recommended way is to use
any of the following commands:

Yarn global add @gridsome/cli

Or

npm install - -global @gridsome/cli

Next, move into the created a Gridsome project and serve your newly created Gridsome project with
the following command:

gridsome create <project-name>

cd <project-name>

gridsome develop

It’s important that you replace <project-name> with an actual project name.

Now that we have our newly Gridsome project generated for us, let’s explore the different folders and
files that come with the project.

Understanding the Gridsome folder structure

When you scaffold a new project using any of the preceding commands, it comes with a lot of
overwhelming folders and files. But in this section, we will explore some of the important folders and
files within the newly created Gridsome project.

Furthermore, some of these files and folders are vital and require that some of the folder names and
filenames remain unchanged without additional configuration. Here is what the Gridsome folder
structure looks like:

Advanced Vue.js Frameworks236

Figure 13.5 – The Gridsome folder structure

Let’s go over some of the important folders in the following subsections.

pages

The pages folder is one of the most important folders in Gridsome as it is responsible for automatic
routing and works exactly the same as in Nuxt except each page will be generated statically and have
its own index.html file with markup.

There are two options for creating pages in Gridsome:

•	 File-based pages:

When creating your pages with single file components (a single .vue file), then you should use
the filesystem. Any single file component found in the src/pages directory will automatically
be converted into its own route or URL. The file location is used to generate the URL, and you
can see it in the following example:

pages/

 —| about.vue

 —| contact.vue

 —| posts.vue

What is Gridsome? 237

The preceding page structure will be converted into the following:

`pages/about.vue` becomes `/about`

`pages/contact.vue` becomes `/contact`

`pages/posts.vue` becomes `/posts`

Next, let’s explore the second option of creating pages in Gridsome called programmatic pages.

•	 Programmatic pages:

The createPages hook, located in the gridsome.server.js file, can be used to generate
programmatic pages. This is useful if you need to manually create pages from an external API
without using Gridsome’s built-in GraphQL data layer.

You can programmatically create a page by implementing the createPages hook, as shown
in the following code block:

module.exports = function (api) {

  api.createPages(({ createPage }) => {

    createPage({

      path: '/my-new-page',

      component: './src/templates/MyNewPage.vue'

    })

  })

}

You can also create dynamic pages using the same createPages hook as shown earlier.

Templates

Gridsome uses templates to display nodes or single pages of collections. When you create a template
file, Gridsome will try to locate a file with the same name as the collection if not specified in the
template config. Often, templates are mapped to collections for displaying information.

Here is an example of displaying a post title from a GraphQL query using templates:

<!-- src/templates/Post.vue -->

<template>

  <Layout>

    <h1 v-html="$page.post.title" />

  </Layout>

</template>

Advanced Vue.js Frameworks238

<page-query>

query ($id: ID!) {

  post(id: $id) {

    title

  }

}

</page-query>

Templates are very important in Gridsome as they are a way to present data pages in their own
URLs. You can learn more advanced use cases of templates from the documentation at https://
gridsome.org/docs/templates/.

Layouts

Layouts are Vue components that are used inside pages and templates to wrap the content. You can
use a layout to create different structures for your website. It works exactly like layouts in Nuxt.js.

Usually, layouts are used as follows in pages:

<template>

  <Layout>

    <h1>About us</h1>

  </Layout>

</template>

<script>

import Layout from '~/layouts/Default.vue'

export default {

  components: {

    Layout

  }

}

</script>

In Gridsome, layouts files are global and do not need to be imported before you start using them.
There are more important files and folders that come with the Gridsome project, and as your project
grows, you will quickly discover that you have added even more files and folders.

https://gridsome.org/docs/templates/
https://gridsome.org/docs/templates/

Summary 239

However, the previously mentioned folders are the important folders and their names should not be
changed as you add more files and folders to your project.

Summary
In this chapter, we explored every important detail about Nuxt.js. You learned about the nitty-gritty of
Nuxt.js and how to build and deliver enterprise SSR projects with Vue.js 3. Additionally, we explored
Gridsome, the super fast Jamstack framework for building statically generated websites.

We also covered the benefits of using Nuxt and Gridsome. Then, we saw how to create an app using
both of these frameworks. Finally, we explored the folder structures of Nuxt and Gridsome.

Index

Symbols
.nuxt folder 224

A
Amazon Web Services (AWS)

deploying to 204
deploying, with Docker 204, 205

Application Programming
Interfaces (APIs) 232

application under test (AUT) 128
Arrange, Act, and Assert (AAA) 148, 149
assets folder 225
AsyncData function 220
Atomic Design 56

atoms 57
elements 57
molecules 57
organisms 57
pages 58
reference link 56
templates 58

auth folder 101
automation testing

integration 151
Avoriaz 165

AWS resources
pipeline, for production

environment 211-213
provisioning 206

AWS resources, provisioning
ECR private repository, creating 210, 211
GitHub Actions, working with 211
IAM account, creating 206, 207
policy, creating for IAM user 208, 209
role, creating for IAM user 207, 208

Axios 23

B
Behavior-Driven Development (BDD) 150
bundle size, Vue application

checking 35
npm build command, running 36, 37
report, generating 35

C
Cards component

generating 98-100
CDN images

optimizing 42
Cloudinary 42

Index242

command-line interface (CLI) 8
components folders 225
component testing, in Vue.js 3 141

creating 142
running 143
testing library, installing 142
testing library, writing 141

Composition API 5
code example 5-8
need for 5
reference link 8

content delivery network (CDN) 41
content management system (CMS) 89
continuous delivery 191
continuous deployment 192
continuous integration 191
continuous integration/continuous

delivery (CI/CD) 190
overview 190

Create, Read, Update, Delete
(CRUD) operation 24

Cypress 153, 165, 178
configuring 181, 182
installing 181, 182
setting up 181

D
dependency injection (DI) 22
deployment pipeline 192

creating, for staging environment 201-203
creating, with GitHub Actions 201
downsides 194
elements 193
overview 195, 196

deployment pipeline, elements
build stage 194
deploy stage 195

source stage 194
test stage 194, 195

design system 58
Docker 108, 109

benefits 108, 110
images, running 116
implementing, with Vue.js 3 111
need for 110, 111
overview 108
using, issues 109

Docker Compose
overview 117
used, for dockerizing

 Vue.js 3 applications 116
using, to run Pinterest clone project 122, 123

Dockerfile 109
Docker, implementing with Vue.js 3

example project 112
prerequisite 111

Don’t Repeat Yourself (DRY) 27
dynamic routes 229-231

E
E2E test creation

best practices 176, 177
E2E testing 174

benefits 175, 176
Cypress, setting up 181
importance 175
test file, creating 182-184
test, running 184
Vue.js 3 180

Elastic Container Service (ECS) 207
enterprise Vue application

performance, optimizing 37

Index 243

F
Fetch function 220
frontend architectural patterns

Atomic Design 56, 57
micro frontend architecture 54-56
Storybook 58

G
GitHub Actions

deployment pipeline, creating with 201
jobs, in deployment pipeline 197
overview 196

Given/When/Then (GWT) strategy 149
GraphQL 72, 73

benefits 72
features 73, 74
mutations, using 78
queries, using 77, 78
strongly-typed schema 74
URL 72
used, for implementing login

example 102-104
using 74-76
versus RESTful APIs 76, 77

GraphQL Apollo Client 80
integrating, with Vue 3 80

GraphQL Apollo Client, with Vue 3
GraphQL API, structuring 82, 83
JWT authentication, for sign

in/sign up 84-87
packages, installing 81, 82

GraphQL resolver 79, 80
Gridsome 231

benefits 233, 234
SPAs 232

statically generated pages 232
usage 231
working 232, 233

Gridsome application
creating 235

Gridsome folder structure 235
layouts 238
pages folder 236, 237
templates 237, 238

I
ImageKit 42
images

running, on Docker 116
integrated components

testing 169-172
integration and testing (I&T) 160
integration test

component test, creating 167
library, installing 167
running 168

integration test creation
best practices 163, 164

integration testing 132, 160
benefits 161-163
importance 160, 161

internationalization (I18n) 64
benefits 64

J
Jamstack 231
Jasmine 152
JavaScript

unit testing, using 151

Index244

JavaScript E2E testing 177
Cypress 178
Karma 180
Playwright 179
Puppeteer 179
Selenium WebDriver 177, 178

JavaScript integration testing
Avoriaz 165
Cypress 165
Mocha 165
Nightwatch 166
Selenium 165
TestCafe 165
Vue Testing Library 165
Vue Test Utils 165

JavaScript testing frameworks 152
Cypress 153
Jasmine 152
Jest 152
Mocha 152
Vitest 153

Jest 152
jobs, in deployment pipeline 197

automated software testing 198-200
lighthouse budget checks 197, 198
Linting (Eslint, Stylelint, Prettier) 197
Netlify deployment for staging 200, 201

K
Karma 180

L
layouts folder 225
localization (L10n) 64

M
micro frontend architecture 54

benefits 54
using 55, 56

middleware folder 225
mobile frameworks 217
Mocha 152, 165
mocks

using 151
Monocubed

reference link 217
mutations

using 78

N
nested routing 228, 229
Nightwatch 166
npm build command

running 36, 37
npm trends

references 217
Nuxt.js 218

benefits 222, 223
pages and routing system 226
SPA 219
static-generated pages 219
universal application 219
usage 219
working 219-222

Nuxt.js application
creating 223

Nuxt.js folder structure 224
.nuxt folder 224
assets folder 225
components folder 225
layouts folder 225

Index 245

middleware folder 225
pages folder 226
plugins folder 225
static folder 225
store folder 226

Nuxt.js life cycle
reference link 222

nuxtServerInit action 220

O
object-relational mapping (ORM) 80
over-fetching 74

P
pages folder 226
performance optimization,

enterprise Vue application
asynchronous/lazy components

loading 37-41
CDN images, optimizing 42
code splitting 42, 43
image compression 41
WebP images 41

Photo example
queries, implementing with 104-106

Photo (pin) collection 92
photos folder 102
Pinterest clone app

build section 120
commands, copying 118
commands, executing 118
commands, installing 118
dockerizing 117
Docker port, exposing 121
environment variables, creating 121
Node.js, importing 118

required arguments, creating 118
running 121, 122
services 120
versions 120

Pinterest clone project
running, with Docker Compose 122, 123

Pinterest Vue.js 3 application
dockerizing 112, 114

Playwright 179
plugins folder 225
predictability, Vue 3

achieving 46
community-wide standards 47
component libraries 47
official libraries 47
recommended community-

wide standards 49
recommended component rules 49
standard file structure 47, 48

Progressive Web Apps (PWAs) 216
project structure

file architecture 46
Puppeteer 179

Q
Quality Assurance (QA) 133
queries

using 77, 78

R
README.md file

reference link 53
recommended community-wide

standards, for predictability 49
comprehensive file structure 52, 53

Index246

flat component directory 50, 51
standardized route/page naming

convention 51, 52
repository folder

clients folder, creating 23
creating 23
individual repository class, creating 24-26
RepositoryFactory.js class, creating 26
xxxClient.js class, creating 23, 24

repository pattern
overview 21-23
structuring with 21
using 26, 27

RESTful APIs
versus GraphQL 76, 77

return on investment (ROI) 162
routing 227

S
Schema Definition Language (SDL) 74
Selenium Cloud Grid

reference link 151
Selenium WebDriver 177, 178
server-side rendering (SSR) 34, 216
Single File Component (SFC) style guide 49
single-page application (SPA) 34, 219
single state tree 14
Software Development Life Cycle

(SDLC) 128, 146
software engineering

testing 131
software testing 128

benefits 130
costs 130
customer satisfaction 130
development pipeline, enhancing 130

end-to-end testing 133
integration testing 132
need for 129
overview 128
product quality 131
security 131
types 131, 132
unit testing 132

software under test (SUT) 160
SSR frameworks 218
static folder 225
static-generated pages 219, 231
static site frameworks 217
Static Site Generators (SSGs) 216
store folder 226
Storybook 58

implementing, in Vue.js3 59
installing 59
story, creating 60-63
URL 58

Strapi 90
Strapi backend application

dockerizing 115
Strapi backend, to Pinterest frontend

auth folder 101
connecting 100, 101
photos folder 102
users folder 102

Strapi CMS 10
Strapi collections

building 92-94
data, seeding 95, 96
reference link 95

Strapi project
scaffolding 10, 11, 90, 91

stubs
using 151

Index 247

T
templates, use cases

layouts 238
TestCafe 165
Test-Driven Development (TDD) 146
testing strategy 133

avoiding 134
concepts 133, 134

U
under-fetching 75
unit testing 132, 146

Arrange, Act, and Assert (AAA) 149
automation testing, integration 151
benefits 147, 148
best practices 148, 149
deterministic tests, writing 150
good test names and descriptions,

writing 150
mocks, using 151
running, manually 156
stubs, using 151
Test-Driven Development (TDD)

tests, writing 150
with JavaScript 151

universal application 219
user interfaces (UIs) 161
users folder 102

login example, implementing
with GraphQL 102-104

queries, implementing with
Photo example 104-106

V
validate function 220
versioning 75
Vite

reference link 8
Vue.js 3 app, creating with 8, 9

Vitest
reference link 157

Vue 3 Pinterest application
building 97, 98
Cards component, generating 98-100

Vue 3 test library
reference link 166

Vue app
integration test, writing 166
testing 166

Vue CLI 47
Vue I18n 64

installing 65, 66
reference link 65

Vue.js 3 4
Composition API 5
GraphQL Apollo Client, integrating with 80
overview 3, 4
performance 4
predictability 46
reference link 4
tree-shaking support 4
used, for implementing Docker 111

Vue.js 3 app
behavior 156
building 8
component testing 141
creating, with Vite 8, 9
dockerizing, with Docker Compose 116
E2E testing 180
presentation 154, 155

Index248

test folder, testing 135
testing 135, 154
unit testing 153
unit test, writing 138

Vue.js 3 app, test folder method
test files, adding in component 135, 136
test folder, creating 137, 138

Vue.js 3 app, unit test
basic test, writing 139, 140
helper file, creating 139
test library, installing 138
test, running with Vitest 140, 141

Vue.js 3 test library
reference link 138

Vue.js frameworks 216
mobile frameworks 217
SSR frameworks 218
static site frameworks 217

Vue.js UI frameworks 216
benefits 217

Vue navigation, structuring
with Vue Router 27

combine.js file 29
folder structure 28
hash mode 29
HTML5 mode 29
index.js file 28, 29
router, adding 30

Vue performance

optimization, need for 33, 34
poor performance, reasons 34, 35

Vue Testing Library 165
Vue Test Utils 165
Vuex

documentation link 17
exploring 14
modules 14

Vuex actions 19, 20
Vuex getters 18
Vuex modules 14

using 15
Vuex mutations 18, 19
Vuex state 16

accessing, with mapping 17
accessing, without mapping 16
maps, reference link 17

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

ASP.NET Core and Vue.js

Devlin Basilan Duldulao

ISBN: 9781800206694

•	 Discover CQRS and mediator pattern in the ASP.NET Core 5 Web API

•	 Use Serilog, MediatR, FluentValidation, and Redis in ASP.NET

•	 Explore common Vue.js packages such as Vuelidate, Vuetify, and Vuex

•	 Manage complex app states using the Vuex state management library

•	 Write integration tests in ASP.NET Core using xUnit and FluentAssertions

•	 Deploy your app to Microsoft Azure using the new GitHub Actions for continuous integration
and continuous deployment (CI/CD)

https://packt.link/9781800206694

251Other Books You May Enjoy

Vue.js 3 By Example

John Au-Yeung

ISBN: 9781838826345

•	 Get to grips with Vue architecture, components, props, directives, mixins, and other advanced
features

•	 Understand the Vue 3 template system and use directives

•	 Use third-party libraries such as Vue Router for routing and Vuex for state management

•	 Create GraphQL APIs to power your Vue 3 web apps

•	 Build cross-platform Vue 3 apps with Electron and Ionic

•	 Make your Vue 3 apps more captivating with PrimeVue

•	 Build real-time communication apps with Vue 3 as the frontend and Laravel

https://packt.link/9781838826345

252

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Hi,

I am Solomon Eseme, author of Architecting Vue.js 3 Enterprise-Ready Web Applications. I really hope
you enjoyed reading this book and found it useful for increasing your productivity and efficiency in
Vue.js.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Architecting Vue.js 3 Enterprise-Ready Web Applications.

Go to the link below to leave your review:

https://packt.link/r/1801073902

Your review will help me to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

Solomon Eseme

http://authors.packtpub.com
https://packt.link/r/1801073902

253

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801073905

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801073905

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Getting Started with Vue.js
	Chapter 1: Getting Started with Vue.js 3
	Technical requirements
	Overview of Vue.js
	Introducing Vue.js 3
	Vue 3 performance
	Tree-shaking support
	The Composition API

	Building your first Vue.js 3 app
	Creating a Vue 3 app with Vite
	What is the Strapi CMS?

	Summary

	Chapter 2: Using Libraries for Large-Scale Applications
	Technical requirements
	Exploring large-scale Vuex
	Vuex modules
	The Vuex state
	Vuex getters
	Vuex mutations
	Vuex actions

	Structuring with the repository pattern
	Overview of the repository pattern

	Creating a repository folder
	Creating a clients folder
	Creating an xxxClient.js class
	Creating an individual repository class
	Creating a RepositoryFactory.js class
	Using the repository pattern

	Structuring Vue navigation with Vue Router
	The folder structure
	The index.js file
	Hash mode
	HTML5 mode
	The combine.js file
	Adding the router to Vue

	Summary

	Part 2:
Large-Scale Apps and Scaling Performance in Vue.js 3
	Chapter 3: Scaling Performance in Vue.js 3
	Technical requirements
	Why do we need Vue.js performance optimization?
	The primary reasons for poor Vue performance
	Checking your Vue application’s bundle size
	Generating a report
	Running the npm build command

	Optimizing the performance of an enterprise Vue application
	Asynchronous/lazy component loading
	WebP images and image compression
	Code splitting

	Summary

	Chapter 4: Architecture for Large-Scale Web Apps
	Technical requirements
	Understanding file architecture and structure
	Predictability in Vue 3

	Different frontend architectural patterns
	Micro frontend architecture
	Atomic Design
	Storybook

	Implementing Storybook in Vue.js 3
	Implementing internationalization and localization
	Benefits of internationalizing software
	Installing Vue I18n

	Summary

	Part 3:
Vue.js 3 Enterprise Tools
	Chapter 5: An Introduction to GraphQL, Queries, Mutations,
and RESTful APIs
	Technical requirements
	An introduction to GraphQL
	What is GraphQL?
	Features of GraphQL
	Why use GraphQL instead of REST?
	The difference between GraphQL and RESTful APIs

	Understanding queries and mutations in GraphQL
	Using queries
	Using mutations

	Integrating GraphQL Apollo Client with Vue 3
	Installation
	Structuring GraphQL
	JWT authentication for sign in/sign up

	Summary

	Chapter 6: Building a Complete Pinterest Clone with GraphQL
	Technical requirements
	An introduction to Strapi
	Scaffolding a Strapi project
	Building the collections
	Seeding data

	Building a Vue 3 Pinterest app
	Generating the Cards component

	Connecting the frontend and backend
	The auth folder
	The photos folder
	The users folder

	Summary

	Chapter 7: Dockerizing a Vue 3 App
	Technical requirements
	Overview of Docker
	What is Docker?

	Implementing Docker with Vue.js 3
	Prerequisite
	Example project

	Dockerizing Vue.js and Node.js with Docker Compose
	Overview of Docker Compose
	Running the app on Docker Compose

	Summary

	Part 4:
Testing Enterprise Vue.js 3 Apps
	Chapter 8: Testing and What to Test
in Vue.js 3
	Technical requirements
	Overview of testing
	What is software testing?
	Why software testing is important
	The benefits of software testing

	Testing in software engineering
	Types of software testing

	What to test
	Testing strategy
	What you should test
	What you should not test

	Testing a basic Vue.js 3 app
	Creating a test folder
	Writing a basic unit test

	Component testing in Vue.js 3
	Writing a basic component test

	Summary

	Chapter 9: Best Practices in Unit Testing
	Technical requirements
	Introduction to unit testing
	What is unit testing?
	The importance and benefits of unit testing

	Best practices in unit test creation
	Arrange, act, and assert
	Write deterministic tests
	Write good test names and descriptions
	Write tests before or during development (TDD)
	Using mocks and stubs
	Leverage automation testing

	JavaScript unit testing
	Popular JavaScript testing frameworks

	Unit testing a Vue.js 3 app
	What to test
	Running unit tests manually

	Summary

	Chapter 10: Integration Testing in Vue.js 3
	Technical requirements
	Introduction to integration testing
	What is integration testing?
	Importance of integration testing
	Benefits of integration testing
	Best practices when creating integration tests
	JavaScript integration testing

	Testing a basic Vue app
	Writing a basic integration test

	Testing integrated components
	Summary

	Chapter 11: Industry-Standard
End-to-End Testing
	Technical requirements
	Introduction to E2E testing
	What is E2E testing?
	Importance of E2E testing
	Benefits of E2E testing
	Best practices in E2E test creation

	JavaScript E2E testing
	Selenium WebDriver
	Cypress
	Playwright
	Puppeteer
	Karma

	E2E testing a Vue.js 3 app
	Setting up Cypress
	Creating the test file
	Running the test

	Summary

	Part 5:
Deploying Enterprise-ready Vue.js 3
	Chapter 12: Deploying Enterprise-Ready Vue.js 3
	Technical requirements
	Introduction to CI/CD
	Overview of CI/CD
	Continuous integration
	Continuous delivery
	Continuous deployment

	What is a deployment pipeline?
	Elements of a deployment pipeline
	Overview of a deployment pipeline

	Overview of GitHub Actions
	Jobs in the deployment pipeline

	Creating the deployment pipeline with GitHub Actions
	Deploying to AWS
	Using Docker
	Provisioning AWS resources
	Pipeline for the production environment

	Summary

	Chapter 13: Advanced Vue.js Frameworks
	Technical requirements
	Introduction to Vue frameworks
	Top Vue frameworks

	Understanding Nuxt.js and how it works
	Uses of Nuxt.js
	How does Nuxt.js work?
	Benefits of Nuxt.js
	Creating a Nuxt.js app
	Nuxt.js pages and routing system

	What is Gridsome?
	What is Gridsome used for?
	How does Gridsome work?
	Benefits of Gridsome
	Creating a Gridsome app

	Summary

	Index
	About Packt
	Other Books You May Enjoy

