
 



Elements of Classical and 
Geometric Optimization

This comprehensive textbook covers both classical and geometric aspects of opti-
mization using methods, deterministic and stochastic, in a single volume and in a 
language accessible to non- mathematicians. It will serve as an ideal study material 
for senior undergraduate and graduate students in the fields of civil, mechanical, aero-
space, electrical, electronics, and communication engineering.

The book includes:

• Derivative- based Methods of Optimization.
• Direct Search Methods of Optimization.
• Basics of Riemannian Differential Geometry.
• Geometric Methods of Optimization using Riemannian Langevin Dynamics.
• Stochastic Analysis on Manifolds and Geometric Optimization Methods.

This textbook comprehensively treats both classical and geometric optimization 
methods, including deterministic and stochastic (Monte Carlo) schemes. It provides 
extensive coverage of important topics including derivative- based methods, penalty 
function methods, method of gradient projection, evolutionary methods, geometric 
search using Riemannian Langevin dynamics, and stochastic dynamics on manifolds. 
The textbook is accompanied by online resources including MATLAB codes which 
are uploaded on our website. The textbook is primarily written for senior under-
graduate and graduate students in all applied science and engineering disciplines and 
can be used as a main or supplementary text for courses on classical and geometric 
optimization.

  

 



 

https://taylorandfrancis.com


Elements of Classical and 
Geometric Optimization

Debasish Roy and G. Visweswara Rao

 

 



Designed cover image: Shutterstock

First edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487- 2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Debasish Roy and G. Visweswara Rao

Reasonable efforts have been made to publish reliable data and information, but the author and publisher 
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors 
and publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any future 
reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter 
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval 
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyri ght.com or 
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750- 
8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used 
only for identification and explanation without intent to infringe.

Library of Congress Cataloging- in- Publication Data
Names: Roy, Debasish Kumar, 1946– author. | G., Visweswara Rao (Gorti), author. 
Title: Elements of classical and geometric optimization / Debasish Roy and 
G. Visweswara Rao. 
Description: First edition. | Boca Raton : CRC Press, [2023] | 
Includes bibliographical references and index. 
Identifiers: LCCN 2023003311 (print) | LCCN 2023003312 (ebook) | 
ISBN 9780367560164 (hbk) | ISBN 9781032538822 (pbk) | ISBN 9781003414063 (ebk) 
Subjects: LCSH: Mathematical optimization. | Manifolds (Mathematics) | 
Geometry, Differential. | Engineering mathematics. 
Classification: LCC QA402.5 .R69 2023 (print) | LCC QA402.5 (ebook) | 
DDC 519.6–dc23/eng20230712 
LC record available at https://lccn.loc.gov/2023003311
LC ebook record available at https://lccn.loc.gov/2023003312

ISBN: 978- 0- 367- 56016- 4 (hbk)
ISBN: 978- 1- 032- 53882- 2 (pbk)
ISBN: 978- 1- 003- 41406- 3 (ebk)

DOI: 10.1201/ 9781003414063

Typeset in Times
by Newgen Publishing UK

 

 

http://www.copyright.com
http://dx.doi.org/10.1201/9781003414063


v

Contents
List of Figures ...........................................................................................................xi
List of Tables .........................................................................................................xxix
List of Acronyms ...................................................................................................xxxi
General Notations ...............................................................................................xxxiii
Preface ..................................................................................................................xxxv
Author Biographies .............................................................................................xxxix

Chapter 1 Optimization Methods –  A Preview .....................................................1

1.1 Introduction ................................................................................1
1.2 The Continuous Case –  Mathematical Formulation ..................7

1.2.1 Unconstrained Optimization and Optimality 
Conditions ....................................................................7

1.3 The Discrete Case –  Travelling Salesman Problem .................11
1.3.1 Brute- force Solution to the TSP .................................12
1.3.2 Local and Global Solutions ........................................15
1.3.3 Solution to TSP by Metropolis Algorithm: The 

Probabilistic Route .....................................................16
1.4 The Brachistochrone Problem ..................................................20

1.4.1 Solution of the Brachistochrone Problem by 
Variational Approach ..................................................24

1.5 More on Functional Optimization: Hamilton’s Principle ........30
1.5.1 Functional Optimization and Numerical     

Schemes ......................................................................34
1.6 Constrained Optimization Problems and Optimality    

Conditions ................................................................................38
1.6.1 Optimization Problem with Equality Constraints ......40
1.6.2 Optimization Problem with Inequality     

Constraints ..................................................................43
1.6.3 Optimization Problem with Both Equality and 

Inequality Constraints ................................................47
1.6.4 Sufficient Conditions of Optimality for a 

Constrained Optimization Problem ............................50
1.7 Functional Optimization and Optimal Control ........................52
Concluding Remarks ..........................................................................64

Chapter 2 Classical Derivative- based Optimization Techniques ........................77

2.1 Introduction ..............................................................................77
2.2 Basic Gradient Methods ...........................................................77

2.2.1 Steepest Descent Method (Cauchy 1847) ..................78

 

 



vi Contents

2.2.2 Conjugate Gradient Method .......................................82
2.2.3 Newton’s Method .....................................................100

2.3 Quasi- Newton Methods .........................................................102
2.3.1 Davidon- Fletcher- Powell (DFP) Method .................102
2.3.2 Broyden- Fletcher- Goldfarb- Shanno (BFGS) 

Method .................................................................107
2.4 Penalty Function Methods .....................................................110

2.4.1 Exterior Penalty Function Method ...........................110
2.4.2 Interior Penalty Function Method ............................115
2.4.3 Augmented Lagrangian Method (ALM) ..................120
2.4.4 Sequential Quadratic Programming Method ............126

2.5 Linear Programming (LP) ......................................................132
2.6 Method of Generalized Reduced Gradients ...........................143
2.7 Method of Feasible Directions ...............................................149
2.8 Method of Gradient Projection ..............................................160
Concluding Remarks ........................................................................165
Notations ..........................................................................................166
Exercises ...........................................................................................169

Chapter 3 Classical Derivative- free Methods of Optimization .........................182

3.1 Introduction ............................................................................182
3.2 Direct Search Methods ...........................................................183

3.2.1 Method of Hooke and Jeeves (HJ) ...........................183
3.2.2 Simplex Method of Nelder and Mead [NM] ............188

3.3 Other Direct Search Methods .................................................202
3.3.1 Rotating Coordinates Method of Rosenbrock ..........202
3.3.2 Powell’s Method of Conjugate Directions ...............206
3.3.3 Derivative- free Method with Trust Region     

Strategy .....................................................................210
3.4 Metaheuristics –  Evolutionary Methods ................................214

3.4.1 Genetic Algorithm (GA) ...........................................217
3.4.2 Simulated Annealing (SA) .......................................232
3.4.3 Particle Swarm Optimization (PSO) ........................238
3.4.4 Differential Evolution (DiEv) ...................................241

Concluding Remarks ........................................................................246
Exercises ...........................................................................................247
Notations ..........................................................................................254

Chapter 4 Elements of Riemannian Differential Geometry and Geometric 
Methods of Optimization .................................................................264

4.1 Introduction ............................................................................264
4.2 Manifolds, Local Euclidean Property and Charts ..................270

4.2.1 Tangent Vectors and Tangent Space on     
Manifolds .................................................................273

4.2.2 Riemannian Manifold and Riemannian Metric ........280

 



viiContents

4.2.3 Geodesic on a Manifold ...........................................283
4.2.4 Connection on a Manifold and Covariant     

Derivative .................................................................288
4.2.5 Parallel Transport of a Vector Field along 

a Curve γ t( )  ............................................................291
4.2.6 Levi- Civita Connection ............................................292
4.2.7 Exponential and Logarithmic Maps .........................295
4.2.8 Normal Coordinates .................................................295
4.2.9 Riemannian Curvature ..............................................298

4.3 Geometric Methods of Optimization .....................................302
4.3.1 Riemann Geometric Version of Some Classical 

Gradient Methods .....................................................302
4.4 Statistical Estimation by Geometrical Method of    

Optimization ..........................................................................315
4.5 Analogy Between Statistical Sampling and Stochastic 

Optimization ..........................................................................320
4.5.1 Langevin SDE –  Convergence to a     

Stationary pdf ...........................................................320
4.6 Geometric Method of Optimization by Riemannian     

Langevin Dynamics ...............................................................322
Concluding Remarks ........................................................................327
Exercises ...........................................................................................330
Notations ..........................................................................................331

Chapter 5 Stochastic Analysis on a Manifold and More on Geometric    
Methods ............................................................................................339

5.1 Introduction ............................................................................339
5.2 Stochastic Development on a Manifold .................................341

5.2.1 A General Framework for Stochastic 
Development on a Manifold .....................................345

5.2.2 Stochastic Development of an SDE on     
a Manifold ................................................................350

5.3 Non- convex Function Optimization Based on     
Stochastic Development .........................................................356
5.3.1 Issues Related to Computation of ‘g’ Matrix and 

Its Derivatives ...........................................................357
5.4 Parameter Estimation by GALA ............................................366
Concluding Remarks ........................................................................376
Exercises ...........................................................................................377
Notations ..........................................................................................378

Appendix 1 ............................................................................................................381

A1.1 Computational Complexity and NP Hard Optimization 
Problems ................................................................................381

A1.2 Metric d x y,( )  and Its Properties ..........................................382
A1.3 Basic Probability Theory and Random Number Generation ... 383

 



viii Contents

A1.3.1 Random Variables and Probability     
Distributions ........................................................383

A1.3.2 Discrete Random Variables ..................................385
A1.3.3 Continuous Random Variables ............................386
A1.3.4 Expectation of Random Variables .......................389
A1.3.5 Independence of Random Variables ....................390
A1.3.6 Random Number Generation ...............................392
A1.3.7 Transformation of Random Variables ..................393

A1.4 Linear Independence and Completeness ...........................397
A1.5 Hilbert Space .....................................................................398
A1.6 Green’s Identity .................................................................398
A1.7 Bilinear Form on  ×  and Linear Form on   ............400
A1.8 Weak Derivative of a Function in  , the Hilbert     

Space .................................................................................400
A1.9 Farkas’s Lemma ................................................................401
A1.10 Saddle Point ......................................................................402
A1.11 Legendre Transform ..........................................................402
A1.12 Bellman Principle of Optimality (Bellman and   

Kalaba 1964) and Derivation of the Hamilton-    
Jacobi- Bellman (HJB) Equation .......................................404
A1.12.1 LQR Problem (Deterministic Case)     

and HJB Equation ............................................406

Appendix 2 ............................................................................................................408

A2.1 Sobolev Space ...................................................................408
A2.2 Stiffness Matrix, Ke and the Sensitivity Matrix     

 ∂
∂

= …
K

i
e

xi
, , , ,1 2 10 ...........................................................408

A2.3 Polynomial in Computing Time ........................................411
A2.4 System Reliability and Reliability Index ..........................411

Appendix 3 ............................................................................................................416

A3.1 Monte Carlo (MC) Simulation of Random Variables     
(RVs) with Specified Probability Distribution ..................416
A3.1.1 Inversion Method of Sampling RVs .................416
A3.1.2 Simulation of a Discrete RV by Inversion     

Method .............................................................417
A3.1.3 Simulation of a Continuous RV by Inversion     

Method .............................................................418
A3.1.4 Rejection Sampling (von Neumann 1951)  ......420
A3.1.5 Importance Sampling Method   

(Rubinstein 1981)  ............................................421
A3.2 Markov Chains (Strook 2005, Norris 2012)......................424

A3.2.1 Irreducibility of a Markov Chain .....................427

 



ixContents

A3.2.2 Periodicity of a Markov Chain .........................428
A3.2.3 Stationary and Limiting Distributions of a 

Markov Chain ..................................................429
A3.2.4 Ergodic Chains .................................................430
A3.2.5 Reversible Markov Chains ...............................431

A3.3 Markov Chain Monte Carlo (MCMC) Sampling     
Techniques .........................................................................433
A3.3.1 Metropolis- Hastings (MH) Algorithm .............433

A3.4 Asymptotic Property of MLE θ  –  for Large n, θ      
Approaches a Normal Distribution  θ, /I −( )1 2  ..............436
A3.4.1 Proof for the Asymptotic Property of MLE .....437

A3.5 Confidence Intervals ..........................................................438
A3.6 Gram- Schmidt Orthogonalization Procedure   

(Meirovitch 1980)  ............................................................439
A3.7 Resonances in a Dynamical System ..................................439
A3.8 Natural Frequencies and Frequency Response .................442

Appendix 4 ............................................................................................................446

A4.1 Christoffel Symbols Γ
ij
k  in Terms of the Spherical    

Coordinates .......................................................................446
A4.2 Matrix g  Corresponding to Riemannian Metric    

(in Example 4.6) in Terms of Local Coordinates ..............447
A4.3 Stochastic Processes, Stochastic Calculus and Solution    

of SDEs .............................................................................447
A4.3.1 Stochastic Processes –  A Brief Overview ........448
A4.3.2 Brownian Motion/ Wiener Process ...................449
A4.3.3 Brownian Motion, Though Continuous, Is 

Not Differentiable Anywhere ...........................454
A4.3.4 White Noise Process ........................................454
A4.3.5 Brownian Motion Is a Markov Process ............456
A4.3.6 A Wiener Process Is a Martingale ....................456
A4.3.7 Ordinary Differential Equations (ODEs) vs. 

Stochastic Differential Equations (SDEs) ........457
A4.3.8 Existence and Uniqueness of Solution     

to SDEs ............................................................459
A4.3.9 Ito’s Formula ....................................................460
A4.3.10 Numerical Solutions to SDEs ..........................462
A4.3.11 Classical Taylor’s Expansion for ODEs ...........462
A4.3.12 Ito- Taylor’s Expansion for SDEs .....................463
A4.3.13 Stationary Stochastic Process ..........................466
A4.3.14 The Choice of ′t  Matters in Defining a 

Stochastic Integral T X X s dB s
T( ) = ( ) ( )∫ 0

 ....468

A4.4 To Draw Samples of a Given Probability    
Distribution: Example for a Sampling Problem ................468

 



x Contents

A4.5 Matrix g and the Connection Matrices for the Ackley    
Function in Example 4.9 ...................................................471

Appendix 5 ............................................................................................................476

A5.1 Matrix g and the Connection Matrices for the    
Rastrigin Function in Example 5.2....................................476

A5.2 First-  and Second- order Derivatives of the Bump     
Function.............................................................................477

A5.3 Riemannian Gradient of Log- likelihood Function     
l θt Z;( )  and the Derivatives of g  for the Example     
Problem 5.4 .......................................................................478

Index .....................................................................................................................  481

 



xi

Figures
CHAPTER 1

1.1 Maximization of the utility function  x( ) = =x x
1 2

α;     

graphical solution, straight line AB represents the limiting 
constraint c xT = = 400, feasible region –  region in the first 
quadrant below AB (hatched in the figure) ................................................2

1.2 Minimization of the capital cost f Tx c x( ) = where c = ( )4 1,
T
;     

graphical solution, straight lines correspond to the equi- cost 
curves of c xT = α, hyperbola represents the limiting constraint 
function x x

1 2
2 10000= = , feasible region –  region in the first 

quadrant above the hyperbola (hatched in the figure) ................................3
1.3 TSP;V i N

i
, , , ,= …1 2  represent cities and E i N

ij
, , , ,= …1 2 , 

j N= …1 2, , ,  represent edges between V
i
andV

j
 .....................................4

1.4a– c Some Hamiltonian cycles 1–2–3–4–5 (in dark line with arrows) 
in a five- noded complete graph ..................................................................5

1.5 Brachistochrone problem; a typical path y x( ) between the points 
a and b  .......................................................................................................6

1.6 
A function f x( ) is convex if

 
f x f x f x( ) ( ) ( ) ( ) ≤ + −α α

1 2
1

for any  α ∈[ ]0 1, ; strictly convex if the inequality sign  
   

always holds ...............................................................................................8

1.7 (a) Rosenbrock function: f x x x x x
1 2 1

2
2

2

1

2
100 1,( ) = −( ) + −( ) ;     

(b) locally quadratic (convex) function approximated by Equation  
(1.5) at the minimum point x* = ( , )1 1 T for x

1
0 95 1 05∈( ). , .   

and x
2

0 95 1 05∈( ). , .  .................................................................................10
1.8 Sub- tours in a network of six cities ( )N = 6  ...........................................12
1.9 Brute- force solution to the TSP; N = 12 cities (spread not  

in a sequential order) on a unit circle; optimum distance  
travelled = 6 21. units (as against the correct value of 6.28) .....................13

1.10 Brute- force solution to TSP; N =  12, computed optimum tour 
distance = 1778 units, the shortest Hamiltonian cycle is 11 –  5 –  
10 –  8 –  9 –  4 –  1 –  7 –  12 –  2 –  6 –  3 –  11..............................................14

1.11 Local and global solutions; x x x
1 3 5
, ,  – local minima and     

x
1
 – global minimum, x x x

2 4 6
, ,  – local maxima and x

4
 – global 

maximum ....................................................................................................15
1.12 TSP by Metropolis algorithm; N = 12 (only a part of a 

Hamiltonian cycle is shown in the figure): (a) state x
k
, (b) state 

x k after swapping the connections of cities 1 and 2 ................................17

 

 



xii Figures

1.13a TSP by selective search based on Metropolis algorithm; N = 12,     
T

0
5000= , c =  0.99, solutions from 20 independent MC runs, 

minimum tour length of 1778 units at fourth MC run .............................18
1.13b TSP by selective search based on Metropolis algorithm; N = 12,    

T
0

5000= , c =  0.99, solution from fourth MC run (Hamiltonian 
cycle of minimum length = 1778 units) –  see Figure 1.13a ......................19

1.13c TSP by selective search based on Metropolis algorithm; N = 12,     
T

0
5000= , c =  0.99, evolution of solution (for the fourth MC 

run) vs. iteration number; minimum tour length =  1778 units, 
total execution time for 20 MC runs =  77.735 s ......................................19

1.14a– b TSP with N = 50 cities; local solutions and evolution histories: 
(a) and (b) first MC run, tour length =  3886 units and execution 
time =  25.81 s ...........................................................................................21

1.14c– d TSP with N = 50 cities; local solutions and evolution histories: 
(c) and (d) second MC run, tour length =  3563 units and 
execution time =  25.40 s ..........................................................................22

1.14e– f TSP with N = 50 cities; local solutions and evolution histories: 
(e) and (f) third MC run, tour length =  3922 units and execution 
time =  27.03 s ...........................................................................................23

1.15 A brachistochrone problem; dark line –  a typical path y x( )
between the fixed points a and b, dashed line –  a varied  
path y x h x( ) + ( )ε , ε ∈  .........................................................................24

1.16 The brachistochrone problem (also refer to Figure 1.15) ........................27
1.17 Fermat’s principle of least time; v

1
and v

2
 – speed of light in the 

two media, AO –  incident ray, OB –  refracted ray ...................................28
1.18 Bernoulli’s diagram for the brachistochrone problem adapted 

from Struik [1986] – an optical analogy: ABMK –  the least 
time path and is the brachistochrone solution, point A –  start of 
luminous light, AH –  representation of the increasing velocity 
of the particle during its descent along ABMK, CM –  horizontal 
coordinate y, AC –  vertical coordinate x, CH –  velocity v,     
nm = dy, Mn = dx  ....................................................................................30

1.19 A continuous system –  an axially vibrating rod of length l;  
m x( )  =  mass density per unit length, E x( ) =  Young’s modulus 
of elasticity, A x( ) =  area of cross- section of the rod   .............................33

1.20 Orthogonal projection and minimum residual norm ................................35
1.21 (a) Axially vibrating rod, (b) FEM semi- discretization –  ith

element and nodal displacement functions q t
i ( ) and q t

i+ ( )1
     

and (c) trial function , , , , ,Y x i j N
j i ij d( ) = = …δ 1 2  .................................37

1.22 Geometric significance of the gradient vector and directions of 
steepest ascent and descent ......................................................................39

1.23 A constrained optimization problem with an equality constraint ............40

 



xiiiFigures

1.24 A constrained optimization problem with two equality     
constraints ................................................................................................41

1.25 Constrained optimization problem with an inequality constraint; 
(a) case of a slack inequality constraint (not binding), hence 
solution search in the interior of g x( ) < 0; (b) case of an active 
inequality constraint and solution search on the surface of 
g x( ) = 0, x* denotes the local optimum .................................................44

1.26a Descent cone and descent direction d x= − ( )∇f
k

 ...................................48

1.26b Feasibility cone and feasibile direction ∇f
k

x( )  ......................................49

1.27 Tangent plane and second-order sufficient condition:   
(a) maximization problem in Example 1.2 and (b) minimization 
problem in Example 1.3 ...........................................................................51

1.28 Optimal control problem; u*  lying on the boundary and control 
input variation δu outside the admissible region in some     

interval t t t t
i i f
, ,+( ) ∈ 1 0

 ........................................................................57

1.29 Optimal control; linear regulator problem and feedback control .............60
1.30 LQR problem; system state optimal trajectories along with the 

uncontrolled ones: (a) x t
1 ( ), (b) x t

2 ( ), (c) x t
3 ( ) and (d) x t

4 ( ), 
light black –  uncontrolled, dark black –  controlled .................................62

CHAPTER 2

2.1 Convergence of steepest descent method for quadratic   
functions; x

0
 – starting point, x*  – optimum point:   

(a) f x x x x
1 2 1

2

2

2
3 5,( ) = −( ) + −( ) –  optimum realized in one 

iteration and (b) f x x x x x x
1 2 1

2

2

2

1 2
3 5,( ) = −( ) + −( ) + –  optimum 

realized in ten iterations .................................................................................81
2.2 Conjugate gradient method, descent directions − ( )∇ f x

0   

and − ( )∇ f x
1

, conjugate directions d
0
and d

1
at zeroth and   

first iterations respectively .......................................................................85
2.3 CG method and convergence of a quadratic function; x

0
1 2= ( ),

T

is the starting point, x* . , .= ( )0 667 4 667
T

is the optimum point; 

f x x x x x x
1 2 1

2

2

2

1 2
3 5, ;( ) = −( ) + −( ) + optimum realized in n = 2  

iterations ........................................................................................................88

2.4a Conjugate gradient method applied to Rosenbrock  

function ,f x x x x x
1 2 1

2
2

2

1

2
100 1( ) = −( ) + −( ) , x

0
3 10= ( ),

T
,     

x* ,= ( )1 1
T
; distribution of iterations in parameter space 

(convergence in 175 iterations) ......................................................................90

 



xiv Figures

2.4b Conjugate gradient method applied to Rosenbrock  

function ,f x x x x x
1 2 1

2
2

2

1

2
100 1( ) = −( ) + −( ) , x

0
3 10= ( ),

T ,     
x* ,= ( )1 1

T
; evolution of objective function with iterations 

(attaining a minimum value of 2.52E- 13 at the end of 175 iterations) ......90
2.5 Steady-state heat flow problem; a rectangular plate ABCD of 

homogeneous and isotropic material –  length l = 10 cm and 
width b = 5 cm ...........................................................................................95

2.6 Application of CG method, steady state heat flow problem: (a) FE 
model with 441 nodes and 800 elements and (b) FE model with 
1681 nodes and 3200 elements ..................................................................98

2.7 Solution to steady-state heat flow problem by CG method with 
Jacobi- pre- conditioning: (a) for the FE model in Figure 2.6a and     
(b) for the FE model in Figure 2.6b ...........................................................99

2.8 Newton’s method and convergence of the quadratic function f(x
1
, x

2
) =     

x x x x
T T

2

2

2

2

1 2 0
5 5 1 2 0 667 4 667−( ) + −( ) + = ( ) = ( ); , ; . , .*x x  ...................101

2.9a– b DFP method, quadratic function f(x
1
, x

2
) = (x

1
 – 3)2 + (x2 – 5)2 +     

x x
T T

1 2 0
1 2 0 667 4 667; , ; . , .*x x= ( ) = ( ) and f x* .( ) = 8 667 -  

convergence in two iterations ..................................................................108

2.9c– d DFP method, non- quadratic function (Rosenbrock)- 

f x x x x x
1 2 1

2
2

2

1

2
100 1, ,( ) = −( ) + −( ) x

0
5 5= ( ), ,

T
 x* ,= ( )1 1

T

and f Ex* .( ) = −6 55 12- convergence in 59 iterations .............................109
2.10 Exterior penalty function method; unconstrained minima 

for increasing values of the penalty parameter r with 
r r r

k k
> > … >−1 0

tending towards the constrained minimum ..................112
2.11 Interior penalty function method; unconstrained minima for 

decreasing values of the penalty parameter r r r
k k

< < … <−1 0
tend 

to the constrained minimum x* at the barrier ..........................................116
2.12 A 10- member plane truss; FE model with 2 dof/ node in the     

two transverse directions, L cm= 150 , mass density =  2700E- 6     

Kg cm/ 3, Young’s modulus of elasticity E N cm= ×70 105 2/ , 

P KN
1

500= , P KN
2

100=  and P KN
3

100=   ..........................................117
2.13 Weight optimization of a plane truss by interior penalty function 

method; r
0

1 0= . and r r
k k

= −0 5
1

. , x0
1 6: . .N( ) =  sq cm ,     

x* = ( )9 68 6 0 9 65 9 32 6 0 9 32 6 19 6 0 6 13 6 20. , . , . , . , . , . , . , . , . , .
T

and 

at the end of iterations    ,Y - displacement at node 3 = −5 82. . cm  ..............119
2.14 Plane truss: weight optimization by exterior penalty function 

method; r
0

10= and r r
k k

= −5
1

,x0
1 12 0: . . .N( ) =  sq cm , 

x* = ( )8 93 7 76 9 53 7 81 7 76 7 81 6 0 6 81 8 66 8 76. , . , . , . , . , . , . , . , . , .
T

 and 

at the end of iterations     Y - displacement at node 3 = −5 63. . cm  ..............120

 



xvFigures

2.15 Augmented Lagrangian method along with CG method;     
Rosen- Suzuki function (Vanderplaats 1973), evolution of f (x) 

with respect to r ir i
k k

= =−1
1 2 3 4 5, , , , , , optimum value f x* .( ) = 6 0  .....124

2.16 Augmented Lagrangian method along with CG method;     
Rosen- Suzuki function (Vanderplaats 1973), evolutions of design 

variables with respect to r ir i
k k

= =−1
1 2 3 4 5, , , , , ; the constrained 

optimum, x* , , ,= −( )0 1 2 1
T

 .....................................................................124
2.17 Augmented Lagrangian method along with CG method;     

Rosen- Suzuki function (Vanderplaats 1973), evolution of 

Lagrange multipliers with respect to r ir i
k k

= =−1
1 2 3 4 5, , , , , ;    

(a) multipliers µ
1
and µ

2
corresponding to the equality constraints 

h
1

x( ) and h
2

x( ) respectively and (b) multiplier λ corresponding 

to the inequality constraint g x( )  .............................................................125

2.18 Himmelblau function; f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11   

(a) 3D view and (b) planar view ..............................................................129

2.19 Optimization by SQP method along with Newton’s method, 

Himmelblau function: f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11 ,  

evolution of f x( ) with iterations, x
0

3 1= −( ),  
T

and the 

constrained optimum x* ,= ( )3 2
T

with f Ex* .( ) = −1 369 12  .................130

2.20 Optimization of Himmelblau function: f x xx( ) = + −( ) +
1 2

2
2

7

x x
1
2

2

2
11+ −( )  by SQP along with Newton’s method, evolution  

of x* = ( )3 2,
T

, case (i) with iterations, x
0

3 1= −( ),
T

 .............................130
2.21 Optimization by SQP method along with Newton’s method, 

Himmelblau function: f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11 ,  

evolution of λ
1
and λ

2
with iterations, (a) case  

2: x
2

3 584 1 848* . , .= −( )T
, (b) case 3: x

3
2 805 3 131* . , .= −( )T

and  

(c) case 4: x
4

3 779 3 283* . , .= − −( )T
..........................................................131

2.22a LP problem in Example 2.5; feasible region shown as the 
hatched area, constraints shown in dark lines along with   
extreme points..........................................................................................134

2.22b Graphical solution to LP problem in Example 2.5; dark lines –  
constraints, dotted lines –  equi- potential curves of the objective 
function passing through the extreme points .............................................135

2.23 Solution to Example 2.6 by simplex method via SQP, optimum 
x* = ( )3 2,

T
(see the result in Figure 2.20 obtained by SQP plus 

Newton’s method) ......................................................................................143
2.24 GRG method, correction (if required) to the basic variables  

during an iteration by Newton- Raphson method to  
satisfy max , , ,h

i
ix

1
1 2( ) < = …ε  ...............................................................148

 



xvi Figures

2.25 Minimization of the function in Example 2.7 by GRG method, 
evolution of objective function with iterations (attaining the 
minimum value of 1.11E- 05 at the end) ....................................................149

2.26 Minimization of the function in Example 2.7 by GRG method, 
evolution of design variables x x x

1 2 3
, and with iterations ..........................150

2.27 Constrained optimization, d –  a descent and feasible direction, 
shade region –  intersection of descent and feasible cones,  
f cx( ) = is an equipotential curve ............................................................151

2.28 (a) An axially loaded rod; (b) failure surface g S T A
Y

, ,( ) = 0      

load effect P
T

A
=  .......................................................................................152

2.29 f s
S YY

( ) , f p
P ( )– normal pdfs of S

Y
and the load effect P

respectively; failure surface g Z Z
1

0,( ) =  where Z Z
1
and  are 

standard normals of S
Y

and P , respectively ...............................................154
2.30 Solution to Example 2.8 by MC simulation; number of     

simulations =  1 05E , probability of failure P E
f

= −5 05  ..........................159

2.31 Method of gradient projection: equality constraints: h
1

x( ) and 
h

2
x( ) with h

1
x( ) being the binding constraint at x

k
, descent and 

 feasible direction d P x= − ( )∇ f so that ∇h
T

1
0x d( ) = ............................163

CHAPTER 3

3.1a HJ method –  two- dimensional case, an exploratory move, 
successful step is shown by a dark arrow with the letter ‘S’ over or 
by the side of the line and an unsuccessful step by a dotted arrow 
with the letter ‘F’ over it or by its side ....................................................184

3.1b HJ method –  two- dimensional case, a pattern move towards the 
point D along the direction x x

k
E

k+ −
1

, the subsequent exploratory 
move succeeds and reaches the point E and the pattern search is 
termed as successful ................................................................................185

3.2a– b Result for Rosenbrock function (see Figure 2.4, Chapter 2) by 
HJ method; (a) evolution of x

1
, (b) evolution of x

2
with iterations 

(optimum x
T* . , .= ( )1 008 1 008 ) ...............................................................186

3.2c Result for Rosenbrock function by HJ method; evolution of the 
objective function with iterations (finally attaining a minimum 
value of 0.00626) .....................................................................................187

3.3 Weight optimization of a plane truss by HJ combined with the     
interior penalty function method; r

0
1000= and r r

k k
= −0 1

1
. ,      

x
0

6 6 6 6 6 6 6 6= ( ), , , , , , , ,
T

 x* . , . , . , . ,= (7 3 6 77 7 3 7 7

6 8 7 6 7 3 7 3 7 3 7 6. , . , . , . , . , . ,)T
 Y - displacement at node 3 is 

−6 0.  cm and optimum weight =  34.5 N at the end of iterations .............188

 



xviiFigures

3.4a– b NM method – possible operations at the kth iteration on a     
simplex in the two-dimensional case: (a) reflection, (b) expansion;     
x

k
 – centroid of the simplex ...................................................................190

3.4c– d NM method – possible operations at the kth iteration on a simplex 
in the two- dimensional case: (c) contraction inside, (d) contraction 
outside; x

k
 – centroid of the simplex .....................................................191

3.4e NM method –  possible operations at the kth iteration on a     
simplex in the two-dimensional case: (e) shrinkage; x

k
 – centroid 

of the simplex ..........................................................................................191
3.5a– b Generalized exponential pdf with different values of the two 

parameters α λ  and : (a) α = 1,2,4 with λ =  1.0 and (b) λ =  1,2,3     
with α =  2.0 .............................................................................................194

3.6a– b HJ method; statistical estimation by MLE of parameters of an 
assumed pdf using data of size n = 5000: (a) evolution of α with 
iterations, (b) evolution of λ with iterations ...........................................196

3.6c HJ method; statistical estimation by MLE of the parameters of 
an assumed pdf using data of size n = 5000; simulated pdfs with 
reference (true) and estimated parameters ...............................................197

3.6d– e NM method; statistical estimation by MLE of the parameters of 
an assumed pdf using data of size n = 5000: (d) evolution of α
with iterations, (e) evolution of λ with iterations ...................................198

3.6f NM method; statistical estimation by MLE of the parameters of 
an assumed pdf using data of size n = 5000, simulated pdfs with 
reference (true) and estimated parameters ...............................................199

3.7 Rosenbrock’s rotating coordinates method; solution to the MLE 
problem in Example 3.2 with n kk= >2 1, ,d are generated by 
Gram- Schimdt procedure at the beginning of each stage; at the 
initial stage d1 corresponds to the n Euclidean axes, xk k ≥( )1 is 
the solution at the end of the kth stage .....................................................205

3.8 Rosenbrock’s rotating coordinates method; solution to the MLE 
problem in Example 3.2: (a) evolution of the estimated parameter 
α with stages and (b) evolution of the estimated parameter λ
with stages; final solution: α = 3 64.  and λ = 2 249. (as against the 
reference values 3.639 and 2.239, respectively) ......................................205

3.9 Powell’s method of conjugate directions; determining a conjugate 
direction d in a two- dimensional case ....................................................208

3.10 Powell’s method of conjugate directions: two- dimensional case, 
the generated conjugate directions d x x

1 3 1
= − and d x x

2 6 4
= −

at the end of the first stage consisting of two cycles of iteration .............208
3.11 Powell’s conjugate directions method and solution to the MLE 

problem in Example 3.2. (a) Evolution of the estimated parameter 
α with iterations and (b) evolution of the estimated parameter λ
with iterations; final solution: α = 3 634. and λ = 2 269. (as against 
the reference values 3.639 and 2.239, respectively) ................................209

3.12 Trust region method in the two- dimensional case; evolution of 
trust regions along with new iterates x

i
i k k k, , ,= + +1 2  .......................213

 



xviii Figures

3.13a Solution to constrained optimization problem in Example 3.5  
by trust region method combined with Nelder and Mead  
method, r

0
1= ;  evolution of f x( ) with respect to r (finally 

attaining a minimum value of 6.19) .........................................................215
3.13b Solution to the constrained optimization problem in Example 3.5 

by trust region method combined with Nelder and Mead method, 
r
0

1= ;  evolutions of design variables , , , ,x i
i

= 1 2 3 4      
with respect to r  .....................................................................................215

3.14a Solution to constrained optimization problem in Example 3.5 by 
trust region method combined with Powell’s method of conjugate 
directions, evolution of f x( ) with respect to r (finally attaining a 
minimum value of 6.009) ........................................................................216

3.14b Solution to the constrained optimization problem in Example 3.5 
by trust region method combined with Powell’s method of 
conjugate directions; evolutions of x i

i
, , , ,= 1 2 3 4 with respect to r  ......216

3.15a– b GA solution to Rosenbrock function f x xx( ) = −( ) +100
1
2

2

2

x
1

2
1−( ) ; crossover probability =  0.2, mutation probability =  0.2: 

(a–b) evolution of x
1
and x

2
with iterations ............................................221

3.15c GA solution to Rosenbrock function f x xx( ) = −( ) +100
1
2

2

2

x
1

2
1−( ) ; crossover probability =  0.2, mutation probability =  0.2, 

evolution of the objective function with iterations (finally attaining 

a minimum value of 6.063E- 7) ................................................................222
3.16a Solution to constrained optimization of Rosen- Suzuki function 

by GA plus augmented Lagrangian method, N
p

= ,100 mutation 

rate =  0.005; convergence of the four design variables     
x i

i
, , ,= 1 2 3 4  and  ..................................................................................223

3.16b Solution to the constrained optimization of Rosen- Suzuki function 

by GA plus augmented Lagrangian method; N
p

= 100, mutation 
rate =  0.005; convergence of the objective function with respect     
to the penalty parameter r (finally attaining a minimum     
value of 6.008) .........................................................................................224

3.17a Spring-supported circular shaft ...............................................................225
3.17b Spring-supported shaft and the FE model with beam elements ..............225
3.17c Spring-supported shaft and a typical beam element ( ith ) with 4 

dofs per node: q t q t q t q ti i i i
1 3 5 7( ) ( ) ( ) ( ), , , –  translational dof and 

q t q t q t q ti i i i
2 4 6 8( ) ( ) ( ) ( ), , , –  rotational dof ................................................225

3.18 Frequency response before start of iteration in Example 3.8 at 
the support points in Y-  and Z- directions; excitation amplitudes 
A A

1 2
1 0, .= N at the disk node: (a) response at node 5 –  in     

Y- direction and (b) response at node 11 –  in Y- direction (see FE 
model in Figure 3.17b) ............................................................................227

 



xixFigures

3.19a Optimum shaft geometry by GA to avoid resonance in a specified 

frequency range; N
p

= 20 , p p
m k m k, ,

.+ =
1

0 99 ; evolutions of the 
first two natural frequencies ω

1
and ω

2
 ...................................................228

3.19b Optimum shaft geometry by GA to avoid resonance in a specified 

frequency range; N
p

= 20 , p p
m k m k, ,

.+ =
1

0 99 ; evolution of the 

objective function (in Equation 3.44) with iterations (finally 
attaining a minimum value of 9.0) ...........................................................229

3.20 Optimum shaft geometry by GA to avoid resonance in a specified 

frequency range; N
p

= 20 , p p
m k m k, ,

.+ =
1

0 99 : (a) evolution of x
3

over the first 20 iterations; (b) evolution of x
7

over the first 20 
iterations; (c) evolution of x

3
over all iterations; (d) evolution of 

x
7

over all iterations ................................................................................229
3.21 Optimum solution by GA for a simply supported shaft to 

avoid resonance in a specified frequency range; N = 15 , 

N
p

= 20 , p p
m k m k, ,

.+ =
1

0 99 ; evolutions of all design variables 

x j N
j
, , , ,= …1 2 (sample- averaged) with iterations ...............................231

3.22 Optimum solution by GA for a simply supported shaft to avoid 
resonance in a specified frequency range; N = 15 , N

p
= 20 , 

p p
m k m k, ,

.+ =
1

0 99 ; frequency response of the shaft with the final 

set of diameters x j N
j
, , , ,= …1 2 obtained by GA; X jω( )

17
–       

response at 5th node in Y- direction and X jω( )
45

–  response at 

11th node in Y- direction ..........................................................................232
3.23 Optimum shaft geometry by GA –  Example 3.8; final optimum 

solution on shaft diameters that avoids resonance in a specified 
frequency range .......................................................................................232

3.24a Optimum shaft geometry (Example 3.8) by SA to avoid resonance 
in a specified frequency range; evolution of first two natural 
frequencies ω

1
and ω

2
 .............................................................................237

3.24b Optimum shaft geometry (Example 3.8) by SA to avoid resonance 
in a specified frequency range; evolution of objective function (in 
Equation 3.44) with number of successes during iterations (finally 
attaining a minimum value of 848.0) .......................................................237

3.25a Optimum shaft geometry (Example 3.8) by PSO to avoid 
resonance, results with c

1
and c

2
=  2; evolution of the first two 

natural frequencies ω
1
and ω

2
 ..................................................................240

3.25b Optimum shaft geometry (Example 3.8) by PSO to avoid 
resonance, results with c

1
and c

2
; =  2.0; evolution of the objective 

function (in Equation 3.42) with iterations (finally attaining the 
minimum value of 0.0) ............................................................................240

 



xx Figures

3.26a Optimum shaft geometry (Example 3.8) by PSO to avoid 
resonance; results with c and c

1 2
1 2= =  ; evolution of the first 

two natural frequencies ω
1
and ω

2
in rad/ s. ............................................241

3.26b Optimum shaft geometry (Example 3.8) by PSO to avoid 
resonance; results with c and c

1 2
1 2= =  ; evolution of the 

objective function (in Equation 3.44) with iterations (finally 
attaining the minimum value of 0.0) .......................................................242

3.27 Mutation operation in DiEv at the end of the kth iteration in a     
two- dimensional parameter space (for details on notations,     
see Table 3.7) .....................................................................................243

3.28a Optimum shaft geometry (Example 3.8) by DiEv to avoid 

resonance; N
p

 =  15, q = 0 1. ; evolutions of the first two natural 

frequencies ω
1
 and ω

2
 .............................................................................245

3.28b Optimum shaft geometry (Example 3.8) by DiEv to avoid 
resonance;N

p
 =  15, q = 0 1. ; evolution of the objective function 

with iterations (finally attaining a minimum value of 98.02) ..................245

CHAPTER 4

4.1a Rosenbrock function f x x xx( ) = −( ) + −( )100 1
2 1

2
2

1

2
with

x = ( )x x
1 2
, ; contour plot in 3 ..................................................................266

4.1b Optimization in Euclidean space of Rosenbrock function 

f x x xx( ) = −( ) + −( )100 1
2 1

2
2

1

2
 with x = ( )x x

1 2
, ; projection 

of contour on to 2 and route to optimum –  line with dots –  to 

minimum point x* ,= ( )1 1 by line search (classical CG method) ...............266
4.2 Gradient projection method of Rosen (1960,1961) .....................................267
4.3 Three typical wind velocity profiles (refers to no specific real data) ..........268
4.4a Local Euclidean property; curve in R2 ........................................................270
4.4b Local Euclidean property; curve in R3 ........................................................271
4.5 Manifold M and coordinate chart U, ϕ( ) where U M⊂  .............................271
4.6 Manifold M and compatibility of two coordinate maps ϕ, Ψ via 

transition maps ϕ Ψ−1  and Ψ ϕ−1  ...........................................................272
4.7 Manifold M; definition of a tangent vector using a coordinate     

chart (U, ϕ ) .................................................................................................275
4.8 Manifold M; tangent spaces at points ,p q  and r .......................................276
4.9 Differential map between two manifolds M Rn⊂  and     

N R w F vm
p

⊂ = ( );
*

....................................................................................279

4.10 A sphere S R2 3⊂ ; spherical coordinate system ..........................................286
4.11 Geodesics (in solid  line) for unit sphere S R2 3⊂ :     

(a) ICs u u v
0 0 0

0 0 1 0= = =, . , and v
0

0= , (b) ICs 
u u v

0 0 0
0 3 0 4 0 4= = =. , . , . and v

0
0 3= − . , dashed circle in line 

corresponds to a great circle of which the geodesic forms a segment 
of minimum distance between its end points ..............................................288

 



xxiFigures

4.12 Parallel transport of a vector field along a curve γ t( ) on a     
manifold M  ...........................................................................................291

4.13 Geometric interpretation of Lie bracket .................................................294

4.14 Manifold M; (a) exponential map q Exp v
p

= ( )  (b) logarithmic 

map Exp q v
p
− ( ) =1  .................................................................................296

4.15 Normal coordinates using exponential map on a Riemannian 

manifold ( M g, ) with v T M
p

∈ ( ) : (a) U M⊂  –  the diffeomorphic 

image of ( )b     a star shaped neighbourhood− ⊂ ( )′U T M
p

 ..................... 297

4.16 Riemannian curvature –  a measure of holonomy; parallel 
transport around a closed loop on S2  .....................................................300

4.17 Riemannian optimization by geometric steepest descent 
method: minimization of Rayleigh quotient x AxT , starting point 

x
0

0 5 0 7= −( ). , .
T

and optimum point x* . , .= −( )0 8112 0 5847
T

with minimum value f x* .( ) = −0 1623 found in 100 iterations ............305
4.18 Use of retraction in Riemannian optimization, result by 

geometric steepest descent method, minimization of Rayleigh 

quotient x AxT , starting point x
0

0 5 0 7= −( ). , .
T

and optimum 

point x* . , .= −( )0 8112 0 5847
T

with minimum value 

f x* .( ) = 0 1623 found in 24 iterations ...................................................306
4.19a– b Optimization by geometric conjugate gradient method –  

Rosenbrock function: (a) optimum path to x* on the manifold 
and (b) evolution of the objective function with iterations, dark 
line –  geometric CGM and dash- dotted line –  classical CGM ..............308

4.19c– d Optimization by geometric steepest descent method –  
Rosenbrock function: (c) optimum path to x* on the manifold 
and (d) evolution of the objective function with iterations with 
log scale on y- axis; dark line –  geometric SDM and dotted line –  
classical SDM (oscillatory behaviour and no convergence) ..................308

4.19e– f Search paths: (e) classical SDM and (f) classical CGM; note the     
zig- zag paths following line search at each iteration which 
increases the computational effort .........................................................308

4.20 Optimization by geometric Newton’s method (NM) –  
Rosenbrock function: (a) optimum path to x* on the manifold 
and (b) evolution of the objective function with iterations. Dark 
line –  geometric NM and dash- dotted line –  classical NM ....................313

4.21 Geometric optimization by trust region method (TRM) –  
Rosenbrock function: (a) optimum path to x* on the manifold 
and (b) evolution of the objective function with iterations, dark 
line –  geometric TRM and dash- dotted line –  classical TRM ...............314

4.22 Joint pdfs  and  + ∆θ corresponding to points x and y  

 on the manifold M representing an m- dimensional parameter     
space ........................................................................................................318

 



xxii Figures

4.23 Statistical estimation by MLE of parameters of generalized 
exponential probability distribution; evolution of parameters α
and λ with iterations; dark line –  geometric SDM method, dotted 
line –  classical derivative- free NM method, dash- dotted line –  
classical derivative- free HJ method .......................................................319

4.24a– b Optimization by RMALA of two- dimensional Ackley function: 
(a) evolution of the solution X t

1 ( ) (dark line) and X t
2 ( ) (dash- 

dot line) and (b) evolution of the objective function versus 

iterations, ∆ =t 0 001. , N
p

= 10  ..............................................................324

4.24c– d Optimization by RMALA of two- dimensional Ackley function:   
(c) evolution of the solution X t

1 ( ) (dark line) and X t
2 ( ) (dash- 

dot line) and (d) evolution of the objective function versus 

iterations, ∆ =t 0 01. , N
p

= 10  ...............................................................325

4.24e– f Optimization by RMALA of two- dimensional Ackley function: 
(e) evolution of the solution X t

1 ( ) (dark line) and X t
2 ( ) (dash- 

dot line) and (f) evolution of the objective function versus 

iterations, ∆ =t 0 1. , N
p

= 10  ..................................................................326

4.25 Optimization by classical MALA of two- dimensional Ackley 
function: (a) evolution of the solution X t

1 ( ) (dark line) and 
X t

2 ( ) (dash- dot line) and (b) evolution of the objective function 

versus iterations, ∆ =t 0 001. , N
p

= 10  ...................................................329

CHAPTER 5

5.1 An exercise to simulate stochastic development on a manifold 
(here the sphere S2 : (a) a trajectory of two- dimensional 
Brownian motion obtained numerically by solving the SDE (5.1) 
over the interval (0 –  0.5 s) with ∆ =t 0 01. (starting at point 

0 0,( )T
and ending at point −( )0 89 0 2426. , .

T
(marked by black 

squares in the figure); (b) simulated solution on a sphere S2

starting from the north pole (0, 0, 1) and ending at point  
(– 0.8901, 0.2526, 0.3794)T –  (here indirectly obtained by 
solving the geodesic Equation 4.38) ......................................................340

5.2 Sample solution by EM method of the stochastically developed 
SDE (5.9) with n = 2 while using the metric corresponding to a 
unit sphere manifold S2 : (a) a 2- D plot of the solution   
X t


1
and X t



2
over the interval (0 –  0.5 s) with ∆ =t 0 01. and   

(b) the solution path on the sphere S2 (shown in light squares); 
also see the solution (in dark squares) obtained from SDE (5.1) 
and transferred to the sphere manifold S2  by using exponential 
mapping at each time .............................................................................344

5.3 Frame bundle FM as the union of frames FM
x
; each frame FM

x

is the set of all basis vectors of T M x M
x

, ∈ ; the illustration is 
for the two-dimensional case .................................................................346

 



xxiiiFigures

5.4 Horizontal lift γ
t
on FM of the curve ψ

t
in M –  a two- dimensional   

case; y
t1 1

= γ , y
t2 2

= γ and y
t3 3

= γ , H FM i
yi

, , ,= 1 2 3 are the 

spaces of horizontal vectors at typical points of the curve γ
t
on 

the frame bundle.....................................................................................348
5.5 Optimization by GALA of 10 - dimensional Ackley function 

( n = 10 ); (a) evolution of the solution x of the stochastically 
developed SDE (5.31) and (b) evolution of the objective function

f x( ) , dt = 0 01.  , N
p

= 5  .......................................................................358

5.6 Optimization by GALA of 40- dimensional Ackley function 
( n = 40 ); (a) evolution of the solution x of the stochastically 
developed SDE (5.43) and (b) evolution of the objective function

f x( ) , ∆ =t 0 5. , N
p

= 5  .........................................................................359

5.7a– b Optimization of 40- dimensional Ackley function ( n = 40 )     
by RMALA (Section 4.6.2, Chapter 4) using the exponential 
mapping step; (a) evolution of the solution x of the SDE 
(4.155) of Chapter 4 and (b) evolution of the objective function

f tx( ) ∆ =, .0 01 , N
p

= 5  .......................................................................360

5.7c– d Optimization of 40- dimensional Ackley function ( n = 40 )     
by classical MALA (Equation 4.154) using steepest descent   
step; (c) evolution of the solution x  (d) evolution of the objective 

function f tx( ) ∆ =, .0 01 , N
p

= 5  .........................................................361

5.8 Optimization by GALA (with stochastic development)  
of 40- dimensional Rastrigin function ( n = 40 );  
(a) evolution of the solution x and (b) evolution of the objective 

function f tx( ) ∆ =, .0 01 , N
p

= 5  .........................................................362

5.9 Optimization by GALA of a 40- dimensional Rastrigin function 
with stochastic development and ‘g ’ matrix and its derivatives 
numerically computed by use of RBFs; (a) evolution of the 
solution x of the stochastically developed SDE (5.43) and     

(b) evolution of the objective function f x( ) , ∆ =t 0 01. , N
p

= 5  ...........365

5.10 Statistical estimation by GALA of parameters of a generalized 
exponential probability distribution; evolution of parameters 
α and λ with iterations; (a) result by GALA and (b) result by 
RMALA (Section 4.7) ...........................................................................368

5.11 Estimation by GALA of parameters of a 2- dimensional normal 
pdf (Equation 5.44); evolution of (a) mean components µ

1
and 

µ
2 11 21 2
 and         b) ,the covariance matrix components andΣ Σ Σ

22

with iterations; reference (true) values are shown by dashed lines ........370
5.12 Estimation by GALA of parameters of a 3- dimensional normal 

pdf (Equation 5.44); evolution with iterations of (a) mean 

components µ
1

, µ
2

 and µ
3
 and (b) the covariance components 

 



xxiv Figures

Σ Σ Σ Σ
11 21 22 31

, , , , Σ
32

and Σ
33

; reference (true) values are shown 

by dashed lines –  0.8608 for µ
1
, 0.6719 for µ

2
and 0.6309 for µ

3
,  

3.4084 for Σ
11

, 3.488 for Σ
21

, 5.9612 for Σ
22

, 3.6288 for Σ
31

, 

2,9326 for Σ
32

, 4.3737 for Σ
33

 ...............................................................371
5.13 Estimation by GALA of parameters of a 10- dimensional 

normal pdf (Equation 5.44); evolution of (a) mean component 
µ µ

2 7
0 6719reference value mean component  =( ). and (b)   

(reference value = 0 6278. ) with iterations; reference (true) values 
are shown by dashed lines ......................................................................372

5.14a– b Estimation by GALA of parameters of a 10- dimensional 
normal pdf (Equation 5.44); evolution of (a) covariance matrix 

component Σ11
6 2931reference value =( ).  and (b) covariance 

matrix component Σ41
1 6397reference value . ;=( )  reference (true) 

values are shown by dashed lines...........................................................373
5.14c– d Estimation by GALA of parameters of a 10- dimensional 

normal pdf (Equation 5.44); evolution of (c) covariance matrix 

component Σ61
0 3291reference value = −( ).  and (d) covariance 

matrix component Σ74
0 1464reference value =( ). ; reference 

(true) values are shown by dashed lines .................................................374
5.14e– f Estimation by GALA of parameters of a 10- dimensional 

normal pdf (Equation 5.44); evolution of (e) covariance matrix 

component Σ92
2 6237reference value .=( ) and (f) covariance 

matrix component Σ96
1 7688reference value = −( ). ; reference 

(true) values are shown by dashed lines .................................................375

APPENDIX 1

A1.1 Categorization of optimization problems –  P, NP, NP- complete     
and NP- hard ...............................................................................................382

A1.2 Random variables and probabilities: (a) tossing of an unbiased     
coin; (b) rainfall on a day and (c) throw of an unbiased dice ....................384

A1.3 Discrete random variables and CDFs: (a) unbiased coin tossing; 
(b) rainfall on a day and (c) throw of an unbiased dice .............................386

A1.4 (a) pdf of a uniformly distributed (continuous) random  
variable Θ ∈[ ]0 2, π  –  Roulette wheel experiment and (b) pdf of an 
exponential (continuous) random variable with  ....................387

A1.5 CDFs of the continuous random variables: (a) uniformly distributed 
and (b) exponentially distributed (see the corresponding pdfs in     
Figure A1.4) ...............................................................................................388

A1.6 Transformation of a random variable to another one via a strictly 
monotonically increasing function .............................................................393

 



xxvFigures

A1.7 Transformation of a random variable to another one via a quadratic 
function ......................................................................................................394

A1.8 Two- dimensional transformation; X R= cosθ , Y R= sinθ :     
(a) Cartesian coordinates and (b) polar coordinates ..................................396

APPENDIX 2

A2.1 System reliability in a two- dimensional case; (a) failure surface in S 
and T (normal random variables) and (b) failure surface in reduced 
variates, ZS and ZT -  standard normal variables ........................................412

A2.2 (a) pdf of limit state function M S T= − and probability of failure 
P M <( )0 shown by the hatched area and (b) pdf of limit state 

function in terms of reduced variate Z
M

M
M

M

=
− µ
σ

and probability 

of failure P Z
M

M

M

< −






µ
σ

shown by the hatched area ..............................413

APPENDIX 3

A3.1 Generation of realizations for X  of a specified F y
Y ( )  via a 

transformation using uniformly distributed random variable. ...................417
A3.2 (a) pdf and (b) CDF of the discrete random variable Y . ............................418
A3.3 Sampling of the discrete RVY ; F y

Y ( ) –  CDF of the discrete RVY ,     
F u ( )  –  CDF of uniformly distributed RV; arrows marked ‘1’, ‘2’ 
and ‘3’ indicate the realizations of the RV Y . Note that the figure is 
not drawn to scale. .....................................................................................418

A3.4 Sampling by inversion method of Rayleigh RV X : (a) simulated 
pdf and (b) simulated CDF, theoretical pdf and CDF shown in 
dashed lines. ...............................................................................................419

A3.5 Sampling by rejection method of the target density ;  

 x
1
 is to be rejected since  and x

2
 is an acceptable 

 realization from  since . ......................................................420

A3.6 Sampling from beta distribution by rejection method: (a) simulated 
pdf and (b) simulated CDF; theoretical pdf and CDF are also shown 
in dashed lines. ...........................................................................................421

A3.7 MC estimate I
N

 of the integral I  of Example A3.4 with     
N =  20,000: (a) estimate without important sampling in +  sign and 
(b) estimate with important sampling in * sign. ........................................424

A3.8 MC estimate I
N

 of the integral I of Example A3.4 with     
N =  20,000, standard deviation σ  of the estimate: (a) without 
important sampling in +  sign and (b) with important sampling     
in * sign. .....................................................................................................425

 



xxvi Figures

A3.9 Directed graph for the transition probability matrix T in Example 
A3.5; state space S = ( )1 2 3, ,  on   and the probability space 
Ω = ( ) = ( )−X S

n
1 cloudy rainy sunny, ,  where the RV X S

n
: Ω → . ...........427

A3.10 Transition graph for Markov chain with the matrix   given in 
Equation (A3.23) .....................................................................................428

A3.11 Typical four samples of Markov chain X kk( ) =, , , ,1 2 3 4 –  a 
discrete stochastic process –  of Example A3.5 simulated using 
the transition probability matrix T (Equation A3.20); initial 
probabilities (on day 1) of the three states –  p 0 0 1 0( ) = { }, , ;     
across the ensemble, states on any day denote an RV with a 
discrete sample space Ω = ( )1 2 3, ,  with 1– 1 correspondence to 
the three states ‘rainy’, ‘cloudy’ and ‘sunny’ ..........................................430

A3.12 Sampling of a bimodal pdf in Example A3.9, histogram along 
with the target pdf in red (using symmetric proposal pdf).  .....................435

A3.13 Sampling of a bimodal pdf, histogram along with the target pdf in 
red –  using asymmetric proposal pdf: (a) histogram drawn with 
5000 samples and (b) histogram drawn with 10,000 samples. ................436

A3.14 Standard normal pdf Φ ( ) probability P − ≤( 1 96.
 ≤ ) =1 96 0 95. . =  area of the hatched portion under the pdf curve .......439

A3.15 Gram- Schmidt orthogonalization procedure: (a) A d
1 1

⊥  and 

(b) A d d
1 1 2

⊥ ∩( ) . ..................................................................................440

A3.16 Single degree of freedom (SDOF) oscillator. ..........................................441
A3.17 Unbounded solution to the SDOF oscillator at resonance:

   

r
n

= = ≈
λ

ω
0 99 1. ....................................................................................442

A3.18 Frequency response of an SDOF oscillator for different damping 

ratios ξ = 0 0 05 0 1, . , . and 0.2, resonance at r = 1 . ..................................444
A3.19 Frequency response of the spring supported circular shaft in 

Figure 3.17 in Chapter 3; the figure shows response X jω( )  at 

only two dofs, 17 and 18, corresponding to the Y-  and Z- directions 
of the left support point (node 5) of the shaft (both responses are 
identical). .................................................................................................444

APPENDIX 4

A4.1a Brownian motion B
t
; a few typical trajectories/ paths. ...........................451

A4.1b– c Brownian motion: (b) ensemble mean and (c) ensemble variance    
over 1000 samples. .................................................................................452

A4.2 Autocorrelation function of a white noise process W t( ) which is 
a stationary process. ...............................................................................455

A4.3 Dynamical system under external input. ................................................456

 



xxviiFigures

A4.4a Numerical solution to the SDE (A4.49) by the EM method; 
a = 1 0. and σ = 0 2. , time step ∆ =t 0 01. , two solution paths 
X t1( ) ( ) and X t2( ) ( ) shown by dark lines and dotted lines,     
respectively. ............................................................................................463

A4.4b Ensemble (sample) averages –  mean E X t( )  and variance 

E X t E X t( ) − ( ) ( )





2
–  using 1000 EM- simulated samples 

from the SDE (A4.49); a = 1 0. and σ = 0 2. , time step     
∆ =t 0 01. . ..............................................................................................464

A4.5 Sampling of a bivariate Gaussian pdf; samples before burn- in;
X

0
10 10= ( ), , dt = 0 2. , number of samples =  20000, burn- in 

ratio =  0.2. ..............................................................................................469
A4.6 Sampling  of  a bivariate Gaussian pdf; samples after burn- in; 

X
0

10 10 0 2= ( ) =, , .dt ,  number of samples =  20000, burn- in 
ratio =  0.2. ..............................................................................................470

A4.7 Sampling of a bivariate Gaussian pdf: (a) original and sampled 
pdfs for the first RV and (b) original and sampled pdfs for the 
second RV, X

0
10 10= ( ), , dt = 0 2. , number of samples =  

20,000, burn- in ratio =  0.2, dashed line –  original pdf and dark 
line –  sampled pdf. .................................................................................470

A4.8 Sampling of a bivariate Gaussian pdf; 3- D plot of the two- 
dimensional multivariate normal pdf, X

0
10 10= ( ), , dt = 0 2. , 

number of samples =  20,000, burn- in ratio =  0.2. ..................................471
 

 



 

https://taylorandfrancis.com


xxix

Tables
1.1 Steps in a Brute- force Solution to the TSP ..................................................12
1.2 Distance Matrix of 12 Cities ........................................................................13
1.3 Solution to TSP Corresponding to N =  12 Cities with Distance     

Matrix in Table 1.2; the Execution Times by Brute- Force Technique .........14
1.4 Metropolis Algorithm as Applied to TSP – Implementation ........................16
2.1 Algorithm of CG Method .............................................................................89
2.2 Algorithm of the Preconditioned  CG Method .............................................94
2.3 Solution to Steady-state Heat Flow Problem –  Comparison of    

Execution Time by CG Method with and without Pre- conditioners ..........100
2.4 LP Problem in Example 2.5 and Simplex Method Tableau at    

Zeroth Iteration ..........................................................................................139
2.5 LP Problem in Example 2.5 and Simplex Method Tableau at     

the First Iteration ........................................................................................139
2.6 LP Problem in Example 2.5 and Simplex Method Tableau at     

Second Iteration .........................................................................................140
2.7 LP Problem in Example 2.6 and Simplex Method Tableau at     

2nd (final) Iteration of the First Quadratic Approximation     
at x = ( )2 1,

T
 ..............................................................................................142

2.8 Gradient Vectors of the Objective Function and Constraints     
at the Feasible Point x = −( )2 6 2 2. , ,

T
at the Start of the     

the First Iteration ........................................................................................146
2.9 Parameters of the Normal Distribution Defining the Three     

RVs S T
Y

, and A  ........................................................................................153
2.10 First Iteration and the Initial Simplex Tableau for Solving the     

LP Problem in Example 2.8 .......................................................................156
2.11 Second Iteration and the Initial Simplex Tableau for Solving the     

LP Problem in Example 2.8 .......................................................................157
2.12 Third Iteration and the Initial Simplex Tableau for Solving     

the LP Problem in Example 2.8 .................................................................157
E2.1 Gradient Vectors of the Objective Function and Constraints     

at the Feasible Point x  in the First Iteration ...............................................173
3.1 MLE Problem: Computational Steps in the First Stage of     

Rosenbrock’s Rotating Coordinates Method; n = 2 , x
0
0 3 3= ( ),

T
 

f x
0

4145 51( ) = .   , β = 3 , γ = −0 5. , Initial Search Vector  
   

d d , d1
1

2
11

1

0

0

1
= ( ) 



















 =  ..........................................................................204

3.2 Algorithm of Powell’s Method of Conjugate Directions ...........................209
3.3 Crossover and Mutation Operations in GA Scheme ..................................219
3.4 Main Steps in the Stochastic Search Algorithm of GA ..............................220

 



xxx Tables

3.5 Main Steps of the SA Algorithm ................................................................236
3.6 Main Steps in PSO Algorithm....................................................................239
3.7 Salient Features of the DiEv Algorithm .....................................................244
4.1 Geometric Descent Method –  Details of the Algorithm ............................303

 



xxxi

Acronyms
ALM Augmented Lagrangian method
BC Boundary condition
BFGS Broyden- Fletcher- Goldfarb- Shanno
BVP Boundary value problem
CDF Cumulative distribution function
CG Conjugate gradient
CGM Conjugate gradient method
CLT Central limit theorem
CMA Covariance matrix adaptation
DE Differential equation
DFP Davidon- Fletcher- Powell
DiEv Differential evolution
div divergence operator
dof Degree- of- freedom
EL Euler Lagrangian
EM Euler- Maruyama
EQ Equality
FE Finite element
FEM Finite element method
FM Frame bundle
FIM Fisher information matrix
GA Genetic algorithm
GALA Geometrically Adapted Langevin Algorithm
GE Greater than or equal to
GL General linear group
grad Riemannian gradient
GRG Generalized reduced gradients
HJ Hooke and Jeeves
IC Initial condition
ICh Incomplete Cholesky
i.i.d Independent and identically distributed
KKT Karush- Kuhn- Tucker
KL Kullback– Leibler
LB Laplace- Beltrami
LE Less than or equal to
LHS Left hand side
LLN Law of large numbers
LP Linear programming
LQR Linear quadratic regulator
MALA Metropolis Adjusted Langevin algorithm
MC Monte Carlo
MCMC Markov chain Monte Carlo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxii Acronyms

MGF Moment generating function
MH Metropolis- Hastings
MLE Maximum likelihood estimation
NM Nelder and Mead
NP Non- deterministic polynomial
ODE Ordinary differential equation
PDE Partial differential equation
PSO Particle swarm optimization
pdf Probability density function
RBF Radial basis function
RHS Right hand side
RMALA Riemannian version of MALA
RV Random variable
SA Simulated annealing
SDE Stochastic differential equation
SDM Steepest descent method
SQP Sequential quadratic programming
TRM Trust region method
TSP Travelling salesman problem
ULA Unadjusted Langevin algorithm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxiii

General Notations
 B

t
ω( )  Wiener process (Brownian motion) –  often denoted in short by B

t

CDF cumulative (probability) distribution function

C C1 2,  continuously differentiable, twice continuously differentiable


0
∞  space of compactly supported smooth functions that are infinitely 

differentiable
E [.]  expectation operator

f x( )  objective function in the design variable vector, x
 probability density function, pdf

F x
X ( )  probability (cumulative) distribution function, CDF

FM
x
 fibre at x on the frame bundle FM

g  Riemannian metric

g  matrix associated with the Riemannian metric
I  identity matrix
LHS left hand side

 m, σ( )  normal (Gaussian) random variable parametered by m and σ
  set of natural numbers
ODE ordinary differential equation pdf probability density function
  set of real numbers (real line)

+  non- negative real numbers

n  n- dimensional Euclidean space

n m×  n × m matrices with real elements
RHS right hand side
SDE stochastic differential equation
t time variable
 .( )  

unit step function (Heavyside step function)

U a b,( )  uniform distribution in the interval a b,[ ]
x  design variable vector

x*  optimum point
  set of integers

δ .( )  Dirac delta function

,δ δ
i
j

ij
 Kronecker delta

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxiv General Notations

Γ
ij
k  Christoffel symbols

.
p p

L  norm

  union operator

  intersection operator

 

 

 

 

 



xxxv

Preface
The broad subject of optimization, an area of widespread usefulness as a modelling 
tool in science and engineering, can justifiably lay its claim on a vast swathe of litera-
ture that prominently includes many books, monographs and articles. In view of this, 
the natural question to ask is what this book has to offer by way of a novelty or value 
addition to the potential readership. What kind of preparation should the reader have 
so they can make the most of this book? We have tried to cover a lot of ground in this 
book, though the contents are written mostly in a language accessible to an advanced 
undergraduate student in science and engineering. For instance, this is perhaps the 
first attempt at a textbook that addresses both classical and geometric aspects of opti-
mization using methods, deterministic and stochastic. However, beyond an elemen-
tary course in linear algebra, typically covered during the first or second year of the 
undergraduate programme and a general flair to learn, we the authors demand little 
else from a young reader. We claim this despite the rather involved nature of topics 
covered in Chapters 4 and 5, e.g. elements of the Riemannian metric, connection, 
exponential and log maps, stochastic calculus and stochastic development. Much 
of the material covered from Chapter 4 onwards should also be useful for research 
scholars and scientists desirous of getting a foothold in non- classical optimization 
techniques grounded in Riemannian geometry and applying them to problems of 
relevance to their research. Departing from the mathematically rigorous and mostly 
abstruse pedagogy that mainly dominate the current literature on Riemannian geo-
metric methods, including those dealing with optimization, this book not only strives 
to present the ideas in a language bearable for scientists and engineers, but takes the 
initiative a step further by providing algorithms backed up by computer programs 
(available in the companion website). This is precisely where this book tries to take 
a positive step at filling in a rock- cleft that has largely been left unattended – dissem-
ination of the powerful concepts in geometric optimization to non- mathematicians.

For details, the precise flow of contents in the book goes as follows. While 
Chapters 1– 3 introduce the problems of optimization and the methods of solution in 
the classical (i.e. Euclidean) setting, the rest of the book (Chapters 4– 5) deals with the 
elements of geometric optimization with an emphasis on methods based on stochastic 
search. Chapter 1 is introductory and highlights the ubiquitous role of optimization, 
i.e., to search for an optimum –  maximum or minimum. Starting with a mathemat-
ical posing of unconstrained/ constrained optimization problems, we attempt in the 
chapter to introduce the necessary and sufficient conditions underlying an optimal 
solution –  in a language simple enough even for the beginner. Amidst the varied 
and centuries- old growth in the solution methods of optimization, this chapter tracks 
the emergence of variational calculus which is foundational to much of science and 
engineering. We also try to highlight the vital link between probability theory and 
the meta- heuristic/ evolutionary methods of optimization that form the central theme 
of a later chapter. We have included illustrations via graphical presentation wher-
ever applicable, to enable the reader to develop a clearer perspective on the concepts 
presented.
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In Chapter 2, we carry forward these basic notions underlying any typical opti-
mization problem and initiate a graded presentation of the classical methods of solu-
tion, especially the derivative- based ones. Keeping in view the significant role of 
unconstrained optimization methods in solving problems even with constraints, we 
stress the innovative concepts underlying each of these techniques. The presentation 
is followed by a mix of examples and we illustrate in the sequel the applicability of 
these methods to different scenarios where the objective function may be explicit or 
otherwise.

An obvious difficulty with derivative- based methods is the evaluation of derivatives, 
which has been inspiration enough for the emergence of many derivative- free schemes. 
Chapter 3 engages with these methods, also called direct- search methods. While we 
narrate the pattern search and trust region strategies as some of the popular and robust 
techniques belonging to this category, we also highlight the significant place occupied 
by the evolutionary methods. These are special techniques known as stochastic search 
methods and characterized by an underlying probability model and random sampling 
that enables efficient exploration of the search space for locating optimal solutions 
at each iteration. By this stage, we expect our reader to have come to terms with the 
notion that (i) all optimization solution methods are iterative and more so for non-
linear constrained problems and that (ii) unconstrained optimization methods may be 
hybridized with Lagrangian multipliers or penalty functions (described in Chapters 1 
and 2) to treat problems with constraints.

Chapter 4 concerns the geometric methods of optimization. These are based on 
Riemannian differential geometry. In the backdrop of a vast literature and given the 
umbilical cords geometric methods have with myriad fields, what we have put together 
is no more than an apology for the most essential aspects. A curved hypersurface or a 
manifold is the fundamental object of differential geometry. Our interest is to search 
for the optimum on a manifold, which may appear implicitly through the objective 
function or through the prescribed constraints. First, we have tried to familiarize the 
reader with elements of Riemannian geometry, i.e. with the locally Euclidean prop-
erty, differentiability, coordinate charts, the metric, the affine connection, the geo-
desic and the exponential map. This should have enabled the reader to understand 
the steps in a makeover of the classical methods of optimization to their manifold 
versions. Such algorithms are provided to showcase the improved performance of 
the manifold versions of some of the descent methods. Similar is the case with the 
statistical estimation problem solved in Chapter 3 by classical methods. We also dis-
cuss stochastic search methods described in Chapter 3 and suited for non- convex 
optimization. The presentation is influenced by the analogy of optimization methods 
and statistical sampling by Markov chain Monte Carlo (MCMC). This analogy leads 
to optimization algorithms that are intrinsically stochastic; here the design variables 
evolve through a stochastic differential equation (SDE) known as the Langevin SDE 
and the solution is brought back to the manifold through exponential mapping. This 
also brings up the need to acquaint the reader with a fair understanding of stochastic 
processes. Having done this, we discuss the stochastic optimization method based on 
Langevin dynamics in the last section of this chapter. Of course, the technique has 
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the limitation that the Brownian motion in the Langevin SDE is not designed to live 
on the manifold.

This brings us to Chapter 5, where we discuss stochastic development that enables 
us to intrinsically transfer solutions of SDEs posed in the Euclidean setting to a 
Riemannian manifold of the same dimension. The transfer is intrinsic in that the 
Riemannian manifold need not be embedded within a higher dimensional Euclidean 
space. A special case of this stochastic development is a Brownian motion restricted 
to evolve on a manifold. To exploit this concept for non- convex optimization, we 
again make use of the Langevin dynamics whose solution is stochastically developed 
on a Riemannian manifold defined by the objective function. The results by this geo-
metric scheme for a few selected test functions indicate faster convergence and higher 
accuracy.

As previously noted, the work undertaken in this book is somewhat ambitious 
as we try to conjure up the essence of a few advanced ideas, all implemented in 
the context of optimization, with a language simple enough to be grasped by an 
advanced undergraduate student. Equally challenging has been the task of motiv-
ating the reader to this onerous task, starting with the very elements of classical 
optimization methods. These lofty goals notwithstanding, we may not have quite 
succeeded in meeting them. It is here that suggestions from the reader on a future 
improvement of the presentation and contents are most important (just send an 
email to the first author at royd@iisc.ac.in or royd.civil@gmail.com). In this con-
text, we are grateful to Dr. Mariya Mamajiwala, a former student of the first author, 
who had painstakingly gone through an earlier version of the manuscript and 
suggested several useful modifications. The first author also wishes to thank his 
student, Mr. Ankit Tyagi, for help with formatting the manuscript files as required 
by the publisher. Finally, we would feel happy if, despite all its shortcomings, our 
readers and reviewers feel that the book has taken a small step in realizing the 
stated aims.
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 Optimization Methods
A Preview

1.1  INTRODUCTION

Optimization problems appear routinely, rather than as exceptions, in all fields 
of science, engineering, finance, management and industry (Nicholson 1971, 
Papadimitriou and Steiglitz 1982, Goldberg 1989, Cornuejols and Tütüncü 2007). 
Optimizing some measure of cost or effort or time expended in realizing an objective 
is perhaps a principle not only guiding the evolution of nature's species, but also 
motivating the short- term response of an individual or a group. It could be posed in 
a continuous or discrete setting, even though this book deals mainly with the former. 
A familiar example of continuous optimization is the curve- fitting problem –  i.e. 
fitting data, either observed or experimentally extracted, to a continuous function. 
This could be done, among other means, by least- squares error minimization. As 
another example, investors in financial circuits always look to maximize their profit 
with minimum risk. At the microeconomics level, a consumer’s interest is in maxi-
mizing, say, the utility function  x( ), which is continuous, and quantifies the utility 
of the goods purchased. Let us stick with this example a little longer to get a feel for 
how to pose an optimization problem and how a solution may be graphically obtained 
for some simple cases. Here x is the vector of control or design variables. It is an   
n- dimensional vector, whose elements consist of only positive numbers representing 
the quantity of goods that one would like to purchase. The obvious constraint in 
the problem is the amount A  available with the buyer for the expenditure. It is a 
constrained optimization problem which can be stated as:

 maximize  x( ) (1.1a)

 s t. .g Tx c x( ) = ≤  (1.1b)

‘s.t.’ is an abbreviation for ‘subjected to’ or ‘such that’. g x( ) denotes the constraint 
in the form of maximum permissible expenditure. c n∈ +  is the vector of prices 
corresponding to x. Notation- wise, n represents an n- dimensional Euclidean space 
and +

n denotes the first quadrant in the n- dimensional space. Thus c n∈ +  implies that 
all its elements are positive real numbers. The design space Ξ is the set in which the 
design variable x take values and, in this example, Ξ =  +

n. As an illustration, let n = 2 
with ,x = ( )x x

T

1 2
, ,c = ( )c c

T

1 2
,  x( ) = x x

1 2
 and Ξ =  +

2 � (represented by the x x
1 2

−  
plane). Here the superscript 'T ' denotes transposition. From practical considerations, 

1
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2 Elements of Classical and Geometric Optimization

most optimization problems are in general constrained like the present example. 
While various solution methods exist to handle optimization problems –  to be pro-
gressively discussed in this chapter and the ones that follow in this book –  we par-
ticularly utilize this example to demonstrate that one may arrive at the optimum x* by 
means of a simple geometrical construction.

Let the parameters be given by c c
1 2

3 1= =,  and  = 400. In Figure 1.1, different 
contours of  x( ) = α are drawn with α2 varying in the interval [5000, 20000]. 
Restricted to graphs in the first quadrant of the x x

1 2
−  plane, these contours corres-

pond to x x
1 2

2= α  and are rectangular hyperbolas and represent the equi- potential 
(utility) curves. The constraint Equation (1.1b) appears as a straight line AB in the 
plane. The set of all possible points in the design space Ξ that satisfy the specified 
constraints is known as the feasible space  ⊂ Ξ  and is given by the region below 
the line AB in the first quadrant. The optimum is traced to the point x* on a contour 
 x( ) = α* closest to the line AB. The optimum point –  where AB is a tangent to one 
of the hyperbolas –  is approximately (66.5, 200). At this point, the utility function 
attains its maximum value given by α* .≅ 115 3 with α*2 13300≅ .

We may introduce a variation in the optimization problem by modifying the  
statement in Equation (1.1) to formulate a minimization problem. Consider the  

FIGURE 1.1 Maximization of the utility function  x x x( ) = =
1 2

α; graphical solution, 
straight line AB represents the limiting constraint c xT = =  400, feasible region –  region in 
the first quadrant below AB (hatched in the figure)
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cost of production in a factory where x� represents a vector of quantities of different  
input materials and c , the corresponding vector of investment costs. In this case,  
g x xx( ) =

1 2
 may act as a limiting constraint in the form of the minimum required  

produce (output) from the factory. We may state the optimization problem as:

 minimize f Tx c x( ) =  (1.2a)

 s t. .g x xx( ) = ≥
1 2

 (1.2b)

For illustration, the investment costs c c
1 2

and  are assumed to be 4 and 1, respect-
ively. Let the firm be expected to produce at least 100 units, i.e.  = 100. Figure 1.2  
shows the graphical solution with x* ,= ( )50 200  and f ( )*x c xT *= = =α 400. In this  
case, the feasible region  satisfying g x xx( ) = ≥

1 2
  lies above the rectangular  

hyperbola in the first quadrant of the x x
1 2

−  plane.

FIGURE 1.2 Minimization of the capital cost f x xT( ) = c  where c = ( )4 1,
T

; graphical 
solution, straight lines correspond to the equi- cost curves of cT x = α,  hyperbola represents the 
limiting constraint function x x

1 2
2 10000= = , feasible region –  region in the first quadrant 

above the hyperbola (hatched in the figure)
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A similar way of posing an optimization problem may be found across myriad 
scientific and vocational streams –  be it resource management, process planning or 
system design. For instance, resource management can be thought of as a task aimed 
at an efficient utilization of the available resources –  from the point of investment 
and its utilization. A familiar problem is that of vehicle routing (Dantzig and Ramser 
1959, Bodin et al. 1983, Laporte 1992a, Cordeau et al. 2002, Govindan et al. 2018, 
Vahdani and Shahramfard 2019) and freight scheduling (Dulebenets 2018, 2019), 
which are related to service delivery within supply chains. Specifically, it is a case of 
minimizing the mileage of vehicles allotted to deliver goods from depots to different 
stations at specified locations.

Discrete optimization problems are also posed in a similar manner. A few examples 
include computer wiring (Lenstra and RinnooyKan 1975), job sequencing (Garfinkel 
1985) and circuit board drilling (Reinelt 1994). Printed circuit board (PCB) drilling is 
an important exercise that automates the process of drilling holes on a circuit board in 
minimum time. Since the holes may be of different diameters, it makes sense to so order 
the drilling sequence that holes of the same diameter are finished before the machine is 
programmed to go on to the next set of holes of a different size. Paradigmatic of all such 
discrete or combinatorial optimization problems is the travelling salesman problem (TSP) 
(Lawler et al. 1985, Laporte 1992b). TSP is the problem of minimizing the distance trav-
elled by a salesperson visiting a given set of cities with each city visited only once, before 
returning to the starting one. TSP is generally formulated by a graph theoretic approach 
using a complete graph G = ( )V E,  (Figure 1.3) with the nodes V  representing cities and 
E: = = … = …{ }E i N j N

ij
, , , , , , , ,1 2 1 2  the edges in the graph. A complete graph is one 

in which each pair of vertices is joined by a unique edge. In graph theoretic parlance, one 
attempts at finding the shortest Hamiltonian cycle in TSP. A Hamiltonian cycle passes 
through each node exactly once and ends at the starting node. Figure 1.4 shows some pos-
sible Hamiltonian cycles in a five- noded graph.

TSP occupies a unique place among optimization problems in that it has many  
applications in operations research and game theory (von Neumann 1928, von  

FIGURE 1.3 TSP; V i N
i
, , , ,= …1 2  represent cities and E i N

ij
, = …1 2, , , , , , ,j N= …1 2  

represent edges between V
i
 and V

j
.
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Neumann and Morgenstern 1953, Rardin 1997, Curiel 1997, Gutin and Punnen 2002,  
Derigs 2009). In fact, the circuit board drilling problem may be considered as an  
application of a sequence of TSPs, with each one corresponding to holes of the same  
diameter.

As already stated, this book is aimed primarily at methods of continuous optimiza-
tion. Just as TSP is paradigmatic of discrete optimization problems, the brachisto-
chrone problem in mechanics plays a similar role in continuous optimization  

FIGURE 1.4 a– c Some Hamiltonian cycles 1– 2– 3– 4– 5 (in dark line with arrows) in a five- 
noded complete graph.
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(Bernoulli 1697, Courant 1943, TerHaar 1971). The brachistochrone problem is used  
to determine the shape of the curve for which the time of descent of a bead under  
gravity from point a  to b (see Figure 1.5) is a minimum. Bernoulli, who originally  
posed the problem to the world in 1696, himself offered (1697) an ingenious solution  
based on the optical analogy of Fermat’s principle of least time (Erlichson 1999).  
The problem was solved independently by Leibniz, Newton and L’Hospital using  
the ‘variational principle’ or the principle of least action involving minimization of a  
‘functional’. This, in fact, led to the emergence of variational calculus as a powerful  
tool for deriving the conservation laws in various fields of science and engineering.

The brachistochrone problem is thus the main precursor to later developments 
in variational calculus and the ensuing growth in all branches of mechanics. In fact, 
the variational principles of mechanics provided the impetus for developing the 
finite element method (FEM) (Hrenniff 1941, Courant 1943, Strang and Fix 1973, 
Zienkiewicz 1977, Bathe 1996) as a fundamental and indispensable numerical tool in 
engineering analysis and design. Application areas of the FEM include solid and struc-
tural mechanics (Reddy 2002, Cassel 2013, Dym and Shames 2013), fluid dynamics 
(Chorin and Marsden 1993, dell'Isola and Gavrilyuk, 2011), electromagnetics 
(Jackson 1999, Garg 2008), thermodynamics (O'Connell and Haile 2005, Basdevant 
2007) and control engineering (Troutman 1996, Liberzon 2012). Section 1.6 briefly 
highlights the umbilical connection that the origin of the FEM has with variational 
calculus.

The two archetypal problems –  TSP and brachistochrone –  and the early attempts 
to find their solutions will be described shortly. With the current emphasis mostly on 
continuous optimization problems, we now give a more formal shape to the definitions 
in Equations (1.1) and (1.2) before briefly coming back to the TSP in Section 1.3.

FIGURE 1.5 Brachistochrone problem; a typical path y(x) between the points a and b.
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1.2  THE CONTINUOUS CASE –  MATHEMATICAL FORMULATION

Any optimization problem in a general setting reads as follows.
Given an n- dimensional design space Ξ , minimize (or maximize) the objective/ 

cost function:

 f nx( ) →:  (1.3a)

 s.t. andh x g x x x x( ) = ( ) ≤ ≤ ≤0 0, ,
L u (1.3b)

where x ∈Ξ  are the design variables. For the present, assuming that f  is a single 
objective function, we say that f  maps n to . Thus the domain of f  (which is same 
as the range of x) is n and its range is . :h  n l→  and :g  n m→  are com-
monly referred to as equality and inequality constraint vectors of dimension l and m, 
respectively. The vectors x x

L u
and  are, respectively, the lower and upper bounds for 

the design variables x. These constraints fix the feasible region  in the design space 
(see Figures 1.1 and 1.2 for an illustration of feasible regions).

Weierstrass theorem for the optimum of a function
If f x( ) is real- valued continuous on a non- empty compact domain  
  , then thereexists an that minimizes or maximizes f on thex x* ∈ ( ) ( ) sset.

For an unconstrained optimization problem, the feasible space  is the same as 
the design space Ξ . Clearly, an optimal solution is possible only if  is non- empty. 
A domain is compact if it consists of compact sets. A set is compact if it is both closed 
and bounded. The notions of closed and open sets complement each other, i.e. a closed 
set is one which is not open. Suppose that  = . In mathematical terms, a subset 
A ⊆  is open if ∃ >ε 0  such that x x A− +( ) ⊆ε ε, , ∀ ∈x A. Essentially open intervals 
on the real line are open sets. In higher dimensions, we may consider an open ball in 
n, 

r
rx x x x

0 0( ) = − <{ : } with centre x
0
 and radius r > 0. For example, the set of    

real numbers 1 3< <( ) ∈x  is an open set and thus is not closed. So if  = < <( )1 3x ,   
there need not be an optimal solution since D  is not closed. Similarly, according to 
the Weierstrass theorem, no optimal solution is possible when  = ≥( )x 0  since D  is 
not bounded.

1.2.1  Unconstrained optimization and optimality conditions

With x = …( )x x x
n

T

1 2
, , , , consider the optimization of f x( ) with no constraints. In 

this case, a familiar criterion for an optimum (minimum or maximum) is the require-
ment of stationarity. Stationary points of a differentiable function f x( ) are the 
points where its (the function’s) first- order partial derivatives are zero or the ‘gra-

dient’ ∇ ( ) =
∂
∂

∂
∂

…
∂
∂







∈f

f

x

f

x

f

x
n

T

nx : , , ,
1 2

  is zero, i.e. the zero vector in n. This is 

a necessary condition for x* to be an optimum point. If one considers the matrix 
H x( )(denoted by H  for brevity) of second- order derivatives (known as the Hessian 
matrix):

 

 

 

 

 



8 Elements of Classical and Geometric Optimization

 H =

∂
∂

∂
∂ ∂

…
∂

∂ ∂

∂
∂ ∂

∂
∂

…
∂

∂

2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

f

x

f

x x

f

x x

f

x x

f

x

f
n

xx x

f

x x

f

x x

f

x

n

n n n

2

2

1

2

2

2

2

∂

∂
∂ ∂

∂
∂ ∂

…
∂
∂
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 (1.4)

then, the sufficiency condition for *x  to be a minimum is that H n n∈ ×  be positive 
definite. On the other hand, the condition for x* to be a maximum is that H  be nega-
tive definite. Note that H  is symmetric. Positive definiteness (or negative definite-
ness) of H  is associated with the nature of the quadratic function x HxT . Indeed, for 
any n, x HxT ∈, i.e. it assumes a scalar value for each x. If x Hx xT > 0 for all , H �  
is said to be positive definite and if x HxT  < 0, H �  is negative definite. The condition 
x HxT > 0 for a minimum is equivalent to f x( ) being locally quadratic around and 
strictly convex at x* (see Figure 1.6 for the definition of a convex function).

On the other hand, f x( ) being locally quadratic and strictly concave (with an 
opposite meaning to convexity) at maximum x* is ensured by the sufficiency condi-
tion x HxT  < 0.

In the one- dimensional case (n = 1), x HxT  =  x
d f

dx
2

2

2
 and the above two opti-

mality (necessary and sufficient) criteria are respectively (i) 
df

dx
f x

x x=

= ′ ( ) =
*

* 0  and 

FIGURE 1.6 A function f x( ) is convex if f x f x f xˆ ,( ) ≤ ( ) + −( ) ( ) ∈[ ]α α α
1 2

1 0 1for any ; 
strictly convex if the inequality sign always holds.
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(ii) 
d f

dx x x

2

2
0

=

>
*

 for a minimum and 
d f

dx x x

2

2
0

=

<
*

 for a maximum. In this case, it is easy 

to see that the sufficient condition 
d f

dx x x

2

2
0

=

>
*

 for a minimum relates to change of   

slope 
df

dx
, of the objective function from – ve to + ve as it crosses x* − from left to right, 

a characteristic feature of a convex function. For a maximum, it is just the opposite 

with 
d f

dx x x

2

2
0

=

<
*

.

In fact, any continuous function f x( ) whose first two derivatives exist can be 
locally approximated by a quadratic function f̂ x( ) around any x� using a truncated 
Taylor series expansion as:

 f f f f
T Tx x x x x x x x H x x x( ) ≅ ( ) = ( ) + ∇ ( ) −( ) + −( ) ( ) −( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

2
 (1.5)

One of the oft- quoted functions in the optimization literature, the Rosenbrock function 
f x x x x x

1 2 1
2

2

2

1

2
100 1,( ) = −( ) + −( )  is shown in Figure 1.7a. It is easy to verify that 

x x
1 2

1= =  is the optimum point x* with the function value f x*( ) = 0. It is also veri-
fiable that the necessary condition is satisfied at x x= *:

 ∇ =
−( ) + −( )

− −( )










=

=

f
x x x x

x x
x x

x x

*

*

400 2 1

200

1
2

2 1 1

1
2

2

 = { }0  (1.6)

The Hessian matrix is given by:

 H =
− + −

−
1200 400 2 400

400
1
2

2 1

1

x x x

x 200









 (1.7)

In this case, x HxT  is given by H x H x x H x
11 1

2
12 1 2 22 2

22+ + . Note that x Hx*T * = >202 0 
showing that x* ,= ( )1 1

T
 is a minimum point for the Rosenbrock function. In the 

vicinity of x*, one can approximate the Rosenbrock function as a quadratic function 

f̂ x( ) by using Equation (1.5) as f̂
Tx x x H x x* *( ) = −( ) −( )1

2
. Figure 1.7b shows 

f̂ x( ) for x x x* *∈ − +( )ε ε,  with, say, ε = ( )0 05 0 05. , .
T

.
Recall that the optimality conditions above are applicable only to an unconstrained 

problem; we discuss the relevant conditions for a constrained problem in Section 
1.7. We may mention that many of the methods –  particularly the derivative- based –  
that solve a constrained optimization problem transform the problem into an uncon-
strained one at each iteration step. The brachistochrone problem for which a solution 
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FIGURE 1.7 (a) Rosenbrock function: f x x x x x
1 2 1

2
2

2

1

2
100 1,( ) = −( ) + −( ) ; (b) locally 

quadratic (convex) function approximated by Equation (1.5) at the minimum point x* = (1, 1)T   
for x

1
0 95 1 05∈( ). , .  and x

2
0 95 1 05∈( ). , . .
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(Section 1.5) was offered by Newton and Leibniz using variational calculus in the late 
16th century, uses the optimality condition of vanishing ‘functional derivative’. This 
is similar to the necessary condition for optimality of an unconstrained optimization 
problem.

The travelling salesman problem, the other classic example of optimization is 
discussed in the next section. The discussion is first on obtaining a solution via a 
simple brute force technique of direct search. In what follows, we present an alter-
native and effective strategy founded on probabilistic concepts and what is generally 
known as Monte Carlo simulation (described in Section 1.4 below). In the sequel, we 
attempt to draw an analogy to statistical thermodynamics (Binder 1997) and arrive 
at a true or global optimum to the TSP. A distinction between a ‘local’ and ‘global’ 
extremum is elucidated during the discussion.

1.3  THE DISCRETE CASE –  TRAVELLING SALESMAN PROBLEM

Our main interest in discussing the TSP here is to give the reader a preview of how 
an optimization method can benefit when posed within a probabilistic (or stochastic) 
setting. The TSP being discrete, we do not presently need a more advanced math-
ematical language for continuous and diffusive stochastic processes to describe this 
technique.

In TSP, the objective is to find the shortest tour through a given set of cities using 
the concept of a Hamiltonian cycle. If each edge E

ij
 (Figure 1.3) is marked with a 

weight w
ij
 denoting its distance or length in appropriate units, the mathematical for-

mulation of the minimization problem (Dantzig et al. 1954) is as follows.

 Minimize f w x
ij ij

i j

N

= ∑ over a Hamiltonian cycle
,

 (1.8)

where N  is the number of cities. The design variables x
ij
, i N= …1 2, , ,  and j N= …1 2, , ,  

are binary variables and each is equal to 1 if the edge E
ij
 is included in the tour and 

zero if it is not. The constraints are:

 

x i N
ij

j i

= ∀ = …
≠

∑ 1 1 2, , , ,

 
(1.9a)

 

x j N
ij

j i

= ∀ = …
≠

∑ 1 1 2, , , ,

 
(1.9b)

Since x
ij
 is a binary variable, constraints in Equation (1.9) are to ensure that each city 

is touched just once. Also, in the optimization process, care should be taken to avoid 
sub- tours. Figure 1.8 shows two such sub- tours (not qualifying as a Hamiltonian 
cycle and thus not a proper tour) in a network of cities with N = 6.

 

 

 

 

 

 

 



12 Elements of Classical and Geometric Optimization

1.3.1  BrUte- force solUtion to the tsp

Consider a solution to the TSP by a straightforward direct search. The steps are 
described in Table 1.1.

The total number of trial tours explored by the brute- force technique is !N −( )1  
if the starting city is fixed, otherwise it is N !. This is the case when the search is 
unable to distinguish the possible circular permutations. Note that with N = 12, max-
imum number of the trial tours is an incredibly large number: 479001600 and the 
method quickly becomes computationally prohibitive with increasing N . Now, as an 
example, consider a TSP with the N  cities located on a circular curve, perhaps not 
sequentially. Note that the optimum tour must be the polyhedron passing through 
the cities. As N → ∞, the optimum travel distance tends to the circumference of the 
circle. Figure 1.9 shows one such optimum obtained by the brute- force approach with 
12 cities located on a unit circle.

Consider a more realistic example of N = 12 cities arbitrarily located in the X Y−  
plane with the distance matrix given in Table 1.2.

Figure 1.10 shows the shortest Hamiltonian cycle obtained by the brute- force tech-
nique resulting in a minimum tour distance of 1778 units.

TABLE 1.1
Steps in a Brute- force Solution to the TSP

1. Start with an arbitrary node V i N
i
, ,∈[ ]1  and label it as the current one.

2. Trace out the nearest node V N i
j

, \∈[ ]1  connecting the current one which must be an 
unvisited node.

3. Label V
j
 as the current node and add w

ij
 to the distance travelled so far.

4. If all the nodes are visited (thus completing a Hamiltonian cycle), store the total distance 
travelled.

5. Start a new tour with another permutation of the nodes and follow steps 3 and 4.
6. Finish all the permutations and find the tour with the least travel distance.

FIGURE 1.8 Sub- tours in a network of six cities (N = 6).
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TABLE 1.2
Distance Matrix of 12 Cities

1 2 3 4 5 6 7 8 9 10 11 12

1 0 447 380 86 209 403 154 265 213 150 245 295
2 447 0 306 472 242 163 351 416 586 339 277 192
3 380 306 0 344 240 146 400 172 397 231 143 350
4 86 472 344 0 231 397 231 202 135 138 228 346
5 209 242 240 231 0 206 164 235 352 107 107 142
6 403 163 146 397 206 0 364 283 486 261 171 258
7 154 351 400 231 164 364 0 348 364 197 258 168
8 265 416 172 202 235 283 348 0 226 152 144 377
9 213 586 397 135 352 486 364 226 0 248 318 477

10 150 339 231 138 107 261 197 152 248 0 96 244
11 245 277 143 228 107 171 258 144 318 96 0 241
12 295 192 350 346 142 258 168 377 477 244 241 0

FIGURE 1.9 Brute- force solution to the TSP; N = 12 cities (spread not in a sequential order) 
on a unit circle; optimum distance travelled = 6 21.  units (as against the correct value of 6.28).
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As stated earlier, with increase in size N  of the TSP, computational effort increases  
exponentially and the brute- force technique simply becomes unmanageable (Fogel  
1988). Table 1.3 shows the execution time by this technique for a TSP with N  varying  
from 4 to 12. As shown in the table, the computational complexity (Papadimitriou and  
Yannakakis 1991, Papadimitriou 1994) of solving even a moderate- sized TSP rapidly  
increases. As regards computational complexity, TSP is an NP- hard optimization  
problem and if posed as a decision problem it is NP- complete. While an optimization  
problem is about finding an extremum, a decision problem seeks an answer: ‘yes’ or  
‘no’. A TSP becomes a decision problem if we ask the question “Does a Hamiltonian  

TABLE 1.3
Solution to TSP Corresponding to N= 12 Cities with Distance Matrix in 
Table 1.2; the Execution Times by Brute- Force Technique (on laptop of version 
I7 with 8 GB RAM)

N 4 5 6 7 8 9 11 12

Execution time in secs. 0.15 0.17 0.19 0.20 0.25 0.9 93.5 1514

FIGURE 1.10 Brute- force solution to TSP; N = 12, computed optimum tour distance =  1778 
units, the shortest Hamiltonian cycle is 11 –  5 –  10 –  8 –  9 –  4 –  1 –  7 –  12 –  2 –  6 –  3 –  11.
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path exist whose length is at most a specified value, say, L
b
?”. Brief notes on the com-

putational complexity and categorization of these problems are given in Appendix 1.

1.3.2  local and GloBal solUtions

The brute- force technique of Table 1.1 may throw up many local solutions. The global 
solution is then obtained by choosing the extremum of the available local solutions. 
A local solution x* (a maximum or a minimum depending on the problem) is a solu-
tion defined with respect to its neighbourhood. A neighbourhood is a region in the 
vicinity of x* measured through a ‘metric’ d x y,( ). An intuitive understanding of a 
metric can be had in terms of a ‘measure’ which, in the present case of TSP, is the 
Euclidian distance between any two points (cities) x yand . The reader can refer to 
Appendix 1 for additional details on a metric and its properties. One may define an 
ε- neighbourhood around any x� as Ψ x y y x y( ) = ∈ ∩ ( ) ≤{ }| , d ε . x* is a local min-
imum if f fx x x*( ) ≤ ( )∀ ∈Ψ. In Figure 1.11, we show a 1- D case with  = [ ]a b, . 
f x( ) has x x

3 5
and  as local minima and x x

2 6
and  as local maxima. Note that x

5
 is the 

local minimum for its neighbourhoods with ε ≤ d
1
. Similarly, for ε ≤ d

2
, x

3
 is the local 

minimum for its neighbourhoods. x
1
 is the global minimum.

x* is the global minimum if f fx x x*( ) ≤ ( )∀ ∈ and it is the global maximum if 
f fx x x*( ) ≥ ( )∀ ∈. In Figure 1.11, x

1
 and x

4
 are the global minimum and maximum 

respectively. It is obvious that for a unimodal (strictly convex) function (Figure 1.6), 
the local and global solutions coincide.

In general, most of the optimization methods may lead to local solutions only. 
This is particularly so for optimization problems of large dimension where no prior 
knowledge on the global solution is available. So much so, the endeavour is more 
often to find a near- optimal solution. Clearly, it is a trade- off between large computa-
tional costs in arriving at the global solution through a finely chiselled search and the 

FIGURE 1.11 Local and global solutions; x x x
1 3 5
, ,  –  local minima and x1

 –  global minimum 
x x x

2 4 6
, ,  –  local maxima and x

4
 –  global maximum.
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practical limitations on such a search that forces us to accept the best available local 
extremum as an approximation to the global solution.

1.3.3  solUtion to tsp By metropolis alGorithm: the 
proBaBilistic roUte1

Suppose that we wish to devise a selective search as a more efficient alternative to 
the brute- force technique. A selective search must be accompanied by a probabil-
istic criterion to accept or reject a permutation (also called a configuration). This 
in turn requires the search to be iterative to improve over the solution at the last 
step. Metropolis algorithm (Metropolis et al. 1953) is one such search. The algorithm 
aims at obtaining approximate solutions to numerical problems where sampling is 
required from a large but finite set (Diaconis and Saloff- Coste 1998) as in TSP. It has 
been widely exploited in many scientific fields –  statistical mechanics, econometrics, 
physics and computing science (Beichl and Sullivan 2000, Tanizaki 2004, Gould and 
Tobochnik 2010). Indeed, it is one of the top ten most used algorithms in the twentieth 
century (Dongarra and Sullivan 2000). See Bonomi and Lutton (1984) for a more 
detailed and broad- based review of the algorithm.

Let xk be an available solution in terms of a Hamiltonian cycle and f xk( ) the  
objective function value equal to the corresponding tour length at an iteration k.  
Suppose that we generate another trial solution x̂k followed by corresponding f x̂k( ).   
The details on how this trial solution is generated will be shortly provided. Now,  
assuming the optimization problem to be one of minimization, if the change in the  
objective function value ∆ = ( ) − ( ) <f f fx̂ xk k 0, the trial solution x̂k is accepted.  
Otherwise also (i.e. even if ∆ >f 0), the solution is accepted with some probability p

k
.   

This is an interesting part of the Metropolis algorithm. In case one proceeds to the  
next step only when ∆ <f 0, the method may in all prospects get trapped in a local  
optimum. On the other hand, by the chance- acceptance of an unfavourable solution,  
a wider exploration of the feasible space for a better local solution (perhaps closer to  
the global one) is possible. Table 1.4 describes the implementation of the Metropolis  
algorithm.

TABLE 1.4
Metropolis Algorithm as Applied to TSP –  Implementation

(i)  Any configuration in the feasible space qualifies as the initial solution x
0
.

(ii)  Suppose that the solution at iteration k is x
k
. It is required to generate a new trial 

solution x̂
k
 for comparison. One way to obtain x̂

k
 is by swapping the connections of 

any two cities in x
k
(see Figure 1.12). Two such cities may be randomly picked from 

the integer set 1 2, , ,…{ }N . Care must be exercised to ensure that the two differ from 
each other.

(iii)  The next issue is to fix p
k
, the acceptance probability (see Appendix 1 for a basic 

introduction to probability theory). In the initial stages, a high value is set for p
k
 so that 

an explorative search in the feasible space is possible without getting trapped in local 
optima. As iterations progress, p

k
 is gradually lowered in order to consolidate on the 

initial gains made and contain the fluctuations around the final solution.

 

 

 

 

 

   

  

 



17Optimization Methods

Since the above iterative process involves simulation of random numbers at each  
iteration (in steps ii and iii), it belongs to a wider class of methods known as Monte  
Carlo (MC) simulation methods (Janke 2008) (see Appendix 3 for MC simulation).  
In this respect, step (iii) needs further elaboration. Let us treat xk as a sample solution  
or a state in the MC set- up. Metropolis algorithm assumes that P x( )  representing  
the probability of being in a state x� with tour length f x( ) is given by the Boltzmann  
distribution:

 P
e

Z

f

x
x

( ) =
( )–β

β

 (1.10)

FIGURE 1.12 TSP by Metropolis algorithm; N = 12 (only a part of a Hamiltonian cycle is 
shown in the figure): (a) state x

k
, (b) state x̂

k
 after swapping the connections of cities 1 and 2.
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where β = ( )−
K T

B

1
 with K

B
 denoting the Boltzmann constant (presently assumed to 

be unity) and T  a parameter. Specific to TSP, T  pertains to an inverse- length parameter    

(with the length represented by f xk( )). Z e f
β

β= − ( )
∈∑ x

x
k

k 
 is the normalization 

constant (partition function in statistical mechanics). Obviously, the normalized 

P x( ) satisfies the axiom of probability P Pxkxk
( ) = ( ) =

∈∑ 


1 . With P x̂k( ) 

similarly defined for the trial solution x̂k, the Metropolis algorithm computes the 

change ∆ = ( ) − ( )f f f
k

x̂ xk k  and the ratio 
P

P
e fk

ˆ
–

x

x
k

k

( )
( ) = ∆β . The ratio corresponds to 

the acceptance probability p
k (in step iii above) of transition from the state xk to 

the state x̂k. Now, we generate a uniformly distributed random number u ∈[ ]0 1,  and 
accept the change from xk to x̂k when ∆ ≤f 0 or if u p

k
≤  when ∆ >f 0. Otherwise, 

we reject the change, retain xk and proceed to the next iteration. The one last issue 
in step (iii) is the schedule of reducing the parameter T  contained in β. Initially we 
keep T T= >

0
0 high so that p

k
 is high and then reduce it with progressing iterations 

according as T cT
k

=
0

 where 0 1< <c .
Figures 1.13a– c show the search result for N = 12 with the distance matrix given 

in Table 1.2.
Figure 1.13a shows the results from 20 independent MC runs, each spanning 1000 

iterations. The fourth MC run corresponds to the global minimum whose Hamiltonian 

FIGURE 1.13a TSP by selective search based on Metropolis algorithm; N = 12, T
0

5000= ,  
c =  0.99, solutions from 20 independent MC runs, minimum tour length of 1778 units at the 
fourth MC run.
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FIGURE 1.13b TSP by selective search based on Metropolis algorithm; N = 12, T0
5000= ,  

c =  0.99, solution from the fourth MC run (Hamiltonian cycle of minimum length =  1778 units) 
–  see Figure 1.13a.

FIGURE 1.13c TSP by selective search based on Metropolis algorithm; N = 12, T0
5000= ,  

c =  0.99, evolution of solution (for the fourth MC run) vs. iteration number; minimum tour 
length =  1778 units, total execution time for 20 MC runs =  77.735 s.
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cycle (tour) is shown in Figure 1.13b. The result is the same as obtained by the brute- 
force technique (see Figure 1.10). Convergence of the result from this fourth MC 
run is shown in Figure 1.13c. It is significant to note that the selective search method 
has hugely reduced the computational time –  which is now a small fraction of the 
time taken by the brute- force technique (see Table 1.3 for N = 12). The results on 
the execution times are with reference to a laptop version of I7 with 8 GB RAM. 
For larger- sized problems, more independent MC simulations would be required to 
hit an acceptable solution. Yet, the method is found to be fast and efficient. This is 
highlighted by an example with large N = 50 cities. It is computationally an impos-
sible task (Fogel 1988) to solve this case using the brute- force technique. The cities 
are randomly located in a 500 500×  square of appropriate units. The results from 
three independent MC runs are shown in Figure 1.14.

In an interesting application to statistical physics (Landau and Binder 2000), the 
Metropolis algorithm is used to study phase transitions in magnetic materials with 
temperature as a parameter. In this study, f x( ) stands for the energy of a (magnetic) 
spin configuration x and P x( ) for the probability of being in a thermal equilibrium 
state, at a given temperature, with the configuration x. The parameter T  represents 
temperature and the objective is to find the state of minimum energy at each T . We 
will discuss this problem in Chapter 3 in connection with evolutionary optimization 
methods and specifically the simulated annealing technique.

1.4  THE BRACHISTOCHRONE PROBLEM

We are finally back to continuous optimization and hence the brachistochrone problem 
shown in Figure 1.5, which is redrawn with some more details in Figure 1.15. Let v be 
the speed of the bead of mass m, at any point x y,( ) on the curve y x( ). The kinetic and 

potential energies are respectively given by 
1

2
2mv  and mgy. Hence, v gy= 2  where 

‘g’ is the acceleration due to gravity. The distance traversed by the bead along the 
curve in differential time dt is:

 ds dx dy dx
dy

dx
dt

ds

v
= + = + 





=2 2

2

1 so that  (1.11)

The brachistochrone problem is thus an optimization problem of finding the min-
imum time T y( ) with respect to the path y x( ), given by:

 0
1

2

2

< ( ) = = =
+ 





∫ ∫ ∫T y dt
ds

v

dy

dx

y
dx

a

b

a

b

a

b

g
 (1.12)
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FIGURE 1.14a–b TSP with N = 50 cities; local solutions and evolution histories: (a) and (b) 
first MC run, tour length =  3886 units and execution time =  25.81 s.
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FIGURE 1.14c–d TSP with N = 50 cities; local solutions and evolution histories: (c) and (d) 
second MC run, tour length =  3563 units and execution time =  25.40 s.
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FIGURE 1.14e–f TSP with N = 50 cities; local solutions and evolution histories: (e) and (f) 
third MC run, tour length =  3922 units and execution time =  27.03 s.
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1.4.1  solUtion of the Brachistochrone proBlem By Variational approach

With ′ =y
dy

dx
, T  in Equation (1.12) is regarded as a functional of y  and ′y  –  a real- 

valued function involving other functions as arguments. In general, while writing a 

functional I y L y y x dx
a

b( ) = ( )′∫ , , , where L is a function of y y x, ′ and , the objective 
is to find its extremum. This is a problem of functional optimization. Similar to the 
extrema of a function, at which the first derivatives vanish (see the Introduction to 
this chapter for the optimality conditions), the extrema of a functional may also be 
obtained by finding the argument functions for which the functional derivative or 

the first variation δI  vanishes. Let y x( ) be the function, unknown at this stage, that 

extremizes I y( ). Consider a possible varied path y x y x h x ( ) = ( ) + ( )ε  as shown in 

Figure 1.15 where ε  is a real constant. Let h x( ) be an arbitrary function satisfying the 

boundary conditions (BCs) h a h b( ) = ( ) = 0. Thus,

 I y L y x h x y x h x x dx
a

b

( ) = ( ) + ( ) ( ) + − ( )( )′∫ ε ε, ,  (1.13)

Now, I y( ) may be considered to be a function of ε  alone. At the extremum, the first 

variation δI to be zero is equivalent to the first derivative 
dI

d

ε
ε

ε

( )
=0

 being zero. 
dI

d

ε
ε
( )

 

is obtained as:

FIGURE 1.15 A brachistochrone problem; dark line –  a typical path y x( ) between the fixed 
points a and b, dashed line –  a varied path y x h x( ) + ( )ε , ε ∈.
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dI

d

d

d
L y x h x y x h x x dx

a

bε
ε ε

ε ε
( )

= ( ) + ( ) ( ) + ( )( )′ ′∫ , ,
 

 

=
∂
∂
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∂
∂









∫ a

b L
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dx
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L
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∂
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∂
∂
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∂
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∂
∂∫ ∫a

b
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y
hdx

L

y
h dx

 ε
′

′
 

(1.14)

Integrating by parts the second term on the RHS of the last equality in Equation 
(1.14), one gets:

 
dI

d
h

L

y
dx h

d

dx

L

y
dx

L

y
h

a

b

a

b

a

b
ε

ε ε ε

( )
=

∂
∂

−
∂
∂







+

∂
∂∫ ∫


’ ’

 (1.15)

Since h x( ) vanishes at the endpoints a and b, one has:
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∂

−
∂
∂
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(1.16)

Now imposing the optimality condition 
dI

d

ε
ε

ε

( )
=

=0

0 for the extremum of I ε( ), we 

obtain:

 
a

b
h x

L

y

d

dx

L

y
dx∫ ( ) ∂

∂
−

∂
∂















=
′

0 (1.17)

Since h x( ) is an arbitrary function, the quantity within the curly brackets must be 
zero. So y x( ) extremizes the functional I y( ) under the condition:
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Equation (1.18) is known as the Euler- Lagrange (EL) equation to solve for the 
functions y x( ) and ′ ( )y x  that render I stationary. In classical mechanics, L is known 
as the Lagrangian. In the brachistochrone problem, the action integral in Equation 

(1.12) has no explicit dependence on x. With L
y

gy
=

+ ′1

2

2

,  one has:

 

∂
∂

= −
+ ′L

y y

y

y

1

2 2

1 2

g  

 

d

dx

L

y y y

y

y

y

y

∂
∂







=
+( ) +

−




′ ′

′′
′

′1

2 1 1

1

22 2

2

g  

(1.19)

Here ′′ =y
d y

dx
:

2

2
. Substitution of the above in EL equation (1.18) and simplification 

lead to an ordinary differential equation (ODE):

 2 1 02yy y′′ + + =′  

 
⇒ ′ ′′ + +( ) =′y yy y2 1 02

 

 
⇒ + ′( ) =

d

dx
y yy 2 0

 

 ⇒ +( ) = ∈ ( )′y y A x1 2  byintegrating with respect to in the last step  (1.20)

From the last equation, one may have:

 ′ =
−

y
A y

y
 (1.21)

While the ODE above is solvable by the separation- of- variable method, it is more 
intuitive if a solution is sought in terms of the parameter θ, the angle made by the 
tangent to the curve with the vertical (Figure 1.16).

With 
dy

dx

A y

y
= =

−
cot θ  (from Equation 1.21), one gets:

 y
A

= −( )
2

1 2cos θ  (1.22a)
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It follows that:

 
dx

d

dx

dy

dy

d
A A x

A

θ θ
θ θ θ θ θ= = = −( ) ⇒ = −( )sin tan cos sin2 1 2

2
2 2  (1.22b)

The parametric equations (1.22) give the solution y x( ) for the brachistochrone 
problem. These equations correspond to an inverted cycloid, an evolute2 of a circle 
with radius A / 2. Knowing the coordinates of a and b, the constant A may be obtained 
from Equations (1.22). The minimum time of descent from a to b along the path given 
by Equations (1.12) is now obtained as:

 
T y x

dy

dx

y
dx

a

b( )( ) =
+ 





∫
1

2

2

g  

 
= = −( )∫

2 2A
d

A

a

b

b ag gθ

θ
θ θ θ

 
(1.23)

where θ θ
a b

and  are the angles to the vertical at points a and b. Suppose that a and b 

are the starting and lowest points of the cycloid. Then θ θ
a b

and  are 0 and 
π
2

 respect-

ively and the minimum time of descent is π A

g2
. In case the bead is allowed to tra-

verse along a straight line joining these specific a and b, the time of descent may be 
directly obtained by analogy with a freely falling body with acceleration gcosθ along 

FIGURE 1.16 The brachistochrone problem (also refer to Figure 1.15).
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the line. It is equal to 4
2

2+ π A

g
 which is approximately 18.6% more than the time 

taken for the cycloid.

Bernoulli’s original solution to the brachistochrone problem
Bernoulli (1697) solved the brachistochrone problem via Fermat’s principle of 
least time which is equivalent to Snell’s law of refraction in optics. The proof is 
interesting in its own right as it offers a motivating glimpse into a great mind. The 
principle states that a light ray takes a path, between two points, that minimizes 
the travelling time between the two points. The speed of light increases as it 
enters a medium of lower optical density i.e., of decreasing index of refraction. 
If v  is the speed of light in a medium, it is inversely related to its refractive index 
ϑ  by the relationship /v c= ϑ where c is the speed of light in vacuum. By Snell’s 
law of refraction (Figure 1.17):

 
sin

sin

θ
θ

µ
µ

1

2

1

2

= =rarer

denser

v

v
 (1.24)

v
1
 and v

2
 are the speed of light in the two media and µ

denser
, µ

rarer
 are their respective 

refractive indices.
Fermat’s principle of least time follows from Figure 1.17. The time of travel by 

light from point A to B is:

 T x
x h

v

s x h

v
( ) =

+
+

−( ) +2
1
2

1

2

2
2

2

 (1.25)

FIGURE 1.17 Fermat’s principle of least time; v
1
 and v

2
 –  speed of light in the two media, 

AO –  incident ray, OB–  refracted ray.
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For the time to be minimum, the necessary condition is 
dT

dx
= 0 and thus:

 

dT

dx

x

x h v

s x

s x h v
=

+
−

−( )
−( ) +

=
2 1 2 1

0
2

1
2

1
2

2
2 2  

 
⇒ =

sin sinθ θ
1

1

2

2
v v  

(1.26)

which is the same as Snell’s law of refraction (Equation 1.24). The significance of 
the result is that as light travels through multi- layered media with each medium rarer 
than the previous one, it always takes the least time along the path consisting of the 
incident and refracted rays and satisfying the condition:

 
sin sin sinθ θ θ

1

1

2

2

3

3
v v v

constant= = = … =  (1.27)

As the number of layers increases to infinity and the thickness of each medium 
decreases to zero, the path of light tends to a smooth curve satisfying the following 
condition at each point:

 
sinθ

v
constant=  (1.28)

Bernoulli applied this condition to the brachistochrone problem and arrived at the 
optimum path y x( ). Refer to Figure 1.18 where Bernoulli’s diagram for the brachis-
tochrone problem is redrawn from Struik (1986).

As the bead traverses along ABM through the depth AC, the curve AH represents 
the increase in velocity of the bead. This is analogous to the increase in speed of light 
as it goes through the infinitely layered medium with decreasing µ. If v is the vel-
ocity attained by the bead as it reaches the point M, it is given by CH. With AC = x, 
the velocity v gx= =CH 2 . Utilizing the infinitesimal triangle Mmn in Figure 1.18 

to write sin θ = =
+

nm

Mm

dy

dx dy2 2
, and imposing the condition in Equation (1.28), 

one gets:

 

dy

dx dy

v
C
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Here C  is a real constant. We rewrite Equation (1.29) as:

 

dy

dx

dy

dx

C x
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= g

 

 
⇒ =

−
=

−dx
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gC x

C x

A x
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1 2

2
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2g  
(1.30)

A
gC

=
1

2 2
 is a real constant. Noting the reversal in the notation for x and y axes in 

Figure 1.18 vis- à- vis Figure 1.16, 
dx

dy
 in Equation (1.30) is the slope of the optimal 

path for the brachistochrone problem. This is the same as the one in Equation (1.21) 
earlier obtained by the variational calculus approach. The above proof of Bernoulli 
is a demonstration of two phenomena of entirely two separate fields of physics –  one 
from optics and the other from mechanics –  exhibiting the same character (as claimed 
by Bernoulli himself).

1.5   MORE ON FUNCTIONAL OPTIMIZATION: HAMILTON’S 
PRINCIPLE

Having posed and solved the brachistochrone problem as one in functional optimiza-
tion, we now discuss another related approach: Hamilton’s principle –  a method of 
great relevance in classical mechanics. One finds in Hamilton’s principle (Meirovitch 
1970, Goldstein et al. 1980) a generalization to higher- order systems using the 

FIGURE 1.18 Bernoulli’s diagram for the brachistochrone problem adapted from Struik 
[1986] –  an optical analogy: ABMK –  the least time path and is the brachistochrone solution, 
point A –  start of luminous light, AH –  representation of the increasing velocity of the particle 
during its descent along ABMK, CM –  horizontal coordinate y , AC –  vertical coordinate x , CH 
–  velocity v, nm =  dy, Mn =  dx.
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stationarity (see Section 1.3) of a functional. Following the methods of variational 
calculus, this principle establishes the EL equations governing the system dynamics. 
These are partial differential equations (PDEs) for continuous systems wherein the 
parameters –  mass, stiffness and damping –  appear as specified continuous functions. 
In the case of discrete systems, either inherently discrete or lumped parameter 
systems, the EL equations are ODEs. For dynamical systems of relatively simple 
description, Newton’s laws of physics may help in directly obtaining the governing 
differential equations (DEs) of motion. Hamilton’s principle is of an integral form in 
terms of scalar quantities such as ‘work’ and ‘energy’ in contrast to the vector quan-
tities in Newtonian force balance. It is more general, to the extent that it even provides 
the basis for the formulation of the FEM as a means to discretization and solution of 
the equations of motion in continuous systems with complex geometry. For a conser-
vative system,3 the action integral or the functional I  is:

 I Ldt
t

t
= ∫

1

2  (1.31)

where the Lagrangian L = −T V; T and V, respectively, denote the system kinetic and 
potential energies. Equation (1.31) is similar to the action integral in Equation (1.13) 
of the brachistochrone problem. By Hamilton’s principle, we have the necessary con-
dition for stationarity of I as:

 δ δI Ldt
t

t
= =∫

1

2 0 (1.32)

For systems acted upon by external loads and having dissipation, the stationarity con-
dition is given by the extended Hamilton’s principle:

 δ δI L W dt
t

t

nc
= +( ) =∫

1

2 0 (1.33)

W
nc

 is the work done by the non- conservative forces. A force is said to be non- 
conservative, if the work done by the force in moving an object from an initial pos-
ition to a final position is dependent on its path –  not just the two boundary points 
joined by the path.

Example 1.1. Application of functional optimization in deriving the equations of 
motion for a continuous system

For continuous systems in mechanics such as 1- D rods and beams, 2- D plates and 
3- D solid structures, the Lagrangian L = −T V is usually in the form of an integral over 
its domain. The integrand here is a function of spatial coordinates x : , ,= ( )x y z

T
 and its 

derivatives with respect to x� in addition to derivatives with respect to time t. The inte-
grand is called the Lagrangian density. As an example, consider an axially vibrating rod 
shown in Figure 1.19. Let us derive the EL equations by the variational approach.
f x t

A
,( ) =  axial force density per unit length
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Solution. If the axial displacement field variable is denoted by y x t,( ), the kinetic 

energy T = ∫
1

2 0

2
l
my dx  and the potential energy V = ′∫

1

2 0

2
l
EAy dx  where 

y
dy

dt
=  and 

′ =y
dy

dx
. Thus L my EAy dx

l
= −( )∫

1

2 0

2 2
 ′  and ւ = − ′( )1

2
2 2my EAy , the latter being   

the Lagrangian density. Here the system parameters E A m, and  are considered 
functions of the spatial variable x. Note that the differential  is exact. If the system 

is acted upon by an external force density ,f x t
A ( ) distributed over its length, 

W f x t y x t dx
nc

l

A
= ( ) ( )∫ 0

, ,  –  the integrand here cannot typically be obtained as the 
gradient of a smooth/ analytic function. The action integral I is:

 I L y y W dt
t

t

nc
= ( ) +( )′∫

1

2
,  (1.34)

Now, we aim at finding the path y x t,( ) that extremizes I. By the extended Hamilton’s 
principle, the necessary condition as in Equation (1.33) takes the form:

   
(1.35)

δy x t,( ) is the virtual displacement over the true path satisfying δ δy x t y x t, ,
1 2

0( ) = = ( ).   
It follows that δ y x t,( ) is the virtual velocity and δ ′y , the first- order partial derivative 
with respect to x. To express all variations in terms of δy, we integrate by parts the 
first two terms in the parenthesis on the extreme RHS of Equation (1.35) with respect 
to t and x, respectively. With the integration defined over finite spatial domain and 

time interval, the operator pairs (δ,
∂
∂t

) and (δ,
∂
∂x

) commute. Similarly, integrations 

with respect to t and x are also interchangeable.
Then we have:

   
(1.36a)

(since δy = 0 at t
1
 and t

2
)

 

   
(1.36b)
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Substitution of these expressions in Equation (1.35) gives:

   
(1.37)

Since δy  is arbitrary, the condition δI = 0 is satisfied for all δy if and only if:

   (1.38)

and

   
(1.39)

Equation (1.38) is the EL equation which is a PDE in the unknown field y x t,( ). 
Equation (1.39) reveals the possible BCs for the system. Thus, the variational formu-
lation results in the governing PDEs together with the possible sets of BCs. With the 
specific Lagrangian density ւ of the vibrating rod substituted in Equation (1.38), one 
gets the governing PDE:

 −
∂
∂

∂
∂







+
∂
∂

=
x

EA
y

x
m

y

t
f

A

2

2
 (1.40)

■ 

For the rod shown in Figure 1.19, Equation (1.39) is satisfied by the two BCs: 
 

EA
y

x
x l

∂
∂

= =0 at  and y t0 0, .( ) =  While EA
y l t

x

∂ ( )
∂

=
,

0 is the natural (force) BC, 

y t0 0,( ) =  is known as the essential (geometric) BC. The essential BCs are also 
known as Dirichlet BCs where the dependent variable [here y x t,( )] is directly speci-
fied on the boundary of the domain. The natural BCs are of Neumann type where 
normal derivatives are prescribed on the boundary. To arrive at an explicit solution 
y x t,( ), one needs to solve the PDE (1.40) subject to the prescribed BCs and the   

FIGURE 1.19 A continuous system –  an axially vibrating rod of length l ; m x( ) =  mass 
density per unit length, E x( ) =  Young’s modulus of elasticity, A x( ) =  area of cross- section of 
the rod.
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initial  conditions (ICs). The ICs are typically described in the form:   
y x x,0( ) = ( )α  and y x x,0( ) = ( )β .

1.5.1  fUnctional optimization and nUmerical schemes

The PDE (1.40) is often referred to as the strong form of the governing equation. 
While the solution to this PDE solves the functional optimization problem, it is 
generally difficult to arrive at an analytical solution. This clearly highlights the 
important role that numerical schemes can play in this regard. First note that the 
solution to the EL Equation (1.40) must be C l2 0,( ) with respect to x and C2 0,∞( ) 
with respect to t. C a bm ,( )  is the standard notation used to denote the set of all 
functions that, together with their first m  derivatives, are continuous in a b,( ).   
One may ask if the problem may be posed in such a way that the continuity and 
smoothness requirements on y x t,( ) could be relaxed; this would be helpful in 
devising a numerical scheme as well. Indeed, this is the underlying philosophy 
of numerical methods such as Rayleigh- Ritz and weighted residuals (Meirovitch 
1967, Finlayson 1972, Roy and Rao 2017). Galerkin, least squares and collocation 
methods belong to the category of weighted residuals. The Rayleigh- Ritz method 
involves a functional discretization as an approximation y tx,( ) to the unknown 
field variable y tx,( ):

 y t Y q t j
j

j j
x x, , , ,( ) = ( ) ( ) = …∑ 1 2  (1.41)

The above is a linear combination of basis or trial functions Yj x( );  note that these are 

known functions. q t
j ( ) may be treated as generalized coordinates (in that they may 

not possess any physical attribute). The trial functions are required to be admissible, 
i.e. they should be continuous, linearly independent and complete (see Appendix 
1 for definitions of linear independence and completeness). They need only to sat-
isfy the essential boundary conditions (BCs), but not the natural BCs, since this 
requirement is already provided for in the variational formulation. Substitution of 
the assumed solution (1.41) in the action integral I of Equation (1.34) and applica-
tion of the stationarity condition δI = 0 result in a set of ODEs in unknown functions 
q t

j
( ) and solution of these equations by an integration scheme yields the generalized 

coordinates and thence y tx,( ) (Clough and Penzien 1982).
Weighted residual methods also use functional discretization as in Equation 

(1.41). A direct substitution of y tx,( ) in the system PDE –  linear or nonlinear –  
yields a residual  y( ). For example, this residual for the PDE in Equation (1.40) 

is: R A y y f
A( ) = ( ) −  where  is the differential operator −

∂
∂

∂
∂







+
∂
∂x

EA
x

m
t

2

2
. The 

basic idea is to render the residual a minimum, in some sense, by using a set of 
orthogonality conditions. In particular, the residual is orthogonalized with respect to 
certain weight or test functions U j

j,
, ,= …1 2  such that:
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 < >U U x y f d j
j j A,

, , ,R A= ⇒ ( ) ( ) −{ } = = …∫0 0 1 2
℧

~ x  (1.42)

with Y U
j j

and ∈, the Hilbert space (Appendix 1). < . , . > stands for the inner 
product.4 All finite dimensional inner product spaces belong to .

Equation (1.42) amounts to an orthogonal projection of the residual on a 
reduced (and finite) dimensional linear (vector) space spanned by the elements of   
 U x( ) = ( ) = …{ }U j N

j
x , , , , .1 2  This stems from the classical projection theorem –  

“given a Hilbert space  and a closed non- empty subspace V  of  and with u ∈,   
there exists a unique v V∈  such that the norm5 u v u z− ≤ −  for all z V∈ ”. Consider 
the case wherein the trial and test functions belong to the same finite dimensional 
vector space.

The weighted residual method seeks to find the best approximant within this space 
in the sense as envisaged through the projection theorem. Intuitively, this is implicit 
from the fact that a position vector U  in 3 is represented by U  in the reduced 2 with 
minimum error when the error (residual) U U−   is perpendicular (orthogonal) to the  
X

1
 – X

2
 plane as illustrated in Figure 1.20.

From Equation (1.42), one observes that there are dissimilar restrictions on  
the smoothness requirements of the trial and test functions. To be specific, for the  
example PDE (1.40), second order derivatives of y appear in the weighted residual,  
but not derivatives of U

j
. Y j

j
, , ,= …1 2  are required to satisfy both the essential and  

natural BCs since Equation (1.35) does not contain these conditions. By applying  
Green’s identity (Appendix 1) to the inner product in Equation (1.42), the boundary  
value problem (BVP) in Equation (1.40) may be transformed to a so- called ‘weak  

FIGURE 1.20 Orthogonal projection and minimum residual norm.

 

 

 

 

 



36 Elements of Classical and Geometric Optimization

form’ for the corresponding PDE. In the weak form, a derivative order balance is  
achieved. Integration by parts is equivalent to Green’s identity in one dimension and  
if applied to Equation (1.42), one obtains the weak form:

 

q t
dU

dx
EA

dY

dx
dx t U mY dx Pq

j

l
i j

j

l

i j( ) 





+ ( )












=∫ ∫0 0

 tt U F x dx i
l

i Aj
( ) ( ) = …∫∑ 0

1 2, , ,

 

 
⇒ ( ) + ( ){ } = ( ) = …∑ K MU Y q U Y P U iq

i j j i j j ij
, , , , ,⋅⋅ l 1 2

 
(1.43)

Details on the derivation of the last equation are provided in Appendix 1 (under the 
item –  Green’s identity). In deriving the above equation, we assume that the for-
cing function f x t

A
,( ) may be written in a variable separable form as P t F x

A( ) ( ).   
 U Y

i j
,( ) and  U Y

i j
,( ) are bilinear forms on  ×  and  U

i( ), a linear form 
on  (see Appendix 1 for definitions of bilinear and linear forms). The integrals 

0

l
i jdU

dx
EA

dY

dx
dx∫







, 

0

l

i j
U mY dx∫  and 

0

l

i A
U F x dx∫ ( )  in Equation (1.43) (once evaluated) 

yield the matrices ,  and the vector  respectively. This results in a set of ODEs 
the solution of which yields the generalized coordinates q t

j ( ) and finally the required 
y tx,( ) from Equation (1.41).

The well- posedness, uniqueness and stability of the solution to the weak form in 
Equation (1.43) are discussed in detail in Roy and Rao (2012). Here we bring in the 
notation D uα  for the α th  weak derivative of a function u ∈ where α = …0 1 2, , , . See 
Appendix 1 for the definition of weak derivatives. Note however that, for a sufficiently 
smooth u having derivatives of orders 1 to α in the classical sense, no distinctions 
need be made between classical and weak derivatives. The well- posedness requires 
that the basis and the test functions in the weak form belong to the Sobolev space 
H v D u L mm

 ( ) = ∈ ( )∀ ≤{ }: α α α2 such that  (see Hilbert spaces in Appendix 1 
and also Appendix 2 for details on Sobolev space). For the weak form in Equation 
(1.43), a choice of continuous and piece- wise linear functions Φ

j
x( ) and ψ

j
x( ) 

(which belong to H1 0 1,( ), even though they do not have classically defined first order 
derivatives) satisfies the smoothness requirement.

FEM
FEM may be viewed as either a Rayleigh- Ritz method with piecewise smooth trial 
functions or a Galerkin method with similar trial and test functions. Here, we start 
with a given discretization of the domain  of interest into a set of ‘non- overlapping’ 
elements, 

i e
i N{ } = …, , , ,1 2  such that ∪ ℧ ℧

i
N

i
e

= =
1

. By ‘non- overlapping’ elements, 
it means that two distinct elements 

i
 and 

j
 can at best have a common boundary 

for i j≠ . N
e
 stands for the number of elements in the finite element (FE) model. In 

the interior of each 
i
, the trial/ test functions are smooth. The lack of smoothness 

occurring at inter- element boundaries must be such that the overall approximation 
remains continuous (single valued) everywhere in . The discretization described 
thus far is in fact referred to as semi- discretization (i.e., discretization of the spatial 
domain alone and not the time axis).
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Figure 1.21 shows an FE semi- discretization (also called FE mesh) of the vibrating  
rod of Example 1.1. For this specific system,  = [ ]0,l  and 

i i i
x x=  +,

1
 (see  

Figure 1.21b). The FE mesh consists of line elements with each element containing  
n

e
= 2 nodes. Let N

d
 denote the total number of nodes in the discretization of .

With the semi- discretization as in Figure 1.21, the axial displacement field com-
ponent y x t,( ) at a generic location x is approximated as (similar to Equation 1.41):

 
y x t Y x q t

j jj

Nd,( ) = ( ) ( )=∑ 1

 (1.44)

In FEM, the trial functions Y x
j ( ){ } form a polynomial basis set.6 A polynomial basis 

set is called interpolating if for any node i N
d

∈ 1,  with coordinate x
i
, there exists 

only one basis function Y x
i ( ) such that Y x

i i( ) = 1. Further, Y x
k i( ) = 0 for any node k i≠  

(Figure 1.21c). The interpolating functions Y x
j ( ) are also referred to as shape functions. 

From Equation (1.44), we see that at the ith node, y x t Y x q t q t
i j i j ij

Nd,( ) = ( ) ( ) = ( )=∑ 1

 

and similarly y x t Y x q t q t
i j i j ij

Nd

+ + +=( ) = ( ) ( ) = ( )∑1 1 11
,  (Figure 1.21b). Thus, in the FE   

based semi- discretization, the generalized coordinates q t j N
j d( ) = …, , , ,1 2  are immedi-

ately identifiable with the physically meaningful nodal displacements for the vibrating 
rod. This is unlike the standard Rayleigh- Ritz and weighted residuals methods discussed 
earlier. With the choice of test functions U Y

j j
= , the weak form (Equation 1.43) reduces 

to a system of linear coupled ODEs which can be written in a matrix form:

 Mq Kq+ = ( ) ∈ t Nd,    (1.45)

FIGURE 1.21 (a) Axially vibrating rod, (b) FEM semi- discretization –  ith element and nodal 
displacement functions q t

i ( ) and q t
i+ ( )1  and (c) trial function , , , , ,Y x i j N

j i ij d( ) = = …δ 1 2 .
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Here M  and K  are the (symmetric) mass and stiffness matrices in N Nd d×  that result 

from the bilinear forms  Y Y mY Y dx
k j

l

k j
,( ) = ∫ 0

 and  Y Y EAY dxY
k j

l

k j
,( ) = ′ ′∫ 0

 

respectively for j k N
d

, , , ,= …1 2 . Moreover, .
j

l

j A
Y F dx= ∫ 0

 The coupled ODEs in 

Equation (1.45) need to be solved for the unknown vector q t q q q
N

T

d
( ) = …( )1 2

, , ,  to 

finally obtain y x t,( ) using Equation (1.44).
An added computational advantage with the FEM is the element- wise restriction 

of the shape functions (henceforth referred to as element shape functions) which in 
turn enables an element- wise splitting of the weak form. Specifically, the domain 

integration 


∫ d  in the weak form can be replaced by 




i

d
ii ∫∑ .

Whilst the shape functions Y x
j ( ) in Equation (1.44) directly yield the system 

matrices M  and K, element- based operations enable the computational scheme to be 
strictly modular and hence more easily implementable for complex systems (Bathe 
1996, Hughes 2012).

1.6   CONSTRAINED OPTIMIZATION PROBLEMS AND  
OPTIMALITY CONDITIONS

All optimization problems are in general constrained (as formulated in Equations 1.3). 
From Equation (1.3b), it is evident that constraints of equality or inequality types may 
relate to complex relationships among the design variables. Further, these constraints 
may be linear or nonlinear. The optimality criteria for a constrained optimization 
problem are given by Karush- Kuhn- Tucker (KKT) conditions (Karush 1939, Khun 
and Tucker 1951) which are necessarily satisfied by a local optimum. These opti-
mality conditions are explained in the following sub- sections via intuitive arguments 
supported by a graphical description wherever necessary. For an unconstrained opti-
mization problem, vanishing of the gradient ∇ ( )f x  at an optimum point is necessary. 
But it may not be the case when constraints are present. Note that the gradient ∇ ( )f x  
points towards the direction of steepest ascent for the function f x( ) while −∇ ( )f x  
points towards the direction of steepest descent. This is clarified by a Taylor expan-
sion of f x d+( )α  around x with α ∈ +  denoting a step size in the direction d .

 f f f
T

x d x x d+( ) = ( ) + ∇ ( ){ } + ( )α α αO 2  (1.46)

O α2( )  in the last equation stands for the order of approximation* and signifies that 
the remainder terms tend to zero faster than as a linear function of α as α → 0. Thus, 
for small α, one has:

* Orders of approximation
Big ‘O’ and small ‘o’ notations are used to describe the asymptotic behaviour of functions.
Big ‘O’ notation: F x( ) = ( )( )O G x  means that as x → ∞ , there exist constants N  and K  such that
 F x K G x( )≤ ( )  for all x N> . That is, F x( )  grows no faster than G x( ).
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 ∆ = +( ) − ( ) ≈ ∇ ( ){ }f f f f
T

x d x x dα α  (1.47)

If the directions of d�  and −∇ ( )f x  coincide, then ∆ <f 0 which shows that −∇ ( )f x  
is indeed the direction of steepest descent. This is the basis for optimization by 
steepest descent (details provided in Chapter 2). While a normal to the gradient vector 
∇ ( )f x  or −∇ ( )f x  lies in the plane tangent to the equi- potential (equi- cost) curves 
(see Figure 1.22 for a two- dimensional problem), a movement along a direction d  
lying to the side of this plane containing −∇ ( )f x  decreases f x( ). The vector d  is thus 
a descent direction if ∇ <f T d 0 and an ascent direction otherwise. Convergence is 
extremely slow for the steepest descent method while handling functions with valleys 
and troughs. The derivative methods of conjugate gradient (Fletcher and Reeves 
1964) and quasi- Newton (Nocedal and Wright 2006) which are also described in 
Chapter 2, use descent directions d�  suitably modified to achieve better performance 
(than the method of steepest descent).

FIGURE 1.22 Geometric significance of the gradient vector and directions of steepest ascent 
and descent.

Small ‘o’ notation: F x G x( ) ∈ ( )( )o  means that as x → ∞ , there exist constants N  and K  such that 

for all x N> , one has F x K G x( ) < ( ) .  That is, F x( )  grows much slower than G x( ) . If G x( ) ≠ 0
,   

this is equivalent to lim /
x

F x G x
→∞

( ) ( ) = 0
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1.6.1  optimization proBlem with eqUality constraints

We first consider an optimization problem with equality constraints. Specifically 
Figure 1.23 shows a situation with a single equality constraint in a 2- dimensional 
optimization setting. The problem is to:

 Minimize f x( ) 

 s t. h x( ) = 0 (1.48)

The gradient vector ∇ ( )h x  in the figure has the same interpretation as that of ∇ ( )f x . 
It is clear that a constrained optimum –  perhaps a local one –  must lie on the constraint 
curve. Suppose that one arrives at x = ( )x x

T

1 2
, -  marked ’ ’1  in the  figure –  during the 

optimization process with respective gradient vectors as shown. The gradient vector 
−∇f  still has a component pointing towards a direction perpendicular to ∆h implying 
that there is scope to improve the minimum by traversing along the constraint curve 
towards the right.

A similar situation arises when the current point reaches the one marked 3 in  
the figure. In this case, further exploration for a better result may be required by  
moving up the constraint curve towards the left. However, when the point marked 2  
is reached, directions of the gradient vectors coincide excluding any scope for further  

FIGURE 1.23 A constrained optimization problem with an equality constraint.
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improvement. That is, the point is the local optimum x* and the gradient vector ∇h is  
parallel to ∇f  at this point with the result −∇ ( ) = ∇ ( )f hx x* *µ  with µ  being a scalar  
constant of proportionality. In this case of an equality constraint, whether ∇h is par-
allel or anti- parallel with −∇ ( )f x*  is inconsequential; the reason being that x* always  
lies on h x( ) = 0. It implies that µ may be > 0 or < 0. Note that h x*( ) = 0.

Consider the case of two equality constraints as shown in Figure 1.24 for the 2- 
dimensional optimization problem. Following similar arguments as in the case of a 
single constraint, one finds that the points marked 4 and 5 on the second equality con-
straint h

2
0x( ) =  need correction so as to be brought closer to the local optimum, just 

as the points marked 1 and 3 on the first constraint h
1

0x( ) = .
At the point marked 2 common to the two constraints (where both equality  

constraints are satisfied), no further improvement is possible leading to the conclu-
sion that x* is reached and −∇f  is a linear combination of the gradient vectors ∆h

1
  

and ∇h
2
, i.e. −∇ ( ) = ∇ ( ) + ∇ ( )f h hx x x* * *µ µ

1 1 2 2
 with µ µ

1 2
, ∈ . In arriving at the  

result, linear independence of the gradient vectors ∇h
1
 and ∇h

2
 must be assumed. The  

requirement of linear independence essentially ensures that the constraints are unique  
and none of them is redundant. If we generalize the result for an n- dimensional  

FIGURE 1.24 A constrained optimization problem with two equality constraints.
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optimization problem with l ≥ 2 linearly independent equality constraints, the local  
optimizer satisfies the conditions:

 
−∇ ( ) = ∇ ( )=∑f h

i ii

l
x x* *µ

1  

 
⇒ ∇ ( ) + ∇ ( ) = ∈

=∑f h
i i ii

l
x x* * ,µ µ0

1


 
(1.49a)

and

 h i l
i

x*( ) = = …0 1 2, , , ,  (1.49b)

The above are the KKT conditions for the optimization problem with equality constraints. 
These conditions are used to solve a set of n l+  equations for the n l+  unknowns 
x* ∈n and µ ∈l .

Equations (1.49) indicate that one can formulate the optimization problem 
with equality constraints as an unconstrained one by introducing a Lagrangian† 
defined by:

 L f h
i ii

l
x x x, µ( ) = ( ) + ( )=∑ µ

1

 (1.50)

† Lagrangian
Here the use of the word Lagrangian may be attributed to the association it has with the familiar notion 
of functional optimization discussed in earlier sections of this Chapter. For instance, in the context of 
variational calculus applied to the brachistochrone problem and Hamiltonian mechanics in Sections 
1.4 and 1.5, the respective action integrals in Equations (1.13) and (1.34) involving the Lagrangian led 
to the EL equations via a stationarity principle. Similarly, based on Equation (1.50), one may form an 
action integral:

 I L dt
t

t
= ( )∫

1

2 x,µ   (i)

Here t
1  and t

2  represent pseudo time instants parametrizing the iterative steps involved in an opti-
mization process. Using the stationarity of the functional, we arrive at (1.49) by a straightforward 
exercise:

 δ µ δ δµI f h h dt
t

t

i

l

i i
i

l

i i
= ⇒ ∇ + ∇







+











=∫ ∑ ∑

= =

0
1

2

1 1
x x x

,
00   (ii)

⇒ ∇ + ∇ = = = ∈
=∑f h h i l

i

l

i i i ix x1
0 0 1 2 0µ µ

,
, , ,.., \and with 

The above result is obtained by the localization theorem (Rudin 1976). According to this theorem, if 
Φ  is a continuous field (scalar or vector) on V  and if, for all closed sets B V⊂ ,

B
d∫ =Φ ζ 0,  then 

Φ = 0  for all u V∈ .
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One readily finds the necessary optimality conditions in the form of vanishing 
gradients as:

 ∇ =x L 0 (1.51a)

and

 ∇ =µ L 0  (1.51b)

∇x
 and ∇µ

 denote directional derivatives along the vectors x� and µ  respectively. 

These conditions are identical to those in Equation (1.49). µ
i

i l, , , ,= …1 2  are called 
Lagrange multipliers. This is known as the method of Lagrange multipliers.

1.6.2  optimization proBlem with ineqUality constraints

Now, consider the optimization problem with an inequality constraint (Figure 1.25):

 minimize f x( ) 

 s.t. g x( ) ≤ 0 (1.52)

As shown in Figure 1.25, the feasible region is below the hatched curve g x( ) = 0. In 
case the inequality constraint is satisfied by the unconstrained optimum as depicted 
in Figure 1.25a, the constraint is said to be no longer ‘binding’, or it is in fact a 
slack constraint. It follows that the local optimizer is the same as that of an uncon-
strained optimization problem. In such a case, the necessary condition for the local 
optimizer is simply −∇ ( ) =f x* 0 and this can be construed as the KKT condition 
∇ ( ) = ( )f gx x* *λ  with λ = 0.

In Figure 1.25b, the inequality constraint is binding and active so that the local 
optimum must lie on the constraint boundary. Putting forward the same arguments 
as in the case of equality constraints, one locates the local optimizer x* at the point 
marked ′ ′2  where the gradient vectors −∇f  and ∇g are parallel to each other. 
However, unlike the case of equality constraints, a point x is not a local optimizer 
if −∇f  and ∇g are anti- parallel. The reason is that with g x( ) being an inequality 
constraint, −∇f  at the constrained minimum x* will always point towards the uncon-
strained minimum. Thus, to locate x* at point 2, it is required to have the KKT con-
dition as −∇ ( ) = ∇ ( )f gx x* *λ  with λ > 0. Combining the two possible cases of the 
active and slack inequality constraints, the necessary optimality criteria are given by 
the KKT condition −∇ ( ) = ∇ ( )f gx x* *λ , λ ≥ 0. The inequality constraint is satisfied 
at the optimum, i.e., g x*( ) ≤ 0. As with equality constraints, we assume that, for 
multiple inequality constraints, the gradient vectors of the active constraints are lin-
early independent. With a set of m ( )> 1  inequality constraints, we can state the KKT 
conditions as:

 

 

 

 

 

 



44 Elements of Classical and Geometric Optimization

 
−∇ ( ) = ∇ ( )

=
∑f g
i

m

i i
x x* *

1

λ
 

 
⇒ ∇ ( ) + ∇ ( ) =

=
∑f g
i

m

i i
x x* *

1

0λ ,
 

(1.53a)

 λ
i

i m≥ = …0 1 2, , , ,  (1.53b)

and

 g i m
i

x*( ) ≤ = …0 1 2, , , ,  (1.53c)

FIGURE 1.25a Constrained optimization problem with an inequality constraint; (a) case of 
a slack inequality constraint (not binding), hence solution search in the interior of g(x) < 0;    
(b) case of an active inequality constraint and solution search on the surface of g(x) = 0, x* 
denotes the local optimum.
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Since only active constraints will have non- zero multipliers λ
i
, a complementary 

slackness condition is added to the above as:

 λ
i i
g i mx*( ) = = …0 1 2, , , ,  (1.53d)

One can define a Lagrangian by recasting the above problem with constraints as an 
unconstrained optimization problem. By the method of Lagrange multipliers, the opti-
mality conditions –  same as the KKT conditions in Equation (1.53), may be derived. 
This is described in the next sub- section where a general optimization problem with 
both equality and inequality constraints is discussed.

FIGURE 1.25b  (Continued)
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Example 1.2. We consider the constrained optimization problem illustrated in 
Figure 1.1 and examine the relevant KKT conditions.

Solution. This is a two- dimensional maximization problem with the design variable 
vector x = ( )x x

T

1 2
,  and a linear inequality constraint. The problem is stated as:

 maximize f x xx( ) =
1 2  (1.54a)

 s t. g x xx( ) = + − ≤3 400 0
1 2  (1.54b)

Being a maximization problem, it requires that ∇ ( )f x*  and ∇ ( )g x*  must be parallel 
at the optimal point (see the discussion on the minimization problem corresponding 
to Figure 1.25b). Thus ∇ ( ) = ∇ ( )f gx x* *λ  with .λ > 0
The Lagrangian ,L x λ( ) is:

 L x x x xx,λ λ( ) = − + −( )1 2 1 2
3 400  (1.55)

With m = 1, the KKT conditions are thus given by:

 ∇ ( ) − ∇ ( ) =f gx x* *λ 0 (1.56a)

 λ ≥ 0 (1.56b)

 g x*( ) ≤ 0 (1.56c)

and

 λg x*( ) = 0 (1.56d)

These are the necessary conditions to be satisfied at the optimal point. The optimal 
point has already been found for this problem graphically (see Figure 1.1) as 
x* ( . , )= = =x x T

1 2
66 5 200 . The gradient vectors ∇f  and ∇g at x* are given by:

 ∇ ( ) =






∇ = ( )





f gx x* *
0 867

0 288

3

1

.

.
and  (1.57)

Substitution of these vectors in Equation (1.56a) gives .λ ≈ 0 288  which is positive 
showing that the constraint is active. Further, x* satisfies the constraint (1.56c) with 
strict equality and hence also Equation (1.56d) with λ ≠ 0.

■

Example 1.3. Figure 1.2 is another illustration of a constrained optimization problem 
with an inequality constraint. We verify the necessary KKT conditions for optimality.

Solution: The optimization problem if written in the standard form of Equation (1.52) 
is given by:
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 minimize f x xx( ) = +4
1 2 (1.58a)

 s t. g x xx( ) = − + ≤
1 2

100 0 (1.58b)

From Figure 1.2, the optimal solution x* ( , )= = =x x T
1 2

50 200 . The gradient vectors 
at x*  are given by:

 −∇ ( ) =
−
−







∇ ( ) =
−

−






f gx x* *
4

1

1

0 25
and

.
 (1.59)

λ = 4 satisfies the KKT condition in Equation (1.56a) with m = 1. While the strict 
equality condition (1.56c) is also satisfied, the non- zero positive λ satisfies the com-
plementary slack condition (1.56d).

■

1.6.3   optimization proBlem with Both eqUality and ineqUality 
constraints

A general optimization problem with both equality and inequality constraints is of 
the form:

 minimize f x( ) 

 s t. , , , ,h i l
i

x( ) = = …0 1 2  

 and g j m
j

x( ) ≤ = …0 1 2, , , ,  (1.60)

Combining the arguments in the earlier subsections for the cases of equality and 
inequality constraints, one arrives at the optimality (KKT) conditions for the present 
optimization problem as:

 
−∇ ( ) = ∇ ( ) + ∇ ( )

= =
∑ ∑f h g
i

l

i i
j

m

j j
x x x* * *

1 1

µ λ
 

(1.61a)

 h i l
i

x*( ) = = …0 1 2, , , , , (1.61b)

 g j m
j

x*( ) ≤ = …0 1 2, , , , and (1.61c)

 µ λ
i j

i l j m∈ = … ≥ = …, , , , , , , , ,1 2 0 1 2  (1.61d)

 λ
j j
g j mx( ) = = …0 1 2, , , ,  (1.61e)
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The last one (1.61e) is the complementary slackness condition to ensure that only active  
constraints will have non- zero multipliers λ

j
. The above KKT conditions, arrived at  

purely by geometric considerations (Figures 1.24 and 1.25), may be interpreted algebra-
ically using Farkas’ lemma (Appendix 1). To this end, we define the feasible space  
 = ( ) ≤ = … ( ) = = …{ } ⊂x x x: , , , , , , , , ,g j m h i l

j i
0 1 2 0 1 2 Ξ  where Ξ  is the design  

space. With x ∈, let F f T= ∇ <{ }d d: 0  be the cone of descent directions (Figure 1.26a)  
of f  at x, H h i l

i
T= ∇ = ∀ = …{ }d d: , , ,0 1 2  a set of tangent directions of equality  

constraints and G g j m
j
T= ∇ < ∀ = …{ }d d: , , ,0 1 2  the cone of feasibility directions for  

the inequality constraints. Here a cone C n⊂   is a set with the property that for every  
x ∈C, α αx ∈ >C for any 0. Figure 1.26b shows a feasibility cone G for the case of two  
active inequality constraints. If x* is the local optimizer, the geometric (necessary) opti-
mality condition in Equation (1.61a) is equivalent to F H G∩ ∩ = φ in that there exists  
no vector d  at x* which is both a descent and a feasible direction. According to Farkas’  
lemma also, we have the following assertion:

Exactly one of the following systems has a solution:

1)  ∇ ( ) + ∇ ( ) + ∇ ( ) = ≥ = …
∈

= =∑ ∑f h g j m
i

l

i i j

m

j j j i
x x x* * *

1 1
0 0 1 2µ λ λ µ, , , , , ,

,, , , ,i l= …1 2

 2) ∇ ( ) < ∇ ( ) = ∇ ( ) ≤f h gT T Tx d x d x d0 0 0, ,  (1.62a,b)

The above assertion implies that the set  
S = ∇ ( ) < ∇ ( ) = ∇ ( ) ≤{ }d f x d h x d g x dT T T: , ,0 0 0  is empty if and only if  
∇ ( ) + ∇ ( ) + ∇ ( ) =

= =∑ ∑f h g
i

l

i i j

m

j j
x x x* * *

1 1
0µ λ  for some λ

j
≥ 0 and µ

i
∈ which  

FIGURE 1.26a Descent cone and descent direction d = −∇ ( )f x
k

.
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is the necessary KKT condition for the general optimization problem in Equation  
(1.60). Equation (1.61a) suggests that a general minimization problem with both  
equality and inequality constraints can be stated in terms of a Lagrangian as:

 L f h g
i

l

i i
i

m

i i
x x x x, ,λ µ( ) = ( ) + ( ) + ( )

= =
∑ ∑

1 1

µ λ  (1.63)

The Lagrangian is a function of x = …( )x x x
n

T

1 2
, , , , λ= …( )λ λ λ

1 2
, , ,

m

T
 and 

µ = …( )µ µ µ
1 2
, , ,

l

T
. As an unconstrained optimization problem, the above form has 

the following KKT condition necessary for optimality:

 ∇ =
∇
∇
∇

















=L

L

L

L

x

λ

µ

0  (1.64)

which are the same as those in Equation (1.61). For a maximization problem, the 
Lagrangian in Equation (1.63) may be taken as:

 L f h g
i

l

i i
j

m

j j
x x x x, ,λ µ( ) = ( ) − ( ) − ( )

= =
∑ ∑

1 1

µ λ  (1.65)

FIGURE 1.26b Feasibility cone and feasibile direction ∇ ( )f x
k .
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The change in the sign of the last two terms on the RHS of Equation (1.65) follows 
the fact that at the optimal point the (positive) gradient ∇ ( )f x*  must be a linear com-
bination of the gradient vectors ∇ = …h i l

i
, , , ,1 2  and ∇ = …g j m

j
, , , ,1 2 .

The KKT conditions are equally applicable to an unconstrained optimization 
problem. This is equivalent to the case where no constraint is active. Thus, all the 
Lagrange multipliers are zero leading to the only KKT condition ∇ = ∇ =L fx 0.

1.6.4   sUfficient conditions of optimality for a constrained 
optimization proBlem

The KKT conditions stated in the previous sub- sections are necessary for obtaining 
a local optimum. If, for example, a point x* satisfies the KKT conditions for a min-
imum, it can be a local minimum or a saddle point (Appendix 1). The case is similar 
with a maximum. As in unconstrained optimization, the sufficiency condition for a 
local optimum in the presence of constraints depends on the second order derivatives. 
Referring to the optimization problem in Equation (1.63), one has the Hessian matrix 
∇ ( )2L x*  given by:

 ∇ ( ) = ∇ ( ) + ∇ ( ) + ∇ ( )
= =
∑ ∑2 2

1

2

1

2L f h g
i

l

i i
i

m

i i
x x x x* µ λ  (1.66)

If ∇ ( )2L x*  is positive definite on the tangent subspace   of the equality and active 
inequality constraints, the point x* is a strict local minimum. The tangent space   is 
defined as:

  = ∇ ( ) = ∇ ( ) = ( ) = >{ }y x y x y x: h g and g with
i

T

j

T

j j
* * *,0 0 0 0λ  (1.67)

The Hessian is positive definite if y x y yT ∇ ( ) > ∀ ≠2 0 0L * . This second- order 
condition implies that the objective and the feasible domains are locally convex at the 
optimal point. A similar condition may be stated for a strict local maximum using the 
Lagrangian in Equation (1.65) in which case ∇ ( )2L x*  needs to be negative definite 
on the tangent subspace  , i.e. y x y yT ∇ ( ) < ∀ ≠2 0 0L * .

Example 1.4. We check the sufficiency condition for the optimization problems 
illustrated in Figures 1.1 and 1.2 (see corresponding Examples 1.2 and 1.3).

Solution. Referring to the Example 1.2 and Figure 1.1, we have the optimal point 
x* for the maximization problem as 66 5 200. ,( )T

. From the Lagrangian in Equation 
(1.55), one obtains:
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⇒ ∇ ( ) =

−
−









2

0 00652 0 00217

0 00217 0 000721
L x*

. .

. .  
(1.68)

With *g x( ) = 0 and *∇ ( ) = ( )g
Tx 3 1 , we find that y = −( )1 3

T
 is a vector in the tan-

gent plane  = ∇ ( ) = ( ) = = >{ }y x y x: * *g g
T

0 0 3 0and with λ  (see Figure 1.27a).    

FIGURE 1.27 Tangent plane and second- order sufficient condition: (a) maximization 
problem in Example 1.2 and (b) minimization problem in Example 1.3.
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Here with only one inequality constraint which is linear, the tangent plane coincides 
with the constraint graph itself. Note that .*y x yT ∇ ( ) = − <2 0 026 0L  and thus the 
Hessian is negative definite indicating that the optimal point is a strict maximum.

In Example 1.3 (corresponding to Figure 1.2), we have a minimization problem. 
The Lagrangian and the inequality constraint g x( ) are given by:

 L x x x xx,λ λ( ) = + + − +( )4 100
1 2 1 2

 (1.69a)

and

 g x xx( ) = − +
1 2

100 (1.69b)

The optimal point x* is 50 200,( )T
 and the Lagrange multiplier λ = 4. We have:

 

∇ ( ) =

−

−
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⇒ ∇ ( ) =

−
−









2

0 04 0 01

0 01 0 0025
L x*

. .

. .  (1.70)

It is also clear that *g x( ) = 0 and ∇ ( ) = − −( )g
Tx* .1 0 25 . y = −( )1 4

T
 is a vector 

in the tangent plane  = ∇ ( ) = ( ) = = >{ }y x y x: * *g g
T

0 0 4 0and with λ  (see 

Figure 1.27b). With only one inequality constraint, the tangent plane is the line of 
tangent to the nonlinear constraint. If we verify the sufficiency condition, we get 
y yT ∇ ( ) = >2 0 16 0L X . ; thus, the Hessian is positive definite and the optimal point 
x* a strict minimum.

■

1.7  FUNCTIONAL OPTIMIZATION AND OPTIMAL CONTROL

Optimal control (Kirk 1970, Meirovitch 1990, Liberzon 2012) is a constrained opti-
mization problem with the constraints being non- holonomic‡ and expressed in the 

‡ non- holonomic constraints
Given the coordinates x i n

i
, , , ,= …1 2  describing a system, a constraint that is expressible in the form 

f x x x t
n1 2

0, , , ,…( ) = , where f  is a smooth function not involving derivatives with respect to t, is known 
as a holonomic constraint. Constraints that are not expressible in the above form are non- holonomic.
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form of DEs. It involves minimizing or maximizing a performance index. The index 
may aim at minimizing an error between the desired system output and the actual 

output of the system whose dynamics is described by 
dx

dt
x f x u t= = ( ) , , .

Here x t( ) is the state variable and u t( ) the control input variable guiding the 
system to reach the target. In general, for an n- dimensional system, an optimal con-
trol problem may be stated as:

minimize J h t t L t t t dt
f f

t

t f

= ( )( ) + ( ) ( )( )∫x x u, , ,
0

 s.t x F x u= ( ) ( )( )t t t, ,   (1.71a,b)

where t
0
 is the initial time and t

f
 the final time; x ∈n and u ∈m.    

F x u, , t n m n( ) ∈ × × →+     is an n dimensional vector function. 
, :h t nx( ) × →+    and , , :L t n mx u( ) × × →+     are scalar functions. The 

first term in the performance index J  may be considered as a final cost and the second 
term as a running cost; the task is to arrive at an admissible control u* and admissible 
trajectory x* (according to Equation 1.71b) that minimize J. Note that an optimal 
control problem may be seen as a generalization of functional optimization under 
constraints.

However, to set the problem in a proper format of constrained optimization, the 
first term in Equation (1.71a) on the right hand side (RHS) is written hereunder as:

 h t t
d

dt
h t t dt h t t

f f
t

t f

x x x( )( ) = ( )( ){ } + ( )( )∫, , ,
0

0 0
 (1.72)

It is assumed that h is differentiable. Since h t tx
0 0( )( ),  is a scalar constant and the 

task of minimization is unaffected by this quantity, the performance index may be 
expressed as:

 

J L t t t
dh t t

dt
dt

t

t f

= ( ) ( )( ) +
( )( )











∫
0

x u
x

, ,
,

 

 

⇒ = ( ) ( )( ) +
∂ ( )( )

∂
+

∂ ( )( )
∂









∫J L t t t

h t t

t

h t t

t

t f

0

x u
x x

x
x, ,

, ,



dt

 

(1.73)

The second step in the last equation is obtained by invoking the total derivative 
d

dt t

d

dt
=

∂
∂

+
∂

∂x
x

. Now, by Lagrange multiplier method (see Equation 1.63), the opti-

mization problem is recast as an unconstrained one as:
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 minimize J t
L t t t

h t t

t

h

t

t f

x x u p
x u

x x
, , , ,

, ,
,

( ) =
( ) ( )( ) +

∂ ( )( )
∂

+
∂

∫
0

tt t

t t t

dt
T

( )( )
∂

+ ( ) ( )( ) −( )

















,

, ,

x
x

p F x u x





 

(1.74)

where p t p t i n
i( ) = ( ) = …{ }, , , ,1 2  are the time- varying Lagrange multipliers 

associated with the differential equation (DE) constraints in Equation (1.71b). Note 
that the performance index as posed in the last equation is similar to an action integral 
as is known in calculus of variations.

Pontryagin’s minimum (or maximum) principle
The well- known Pontryagin minimum (or maximum) principle (Pontryagin et al., 
1962; Stengel, 1994; Kirk 1970) provides the necessary conditions for optimality 
and it is indeed a generalisation of the classical subject of the calculus of variations 
to optimal control theory. The vector of terminal condition x t

f( ) may be specified or 
otherwise (free). The first variation δJ  in terms of the variations δ δ δ δ δx x p u, , , and t

f
 

is obtained by first writing an increment ∆J  as:

 
∆ ( ) = + + + + +( ) −J t J t t J

f f f
x x u p x x x x u u p p x x uf, , , , , , , , , ,   δ δ δ δ δ δδ ,, ,p t( ) 

(1.75)

Expanding the expression on the RHS over the variations, retaining only the linear 
terms and integration by parts gives (Kirk 1970):

 

δ δJ t
L t

L t
L t

t
f

T

f f

f

T

f
x x u p

x
x

x
x, , , , *



 

( ) =
∂ ( )

∂
+ ( ) −

∂ ( )
∂ ( )












δt

f

 

 

+
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∂
−
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 ( ) +
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( ) +
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t T T Tf L t d
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L t
t

L t
t

L t

0
x x

x
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δ δ
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p
p

T

t dtδ
 

(1.76a)

where L t( )  is given by (see Equation 1.74):

 L t L t t t
h t t

t

h t t
tT, ,

, ,
,( ) = ( ) ( )( ) +

∂ ( )( )
∂

+
∂ ( )( )

∂
+ ( )x u

x x
x

x p F x u tt t( )( ) −( ), x  

 (1.76b)

In Equation (1.76a), for the terms inside the integral involving h t tx ( )( ),  in L t( ), 

one
 
finds that 

∂
∂

∂ ( )( )
∂









 =

u
xh t t

t

,
0 and 

∂
∂

∂ ( )( )







 =

p
xh t t

dt

,
0. Also, the coefficient 

terms
 
of δx t( ) in the integral containing h t tx ( )( ),  sum up to:
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(1.77)

which reduces to zero after applying chain rule to 
d

dt

h t t∂ ( )( )
∂











x
x

,
 and by interchan-

ging differentiations with respect to x and t. With this simplification, equating the first 
variation δJ  to zero and noting the arbitrariness of the variations involved gives the 
optimality conditions as:

 
coefficient of ( ) :δ p

p
x F x t u t* * *t

L t
t t

∂ ( )
∂

= ⇒ ( ) = ( ) ( )( )0  , ,
 

(1.78a)
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∂













( )

,

, ,

 
 (1.78b)
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(1.78c)

The terms outside the integral in Equation (1.76a) yield the natural BCs:
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∂
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∂
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Equation (1.78a) represents the state equations satisfied by the optimal control u t* ( ) 
and optimal trajectory x* t( ). The n- dimensional vector p t( ) of Lagrange multipliers 
is known as the costate vector and Equations (1.78b) the costate equations. Equation 
(1.78c) is a set of m algebraic equations to be satisfied by u t* ( ) and x* t( ) for all 
t t t

f
∈ 0

, . Solution of the state and costate DEs require 2n constants of integration 
supplied by n initial conditions x x* 0

0( ) =  and n  BCs in Equation (1.79).
Now, consider the function:

 H t t t t L t t t t t t tTx u p x u p F x u( ) ( ) ( )( ) = ( ) ( )( ) + ( ) ( ) ( )( ), , , , , , ,  (1.80)

Equations (1.78a- c) may be restated in terms of H as:

 
x

x u p
p

*
* * *

t
H t t t t

( ) =
∂ ( ) ( ) ( )( )

∂
, , ,

 
(1.81a)

 
p

x u p
x

*
* * *

t
H t t t t

( ) = −
∂ ( ) ( ) ( )( )

∂
, , ,

 
(1.81b)

and

 
∂ ( ) ( ) ( )( )

∂
=

H t t t tx u p
u

* * *, ,
0 (1.81c)

The BCs in Equation (1.79) take the form:
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=
x*

δ 0

 

(1.82)

Equations (1.81a- b) resemble the canonical Hamiltonian equations which appear in 
classical mechanics (also see Meirovitch 1990). The Hamiltonian and Lagrangian 
are related by the Legendre transform (Appendix 1). Presently, the costate variables 
p t( ) bear no similarity to the generalized momenta m mv x(=  ) usually implied in the 
Hamiltonian equations in mechanics. In optimal control theory, , , ,H t t t tx u p( ) ( ) ( )( ) 
is called a pseudo- Hamiltonian function. Equation (1.81c) is a necessary condition 
for optimality when the control variable u t( ) is unconstrained.

The control variables u t( ) are generally bounded which is often the case from 
practical considerations. Suppose that the admissible controls are constrained to a set 
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U, i.e. u t U( ) ∈ . Considering the effect of control variables on a functional J u( ), the 
incremental quantity ∆ ( )J u u* ,δ  for any u and optimal u*  is given by:

 ∆ ( ) = ( ) − ( ) = ( ) + ( )J J J Ju u u u u u* *, *δ δ δhigher order terms of o  (1.83)

where u u u*= + δ . *δJ u( ) is the first variation, which is linear in δu.
The functional J u( ) has a relative minimum at u* if ∆ ( ) ≥J u u* ,δ 0. For unbounded 

control input,δu� is assumed to be arbitrary, leading to the condition that the first 
variation δJ u*( ) = 0 for all admissible δu having a sufficiently small norm, i.e. 

δ δ αu := ( ) <∫∑ =
t

t

i

m

i

f

u t dt
0

1
, say. This argument was in fact used in deriving the optimal 

control and trajectory in the last section (Equations 1.78 or 1.79) with δJ u*( ) = 0. 
Two cases may however arise for bounded inputs. One is that the optimal u* t( ) lies 
strictly within the specified boundary ∀ ∈ t t t

f0
,  so that the assumption of δu� being 

arbitrary remains valid. It is similar to the case of unbounded inputs. Alternatively, 
with a partition of the interval t t

f0
,  expressed by t t t t

i f0 1
< < … < < … < , if the 

variation δu happens to cross over to the inadmissible region over an interval t t
i i
, +( )1

 
as shown in Figure 1.28, such variations are not admissible. In this case, the opti-
mality condition for a minimum is δJ u*( ) > 0.

With the above arguments on admissible variations, we now consider the pseudo-  
Hamiltonian H  in Equation (1.80) corresponding to the functional J  in Equation  

FIGURE 1.28 Optimal control problem; *u  lying on the boundary and control input variation 
δu outside the admissible region in some interval t t t t

i i f
, ,+( ) ∈ 1 0

.
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(1.74). The optimality conditions with respect to δ p and δx remain the same as in  
Equations (1.81a) and (1.81b). The BC in Equation (1.82) is also assumed to hold.  
Thus, with the coefficients of δx and δ p� in δJ  identically zero, it remains only to seek  
optimality with respect to the variation δu t( ), i.e.:

 t

t T
f H t t t t

t dt
0

0∫
∂ ( ) ( ) ( )( )

∂
( ) ≥

x u p
u

u
* *, , ,*

δ
 

(1.84)

      

⇒ ( ) ( ) + ( ) ( )( ) − ( ) ( ) ( )( )(∫
t

t f

H t t t t t H t t t t
0

x u u p x u p* * * *, , , , , ,* *δ )) ≥dt 0

 

(1.85)

Thus, for all admissible δu and ∀ ∈ t t t
f0

, , we must have:

 H t t t t t H t t t tx u u p x u p* * * *( ) ( ) + ( ) ( )( ) − ( ) ( ) ( )( ) ≥, , , , , ,* *δ 0 (1.86)

following which we get the necessary condition for u* to minimize J t t t
f

�∀ ∈ 0
,  as:

 H t t t t H t t t tx u p x u p* * *( ) ( ) ( )( ) ≤ ( ) ( ) ( )( ), , , , , ,* *  (1.87)

Strict inequality in the above equation implies that the optimal control u* t( ) 
minimizes H under bounded u t( )  and this is Pontryagin’s minimum principle. Thus, 
for bounded controls, Equation (1.87) replaces Equation (1.81c). This condition along 
with Equations (1.81a) and (1.81b) and supplemented by the BC in Equation (1.82) 
constitute the necessary conditions for the n- dimensional optimal control problem 
under bounded inputs. Pontryagin’s minimum principle equally applies to the case 
of unbounded controls. This is because, as bounds on the admissible controls tend to 
infinity, the region is unbounded as well. It amounts to an unconstrained optimization 
problem with the optimality condition given by Equation (1.81c).

Example 1.5. We derive the optimal control law for an n- dimensional dynamical 
system described by:

 x Ax But t t( ) = ( ) + ( ) (1.88a)

when the performance index to be minimized is:

 J t t t t t t tT
f f

t

t

T T

f

x x u x Sx x Qx u Ru, , ,( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) ∫
1

2

1

2
0

 dt (1.88b)
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Here x t x t x t x t x t
T( ) = ( ) ( ) ( ) ( )( )1 2 3 4

, , , . A n n∈ × , B n m∈ × , x un m∈ ∈ , ; S�  
and Q are n n×  real symmetric positive semidefinite constant matrices and R is an 
m m×  real symmetric positive definite constant matrix. Assume that the controls are 
unbounded and that x t

f( ) is free and t
f
 fixed.

Solution. This is known as a linear quadratic regulator problem. The task is to 
drive the system to a constant final state x t

f( ) starting from a specified initial state. 
By an appropriate coordinate transformation, the task is to design a control input 
u* t( ) so as to bring the system to a zero state at t

f
. The Hamiltonian is:

 H t t t t t t t t t tT T Tx u p x Qx u Ru p Ax( ) ( ) ( )( ) = ( ) ( ) + ( ) ( )  + ( ) ( ), , ,
1

2
++ ( ) Bu t  

(1.89)

According to Equation (1.88), the optimality conditions are:

 
x

x u p
p

Ax Bu*
* * *

* *t
H t t t t

t t( ) =
∂ ( ) ( ) ( )( )

∂
= ( ) + ( ), , ,

 
(1.90a)
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Qx A p*
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* *t
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t tT( ) = −
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∂
= − ( ) + ( ){ }, , ,

 
(1.90b)

and

 
∂ ( ) ( ) ( )( )

∂
= = ( ) + ( )H t t t t

t tT
x u p

u
Ru B p

* * *
* *

, ,
0  (1.90c)

Equation (1.79) gives the BC:

 p Sx* t t
f f( ) = ( ) (1.91)

From Equation (1.90c),

 u R B p* *t tT( ) = − ( )−1  (1.92)

We assume that the costate vector p* t( ) is linearly related to x t* ( ) as:

 p K x* *t t t( ) = ( ) ( ) (1.93)

K t( ) is an n n×  matrix. With this assumption, Equations (1.90a- b), (1.92) and 
(1.93) yield:
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K x K Ax K BR B K x Qx A K x* * * * *t t t t t t t t tT T( ) ( ) + ( ) ( ) − ( ) ( ) ( ) = − ( ) − ( )−1 tt( ) 

 ⇒ ( ) = − − ( ) − ( ) + ( ) ( )−
K Q A K K A K BR B Kt t t t tT T1

 (1.94)

From Equation (1.91),

 K St
f( ) =  (1.95)

The matrix DE (1.94) is known as the Riccati equation and consists of n2 non-
linear DEs. Since K T t( )  also satisfies the Riccati equation, K t( ) is a symmetric 
matrix and it suffices to solve the n n +( )1 2/  DEs. Using the boundary con-
dition in Equation (1.95), the Riccati equation can be solved backwards from 
t

f
 to t

0
. Once K t( ) –  the Riccati matrix, is determined, we obtain the control 

u R B p R B K x G x* * *t t t t t tT T( ) = − ( ) = − ( ) ( ) = ( ) ( )− −1 1  where G t( ) is the feedback 
gain matrix (Figure 1.29).

Consider a specific example with n = 4 and m = 1 and with the state equation 
given by:

 x x Bt A u t( ) = + ( ) (1.96)

where x t x t x t x t x t
T( ) = ( ) ( ) ( ) ( ){ }1 2 3 4

, , ,  and

 A =

0 0 1 0

0 0 0 1

100 100 0 0

100 200 0

−
−

,

0

0

0

0

1



















=



















B  (1.97)

FIGURE 1.29 Optimal control; linear regulator problem and feedback control.
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Let Q I= , a 4 4×  identity matrix and R = 1.The Hamiltonian is:

 H t u t t t t u t t u tT Tx p x Qx t p Ax B( ) ( ) ( )( ) = ( ) ( ) + ( )  + ( ) + ( ), , ,
1

2
2  (1.98)

and the Riccati matrix K t( ) in Equation (1.94) need to be solved with the boundary 
condition K St

f( ) = = 0  to arrive at the optimal control:

 u t R t t t t tT T* ( ) = − ( ) = − ( ) ( ) = − ( ) ( )−1B p B K x G x* * *  (1.99)

An elegant method (Meirovitch 1990) to solve for K t( ) is by a matrix transformation:

 K t t t( ) = ( ) ( )−E F 1  (1.100)

E  F R, ∈ ×n n. The transformation helps in converting the set of n2  nonlinear ODEs in 
Equation (1.94) to a set of 2 2n  linear ODEs:

 




E
F

t

t

Q

BR A

E tT

T

( )
( )












=

− −
−











(
−

A
B1

))
( )











F t
 (1.101)

The advantage of having linear ODES to be solved often outweighs the extra effort 
needed to handle twice the number of equations. In the present example, A B Q, and  
are constant matrices. In general, these may be time varying matrices. The BC in 
Equation (1.95) may be taken as K St t t

f f f( ) = = ( ) ( )−E F 1  from which the BCs for 
 t( ) and  t( ) may be assumed as:

 E Ft t
f f( ) = =S, I( )  (1.102)

Equation (1.101) is solved backwards with t
f

= 50 .sec  and with the help of the 
BCs in the last equation, to obtain the Riccati matrix K t( ). With the feedback 
gain matrix G B Kt tT( ) = ( ), the system equation to be solved under optimal con-
trol u t t t* ( ) = − ( ) ( )G x*  is:

 x A BG x** t t( ) = −[ ] ( ) (1.103)

Figure 1.30 shows the solution to Equation (1.103) under the initial conditions 
xi

* t i
0

0 1 1 2 3 4( ) = =. , , , , . The system dynamics with and without optimal control are 
shown in the figure.

■

The continuous- time optimal control problem may also be solved via the Bellman 
principle of optimality (Bellman and Kalaba 1964). The principle leads to the 
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FIGURE 1.30a–b LQR problem; system state optimal trajectories along with the 
uncontrolled ones: (a) x t

1 ( ), (b) x t
2 ( ), (c) x t

3 ( ) and (d) x t
4 ( ), light black –  uncontrolled, dark 

black –  controlled.

 

 



63Optimization Methods

FIGURE 1.30c–d  (Continued)
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well- known Hamilton- Jacobi- Bellman (HJB) equation which is a PDE; see Appendix 
1 for some details. For an LQR problem, the solution to the control variable u t( ) in 
terms of x t( ) leads to the same Riccati Equation (1.94) by the Bellman principle of 
optimality.

CONCLUDING REMARKS

In this introductory chapter, we have discussed the role of optimization in various 
fields whilst taking a bird’s eye view of how to pose these problems and derive 
appropriate optimality conditions. The reader may thus have had a feel of the all- 
encompassing presence of optimization problems in applied science and engineering. 
The interesting origins of optimization theory are discussed particularly with ref-
erence to the famous traveling salesman and brachistochrone problems. Solutions 
to the traveling salesman problem are illustrated, first by a simple heuristic (brute 
force) method and then using the Metropolis algorithm. The close link the Metropolis 
algorithm has with probability theory is highlighted. In this context, definitions of 
local and global optima are also provided. It is often the local optimum rather than 
the global that may be possible to realize in complex optimization problems. The 
necessary and sufficient optimality conditions for both unconstrained and constrained 
optimization problems are discussed. An intuitive understanding of the optimality 
conditions is provided from geometric considerations too.

As we have noted, the brachistochrone problem and its solution date back to 
the late 17th century that marked the emergence of ‘calculus of variations’, which 
is indeed the basic theory of functional optimization. This subsequently paved the 
way to solutions to myriad other problems in science and engineering, such as 
optimal control and systems analysis using the finite element method. In order to 
motivate our readership, a brief account of these applications is also presented in 
the chapter.

Given the wide and cross- disciplinary interest, many optimization schemes –  some 
though not all of which are rigorously grounded, had emerged in the last century. 
Owing to a sound mathematical basis, classical methods such as the ones based 
on derivatives (gradient and penalty techniques) and others that are derivative- free 
(pattern search and simplex methods, for instance) will be of special interest in this 
introductory text. Chapter 2 is devoted to derivative- based methods.

NOTATIONS –  CHAPTER 1

A area of cross- section
A coefficient matrix in the state space equation (Equation 1.88a)
 differential operator (Equation 1.42)
B coefficient matrix in the state space equation (Equation 1.88a)


r
x

0( ) open ball with centre x
0
 and radius r > 0 in n

c speed of light in vacuum
c c

1 2
,  real constants
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C  real constant
C  covariance matrix
d  direction vector (Equation 1.46)
d x y,( ) distance function (metric) between points x and y
 feasible space
E  Young’s modulus of elasticity
E  vector of edges in a complete graph (Figure 1.3)
 t( ) time dependent matrix in Equation (1.100)
E

ij
 edges in the graph of Figure 1.3

f x( ) objective function
f x t

A
,( ) axial force density per unit length (Figure 1.19)

F cone of descent directions
F i

i,
, ,= …0 1  Fibonacci numbers

 t( ) time dependent matrix in Equation (1.100)
g acceleration gravity (Equation 1.12)
g x g x( ) ( ),  inequality constraints
G = ( )V E,  complete graph (V - vector of nodes and E - vector 

of sides)
G cone of feasibility directions for the inequality 

constraints
h x( ) an arbitrary function (Equation 1.13)
h x( ) vector of equality constraints
h tx,( ) a scalar function : n R× →+  in Equation (1.71a)
H set of tangent directions of equality constraints
 Hilbert space
H x( ) Hessian matrix
H t t t tx u p( ) ( ) ( )( ), , ,  Hamiltonian in Equation (1.80)
I y( ) Action integral
J performance index in optimal control problem
K

B
 Boltzmann constant

 .,.( ) bilinear form (Equation 1.43)
K �  stiffness matrix (symmetric) –  Equation (1.45)
K t( ) time dependent symmetric matrix in Riccati 

Equation (1.94)
 .( ) Linear form (Equation 1.43)
L Lagrangian
L tx u, ,( ) a scalar function:   n m R× × →+  in Equation 

(1.71a)
ւ Lagrangian density
m mass density
 .,.( ) bilinear form (Equation 1.43)
M  mass matrix (symmetric) (Equation 1.45)
N  an integer
N

d
 number of nodes in a finite element discretization
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p t p t i n
i( ) = ( ) = …{ }, , , ,1 2   time- varying Lagrangian multipliers

 in optimal control problem
 = = …

j d
j N, , , ,1 2  external load at the nodes (Equation 1.45)

q t
j ( ) generalized coordinates (Equation 1.41)

Q symmetric positive semidefinite constant matrix
R symmetric positive definite constant matrix
R A y y f( ) = ( ) −  residual in Equation (1.42)
S symmetric positive semidefinite constant matrix
t

f
 final time

T .( ) Minimum time of descent (Equation 1.12)
T kinetic energy of a system
  tangent subspace of the equality and active inequality 

constraints
u t u t( ) ( ),  control functions
 x( ) utility (objective) function
U x

j ( ) test functions (Equation 1.42)
v

1
 and v

2
 speeds of light in different media

ϑ  refractive index of a medium
V potential energy of a system
V

i
 cities in the graph of Figure 1.3

V  vector of nodes in a complete graph (Figure 1.3)
w

ij
 weights (Equation 1.8)

W
nc

 work done by the non- conservative force (Equation 1.33)
x vector of design variables
x x

L U
,  lower and upper bounds for design variables

x̂k trial solution (in TSP)
y x( ) path in Figure 1.5
Y xj ( ) trial functions (Equation 1.41)
Zβ normalization constant (Equation 1.10)
δI first variation of the action integral I in Equations 

(1.13) and (1.35)
δy x t,( ) virtual displacement over the true path ,y x t( )
Ξ  space of design variables

θ θ
1 2
,  angles of incidence and refraction (Equation 1.24)

λ = = …λ
i

i, , ,1 2  and
µ = = …µ

i
i

,
, , ,1 2  Lagrangian multipliers

Ψ x( ) neighborhood of x, and = ∈ ∩ ( ) ≤{ }y y x y| , d ε
∇ ( )f x  gradient of the objective function with respect to x
∇ ( )g x  gradient vector of (inequality) constraint functions
 with respect to x
∇ ( )h x  gradient vector of (equality) constraint functions with 

respect to �x
∇X L gradient of the Lagrangian L with respect to X
∇»L gradient of the Lagrangian L with respect to λ
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 ∇µ L  gradient of the Lagrangian L with respect to µ
∇ ( )2L x  Hessian of the Lagrangian L with respect x
 domain of interest (for FE semi- discretization)


i e
i N{ } = …, , , ,1 2  non- overlapping elements in FE mesh

EXERCISES –  CHAPTER 1

1. Find the optimum for the one- dimensional (unconstrained) optimization 
problem: minimize f x x x x( ) = − + +4 310 20 2 (Figure E1.1a) by using any of 
the conventional methods that reduce the interval of uncertainty containing the 
optimum point.

Notes: The popular methods that are used for the interval bracketing (Belegundu and 
Chandrupatla 1999) are (i) golden section method, (ii) Fibonacci search, (iii) quad-
ratic fit and (iv) cubic fit.

Here a brief description of the golden section method as applicable to a minimiza-
tion problem is provided below. Suppose that the initial interval that contains the  
optimum point x* is given as a b

0 0
,( ) with b a l l

0 0 0
− = = . In golden search method,  

two intermediate points a
1
 and b

1
 are located within the given interval equidistant  

from the end points according to the section rule a l b l
1 0 1 0

1 1= −( ) = <α α αand with   
as shown in Figure E1.1b.

FIGURE E1.1 Golden section method: (a) unimodal function f x( ), (b) initial iteration and 
(c) next iteration if f a f b

1 1( ) < ( ), and (d) next iteration if f a f b
1 1( ) > ( ).
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Case (A). If f a f b
1 1( ) < ( ), the interval b b

0 1
,( ) is rejected (Figure E1.1c). The 

bracketed interval is thus reduced to a b
0 1
,( ) whose length is l l

1
= α . We proceed to 

the next iteration.
Case (B). On the other hand, if f a f b

1 1( ) > ( ), the interval a a
0 1
,( ) is rejected 

(Figure E1.1d) and the reduced interval is a b
1 0
,( ) whose length is again l l

1
= α . We 

proceed to the next iteration.
Suppose that case (A) holds. With a

1
 already fixed, a new point b

2
 is to be 

located such that b b a a l
1 2 1 0

1− = − = −( )α . Thus b a l l l
2 0 1

1 2 1− = − −( ) = −( )α α . 
But by the section rule, b a l l

2 0 1
1 1− = −( ) = −( )α α α . This leads to the condition 

2 1 1α α α−( ) = −( )l l. To satisfy this condition, we must have α =
− ±1 5

2
. Taking the 

positive value, we have α = 0 618. . This parameter α is known as the golden section 
ratio. If iterations are continued for ‘n’ times, one has the final reduced interval 
bracketing the optimum as 0 618.( )n

l . Suppose that it is required to have the final 
interval to be l l  0

, the number of iterations can be ascertained in advance from the 
equation 0 618.( ) =n

l l .
The other alternative in case (B) is shown in Figure E1.1(d). In this case also, with 

b
1
 already fixed, a new point b

2
 is to be located such that b a b b l

2 1 0 1
1− = − = −( )α . 

The optimum point may be obtained as 7.4 at the end of 15 iterations with the speci-
fied l

e
= 0 01. . If the bisection method (with α = 0 5.  and only one intermediate point) 

is used, the optimum point is ≅ 7 625. .

2. Find the minimum of the function given in Exercise 1 by reducing the interval 
bracketing the optimum using Fibonacci method.

Notes: In golden section method (refer to the notes under the Exercise 1) the section 
ratio α is constant. In the Fibonacci method, it varies with iteration and may bracket 
the optimum point with fewer iterations. Here one uses the series of Fibonacci 
numbers F i

i
, , ,= …1 2  some of which are given in the table below.

i 0 1 2 3 4 5 6 7 8

Fibonacci number, F
i

1 1 2 3 5 8 13 21 34

The sequence of Fibonacci numbers are generated as:

 F F F F F i
i i i0 1 1 2

1 1 2 3= = = + = …− −, , , .,and  (E1.1)

Suppose that n is number of iterations (to be decided by the required accuracy). With 
l
0

 being the given interval in which the optimum point is known to exist, let the 
starting interval for the first iteration be l l

1 0
=  and last interval l

n
 for the last iter-

ation. We assume that the interval at any iteration follows the following reduction 
procedure.

 l l l l l l l l l l l
n n n n n1 2 3 2 3 4 2 1 1

2= + = + = + =− − −, , , and  (E1.2)

 

 

 



69Optimization Methods

We can express the intermediate intervals in terms of last interval l
n
 as:

 l l l l l l l l
n n n n n n n n− − − −= = = =

1 2 3 4
2 3 5 8, , , , (E1.3)

It is recognized that the coefficients are Fibonacci numbers, i.e., l F l
n n− =

1 2
, l F l

n n− =
2 3

, 
l F l
n n− =

3 4
, l F l

n n− =
4 5

,… and in general l F l
n j j n− +=

1
, j n= … −1 2 1, , ., . Thus for j n= −1,   

l F l
n n1

= . This suggests an iteration procedure based on the steps listed below.

Step 1. Fix the total number of iterations n based on the accuracy specified in terms 

of the final reduced interval length. That is, with a given l
n
, we have F

l

ln
n

= 1  and 

can fix n knowing F
n
. For example, if 

l

l
n

1 20= , then F
n

= 20 giving n ≈ 7 (from 

the table of Fibonacci numbers).

Step 2. Comparing the function values at a
1
 and b

1
 (Figure E1.2), we can eliminate 

one of the intervals –  either a a
0 1
,( ) or b b

0 1
,( ) -  as discussed in the golden section 

method (see the notes under the Exercise 2) thus leading to a reduction in the 
interval from l

1
 to l a b

2 0 1
= ( ),  or a b

1 0
,( ).

Step 3. Repeating the same procedure of interval reduction, we finally arrive at the 
optimum point bracketed within the interval l

n
.

For the given objective function in this exercise, the optimum point may be obtained 
approximately as 7.28 with specified l

n
= 0 01.  (which fixes n = 16 from the table of 

Fibanocci numbers).

3. For the one- dimensional (unconstrained) optimization problem in Exercise 1, 
find the minimum of the objective function f x x x x( ) = − + +4 310 20 2 by using the   

optimality condition 
df

dx
= 0 and check that it is indeed the minimum from the nature 

of the Hessian matrix.

(Answer: x* . )= 7 4

FIGURE E1.2 Fibanocci method, interval reduction –  first iteration.
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4. Discuss the polynomial based methods –  quadratic fit and cubic fit –  of finding 
the local minimum of one- dimensional unconstrained problems. Compare the two 

methods for the function f x x
x

( ) = +π 2
2

1000
.

5. Consider the optimization problem defined by:

 maximize f x yx( ) = +50 30  (E1.4a)

s. t.

 
h x y h x y h

x h x h
1 2 3

4 5

5 30 0 20 0
5 0 0

x x x
x x

( ) = + − ≤ ( ) = + − ≤ ( )
= − ≤ ( ) = >

, ,
, and (( ) = >y 0

 (E1.4b)

Here x = ( )x y
T

, . This is a linear programming (LP) problem with the objective function 
and the constraints being linear. Find the feasible region and find the optimum point 
by graphical construction.

Hint: The feasible region is shown in Figure E1.3. The optimum point is graphically 
obtained as x* . , .= ( )2 5 17 5

T
 -  the graphical solution is also portrayed below.

FIGURE E1.3 Maximization problem in Exercise 5, straight lines AB, CD and EF represent 
the limiting constraints, feasible region –  shown in the first quadrant (hatched in the figure).
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6. Check the necessary and sufficiency condition for the optimization problem:

 Minimize f x xx( ) = +
1 2 

 s t. . x x
1
2

2
2 2+ =  (E1.5a,b)

7. Given a set of observations z i N
i
, , , ,= …1 2  in a random experiment, it is required to 

fit a probability density function (pdf ). One assumes that each z
i
 is a realization 

sampled from pdfs of independent and identical random variables Z i N
i
, , , ,= …1 2  

(see Appendix 1 for details on random variables and their characterization). Assume 

that the pdf  to be fitted is a normal pdf i.e.  with

the parameters m and σ2 unknown. One method of solving for the parameters is by 
maximum likelihood estimation (MLE). In this method, one forms a maximum log- 
likelihood function given by:

   (E1.6)

Here ̧ = ( )m
T

, σ2 . The objective of the MLE is to find an estimate for θ  that maximizes 
l θ; z( )  with respect to θ . The estimate is meant to ensure that the observed data z  is 
most likely to have been realized from the assumed pdf. Here, solve for the optimum 
estimate of the parameters θ  and check the sufficient conditions for optimality.

[Hint: Minimize the negative log- likelihood function − ( )l zθ;  and get the estimate
 

by solving the optimality conditions: 
∂
∂

=
l

m
0 and 

∂
∂

=
l

σ2
0 yielding the familiar 

optimum estimates: m
N

z m
i

N

i
= −( )

=
∑1

1

 which is the mean value of the observations 

and σ2

1

21
= −( )

=
∑N

z m
i

N

i
 which is the variance.]

8. In matrix eigenvalue analysis, minimization of Rayleigh quotient (Clough and 
Penzien 1982) yields the lowest eigenvector and the associated eigenvalue. It is a 
constrained optimization problem:

 min imize x AxT
 

 s t. . x xT = 1 (E1.7a,b)

Assume that A is a 2x2 matrix, given by 
2 3

3 4









 . The constraint implies orthog-

onality of the eigenvectors. Solve the problem by Lagrange multiplier method. 
[Solution: x* . , .= −( )0 8112 0 5847

T
 and the corresponding eigenvalue =  - 0.1623]
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NOTES

1 Readers may be familiar with basic probability theory (Ang and Tang 1984, Papoulis 
1991, Roy and Rao 2017). However, some elements of the probability theory are 
provided in Appendix 1. See Probabilistic Route, p. 16.

2 An evolute of a curve is the locus of the centres of its curvatures. The curvature κ  is 

defined as:κ φ
=

d

ds
 where φ is the tangent angle (with tan

dy

dx
φ = ) and s is the arc length 

(with ds dx dy= +2 2 ). See Evolute, p. 27.
3 A conservative system is one wherein the set of forces inducing motion are conservative. 

We now give the definition of a conservative force.
Consider the work done by a force F  in moving along a path in a domain Ω : it is given 
by the path integral of the so called differential work d̃W, i.e.:

Work done = =∫ ∫c c
d W d F x.

Suppose that F = −∇W ; then the differential d̃W = dW is exact. Here the work 
done is independent of the path and depends only on the end points. Thus, a conser-
vative force is derivable from the gradient of a work potential function W  such that 

F W
W

x

W

y

W

z

T

= ∇ =
∂
∂

∂
∂

∂
∂







, , . Since curl of a gradient is zero, for a conservative force 

F�  it is also true that ∇ × =F 0. Also, if curve c is closed, the path integral of the exact 
work differential reduces to zero irrespective of the path. If đW is not exact, it is referred 
to as an inexact differential. See Conservative system, p. 31.

4 Inner product of two functions u  and v  is given by u v u v d, = ( ) ( )∫


x x x . See Inner 
product, p. 35.

5 norm u  of a scalar- valued function u x( ) over a domain :

u u u u d u L= ( ) = ∀ ∈ ( )∫, ,




2 2x  where L2
( ) is the familiar notation for the set of 

all square integrable functions v x( ), i.e 


∫ ( ) < ∞v dx x2
. See Norm, p. 35.

6 A basis B  for a polynomial vector space P p p p
n

= …{ }1 2
, , ,  is a set of polynomials 

that spans the space and is linearly independent. p
n
 is a polynomial of degree n.   

span B P( ) =  means that if B v v v
n

= …{ }1 2
, , , , then every vector p in P  can be 

uniquely expressed in the form:

p v
j

n

j j
=

=
∑

1

α , α
j
∈

The simplest possible basis for P  is the monomial basis {1 2 3, , , , ,x x x xn… }. See 
Polynomial basis set, p. 37.
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2 Classical Derivative- 
based Optimization 
Techniques

2.1  INTRODUCTION

If we were to track how optimization methods developed and matured, we would typ-
ically come across a rag tag collection of techniques that evolved over the last century, 
starting with the simple and less robust ad hoc methods, e.g. the brute force search 
methods, to the more rigorously founded derivative- based and direct search methods. 
Brute force methods (Section 1.3.1, Chapter 1) apply a trial- and- test scheme to all 
possible candidates at each iteration. The obvious disadvantage is that the search 
space may be prohibitively large even for an apparently simple problem as illustrated 
in Chapter 1 –  see our discussion on the travelling salesman problem. They offer 
freedom from computing derivatives and are thus easy to implement, perhaps at the 
cost of slower convergence as illustrated in Chapter 1. However, with the availability 
of faster computing machines that have encouraged development of algorithms to 
numerically evaluate functional derivatives, derivative- based (gradient search) 
methods have gained prominence in all fields –  science, engineering and finance. 
The steepest descent (Cauchy 1847, Curry 1944), conjugate gradient (Hestenes and 
Stiefel 1952, Fletcher and Reeves 1964, Fletcher 1976), Newton and quasi- Newton 
methods (Davidon 1959, Broyden 1967) belong to this category. These methods are 
primarily meant for solving unconstrained optimization problems. Note that most 
constrained optimization problems are conveniently solved by transforming them to 
unconstrained ones. This is illustrated in Section 1.6, Chapter 1, whilst describing the 
method of Lagrange multipliers. The optimality conditions for both unconstrained and 
constrained optimization problems are also described in Chapter 1. Development of 
the derivative- based methods and their variants, such as the BFGS method (Broyden 
1970, Fletcher 1970, Goldfarb 1970, Shanno 1970) and DFP (Davidon 1959, Fletcher 
and Powell 1963), is mostly guided by the requirement to improve the search direc-
tion using the function derivatives so as to achieve a better convergence rate. The 
present chapter focusses on describing a few such optimization techniques –  mainly 
derivative- based.

2.2  BASIC GRADIENT METHODS

It has been shown in Chapter 1 (Section 1.6) that if f nx( ) →:   is the scalar 
objective function, −∇ ( )f x  is the direction of steepest descent and ∇ ( )f x  that of 
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steepest ascent. Gradient based methods utilize this information to iteratively reach 
the optimum point x* .

2.2.1  steepest descent method (caUchy 1847)

With x
0

 as the starting point, the steepest descent method uses the following updating 
procedure at the kth  iteration:

 x x x
k k k k

s f+ = − ∇ ( )1
 (2.1)

s
k

∈ +  is the step size in the direction d x
k

f= −∇ ( )k . The step size is conveniently 

found by minimizing f x( )  in the direction −∇ ( )f xk , i.e.:

 s f s f h s
k s k k s k

k k

: = − ∇ ( )( ) = ( )
∈

arg min ( argmin


x x  (2.2)

With h s f s f
k k( ) = − ∇ ( )( )x xk , Equation (2.2) constitutes a line search –  a one 

dimensional optimization of h s
k( ) . Any interval bracketing technique such as golden 

section, Fibonacci search (see Exercise 2 in Chapter 1) or an interpolation technique 
like quadratic or cubic fit (Belegundu and Chandrupatla 1999) may be employed 
for the purpose. The steepest descent method, though not computationally efficient, 
offers guaranteed convergence for a class of functions (Bertsekas 1996, Nocedal and 
Wright 2006).

For a function f x( ) , if the gradient ∇ ( )f x  is M - Lipschitz continuous* i.e.:

 ∇ ( ) − ∇ ( ) ≤ −( ) ≥f f M My x y x , 0  (2.3)

then for any x y, ∈n ,

 f f f
MTy x x y x y x( ) ≤ ( ) + ∇ ( ) −( ) + −( )
2

2
 (2.4)

* M- Lipschitz continuous function
Consider a function g nx( ) →:  . It is Lipschitz continuous with Lipschitz constant M ≥ 0  if 
for any x y, ∈n

 g My x y x( ) ( ) ( )− ≤ −g  (i)

 By first- order Taylor approximation, g g g
Ty x z y x( ) ≅ ( ) + ∇ ( ) −( ) , for a z� lying on the straight line 

with x  and y� as boundary points. If ∇ ( ) ≤g Mz  ( M ≥ 0) , one gets the inequality in Equation (i).
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Proof of the inequality in the last equation is provided in the footnote below.†

.  denotes the Euclidean or L2  norm, i.e. y x y x y x−( ) = −( ) −( )T
. The 

quadratic upper bound in Equation (2.4) amounts to a bound on the value of f x( )  at 

the end of the kth  iteration. Thus:

 f f f
M

k k k

T

k k k k
x x x x x x x+ + +( ) ≤ ( ) + ∇ ( ) −( ) + −( )1 1 1

2

2
 

⇒ ( ) ≤ ( ) − ∇ ( ) ∇ ( ) + ∇ ( )+f f s f f
Ms

f
k k k k

T

k
k

k
x x x x x

1

2 2

2

 ⇒ ( ) ≤ ( ) − −






∇ ( )+f f s
Ms

f
k k k

k
k

x x x
1

2
1

2
 (2.5a)

With a step size small enough, say s
Mk

<
1

, one has:

 1
2

1

2 21

2
−







≥ ( ) ≤ ( ) − ∇ ( )+

Ms
f f

s
fk

k k
k

k
and x x x  (2.5b)

Since 
s

fk

2

2
∇ ( )xk  is always positive (unless ∇ ( ) =f xk 0) , it implies that f x( )  

decreases with iterations until the optimum is reached, thus ensuring the convergence 
of the descent method when the step size is small.

Even if f  is non- quadratic, the iterative process shows local progress, provided 
s

k
 is sufficiently small. It is helpful to know that the convergence rate of the gradient 

method is related to the condition number of the Hessian matrix H x= ∇ ( )2 f  which 
is symmetric (Bertsekas 1996). The explanation below clarifies the point.

† Proof of the inequality in Equation (2.4)
Since, by assumption, ∇ ( )f x  is M - Lipschitz continuous, ∇ ( ) ≤2 f Mx I  and for ∀x y z, , , one has:

 y x z y x y x−( ) ∇ ( ) −( ) ≤ −( )T
f M2

2
 (i)

Now, ∀x y,  and z x y∈[ ], , we have the quadratic approximation (by Taylor’s expansion):

f f f f
T Ty x x y x y x z y x( ) = ( ) + ∇ ( ) −( ) + −( ) ∇ ( ) −( )1

2
2

 ≤ ( ) + ∇ ( ) −( ) + −( )f f M
Tx x y x y x1

2

2
 (ii)

which proves the inequality.
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Refer to the definition of a convex function in Chapter 1 (Section 1.2). For 
a strictly convex function, H�  is positive definite with all its eigenvalues real and 
positive. Condition number of H�  is the ratio of the highest to the lowest eigen-
value. A strongly convex function is also characterized by a lower bound (Boyd and 
Vandenberghe 2004), i.e.:

 f f f
m

m
Ty x x y x y x( ) ≥ ( ) + ∇ ( ) −( ) + −( ) ≥

2
0

2
,  (2.6)

From these upper and lower bounds in Equations (2.5) and (2.6) respectively, it 
follows that:

 
m

f f f
MT

2 2

2 2
y x y x x y x y x−( ) ≤ ( ) − ( ) + ∇ ( ) −( )( ) ≤ −( )  (2.7)

(2.7) indicates that if f x( ) is twice differentiable,

 
m MT

2 2

2 2
y x y x H z y x y x−( ) ≤ −( ) ( ) −( ) ≤ −( )  (2.8)

for some z  on the line between x  and y . From the definition of the eigen-
value problem for H� in the form H Φ Φ= λ  where λ is an eigenvalue and Φ the 
corresponding eigenvector, (2.8) shows that all the eigenvalues of H� lie between m  
and M , i.e:

 ⇒ ≤
( )

≤m M
TΦ Φ

Φ

H z
2  (2.9)

Here, 
M

m
 stands for the condition number of the matrix H . If the condition number 

is close to one, the matrix is well- behaved and f x( )  is of low convexity. Otherwise, 
H�  is ill- conditioned and f x( )  is of strong convexity with the effect that the gradient 
method may have low convergence rate. For the quadratic function in Figure 2.1a, 
we observe that the condition number is unity (the two eigenvalues of H  are the 
same) and the optimum is reached in a single step. The condition number is three for 
the function in Figure 2.1b and the gradient method took ten iterations to reach the 
optimum.
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FIGURE 2.1 Convergence of steepest descent method for quadratic functions; x
0
 –  starting 

point, x* –  optimum point: (a) f x x x x
1 2 1

2

2

2
3 5,( ) = −( ) + −( ) –  optimum realized in one iteration 

and (b) f x x x x x x
1 2 1

2

2

2

1 2
3 5,( ) = −( ) + −( ) + –  optimum realized in ten iterations.
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2.2.2  conjUGate Gradient method

The conjugate gradient (CG) method (Hestenes and Stiefel 1952,‡ Fletcher and 
Powell 1963) achieves convergence of an n - dimensional quadratic function exactly 
in n  steps (Nocedal and Wright 2006). To show this, consider the function as:

 f cT Tx x Qx b x( ) = + +
1

2
 (2.10)

Q ∈ ×n n  is a symmetric matrix. b ∈n  and c ∈.  The gradient to f x( )  is:

 ∇ ( ) = +f x Qx b  (2.11)

Denote this gradient vector at the kth  iteration by g Qx
k

= +k .b  CG method envisages 
availability of n  directions d

i
i n, , , ,= … −0 1 1 which are Q - conjugate, i.e:

 d Qd
i
T

j
i j= ≠0,  (2.12)

With x
0

 as the starting vector and x*  the optimum with ∇ ( ) = + =f x Qx b* * 0 , one 
can express the vector x x* −

0
 as a linear combination of the conjugate directions:

 x x d* − =
=

−

∑0
0

1

i

n

i i
α  (2.13)

Pre- multiplying both sides of the last equation by d Qi
T , and utilizing the conjugacy 

property in Equation (2.12), we obtain the coefficients α
i
 as:

 α
i

i
T

i
T

i

=
−( )d Q x x

d Qd

*
0  (2.14)

Similarly, during the iteration process, if x
k

 is update at k
th−( )1  iteration with 

known step sizes s i k
i
, , , ,= … −1 2 1 , we also have:

 x x d
k

i

k

i i
s− =

=

−

∑0
0

1

 

 ⇒ −( ) =d Q x x
k
T

k 0
0  (2.15)

‡ Hestenes and Stiefel [1952]

If we consider ∇ ( ) = −f x Ax b,  optimization of the quadratic function f cx x Ax b x( ) = − +1
2

T T  is 

equivalent to solving Ax = .b  Hestenes and Stiefel in their seminal paper [1952] first introduced the 
iterative CG as an effective method superior to Gaussian elimination for solving a system of n  simul-
taneous equations when n  is large.
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Therefore,

 d Q x x d Q x x x x* *
k
T

k
T

k k
−( ) = − + −( )0 0

 

 = −( )d Q x x*
k
T

k
 

 = − −( ) + =d b Qx Qx b*
k
T

k
( )since 0  

 = − ∇ ( ) ∇ ( ) = +( )d x x Qx
k
T

k k k
f fsince b  

 ⇒ = −
∇ ( ) ( )α

k

k
T

k

k
T

k

fd x
d Qd

  from Equation 2.14  (2.16)

The RHS in the last step of Equation (2.16) is in fact the optimum step size s
k

 to 
get the update x

k+1
. This is since (i) x x d

k k k k
s+ = +

1
 and (ii) one finds s

k
 by line 

search by minimizing f x( )  in the direction d
k
 (see Equations 2.1 and 2.2). This 

proves the assertion that CG converges in exactly n  steps for a quadratic function. It 
now remains to find the conjugate directions d

k
k, , ,= …0 1  along with the step sizes 

s k
k
, , ,= …0 1  as iterations progress.

Zeroth iteration
Suppose that we choose, at the zeroth iteration, an arbitrary direction d

0
 and proceed 

with a step size s
0

 to obtain:

 x x d
1 0 0 0

= + s  (2.17)

s
0

 is obtained from Equation (2.16) as:

 ⇒ = − ∇ ( ) =( )s f
T

T0
0 0

0 0
0 0

d g
d Qd

x gsin ce  (2.18a)

At the start of the iterations, d
0
 is often taken as g

0
 and hence s

0
 is:

 s
T

T0
0 0

0 0

= −
g g

g Qg
 (2.18b)

Iteration k= 1

 g x Qx b
1 1 1

= ∇ ( ) = +f  

 = +( ) + = +Q x d b g Qd
0 0 0 0 0 0

s s  (2.19)
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Now, define:

 x x d
2 1 1 1

= + s  (2.20)

where s
1
 is obtained as follows:

 s f
T

T

T

T1
1 1

1 1

1 1

1 1
1 1

= − = − ∇ ( ) =( )d g
d Qd

g d
d Qd

x g  sin ce  (2.21)

The unknown d
1
 in the last equation is assumed as:

 d g d
1 1 0 0

= − + β  (2.22)

β
0
 is a scalar and is obtained by seeking d

1
 to be Q - conjugate to d

0
, i.e:

 d Qd
1 0

0T =  

 ⇒ − +( ) =g d Qd
1 0 0 0

0β
T

 

 ⇒ = =β
0

1 0

0 0

0 1

0 0

g Qd
d Qd

d Qg
d Qd

T

T

T

T
 (2.23)

One observation is that g g
1 0

0T = . This is true since:

g g g Qd g
1 0 0 0 0 0
T

T
s= +( ) ( )from Equation 2.19  

= + = + =( )g g d Qd g g g Qg d g
0 0 0 0 0 0 0 0 0 0 0 0
T T T Ts s sin ce 

 = − =g g
g g

g Qg
g Qg

0 0
0 0

0 0
0 0 0

0T
T

T
T ssubstituting for from Equatio    nn 2.18b ( )  (2.24)

Another observation is that g d
1 0

0T = , since d g
0 0

= .
The same procedure may be repeated for the rest of the iterations (Figure 2.2). 

However, in order to make certain general observations on the CG method, it is neces-
sary to go through the steps for k = 2  also.
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Iteration k= 2

The gradient and the update follow from Equations (2.19) and (2.20).

 g x Qx b g Qd
2 2 2 1 1 1

= ∇ ( ) = + = +f s  (2.25a)

 x x d
3 2 2 2

= + s  (2.25b)

The step size s
2

 is given by:

 s
T

T

T

T2
2 2

2 2

2 2

2 2

= − = − ( )d g
d Qd

g d
d Qd

see Equation 2.21   (2.25c)

As in the previous iteration, the new direction d �2
 is assumed to be:

 d g d
2 2 1 1

= − + β  (2.25d)

β
1
 is a scalar constant and is obtained by seeking d

2
 to be Q - conjugate to d

1
, i.e.:

 d Qd
2 1

0T =  (2.25e)

FIGURE 2.2 Conjugate gradient method, descent directions −∇ ( )f x
0

and −∇ ( )f x
1

,  conjugate 
directions d

0
and d

1
at zeroth and first iterations respectively.
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which gives:

 β
1

2 1

1 1

1 2

1 1

= = ( )g Qd
d Qd

d Qg
d Qd

T

T

T

T
   see Equation 2.23  (2.25f)

This completes the 2nd  iteration. From the above two iterations, we may con-
clude that:

 g g
2 1

0T =  

ii) g d
2

0T
i

= , i < 2  (2.26a,b)

Proof of i):

 g g g Qd g
2 1 1 1 1 1
T

T
s= +( ) ( )from Equation 2.25a   

 = +g g d Qg
1 1 1 1 1
T Ts  (2.27a)

Substituting for s
1
 from Equation (2.21) and utilizing the relationship (2.22) between 

g
1
 and d

1
 gives:

 g g g g
g g d

d Qd
d Q d d

2 1 1 1

1 1 0 0

1 1
1 1 0 0

T T

T

T
T= −

− +( )
− +( )β

β  

 = + − +( )g g g g d
1 1 1 1 0 0
T T β  

 = =( )0 0
1 0

sin ce from Equation 2.24b    g dT  (2.27b)

Proof of ii) We need to prove that g d
2 0

0T =  and g d
2 1

0T = .

g d g Qd d
2 0 1 1 1 0
T

T
s= +( )

= +g d d Qd
1 0 1 1 0
T Ts

 = =( )0 0
1 0

from Equation 2.24b and since    d QdT  (2.28a)

g d g g d
2 1 2 1 0 0
T T= − +( )β

= − +g g g d
2 1 0 2 0
T Tβ

 
= =

=
0 0

0
2 1

2 0

(g g
g d

T

T

   
      

from Equation 2.27b,
from Equation 2.228a)  (2.28b) 
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Now we are ready to proceed to the kth  iteration.

Iteration k

 g x Qx b g Qd
k k k k k k

f s= ∇ ( ) = + = +− − −1 1 1
 (2.29)

The direction d
k
 is obtained by imposing the Q - conjugacy requirement with d

k −1
. 

Similar to Equations (2.22) and (2.23) of the first iteration and (2.25d) and (2.25f) of 
the second iteration, one has:

 d g d
d Qg

d Qdk k k k k
k
T

k

k
T

k

= − + =− − −
−

− −

β β
1 1 1

1

1 1

  with  (2.30)

and the update is:

 x x d
d g

d Qd
g d

d Qdk k k k k
k
T

k

k
T

k

k
T

k

k
T

k

s s+ = + = − = −
1

, with  (2.31)

The iterative process reaches the optimum x*  in exactly n iterations for an n - dimen-
sional quadratic function (Figure 2.3).

Some salient features of CG method
The CG method is characterized by:

 i( ) =+g g
k
T

k1
0  (2.32)

 ( ) ,ii g d
k
T

i
i k+ = < +

1
0 1 (2.33)

The first characteristic implies that g
k+1

 is orthogonal to g
k

, for all k n= … −0 1 1, , ,  
and the second one states that g

k+1
 is orthogonal to d

i
 for all i k< +1 . This is shown 

to be true for k = 0 1 and  –  see Equations (2.24a,b) for k = 0  and Equations (2.26a,b) 
for k = 1  and is indeed true for k > 1.

Simplified formula for step size s
k

Equation (2.33) can be used to simplify the expression for s
k

 in Equation (2.31).

s
k

k
T

k

k
T

k

k
T

k k k

k
T

k

= − = −
− +( )− −g d

d Qd
g g d

d Qd
s

1 1  (from Equation 2.30)

 = − − −g g
d Qd

g d
d Qd

kk
T

k

k
T

k

k
T

k

k
T

k

s
1 1  

 = =( )−

g g
d Qd

g dk
T

k

k
T

k
k
T

k 1
0   from Equation 2.33  (2 .34)
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The parameter β
k −1

 in Equation (2.30) may be simplified by Equation (2.32). Noting  
that 

 g g Qd
k k k k

s= +− − −1 1 1
 (2.35a)

one has:

 Qd g g
k k k k

s− −
−

−= −( )1 1
1

1
 (2.35b)

Substituting in Equation (2.30) gives:

 β
k

k
T

k

k
T

k

k
T

k

k
T

k

k k
T

k k
s

−
−

− −

−

− −

−
−

−= = =
−

1
1

1 1

1

1 1

1
1d Qg

d Qd
g Qd

d Qd
g g g

11

1 1

( )
− −d Qd

k
T

k

 

=






−( )− −

− −

−

− −

d Qd
g g

g g g
d Qd

k
T

k

k
T

k

k
T

k k

k
T

k

1 1

1 1

1

1 1

substitutinng for from Equation 2.34    s
k −( )1

FIGURE 2.3 CG method and convergence of a quadratic function; x
0

1 2= ( ),
T is the starting 

point, x* . , .= ( )0 667 4 667
T is the optimum point; f x x x x x x

1 2 1

2

2

2

1 2
3 5, ;( ) = −( ) + −( ) + optimum 

realized in n = 2 iterations.
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 = =( )
− −

−

g g
g g

g dk
T

k

k
T

k
k
T

k
1 1

1
0since from Equation 2.32     (2.36)

CG method for a non- quadratic function

For a non- quadratic function f x( ) , the equality g Qx b
k k

= +( )  is not applicable. 

It is the gradient ∇ ( ) =f
k k

x g  to be used in Equations (2.35) and (2.36) to get the 

parameter β
k −1

 and the step size s
k

 at the kth
 iteration. Further, the matrix Q needs 

to be replaced by the Hessian matrix =  H
x

=
∂ ( )
∂ ∂













×

2 f

x x
i j n n

. However, to avoid com-

puting the H  matrix, the step size s
k  may be obtained at the kth  iteration by a line 

search –  minimizing f s
k k k

x d+( )  with respect to s
k

. Similarly, the simplified for-

mula β
k

k
−

− −

=
1

1 1

g g
g g

k
T

k

k
T

 (in Equation 2.36 which is applicable for quadratic functions) 

is suggested for non- quadratic functions also by Fletcher and Reeves (1964). Table 2.1 
gives the algorithmic steps for the CG method.

Realizing the optimum x*  for non- quadratic functions may take more than n
iterations. Figures 2.4a– b show the optimization result by CG for a non- quadratic 

TABLE 2.1
Algorithm of CG Method

Consider an n - dimensional objective function f x( )  with x ∈n .
Step 1. Initiate iterations with k = 0 . Start with initial point x

0
.  Set g x

0 0
= ∇ ( )f .

Let the first conjugate direction be d g
0 0

= − .  Fix convergence parameters

ε
g

and ε
f

for the gradient and the objective function respectively.

Start iterations; k n= … −0 1 1, , , .

Step 2. If g
k g

≤ ε ,  set the optimum x x* =
k

and stop the iterative process.

Otherwise, set x x d
k k k k

s+ = +
1

.
If k = 0,  d g

0 0
= − ,  Otherwise,

d g d
k k k k

= − + − −β
1 1

with β
k

k
T

k

k
T

k
−

− −

=
1

1 1

g g
g g

(Equation 2.36).

Step 3. Find s
k
by line search by minimizing f s

k k k
x d+( ) with respect to s

k
and locate   

x
k +1

.

If f
k f

x +( ) ≤
1

ε , set the optimum x x* = +k 1
and stop the iterative process.

Otherwise, set g x
k k

f+ += ∇ ( )1 1
.

Step 4. If k n< −1,  set k k= + 1 and return to step 2.
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FIGURE 2.4a Conjugate gradient method applied to Rosenbrock function 
, ,f x x x x x

1 2 1
2

2

2

1

2
100 1( ) = −( ) + −( )  x

0
3 10= ( ), ,

T  x* , ;= ( )1 1
T

 distribution of iterations in 
parameter space (convergence in 175 iterations).

FIGURE 2.4b Conjugate gradient method applied to Rosenbrock function 
, ,f x x x x x

1 2 1
2

2

2

1

2
100 1( ) = −( ) + −( )  x

0
3 10= ( ), ,

T
 x* , ;= ( )1 1

T
 evolution of objective 

function with iterations (attaining a minimum value of 2.52E- 13 at the end of 175 iterations).
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function f x x xx( ) = −( ) + −( )100 1
1
2

2

2

1

2
, known as Rosenbrock function, 

with x = ( )x x
T

1 2
, .

CG method and application to a system of linear equations
While the CG method as applied to non- linear optimization problems has been 
attributed to Fletcher and Reeves (1964), Hestenes and Stiefel (1952) originally 
proposed the algorithm as an effective approach to solve large scale symmetric, 
positive- definite linear system of equations. For numerical purposes, the method has 
been shown to be superior to Gaussian elimination. Finding a solution to a system 
of equations Ax b= is equivalent to searching for the minimum of the quadratic 

function f T Tx x Ax b x( ) = −
1

2
. Hence the algorithm in Table 2.1 may be used to 

solve Ax b= .

Preconditioned CG
Having a fast matrix solver by speeding up the convergence rate is a necessity particu-
larly for large sparse linear systems. Key for fast convergence by gradient methods 
is to have a low condition number of the matrix A ; see the discussion in the earlier 
Section 2.2.1. Pre- conditioning of the matrix A  is one useful technique (Golub and 
Van Loan 1996, Benzi 2002, Watkins 2010, Datta 2010) utilized in almost all commer-
cially available solvers for better convergence. Pre- conditioning yields a better distri-
bution of the system eigenvalues, so that condition number of A is driven closer to 1.

If M  is an invertible matrix and the condition number of M A−1  is smaller than 
that of A , then M�  is a possible choice for a pre- conditioner. Since A  is symmetric 
and positive definite, M�  also needs to be symmetric and positive definite. One choice 
is to select M  as a diagonal matrix with the diagonal elements of A  as its non- zero 
entries, i.e.:

 M A
ii ii

=  

 = ≠0,   if i j  (2.37)

This is known as the Jacobi pre- conditioner. Another choice is given by M LL− =1 T  
where L  is a lower triangular matrix obtained through Cholesky decomposition of 
A  (Meijerink and van der Vorst 1977, Kershaw 1978, Chan and van der Vorst 1997). 

This ensures that M� is symmetric and positive definite. However, L  loses sparsity 
when compared to A . To compensate for this deficiency, L�  is modified such that if   

an off- diagonal term 
,

A
ij i j≠ = 0, L

ij i j, ≠  is also set to zero. It amounts to having an 
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incomplete Cholesky (IC) decomposition (Golub and Van Loan 1996) of A , and L  
is ensured to have at least the same sparsity as A .

Note that for any choice of M  with M LL− =1 T , an equivalent system may be 
constructed as follows:

 M Ax M b− −=1 1  

 ⇒ =LL Ax LL bT T  

 ⇒ [ ]{ } = { }−L AL L x L bT T1  

 ⇒ =Ax bˆ ˆ ˆ  (2.38)

where Â L AL= T  and b̂ L b= T . The new solution vector is x̂ L x= −1 . Â  remains 
symmetric positive definite since ˆ ˆ ˆ ˆ ˆ ˆ ˆx Ax x L AL x Lx A Lx x AxT T T T T= [ ] = ( ) ( ) = > 0 .

The new algorithm closely follows the iterative steps of the original CG method. 
Though the new variables ˆ ˆ,x gk k

 and d̂
k
 respectively replace the original variables 

x gk ,
k

 and d
k
 in the formulae, it is computationally convenient to proceed iteratively 

with the new steps stated in terms of the old ones.
At the kth  iteration, the residual is ĝ

k
= ˆ ˆ ˆb Axk− . It is related to the residual gk  as:

 ˆ ˆ ˆ ˆg b Ax L b L AL L x L b Ax L g
k k

T T
k

T
k

T
k

= − = − = −( ) =− 1  (2.39)

The update is given by:

 ˆ ˆ ˆ ˆx x d
k k k k

s+ = +
1

 

            = +−L x d1
k k k

ŝ ˆ  (2.40a)

If the new direction d̂
k
 is defined as L d−1

k
, then x̂k +1

 simplifies to:

 ˆ ˆx x dk + = +
1 k k k

s  (2.40b)

Following Equation (2.30), the new direction d̂
k
 for k > 0  can also be written as:

 ˆ ˆ ˆ ˆd g d
k k k k

= − + − −β
1 1

 

 ⇒ = − +−
−

−
−L d L g L d1

1
1

1k
T

k k k
β  

 ⇒ = − + − −d LL g d
k

T
k k k

β̂
1 1
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 ⇒ = − +−
− −d M g d

k k k k
1

1 1
β̂  (2.41)

The parameter β̂
k −1

 follows from Equation (2.36):

 ˆ ˆ ˆ

ˆ ˆ
β

k
k
T

k

k
T

k
−

− −

=
1

1 1

g g
g g

 

 =
( ) ( )

( ) ( )
=

− −

−

−
−

−

L g L g

L g L g

g M g
g M g

T
k

T
T

k

T
k

T
T

k

T
k

k
T

k1 1

1
1

1
1

1

 (2.42)

Note that for k = 0 , the starting direction ˆ ˆd g
0 0

= . This gives:

 ˆ ˆd L d g L g
0

1
0 0 0

= = =− T  

 ⇒ = = −d LL g M g
0 0

1
0

T  (2.43)

The step size ŝ
k

 in Equation (2.40) is obtained as:

 ˆ
ˆ ˆ

ˆ ˆ ˆs
k

k
T

k

k
T

k

T
k

T
T

k

k

T
T

k

= =
( )

( )− −

g g
d Ad

L g L g

L d L ALL d1 1
 

     = =
− −

−g LL g
d L L ALL d

g M g
d Ad

k
T T

k

k
T T T

k

k
T

k

k
T

k
1

1

 (2.44)

For the next iteration, the residual is updated as in Equation (2.29):

 ˆ ˆ ˆ ˆ ˆg g Ad
k k k k

s+ = −
1

 

 ⇒ = −+
−L g L g L ALL dT

k
T

k k
T

k
s

1
1ˆ  

 ⇒ = −+g g Ad
k k k k

s
1

ˆ  (2.45)

Table 2.2 details the algorithmic steps for the pre- conditioned CG method.
CG method with pre- conditioning is of significance in application to linear  

systems arising from finite difference/ finite element discretization of boundary- value  
problems. The example below illustrates an application to a heat transfer problem.  
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Even though the resulting system of equations is of a very low dimension and may not  
warrant the use of the CG method, the example is still instructive.

Example 2.1. We consider a two- dimensional steady state heat flow problem and the 
heat flow is governed by the Poisson equation (Bathe 1996):

 
∂
∂

∂
∂







+
∂
∂

∂
∂







+ =
x

k
u

x y
k

u

y
Q

x y
0  (2.46)

u x y,( )  is the field variable representing the temperature in the body occupying a 

region Ω ∈2 . ,Q x y( )  is the heat source. k
x

 and k
y

 are the thermal conductivities 

of the material in x  and y  directions respectively. We wish to find the temperature 
distribution in the plate (Figure 2.5).

Solution. Let the body be isotropic and homogeneous with k k k
x y

= = = 10  watts/ cm/ 

Kelvin. Equation (2.46) then simplifies to:

 k u Q∆ + = 0  (2.47)

∆ = ∇ =
∂
∂

+
∂
∂

2
2

2

2

2x y
 is the Laplacian operator. No heat sources are assumed i.e., Q = 0. 

The following temperature profile is applied at the boundary y l= .

TABLE 2.2
Algorithm of the Preconditioned CG Method

Consider a system of n  linear equations Ax b= . Choose a pre- conditioner M .
Step 1. Initiate iterations with k = 0 .Start with an initial point x

0
. Set g b Ax

0 0
= − .

Let the first conjugate direction be d M g
0

1
0

= − (Equation 2.43).

Fix convergence parameter ε
g

 with respect to the residual g b Ax= − .

Start iterations; k n= … −0 1 1, , , .

Step 2. If g
k g

≤ ε , set the solution x x* =
k

 and stop the iterative process.

Otherwise, set x x d
k k k k

s+ = +
1

ˆ

Step 3. Obtain the step size ŝ
k

k
T

k

k
T

k

=
−g M g

d Ad

1

(Equation 2.44)

where d M g d
k k k k

= − +−
− −

1
1 1

β̂ .

The parameter β̂
k −1

is obtained from Equation (2.42): β̂
k

T
k

k
T

k
−

−

−
−

−

=
1

1
1

1
1

1

g M g

g M g

Step 4. Knowing ŝ
k

 and d
k

, find the update x x d
k k k k

s+ = +
1

ˆ .
Step 5. Evaluate the residual g g Ad

k k k k
s+ = −

1
ˆ  (Equation 2.45)

Step 6. Set k k= + 1 and return to step 2.
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 u x l
x

, sin( ) = 100
10

π
 (2.48)

This is a Dirichlet boundary condition. PDE (2.47) along with the BC in (2.48) forms 
an elliptic boundary value problem (BVP).§ To find the solution to the BVP, we use 

FIGURE 2.5 Steady- state heat flow problem; a rectangular plate ABCD of homogeneous and 
isotropic material –  length l =  10 cm and width b =  5 cm.

§ Elliptic boundary value problem
 A second- order partial differential operator A  on a scalar valued function u  of n  variables 

x i n
i
, , , ,= …1 2  may be expressed as:

Au
x

a x
u

x
b

u

x
cu f

i
j i

ij
j j

j
j

= ∂
∂

( ) ∂
∂









 + ∂

∂
+ =∑ ∑ ∑  in a domain ℧ (i)

with suitable coefficients a
ij
, b

j
 and c.  A is elliptic if:

l x a x
i j

ij i j
, ,ξ ξ ξ ξ( ) = ( ) ≠ ∀ ≠∑∑ 0 0  (ii)

where l  is a polynomial of order 2 in the components ξ ξ= = …
i

i n, , , ,1 2 . Equation (i) satisfying con-
dition (ii) and followed by boundary conditions (conditions on the boundary ∂ ) defines an elliptic 
boundary value problem.
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the finite element method (FEM) and follow the procedure described in Section 1.5.1, 
Chapter 1. To this end, we first convert the strong form of the governing Equation 
(2.47) to a weak form:

 
Ω

Ω∫ ∇ ∇( ) +







=
1

2
0v u Qv d.  (2.49)

v  is the test function. Both u  and v  belong to the Sobolev space H1 Ω( )  (Appendix 

B). The integral 
1

2
( . )∇ ∇∫ ν u dΩ

Ω
 in the first term is a symmetric bilinear form. The 

integral 
Ω

Ω∫ Qvd  in the second term is a linear form. Seeking a solution by FEM, we 

discretize the domain Ω  into non- overlapping triangular elements using n  nodes. 
With a linear variation of temperature within an element, the element- wise shape 
functions which form a polynomial basis set are assumed to be:

 Y x y a b x c y j
j
e

j j j
, , , ,( ) = + + = 1 2 3  (2.50)

a b c j
j j j
, , , , ,= ∈1 2 3  . The superscript ‘ e ’ stands for an element and the total 

number of elements in the model is denoted by N
e
. The temperature distribution in 

a triangular element is:

 u x y Y x y Te

j
j
e

j
e, ,( ) = ( )

=
∑

1

3

 (2.51)

T j
j
e , ,= 12 3  are the unknown nodal temperatures of the element. Substituting 

Equation (2.51) into the weak form (2.49) and integrating over the element domain 
Ωe  yield a set of discrete equations of the form (Bathe 1996):

 K T Fe e e=  (2.52)

K e  is a 3 3×  symmetric matrix of the form (only the top half including the diagonal 
entries are shown):

 K e

e

k

A

b c b b c c b b c c

=

+( ) +( ) +( )
4

1
2

1
2

1 2 1 2 1 3 1 3

b c b b c c
2
2

2
2

2 3 2 3
+( ) +( ))

+b c
3
2

33
2( )



















 (2.53)

A
e

 is the area of the triangular element. If x y
j j
,( ) , j = 1 2 3, ,  are the 

coordinates of the element vertices, the parameters b
j
 and c

j
 are given by 
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, ,b y y b y y b y y
1 2 3 2 3 1 3 1 2

= − = − = −  and c x x c x x c x x
1 3 2 2 1 3 3 2 1

= − = − = −, ,   (Liu 
and Quek 2003). The vector F e  on the RHS of Equation (2.52) is obtained as:

 F
Q

e e TA
= ( )

3
1 1 1  (2.54)

Since no heat sources are assumed, F e  is a zero vector. Assembly of the equations 
in (2.52) over all the elements by appropriately summing up entries pertaining to the 
dofs common to adjoining elements (Bathe 1996, Cook et al. 1989), one obtains the 
system of linear equations:

 ˆ ˆ ˆKT F=  (2.55)

 K̂ �∈ ×n n  and F̂ ∈n . ˆ , , ,T = …( )T T T
n

T

1 2
 is the vector of the nodal temperatures. 

By imposing the specified BC on the top edge CD (Figure 2.5), the number of 
unknown nodal temperatures reduces to m n= − ( )nodes on edge CD . Deleting from 
the matrix K�  the rows and columns for the dofs corresponding to the Dirichlet BC 
and suitably modifying the RHS vector F̂ , one obtains the final set of equations as:

 KT F=  (2.56)

 K ∈ ×m m , F ∈m  and T = m. The CG method along with pre- conditioning 
strategy is applied to solve these equations. Solution is obtained with two types of 
pre- conditioners –  a) Jacobi pre- conditioner and b) pre- conditioner by IC decompos-
ition of K. Two FE models (Figure 2.6) of the plate –  one with a coarse mesh and 
another with a relatively refined one –  are employed to demonstrate the performance 
of the two pre- conditioners. While the temperature distribution presently turns out 
to be the same irrespective of the preconditioner (Figure 2.7), the one based on IC 
decomposition shows superior performance vis- à- vis the Jacobi pre- conditioner as 
judged by the execution time (Table 2.3). The Jacobi pre- conditioner is generally 
known to have poor convergence rate with increase in model size (Augarde et al. 
2006)]. For the two model sizes in the example, solution is also realized by the CG 
method without pre- conditioning.

■

Before we close this section, it is pertinent to take note of an upsurge of a new class 
of domain decomposition pre- conditioners (Smith et al. 1996, Oliveira and Sorensen 
1997, Quarteroni and Valli 1999, Benzi 2002). They are suitable for parallel com-
puting that involves large- scale simulations. These pre- conditioners obviously avoid 
a full assembly of the system matrices. Element based pre- conditioners (Hughes et al. 
1983, Tezduyar and Liou 1989, Hughes and Ferencz 1988) belong to this category 
and together with the conjugate gradient method are, for instance, shown to be useful 
for solving problems of solid and fluid mechanics. For application of pre- conditioned 
CG to equations with unsymmetric coefficient matrices, interested readers may refer 
to Fletcher (1976), Concus and Golub (1976) and Makinson and Shah (1986).
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FIGURE 2.6 Application of CG method, steady state heat flow problem: (a) FE model with 
441 nodes and 800 elements and (b) FE model with 1681 nodes and 3200 elements.

 

 



99Classical Derivative-based Optimization Techniques

FIGURE 2.7 Solution to steady- state heat flow problem by CG method with Jacobi- pre- 
conditioning: (a) for the FE model in Figure 2.6a and (b) for the FE model in Figure 2.6b.
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2.2.3  newton’s method

For a function f Cx( ) ∈ 2 , a quadratic approximation f̂ x( )  in a neighbourhood of 
x̂  (Section 1.2, Chapter 1) is:

 f f f f
T Tx x x x x x x x H x x x( ) ≅ ( ) = ( ) + ∇ ( ) −( ) + −( ) ( ) −( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

2
 (2.57)

It follows that the gradient ∇ ( )f x  approximates to:

 ∇ ( ) ≅ ∇ ( ) + ( ) −( )f fx x H x x xˆ ˆ ˆ  (2.58)

Imposing the condition ∇ ( ) =f x 0  at the k th  iteration, one gets from the last equation 
the update for Newton’s method as:

 x x H x x
k k k k

f+

−
= − ( ) ∇ ( )1

1
 (2.59)

Unlike the steepest descent and conjugate gradient methods which are of first order 
requiring only the gradient at each iteration, Newton’s method is a second order one 
using both the gradient and the Hessian matrix. When f x( )  is convex and twice 
differentiable, Newton’s method is quadratically convergent as is the case with 
the Newton- Raphson method. − ( ) ∇ ( )−

H x xk

1
f

k
 on the RHS of Equation (2.58) 

may be viewed as the new direction d
k
 at the kth  iteration. Figure 2.8 shows that 

Newton’s method converges in exactly a single iteration for the quadratic function 

f x x x x( )x  = −( ) + −( ) +
1

2

2

2

1 2
3 5 . Steepest descent method took ten iterations 

TABLE 2.3
Solution to Steady- state Heat Flow Problem –  Comparison of Execution Time 
by CG Method with and without Pre- conditioners (on laptop version I7 with 
8 GB RAM)

Method
Nodes = 21 × 21 
Elements =  800 (Figure 2.6a)

Nodes =  41 × 41
Elements =  3200 (Figure 2.6b)

CG with no 
pre- conditioner

2.5 s 93.5 s

CG with Jacobi
pre- conditioner, M

2.2 s 91.4 s

CG with pre- 
conditioner, M by IC 
decomposition

1.3 s 42.6 s
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(Figure 2.1b) and the conjugate gradient method two iterations (Figure 2.3) for con-
vergence of the same quadratic function.
While handling non- quadratic functions, Newton’s method solves a locally quadratic 
function at each iteration. For better convergence, one modification may be to have 

the update along the new descent direction d H x xk k= − ( ) ∇ ( )−1
f

k
 with a step size 

s
k

, i.e.:

 x x d
k k k k

s+ = +
1

 (2.60)

s
k

 may be obtained by a line search.
Newton’s method, though efficient in handling quadratic functions, often fails to 

converge for non- quadratic functions. The main reason is the loss of positive def-
initeness of the H� matrix –  violation of the sufficient condition for a minimum –  
during the iterative process, thereby leading to either no solution or an unacceptable 
one. Computing at each iteration the Hessian matrix H  and its inverse constitutes 
another major computational disadvantage especially when applied to large dimen-
sional optimization problems and for problems with no explicitly defined objective 
functions. Many variants of Newton’s method –  known as quasi- Newton methods –  
aim to correct these drawbacks.

FIGURE 2.8 Newton’s method and convergence of the quadratic function f(x
1
, x

2
) = (x

2
 – 5)2 

+ (x
2
 – 5)2 + x

1
 x

2
; x

0
 = (1,2)T; x* = (0.667,4.667)T.
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2.3  QUASI- NEWTON METHODS

The quasi- Newton methods use an approximation to the Hessian matrix or its inverse 
during the iterative process. These methods sequentially generate the matrix whilst 
trying to keep it symmetric and positive definite.

2.3.1  daVidon- fletcher- powell (dfp) method

The DFP method has been developed by Davidon (1959) and Fletcher and Powell 
(1963). It is a quasi- Newton method and uses, at each iteration, an approximation to 

the inverse H H xk k
− −

= ( )( )1
1

 of the Hessian. Using Equation (2.60), we may write:

 f f s f f
k k k k

T

k k
x x x H x+

−( ) = ( ) − ∇ ( ) ∇ ( )1
1  (2.61)

A decrease in the function value is guaranteed if ∇ ( ) ∇ ( ) >−f f
k

T

k
x H xk

1 0 , i.e. if 

Hk
−1  is positive definite. Starting from an arbitrary symmetric positive definite 

0
,   

the inverse Hessian is approximated in later iterations by 
1
, 

2
,… , k ,.. . That is, 

k k≈ −H 1 . The method starts with 
0

= ×In n , an identity matrix. At the kth  iteration, 
k +1

 is generated by the DFP formula as:

  
 

k k
k k

T

k
T

k

k k k
T

k

k
T

k k
+ = + −

1

p p
p r

r r
r r

 (2.62)

where p x xk k k= −+1
and r x x g gk = ∇ ( ) − ∇ ( ) = −+ +f f

k k k k1 1
. In the second term on 

the RHS of Equation (2.62), the denominator is a scalar quantity. The numerator 

p p �k k
T  is a symmetric matrix with rank one. 

p p
p r
k k

T

k
T
k

may be referred to as a rank one 

correction to k . Likewise, the third term 
 


 


k k k

T
k

k
T

k k

k k k k

T

k
T

k k

r r
r r

r r
r r

=
( )( )

 adds another 

rank one correction and keeps k +1
 symmetric. The two terms together constitute a 

rank two correction to k . Let us now show by induction that 
k+1

 is positive definite.
Proof: 

0
 is positive definite by hypothesis. Let us assume that 

k
 is positive def-

inite and show that 
k+1

 is also positive definite.

At the kth  iteration, the direction d x g
k k

f= − ∇ ( ) = − k k k  with d g
0 0

= − . The 

update is:

 x x d x g
k k k k k k k k

s s+ = + = −
1

  (2.63)
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The step size s
k

 is obtained by a line search, i.e. by minimizing f s
k k k

x d+( )  with 

respect to s
k

. This implies:

 ∇ ( ) = =+ +f
k

T

k k
T

k
x d g d

1 1
0  (2.64)

If we now consider the DFP formula in Equation (2.62), the associated quadratic 
function is:

 y y y y y
p p
p r

y y
r r

r r
y, yT

k
T

k
T k k

T

k
T

k

T k k k
T

k

k
T

k k

nF F
F F
F

R+ = + − ∈
1

 (2.65)

The second term on the RHS of Equation (2.65) is:

 y
p p
p r

y
p y p y

p r
T k k

T

k
T

k

k
T

T

k
T

k
T

k

=
( )

 (2.66)

The numerator in the last equation is a positive quantity. For the denominator p rk
T
k ,   

one has:

 

p r d g g g g

d g

k
T

k k k
T

k k k k
T

k k

k
T

k

s s= −( ) = >

=

+

+

1

1

0

0



            sin ce ffrom Equation  2 64.( )  (2.67)

In getting the above result, the relation d gk k k= −  is used along with the fact that 


k
 is positive definite. Thus, the first rank one correction term is positive definite. For 

the remaining two terms (first and third) in the RHS of Equation (2.65) combined 
together, the associated quadratic function is:

 y y y
r r

r r
y y y

y r r y
r r

T
k

T k k k
T

k

k
T

k k

T
k

T
k k k

T
k

k
T

k k


 




 


− = −  

                                 = −y L L y
y L L r r L L y

r L L r
T

k k
T

T
k k

T
k k

T
k k

T

k
T

k k
T

k

 (2.68)

(with 
k k k

T= L L  by Cholesky decomposition)
With u = L y

k
T  and v L r= k

T
k , Equation (2.68) is rewritten as:

 y y y
r r

r r
y u u

u v v u
v v

T
k

T k k k
T

k

k
T

k k

T
T T

T


 


− = −
( )( )

 

                         =
( )( ) − ( )( )u u v v u v v u

v v

T T T T

T
 (2.69)
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The denominator v vT  on the extreme RHS of the last equation is positive. For the 
numerator, one has:

 u u v v u v v u u u v v u vT T T T T T T( )( ) − ( )( ) = ( )( ) − ( )2  

> 0  (since u v u u v vT T T( ) ≤ ( )( )2
 by Schwartz inequality**) (2.70)

Thus, 
k+1

 from the DFP formula is positive definite. The direction 

d x
k k

f+ + += − ∇ ( )1 1 1
k  is indeed a descent direction. ♦

For a quadratic function f x x Qx b xT T( ) = + +
1

2
 c with Q  the Hessian matrix H  

at any iteration, the DFP method leads to the exact inverse H −1  in n  iterations where 
n  is the problem dimension. It is a conjugate gradient method and converges to the 
optimum x*  after at most n  steps. The search directions are H - conjugate:

 d Hd
k
T

j
j k+ = ≤ < +

1
0 0 1,  (2.71)

To prove this, we also need to show that the matrices  
0 1
, ,� … generated by the DFP 

formula satisfy the following relation:

 
k j j

j k+ = ≤ < +
1

0 1r p ,  (2.72)

The last equation is similar to the following relation that the Hessian H  of the quad-
ratic function satisfies:

 H x x g g Hp r
k k k k j j+ +−( ) = − ⇒ =

1 1
 (2.73)

We concurrently prove the two requirements in Equations (2.71) and (2.72) by 
induction.

Proof for relations (2.71) and (2.72): Set k = 0 . From Equation (2.72), one has:

 
 

1 0
0 0

0 0

0 0 0 0

0 0 0
0

r
p p
p r

r r
r r

r= + −










×I

n n

T

T

T

T
 

** Schwartz inequality
For a pair of vectors u  and v  in a vector space V, we have by Schwartz inequality:

                                                                     u v u v,( ) ≤  (i)

u v,( )  stands for an inner product ||.|| for Euclidean norm.

 

 

 

 

 

 

 

 

 



105Classical Derivative-based Optimization Techniques

= +
( )

( ) −
( )

( )












r
d d r

d r

r r r

r r0

0
2

0 0 0

0 0 0

0 0 0

0 0

s

s

T

T

T

T

 = = ( )s
0 0 0
d p since the first and third terms cancel out  (2.74a)

So, for k = 0 , Equation (2.72) holds. Similarly, considering Equation (2.71), one 
has for k = 0 :

 d Hd g Hd d g
1 0 1 1 0 1 1 1 1
T T= − = −( )  since     and is symmetric  

 

=
−

=( )g Hp
d p1 1 0

0
0 0 0

T

s
s


since 

 

 = − = =






g d Hp r

r
d

1 0 0 0
1 0

0
0

T

s
 since ,


 

 = ( )0 from Equation 2.64   (2.74b)

Thus (2.71) and (2.72) are satisfied for k = 0 . Now, assume them to hold for the kth  

iteration, i.e., k r p
j j

j k= ≤ <,0  and d Hdk
T

j
j k= ≤ <0 0,  . We proceed to prove 

that they hold for k k= +1  as well. Let us first prove 
k j j

j k+ = ≤ < +
1

0 1r p , . From 

the DFP formula, one has:

  
 

k j k
k k

T

k
T

k

k k k
T

k

k
T

k k
j

j k+ = + −












≤ < +
1

0 1r
p p
p r

r r
r r

r ,  

 = + −












≤ < +
 

k j

k k
T

j

k
T

k

k k k
T

k j

k
T

k k

j kr
p p r

p r

r r r

r r
,0 1  

 

= + −












≤ < +

p
p p Hd

p r

r r r

r rj

j k k
T

j

k
T

k

k k k
T

k j

k
T

k k

s

j k

 


,

    0 1 ssince r Hp Hd
j j j j

s= =( )  (2.75)
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With ,p Hd d Hdk
T

j k k
T

j
s j k= = ≤ <0 0  because of the H - conjugacy of d

k
, the 

second term on the RHS of Equation (2.75) is zero. Regarding the third term, the 

numerator contains r rk
T

k j
 which may be written as:

r r r pk
T

k k
T

j j
=  (since k r p

j j
j k= ≤ <,0  by the induction hypothesis)

= p Hp
k
T

j
 (since r Hp

k k
= )

 = = ( )s s
k j k

T
j k

d Hd H d0   -   by the conjugacy of  (2.76)

The second and third terms on the RHS of Equation (2.75) being thus zero, we get the 
required result in Equation (2.72), i.e. k j+ = ≤ < +

1
0 1r p

j
j k, . This result helps in 

proving the H - conjugacy of d
k+1

.
Consider the new update at the kth iteration: x x d x gk k k k k k k k+ = + = −

1
s s  . The 

gradient ∇ ( )+f
k

x
1

 is:

 ∇ ( ) =+ +f
k k

x g
1 1

 

 = + −( ) + −( ) +…+ −( ) ≤ ≤+ + + + + +g g g g g g g
j j j j j k k

j k
1 2 1 3 2 1

0,  

 = + + +…+ ≤ ≤+ + +g r r r
j j j k

j k
1 1 2

0,  (2.77)

From Equation (2.73), the last equation takes the form:

 g g Hp Hp Hp
k j j j k

j k+ + + += + + +…+ ≤ ≤
1 1 1 2

0,  (2.78a)

With p x x dk k k= − =+1
s

k k
, one has:

 g g Hd Hd Hd
k j j j j j k k

s s s j k+ + + + + += + + +…+ ≤ ≤
1 1 1 1 2 2

0,  (2.78b)

By the induction hypothesis, d Hd
j
T

i
= 0 , i j j k= + + …1 2, , , . Also g d

j
T

j+ =
1

0  from 

Equation (2.64). It follows from Equation (2.78b):

 g d
k
T

j
j k+ = ≤ ≤

1
0 0,  (2.79)

Since k + = ≤ < +
1

0 1r p
j j

j k, , one may write:

 g r g p
k
T

k j k
T

j
j k+ + += ≤ < +

1 1 1
0 1 ,  

 ⇒ = ≤ < + =+ + +g Hp g p r Hp
k
T

k j k
T

j j j
j k

1 1 1
0 1 2 , .since    from Equation 773( )  

(2.80)
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With p x x d
j j j j j

s= − =+1
 and d g

j j j
= − , the last equation may be written as:

 d Hd g d
k
T

j k
T

j
j k+ += = ≤ < + ( )1 1

0 0 1,    from Equation 2.79  (2.81)

♦

Thus dk +1
 is H - conjugate to the search directions of the previous iterations. By 

proving i) H - conjugacy of the search directions d
k
 and ii) the characteristic of the 

Hessian inverse 
k
 as constructed at the kth  iteration by the DFP formula, we realize 

that the DFP method replicates the CG method and converges in n  iterations for a 
quadratic function. Figure 2.9 shows the convergence of the DFP method as applied 
to a quadratic and a non- quadratic function.

2.3.2  Broyden- fletcher- GoldfarB- shanno (BfGs) method

Unlike the DFP method, the BFGS method approximates the Hessian matrix itself at 
each iteration. Let the approximated Hessian matrix be 

k
 at the kth  iteration. With 

the update being x x d
k k k k

s+ = +
1

, the search direction d
k
 in this method is given by:

 d g
k k k

= − −H 1  (2.82)

The Hessian H  of a quadratic function satisfies:

 H p p p r r r
0 1 0 1
, , , , , ,…  = … n n

 (2.83)

with p x xk k k= −+1
 and r x x g gk = ∇ ( ) − ∇ ( ) = −+ +f f

k k k k1 1
. It follows that H

k+1
 of 

the BFGS method satisfies:

 H
k j j

j k+ = ≤ < +
1

0 1p r ,  (2.84)

This is similar to the property of 
k
 in the DFP method. Being an inverse Hessian,

k
 

has been shown to satisfy 
k j j

j k+ = ≤ < +
1

0 1r p , . Similar to the DFP formula in 

Equation (2.62), it is possible to estimate H
k+1

 at the kth  iteration as a rank two 
correction to H

k
. Thus:

 H H
H H

Hk k
k k

T

k
T

k

k k k
T

k

k
T

k k
+ = + −











1

r r
r p

p p
p p

 (2.85)

In arriving at H
k+1

,we note that p
k

 and r
k

 change their positions when compared 
to the DFP formula in (2.62). This is clear from the relationships that 

k+1
 and   
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FIGURE 2.9a–b DFP method, quadratic function f(x
1
, x

2
) = (x

1
 – 3)2 + (x2 – 5)2  + x

1
 x

2
;   

x
0
 = (1,2)T; x* = (0.667,4.667)T and f x* .( ) = 8 667 -  convergence in two iterations.
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FIGURE 2.9c–d DFP method, non- quadratic function (Rosenbrock)-  f(x
1
, x

2
) = 100(x

1
2 – x

2
)2 

+ (x
1
 – 1)2, x

0
 = (5.5)T , x* = (1,1)T and f(x*) = 6.55E – 12- convergence in 59 iterations.
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 Hk+1  have with p
j
 and r

j
 (Equations 2.72 and 2.84). Utilizing the symmetry   

and positive definiteness of H
k
 and following the method of induction as in the 

DFP method, one can prove that the search directions in Equation (2.82) are   
 H - conjugate and H

k+1
 satisfies Equation (2.84). At the implementation level, to 

alleviate the problem of taking an inverse of H
k
 at each iteration –  especially for 

large- size problems –  it is possible to approximate the inverse by using Sherman- 
Morrison formula†† (Bartlett 1951).

From Equation (2.85), the inverse is:

 H H
H H H

k k
k
T

k k

k
T

k

k k
T

k
T

k

k k
T

k k
+

− −
− − −

= + +






−

+
1

1 1
1 1

1
r r

p r
p p
p r

p r 11r p
r p

k k
T

k
T

k

 (2.86)

In obtaining the inverse in Equation (2.86), the Sherman- Morrison inversion formula 
is applied twice (Jennifer and Roummel 2017) to H

k+1
 in Equation (2.85).

2.4  PENALTY FUNCTION METHODS

The derivative- based methods discussed so far are meant for unconstrained opti-
mization problems. As is known, problems encountered in practice are almost 
invariably constrained. With the method of Lagrange multipliers explained in 
Section 1.6.1, Chapter 1 provides a basic approach to convert the constrained 
problem into an unconstrained one. As a sequel to this method, we consider pen-
alty function methods (Fiacco and McCormick 1964, 1968) as a computationally 
efficient and convenient alternative for optimization problems with constraints. 
Here, using a penalty parameter, we convert a constrained problem into a sequence 
of unconstrained optimization problems. The interior and exterior variants of the 
penalty function method are also referred to as sequential unconstrained mini-
mization techniques (SUMTs).

2.4.1  exterior penalty fUnction method

Let f nx( ) →:   be a scalar objective function, with the equality and inequality 
constraints given by:

 h i l g j m
i j

x x( ) = = … ( ) ≤ = …0 1 2 0 1 2, , , , , , , ,  and  (2.87)

†† Sherman- Morrison formula: Given a matrix A  and vectors u  and v, the formula for inversion is:

 A uv A A uv A
v A u

+( ) = −
+

− −
− −

−
T

T

T

1 1
1 1

11
 (i)
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A penalty function ψ x( )  is defined as:

 ψ x x x( ) = ( )  + ( ) { }
= =
∑ ∑
i

l

i
j

m

j
h g

1

2

1

2

0max ,  (2.88)

The function max ,0 g
j

x( )   outputs a positive non- zero value only when the con-

straint is violated. Similarly, when the equality constraint is violated (i.e. when 
h

i
x( ) ≠ 0 ), the penalty function imposes a positive penalty. It imposes no penalty for 

a feasible point (i.e. when h
i

x( ) = 0 ). Combining f x( )  and ψ x( )  gives the uncon-
strained optimization problem:

 minimize f r f r h g
i

l

i
j

m

j
 , max ,x x x x( ) = ( ) + ( )  + ( ) 

= =
∑ ∑

1

2

1

0{{ }





2

 (2.89)

r > 0  is the penalty parameter, which penalizes a constraint violation. ,f̂ r x( )  is the 
augmented objective function. In the exterior penalty function method, one chooses 
a positive r  and a starting point x

0
 in the infeasible region. One then solves the 

resulting unconstrained problem in Equation (2.89). Pending further discussion on 
the implementation and convergence issues, we note that a selection of proper value 
for the penalty parameter is indeed tricky. A high value renders the problem highly 
nonlinear. In solving Equation (2.89) for an unconstrained optimum with an initial 
choice of r , it is sequentially increased in steps as r cr

k k
= −1

 with c > 1 . The uncon-
strained problem corresponding to each r

k
 is solved by any of the methods presented 

earlier. As r  tends to infinity, the unconstrained minimum so obtained reaches the 
optimum x*  of the original constrained optimization problem. A proof is provided 
at the end of the section. From the definition of the penalty function ψ x( ) , it also 
follows that, for x  far away from the feasible region, the penalty increases and the 
unconstrained minimum is drawn towards the feasible region.

As an illustration, consider the following simple example: minimization of a 1- D 
problem.

minimize f x x( ) = −( ) +4 1
2

 s. .t  x ≤ 3  (2.90)

Equation (2.89) gives the unconstrained optimization problem as:

 ˆ , max ,f r x x r x( ) = −( ) + + −( ) { }4 1 0 3
2 2

 (2.91)

Suppose that we start with r
0

10=  and x
0

5= . The unconstrained problems in  
Equation (2.91) for a sequence of r r

k k
= −10

1
 are solved and Figure 2.10 shows the  
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unconstrained minima for k = 0 1 2,  and . Obviously, the minimum for the constrained  
optimization problem in Equation (2.90) is x* = 3 , the boundary defined by the con-
straint as shown in the figure.

Proof for convergence of the penalty function method
Let the penalty method generate x

k
* , the sequence of unconstrained minima of 

ˆ , *f r
k k

x( )  with respect to r
k

, k = …0 1, , . We show that ˆ , *f r
k k

x( )  is a monotonic and 

convergent sequence. Further, the limit of any convergent subsequence of x
k
*{ }  is an 

optimal solution. The proof closely follows the one in Bazaraa et al. (2006). Before it 
is presented, we first prove the following inequalities:

 ( ) , ,* *i f r f r
k k k k

 x x( ) ≤ ( )+ +1 1
 

 ( ) * *ii ψ ψx x
k k( ) ≥ ( )+1

 

 iii( ) ( ) ≤ ( )+f f
k k

x x* *
1

 (2.92a,b,c)

FIGURE 2.10 Exterior penalty function method; unconstrained minima for increasing values 
of the penalty parameter r  with r r r

k k
> > … >−1 0

tending towards the constrained minimum.
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Considering the RHS of (2.92a), we have:

 ˆ , * * *f r f r
k k k k k+ + + + +( ) = ( ) + ( )1 1 1 1 1

x x xψ  

 ≥ ( ) + ( ) <( )+ + +f r r r
k k k k k

x x
1 1 1

* *ψ since  

 

≥ ( ) + ( ) = ( )f r f r
k k k k k

k

x x x

x

* * *

*

,ψ 

  since    is the unconstrained    minimum for r r
k

=( )  
(2.93)

which proves the first inequality (2.92a). Now consider the following two inequalities.

 ˆ , * * * * *f r f r f r
k k k k k k k k

x x x x x( ) = ( ) + ( ) ≤ ( ) + ( )+ +ψ ψ
1 1

 (2.94)

and

 ˆ , * * * * *f r f r f r
k k k k k k k k+ + + + + +( ) = ( ) + ( ) ≤ ( ) + ( )1 1 1 1 1 1

x x x x xψ ψ  (2.95)

Adding the last two inequalities, one has:

 f r f r f r
k k k k k k k k k

x x x x x x* * * * * *( ) + ( ) + ( ) + ( ) ≤ ( ) + ( )+ + + + +ψ ψ ψ
1 1 1 1 1

 

 + ( ) + ( )+f r
k k k

x x* *
1
ψ  

 ⇒ ( ) + ( ) ≤ ( ) + ( )+ + + +r r r r
k k k k k k k k
ψ ψ ψ ψx x x x* * * *

1 1 1 1
 

 ⇒ −( ) ( ) ≤ −( ) ( )+ + +r r r r
k k k k k k1 1 1

ψ ψx x* *  

 ⇒ ( ) ≤ ( ) − >( )+ +ψ ψx x
k k k k

r r
1 1

0* * since  (2.96)

The last step above proves the second inequality (2.92b). From the last step in arriving 
at (2.93), one has:

 f r f r
k k k k k k

x x x x+ +( ) + ( ) ≥ ( ) + ( )1 1
* * * *ψ ψ  

 ⇒ ( ) ≥ ( ) + ( ) − ( )( )+ +f f r
k k k k k

x x x x
1 1

* * * *ψ ψ  

 ⇒ ( ) ≥ ( )( )+f f
k k

x x
1

* *  from 2.96  (2.97)
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This proves the third inequality (2.92c). To arrive the result on convergence of the 
method, we go through the following steps.

Step 1. Consider a feasible point x  such that ψ x( ) = 0 , i.e., g x( ) ≤ 0  and h x( ) = 0
. One has for each r

k
:

 f f r f r f r
k k k k k k

x x x x x x( ) = ( ) + ( ) ≥ ( ) + ( ) = ( )ψ ψ* * *,  (2.98)

Hence, if x* is the optimal solution to the constrained problem, then:

 inf  feasiblef f r rf f
r k k r kk

k

x x x x x*( ){ } = ( ) ≥ ( ) =≥ →∞
: sup , lim ,*

0
 

kk
*( )  (2.99)

The equality in the last statement above is due to (2.92a) where it is shown that 

,ˆ *f r
k k

x( )  is a monotone (a non- decreasing sequence).

Step 2. Next we show that ψ x
k
*( ) → 0  as k → ∞ , i.e. r

k
→ ∞ . Towards this, let y  be a 

feasible point and x*
L  an optimal solution with r

L
= 1  so that f f

L
x y y*( ) = + ( )( )inf ψ .   

Assuming r
k

 to be:

 r f f
k L

≥ 



 ( ) − ( ) + >

1
2 0

ε
εy x* ,  (2.100)

the inequality (2.97) gives:

 f f
k L

x x* *( ) ≥ ( )  (2.101)

Hence,

 ˆ , * * * * *f r f r f r
k k k k k L k k

x x x x x( ) = ( ) + ( ) ≥ ( ) + ( )ψ ψ  (2.102)

If *ψ εx
k( ) > , then from the definition of r

k
, the inequality in (2.102) takes the form:

 ˆ , * * *f r f f f f
k k L L

x x y x y( ) ≥ ( ) + ( ) − ( ) + ≥ ( )2ε  (2.103)

In view of (2.98), the above is not valid since y  is a feasible point. So, by contradic-

tion with the earlier supposition that *ψ εx
k( ) > , we get:
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 ψ εx
k
*( ) ≤  (2.104a)

Since ε( )> 0  is arbitrary,

 lim *

k k→∞
( ) →ψ x 0  (2.104b)

Step 3. Now, consider a subsequence y
k
*{ }  of x

k
*{ }  and let y  be its limit. We need 

to show that y�  is indeed an optimal solution to the original problem.

 ˆ , * * * *f r f r f
k k k k k k

y y y y( ) = ( ) + ( ) ≥ ( )ψ  (2.105)

Since y y
k
* →  and f x( )  is continuous,

 sup , lim ,* *
r k k r k kk

k

f fr r f≥ →∞
( ) = ( ) ≥ ( )0

 y y y  (2.106)

But lim *

k k→∞
( ) →ψ y 0  from step 2 and this gives ψ y( ) = 0 . Therefore y  is a feasible 

point. Thus, combining the assertions in (2.99) of step 1 and (2.106), we get the result 

that y  is an optimal solution such that sup , *
r k kk

f r f≥ ( ) = ( )0
 x y . This completes the 

proof. ♦

2.4.2  interior penalty fUnction method

This penalty function method applies to optimization problems with inequality 
constraints. As the name indicates, the method iterates through the interior (feasible) 
region of the design space. The method employs the penalty function ψ x( )  in the 
following forms:

 ψ ψx
x

x x( ) = − ( ) ( ) = − − ( )( )
= =

∑ ∑
j

m

j j

m

jg
g

1 1

1 or log  (2.107a,b)

and the augmented objective function is:

 ˆ ,f r f rx x x( ) = ( ) + ( )ψ  (2.107c)

In this method, r ( > 0 ) corresponds to a decreasing sequence, say, r cr
k k

= −1
 

with c ∈( )0 1, . As r
k

→ 0 , x x
k
* *→  where x

k
*  is the unconstrained minimum at 

the kth  iteration. The proof is similar to the one given for the exterior penalty 
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function method. The constraint functions g j m
j

x( ) = …, , , ,1 2  are negative in the 

feasible region. ˆ ,f r x( )  tends to infinity as x  approaches the boundary defined 

by x x: g
j ( ) ={ }0 . Thus, in the minimization process of the augmented function 

ˆ ,f r x( )  for each r
k

, x
k
*  converges to x*  from within the interior of the feasible 

region x x: g
j ( ) ≤{ }0 .

Referring to the one- dimensional example in Equation (2.90), if ψ x
g x

( ) = − ( )
1

, 

the augmented function ˆ ,f r x( )  is:

 ˆ ,f r x x r
x

( ) = −( ) + −
−( )4 1
1

3
2

 (2.108)

Figure 2.11 shows the convergence to x* = 3 with a decreasing sequence  
r r

k k
= −0 5

1
.  and with x

0
1= .

FIGURE 2.11 Interior penalty function method; unconstrained minima for decreasing values 
of the penalty parameter r r r

k k
< < … <−1 0

 tend to the constrained minimum x* at the barrier.
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Example 2.2. Consider weight minimization of a plane truss (Figure 2.12) under a  
displacement constraint by the penalty methods. The 10- member truss is subject to  
static loads as shown. The member areas constitute the design variables with specified  
lower and upper bounds.

Solution. With the number of design variables denoted by N = 10 , the constrained 
optimization problem is:

minimize the weight, W L A A
i

i
i

N

i
= +





= =

∑ ∑ρ
1

6

7

2

s.t. , , , ,6 1 2 102 2cm cm≤ = … ≤A i N
i

and Y- displacement at node  cm3 6≤  (2.109)

Let x  represent the unknown A i N
i
, , , ,= …1 2  (member cross sectional areas in 

cm2 ) which are the design variables. Here, the objective function is f Wx( ) = . Let 

, , , , , , ,U = ( )U U U U U U U U
T

1 2 3 4 5 6 7 8
 represent the vector of nodal displacements 

where the pairs U U
1 2
,( ) , U U U U

3 4 5 6
, , ,( ) ( )  and U U

7 8
,( )  are displacements in X -    

and Y - directions, respectively, at nodes 2, 3, 5 and 6 in Figure 2.12. Note that the nodal 
displacements are implicitly related to the member areas. FEM is used to solve for these 
displacements (Section 1.5.1, Chapter 1) via the discretized equilibrium equations:

 K U F[ ]{ } = { }  (2.110)

FIGURE 2.12 A 10- member plane truss; FE model with 2 dof / node in the two transverse 
directions, L cm= 150 , mass density =  2700E- 6 Kg cm/ 3 , Young’s modulus of elasticity 
E N cm= ×70 105 2/ , P KN

1
500= , P KN

2
100=  and P KN

3
100= .

 

 

 



118 Elements of Classical and Geometric Optimization

K ∈ ×n n  is the stiffness matrix obtained by the assembly of element stiffness 
matrices where n = 8  is the number of dofs of the plane truss. The elements of each 
element matrix K e  are functions of the design variables x and are given in Appendix 

B. F ∈n is the force vector 0 0 0 0 0 0
1 2 3

, , , , , , , ,P P P{ }T
. The CG method is used for 

unconstrained minimization of the augmented objective function ˆ ,f r x( ) :

 ˆ ,f r f rx x x( ) = ( ) + ( )ψ  (2.111)

where ψ x( )  is defined in the interior penalty function method as:

 ψ x( ) = −
−

−
−

−
−= =

∑ ∑
i i i

N

i
x x U1

10

1 4

1

6

1

10

1

6
 (2.112)

The CG method requires the gradient vector ∇f̂  with respect to x to solve the uncon-
strained problem for each r k

k
, , ,= …1 2 . This vector is given by:

 ∇ = ∇ + ∇f̂ f r ψ  (2.113)

where

 ∇ = ( )f L
T

ρ 1 1 1 1 1 2 2 2 2, , , , , , , , ,  (2.114)

and

 ∇ = −
−( )

+
−( )

+
−( )

ψ
i

i i ix x U

dU

dx

1

6

1

10

1

6
2 2

4

2
4  (2.115)

To obtain 
dU

dx
i

4 , we utilize Equation (2.110). Differentiating the equation with respect 

to x A
i i

=( )  gives:

 
∂[ ]
∂

{ } + = { } = …
K

U K U
x

d

dx
i N

i i

0 1 2, , , ,  

 

⇒ =
d

dx

dU

dx

dU

dx

dU

dx

dU

dx

dU

dx

dU

dx

dU

dx

dU

i i i i i i i i

U 1 2 3 4 5 6 7, , , , , , , 88

1

dx

x

i

T

i








= −
∂[ ]
∂

{ }−             K
K

U

 (2.116)

∂[ ]
∂

∈ ×
K

n n

x
i

  may be called the sensitivity matrix. It is given in Appendix B.
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With the available x� at each iteration, K  and 
∂[ ]
∂

K
x

i

 are computed. U is solved 

from Equation (2.110). Substitution in (2.116) yields 
d

dx
i

U
 from which 

dU

dx
i

4  is 

utilized in Equation (2.115) to compute the gradient ∇f̂ .
With r

0
1000=  as the initial choice, it is sequentially reduced as r r

k k
= −0 1

1
. . 

The initial vector x
0

1 6 6 6: ( , , , ) . .N T( ) = …  in sq cm  The evolution of the objective 
function f Wx( ) = , i.e. the weight of the truss, is shown in Figure 2.13.

Result obtained by the exterior penalty function method with the augmented 
objective function formulated as per Equation (2.89) is shown in Figure 2.14. Here 
also the unconstrained optimization problem at each iteration is solved by CG method. 
The search direction d

k
 is obtained by numerically differentiating of the augmented 

objective function as per the procedure outlined in Section 2.4.4.
■

Limitations of the penalty function methods
In both the penalty functions methods, the convergence to x*  is guaranteed when the 
unconstrained minimum is fairly close to x

k
*  at each r

k
. This is implicit in the proof 

for convergence. While the methods are easy to adapt computationally and robust to 

FIGURE 2.13 Weight optimization of a plane truss by interior penalty function method;   
r
0

1 0= .  and r r
k k

= −0 5
1

. ,x
0

1 6: . .N( ) =  sq cm , x* = (9 68 6 0 9 65 9 32 6 0 9 32 6 19 6 0. , . , . , . , . , . , . , . ,  
6.13,6.20)T and at the end of iterations,Y - displacement at node 3 = −5 82. . cm
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handle constrained optimization problems, even those of large sizes, they do have cer-
tain shortcomings. For example, choosing a starting point x

0
 in higher dimensional 

design space –  especially a feasible point for the interior penalty function method –  is 
far from trivial. Also, as mentioned earlier, choosing the initial value for the pen-
alty parameter r is also difficult for both the methods. The value may be selected 
as the ratio of the objective function to the penalty function. It may be preceded by 

a suitable scaling of the constraint functions g j m
j

x( ) = …, , , ,1 2  so that the mag-

nitude of the penalty function ψ x( )  is comparable to that of f x( ). This ensures 
that both the objective function and the constraints effectively participate in subse-
quent changes during the iterations. Note that with increasing r

k
, the Hessian of the 

augmented objective function ˆ ,f r x( )  may be ill- conditioned affecting the conver-
gence of the method. It is found that by combining the penalty term with Lagrange 
multipliers, ill- conditioning effects may be avoided. This has led to the development 
of the augmented Lagrangian method (Hestenes 1969, Powell 1969).

2.4.3  aUGmented laGranGian method (alm)

With equality constraints , , , ,h i l
i

x( ) = …1 2 , the augmented objective function is 
defined as:

FIGURE 2.14 Plane truss: weight optimization by exterior penalty function method; r
0

10= and 
r r

k k
= −5

1
, x N

0
1 12 0: . . .,( ) = sq cm x* . , . , . , . , . , . , . , . , . , .= ( )8 93 7 76 9 53 7 81 7 76 7 81 6 0 6 81 8 66 8 76

T
 

and at the end of iterations Y - displacement at node 3 = −5 63. . cm
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 ˆ , ,f r f h r h
k

i

l

i i k
i

l

µ µx x x x( ) = ( ) + ( ) + ( )
= =
∑ ∑

1 1

2  (2.117)

µ
i

i l, , , ,= …1 2  are the Lagrange multipliers (see the method of Lagrange multipliers, 
Section 1.6.1, Chapter 1). The KKT condition for optimality gives:

 ∇ ( ) + ∇ ( ) + ( )∇ ( ) =
= =
∑ ∑f h r h h
i

l

i i k
i

l

i i
x x x xk
*

k
*

k
*

k
*

1 1

2 0µ  

 ⇒ ∇ ( ) + + ( )( )∇ ( ) =
=
∑f r h h
i

l

i k i i
x x xk
*

k
*

k
*

1

2 0µ  (2.118)

The last equation leads to an update formula for the Lagrange multipliers at each 
iteration as:

 µ µ
i k i k k i k

r h
, ,+ = + ( )1

2 x*  (2.119)

Convergence of the method is proved in (Rockafellar 1974, Conn et al. 1991). In 

case of inequality constraints g j m
j

x( ) = …, , , ,1 2 , the augmented objective function 

takes the form:

 ˆ , , ,f r f g y r g y
k

j

m

j j j k
j

m

j j
λ x y x x x( ) = ( ) + ( ) +( ) + ( ) +( )

= =
∑ ∑

1

2

1

2
2

λ  (2.120)

y = = …{ }y j m
j
, , , ,1 2  is the vector of slack variables and λ  the vector of Lagrange 

multipliers for the inequality constraints. Here the number of design variables 
increases to n m+ . However, the slack variables may be eliminated by the following 

procedure (Rockafellar 1974). The gradient vector of ˆ , , ,f r
k

λ x y( )  with respect to 

the slack variables is:

 
∂ ( )

∂
= + ( ) +( )

ˆ , , ,f r

y
y r y g yk

j
j j k j j j

λ x y
x2 4 2λ  (2.121)

The optimality condition for the local minimum of ˆ , , ,f rµ k x y( )  with respect to y  is:

 λ
j j k j j j
y r y g y j m+ ( ) +( )( ) = = …2 0 1 22x , , , ,  (2.122)
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i.e. either y
j

= 0

 or y
r

g
j

j

k
j

2

2
= − − ( )

λ
x  (2.123)

Disregarding a negative value for y
j
2, we get a solution for the slack variables as:

 y
r

g
j

j

k
j

2 0
2

= − − ( )





max ,

λ
x  

 ⇒ ( ) + = ( ) −






g y g

rj j j

j

k

x x2

2
max ,

λ
 (2.124)

Thus the unconstrained optimization problem for each r
k

 (Equation 2.120) takes 
the form:

 

ˆ , , max ,f r f g
rk

j

m

j j

j

k

λ x x x( ) = ( ) + ( ) −
















=
∑

1 2
λ

λ

                   + ( ) −
















=
∑r g

rk
j

m

j

j

k1

2

2
max ,x

λ
 (2.125)

Similar to the update formula in Equation (2.119), one obtains an update for    

λ
j
 as:

 λ λ
λ

j k j k k j

j k

k

r g
r, ,

,max ,+ = + ( ) −





1
2

2
x  (2.126)

Thus, when both equality and inequality constraints apply, we combine Equations 
(2.117) and (2.125) to get the augmented objective function as:

 ˆ , , , maxf r f h r h g
k

i

l

i i k
i

l

i
j

m

j j
µ λ x x x x x( ) = ( ) + ( ) + ( ) +

= = =
∑ ∑ ∑

1 1

2

1

µ λ (( ) −














,

λ
j

k
r2

 

 + ( ) −
















=
∑r g

rk
j

m

j

j

k1

2

2
max ,x

λ
 (2.127)
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With an initial choice of µ, λ  and r, ALM obtains the solution to the original problem 
starting from an infeasible region similar to the exterior penalty function method. 
Note that the iterative updates in Equations (2.119) and (2.126) help in giving the 
optimal Lagrange multipliers µ*  and λ*  at the end of the iterative process.

Example 2.3. Consider the constrained optimization of the Rosen- Suzuki function 
(Vanderplaats 1973):

 minimize f x x x x x xx( ) = ( ) − ( ) + ( ) − ( ) + ( ) − ( )2 2 21 5 1 2 5 2 2 3 21 3  

 + ( ) + ( ) +x x2 4 7 4 50  (2.128a)

 s t. . h x x x x x x x x
1

2 2 2 21 1 2 2 3 3 4 4 8 0x( ) = ( ) + ( ) + ( ) − ( ) + ( ) + ( ) + ( ) − ( ) − =  

 h x x x x x x
2

2 2 22 1 2 1 2 2 3 4 5 0x( ) = ( ) + ( ) + ( ) − ( ) + ( ) − ( ) − =  

 g x x x x x xx( ) = ( ) − ( ) + ( ) + ( ) + ( ) − ( ) − ≤2 2 2 21 1 2 2 3 2 4 4 10 0  (2.128b,c,d)

Solution. Let µ
1
 and µ

2
 be the Lagrange multipliers associated with the two equality 

constraints h
1

x( )  and h
2

x( )  respectively. Let λ  be the corresponding multiplier 
for  the inequality constraint g x( ). The augmented objective function (Equation 
2.127) is:

 ˆ , , , , max ,f r f h r h g
k

i
i i k

i
i

µ µ λ µ λ
1 2

1

2

1

2
2x x x x x( ) = ( ) + ( ) + ( ) + ( )

= =
∑ ∑ −−







λ

2r
k

 

 + ( ) −














 r g

rk
k

max ,x λ
2

2

 (2.129)

The iterative process is started with x
0 0

1 1 1 1 1= ( ) =, , , ,
T

r  and µ µ λ
1 2

0 0 0, , , ,( ) = ( ) .   

The unconstrained optimization is performed using the CG method. The 
constrained optimization results are given in Figures 2.15 and 2.16 which match 
with the known exact solution (Vanderplaats 1973). The multipliers µ µ

1 2
 and  are 

non- zero (see Figure 2.17a) during the optimization process, even as λ  is zero 
(see Figure 2.17b).
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FIGURE 2.15 Augmented Lagrangian method along with CG method; Rosen- Suzuki 
function (Vanderplaats 1973), evolution of f x( )  with respect to r ir i

k k
= =−1

1 2 3 4 5, , , , , ,  
optimum value f x*( ) ≅ 6 0. .

FIGURE 2.16 Augmented Lagrangian method along with CG method; Rosen- Suzuki function 
(Vanderplaats 1973), evolutions of design variables with respect to r ir i

k k
= =−1

1 2 3 4 5, , , , , ;  the 
constrained optimum, x* , , ,= −( )0 1 2 1

T
.
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■

FIGURE 2.17 Augmented Lagrangian method along with CG method; Rosen- Suzuki function 
(Vanderplaats 1973), evolution of Lagrange multipliers with respect to r ir i

k k
= =−1

1 2 3 4 5, , , , , ;
(a) multipliers µ

1
and µ

2
 corresponding to the equality constraints h

1
x( )  and h

2
x( )  

respectively and (b) multiplier λ  corresponding to the inequality constraint g x( ).
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2.4.4  seqUential qUadratic proGramminG method

In the iterative methods presented earlier for constrained optimization, we 
have used at each iteration one or the other unconstrained optimization method 
described in Section 2.2. Specifically, Newton’s method gives the solution in a 
single step if the objective function is quadratic. Otherwise, Newton’s method 
iteratively solves the problem using quadratic approximations to f x( )  at each 
iteration. This may be regarded as the basis for the sequential quadratic pro-
gramming (SQP) method [Powell 1978], which we now describe. A constrained 
problem with a quadratic objective function and linear constraints is called a 
quadratic programming problem. The SQP method reduces a nonlinear optimiza-
tion problem into a sequence of such quadratic problems during the iteration 
process. Suppose that an objective function f C a bx( ) ∈ ( )2 ,  is approximated by 
a locally quadratic function f̂ x( )  around any x̂  using a truncated Taylor series 
expansion (Section 1.2, Chapter 1):

 
f f f f

T Tx x x x x x x x

H x x
( ) ≅ ( ) = ( ) + ∇ ( ) −( ) + −( )

( ) −

ˆ ˆ ˆ ˆ ˆ

ˆ

1

2
           ˆ̂x( )  (2.130a)

H x̂( ) ∈ ×n n  is the Hessian and ∇ ( ) ∈f nx̂   the gradient of f x( ) . Let , , ,..,h i l
i

= 1 2  

and , , , ,g j m
j

= …1 2  respectively be the given equality and inequality constraints. 

These constraints, which are generally nonlinear, are linearized as:

 
i i i

Th h i lx x x x x( ) = ( ) + ∇ ( ) −( ) = = …ˆ ˆ ˆ , , , ,0 1 2  

 
j j j

Tg g j mx x x x x( ) = ( ) + ∇ ( ) −( ) ≤ = …ˆ ˆ ˆ , , , ,0 1 2  (2.130b,c)

At each iteration, the unconstrained problem is represented by the Lagrangian 
, ,L x λ µ( )  (see Equation 1.79 in Chapter 1):

 

, ,L f
i

l

i i
j

m

j j
x x x xλ µ( ) = ( ) + ( ) + ( )

= =
∑ ∑

1 1

µ λH G 
 

(2.131)

µ
i

i l, , ,..,= 1 2  and λ
j

j m, , ,..,= 1 2  are the Lagrange multipliers. Using the KKT 

conditions ∇ =
x
L 0, ∇ =µ L 0  and ∇ =λL 0  which are all linear, one may obtain 

the unconstrained optimum, say, by a linear programming (LP) method (to be discussed 
in the next section of this chapter). Iterations follow with a new quadratic problem 
formed at each iteration and solved for a refined unconstrained optimum. This process, 
upon convergence (Schlttkowski 1982), may approach the constrained optimum of the 
original problem. In this respect, an effective variation may be to use a penalty param-
eter in forming the Lagrangian (Equation 2.131) similar to the ALM method.
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(2.132)

The introduction of the penalty parameter r enables handling the inequality 
constraints with ease. Further, the unconstrained optimization problem in Equation 
(2.132) may be solved by any of the descent methods described in this chapter. If 
Newton’s method is applied, the unconstrained minimum for each quadratic problem 
(2.132) may be obtained as:

 x x x
U x x
* = − ∇  ∇{ }−

2
1

L L  (2.133)

∇x
2 L  is the Hessian and ∇

x
L the gradient of the Lagrangian , , ,L rx λ µ( ).    

For an expeditious implementation of the method, a finite difference scheme 
[Hilderbrand 1968] may be employed to numerically obtain ∇

x
L in this expres-

sion to remain as bold and ∇x
2 L . For instance, for a continuous function 

G x( )  with ∇ =
∂
∂

∂
∂

…
∂
∂







G

G

x

G

x

G

x
n

T

1 2

, , , , the first- order derivatives may be 

obtained by central difference formula as:

 
∂
∂

=
+ ∆( ) − − ∆( )

∆
G

x

G x x x x G x x x x

x
i

i i n i i n

i

1 1

2

, .., , .., , .., , ..,    

          O+ ∆( ) = …x i n
i
2 1 2, , , ,

 (2.134)

Similarly, with ∇ =
∂

∂ ∂
≤ ≤2

2

1G
G

x x
i j n

i j

, , , the second- order derivatives may be 

computed as:

 
∂
∂

=
+ ∆( ) − ( ) +2

2

1 1 1
2G

x

G x x x x G x x x G x

i

i i n i n
, .., , .., , .., , .., ,     ..., , ..,x x x

x
x

i i n

i

i

− ∆( )
∆

+ ∆( )

 

          O

2

2

 

(2.135a)
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∂

∂ ∂
=

+ ∆ + ∆( ) − + ∆

2

1 1

G

x x

G x x x x x x G x x x

i j

i i j j n i i
, .., , ., ., , .., , .    ,, .,

, .., , ., ., , ..,

x x x

G x x x x x x G x x
j j n

i i j j n i

− ∆( ) −

− ∆ + ∆( ) + − ∆
1 1

   xx x x x

x x

i j j n

i j

, ., ., − ∆( )
∆ ∆4

 

 + ∆ ∆( ) O x x
i j
2 2,  (2.135b)

O (.) denotes the order of approximation (Section 1.6, Chapter 1). The following is an 
illustration on the SQP applied to a nonlinear optimization problem.

Example 2.4. We consider Himmelblau function for minimization by SQP.

minimize: f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11

 s t. . ,  x x
1 2

0≥  (2.136)

Solution. The Himmelblau function (Figure 2.18) has the following local minima:

case i) x x
1 1

3 2 0* *,= ( ) ( ) =T
fwith 

case ii) x x
2 2

3 584 1 848 0* *. , .= −( ) ( ) =T
fwith 

case iii) x x
3 3

2 805 3 131 0* *. , .= −( ) ( ) =T
f with 

case iv) x x
4 4

3 779 3 283 0* *. , .= − −( ) ( ) =T
fwith 

The augmented Lagrangian of the quadratic problem at the kth  iteration is:

 L r x
r

r x
r

fx x, , max , max ,λ( ) = ( ) + ( ) −












+ ( ) −


 λ

λ λ
1

1 11
2

1
2











2

 

 + ( ) −












+ ( ) −













λ

λ λ
2

2 2

2

2
2

2
2

max , max ,x
r

r x
r

 (2.137)

With x
0

2 2= − −( ),
T

 from an infeasible region, λ λ
1 0 2 0

0 0
, ,

, ,= ( )T
 and r = 1,    

the solution obtained by SQP is shown in Figures 2.19 and 2.20. Newton’s method 
is utilized to optimize the unconstrained problem in Equation (2.137). ∇ ( )xL x  and 
∇ ( )x

2 L x  are evaluated at each iteration using the central difference formulae in 
Equations (2.134) and (2.135).
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FIGURE 2.18 Himmelblau function; f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11 : (a) 3D view and   

(b) planar view.
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FIGURE 2.19 Optimization by SQP method along with Newton’s method, Himmelblau 
function: f x x x xx( ) = + −( ) + + −( )1 2

2
2

1
2

2

2
7 11 , evolution of f x( )  with iterations, 

x
0

3 1= −( ),  
T

 and the constrained optimum x* T= ( )3 2,   with f Ex*( ) = −1 369 12. .

FIGURE 2.20 Optimization of Himmelblau function: f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11  

by SQP along with Newton’s method, evolution of x* ,= ( )3 2 
T

, case (i) with iterations, 
x

0
3 1= −( ),  

T
.
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FIGURE 2.21a–b Optimization by SQP method along with Newton’s method, Himmelblau 

function: f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11 ,  evolution of λ

1
and λ

2
with iterations, 

(a) case 2: x
2

3 584 1 848* . , . ,= −( ) 
T

 (b) case 3: x
3

2 805 3 131* . , .= −( ) 
T

and (c) case 4: 

x
4

3 779 3 283* . , . .= − −( )T
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FIGURE 2.21c (Continued)

The other possible local optima can also be obtained with appropriate changes in 
the inequality constraints. That is, with g x g x

1 1 2 2
0 0x x( ) = − ≤ ( ) = ≤,  and , 

x*
2

3 584 1 848= −( ). , .
T

 is obtained and with g x g x
1 1 2 2

0 0x x( ) = ≤ ( ) = − ≤,  and ,   
x

3
2 805 3 131* . , .= −( )T

 is obtained. The last solution . , .*x
4

3 779 3 283= − −( )T
is 

obtained with g x g x
1 1 2 2

0 0x x( ) = ≤ ( ) = ≤,  and . The starting point x
0

 is assumed 
to be the same as − −( )2 2,

T
 in all the four cases. The Lagrange multipliers λ

1
 and λ

2
 

remain inactive during iterations in the first case, i.e. while obtaining x*
1

3 2= ( ),  
T

.   
This means that the inequality constraints are always satisfied (with λ λ

1 2
0, = ) at 

each iteration. For all the other cases, either one of the two or both multipliers are 
active during the iteration process (see Figure 2.21).

■

2.5  LINEAR PROGRAMMING (LP)

An LP method applies to optimization problems characterized by an objective 
function and constraints which are linear. In the last section on SQP, a mention is 
made of solving a quadratic programming problem by LP after linearizing the quad-
ratic objective function and the constraints. While the initial contributions in this field 
are due to Hitchcock (1941), Kantorovich (1942), and Stigler (1945), it is Dantzig 
(1951,1963) who is the main architect of the simplex method, a unique way of solving 
an LP problem. The motivation behind his work was the need for maximal resource 
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utilization during World War II. Thus, the LP by itself is an innovative and revo-
lutionary development (Hillier and Lieberman 1990) in the history of optimization 
and is effectively utilized in diverse fields including financial management (Dowling 
1991), transportation (Hitchcock 1941, Dantzig and Ramser 1951, Bazaraa et al. 
1990), operations research and management science (Hillier and Lieberman 1995). 
Our goal in this section is to present only a brief outline of the LP with main focus 
on its useful role in solving a general nonlinear optimization problem. A standard LP 
problem is of the form:

 min imize f Tx c x( ) =  

 s. t. Ax b=  

 x b≥ ≥0 0,  (2.138)

c �∈n  is a column vector, A ∈ ×m n a rectangular coefficient matrix and b ∈m a 
column vector, x ∈n  is the vector of design variables –  whose solution is sought 
for by the LP –  and m  is the number of constraints of equality and/ or inequality type. 
To bring the inequality constraints into the format of Equation (2.138), we often need 
slack variables for inequality constraints of ‘less than or equal to’ (LE) type and sur-
plus variables for those of ‘greater than or equal to’ (GE) type. Introduction of these 
variables is meant to transform inequality constraints into the equality (EQ) type. 
For example, let two inequalities a x b

1 1 1
≤  and a x b

2 2 2
≥  be given. The two may be 

converted to equality constraints of the form:

 a x y b
1 1 1 1

+ =  and  

 a x y b y y
2 2 2 2 1 2

0− = ≥�   with ,  (2.139)

n  includes these additional variables too and thus in general, we have m n<  in an LP 
problem. The case with m n=  has no necessity for optimization when it possesses 
a unique solution. The case is of no interest if it has no solution in which case the 
constraints are inconsistent. When m n> , some of the constraints are redundant and 
may be discarded leading to the case of m n= . The following illustration helps in a 
quick understanding of the fundamentals relevant to the LP formulation and its solu-
tion methodology.

Example 2.5. Suppose that two products P
1
 and P

2
 in a manufacturing unit yield 

profit as:

 f x y x y,( ) = +13 23  (2.140)
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Here x  and y  are the number of manufactured items of P
1
 and P

2
 respectively. 

Each product consumes three types of resources, say, a , b  and c . The resources are 
limited by the constraints:

 5 15 480x y a+ ≤ –constraint on the resource   

 4 4 160x y b+ ≤ –constraint on the resource   

 35 20 1190x y c+ ≤ − constraint on the resource   (2.141)

It is required to find the solution for a maximum profit. We must of course 
have x yand ≥ 0 .

Solution. The example is indeed amenable to an easy graphical solution. Figure 2.22 
shows the three constraints, the intersecting points (extreme points) of these constraints 
and the feasible region which is the hatched area OABCDO in Figure 2.22a.

The common region bounded by the given constraints is called the feasible  
region S = = ≥{ }x Ax b x| , 0 . In our two- dimensional case, S  is a polygon. In n   
dimensions, it is known as a polytope. Geometrically, S  is the hyperspace formed out  
of the intersection of the half- spaces defined by the constraints Ax b= and x ≥ 0 .  
Note that the feasible region is convex. That is, if x

1
 and x

2
 are two feasible points  

FIGURE 2.22a LP problem in Example 2.5; feasible region shown as the hatched area, 
constraints shown in dark lines along with extreme points.
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in the feasible region, we find that with 0 1≤ ≤λ , x x x= + −( )λ λ
1 2

1  is also a feas-
ible point on the line joining x

1
 and x

2
. A vertex (or a corner point) x� in a polytope  

is an extreme point if x x x= + −( )λ λ
1 2

1  with x x
1 2
, ∈S  and 0 1< <λ  implies  

that x x x= =
1 2

.
For the example, the value of the objective function f  is zero at the origin. The 

objective function values at the other vertices A B C, ,  and D  are 736, 800, 660 
and 442 respectively. The equi- potential curves passing through these vertices are 
shown in Figure 2.22b in dotted lines. As we move from the origin towards the ver-
tices A B C, ,  and D , the objective function attains a maximum x*  at the vertex 
B , which is obviously the optimal solution. At the vertex B , the two constraints 
4 4 160x y+ ≤  and 5 15 480x y+ ≤  are found to be active and binding. The gradient 
vectors (normals) to these active constraints are marked ‘1’ and ‘2’ in Figure 2.22b. 
The gradient ∇ ( )f x*  at B ,which points towards the steepest ascent direction d, lies 
within the sector formed by the normals ‘1’ and ‘2’. In the general n - dimensional 
case, this implies that the convex cone spanned by the outer normals to the binding 
constraints contains d. This is the requirement of KKT conditions for optimality 
(Section 1.6.3, Chapter 1). Solutions by such graphical means, though insightful in 
the 2D case, may not be feasible for more than two dimensions. The simplex method 

FIGURE 2.22b Graphical solution to LP problem in Example 2.5; dark lines –  constraints, 
dotted lines –  equi- potential curves of the objective function passing through the extreme 
points.
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(Dantzig 1963, Wolfe 1959) is a powerful computational technique for solving LP 
problems as in (2.138) with a large number of design variables. In Example 2.5, the 
inequality constraints are of LE type. They may be written in the standard form by 
adding slack variables as:

 5 15 480x y z a+ + = − constraint on resource   

 4 4 160x y w b+ + = − constriant on resource    

 35 20 119x y v c+ + = − constriant on resource    (2.142a)

z w,   and v  are non- negative slack variables. With the introduction of these slack 
variables, , , , ,x = ( )x y z w v

T
. Here n = 5  and m = 3 . We also have:

 

A =
5 15 1 0 0

4 4 0 1 0

335 20 0 0 1

















=  A I
n b

 

  

with

        A I
n b

=
















=
5 15

4 4

35 20

1 0

and
0

0 1 0

0 0 1

















 

 b = ( )480 160 1190
T

 (2.142b)

The m  constraint equations Ax b=  may be written in the following partitioned form:

 A x I x b
n n b b

+ =  (2.143)

xn = ( )x y
T

,  and xb = ( )z w v
T

, , . Ib  is a m m×  non- singular sub- matrix of A  
consisting of linearly independent columns. Note that the subscript ‘ b ’ is in no way 
related the vector b  in Equation (2.143). The original constraint equations recast in 
the standard form readily yields one possible solution , , , ,x = ( )0 0 480 160 1190

T
. One 

such solution is known as the basic solution which is obtained by setting variables x  
and y  to zero and solving Ax b=  for the remaining variables z w,  and v . That is:

 x I b A x
b b n n

= −( )−1  (2.144)

This is possible since A  is in a canonical form‡‡ and the rank of A  is equal to m .   
The variables x

b
z w v= ( ) = ( ) ∈, , , ,480 160 1190 m  are called the basic variables 

‡‡ Canonical form of a matrix
 It is a unique representation of a matrix. The triangular form, Jordan canonical form (not covered in this 

book) and row echelon form are some of the canonical forms for a matrix.
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with respect to the bases which are the columns of I
b

. The remaining variables 
x

n
x y= ( ) = ( ) ∈ −, ,0 0 n m  are known as the non- basic variables. The basic solu-

tion is a basic feasible solution if all the basic variables satisfy the non- negativity 
requirement. x

b
 here is a basic feasible solution. A basic feasible solution which 

optimizes f x( )  is the optimal basic feasible solution. Note that each vertex or the 
extreme point in an n - dimensional polytope is a basic feasible solution. This is since 
a polytope is a closed convex set (Dantzig 1963). Here the word ‘closed’ is a qualifier 
to the convex set due to the equality sign in LE or GE type of inequalities holding 
good. The optimum occurs only at one of the extreme points. Proof for this funda-
mental result in an LP is as follows.

Proof: Since the feasible region S is a convex polytope, it is non- empty, closed and 
bounded. Let x

i
i K, , , ,= …1 2  be the K extreme points on S. Any other point x ∈S  

may be expressed as a convex combination of the extreme points:

 x x= ≥ =
= =
∑ ∑
i

K

i i i
i

K

i
a a a

1 1

0 1,   and  (2.145)

If x x* , , , ,∈ = …{ }i
i K1 2  such that f f i Kx xi

* max , , , ,( ) = ( ) = …{ }1 2 , then 

one has:

 f aT T

i

K

i i
x c x c x( ) = =

=
∑

1

 

 = ( )
=
∑
i

K

i
T

i
a

1

c x  

 = ( )
=
∑
i

K

i i
a f

1

x  

 ≤ ( )
=
∑
i

K

i
a f

1

x*  

 ≤ ( )
=
∑f a
i

K

i
x*

1

 

 ≤ ( )f x*  (2.146)

Therefore, f fx x( ) ≤ ( )*  for any x ∈S  and the proof is complete.
♦
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For a large LP problem, searching for an optimum among all the possible basic 
solutions may not be an easy task. In fact, for a matrix of size n m× , the number of 
possible basic solutions is n

cm
 which may be an exceedingly large number even for 

relatively small n  and m . The simplex method is an iterative technique that proceeds 
with a known basic feasible solution (one extreme point) to the next basic feasible 
solution (another extreme point). Therefore, the method examines the set of extreme 
points in the convex set, finally yielding the optimal feasible solution in a finite 
number of steps. Referring back to the example for which the initial basic feasible 
solution x = ( )0 0 480 160 1190, , , ,

T
, the following simplex Tableau shows the result.

The last row in the above tableau corresponds to the objective function 
– f x y= − = − −c xT 13 23 . Here the maximization of f  is written as an equivalent of 
the minimization of  – f . With x y, = 0  in the basic solution, the initial value of − f  
is zero (shown in the last row and the last column). This corresponds to the extreme 
point O, the origin in Figure 2.22b. The next task in the simplex method is to examine 
the elements of vector c�  in the last row of the tableau and to pick a non- basic variable 

x
n j,

 for which the coefficient c
j
 is negatively maximum. The coefficient c

2
23= −  

(enclosed within a box in the last row of the tableau) corresponding to the non- basic 
variable y  is most negative. The value of − f  gets reduced if y  is increased from 
the present zero value to any positive quantity while keeping the other non- basic 
variable x  at zero. This criterion chooses y  to enter the basic variable set from the 
nonbasic variable set. We simultaneously move a basic variable among x

b
z w v= ( ), ,  

to the nonbasic variable set x
n

 in place of y . This is decided by an observation   

of the elements in the column vector A
n j

T

,
= ( )15 4 20     with j = 2  corresponding 

to y . While y  may be made as large as possible, a feasibility requires the basic 

variables x
b

 to remain non- negative. From Table 2.4, the corresponding values of the 
basic variables in terms of y  are:

 z y= −480 15  

 w y= −160 4  

 v y= −1190 20  (2.147)

The largest possible value to which y  may be increased is the minimum of the ratios 

480 15/ , 160/ 4 and 1190/ 20. The minimum ratio is 
480

15
32= , corresponding to the 

row of the non- basic variable z . Hence z  leaves x
b

 giving way to y . The new x
b

 is 
y w v( )  and the new x

n
 is x z( ) . By pivoting operation on the columns of A , the 

columns corresponding to the new x
b

 are brought to the form of I
b

. This gives the 
new basic solution as y w v= = =32 32 550, ,   as shown in Table 2.5. The objective 
function value – f  reduces from earlier zero to −736  corresponding to the extreme 
point A in Figure 2.22b.

Following similar arguments for the next iteration, one seeks for a possible new  
non- basic variable to enter x

b
 in place of an existing one. This attempt finds x   
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replacing w in x
b

 and w  entering x
n

. Table 2.6 shows the result at the end of the 2nd  
iteration which is indeed the final step giving − = −f 800  with x = 12  and y = 28 .   
This is the optimal basic feasible solution corresponding to the extreme point B in  
Figure 2.22b.

The stopping criterion for the simplex method is that no more entries in the last 
row corresponding to the objective function are negative. It implies that no more 
positive increase in any of the design variables has an effect on further minimiza-
tion of f x( ).

The following example shows the simplex method applied to a nonlinear opti-
mization problem via SQP. It also illustrates the way to handle equality constraints 
in an LP. This type of constraint may require the introduction of additional artificial 
variables so as to bring the matrix A  into a canonical form. Note that the canonical 
form helps in quickly picking up a basic feasible solution required to initiate the sim-
plex method. Otherwise, one needs to execute pivoting operations to reduce A  to the 
canonical form.

TABLE 2.5
LP Problem in Example 2.5 and Simplex Method Tableau at the First Iteration

Basic
variables xb

Original
variables Slack variables bi (RHS 

elements)x y z w v

z 1

3

1 1

15

0 0 32

w 8

3

0
−

4

15

1 0 32

v 85

3

0
−

4

3

0 1 550

–f −16 3/ 0 23 15/ 0 0 –736

TABLE 2.4
LP Problem in Example 2.5 and Simplex Method Tableau at Zeroth Iteration

Basic variables

Original 
variables Slack variables bi (RHS 

elements)x y z y v

z 5 15 1 0 0 480
w 4   4 0 1 0 160
v 35 20 0 0 1 1190
–f –13 –23 0 0 0 0
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Example 2.6. We refer to the problem in Example 2.4 of minimizing the Himmelblau 

function f x x x xx( ) = + −( ) + + −( )1 2
2

2

1
2

2

2
7 11 . The task is to find the optimum solu-

tion by applying the simplex method to the linear KKT conditions derived from an 
equivalent SQP to f x( ).

Solution. Equation (2.130a) gives a quadratic approximation f̂ x( )  to f x( )  around 
any x̂ . The gradient vector ∇f  and the Hessian matrix H  are:

 ∇ =
+ −( ) + + −( )

+ −( ) + + −( )



f

x x x x x

x x x x x

2 7 4 11

4 7 2 11

1 2
2

1 1
2

2

2 1 2
2

1
2

2








 

 H =
+ − +( )
+( ) +

12 4 42 4

4 12 4

1
2

2 1 2

1 2 2
2

x x x x

x x x x
11

26−













 (2.148)

In terms of H  and ∇ ( )f x̂ , the objective function is:

 ˆ ˆ ˆ ˆf f T Tx x x x x H x x( ) = ∇ −( ) + −( ) −( )1

2
 (2.149)

f x̂( )  which is a part of f̂ x( )  (Equation 2.130a) is ignored in finding the optimum since  
it is a constant. One needs to minimize f x( )  under the constraint x x≥ ≡ − ≤0 0 .    

Employing the Lagrange multipliers λ= ( )λ λ
1 2
,  

T
 to the inequality constraint, one 

gets the following KKT conditions for optimality (Equation 1.53 in Chapter 1):

TABLE 2.6
LP Problem in Example 2.5 and Simplex Method Tableau at Second Iteration

Basic
variables

Original
variables Slack variables bi (RHS 

elements)x y z w v

y 0 1 1
10

−
1
8

0 28

x 1 0
−

1
10

3
8

0 12

v 0 0 3
2

0 1 210

–f 0 0 1 2 0 –800
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 ∇ = ∇ −L fx x xˆ  

 ⇒ ∇ + −( ) − =f TH x x̂ λ 0  

 ⇒ − = −∇ + =H x H x bT Tfλ ˆ  (2.150a)

 x ≥ 0  (2.150b)

 λ ≥ 0  (2.150c)

And finally, the complementary slackness condition:

 λx = 0   (2.150d)

Equations (2.150b– c) indicate the non- negativity requirement for the variables x  
and λ. Note that while the KKT conditions (2.150a– c) are all linear, the comple-
mentary slackness condition (2.150d) is nonlinear. However, the condition can be 
accommodated in the simplex method as a qualitative constraint, i.e., by ensuring that 
an active constraint i.e., x

i
= 0  has non- zero multiplier λ

i
 and vice- versa. That is, 

when one of the pair ( , )λ
i i

x  is in the basis set, it is required that the other one is in 
the non- basis set. With this LP setting, a quadratic approximation around ˆ ,x = ( )2 1

T
 

has the KKT conditions:

 
10 12 1 0

12 6 0 1

1

2

1

2

−
− −



















x

x

λ
λ










=






88

46
 (2.151)

The last equation is in the form of equality constraints. The simplex method needs 
a basic feasible solution to start the iterative process. A basic feasible solution may 

be readily obtained by introducing artificial variables y = ( )y y
T

1 2
,  into the two 

equations with y y
1 2

0, ≥ . This renders the coefficient matrix transformed into a 
canonical form as:

 
10 12 1 0 1 0

12 6 0 1

−
− − 0 1

88

46

1

2

1

2

1

2



































=





x

x

y

y

λ
λ 

 (2.152)
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To use the simplex method, we introduce a linear objective function f  as a sum of the  
two artificial variables y

1
 and y

2
. That is, we minimize:

 f = +y y
1 2

 

 ⇒ = − − + +f 134 22 6
1 2 1 2

x x λ λ  (2.153)

The last expression for f  is obtained from Equation (2.152) by expressing y y
1 2

and  
in terms of the other variables. Now, with the initial feasible solution y

1
88=  and 

y
2

46=  and f = 134 , the simplex method is applied to obtain the optimal solution. 
The stopping criterion for the method is to render f  to a zero value with y

1
 and 

y
2

 relegated to the non- basic set where the two variables are simultaneously zero. 
Table 2.7 shows the optimal basic feasible solution x = ( )2 9216 5 2941. , . 

T
 for the 

first quadratic approximation to f x( )  at ˆ ,x = ( )2 1
T

.
With the solution vector x  obtained at the end of each approximation, the quad-

ratic approximation to f x( )  is reformulated and the simplex method repeated. 
Figure 2.23 shows the final result reaching the optimum x* T= ( )3 2,  at the end of ten 
quadratic approximations to f x( ) .

■

Note that one may use artificial variables in an LP problem where a regular objective 
function is already present. A two phase method is generally employed in such a case. 
With the readily available starting solution in terms of the artificial variables, simplex 
method is initiated in phase I to obtain a feasible solution in terms of the original 
design variables. This is carried out by minimizing the sum of the artificial variables 
as in the last Example 2.6. Using this feasible solution (with the artificial variables 
discarded) as a starting point, phase II applies the simplex method to minimize the 
original objective function.

TABLE 2.7
LP Problem in Example 2.6 and Simplex Method Tableau at 2nd (final) 
Iteration of the First Quadratic Approximation at x = (2,1)T 

Basic
variables

Original
variables

Lagrange 
multipliers

Additional 
variables bi (RHS 

elements)x1 x2 λ1 λ2 y1 y2

x1 0 1
−

1
17

5
102

1
17

−
5

102

2.9216

x2 1 0
−

1
34

−
1

17
1

34
1

17

5.2941

f 0 0 0 0 1 1 0
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A bountiful of literature is available (Murty 1983, Hillier and Lieberman 1995,  
Gärtner and Matoušek 2006) on LP and its wide usage in industry for solving large  
scale optimization problems. Also, many algorithms have progressively emerged  
to improve the computational efficiency of the simplex method. The revised simplex 
(Dantzig and Thapa 2003), interior point (Karmarkar 1984, Roos et al. 2006)  
and dual simplex methods (Lemke 1954, Florian et al. 1981, Goldfarb 1985) are  
such extensions to the original simplex. In particular, the interior point method of  
Karmarkar (1984) is a landmark development in LP and is polynomial (Appendix B)  
in computing time. Dual simplex method solves an LP problem by transforming it  
into its dual. Solving a dual problem may be advantageous in certain cases particu-
larly when the number of design variables is far less than the number of constraints.

2.6  METHOD OF GENERALIZED REDUCED GRADIENTS

In the context of nonlinear optimization, the method of generalized reduced gradients 
(GRG) mimics the LP problem. As with the LP problem, the solution vector x ∈n  
is divided into two components –  vectors of basic and non- basic variables. If slack 
variables are introduced to transform the inequality constraints to equality constraints, 
x  contains both the original and these slack variables. As developed by Wolfe (1963), 

FIGURE 2.23 Solution to Example 2.6 by simplex method via SQP, optimum x* ,= ( )3 2
T

(see the result in Figure 2.20 obtained by SQP plus Newton’s method).
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the method applies to a nonlinear optimization problem with linear constraints. It 
has been extended to problems with nonlinear constraints by Abadie and Carpenter 
(1969). Let us define a nonlinear optimization problem as:

Minimize f x( )

s.t. h i m
i

x( ) = = …0 1 2, , , ,  and

 x x x
l u

≤ ≤  (2.154)

 x
I
 and x

u
 are the lower and upper bounds for x. Assume that the nonlinear objective 

and constraint functions are differentiable. Using the equality constraints, we express 
m  of the variables in x in terms of the remaining n m−  variables. x is thus split as   

,x xb
T

nb
T ( ) . xb

m∈  is called the vector of basic (dependent) variables and xnb
n m∈ −  

the vector of non- basic (independent) variables as in the LP case. Thus, if x̂  is a feas-
ible point during the iteration process, expressing x

b
 in terms of x

nb
 is possible, say, 

in the neighbourhood of x̂  by the implicit function theorem. The theorem requires 

that 
∂
∂













∈ ×h

xb

m m �  is non- singular for all xb  in the above neighbourhood. 
∂
∂













h

xb

at 

x  is an m m×  matrix and may be reduced to an identity matrix by pivoting as in the 
simplex method (see the definition of matrix A

b
 in Equation 2.142b). It follows that 

the optimization problem in Equation (2.154) reduces to:

minimize f̂
nb

x( )

 s. t. x x x
l,nb nb u,nb

≤ ≤  (2.155)

where ˆ ,f fx x x xnb b nb nb( ) = ( )( )  and x xl nb,
⊂ l and x xu nb u,

⊂  are respectively the 

lower and upper limits for the non- basic variables. GRG aims at iteratively solving a 
sequence of such reduced dimensional unconstrained problems as defined in the last 

equation. Writing 
∂
∂

=
∂
∂

∂
∂













h

x

h

x

h

xb nb

, the differential dh  is given by:

 d d d d d
b

b
nb

nb b nb
h

h

x
x

h

x
x B x C x=

∂
∂

+
∂

∂
= +  (2.156a)
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Here B ∈ ×m m  and C ∈ × −( )m n m . With the equality constraints active, i.e. with 

h x xb nb,( ) = 0  in the neighbourhood of x , one has:

 d d d
b nb

h x B C x= ⇒ = − −0 1  (2.156b)

Similarly, if we write df
f

d
f

d

T T

=
∂
∂







+

∂
∂






x
x

x
x

b
b

nb
nb , then

df
f

d
f

d
b

T

nb
n

T

nb
= −

∂
∂







+

∂
∂







−

x
B C x

x
x1 �   (from Equation 2.156b)

= −
∂
∂







+

∂
∂



















−f f
d

b

T

nb

T

nbx
B C

x
x1

 ⇒ = −
∂
∂







+

∂
∂



















−df

d

f f

nb b

T

nb

T T

x x
B C

x
1  (2.157)

df

d
nb

x
 is called the reduced gradient in n m−  dimensional space. It may be denoted 

by 
df

d

ˆ

xnb
 and used to optimize f̂ xnb( )  in the neighbourhood of ˆ ˆx xnb ⊂ . With an 

optimum xnb  so obtained, we proceed to the next iteration to formulate and solve 
another such reduced dimensional optimization problem. The procedure is repeated 
to finally realize the optimum x*  for the original problem. However, obtaining 

f̂ xnb( )  from f x( )  in an explicit form at each iteration may be difficult. Using the 

reduced gradient in Equation (2.157), computations may be conveniently carried out 
in the original format of n  variables itself (Rao 1984, Belegundu and Chandrupatla 
1999, Bazaraa et al. 2006). The following illustration explains the iterative steps in 
GRG with equality constraints.

Example 2.7. Consider optimization of the following function (Rao 1996) 

with x = ( )x x x
T

1 2 3
, , :
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minimize f x x x xx( ) = −( ) + −( )1 2

2

2 3

4

s. t.

 h x x xx( ) = +( ) + − =
1 2

2
3
41 3 0  

and x i x x x x i
l u( ) = − ≤ ≤ = ( )3 3

1 2 3
, , ,

 i = 1 2 3, , .  (2.158)

Solution. Here n = 3  and m = 1. Let us start the iterations with the feasible point 
ˆ . , ,x = −( )2 6 2 2

T
 and h x̂( ) = 0 . The starting value of f ˆ .x( ) = 21 16 . The gradient 

vector ∇
x

 is:

 ∇ =
∂
∂

= −( ) − −( ) + −( ) − −( )( )x x
f

f
x x x x x x x x

T

, ,2 2 4 4
1 2 1 2 2 3

3

2 3

3  (2.159)

and

 
∇ = +( ) xh x x x x1 2 4

2
2

1 2 3
3, ,  

 (2.160)

Iterations start with the selection of the basic and non- basic variables. Here,  
x

3
 is chosen to be the basic variable for all iterations. Otherwise, selection of the 

basic variables is usually made via pivoting operation on A x= ∇ h .   

TABLE 2.8
Gradient Vectors of the Objective Function and Constraints at the Feasible 
Point x T

 = 2.6, 2, 2−( )  at the Start of the First Iteration

∇x h

B
h
x

h
b

xb
= =

∂
∂

∇ C
h

x
h

nb
xnb

= =
∂

∂
∇

Basic variables Non- basic variables

xb = x3 xnb = (x1, x2)
T

A C= [ ]B B = [ ]32 C = −[ ]5 10 4.
T

∇x f ∂
∂

= ∇ = [ ]f
f

b
bx x 0

∂
∂

= ∇
f

f
nb

nx x

= −[ ]9 2 9 2. , . T
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Table 2.8 shows these variables along with the vector ∇x f  and the matrix A   
evaluated at x x= ˆ.

The reduced gradient from Equation (2.157) is:

 
df

d

f f

nb b

T

nb

T T
ˆ

. , .
x

C
x

= −
∂
∂







+

∂
∂



















= −−

x
B 1 9 2 9 22( )T

 (2.161)

The steepest descent direction d xnb  for xnb  is −
df

d

ˆ

xnb
. Equation (2.156b) gives the   

descent direction dxb  for the basic variables as d dx Bb nb= − = −−1 4 4275C x . .  To 
proceed with the unconstrained optimization in the original scenario of n  variables, 

we  use d d dx
T

x
T

b nb
= ( )� � �

T

 for a line search. With the specified lower and upper 

bounds  xl  and xu  for x in Equation (2.158), it is convenient to fix a suitable step size 

s > 0 .  That is, with x x
0

= ˆ ,  the maximum step size snb  for the non- basic variables 

with respect to xl nb,
 and xu nb,

 may be fixed as:

s
x i x i

d inb

l nb nb

nb

=
( ) − ( )

( )
, ,0 , if d i

nb
x ( ) < 0  and

 
s

x i x i

d inb

u nb nb

nb

=
( ) − ( )

( )
, ,0 , if 

 
d i

nb
x ( ) > 0

 
(2.162)

Similarly the maximum step size sb  for the basic variables is estimated. The smaller 
of sb  and snb may be taken as the maximum step size s

max
 and the update is obtained 

with d d
0

=  as:

 x x d
1 0 0

= + s
max

 (2.163)

The update is accepted for the next iteration provided f fx x
1 0

( )( ) < . In the pre-

sent problem, ,min s sb nb( ) =  0.5435. Thus, with .s
min

= 0 5435 , x
1
 as obtained from 

(2.163) gives f fx x
1 0

74 42( ) = >. ( ) . The update is obviously not acceptable and 

a line search is performed to find a suitable step size s s
max

∈ ,0  such that an 
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unconstrained minimum is obtained. With s  =  0.2182 obtained by line search (see 
Equation 2.2) –  the new x

1
 is:

 x
1

0 59 0 01 1 03= − −( ). , . , . 
T

 (2.164)

The update gives f fx x
1 0

1 52( ) = <. ( )  and is acceptable. Yet, the update needs a 

check for feasibility before proceeding to the next iteration. The feasibility require-

ment is to see that h x
1( )  is less than, say, ε = −10 3 . With h x

1
2 45( ) = − .  in this case, 

x
1
 is not feasible. Here, a strategy is adopted to make it feasible by keeping x

nb
 

fixed whilst suitably varying �x
b

x=
3

 so that the feasibility condition h
b nb
x , x( ) ≅ ε  

is satisfied (see Figure 2.24). This is equivalent to solving the nonlinear equations 

h
b nb
x , x( ) = 0  for x

b
 by a Newton- Raphson method. Starting with �x

b,
.

0
1 03= , the 

method iteratively yields x
b new,

 as:

 x x x
b new b new b, ,

= + ∆  (2.165a)

where

 ∆x x ,
b b nb

J h= − ( )−1 x  (2.165b)

FIGURE 2.24 GRG method, correction (if required) to the basic variables during an iteration 
by Newton- Raphson method to satisfy max , , ,h i

i
x

1
1 2( ) < = …ε
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J ∈ ×m m  is the Jacobian matrix given by the partial gradient of h  with respect to 

�x
b

. Here m = 1. The method converges with h x
1( ) < ε  within five iterations. In   

general, with a greater number of equality constraints, the method is performed until 

max , , ,h
i

ix
1

1 2( ) < = …ε . In the present problem, with the above correction to x
b

 

and the feasibility condition satisfied, it marks the end of a successful iteration.
Figure 2.25 shows the evolution of the objective function with iterations and its 

final minimum value f x*( ) = 0. The optimum point is , , , ,* * *x x x
1 2 3

1 1 1( ) = ( )  whose 

convergence with iterations is shown in Figure 2.26.
■

In references of Lasdon et al. (1973,1978), readers may find a detailed discussion on 
the development and testing of the GRG method. A comparative study of nonlinear 
programming methods including the GRG may be found in Floudas and Pardalos 
(1990) and Yan and Ma (2001).

2.7  METHOD OF FEASIBLE DIRECTIONS

At any iteration, the first step in an optimization problem is to fix a suit-
able direction dk

n∈  at the current point xk
n∈ . One then proceeds to 

find the update x x dk k k ks+ = +
1

 where sk  is the step size. For a minimiza-

tion problem, dk  needs to be a descent direction in that ∇( ) ≤x df
T

0  (see 

FIGURE 2.25 Minimization of the function in Example 2.7 by GRG method, evolution of 
objective function with iterations (attaining the minimum value of 1.11E- 05 at the end).
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Section 1.6, Chapter 1). For a constrained problem, it is required that d
k
 be both 

a descent and a feasible direction. Figure 2.27 shows the cone of such directions 

 : : , ,d x d x d x dT
k

T
k

T
k kf g g∇ ( ) < ∇ ( ) ≤ ∇ ( ) ≤{ }0 0 0

1 2
in a two- dimensional case. 

In the figure, two inequality constraints are active, i.e. g
1

0x( ) =  and g
2

0x( ) =  at 
x while g

3
x( )  is not. Note that the necessary optimality KKT condition in Equation 

1.77 (Chapter 1) is satisfied at x if   is empty, i.e. there exists no vector  d at x  
which is both a descent and a feasible direction. Now, suppose that only inequality 
constraints are present in the problem. Starting at a feasible point x

0
 with ∇ ( ) ≤g x

0
0 ,   

one may arrive, at the end of a line search, at x
k
 where some p  of m  inequality 

constraints are active similar to the case in Figure 2.27.

Define the active set I i g i p m
i k

= ( ) = = … ≤{ }: , , , , .x 0 1 2  A favorable d
k
 is obvi-

ously the one that a) reduces the objective function and b) keeps the update xk +1
 

within the feasible region with ∇ ( ) ≤ ∈g i I
i
T x dk 0, . The method of feasible 

directions (Zoutendijk 1960) is a direction- finding technique. The method proposes 
a sub- optimization problem at an iteration k,  if one encounters at least one active 

constraint g
i

xk( ) = 0, i m∈[ ]1 2, ,.., . The formulation introduces a parmeter α  as:

 α = ∇ ( ) ∇ ( ) ∈{ }max , ,f g i IT
k k i

T
k k

x d x d  (2.166)

FIGURE 2.26 Minimization of the function in Example 2.7 by GRG method, evolution of 
design variables x x x

1 2 3
,   and  with iterations.
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The sub- optimization problem is stated as:

Minimize α

s. t.

∇ ( ) ≤f T
k k

x d α  and

 ∇ ( ) ≤ ∈g i I
i
T

k k
x d α,  for each  

 − ≤ ≤ = …1 1 1 2d j n
j k,

, , ,  (2.167)

The sub- optimization realizes an optimum α < 0,  since a negative α  ensures by   

its definition that ∇ ( )f T x dk k  and ,∇ ( ) ∈g i I
i
T x dk k  are both negative maxima, 

thereby rendering d
k
 the most effective descent and feasible direction. The bounds 

on the elements of d
k
 in Equation (2.167) lead to the usual normalization of a vector 

one adopts during an iterative process. Note that this subprogram may fit into an 
LP problem with the attendant access to the solution techniques associated with LP. 
Once such a direction d

k
 is determined by solving the LP problem, a line search 

is performed to find the largest possible step size sk  followed by an evaluation of 
the update x

k+1
. The procedure is repeated till convergence is achieved in finding 

x*. While the method is originally developed by Zoutendijk (1960) for problems 
with inequality constraints, the method is as well applicable to those with equality 
constraints (Vanderplaats 1984, Bazaara et al. 2006).

FIGURE 2.27 Constrained optimization, d –  a descent and feasible direction, shade region –    
intersection of descent and feasible cones, f(x) = c is an equipotential curve.
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Example 2.8. We consider a reliability problem (Ang and Tang 1984, Melchers 2007,  
Maymon 1998) where it is required to assess the probability of failure of a structure –   
in this case, an axially loaded rod shown in Figure 2.28. It is given that the material  
properties and the external load are random variables and have their mean values spe-
cified along with their standard deviations. From the description of the problem that  
follows, we find that the problem of knowing the failure probability may be posed  
as an optimization problem and we solve it by the method of feasible directions. The  
design variables are the cross- sectional area A  of the rod, the strength variable S

Y
 in  

stress units and the axial load T  which follow a normal distribution. Table 2.9 gives  
the details of the three RVs.

Solution. As shown in Figure 2.28, the system under the given load is safe if 

S
T

AY
> . Define g S T A S

T

AY Y
, ,( ) = − . In reliability theory, it is customary to call 

g S T A
Y

, ,( ) = 0  the failure surface which demarcates the design variable space into 

safe and failure regions (see Figure 2.28a).

FIGURE 2.28 (a) An axially loaded rod; (b) failure surface g S T A
Y
, ,( ) = 0, load effect 

P
T

A
= .
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It is straightforward to show that an index β  for reliability is given by the 
shortest distance from the origin to the failure surface in the standard normal space 

(Figure 2.29); see Appendix B for details. P
f

, the probability of failure, is given by 

Φ −( )β  where Φ (.) is the CDF of a standard normal RV.§§ The complement of the 

probability of failure is the reliability given by 1−( )P
f

.

If Z Z
1 2
,  and Z

3
 are the standard normal RVs corresponding to S T

Y
,   and A,    

then:

Z
S m

Z
T mY S

S

T

T

Y

Y

1 2
=

−
=

−
σ σ

, ,

 Z
A m

A

A
3

=
−
σ

 (2.168)

TABLE 2.9
Parameters of the Normal Distribution Defining the 
Three RVs Sy, T and A

RV Mean Standard deviation

S
Y m N cm

SY
= 2500 2/ σ

SY
N cm= 75 2/

T m N
T

= 4166 σ
T

N= 125

A m cm
A

= 2 2 σ
A

= 0.04 cm2

§§ Standard normal RV
 A normal RV with zero mean and unit variance is known as a standard normal RV. Thus, if Z is a 

standard normal RV, its pdf is given by:

  
i)

 The CDF 
Z

z( )  of Z is commonly denoted by Φ z( ) . Note that a normal RV X ~ , µ σ( )  may be 
transformed to a standard normal RV Z by the transformation Z X= −( )µ σ/ . See Appendix 1 for 
notes on transformation of RVs.
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The failure surface in terms of the standard normals may be written as:

 g Z Z Z Z m Z m Z m
S S A A T TY Y1 2 3 1 3 2

0, ,( ) = +( ) +( ) − +( ) =σ σ σ  (2.169)

Now, to find the reliability index β = + +Z Z Z
1
2

2
2

3
2 , we formulate the following 

optimization problem:

minimize f Z Z Z Z Z Z
1 2 3 1

2
2
2

3
2, ,( ) = + +

s. t.

 σ σ σ
S S A A T TY Y

Z m Z m Z m
1 3 2

0+( ) +( ) − +( ) ≤  (2.170)

The optimization problem, being of a relatively low dimension, may be conveni-
ently solved by, say, the Lagrange multipliers method (Section 1.6, Chapter 1). 
However, we use this example to illustrate the application of the method of feas-
ible directions.

FIGURE 2.29 f s
S YY

( ) , f
P
(p)– normal pdfs of S

Y
 and the load effect P respectively; failure 

surface g(Z
1
, Z) = 0 where Z

1
 and Z are standard normals of S

Y
 and P, respectively.
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Start of iterations

Let x
0

2000 4200 2 1= ( ) = ( )S T A
Y

T
, , , , .  with corresponding z

0
 = (Z

1
, Z

2
, Z

3
)T = 

(–6.67,0.272,2.5)T. Also, .f z
0

50 81( ) = . Since x
0

 lies on the failure surface, the con-

straint g Z Z Z
1 2 3
, ,( )  is active. We now proceed to find the descent and feasible direc-

tion d
0
. The sub- optimization problem (Equation 2.167) is formulated as:

minimize α

s. t.

∇ ( ) ≤f T z d
0 0

α
 
and

 ∇ ( ) ≤gT z d
0 0

α  

 − ≤ ≤ =1 1 1 2 3
0

d j
j,

, , ,  (2.171)

Here ∇ ( ) = ( )f Z Z Z
T

z 2 2 2
1 2 3
, ,  and  ∇ ( ) = { +( )g Z m

S A AY
z σ σ

3
,

− +( )}σ σ σ
T A S S

T

Y Y
Z m,  

1
. Substituting d

i i
= −s 1  to keep the components of the 

search direction non- negative, the problem in Equation (2.171) in an explicit form is:

minimize α
s. t.

 2 2 2 2 0
1 1 2 2 3 3 1 2 3 1

Z Z Z Z Z Z ys s s+ + − − + +( ) + =α  

 σ σ σ σ σ α
S A A T A S SY Y Y

Z m Z m
3 1 2 1 3

+( ) − + +( ) −s s s  

 − +( ) − + +( ){ } + =σ σ σ σ σ
S A A T A S SY Y Y

Z m Z m y
3 1 2

0  

 s
1 3

2+ =y  

 s
2 4

2+ =y  

 s
3 5

2+ =y  

 s
i

≥ 0  (2.172)
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The last Equation (2.172) represents an LP problem. y i
i
, , , , ,= 1 2 3 4 5  are slack  

variables. Thus, one may obtain a solution by combining the method of feasible  
directions with the simplex method. To this end, we proceed as follows.
From the first constraint in (2.172), α  may be expressed as:

 α = + + − + +( ) +2 2 2 2
1 1 2 2 3 3 1 2 3 1

Z Z Z Z Z Z ys s s  (2.173)

Also, the first two constraints could be merged into one by eliminating α . With this 
simplification, the simplex Tableu in Table 2.10 shows the initial set- up to solve the 
LP problem by the simplex method (see Section 2.5).

Solving the above LP problem, one obtains s
1

2= ,s
2

1 856= . , s
3

0=  and 
α = −25 67. .  This result gives the descent and feasible direction for the original 
problem in (2.170) as d

0
1 0 856 1= −( ), . ,

T
. A line search with this direction gives the 

step size s
0

 as 3.27. The update z
1

 is obtained as z d
0 0 0

3 4 3 07 0 77+ = − −( )s
T

. , . , . .  

This corresponds to x
1 1

2245 4550 1 97= ( ) = ( )S T A
Y

T
, , , , . . The point z

1
 is away from 

the failure surface with g S T A S T
AY Y

, , .( ) = − = ≠64 65 0 . Here x
1
 is corrected so 

as to satisfy the constraint surface before the next iteration begins with the direction- 
finding step. This is realized by keeping Z

2
 and Z

3
 fixed and adjusting Z

1
 so as to 

satisfy g Z Z Z
1 2 3

0, ,( ) =  which yields z
1

2 522 3 07 0 77= −( ). , . , .
T

.

Second iteration

At this stage, f z
1

16 38( ) = .  and so the distance from ′O  to the failure surface is    

β = = + + =z
1 1

2
2
2

3
2Z Z Z 4.047. As before, we again formulate the sub- optimization 

problem of minimizing α  as defined in Equation (2.164). Table 2.11 shows the sim-
plex Tableu detailing the initial set- up for this iteration.

The solution to the LP problem is s
1

0 7508= . , s
2

0= , s
3

0=  and α = −3 79. .  
Hence, the descent and feasible direction for the original problem in (2.170) is  

TABLE 2.10
First Iteration and the Initial Simplex Tableau for Solving the LP Problem in 
Example 2.8

Basic
variables

Original variables Slack variables
bi (RHS 
elements)S1 S2 S3 y1 y2 y3 y4 y5

y
2

170.84 –125.54 75 –1 1 0 0 0 108.6
y

3
1 0 0 0 0 1 0 0 2

y
4

0 1 0 0 0 0 1 0 2
y

5
0 0 1 0 0 0 0 1 2

α –13.34 0.544 5 1 0 0 0 0 – 3.9
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d
1

0 2492 1 1= − − −( ). , ,
T

. A line search with this direction yields s
1

= 0.8106. This 
is followed by evaluation of the update z

2
2 724 2 259 1 581= − −( ). , . , .

T
 which cor-

responds to x
2 1

2296 4448 1 936= ( ) = ( )S T A
Y

T T
, , , , . . At the end of the second iter-

ation, f z
2

15 02( ) = .  and the distance of ′O  to the failure surface at z
2
 is 3.876 

(Figure 2.29). The point x
2

 lies almost on the failure surface so that the constraint 

g S T A
Y

, ,( )  remains active.

Third iteration
The simplex tableau at the beginning of this iteration is given in the Table 2.12.

Solving the LP problem gives s
1

2= , s
2

1 4954= . , s
3

0=  and 
α = −4 13.  so that d

2
1 0 4954 1= −( ), . ,

T
. A line search gives s

2
= 0.011. 

The update z
3

2 713 2 265 1 592= − −( ). , . , .
T

. The corresponding update 

x
3

2296 53 4449 13 1 936= ( ) = ( )S T A
Y

T T
, , . , . , . . f z

3
15 025( ) is .  and the distance of ′O    

(Figure 2.29) to the failure surface at z �3
 is 3.8762.

TABLE 2.11
Second Iteration and the Initial Simplex Tableau for Solving the LP Problem 
in Example 2.8

Basic
variables

Original variables Slack variables bi (RHS 
elements)S1 S2 S3 y1 y2 y3 y4 y5

y
2

152.73 –131.14 93.97 – 1 1 0 0 0 114.68
y

3
1 0 0 0 0 1 0 0 2

y
4

0 1 0 0 0 0 1 0 2
y

5
0 0 1 0 0 0 0 1 2

α –5.04 6.14 – 1.54 1 0 0 0 0 – 0.444

TABLE 2.12
Third Iteration and the Initial Simplex Tableau for Solving the LP Problem in 
Example 2.8

Basic
variables

Original variables Slack variables bi (RHS 
elements)S1 S2 S3 y1 y2 y3 y4 y5

y
2

150.71 –129.52 94.99 –1 1 0 0 0 107.74
y

3
1 0 0 0 0 1 0 0 2

y
4

0 1 0 0 0 0 1 0 2
y

5
0 0 1 0 0 0 0 1 2

α –5.45 4.52 – 3.16 1 0 0 0 0 – 4.09
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Comparison with the result of the previous iteration indicates that convergence 
is achieved and the reliability index β  (Figure 2.29) may be taken as 3.8762. The 

probability of failure P
f

 is Φ −( ) =β 5.305E- 5 (from a standard normal distribution 

table –  for example in Ang and Tang [1975].  ■

Solution to Example 2.8 by Lagrange multipliers method:
Suppose that the solution to the optimization problem in Equation (2.170) is 
attempted by the Lagrange multiplier method. In this case, the constrained minimiza-
tion problem is transformed to an unconstrained one as:

 L l f gz z z,( ) = ( ) + ( )λ  (2.174)

where λ  is the Lagrange multiplier. Then setting the gradients (derivatives with 
respect to z and λ ) to zero, one gets the KKT optimality conditions:

∂
∂

=
∂
∂

=
∂
∂

=
L

Z

L

Z

L

Z
1 2 3

0 0 0, ,   and

 
∂
∂

=
L

λ
0  (2.175)

If explicitly expressed in terms of the given parameters, the optimality conditions take 
the form of coupled (and nonlinear) algebraic equations:

 2 0
1

Z
Sy

− =λσ  

 2 0
2 3

Z Z m
A A T

σ λσ+( )+ =  

 2 0
3 3

2
2

Z Z m Z m
A A T T A

σ λ σ σ+( ) − +( ) =  

 σ σ σ
Sy Sy A A T T

Z m Z m Z m
1 3 2

0*+( ) +( ) − +( ) =  (2.176a- d)

Let the initial vector x
0

2000 4200 2 1be , , , , .S T A
Y

T T( ) = ( ) . The corresponding 

vector z
0
 in the standard normal space is Z Z Z

T T

1 2 3
6 67 0 272 2 5, , . , . , .( ) = −( ) .   

The nonlinear algebraic equations in (2.176) are solved by the Newton- 
Raphson method. Convergence is achieved in five iterations. The optimal 

solution is Z Z Z
T T

1 2 3
2 637 2 674 1 675* * *, , . , . , .( ) = − −( )  and the corresponding 
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vector , , . , . , .S T A
Y( ) = ( )2302 23 4450 2 1 933 . The solution for the reliability 

index β is z
1 1

2
2
2

3
2 3 8638= + + =Z Z Z .  and the probability of failure is 

P
f

E= −( ) = −( ) = −φ β φ 3 8638 5 58 5. . . The result is close to the one obtained by the 
method of feasible directions.  ■

Solution to Example 2.8 by MC simulation:
For this example, given the expression for the failure surface g S T A S T

AY Y
, ,( ) = − ,   

P
f  is obtainable by direct simulation of the RVs (see Appendix 1 for simulation 

of RVs). Given the probability distributions of the RVs, the realizations of the 
three normal RVs S T A

Y
,  and  are numerically obtained. The relative frequency of   

occurrences of failure events S T
AY

− < 0  is thus computed. As the number of 

realizations increases, the relative frequency should approach the P
f

. One such simu-

lation with one hundred thousand realizations of the RVs is shown in Figure 2.30 

and P
f

 is obtained as 5 05E − . Here, the generation of realizations for normal RVs 

warrants a special mention. In Chapter 1, MC simulation of a uniformly distributed 

FIGURE 2.30 Solution to Example 2.8 by MC simulation; number of simulations = 1 05E , 

probability of failure P
f

= −E5 05 .
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(UD) RV X U≈ −( )0 1 is described. RVs of other probability distributions may be 
obtained from X  by an appropriate transformation. Box- Muller transformation is 
utilized in this example to simulate the three normal RVs. See Appendix 1 for a 
description of the transformation.

■

A solution by the method of feasible directions (Topkis and Veinott 1967, Ravindran 
et al. 2007) is known to be susceptible to oscillations due to sudden changes introduced 
in the search direction. This in turn may prevent the method from converging. One 
remedy may be to have I  as a set of near- active constraints (instead of a strictly 

active set) defined as: I i g i p m
i k

: : , , , ,x( ) + ≥ = … ≤{ }ε 0 1 2  for some small ε > 0  

and proceed with the iterative steps described earlier. Topkis and Veinott0 (1967) 
in fact modified the method in order to ensure convergence by involving both 
the active and inactive constraints in the direction- finding step. With the modi-
fication incorporated into the step, the sub- optimization problem in (2.167) is 
restated as:

minimize α

s. t.

∇ ( ) ≤f T
k k

x d α  and

 ∇ ( ) ≤ + ( ) ∈g g i m
i
T

k k i k
x d xα ,  for each  

 − ≤ ≤ = …1 1 1 2d j n
j k,

, , ,  (2.177)

Adding g
i

xk( )  to each constraint prevents sudden changes in the search direction and   

assures convergence of the method.

2.8  METHOD OF GRADIENT PROJECTION

Similar to the method of feasible directions, the gradient projection is also a 
direction- finding technique. The method was proposed by Rosen (1960) initially 
for problems with linear constraints and later extended to nonlinear problems 
(Rosen 1961). In either case, the method, as its name indicates, employs a projec-
tion matrix to operate on the negative gradient −∇ ( )f x  for obtaining d which is 
both a descent and a feasible direction. A matrix P is called a projection matrix 
if PT = P (symmetry) and PP = P. For an identity matrix I of the same size as P,   
I = P is also a projection matrix. For example, let h x Cx D l( ) = − = ∈0  be a    

 

 

 

 

  

 

 

 



161Classical Derivative-based Optimization Techniques

given set of l  active equality constraints with C ∈ ×l n and D ∈l . Also    

let Q = ∇ ( ) = …  ∈ ×h i l
i

n lx , , , ,1 2   with each ∇ ( )h
i

x  being an n - dimesional 

vector. Then note that P I Q Q Q Q= − [ ]



 ∈− ×T T n n1   is a projection matrix.  

 
With x  chosen to satisfy the equality constraints and thus being a feasible point, the 
gradient projection method claims that d P x= − ∇ ( )f  is a descent direction, which 
is also a feasible direction.

Proof: We formulate the following sub- optimization problem to derive d :

minimize 

s. t.

 Q dT = 0 and  

 d dT = 1  (2.178)

Using Lagrange multipliers, we restate the problem as an unconstrained one as:

 minimize L fT T T T= ∇ ( ) + + −( )d x Q d d dλ µ 1  (2.179)

λ ∈ l  and µ ∈  are the Lagrange multipliers. The optimality conditions are:

 
∂
∂

= ⇒ ∇ ( ) + + =
L

f
d

x Q d0 λ µ2 0  

 
∂
∂

= ⇒ =
L T

λ
0 0Q d  

 
∂
∂

= ⇒ − =
L T

µ
0 1 0d d  (2.180a,b,c)

From these conditions, we obtain:

 d x Q= ∇ ( ) +( )( )1

2µ
f λ from Equation 2.180a  (2.181a)

 ⇒ = ∇ ( ) +( ) = ≠( )Q d Q x QT T f λ 0 from Equation band ce2 180 0. sin µ  
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 ⇒ = −[ ] ∇ ( )−λ Q Q Q xT T f
1

 (2.181b)

Substituting λ  in Equation (2.181a) gives:

 d I Q Q Q Q x= − − [ ]



 ∇ ( )−T T f

1
 

 = − ∇ ( )P xf  (2.182)

Now, we have:

 ∇ ( ) = −∇ ( ) ∇ ( )f f f
Tx d x P xT

 

 = −∇ ( ) ∇ ( )f f
Tx PP x  

 = −∇ ( ) ∇ ( ) = − ∇ ( ) <f f f
T Tx P P x P x 2

0  (2.183)

Hence d P x= − ∇ ( )f  is a descent direction. Further, d  satisfies Q dT = 0  (Equation 
2.180b). Hence if d ≠ 0,  P  projects the gradient of the objective function onto the 
null space of Q.  This is equivalent to:

 ∇ ( ) ∇ ( ) … ∇ ( )



 =h h h

T T

l

T

1 2
0x x x d  

 ⇒ ∇ ( ) = ∇ ( ) = … ∇ ( ) =h h h
T T

l

T

1 2
0 0 0x d x d x d, ,  (2.184)

which ensures that d  is also a feasible direction. The proof is complete. ♦

Geometric interpretation of the projection matrix P
In the case of unconstrained optimization, the entire hyperspace in n  is a feasible 
region and one may proceed with the steepest descent direction −∇ ( )f x  and try for 
an improved feasible solution. But in the presence of constraints, −∇ ( )f x  may no 
longer be the feasible direction. The gradient projection method uses the matrix P to 
project −∇ ( )f x  on to the binding constraints so as to move along d ,  the descent and 
feasible direction (Figure 2.31).

Suppose that inequality constraints are also present in the form   

g mx Ax B( ) = − ≤ ∈0  .  Let p  out of m constraints be active such that    

g
j

x( ) = = … ∈ …[ ]0 1 2
1 2

, , , , , , ,j j j j j m
p i
 with . Combined with the equality constraints   

h i l
i

x( ) = …, , , ,1 2 , we now have Q = ∇ ( ) = … ∇ ( ) h i l g
i j

x x, , , , , ,1 2   
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j j j j
p

n l p= … ∈
× +( )

1 2
, , ,  . Moreover, P I Q Q Q Q= − [ ]



 ∈− ×T T n n1   and    

d P x= − ∇ ( )f .

Nonlinear constraints
The method may be applied to problems with nonlinear constraints of equality or 
inequality types (Rosen 1961, Haug and Arora 1979). In this case, the projected gra-
dient produces a direction d  that is tangential to the nonlinear constraint surface. 
Hence, it is required to provide a correction to the new point x

k+1
 so that it is brought 

back to the constraint surface and becomes a feasible point. The correction strategy is 
used in the earlier methods also –  see Figure 2.24 for the GRG method. The following 
example illustrates the method with a nonlinear constraint.

Example 2.9. We apply the gradient projection method to the reliability problem in 
Example 2.8.

Solution. The optimization problem as defined in Equation (2.170) has n = 3  and 

l = 1 . The gradients ∇ ( ) = ( )f Z Z Z
T

z 2 2 2
1 2 3
, , . The constraint surface is given by 

g Z m Z m Z m h
S S A A T TY Y

z z( ) = +( ) +( ) − +( ) = = ( )σ σ σ
1 3 2

0  and 

∇ ( ) = +( ) − +( ){ }h Z m Z m
S A A T A S S

T

Y Y Y
z σ σ σ σ σ

3 1
, ,  .

FIGURE 2.31 Method of gradient projection: equality constraints: h
1

x( ) and h
2

x( ) with 
h

1
x( ) being the binding constraint at x

k
, descent and feasible direction d P x= − ∇ ( )f  so that 

∇ ( ) =h
T

1
0x d .
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1st iteration

Let us start with a feasible point z
0 1 2 3

6 67 0 272 2 5= ( ) = −( )Z Z Z
T T

, , . , . , .  

corresponding to a choice of S T A
Y

T
, , , , .( ) = ( )2000 4200 2 1 . One has Q z= ∇ ( )h     

and P  is given by:

P I Q Q Q QT T= − [ ]





−1

 = −[ . . .0 4703 0 4204 0 2690  

0 4204 0 6663 0 2135. . .

 −0 2690 0 2135 0 8634. . . ]  (2.185)

I  is a 3 3×  identity matrix. P  is also a symmetric 3 3×  matrix with 
PP P=  by definition. The normalized d P z= − ∇ ( )f  is obtained as 
d = −( )0 633 0 358 0 687. , . , .  

T
. The direction is orthogonal to ∇ ( )h z  as is evi-

dent from ∇ ( ) = −h Ez d 3 5527. - 14 ≅ 0  (similar to Equation 2.184) and hence the 
projected gradient lies on the hyperplane tangential at z

0
 to the failure surface 

g z( ) = 0 . Proceeding in this direction, we get the step size by a line search as 

s = 5 .84 and the update z z d
1 0 1 0

2 975 2 361 1 511= + = − −( )s
T

. , . , .  which corres-

ponds to , , . , . , .S T A
Y

T( ) = ( )2276 9 4461 1 2 1 . The update is away from the non-

linear failure surface as expected. A correction is applied as in Figure 2.24 and the 

revised update is z
1

2 666 2 361 1 511= − −( ). , . , .
T

. The distance of ′O  (Figure 2.29) 

to the failure surface at z
1

is Z Z Z
1
2

2
2

3
2+ + = 3.8683. At the end of just the first 

iteration, the distance is fairly close to the final value of β  obtained by the method 
of feasible directions.

Second and third iterations
Repeating the above steps, we obtain the updates  z

2
 and z

3
 as ( . , . ,−2 642 2 271 

−1 671. )T  and − −( )2 637 2 274 1 675. , . , . 
T

 respectively. Corresponding values for 
the distance of ′O  (Figure 2.29) to the failure surface are almost identical, which 
is 3.8638. With this value accepted as the reliability index β , the probability 
of failure is 5.58E- 5. The final point on the failure surface corresponding to z

3
 

is , , . , . , .S T A
Y

T( ) = ( )2302 2 4450 2 1 933  ■
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Additional features of the gradient projection method
During the iterative process, it is possible that d = 0 , i.e., − ∇ ( ) =P xf 0 . Since 

d I Q Q Q Q x= − − [ ]



 ∇ ( ) =−T T1

f 0  and λ = −[ ] ∇ ( )−
Q Q Q xT T1

f  (see Equations 

2.181b and 2.182), one has:

 d x Q= ⇒ ∇ ( ) =0 f λ  

 ⇒ −∇ ( ) = ∇ ( ) + ∇ ( )
=

=
+∑ ∑f h g

i

l

i i
j

j

l j j

p

x x x
1

1

λ λ  (2.186)

If all λ
l j p

j j+ =, , ,..,1 2  are non- negative, the KKT conditions for optimality are satis-

fied and the iterative process is terminated. In case any of the multipliers λ
l j+  is nega-

tive, it means that the corresponding ∇ ( )g
j

x  makes an obtuse angle with −∇ ( )f x  

and the KKT condition is violated (Figure 1.25 in Chapter 1). Hence the gradient 

∇ ( )g
j

x  is discarded from the Q  matrix and not considered in the next iteration. 

Readers may find further insights on the method in Fox (1982) and Iusem (2003) 
regarding its convergence issues and applications to different test problems.

CONCLUDING REMARKS

The subject of optimization has a long history, often with deep intellectual 
underpinnings. We have presented only a brief overview of the early developments 
which are particularly gradient- based. While no attempt is made in presenting these 
methods in any sequential order, emphasis is placed more on highlighting the innova-
tive concepts underlying these methods. Methods that are suited for unconstrained 
optimization problems are first described, followed by a few of those that involve 
constraints. All real- world optimization problems are generally constrained. Also, 
constrained optimization methods are invariably iterative in nature. These methods, 
in general, transform the original problem to an unconstrained one over each iter-
ation. This obviously signifies the role of unconstrained optimization methods 
in solving a problem with constraints. Among these methods, the CG and quasi- 
Newton methods such as DFP and BFGS which are based on the concept of conju-
gacy, stand out as powerful algorithms. The CG method merits a special mention. 
The technique originally developed to solve large scale linear systems of equations 
AX b=  was effectively made use of in the CG method for non- linear optimization 

problems. Similarly, the development of LP solution methods also ranks high in 
the echelon of schemes for constrained optimization problems. These LP methods 
may have been originally meant for only solving problems with linear objective 
functions and constraints. Nevertheless, they do find an echo in several constrained 
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optimization techniques such as sequential linear programming and the method of 
feasible directions.

These traditional derivative- based methods have doubtless provided an orientation 
for subsequent research effort leading to a large assortment of numerical optimiza-
tion techniques. Some of these efforts culminated in the emergence of derivative- free 
methods. These include the evolutionary /  stochastic search methods that are some-
times (or, perhaps oftentimes) motivated by sociological or biological phenomena. It 
is this last class of methods that we deal with in Chapter 3.

NOTATIONS

A  area of cross section an axially loaded rod in Example 2.8
A

i
 areas of cross- section of members in the plane truss in 

Figure 2.12
A  a matrix
b  a column vector (Equation 2.10)
B  and �C  matrices in Equation (2.156a) and Table 2.8
c a real constant
d Q

i
i n, , , ,= … −0 1 1  - conjugate directions

f x( )  scalar objective function in x ∈n

f Z Z Z
1 2 3
, ,( )  objective function in terms of standard normals (Example 2.8)

ˆ ,f r x( )  augmented objective function (Equation 2.89)
ˆ , ,f µ r xk( )  augmented objective function (Equation 2.117)

ˆ , , ,f λ r x yk( )  augmented objective function (Equations 2.120 and 2.127)

Fe  elemental heat source vector in Example 2.1
F  –  heat source vector in the FE model (Example 2.1)
–   force vector in the FE model (Example 2.2)

k  approximation to an inverse of Hessian matrix ≈( )−Hk
1 , 

at the kth  iteration (in DFP method)

�g
k

 gradient vector at the  kth  iteration

g
j

x( ) , j = …1 2, ,  inequality constraints

g
j

jx( ) =, , ,1 2  linear inequality constraints in the SQP method

g S T A
Y

, ,( )  failure surface (Example 2.8)

g Z Z Z
1 2 3
, ,( )  failure surface in terms of standard normals (Example 2.8)

 equality constraints

h
i

x( ) , i = …1 2, ,  linear equality constraints in the SQP method

H x= ∇ ( )2 f  the Hessian matrix
Hk  approximation to the Hessian matrix in the BFGS method
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I i g x

i p m
i k

: ,

, , ,
( ) ={

= … ≤ }
0

1 2  an active set of constraints in the method of feasible 
directions

I  identity matrix
J  Jacobian matrix in Example 2.7

k
x

and k
y

 thermal conductivities of a material in x  and y  directions

K e 3 3×  element matrix in Example 2.1
K  assembled matrix in the FE model (Examples 2.1 and 2.2)
L length parameter in Figure 2.12
L x, ,λ µ( )  Lagrangian in Equation (2.131)
L x r, , ,λ µ( )  Lagrangian in Equation (2.132) including a penalty 

parameter
L z,λ( )  Lagrangian in Equation (2.174)
L  lower triangular matrix obtained through Cholesky 

decomposition of a matrix
Lk  lower triangular matrix obtained through Cholesky
Decomposition of k  in the DFP method
m

A
 mean value of the RV A  (Example 2.8)

m
SY

 mean value of the RV S
Y

 (Example 2.8)

m
T

 mean value of the RV T  (Example 2.8)
M  positive real constant
M  preconditioning matrix in the CG method (Table 2.2)

M

m
 condition number

p x xk k k�= −+1
 (in the DFP method)

P
f

 probability of failure

P  projection matrix in the method of gradient projection 
(section 2.8)

Q x y,( )  heat source in the Example 2.1
Q n n∈ ×  a symmetric matrix
r

k
, k = …0 1, ,  penalty parameters (positive) in penalty function 

methods

r x x
g g

k = ∇ ( ) − ∇ ( )
= −

+

+

f f
k k

k k

1

1
       (in the DFP method)

sb  and sn  step sizes for basic and non- basic variables in 
Example 2.7

s
k

 step size at the kth  iteration
s s

min max
,  minimum and maximum step sizes in Example 2.7

s
i

i, , ,= 1 2 3  components of the search direction (Example 2.8)
S

Y
 strength variable in stress units (Example 2.8)

T  axial load in Example 2.8
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T j
j
e , ,= 12 3  nodal temperatures of an element in the FE (finite 

element) model.

T m∈  temperature vector in the FE model (Example 2.1)
℧ and δ  domain and its boundary
U  vector of nodal displacements (Example 2.2)
x  vector of design variables
x

b
 basic design variables in the LP problem

x
n

 non- basic design variables in the LP problem
x*  optimum solution

� � �x xl n u n, ,
,  lower and upper bounds for the non- basic variables in 

the LP problem

y = = …{ }y j
j
, , ,1 2  vector of slack variables in the augmented 

Lagrangian method and in Example 2.8
z

0
 starting vector in terms of standard normal 

(Example 2.8)
α  parameter to be optimized in the sub- optimization 

problem (Example 2.8)
β  reliability index (Example 2.8)
β

k
 parameter in the CG method (Equations 2.30   

and 2.36)

∆ =
∂
∂

+
∂
∂

2

2

2

2x y
 the Laplacian operator in 2D

λ
i

i, , ,= …1 2  Lagrangian multipliers associated with inequality 
constraints

µ
i

i, , ,= …1 2  Lagrangian multipliers associated with equality 
constraints

ρ  mass density (Example 2.2)
σ

A
 standard deviation of the RV A  (Example 2.8)

σ
SY

 standard deviation of the RV S
Y

 (Example 2.8)

σ
T

 standard deviation of the RV T  (Example 2.8)
ψ x( )  penalty function (Equation 2.88)

∇ ( )f x  gradient of f x( )  and direction of steepest ascent

∇xh  gradient of h x( ) , an equality constraint with 
respect to x

∇x  gradient of the Lagrangian with respect to x

∇x
2  Hessian of the Lagrangian with respect to x
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EXERCISES
1. For the non- quadratic Rosenbrock function, f(x

1
, x

2
) = 100 x x x

1
2

2

2

1

2
1−( ) + −( )  

apply Newton’s method. Use the starting point as 5 5,( )T
.

(Hint: The optimum point x* T= ( )1 1,  and f x*( ) = 0 )

2. Use the BFGS method to find the minimum of the quadratic function 

f x x x x x x
1 2 1

2

2

2

1 2
3 5,( ) = −( ) + −( ) +  and of the non- quadratic function   

(Rosenbrock) –  f x x x x x
1 2 1

2
2

2

1

2
100 1,( ) = −( ) + −( )  (Hint: x* = (0.667, 4.667)T    

for the quadratic function and x* = ( )1 1,
T

 for the non- quadratic function).

3. A production company has four products whose demand x
i
, , , , i = 1 2 3 4  is 

related to their prices p i
i
, , , ,= 1 2 3 4  as:

 x p x p x p p
1 1 2 2 3 3 4

1 5143 2671 0 0203 135 0 0136 0 0015 103+ = + = + − =. , . , . . annd

 x p p
4 3 4

0 0016 0 0027 19− + =. .  (E2.1)

Maximize the company’s revenue 
i=
∑

1

4

x p
i i

 subjected to the production constraints:

 0 026 0 8 0 306 0 245 121
1 2 3 4

. . . .x x x x+ + + ≤  

 0 086 0 02 0 297 0 371 250
1 2 3 4

. . . .x x x x+ + + ≤  

 x p i
i i
, , , , ,= >1 2 3 4 0  (E2.2)

(Ravindran et al. 2006)

[Hint: Using the demand- price relationships, the objective function may be reduced 
to a quadratic function in single variable x p

i i
or . Solve the resulting optimization 

problem by any of the derivative methods.]

4. Minimize f x xx( ) = +





0 5
1

31
2

2
2. subjected to the linear constraint x x,

2
1= .   

Here x = ( )x x
T

1 2
, . [Hint: If augmented Lagrangian method is used to solve 

the problem, Equations (2.117– 119) yield (Bertsekas 1996):
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x
r

r
x

r

rk
k k

k
k

k k

k
1 1

1 1

1
2 1

1 1

1
1 4

3

1 4, ,
,+

+ +

+
+

+ +

+

=
−

+
=

−( )
+

λ λ
  

   

and

          λ λ
k k k

r x x+ += + + −( )1 1 1 2
1

 (E2.3)

  The optimum point x* T
 is  0 25 0 75. , .( ) ]

5. Use the augmented Lagrangian along with descent methods (SDM 

or CG) to minimize f x xx( ) =
1 2

 subjected to the constraint x xT = 1 

where x = ( )x x
1 2
,

T
.

6. Minimize the Rayleigh quotient xT Ax  under the constraint x xT = 1  by the 
augmented Lagrangian method (see also Exercise 8 in Chapter 1).

7. Obtain the solution of the following optimization problem by .Zoutendijk’s 
method of feasible directions:

minimize f x x x x
1 2 1 2
,( ) = −

 s t.. , , , 8 0 1 0 0 0
1 2 1 2

− ≥ − ≥ ≥ ≥x x x x
 (E2.4)

Show that the solution fails to converge and has an oscillatory behaviour.

8. Solve the following problem by the Zoutendijk’s method of feasible directions:

minimize f x x x x x xx( ) = + − − −2 2 2 4 6
1
2

2
2

1 2 1 2

 s t. . , , , x x x x x x
1 2 1

2
2 1 2

5 5 2 0 0 0+ ≤ − ≤ − ≤ − <=  (E2.5)

FIGURE E2.1 Optimization problem of minimizing vehicle transportation costs from 
warehouses to the consumer locations.

 

 

 

 

 



171Classical Derivative-based Optimization Techniques

Take the starting point as x
T

0
0 0 75= ( ), . . Solve the problem by the modified 

algorithm of Topkis and Veinott also.
9. Solve the optimization problem in Exercise 3 by simplex method of LP 

programming.
10. Two warehouses need to supply material to two consumer points located as 

shown in the Figure E2.1. Availability of vehicles at warehouse 1 is 6 and 
it is 8 at warehouse 2. Given the distances in kilometres from the supply to 
consumer points, it is required to optimize the travel costs of transportation 
of material from the warehouses to the consumer points. Number of vehicles 
required per day to the consumer point 1 is 4 and it is 7 by the second one. 
Solve the optimization problem by simplex method of LP programming.

[Hint: If it is assumed that x
1 2

and x  are the number of vehicles employed by the 
warehouse 1 and x and x

3 4
 by the warehouse 2 to each of the two consumer points, 

the optimization problem is:

minimize: 3 5 8 9
1 2 3 4

x x x x+ + +

 s t   and . , , ,. x x x x x x x x x
i1 2 3 4 1 3 2 4

6 8 4 7 0+ ≤ + ≤ + = + = ≥  (E2.6)

By use of the two equality constraints, the problem may be reduced to a 2- dimensional 
problem, say, in terms of x and x

3 4
 subjected to the constraints:

 x x x x x x x
3 4 3 4 3 4 4

8 5 4 7 7+ ≤ − − ≤ − ≤ ≤ ≤, , ,  and  (E2.7)

and the optimal solution is x x x x
1 2 3 4

4 2 0 5= = = =, , ,   and the minimum possible 
distance =  57 km.

A graphical solution is also possible for this two- dimensional LP problem.]

11. Use exterior penalty function method to solve the constrained optimization 
problem in Equation (2.128) involving the Rosen- Suzuki function.

12. Consider the Camelback function (Molga and Smutnicki 2005):

 f x y x x x xy y y, . /( ) = − +( ) + + − +( )4 2 1 4 42 4 3 2 2 2  
(E2.8)

With − ≤ ≤1 5 1 5. .x and − ≤ ≤2 2y , the Camelback function has six minima 
out of which two are global minima −( )0 0898 0 7126. , .  and 0 0898 0 7126. , .−( )  
with the function value equal to −1 0316. . Solve for the minima using SQP.

13. Solve the optimization of the Rosen- Suzuki function (Belegundu and 
Chandrupatla 1999) by generalized reduced gradient method (Section 2.6 of 
Chapter 2):

 

 

 

 

 



172 Elements of Classical and Geometric Optimization

 min imize f x x x x x x x xx( ) = + + − − − − + +
1
2

2
2

3
2

4
2

1 2 3 4
2 5 5 21 7 100  (E2.9)

s. t.

 g x x x x x x x x
1 1

2
2
2

3
2

4
2

1 2 3 4
8 0x( ) = + + + + − + − − ≤  

 g x x x x x x
2 1

2
2
2

3
2

4
2

1 4
2 2 10 0x( ) = + + + − − − ≤  

 g x x x x x x
3 1

2
2
2

3
2

1 2 4
2 2 5 0x( ) = + + + − − − ≤  

 and x i x x x x x i i
l u( ) = − ≤ ≤ = ( ) =100 100 1 2 3 4

1 2 3 4,
, , , , , , .  (E2.10)

[Hint: Steps involved in the first iteration are enumerated below along with the final 
solution. Readers may refer to Belegundu and Chandrupatla (1999) for details.

With the slack variables x x
5 6
,  and x

7
 added to the inequality constraints g

i
x( ) ,

   

i = 1 2 3, , , the vector x  is x x x x x x x
T

1 2 3 4 5 6 7,
, , , , ,( ) . Hence n = 7  and m = 3. The 

resulting equality constraints are now represented by:

 h x x x x x x x x x
1 1

2
2
2

3
2

4
2

1 2 3 4 5
8 0x( ) = + + + + − + − + − =  

 h x x x x x x x
2 1

2
2
2

3
2

4
2

1 4 6
2 2 10 0x( ) = + + + − − + − =  

 h x x x x x x x
3 1

2
2
2

3
2

1 2 4 7
2 2 5 0x( ) = + + + − − + − =  

 with x x x
5 6 7

0, , ≥  (E2.11)

Let us start the iterations with the feasible point ˆ , , , , , ,x = ( )0 0 0 0 8 10 5
T

where 
h

i
ˆ , , ,x( ) = =0 1 2 3i . With the starting value of f x̂( ) = 100 , the gradient vector ∇

x
f  is:

 ∇ =
∂
∂

= − − − − +( )x x
f

f
x x x x

T
, , , , , ,2 5 2 5 4 21 2 7 0 0 0

1 2 3 4
 (E2.12)

And

 

∇ =
+ − + −
− −
+ −

xh
2 1 1 2 1 2 1 1 0 0

2 1 4 2 4 1 0 1 0

4 2 2 1 2

1 2 3 4

1 2 3 4

1 2 3

x x x x

x x x x

x x x −−















1 0 0 1

 (E2.13)
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Iterations start with the selection of the basic and non- basic variables by the pivoting  
operation on A

x
= ∇ . Table E2.1 shows these variables along with the vector ∇

x
f   

and the matrix A  evaluated at x x= ˆ .

Thus x
b

T
x x x= ( )1 4 3

, , and x
n

T
x x x x= ( )2 5 6 7,

, , . The reduced gradient from 

Equation (2.157) is:

 

df

d

f f

n b

T

n

T T
ˆ

x x x
= −

∂
∂







+

∂
∂



















= −−B C1 16 21 4 10( )T
 (E2.14)

The steepest descent direction d
n

for x
n

is −
df

d
n

ˆ

x
. Equation (2.156b) gives the descent 

direction d
b
 for the basic variables as d B Cdb = − = ( )−1 3 333 0 6667 34 333

n

T
. . . .  

To proceed with the unconstrained optimization in the original scenario of n variables, 

we use d d d= ( )b
T

n
T

T
  for a line search. With the specified lower and upper bounds x

l  
and xu for x in Equation (E2.11), it is convenient to fix a suitable step size s > 0 .   
That is, with x x

0
= ˆ,  the maximum step size s

n
for the non- basic variables with 

respect to xl n,  and xu n,  may be fixed as:

TABLE E2.1
Gradient Vectors of the Objective Function and Constraints at the Feasible 
Point x̂  in the First Iteration

B
h
x

h
b

xb
= =∂

∂
∇ C

h
x

h
n

xn= =∂
∂

∇

Basic variables Non- basic variables

∇xh x1 x4 x3 x2 x5 x6 x7

A B C= [ ] 1 1 1

0 2 1

0 0 1 5.

−
−

−

















−
−
1 1 0 0

1 11 1 0

0 5 1 5 0 5. . .− 1

















∇x f ∂
∂

= ∇
f

f
b

bx x

∂
∂

= ∇
f

f
n

nx x

− −[ ]5 7 21
T −( )



5 0 0 0, , ,

T
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 s
x i x i

d i
d i

n

l n n

n
n

=
( ) − ( )

( ) ( ) <, , ,0 0if and   

 
s

x i x i

d i
d i

n

u n n

n
n

=
( ) − ( )

( ) ( ) >, , ,0 0if  (E2.15)

Similarly the maximum step size sb for the basic variables is estimated. The smaller 
of s

b
and s

n
may be taken as the maximum step size s

max
and the update is obtained 

with d d
0

= � as:

 x x d
1 0 0

= + s
max

 (E2.16)

The update is accepted for the next iteration provided f fx x
1 0( ) < ( ) . In the present 

problem, min s s
b n
,( ) =  0.381. Thus with s

max
= 0 381. , x

1
 as obtained from (E2.16) 

gives f fx x
1 0

171 125 100( ) = > =. ( ) . The update is obviously not acceptable and a 

line search is performed to find a suitable step size s max∈  0, s such that an uncon-

strained minimum is obtained. With s  =   0.154 obtained by line search –  using golden 
section method (see Exercise 1, Chapter 1) –  the new x

1
 is:

 x
1

0 516 2 478 5 318 0 103 4 747 10 61 6 54= ( ). , . , . , . , . , . , .
T

 (E2.17)

The update gives f x x
1 0

37 03( ) = <. ( )f and is acceptable. Yet, the update needs 

a check for feasibility before proceeding to the next iteration. The feasibility 

requirement is to see that max , , ,
i i 1

h x( ){ } =i 1 2 3 is less than, say, µ= −10 4 . With 

max
i i

h x
1

40 8( ){ } = . in this case, x
1

 is not feasible. Here, a strategy is adopted to 

make it feasible by keeping xn  fixed whilst suitably varying xb = ( )x x x
T

1 4 3
, ,  so that 

the feasibility condition h i
i b n

x x, , , ,( ) = ≅1 2 3 µ is satisfied (see Figure 2.24). This 

is equivalent to solving the nonlinear equations h
b, n

x x( ) = 0 for x
b

by a Newton- 

Raphson method. Starting with x
b

T

,
. , . , .

0
0 516 0 103 5 318= ( )  , the method iteratively 

yields xb new,
as:
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FIGURE E2.2 Minimization of Rosen- Suzuki function by GRG method, evolution of 
objective function with iterations with final minimum value =  53.64.

FIGURE E2.3a–b Minimization of Rosen- Suzuki function by GRG method, evolution of 
design variables x x x

1 2 3
, ,  and x

4
 with iterations.
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FIGURE E2.3c–d (Continued)

 x x x
b new b new b, ,

= + ∆  (E2.18)

where

 ∆ = − ( )−x h x x
b b n

J 1
,

 (E2.19)

J m m∈ × is the Jacobian matrix given by the partial gradient of h  with respect to 

x
b
. The Newton- Raphson method converges with max h ii x

1
1 2 3( ) < =µ, , , in five 

iterations. In fact, the method has failed to converge in the initial stages and the 
step size smax  is progressively reduced till convergence is realized. With the above 
correction to xb and the feasibility condition satisfied; it marks the end of a successful 
iteration. Figure E2.2 shows the evolution of the objective function with iterations 
and its final minimum value f x*( ) = 53 64. . The optimum point to the Rosen- Suzuki 
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function is * * * *x x x x
1 2 3 4

0 197 0 99 1 83 1 19, , , . , . , . , .( ) = −( ) whose convergence with 

iterations is shown in Figure E2.3.
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3 Classical Derivative-  
free Methods of  
Optimization

3.1  INTRODUCTION

In this chapter, we discuss the broad class of derivative- free methods of optimization 
(Rios and Sahinidis 2013). They include direct search methods (Hooke and Jeeves 
1961, Nelder and Mead 1965, Kelley 1999) and also evolutionary methods such as 
the genetic algorithm (Sotiropoulos et al. 1997), ant colony optimization (Dorigo 
et al. 2011), simulated annealing (Van Laarhoven and Aarts 1987), particle swarm 
optimization (Kennedy and Eberhart 1995, Slowik and Kwasnicka 2018, Zhao et al. 
2019), differential evolution (Storn and Price 1997). As the name indicates, derivative- 
free methods employ only function evaluations in the optimization process without 
the need for derivative computation, unlike derivative- based methods described in the 
last chapter.

A review article by Lewis et al. (2000) extensively covers direct search methods. 
The term ‘direct search method’, first coined by Hooke and Jeeves (1961), explores 
the feasible space at any iteration for the best solution out of trial solutions and 
decides the strategy for the next set of trial solutions. They are particularly suited 
for solving non- convex problems (Walters et al. 1991) that may have many local 
optima. In the absence of generic directional information, derivative- free methods 
appear to be a good option to find the best local extremum. Further, the methods are 
formulated using simple arguments whilst affording flexibility in the computer imple-
mentation. The erstwhile perception that direct search methods are mostly heuristic 
without proofs of convergence does not hold, as shown by many researchers (Conn 
et al. 1996, Kelley 1999, Lucidi and Sciandrone 2002, Torczon 1991, 1997). With 
the availability of convergence proofs, there has of late been a significant upsurge in 
both their encapsulation within efficient computer software and usage. In the litera-
ture, the words ‘derivative- free’, ‘direct search’ and ‘pattern search’ are often used 
interchangeably.

The ineffectiveness or inapplicability of a Newton- type search has also led to the 
emergence of evolutionary methods, most of which employ stochastic (i.e. random 
evolutionary) search rooted in a meta- heuristic origin (Holland 1975, Glover and 
Kochenberger 2003). The prime reason for the popularity of these methods over other 
optimization techniques is their ability to solve computationally complex decision 
problems within a reasonable computational time. The stochastic nature of search 
which is the hallmark of these methods aids in the computed solution getting unlocked 
from local minima, thus potentially realizing better global solutions. The underlying 
justification in these methods is often sociological or biological (e.g. Darwinian evo-
lution). Applications of stochastic search methods (Fletcher 1987, Chong and Zak 
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2013) include problems with sufficiently smooth, yet multimodal, objective/ cost 
functionals, wherein the use of directional derivatives may be inadequate in obtaining 
the global optimum. In this context, the derivative- free methods of Hooke and Jeeves 
(1961) Nelder and Mead (1965) may be included in the deterministic search category. 
While a stochastic route often facilitates an effective search, the posing of the original 
problem could itself be deterministic, the aim merely being to arrive at the design 
point that is the global extremum of an objective functional, possibly subject to a set 
of prescribed constraints. The present chapter is meant to be a brief repository of this 
general class of derivative- free methods.

3.2  DIRECT SEARCH METHODS

Apart from the advantage of no computation of derivatives and thus being more 
effective in dealing with non- smooth functions, these derivative- free methods are 
also suited to cases where the objective function and constraints are implicitly stated 
(i.e., not computable through explicit expressions). In these cases, to obtain reli-
able estimates for derivatives even by finite difference approximations is a tough 
ask, which may sometimes be infeasible thus rendering derivative- based methods 
inapplicable. For instance, a requirement of this kind is encountered in finite element- 
based system design towards achieving, say, maximum reliability or /  and cost mini-
mization. Applications may be found in Marsden et al. (2007) for aircraft design, 
Bartholomew- Biggs et al. (2003) for aircraft routing, Bendsøe and Sigmund (2003 
and Guirguis and Aly (2016) for topology optimization, Duvigneau and Visonneau 
(2004) for hydrodynamic design and Marsden et al. (2008) for medicine.

3.2.1  method of hooke and jeeVes (hj)

The method of Hooke and Jeeves (HJ) is a reliable and perhaps the simplest derivative- 

free method. With a starting candidate x0 0 1 0 2 0= …{ } ∈x x x, , ,, , , n
n  for the design 

variables and a chosen step length s > 0, it attempts to reach the optimum via a series 
of exploratory and pattern search moves. Hence the HJ method is also known as a 
pattern search method. No derivatives of the objective function f nx( ) →:   are 
invoked in the optimization process. An exploratory move, as the name indicates, 
explores for a direction in n which decreases f(x). The method conveniently 
chooses the coordinate basis directions to make the exploratory moves. Suppose that 

xk k k k n= …{ }x x x, , ,, , ,1 2  is the solution at the end of the kth iteration. A new iteration 

starts with an exploratory move in which ith design variable xk i,  for each i is sequen-
tially increased or decreased by a step length si �  in the direction of the ith coordinate 
axis. Note that the choice of step length for each variable is dependent on the spe-
cific problem on hand and may be fixed before the start of iterations. Suppose that, 
as shown in Figure 3.1a of a two- dimensional case, x

k
 is moved towards the positive      

X1- axis by a step length s1, i.e., with the variable xk ,1 increased to x sk ,1 1+  and the 
change fails to decrease the objective function. The letter ‘F’ over the dotted line 
indicates a failure of the move in the positive direction of the X1- axis. Then xk is 
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moved towards the negative X1- axis by the same step length s1, i.e. with xk ,1 decreased 
to  x

k,1
 – s

1
. Assuming that the move is successful with a decrease in the objective 

function (as indicated in Figure 3.1a), the change is accepted with x
k
 moved to the 

new location B. The procedure is repeated with the variable xk ,2. In a general n- dimen-
sional case, after all the n directions are exhausted, the exploratory move results in 
two possibilities. One is that the move is a success with a new point xk

E
+1  (point C  in 

Figure 3.1a) such that f fk
E

kx x+( ) < ( )1 . The superscript E stands for the exploratory 
search. The second possibility is a failure of the exploratory move. In this case, the 
step size is reduced and the exploratory move repeated using x

k
 (at the point A). After 

a successful exploratory move, a pattern move is initiated at xk
E
+1  (see Figure 3.1b). 

The pattern move is an ‘aggressive’ one -  an optimistic move with a larger step size 
in the seemingly successful direction given by x xk

E
k+ −1 . Thus, we move in this dir-

ection to obtain x x x xk
P

k k
E

kc+ += + −( )1 1  where 1 < c ∈. The superscript P stands 
for the pattern search. Thus, we arrive at D in Figure 3.1b. An exploratory search is 
now performed at xk

P
+1  (i.e. the point D). It is shown to be successful in Figure 3.1b 

with a move in the positive direction of the X 2- axis (i.e., the function value f Ex( )  

at the new point E is less than f kx( ) . The pattern search is termed as successful and 

the kth iteration is complete. A new iteration starts with x xk
E

+ =1 .  Otherwise (i.e., if   

FIGURE 3.1a HJ method –  two- dimensional case, an exploratory move, successful step is 
shown by a dark arrow with the letter ‘S’ over or by the side of the line and an unsuccessful 
step by a dotted arrow with the letter ‘F ’ over it or by its side.
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f fE
kx x( ) ≥ ( ) , the pattern search is unsuccessful and the next iteration starts at the 

point C  with x xk k
E

+ +=1 1 .
The iterations stop when there is no further improvement, decided either by a 

check on the objective function or on the step size falling below a tolerance level.
For the Rosenbrock function f x x xx( ) = −( ) + −( )100 11

2
2

2

1

2
 with x = ( )x x

T

1 2, ,   
HJ method produces a result as shown in Figures 3.2a– c. In obtaining the result, 
the lower and upper bounds for both x1 and x2 are taken as – 10.0 and 10.0, 
respectively.

Lewis and Torczon (1999, 2000) provided direct search methods with simple 
bounds (called box- type bounds) on the design variables. We also refer to Lewis and 
Torczon (2002) for a hybrid approach to handle constrained optimization problems. 
The following example demonstrates the use of a hybrid method wherein HJ is used 
along with the interior penalty method (Section 2.4.2, Chapter 2).

Example 3.1. We reconsider the weight optimization of the plane truss Example 2.2 
in Chapter 2 by HJ method.

Solution. Refer to Figure 2.12 of Chapter 2 for the FE model of the 10- member plane 
truss. The constrained optimization problem is defined in Equation (2.109). By the 
interior penalty method, we form the unconstrained optimization problem which is 
restated:

 minmize f r f r , x x x( ) = ( ) + ( )ψ  (3.1)

FIGURE 3.1b HJ method –  two- dimensional case, a pattern move towards the point D along 
the direction x xk

E
k+ −1 , the subsequent exploratory move succeeds and reaches the point E and 

the pattern search is termed as successful.
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FIGURE 3.2a–b Result for Rosenbrock function (see Figure 2.4, Chapter 2) by HJ method: 
(a) evolution of x1, (b) evolution of x2 with iterations (optimum x T* . , .= ( )1 008 1 008 ).
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where x = = …( )A ii , , , ,1 2 10  is the vector of cross- sectional areas. The penalty par-

ameter r > 0 is associated with the specified constraints with:

 
ψ x( ) = −

−
−

−
−

−= =
∑ ∑
i l i i i i u i bA x x A U U1

10

1

10

4

1 1 1

, ,  
(3.2)

Al i, = 6 sq. cm and A sq cmu i, .= 10   are the specified lower and upper bounds for the 

areas of cross- section.U4  is the displacement at node 3 in the Y- direction. Ub = 6 cm   
is the upper bound on this displacement. Further, as iterations progress, we have a 
decreasing sequence, r crk k= −1 with c ∈( )0 1, . At each iteration, the unconstrained 
optimization problem is solved by the HJ method. (In Example 2.2 of Chapter 2, the 
CG method is used for the purpose). The result by HJ is shown in Figure 3.3.

FIGURE 3.2c Result for Rosenbrock function by the HJ method; evolution of the objective 
function with iterations (finally attaining a minimum value of 0.00626).
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■

3.2.2  simplex method of nelder and mead [nm]

The simplex method of Nelder and Mead (NM) is another direct search method popu-
larly used (Walters et al. 1991, Wright 1996) for multidimensional unconstrained 
minimization. This simplex method distinctly differs from the simplex method of LP 
(Chapter 2). The simplex in the present context is a geometric figure which is a convex 
polytope of n+ 1 vertices and changes its shape during the iteration process. If n = 2, 
the polytope is a triangle and for n = 3, it is a tetrahedron. A tetrahedron is familiarly 
known as a 3- simplex. Each iteration in the NM method starts with a simplex within 
the feasible space. The vertices of the simplex constitute the trial solutions. At the kth 
iteration, let the set of function values evaluated at these trial solutions be ranked in 

ascending order and the corresponding vertices be x x xk k k n, , ,, , ,1 2 1… + . Thus f kx ,1( )  

is the best solution and f k nx , +( )1
 the worst.

The method involves movement of the simplex possibly towards a local optimum 
by virtue of simple geometrical operations (Figures 3.4a– e). The first one is ‘reflection’ 

FIGURE 3.3 Weight optimization of a plane truss by HJ combined with the 
interior penalty function method; r0 1000=  and r rk k= −0 1 1. , x T

0 6 6 6 6 6 6 6 6= ( ), , , , , , , , 
x T* . , . , . , . , . , . , . , . , . , .= ( )7 3 6 77 7 3 7 7 6 8 7 6 7 3 7 3 7 3 7 6 , Y - displacement at node 3 is −6 0.  cm  and 
optimum weight =  34.5 N at the end of iterations.
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(Figure 3.4a) which reflects the worst vertex xk n, +1  over the centroid xk  to the new 

point xk n
R
, .+1  x

n
xk

i

n

k i=
=
∑1

1
,  is the centroid of the first n best points of the simplex. In 

the two- dimensional case, xk  is the mid point of the line joining xk ,1  and xk , .2

Reflection (Figure 3.4a)
The reflected point is:

 x x x xk n
R

k k k n, ,+ += + −( )1 1α , α ∈ +   (3.3)

If f f fk k n
R

k nx x x, , , ,1 1( ) ≤ ( ) < ( )+  accept xk n
R
, +1  in place of xk n, +1  and the iteration is 

complete.
Two other possibilities may exist: f fk n

R
kx x, ,+( ) < ( )1 1  or f fk n

R
k nx x, , .+( ) ≥ ( )1

Expansion (Figure 3.4b)

a) In case f fk n
R

kx x, , ,+( ) < ( )1 1  it is possible to take an aggressive move via 
expansion (Figure 3.4b), i.e. move xk n

R
, +1  with a larger step to get xk n

E
, +1:

 x x x xk n
E

k k n
R

k, ,+ += + −( )1 1β , β ∈ +   (3.4)

If the resulting f fk n
E

k n
Rx x, , ,+ +( ) < ( )1 1  accept xk n

E
, +1  in place of xk n, +1. The 

iteration is complete.
If f x f x xk n

E
k n
R

, ,+ +( ) ≥ ( ) ≥1 1 , accept xk n
R
, +1  in place of xk n, .+1  The iteration 

is complete.

b) In case f fk n
R

k nx x, , ,+( ) ≥ ( )1  a contraction is performed.

Contraction (Figures 3.4c– d)
The contraction is between xk  and the better of xk n

R
, +1  and xk n, +1 . If f k n

Rx , +( ) ≥1  

f k nx , ,+( )1  the contraction is inside (Figure 3.4c). The new point is obtained as:

 x x x xk n
CI

k k k n, ,+ += − −( )1 1γ , γ ∈ +   (3.5)

If f fk n
CI

k nx x, , ,+ +( ) < ( )1 1  the contraction is successful and accept xk n
CI

, +1  in place of 
xk n, +1. The iteration is complete. Otherwise go to the next step of shrinkage operation.

In case f f fk n k n
R

k nx x x, , , ,( ) ≤ ( ) < ( )+ +1 1  the contraction is outside (Figure 3.4d). 
That is, the new point is:

 x x x x xk n
CO

k k n
R

k, ,+ += + −( )1 1γ , γ ∈ +   (3.6)

If f fk n
CO

k n
Rx x, , ,+ +( ) < ( )1 1  accept xk n

CO
, +1  in place of xk n, .+1  The iteration is complete. 

Otherwise go to the next step of shrinkage operation.
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Shrinkage (Figure 3.4e)
Shrink the n vertices x x xk k k n, , ,, ,2 3 1… +  towards the best point xk ,1  (Figure 3.4e) 
according to:

 x x x xk i
S

k k i
S

k, , , ,= + −( )1 1σ , i n= … +2 3 1, , ,  and σ ∈ +  (3.7)

With the new vertices x x xk k
S

k n
S

, , ,, , ,1 2 1… +  forming a new simplex, we go to the next 
iteration.

The termination criteria for the NM algorithm may be (a) the largest difference 
between adjacent vertices being less than a specified value εs  or (b) the difference 
between the best and the worst solutions being less than a specified value ε f . It is 

apparent that the convergence of the method depends on the parameters α β γ,� ,�  and 

σ. The standard values are α β γ= = =1 2 1
2

, ,  and σ =
1
2

. As new vertices emerge 

during the iterations, the possibility of equal function values may surface. Following 
tie- breaking rules, a new vertex is indexed consistent with the relation

 f f fk k k nx x x, , ,1 2 1( ) ≤ ( ) ≤ … ≤ ( )+  (3.8)

FIGURE 3.4a–b NM method –  possible operations at the kth iteration on a simplex in the 
two- dimensional case: (a) reflection, (b) expansion; xk  –  centroid of the simplex.
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FIGURE 3.4c–d NM method –  possible operations at the kth iteration on a simplex in the two- 
dimensional case: (c) contraction inside, (d) contraction outside; xk  –  centroid of the simplex.

FIGURE 3.4e NM method –  possible operations at the kth iteration on a simplex in the two- 
dimensional case: (e) shrinkage; xk  –  centroid of the simplex.
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The convergence properties of the NM method are studied by Lagarias et al. (1998). 
The method is known to have the tendency of oscillations around a minimizer and is 
shown to converge to a non- minimizer (McKinnon 1998) even for convex functions 
of low dimension. Modifications to NM method for a possible improvement in con-
vergence may be found in Kelley (1999), Tseng (1999) and Conn et al. (2009). 
Alternative variants may also be found in Byatt (2000) and Pham (2012).

Example 3.2. We solve by HJ and NM methods the maximum likelihood estimation 
(MLE) problem (Lehmann and Cassella 1998 and Papoulis 1991): fit a probability 
distribution for a given set of observed data.

Solution. The problem comes under the category of statistical inference or estima-
tion. This is in contrast to the straightforward problem of statistical prediction about 
future observations from a probability distribution with known parameters. The stat-
istical estimation is an inverse problem of estimating the parameters of a given distri-
bution using an observed data. Suppose that the observed data is z = …{ }z z zn

T

1 2, , , .  
The observations are assumed to be realizations of random variables (RVs) 
Z i ni , , , ,= …1 2  which may follow the given probability distribution Z z;θ( )  
provided that the parameters are suitably estimated. Here Z  is the vector of the RVs 
Z i ni , , , , . ,= …1 2  θ  possibly a vector valued parameter, is unknown and needs to be 
estimated. Z z;θ( )  here is known as the joint CDF* of Z . Let the corresponding joint 
pdf † be . In this context,  for each i is known as the marginal pdf ‡ of

* Joint CDF

 Consider a vector random variable X = …( )X X X
n1 2

, , ,

 The joint CDF, F R
X

nx( ) → [ ]: 0 1,  is defined as:

 
X n n

P X x X x X xx( ) = ≤ ≤ … ≤( )1 1 2 2
, , .,  (i)

† Joint pdf

 If 
X

x( )  is sufficiently differentiable, we define the joint pdf as ∂ ( )
∂ ∂ …∂

n
X

n
x x x

 x

1 2

. Alternatively,      


X

x( )  is given by the n- dimensional integral in terms of the pdf:

 
X

x x x

X n n

n

f x x x dx dx dxx( ) = … …( ) …
−∞−∞ −∞
∫ ∫ ∫

1 2

1 2 1 2
, , ., .  (ii)

‡ Marginal pdf

The marginal density functions  follow from the existence of 
∂ ( )

∂


X k

k

k
x

x
 and 

are given by the following n −( )1 - dimensional integral with respect to dx i n i k
i
, , , , = … ≠1 2 :

  (iii)
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each RV Zi. As described in Appendix 1, the RVs are denoted by uppercase letters and 
their realizations by lowercase letters.
In estimating the parameter θ ∈m �  by MLE, we form a likelihood function 
L mθ; :z( ) →   which is the joint pdf  itself but now considered as a function 

of θ . The word ‘likelihood’ was used for the first time by Fisher (1922). Thus:

   (3.9)

The objective of the MLE is to find an estimate for θ  that maximizes L θ; z( )  with 
respect to θ . The estimate, say θ , is meant to ensure that the observed data z  is 
most likely to have been realized from the assumed pdf. Thus, the MLE gives the 
supremum of the likelihood function; i.e.:

 θ θ = ( )supθ L ; z  (3.10)

Note that the maximization can be performed either on L θ; z( )  or on the log- 
likelihood function:

 
 
 (3.11)

If L θ; z( )  is differentiable so the maximum exists, the familiar KKT condition 
applies, i.e.:

 
∂ ( )

∂
=

L zθ
θ
;

0  or 
∂ ( )

∂
=

l zθ
θ
;

0   (3.12)

Here 
∂

∂
=

∂
∂

∂
∂

…
∂

∂





θ θ θ θ1 2

, , , .
m

T

 For the sake of this example, the marginal pdf

 
 is taken to be the generalized exponential pdf (Gupta and Kundu 2003) with 

θ  consisting of two scalar parameters α λ  and :

   

 = 0, otherwise (3.13)

We further assume that Zi are independent and identically distributed (iid) RVs (see 
Appendix 1 for a definition of independent random variables) so that   

 and therefore:

   (3.14a)

and

 l(θ; z) =   (3.14b)

 

 

 

 

 



194 Elements of Classical and Geometric Optimization

FIGURE 3.5a–b Generalized exponential pdf with different values of the two parameters 
α λ  :and  (a) �α  =  1,2,4 with λ =  1.0 and (b) ��λ  =  1,2,3 with α =  2.0.
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We need to estimate the vector θ= ( )α λ, T
, which we will take up shortly. The 

density function is shown in Figure 3.5 for different values of the parameters α and 
λ which are respectively called the shape and scale parameters. The pdf is often used 
to model the lifetime of a component or a system. The data z  which is supposed to 
be available from actual observations, is presently simulated from the assumed pdf 
with reference values of �α =  3.639 and λ =  2.239. This exercise requires generating 
samples of z  numerically and is related to the well- known problem of statistical 
prediction /  sampling. See Appendix 3 for details on a few Monte Carlo (MC) simu-
lation methods to realize samples of RVs from a specified distribution via transform-
ation of RVs. These direct MC simulation methods are, in general, feasible for low 
dimensional sampling problems and one may need more efficient algorithms such 
as Markov chain Monte Carlo (MCMC) methods in the case of higher dimensional 
sampling. See Appendix 3 for a detailed description of Markov chains and MCMC 
sampling techniques. In the present example, the assumed pdf is one- dimensional 
and it suffices to use sampling by the MC method to get the required data z . With 
this available data, we use the MLE to yield the estimates α λˆ ˆ  and  of the two 
parameters α λ  and  in the distribution.

Solution.
Using the independence property of the RVs Zi, the joint pdf of � �Z  is:

  

 = 0, otherwise  (3.15)

In the present example, the optimization problem by MLE is only 2- dimensional and 
the estimates are obtainable by applying the necessary KKT conditions as expressed 
in Equation (3.12) (see also a similar Exercise 1.7 of Chapter 1). Here, we demon-
strate the use of the derivative- free HJ and NM methods to get the solution. As a pro-
cedural convention followed so far, the estimates are obtained by posing the MLE as 
a minimization problem. That is, we minimize − ( )l θ; z . The optimization is carried 
out with the constraint α λ, > 0. The results by HJ and NM methods are shown in 
Figures 3.6a– c and 3.6d– f, respectively, in the form of evolutions of the estimated 
parameters �α  and λ  during the iteration process with n = 5000. The same data z  is 
used in obtaining the results by the two methods.

■
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FIGURE 3.6a–b HJ method; statistical estimation by MLE of parameters of an assumed 
pdf using data of size n = 5000: (a) evolution of � �α  with iterations, (b) evolution of λ  with 
iterations.
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The curves shown in Figures 3.6e and 3.6f are simulated pdfs with data size n = 5000.     
Contrast the non- smoothness in the plotted graphs (with a finite data size) with the  
smooth theoretical pdf curves in Figure 3.5 which are drawn directly using Equation  
(3.13) with the reference parameters α and λ. For the theoretical pdf, �Zi is varied over  
[0,6.0] in steps of 0.1. On the other hand, the simulated pdfs in Figures 3.6e and 3.6f  
are histograms generated using the available data z ∈n .  The curves in dark line cor-
respond to the reference parameters α and λ and the ones in dashed line to the MLE  
estimates α  and λ.  Note that z  is simulated from Equation (3.13) and hence is the  
raw data. It is properly sorted before drawing the histograms.

Fisher information matrix and effectiveness of MLE
The MLE estimate as obtained above pertains to the observed data z  which are 
given and hence fixed. Since z  is assumed to be realized from Z z; ,θ( )  one indeed 
needs to consider the estimate θ  as a RV and a function of Z. As such, the likelihood 
function L θ; Z( )  and the log- likelihood function l θ; Z( )  are random vectors. Thus, 
by having different realizations of z, one may have different estimates by MLE and 
obtain an approximate sampling distribution of θ.

MLE is known to have the desirable large sample (asymptotic) property (Papoulis 
1991). That is, for large n, θ  approaches a normal distribution N θ, /I −( )1 2 : a proof is 
provided in Appendix 3. Here θ  is the true value of the parameter set and I ∈ ×m m �  
is known as the Fisher information matrix (Fisher 1922, Lehmann and Cassella 1998). 

The matrix is defined by: 

   

(3.16)

FIGURE 3.6c HJ method; statistical estimation by MLE of the parameters of an assumed 
pdf using data of size n = 5000; simulated pdfs with reference (true) and estimated parameters.
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FIGURE 3.6d–e NM method; statistical estimation by MLE of the parameters of an assumed 
pdf using data of size n = 5000: (d) evolution of � �α  with iterations, (e) evolution of λ  with 
iterations.
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The subscript Z in EZ .[ ]  denotes that the expectation is with respect to the prob-

ability measure corresponding to Z; . The derivative 
∂ ( )

∂
∈

l
m

θ
θ
; Z

     

is known as the score function denoted by s θ; .Z( )  Using Equation (3.16), we may 

derive FIM also as I Hθ θ( ) = − ( ) EZ ,  where H θ( )  denotes the Hessian matrix. 

To do this, it is first necessary to show that E
l

E sZ Z

Z
Z

∂ ( )
∂









 = ( )  =

θ
θ

θ
;

; .0  

Towards this, let ∇ =
∂

∂θ
.  Then:

E s E LZ Zθ θ; log ;Z Z( )  = ∇ ( ) 

  

 (3.17)

FIGURE 3.6f NM method; statistical estimation by MLE of the parameters of an 
assumed pdf using data of size n = 5000, simulated pdfs with reference (true) and estimated 
parameters.
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since each integrand in the last equation is unity. Now we prove that I Hθ θ( ) = − ( ) EZ .
     

One has: ∇ =
∂

∂ ∂




 ×

2
2

θ θT m m

, i.e.:

 ∇ =

∂
∂

∂
∂ ∂

…
∂

∂ ∂

∂
∂ ∂

∂
∂

…
∂

∂ ∂
…
…

∂
∂ ∂

2

2

1
2

2

1 2

2

1
2

2 1

2

2
2

2

2

2

θ θ θ θ θ

θ θ θ θ θ

θ θ

m

m

m 11

2

2

2

2

∂
∂ ∂

… …
∂

∂































θ θ θm m

 (3.18)

H θ( )  is given by:

H Z Zθ θ θ( ) = ∇ ( ) = ∇ ( )2l s; ;

  (3.19)

The expectation of H θ( )  is:

  
 
(3.20)

T  is:

  
 (3.21a)

Therefore:

 E E s s T
Z ZH Z Zθ θ θ( )  = − ( ) ( )



; ;  (3.21b)
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Thus, from Equation (3.16) and the last equation, we get as n → ∞:

 I HZθ θ( ) = − ( ) E  (3.22)

The p q th,( )  element of this matrix is:

 

I
Z Z[ ] ( ) =

∂ ( )( )
∂











∂ ( )
∂






















pq Z
p q

E
L L

θ
θ θlog ; log ;

θ θ 

= ( ) ( ) E s sZ p qθ θ; ;Z Z  (3.23)

where 
∂ ( )

∂
= ( )log ;

; ,
L

s
p

p

θ
θ

Z
Z

θ
 the pth element of the score function, i.e. the first- 

order derivative of log ;L θ Z( )  with respect to θ p. E s sZ p qθ θ; ;Z Z( ) ( )  , which is also   

denoted as cov s sp qθ θ; ; ,Z Z( ) ( )( )  stands for the covariance (see covariance matrix 

definition in Equation A1.22 of Appendix 1) of the random variables sp θ; Z( )  and 

sq θ; Z( ) . Having proved I HZθ θ( ) = − ( ) E , we may now infer that it quantifies 

the overall sensitivity of  Z  with respect to θ  via an averaging process. With I θ( )  

determined from Equation (3.16), one has the sampling distribution of θ  as N θ, /I −( )1 2 .      

Thus, for large n, the mean vector E θ θ



 =  with the covariance matrix being I −1.  

This shows that MLE is an unbiased estimator in that E θ θ



 →  for large n. It is 

usually a difficult task to obtain I θ( )  computationally. However, for large sample 

sizes, one uses H θ( )  replacing I θ( ) . Thus H θ( )  is often called the observed FIM.

When using a large sample, FIM may also be used to obtain approximate con-
fidence intervals (Appendix 3) for the estimated parameter. In other words, the 
mean square error in the estimation process for each element θ i  is obtainable from 
FIM. For the present example, the observed FIM by the HJ method is obtained 

as: H θ( ) =
−

−










375 3 833 0
833 0 2834 3

. .
. .

. A finite difference scheme is utilized in computing   

the Hessian matrix H Zθ θ( ) = ∇ ( )2 log ;L  at θ θ= .  Since θ  approaches N θ, /I −( )1 2  

as n → ∞, the variances of α  and λ  are given by the diagonal terms of H θ( )





−1
: σα

2  =    

0.0077 and σ
λ
2  =  0.001. The 95% confidence intervals are α σ

α
± = ( )1 96 3 467 3 811. . , . 



 

for α and λ σ
λ

± = ( )1 96 2 177 2 301. . , . 


 for λ. α λ  and  are the mean value of the   

RVs α  and λ  corresponding to their asymptotic distributions. These are respectively 
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taken as 3.639 and 2.239, the reference values. H θ( )  for the NM method is 

394 7 864 6
864 6 2901 0

. .
. .
  
  
−

−








  and the 95% confidence intervals for the estimates obtained are 

(3.472, 3.806) for α and (2.177, 2.301) for λ.

3.3  OTHER DIRECT SEARCH METHODS

Rosenbrock’s rotating coordinates method (1960) and Powell’s conjugate directions 
method (1964) are a few other direct search methods based on simple and interesting 
heuristics. Both the methods are marked by some unique features that distinguish 
them from the rest.

3.3.1  rotatinG coordinates method of rosenBrock

Starting with an initial x0 ∈n  and step sizes s i ni
k , , , ,= …1 2 , the method starts with 

the n Euclidean axes as search directions to locate an improved x ∈n  as in HJ 
method. The search continues over the n directions cyclically until every direction 
returns at least one success and one failure. This marks the end of a stage. The next 
stage initiates search along a new set of n orthogonal directions which are generated 
using Gram- Schmidt orthogonalization procedure (Appendix 3). This is the dis-
tinctive feature of the method. Details of the computational procedure at any �kth stage 
are given below.

With xk −1  being the solution at the end of k th−( )1 � stage, let the kth stage 
start at the location x x0

1k k= − . Let di
k i n, , , ,= …1 2  be a set of unit orthogonal 

vectors. From xk −1 , the search begins in the direction d1
k  with the step size sk1 . If 

f s fk k k kx d x− −+( ) ≤ ( )1
1 1

1 , the step is deemed to be a success and x x dk k k ks= +−1
1 1 .       

The step size sk1  is increased to βsk1  with β > 1 to be used in the next cycle. In 

case f s fk k k kx d x− −+( ) > ( )1
1 1

1 , the step is a failure and xk −1  is not updated and 

sk1  is reduced to γ sk1  with γ < 1�  before proceeding to the next direction d2
k . The 

search direction d2
k  is perturbed with the step size sk2 . Rosenbrock recommends 

the values of 3.0 and 0.5 for β and γ  respectively. The search along an ith  direc-
tion di

k  with a failure in the earlier cycle is performed in the subsequent cycle 
in the opposite direction with the modified step size γ sk1 . The cyclic searches are 
continued until there is one success and one failure in every direction, when the kth 
stage is considered complete. Let xk  be the final solution at the end of this stage. 
Operations involved in the first stage are demonstrated in Table 3.1 which pertains 
to the example problem 3.3.

Generation of the new set of n orthogonal directions before k th+( )1  stage starts

The first direction d1
1k +  for the next stage is chosen parallel to x x dk k

i

n

i
k
i
kt− =− ∑1  

where �ti
k  is the algebraic sum of all the successful steps (net distance travelled) in each 
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direction di
k  at the end of the kth stage. The remaining directions di

k i n+ = …1 2, , ,  are 
chosen orthonormal to each other and to d1

1k +  by the Gram- Schmidt orthogonalization 
procedure. To this end, define n vectors Ai

k i n, , , ,= …1 2 :

A d d d1 1 1 2 2
k k k k k

n
k
n
kt t t= + +…+

A d d2 2 2
k k k

n
k
n
kt t= +…+

 A dn
k

n
k
n
kt=  (3.24)

A1
k ,  normalized as shown below, is the new first direction:

d
A
A1

1 1

1

k
k

k
+ =

For i n= …2 3, , , , the new directions are constructed by the Gram- Schmidt pro-
cedure as:

 B A A d di
k

i
k

j

i

i
k T

j
k

j
k= − ( )( )

=

−
+ +∑

1

1
1 1  and d

B
Bi

k i
k

i
k

+ =1
 (3.25)

It may be verified that di
k+1 , i n= …2 3, , ,  are orthogonal to d1

1k +  and also to each 
other. Computations restart for this stage with the new search directions. The stopping    
criterion may be based on the convergence of the objective function.

Example 3.3. We solve the MLE problem of Example 3.2 by Rosenbrock’s rotating 
coordinates method.

Solution. The starting point x0  is chosen as 3 3,( )T
. Computations performed in the 

first stage are shown in Table 3.1.

Notice that the first stage is considered complete when the search in the d2
1  recorded 

at least one success at the end of the sixth cycle while searches in the earlier cycles 
are all failures. The point at the end of the first stage is x1 5 875 2 969= ( ). , . T

 which 
is the starting point for the next stage (Figure 3.7). The first stage is complete after 
having achieved a success in each of the two directions. The new directions for the 
next stage are obtained by the Gram- Schmidt procedure using Equations (3.24– 3.25). 
The orthogonal directions generated for the first few stages are shown in Figure 3.7. 
The final result is shown in Figure 3.8. The result pertains to the same data z as was 
used by the HJ and NM methods.
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TABLE 3.1
MLE Problem: Computational Steps in the First Stage of Rosenbrock’s Rotating Coordinates Method; n = 2, x0 = (3, 3)T   

f(x0) = 4145.51, β = 3, γ = 0.5, Initial Search Vector d = d , d =
1

0

0

1
1

1
1

2
1( ) 





















 jth direction s1
1 s2

1 t1
1 t2

1
Parameter

α = 1x1

Parameter
λ = 2

1x f x1( )
S: success;
F: failure

d1
1 1.0 1.0 1.0 0.0 4.0 3.0 3604.98 S

d2
1 3.0 1.0 1.0 0.0 4.0 4.0 5579.02 F

d1
1 3.0 – 0.5 4.0 0.0 7.0 3.0 3500.53 S

d2
1 9.0 - 0.5 4.0 0.0 7.0 2.5 3900.25 F

d1
1 9.0 0.25 4.0 0.0 16.0 3.0 7448.03 F

d2
1 – 4.5 0.25 4.0 0.0 7.0 3.25 3562.01 F

d1
1 – 4.5 – 0.125 4.0 0.0 2.5 3.0 4608.18 F

d2
1 2.25 – 0.125 4.0 0.0 7.0 2.875 3527.87 F

d1
1 2.25 0.0625 4.0 0.0 9.25 3.0 4127.19 F

d2
1 – 1.125 0.0625 4.0 0.0 7.0 3.0625 3502.15 F

d1
1 – 1.125 – 0.031 2.2875 0.0 5.875 3.0 3366.44 S

d2
1 – 3.375 – 0.031 2.2875 – 0.031 5.875 2.969 3352.57 S
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FIGURE 3.7 Rosenbrock’s rotating coordinates method; solution to the MLE problem 
in Example 3.2 with n kk= >2 1, ,d  are generated by the Gram- Schimdt procedure 
at the beginning of each stage; at the initial stage d1 corresponds to the n Euclidean axes,   
xk k ≥( )1  is the solution at the end of the kth stage.

FIGURE 3.8a Rosenbrock’s rotating coordinates method; solution to the MLE problem in 
Example 3.2: (a) evolution of the estimated parameter α  with stages and (b) evolution of the 
estimated parameter λ  with stages; final solution: α = 3 64.  and λ = 2 249.  (as against the 
reference values 3.639 and 2.239, respectively).
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FIGURE 3.8b (Continued)

■

3.3.2  powell’s method of conjUGate directions

The method partly replicates, albeit with significant differences, the derivative- based 
CG method of Fletcher and Reeves (1964). The resemblance with the CG method is in 
the use of conjugate directions during the iteration process. Otherwise, the method is 
strikingly different in that the conjugate directions are generated only by direct searches 
without a computation of the derivatives. As is known, by using conjugate directions, 
an n- dimensional quadratic function is minimized in n- steps irrespective of the initial 
x

0
. Even otherwise, a non- quadratic function may often be well approximated by a 

quadratic function near its optimum so that a CG method accelerates the convergence 
and optimizes the function in a finite number of steps. If we consider a quadratic 

function f cT Tx x Qx B x( ) = + +
1
2

 as in Equation (2.10) of Chapter 2, the optimum 

x* may be expressed by Equation (2.15) which is restated below:

 x x d* = +
=

−

∑0
0

1

i

n

i is  (3.26)

s i ni , , , ,= … −0 1 1  are the unknown step sizes. di
, i n= … −0 1 1, , , are Q - conjugate 

directions, i.e.:
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 d Qdi
T

j i j= ≠0,  (3.27)

In this method, determination of di  is based on the following parallel subspace 
property.

‘Given a quadratic function f nz( ) →:   with z ∈n  and two parallel 
hyperplanes of dimension m n< , the line joining the stationary points z1  and z2  of 
f z( )  in the hyperplanes is conjugate to any line parallel to the hyperplanes’.

In Figure 3.9, the property is illustrated in a two- dimensional case. z1  is the min-
imum point of a quadratic function f z( )  starting from z0

1( )  along the direction d  in 
the first hyperplane and z2  the minimum point starting from z0

2( )  along the direction 
d  in the parallel hyperplane. Therefore, with ∇ ( ) = +f z Qz b� :

 ∇ ( ) = ⇒ +( ) =f T
T

z d Qz B d1 10 0  (3.28a)

and similarly:

 ∇ ( ) = ⇒ +( ) =f T
T

z d Qz B d2 20 0  (3.28b)

It follows that:

0 2 1= +( ) − +( )Qz b d Qz b
T T

 ⇒ −( ) =z z Qd2 1 0
T

 (3.29)

Thus, if the new direction is chosen as d z z= −2 1,  then d  is Q - conjugate to d.
The method utilizes the above property and generates the conjugate directions as 

iterations progress. An illustration is given in Figure 3.10 for the two- dimensional 
case. We initialize the search directions along the two coordinate directions 

d1 1 0= ( ), T
 and d2 0 1= ( ), T

 in the Euclidean space E2. With starting point x0 ,  line 

search is first undertaken along d2  with a step size s to find a minimum at x1  such 

that s f s= +( )arg min x d0 2 . Thus x x d1 0 2= + s .  Minima x x2 3  and  are similarly 

found along d1  and d2  respectively by line search. Note that in each cycle, an extra 

search is performed along the starting direction (here along d2 ).
As per the parallel subspace property, d x x1 3 1= −  is Q- conjugate to d

2
. This  

completes one cycle of iteration. In the second cycle, d
1
 is discarded. A start is made  

from x
3
 with line searches along d1  and d

2
 to get the stationary points x

4
 and x

5
  

respectively. As in the first cycle, an extra search along d1
 is performed to obtain x

6
.   

One gets the second conjugate direction d x x2 6 4= − .  It is easy to see that d2  is   
Q- conjugate to d1  (because of the parallel subspace property). Let a line search along d2   
reach the stationary point x

7
. This completes one stage of iteration. Before proceeding  

to the next stage, we test the convergence by checking if f fx x7 6( ) − ( ) ≤ ε , a  
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specified small value to stop the iterations. If the convergence criterion is not satisfied, a  
new stage is started from the current point x

7
 by reinitializing di i, ,= 1 2  along  

the two orthogonal coordinate directions in E2. For a non- quadratic function f x( ),   
stages of iteration need be continued till convergence. Table 3.2 gives the details of  
the algorithm for a general n- dimensional case.

FIGURE 3.10 Powell’s method of conjugate directions: two- dimensional case, the generated 
conjugate directions d x x1 3 1= −  and d x x2 6 4= −  at the end of the first stage consisting of 
two cycles of iteration.

FIGURE 3.9 Powell’s method of conjugate directions; determining a conjugate direction d  
in a two- dimensional case.
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TABLE 3.2
Algorithm of Powell’s Method of Conjugate Directions

Given an objective function f x( )  in n and a starting point x0 ,  Powell’s method consists 
of stages each of which has n cycles of iteration. At the kth stage, the method may be 
described as follows.

Step 1. Proceed with the first cycle; initialize the search directions di i n, , , ,= …1 2  along the 
n coordinate directions in En.

Step 2. Starting from x0 , perform an initial line search along dn  so as to reach x1  such that:

s f s n= +( )arg min .x d0
  Therefore, x x d1 0= + s n.  Next, perform similar line searches   

along all di i n, , , ,= …1 2  (including dn  again) with optimum step sizes si so that    
x x di i i is+ = +1 .  i n= …1 2, , , .

Step 3. Set d x xn n+ += −1 1 1  which is Q- conjugate to dn  as per the parallel subspace property. 
This completes one cycle of iteration.

Step 4. If n cycles are not completed, discard d1  and let d di i= +1 , i n= …1 2, , , .
Set x x0 1= +n  and go to step 2.

Step 5. If n cycles are completed, it marks the end of a stage. Check for convergence, which, 
if achieved, marks the end of iterations. Otherwise go to step 6.

Step 6. Go to the next stage (i.e. to step 2) with the current point as x0  and after re- 
initializing the search directions di i n, , , ,= …1 2  along the n coordinate directions in En.

FIGURE 3.11a Powell’s conjugate directions method and solution to the MLE problem in 
Example 3.2. (a) Evolution of the estimated parameter α  with iterations and (b) evolution 
of the estimated parameter λ  with iterations; final solution: α = 3 634.  and λ = 2 269.  (as 
against the reference values 3.639 and 2.239, respectively).
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Example 3.4. We solve the MLE problem of Example 3.2 by Powell’s method of 
conjugate directions.

Solution. With n = 2, computations start with the first stage of iterations at x0 3 3= ( ), T
 

and d1 1 0= ( ),  T
 and d2 0 1= ( ),  T

. For this example problem, convergence is achieved 
at the end of one stage of iterations with two conjugate directions generated during 
the iterative process. Figure 3.11 shows the result obtained by using the data z which 
is same as the one earlier utilized by the HJ, NM and Rosenbrock methods.

■

3.3.3  deriVatiVe- free method with trUst reGion strateGy

Trust region approach (Powell 1970, Sorensen 1982, Nocedal and Wright 2006) is 
like a dual to a line search method. While in line search, a direction is chosen to 
seek an optimum step size, trust region method searches for a direction with the step 
size fixed. For an unconstrained optimization problem, the method proposes a local 
quadratic model q x( )  at each iteration to the original objective function f x( ) .     
The model is expected to be close to f x( )  in a selected region –  a region of trust –  
around the current xk  of kth iteration. The trust region is normally a ball with radius 
∆k and centred around xk , i.e. x y y x∈ − ≤{ }, k k∆  where .  is the Euclidean 
norm. It may be natural to associate the technique with derivative- based methods 
when the Hessian of f x( )  is available or computable. The strategy is equally 

FIGURE 3.11b (Continued)
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adaptable within a derivative- free framework using quadratic surrogate models. For 
example, generation of these models by interpolation is widely discussed in Powell 
(1996) and Marazzi and Nocedal (2002) and Conn et al. (2009). In any case, with the 
Hessian of f x( )  assumed to be available at hand, the local quadratic model q x( )  
at xk  is given by:

  (3.30)

Thus, the minimization problem of f x( )  reduces to a sequence of trust region 
subproblems of the form:

minimize q x( )

 s.t. x x− ≤k k∆  (3.31)

The solution of Equation (3.31) gives the next iterate xk +1  at which a new trust region 
problem is formulated. To solve Equation (3.31), one may adopt the Lagrange multi-
plier method and use the KKT condition:

  (3.32)

λ ≥ 0 is the Lagrange multiplier associated with the constraint in Equation (3.31). 
H x Ik n( ) + λ  may be positive definite or semi- definite. In  is the n n×  identity matrix. 
Once each subproblem is solved, ∆k is updated to fix the new trust region. The basics 
of the method are often related to the works of Levenberg (1944) and Marquardt 
(1963) where they proposed a method to iteratively solve nonlinear least squares error 
minimization problems with objective function  with x ∈n  and 

each ri
nx( ) →:  . r i mi x( ) = …, , , ,1 2  normally represent error residuals. The 

method involves calculation of a step size:

 d x x J x J x I J x r xk k k k

T

k k n k

T

k= − = − ( ) ( ) +



 ( ) ( )+

−

1

1
µ  (3.33)

where J xk
i

j m n

r
x( ) =

∂
∂











 ×

 is the Jacobian matrix evaluated at xk  and 

r r r rk k k m k

T
x x x x( ) = ( ) ( ) … ( )( )1 2, , , . µk is called a damping parameter devised to 

overcome the ill- conditioning of J xk( )  and adjusted at each iteration. Notice that 
with µk = 0, Equation (3.33) reduces to solving for xk +1  for each ri kx( )  by Newton- 
Raphson method. For some ∆k ∈, Equation (3.33) indicates that the vector dk  
solves the problem:

minimize: 
1
2

2
J x d xk kr( ) + ( )

     s.t. d ≤ ∆k  (3.34)
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The corresponding quadratic model is 
1
2

1
2

2
r x d J x x d J xk

T
k

T

k
T

k

T
r( ) + ( ) ( ) + ( )

J x dk( )  which shows similarity to Equation (3.30). Taking cue from the works of 

Levenberg (1944) and Marquardt (1963), Powell (1970) proposed the first trust region 
algorithm for solving an unconstrained nonlinear optimization problem.

Update of the trust region step size ∆k
If the local quadratic model q x( )  in Equation (3.30) yields a result that pertains to 
a reduced f x( ) , the step size ∆k is enlarged and the next trust region is constructed 
around xk +1 . Otherwise, the region is contracted around xk +1

 and the iterations are 
continued till convergence. The updating procedure is more precisely described with 
a parameter Rk defined as the ratio of the actual reduction in f x( )  to the predicted 
reduction in q x( ) , i.e.:

 R
f x f x

q x q xk
k k

k k

=
( ) − ( )
( ) − ( )

+

+

1

1

 (3.35)

While Rk ≅ 1 indicates that the local quadratic approximation is quite reliable, Rk < 0 
shows no improvement in the iteration. With bounds ε1, ε2 0 1∈( ),  specified on Rk, we 

expand the trust region radius ∆k to, say, 2∆k if Rk > ε1. We reduce ∆k to 
∆k

4
, if Rk < ε2.     

For other values of Rk, ∆k is unchanged. Typical values of ε1 and ε2 are 0.75 and 
0.25, respectively. For other values of Rk, the radius ∆k is unchanged. Iterations 
are continued with x xk k+ =1  if the ratio is negative. Otherwise xk +1  is updated as 
xk k+ ∆ .  Figure 3.12 shows a possible evolution of the trust regions within the design 

variable space of the unconstrained optimization problem.
It suffices to have an approximate solution to each trust region subproblem within 

its radius ∆k. If the Cauchy’s steepest descent method (Section 2.2.1, Chapter 2) is 
used, one obtains an approximate solution after setting H(x) = 0 as:

  (3.36)

Another alternative to obtain an improved solution is to use an exact H x( )  if available 
or an approximate H x( )  of quasi Newton method with, say, BFGS formula (Equation 
2.85 in Chapter 2). Thus, the curvature of q x( )  is utilized in obtaining a better approxi-
mation . On the other hand, in arriving at dk

C , the quadratic term in

q x( )  is avoided, and the solution so obtained may be a good approximation to the 
true one for small ∆k. The Powell’s dogleg method [1970] uses a direction made up 
of two line segments. The first one is along the steepest descent direction up to �dk

C  
and the second one along the line from dk

C  to dk
B. The method minimizes q x( )  along 

this path which resembles a dog leg thus deriving its name. Refer to Nocedal and 
Wright (2006) for an analytical computation of the local minimizer for each trust 
region subproblem by the dogleg method without the necessity to perform a search 
along the chosen path.
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If the original nonlinear problem is constrained, one may take recourse to one of  
the methods in Chapter 2 to transform the problem into an unconstrained one and then  
iteratively solve the latter using the local quadratic approximation –  the main ingre-
dient of the present method. The trust region methods has strong global convergence  
properties (More and Sorensen 1981, Sorensen 1982) with the sequence xk{ }  con-
verging to x*  so that  and H x*( )  are positive semi- definite. We refer to Toint

(1988), Steihaug (1983), Conn et al. (2000) and Hager (2001) for examples on large- 
scale trust region subproblems.

Example 3.5. We solve the constrained optimization problem corresponding to the 
Rosen- Suzuki function defined in Equations (2.128) by the trust region method in 
conjunction with Nelder and Mead method.

Solution. The optimization problem in Equation (2.128) contains nonlinear constraints 
and is transformed into a sequence of unconstrained optimization problems by 
augmented Lagrangian method described in Section 2.4.3 of Chapter 2. Equation (2.129) 
gives the unconstrained and augmented objective function with µ1 and µ2 the Lagrange 
multipliers associated with the specified equality constraints and γ  the corresponding 
multiplier for the inequality constraint. The equation is restated in the following.
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(3.37)

FIGURE 3.12 Trust region method in the two- dimensional case; evolution of trust regions 
along with new iterates xi i k k k, , ,= + +1 2 .

 

 

 

 

   

 



214 Elements of Classical and Geometric Optimization

where f x( ) �  is the Rosen- Suzuki function given by:

 f x x x x x x x xx( ) = − + − + − + + +1
2

1 2
2

2 3
2

3 4
2

45 5 2 21 7 50  (3.38)

h ii , ,= 1 2 and g x( )  are the equality and inequality constraints (see Equations 

2.128b,c,d), respectively. Each unconstrained optimization of the non- quadratic f  in  

Equation (3.37) corresponds to an increasing sequence of the penalty parameter r jrj j+ =1 .    

The computations are started with r1 1=  and the initial vector x1 1 1 1 1= − −( ), , , T
. For 

each rj, f  is minimized by the trusted region method, i.e. by forming the quadratic 

function q x( )  at x j  corresponding to each rj. The starting value for the trust region 

radius is ∆0 2 0= . . The minimization of f  involves an iterative process. At each  

iteration k, the local quadratic model q kx( )  is minimized by Nelder and 
Mead method and trust region updated according to Equation (3.35). Hessian 

 H xk( )  and gradient  of f  are updated at each iteration before forming q kx( ) .

Both  and H .( )  are computed at each iteration by a finite difference scheme

(Section 2.4.4, Chapter 2). Figures 3.13a– b show the result obtained by trust region 
method along with Nelder and Mead method.

One may directly apply Newton’s method to get the local optimizer to q x( )  and 
obtain the new iterate xk +1  as:

  (3.39)

This as an approximate solution to Equation (3.30) and violation of the box 
constraints x x− ≤k k∆  may be checked before updating the trust region radius as 
per the criterion in Equation (3.35). Here, results are also obtained (Figures 3.14a– b) 
by Powell’s method of conjugate directions by solving the non- quadratic objective 
function in Equation (3.37) corresponding to each rj.

■

3.4  METAHEURISTICS –  EVOLUTIONARY METHODS

As pointed out in the introduction to this chapter, derivative- free methods might be 
the only option left in the absence of a generic directional information (equivalent 
to the Gateaux derivative, a generalization of a directional derivative in the search 
for a local extremum of a sufficiently smooth cost functional). In this regard, evo-
lutionary stochastic search techniques (e.g. the genetic algorithm [Goldberg 1989, 
Koza 1992]) have proved very effective compared to the gradient- based deterministic 
counterparts or even the derivative- free deterministic search methods such as the HJ 
and NM methods. This is in fact true (Fletcher 1987, Chong and Zak 2013) even 
for cases involving sufficiently smooth, yet multimodal, objective/ cost functionals, 
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FIGURE 3.13a Solution to constrained optimization problem in Example 3.5 by trust region 
method combined with Nelder and Mead method, r0 1= ; evolution of f x( ) �  with respect to r 
(finally attaining a minimum value of 6.19).

FIGURE 3.13b Solution to the constrained optimization problem in Example 3.5 by trust 
region method combined with Nelder and Mead method, r0 1= ; evolutions of design variables 
x ii , , , ,= 1 2 3 4  with respect to r.
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FIGURE 3.14a Solution to constrained optimization problem in Example 3.5 by trust region 
method combined with Powell’s method of conjugate directions, evolution of f x( )  with 
respect to r (finally attaining a minimum value of 6.009).

FIGURE 3.14b Solution to the constrained optimization problem in Example 3.5 by 
trust region method combined with Powell’s method of conjugate directions; evolutions of 
x ii , , , ,= 1 2 3 4 with respect to r.
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wherein the use of directional derivatives may be inadequate in obtaining the global 
optimum. The suitability of a meta- heuristic method in attaining the global optimum 
within a finite time may only be numerically demonstrated in a problem- specific 
manner, even though it typically offers no guarantee of reaching the global solution. 
Notable schemes in this genre are the genetic algorithm (Holland 1975; Goldberg 
1989, Daniel 2006), particle swarm optimization (Kennedy and Eberhart 1995, Shi 
and Eberhart 1998, Kennedy 2006), simulated annealing (Kirkpatrick et al. 1983, 
Van Laarhoven and Aarts 1987), differential evolution (Storn and Price 1997, Price 
et al. 2005), Tabu search (Glover and Laguna.1997) ant colony optimization (Dorigo 
et al. 1996, 2011, Slowik and Kwasnicka 2018) and the covariance matrix adapta-
tion evolution strategy (Hansen and Ostermeier 1996, Hansen 2007). Some of these 
techniques are described in the sections that follow.

3.4.1  Genetic alGorithm (Ga)

GA is an evolutionary global optimization scheme generally meant to handle 
unconstrained optimization problems (Michalewicz and Schoenauer 1996, Deb 
1997). It metaphorically ‘mimics the genetic evolution of a species and follows 
the biological processes’ with the ability to get adapted to the ‘environment’ in the 
consecutive generations, where a notion of competitiveness in this ‘environment’ 
is provided by the objective functional. For the words quoted above, no mathem-
atically rigorous meaning should be attributed. The adaptation process is mainly 
accomplished in the form of genetic inheritance from parents to offspring and 
through the so- called survival of the fittest. In this method, the initial population is 
created randomly. Each element (candidate) in the population is called a chromo-
some,§ which is constructed using the design variables. A candidate is characterized 
by a set of parameters (design variables) called ‘genes’. The genes joined into a 
string forms a chromosome.

For the update, the objective function assigns a measure of competitive-
ness or goodness to the chromosomes in terms of their fitness. Like most evolu-
tionary schemes, GA also relies upon ‘exploration- exploitation trade- off’ which is 
implemented using three operators, ‘crossover’, ‘mutation’ and ‘selection’. While 
‘crossover’ and ‘mutation’ impart variations in the chromosomes, the selection oper-
ator is used to choose chromosomes for the subsequent population. Chromosomes 
with higher fitness values have higher chances of being selected. For crossover, pairs 
of parents, which participate in mating to produce offspring, are chosen based on 
some probability.

To impart additional layers of variation in the population, the mutation operator is 
applied to a randomly chosen chromosome to alter one or more of its genes. This is 

§ Chromosome
 Chromosomes are strings of genes in living organisms. By Darwin’s theory about evolution, all living 

organisms consist of cells and each cell consists of the same set of chromosomes. The set serves as a 
model for the whole organism. Genetic algorithm adopts this model and in this context, chromosome 
stands for a set of design variables. It is a possible solution (candidate) to the optimization problem. 
A set of solutions represented by chromosomes is called a population
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again based on a specified probability. Before the selection operation is carried out, 
one may also apply one penultimate operation known as ‘elitism’ to the candidates 
at each iteration. This is meant to retain the best candidates (some percentage of the 
total population) unchanged and carry over to the next iteration. The operation is 
expected to keep the good candidates that may be lost due to the cross- over and muta-
tion operations.

Each candidate in the initial population is represented by a string. The string has 
different segments replicating the genes in a chromosome. The number of genes 
(segments) in a string depends on the number of design variables needing represen-

tation. If we have x = ( )x x
T

1 2,  in a two- dimensional problem, a string consists of 

two genes –  the first representing x1 and the second x2. Each gene is expressed in 
terms of a fixed- length binary sequence of bits. The number of bits in the �ith gene is 
determined by:

 l
x x
sj

j u j l

j

=
−







log2

, ,
, j n= 1 2, ,...,   (3.40)

where n is the number of design variables. x j u,  and x j l,  are the upper and lower bounds 
of the design variable x j. s j is the desired precision for the variable. The binary bits 
are generated by a random number generator. If the generated number is less than 0.5, 
we assign zero to the bit and if greater than 0.5, it is assigned unity. Table 3.3 explains 
the basic steps –  crossover and mutation –  of GA.

The selection operator that completes the basic structure of the GA is used to select 
the survived chromosomes, again based on some probability, for the next iteration. 
A stopping criterion is based on the convergence of the objective function within a 
certain tolerance vis- à- vis the previous value. Otherwise, the algorithm may also be 
stopped after a specified maximum number of iterations. The steps defining the sto-
chastic search scheme of the GA are enumerated in Table 3.4.

Example 3.6. We find the solution to the Rosenbrock function f(x) = 100 

x x x1
2

2

2

1

2
1−( ) + −( )  by GA.

Solution. The optimization problem is solved by taking the population size Np = 200.    

The size is chosen after repeated trials with other values of Np < 200 exhibited less 

consistency in realizing the optimum x* ,= ( )1 1 T
. The crossover and mutation prob-

abilities are 0.5 and 0.01 respectively. Figure 3.15 shows the convergence of the 

objective function and the two variables x x1 2 and .
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TABLE 3.3 
Crossover and Mutation Operations in GA Scheme
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■

Other features of GA
For relatively better performance, particularly in engineering applications, use of 
real- valued (continuous) representation of the design variables is suggested (Haupt 
and Haupt 2004) instead of taking a recourse to encoding in the binary format. They 
may be normalized as x x x x xj j j l j u j l= −( ) −( ), , ,/ , j n= 1 2, ,.., . so that all variables 
are in the interval [0,1]. For finding the fitness value of a member, the variable is 
unnormalized by having x x x x xj j j u j l j l= −( ) +, , , . The initial population is randomly 
generated according as:

 x x u x xj
i

j l j u j l
[ ] = + −( ), , ,  (3.41)

where u U~ ,0 1( ) is a uniformly distributed random number in [0,1]. The cross- 
over operation may be accomplished by a simple swapping of variable values 
between a pair of chromosomes at random points. The other way is by blending 
two (normalized) parent members so as to obtain the new offspring member (Haupt 

1995). Suppose that we have the parent chromosomes Pi
i i

q
i

n
ix x x x= … …( )[ ] [ ] [ ] [ ]

1 2, , , , ,  

and Pj
j j

q
j

n
jx x x x= … …( )[ ] [ ] [ ] [ ]

1 2, , , , , . We randomly select the qth variable for crossover 
and reproduce two new variables as:

x x x xq new
i

q
i

q
j

q
i

,
[ ] [ ] [ ] [ ]= + −( )β

 x x x xq new
j

q
j

q
j

q
i

,
[ ] [ ] [ ] [ ]= − −( )β  (3.42a,b)

TABLE 3.4
Main Steps in the Stochastic Search Algorithm of GA

Step 1. Generate the initial population by randomly selecting the genes of each candidate 
(chromosome). Each chromosome stands for a candidate (realized) solution of the problem.

Step 2. Find the fitness value (based on the objective function) of each chromosome of the 
initial population.

Step 3. Divide the population into sets of parents by a random combination among the 
members of the population.

Step 4. Crossover operation: Get the offspring by exchanging the corresponding genes in the 
parent members by single point or multi- point crossover (see Table 3.3). The crossover 
points are randomly selected.

Step 5. Mutation operation: Randomly change the value of a selected gene in some of the 
offspring. The member and the gene to be changed are randomly selected.

Step 6. Perform elitism operation with a fixed percentage of the population.
Step 7. Select the new generation (i.e. retain or reject the parent chromosomes) based on the 

fitness value of the offspring (new chromosomes).
Step 8. Go to step 3 and iterate till the stopping criterion is satisfied.
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FIGURE 3.15a– b GA solution to Rosenbrock function f x x x x( ) = −( ) + −( )100 11
2

2

2

1

2
;     

crossover probability =  0.2, mutation probability =  0.2: (a– b) evolution of x1 and x2 with 
iterations.
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β ∈[ ]0 1,  is the blending parameter. Mutation operation is performed by randomly 
selecting small fraction of chromosomes in the population. In each of these  
candidates, a variable xq is randomly selected and replaced by a new value according  
to Equation (3.41). This operation is executed over the selected chromosomes only  
when a mutation probability is satisfied. That is, with a mutation probability pm, a  
random number r U~ ,0 1( ) is selected at each iteration and the mutation operation is  
carried out only if r pm≤ . The mutation probability is initially taken as unity and is  
gradually decreased as iterations progress. This helps in a wider exploration of the  
design space in the initial stages thus escaping from any local optima. Similarly, we  
retain the best parent members without mutation to have the elitism operation.

Constrained optimization problems can be handled by GA in conjunction with 
methods like augmented Lagrangian (Section 2.4.3, Chapter 2). The latter as described 
in Chapter 2 converts the constrained problem into a sequence of unconstrained ones 
using a penalty parameter.

Example 3.7. Here we use the GA combined with the augmented Lagrangian method 
to solve the constrained optimization problem corresponding to the Rosen- Suzuki 
function defined in Equations (2.128).

Solution: Equation (2.129) gives the unconstrained and augmented objective function  
with µ1 and µ2 being the Lagrange multipliers associated with the specified equality  
constraints and λ the corresponding multiplier for the inequality constraint. Each  

FIGURE 3.15c GA solution to Rosenbrock function f x x xx( ) = −( ) + −( )100 11
2

2

2

1

2
; 

crossover probability =  0.2, mutation probability =  0.2, evolution of the objective function with 
iterations (finally attaining a minimum value of 6.063E- 7).
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unconstrained optimization corresponding to the decreasing sequence of the penalty  
parameter rk is solved by the GA. The results obtained by a combination of the two  
methods are given in Figures 3.16a– b.

■

There are variants of the GA (Srinivas and Patnaik 1994, Smith and Fogarty 1997) 
involving, for example, self- adaptation of the key parameters –  cross- over and muta-
tion rates. GA has been applied to a diverse range of optimization problems (Haupt 
1995, Back 1996). These include structural optimization (Goldberg and Samtani 
1986, Doorly et al. 1996, Eby et al. 1999, Guerlement et al. 2001, Deb and Gulati 
2000, Hultman 2010), control systems optimization (Krishnakumar and Goldberg 
1992) and machine learning (Michalewicz 1996). As a global optimization tool, 
GA is particularly well- suited for parallelism (Alba and Tomassini 2002) due to 
its ability of simultaneously exploring the search space in multiple directions. An 
example for optimum choice of resonant frequencies of a structural system using GA 
is illustrated below.

Example 3.8. We consider the dynamics of a straight circular shaft supported on  
springs and optimize the shaft geometry so as to have the first two natural frequencies  

FIGURE 3.16a Solution to constrained optimization of Rosen- Suzuki function by GA plus 

augmented Lagrangian method, Np = 100,  mutation rate =  0.005; convergence of the four 

design variables x ii , , ,= 1 2 3 4  and .
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separated by a desired frequency range. The objective is to avoid any resonance  
(Appendix 3) in the specified frequency range and thus avoid possible high amplitudes  
of vibration. GA is used to achieve the objective.

Solution. The circular shaft is shown in Figure 3.17a. The supporting springs have 
the stiffness of 4.378 N/ m in both the transverse directions Y and Z. The shaft, 
whose length is l m= 0 3.  , has a disk at the left end with mass equal to 1 4.  kg

.     

The Young’s modulus of elasticity E of the shaft material is 2 075 1011
. .×

N
sq

m  and 

the mass density ρ = 7806
3

kg
m

. The FEM is used to discretize (Figures 3.17b and 

3.17c) the shaft and arrive at the dynamic equations of motion. We refer to Section 
1.5.1 for a description of the FEM.

The FE model, shown in Figure 3.17b, consists of one- dimensional beam elements 
with 4 dofs/ node –  two translational and two rotational. A typical beam element is 
shown in Figure 3.17c. Since each beam element is two- noded, the element mass 
and stiffness matrices M e  and K e  [Bathe 1998] are of size 8 8× . The total number 

FIGURE 3.16b Solution to the constrained optimization of Rosen- Suzuki function by GA 
plus augmented Lagrangian method; N

p
 = 100 mutation rate =  0.005; convergence of the 

objective function with respect to the penalty parameter r (finally attaining a minimum value 
of 6.008).
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of beam elements in the FE model is Ne = 15 and the number of active dofs is 
N = ×4� � � number of nodes on the shaft =  64. The disk at the left end of the shaft is 
modelled by a lumped mass element. The design variables are the shaft diameters 

x jj , , , ,= …{ }1 2 15  denoted by the vector x. The lower and upper bounds for the 

diameters are uniformly taken to be 0.004 m and 0.05 m, respectively.
After the final assembly of element mass and stiffness matrices, we obtain the 

equations of motion, in the form of ODEs, may be written in the following matrix- 
vector form:

 M Kyy t t t( ) + ( ) = ( )  (3.43a)

FIGURE 3.17a Spring- supported circular shaft.

FIGURE 3.17b Spring- supported shaft and the FE model with beam elements.

FIGURE 3.17c Spring- supported shaft and a typical beam element (ith) with 4 dofs per node: 
q t q t q t q ti i i i

1 3 5 7( ) ( ) ( ) ( ), , , –  translational dof and q t q t q t q ti i i i
2 4 6 8( ) ( ) ( ) ( ), , , –  rotational dof.
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y t y t y t y tN

T( ) = ( ) ( ) … ( )( )1 2, , ,  is the vector of nodal displacements (translational 
and rotational). M and K are the N N×  assembled mass and stiffness matrices (resp.) 
and  t N( ) ∈  is the vector of nodal forces. Equation (3.43a) corresponds to an 
undamped system. As energy dissipation is invariably present in practice, we assume 
Rayleigh damping, a form of viscous damping expressible as a weighted linear com-
bination of the mass and stiffness matrices (Clough and Penzien 1982). Accordingly, 
the damping matrix C is constructed in the form C M K= +α β  with α β,� ∈ and we 
write the damped equations of motion as:

 M Cy Kyy t t t t( ) + ( ) + ( ) = ( )  (3.43b)

The natural frequencies (Appendix 3) of the shaft may be obtained by studying the 
frequency response (also described in Appendix 3) due to a harmonic excitation of 
the form  t( ) = A sin  λ .

A is the vector of excitation amplitudes. λ is the excitation frequency in rad/ s. When 
the shaft is excited only at a mass point (node 1 in the FE model –  Figure 3.17b) in the 

Y  and Z  directions,  t A t A t
T( ) = …( )1 2 0 0     sin sinλ λ, , , , . With the initial guess of a 

uniform diameter of 0 02.  m  for the elements, the frequency response at the support 
points of the shaft (prior to the start of iterations) is shown in Figure 3.18. The shaft 
being of circular cross- section, the response in two transverse (Y and Z) directions is 
identical at each support point.

In obtaining the frequency response in Figure 3.18, λ is varied in the range 
0 10000−  rad/ s, keeping the excitation amplitudes A A1 2  and  fixed at unity. From 
the figure, the first natural frequency ω1 of the shaft is identified to be 1250 rad/ s. 
The objective of optimization is presently to modify the shaft geometry, i.e. the shaft 

diameters x jj , , , ,= …1 2 15  so as to push the natural frequencies to outside the range 

1000 –  2000 rad/ s, which is the range over which loading frequencies could vary. The 
aim is then to minimize the error as in the following objective function:

 f x x x( ) = − ( )( ) + − ( )( )1000 20001

2

2

2
ω ω  (3.44)

While the objective function does not directly depend on the shaft diameters, the first 
two natural frequencies ω1 and ω2 are functions of x. GA is used with a population 
size of Np = 20. The mutation rate is 0.01 and the mutation probability pm is unity ini-
tially as it is progressively reduced during the iterative process based on p cpm k m k, ,+ =1  
with c ∈( )0 1, . Figures 3.19a– b show the results.

Since GA is a stochastic search algorithm, the results shown in Figure 3.19 are 
sample- averaged quantities obtained at each iteration by averaging over a population 

of Np = 20. Before the start of iterations, search for the optimum begins with each of   

the design variables (here shaft diameters x j nj , , , ,= … =1 2 15 ) selected according 

to a uniform probability distribution (Equation 3.41). Thus, each x j is a random 
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FIGURE 3.18a–b Frequency response before start of iteration in Example 3.8 at the 
support points in Y-  and Z- directions; excitation amplitudes A A1 2 1 0, .=  N at the disk node:   
(a) response at node 5 –  in Y- direction and (b) response at node 11 –  in Y- direction (see FE 
model in Figure 3.17b).
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variable and its distribution is altered at each iteration. For clarity, the evolutions of 

x3 and x7 are shown in Figures 3.20a and 3.20b, respectively, show in the first few 
iterations. Following this, Figures 3.20c and 3.20d, respectively, show the evolutions 
of these two diameters over the entire range of iteration. As observed, sample 
variances of the design variables reduce with iterations, finally converging to nearly 
deterministic values (Figures 3.20c and 3.20d). This is desirable since the original 
optimization problem is posed deterministically. Figure 3.21 shows the convergence 

of all the design variables (sample averaged over the population size Np = 20) with 
iterations.

Note that the solution obtained may still be a local solution instead of global even 
though the present solution is sufficiently accurate. Fine tuning of the algorithmic 
parameters such as the population size, mutation rate and probability may realize 
a better solution. Figure 3.22 shows the frequency response of the mass located at 
the left end of the shaft, obtained with the final (optimized) set of shaft diameters at 
the end of iterations. The response corresponds to a transverse direction at the mass 
point. The result shows that the desired objective to avoid resonance in the frequency 
range 1000– 2000 rad/ s is indeed realized. The optimum shaft geometry is shown in 
Figure 3.23.

FIGURE 3.19a Optimum shaft geometry by GA to avoid resonance in a specified frequency 
range; Np = 20, p pm k m k, ,.+ =1 0 99 ; evolutions of the first two natural frequencies ω1 and ω2.
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FIGURE 3.19b Optimum shaft geometry by GA to avoid resonance in a specified frequency 
range; Np = 20, p pm k m k, ,.+ =1 0 99 ; evolution of the objective function (in Equation 3.44) with 
iterations (finally attaining a minimum value of 9.0).

FIGURE 3.20a Optimum shaft geometry by GA to avoid resonance in a specified frequency 
range; Np = 20, p pm k m k, ,.+ =1 0 99 : (a) evolution of x3 over the first 20 iterations; (b) evolution 
of x7 over the first 20 iterations; (c) evolution of x3 over all iterations; (d) evolution of x7 over 
all iterations.
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FIGURE 3.20b–c (Continued)
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FIGURE 3.20d (Continued)

FIGURE 3.21 Optimum solution by GA for a simply supported shaft to avoid resonance 
in a specified frequency range; N = 15, Np = 20, p pm k m k, ,.+ =1 0 99 ; evolutions of all design 

variables x j Nj , , , ,= …1 2  (sample- averaged) with iterations.
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■

3.4.2  simUlated annealinG (sa)

Simulated annealing (SA) is another evolutionary optimization scheme which is 
derivative- free and recognized as a probabilistic metaheuristics method like the GA. 
The name ‘simulated annealing’ is derived from the fact that the scheme emulates 

FIGURE 3.23 Optimum shaft geometry by GA –  Example 3.8; final optimum solution on 
shaft diameters that avoids resonance in a specified frequency range.

FIGURE 3.22 Optimum solution by GA for a simply supported shaft to avoid resonance in a 
specified frequency range; N = 15, Np = 20, p pm k m k, ,.+ =1 0 99 ; frequency response of the shaft 

with the final set of diameters x j Nj , , , ,= …1 2  obtained by GA; X jω( ) 17
 –  response at 5th 

node in Y- direction and X jω( ) 45
 –  response at 11th node in Y- direction.
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the process of annealing –  evolution of a solid in a heat bath to thermal equilib-
rium. Annealing is the well- known metallurgical process of heating up a solid and 
then cooling it slowly until crystallization takes place. At very high temperatures, 
the atoms of the solid have high energy and as the temperature is reduced in a con-
trolled fashion, the energy reduces, until a state of minimum energy is achieved. 
Based on this original idea of the SA that dates back to the middle of the 20th cen-
tury, Metropolis et al. (1953) introduced a path- breaking algorithm** to arrive at the 
equilibrium of a collection of atoms at a given temperature. This pioneering technique 
inspired Kirkpatrick et al. (1983) to incorporate it as an optimization tool, wherein 
temperature serves as a controlling parameter and a measure of diffusion in the evo-
lution of the design variables. Thus, SA begins with a high value of temperature so 
that the design variables are allowed a wide range of variation. As the algorithm 
progresses, temperature is made to fall as per a cooling schedule. This often guides 
the algorithm to a better solution, just as a metal piece achieves a better crystal struc-
ture through an actual annealing process.

As temperature decreases, changes are produced yielding successively better 
solutions and finally giving rise to an optimum set of variables when the tempera-
ture is close to zero. The travelling salesman problem (TSP) which is described and 
solved in Chapter 1 is, in fact, efficiently solved by this thermo- dynamical approach 
[Cerny 1985].

Description of the basic methodology in SA
SA may be viewed as a sequence of Metropolis algorithms adopted at different values 

of the controlling parameter T .  At each Tk  with k denoting an iteration, we use 
Metropolis algorithm to generate a sequence of trial states, each in the neighbour-
hood of the current state. With n denoting the design variable space dimension, let 

xk i kx i n= = …{ }, , , , ,1 2  and x̂ ˆ
k i kx i n= = …{ }, , , , ,1 2  be the current and a trial state 

with fitness values E fk k= ( )x  and E fk k


= ( )x  simulating the energy levels in an 

** path- breaking algorithm –  the Metropolis algorithm
The Metropolis algorithm is considered one of the top ten algorithms of the 20th century (Dongarra 
and Sullivan 2000). Metropolis et al. (1953) proposed a method that made simple an otherwise diffi-
cult task: simulating the evolution of a solid in a heat bath to thermal equilibrium. The difficulty is in 
simulating the Boltzmann distribution that the algorithm uses to characterize the equilibrium state at 
a temperature T . The distribution gives the probability of a solid particle in state x  with energy E  
in the form:

  (i)

kB  is the Boltzmann constant. c  is a normalization constant that renders  a valid distribution.

The fact that c  is not known a priori makes the simulation difficult by straight- forward techniques like 
transformation methods (Papoulis 1991, Roy and Rao 2017). Metropolis algorithm is a Monte Carlo 
technique based on the theory of Markov chains. It thus belongs to a large class of sampling algorithms 
known as MCMC techniques.
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annealing process. The trial state x k  is generated by applying a random perturb-

ation mechanism, which transforms the state xk  to x k . If E Ek k
 ≤ , the state x k  is 

accepted as the current state; otherwise, x k  may still be accepted with an acceptance 

probability αk . Thus, the method probabilistically decides, depending on the diffe-

rence between the fitness values Ek  and Ek ,  whether the current candidate should 
be replaced by the trial set or not. This is repeated over a large number of steps at 
the kth iteration. The Metropolis algorithm assumes that the probability of being in 

a state xk  with energy E fk k= ( )x  at temperature Tk  is given by the Boltzmann 
distribution:

  
(3.45)

where c is a normalization constant so that  is a valid distribution. The choice of 
this distribution is motivated by the fact that the role of the control parameter T  is to 
(a) keep the probability of accepting a trial state high in the earlier stages and (b) force 
it towards zero asymptotically. In particular, the initial temperature is generally chosen 
sufficiently high so as to avoid a local minimum. These twin requirements are satisfied 
by the Boltzmann distribution (Aarts and Korst 1989). Note that, with the normalizing 
constant c unknown, to simulate and draw realizations from  is difficult using 
straight- forward methods. In achieving the task, the Metropolis algorithm uses MC 
simulation based on the theory of Markov chains. It generates at each temperature a 
sequence of trial states by MC simulation. The initial states xi k, , i n= …1 2, , ,  at each 
temperature Tk  are simulated, for instance, from a uniform probability distribution:

 x x u x xi k i L i U i L, , , ,= + −( ), i n= …1 2, , , , u U~ ,0 1( ) (3.46)

The sequence of trial states generated by a small random perturbation over the current 
states forms a Markov chain at each temperature T . The algorithm considers these 
states to be realizations of random variables (RVs) Xi k, , i n= …1 2, , , . RVs are denoted 
by upper case letters. Here the assumption of a Markov chain is valid in that each 
trial state in the sequence is generated from a neighbourhood of the current state. 
A Markov chain is characterized by (a) a state space S l∈ –  the set in which xi k,  takes 
values and (b) a transition probability matrix P.  l is the number of steps that the algo-
rithm is allowed to take at a temperature T . Each element Pij  of P ∈ ×l l  stands for    

the conditional probability P X x X xi k i k i k i k( | ), , , ,
ˆ ˆ= = –  the probability of a single step 

transition to xi k ,  from the state xi k, . It is easy to see that if the initial probabilities of 

the states are given by the vector p0 , then after, say, m  transitions they are:

 p p Pm
m= 0  (3.47)
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Metropolis algorithm cleverly uses the distinctive features of a Markov chain –  
reversibility and existence of a limiting probability distribution –  to simulate the final 
states in the so- called thermal equilibrium at each temperature. A Markov chain, 
under certain conditions, reaches a unique stationary distribution ps  which is known 
as the limiting distribution (see Example A3.8 of Appendix 3). The distribution thus 
satisfies:

 p p Ps s
m=  (3.48)

The Metropolis algorithm takes the Boltzmann distribution  as the limiting distri-
bution ps (.) of each Markov chain in SA. It next applies the detailed balance condi-
tion associated with the reversibility of a Markov chain which is stated as:

  (3.49)

The algorithm determines the acceptance probability (with the normalization con-
stant cancelled) as:

  (3.50)

The trial state x k  is accepted or rejected according to the above acceptance prob-

ability. Thus x k  is accepted with probability 1 when E Ek k
 ≤ .  Even if E Ek j> ,  it   

is still accepted with a probability exp −
−









E E
k T
k k

B i



.  Thus the algorithm accepts not 

only better solutions but also worse solutions with an acceptance probability. The 
Metropolis algorithmic step is repeated over enough trial states at each Tk  before 
updating the temperature. Table 3.5 details the steps in the SA algorithm. Equation 
(3.50) indicates that, initially with higher values of Tk ,  the probability of higher 
energy levels is higher with the algorithm accepting failures. As the parameter grad-
ually decreases, the acceptance rate of failures also decreases, implying that the 
algorithm tends to settle around the available best. Theoretically, an asymptotic 
convergence that is controlled by a so called cooling schedule to an optimal solu-
tion is guaranteed (Aarts and Van Laarhoven 1985, Hajek 1988). A proper ‘cooling’ 
schedule (typically based on a logarithmic reduction) is needed for the SA algorithm 
to attain convergence to the desired optimum in finite time.

Example 3.9. We take up the shaft dynamics problem of the previous example and 
obtain the optimum shaft geometry by SA to avoid resonance in the desired fre-
quency range.

Solution. The initial value of the control parameter T is taken as 5 and the annealing 

schedule is T Tk j= 0 8.  where k  represents the current iteration and j the last one. 
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We refer to the FE model in Figure 3.17b and assume that the shaft is initially uni-

form with diameter equal to 0.02 m for the initial iteration. With the lower and upper 

bounds xL  and xU  of the shaft element diameters taken as 0.004 m and 0.05 m, 

respectively, the trial set x k  of diameters is generated at any iteration with the help 

of Equation 3.46. The final (minimum) temperature to stop the computations is taken 

as 2.0E- 3. The iterative process is carried out at each T with 200 iterations. The 
results obtained by SA are shown in Figures 3.24a– b.

■

TABLE 3.5
Main Steps of the SA Algorithm

Step 1. Let x0  be the initial vector of design variables before the start of iterations. Specify 
the initial temperature �T  along with the annealing (cooling) schedule and the acceptance 
probability criterion. Compute the initial cost (fitness value), f x0( ) . Fix the final (minimum) 

temperature Tf  to stop the computations. Fix a suitable limit l  on the number of Metropolis 

algorithmic steps at each temperature. Set the counter for a successful step Isuc= 1.
Step 2. Start iterations with current temperature Tk . At the kth  iteration, let xk  be the current

state; compute E fk k= ( )x .
Step 3. Generate a new set of design variables and get a trial state x k  as per Equation (3.46).

Compute the new cost E k kf= ( )x .

Step 4. Find the change in the cost due to the new set, i.e. E Ek k
 −  andw decide on 

acceptance or rejection of the trial state x k  according to the following Metropolis 
criterion:
i) accept the new cost Ek  and replace xk  by x k

if E Ek k
 − ≤ 0  or exp −

−







 ≥ ( )E E

k T
U

k k

B k



0 1, , a random number from a

uniform distribution. Increase the number of successful steps by 1,
i.e., Isuc =  Isuc +  1.

ii) reject otherwise.
kB  is called the Boltzmann constant and is taken as unity.

Step 5. At the end of the inner steps (=  l  at a temperature Tk ), reduce the temperature 
according to the annealing schedule:

T CT Ck k+ = ∈( )1 0 1, , . If the current T Tk f+ >1 , repeat steps 2- 5; otherwise end 
computations.
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Note that the annealing schedule of SA is similar to the strategy adopted in GA,  

FIGURE 3.24b Optimum shaft geometry (Example 3.8) by SA to avoid resonance in a 
specified frequency range; evolution of objective function (in Equation 3.44) with number of 
successes during iterations (finally attaining a minimum value of 848.0).

FIGURE 3.24a Optimum shaft geometry (Example 3.8) by SA to avoid resonance in a 
specified frequency range; evolution of first two natural frequencies ω1  and ω2.
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viz. of decreasing the mutation probability as iterations progress. One disadvantage  
common in stochastic local search algorithms is that the definition of some control  
parameters (initial temperature, cooling schedule) is somewhat subjective (Wong and  
Constantinides 1998) and must be done from an empirical basis. This means that,  
given a problem, the algorithm must be tuned in order to maximize its performance.  
The diverse applications (Chibante 2010) of SA include inverse problems or param-
eter identification (Silva Neto and Özişik 1994, Souza et al., 2007) and optimal con-
trol systems design (Grimble and Johnson 1988, Ogata 1997).

3.4.3  particle swarm optimization (pso)

PSO is based on swarm or group intelligence and is a behaviourally (socially) inspired 
algorithm. PSO, originally proposed by Kennedy and Eberhart (1995), mimics the 
behaviour of social organisms, e.g. a swarm of insects such as ants, bees and wasps, a 
flock of birds, school of fish, etc. Each candidate, denoting a bee in a colony or a bird in 
a flock etc., moves randomly, guided only by its own ‘intelligence’ and the collective or 
‘group intelligence’ of the swarm. For example, if a candidate finds a good path to food, 
the rest of the swarm will also be able to follow the path instantly even if their locations 
are far away. Each candidate, whose motion is characterized by position and velocity, 
wanders around in the design space and remembers the best position it has discovered 
so far. The particles (candidates) communicate information on good positions with one 
another and adjust their individual positions and velocities accordingly.

A unique feature of the PSO is that the search space is explored by a combination 
of the swarm’s previous best and the individuals’ previous best positions. At the heart 
of the swarm behaviour are three driving factors (which may, in part, contradict each 
other –  a reflection of the exploration– exploitation trade- off): (1) cohesion –  stick 
together, (2) adhesion –  do not come too close, and (3) alignment –  follow the general 
heading of the flock. To summarize, the PSO is derived following the model below.

(1) When a particle locates a target (i.e. an available extremum of the objective 
functional), it instantaneously shares the information with all others (non- 
local interaction across space- separated particles).

(2) All other particles tend to come towards the target.
(3) However, in doing so, each particle exercises its own intelligence consistent 

with its past memory.

Thus, the model performs a random search, restricted by the conditions above, in 
the design space so that, with progressing iterations, it should approach the global 
extremum. The main features of the algorithm are described in Table 3.6.

c1  and c2  are also known as the cognitive and social parameters, respectively. Fine  
tuning of these parameters and the inertia weight w  improves the performance of the  
PSO [Clerc and Kennedy 2002]. While a larger value of the inertia weight may help  
in global exploration initially, a smaller value applies to local exploration (e.g. near  
the final stages when much of the design space is already explored). This parameter  
like the mutation probability in GA thus has functional similarities with the tempera-
ture parameter in the SA. Note that many such meta- heuristic optimization schemes  
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typically lack scientific rigour, grounded as they are in intuitive reasoning drawn from  
social or biological observations.

Example 3.10. We solve the shaft dynamics problem of the Example 3.8 by PSO.

Solution. The objective function is the same as in Equation (3.42) and the   

initial set of design variables x j = x x x uL j N U j L j Np p, , ,1{ } + −( ){ }× ×1 1 , j n= …1 2, , ,  

(velocity vector) where xL
n∈  and xU

n∈  are the specified lower and upper 
bounds for the design variables. 1{ }  stands for a vector of ones. u U~ ,0 1( )  is the 
vector of uniformly distributed random numbers. The weight parameter w �  is similar 
to the control parameter T  of SA. w �  is gradually decreased as iterations progress:

 w w k
Iter

w wk max
max

max min= − −( ) (3.52)

wmax  and wmin  are the maximum and minimum values, presently chosen to be 0.9 and 
0.4, respectively. Itermax = 100  is the maximum number of iterations and k  stands 
for the kth  iteration. Parameters c1  and c2  are both selected as 2.0. The results are 
shown in Figures 3.25a– b.

TABLE 3.6
Main Steps in PSO Algorithm

Initialize an n- dimensional search space, and generate N
p
 particles (defining a swarm of N

p
 

realizations or sets of n design variables).
The jth  particle is defined by its n - dimensional position and velocity vectors denoted by 

x j j j
n
j T

x x x[ ] [ ] [ ] [ ]= …( )1 2, , ,  and v j j j
n
j T

v v v[ ] [ ] [ ] [ ]= …( )1 2, , , ,  j N p= …1 2, , ,  respectively.

Evaluate the cost function for Np  particles and start the iteration counter,1  to kmax.

Step 1. At any iteration, say k kmax∈( )1, ,  pick pbest
j[ ] ,  the best position of the jth  particle and 

pick gbest ,  the best position of the swarm over all the past iterations, i.e. 1 to k −1.
Step 2. Update the particles as:

v wv p x g xj j
best
j j

best
jk k c r c r[ ] [ ] [ ] [ ] [ ]+( ) = ( ) + −( ) + −( )1 1 1 2 2

                                               x x vj j jk k k[ ] [ ] [ ]+( ) = ( ) + +( )1 1                                     (3.51a,b)

w ∈ −+  inertia weight (or weight parameter on the previous velocity of the particle),

r1  and r2  –  random numbers uniformly distributed in 0 1,[ ]  and
c1  and c2  –  learning factors of a particle -  the first from the knowledge of its own success 
pbest
j[ ]  and the second from that of the best position gbest  of the swarm.

Step 3. Repeat steps 1 and 2 till a stopping criterion is satisfied.
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FIGURE 3.25a Optimum shaft geometry (Example 3.8) by PSO to avoid resonance, results 
with c1  and c2  =  2; evolution of the first two natural frequencies ω1  and ω2.

FIGURE 3.25b Optimum shaft geometry (Example 3.8) by PSO to avoid resonance, results 
with c1  and c2 =  2.0; evolution of the objective function (in Equation 3.42) with iterations 
(finally attaining the minimum value of 0.0).

 

 

 



241Classical Derivative-free Methods of Optimization

Changes in parameters may have strong influence on the performance of PSO. For  
instance, the results in Figure 3.25 pertains to the cognitive and social parameters c1   
and c2  which are both assumed to be 2. If we choose c1  and c2  as 1 and 2 respect-
ively, results are shown in Figures 3.26a– b which indicates that the algorithm shows  
better convergence.

■

Improved versions of the scheme for better performance may be found in Van den 
Bergh and Engelbrecht (2004), Jiao et al. (2008), and Hu et al. (2012) that include 
those with adaptivity to change w , c1  and c2  for better convergence. The PSO 
has been extensively used (Engelbrecht 2006) for many scientific and engineering 
purposes –  see Venter and Sobieszczanski- Sobieski (2004) for optimization of trans-
port aircraft wing, Begambre and Laier (2009) and Kang et al. (2012) for damage 
detection and Luh et al. (2011) for topology optimization. Several approaches to solve 
constrained optimization problems by the PSO are suggested in Hu and Eberhart 
(2002) and He and Wang (2007). Interested readers may find a review on swarm intel-
ligence algorithms and their applications in Brezočnik et al. (2018).

3.4.4  differential eVolUtion (dieV)

Differential evolution (DiEv) –  another evolutionary optimization strategy –  relies on  
parallel direct search and works with a randomly chosen population. Like the GA,  
DiEv also has its strategic operations similar to mutation, cross- over and selection.  

FIGURE 3.26a Optimum shaft geometry (Example 3.8) by PSO to avoid resonance; results 
with c and c1 21 2= =  ;  evolution of the first two natural frequencies ω1  and ω2  in rad/ s.

 

 

 

  

 

 

  

 

 

 

 

 



242 Elements of Classical and Geometric Optimization

The method starts with an initial set of randomly generated population consisting  
of N

p
 parameter vectors. DiEv generates new vectors by mutation which, for this  

method, is defined as adding the weighted difference between two randomly chosen  
vectors to a randomly chosen third one (see Figure 3.27). The elements of the mutated  
vector are then added to those of another randomly chosen vector, the ‘target vector’,  
to yield the so- called trial vector. Such an operation is similar to the crossover used in  
the GA. The trial vector is accepted if it improves the fitness value over the last. This  
step is the selection. To ensure that all the available vectors take part in the explor-
ation, each vector is forced to assume the role of the target vector once (the random  
choice of the target is thus in the set of vectors not yet chosen as targets). The algo-
rithm is detailed in Table 3.7.

Equation (3.53) indicates that the mutation operation in GA is replaced by a differ-
ential form and hence the name ‘differential evolution’. The algorithm in Table 3.7 is a 
basic version of DiEv and is generally denoted by DiEv/ rand/ 1/ bin. ‘/ rand/ ’ indicates 

that vk
r1   in Equation (3.53) is randomly selected for performing mutation. ‘/ 1/ ’ 

indicates the number of difference vectors used during mutation. In Equation (3.53), 

FIGURE 3.26b Optimum shaft geometry (Example 3.8) by PSO to avoid resonance; results 
with c and c1 21 2= =  ;  evolution of the objective function (in Equation 3.44) with iterations 
(finally attaining the minimum value of 0.0).
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only one difference vector v vk
r

k
r2 3   −( )  is used. ‘/ bin/ ’ indicates that independent 

binomial experiments decide crossover in Equation (3.53). A typical variant may be 
DiEv/ best/ 2/ bin wherein mutation is executed over the best population vector, i.e.:

 u v v v vk
j best k

k
r

k
r

k
r

k
rc v c+

[ ] [ ]( )       = + −( ) + −1 1 2
1 2 3 4 ( ) = …, , , ,j N p1 2  (3.56)

and two difference vectors are involved in mutation. vk
best[ ]  is the best population 

vector (based on the fitness value) at the kth  iteration among vk
j[ ] , j N p= …1 2, , , . 

Other, possibly more efficacious, variants of DiEv have been reported [Wang et al. 
2011], differing from the basic version of Table 3.7 by way of how mutation and 
crossover are performed.

Example 3.11. We solve the shaft dynamics problem of Example 3.8 by DiEv.

Solution. Referring to the last example by PSO, we similarly choose the initial   

set of design variables as x j = x x x uL j N U j L j Np p, , ,1 1 1{ } + −( ){ }× × , j n= …1 2, , , .  The 

population size Np  is 15. The results are in Figures 3.28a– b.

FIGURE 3.27 Mutation operation in DiEv at the end of the kth  iteration in a two- dimensional 
parameter space (for details on notations, see Table 3.7).
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■

While the selection of Np , c  and q  is problem- dependent, a possible guidance 

may be 5 10n N np≤ ≤ ,  c = 0 5.  and q = 0 1. . Different population vector strategies 

and control parameter settings with possible adaptivity have been studied (Fan and 
Lampinen 2003, Brest et al. 2006, Mallipeddi and Suganthan 2008) for improving the 
performance of DiEv with respect to many benchmark functions that include multi- 
modal and hybrid composite functions.

TABLE 3.7
Salient Features of the DiEv Algorithm

Initialize Np , the population size in a specified n- dimensional parameter space. Let 

the cost function be f x( ).  Randomly generate the initial set of Np  parameter 

vectors, v j
0
[ ], j N p= …1 2, , , , each of size n, whilst ensuring that the vector elements are 

within the prescribed limits of the design space and reasonably well scattered. Start 
iterations k kmax= …1 2, , , .

Step 1. Generate the new set of Np  vectors by mutation:

                            u v v vk
j

k
r

k
r

k
r

pc j N+
[ ]      = + −( ) = …1

1 2 3 1 2, , , ,                               (3.53)

r1 , r2  and r3  are random integers (different from each other) drawn from a discrete uniform 

distribution on [1: Np ] and c U~ ,0 1( ) .

Step 2. Perform cross- over to get the trial vector:

 or i rand= ς

                                       = [ ]vk i
j
,  otherwise, j N i np= … = …1 2 1 2, , , , , , ,                               (3.54)

where p Ui ∈ [0,1] and q  a user- specified real number in 0 1,[ ]. ς rand  is a randomly chosen 

integer in 1, N[ ] . The operation ensures that at least one element u k i
j
+( )

[ ]
1 ,  (denoted by the 

subscript ‘ i ’) enters the trial vector of each jth  particle.

Step 3. Selection: the final vectors at the k th+( )1  iteration are determined as:

 if 

                                                            v vk
j

k
j

+
[ ] [ ]=1  otherwise                                               (3.55)

Step 4. Repeat steps 1- 3 till a stopping criterion is satisfied.
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FIGURE 3.28a Optimum shaft geometry (Example 3.8) by DiEv to avoid resonance; Np  = 15,    
q = 0 1. ; evolutions of the first two natural frequencies ω1  and ω2.

FIGURE 3.28b Optimum shaft geometry (Example 3.8) by DiEv to avoid resonance; �Np  = 

15, q = 0 1. ; evolution of the objective function with iterations (finally attaining a minimum 
value of 98.02).
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CONCLUDING REMARKS

This chapter has outlined a class of derivative- free yet reliable optimization techniques 
commonly known by the name “direct search methods”. Vis- à- vis the quasi- newton 
methods, these schemes are computationally inexpensive. Treated as a seemingly 
hodgepodge collection of algorithms based on heuristics during the early seventies, 
these methods became increasingly popular as their global convergence behaviour 
got well established in recent times. Among these, the method of pattern search by 
Hooke and Jeeves and of simplex by Nelder and Mead occupy a prime place. They 
are followed in this chapter by the methods of Powell and Rosenbrock. Without the 
need of derivatives, both Powell and Rosenbrock have shown, although by different 
approaches, how one- dimensional searches during iterations could be exploited to 
obtain information on the curvature of the objective function and thus accelerate the 
search. Trust region method is yet another robust technique discussed in the chapter. 
The method uses at each iteration a local submodel with a local approximation to 
the original objective function in a trust region. The trust region size is updated as 
per a certain merit function and iterations are continued with no need for deriva-
tive computations. Another significant aspect of the chapter is the narration of a few 
popular evolutionary optimization methods –  genetic algorithm, simulated annealing, 
particle swarm optimization and differential evolution –  which are again of heuristic/ 
meta- heuristic origin and derivative- free. Underlying each of these methods, there is 
a probability model to iteratively sample and update the solution. This is perhaps why 
they often go by the name ‘stochastic search methods’. One can expect that the notion 
of random sampling and evolution of possible solutions should efficiently explore the 
search space, though at the cost of possibly slower convergence. Be that as it may, 
the popular adoption of these schemes is not only due to algorithmic simplicity, but 
mainly because of their effectiveness in treating many NP- hard (Appendix 1) opti-
mization problems. Even though these derivative- free techniques primarily aim at 
solving unconstrained optimization problems, they may be hybridized with any of the 
methods such as Lagrange multipliers, augmented Lagrangian or penalty function of 
Chapter 2 to handle problems with constraints.

Despite a wide adoption of evolutionary methods of heuristic/ meta- heuristic origin, 
the underlying justification is often based on sociological or biological metaphors 
that are hardly founded on a sound probabilistic basis even though a random search 
forms a key ingredient of each of the algorithms. An exception may be the method 
of simulated annealing (SA). The last method may seem to adopt the simple notion 
of probability, like other evolutionary schemes, whilst updating the current state. 
However, its working requires a deeper understanding of MCMC methods which are 
in turn based on the theory of Markov chains (Appendix 3). The Metropolis algo-
rithm of SA which is cited as one of the top ten algorithms of the 20th century, 
was originally designed to emulate the metallurgical process of annealing using the 
theory of Markov chains. The algorithm is cleverly exploited in SA as an optimiza-
tion tool with temperature as a controlling parameter. The rest of this book is devoted 
to Riemannian geometric variants of optimization methods in both deterministic and 
stochastic settings.
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EXERCISES

1. The mean- variance portfolio theory of Markowitz (1952) is the basic model in 
finance for portfolio selection. In this model, each asset (or stock) is characterized 
by its return which is a random variable. It obviously carries with it, a risk measured 
in terms of variance (volatility) of its return. Let Ri  represent the expected return of 

the ith  asset and C, the covariance matrix with each of its elements Cij  denoting the 

covariance between the ith  and jth  assets. The model as formulated by Markowitz 
envisages minimum risk while achieving a pre- specified expected return, say, R . 
Thus, it is a constrained quadratic minimization problem where it is required to min-
imize the risk, i.e.:

minimize: 
i

N

j

N

ij i jC x x
= =
∑∑

1 1

 s. t. and
i

N

i i
i

N

i iR x Q x x i N
= =
∑ ∑= = = … >

1 1

1 1 2 0, , , , , , (E3.1a,b)

Here, x i Ni , , , ,= …1 2  are the weights (proportions of total investment) of the chosen 

stocks. The constraint xii

N
=

=∑ 1
1

 indeed requires cent percent investment in the 

portfolio. Find the minimum variance portfolio by HJ and NM methods for a typ-

ical portfolio selection with N = 3 , C R=
















= ( )
2 1 0
1 2 1
0 1 2

0 4 0 4 0 8, . . .  and Q = 3. 

[Hint: Use Lagrange multipliers]
2. This problem is to highlight the application of approximating a continuous 

probability distribution (target pdf) by a mixture of normal pdfs. The applications 
include varied disciplines such as astronomy (Newcomb 1886), biology (Niemi 2009) 
and finance (McLachlan and Peel 2000, Norets and Pelenis 2011).

In n- dimensional normal mixture model, the mixture density is expressed as 

p N mi i ii

n
 ,σ2

1 ( )=∑  where pi  is the weight associated with ith  normal component while 

m andi i  σ2  are its mean and variance. Note that pii

n
=

=∑ 1
1

. Thus, if θ σ= ( )p m, , 2 T
   

represents the vector of unknown parameters in the model, it is of size 3n  with 
p m∈ ∈− n nand1 2   , σ . Given the target pdf , it is required to estimate θ  so

that the true observations z z z zN
T

= …{ }1 2, , ,  are most likely to have been realized 
from the assumed normal mixture pdf.

Task A: If the method of maximum likelihood estimation (MLE) –  Section 3.2.2 –  
is adopted, the problem involves the following minimization problem given by:
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 minimize l
p

z m
j

N

i

n
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i i
j iθ; logz( ) = − −( )













= =

∑ ∑
1 1

2 2

2

2
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2πσ σ
exp













 (E3.2)

Suppose that the target pdf  is the log χ2 (log- Chisquare) pdf with one degree of 
freedom (Papoulis 1991) which is given by:

  
(E3.3)

Estimate the parameters θ  in the normal mixture model by MLE using HJ method of 
optimization. (Note: results are given in Figure E3.1.)

Task B: MLE requires the likelihood function to be bounded over the parameter 
space which may not be satisfied by the discrete normal mixture model. An alterna-
tive approach is to estimate by moment generating function (MGF)†† method (Quandt 
and Ramsey 1978, Schmidt 1982). This approach minimizes the sum of squares of the 
distance between the ‘sampling’ MGF and its empirical counterpart. The ‘sampling’ 
MGF is from the assumed normal mixture model:

 Φ s E e p m s ssZ

i

n

i i i,θ( ) = [ ] = +











=

∑
1

2 21
2

exp σ  (E3.4)

Form the available observations, the empirical (theoretical) MGF is:

 Φ s
N

sz
j

N

j, z( ) = ( )
=

∑1

1

exp  (E3.5)

†† Moment generating function
If X  is a random variable with pdf, moment generating function is defined by:

  (i)

For example, for X N m~ ,σ( ) , Φ s( )  is given by:

 Φ s ms s( ) = +





exp
1

2
2 2σ  (ii)

If s is changed to jω  (pure imaginary number), one obtains the characteristic function of X:

  (iii)

Differentiating (i) ‘n’ times, one obtains:

 d s

ds
E X e

d

ds
E X E X

n

n
n sX

n

n
n nΦ Φ( ) = [ ] ⇒ ( ) = [ ] = [ ]0  (iv)

Thus, the derivatives of Φ s( )  at s = 0  yields the moments of the random variable X  and hence the 
justifies the name ‘moment generating function’.
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With a set of grid points s s sM1 2, ,…  chosen, one needs to minimize the error between  
the empirical and ‘sampling’ MGFs, i.e.:

 minimize: e s s
k

M

k kθ θ( ) = ( ) − ( )( )
=

∑
1

2
Φ Φ , ,z  (E3.6)

The number of grid points M  may be chosen to be equal to the number of unknown 
parameters in the normal mixture model.

Hint for Task B: Solve the optimization problem in (E3.6) using any of the 
derivative- free methods to estimate the parameters θ  by MGF approach.

3. Minimize the function f x x x x x x x( ) = + − +2 4 101
3

1 2
3

1 2 2
2  (Ravindran et al. 2006) 

by Rosenbrock’s rotating coordinates and Powell’s conjugate direction methods.
4. Minimize the Camelback function (Molga and Smutnicki 2005):

FIGURE E3.1a–d Result for Task A: Optimization by HJ method; MLE estimate of 
parameters in normal mixture model approximating log χ2  (log- Chi square) pdf, N = 50000  
and n = 2:  (a) original pdf –  in dark line and approximated pdf –  in dashed line, (b) means m1  
and m2 , (c) variances σ1

2  and σ2
2  and (d) weights p1  and p2 .
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f x y x x x xy y y, . /( ) = − +( ) + + − +( )4 2 1 4 42 4 3 2 2 2

 s. t. . . ,− ≤ ≤ − ≤ ≤1 5 1 5 2 2x y  (E3.7a,b)

by Rosenbrock’s rotating coordinates, Powell’s conjugate direction and Trust 
region methods.

5. Solve for weight minimization by GA, of the 10- member plane truss in 
Figure 2.12, Chapter 2. Also see Example 3.1. Consider an additional constraint on 
member stresses with allowable stress being 9.5 KN/ sq. cm.

6. Consider Cauchy pdf , 

with β fixed at 0.1. Assuming that samples  x, i = 1, 2, …, N are available, find the 
estimate, by simulated annealing method, of α by maximum likelihood estimation 
(MLE) –  Section 3.2.2. [Hint: The log- likelihood function . Try the

estimation for different N = 1000  to 10000  in steps of 1000 .]
7. Figure E3.2 shows a quarter model of a vehicle underground excitation g t( ).  

The vehicle dynamics is governed by the following equations of motion:

m t c z t z t k z t z t mz g1 1 1 1 2 1 1 2 1   ( ) + ( ) − ( )( ) + ( ) − ( )( ) = −

 m t c z t z t c z t k z t mz g2 2 1 2 1 2 2 1 2 2    ( ) + ( ) − ( )( ) + ( ) + ( ) = −  (E3.8a,b)

Here z t x t g t1 1( ) = ( ) − ( )  and z t x t g t2 2( ) = ( ) − ( )  are relative displacements at the 
two mass points m1  and m2 .

The ground excitation due to the road undulations is assumed to be a harmonic 

signal A tsin λ  with A = 0 025.  m and λ = 10 rad
s

.  It is required to minimize the 

transmissibility of the ground motion to the sprung mass level. This is expressible in 

terms of the ratio of the amplitude x1  to the amplitude of the ground excitation A. The 

passenger comfort is usually expressed as the ratio of the rate of change of vertical 

acceleration at the sprung mass m1  to the amplitude of the ground excitation, i.e. x
A
1 .  

The maximum jerk experienced at this sprung mass level needs to be restrained to 

18
3

m
s

.  If the design variables are the stiffness k1  and damping c1  of the suspension 

system, one has the optimization problem as:

minimize −
( )

∈[ ]
max
t T

x t

A
0 1,

s. t. max
t T

x t m
s

k E N m
∈[ ]

( ) ≤ ≤ ≤
0 1 3 118 0 2 4

,
,  / , 0 30001≤ ≤ −c N s m/  (E3.9a,b)
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Use any of the derivative- free methods to obtain the optimal solution for maximum  
passenger comfort.

8. A single degree- of- freedom oscillator is a mass- stiffness- damper system (Figure 
A3.11, Appendix 3) governed by the second- order ODE:  x t cx t kx t p t( ) + ( ) + ( ) = ( ).
When the excitation p t( )  is absent, the system undergoes damped oscillations under 
initial condition disturbance –  see Figure E3.3.

The task is: given such a signature of the oscillator in terms of x t( )  and x t( ),  it 
is required to identify the parameters c  and k. It is a system identification problem. 
With x = ( )c k T,  as the vector of design variables, it involves error minimization over 

the time interval [ t t f0 , ] of the time histories of x t( )  and x t( )  between the reference 

solution and solution obtained at each iteration by estimated parameters, i.e.:

minimize: f x t x t x t x t
t

t
r

i k i
r

i k i

f

x( ) = ( ) − ( )( ) + ( ) − ( )( )∑ ( ) ( )

0

2
 

22{ }
 s. t. and.k k k c c c k cL U L U≤ ≤ ≤ ≤ ≥, , , 0  (E3.10a,b)

x t x t x t
T( ) = ( ) ( )( ), .  Solve the problem by PSO and DiEV methods. [Hint: One may 

obtain the parameters identified by PSO as shown in Figure E3.4.]
9. Solve the travelling salesman problem (TSP) by the method of Tabu search 

(Glover and Laguna.1997). The problem is earlier solved in Section 1.3.3, Chapter 1, 
by search technique using the Metropolis- Hastings algorithm which is identical to the 
simulated annealing approach.

Tabu search is an exploratory technique like GA, SA and other derivative- free evo-
lutionary algorithms. In Tabu search, all the search moves are investigated until the  
best solution that is not ‘tabu’ is achieved. Implementation- wise, it maintains a short-  
term memory with a list of ‘tabu’ candidates. Whenever a local optimum is reached,  
the method opts out of the optimum to search in a new direction with an increase in  
the cost function by the smallest value. Here resemblance to Metropolis algorithm is  

FIGURE E3.2 Quarter car model of a vehicle.
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noticeable. It ensures to avoid a return to the same optimum and to try for maximizing  
new information. It is also characterized by search intensification and diversification  
techniques (Bland 1994, Connor and Tilley 1998).

[Hint: Optimum solution by Tabu search technique is shown in Figure E3.5.]
10. Use covariance matrix adaptation (CMA) method (Hansen 2007) to find the 

optimum of Rosenbrock function f x x xx( ) = −( ) + −( )100 11
2

2

2

1

2
, x x x

T
= ( )1 2, .

[Hint: CMA is also an evolutionary optimization algorithm (Hansen 2007). It 
is a derivative- free method and known to be a robust local search performer. The 
basic idea in this method is to generate particles at each kth  iteration by sampling a 

FIGURE E3.4 Error minimization by PSO –  a system identification problem for an SDOF     
oscillator; k kL U= =5 150,  and c cL U= =0 1 5 0. , . :  (a) evolution of the stiffness parameter k      
with iterations (finally reaching a value of 100.0) and (b) evolution of the damping parameter 
c  with iterations (finally reaching a value of 0.9001).

FIGURE E3.3 Reference solution of x tr( ) ( )  and x tr( ) ( )  obtained by Runge- Kutta algorithm 
with true parameters of the system: stiffness = 100  N/ m and damping coefficient = 0 9.  N- s/ m 
over the interval 0 2,[ ]  s.: (a) x t( )  and (b) x t( ) .
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multivariate normal distribution  ( ,Mk kσ ) where Mk
m∈  is the vector of mean 

values and σ k
2 , the covariance matrix of the vector X k

j m
pj N[ ] ∈ = , . ,..1 2  of design 

variables. m  is the dimensionality of the problem and Np  the number of particles.

At each iteration, the scheme updates the particles as:

 
X k k k ks+ +






1

1
2~ ,M  0   (E3.11)

k k
m m= ∈ ×σ 2   and sk  is known as an ‘overall standard deviation’ or the step 

size at kth  iteration. 0 ∈m  is the zero- mean vector. Equation (E3.11) is equiva-

lent
 
to sampling X k k k ks+






1

1
2~ , M  . While Mk  is a weighted average of the 

Np  particles from the sample X k
j

pj N[ ] =, . ,..1 2 , k  is updated using the covariance   

information at the current as well as previous step. The updating strategy is equiva-
lent to adopting a quadratic model of the objective function at each search point in the 
parameter space similar to the approximation of the inverse Hessian matrix in quasi- 
Newton methods like DFP (Section 2.3.1, Chapter 2).

The solution to the given optimization problem by CMA is shown in Figure E3.6]

FIGURE E3.5 Solution to travelling salesman problem (TSP) by Tabu search: (a) evolution 
of the objective function with iterations (finally attaining a minimum value of 1778 units) and 
(b) optimum tour –  the shortest Hamiltonian cycle.
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NOTATIONS

A ii , , ,= …1 2  vector of cross- sectional areas (design variables)

Al  and Au  specified lower and upper bounds for the areas of cross- section

A Bi
k

i
k i, , , ,= …1 2  vectors in rotating coordinates method of Rosenbrock (Gram- 

Schmidt procedure)

b  a vector
c a real constant

c1  and c2  learning factors of a particle (in PSO)

Ci  jth off- spring candidate in GA

di i, , ,= …1 2  coordinate directions (Powell’s method of conjugate directions)

di , i = …0 1, ,   Q- conjugate orthogonal directions in Powell’s method of conju-
gate directions

di
k i, , ,= …1 2  unit orthogonal vectors during the kth  stage in rotating coordinates 

method of Rosenbrock
E  Young’s modulus of elasticity

Ek  fitness value (in SA)

FIGURE E3.6 Optimization of Rosenbrock function by the CMA: Np = 6 : (a) evolutions of 

x x with1 2   and  the optimum x T* ,= ( )1 1 , (b) evolution of the objective function with iterations 
(finally a minimum value of 1.979E- 9).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



255Classical Derivative-free Methods of Optimization

f x( )  Objective function of the design variables x
 joint pdf of the vector RV Z  in Example 3.2

 marginal pdf of the RV Zi
Z z;θ( )  joint CDF of the vector RV Z  in Example 3.2

gbest  best position of the swarm over all the past iterations (in PSO)

H .( )  Hessian matrix

In θ( )  Fisher information matrix (FIM)

J .( )  Jacobian matrix

kB  Boltzmann constant
K  assembled stiffness matrix

K e  element stiffness matrix

l θ; z( )  log- likelihood function (Example 3.2)

L θ; z( )  likelihood function (Example 3.2)
M   assembled mass matrix

M e  element mass matrix

Ne  number of elements in a finite element (FE) model

Np  size of population

p Ui ∈ ( 0,1) uniformly distributed random number in [0,1] (Table 3.7)

p0  vector of initial probabilities

pm  vector of probabilities after m  transitions

P  transition probability matrix

Pi  ith parent candidate (chromosome) in GA

pbest
j[ ]  best position of the jth  particle (in PSO)

pm k,  mutation probability (in GA) at kth  iteration

 t( )  vector of nodal forces

q  user- specified real number in 0 1,[ ] (Table 3.7)

q x( )  objective function in trust region sub- program (Section 3.3.3)

Q  a matrix

rk ∈  penalty parameter in the interior penalty method

r ii x( ) = …, , ,1 2  error residuals (trust region method)

r, r1 , r2  uniformly distributed random numbers in 0 1,[ ]
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 Rk  a parameter in trust region method
s step size (HJ method)

s θ; Z( )  score function (Equation 3.17)

sk  step size at the kth  iteration

s ii , , ,= …0 1  step size  (Section 3.3.2)

s ii
k , , ,= …1 2  step size for each direction (Section 3.3.1)

t ii
k , , ,= …1 2  coefficients (Equation 3.24)

 trial vector obtained after cross- over in DiEv  (Equation 3.54)

Tk  temperature parameter (in SA)

u U~ ,0 1( )  uniformly distributed random number in [0,1]

uk
j[ ]  updated vector of nj

th  particle (in DiEv) at the kth  iteration 

(Equation 3.53)

v j[ ]  velocity vector of jth  particle (in PSO)

vk
n j



  vector of nj

th  particle (in DiEv) at kth  iteration

w ∈ +  inertia weight (in PSO)

wmax  and wmin  maximum and minimum values of the weight parameter
x  vector of design variables

xk  update for x  at kth  iteration

x k  trial state (in SA)

xk  centroid of the first n best points of the simplex in  NM method

x j[ ]  position vector of jth  particle (in PSO)

� xk  final point of the kth � stage in rotating coordinates method of 
Rosenbrock

xk
CI  new variable obtained by contraction inside in NM method

xk
CO  new variable obtained by contraction outside in NM method

xk
E  new variable obtained by expansion in NM method

xk
R  new variable obtained by reflection in NM method

xk
S  update forming a new simplex in NM method

x j u,  and x j l,  upper and lower bounds of the design variable x j

y t( )  vector of nodal displacements (translational and rotational)
z  observation data in Example 3.2
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Z  vector of RVs in Example 3.2
α  parameter in the generalized exponential pdf  (Equation 3.13)

α  estimated parameter in Example 3.2

β  a parameter in rotating coordinates method of Rosenbrock

-  ∈[ ]0 1, ,  a blending parameter in GA

ςrand  randomly chosen integer in 1, N[ ]  –  in DiEv (Table 3.7)

∆k  trust region radius (step size)

∇  gradient (first- order derivative)

∇2  second- order derivative matrix

λ  –  parameter in the generalized exponential pdf (Equation 3.13)
   – Lagrangian multiplier (Equation 3.32)

�λ  estimated parameter in Example 3.2

µ1  and µ2  Lagrangian multipliers associated with equality constraints

µk  damping parameter (Equation 3.33)

ρ  mass density

ψ x( )   penalty function

θ  vector of unknown parameters (Example 3.2)

θ  vector of estimated parameters (Example 3.2)

ω1  and ω2 natural frequencies
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4 Elements of Riemannian 
Differential Geometry 
and Geometric Methods 
of Optimization

4.1  INTRODUCTION
Optimization techniques described in Chapters 1 to 3 are classical in the sense that 
they are based on Euclidean geometry. The design variable space is Euclidean n  
which is a vector space endowed with the familiar distance metric

 d x y x y x y, .( ) = −( ) −( )  (4.1)

where dot  within the square root sign on the right hand side (RHS) of Equation (4.1) 
signifies the vector dot product. Using the standard tools of differential calculus in n ,      
we could adopt, for instance, a line search technique to arrive at the optimum. The 
line direction would be guided by the classical definition of directional derivative. As 
an example, see the result in Figures 4.1a– b on the Rosenbrock function by the (clas-
sical) CG method (Section 2.2.2, Chapter 2).

An alternative to this classical approach based on line search may be to look 
for an optimum by a curved search also known as geodesic search on the curved 
hypersurface (also called a manifold) S n in  .  The latter is defined by a given cost 
function and/ or a set of constraints (in general, we will denote a manifold by the letter 
M). The idea of a curved search on S  has origins in the method of geodesic descent 
mooted by Luenberger (1972). A geodesic is defined as a smooth curve γ t S( )on ,     
0 ≤ ≤t T ,  starting at a = ( )γ 0  and terminating at b T= ( )γ  that minimizes the 

function γ t dt
T ( )∫0

 among all other such curves between a  and b  on S. The 

overdot on γ  denotes the first- order derivative with respect to the parameter t. γ t( )  

may be represented by the coordinate functions x t x t x tn1 2( ) ( ) ( ){ }, ,.., .  In optimiza-

tion algorithms, the parameter t  may be thought of as an arc- length or a pseudo 
time variable over which iterations are defined. In this chapter and Chapter 5, we 
are interested in learning the basic principles that govern such a geometric search. 
Luenberger (1972) has mainly restricted the idea of geodesic search to theoretical 
considerations alone in that the construction has been used to prove the convergence 
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properties of the gradient projection method of Rosen (1960,1961) (see Section 2.8, 
Chapter 2). Figure 4.2 outlines the scheme involved in Rosen’s method. Leaving the 
formal definition of a manifold to the next section in this chapter, we may at this 
stage view a manifold as a set of feasible points that form a smooth surface.* The 
constraining surface in Figure 4.1a is in fact a two- dimensional manifold embedded 

in 3  and represents an injective map F: 2 3→  with F x y x y f x y, , , ,( ) = ( )( )  

where f  is the cost function.

The computational exercise of actually finding a geodesic on a manifold is not 
easy (Smith 1993, Boumal 2014) especially when the manifold dimension is high. 
The variants (Botsaris 1981a,b) of Luenberger’s idealized version of geodesic search 
mainly focussed on how to avoid the complexity of finding the geodesic path and yet 
generate a new update close to S  in the last step of the gradient projection algorithm 
(Figure 4.2).

However, with literature (Boothby 1975, Lang 1995, Hsu 2002, Lee 2003, Tu 
2011) significantly increasing on the theory of manifolds in the latter half of the 
last century, renewed research efforts are under way on developing optimization 
methods using the intrinsic structure of manifolds. The structure mainly includes 
the differential geometric aspects of manifolds, such as tangent spaces, metric, 
geodesic, covariant derivative, vector transport and incompatibility tensors such 
as curvature. The word ‘intrinsic’ is sometimes used when these structures are 
described without explicitly using the coordinates of the ambient (Euclidean) space 
in which the manifold may be embedded. In Section 4.2, we describe these geo-
metric aspects before moving on to the geometric methods of optimization based 
on manifolds. Section 4.3 presents some of these geometric methods which are 
Riemannian analogues of a few of the classical optimization methods discussed in 
Chapter 2. One finds applications of these algorithms in myriad fields (Absil et al. 
2007a,b, Baker 2008) including continuum mechanics (Aubram 2009), machine 
learning (Lin and Jha 2008), filtering (Hauberg et al. 2013), computer vision 
(Turaga et al, 2008) and statistical estimation (Hosseini and Sra 2015, Hajri et al. 
2017). The problem of statistical estimation which has been dealt with in Chapter 3 
by classical methods of optimization is reconsidered in this chapter (Section 4.4) 
and solved by the Riemannian version.

Against the category of problems so far discussed and posed in a deterministic  
setting, one often encounters many problems which are stochastic (either inherently  
so or posed stochastically to reap certain advantages). The classical evolutionary  
optimization methods described in Chapter 3 (Section 3.4) indeed belong to this  

* smooth surface
A smooth surface is a collection of points, each with a tangent plane that continuously varies from point 
to point. Suppose that a surface S  is parametrized via the map π :U S⊂ → ⊂ 2 3. With u v,( )  being 
the coordinates of a point in U , S  is said to be smooth if the components π π π

1 2 3
u v u v u v, , , ,( ) ( ) ( ) and  

have continuous partial derivatives with respect to u  and v  up to all orders.
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FIGURE 4.1a–b Rosenbrock function f x x xx( ) = −( ) + −( )100 1
2 1

2
2

1

2
 with ,x x x= ( )1 2

;     
contour plot in 3. Optimization in Euclidean space of Rosenbrock function 
f x x xx( ) = −( ) + −( )100 1

2 1
2

2

1

2
 with ,x = ( )x x

1 2 ; projection of contour on to 2 and route to 
optimum –  line with dots –  (minimum) point x* ,= ( )1 1  by line search (classical CG method).
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category of methods based on stochastic search with metaheuristic origin (Holland  
1975). While a stochastic route often facilitates an effective search, the posing of  
the original problem could itself be deterministic, wherein the aim would merely  
be to arrive at the design point that is the global extremum of an (or a collection of)  
objective functional(s), possibly subject to a set of prescribed constraints. With the  
exception of SA, these so- called stochastic search methods are mostly founded on  
elementary concepts of probability theory and Monte Carlo simulation (Appendix  
3), and offer no guarantee of attaining the global optimum. The methodology in  
SA subsumes a deeper understanding of the MCMC methods (Appendix 3) that  
depend on the theory of Markov chains. In a more general context, MCMC has  
been employed for developing some of the most effective stochastic optimization 
algorithms (Durmus et al. 2019, Mamajiwala and Roy 2022). This is indeed  
facilitated by the strong analogy between statistical sampling by MCMC algorithms  
and optimization methods (Dalalyan 2017a). Obviously, the exposition on these  
methods requires a prior understanding of stochastic processes, stochastic calculus  
and solutions of SDEs (Roy and Rao 2017). A short discussion on these aspects is  
provided in Appendix 4.

Wind/ seismic events are some of the familiar examples of stochastic processes in 
engineering applications; see Figure 4.3 for a few typical wind velocity profiles. A sto-
chastic process is, roughly speaking, a random variable that, being parameterized in 
time, can evolve. Basic concepts in probability theory –  random variables, probability 
distributions and expectations (statistical moments) –  and their exploitations in com-
puter simulations are outlined in Appendix 1.

Despite the involved nature of the concepts to be discussed in this chapter, we have  
tried to present the basics by shunning rigour in favour of clarity wherever possible.  

FIGURE 4.2 Gradient projection method of Rosen (1960, 1961).
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We have done so with the hope that a beginner will get an intuitive understanding of  
the ideas with relative ease. In view of the importance of the Langevin SDE in the  
development of optimization methods, we give in Section 4.5 more details on this  
SDE. In fact, this SDE models the motion of a massive particle moving in a viscous  
fluid under a white noise process and is widely used in stochastic modelling. The  
equation is often considered a physical basis for the theory of Brownian motion in  
view of the early work by Einstein (1905). To motivate further, we may as well pro-
vide here a few more details about this SDE. Also, the Langevin equation occupies  
a prime place in describing the geometric methods of optimization in the present  
chapter and the next one. The equation in terms of the position x t( )  and velocity  
v t( )  of a particle is (Zwanzig 2001):

x t v t( ) = ( )

FIGURE 4.3 Three typical wind velocity profiles (refers to no specific real data).
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 v t
c

m
v t

m
w t( ) = − ( ) + ( )1

 (4.2a,b)

m  is the mass of the particle and c  the damping coefficient due to friction during 
bombardments of the particle by neighbouring fluid molecules. c  is related to the 
viscosity of the fluid. w t( )  is the randomly fluctuating force which is due to the 
interaction of the particles with the surrounding medium (heat bath). In other words, 
these random fluctuations are thermally activated. w t( )  is thus modelled as a white 

noise –  with zero mean, i.e. E w t( )  = 0  and varying so rapidly that the correlation

between two distinct time instants t  and ′t  (no matter how close these two times 
are) is zero, i.e.

 E w t w t t t( ) ( )  = −( )′ ′2σδ  (4.3)

where δ .( )  is the Dirac delta function. 2σ  is the strength of the noise. In the 
absence of the noise term in Equation (4.2b), it is obvious that the velocity of the 
particle decays to zero as t → ∞. However, early investigations by the biologist 
Robert Brown (1827), and later on by Einstein (1905), brought to the fore that the 
randomly fluctuating force which is invariably present depends on both friction 
and temperature. In fact, from the solution to Equation (4.2), one may show (see 
Zwanzig 2001 for details) that the mean squared velocity approaches the equilib-
rium value K T m

B
/  where K

B
 is the Boltzmann constant and T  is the absolute 

temperature. Thus, for time large enough, the solution reaches a steady state, spe-
cifically a thermal equilibrium where the frictional force drives the system towards 
a “dead” state even as the random force (noise) keeps it “alive”. This interplay of 
two conflicting aspects reaching a thermal equilibrium has led Einstein to propose 
the earliest version of what is today called the fluctuation- dissipation theorem. In 
the formalism by Einstein (1905), the equilibrium solution is directly derived in 
terms of a PDE known as the Fokker- Planck equation whose solution gives the 
underlying pdf.

One perceives that the solution to the Langevin SDE reaching a stationary (that 
is to say, time independent) pdf may be utilized as an MCMC sampler without 
the need for a proposal pdf. See Appendix 3 for a discussion on MCMC methods. 
This is indeed exploited in developing sampling algorithms (Welling and Teh 
2011, Martin et al. 2012, Wibisono 2018, Durmus et al. 2019) useful in statistical 
estimation and system identification problems. To highlight the significance of 
the analogy between sampling and optimization in the development of optimiza-
tion methods, Section 4.5 is devoted to a discussion particularly on Langevin 
dynamics. Taking cue from this analogy, we proceed to discuss in Section 4.6 
analogous optimization strategies for function optimization posed in the sto-
chastic setting, by first presenting a classical method of this genre followed by a 
geometric version.

 

 

 

 

  

 



270 Elements of Classical and Geometric Optimization

4.2  MANIFOLDS, LOCAL EUCLIDEAN PROPERTY AND CHARTS

Curves and surfaces we are generally familiar with are manifolds and non- 
Euclidean. However, a manifold M  could be locally Euclidean. For instance, a 
small neighbourhood of a point p  on a curve (in R2  or R3 ) is almost a straight 
line (see Figure 4.4).

The surface of the earth is a manifold embedded in R3  and it is known to have a 
representation in R2  through charts and an atlas. The reader may have heard about a 
chart and an atlas. For present purposes, however, it is essential that these concepts 
are learnt with certain clarity. At any location on the plains, the surface of the earth 
seems locally flat, just like a two- dimensional plane. Standing on an open meadow, it 
is difficult to notice the curvature of the earth with bare eyes. This locally Euclidean 
property means that there exists an open neighbourhood U M⊂  containing the 
point p  and a homeomorphism ϕ :U U→ ′  where ′U  is an open set in Rn , for 
some positive integer n denoting the manifold dimension. Homeomorphism means 
that ϕ  is a bijective map (i.e. a one- to- one- map) with ϕ  and ϕ−1  continuous (but 
not necessarily differentiable). The pair U,ϕ( )  is known as a coordinate chart or 
simply a chart. Figure 4.5 shows the mapping ϕ  for a sphere (also called S2 ; we 
use S1  for a circle).

For mapping the earth’s surface, as is known, we must have a number of charts, 
i.e. more than one of them. A collection   of such charts on M  is called an atlas 
where any two charts smoothly overlap (i.e. they are compatible) and open sets U  
cover M, i.e., for every p M∈  there is a coordinate chart U,ϕ( ) ∈  with ϕ p U( )∈ ′.      
Compatibility of two charts (U,ϕ ) and (V ,Ψ ) is defined as follows. Consider the 

subsets ϕ U V∩( )  and Ψ U V∩( )  (see Figure 4.6).

If these subsets are open and the transition map Ψ Ψϕ ϕ− ∩ ∩( ) → ( )1 : U V U V  

is a diffeomorphism, then the two charts (U,ϕ ) and (V ,Ψ ) are compatible. A map 
F  is a diffeomorphism if it is a homeomorphism and is also C∞  differentiable 
(smooth). If U V∩ =∅,  the charts are trivially compatible. Notice that the reverse 

FIGURE 4.4a Local Euclidean property; curve in R2.
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transition map ϕ Ψ−1  being the inverse of Ψ ϕ−1  is also a diffeomorphism. We may 
now define a smooth (differentiable) manifold as a pair consisting of a set M  and a 
maximal atlas   on M . A maximal atlas is the one in which every chart is smoothly 
compatible with each of its members. The compatibility condition implies that when-
ever a pair of charts overlap, the charts exhibit approximately the same view of the 
manifold in those overlapping parts.

The chart (U,ϕ )  assigns a coordinate system to the neighbourhood of any point 
p M∈  and the point p  acquires the coordinates ϕ ϕ ϕ1 2p p pn( ) ( ) … ( ), , ,  in U Rn′ ⊂ .      

Thus, via these mappings, the manifold M  attains a differentiable structure enabling 
differentiation and integration operations on M.

Implicit function theorem
Representation of manifolds by charts is indeed facilitated by the implicit function 
theorem (Lee 2003). The implication of the theorem is as follows. Consider a vector 

FIGURE 4.4b Local Euclidean property; curve in R3.

FIGURE 4.5 Manifold M and coordinate chart U,ϕ( )  where U M⊂ .
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function F x y, :( ) →+R Rm n n where x ∈Rm and y ∈Rn. Let F be differentiable 
with the Jacobian d R Rn m nF ∈ × + . If the partitioned matrix d

y
F[ ]  representing the 

derivatives of F with respect to y has full rank equal to n  at a point x y,( ) with 
F x y,( ) = ∈0 Rn, then there exists an open neighbourhood ′ ⊆U Rm  of x and a differ-

entiable map  : ′ →U Rn such that F x x, ( )( ) = 0 for ∀ ∈x Rm .

To make the implication of the theorem clear, we invoke the example of the unit 
sphere S x y z x y z2 2 2 2 1 0= + + − ={ }, , | .  We let x = ( )x y,  and y = z, i.e. m = 2  and  
n = 1. Further, F F x y z x y zx y, , ,( ) = ( ) = + + −2 2 2 1 and

 dF x y z dF z
z

= ( ) [ ] =2 2 2 2, , ,  (4.4)

dF
z[ ]  is of rank equal to n = 1 for all x y z F z x y x y, , , ,( ) ∈ ( ) ⇒ = ( ) = ± − −−1 2 20 1      

i.e., F x y x y, , , ( )( ) = 0  for ∀ ∈x y R, .2  This leads to the open neighbourhood ′U ,       

the x y−  plane which is in R2  ( m = 2)  and which is the dimension of the manifold     
S2. The dimension of the chart is the same as that of the manifold. Note that the manifold 

FIGURE 4.6 Manifold M and compatibility of two coordinate maps ϕ,  Ψ  via transition 
maps ϕ Ψ−1  and Ψ ϕ−1 .
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S2  may be represented by just two coordinate charts, one with z x y= + − −1 2 2  for 

the upper half of the sphere and the other with z x y= − − −1 2 2  for the lower half.
Before moving on to the next subsection to describe tangent vectors and the tan-

gent space on a manifold, a few additional remarks on manifolds will be in order. 
(a) If the locally Euclidean property holds, a manifold M  is also a topological space 
whose elements are open sets. M  is generally referred to as a topological manifold. 
(b) If the smoothness property of a manifold is relaxed in that if, instead of the C∞  
differentiability, each transition map is of the class Ck ,  then M  is a Ck  manifold. 
However, in the rest of our discussion on manifolds, smoothness is assumed to be C∞ .    
(c) If M  is a smooth manifold, a function F M R: →  is called smooth if for every 
chart U,ϕ( )  on M, F ϕ−1  is smooth on ϕ U Rn( ) ⊆ .  A set of such smooth functions 
on a manifold M  is denoted by C M∞ ( ).  We also define C p∞ ( )  with p M∈  as 
a set of smooth functions F U R: →  where U M⊂  is an open set containing p. 
(d) In a similar manner, one may define smoothness of functions between two smooth 
manifolds M  and N  (Lee 2003).

4.2.1  tanGent Vectors and tanGent space on manifolds

In a Euclidean space, say Rn  equipped with a vector space (inner product) struc-
ture, definition of a tangent vector is straightforward. That is, given a smooth curve 

γ t R Rn( ) →: ,  the tangent vector at a point p t= ( )γ
0

 on the curve is 
d

dt t

γ

0

 or simply      

γ t
0( ).  In terms of the coordinate function,    γ t x t x t x tn

0
1

0
2

0 0( ) = ( ) ( ) … ( )( ), , , .  With 

γ t
0( )  denoted by v, we often have to make use of a tangent vector to get the dir-

ectional derivative D f
v ( )  of a smooth function f C R Rn: .∞ ( ) →  The derivative 

which stands for the instantaneous change of f  along γ t( )  at the point p  is:

 D f p
df p tv

dt
f v

v

t

p( )( ) =
+( )

= ∇
=0

.  (4.5)

∇f
p

 is called the gradient of the function f  at p. Note that the symbols f p( )  

and f
p

 are being used synonymously. If vi  are the components of v  along the 

standard orthonormal bases e
x

i n
i i

=
∂

∂
=, , ,.., , 1 2  then one has:

 D f p v
f

xv
i p

i
( )( ) =

∂

∂
 (4.6)
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Einstein convention† is implied in Equation (4.6).

If we define a linear map χ : C R Rn∞ ( ) →  satisfying the product rule (the Lebnitz 
property):

 χ χ χf p h p f h h f
p p p p( ) ( )( ) = ( ) + ( )  (4.7)

where f , ,h C Rn∈ ( )∞  then D
v
 is one such map. The linear map χ  is known as a 

“derivation” at the point p. The set of all derivations of C Rn∞ ( )  at p  or, equivalently 

the set of all vectors at point p  forms the tangent space T R
p

n( ).  It is a vector space 

under the usual vector addition and scalar multiplication. Similar definition of a tan-
gent vector is possible for a general manifold M . However, we need to utilize the 
local Euclidean property of manifolds.

Consider a smooth M  and a function f C M R: ∞ ( ) → .  Let γ t( )  be a smooth map 
γ ε ε: ,− +( ) → Rn  as shown in Figure 4.7 with p U M= ( ) ∈ ⊂γ 0 .

Now, f R R γ : →  is a real valued function defined on t ∈ − +( )ε ε, .  In the 
absence of a vector space structure on a manifold, it is not possible to differentiate a 
path as in the Euclidean case. However, we take recourse to the notion of directional 
derivative to define a tangent vector on M.

Accordingly, f t γ( )( )
.

 may be interpreted as the manifold version of the direc-

tional derivative of f  along the curve γ t( )  at any t. By the local Euclidean property 
of a manifold, we express this derivative using the coordinate representation through 
a chart.

Let ( , )U ϕ  be a coordinate chart such that γ ε ε− +( ) ⊂, .U  Then we have:

 f f  γ ϕ ϕ γ( ) = ( ) ( )− ◊1  (4.8)

The evaluation of the directional derivative follows by the familiar chain rule:

 
.

.
f t

dF

dX

dX

dt t γ( ) ( ) =  (4.9)

† Einstein convention implies an implicit sum over indices appearing twice in lower and/ or upper 
positions in an expression. For example, the RHS of Equation (4.6) implies a summation over 

i n= …1 2, , ,  since it appears in the upper position in vi  and lower position in 
∂
∂

= ∂
f

x
fp

i i p
,  i.e:

                                                                D f p v f
v

i

n
i

i p( )( ) = ∂
=
∑

1

 (i)
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where F f= −
ϕ 1  and X = ϕ γ . With γ t x t x t x tn( ) = ( ) ( ) ( )( )1 2, ,..,  representing     

any point x t U M( ) ∈ ⊂ ,  X  represents the local coordinates ϕ x t1 ( )( )( ,

ϕ ϕx t x tn2 ( )( ) ( )( )),.., .  
dX

dt
t

t

= ( )( )ϕ γ
.

= v , say, denotes the tangent vector to the 

curve γ t( )  on the manifold M  (via the coordinate representation by the chart U,ϕ( ) )     
with the vector components:

 v p
dX

dt
i ni

i

t

( ) = =, , ,..,1 2  (4.10)

Equation (4.9) indicates the dependence of the directional derivative on the curve γ.  
For the directional derivative to be the same, curves passing through p  need to have 
the same components v p i ni ( ) = …, , , , .1 2  Such curves form an equivalence class of 

curves. Any two curves γ ε ε
1 1 1
: − +( ) →, Rn  and γ ε ε

2 2 2
: − +( ) →, Rn  of this class 

are tangent to each other at p. In other words, such an equivalence class of curves 
gives the same directional derivative at p U M∈ ⊂ ,  that is:

FIGURE 4.7 Manifold M; definition of a tangent vector using a coordinate chart (U,ϕ ).
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. .

f t t


γ ϕ γ( ) ( ) = ( ) ( )
2  

(4.11)

Within a particular chart U, ,ϕ( )  the n  components v pi ( )  (Equation 4.10) uniquely 
represent a tangent vector at p. Thus, for a general manifold, the tangent space at p  

denoted by T M
p

 (Figure 4.8) may be defined as a set of directional derivatives using 

an equivalence class of curves.

It also follows from Equations (4.9– 4.10) that the differential operator v
dX

i
i

∂
 

denoted, say, by D
M v,

 belongs to the linear map χM C M R: ∞ ( ) →  satisfying the 

Leibniz property (as in the Euclidean case):

 χ χ χM
p

M
p p

M
p

f p h p f h h f( ) ( )( ) = ( ) + ( )  (4.12)

The linear map is called a derivation (or simply a vector) at p  on the manifold M.  

We note that v  is a tangent vector and an element of T M
p

,  if it defines a derivation 

χM f( )  on functions f C M R: ∞ ( ) → .  The set of all derivations at p  constitutes a 

tangent space T M
p

 which is indeed a vector space under the operations:

 χ χM M M Mf f f+( ) = +   (4.13)

FIGURE 4.8 Manifold M; tangent spaces at points  p, q and r.
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 c f c fM Mχ χ( ) = ( )  (4.14)

where χ  and   are derivations and c  is a scalar constant. By the chain rule involved 
in Equation (4.9), the definition of a tangent vector through a derivation is inde-
pendent of the chart (coordinates) chosen.

Tangent bundle

The set T M p M
p

| ∈{ }  is called a tangent bundle TM, i.e.:

 TM p v p M v T M
p

= ( ) ∈ ∈{ }, ,:  (4.15)

The tangent bundle has the structure of a differentiable manifold in itself. If the tan-
gent vector v  is of dimension n, TM  is a 2n - dimensional manifold with M  as the 
base space.

Cotangent vectors and cotangent space
A Euclidean vector space V  has a dual vector space V *  defined via a linear func-
tional . For instance, in mechanics, the velocity vector space has a dual, the 

momentum vector space. Likewise, the tangent vector space T M
p

 has a dual space, 

namely the cotangent space T M
p
* .  Thus, the tangent bundle TM  has the dual, the 

cotangent bundle .*T M  For each p  on the (base) manifold M, an element (also 

called a covector) in the cotangent space T M
p
*  is a linear map T M R

p
→ .  If 

E i n
i
, , ,..,= 1 2  are the coordinate bases for T M

p
,  the linear map induces corresponding 

coordinate bases e i ni , , ,..,= 1 2  for T M
p
*  such that:

 e Ej
i i

j( ) = δ  (4.16)

where δ
i
j  is the Kronecker delta which is 1 if i j=  and 0 if i j≠ .  By convention, 

the components of a vector in a vector space are expressed by the upper indices 
v i ni , , , ,= …1 2  and the components of covectors by lower indices w i n

i
, , , , .= …1 2      

This is in line with the Einstein convention for summation such that v T M
p

∈  is 
expressible as v v Ei

i
=  and similarly a covector w w e T M

i
i

p
= ∈ * .

Vector fields
We are familiar with a vector field in Rn  as a smooth collection of vectors (e.g. 
a smooth curve of vectors) assigned to a set of points in a subset R

v
n  of the     
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n - dimensional space. That is, it is a mapping V R R
f v

n n: .→  Familiar examples are 

gravitational and magnetic force fields distributed in Rn .  Similarly, a vector field on 
a manifold M  is a vector- valued function X  that smoothly assigns to each point 

p M∈  a tangent vector X p T M
p( )∈ .  The vector field on M  may be considered as a     

(smooth) section of the tangent bundle TM  of M. In terms of the local coordinates 
x = ( )x x xn1 2, ,.., ,  we write:

 X p X p
x

i
i

p

( ) = ( ) ∂
∂

 (4.17)

where Xi ∈.  The mapping is smooth in that the components Xi  may be considered 
as smooth functions of x in any local coordinate system induced by a chart.

Differentials, push- forwards and pull- backs
In the same way as differential forms are defined on Euclidean spaces (Edelen 1985), 
one can have similar definitions on manifolds (Tu 2011, Lee 2003). A differential k

- form allocates to each point p M∈  a k - covector on the tangent space T M
p

.  For 

example, if a function f C M∈ ( )∞  which is considered a 0- form, the differential of 

f  or the 1- form df  at a point p M∈  is denoted by df
p

 such that:

 df v vf v f v T M
p p( ) = ( ) ∈i e  the operator  acting on  for all . . ,  (4.18)

The linear transformation df
p

 belongs to T M
p
* ,  the dual space to T M

p
.  A covector 

field, a smooth section of T M* ,  is a smooth collection (curve) of differential 1- forms 

and is indeed a function ω  that assigns to each point p M∈  a covector ω
p
.

Also, a smooth point map F  between two manifolds induces a linear map, called 
its differential dF, between the tangent spaces at the corresponding points (i.e. the 
pre- image p  and the image F p( ) ).

Thus, given two manifolds M Rn⊂  and N Rm⊂  and F M N: → , one has the 

linear map between the tangent bundles TM  and TN . Specifically, at the point p,    

we have a linear map called the differential F T M T N
p p F p*

: → ( ) . The differential F
p*

 

(Figure 4.9) (may also be denoted by dF
p

) is said to ‘push’ forward a tangent vector 

in T M
p

 to a tangent vector in T N
F p( ) . In terms of local coordinates, let p M∈  be 

represented by the coordinates x = ( )x x xn1 2, ,..,  with 
∂
∂

∂
∂

…
∂
∂









x x xp p

n
p

1 2
 forming 

a basis in T M
p

. Similarly, let F p F x x x y y yn m( ) = ( ) = ( )1 2 1 2, ,.., , ,..,be given by y  
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with the corresponding basis 
∂

∂
∂

∂
…

∂
∂









( ) ( ) ( )y y y

F p F p
m

F p
1 2  in T N

F p( ) . Then, the  

linear map F
p*
 (push forward of the map F) is described by a matrix J[ ] ×m n relative to  

these bases given by:

 J =
∂
∂

( )F

x
p

i

j
 (4.19)

where Fi is the ith component of F . Thus, J is the Jacobian matrix of the derivative 
of F  at p and this is in line with the definition of the Jacobian matrix in the calculus 
of, say, any two variables. F  induces a map F* of N  to M (in the opposite direction). 
Thus, if g C N∈ ( )∞  is a function (0- form) on the manifold N , h is the pull back of the 
function g via F* expressible by the composition g F  as:

 

F N M h x g F g y g F x C Mj i j* ,:

                     

→ ( ) = = ( ) = ( )( ) ∈ ( )∞


            and i m j n= = …1 2 1 2, ,.., , , ,
 (4.20)

Similarly, we also have the pullback of a differential 1- form at F p( ) in N  to M. The 

pullback operation is denoted by F T N T M
p F p p
*: ( ) → . Thus, if w is a 1- form on N , 

then F w*  is a 1- form on M, i.e.:

 F w F w
p F p

* *( ) = ( )( )  (4.21)

For example, let w a y dy T N i j m
j

i j
F p

= ( ) ∈ = …( ) , , , .,1 2  be a 1- form with a
j
 being 

the coefficients. The action of F* on w is expressible as:

FIGURE 4.9 Differential map between two manifolds M Rn⊂  and N R w F vm
p

⊂ = ( );
*

.
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 F w F a dy a F
F

x
dx b x dx v T M

j
j

j

j

i
i

i
i

p
* *= ( )( ) = ( )( ) ∂ ( )

∂






= ( ) = ∈y x
x

,, 

 i n= …1 2, , ,  (4.22)

where b a F
F

xi j

j

i
x x

x( ) = ( )( ) ∂ ( )
∂






. We refer to Edelen (1985) for more details.

4.2.2 riemannian manifold and riemannian metric

Using the differentiable structure of a manifold M via the local Euclidean prop-
erty, we have so far described concepts like tangent vectors at any generic point 
p M∈ , differentials and linear maps from one manifold to another. The goal of 
this chapter being the establishment of a computing framework to perform opti-
mization on manifolds, we now move on to describe a few other intrinsic proper-
ties of manifolds useful for that purpose. Towards this, one needs to know how to 
define on M a notion of distance and lengths of curves. Here we refer to a class 
of manifolds, namely Riemannian manifolds, which are endowed with a specific 
metric. The metric is known as the Riemannian metric denoted by g and may be 
considered as a function that, for each p and T M

p
,  assigns a smoothly varying 

inner product g
p
. The tangent space being Euclidean and locally approximating M,     

the inner product − −,
p  provides a notion of infinitesimal distance. A Riemannian 

manifold is often denoted by M g,( ).
A more intuitive understanding of the Riemannian metric is possible if we refer 

to the classical definition by Gauss in 1827. It is in terms of such natural invariant 
quantity like the length of a curve on a curved surface which is a manifold. Consider 
a parametrized curve γ t R Rn( ) →:  lying on an m- dimensional surface (m < n) with 
t a b∈[ ], . The surface, being embedded in an n- dimensional Euclidean space, may be 
represented by the Cartesian coordinates x t x t x t x tn( ) = ( ) ( ) ( )1 2, ,..,  as well as by the 

local coordinates u t u t u t u tm( ) = ( ) ( ) ( )1 2, ,..,  induced by a chart in the neighbourhood 

of a point p t a t b= ( ) ≤ ≤γ ,  on the tangent space T M
p

. At any t, the parametric sur-

face is a vector- valued function r u u ut x x xn( ) = ( ) ( ) … ( )( )1 2, , ,  and the arc length of 

the curve over the interval a b,[ ] is:

 I
dr

dt
dt

a

b

= ∫  (4.23)

dr is an infinitesimal arc length on the curve given by:

 dr
r

u
du

k
k2

2

=
∂

∂






 (4.24)
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with Einstein convention implied in the bracketed expression above. dr2 may now be 
expressed as:

 dr d dT2 = u ug  (4.25)

with d du du dum T
u = …( )1 2, , , . g is an m m×  symmetric matrix of coefficients:

 g
ij i ju u

=
∂
∂

∂
∂

r r
.  (4.26)

g
ij
 is thus given by the dot product of the coordinate bases in the tangent space     

T M
p

. dr2 in Equation (4.25) is the Riemannian metric g. ∂
∂

r

ui
 is a vector and written 

in terms of coordinates x and u, we get:

 
∂
∂

=
∂
∂

∂
∂

…
∂
∂







= …
r

u

x

u

x

u

x

u
i m

i i i

n

i

T1 2

1 2, , , , , , ,  (4.27)

The Riemannian metric g is obtained as:

 g du dui
ij

j= g  (4.28)

Einstein convention is as usual implied in Equation (4.28). The metric provides the 
means to obtain the inner product of two vectors v w, ∈T M

p
 as:

 v w v w,
p

T i
ij

jv w= =g g  (4.29)

Similarly, the norm of a tangent vector v ∈T M
p

 on a Riemannian manifold is defined 

by v
p p

T
p

= = ( )v v v v,
/1

2 1 2
g . The inverse g−1 with components denoted by gij  (with 

indices as superscripts) defines a cometric, so that the inner product of covectors V  

and   in the cotangent space T M
p
*  is given by

 V W V W V W  ,  
p

T
i

ij
j

= =−g 1 g  (4.30)

The inner product  in Equation (4.29) is known as the first fundamental form of 
curved surfaces or manifolds. It is invariant under (possibly nonlinear) coordinate 
transformation. The importance of the first fundamental form lies in that it helps in the 
evaluation of the arc length of a curve on M and the angle between two parameterized 

 

 

 

 

 

 

 



282 Elements of Classical and Geometric Optimization

curves and areas of bounded regions without a reference to the ambient space (Do 
Carmo 1976).

Having defined a Riemannian metric as a scalar product on T M
p

, we also note that 
it is a symmetric bilinear map g T M T M R

p p p
: × → . In each chart, the metric is thus 

represented by a symmetric positive definite matrix g.

Example 4.1. The Euclidean space Rn is a trivial example of a Riemannian mani-

fold. The tangent space T R
p

n for every p is the same Rn with g
ij ij
= δ . The inner 

product v w, = v wi
ij

jδ  is simply the dot product v w. . Thus dr2 in Equation (4.25) is 

the same as the familiar metric g dx
i

n

i
=

=
∑

1

2 in Rn. Note that with change of coordinates, 

the matrix g
ij
 may be different from δ

ij
, but the metric is unchanged. For example, 

in terms of polar coordinates, for n = 2, we have x a
1

= cosθ  and x a
2
= sinθ  with 

a = r . Thus, r = ( ) ( )( ) = ( )x a x a a a
1 2

, , , cos , sin ,θ θ θ θ  and g
11

1=
∂
∂

∂
∂







 =

r

a

r

a
. ,     

g g
12 21

0=
∂
∂

∂
∂







 = =

r

a

r
.
θ

 and g
22

2=
∂
∂

∂
∂







 =

r r
a

θ θ
. . In this case, the metric 

g
da

d

da

d
da a d

T

=


















 = +

θ θ
θg 2 2 2. In terms of the standard Cartesian coordinates, we 

have g dx dx= +
1
2

2
2 which indeed gives da a d2 2 2+ θ  when dx da a d

1
= −cos sinθ θ θ  

and dx da a d
2

= +sin cosθ θ θ  are substituted.
■

Example 4.2. We consider the unit sphere S x y z x y z R2 2 2 2 31 0= + + − ={ } ⊂, , | .     

Let us take the chart with the local coordinates u v,( ) such that x u= , y v=  and 

z x y u v= + − − = + − −1 12 2 2 2  thereby projecting the upper half of the sphere on 

the u v−  plane. Here n = 3 and m = 2. With ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂( )r / / , / , /u x u y u z u
T  and 

∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂( )r / / , / , /v x v y v z v
T , the matrix elements in g are given by:

 

g
11

2 2 2 2

1

0

1

1

0

1

=
∂
∂

∂
∂







=

−
− −



















 −

− −



r r

u u
u

u v

u

u v

. .







































= +
− −

1
1

2

2 2

u

u v
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 g
12

2 2 2 2

1

0

1

0

1

1

=
∂
∂

∂
∂







=

−
− −



















 −

− −



r r

u v
u

u v

v

u v

. .







































=
− −

=
uv

u v1 2 2 21
g  and 

 g
22

2 2 2 2

1

0

1

1

0

1

=
∂
∂

∂
∂







=

−
− −



















 −

− −



r r

v v
v

u v

v

u v

. .







































= +
− −

1
1

2

2 2

v

u v
 

(4.31a,b,c)

We get the matrix g as:

 g =

−
− − − −

− −
−

− −



















1

1 1

1

1

1

2

2 2 2 2

2 2

2

2 2

v

u v

uv

u v
uv

u v

u

u v

 (4.31d)

Equation (4.28) gives the metric g as du dv du dv
T( ) ( )g , i.e.:

 g du dudv dvdu dv= + + +g g g g
11

2
12 21 22

2  

 = +
− −







+
− −

+ +
− −







1
1

2

1
1

1

2

2 2
2

2 2

2

2 2
2u

u v
du

uv

u v
dudv

v

u v
dv  (4.32)

■

4.2.3  Geodesic on a manifold

As mentioned in the introduction to this chapter, a geodesic γ t( ), say with t a b∈[ ], ,     
obtains the shortest path between two points γ a( ) and γ b( ) on a manifold. In the 
Euclidean space, it is simply the length of the straight line segment between the 
points. If a straight line is represented in Rn by the curve γ α βt t( ) = +  with α β, ∈R,     
we find that a straight line is a curve with γ..= 0 . If one wishes to adopt a similar      
definition for a geodesic on a manifold, we face a difficulty. With the curve γ t( ) 
lying on a manifold M, the tangent vectors γ t

1( ) and γ t t
1
+ ∆( ) lie in different tan-

gent spaces T M
tγ 1( )  and T M

t tγ 1+∆( ) . Therefore, it is inappropriate to define a difference 

ratio 
 γ γt t t

t
1 1
+ ∆( ) − ( )( )
∆

 before taking the limit as ∆ →t 0 and make an attempt to 
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build the acceleration vector γ t
1( ).  Yet it is possible to connect adjacent tangent 

spaces in a manifold and define an acceleration operation via the important concept 
of ‘connection’ in the theory of manifolds. Before we dwell upon this concept and 
elaborate it in the next section, let us derive the geodesic equation for manifolds by 
the very definition of a geodesic being the shortest path between two points.

We start with Equation (4.23) wherein the integral gives the arc length of the curve 
γ t( ) on the manifold as t varies over the interval a b,[ ]. The task being to find such 
a curve that minimizes the arc length among many other possible curves joining the 
two points, it is indeed a variational problem (see Section 1.5.1, Chapter 1) leading to 
the minimization of a functional. Following the procedure described therein, we have 
here the integral I in Equation (4.23) as the functional and the integrand, denoted by 

L, may be taken without a loss of generality as 
d

dt

r





2

 instead of the norm 
d

dt

r
. Thus:

 L
du

dt

du

dt
u u i j m

ij

i j

ij
i j= = = …g g   , , , , ,1 2  (4.33)

Keeping in mind the Einstein convention in the expression on the RHS of the equation 
above, we obtain the Euler- Lagrange equations in the form:

 
∂
∂

−
∂
∂







= = …
L

u

d

dt

L

u
k m

k k


0 1 2, , , ,  (4.34)

Noting that g
ij
 is a function of u ui jand , we have:

 
∂
∂

=
∂

∂
L

u u
u u

k

ij

k
i j

g
   (4.35)

∂
∂

=
∂
∂

+
∂
∂

L

u

u

u
u u

u

uk ij

i

k
j

ij
i

j

k






 





g g

= +g g
ij k

i j
ij

i
k
ju uδ δ 

 = +g g
kj

j
ik

iu u   (4.36)

and

d

dt

L

u

d

dt
u u

k kj
j

ik
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∂






= +( )
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= + + +
d

dt
u

d

dt
uu ukj j

kj
j ik i

ik
i

g
g

g
g   

 =
∂

∂
+ +

∂
∂

+
g

g
g

g
kj

i
i j

kj
j ik

j
j i

ik
i

u
u u

u
u uu u       (4.37a)

Renaming the dummy variables and using the symmetry of the matrix g, we simplify 
Equation (4.37a) as:

 
d

dt

L

u u u
u u u

k

kj

i

ik

j
j i

ik
i∂

∂






=
∂

∂
+

∂
∂







+



  

g g
g2  (4.37b)

Substituting Equations (4.35) and (4.37b) in Equation (4.34) gives:

∂

∂
−

∂

∂
+

∂
∂







+









 =

g g g
g

ij

k
i j kj

i

ik

j
j i

ik
i

u
u u

u u
u u u    2 00

 ⇒ = − = …  u u u k mk
ij
k i jΓ , , ,, 1 2  (4.38)

where Γ  are known as the Christoffel symbols (Christoffel 1869, Lee 1997) given by:

 Γ
ij
k kl jl

i

il

j

ij

lu u u
=

∂

∂
+

∂
∂

−
∂

∂






1

2
g

g g g
 (4.39)

Equation (4.38) is the geodesic equation.

In the Euclidean case, g
ij ij
= δ  and therefore the Christoffel symbols are identically 

zero. Hence, we have uk = 0  with the only solution being a straight line as expected. 
A few examples highlighting the geodesic curves on manifolds may be apt at this 
stage. This, in general, requires the integration of Equation (4.38).

Example 4.3. For the sphere S R2 3⊂ , the great circles are the geodesics.

Solution. To prove this statement, let us consider a sphere with radius a and form the 
g matrix using spherical coordinates φ and θ . Any point on the sphere is represented 
by x a= sin cosφ θ, y a= sin sinφ θ  and z a= cosφ  with φ π∈ [ ],0  being the polar 
angle and θ π∈ [ ),0 2  the azimuth angle (Figure 4.10). The coefficients of g are:

 g g g g
11

2
12 21 22

0=
∂
∂

∂
∂







= =
∂
∂

∂
∂







= = =
∂
∂

r r r r r

φ φ φ θ θ
. . ., ,a

∂∂
∂







=
r

θ
φa2 2sin  
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 g =










a

a

2

2 2

0

0 sin φ
 (4.40a)

Its inverse is:

 g− =


















1
2

2
2

1
0

0
1

a

a
cosec φ 

 (4.40b)

The Christoffel symbols are Γ
ij
k kl jl

i

il

j

ij

lu u u
=

∂

∂
+

∂
∂

−
∂

∂






1

2
g

g g g
,  i j k l, , , , .= 1 2  These are 

evaluated in Appendix 4 (item A4.1) in terms of the spherical coordinates for a sphere 
with unit radius (a = 1). From Equation (4.38), the geodesic equations for φ and θ  are 
given by:

    φ φ φθ θ= − − +( ) −Γ Γ Γ Γ
11
1 2

12
1

21
1

22
1 2

     θ φ φθ θ= − − +( ) −Γ Γ Γ Γ
11
2 2

12
2

21
2

22
2 2  (4.41)

Inserting the expressions for the Christoffel symbols, Equation (4.41) takes the form:

  φ φ φθ= sin cos 2  

FIGURE 4.10 A sphere S R2 3⊂ ; spherical coordinate system.
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   θ φ φφθ= −2cosec cos  (4.42a,b)

From the two ODEs above, we readily infer the following. For a constant θ , Equation 
(4.42b) is trivially satisfied and Equation (4.42a) gives φ = 0  yielding the result 
φ t at b( ) = +  with a b R, ∈ . This shows that the geodesic lies on all great circles 
(passing through the two poles) for any specific azimuth angle θ π∈ [ ),0 2 .

On the other hand, if φ is constant, we get from Equations (4.42) the following ODEs:

sin cosφ φθ2 0=

 θ = 0  (4.43a,b)

While θ  may vary linearly with the parameter t, the constant values that φ may assume 
are given by:

 sin cosφ φ θ
c c


2 0=  (4.44)

With θ  varying with t and θ  being constant, φ
c
 may assume the values 0

2
, , .
π π  

However, the only plausible value for φ
c
 is 

π
2

 corresponding to the equator which 

is also a great circle.
■

Example 4.4. For the same unit sphere S R2 3⊂ , with the metric g given by Equation 
(4.32) in terms of Cartesian coordinates u and v and the coefficient matrix g as derived 
in Equation (4.31), we numerically solve the geodesic equation (4.38).

Solution. The solution to the geodesic Equation (4.38) is obtained by numerical inte-
gration. It involves solving two coupled second- order nonlinear ODEs in terms of u 
and v. Here the equations are solved as an initial value problem with specified ini-
tial conditions (ICs) u u v

0 0 0
, ,  and v

0
. Figure 4.11 shows the geodesics obtained with 

two different sets of initial conditions. The first set corresponds to the north pole 
( , )u v

0 0
0 0= =  with assumed velocities u

0
0 1= .  and v

0
0= . The second set are the 

initial conditions u u v v
0 0 0 0

0 3 0 4 0 4 0 3= = = = −. , . , . .  and . The end point in both the 
cases is taken as that obtained after t = 5 s. Note that with any choice of the initial 
point, the integration needs to be performed such that the final point lies within the 
one half (hemisphere) of S2. This is in view of the fact that S2 is fully represented 
by two coordinate charts, one covering the upper half with the initial point ( , )u v

0 0
 

considered as a pole and the other the lower half. In any case, solutions for the geo-
desic always lie on great circles as also evident from the earlier example.

■
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4.2.4  connection on a manifold and coVariant deriVatiVe

As noted in the previous section, geodesics are the Riemannian generalization of 
straight lines of Euclidean geometry. This definition implies that geodesics are indeed 
curves of zero acceleration, i.e., the unit tangent vector is constant as we move along 

FIGURE 4.11 Geodesics (in solid line) for unit sphere S R2 3⊂ : (a) ICs u u v
0 0 0

0 0 1 0= = =, . ,  
and v

0
0= , (b) ICs u u v

0 0 0
0 3 0 4 0 4= = =. , . , .  and v

0
0 3= − . , dashed circle in line corresponds 

to a great circle of which the geodesic forms a segment of minimum distance between its end 
points.
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a geodesic curve. In order to adopt this property of a geodesic on a manifold M, we 
need to measure the variation in the tangent vectors between two adjacent points on 
M. The notion of connection which we describe here connects the tangent spaces of 
manifolds and helps us to define directional derivatives of vector fields (called the 
covariant derivatives) along curves. This property we utilize in establishing the fact 
that the geodesic is a curve on M with zero tangential acceleration.

With vector fields X Y TM, ∈ , a connection on a (Riemannian) manifold M is 
defined by a map:

 ∇ × →: TM TM TM  (4.45)

written as X Y Y
X

,( ) ∇ . It satisfies the properties:

(i) ∇
X
Y  is linear over C M∞ ( ) in X, i.e.:

 ∇ = ∇ + ∇ ∈ ( )+
∞

fX gX X X
Y f Y g Y f g C M

1 2 1 2
with ,  (4.46a)

(ii) ∇
X
Y  is linear over R in Y , i.e:

 ∇ +( )= ∇ + ∇ ∈
X X X

aY bY a Y b Y a b R
1 2 1 2

,with  (4.46b)

 (iii) ∇ ( ) = ∇ + ( )X X
fY f Y X f Y , f C M∈ ( )∞  (4.46c)

The connection is equivalently specified by a covariant derivative, an operator that 
differentiates sections of a tangent bundle along any tangent direction in the manifold 
M. For a better understanding of the connection operator ∇, let us express ∇

X
Y  in 

terms of local coordinates u t u t u t u tm( ) = ( ) ( ) ( )1 2, ,..,  induced by a chart U,ϕ( ). The 

basis vectors E
u

j m
j j

=
∂

∂
= …, , , ,1 2  span the tangent space T M

p
 at each p U∈  and 

may be treated as vector fields. In this context, one fundamental result is that the 
covariant derivative ∇

E ji
E  is expressible in terms of the Christoffel symbols (Lee 

1997) as:

 ∇ =
E j ij

k
ki

E EΓ  (4.47)

When vector fields X and Y  are expressed in terms of the local basis vectors as 
X X Ei

i
=  and Y Y Ej

j
= , then:

∇ = ∇
X X

j
j

Y Y E

= ( ) + ∇ ( )X E Y E Y Ei
i

j
j

j
X E ji

i

from Equation 4.46c

= ( ) + ∇ ( )X E Y E X Y Ei
i

j
j

i j
E ji

from Equation 4.46a
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= ( ) + ( )X E Y E X Y Ei
i

j
j

i j
ij
k

k
Γ from Equation 4.47

 = +( ) ( )X E Y X Y E ji
i

k i j
ij
k

k
Γ since ’ is a dummy variable  (4.48)

That Christoffel symbols Γ
ij
k  completely define the action of connection on manifolds 

is evident from the above equation.

Covariant derivatives along curves

We consider the parameterized curve γ t M( ) →:  on the manifold M with t varying 

over the interval I a b= [ ] ⊂, . Let the local coordinates be u t u t u t u tm( ) = ( ) ( ) ( )1 2, ,..,  

induced by a chart U,ϕ( ) in the neighbourhood U  of a point p t= ( )γ  on the tangent 

space T M
p

. The tangent vector    γ t u t u t u t T Mm
p( ) = ( ) ( ) ( )( ) ∈1 2, ,..,  is coordinate 

chart invariant as discussed in Section 4.2.2. It may not however be so for the 

acceleration vector γ t( ). Using the fact that the tangent vector  γ t u t Ei
i( ) = ( )  is 

indeed a vector field along the curve γ t( ), we proceed to know via the covariant 
derivative how the tangent space T M

p
 changes along γ t( ). Consider a vector field 

V  along the curve γ t( ) such that V t( )∈T M t
tγ ( ) ∀ ∈ . Suppose that  γ( ) is the 

space of vector fields along the curve γ t( ); we define the linear connection ∇ on M 
for each curve γ t( ) as a unique differential operator D

t
: γ γ( ) → ( ) satisfying 

the properties:

(i) D aV bW aD V bD W
t t t

+( ) = + , for a b, ∈R –  linearity over  with V  and W  

being vector fields

(ii) D fV f V fD V
t t( ) = + , for f C I∈ ( )∞  –  product rule  (4.49)

D V
t

 may be called the covariant derivative of V  along the curve γ t( ). With the     

acceleration of the curve γ t( ) given by D t
t
γ ( ), we can say that γ t( ) is a geodesic if 

D
t
γ = 0. This condition is given by:

D u t E
t t u t E

j
ji

i

 





γ γ
γ

= ∇ = ∇ ( )( ) =( ) ( ) 0

 ⇒ +( ) = ( )   u E u u u Ei
i

k i j
ij
k

k
Γ 0 from Equation 4.48  

 ⇒ +( ) =  u u u Ek i j
ij
k

k
Γ 0  (4.50)

The last equation indicates that the curve γ t( ) is a geodesic if the component functions 
of γ t u t u t u tm( ) = ( ) ( ) ( )( )1 , ,..,  satisfy the ODEs:

   u u u k mk i j
ij
k+ = = …, , , ,Γ 0 1 2  (4.51a)
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These ODEs are the same as equations (4.38) earlier derived in Section 4.2.3 by the 
variational approach. One may also rewrite these as 2m  first- order ODEs:

u wk k=

 w w wk i j
ij
k= − Γ  (4.51b,c)

The terms on the RHS being C °  functions of u w u u u w w wm m, , , , , , , , ,( ) = … …( )1 2 1 2

the existence theorem (Boothby 1975, Rudin 1976) for ODEs ensures that there are 
2m  unique functions (solutions) for uk  and wk  satisfying the system of Equations 
(4.51b,c) and the specified initial conditions.

4.2.5  parallel transport of a Vector field alonG a cUrVe γ(t) 

Taking cue from the understanding of a covariant derivative along a curve γ t( ), we 
may as well deduce the condition for the parallel transport of a vector field along 
the curve on a manifold. A vector field V  along a curve γ t( ) is said to be parallel 
(Figure 4.12) if the directional derivative ∇ ( )γ t

V  of V  along the tangential direction of 

γ t( ) is zero at all points on the curve. With V v t Ek
k

= ( ) , it readily follows that V  is 

parallel along the curve if and only if its components v tk ( ) satisfy the following linear 
ODEs (similar to Equation 4.51c):

 
v v t k mk i j

ij
k+ ( ) = = …γ , , , ,Γ 0 1 2  (4.52)

The Christoffel symbols Γ
ij
k  in the above equation correspond to the point γ t( ).     

Thus, a parallel vector field is uniquely defined by its initial position V
t0

, i.e. 

by v t i mi
0

1 2( ) = …, , , ., .  In Euclidean space with canonical flat connection, 

i.e., with vanishing Christoffel symbols, parallel transport just means that 

FIGURE 4.12 Parallel transport of a vector field along a curve γ t( ) on a manifold M.
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dV

dt
V v t k m

t
k= ∇ = ⇒ ( ) = = …( )



γ 0 0 1 2, , , , ,  and so V  is a constant vector. Also note 

here that a curve γ t( ) on a manifold is called a geodesic if the parallel transport of 
the tangent vector along the curve preserves the vector, i.e., a tangent vector when 
parallelly transported remains a tangent vector at all points on the curve.

4.2.6  leVi- ciVita connection

The Levi- Civita connection is a unique connection defined on a Riemannian manifold 
M g,( ) having the following properties in addition to those listed in Equation (4.46):

(i) it is compatible with the Riemannian metric g and
(ii) it is a torsion- free connection

Compatibility property of Levi- Civita connection
Property (i) is expressed as:

 ∇ = ∇ + ∇
X X X

Y Z Y Z Y Z, , ,  (4.53a)

X Y Z, ,  are vector fields on M. The property is just like a Euclidean connection 

(denoted by, say, ∇E on n) satisfying ∇ = ∇ + ∇E E EX Y X Y X Y, , ,  with respect 
to the Euclidean metric. The compatibility property is equivalent to saying that if V  

and W  are vector fields along any curve γ t( ), then:

 
d

dt
V W D V W V D W

t t
, , ,= +  (4.53b)

Proof:
With V v Ei

i
=  and W w Ei

i
= , we have:

 V W g V W v w g E E v w gi j
i j

i j
ij

, , ,= ( ) = ( ) =  (4.54a)

and:

 

d

dt
V W

d

dt
g V W v

dw

dt
w

dv

dt
g

g v E
d w E

dt

i

j

j
i

ij

i
i

j
j

, ,

,

= ( ) = +







=
( )











+
( )







g

d v E

dt
w E

i
i j

j
,

 

 = ( ) + ( ) = +g V D W g D V W V D W D V W
t t t t

, , , ,  (4.54b)
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which is the same as Equation (4.53b).
♦

Now, suppose that V  and W  are parallel vector fields along the curve. Then 
D V D W

t t
= =0 . We get from Equation (4.54b):

 
d

dt
V W

d

dt
g V W g, ,= ⇒ ( ) = ∇ =0 0  

 ⇒ ( ) = ( ) ∈[ ]g V W g V W t t a b
t t t t0 0 1 1 0 1

, , , , .where  (4.55)

Thus, the compatibility condition implies that V W,  is constant if V  and W  are par-
allel vector fields. That is, the parallel transport preserves the metric.

Torsion- free‡ property (ii) of Levi- Civita connection
Levi- Civita connection is characterized by the vanishing of the torsion tensor τ , 
which may be expressed in terms of the vector fields X and Y  as:

 τ X Y Y X X Y
X Y

, ,( ) = ∇ − ∇ − [ ] = 0  (4.56)

X Y,[ ] on the RHS of Equation (4.56) is a bracket operation on vector fields and is 
known as the Lie bracket.§ The Lie bracket of two vectors measures the failure to 
close the flow lines of these vectors (see the comments below).

‡ Torsion
 Torsion describes the twisting of a vector field when it is parallelly transported along a geodesic.
§ Lie bracket
 Given vector fields X  and Y  on the manifold M, the Lie bracket X Y,[ ]  is a commutator:

                                                     X Y X Y Y X C M C M, :[ ] = − ( ) → ( )∞ ∞
  :  (i)

 Even though the composition X Y  is not a vector field (because it involves second- order 
derivatives), the commutator is a vector field. It is a derivative operation and finds the change of the 
vector field X  along the vector field Y. If f C M∈ ( )∞  is regarded as a function in the neighbourhood 
of p M∈ ,  then:

                                              
X Y f x

x
y

f

x
x

y

x

f

x
x y

f

x x
j

j

i

i

j
i

j i

j i

j i

 ( ) = ∂
∂

∂
∂







= ∂

∂
∂
∂

+ ∂
∂ ∂

2

 (ii)

 With a similar expression for Y X f ( ).  we get:

                                                           
X Y x

y

x
y

x

x x
j

i

j

j
i

j i

,[ ] = ∂
∂

− ∂
∂











∂
∂

 (iii)

 which is indeed a vector field on M. One may observe that X X,[ ] = 0  and Y X X Y, , .[ ] = −[ ]  Also:

                                      X Y Z Y Z X Z X Y, , , , , ,[ ]  + [ ]  + [ ]  = ( )0 Jacobi identity  (iv)
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Figure 4.13 illustrates the geometric interpretation of a Lie bracket. Consider two  
vector fields X and Y . Let ζ  denote the flow of X and ν  the flow of Y. Starting from a  
point p M∈ , we travel first along ζ , the flow field of X for a time t to reach the point  
q. The point b is subsequently reached by following ν , the flow field of Y. Now, a  
movement along ζ − ( )1 t , i.e., the reverse direction of the flow field of X reaches the  
point a and via a similar movement along ν − ( )1 t , the point r t= ( )ξ  is finally reached.  
Thus, one may define ξ t( ) (shown in the figure) as: ξ ν ζ ν ζt t t t t( ) = ( ) ( ) ( ) ( )− −1 1

   .
Since ζ  and ν  are smooth, ξ  is smooth too. As t → 0, the flow line joining p and r 

gives the direction of the vector X Y,[ ]. ξ t( ) as t → 0 may be considered as a measure 
of non- commutativity of the flows ζ  and ν , represented by the Lie bracket X Y,[ ]. 
With X x

x
x Ek

k
k

k
=

∂
∂

=  and Y y
x

y Ek
k

k
k

=
∂
∂

=  written in terms of local coordinates, 

the vector field X Y,[ ] is:

 X Y x E y y E x
x

x E y y E x Ei
i

k i
i

k
k

i
i

k i
i

k
k

,[ ] = −( ) ∂
∂

= −( )  (4.57)

On the other hand, the expression ∇ −∇
X Y
Y X  in Equation (4.56) is:

∇ − ∇ = +( ) − +( )X Y
i

i
k i j

ij
k

k
i

i
k i j

ij
k

k
Y X x E y x y E y E x y x EΓ Γ

                     = −( ) −( )+x E y y E x E x y y x Ei
i

k i
i

k
k

i j
ij
k j i

ji
k

k
Γ Γ  (4.58)

Therefore, from Equations (4.57) and (4.58):

 τ X Y Y X X Y x y y x E
X Y

i j
ij
k j i

ji
k

k
, ,( ) = ∇ − ∇ − [ ] = −( )Γ Γ  (4.59)

FIGURE 4.13 Geometric interpretation of Lie bracket.
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It shows that the connection becomes torsion- free, i.e., τ X Y,( ) = 0 if:

 Γ Γ
ij
k

ji
k=  (4.60)

So, the Christoffel symbols are symmetric (in the two lower indices) rendering the 
Levi- Civita connection symmetric. Thus, on a Riemannian manifold M g,( ), the Levi- 
Civita connection is the unique torsion- free (symmetric) connection which is compat-
ible with the Riemannian metric. It is named after Tullio Levi- Civita who introduced 
the concept of parallelism on a Riemannian manifold in his famous paper published 
in 1917. The paper is well- known for the geometric interpretation of the Riemannian 
curvature and the parallel transport of vector fields on a Riemannian manifold.

4.2.7  exponential and loGarithmic maps

A geodesic, being the shortest path (smooth curve) between two points p,     
q M∈  and uniquely determined by a tangent vector v T M

p
∈ , is useful for 

movement on M. In this context, an exponential map denoted by Exp v
p ( ) is 

defined as a map Exp v T M M
p p( ) →:  such that there is a geodesic γ t( ) with 

γ γ γ0 0( ) = ∈ ( ) = ( ) = = ( ) ∈p M v t q Exp vt M
p

, .  and 
 Specifically, for t∈[ ]0 1, , 

γ t( ) is a geodesic. The exponential map has an inverse Exp q M T M
p p
− ( ) →1 : ,  i.e., 

v Exp q
p

= ( )−1 . The geodesic distance between p and q is Exp q Exp p v
p q
− −( ) = ( ) =1 1 .      

Thus, Exp v
p ( ) is the point on the geodesic whose distance from p along the geodesic 

is the length of the vector v. The inverse exponential map is known as the logarithmic 
map. See Figure 4.14 for an illustration of exponential and logarithmic maps on M.

4.2.8  normal coordinates

By the definition of an exponential map, we may have a system of natural local 
coordinates known as normal coordinates in the neighbourhood U of p M∈ . The 
coordinate system has a special significance (Hsu 2002) when one deals with the 
topic of stochastic development on manifolds. Under exponential mapping, every 
point p of M has a neighbourhood U which is the diffeomorphic image of a star- 
shaped neighbourhood ′ ⊂ ( )U T M

p
 (Figure 4.15). The coordinate neighbourhood 

U M⊂  defined in this way is known as the normal neighbourhood. If E
xi i

=
∂
∂

 is an 

orthonormal basis in T M
p ( ) with an isomorphism** G:m

p
T M→ ( ), then we have a 

coordinate chart:

** Isomorphism
 Isomorphism is a bijective morphism. The word iso derived from Greek means ‘equal’. The word 

morphosis means ‘to form’ or ‘to shape’. Isomorphism is a one- to- one mapping that preserves some 
structural aspects of the two mathematical objects that are mapped. For instance, if G and H are two 
graphs, G is isomorphic to H, denoted by G H≅  if (i) their number of components (vertices and 
edges) are the same and (ii) their edge connectivity is retained.

 

 

 

 

 

 



296 Elements of Classical and Geometric Optimization

 ϕ : := →− −G Exp U
p

m1 1
   (4.61)

The coordinates corresponding to the above map are called the normal coordinates 
centred at p and there is a one- to- one correspondence between the orthonormal bases 
at p  and the normal coordinate chart ϕ .

Some of the properties of the normal coordinate chart are the following.

(i) For any v ∈ ( )T M
p

, the geodesic γ t( ) starting at p M∈  with initial vector v 

is represented in the normal coordinate chart by the radial line segment (see 
Figure 4.15):

FIGURE 4.14 Manifold M: (a) exponential map q Exp v
p

= ( ); (b) logarithmic map 
Exp q v

p
− ( ) =1 .
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FIGURE 4.15 Normal coordinates using exponential map on a Riemannian manifold 
( , )M g  with v T M

p
∈ ( ): (a) U M⊂  –  the diffeomorphic image of (b) a star – shaped 

neighbourhood ′ ⊂ ( )U T M
p

.
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 γ t tv tv tv tm( ) = …( ) ≤ ≤1 2 0 1, , , ,  (4.62)

and p = ( )γ 0 , q v v v v
p

m= ( ) = ( ) = …( )Exp γ 1 1 2, , , .

(ii) At p, the metric g
ij

= δ  where δ = ×I
m m

, the identity matrix.
(iii) Christoffel symbols and the first partial derivatives of g

ij
 vanish at p.

The property (iii) follows from the following arguments.
For all choices of v on T M

p
 with constant vi ≠ 0 , the geodesic equation (4.51c) gives:

v v p k ni j
ij
k , , , ,Γ ( ) = = …0 1 2

 ⇒ ( ) =Γ
ij
k p 0  (4.63)

It follows from the last equation that:

 
∂

∂
=

g

x
ij

k p

0 (4.64)

The last assertion is valid since:

∂

∂
=

∂
∂

∂
∂

∂
∂

=
∂

∂
∂

∂
+

∂
∂

∂
∂

g

x x x x x x x x
ij

k p k i j p

ki
l

l j p i
kj
l

l p

, , ,Γ Γ

= ( ) ( ) + ( ) ( )Γ Γ
ki
l

lj kj
l

il
p g p p g p

 = ( )0 from Equation 4.63   (4.65)

4.2.9  riemannian cUrVatUre

Curvature is an intrinsic local property of a manifold. If γ t( ) is a geodesic curve on 
M, curvature at a point p M∈  signifies how much a segment of the curve differs from 
being a straight line. For the manifold M, it is a measure of how much M differs from 
being flat at p and M is said to be of zero curvature at p if and only if it is flat at the 
point. This definition is consistent with our intuitive understanding of curvature in the 
Euclidean setting. We may define curvature mathematically as follows. With vector 
fields X Y TM, ,∈  the Riemannian curvature is a map that associates to each pair of 
vector fields X and Y  a differential operator as:

 R X Y
X Y Y X X Y

,
,( ) = ∇ ∇ −∇ ∇ −∇[ ] (4.66a)
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Following the definition above, for a manifold M with a linear connection ∇, the 
curvature R is the map R TM TM TM TM: × × →  given by:

 R X Y Z Z Z Z X Y Z TM
X Y Y X X Y

, , , ,
,( ) = ∇ ∇ − ∇ ∇ − ∇ ∈[ ]  (4.66b)

While torsion in Equation (4.56) refers to non- commutativity of first covariant 
derivatives, curvature in the last equation may be interpreted as measuring the non- 
commutativity of the second covariant derivatives. In the case of M n=   (where 
the curvature tensor vanishes), one may observe that for vector fields X Y Z n, , ∈ ,     

∇ ∇ −∇ ∇ = ∇[ ]X Y Y X X Y
Z Z Z

,
 showing that the operator is indeed commutative. The 

Riemannian curvature in Equation (4.66) is a linear operator over C M∞ ( ), i.e. if 
f C M∈ ( )∞ , then:

 fR X Y Z R X fY Z R fX Y Z R X Y fZ, , , ,( ) = ( ) = ( ) = ( )( ) (4.67)

For instance, let us show that R X Y fZ fR X Y Z, ,( )( ) = ( ) .

 R X Y fZ fZ fZ fZ
X Y Y X X Y

,
,( )( ) = ∇ ∇ ( ) −∇ ∇ ( ) −∇ ( )[ ]  (4.68)

We expand each term on the RHS:

∇ ∇ ( ) = ∇ ∇ + ( )( )X Y X Y
fZ f Z Y f Z

 = ∇ ∇ + ( )∇( ) + ( )∇ + ( )( )f Z X f Z Y f Z XY f Z
X Y Y X

 (4.69a)

(from equation 4.46c)
Similarly,

∇ ∇ ( ) = ∇ ∇ + ( )( )Y X Y X
fZ f Z X f Z

 = ∇ ∇ + ( )∇( ) + ( )∇ + ( )( )f Z Y f Z X f Z YX f Z
Y X X Y

 (4.69b)

and

 

∇ ( ) = ∇ + ( ) − ( )( )[ ] [ ]X Y X Y
fZ f Z XY f YX f Z

, ,

                  from theedefinition of  Lie bracket( )  (4.69c)

Substituting Equation (6.69) in (4.68), we get:

R X Y fZ f Z XY f Z f Z YX f Z
X Y Y X

,( )( ) = ∇ ∇ + ( )( ) − ∇ ∇ + ( )( )
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− ∇ + ( ) − ( )( )( )[ ]f Z XY f YX f Z
X Y,

= ∇ ∇ −∇ ∇ −∇( )[ ]f Z Z Z
X Y Y X X Y

(
,

 = ( )fR X Y Z,  (4.70)

Thus, the assertion R X Y fZ fR X Y Z, ,( )( ) = ( )  is proved. Similar procedural steps 
prove the validity of the other equalities in Equation (4.67).

A geometric interpretation of curvature is well known (Lee 1997). For this, let 
us we consider the parallel transport of a tangent vector on the surface of a sphere 
S2. As shown in Figure 4.16, a vector Z  parallelly transported along a closed path 
N B A N− − −  fails to come back to the initial orientation at N . The extent of the 
failure to close by parallel transport around closed loops is called holonomy and 
curvature is a measure of holonomy (Murray 1996, Christian 2015). It is equivalent to 
the non- commutativity of the second covariant derivative as defined in Equation 4.66.
Further, if ∇ is torsion- free and thus a Levi- Civita connection, the curvature operator 
R is a linear transformation T M T M T M

p p p( )× ( ) → ( ). If we consider the vectors 

X Y,  and Z  in local coordinates as X x
x

i
i

=
∂
∂

, Y y
x

j
j

=
∂
∂

 and Z z
x

k
k

=
∂
∂

 at p on 

T M
p ( ), then the curvature can be expressed as:

 R X Y Z x y z R
x

i j k
ijk
l

l
,( ) =

∂
∂

 (4.71)

FIGURE 4.16 Riemannian curvature –  a measure of holonomy; parallel transport around a 
closed loop on S2.
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where the coefficients R
ijk
l  are defined by:

 R R
i j k ijk

l
l

∂ ∂( )∂ = ∂,  (4.72)

where ∂ =
∂

∂
= …

i ix
i, , ,1 2 . From the definition of curvature (Equation 4.66b), the 

left hand side of the last equation is:

R
i j k k k ki j j i i j

∂ ∂( )∂ = ∇ ∇ ∂ −∇ ∇ ∂ −∇ ∂∂ ∂ ∂ ∂ ∂ ∂





,
,

= ∇ ∇ −∇ ∇( )∂ ∂ ∂  =( )∂ ∂ ∂ ∂i j j i k i j
sin ,ce 0

= ∇ ∂ − ∇ ∂( ) − ∇ =( )∂ ∂i j ijk
l

l ik
l

l E j ij
k

k
E EΓ Γ Γfrom Equation 4.47

= ∂ ( )∂ + ∇ ∂( ) − ∂ ( )∂ + ∇ ∂( )∂ ∂i jk
l

l jk
l

l j ik
l

l ik
l

li j
Γ Γ Γ Γ

=
∂

∂
∂ + ∂









 −

∂
∂

∂ + ∂






Γ
Γ Γ

Γ
Γ Γkj

l

i l jk
l

il
m

m
ik
l

j l ik
l

jl
m

mx x

=
∂

∂
∂ −

∂
∂

∂ + ∂ − ∂
Γ Γ

Γ Γ Γ Γkj
l

i l
ki
l

j l jk
l

il
m

m ik
l

jl
m

mx x

=
∂

∂
∂ −

∂
∂

∂ + ∂ − ∂
Γ Γ

Γ Γ Γ Γkj
l

i l
ki
l

j l jk
m

im
l

l ik
m

jm
l

lx x

 =
∂

∂
−

∂
∂

+ −








 ∂

Γ Γ
Γ Γ Γ Γkj

l

i

ki
l

j jk
m

im
l

ik
m

jm
l

lx x
 (4.73)

From Equations (4.72) and (4.73), we have R
ijk
l  in Equation (4.71) as:

 R
x xijk

l kj
l

i

ki
l

j jk
m

im
l

ik
m

jm
l=

∂

∂
−

∂
∂

+ −
Γ Γ

Γ Γ Γ Γ  (4.74)

So far, we have given a brief description of a differentiable manifold M and some 
of its intrinsic structural properties. The geometric methods of optimization which 
form the subject of this chapter and rest of the book are based on these properties 
of manifolds. In the following section, we intend to introduce the basic concepts of 
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geometric methods. In particular, we first describe how the classical methods –  the 
gradient methods to be specific –  may be extended to manifolds.

4.3  GEOMETRIC METHODS OF OPTIMIZATION

A great advantage of a geometric method is to account for any constraint that may be 
externally specified or naturally arise given the objective function. It is therefore pos-
sible that a geometric method might result in faster convergence or higher accuracy. 
In the exposition of these methods, we presume that the manifold (the character-
ization of which often depends on the ingenuity of the user) is Riemannian with a 
unique Levi- Civita connection. In the Riemannian setting, we define an optimization 
problem as:

 minimize ,f Mx x( ) ∈  (4.75)

where the design variable space is M and f C M.( )∈ ( )∞ . For example, with reference 
to the minimization problem for the 2D Rosenbrock function (see Figure 4.1), the mani-
fold is represented by the surface F fx x x( ) = ( )( ),  with x = ( )x x

1 2
, . Optimization on 

manifolds may be considered as an unconstrained problem on a surface represented 
by the manifold M. The objective is to move on the manifold from an initial point 
x

0
∈M , and iteratively reach the optimum x* ∈M  through a sequence of updates 

x
k

M k∈ = …, , ,1 2 . It is possible to generalize (Gabay 1982, Smith 1994, Absil 2004, 
2007a, 2007b) most of the classical methods to optimization on a Riemannian mani-
fold (as stated in Equation 4.75). This is primarily due to the local Euclidean prop-
erty of the manifold. However, we need to exploit the tools of differential geometry 
described in the previous section.

Before going into the details of some of these generalizations, let us define the con-
vexity of a scalar- valued function f x( ) on a manifold. This definition is with respect 
to a geodesic in lieu of a straight line in the Euclidean case (see Figure 1.6). With a 
geodesic γ t( ) connecting two points p q M, ∈  such that p = ( )γ 0  and q = ( )γ 1 , f  is 
convex over t∈[ ]0 1,  if:

 f t tf p t f q tγ ( )( ) ≤ ( ) + −( ) ( ) ∀ ∈[ ]1 0 1, ,  (4.76)

For a Riemannian manifold with Levi- Civita connection, convexity is thus decided 
by geodesics which are determined by the connection. The latter is dependent on the 
Riemannian metric. A non- convex problem may be transformed into a convex one by 
a change of the metric (da Cruz Neto et al. 2006, Bento and Melo 2012).

4.3.1  riemann Geometric Version of some classical Gradient methods

Consider the first- order gradient method –  the classical SDM (steepest descent 
method –  Section 2.2.1, Chapter 2). Let us enumerate the algorithmic steps for the 
manifold (geometric) version of the method (see Table 4.1)
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Steepest descent method
One may find that the key differences between the geometric and classical SDM lie 
in (i) generating the gradient gradf x

k( ) on M in step 2 and (ii) traversing along the 
geodesic path via the exponential mapping in step 4 with an appropriate step size s

k
.

The steps involving the generation of grad f
k

x( ), choice of step size s
k
 and exponen-

tial mapping need some elaboration.
grad f x

k( ) on a manifold [Lee 1997]
For the objective function f C M∈ ( )∞ , the gradient of f  is the vector field denoted 

by grad f  defined as:

 grad , , ,f df v T M M
x x

v v x= ( ) ∀ ∈ ∈  (4.77a)

df v( )  is the directional derivative (basically a differential or 1- form) of f  along 

v ∈T M
X

 and is equal to 
∂
∂

f

x
v,  where ∂

∂
f

x
 is the Euclidean gradient. The definition of 

gradf  is consistent with the Euclidean gradient, i.e.:

 df
f f f f

v
T i

i
v

x x

x
v

x
( ) =

+( ) − ( )
=

∂
∂

=
∂
∂





→

lim
ε

ε
ε0

v
 (4.77b)

Note that with gradf  being a vector field on M, grad grad f g f
x x

, ,v v= ( ). From the 
definition of a metric on a manifold, one has:

 grad gradf g f v
x ij

i j,v = ( )  (4.77c)

From Equations (4.77b– c) and given that the vector v is arbitrary, the Riemannian 
gradient is obtained as:

 gradf g
f

x
x

( ) =
∂
∂

−1  (4.78)

As in the Euclidean case, negative of gradf x( ) is the steepest descent direction.

TABLE 4.1
Geometric Descent Method –  Details of the Algorithm

Step 1. Start with suitable choice of x
0
, the initial point on M. Set k =1.

Step 2. Choose a descent gradient direction grad f T M
k xk

x( ) ∈  with x
k

M∈

Step 3. If grad a small numberf
k

x( ) ≤ ( ) , stop.

Otherwise do a line search and obtain suitable step size s R
k
∈

Step 4. Set x x
k x k k

Exp s f
k+ = − ( )( )1

grad

Step 5. Set k k≡ +1 and go to Step 1.
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Step size s
k
 in steps 2 and 3

The step size may be selected by following any of the classical line search techniques 
(see Chapter 1).

Exponential mapping in step 4 of Table 4.1, as described in Section 4.2.7 above, 
maps − ( )s f

k k
grad x  on T M

x
 to the updated point x

k+1
 on the manifold M preserving 

the length of the tangent vector. However, from a computational point of view, 
performing the exponential mapping step at each iteration is prohibitively expensive 
especially for higher dimensional problems. An alternative approach is to approxi-
mate this step by what is known as retraction (Absil et al. 2007b, Baker and Parks 
2016) to get the updates x

k+1
. We discuss this later in this section.

Example 4.5. Consider finding the minimum of Rayleigh quotient x AxT  by geo-
metric SDM using the differential geometric approach. Here x ∈Rn and A is an n n×  
symmetric matrix.

Solution. This is an eigenvalue problem Ax x= λ  requiring us to find the lowest 
eigenvalue and the corresponding eigenvector. Minimizing the Rayleigh quo-
tient (Clough and Penzien 1982) yields the eigenvector x  corresponding to the 
lowest eigenvalue. The eigenvector is an orthonormalized one in that x xT = 1.     
Here, the problem is solved for n = 2. The optimization problem is posed as:

minimize f Tx x Ax( ) =

s.t. x xT = 1 (4.79)

The constraint surface is thus given by F z Tx x x, = −( )1 . It represents the mani-

fold M S= 2, the sphere embedded in R3. With x = ( )x 1  and y = ( )x 2  and x = ( )x y
T

, ,     

we define local coordinates u x v y= =,   via a chart M,φ( ) where φ maps an open set 

U ⊃ x on M into R2, the u v−  plane. Let φ be the coordinate chart with z x y= + − −1 2 2  
mapping the neighbourhood of any point p M∈  on the upper half of the sphere to 

the u v−  plane. Any tangent space T M
p

 is represented by these coordinates with the 
metric g given by:

 g
ij i j

r

u

r

u
i j=

∂
∂

∂
∂







=
 

. , , ,1 2  (4.80)

With 


r x u v y u v z u v= ( ) ( ) ( )( ), , , , , , the metric is given by:

 g
11
=

∂
∂
∂
∂
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∂
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 g
22
=

∂
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∂
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∂
∂
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u

u v
 (4.81)

With the metric g  thus expressed in terms of the local coordinates, we now need 

to have the steepest descent direction as − ( ) = −
∂ ( )

∂
−gradf

f
x

x

x
g 1  on T M

x
. For the 

objective function f x( ) on hand, 
∂ ( )

∂
f x

x
 (the Euclidean gradient) is given by:

 
∂ ( )

∂
=

f x

x
Ax2  (4.82)

For the matrix A =










2 3

3 4
, a simple computation yields the lowest eigenvalue as 

– 
0.1623 and the corresponding eigenvector as x = −( )0 8112 0 5847. , .

T . Figure 4.17 
shows the result obtained by minimizing the Rayleigh quotient x AT  by the geometric 
SDM. The iterative process is started with x

0
0 5 0 7= −( ). , . . The path to optimum x* is 

FIGURE 4.17 Riemannian optimization by geometric steepest descent method: 
minimization of Rayleigh quotient x AxT , starting point x

0
0 5 0 7= −( ). , .

T  and optimum point 

x* . , .= −( )0 8112 0 5847
T
 with minimum value f x* .( ) = −0 1623 found in 100 iterations.
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plotted in the figure. The minimum value of the objective function is the lowest eigen-
value given by f x*( ), with x* being the corresponding eigenvector.

■

The exponential mapping (see Table 4.1) is obviously the vital step in the iteration pro-
cess. However, it requires solving coupled ODEs (4.51) at each iteration. Retraction 
is an alternative to the computationally expensive exponential mapping (Absil et al. 
2007b, Baker and Parks 2016). It approximates the geodesic and provides a first- order 
approximation to the exponential mapping:

 R f Exp f f
x k x k k kk k

− ( )( ) ≅ − ( )( ) = − ( )grad grad gradx x x x  (4.83)

It is possible to have different retractions (Ring and Wirth 2012) to relax the exponen-
tial mapping. Figure 4.18 shows the result for the example problem 4.5 by replacing 
the exponential mapping step 4 of Table 4.1 by retraction.

Conjugate gradient method (CGM)
As in the classical CGM, the geometric CG method differs from SDM in generating  
the new direction and hence the update x

k+1
 in step 4 of Table 4.1. The other steps  

involving gradient generation and exponential mapping remain the same. Also, the  
method adopts the same strategy as in the classical CGM in obtaining the new direction 
at each iteration. That is, the new direction d

k
 is not just − ( )gradf

k
x , but is so  

FIGURE 4.18 Use of retraction in Riemannian optimization, result by geometric steepest 
descent method, minimization of Rayleigh quotient x AxT , starting point x

0
0 5 0 7= −( ). , .

T
 

and optimum point x* . , .= −( )0 8112 0 5847
T

 with minimum value f x* .( ) = −0 1623  found in 
24 iterations.
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constructed that it is conjugate to the direction d
k x

T M
k− ∈

−1 1
 of the previous step as  

in the classical CGM (Equations 2.30 and 2.36 in Chapter 2). But it differs in imple-
mentation. Specifically, we note that the gradient vectors d

k −1
 and gradf

k
x( ) lie in  

different tangent spaces. Before any vector operation could be performed on these  
two vectors, we first need to do a parallel transport of d

k −1
 to the current point x

k
M∈ .  

If d
k −1

 is the vector corresponding to the parallel transport of d
k −1

 to x
k
, the new search  

direction at x
k
 is obtained as:

 d x d
k k k k

f= − ( ) + − −grad β
1 1

 (4.84)

β
k

R− ∈
1

 is a parameter introduced as in the classical CGM method (Equation 2.36, 
Section 2.2.2, Chapter 2) and similar to Fletcher and Reeves (1964). It is given by:

 β
k

k

T

k

k

T

k

f f

f f
−

− −

=
( ) ( )

( ) ( )1

1 1

grad grad

grad grad

x x

x x
 (4.85)

grad f
k

x −( )1
 corresponds to the parallel transport of the Riemannian gradient 

gradf
k

x −( )1
 to current point x

k
M∈ . A discussion on other possibilities for the param-

eter β
k−1

 may be found in Smith (1993) and Boumal (2014). The following example 
illustrates the application of geometric CGM for the Rosenbrock function.

Example 4.6. Find the minimum of the Rosenbrock function f(x
1
, x

2
) = 100 

x x x
2 1

2
2

1

2
1−( ) + −( )  by geometric CGM.

Solution. The Rosenbrock function is in fact solved by classical methods for the min-
imum in Chapter 2. Here, we obtain the solution by the Riemannian version of CGM 
with the convergence criterion of keeping ε = ( ) − ( )( )+f f

k k
x x

1
 within a tolerance of 

1e- 10 using the MANOPT software (Boumal et al. 2014). Solution in terms of the 
optimum path and evolution of the objective function is shown in Figures 4.19a– b. 
Result by geometric SDM is also included in the figures (see Figures 4.19c– d). CGM 
has shown better result compared to SDM as expected. Since it is a two- dimensional 
problem, the matrix g for the Riemannian metric is obtained by embedding the 
manifold surface in 3 as F x x z f x x

1 2 1 2
, , ( , )=( )  and by following the procedure 

similar to the one in Example 4.5. Expressions for the elements of g in terms of local 
coordinates x

1
 and x

2
 are given in Appendix 4 (item A4.2). Resulting evolutions of 

the objective function by classical CGM and SDM are included in Figures 4.19b 
and 4.19d, respectively. Convergence is no doubt achieved by the classical CGM 
(see Figure 4.19b) but at a slower rate vis- à- vis the geometric CGM. By the classical 
SDM, convergence is not realized at all and an oscillatory behaviour is noticed even 
after 2000 iterations (see the dotted line in Figure 4.19d).
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FIGURE 4.19a–b Optimization by geometric conjugate gradient method –  Rosenbrock 
function: (a) optimum path to x* on the manifold and (b) evolution of the objective function 
with iterations, dark line –  geometric CGM and dash- dotted line –  classical CGM. Optimization 
by geometric steepest descent method –  Rosenbrock function: (c) optimum path to x* on the 
manifold and (d) evolution of the objective function with iterations with log scale on y- axis; 
dark line –  geometric SDM and dotted line –  classical SDM (oscillatory behaviour and no 
convergence). Search paths: (e) classical SDM and (f) classical CGM; note the zig- zag paths 
following line search at each iteration which increases the computational effort.
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FIGURE 4.19c–d (Continued)
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FIGURE 4.19e–f (Continued)
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The search paths during the optimization process by classical SDM and CGM are 
shown in Figures 4.19e– f. As expected, the geometric versions of the two methods 
offers a substantively smoother evolution for the search path before finally reaching 
x*. The geometric SDM has linear convergence and the CG version has quadratic 
convergence (Smith 1994).

Newton’s method (NM)
The geometric version of Newton’s method requires that the Hessian matrix be 
appropriately defined on the manifold M.With grad f T M

x
x( ) ∈  as the Riemannian 

gradient (Equation 4.78) of a function f C M∈ ( )∞ , the Hessian of f  at p M∈  with 
connection ∇ is the covariant derivative of grad f  (which is identifiable with the     
1- form df ) and is given by:

 Hess f f f T M T M
p p( ) = ∇∇ = ∇ × →: :2  (4.86)

Given two vector fields X Y TM, ,∈  Hess :f X Y f X Y( )( ) = ∇ ( ), ,2  is defined by 
(Hsu 2002):

 ∇ ( ) = ( ) − ∇( )2 f X Y X Yf Y f
X

,  (4.87)

In terms of local coordinates, the two terms on the RHS of the last equation take 
the from:

X Yf X E Yf X E Y E f X
Y

x

f

x
X Y

E

x
f X Yi

i
i

i
j

j
i

j

i j
i j

j

i
i j( ) = ( ) = ( ) = ∂

∂
∂
∂

+
∂
∂

+
∂22 f

x xi j∂ ∂

 =
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∂
∂
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0since  (4.88a)

and

∇( ) = ∇ ( )( ) =
∂
∂

+ ∇
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Therefore, the Hessian operator is obtained from Equation (4.87) as:

 Hess f f
f

x x

f

xi j ij
k

k
( ) = ∇ =

∂
∂ ∂

−
∂
∂
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Γ  (4.89)
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∂
∂ ∂

2 f

x xi j
 is the Euclidean Hessian of the objective function f x( ).  The symmetric 

property of the Riemannian connection (with zero torsion) renders Hess f x( )  a self- 
adjoint symmetric bi- linear operator with respect to the matric g:

 Hess Hess, , , ,f f x T M
x

x v w w v v w( )[ ] = ( )[ ] ∈  (4.90)

Update in Newton’s method
Using the Hessian on the manifold as defined above, the update in Newton’s method 
is obtained as:

 x x x x
k k k

f f+

−
= − ( )( ) ( )1

1
Hess grad  (4.91)

Note that there is no need of parallel transport in the geometric NM unlike in the CG. 
But in developing the Riemannian versions of quasi- Newton methods (Section 2.3, 
Chapter 2), parallel transport operation is required in getting the update. For details 
on these versions, see Gabay (1982), Smith (1993), and Huang (2013).

Trust region method (TRM)
In the Riemannian setting, the trust region method also closely follows the Euclidean 
version (Section 3.3.3, Chapter 3) exhibiting similar convergence properties (Baker 
2008). At each iteration, a quadratic model (Equation 3.30, Chapter 3) q x( ) approxi-
mating the objective function f x( ) is solved within a pre- specified trust region. The 
trust region at the current x

k
 is treated as a manifold endowed with a metric. The 

quadratic model within this region is defined as (Absil et al. 2007a):

 q f f f
k k k k k k

x x x x x x x x x( ) = ( ) + −( ) ( ) + −( ) −( ), ,grad  Hess 
1

2
 (4.92)

The quadratic model is trusted within a ball of radius ∆
k

 and may be solved by, 
say Newton’s method in the Riemannian setting. The trust region radius is updated 
depending upon a parameter R

k
 (Equation 3.35, Chapter 3) which is the ratio of the 

actual reduction in f
k

x( ) to the one in q
k

x( ) similar to the classical case.

Example 4.7. We again consider the Rosenbrock function f(x) = 100 

x x x
2 1

2
2

1

2
1−( ) + −( )  of Example 4.6 and solve it by geometric NM and TRM.

Solution. The results from the two methods are shown in Figures 4.20 and 4.21. Since 
the methods are second order, the convergence is faster compared to SDM and CGM.

Results by the classical Newton and trust region methods are also shown respectively 
in Figures 4.20b and 4.21b (dash- dotted lines) wherein the evolution of the objective 
function
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FIGURE 4.20 Optimization by geometric Newton’s method (NM) –  Rosenbrock function: 
(a) optimum path to x*  on the manifold and (b) evolution of the objective function with 
iterations. Dark line –  geometric NM and dash- dotted line –  classical NM.

 

 



314 Elements of Classical and Geometric Optimization

FIGURE 4.21 Geometric optimization by trust region method (TRM) –  Rosenbrock 
function: (a) optimum path to x*  on the manifold and (b) evolution of the objective function 
with iterations, dark line –  geometric TRM and dash- dotted line –  classical TRM.
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indicates almost the same trend as the corresponding geometric versions. This 
implies that the geometric versions preserve (but do not improve upon) the quadratic 
convergence of the two classical schemes.

■

Some possible improvements to the Riemannian versions of the above methods are 
available in the literature. For example, readers may see Baker (2008), Sato (2013) for 
details. Studies on these geometric methods include applications to large- scale eigen-
value problems (Absil et al. 2007b), signal processing (Smith 2005, Hegde 2012, 
Manton 2013), data mining (Ma and Fu 2011) and machine learning (Cayton 2005). 
One may also find Riemannian versions for derivative- free methods (Chapter 3) along 
with their convergence properties. For this class of problems, interested readers may 
refer to Dreisigmeyer (2007) and Fong and Tino (2019).

4.4  STATISTICAL ESTIMATION BY GEOMETRICAL METHOD OF 
OPTIMIZATION

In the introduction to this chapter, a mention is made on the importance of statistical esti-
mation/ inference problems (Amari 1983) involving optimization on manifolds. Important 
application areas are data analysis (Cowan 1998), filtering (Jazwinski 1970, Alspach and 
Sorenson 1972) and neural networks (Amari 1997, Du and Swamy 2014). In this context, 
we start with a basic description of statistical estimation using Riemannian geometry.

We have presented an estimation problem –  the MLE problem in Section 3.2.2, 
Chapter 3, where the parameters of a probability distribution were estimated to opti-
mally fit an observed data by using a classical derivative- free method. As elucidated 

therein, suppose that the observed data is z = …{ }z z z
n

T

1 2
, , , .  The observations are 

assumed to be realizations of random variables (RVs) Z i n
i
, , , ,= …1 2  which should 

follow the given probability distribution 
Z

z; ,θ( )  of course provided that the 

parameters are appropriately estimated. Here Z is the vector of the RVs Z i n
i
, , , , .= …1 2  

The vector θ ∈Rm  comprises the unknown parameters in the pdf  and are to be

estimated. Note that, within the MLE scheme, the parameters θ θ θ
1 2
, , ,…

m
 are them-

selves considered as RVs. This is so since, by having different realizations of z, one 
may have different estimates by the MLE and obtain an approximate sampling distri-
bution of θ̂.  This would afford additional information on their respective confidence 
intervals. See Section 3.2.2, Chapter 3, for more details on this aspect. In the MLE, 
we get an estimate of θ  via a minimization of the negative log- likelihood function 
l θ; .Z( )  See Equation (3.14b) for l θ; Z( )  which is re- written below:

  (4.93)

l θ; Z( )  is known as the loss function†† in information theory. Here log stands for the 
natural logarithm. It is shown in Chapter 3 that for large n, the MLE yields an estimate 

†† loss function
 A loss function is also error function signifying the error (loss) due to model prediction. In the MLE, 

the log likelihood function is the loss function and it is an indicator of the prediction error with respect 
to the available samples in the data set.
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close to the true value with an accuracy related to the Fisher information matrix (FIM) 
defined by:

 

I
Z Z Z
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 (4.94)

E
Z

.[ ] is the expectation operator with respect to the probability measure corresponding 

to Z: . The differential operators 
∂

∂
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∂
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∂
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∂

∂
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∂
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×

2
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2

1 2
θ θ θ

i j m m

i j m, , , , , .  Now, we refer to the Kullback– Leibler (KL) 

distance or divergence (Kullback and Leibler 1951) between two probability 
distributions P x( ) and Q x( ) defined by:

  P x Q x
P x

Q x
p x dx E

P x

Q xx
P( ) ( )( ) = ( )

( ) ( ) =
( )
( )











∈

∫|| : log log
©

   (4.95)

KL distance is also known as relative entropy.‡‡ In the present context, we may have 
an analogous definition for the KL divergence with respect to the pdfs corresponding 
to θ  and θ θ+ ∆  in terms of the loss function l θ; Z( )  as:

= + ∆( ) − ( ) E l l
Z

Z Zθ θ θ; ;

 = + ∆( ) − + ∆ − ∆( ) E l l
Z

Z Zθ θ θ θ θ; ;  (4.96a)

In general, the KL divergence  P x Q x( ) ( )( )||  between two probability measures 
P x( ) and Q x( ) is defined only if Q is absolutely continuous with respect to P x( ), i.e. 
if, for all x Q x, ( ) = 0  implies P x( ) = 0. This condition is satisfied for  and .

With θ  as the true value for the MLE and by truncated Taylor’s expansion of the 
second term on the RHS of the last equation about θ θ+ ∆ ,  one has:

‡‡ relative entropy
 This is also known as cross entropy; it is a measure of divergence between two probability 

distributions. It is equivalent to KL divergence within the context of information theory (Gray 1990) 
for measuring similarity between two pdfs. It is widely used in machine learning optimization tasks 
(Abdolmaleki 2015).
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 = ∆ + ∆( ) − ∆ + ∆( )∆





′ ′′E l Z l
Z

Tθ θ θ; ;
1

2
θ θ θ θZ  (4.96b)

Noting that E l
Z

′ + ∆( )  =
∆ =

θ θ; Z
θ 0

0  (Equation 3.17, Section 3.2.2, Chapter 3) and 
we have:

 ≈ ∆ ( )∆ ( )θ θ θT I from Equation 3.22  (4.97)

Here, with regard to the last equation, we make two observations.

(1) With I θ( )  being the FIM, the KL divergence is thus an inner product in terms 
of the FIM.

(2) Also, since MLE aims at minimization of the negative log likelihood function, 
I θ( )  should be positive definite at the minimum point (if it exists).

These two observations make it possible to solve the MLE problem by posing it in a 
Riemannian setting. To this end, we consider a manifold M of the same dimension m 
(as the Euclidean case) representing a statistical model that comprises of a set of joint 
pdfs . Thus, each point, say, x  on M has the coordinates denoted by the 

m- dimensional parameter θ = …( )θ θ θ1 2, , , .m  Note that consistent with the nota-
tion used for coordinates of a point on a manifold, the coordinate elements of θ  are 
written with superscripts. Also, we unbold θ  hereafter.

We now wish to perform the minimization of the negative log likelihood function 
on the m- dimensional, intrinsically curved M by geodesic search in lieu of a line 
search adopted in m. If, for the sake of brevity, we denote the pdf  by , then 

 represents a possible joint pdf at θ θ+ ∆  in the neighbourhood of θ  ( s e e 
Figure 4.22).

With l θ; Z( )  considered as a smooth function on M, the KL distance 

 signifies how  differs from  in an averaged sense 
and is suggestive of a sort of ‘distance’ between x and y on the manifold M. In this 
scenario, the inner product in Equation (4.97) may be taken as ∆ ∆ = ∆ ∆( )θ θ θ θ,

x
T

x
g  

with ∆ ∈θ T M
x

 and with the metric g given by the FIM. Hence, M is Riemannian 
with a metric g. With these considerations, we illustrate solving the MLE by the geo-
metric version of SDM.
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Example 4.8. We consider the statistical estimation problem in Example 3.2 in  
Chapter 3 and solve the MLE by the geometric SDM.

Solution. In this problem,  is the generalized exponential pdf given by:

  (4.98)

 θ= ( )α λ, T
. Let n = 5000 which corresponds to the number of observations 

z i n
i
, , , ,= …1 2 . These observations are in fact obtained by MC simulation of the pdf 

 using, say, the inversion method (Appendix 3) with the true values α = 3 639.  

and λ = 2 239. . The objective is to estimate these two parameters α λand  by MLE 
using the geometric SDM. This problem is two- dimensional with m = 2. Following 
the steps in Table 4.1 of SDM, we first form the Riemannian gradient required in 
step 2. With θ

k
M∈  and the metric g = − ( )I θ

k
thkat the iteration , Equation (4.78) 

gives grad l T M
k k

θ θ; Z( ) ∈  as:

 grad l
l

k k k
θ θ

θ
θ; ;Z I Z( ) = − ( ) 

∂
∂ ( )−1

 (4.99)

where 
∂
∂

l

θ
 is the Euclidean gradient:

 with

  (4.100)

FIGURE 4.22 Joint pdfs  and  corresponding to points x and y on the 

manifold M representing an m- dimensional parameter space.
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Therefore, at the kth iteration, we obtain:
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The FIM I
n

θ( )  is evaluated using Equation (4.94), i.e.:
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 (4.102)

FIGURE 4.23 Statistical estimation by MLE of parameters of generalized exponential 
probability distribution; evolution of parameters α  and λ with iterations; dark line –  geometric 
SDM method, dotted line –  classical derivative- free NM method, dash- dotted line –  classical 
derivative- free HJ method.
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With 
∂
∂ ( )l

kθ
θ ; Z  and I θ

k( )  computed at each iteration according to Equations 

(4.101– 102), the Riemannian gradient is evaluated from Equation 4.99. Following 
Table 4.1, results are obtained by the geometric SDM for the estimated values of 
parameters α  and λ; these are shown in Figure 4.23. Results from the classical 
derivative- free HJ (Hooke and Jeeves) and NM (Nelder and Mead) methods (Sections 
3.2.1 and 3.2.2, Chapter 3) are also included in the same figure. The optimum point θ * 
obtained is ( . , . )3 639 2 268 T  by the geometric SDM, 3 629 2 268. , .( )T

 by the classical 
NM method and 3 660 2 280. , .( )T

 by the classical HJ method. By the geometric SDM, 
θ * is reached with higher accuracy and at a faster rate vis- à- vis classical derivative- 
free NM and HJ methods.

■

4.5  ANALOGY BETWEEN STATISTICAL SAMPLING AND 
STOCHASTIC OPTIMIZATION

As noted in the introduction to this chapter, the underlying concept in the devel-
opment of optimization methods based on Langevin dynamics is the analogy that 
exists between statistical sampling and stochastic optimization (Dalalyan 2017a,b). 
In statistical sampling, a target pdf is given and it is required to generate samples 
(realizations) of the RV associated with the pdf. In these sampling methods based 
on MCMC strategy (Appendix 3), one usually starts with a proposal (assumed) pdf 
and generates samples in the form of a discrete Markov chain whose limiting dis-
tribution is expected to match with the target pdf. The task may be more elegantly 
accomplished by solving a Langevin SDE and exploiting its possible convergence 
to a stationary pdf (Smith and Roberts 1993, Welling and Teh 2011, Durmus et al. 
2019). If a Markov chain is irreducible and aperiodic (Appendix 3), it has a unique 
stationary distribution which is the limiting distribution. With the property of irre-
ducibility and aperiodicity, a Markov chain is known to be ergodic. Ergodic Markov 
chains reach the limiting distribution regardless of the initial probabilities of the 
states.

4.5.1  lanGeVin sde –  conVerGence to a stationary pdf

Suppose we aim at drawing samples from a given target pdf. For simplicity of expos-
ition, let us consider the one- dimensional Langevin equation (4.3b) with inertia term 
ignored as described by the SDE:

 dX X dt X dB t X X
t t t

= ( ) + ( ) ( ) ( ) =α σ , 0
0

 (4.103)

Equation (4.103) is also known as the overdamped Langevin diffusion. We assume 
that α X( ) and σ X( ), the drift and the diffusion coefficients are Lipschitz continuous. 
The solution X

t
 to the Langevin SDE is an Ito diffusion process and is Markov. Such 

an SDE is associated with the backward and forward Kolmogorov operators, 
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respectively denoted by L
t
 and L

t
*. L

t
* is known as the adjoint of L

t
 (see Equation 

A4.41, Appendix 4). Both these partial differential operators help in evaluating the 
system statistics and thus in obtaining weak solutions. Specifically, the adjoint L

t
* 

gives the PDE for the (transition) pdf, say, . The PDE is known as the Fokker- 
Planck equation. For the Langevin SDE (4.103), the Fokker- Planck equation is 
given by:

  (4.104)

The arguments x and x
0
 in lower case is according to the convention generally followed in 

the definition of a pdf. The PDE (4.104) provides a means of obtaining the stationary or 

invariant pdf. That is, with  as t →∞, one gets the stationary 

pdf denoted by, say,  as the solution of the PDE:

  (4.105)

with the boundary conditions:

  
(4.106)

Note that Ito diffusion processes described by the SDEs (as the one in Equation 
4.103) may indeed converge to stationary pdfs. See Exercise 4.15 (in Exercises of 
Chapter 4) for an illustration on this aspect. We refer to Spencer and Bergmann 
(1993), Risken (1996) and von Wagner and Wedig (2000) for details on efficient 
methods to solve the ODE (4.105) pdf . In the present context, we observe that 

for the case of additive noise with σ ∈, the ODE (4.105) is satisfied if:

  (4.107)

This observation shows that for the stationary pdf  to match with the given target 

pdf, one can construct the Langevin SDE (4.103) with appropriate drift and diffusion 
coefficients. For instance, if σ = 2 , the SDE is:

   (4.108)

Thus, in sampling problems, the overdamped Langevin SDE (4.108) is solved to 
obtain samples of  that converges to the specified target pdf. An illustrative 

example of a sampling problem to draw samples of  is given in Appendix 4 

(item A.4). Suppose that the SDE is solved by the Euler- Maruyama (EM) method 
(item A4.3of Appendix 4) using a (uniform) time step ∆t  and initial condition X

0
. 

X t( ) evolves according to a discrete EM sequence given by:

   (4.109)
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The last equation throws light on the analogy between a sampling technique and opti-
mization method. That is, if we have f x( ), a convex function having a continuous 
gradient, then with , the last equation corresponds to a line search 

in an optimization algorithm in a classical sense (akin to the algorithms discussed in 
Chapters 2 and 3). One significant difference is the presence of the extra noise term 
involving Brownian motion rendering the search intrinsically stochastic. This term 
facilitates exploration in the design space, thus avoiding a solution trapped near a 
local minimum. Hence, an analogous discrete approximation corresponding to an 
optimization problem is:

 X X f X t B
k k k t+ = −∇ ( )∆ + ∆

1
2  (4.110)

The algorithm pertaining to the last equation is referred to as the unadjusted Langevin 
algorithm (ULA) or Langevin Monte Carlo algorithm, where a Metropolis test 
(Appendix 3) may also be included at each iteration to accept or reject an update. With 
this modification, the method is known as Metropolis Adjusted Langevin Algorithm 
(MALA) (Welling and Teh 2011, Dubey et al. 2016). One may indeed consider it as 
the classical MALA. As with most stochastic algorithms based on heuristics like gen-
etic algorithms (Section 3.4, Chapter 3), we start with a population of N

p
> 1 particles 

or initial conditions. As the numerically integrated solution for a specific initial con-
dition evolves according to Equation (4.110), one obtains a Markov chain. For large 
t, the transition pdf exhibits convergence to the stationary pdf e f X− ( ) and the first- 

order moment or ensemble sample mean m
N

X
X

p k

N

k

p

=
=
∑1

1

 approaches the optimum     

x* . Thus, MALA in general is a class of MCMC methods in which the Markov Chain 
evolves as per the overdamped Langevin dynamics. The MALA, using the Langevin 
dynamics, proposes new moves, which are then accepted or rejected following the 
MH scheme. Since the Langevin dynamics involves gradient information of the target 
distribution, the method is more likely to move towards regions of high probability 
which is a major advantage over the use of largely arbitrary proposal distributions. 
This specific feature forms the basis for many of the applications of MCMC methods 
including optimization.

Both ULA and MALA show exponential convergence as studied in Roberts and 
Tweedie (1996a, 1996b). Readers are also referred to Hwang (1980), Gelfand and 
Mitter (1991) and Zhang et al. (2017) for more information on the convergence 
aspects. The convergence guarantee is with respect to the relative entropy or the KL 
divergence (Cheng and Bartlett 2018 and Vempala and Wibisono 2019). In the con-
text of sampling, KL divergence is a measure of the ‘distance’ between the transition 
pdf corresponding to X evolving according to Equation (4.109) and the target pdf.

4.6  GEOMETRIC METHOD OF OPTIMIZATION BY     
RIEMANNIAN LANGEVIN DYNAMICS

Having identified that Equation (4.110) is a makeover of the familiar gradient descent 
step of classical optimization of an objective function f x( ), it is tempting to construct 
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a Riemannian version of gradient search (as in the geometric SDM), by just modi-
fying the drift term in the discrete map (4.110) as:

 X X f X t B
k k k t+ = − ( )∆ + ∆

1
2grad  (4.111)

grad f(x) is the Riemannian gradient given in Equation (4.78) and defined on a tangent 
space T M

X
. However, note that the Brownian motion B

t
 in the last equation is not appro-

priately restricted to be on M and hence the update X
k+1

 will also not remain on M. 
However, as a fix to this dilemma, the update at each iteration may be transferred to the 
manifold surface by exponential mapping as the solution evolves. In this way, Equation 
(4.111) may perhaps be considered to represent a Riemannian version of MALA (call 
it RMALA); see Li and Erdogdu (2020) who have used such a scheme for non- convex 
optimization as well as sampling. But the dilemma of inconsistency will still persist as 
X X

k k+ −
1

 is generally not a vector on T M
X

. Indeed, as we shall show in the next chapter, 
both the drift and diffusion terms in the last SDE need a relook if a Riemannian update is 
sought. In any case, in the following example, we use RMALA (as it appears in Equation 
4.111) to arrive at an optimal solution to the Ackley function, a benchmark function 
for optimization problems (Tang et al. 2009). Despite the theoretical inconsistency of 
RMALA, these results would serve to highlight the contrast in accuracy vis- à- vis more 
appropriate schemes to be considered in Chapter 5.

Example 4.9. The Ackley function is given by:

 f a b
n

X
n

cX a
i

n

i
i

n

i
X( ) = − −









 − ( )





+ +
= =
∑ ∑exp exp cos ex

1 1

1

2

1

pp 1( ) (4.112)

n is the dimension of the design variable X  and a b c, , .∈

Solution. The n- dimensional surface corresponding to f nX( ) →:  acts as the 
manifold M embedded in n+1. The expression for gradf X( ) is given in Appendix 4 
(item A4.5) along with the Riemannian metric and Christoffel symbols. The metric is 
chosen to be similar to the one computed in Examples 4.5 and 4.6. The solution X

k+1
 

in Equation (4.111) may be considered as an evolution over pseudo- time equivalent to 
a sequence of iterative steps. With a view to improving the exploration of the search 
space, we have adopted an annealing type approach (see Simulated Annealing (SA) 
method –  Section 3.4.2, Chapter 3). To this end, an annealing type coefficient β ∈ 
is introduced in the update strategy. The idea is to provide larger diffusion intensity 
to the update term in the initial stages of evolution and reduce it as the candidates 

approach the global optimum. The annealing- type coefficient β  (with 1
β  interpreted 

as the annealing temperature in SA) here appears as a scalar factor multiplying the 
update term so that the update equation becomes:
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FIGURE 4.24a–b Optimization by RMALA of two- dimensional Ackley function: (a) 
evolution of the solution X t

1 ( ) (dark line) and X t
2 ( ) (dash- dot line) and (b) evolution of the 

objective function versus iterations, ∆ =t 0 001. , N
p
=10. Optimization by RMALA of two- 

dimensional Ackley function: (c) evolution of the solution X t
1 ( ) (dark line) and X t

2 ( )(dash- dot 
line) and (d) evolution of the objective function versus iterations, ∆ =t 0 01. , N

p
=10. Optimization 

by RMALA of two- dimensional Ackley function: (e) evolution of the solution X t
1 ( ) (dark line) 

and X t
2 ( )(dash- dot line) and (f) evolution of the objective function versus iterations, ∆ =t 0 1. ,     

N
p
=10.
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FIGURE 4.24c–d (Continued)
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FIGURE 4.24e–f (Continued)
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 X X X B
k k k t

f t+ = − ( )( )∆ + ∆
1

2β βgrad  (4.113)

Note that introduction of β  in the noise term is consistent with the requirement in 
Equation (4.107). Similar to the control parameter ‘time’ in SA, β  is reduced as the 
solution progresses.

Result by RMALA for the two- dimensional (n = 2) Ackley function is shown 
in Figures 4.24a– b. A time step of ∆ =t 0 01.  is used in solving Equation (4.113). 
N

p
= 10 is selected for the number of particles or the initial candidates. As the 

solution evolves, Metropolis test is performed at each iteration to accept or 
reject X

k+1
. The acceptable candidate solution corresponding to the minimum 

function value is stored at each time step. At the kth step, if the update X
k+1

 is 
found successful after the MH acceptance test, it is transferred to the manifold. 
Exponential mapping (Section 4.2.7) is utilized for the purpose. The parameter 
β  is initially chosen as 500 and reduced with time as β β

k k
k+ =

1
0 01exp( . ) until β  

becomes less than 0.5. Figures 4.24a– f show results by RMALA with different 
time steps, going as high as a ∆ =t 0 1. . While convergence is visibly poor for large 
∆t, all trials interestingly pass the Metropolis step.

Result by classical MALA is also obtained for the test function. The update is 
governed by the following equation:

 X X
X

x
B

X

k k t

df

d
t

k

+ = −
( )

∆ + ∆
1

2β β  (4.114)

where df

d

( )X

x
 is the Euclidean first- order derivative. Parameters N

p
 and β  

are kept  the same as in the geometric case. No convergence is observed for large 

∆ =t 0 1. . Convergence is found to be inconsistent for ∆ =t 0 01. . The inconsistency is 
in the form of few successful runs out of repeated trials. Run with ∆ =t 0 001.  is fully 
consistent (all trials pass the Metropolis step) and is shown in Figure 4.25.

■

CONCLUDING REMARKS

As a prelude to our exposition of geometric methods of optimization, we have given 
a gentle introduction to the theory of manifolds which forms the basis for these 
methods. While there exist numerous texts/ monographs on the theory of manifolds, 
we have made the presentation limited to its application to optimization. Though the 
presentation is far from comprehensive, we have attempted to present the essential 
details in a style accessible to readers with an elementary knowledge in linear algebra 
and differential calculus.
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Manifolds serve to generalize the notion of curves and surfaces in higher dimensions 
and are characterized by a locally Euclidean property. One needs differential geom-
etry to capture the intrinsic structural properties of a manifold. Starting with the fun-
damental definition of a differentiable (smooth) manifold, we have presented the 
concept of a metric followed by the definitions of a few basic features: tangent space, 
tangent bundle and vector fields. The tangent space is the set of all tangent vectors at 
a point on the manifold M and is Euclidean. The tangent space is thus a vector space 

and the local coordinates xi define a basis 
∂
∂xi

.

A manifold endowed with a metric –  the invariant first quadratic form –  is a 
basic construct in the description of a Riemannian manifold. For smooth real- 
valued functions on a Riemannian manifold, one can define the classical differen-
tial operators –  the gradient and Hessian which are indeed useful in extending the 
classical methods of optimization to Riemannian versions (geometric methods). The 
extension in fact requires the additional notions of geodesics, connection, exponen-
tial mapping, and parallel transport on manifolds. These are described along with a 
few illustrative examples on optimization. The procedural steps are similar to clas-
sical methods except that at each iteration we move along the gradient on the tan-
gent space at the current point and transfer the update to the manifold –  possibly 
via the exponential map or a retraction- based approximation. In this context, the 
notion of ‘connection’ is significant. It helps us to define directional derivatives of 
vector fields –  called the covariant derivatives –  along curves and connects the tan-
gent spaces at different locations of a manifold. The importance of the concept is 
more manifest when one implements conjugate gradient or quasi- Newton methods on 
manifolds where an update at the kth iteration needs gradients belonging to different 
tangent spaces T M

xk−1
 and T M

xk
.

Following the importance of optimization strategies in statistical estimation 
problems (Section 3.2.2, Chapter 3), we have described how one may pose it as an 
optimization problem in a Riemannian setting. Here, we identify the manifold M as 
the statistical model comprising of the pdfs parameterized by the unknown variables 
in the given distribution. It is a Riemannian manifold with a metric given by the KL 
divergence which is shown to be equivalent to the FIM –  the inner product on the 
manifold.

Highlighting the analogy between statistical sampling and optimization strat-
egies, we describe an elegant geometric optimization scheme based on stochastic 
search using Langevin SDE. To understand the scheme based on the analogy, one 
needs a fair knowledge of SDEs and their solution methods. With a brief background 
provided in Appendix 4 on stochastic processes, associated SDEs and their numerical 
solution procedures, we have made use of the Langevin- based algorithm for function 
optimization problems. In a manifold setting, it amounts to solving the Langevin SDE 
on the tangent space at x

k
 to get an update using the Riemannian gradient and trans-

ferring the update to the manifold surface through exponential mapping.
We carry forward to the next chapter our discussion on geometric optimization 

schemes based on Langevin dynamics and focus on their possible improvements. 
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FIGURE 4.25 Optimization by classical MALA of two- dimensional Ackley function:      
(a) evolution of the solution X t

1 ( )(dark line) and X t
2 ( )(dash- dot line) and (b) evolution of     

the objective function versus iterations, ∆ =t 0 001. , N
p
=10.
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The improvement is in terms of stochastic development of an SDE on a manifold and 
tracing the evolution of design variables via the solution of the developed SDE. By 
this, we not only avoid the conceptual pitfalls of not working with the correct vectors 
on T M

x
, but also avoid the computationally expensive step of exponential mapping at 

each iteration during the optimization process. An understanding of these improved 
schemes needs some appreciation of stochastic development on a manifold and, in 
particular, analysis of Brownian motion on a manifold.

EXERCISES

1. Show that the Riemannian metric g is invariant under coordinate trans-
formation. [Hint: consider two parametrizations u u1 2,( )  and ξ ξ1 2,( )  
with respective first quadratic forms du dui

ij
jg  and d di

ij
jξ ξg . Show 

that g du du d di
ij

j i
ij

j= =g gξ ξ .]
2. Consider the two- dimensional space describing a cylinder of radius r by a 

coordinate chart. Find the metric g and the Christoffel symbols associated 
with the cylinder. The local coordinates are x1 =θ  and x z2 =  and the surface 
coordinates of the cylinder are denoted by the transformation:

 x r x r y r x r z x z= = = = = =cos cos , cos sin .1 1 2θ θ and  

3. Consider a manifold M with boundary ∂M . Show that the divergence operator 
satisfies the following product rule for a smooth function f C M :∈ ( )∞

 div div grad ,fX f X f X( ) = +  (E4.1)

and deduce the following ‘integration by parts’ formula:

 
M M M

f X dV f X dV f X N dV∫ ∫ ∫==− + ( )
∂

grad div, ,   (E4.2)

where X is a vector field, N  the outward unit normal to ∂M . dV  and dV  are 
respectively the volume elements on M and of the induced metric on ∂M . See 
Lee (1997) for details on the divergence operator.

4. Consider a unit sphere S2 with a curve γ t( ) being a circle at fixed latitude φ 
(see Figure 4.10). Find the total length of the curve. [Hint: use Equation (4.23) 
along with g du dui

ij
j= g  in terms of the local coordinates.]

5. Find the surface area of the unit sphere S2 in Exercise 4 above.

6. Consider two differentiable vector fields X X
x

i
i

=
∂
∂

 and Y Y
x

j
j

=
∂
∂

 on M. 

Show that the torsion τ X Y X Y
x

i j
ji
k

ij
k

k
,( ) = −( ) ∂

∂
Γ Γ  and hence note that the 

connection is symmetric if and only if Γ Γ
ji
k

ij
k= .

7. Prove that curvature on Riemannian manifold with Levi- Civita connection ∇ is:
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 R X Y Z Z Z
X Y Y X

,( ) = ∇ ∇ −∇ ∇  (E4.3)

where X
xi

=
∂
∂

 and Y
x j

=
∂
∂

 are the local coordinate vector fields.

8. Refer to Equation (4.66) for the Riemannian curvature R and prove the 
following identities:

R X fY Z fR X Y Z, ,( ) = ( ) and

 R fX Y Z fR X Y Z, ,( ) = ( )  (E4.4)

9. If X X
x

i
i

=
∂
∂

, Y Y
x

j
j

=
∂
∂

 and Z Z
x

k
k

=
∂
∂

, show that:

 
R X Y Z R Z X Y R Y Z X Y Z

X
, , , ,( ) + ( ) + ( ) = ∇ ( )( )τ

                                     + ∇ ( )( ) + ∇ ( )( )Y Z
Z X X Yτ τ. ,

 

 + [ ]( ) + [ ]( ) + [ ]( )τ τ τX Y Z Y Z X Z X Y, , , , , ,  (E4.5)

10. Solve the statistical estimation problem (Section 4.4) for a Gaussian pdf by 
RMALA. The unknown parameters are the mean and standard deviation 
denoted respectively by ∝ and σ . Assume availability of sufficient number (N )     
of observations. The Gaussian pdf is:

    (E4.6)

11. Consider estimation of parameter σ  of a Rayleigh pdf  . See 

Example 4.8 on MLE by the geometric method. Assume availability of (N ) 
observations of the random variable X. Take the true parameter σ = 2.

12. Solve by RMALA (geometric version of MALA) for optimum of the two- 

dimensional Rosenbrock function f x x x x( ) = −( ) + −( )100 1
2 1

2
2

1

2
 (also see 

Examples 4.6 and 4.7).

NOTATIONS

 collection of charts on a manifold

B B
t

t≡ ( ) Brownian motion (noise)

d x y,( ) distance metric

d
k
 direction vector
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D f
v ( ) directional derivative of a smooth function f

 P x Q x( ) ( )( )||  KL divergence between two probability measures P x( )
 and Q x( )
e ii , , ,= …1 2  coordinate bases for T M

p
*

E i
i
, , ,..= 1 2  coordinate bases for T M

p

 pdf of the observed data (Section 4.4)

 transition pdf (Equation 4.104)
 target pdf (stationary pdf of Langevin equation)

F x y,( ) an injective scalar function

F x y,( ) an injective vector function


Z

z;θ( ) probability distribution (CDF) of the observed data 
(Section 4.4)

g Riemannian metric
g symmetric matrix associated with g

g T M T M
p p p

: × →   symmetric bilinear map (inner product)
grad Riemannian gradient
  a differentiable map

Hessf x( ) Riemannian Hessian of f x( ) at x on a manifold

I arc length of the curve over the interval a b,[ ] 
(Equation 4.23)

I
n

θ( )  Fisher information matrix (FIM)
J Jacobian matrix

l θ; z( )  log- likelihood function (Section 4.4)

L θ; z( )  likelihood function (Section 4.4)

N
p
 number of particles or the initial candidates

R .,.( ) a differential operator associated with the
 Riemannian curvature (Equation 4.66)
S a (curved) surface
S2 two- dimensional sphere manifold

TM tangent bundle on a manifold –  the set T M p M
p

| ∈{ }
T M

p ( ) tangent space at the point p on the manifold M

T
p

n( ) tangent space at the point p in n

T M
p
*  cotangent space on the manifold M

Γ
ij
k  Christoffel symbols (Equation 4.39)

U an open neighbourhood on a manifold

v vector in T M
p ( )

v t( ) velocity of a particle (Equation 4.2)
V vector space in a Euclidean space
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w T M
p

∈ *  covector

w t( ) randomly fluctuating force –  white noise (Equation 4.3)

x t x t x t
n1 2( ) ( ) … ( ){ }, , ,  coordinate functions at any point on a curve γ t( )

X p T M
p( )∈  tangent vector on a manifold M

X X
t

t≡ ( ) a stochastic process
z observation data (Section 4.4)
Z vector of random variables (Section 4.4)
± parameter in the generalized exponential pdf
 (Equation 4.98)

α X( ) drift term in the SDE (4.103)
β  annealing- type coefficient

β
k
 parameter in CG method (Equation 4.85)

∆t  time step
∇ linear connection on M

∇ ( )f x  gradient of the function f x( )
∇f

p
 gradient of the function f  at p on a manifold

ϕ  a bijective map between a manifold and a     
Euclidean space

Ψ a bijective map like ϕ
φ polar angle (Figure 4.10)
θ  azimuth angle (Figure 4.10)

θ = …( )θ θ1 2, ,  parameter set in the pdf  
λ  parameter in the generalized exponential pdf 

(Equation 4.98)

σ X( ) diffusion term in the SDE (4.103)

γ t( ) a smooth curve on a manifold

χ : C n∞ ( ) →   linear map satisfying the product rule (the Lebnitz 
property)

Exp v
p ( ) exponential map

Exp q
p
− ( )1  logarithmic map

X Y,[ ] Lie bracket (Equation 4.56)
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5 Stochastic Analysis on a   
Manifold and More 
on Geometric Methods

5.1  INTRODUCTION

While discussing the geometric methods based on Langevin dynamics in the last 
chapter, a mention has been made about a possible improvement in the optimization 
schemes by developing the governing dynamics (e.g. in the form of an SDE) on the 
manifold. With this in view, we continue in this chapter to provide a geometrically 
consistent strategy to stochastically develop the Langevin SDE on the Riemannian 
manifold with a suitably constructed metric and the associated connection. We make 
use of concepts from differential geometry (Hsu 2002) and stochastic calculus on 
manifolds to geometrically adapt an SDE. This is usually known as stochastic devel-
opment on manifolds and described in Section 5.2. We apply this specifically to the 
Langevin diffusion equation to obtain a Geometrically Adapted Langevin Algorithm 
(GALA being the acronym) which in turn is used as a tool for optimization. Solution 
by GALA for some test objective functions is given in Section 5.3 of this chapter. 
In this context, an intuitive understanding of the concept of stochastic develop-
ment is possible if we think of the following exercise (Manton 2013) performed on 
a sphere S x y z x y z2 3 2 2 2 1: , , | .( ) ∈ + + ={ }  For instance, let us consider a simple 
two-dimensional SDE:

 d t dB t dB t
T

X ( ) = ( ) ( )( )1 2
,   (5.1)

The SDE corresponds to simultaneous evolutions of two statistically independent 
Brownian motions B t i

i ( ) =, ,1 2. Solving the SDE numerically by the EM method 
over an interval (0– 0.5 s) and with a step size ∆ =t 0.01 s and plotting the two 
Brownian motions as a 2-D graph, we have Figure 5.1a. Now, the stochastic devel-
opment of the SDE on S2  may be construed as rolling the sphere (without slipping) 
along the 2-D graph and to get the path traced on the sphere. That is, with the north 
pole on the sphere kept at the initial point 0 0,( )T

 in the 2-D graph, the sphere is rolled 
along the first line segment till its end point. Assume that the path is imprinted on the 
sphere as it rolls. Without lifting the sphere, let the process be repeated for each line 
segment to get a path fully traced. The path so obtained on S2  may be considered as 
a solution to the stochastically developed SDE on the manifold. Here, to mathemat-
ically encode this exercise, we generate a geodesic path on S2  corresponding to the 
kth  line segment of the 2-D graph with a scaled velocity equal to X X

k k+ −
1

 where 

X X
k k

t: = ( ). In other words, geodesic path over an interval ∆t  corresponding to a 
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FIGURE 5.1 An exercise to simulate stochastic development on a manifold (here the sphere 
S2 : (a) a trajectory of two-dimensional Brownian motion obtained numerically by solving the 
SDE (5.1) over the interval (0 –  0.5 s) with ∆ =t 0 01.  (starting at point 0 0,( )T

 and ending at 
point −( )0 89 0 2426. , .

T
 (marked by black squares in the figure); (b) simulated solution on a 

sphere S2  starting from the north pole (0, 0, 1) and ending at point (– 0.8901, 0.2526, 0.3794)T –     
(here indirectly obtained by solving the geodesic Equation 4.38).
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line segment is obtained by solving Equation (4.38) (Chapter 4). The path so obtained 
on the manifold is shown in Figure 5.1b.

We will further discuss the concept of stochastic development in Section 5.2. This 
is followed in Section 5.3 by an application of this concept (as embedded in GALA) 
to optimization problems which is the primary objective in this chapter. We expect 
relatively fast and efficient results by GALA, specifically in solving large dimen-
sional optimization problems compared to RMALA, a Riemannian version of MALA 
presented in Chapter 4 (Section 4.6).

Another significant application of GALA to MCMC simulation problems with 
emphasis on parameter estimation of probability distribution models is presented in 
Section 5.4. Readers may recall that statistical estimation is essentially an optimization 
problem (as illustrated in Chapters 3 and 4). The geometric SDM discussed in Chapter 4 
and applied to the parameter estimation problem is similar to RMALA save for the absence 

of the noise term. Notice that the Riemannian gradient grad l
k

θ ; Z( )( )  in Equation (4.99) 
of the log-likelihood function is the drift coefficient in the Langevin SDE (4.103). The 
parameter estimation  example 4.8 is reconsidered in Section 5.4 for obtaining the result 
by GALA. In addition, application to a large dimensional problem is also presented to 
showcase its relative performance of GALA over RMALA. For notational simplicity, we 
do not indicate vectors and tensors by boldfaced symbols in this chapter. In addition, the 
reader will note that the coordinate components, say of a point x on an m-dimensional 
manifold M, are now denoted using superscripts, i.e. x = (x1, x2, …, xm).

5.2  STOCHASTIC DEVELOPMENT ON A MANIFOLD

While presenting the geometric methods of optimization in Chapter 4, we assumed that 
Riemannian manifold was embedded within a higher dimensional Euclidean space, 
which is ensured by Whitney’s embedding theorem (Cohen 1985). Characterizing the 
embedding space in general is however no trivial task. Instead, by exploiting the prin-
ciple of stochastic development (Hsu 2002), we may exploit a fully intrinsic descrip-
tion of a Riemannian manifold, thus bypassing the problematic issue of embedding 
within an ambient Euclidean space. Also, in optimization problems, it facilitates a 
solution for an optimum on the manifold without the computationally intensive step 
of exponential mapping (step 4 of Table 4.1, Chapter 4).

As a precursor to the concept of stochastic development, we wish to make a brief 
mention of the Laplace-Beltrami (LB) operator (Hsu 2002) which is an analogue of 
the familiar Laplacian operator ∆

E
 in n. The LB operator is a fundamental geo-

metric object to a manifold in that it exhibits many desirable characteristics. It is a 
linear self-adjoint elliptic operator whose eigenfunctions may be used as a natural 
basis for square integrable functions on a manifold similar to the Fourier represen-
tation of periodic functions. It is extensively used for various tasks: surface recon-
struction, shape representation and interpolation, mesh processing including spectral 
analysis on discrete surfaces (Rustamov 2007, Liu et al. 2008, Belkin and Niyogi 
2001, Levy and Zhang 2010).

The Laplacian operator ∆
E

 is given by divergence of the gradient vector field   

∇ f of some function f C n: 2 ( ) . Thus, with Einstein summation convention 
implied, one has:
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 ∆ = ∇( ) =
∂

∂ ∂E i i
f f

f

x x
div

2

 (5.2)

As is evident, this is equivalent to the trace of the Hessian, i.e.:

 ∆ =
∂

∂ ∂






= …
E i j

f

x x
i j ntrace

2

1 2, , , ,  (5.3)

Recall that the infinitesimal generator* L
t
 of Brownian motion is 

1

2

2∂
∂ ∂

f

x xi i
 (Roy and 

Rao 2017). Hence, one may relate the Laplacian to the infinitesimal generator of the 

Euclidean Brownian motion as L
t

E=
∆
2

. An obvious extension is the relation that 

LB operator has with a Brownian motion on a manifold which provides a pointer 
towards the associated SDE on a manifold. Given a Riemannian manifold M g,( ) , 
the LB operator ∆ ( ) → ( )∞ ∞

M
C M C M:  is a divergence operator analogous to ∆

E
 

and is related to covariant derivatives on the manifold. Thus, for C∞  real valued 
functions f:

 ∆ = ( )M M
f fdiv grad  (5.4)

grad f  is a vector field on M  given by Equation (4.78) with f C M∈ ( )∞ . Having 
defined in Equation (4.48) the covariant derivative in terms of local coordinates and 

with E
x

i
i i

=
∂

∂
=, , ,..1 2  being the orthonormal bases for T M

p
, the divergence of a 

vector field X X E T Mi
i p

= ∈ ( )  at a point p M∈  is given by:

 div
M E

i
i i

i i
ik
kX X E E X X

i
( ) = ∇ ( ) = +( )Γ  (5.5)

* infinitesimal generator
The backward Kolmogorov operator L

t
 in Equation (A4.41) of Appendix 4 is also known as infini-

tesimal generator which is rewritten hereunder:

 L a t
x

t t
xt

i

m

i t
i i j

m

l

n

il t jl t
i

= ( ) ∂
∂

+ ( ) ( ) ∂
∂= = =

∑ ∑∑
1 1 1

21
2

, , ,
,

X X Xσ σ
∂∂x

j

 (i)

L
t
 is the generator of the vector diffusion process X

t
 which is the solution to the vector SDE:

 
d t dt t d

t t t t
X a X X B= ( ) + ( ), ,σ  (ii)
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where Einstein summation convention is implied. Note that, in n, the divergence 
∆ =

E i
iE X , the first term on the LHS of the last equation. Now, it follows that the LB 

operator ∆
M

 is:

 ∆ ( ) = ( ) = ( )( ) + ( )M M i

i

ik
k i

f f E f fdiv grad grad grad Γ  (5.6)

Following the formulae for Christoffel symbols, Γ
ik
k  can be expressed as:

 Γ
ik
k

k kx
E=

∂( )
∂

= ( )( )log
log

g
g  (5.7)

With grad f E f
i ij

j( ) = g , Equation (5.6) becomes (Urakawa 1993, Hsu 2002):

 ∆
M i

ij
j k

ij
j

f E E f E E f( ) = ( ) + ( )( )g g glog  

 = ( )1

g
g gE E f

i
ij

j
 

 =
∂

∂ ∂
−

∂
∂







gij
i j ij

k
k

f

x x

f

x

2

Γ  (5.8)

Now, taking cue from the relationship L f
t M

= ∆ ( ) /2  between the operator and 
the infinitesimal generator, one may show that the Brownian process evolving on a 
Riemannian manifold is the solution to the SDE:

 dX dt dB k n
t
k ij

ij
k kj

t
jˆ , , , ,= − + = …

1

2
1 2g gΓ    (5.9)

Solution of the SDE (5.9) evolves locally on the manifold M g,( ). For instance, 
using the metric corresponding to a unit sphere S2, an approximate solution may 
be obtained numerically by the EM method with n = 2.  Two such sample trajec-
tories  X̂

t
1  and X̂

t
2  are shown in Figure 5.2. These two paths fairly match with the two 

simulated Brownian motions realized in the earlier exercise (see Figure 5.1) where 
the solution is obtained by solving SDE (5.1) and using exponential mapping at the 
end of each time step. The two solutions are superimposed over each other in Figure 
(5.2b). Thus, Equation (5.9) is the stochastically developed SDE corresponding to the 
SDE (5.1) when it is generalized from 2  to n. The developed SDE is characterized 
by the presence of a non-zero drift term compared to its Euclidean counterpart, the 
SDE (5.1).
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FIGURE 5.2 Sample solution by EM method of the stochastically developed SDE (5.9) with 
n = 2,  while using the metric corresponding to a unit sphere manifold S2 : (a) a 2-D plot of the 
solution X̂

t
1  and X̂

t
2  over the interval (0– 0.5 s) with ∆ =t 0 01.  and (b) the solution path on the 

sphere S2  (shown in light squares); also see the solution (in dark squares) obtained from SDE 
(5.1) and transferred to the sphere manifold S2  by using exponential mapping at each time.
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5.2.1  a General framework for stochastic deVelopment   
on a manifold

We describe in this section an approach for stochastic development on a manifold by 
which it is possible to directly develop flows of stochastic dynamical systems posed 
as Ito SDEs via a suitably constructed metric (Hsu 2002, Sommer and Svane 2017, 
Khnel 2018, Mamajiwala and Roy 2022). Closely following Hsu (2002), we combine 
the basics of stochastic calculus with differential geometry to intrinsically recast an 
SDE, originally posed in a d -dimensional Euclidean space d, on a Riemannian 
manifold M  of the same dimension. The intrinsic nature of this approach implies that 
we do not need to embed M  in a higher dimensional Euclidean space.

To this end, the canonical d -dimensional Euclidean basis† is related to a basis   
of the tangent plane T M

x
 at the point x M∈  with an additional construct of a   

d d+ 2 -dimensional manifold, called the frame bundle and denoted by FM.
While the d -dimensional component of FM  is the base manifold M  itself, 

the remaining d2 -dimensional part corresponds to linear transformations applied 
to vectors on T M

x
. However, since the orthogonality of vectors is preserved for a 

Riemannian manifold, it would simplify matters to start with a set of orthonormal 
basis vectors and restrict attention to only orthogonal linear transformations of these 
basis vectors. In such a case, the dimension of FM  is just d d d+ = 2 . Here, we may 
understand a frame bundle FM  (Figure 5.3) as a space of pairs x u,( )  with x M∈  
and an isomorphism u T Md

x
: → ( )  defining a transformation of bases on the two 

tangent spaces. If one has e e e
d1 2

, , ,…  as the canonical basis vectors of d, a basis 

frame on T M
x ( )  is given by u e

i( )  or denoted simply by ue i d
i
, , , ,= …1 2 .

Denoting by FM
x
 the set of all basis vectors in T M

x ( ), the elements of FM
x
 

may, in general, be acted upon by GL d; ,( )  the general linear group.‡ However, 
as already noted, we have presently restricted this action only to the special orthog-
onal group SO d;( ). This means that any orthogonal linear transformation of FM

x
 

is also a valid frame at x. FM
x
 is also called a fibre at x  and the frame bundle 

may be thought of as the union of sets of fibres at different points on the mani-
fold, i.e. FM FM

x M x
.= ∈

Roughly speaking, a fibre FM
x
 at a point x  on M  is defined as the space of frames  

attached to that point. A schematic visual representation of the frame bundle is shown  

† canonical basis
A canonical basis is the natural basis of a coordinate space such as n. In the n-dimensional Euclidean 
space, the standard basis consists of n distinct vectors forming the canonical basis and the vectors are 

e j n
j
:1 ≤ ≤{ }  where

 
e

j
 denotes the vector with unity in the jth  coordinate and zeros elsewhere.

‡ general linear group
The group of linear isomorphisms of n  to n , denoted by GL (n, ℝ) is called the general linear   
group and is represented by n × n matrices of real elements. This is an open subset of n2, and so a 
manifold of dimension n2.
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in Figure 5.3 for n = 2. We may now define a surjective or onto map π: FM M→   
such that π x u x,( ) = . Since FM  itself is a (differentiable) manifold, the projection  
map π is also smooth.

By this additional construct of the frame bundle, we find that a frame at a point   
 x M∈  provides us with a linear isomorphism between the Euclidean space d  where 
the solution of a standard SDE evolves and the d -dimensional tangent plane T M

x ( )  
to M  on which the solution needs to be projected. It is through the frame bundle 
that we can track these paths on M  once we know how it evolves in d. Following   

this objective, we proceed to consider the tangent space T FM
y ( )  at y FM∈  with    

y = (x, u) and understand how the space may be decomposed into vertical and hori-

zontal subspaces, respectively denoted by V FM
y

 and H FM
y

.

T FM
y ( )  is presently a vector space of dimension d d+ . We refer to a tangent 

vector Y T FM
y

∈ ( )  as vertical if Y  is tangent to the frame FM
y xπ = . These vertical 

tangent vectors form a subspace V F M
y ( )  of T FM

y ( )  and it is of dimension d. 

V F M
y ( )  signifies the changes in the basis at the base point x y= π  on M .

FIGURE 5.3 Frame bundle FM  as the union of frames FM
x
; each frame FM

x
 is the set of 

all basis vectors of T M x M
x

, ∈ ; the illustration is for the two-dimensional case.
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To define the horizontal subspace H FM
y

, we consider a curve γ
t
 in FM  which 

is basically a smoothly varying field of frames at points on the projected curve 

ψ πγ
t t

=  on M. A tangent vector Y T FM
y

∈ ( )  is horizontal if it is tangential to   

a horizontal curve from y. A curve γ
t
 in FM  starting from y  is horizontal if, for 

each basis e e e e
d

d= …{ } ∈
1 2
, , ,  , the vector fields γ

t i
e i d( ){ } = …, , , ,1 2  in M  are 

parallel along ψ
t
 for each i.

With M  equipped with a Riemannian connection ∇, we recall here (Section 4.2.6, 

Chapter 4) that a vector field V  along the curve ψ
t
 on M  is called parallel along 

ψ
t
 if ∇ =

ψV 0  for all t. That is, the vector V
tψ  at the point ψ

t
 on M  is the par-

allel transport of the vector Vψ0
 at ψ

0
. H FM

y
 is the space of such horizontal vectors 

Y T FM
y

∈  lifted to the frame bundle. Thus, we have the direct-sum decomposition:

 T FM V FM H FM
y y y

= ⊕  (5.10)

Note that the projection π : FM M→  induces an isomorphism π π*
: H FM T M

y x y
→ =  

which defines a push-forward operation from H FM
y

 to T M
x

. See Section 4.2.1, 

Chapter 4, for a definition of push forward operation of tangent vectors from one 

manifold to another. Specifically, consider any vector X T M
x

∈ . The horizontal lift 

of X  is then a unique horizontal vector X H FM
y

* ∈  such that its projection returns 

the original vector itself, i.e. π
*

*X X= . Given the unit (orthonormal) coordinate 

basis vectors e e e e
d

= …( )1 2
, , ,  in 

d
, the vector field H

e
 on FM  at y FM∈  defined by 

H y ye
e ( ) = ( )*  gives the horizontal field on FM. Note that H y

e ( )  is the horizontal lift 

of ye  to y . H H i d
i ei
: = = …; , , ,1 2 , are the associated horizontal vector fields of the 

frame bundle that span the horizontal subspace H FM
y

 at each y FM∈ . Figure 5.4 

shows a curve γ
t
 on FM  which is the horizontal lift of the curve ψ

t
 on M. The 

curve γ
t
 is horizontal in the sense that the tangent vector γ t t ∀  is horizontal and 

lies in H FM
tψ . As the figure shows, the vector fields π γ

*


t( )  for different t  are 

parallelly transported along ψ
t
 on M  and move from one tangent space to another 

space with ∇ ( )( ) =




ψ π γ
* t

0.
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5.2.1.1  Development on a Manifold of a Curve in d

Keeping in view our requirement of developing on a manifold a known dynamic 

motion in the Euclidean space, we consider a curve χ
t
 in d. Now, referring to the 

definition of γ
t
, we have γ ψ

t t
d− ∈1

   and this helps in having the curve χ
t
 from the 

following equation:

 χ γ ψ
t

t

s s
ds= ∫ −

0

1
  (5.11)

χ
t
 may now be considered as the anti-development of ψ

t
. Note that Equation (5.11) 

leads to the following ODE:

 γ χ ψ
t t t
 =  (5.12)

By the definition of horizontal vector fields, we also have:

 H t
t t t t t

  

χ γ γ χ ψ γ( ) = ( ) = ( ) =
* *

 (5.13a)

FIGURE 5.4 Horizontal lift γ
t
 on FM  of the curve ψ

t
 in M –  a two-dimensional   

case; y
t1 1

= γ , y
t2 2

= γ  and y
t3 3

= γ , H FM i
yi

, , , = 1 2 3  are the spaces of horizontal vectors at 

typical points of the curve γ
t
 on the frame bundle.
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and

 H e H
t t t t t i t

i
i t t

i


  

χ γ γ χ γ χ γ χ( ) = ( ) = ( ) = ( )* *
 (5.13b)

Hence, we have:

  γ γ χ
t i t t

H= ( )  (5.14)

Thus, the anti-development χ
t
 and the horizontal lift γ

t
 of a curve ψ

t
 on M  are 

simply related by an ODE. Here, we realize that if we start with an Euclidean curve 
χ

t
 in d  and a frame γ

0
 at the point x

0
 on M, the unique solution of the above   

ODE gives the horizontal curve γ
t
 in FM.  We refer to this horizontal curve as 

the development of χ
t
 in the frame manifold FM.  Its projection on M  given by 

ψ πγ
t t

=  is the very development what we are interested in, i.e. of transferring the 
curve χ

t
 in d  to M. We notice that solution of Equation (5.14) requires knowledge 

of the operator H
i

.( ). This is addressed in the following.
Suppose that we adopt any local chart x x i di= { } = …, , ,1 2  on a neighbourhood 

U M∈ . By the inverse of the projection map π , this local chart on the base manifold 

M  induces a local chart on Û U= ( )−π 1  in FM.  Thus, letting X
x

i d
i i

=
∂

∂
= …, , , , 1 2  

as the coordinate basis vectors in T M
x

, we have, for a frame q U∈ ˆ , qe Q X
i
j

ji
 =  

for some matrix Q Q SO d
i
j=   ∈ ( ), .  Recall that if we start with an orthonormal 

frame, horizontal parallel transport for a Riemannian manifold must retain the ortho-
normality. Hence, we take Q to be orthonormal. In general, we get x q d d,( ) ∈ +  

as the local chart for Û. Then, the vertical subspace V FM
q

 is spanned by

X
Q

i j d
ij

j
i

=
∂

∂
≤ ≤, ,  1 . Also, the vector fields X X i j d

i ij
, , ,   { } ≤ ≤1  span T FM

q
. 

An expression for the horizontal vector field H
i
 in terms of the local coordinates is 

given [Hsu 2002] as follows:

 H q Q X Q Q x X
i i

j
j i

j
m
l

jl
k

km( ) = − ( )Γ  (5.15)

Instead of the curve χ
t
 being deterministic, suppose that it is a stochastic process 

and specifically it is governed by an SDE in d. One may follow the procedural 
steps similar to those enumerated in the deterministic case above so as to get the 
corresponding stochastically developed SDE on a manifold. This is indeed the basic 
concept of the geometric optimization strategy, i.e. to stochastically develop the 
Langevin SDE (4.103) of d  on a Riemannian manifold of the same dimension and 
to subsequently solve the developed SDE for the optimal solution.
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5.2.2  stochastic deVelopment of an sde on a manifold

The case of a pure Brownian motion, i.e., d dB
t t

χ =  in d  and its development on 
a manifold is detailed in Hsu [2002]. We consider here a diffusion process χ

t
d∈  

governed by a general SDE with a non-zero drift term:

 d dt dB i d j n
t
i i

t j
i

t t
jχ α χ σ χ= ( ) + ( ) = … = …, , , , , , ,1 2 1 2and  (5.16)

Note that, in general, the drift and diffusion terms on the RHS of the SDE may be 
functions of time t also. Development of the SDE (5.16) requires an extension of 
Equation (5.14) to the stochastic case. A familiar route is to write this equation in the 
Stratonovich sense,§ i.e.:

    γ γ οχ γ γ ο χ
t i t t t i t t

H d H d= ( ) ⇒ = ( )  (5.17)

§ Stratonovich sense
An SDE governing a stochastic process X

t
 is usually written in either Stratonovich or Ito sense:

 
dX X dt X dB

t t t t
= ( ) + ( ) ( )α σ  Stratonovich  (i)

 
dX X dt X dB

t t t t
= ( ) + ( ) ( )α σ Ito  (ii)

In the integral form, solutions of SDEs involve integrals of the type 
0

t

s
X dB s∫ ( ) ( )σ . That is:

 
X X ds S X dB

t

t

s

t

s s
= ( ) + ( ) ( ) ( )∫ ∫0 0

α σ Stratonovich  (iii)

 
X X ds I X dB

t

t

s

t

s s
= ( ) + ( ) ( ) ( )∫ ∫0 0

α σ Ito  (iv)

0

t

s s
X dB∫ ( )σ  is known as a stochastic integral wherein both the integrand and the integrator involve a 

stochastic process. (S) and I( )  written before the integral respectively denote the Stratonovich and Ito 
type of stochastic integral. The integral is not the classical one in Stieltjes sense since Brownian motion 
B

t
 is not differentiable and its total variation not finite (see Appendix 4). The integral if approximated 

in the form of a Riemannian sum by the following limiting sequence, takes the form:

 T = ( ) −( )( )→
=

−

+∑lim ) (
N

j

N

t j j
X B t B t∞ σ

0

1

1*  (v)

Here, we use a partition Π
N

 of the interval 0, t[ ]  given by 0
0 1

= < < … < =t t t t
N

 and with 

∆ = −( )≤ ≤ − +N j N j j
t tmax

0 1 1
. In principle, one can create an infinite sequence of such summands 

as in (v) corresponding to a choice of t t t j
j j

* ∈  ∀+,
1

 and thus define an approximation to T  as 

*′ = ( ) −( )+=

−∑T σ X B B
t t tj

N

j j10

1
. Thus, the choice of t*  matters in defining a stochastic integral. 

Specifically, the integral for t t
j

* =  is called the Ito integral [Ito 1951]. If t t t
j j

* = +( )+1
2/  (the 
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mid point in t t
j j
, +

 1
), it leads to another integral representation known as the Stratonovich integral 

[Stratonovich, 1966]. To write the Stratonovich SDE in an equivalent Ito form, we take the stochastic 
integral in the Stratonovich sense and perform the following manipulations.

 S X dB X X dB
t

s s

t

s s s s( ) ( ) = +( )



∫ ∫ +0 0

1

2
σ σ ∆  (vi)

Writing σ σ1

2

1

2
X X X X X

s s s s+ ++( )





= + −( )



∆ ∆s s s

 and approximating it by Taylor expansion up to 

first-order terms in ∆ = −+X X X
s s s∆ s

,  one has:

 S X dB I X dB
d

dx
X dB

t

s s

t

s

t

s s( ) ( ) = ( ) ( ) + ∆∫ ∫ ∫0 0 0

1

2
σ σ σ

s
 (vii)

Substituting the expression on the RHS of (ii) for ∆X
i

 in the last equation, one gets:

 S X dB I X dB
d

dx
X ds X dB d

t

s s

t

s s

t

s s s( ) ( ) = ( ) ( ) + ( ) + ( )( )∫ ∫ ∫0 0 0

1

2
σ σ σ α σ BB

s
 

 = ( ) ( ) + ( )∫ ∫I X dB
d

dx
X ds

t

s s

t

s0 0

1

2
σ σ σ  (viii)

The last result in (viii) is obtained by using the rule that dB ds
s

= 0  and dB dB ds
s s

= .  The equivalent 
Ito SDE is then signified by the presence of an additional drift term as:

 dX X
d

dx
X dt X dB

t t t t t
= ( ) +





+ ( )α σ σ σ1

2
(  (ix)

Note that when σ X
t( ), the diffusion coefficient is not dependent on the system state X

t
, the system   

is referred to as one with an additive noise and when it depends on the state X
t
, the noise is called 

multiplicative. It is obvious that in the former case, one finds no disparity between the two approaches 

(since d

dx

σ = 0  in (ix) above). The equivalent Ito SDE may also be rewritten as:

 dX X dt X dB d X B
t t t t t

= ( ) + ( ) + ( ) α σ σ1

2
,  (x)

.,.[ ]  stands for the quadratic covariation between two stochastic processes (Roy and Rao 2017). By 

Ito’s formula (Appendix 4) applied to the function σ X
t( )  and using the definition of the quadratic 

covariation, one obtains the equivalent form in (x). In the case of Ito integral, the solution X
t
 retains 

the Markovian and martingale properties (van Kampen 1981, Moon and Wettlaufer 2014, Roy and Rao 
2017). This may help in utilizing the available theory of martingales that provides a computational tool 
of considerable benefit; specific applications may be in mathematical finance, stochastic control and 
optimization. But it requires new rules of calculus namely Ito Calculus (Roy and Roy 2017). On the 
other hand, the Stratnovich approach lacks the Markovian property but finds advantage in following the 
same rules of classical calculus. It amounts to interpreting the white noise process as a regular deriva-
tive of Brownian motion, even though an ideal white noise does not exist. The approach is frequently 
used in engineering and physical sciences.
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From Equation (5.15), the horizontal vector field H
i t
 at γ  is locally given by:

 H Q X Q Q X
i t i

j
j i

j
m
l

jl
k

km
γ = − Γ  (5.18)

 H Q X Q Q X
i t i

j
j i

j
m
l

jl
k

km
γ = − Γ  (5.18)

In the Stratonovich sense, Equation (5.17) for γ t x Q t
t
i

j
i( ) = ( ){ },  may be written as:

dx Q t d
t
i

j
i

t
j= ( ) χ

 dQ t Q Q d
j
i

kl
i

j
l

m
k

t
m( ) = −Γ  χ  (5.19a,b)

In the Ito sense, Equation (5.19a) is:

dx Q t d d Q t d
t
i

j
i

t
j

j
i

t
j= ( ) + ( ) ,χ χ1

2
 (here [., .] indicates quadratic covariation)

 = ( ) ( ) + ( ) ( ) + ( ) Q t dt Q t dB d Q t d
j
i j

t j
i

m
j

t t
m

j
i

t
j,α χ σ χ χ1

2
 (5.20)

Here [.,.] indicates quadratic covariation (Roy and Rao 2017) between two stochastic 
processes which is similar to the quadratic variation defined in Appendix 4.

 
dQ t x Q t Q t d

d

j
i

kl
i

t j
l

m
k

t
m

kl

( ) = − ( ) ( ) ( ) +

−

Γ

Γ                

χ 1

2

ii
t j

l
m
k

t
jx Q t Q t( ) ( ) ( ) ,χ

 (5.21a)

Since the expression for Γ
kl
i

t
x( )  is deterministic, the last term on the RHS of the last 

equation vanishes and therefore:

 dQ t x Q t Q t d
j
i

kl
i

t j
l

m
k

t
m( ) = − ( ) ( ) ( )Γ  χ  (5.21b)

Note that the 2nd term on the RHS of Equation (5.20) is the martingale part** dM
t
i:

** martingale part
 The SDE (5.16), if written in the integral form, shows that the second term on the RHS corresponds to 

an Ito integral of the type:

 T
t

t

s s
Y dB= ∫ 0

.  (i)
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 dM Q t dB
t
i

j
i

m
j

t t
m= ( ) ( )σ χ  (5.22)

By letting ϑ σ= Q , we have:

 dM dB
t
i

im t
m= ϑ  (5.23)

Therefore:

d M M dM dM
t
i

t
j

t
i

t
j, ,  =  

=  ϑ ϑ
im jn t

m
t
ndB dB,

 = [ ] ( )ϑ ϑT
ij

dt here square brackets indicate a matrix      (5.24)

The last step is obtained since the quadratic variation of Brownian 
motion given by B B t t,[ ]( ) =  (Equation 4.14 of Chapter 4) and hence 

Let { }
t

 be the filtration generated by Brownian motion B
t

 up to time t  and let Y
t t
∈  be an adapted   

stochastic process. Now, consider the sequence Y Y I tN
t t tj

N

j j j

( )
=

−
= ( )

+
∑ , 10

1
 where I t

t tj j, +
( ) =

1
1  if 

t t t
j j

≤ ≤ +1
 and zero otherwise. Let T

t
N

t
N

s
Y dB( ) ( )= ∫ 0

. Since Brownian motion is continuous, T
t

N( )  is 

continuous for all N  and T T
t N t

N= →∞
( )lim . Having a partition Π

N
 of the interval 0, t[ ]  and with ′ <t t,   

one has:

E E Y dB Y dB

Y

t
N

t

t
N

s t

t
N

s t

t
N

T( ) ( ) ( )
′

′

′ ′

′
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∫
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= + ∆





′

′
′

( )

≤ ≤ ≤

( )∫ ∑
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′ ( )∫ ( )0
0 0

t
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s j j j t
Y dB B t E B

j
N

since |~ ,N F

 = ′
( )T
t

N

 
(ii)

Hence T
t

N( )  is a martingale and so is T
t
. Thus, the second term on the RHS of Equation (5.20) is a 

martingale.
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dB dB d B B dt m n
t
m

t
n

t
m

t
n, , ,  =   = = if . Now, with a metric g  on the manifold M, 

we have for a frame qe Q X
l l

j
j

=   and qe qe
l mg lm
, = δ  where δ

lm
 is the Kronecker delta 

(see also Equation 4.16). This may be stated as:

δ
lm l m g

qe qe= ,  

= Q X Q X
l
p

p m
q

q g
   ,

= Q Q X X
l
p

m
q

p q g
,

=
∂

∂
∂

∂
Q Q

x xl
p

m
q

p q
g

,

= Q Q
l
p

m
q

pq
g

⇒ =QQTg I

 ⇒ = = ( )−QQ Q QT Tg g1   is symmetric  (5.25)

Referring to Equation (5.24), we get:

d M M dt Q Q dt dt
t
i

t
j T

ij
T T

ij
T

ij
, = [ ] = [ ] = [ ]−ϑ ϑ σ σ σ σg 1

⇒ = =− − −ϑ ϑ σ σ σ σT T T
T

g g g1 1 1 

 ⇒ = −ϑ σg 1  (5.26)

In view of Equation (5.21b), the last term in the RHS of Equation (5.20) becomes:

d Q t d d x Q t Q t d d
j
i

t
j

kl
i

t j
l

m
k

t
m

t
j( )  = − ( ) ( ) ( ) , ,χ χ χΓ

= − ( ) ( ) ( )  Γ
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m
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m

t
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m
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t
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= − ( ) ( ) ( ) ( ) ( )  Γ
kl
i

t j
l

m
k

p
m

t q
j

t t
p

t
qx Q t Q t dB dBσ χ σ χ ,
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= − ( ) ( ) ( ) ( ) ( )Γ
kl
i

t j
l

m
k

p
m

t p
j

t
x Q t Q t dtσ χ σ χ

= − ( ) ( ) ( )  ( ) ( ) Γ
kl
i

t j
l

p
j

t m
k

p
m

t
x Q t Q t dtσ χ σ χ

= − ( )[ ] [ ]Γ
kl
i

t lp kp
x Q Q dtgσ σ

= − ( ) ( )( )



Γ

kl
i

t

T
x Q Q dtσ σ

= − ( )[ ]Γ
kl
i

t
T Tx QQ dtσ σ

 = − ( )[ ] ( )−Γ
kl
i

t
Tx dtσ σg 1 5 25from Equation  .  (5.27)

In view of Equations (5.25), (5.26) and (5.27), we rewrite Equation (5.20) as:

dx dt dB x dt
t
i

ij

j

im t
m

kl
i

t
T

kl
= 



 + 



 − ( )[ ]− − −g g g1 1 11

2
± σ σ σΓ

 = 



 − ( )[ ]





+ 





− − −g g g1 1 11

2ij

j
kl
i

t
T

kl im t
mx dt dBα σ σ σΓ  (5.28)

 x i d
t
i , , , ,= …1 2  gives the evolution of a point on the curve ψ

t
 which is the pro-

jection  of the horizontal (curve) lift γ
t
 in FM  on the base manifold M. Thus, 

Equation (5.28) is the stochastically developed SDE corresponding to the SDE (5.16)   

in d . In the absence of the drift term α χ
t( )  and for additive noise with σ = ×I

d d
, 

a unity matrix, Equation (5.28) reduces to Equation (5.9) which is the stochastically 
developed SDE corresponding to pure Brownian motion in d  and which was earlier 
obtained by using Laplace-Beltrami operator.

Before we proceed to illustrate the application of stochastic development in function 
optimization problems, a word about anti-development. By anti-development, there 
exists a unique γ

t
, the horizontal lift on the frame bundle FM  of a smooth curve 

ψ
t
 on M  as a solution of an ODE (Kobayashi and Nomizu 1963). In turn this hori-

zontal lift corresponds to a unique curve χ
t
 in the Euclidean space. For instance, in 

human activity recognition (Yi et al. 2011), one transfers the collected manifold data 
to the Euclidean space by anti-development and performs stochastic modelling by 
traditional means in the flat space.
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5.3  NON-CONVEX FUNCTION OPTIMIZATION BASED ON 
STOCHASTIC DEVELOPMENT

In this section, we consider the application of stochastic development to an opti-
mization problem that involves a non-convex objective function. To this end, 
we again refer to the analogy between statistical sampling and optimization 
(Section 4.5, Chapter 4). We have already utilized this analogy in Chapter 4 to 
pose the optimization problem as the solution of an overdamped Langevin SDE 
(see Equation 4.103) in d  and to transfer the solution to the manifold by expo-
nential mapping at each time step. Here, we stochastically develop the SDE and 
solve directly on the manifold within a stochastic search framework. We name 
this scheme as Geometrically Adapted Langevin algorithm (GALA) as already 
mentioned in the introduction of the chapter. Note that a strictly positive, smooth, 
scalar-valued and n -dimensional non-convex objective function f nx( ) →:   
may be looked upon, at least locally, as an energy-like functional in the space of 
the design variables. Using this functional to represent a Riemannian manifold, 
we derive the associated metric g  and the connection to stochastically develop the 
Langevin SDE (4.103). During stochastic search involving a non-convex function, 
the matrix g  associated with the metric g  (both may be loosely called the metric) 
may sometimes become negative-definite, particularly during the initial stages. 
As such, an additive regularizer of the type ΞI

d d×  where Ξ ∈ +  may be used to 
ensure the positive definiteness of g. The following examples on two test functions 
(Tang et al. 2009) show the efficacy of the stochastic development approach in 
handling higher dimensional optimization problems.

Example 5.1. We consider minimization of the same Ackley function as considered 
in Example 4.9 of Chapter 4. With x ∈n, the Ackley function is rewritten below:

 f a b
n

x
n

cx a
i

n

i
i

n

i
x( ) = − −









 − ( )





+ +
= =
∑ ∑exp exp cos ex

1 1

1

2

1

pp 1( )  (5.29)

where n  is the dimension of the optimization problem.

Solution. The overdamped Langevin SDE (4.103) in d  in differential form:

 d f dt d
t t t t

X X B= − ∇ ( ) +β β2  (5.30)

β
t
 is an annealing parameter (as used in the simulated annealing method of optimiza-

tion). Note that β
t
 expedites a more exhaustive search of the search space during the 

initial stages. One gets the stochastically developed SDE corresponding to Equation 
(5.30) as:

 d f dt d
t t t t

X X B= − ( ) −





+− − −β βg g g1 1 11

2
2∇ Γ  (5.31)
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Since we need to compute g−1  and to arrive at the developed SDE (5.31), the pre-
sent scheme GALA is not gradient-free. However, when the gradient of the objective 
function is available, the goal of optimization is obviously expedited by a relatively 
faster convergence. Details on computation of the matrix g  and the connection 
matrices corresponding to the Christoffel symbols are available in Appendix 4. Results 
are obtained for the function with dimensions n = 10 40 and  and an ensemble size of 

only five particles N
p

= 5  is used. The parameter β
t
 is initially assumed to be 5E4. It 

is reduced according as β β
t
k

t
k ke+ =1 0 01/ .  as iterations progress, where the superscript 

k  indicates the kth  iteration. Figures 5.5 and 5.6 show these results for n = 10  and 
n = 40  respectively. Results are also obtained for n = 40  via the RMALA and clas-
sical MALA (Chapter 4) and are shown in Figure 5.7. Comparison of the results indi-
cate that the last two approaches fail to converge for higher dimensional problems.

      ■

Example 5.2. Consider minimization of another test function –  the Rastrigin function 
(Tang et al. 2009):

 f x x
j

m

j j
x( ) = − +{ }

=
∑

1

2 10 2 10cos π  (5.32)

Solution. The matrix g and the connection matrices are detailed in Appendix 5. The 
optimization results obtained for n = 40  are shown in Figure 5.8. The parameter β

t
 

is initially assumed to be 5E2 and as in the earlier example, it is reduced as iterations 

progress. An ensemble size of N
p

= 5  is adopted during the computations.

■

The algorithm parameters are so chosen (by trial and error) as to represent the best 
performance of the scheme. As expected, the annealing parameter β

t
 expedites a 

more exhaustive search of the design space during the initial stages. As can be noticed 
from the results obtained for the two test functions in the last two examples, the sto-
chastically developed version converges faster, i.e. with fewer steps. Stochastic devel-
opment has applications in statistical analysis on manifolds associated with medical 
anatomy and deep learning numerics. An interested reader may find, for example, 
efforts at constructing regression models for manifold-valued nonlinear data by   
stochastic development in Khnel and Sommer (2017ü) and Kühnel et al. (2019).

5.3.1  issUes related to compUtation of ‘ g ’ matrix and its deriVatiVes

Derivatives of the objective function are needed to evaluate g  and the matrices 
associated with Christoffel symbols. For large size dimensional problems, one may 
encounter issues in evaluating these derivatives in closed form; indeed they may not 
even exist everywhere for a class of objective functions. A better route to evaluate the 
metric and connection coefficients is perhaps through a numerical approach. In this 
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FIGURE 5.5 Optimization by GALA of 10-dimensional Ackley function ( n = 10 ):   
(a) evolution of the solution x  of the stochastically developed SDE (5.31) and (b) evolution of 

the objective function f ( )x , dt = 0 01. , N
p

= 5 .
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FIGURE 5.6 Optimization by GALA of 4 0 -dimensional Ackley function ( n = 40 );   
(a) evolution of the solution x  of the stochastically developed SDE (5.43) and (b) evolution of 

the objective function f x( ) , ∆ =t 0 5. , N
p

= 5 .
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FIGURE 5.7a–b Optimization of 40-dimensional Ackley function (n = 40) by RMALA 
(Section 4.6.2, Chapter 4) using the exponential mapping step; (a) evolution of the solution 
x of the SDE (4.155) of Chapter 4 and (b) evolution of the objective function f(x), Dt = 0.01,  
Np = 5. Optimization of 40-dimensional Ackley function (n = 40) by classical MALA (Equation 
4.154) using steepest descent step; (c) evolution of the solution x and (d) evolution of the 
objective function f(x), Dt = 0.01, Np = 5.
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FIGURE 5.7c–d (Continued)
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FIGURE 5.8 Optimization by GALA (with stochastic development) of 40-dimensional 
Rastrigin function (n = 40); (a) evolution of the solution x and (b) evolution of the objective 
function f (x), Dt = 0.01, Np = 5.
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regard, one elegant way to get these derivatives is to adopt the strategy of approximating 
functions (Powell 1981, Buhmann 2003, Shapiai et al. 2011) by using radial basis/ 
kernel functions. Use of kernel functions in nonlinear regression finds applications in 
pattern recognition (Shawe-Taylor and Christianini, 2004) and robotics (Das and Yip 
2020). Bromhead and Lowe (1988) and Moody and Darken (1989) used radial basis 
functions in the design of neural networks for multivariable interpolation problems. 
A radial basis function (RBF) ψ .( )  is real valued and depends on the Euclidean dis-
tance from the origin or a specified centre. RBFs are a set of functions which have the 
same value at a fixed distance from the central point, being characterized by a mono-
tonic decay with distance from the central point. A typical univariate radial function 
is the Gaussian RBF:

 ψ x e
x c

r( ) =
−

−





2

 (5.33a)

Another popular choice is the bump function:

 ψ x e x r( ) =
−

− −( )
1

1
2

 (5.33b)

In the present context, let us consider evaluating a multi-variable function 
f nx( ) →:   and its derivatives at any x ∈n  using an RBF. For instance, one 

may obtain f x( ) as:

 f E f
P

x y y x( ) = ( ) −( ) ψ  (5.34)

where E .[ ]  is the expectation operator with respect to a probability measure p 
associated with the vector RV y . ψ .( )  is the RBF from C∞ ( )  and is com-
pactly supported. Note that the functions f  appearing on the left and right hand 
sides of Equation (5.46) are not identical. Indeed, while f x( )  on the LHS could be 
considered as a regularized (smoothened) approximation for the original function, 
we presently overlook this distinction to simplify the notations. The argument y x−  
is indicative of the Euclidean distance of y  from the fixed point x. If we consider 
an infinitesimal ball B x x,δ( )  centred at x  with a radius δx  and obtain realizations 

y
j

j N, , ,= …1 2  restricted to this hypersphere, the expectation operation in Equation 

(5.46) approximates to:

 f
N

f y
j

j j
x y x( ) = ( ) −( )∑1 ψ  (5.35)

One may conveniently adopt a uniform measure for the variable y  over the ball 

B x x,δ( )  and thus obtain f x( )  by the averaging operation in the last equation. Since 
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a uniform distribution U a b U a b
1 1 2 2
, ,( ) × ( ) × … ,U a b

n n( )  outputs realizations in a 

hypercube, it may be needed to ensure that the summation take only realizations 

within the hyperball B x x,δ( ). Here a x x
i i i

= − δ  and b x x
i i i

= + δ . Presently, since 

g
ij

i j

f

x

f

x
=

∂
∂

∂
∂

, we obtain the derivative 
∂
∂

f

x
i

 from the following average:
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∂
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i

x 1
1 2, , ,

ψ
 (5.36)

thereby relieving the original function of the need to be differentiated. To obtain the 

matrices associated with the Christoffel symbols, one needs 
∂

∂

g
ij

k
x

 which is:
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∂ ∂
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∂ ∂
∂
∂
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 (5.37)

where the second-order derivative may be obtained as:
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∂ ∂
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∂ −( )

∂ ∂
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2 2
1

1 2
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x x N
f y

y x

x x
i

k j j
j

j

k j

x
, , ,

ψ
 (5.38)

The evaluations of the two derivatives in Equations (5.36) and (5.38) require the 
respective derivatives of the radial basis function ψ .( ) . The latter exercise poses 
little difficulty due to these functions being sufficiently smooth. The following 
example illustrates the application of this approach in computing the g  matrix and 
its derivatives.

Example 5.3. We reconsider minimization of the 40-dimensional Rastrigin function 
in Example 5.2 and as given in Equation (5.32).

Solution. The bump function in Equation (5.33b) is taken as the RBF in approxi-
mating the g  matrix and its derivatives. The first- and second-order derivatives of 
the bump function required in Equations (5.36) and (5.38) are given in Appendix 
5. With g  and the connection matrices involving the Christoffel symbols so obtained 
using the strategy enumerated above, results by GALA are shown in Figure (5.9) 
with N = 10 . It is noticeable that the results compare well with those obtained (see 
Figure 5.8) using closed form expressions for g  and the connection matrices.
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■

FIGURE 5.9 Optimization by GALA of a 40 -dimensional Rastrigin function with stochastic 
development and ‘g ’ matrix and its derivatives numerically computed by use of RBFs;   
(a) evolution of the solution x  of the stochastically developed SDE (5.43) and (b) evolution of 

the objective function f x( ) , dt = 0 01. , N
p

= 5 .
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5.4  PARAMETER ESTIMATION BY GALA

We present in this section an application of GALA to a parameter estimation problem 
which primarily consists in estimating the parameters of a given probability distribu-
tion using observed data. The topic has already been introduced in Chapter 3 (Section 
3.2.2) and Chapter 4 (Section 4.4). Specifically, in Chapter 4, we have posed it as 
an optimization problem in a Riemannian setting. The statistical model comprising 
of the pdfs and parameterized by the unknown variables in the given distribution is 
treated as a manifold structure. It is a Riemannian manifold with a metric given by 
the KL divergence (Equation 4.97) which is shown to be equivalent to the FIM –  
an inner product on the manifold. Now, in the context of classical MALA (Section 
4.5.1, Chapter 4), the evolution of the parameter vector θ t( )  is governed by the 
Langevin SDE:

 d l dt d
t t t

θ θ= ∇ ( ) +; Z B  (5.39a)

l
t

θ ; Z( )  is the log-likelihood function in Equation (4.93) which is rewritten below:

  (5.39b)

∇ =
∂

∂θ
 is the Euclidean gradient. Z  is the vector of RVs Z i n

i
, , , ,= …1 2  

corresponding to which the available observed data set is z = …{ }z z z
n

T

1 2
, , , . Note that 

θ θ
t

mt: = ( ) ∈  comprises the unknown parameters in the pdf  and need to

be estimated. If one uses a Riemannian gradient in Equation (5.39) in lieu of the 
Euclidean one and further uses the exponential mapping at each time step along with 
a Metropolis test, it is RMALA, the Riemannian version of MALA (corresponding to 
Equation 4.111 in discretized form):

 d l dt d
t t t

θ θ= ( ) +grad ; Z B  (5.40)

Now, according to GALA, we write the stochastically developed counterpart of the 
Langevin SDE in Equation (5.39a) as:

d l dt d
t
i

t
ij

t

j

kj
i

t t kj
θ = ( )





∇ ( ){ } − ( ) ( ) 
− −g g1 11

2
θ θ θ θ; Z Γ tt dB

t
ip

t
p+ ( )





−g 1 θ

 i j m p N, , , , , , ,= … = …1 2 1 2  and  (5.41)

N  is the dimension of the Brownian motion B
t
. We call the Langevin SDE in the 

last equation as geometrically adapted, as the acronym GALA indicates. MALA, 
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making use of the Euclidean gradient in Equation (5.39a) to design a proposal dis-
tribution for the Markov chain may be considered as a first-order method. Loosely 
speaking, the scheme for GALA from Equation (5.41) is a ‘second-order’ one, as it 
makes use of derivatives up to the second order for the proposal step. Specifically, 
whilst working with the Langevin-diffusion based MCMC, a geometric adaptation 
of Langevin dynamics in GALA would enable us to restrict the evolving parameters 
on a hypersurface entirely consistent with the underlying constraints of motion. This 
in turn provides us with a handle to control the space-filling properties of Brownian 
motion that could be physically meaningless and often the cause of delayed conver-
gence. Moreover, the modified drift term that restricts the solution of the Langevin 
equation to remain on the Riemannian hypersurface provides for an additional means 
of faster convergence and higher accuracy. The following two examples show the 
performance of GALA as applied to moderate and large dimensional estimation 
problems.

Example 5.4. We reconsider the parameter estimation problem in Example 4.8 of 
Chapter 4. The assumed pdf is the generalized exponential rewritten hereunder:

  (5.42)

α λ and  are the parameters to be estimated and hence the problem is two-dimensional 
with m = 2  and θ = ( )α λ, T

. Let n = 5000  which is the number of observations 
z i n

i
, , , ,= …1 2  with reference (true) values for α and λ being 3.639 and 2.239, 

respectively.

Solution. The matrix g  corresponding to the Riemannian metric is given by the FIM 

E
l

Z

k

∂ ( )
∂













2

2

θ
θ
; Z

θ

 in Equation (4.102), i.e:
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λk iz 2

 (5.43)

The Riemannian gradient grad l
t

θ ; Z( )  and the derivatives of g  with respect to the 

two parameters α λ and  are given in Appendix 5. These are required in evaluating 
the Christoffel matrices Γ i i, ,= 1 2. Figure 5.10 shows the result by GALA of the 
estimated parameters α λ and . Result by RMALA (Section 4.6) is also included in 
the figure. Note that the iterations on the x-axis in the figure are pseudo time steps 
corresponding to the Langevin dynamics.
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■

FIGURE 5.10 Statistical estimation by GALA of parameters of a generalized exponential 
probability distribution; evolution of parameters α  and λ  with iterations; (a) result by GALA 
and (b) result by RMALA (Section 4.7).
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Example 5.5. We now consider a multivariate Gaussian distribution N µ, /C−( )1 2  
whose pdf is given by:

  (5.44)

µ µ µ µ= …( ) ∈
1 2
, , ,

m

T
m  s the mean vector of the joint RV Z ∈m . Σ  stands for 

the determinant of the covariance matrix Σ ∈ ×m m  which is symmetric and positive 
definite. It is required to estimate the components of the unknown µ

Z
 and the matrix 

Σ  by GALA given n  observations of the multivariate normal distribution.

Solution. The number of parameters to be estimated is D m m m= + +( )1 2/  with 

m  mean values µ µ µ
1 2
, , ,…

m
 and 

m m +( )1

2
 covariance matrix components. Both 

these components constitute the vector θ ∈D. As Σ  is symmetric, the 
m m +( )1

2
 

components are the elements of either the upper or lower triangular matrix of Σ. The 
estimation problem involves maximizing the log-likelihood function:

  (5.45)

z
i

m i n∈ = … , , , ,1 2  is the ith  observation vector /  data that follows the joint pdf 
 and is supposed to be available a priori. We refer to Mamajiwala and Roy 

[2022] for details on the Euclidean gradient 
∂
∂

=
∂

∂
∂

∂
…

∂
∂







l l l l

m

T

θ θ θ θ
1 2

, ,  and the 

matrices associated with the Riemannian metric g and the Christoffel symbols.
Results for two- and three-dimensional problems are given in Figures 5.11 and 

5.12 respectively along with the assumed reference (true) values. The results corres-
pond to the estimates obtained by GALA for the D components of the mean vector 
and the covariance matrix. Note that D = 5  for the two-dimensional case ( )m = 2  
and D = 9  for the three-dimensional case ( ).m = 3

Results by GALA for a large dimension of m = 10  are given in Figures 5.13 
and 5.14. In this case, D = 65  with 10 mean components and 55 covariance matrix 
components (elements of upper or lower triangular matrix of Σ).  Only a few of these 
65 components are shown in Figures 5.13 and 5.14. The reference (true) values are 
marked by dashed lines. Referring to Mamajiwala and Roy [2022], we find a com-
prehensive study on this parameter estimation problem of a normal pdf by GALA. 
Especially, the study therein illustrates the superior performance of GALA in esti-
mating the parameters of large dimensional problems as against a number of other 
MCMC methods based on the manifold theory. The two metrics of performance used 
for comparison with other variants are efficiency and scalability.

■
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FIGURE 5.11 Estimation by GALA of parameters of a 2-dimensional normal pdf 
(Equation 5.44); evolution of (a) mean components µ µ

1 2
 and  and (b) the covariance matrix 

components  and  Σ Σ Σ
11 21 22

, with iterations; reference (true) values are shown by dashed lines.
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FIGURE 5.12 Estimation by GALA of parameters of a 3-dimensional normal pdf (Equation 
5.44); evolution with iterations of a) mean components µ

1
, µ

2
 and μ

3
 and (b) the covariance 

components Σ11 Σ21, Σ22, Σ31, Σ32 and Σ33; reference (true) values are shown by dashed lines –  
0.8608 for μ

1
, 0.6719 for μ

2 
and 0.6309 for μ

3
, 3.4084 for Σ21, 3.488 for Σ21, 5.9612 for Σ22, 

3.6288 for Σ31, 2,9326 for Σ32, 4.3737 for Σ33
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FIGURE 5.13 Estimation by GALA of parameters of a 10-dimensional normal pdf (Equation 
5.44); evolution of (a) mean component  μ

2
 (reference value = 0.6719) and (b) mean component 

μ
2
 with iterations; reference (true) values are shown by dashed lines.
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FIGURE 5.14a Estimation by GALA of parameters of a 10-dimensional normal pdf (Equation 
5.44); evolution of (a) covariance matrix component Σ

11
6 2931reference value =( ).  and (b) 

covariance matrix component Σ
41

1 6397reference value =( ). ;  reference (true) values are 
shown by dashed lines. Estimation by GALA of parameters of a 10-dimensional normal pdf 
(Equation 5.44); evolution of (c) covariance matrix component Σ

61
0 3291reference value = −( ).  

and (d) covariance matrix component Σ
74

0 1464reference value =( ). ;  reference (true) values 
are shown by dashed lines. Estimation by GALA of parameters of a 10-dimensional normal pdf 
(Equation 5.44); evolution of (e) covariance matrix component Σ

92
2 6237reference value =( ).  

and (f) covariance matrix component Σ
96

1 7688reference value = −( ). ;  reference (true) values 
are shown by dashed lines.
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FIGURE 5.14b–c (Continued)
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FIGURE 5.14d–e (Continued)
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CONCLUDING REMARKS

As envisioned in the concluding part of the last chapter, we have proceeded in this 
chapter to geometrically adapt an SDE by making use of concepts from Riemannian 
differential geometry and stochastic calculus on manifolds. This adaptation known as 
the stochastic development and leading to the celebrated Laplace-Beltrami operator for 
a pure Brownian motion on a manifold has been highlighted. Underlying the stochastic 
development of a general SDE on a manifold lies the notion of an orthonormal frame 
bundle FM  of a manifold M . A frame at a point on M  is a linear isomorphism between 
the Euclidean space ℝ d  where the solution of a standard SDE evolves and the tangent 
space to M  on which the solution needs to be projected. Thus, it is through the frame 
bundle that one can track the paths on the manifold once we know how it evolves in d

. Having systematically derived the stochastically developed SDE on a manifold, we 
have applied to the Langevin diffusion equation to arrive at a geometrically adapted 
Langevin dynamics and thus obtained the geometrically adapted version of MALA, 
which we have referred to as Geometrically Adapted Langevin Algorithm (GALA). 
The limitation or inconsistency on the part of RMALA described in the last chapter 
in representing a Riemannian version is removed in GALA. It is shown that the new 
version outperforms the classical MALA and RMALA in terms of faster convergence, 
higher accuracy and more importantly in its efficiency across a range of moderate and 

FIGURE 5.14f (Continued)
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large dimensional problems. Our specific illustrations have been with large dimensional 
optimization and parameter estimation problems.

EXERCISES

1. Show that for a vector field X X E T Mi
i p

= ∈ ( )  expressed in terms of local 

coordinates on a manifold, the divergence div X  is given by:

div  X E X E
x

i
i

i
i i

= ( ) =
∂

∂
=

1
1 2

g
g , , , ..with

2. Consider estimation by GALA, RMALA and MALA of parameter σ  of a 
Rayleigh pdf:

  (E5.1)

  where N  samples or observations are available. Take the true param-
eter as σ = 2.

3. For a Weibull distribution with pdf given by:

 = <0 0,  z  (E5.2)

  estimate the two parameters λ  and k  by GALA, RMALA and MALA 
assuming the availability of N  observations of the random variable z. True 
parameters for λ  and k  are respectively 1.0 and 1.5.

4. Solve by GALA, RMALA and MALA for the optimum of the n -dimensional 
Rosenbrock function:

 f x x x
j

n

j j j
x( ) = −( ) + −( )

=

−

+∑
1

1

1
2

2 2
100 1  (E5.3)

5. Solve by GALA, RMALA and MALA for optimum x*  of the n -dimensional 
objective function (Himmelblau function):

 f
n

x x x
j j j

x( ) = − +( )1
16 54 2  (E5.4)

(Note: Four optima x* = [3.2, 2.0], [– 2.805118, 3.131312], [– 223 3.779310,   
– 3.283186], and [3.584428, – 1.848126] for the case with n = 2.
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NOTATIONS

B t( )  Brownian motion

 e e
1 2
, , …  canonical basis vectors of d

 f x( )  real valued smooth non-convex objective function

 pdfs in Equations (5.39b) and (5.44)

g  Riemannian metric

H y
e ( )   horizontal field on FM

H FM
y

 horizontal subspace on the frame bundle FM

T
t
 Ito integral

L
t
 infinitesimal generator

M  manifold

N
p

 number of particles

q  a frame on FM

Q Q GL d
i
j ,=   ∈ ( ) , the general linear group

T M
p ( )  tangent space on the manifold at a point p

T FM
y ( )  tangent space at y FM∈ , the frame bundle

u T Md
x

: → ( )  an isomorphism

U  a neighbourhood on a manifold

Û = π− ( )1 U  a neighbourhood on a frame bundle

V FM
y

 vertical subspace on the frame bundle FM

x x i di= { } = …, , ,1 2  a local chart on M

X
x

i d
i i

=
∂

∂
= …, , , ,1 2  coordinate basis vectors in T M

x

X
Q

i j d
ij

j
i

, ,=
∂

∂
≤ ≤1  vectors spanning the vertical subspace V FM

q

X t( )  vector random process

z
i

m thi i∈ = … , , ,1 2  observation vector /  data in Examples 5.4

α  parameter to be estimated by MLE (Equation 5. 42)

α χi
t( )  drift term (Equation 5.16)

β
t
 annealing parameter

µ ∈m  mean vector (in the normal pdf –  Equation 5.44)

λ  parameter to be estimated by MLE (Equation 5. 42)
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π: FM M→  a surjective map

σ χ
j
i

t( )  diffusion term Equation 5.16)

γ
t
 curve on the frame bundle FM

ψ πγ
t t

=  the projected curve on the manifold

ψ x( )  radial basis function (Equation 5.33a,b)

Σ ∈ ×m m  covariance matrix (in the normal pdf –  Equation 5.44)

θ t( )  parameter vector (Equation 5.42)

χ
t
 a curve in d , an anti-development of ψ

t

∇  Euclidean gradient

∆
E

 Laplacian operator

∆
M

 Laplacian-Beltrami operator
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Appendix 1 

A1.1  COMPUTATIONAL COMPLEXITY AND NP HARD 
OPTIMIZATION PROBLEMS

The class of problems, P, NP, NP hard and NP complete, signify the complexity of 
computation (see Figure A1.1). A formal definition of these classes can be found in 
(Garey and Johnson 1979, Leeuwen 1998). The class P corresponds to those problems 
that are solvable in polynomial time. Suppose that an algorithm runs in O n( )  time 
where n is problem size, the run time is said to be a linear function of n. Similarly, 
one can have an algorithm that runs in quadratic time O n( )2 , cubic time O n3( )  and, 
in general, in polynomial time and we then say that the problems it solves are said to 
be in class P.

There exist algorithms that do not run in polynomial time on regular computers, 
but run in polynomial time on a non- deterministic Turing machine (Martin 1997). 
These programs belong to NP that stands for non- deterministic polynomial time. 
Equivalently, NP defines problems (decision problems) that can be verified in poly-
nomial time. This does not necessarily mean that there is a polynomial- time way to 
find a solution. Intuitively NP is a class of decision problems where one can verify 
an answer quickly in reasonable time if one has been provided with a solution. For 
example, consider the Hamiltonian path problem. The Hamiltonian path is a path –  
in an undirected or directed graph G V E,( )  where V denotes the vertices and E the 
edges –  that visits each vertex exactly once. Assume that we have a solution path on 
hand. Verifying if it is correct can be performed in a polynomial time. Note that all 
problems in P are also in NP.

A problem   is NP- complete, if

(i) it is in NP, i.e. if it is polynomial- time verifiable and
(ii) every problem in NP is reducible to   in polynomial time.

As an example, consider a travelling salesman problem (TSP) –  the minimum  
Hamiltonian cycle of cost ≤ k,  where each edge has an associated weight.  
A Hamiltonian cycle is a simple cycle in a graph that visits all vertices exactly once  
before returning to the start vertex. One can verify in polynomial time if a cycle  
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visits all vertices and has cost ≤ k  and hence a TSP is NP. It is NP- complete since a  
known NP- complete problem such as a Hamiltonian cycle can be reduced to the TSP  
(Garey and Johnson 1979). It is not known if every problem in NP can be solved and  
this is called the P versus NP problem (Lance 2009). However, if any NP- complete  
problem can be solved, then every problem in NP can be solved because of condition  
(ii) appearing in the definition of NP- completeness.

A problem satisfying condition (ii) above is an NP- hard problem whether it 
satisfies the condition stated in (i) or otherwise. NP- hard problems are the hardest 
of all problems in NP. They belong to a class where, even when one has a solu-
tion, it cannot be verified in polynomial time. More precisely, a problem is called 
NP- hard if it is polynomial- time reducible but not necessarily polynomial- time 
verifiable. TSP where one needs to find the shortest distance (cycle) covered, is an 
example of an NP- hard problem. That is, given a weighted graph G, the task is to 
find the shortest cycle (an optimization problem) that visits every vertex. Finding 
the shortest cycle is obviously harder than determining if a cycle exists at all; so 
the TSP is NP- hard.

A1.2  METRIC d(x, y) AND ITS PROPERTIES

Given a metric space X d,( )  with X  being a set associated with a metric d x y,( )  
where x y X, .∈  The metric d x y,( )  is a function from X X×  to ℝ such that the 
following conditions hold for every x y z X, , ∈

(i) Non- negativity: d x y,( ) ≥ 0

(ii) Symmetry: d x y d y x, ,( ) = ( )
(iii) Triangle inequality: d x y d y z d x z, , ,( ) + ( ) ≥ ( )
(iv) d x y,( ) = 0  if and only if x y=

FIGURE A1.1 Categorization of optimization problems –  P, NP, NP- complete and NP- hard.
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Euclidean space is a familiar example for a metric space. Space n  is equipped 

with the Euclidean distance d x y x y x y
i ii

n
,( ) = − = −( )=∑2

2

1

. All inner product 

and normed spaces are metric spaces.

A1.3  BASIC PROBABILITY THEORY AND RANDOM NUMBER 
GENERATION

In the search for a solution to TSP by Metropolis algorithm (Section 1.3.3, Chapter 1), 
some basic concepts of probability are utilized. To familiarize readers with the bare 
bones of probability theory (Papoulis 1991), i.e. random variables and the associated 
probability distributions, we briefly recapitulate here these aspects (Papoulis 1991) and 
also describe a scheme for random number generation. The random number gener-
ation is a primary requirement in a simulation study which is the mainstay of sto-
chastic optimization –  a subject of this book. In Appendix 4, we briefly describe the 
theory of stochastic processes which closely relates to the concepts in probability 
outlined here and forms the basis for geometrical methods of optimization described 
in Chapters 4 and 5.

a1.3.1  random VariaBles and proBaBility distriBUtions

Any outcome of an observation or experiment (viz. of number of vehicles crossing 
a busy traffic junction or wind velocity measurement at a location every one hour) 
may often have a random character in that a sequence of such outcomes may not 
follow a deterministic or predictable pattern. Instances one may be familiar with are 
the outcomes of a coin tossing experiment, throw of a dice and rainfall on a day in 
the rainy season. One may describe the possible outcomes on rainfall observation on 
a day as high, medium or low. The outcomes from a coin tossing experiment could 

be ‘head’ or ‘tail’ and, from a dice throw, any of the six faces f f f f f f
1 2 3 4 5 6
, , , , ,( ) .   

These outcomes contribute to form the sample space Ω . The complement of (the 
set of) all non- trivial outcomes in Ω  is the null outcome φ. In these simple cases 
of random experiments (viz. where outcomes are discrete and their number is 
finite), it is possible to assign a probability to each of the outcomes. For example, 
in an unbiased coin tossing experiment, probability P  of ‘head’ or ‘tail’ may be 
½ each so that P Ω( ) = 1. Similar may be the case with the throw of a fair dice with 

P f P f P f P f P f P f
1 2 3 4 5 6

1 6( ) = ( ) = ( ) = ( ) = ( ) = ( ) = / . The probability of the null 

event φ  is set to zero. To facilitate a more rational description and easy mathematical 
manipulation of these random quantities in a unified fashion, the concept of a random 
variable is introduced. Using a random variable, the outcomes in Ω  which may be 
different from real numbers (or, perhaps, vectors of real numbers) are made to corres-
pond to subsets of the real line. If a random variable is denoted by X , it thus denotes 
a mapping of Ω  to , i.e., X: Ω → . For example, the two outcomes ‘head’ and 
‘tail’ in the coin tossing experiment may respectively be mapped to, say, 0 and 1 on 
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the real line. The three outcomes ‘high’, ‘medium’ and ‘low’ of rainfall on a day may 
be mapped to 1, 2 and 3, respectively. If the assigned probabilities for the three possi-
bilities of rainfall are ,P p P q1 2( ) = ( ) =  and P r3( ) = , one must have p q r+ + = 1.    
Figure A1.2 pictorially shows these random variables along with their probabilities.

In a general probability setting, a numerical or computational treatment of uncer-
tainty requires that the outcomes or events be made to correspond one- to- one with 
real numbers via an appropriate mapping from Ω  to n. A random variable X ∈n  
describes this mapping and is usually associated with a triplet Ω, , P( )  known as 
the probability space. is known as the sigma algebra (written as σ - algebra). It is 
defined as a non- empty set consisting of all observable subsets (events) belonging 
to Ω closed under complementation and finite unions of its subsets including Ω and 
the null outcome ϕ. For example, in a coin tossing experiment with Ω = { }s f,  

FIGURE A1.2 ℝandom variables and probabilities: (a) tossing of an unbiased coin; (b) rainfall 
on a day and (c) throw of an unbiased dice.
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where s f and  stand for a success and failure,   is the power set containing all 
possible events ϕ, , ,s f Ω{ }. Similarly, for the dice throw example,   is the set of all 

= =2 646  events possible out of the sample space Ω = { }f f f f f f
1 2 3 4 5 6
, , , , , .

a1.3.2  discrete random VariaBles

The three examples in Figure A1.2 represent discrete random variables as the 
outcomes are countable. When each outcome in Ω  is considered as being equally 
likely, the random variable is said to follow a uniform probability distribution. The 
dice throw in Figure A1.2c is an example of such a uniformly distributed random vari-
able defined in a discrete set- up. In a TSP with N cities, consider picking a city at 
random. With , , ,Ω = …{ }city city city N   1 2 , let X N:Ω → …{ }1 2, , , . If we assign 

P X or N
N

= …( ) =1 2
1

  or , then X  is uniformly distributed. The plots of P X x=( )
in Figure A1.2 are actually those of probability density (or mass) functions (pdfs) of 
the three random variables shown therein. Henceforth, a pdf will be denoted by  

where the argument x stands for a realization of the random variable X  (note that x  
belongs to the range of X). We define  for a discrete random variable as:

  (A1.1)

δ .( )  stands for a Dirac delta function. The Dirac delta function is a ‘generalized 

function’ in that 
−∞

∞

∫ ( ) −( ) = ( )g x x a dx g aδ . A heuristic definition is:

 δ x a x a−( ) = ∞ =,  for  

 = 0, otherwise  (A1.2a)

with the constraint

 
∫ −( ) =δ x a dx 1  (A1.2b)

The cumulative probability distribution function (CDF) of X , denoted by 
X

x( ), is 
defined for a discrete random variable, as:

 
X

j x x
j

x P X x P X x
j

( ) = ≤( ) = =( )
≤

∑
:

 (A1.3a)

An alternative way of expressing 
X

x( )  is:

 F U
X

j
j j

x P x x x( ) = ( ) −( )∑  (A1.3b)
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where x x
j

−( )  is the unit step function defined by:

  x x x x
j j

−( ) = ≥1, for  

 = <0, for x x
j
 (A1.4)


X

x( )  is thus the cumulative total (sum or integral as the case may be) 
of probabilities up  to x. From Equation (A1.3), 

X
P−∞( ) = ( ) =Φ 0  and 


X

P X P∞( ) = ≤ ∞( ) = ( ) =Ω 1. For the three random variables in Figure A1.2, the 
CDFs are shown in Figure A1.3.

a1.3.3  continUoUs random VariaBles

Consider the case of a ℝoulette wheel, spinning with a pointer that can stall at any  
angle Θ  within 0 2− π  radians. Clearly, Θ  could be any real number in ,0 2π[ ]. The  
outcomes are uncountably infinite and Θ  is called a continuous random variable. If  

FIGURE A1.3 Discrete random variables and CDFs: (a) unbiased coin tossing; (b) rainfall on 
a day and (c) throw of an unbiased dice.
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the outcomes are assumed to be equally likely, Θ  is said to follow a uniform prob-
ability distribution over ,0 2π[ ]  (see Figure A1.4a).

In general, for a uniformly distributed continuous random variable X,  is 
defined by:

 = 0, otherwise  (A1.5a)

A uniformly distributed random variable in the interval a b,[ ]  is usually denoted    
by U a b, .( )

Figure A1.4b shows an exponential random variable with pdf:

  (A1.5b)

In fact, the Boltzmann distribution in Equation (1.10) in Chapter 1 is an exponen-
tial distribution which is a discrete analogue of the pdf in Equation (A1.5b). From 
Figure A1.4(b), we observe that P x X x dx≤ ≤ +( )  is given by the hatched area:

  (A1.6)

FIGURE A1.4 (a) pdf of a uniformly distributed (continuous) random variable   
,Θ ∈[ ]0 2π –  ℝoulette wheel experiment and (b) pdf of an exponential (continuous) random 

variable with .
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For a continuous random variable, the CDF is defined as:

  (A1.7)

Thus, in defining 
X

x( )  for a continuous random variable, an integral replaces the 
summation in Equation (A1.3) of the discrete case. The properties of the CDF follow:

 
X

P X−∞( ) = ≤ −∞( ) = 0  (A1.8a)

and

  (A1.8b)

The inference from Equation (A1.7) is that , provided the derivative 

exists. CDFs for the uniformly distributed and exponential random variables are 
shown in Figure A1.5.

Another familiar distribution is normal or Gaussian distribution with pdf given by:

  
(A1.9)

µ  and σ  are parameters in the distribution. Normal random variables are com-
monly encountered in engineering applications. For instance, measurement errors 
in experiments (or ‘noise’ as it is commonly called) are often modelled by normal 
(Gaussian) distributions. Moreover, the normal distribution also derives its import-
ance from the central limit theorem (CLT) which implies that the sum of a large 
number of independent and identically distributed random variables is approximately 
normal. We refer to ℝoy and ℝao (2017) for more details on the CLT.

FIGURE A1.5 CDFs of the continuous random variables: (a) uniformly distributed and 
(b) exponentially distributed (see the corresponding pdfs in Figure A1.4).
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For a discrete random variable, non- zero point probabilities exist, as is evident 
from Figure A1.2. But in the case of continuous random variables, a point probability 
is zero (ℝoy and ℝao 2017). This is analogous to the common knowledge that the 
mass at a point in a body is zero. For a continuous random variable, one defines the 
probability of X  within an interval as in Equation (A1.6).

a1.3.4  expectation of random VariaBles

If X  is a random variable defined on a sample space Ω  with a probability measure   
P, then the expectation of X  denoted by E X

P [ ]  is defined by the following 
(Lebesgue) integral with respect to P:

 E X XdP X dP
P [ ] = = ( ) ( )∫ ∫Ω Ω

ω ω  (A1.10)

If X  has the probability density function , then we have:

  (A1.11)

E X
P [ ]  is the first (order) moment as given by Equation (A1.10) and is known as 

the expectation or mean of X. The subscript ‘P’ in E
P

.[ ]  is usually omitted unless 
there is a scope for confusion with different probability measures. The expectation 
converts a random variable to a ‘weighted average’ in that if one performs the random 
experiment of sampling X  indefinitely many times, then the average of the resulting 
numbers approaches E X[ ]. The above definition applies to both discrete and con-
tinuous random variables except that, for discrete X, summation replaces integra-
tion as:

 E X x f x
k

k x k[ ] = ( )∑  (A1.12)

Extending the definition of expectation of a random variable X  to higher order 

moments, one has an nth  order moment E X x f x dxn n
x[ ] = ( )

−∞

∞

∫  in the case of a con-

tinuous random variable and E X x f x
m

k
m

x kk

n
−( )



 = ( )=∑µ

1
 in the discrete case. 

Central moments are given by . It follows that the variance of X  is 
defined by:

  (A1.13)

σ  is the standard deviation. For example, the two parameters µ and σ  in the pdf 
in Equation (A1.9) represent respectively the first order moment (the mean) and 
the second order moment (the standard deviation) of a normal random variable.   
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  µ σ,( )  is the notation generally used to indicate a normal probability distribu-
tion. A generalization of the definition of expectation is to include a (deterministic) 
function g X( )  of a random variable in that one may have:

 E g X g x f x dx
X( )  = ( ) ( )∫ 

 (A1.14)

a1.3.5  independence of random VariaBles

The concept of independence is fundamental in probability theory. Two events E
1

 and 
E

2
 are said to be independent if the probability of both events occurring together –  

expressed by P E E
1 2

∩( )  –  is given by:

 P E E P E P E
1 2 1 2

∩( ) = ( ) ( )  (A1.15)

Instead, if occurrence of event E
1

 is dependent on E
2
,  the dependence may be 

expressed in terms of a conditional probability denoted by P E E
1 2
|( )  as:

 P E E
P E E

P E1 2

1 2

2

|( ) =
∩( )

( )  

 ⇒ ∩( ) = ( ) ( )P E E P E E P E
1 2 1 2 2

|  (A1.16a)

Clearly, in view of Equation (A1.15), independent events E
1

 and E
2
 are 

characterized by:

 P E E P E P E E P E
1 2 1 2 1 2

| |( ) = ( ) ( ) = ( )  and  (A1.16b)

For example, knowing that the event E = an even number appeared in a dice throw, 

the probability P E P E P E2 4 6
1

3
| | |( ) = ( ) = ( ) =  and P E P E P E1 3 5 0| | |( ) = ( ) = ( ) = . 

Now given two random variables (ℝVs) X  and Y , we say that they are independent 
if the events X x≤  and Y y≤  are independent, i.e. if:

 P X x Y y P X x P Y y≤ ∩ ≤( ) = ≤( ) ≤( )  (A1.17)

The LHS of the last equation is usually denoted by 
XY

x y,( )  which is known as the 
joint probability (cumulative) distribution function. So X  and Y  are independent if:
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XY X Y

x y x y,( ) = ( ) ( )  (A1.18a) 

A conditional probability distribution 
X Y

x y
|

|( )  is defined as:

 

X Y
XY

Y

x y
x y

y|

,
|( ) =

( )
( )  (A1.18b)

Equation (A1.18a) results in case X  and Y  are independent, i.e., if  
X Y X

x y x
|

.|( ) = ( )
It follows that for two independent X  and Y , the joint pdf of X  and Y is given by:

  (A1.19a)

From the last equation, one may express the conditional pdf  as:

  
(A1.19b)

A generalization follows for n  independent ℝVs X X X
n1 2

, , , .…  The joint pdf is:

  (A1.20)

In case the ℝVs X  and Y  are not independent, they may be correlated. For instance, 
stock prices whose variations are stochastic show correlations as noticeable from 
observations over a period of time. The correlation between X  and Y  is expressed 
as E XY[ ]  where E .[ ]  is the expectation operator (Equations A1.10 and A1.11) and 
therefore:

  (A1.21)

It follows that correlated random variables are characterized by a covariance matrix:

 C =
−( )



 −( ) −( ) 

−( ) −( )  −( )
E X E X Y

E X Y E Y

X X Y

X Y Y

µ µ µ

µ µ µ

2

2





















 (A1.22)

µ
X

 and µ
Y

 are the mean values of X  and Y. Note that C  is a symmetric matrix. While 
the diagonal terms are the individual variances σ

X
2  and σ

Y
2 ,  the off- diagonal terms 

denote the covariance σ
XY

cov X Y= ( ),  between the random variables. Obviously, 
if the covariance term is zero, X  and Y  are uncorrelated. Independence implies 
uncorrelatedness while the converse may not be true (Papoulis 1991). The mean- 
variance portfolio theory of Markowitz (1952) is the basic model in finance which 
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uses correlation analysis for minimization of risk and to achieve better expected 
returns.

a1.3.6  random nUmBer Generation

A uniformly distributed random variable assumes importance in simulation studies –  
the example on TSP being a case in point. Today’s computing machines are equipped 
with random number generators that provide random numbers uniformly distributed in 
0 1,[ ]. In practice, it is difficult to generate truly random numbers of infinite sequence. 

The sequence of numbers generated on a computer only approximates the properties 
of a random variable. Also, the numbers started from a seed number are bound to 
have a periodicity, i.e. the same sequence of numbers repeat after a certain period. 
A common algorithm (Knuth 1997) used to generate the pseudo- random numbers is:

 X AX B M
j j+ = +( )1

mod  (A1.23)

Here A B,  and M  are non- negative integers. A  is called the multiplier, B  the incre-
ment and M  the modulus. Equation (A1.23) corresponds to a linear congruential 
generator, i.e. C D M≡  mod  which is read as ‘C is congruent to D modulo M’. This 
amounts to C  =  D K M− ×  where K  is the largest positive integer less than D M/ ,    
i.e. K D M= [ ]/  using the notation of the largest integer function. X

0
, the starting 

element in the pseudo- random sequence, is known as the seed of the random number 
generator. The random numbers generated by Equation (A1.23) lie in 0 1, .M −[ ]  At 
the end of n  iterations, the recurrence formula in Equation (A1.23) gives:

 X A X B
A

A
M

n
n

n

= +
−

−






−

0

1 1

1
  mod  (A1.24)

From the above, one obtains the period of the pseudo- number generator by setting 
X X

n
=

0
. Note that if the number of bits associated with a word size in a com-

puter is m, the largest possible period is found to be 2m M= . From X
n

 generated 
through Equation (A1.24), we obtain the uniformly distributed pseudo- random 

number 
X

M
n ∈[ ]0 1, .  Now, a realization for U a b,( )  can be obtained by the rela-

tion U a b a b a
X

M
n,( ) = + −( ) . A random number generator is required to be com-

putationally efficient and have a large period. For more details on random number 
generators and on tests to ensure a uniform distribution, we refer to L’Ecuyer (1992) 
and Nishimura (2000).

For solution to TSP by Metropolis algorithm, step (ii) in Table 1.4 requires gen-
erating a new trial solution x̂k  at every iteration k .This is accomplished by the 
swapping of connections (Figure 1.12) of any two out of N  cities. This requires 
picking two cities i and j  randomly from the set 1 2, , , .…{ }N  To perform this, we 
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independently generate two uniformly distributed numbers U 1 0 1( ) ( ),  and U 2 0 1( ) ( ), .   
Then r NU

1
1 0 1= ( )( ) ,  and r NU

2
2 0 1= ( )( ) ,  give real numbers in the interval 0, N[ ].    

i  and j are now obtained, say, by rounding off r
1
 and r

2
 to the nearest integers 

greater than r
1
 and r

2
.

Here, a mention needs to be made about the significant role played by the uniform 
pdf in simulation studies. It is extensively used to generate random numbers with 
other (specified) distributions. This, however, requires knowledge on transformation 
of random variables which is detailed below.

a1.3.7  transformation of random VariaBles

Suppose X  is a random variable (ℝV) with known CDF F x
X ( )  and pdf  It is 

often required to find the CDF and pdf of a ℝV Y  with a given transformation 
Y g X= ( ). The distribution function of the new random variable is given by:

 F y P Y y P g X y P X g y P X R
Y y( ) = ≤( ) = ( ) ≤( ) = ≤ ( )( ) = ∈( )−1  (A1.25)

where R
y
 is the region containing the realizations (samples) x  of X  for which    

g x y( ) ≤ .
A strictly monotonic functions (either increasing or decreasing) is shown in 

Figure A1.6. Because of the one- to- one correspondence between X  and Y, it is pos-
sible to express P y Y y dy≤ ≤ +( )  as:

 P y Y y dy P y Y y dy≤ ≤ +( ) = ≤ ≤ +( )  

 ⇒ +( ) − ( ) = +( ) − ( )F y dy F y F x dx F x
Y X X

 

FIGURE A1.6 Transformation of a random variable to another one via a strictly monotonically 
increasing function.
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(A1.26)

The .  sign over 
dx

dy
 is to render the pdf  always positive. The pdf of Y  is thus 

derivable in terms of x g y= ( )−1  and is given by:

  
(A1.27)

If g X( )  is not a monotonic function, the pdf of Y  is obtained as:

  
(A1.28)

where the summation is over all the real roots x g y
i

= ( )−1 .  For example, if Y  is 
related to X  by Y g X X= ( ) = 2 ,  then:

 F y P Y y P X y P X y P X R
Y y( ) = ≤( ) = ≤( ) = ≤ ±( ) = ∈( )2  

  
(A1.29)

where x y
1

=  and x y= −  are the two possible roots of the transformation 
(Figure A1.7).

Example A1.1. Given that X is standard normal, find  where Y g X X m= ( ) = +σ .    
A standard normal is a normal distribution with zero mean and standard deviation 
equal to unity, i.e., X N≈ ( )0 1, .

Solution. Given , and x g y
y m

= ( ) =
−−1

σ
,  Equation (A1.27) gives:

FIGURE A1.7 Transformation of a random variable to another one via a quadratic function.
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(A1.30)

The linear transformation generated a new normal ℝV with mean m  and with vari-
ance =  σ2 .  Thus, Y N m≈ ( ), .σ

■

Example A1.2. The strain energy in a linear elastic bar subjected to an axial force U  is:

 S
L

AE
F=

2
2  (A1.31)

where L  is length of the bar, A  the area of cross- section of the bar and E  the 
modulus of elasticity of the material. Given  ~ , ,N 0 1( )  find the pdf  of S.

Solution. Given . From the transformation S
L

AE
=

2
2 ,  one has:

u
s

c
= ± ,  so u

s

c1
=  and u

s

c2
= −  where c

L

AE
=

2
.  From Equation (A1.29),

  
(A1.32)

with 
ds

du
cu

ds

du
c

s

c
cs= ⇒ = =2 2 2 .  Therefore:

 = 0, otherwise  (A1.33)
■

With a procedure similar to the above case of one- dimensional transformation, a two- 
dimensional transformation can be also handled. This is illustrated in the following. 
Suppose that R and θ are two independent ℝVs with the joint pdf:

  r ≥ 0 and 0 ≤ θ ≤ 2π (A1.34)

Note that R  and θ  are independent ℝVs with  being a uniform 

distribution and  a ℝayleigh distribution. Now, consider the 
transformation:
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 X R Y R= =cos , sinθ θ  (A1.35)

The last equation transforms the rotational coordinates R and θ  into rectangular 
coordinates X Y and  (Figure A1.8). It is required to find the joint pdf  of X
and Y  given the pdfs of R  and θ.

Equating the probability in the infinitesimal volumes (one over the hatched area in 
Figure A1.8a and the other over the darkened area in Figure A1.8b) corresponding to 
the two coordinate system, we get  Rθ(Rθ)drdθ.

The area dxdy  in the X Y− coordinate system is related to the area drdθ  in R − θ  
coordinate system by:

 dxdy J drd= θ  (A1.36)

where J  is the Jacobian matrix given by:

 J

X

R

X

Y

R

Y

r

r
=

∂
∂

∂
∂

∂
∂

∂
∂



















=
−









θ

θ

θ θ
θ θ

cos sin

sin cos  
 (A1.37)

J  in Equation (A1.37) is the determinant of the matrix J  and is equal to r. Therefore, 
the joint pdf of X Y and  is given by:

FIGURE A1.8 Two- dimensional transformation; X R=  cosθ , Y R=   sin θ : (a) Cartesian 
coordinates and (b) polar coordinates.
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 (A1.38)

It is also obvious that the joint pdf  is separable as:

  
(A1.39)

Thus, X Y and  are also independent ℝVs. Also, we recognize that both X  and Y  are 
standard normals. By the use of the transformation, two independent normal ℝVs can 
be generated, once the realizations of the ℝVs R and θ  are available. Samples of the 
uniformly distributed ℝV θ π≈ ( )U 0 2,  are available from pseudo random generators 
(see item 3 of this Appendix) in a computing machine. The ℝayleigh ℝV R  may be 
generated from U 0 2, π( )  by inversion method of MC simulation (Appendix 3). It is 
now straight forward to get samples of the normal ℝVs X  and Y  by the transform-
ation in Equation (A1.11), i.e.:

 x r y r i
i i i i i i

= = = …cos sin , ,, ,θ θand 1 2  (A1.40)

The transformation in the above illustration is known as Box- Muller transformation 
(Box and Muller 1952).

A1.4  LINEAR INDEPENDENCE AND COMPLETENESS

Let Y
j

j n, , , ,= …1 2  be a sequence of functions in a finite dimensional subspace 


n

  of  ∈ ( )−* , .C a bn 1  Consider the following linear combination of these   
functions:

 f x a Y x a Y x a Y x
n n( ) = ( ) + ( ) +…+ ( )1 1 2 2

 (A1.41)

If f x( ) = 0,  then its derivatives of orders 1, 2 1, ,… −n  are all zero. One can write:

 

Y x Y x Y x

Y x Y x Y x

Y x Y x Y

n

n

n n
n
n

1 2

1 2

1
1

2
1 1

( ) ( ) … ( )
( ) ( ) … ( )

…
( ) ( ) …− − −

’ ’ ’

xx

a

a

a

x

n( )







































= ⇒ ( )  ( ) =

1

2 0
.

W a 0  (A1.42)
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If the matrix W x( )  is non- singular at any point x  in the interval of interest, 
then necessarily one has a = ⇒ = =0 a a

1 2
0 0, ,  …, a

n
= 0.  Then the functions 

Yj , , , ,j = …1 2  are called linearly independent. Note that in the context of ODEs, the 

matrix W is known as Wronskian.
If  ∈,  the Hilbert space, the subspace 

n
 is complete if every Cauchy 

sequence in 
n

 converges to an element in 
n
.  For definition of Hilbert space and 

Cauchy sequence, see Section A1.5.

A1.5  HILBERT SPACE

A complete inner- product space –  real or complex –  is called a Hilbert space .  
Completeness is a property of metric spaces. A space is complete if every Cauchy 

sequence converges. A sequence x
n{ }  is a Cauchy sequence if for all ε > 0  there 

exists N ∈  such that for every m n, >N, x x
n m

− < ε  in the sense that the norm of 
the differences approach zero. Hilbert spaces are named after David Hilbert (1862– 
1943) who introduced the concept while studying integral equations and functional 
analysis. All inner product spaces such as Euclidean space associated with the familiar 
dot product are Hilbert spaces. Specifically, the theory of Hilbert space generalizes 
the concept of Euclidean space to infinite dimensional space. Examples of Hilbert 
spaces include spaces of square integrable functions, Sobolev spaces (ℝeddy 1998) 
consisting of generalized functions and spaces of sequences.

A1.6  GREEN’S IDENTITY

In finite element method, the given boundary value problem (for instance Equation 
1.40 in Chapter 1) is reformulated in an integral form using Green’s identity. The 
integral form is known as weak form in the sense that the required differentiability 
conditions on the assumed solution (with respect to the spatial coordinates) are less 
stringent. Green’s identity is a combination of the familiar product rule and the diver-
gence theorem.

In vector form, the product rule is:

 ∇ ( ) = ∇ + ∇. . .v v vw w w  (A1.43)

Here v  is a scalar function and w  a vector function. By divergence theorem:

 
℧

→∫ ∫∇ ( ) = ( ). .v vn dw w
S

s  (A1.44)

where 


n  is the outward- directed unit normal on the boundary d. Combining 
Equations (A1.43) and (A1.44) gives:

 
℧ ℧ ℧

→∫ ∫ ∫∇ + ∇ = ( )v v vn d. . .w w w
d

s  (A1.45)
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If w = ∇u  with u being a scalar function, the last equation leads to Green’s identity:

 
℧ ℧ ℧

→∫ ∫ ∫∇ ∇ + ∇ ∇ = ∇( )v u v u vn u d. . .
d

s  

 ⇒ ∆ = − ∇ ∇ +
∂
∂







∆ = ∇ ∇∫ ∫ ∫
  

v u v u v
u

n
d. .

d
s, where  (A1.46)

∂
∂

= ∇
u

n
n u


.  is the directional derivative of the function u  in the direction of the unit 

normal. In the example problem of Figure 1.19, the test function U
j
 and trial function 

Y
j
 stand respectively for v  and u  in Equation (A1.46). The length of the rod 0 − l  

defines the domain   and the boundary d  consists of the two end points of the 
rod. Therefore, the weak form for the vibrating rod is obtained from Equation (1.42) 
in Chapter 1 as:

 
0 0

1 2
l

j

l

j A
U x y d U x f dx j∫ ∫( ) ( ){ } = ( ) = …  x , , ,  
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 (A1.47a)

From Equation (1.41) in Chapter 1, one has:
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 (A1.47b)

Application of Green’s identity to the first integral on LHS of Equation 
(A1.47b) gives:
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The last equation is identical to Equation (1.43) in Chapter 1. Note that the boundary 

condition term U
Y

nj

j

l∂

∂
0

 naturally emerges out of the weak formulation.

A1.7  BILINEAR FORM ON  ×  AND LINEAR FORM ON 

 α .,.( ) is a bilinear form on V V×  if α : V V× →  , i.e., α u v,( ) ∈  for all u v V, ∈  
and it is linear in both the arguments:

 α α αau bw v a u v b w v+( ) = ( ) + ( ), , ,  

 

α α αu aw bv a u w b u v

u v w V a b

, , , ,

, , ,

+( ) = ( ) + ( )
∀ ∈ ∈     and   (A1.49)

A bilinear form α .,.( )  on V V×  is symmetric if:

 α αu v v u u v V, , , ,( ) = ( ) ∀ ∈  (A1.50)

A symmetric bilinear form is positive semi definite if α u u u V, ,( ) ≥ ∀ ∈0   and posi-
tive definite if u u u V, , .( ) > ∀ ∈0   A symmetric bilinear form α u v V V, :( ) × →   is an 
inner product on V  if, for ∀ ∈u v V, :

 α αu u u u u, ,( ) ≥ ( ) = ⇒ =0 0 0and  (A1.51)

The norm associated with the inner product is defined by:

 u u u v V
V

= ( )( ) ∀ ∈α , ,
/1 2

 (A1.52)

( .) is a linear form on V  if  : V → , i.e., l u( ) ∈  for u V∈ .  It is linear, i.e., for 
all u v V, ∈ , we have:

   au bv u b v a b+( ) = ( ) + ( ) ∈a , ,   (A1.53)

A1.8  WEAK DERIVATIVE OF A FUNCTION IN , THE 
HILBERT SPACE

Let   be a domain in n  and D ( )  the set of C ∞ ( ) * functions with compact 
support in 

.  Let us also define the set of locally integrable functions in the com-
pact K ⊂  :

 L u u L K
loc K
1 1
 ( ) = ∈ ∀ ⊂{ }: :  (A1.54)

* Cm(a, b) functions
 y(x) is called a Cm(a, b) function if its derivative of all orders ≤ m – 1 exist and are continuous over the 

interval [a, b].
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L
K
1  denotes a locally integrable function such that for any u L

K
∈ 1 ,  the inte-

gral 
K

u x dx∫ ( )  is finite on every compact subset K ⊂ .  Now, we say a given 

function u L
loc

∈ ( )1
  has a weak derivative D uα ,  provided there exists a function 

D u L
loc

α ∈ ( )1
  such that:

 
 

∫ ∫( ) ( ) = −( ) ( ) ( ) ∀ ∈ ( )D u x x dx u x D x dx Dα α αφ φ1 ,  (A1.55)

If such a function exists we say that D uα  is the weak derivative of u x( ).  Here α  
is a multi- index and is an ordered n- tuples of non- negative integers. α  is a notation 
for the sum α α α

1 1
+ +…+

n
 with α

i
 being a non- negative integer. D uα  denote the 

partial derivative:

 D u
u

x x x
n

n

α
α

α α α=
∂

∂ ∂ …∂
1 2

1 2

 (A1.56)

Thus if α = m,  D uα  is one of the mth  partial derivatives of u. If n = 3, we 
can take, for example, α = ( )1 0 3, , . With α = + + =1 0 3 4, D uα  is the fourth order   
partial derivative given by:

 D u
u

x x x

u

x x
n

α =
∂

∂ ∂ ∂
=

∂
∂ ∂

4

1
1

2
0 3

4

1 3
3

 (A1.57)

See ℝeddy (1998) for further details.

A1.9  FARKAS’S LEMMA

Equation (1.61a) in Chapter 1 is the KKT condition for a constrained optimization 
problem and if it is satisfied, the optimum is realized and no further search is pos-
sible for a direction d which is both descent and feasible. This implies that the inter-
section of descent and feasible cones is empty (Figure 1.26), i.e., Equation (1.61a) 
in Chapter 1 has no solution and F H G∩ ∩ = φ. See Section 1.6.3, Chapter 1, for 
definitions of F G,  and H. This is highlighted by Farkas’ lemma. The statement of 
the lemma is as follows:

Let A ∈ ×m n  and b ∈n. Then, only one of the following two systems holds but 
not both.

(i) ∃ ∈y m  such that A y bT =  and y ≥ 0

(ii) ∃ ∈z n  such that Az ≥ 0  and z bT < 0  (A1.58)

In the context of KKT optimality conditions, rows of the matrix A  in the two 
systems represents the n - dimensional gradient vectors −∇ ( )t

i
x  of the constraints 
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t i m
i

x( ) = …, , , ,1 2  (equality or inequality) with x ∈n . The vector b  represents 

∇f , the gradient of the objective function. That the system (i) holds implies that 

the KKT conditions −∇ ( ) = ( )∑f t
i ii

m
x x* *λ  (corresponding to Equation 1.49a of 

equality constraint or 1.53a of inequality constraint in Chapter 1) with λ
i

≥ 0  are 

satisfied with at least a few of the constraints being active, i.e., t
i

x*( ) = 0  and the 
associated λ

i
 being strictly positive. The vector y  in system (i) stands for the vector 

of Lagrangian multipliers λ
i

i m, , , ,= …1 2 . Suppose that the above KKT conditions 
are not satisfied by x, i.e., the system (i) fails to hold, i.e., optimum is not yet realized. 
Noting that the vector z  in the system (ii) represents d, it is possible to have a search 
direction d ∈n which is a descent direction ∇ <f T d 0  and also a feasible one, i.e., 
−∇ ≥tT d 0. This corresponds to the system (ii). See Bazaraa et al. 2006 for further 
details on Farkas’s lemma.

A1.10  SADDLE POINT

To decide the behaviour of an objective function L x*( )  at a stationary point, it is 
needed to examine the Hessian H x x*( ) = ∇ ( )2L . Note that H  is symmetric. If it 
is positive definite, x*  is a minimum point and if negative definite, x  is a max-
imum point. If H x*( )  is indefinite, x*  is a saddle point. While the eigenvalues 
of a positive definite symmetric H x*( )  are all positive and are all negative for a 
negative definite H x*( ), an indefinite H x*( )  possess both positive and negative 
eigenvalues. Since H x*( )  signifies the curvature of the function at x*, the posi-
tive and negative eigenvalues correspond to the extreme values of the curvature 
of the function in different directions –  one of positive curvature and the other of 
negative curvature.

For instance, H x( )  of the objective function L x y x y rxy x,( ) = + + −2 2 2 ,    
r ∈  is

 H x( ) =










2

2

r

r
 (A1.59)

In terms of r, the optimum point x* =
−

−
−







2

4

2

42 2r

r

r
,  . With r < 2, both eigenvalues 

are positive and x*  is minimum. For r > 2, the eigenvalue are of opposite sign and 
x*  is a saddle point. Suppose if r = 3,  x* = −( )0 4 1 2. , .

T
 and the eigenvalues of 

H x( )  are – 1 and 5. With r = 2,  there is no stationary point.

A1.11  LEGENDRE TRANSFORM

Suppose that f nx( ) →:   with x ∈n  is a convex differentiable function. In 
terms of a variable p ∈n  conjugate to x, the Legendre transform denoted by 
 f nx( )( ) →:   is given by:
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  f h fx p xp xx( )( ) = ( ) = − ( ) max  (A1.60)

xp in the above equation means a vector dot product x p⋅ . Also, maxx .[ ]  indicates 
maximization of the expression within the square brackets, with respect to x  whilst 

p  is held constant. Thus, p xp= ( )′f  and xp ∈n  is the point where the bracketed 

expression is a maximum. The expression xp x− ( )f  is maximized since f x( )  is 

convex and the second order derivative
d

d
f

2

2x
xp f x x− ( )( ) = − ′′ ( )  is a negative def-

inite n n×  matrix. One has:

 h fp x p xp p( ) = − ( )  (A1.61)

Example. Consider the EL equations with respect to Lagrangian L x x, ( )  (see 
Equation 1.18 in Chapter 1):

 
∂
∂

−
∂
∂







=
L

x

d

dt

L

x
0  (A1.62)

Defining p  conjugate to x , let us transform the Lagrangian L x x, ( )  to the 
Hamiltonian H x p L,( ) = ( )  by Legendre transform. From Equations (A1.60– 61), 

p
L

x
x x p=

∂
∂

⇒ = ( )


 φ , , , say  and H x p px L x x p x p L x x p, , , , , .( ) = − ( ) = ( ) − ( )( )  φ φ  

Let us now show that the canonical Hamiltonian equations are:

  x
H

p
p

H

x
=

∂
∂

= −
∂
∂

  and  (A1.63– A1.64)

First consider the ℝHS of Equation (A1.63).

 

∂
∂

=
∂
∂

( ) − ( )( ){ }

= ( ) −
∂ ( )

∂
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∂
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φ φ

φ
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,
,

         
LL x x p

x p

x p

p

, ,

,

,φ
φ

φ( )( )
∂ ( )

∂ ( )
∂

 

= ( )φ x p,  (since the last two terms on the extreme ℝHS cancel with each other)

 = = ( )x LHS of Equation A  1 63.  (A1.65)
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Now from the ℝHS of Equation (A1.64), one has:
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∂

=
∂
∂

( ) − ( )( ){ }
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∂ ( )
∂

−
∂ (
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x x
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φ
 

 = −
∂ ( )

∂
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∂
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L x x

x

x p

x

, ,

since
φ

0  (A1.66)

But from EL equation, 
∂ ( )

∂
=

∂
∂







L x x

x

d

dt

L

x

, 



. So, from Equation (A1.66):

 
∂
∂

= −
∂ ( )

∂
= −

∂
∂







= − = (H

x

L x x

x

d

dt

L

x
p

,
.





 LHS of Equation A  1 64))  (A1.67)

The change of coordinates from x x, ( )  to x p,( )  gives the Jacobian =  

 

  det
1 0

2

2

  

∂
∂

∂
∂













 =

∂
∂

=
∂
∂p

x

p

x

p

x

L

x


 

 which shows that the Legendre transformation is invert-

ible if 
∂
∂

≠
2

2
0

L

x
.

A1.12  BELLMAN PRINCIPLE OF OPTIMALITY (BELLMAN AND 
KALABA 1964) AND DERIVATION OF THE HAMILTON- 
JACOBI- BELLMAN (HJB) EQUATION

Consider an n - dimensional dynamical system as described by Equation 1.71b in 
Chapter 1 (Section 1.7), reproduced below for a ready reference.

 x F x u= ( ) ( )( )t t t, ,  (A1.68)

The objective is presently to minimize a cost functional J  with respect to the control 
variable u t( )  as:

 minimize J t h T L t t t dt
t

T

x u x x u
0 0

0

, , , ,( ) = ( )( ) + ( ) ( )( )∫  

 s t satisfies Equation A. . .x t( ) ( )  1 68  (A1.69)
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Here L n m:   × × →  is a smooth convex function referred to as the running 

cost and h n: →  is the terminal cost. m  is the dimension of u t( ).  x xt
0 0( ) =  

is the initial state. F :    n m n× × →  is a vector- valued function defining 
the system dynamics. T  is the terminal time. With x xt

t( ) =:  and u ut
t( ) =:  we 

denote the set of all admissible control functions by U 0,T( ). To proceed further, one   

typically defines a value function V t
t

x ,( )  as the minimal cost to reach some final 

state x
T

, given the starting point at x
t
. That is:

 

V t J t

h T L

t U

t T

t t

U

t T t

T

x x u

x x

u

u

, min , ,

min

( ) = ( )

( )( ) +

∈
≤ ≤

∈
≤ ≤

∫=

τ

τ

τ

τ
τ ,, ,uτ τ τ( )





d

 

(A1.70)

The optimality principle may be restated in a recursive form by restricting 
to an interval  t t t, + ∆( ). To this end, we first split the time interval t T,( )  as 

t t t t t T, ,+ ∆(  ∪ + ∆[ ), Equation (A1.70) may thus be written as:

 

V t h L d
t U

t T

T
t

t t

x x x uu, min , ,( ) = ( ) + ( )

∈
≤ ≤

+∆

∫

          

τ
τ

τ τ τ τ

       + ( ) 

+∆
∫

t t

T

L dx uτ τ τ τ, ,  (A1.71)

ℝecognizing min , , ,
uτ

τ
τ τ τ τ τ∈

≤ ≤ +∆
( ) + ( )




∫U

t T

T
t t

T

h L d and Tx x u    as V t t
t t

x +∆ + ∆( ), , 

we have:

 V t L d V t t
t U

t T t

t t

t t
x x u xu, min , , ,( ) = ( ) + + ∆( )




∈
≤ ≤

+∆

+∆∫τ
τ

τ τ τ τ   (A1.72)

Further, as ∆t  is small, one may write 
t

t t

t t
L dt L t t

+∆

∫ ( ) ≅ ( )∆x u x uτ τ τ, , , ,  and hence 

get the value function in a recursive form:

 V t L t t V t t
t u U t t t t

t

x x u x, min , , ,( ) ≅ ( )∆ + + ∆( ){ }
∈ +∆  (A1.73)
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Expanding V t t
t t

x +∆ + ∆( ),  by Taylor’s expansion about V t
t

x ,( ) and neglecting the 

terms quadratic or still higher in ∆t  and ∆x, Equation (A1.73) takes the form:

 
V t L t t V t t

V

t

V

xt t t t

T

t
t

x x u x x
u U

, min , , ,( ) ≅ ( )∆ + ( ) + ∆
∂
∂

+
∂
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∈


































 (A1.74)

With cancellation of V t
t

x ,( )  from both sides (note that the term is independent of the 

control variable u( ))t  and division by ∆t , we take limit as ∆ →t 0  to yield:

 0 =
∂
∂

+ ( ) +
∂
∂





 ( )










∈

V

t
L t

V

x
t

t
t t

T

t t
min , , , ,
u U

x u F x u  (A1.75)

Equation (A1.51) is the HJB equation which is a nonlinear PDE. The solution to the 
HJB equation gives the value function V  which, being the optimal cost of the control 
problem, yields the control variable u t( ).

a1.12.1  lqr proBlem (deterministic case) and hjB eqUation

If it is an LQℝ problem as in Example 1.5 in Chapter 1, we have F x u Ax Butt t t
t, ,( ) = +  

and L t T Tx u x Qx u R, ,( ) = + . See Equations 1.97– 1.98 in Chapter 1 for definitions of 
Q R A, ,  and B  which are constant matrices. Equation (A1.51) then takes the form:

 0 =
∂
∂

+ +( ) +
∂
∂







+( )
∈

V

t

V

xt
t
T

t t
T

t

T

t t
min
u U

x Qx u Ru Ax Bu  (A1.76)

For the HJB equation (A1.76), one may try a solution in the form V t
t t

T
t t

x x K x,( ) =  

with K  symmetric. Using 
∂
∂

=
V

t t
T

t t
x K x  and 

∂
∂

=
V

x t t
2K x ,  we substitute the 

assumed solution for 
V

 in Equation (A1.76), and apply the first order optimality 

condition 
dV

du
= 0  to get:

 2 2 0 1B K x Ru u R B K xT
t t t t

T
t t

+ = ⇒ = − −  (A1.77)

Thus, we find that the solution to the control variable u
t
 in terms of x

t
 is the same as 

the one obtained in Chapter 1 by the Pontryagin’s minimum principle (see Equation 
1.92 of Chapter 1). Substituting u

t
 in the HJB equation (A1.76) gives:
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 K Q A K K A K BR B K
t

T
t t t

T
t

= − − − + −  (A1.78)

Note that Equation (A1.76) is the ℝiccati Equation (1.94) in Chapter 1 which is a 

nonlinear ODE with a terminal condition K St
f( ) =  (see also Equation 1.95 in 

Chapter 1). The equation needs to be solved backwards while the system dynam-
ical equation x Ax Bu= +

t t
 is solved in forward time with the initial condition 

x xt
0 0( ) = . As may be observed, for the LQℝ problem, the two ODEs are uncoupled 

and the solution may be obtained with little difficulty. However, for a general non-
linear dynamical system, the HJB PDE (A1.75) is not amenable for an easy solution 
and the same holds for the SOC problem.
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A2.1  SOBOLEV SPACE

A Sobolev space of order m, denoted by H m Ω( )  is defined to be the space that 
consists of functions in L2 Ω( )  that together with all their weak derivatives up to 
and including m, belong to L2 Ω( ). L2 Ω( )  is the space of square integrable functions 
on Ω  as:

 L v v v dx2 2Ω Ω( ) = < ∞{ }∫:  is defined on  such that
Ω

 (A2.1)

See Appendix 1 for the definition of a weak derivative. Thus:

 H i v D v L mm Ω( ) = ∈ ( ) ≤{ }:  for all  such thatα α2 Ω , ±  (A2.2)

where α  is called the multi- index and D vα  denotes the weak derivative of v. H m Ω( )
is a Hilbert space (Appendix 1) with an inner product defined by:

 u v D u D v dx u v H
H

m

m
m, ,

|

( ) = ∈ ( )∫ ∑
≤

Ω
Ω

α

α α   for  (A2.3)

A2.2  STIFFNESS MATRIX, Ke and the Sensitivity Matrix,  
 

∂
∂
K

, i =1,2,...10
e

ix

Each element stiffness matrix K e
n n[ ] ×

 is symmetric where n = 8  is the number of 

dofs of the truss element (Figure 2.12). The sensitivity matrix 
∂
∂

= …
K e

i
x

i, , , ,1 2 10  for 

each element is also symmetric.
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Initialize K e
x x[ ] = [ ]8 8 8 8

0  and 
∂
∂













= [ ]K

x

e

i x

x

8 8

8 8
0 ,  for i = …1 2 10, , , . Let c = cos2 

π/ /4 2( ) ( )sqrt .  The non- zero elements of K e above its diagonal are:

K
E

L
A A cA cA K

E

L
cA cAe e1 1 1 2

1 2 8 10 8 10
, , , ,( ) = + + +( ) ( ) = − +( )  

K
E

L
A K c

E

L
A K c

E

L
Ae e e1 3 1 7 1 8

2 10 10
, , , ,, ,( ) = − ( ) = − ( ) = −   

K
E

L
A cA cA K

E

L
A K c

E

L
Ae e e2 2 2 6 2 7

5 8 10 5 10
, , , , , ,( ) = + +( ) ( ) = − ( ) = −   

                 K c
E

L
Ae 2 8

10
, ,( ) = −

 

K c K c K ce e e3 3  3,4 3,5

       

 , , ,,( ) = +( ) ( ) = − ( ) = −
E

L
A A

E

L
A

E

L
A

2 9 9 9

          3 6K ce , ,( ) =
E

L
A

9  

K c K c K c Ke e e e4 4  4 5 4 6  4 8 , , , , , ,,( ) = +( ) ( ) = ( ) = − ( )E

L
A A

E

L
A

E

L
A

6 9 9 9
== −

E

L
A

6
,  

K
E

L
A cA cA K c

E

L
A A K

E

L
e e e5 5   , , , , ,( ) = + + +( ) ( ) = −( ) ( ) = −A

3 4 7 9 7 9
5 6 5 7 AA

4
,  

K c c K c K ce e e6 6  7 7  7 8, , , , ,( ) = + +( ) ( ) = +( ) ( ) =
E

L
A A A

E

L
A A

E

L
A

5 7 9 4 10 100
,  

K ce 8 8,( ) = +( )E

L
A A

6 10
 (A2.4)

With the element stiffness matrix, the non- zero elements of 
∂
∂

= …
K

x
i

i, , , ,1 2 10  are 

obtained as follows:
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(A2.5)

A2.3  POLYNOMIAL IN COMPUTING TIME

Computing (running) time of an algorithm is generally referred to by the time com-
plexity and is expressed as the amount of time taken by the algorithm for some size 
n of the input to the problem. It denotes the total number of elementary operations 
required by the algorithm to solve the problem of size n.  Time complexities are 
classified as constant, linear, logarithmic, polynomial, exponential, etc. Of these, the 
polynomial and exponential are the most prominent ones. An algorithm A is said to 
be a polynomial- time algorithm for a problem P if the number of operations required 
to solve P by applying A is given by a polynomial on the size of the input, or bounded 
by a polynomial function f n nk( ) ≤ τ , τ > 0. It is usually expressed as f n O nk( )= ( )
using the big ‘O’ notation (Section 1.7, Chapter 1). For example, O n( )  is a linear 
time algorithm and O n2( )  a quadratic time algorithm. On the other hand, algorithms 
with exponential running times are not polynomial, i.e., if the computing time is 
upper bounded by 2 poly n( ) ,  where poly n( )  is some polynomial in n and formally 
expressed as by f n O( ) =  ( )2nk  for some constant k. The familiar operations such 
as addition, subtraction, multiplication, and division, including square roots, powers, 
and logarithms are considered to be performed in polynomial time. Exponential- 
time algorithms are obviously inefficient, since the execution time grows fast as the 
problem size n increases. An example for the exponential- time algorithm is the brute- 
force technique in solving the travelling salesman problem (Table 1.3, Chapter 1). 
Problems that can be solved by a polynomial- time algorithm are also called tract-
able problems. Khachian (1979) used the first polynomial- time algorithm for linear 
programming by simplex method. Karmarkar (1984) presented an efficient poly-
nomial time algorithm for the simplex method with f n O n L.( )= ( )3 5 2  as compared   
to f n O n L( )= ( )6 2  of the method used by Khachian. n is the dimension of the 
problem and L  is the number of bits in the input.

A2.4  SYSTEM RELIABILITY AND RELIABILITY INDEX

Here we provide a brief account of the method of computing the reliability index for a 
system involving a set of random parameters and a random environment (e.g. external 
loading). We refer to the following references (Ang and Tang 1984, Melchers 1999, 
Maymon 1998, Nowak and Collins 2000, Manohar and Gupta 2003) for a more com-
prehensive treatment of the subject.

Suppose that X = …( )X X X
n

T

1 2
, , ,  represents the system states including the 

loading effects. If g g X X X
n

X( ) = …( ):
1 2
, , ,  is taken as the performance function,   
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 g X( ) = 0  defines the limit state function representing the failure surface (see 
Figures 2.28, Chapter 2, and also Figure A2.1) which is, in general, nonlinear in X. 
The probability of failure is then defined as:

 P f d
g X

failure( ) = ( )( )<∫ 0
X X  (A2.6)

f(x) is the joint pdf of the state vector X. The above integral is multi- dimensional and is dif-
ficult to evaluate –  analytically or otherwise. For example, in the two- dimensional linear 
case (Figure A2.1), letting the loading effect T X=

1
 and the system mechanical imped-

ance (strength) S X=
2
,  the performance function is given by:

 g X X g S T S T
1 2
, ,( ) = ( ) = −  (A2.7)

Suppose that the probability distributions of S  and T  are known with respective 
means µ

S
 and µ

T
 and variances σ

S
2  and σ

T
2 .  In case S  and T  are (uncorrelated) 

normals, M S T: = −  is also normal. Now, M < 0  defines system failure (see Figure 
A2.2) whose probability is given by:

 P failure( ) = ( ) = <( ) = ( )
<∫ M M M

f m dm P M F
0

0 0  

FIGURE A2.1 System reliability in a two- dimensional case; (a) failure surface in S and T
(normal random variables) and (b) failure surface in reduced variates, Z

S
 and Z

T
-  standard 

normal variables.
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 (A2.8)

Here Φ (.) is the probability distribution function of a standard normal variable. Thus, 

if β
µ
σF

M

M

: = ,  the probability of failure is given by Φ ( −β
F

) and β
F

 is known as the 

reliability index. In terms of reduced variates Z
S

 and Z
T

 defined as Z
S

S
S

S

=
− µ
σ

 

and Z
T

T
T

T

=
− µ
σ

,  the first two moments of M  are given by µ µ µ
M S T

= −  and 

σ σ σ
M S T
2 2 2= + .  Therefore, the probability failure is given by:

FIGURE A2.2 (a) pdf of limit state function M S T= − and probability of failure P M <( )0
shown by the hatched area and (b) pdf of limit state function in terms of reduced variate 

Z
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M
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=
− µ
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and probability of failure P Z
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< −






µ
σ

shown by the hatched area.
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 Φ Φ−






= −

−

+











µ
σ

µ µ

σ σ
M

M

S T

S T
2 2

 (A2.9)

Thus β
µ µ

σ σF
S T

S T

=
−

+2 2
. Now, the limit state function S – T = 0 ⇒ Z

s
σ

s
 – Z

T
σ

T
 +   

m
S 
– m

T
= 0 is a straight line (Figure A2.1) in the space of reduced variates. It may 

be observed that the perpendicular distance from the origin to the straight line is 

µ µ

σ σ
S T

S T

−

+2 2
 which leads to the result that the reliability index β

F  is the minimum 

distance from the origin of the standard normal space to the surface of the limit state 
function g.

A generalization of the above result is as follows.
If g X( )  is a function of uncorrelated normal variables, the reliability index   

β
F

 is  the least distance from the origin of the space of reduced variates to the 

hypersurface g Z Z Z
X X X X X n Xn n

σ µ σ µ σ µ
1 1 2 21 2

0+ + … +( ) =, , , ,  where Z
X

i

i X

X

i

i

=
− µ

σ
,    

i n= …1 2, , , .  This implies that if Z
i
* , i n= 1 2, ,..,  is the point on the hypersurface 

nearest from origin, β
F ii

n
Z= ( )( )=∑ *

/2

1

1 2

. The point Z Z Z
n1 2

* * *, ,..( )  is known as the 

most probable failure point or the design point.
The probability of failure is thus obtainable through computation of β

F
 

instead of evaluation of the multi- dimensional integral 
M M

f m dm
<∫ ( )

0
 in 

Equation (A2.8). If X  is normal (uncorrelated), Z
i
* , i = …1 2, ,  may be 

obtained by constrained minimization of the function Z
ii

n ( )=∑ 2

1
 under the con-

straint g Z Z Z
X X X X X n Xn n

σ µ σ µ σ µ
1 1 2 21 2

0+ + … +( ) =, , .,
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Appendix 3 

A.3.1  MONTE CARLO (MC) SIMULATION OF RANDOM 
VARIABLES (RVS) WITH SPECIFIED PROBABILITY 
DISTRIBUTION

MC simulation aims at sampling of RVs with specified probability distributions. For 
simple probability distributions, sampling may be easy by methods such as inver-
sion, rejection and importance sampling. These methods use transformation of RVs 
along with random number generation (see Appendix 1). We consider a few examples 
to highlight these straightforward techniques of inversion, rejection and importance 
sampling.

a3.1.1  inVersion method of samplinG rVs

Random numbers with a specified probability distribution (other than uniform) are 
obtained via an appropriate transformation. Considering two scalar random variables  
X and Y, we can write:

 F y F x y F F x
Y X Y X( ) = ( ) ⇒ = ( ) 

−1  (A3.1)

In order to make sense of the last identity involving the inverse of F
Y

,  it is assumed 
that F

X
 and F

Y
 are absolutely continuous* with respect to each other.

* Absolutely continuous functions
Absolute continuity of a function is a smoothness property and is stronger than uniform continuity. 
A function f x( )  is absolutely continuous on an interval a b,[ ] ∈ if for each ε > 0,  there exists 

a δ > 0  such that f b f a
i ii

n ( ) − ( ) <
=∑ ε

1
 for a finite collection of non- overlapping sub- intervals   

 a b i n
i i
, ,  ≤ ≤{ }1  in the interval a b, ,[ ]  satisfying the condition b a

i ii

n
−( ) <

=∑ δ
1

.  If two functions   
 
f x( )  and g x( )  are absolutely continuous having the same support, they are absolutely continuous 

to each other.
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Today’s computing machines are equipped with random number generators that pro-
vide random numbers uniformly distributed in 0 1,[ ]. Thus, with a set of numbers  
u u

1 2
, , .…  (generated as realizations of the random variable  ~ ,U 0 1( ) ), the  

corresponding set for the random variable Y is obtained via the inverse transformation:

 y F u i
i Y i

= ( ) = …−1 1 2, ,  (A3.2)

The numerical generation of a random variable Y  is illustrated graphically in 
Figure A3.1.

a3.1.2  simUlation of a discrete rV By inVersion method

In the following example, we use the inversion method to realize samples of a discrete 
probability distribution.

Example A3.1. Consider a discrete RV X SΩ( ) →  where Ω = { }ω ω ω
1 2 3
, ,  

and S = { }1 2 3, , .  The given discrete probabilities are p P
1 1

1 0 287= =( ) =ω . ,  

p P
2 2

2 0 467= =( ) =ω .  and p P
3 2

3 0 246= =( ) =ω . . It is required to sample the 

distribution.

Solution. For instance, the three outcomes ω ω ω
1 2 3
,  and  may denote the possible 

three weather conditions on a day, i.e., Ω = ( )cloudy rainy sunny, , . The pdf and CDF 
are shown in Figure A3.2. To simulate Y, we use the transformation (Figure A3.1):

 P Y y F y F u P u
Y

≤( ) = ( ) = ( ) = ≤( )   (A3.3)

with  ~ ,U 0 1( ) , i.e.,   is a uniformly distributed RV in the interval 0 1,[ ] . Note 
that, for a given u, it is obvious from Figure A3.1 that F u u ( ) = . The realization y is 
hence obtained by the inversion:

FIGURE A3.1 Generation of realizations for X  of a specified F y
Y ( )  via a transformation 

using uniformly distributed random variable.
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 y F u
Y

= ( )−1  (A3.4)

For a discrete RV, no explicit inversion is necessary. Figure A3.3 shows the two 
distributions together, which is the discrete version of Figure A3.1. To realize y, we 
will first have a u  from the random number generator. If F u u p ( ) = ≤ =

1
0 2874. ,  

then we take y = 1  (cloudy). If u p p≤ + =
1 2

0 7542. , then we identify y = ( )2 ,rainy      
Lastly, If u p p p≤ + + =

1 2 3
1 0.  then y = ( )3 .sunny

While performing the simulation to get samples in Figure A3.3, let u  be obtained 
as 0.296. With this value of u p p p> ≤ + =

1 1 2
0 7542 and . , we realize y = 2 (as 

marked in the figure) and identify the weather condition on the particular day as 
‘rainy’. Two more states are identified and marked in the figure for other typical 
observations of u.

a3.1.3  simUlation of a continUoUs rV By inVersion method

The inverse transformation method is advantageous when F x
Y

− ( )1  is known expli-
citly in terms of x.

FIGURE A3.3 Sampling of the discrete RVY; F y
Y ( ) –  CDF of the discrete RVY, F u ( )  –    

CDF of uniformly distributed RV; arrows marked ‘1’, ‘2’ and ‘3’ indicate the realizations of the 
RV Y. Note that the figure is not drawn to scale.

FIGURE A3.2 (a) pdf and (b) CDF of the discrete random variable Y.
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Example A3.2. Suppose that we are required to simulate the Rayleigh RV X with pdf:

  (A3.5a)

Solution. In this case, the CDF of the Rayleigh RV X is:

 F x x
x

dx
x

x
X

x( ) = −





= − −





≤ <∫ 0

2 2

2
1

2
0 exp exp , .∞  (A3.5b)

As per Equation (A3.4), one has:

 x F u i
i X i

= ( ) = …−1 1 2, ,  

 = − −( )( )2 1log u
i

 (A3.6)

Figure A3.4 shows the pdf and CDF of the simulated Rayleigh RV. The theoretical 
graphs are also indicated in the figure.

Obviously, the method is feasible if the inversion (in Equation A3.2) is possible. 
Most practical requirements may involve complicated expressions for probability 
distributions rendering the inversion method difficult to adopt. In addition, one may 
face difficulty when it is required to sample a RV X with pdf  explicitly unknown. 

For instance,  may be known only up to a normalizing constant. Simulating the

Boltzmann distribution in simulated annealing method of optimization (Section 3.4.2, 
Chapter 3) is one striking example. Methods like rejection sampling and importance 
sampling are some of the popular alternatives.

FIGURE A3.4 Sampling by inversion method of Rayleigh RV X : (a) simulated pdf and   
(b) simulated CDF, theoretical pdf and CDF shown in dashed lines.
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a3.1.4  rejection samplinG (Von neUmann 1951)

Suppose that  is the target pdf. The rejection method uses a proposal pdf h x
X ( ) 

which is easier to simulate than . We select h x
X ( ) such that:

  (A3.7)

The method involves the following steps to obtain the realizations for the target 
density .

(i) Generate random sequence { }x
i

 according to h x
X ( ) (since realizations from 

h x
X ( ) can be more readily generated using Equation A3.4).

(ii) Generate a random sequence { }u
i

 uniformly distributed over 0, Mh x
X i( )( ). 

The point x u
i i
,( ) will be from a uniform distribution in the area below Mh x

X ( ).
(iii) If , then accept x

i
 as a realization from . The point x u

i i
,( ) is

   positioned in the area below the  curve (e.g. x u
2 2
,( ) in Figure A3.5

(iv) If , then reject x
i
 (e.g. x u

1 1
,( ) in Figure A3.5) and return to step i).

The point x u
1 1
,( ) in Figure A3.5 is rejected and x u

2 2
,( ) accepted, i.e. x

2
 is an accept-

able realization from .

FIGURE A3.5 Sampling by rejection method of the target density ; x
1
 is to be 

rejected since  and x
2
 is an acceptable realization from  since .
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Further details on the method and validation of the above procedural steps may be  
found in Roy and Rao (2017). The application of the method is illustrated via the  
following example.

Example A3.3. Consider sampling by the rejection method of the Beta distribution 
with pdf , 0 1< <x .

Solution. Often, it may be difficult to simulate the target pdf by the inversion method. 
To use the rejection method, we take the proposal pdf h x

X ( ) to be uniform over 0 1, .( )  
To find the constant M such that Equation (A3.7) is satisfied, we maximize 

. This leads to M =  
135

64
. Figure A3.6 shows the pdf and CDF of the

generated random sequence for the beta distribution. Comparisons with the theoret-
ical pdf and CDF are also shown in the figure.

a3.1.5  importance samplinG method (rUBinstein 1981)

In addition to the fundamental problem of obtaining samples from a probability dis-
tribution, one often wishes to evaluate expectations such as:

  (A3.8)

where g x( ) →: . See Appendix 1 for details on the expectation operator E .[ ]. Let 
I denote the integral in the last equation. When  has a standard form, e.g. Rayleigh 
or exponential, it is straightforward to sample from it by using the inversion method. 
If the sampled values are x x x

N1 2
, ,… , then one has the following sampled average as 

an approximation to the integral I:

 I g
N

g x
N i

N

i( ) = ( )=∑1
1

 (A3.9)

FIGURE A3.6 Sampling from beta distribution by rejection method: (a) simulated pdf and 
(b) simulated CDF; theoretical pdf and CDF are also shown in dashed lines.
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To denote that x i N
i
, , , ,= …1 2  are sampled from the pdf , we usually write 

. As N → ∞ there is a finite probability that I g
N ( ) does not deviate much 

from E g x( )  .
In fact, by the law of large numbers,† one may have:

 lim
N N

I g E g x
→

( ) = ( ) ∞
 (A3.10)

In many instances, direct sampling from the target density  is difficult. Importance

sampling technique is a method useful for sampling particularly from high- 
dimensional, complicated distributions. As in the rejection method, we use a proposal 
pdf p x

X ( ) whose support‡ includes that of . Write the integral I as:

  (A3.11)

The subscript ‘p’ in E
p

.[ ] indicates that the expectation is with respect to the pdf 
p x

X ( ). We have an estimate for the original integral I as:

  
(A3.12)

In Equation (A3.12), x p x
i X

~ ( ). We express the sampled average in the last equation 

by I
gf

pN







. It is expected that with a finite N , the RV I
gf

pN







 might have smaller 

variance. In this context, the sample variance is:

  
(A3.13)

† Law of large numbers (LLN)
The law of large numbers is associated with the asymptotic nature of probabilities of events, empir-
ically estimated, for instance, from actual observations/ experiments. It is concerned with the conver-
gence of these estimates. There exist two versions of the law of large numbers, e.g. the weak and strong 
laws. Consider X j N

j
, , ,..,= 1 2  to be a sequence of independent random variables, each having a finite 

common mean, E X m j N
j

  = = …, , , ,1 2  and let x x x
N1 2

, , ,…  be the samples drawn for these RVs. 

The weak law of large numbers says that for a specified large number of trials of a random experi-

ment, the sample mean 
x x x

N
N1 2

+ +… +.
 stays near the value m  and may differ, though infrequently,     

by large values. On the other hand, the strong law of large numbers states that, with probability 1, the 
difference of the sample mean from m  may be made smaller than any given positive ε  for sufficiently 
large N. See Roy and Rao (2017) for proofs.

‡ Support of a function (Rudin 1976)
Support of a function  is the set of points contained in the domain of  where the function is   

non- zero. Similar definition applies in probability theory where the support of a RV X  is defined as 
the set 
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The above expression is in line with the definition of variance of a RVX:

 var X E X E X E X E X( ) = − [ ]( )



 = [ ] − [ ]( )2

2
2
 (A3.14)

The importance sampling method principally focuses on providing guidelines on the 
selection of the sampling distribution p x

X ( ) to obtain accurate estimates with reduced 
sample variance. It can be shown (Dimov 2008) that if  i.e.

 with c being a constant, the estimate will have the minimum 

variance. Also see the discussion in Roy and Rao (2017) on the choice of the sam-
pling pdf  p x

X ( ). Specifically for an integral as in Equation (A3.11), the main consid-

eration in the choice of  p x
X ( ) is to have  whenever g  in the integral 

is large, i.e. to have  to be dominated by p x
X ( ) in the sub- domain(s) of  where 

 has larger absolute values.

In regions of relatively smaller g , one may have ; but this condition

is of less relevance since contributions to the integral from  these regions are insub-
stantial. The following example clarifies some of these issues related to the imple-
mentation of the method.

Example A3.4. We evaluate the integral I x e I
e

dxx
x

x

=




∫ ≤{ }

−


4 4

2

2
2

2

2
./

/

π
 by the 

importance sampling method. I
x≤{ }2

 is an indicator function defined by:

 I x
x≤{ } = ≤

2
1 2,  for  

 = 0,  otherwise  (A3.15)

Solution. One way of evaluating I is by treating the integrand as g x f x( ) ( ) and posing 
the integral as E g x

f ( )  where g x x e Ix
x( ) = ≤{ }

4 4
2

2 /  and the expectation operator is 

with respect to the pdf . Without resorting to the importance   

sampling method, we sample directly from  which is recognized as the normal 

pdf corresponding to X ~ , 0 1( ). Using these samples, the MC estimate I
N
 for I is 

obtained from 10 independent MC runs and with N E= 2 4 and is shown (in plus sign) 
in Figure A3.7.

Now, introducing a new sampling pdf h x( ) which is chosen to be a normal with 
non- zero mean 2, the integral I  may be written as:

 I
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 (A3.16)

E
h

.( ) in Equation (A3.16) stands for expectation with respect to the new sampling 
pdf h x( ). That is, an estimate for I is obtained by sampling X h x~ ,( ) = ( ) 2 1  and 
averaging similar to Equation A3.12. The new estimate which is better than the ori-
ginal one is also shown (in the star sign) in Figure A3.7. Sampling efficiency may 
be observed in Figure A3.8 from a comparison of standard deviations σ of the two 
estimates.

With a proper choice of µ, one may improve the sampling efficiency and have an 
improved variance reduction in obtaining the estimate (see Roy and Rao 2017).

A3.2  MARKOV CHAINS (STROOK 2005, NORRIS 2012)

A Markov chain is a discrete stochastic process. A stochastic process is a parametrized 

family of random variables X X t t T
t

= ( ) ≥ ∈ ∈{ }ω ω: 0, , Ω  where t is often a scalar 

(real) parameter defined on an index set T  (finite or countable or even uncountable). 
T ∈ +  may be the familiar time axis (say, an interval on the time axis). As defined in 
Appendix 1, a random variable (RV) denotes a mapping of the probability space Ω  

FIGURE A3.7 MC estimate I
N
 of the integral I  of Example A3.4 with N = 20,000: (a) estimate 

without important sampling in +  sign and (b) estimate with important sampling in * sign.
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to  with ω  representing the possible outcomes of the RV and constituting Ω. For 

a fixed ω* ∈Ω, X
t

ω*( ) is often called a path (or realization or trajectory) of the sto-

chastic process. On the other hand, for a fixed t T* ∈ , X
t* ω( )  is an RV. In Appendix 

4, a detailed description of stochastic processes is provided which is fundamental to 
the development of many stochastic optimization methods.

In contrast to the continuous time and continuous state stochastic process defined 
above, a discrete Markov chain may be visualized as an ensemble or collection of 
RVs , ,X X

0 1
…{ }evolving at discrete time instants. Moreover, the RVs may map Ω  

to a finite state space S a a a
m

= …{ }0 1
, , ,  with each a

m
∈. Markov chains were first 

introduced by the Russian mathematician Andrei Andreyevich Markov (1856– 1922). 
In a Markov chain, the sequence of random variables exhibits the Markov prop-
erty: the present state depending only on the immediate past. Expressed in terms of 
conditional probabilities, the property is expressible as:

 

P X a X a X a X a

P X a X

n j n i n i

n j n

+ − −

+

= = = … =( )
= =

1 1 1 0 0

1

|

           |

, , ,

( == a
i
)  (A3.17)

This is analogous to (or the discrete analogue of) the definition of a Markov process 
(Roy and Rao 2017). A stochastic process is called Markov if, conditioned on the current 

FIGURE A3.8 MC estimate I
N
 of the integral I  of Example A3.4 with N =  20,000, standard 

deviation σ  of the estimate: (a) without important sampling in +  sign and (b) with important 
sampling in * sign.
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state, its future is independent of its past. In Equation (A3.17), ( )P X a X a
n j n i+ = =

1
|  is     

known as the transition probability (transition kernel) denoted by ij –  the probability 
that X

n+1
 assumes the value a

j
 given that X a

n i
=  at the previous step (must be under-

stood in the sense of a density in the continuous case). For a finite state Markov chain 
with state space S a a a

m
= …{ }0 1

, , , , we define a transition probability matrix as:

  =   ∈ ≤ ≤+ × +
ij

m m i j m 1 1 0, ,  (A3.18)

Here 0 1≤ ≤
ij

 and 
ijj

i= ∀∑ 1 . (i.e., each row is a distribution over S). It follows 

that the ijth entry of the matrix  n (nth power of  ) gives the probability that the 
Markov chain, starting in state a

i
, will be in state a

j
 after n steps.

The matrix T is useful to know the probability of the present state (after, say, 
n transitions), given the corresponding probability of the initial state X a

i0
= ,     

i m= …1 2, , , . Thus if p 0
1
0

2
0 0( ) ( ) ( ) ( )= …( )p p p

m
, , ,  is the vector of initial probabilities, 

then the probability of the states after n transitions is obtained as:

 p pn n( ) ( )= 0   (A3.19)

This is the same as p pn n T( ) ( )= ( ) 0  except that p 0( ) is a row vector in the former case 
and a column vector in the latter. Equation (A3.19) is known as the Kolmogorov- 
Chapman equation. It may often be the case that all the elements of p 0( )  are zero 
except for a single entry of unity corresponding to the state where the process starts. 
The transition matrix   is regular if any power of the matrix contains all positive 
(non- zero) entries. A Markov chain is regular if its   is.

Example A3.5. Consider RVs X X �
0 1
, ,…{ }  representing the weather conditions –      

cloudy, rainy and sunny –  on consecutive days with each RV X
n

S: Ω → .  Here 
Ω = { }cloudy  rainy and sunny, is the probability space and S

n
= { } = ( )1 2 3, , X Ω on 

. Let us take the transition probability matrix   as:

  =
















0 6 0 3 0 1

0 2 0 6 0 2

0 1 0 4 0 5

. . .

. . .

. . .

 (A3.20)

Solution. It is easy to verify that all powers of   have positive (non- zero) entries and 
the Markov chain is regular. Suppose that p 0 0 1 0( ) = { }, , . The distribution of the states 
at the end of, say, five steps is

 p p5 0 5 0 29 0 465 0 245( ) ( )= = [ ] . . .   (A3.21)
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The interpretation of the result is that while it is a fully rainy day today, the fifth day  
from now may be cloudy with probability =  0.29, rainy with probability =  0.465 and  
sunny with probability =  0.245.

The transition probability matrix   can be described by a directed graph whose 
vertices are the states and edges with arrows are the transition paths from a state a

i
 to 

a
j
 with probability 

ij
. For the last example, Figure A3.9 shows the directed graph for 

T in Equation (A3.20).

a3.2.1  irredUciBility of a markoV chain

If all states in a Markov chain communicate with each other, it is irreducible. Two 
states a

i
 and a

j
 communicate with each other –  denoted by a a

i j
↔  –  if for all 

n n
1 2

0, ≥  one has:

  
i j
n

j i
n

, ,
1 20 0> >  and  (A3.22)

If a Markov chain is irreducible, every state a
j
 is eventually reachable, starting 

from any other state a
i
, i.e: P | for some X X

n j i
a a n= =( ) > ≥

0
0 0, . Irreducibility is 

an equivalence relation in that a a
i j

↔  and a a
j k

↔  is equivalent to a a
i k

↔ . The 

Markov chain of Example A3.5 is irreducible.

FIGURE A3.9 Directed graph for the transition probability matrix T in Example A3.5; state 
space S = ( )1 2 3, ,  on  and the probability space Ω = ( ) = ( )−X S

n
1 cloudy rainy sunny, ,  where 

the RV X S
n
: Ω → .
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Suppose that we have a four- state Markov chain with the transition matrix:

  =



















0 5 0 5 0 0

0 75 0 25 0 0

0 0 5 0 2 0 3

0 0 0 1

. .

. .

. . .
 (A3.23)

The corresponding transition graph is shown in Figure A3.10. The Markov chain is 
reducible in that the state space S may be reduced to non- overlapping sets as 1 2,{ }, 
3{ } and 4{ }.

a3.2.2  periodicity of a markoV chain

Periodicity of a state a
i
 is:

 d n
i i i

n= ≥ >( )gcd ,
,

0 0  (A3.24)

’gcd’ is the greatest common divisor. A familiar example for a periodic Markov chain 
is the one with the transition matrix:

  =










0 1

1 0
 (A3.25)

Here ,S a a= { }0 1
. We find that T  T2 2 1

1 0

0 1

0 1

1 0
l l=









 =









+and for all l = …1 2, ,  

and thus 
,


1 1
0n >  for even , , ,n = …2 4 6  with gcd =  2. Hence both a

0
 and a

1
 are of 

period 2. Therefore, the Markov chain is periodic. If d i
i

= ∀1, , then a Markov chain 
is aperiodic. An irreducible chain may be periodic or aperiodic.

The Markov chain in Example A3.5 is aperiodic in addition to being irreducible.

FIGURE A3.10 Transition graph for Markov chain with the matrix   given in Equation 
(A3.23).
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a3.2.3  stationary and limitinG distriBUtions of a markoV chain

The fundamental issue in the theory of Markov chains is its long- term or asymptotic 
behaviour. This is characterized by the existence of a limiting distribution for the 
Markov chain. Before discussing limiting distributions, we first consider the concept 
of a stationary distribution of a Markov chain. A row vector  of probabilities such 
that  is stationary (invariant) distribution of a Markov chain if:

  (A3.26)

It can be shown (Norris 2012) that if a Markov chain is irreducible and aperiodic, it 
has a unique stationary distribution which is the limiting distribution. A stationary 
distribution  is a limiting distribution if:

  
(A3.27)

Example A3.6. For the Markov chain with   in Equation (A3.25), we can iden-

tify the stationary distribution . The 2- state Markov chain may have a 

unique stationary distribution; but we observe that . Thus  is not a 

limiting distribution, because the chain, even though irreducible, is periodic with 
period =  2.

Example A3.7. The Markov chain in Example A3.5 is irreducible and aperiodic. We 
find the limiting distribution by Equation (A3.27).

Solution. After sufficiently many transitions (n ≥ 10), the associated transition matrix 
shows the property in Equation (A3.27), i.e.,

 lim

. . .

. . .

. .
n

n

>
=

10

0 2926 0 4634 0 2440

0 2926 0 4634 0 2440

0 2926 0 4634


00 2440.

















 (A3.28)

The stationary (and thus the limiting) distribution is . A few samples of the Markov 
chain are simulated and shown in Figure A3.11. Starting with the initial probabilities 
(on day 1) of the three states represented by the vector p 0 0 1 0( ) = { }, , , each sample of 
the Markov chain is obtained by Monte Carlo simulation. The probabilities p k( )  of 
the states on any kth day are generated from p pk k( ) ( )= 0  . The particular state on this 
day is decided by these discrete probabilities and simulated specifically by the inver-
sion method of simulation (see Section A3.1).
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a3.2.4  erGodic chains

Markov chains with the property of irreducibility and aperiodicity are known as erg-
odic chains. Regardless of the initial probabilities of the states, the ergodic Markov 
chains eventually reach the probabilities corresponding to the limiting distribution. 
It may be difficult, in general, to find the limiting distribution. An example is given 
in the following to obtain the limiting distribution utilizing the property in Equation 
(A3.26).

Example A3.8. For the three- state Markov chain in Example A3.5, let . The 
Markov chain is ergodic and we find the limiting distribution.

Solution. According to Equation (A3.26), we have , i.e.:

  

  (A3.29)

FIGURE A3.11 Typical four samples of Markov chain X kk( ) =, , , ,1 2 3 4 –  a discrete 
stochastic process –  of Example A3.5 simulated using the transition probability matrix T 
(Equation A3.20); initial probabilities (on day 1) of the three states –  p 0 0 1 0( ) = { }, , ; across the 
ensemble, states on any day denote an RV with a discrete sample space Ω = ( )1 2 3, ,   with 1– 1 
correspondence to the three states ‘rainy’, ‘cloudy’ and ‘sunny’.
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The above equations are linearly dependent.** Combined with the equation , 

Ϸ3 = 1, we get the unique solution  which is the

stationary distribution and indeed the limiting distribution. It is the same as the one 
obtained in Example A3.7.

a3.2.5  reVersiBle markoV chains

Often, it is of interest to construct Markov chains with a given limiting distribution  
and eventually to sample the process states. This is indeed the essence of Markov 
chain Monte Carlo (MCMC) sampling methods. In this context, we need to highlight 
the usefulness of reversible Markov chains (Kelly 1979, Aldous and Fill 2002, Strook 
2005). A Markov chain with transition matrix   is called reversible if there exists a 
probability distribution  such that:

  (A3.30)

The last equation is known as the detailed balance equation. If such a  exists, it is 
also the stationary distribution of the chain. This is proved below.

Proof: For fixed i m∈{ }0,  where m is the cardinality†† of the state space S, summation 
on both sides of Equation (A3.30) over j m∈{ }0,  gives:

  (A3.31)

But the LHS of the last equation gives rise to:

  (A3.32)

since the sum of the elements of each row in T is unity. Thus, from Equation (A3.31) 
we get:

  

  (A3.33)

So  is the stationary distribution. The proof indicates that a reversible Markov chain 
is ergodic.

** Linear dependence
A set of vectors v v v

n1 2
, ,...,{ }  is linearly dependent if there exist numbers a a a

n1 2
, ,...,  not all equal 

to zero such that:

 a v a v a v
n n1 1 2 2

0+ + + =  (i)

In case Equation (i) has only the trivial solution a a a
n1 2

0= = = =··· , then the set v v v
n1 2

, ,...,{ }  is lin-
early independent.

†† Cardinality
Cardinality of a set is a measure of its size, i.e. the number of elements in the set.
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As the name indicates, a reversible Markov chain possesses the following property:

 P X a X a X a
n n0 0 1 1

= = … =( ), ,
,

  

 = = = … =( )−P X a X a X a
n n n0 1 1 0
, , ,  (A3.34)

The property says that, for a reversible Markov chain with a a a S
m

m
0 1

1, , ,…( ) ∈ +  and 

a limiting distribution , the distribution of the process is the same when it is run 
backward as when it is run forward.

Assuming 0 ≤ ≤n m, we prove Equation (A3.34) by writing the LHS as:

 LHS  = = = … =( )P X a X a X a
n n0 0 1 1

, ,
,

 

 

= =( ) = =( ) = =( )…
= =( − −

P X a P X a X a P X a X a

P X a X a
n n n n

0 0 1 1 0 0 2 2 1 1

1 1

| |

|   ))  

  

  

  

  (A3.35)

Proceeding further finally leads to:

 
= =( ) = =( ) = =( )…

=

− − −

−

P X a P X a X a P X a X a

P X a X

n n n n n

n n

0 1 1 0 2 2 1 1

0 1

| |

|   ==( )a
1

 

= = = … =( )−P X a X a X a
n n n0 1 1 0
, , ,

 = RHS  (A3.36)

In the MCMC method, a Markov chain is designed to be ergodic so that the prob-
ability distribution over S asymptotically converges to the target distribution . In 
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achieving this goal, the detailed balance equation (A3.30) is utilized. This aspect is 
further highlighted in the section to follow.

A3.3  MARKOV CHAIN MONTE CARLO (MCMC)   
SAMPLING TECHNIQUES

MCMC methods constitute a class of Monte Carlo sampling algorithms that use the 
theory of Markov chains. Metropolis and Metropolis- Hastings algorithms belong to 
this category and are widely used to sample target pdfs as illustrated in the paragraphs 
that follow. Application of the algorithm is demonstrated in Section 3.4.2, Chapter 3, 
while presenting the simulated annealing technique of optimization.

These methods use the theory of Markov chains (Section A3.2) to realize samples 
from a given target density  or to evaluate integrals of the type in Equation 

(A3.8). The basic idea is to construct a reversible Markov chain having a state space 
S and whose limiting distribution is the target pdf. Thus, the Markov chain is designed 
to be ergodic in that the probability distribution over S converges to  regardless 

of the initial state. Compared to the Metropolis algorithm, the Metropolis- Hastings 
one is more general in constructing a reversible Markov chain. Suppose that we     
are given a target probability distribution . The Metropolis- Hastings (MH) 

algorithm is described below to generate a Markov chain on the state space 
S x x= …{ }0 1

, ,  with  as its limiting distribution. It is finally needed to prove that 

the generated Markov chain is reversible.

a3.3.1  metropolis- hastinGs (mh) alGorithm

At any ith step of the algorithm, let the current state of the RV be X x
i

= . Now, it 
involves sampling from a proposal (conditional) density q x x

j i
( | ) denoted by q

ij
 

which is easy to simulate. This proposal density q(. | .) can be arbitrary but has enough 
scattering to lead to wide exploration of the support of .

We generate y q x x
i

~ ( | ). Then we update X as:

X x y
i

= =+1
 with probability α x x

i j
,( )

 = − ( )x x x
i i j
   with probability 1 α ,  (A3.37a)

where j i= +1 and α x x
i j
,( ) is known as the acceptance probability and is given by:

 
a (x

i
, x

j
)
  (A3.37b)

Here  and . The updating step in Equation (A3.55a) is

accomplished by generating a random number u from the RV U U~ ,0 1( ) and 
accepting X

j
 if u x x

i j
< ( )α , . Otherwise, we reject the new state and set X X

i i+ =
1

.

 

 

 

 



434 Elements of Classical and Geometric Optimization

The transition density matrix of the MH algorithm is 
ij ij i j

q x x  = ( )



α , . It is 

required to know how the MH algorithm generates a Markov chain whose limiting 
distribution converges to . In this regard, it suffices to show that the algorithm 

satisfies the detailed balance equation (A3.30), i.e., the resulting Markov chain is   
reversible.

Proof: The detailed balance equation is:

  (A3.38)

For any i j, , we have:

  

  

  (A3.39a)

Similarly it is clear that the RHS of Equation (A3.38) may be shown to be:

  (A3.39b)

The last two equations indicate that the MH algorithm satisfies the detailed balance 
Equation (A3.30) and hence the Markov chain generated is reversible and the limiting 
pdf of the chain is the target density .

Example A3.9. Consider simulation of a bimodal pdf (Andrieu et al. 2003):

  (A3.40)

Solution. We use the proposal density q x x
x x

i
i|( ) = −

−















1

10 2

1

2 10

2

π
exp  which 

is a normal distribution  x
i
,10( ). Note that the selected proposal density is sym-

metric about x
i
, the current state. At the start of computations, x

0
 is taken as 1.0. At the 

ith step, we sample y from q x x
i

( | ) and get x
i+1

 as per the acceptance probability from 
Equation (A3.37a). The histogram of the samples obtained at the end of 5000 steps 
is shown in Figure A3.12. The result well approximates the target pdf in Equation 
(A3.40).

One characteristic feature of the MH algorithm is that the sequence x
i
 may not  

change for many computational steps because of rejections of the new samples y  
with probability �1− ( )α x x

i j
, . However, the consequent retentions of the current states  
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(unlike the rejection method) in the chain indeed renders the sampling of the target  
pdf more efficient. Further, in Example A3.9, the proposal density q x x

i
|( ) is sym-

metric, i.e.q x x q x x q q
j i i j ji ij
| |( ) = ( ) ⇒ =  and therefore, the acceptance probability 

is decided only by  and is independent of q. In fact, the algorithm using a symmetric

proposal density is known as the Metropolis algorithm. Choices of symmetric 
q include normal distributions or uniform distributions centred at the current state     
x

i
. The simulated annealing (SA) method of optimization described in Section 3.4.2, 

Chapter 3, uses the Metropolis- Hastings algorithm with an unsymmetric proposal 
pdf. The following example illustrates the use of the unsymmetric q.

Example A3.10. We simulate the bimodal pdf in the last example by using a uniform 
distribution U −( )10 20,  as a proposal pdf. It is asymmetrically used at each ith step 
with the new state y sampled without centring it at the current state x

i
. The target pdf 

 is predominantly supported in the chosen interval −[ ]10 20, .

Solution. The sampled pdf is shown in Figure A3.13 in the form of a histogram. The 
results obtained by the MH algorithm with 10,000 samples show better convergence 
than with 5000 samples. The target pdf is also plotted in the figure.

One important application of the MH algorithm is in sampling a distribution when 
it is known only up to a constant. Such a distribution is usually called an unnormalized 
pdf. We may express an unnormalized pdf by  where c is an unknown constant

and  the true normalized pdf. Note that the MH algorithm depends only on π 

FIGURE A3.12 Sampling of a bimodal pdf in Example A3.9, histogram along with the target 
pdf in red (using symmetric proposal pdf).
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through the ratio  (see Equation A3.37b). In Example 3.9 in

Chapter 3, the MH algorithm uses the unnormalized pdf corresponding to the 
Boltzmann distribution without the need to know the normalizing constant c. This 
aspect is particularly useful in sampling posterior distributions that arise in Bayesian 
applications (Bernado 1979).

A3.4  ASYMPTOTIC PROPERTY OF MLE θ  –  FOR LARGE n, θ  
APPROACHES A NORMAL DISTRIBUTION  θ, I −( )1/ 2

For large n, θ θ ~ , / I −( )1 2  where I  is the Fisher information matrix (FIM). For 
a proof, we need two basic concepts in probability theory: (i) law of large numbers 
(LLN) and (ii) central limit theorem (CLT).

(i) LLN is about the asymptotic nature of probabilities of events, empirically 
estimated from observations/ experiments. It states that, for a sequence of 
independent random variables X j n

j
, , , ,= …1 2  each with a finite mean �m, 

and for any ε > 0:

 P
X X X

n
m nn1 2 0

+ +… +
− ≥







→ →

.
ε ∞ as  (A3.41)

FIGURE A3.13 Sampling of a bimodal pdf, histogram along with the target pdf in red –  using 
asymmetric proposal pdf: (a) histogram drawn with 5000 samples and (b) histogram drawn 
with 10,000 samples.
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  It implies that for a large number n of trials of a random experiment, the 

empirical (also called sample or statistical) mean 
X X X

n
n1 2

+ +… +.
 often 

stays close to the value m. Also, see Section A3.1.
ii) CLT states that given n independent random variables X j n

j
, , , ,= …1 2  with a 

uniform mean m and variance σ2 and Y
X X X

n
n=

+ +…+
1 2  another random 

variable, one has:

 
Y m

n
n

− ( ) → ∞
σ/

 as ~ , 0 1  (A3.42)

  where  0 1,( ) stands for a standard normal random variable with mean equal 
to zero and standard deviation of unity.

   See Papoulis (1991) and Roy and Rao (2017) for more details.

a3.4.1  proof for the asymptotic property of mle

With ′ ( ) =
∂ ( )

∂






l
l

T

θ
θ
θ

;
;

Z
Z

, ′ =
∂ ( )

∂






∂ ( )
∂







( )l
Z Z' Zθ θ

θ
θ
θ

;
; ;l l

T

 one has by Taylor 

expansion about the MLE θ :

 0 = ′ ( ) = ( ) + ( ) −( )′ ′′ +l l l
T

θ θ θ θ θ ; ; ;Z Z Z remainder term  (A3.43)

Here ′′ ( )l θ; Z  is the Hessian matrix H θ( ) ∈ ×m m  of the log- likelihood function.

(a) From Equation (3.14b) in Chapter 3, we have ′ ( ) =
∂

∂ ( )( )=∑l f
Zi

n

i
θ

θ
θ; log ;Z zi1

 

and from Equation (3.17):

 E lZ Z′ ( )  =θ; 0  (A3.44)

The covariance matrix of ′ ( )l θ; Z  may be written as:

 E l l E
Z

T′ ′( ) ( )



 = − ( )  ( )θ θ θ; ;Z Z HZ from Equation 3.21   (A3.45)
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By CLT, as n → ∞, the score function approaches a normal distribution, i.e.:

 

′ ( ) → ( )( ) ( )l θ θ θ; , ( ,
/Z I I 0

1 2 see definition of  FIM,

in Equati

  

 oon 3.16 )  (A3.46)

which is a multi- normal pdf.‡‡

(b) Now, by LLN:

 E l E
Z Z n

′′ ( )  = ( )  →
θ θ; Z H

∞  (A3.47)

Thus, knowing the asymptotic properties of ′ ( )l θ; Z  and ;′′ ( )l θ Z  from 
Equations (A3.46) and (A3.47), respectively, and ignoring the remainder term 
in Equation (A3.43), we have:

 θ θ θ θ θ −( ) ( ) ( )( ) = ( )( ) (− −
~ , ,

/ /I I I1 1 2 1 2
0 0  from Equation 3.22  ))  

 ⇒ ( )( )−θ θ θ ~ ,
/ I 1 2

 (A3.48)

A3.5  CONFIDENCE INTERVALS

The confidence interval is an interval estimate which provides a range of values that 
may likely contain the parameter of interest with a specified probability. A 95% con-
fidence interval means that if the random data are sampled (observed) on numerous 
occasions and interval estimates are made on each occasion, the resulting intervals 

would contain the true parameters in 95% of the cases. For instance, let ~ ,X m
X X

 σ( ).     
Then P X m

X X X
− ≤ − ≤( ) = =( ) − = −( ) =1 96 1 96 1 96 1 96 0 95. . . . .σ σ Φ Φ   , 

where ~ , =
− ( )X m

X

X
σ

 0 1 , the standard normal RV and Φ(.) the corresponding 

‡‡ Multi- normal pdf
Let , , ..X = …( )X X X

n

T

1 2
 be a joint normal RV with mean vector m = …( )m m m

n

T

1 2
, , , , and 

covariance matrix C =   ×
C

jk n n
where m E X

j j
=   and elements of the covariance matrix 

C E X m X m
jk j j k k

= −( ) −( )



 , 1 ≤ ≤j k n, . Then X  follows the n - dimensional multi- normal pdf:

 f x
X n

T( ) =
( ) ∆

− −













−1

2

1

22
1

π / exp XC X mX  (i)

where ∆  stands for the determinant of the covariance matrix C , assumed to be positive definite.
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CDF. See Figure A3.14 showing the standard normal pdf Φ ( )  along with the 
interval in which X lies with probability 0.95.

A3.6  GRAM- SCHMIDT ORTHOGONALIZATION PROCEDURE 
(MEIROVITCH 1980)

Gram- Schmidt orthogonalization is used to construct new vector(s) which is (are) 
orthogonal (⊥) to given vector(s). It is a deflation procedure by which a unit vector, 
say, A

1
, is deflated of the given vector d

1
 so that the new vector A

1
 is orthogonal to 

d
1
, i.e., A d

1 1
0T =  (Figure A3.15a). In Figure A3.15b, the vector A

1
 is deflated of two 

vectors, d
1
 and d

2
.

A3.7  RESONANCES IN A DYNAMICAL SYSTEM

It is known that resonances occur in a system when any of its natural frequencies 
are close to the frequency of a harmonic input. A resonant state is characterized by 
large amplitudes of vibration. It is explained here with the example of a spring- mass- 
damper oscillator model (Figure A3.16), which is usually known to as a single degree 
of freedom (SDOF) system. The degree of freedom refers to the displacement of the 
mass point in the system which is free to vibrate under the external input. The SDOF 
system is governed by the following DE in dynamic equilibrium:

 m t cx t kx t p tx ( ) + ( ) + ( ) = ( )  (A3.49)

FIGURE A3.14 Standard normal pdf Φ ( ) probability P − ≤ ≤( ) =1 96 1 96 0 95. . .  =  area 
of the hatched portion under the pdf curve.
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m c, and k are the mass, damping and stiffness parameters, respectively. This is a  
linear time invariant (LTI) system where the coefficients of the DE above are invariant  
with time. x t( ) is the displacement at the mass point. p t( ) is the external input. Under  
any general input p t( ), the solution to Equation (A3.49) is given by (Clough and  
Penzien 1982):

 x t e A t B t h p t dnt
d d( ) = +( ) + ( ) −( )−

−∫ξω
∞

∞
ω ω τ τ τ sin cos  (A3.50)

A and B are the integration constants to be derived from the initial conditions x t x( ) =
0
 

and  x t x( ) =
0
. ω

n
k m= /  is the natural frequency of the oscillator. /ξ = c km2  is 

the damping ratio. h t( ) is the impulse response of the system. While the first term 
on the RHS in the last equation is the transient part of the solution that tends to 
zero as time t → ∞, the second term is the familiar convolution integral. The impulse 

response h t( ) may be obtained as:

 h t
m

t t
d

d( ) = −( )1

ω
ξω ωexp sin  (A3.51)

ω ω ξ
d

= −1 2  is the damped natural frequency. Under a harmonic input p(t) =   
A tsin λ , the steady- state part of the solution may be obtained as:

 x t
A

k

t

r r

r

rs ( ) =
−( )

−( ) + ( ){ }
=

−






−
sin

, tan
λ φ

ξ
φ ξ

1 2

2

12 2 2
1

2

1
2

  (A3.52a,b)

FIGURE A3.16 Single degree of freedom (SDOF) oscillator.
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r
n

=
λ

ω
 is known as the frequency ratio. Figure A3.17 shows the solution in Equation 

(A3.50) when r ≈ 1 with zero initial conditions. The solution of the oscillator may 
build up unbounded (with or without damping) with time unless it is controlled by a 
suitable mechanism. This state of solution is called resonance.

A3.8  NATURAL FREQUENCIES AND FREQUENCY RESPONSE

Frequency response is the steady- state response of a linear time- invariant (LTI) 
system to a harmonic input of the form p t A t( ) = sin λ . For an SDOF oscillator, 
Equation (A3.50) gives total solution consisting of both the transient x t

t ( ) and steady- 

state x t
s ( ) parts of the solution. The convolution integral 

−∞

∞

∫ ( ) −( )h p t dτ τ τ in this 

equation yields x t
s ( ). With the transient part eventually going to zero for large time, 

x t x t h t p t
s( ) = ( ) = ( ) ( )*  by familiar notation. By Fourier inverse transform, p t −( )τ  

can be expressed as:

 p t P j e dj t−( ) = ( )
−

−( )∫τ
π

ω ω
∞

∞ ω τ1

2
 (A3.53)

Substituting in the convolution integral, we have:

 x t x t h P j e d d
s

j t( ) = ( ) = ( ) ( )
− −

−( )∫ ∫
1

2π
τ ω ω τ

∞

∞

∞

∞ ω τ  

 = ( )( ) ( )
− −

−∫ ∫
1

2π
τ τ ω ω

∞

∞

∞

∞
ωτ ωh e d P j e dj j t  (A3.54)

FIGURE A3.17 Unbounded solution to the SDOF oscillator at resonance: r
n

= = ≈
λ

ω
0 99 1. .
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The inner integral in the last equation is the Fourier transform H jω( ) of the impulse 
response function h t( ) and x t( ) may be expressed as:

 x t H j P j e dj t( ) = ( ) ( )
−∫

1

2π
ω ω ω

∞

∞
ω  (A3.55)

If we denoteH j P jω ω( ) ( ) by X jλ( ), the above integral shows that X jλ( ) is the FT 
of the response x t( ) in the frequency domain. Thus, X j H j P jω ω ω( ) = ( ) ( ). The FT 
H jω( )of h t( ) is generally called the complex frequency function and is given by:

 H j
k m j c

ω
ω ξ

( ) =
−( ) +

1

22
 (A3.56)

H jω( )  is a function of the system parameters. For a harmonic input p t A t( ) = sin λ ,     

P j
A

e
A

ej jω ω λ ω λ( ) = +−( ) +( )
2 2

. Therefore, the amplitude and phase of X jω( )are 

given by:

 X j
A

H j
A

H j A H j
A

k
r r

ω λ λ λ
ξ

( ) = −( ) + ( ) = ( ) =
−( ) + ( ){ }2 2

1

1 22 2 2
1

2
 

 arg arg ( tanX j H j
r

r
ω λ ξ( )( ) = ( ) =

−






−1
2

2

1
 (A3.57a,b)

where r
n

=
ω
ω

 is the ratio of excitation frequency to the oscillator natural frequency. 

Figure A3.18 shows the plot of X jω( )  as a function of r. At r ≈ 1, i.e. when ω ω≈
n
, 

the frequency response amplitude plot assumes the maximum peak amplitude which 
is the resonance point for the oscillator. One may also experimentally obtain the nat-
ural frequency ωn  by exciting the system with a harmonic input, varying its fre-
quency λ and identifying the resonance point.

A practical system such as the shaft in Figure 3.17 in Chapter 3 is continuous in the 
distribution of its mass and stiffness thus having, in general, infinity of dofs. This is 
unlike the oscillator shown in Figure A3.11 which is a discrete one with only one dof 
and thus having only one natural frequency. The shaft in Figure 3.17a in Chapter 3 is 
semi- discretized by the FEM (with respect to the spatial coordinates) and the number 
of dofs is reduced from infinity to 64 (number of dof/ node × number of nodes in 
the FE model –  Figures 3.17b– c). Analogous to Equation (A3.56), the frequency 
response for the shaft can be obtained from the FT of Equation (3.43b) in Chapter 3:

 
X K M Cj j jω ω ω ω( ) = −( ) +  ( )−

2
1


 
(A3.58)
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X j j nω ω( ) ( ) ∈, .   The frequency response is computed from the last equation  
at one of the support points on the shaft for the two dofs in Y-  and Z- directions and  
shown in Figure A3.19. The first few natural frequencies of the shaft are identifiable  
from the peaks from the figure.

FIGURE A3.19 Frequency response of the spring supported circular shaft in Figure 3.17 
in Chapter 3; the figure shows response X jω( )  at only two dofs, 17 and 18, corresponding 
to the Y-  and Z- directions of the left support point (node 5) of the shaft (both responses are 
identical).

FIGURE A3.18 Frequency response of an SDOF oscillator for different damping ratios 
ξ = 0 0 05 0 1, . , . and 0.2, resonance at r = 1.
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A4.1  CHRISTOFFEL SYMBOLS Γij
k  IN TERMS OF THE SPHERICAL 

COORDINATES

The Christoffel symbols Γ
ij
k  are given by:

 Γ
ij
k kl jl

i

il

j

ij

lu u u
=

∂

∂
+

∂
∂

−
∂

∂






1

2
g

g g g
 (A4.1)

where  and u2 = θ. With the matrix g  =   and , 

we get:

= 0

= =0
21
1Γ

= 0
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  (A4.2)

= 0

A4.2  MATRIX g CORRESPONDING TO RIEMANNIAN METRIC   
(IN EXAMPLE 4.6) IN TERMS OF LOCAL COORDINATES

The objective function is the Rosenbrock function:

 f x x x x x
1 2 2 1

2
2

1

2
100 1,( ) = −( ) + −( )  (A4.3)

The matrix elements in gare given by:

 g
f

x
x x x x

11
1

2

1 2 1
2

1

2
1 1 400 2 1= +

∂
∂







= − −( ) + −( ){ }  

 g
f

x

f

x
x x x x x x

12
1 2

1 2 1
2

1 2
400 2 1 200=

∂
∂







∂
∂







= − −( ) + −( ){ } −

11
2

21( ){ } = g  

and

 g
f

x
x x

22
2

2

2 1
2

2
1 1 200= +

∂
∂







= + −( ){ }  (A4.4a– c)

A4.3  STOCHASTIC PROCESSES, STOCHASTIC CALCULUS AND 
SOLUTION OF SDES

A few classical evolutionary optimization methods based on stochastic search are 
described in Chapter 3 (Section 3.4). In the description of these methods and their 
applications, we have mostly utilized some basic concepts of probability theory and 
random variables and their simulations. Though based on stochastic search, many of 
these evolutionary optimization methods are hardly founded on a rigorous probabil-
istic basis. For optimization methods which are ‘intrinsically stochastic’ (in that they 
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draw upon the tools of stochastic calculus), we need to familiarize the readers with 
the theory of stochastic processes and a few associated topics of relevance. With this 
in view, a quick overview of stochastic differential equations (SDEs) and their solu-
tion methods is provided in this section. Note that SDEs are the stochastic analogues 
of ODEs.

Starting with a formal definition of a stochastic process, we proceed to high-
light the properties of Brownian motion –  a special class of stochastic processes –  
also known as the Wiener process (Wiener 1923). Brownian motion has numerous 
practical applications, especially in modelling noise effects in dynamical 
systems. It is extensively used in the Euclidean setting to model a variety of phe-
nomena –  stock price variations in finance market (Karatzas and Shreve 1991), 
non- equilibrium statistical mechanics (Kubo 1986) and population dynamics (Wu 
and Hu 2008). One finds an obvious extension of these models to manifolds for 
possible use in associated optimization problems. For a comprehensive reading on 
stochastic processes and related subjects, one may refer to Rogers and Williams 
(2000) and Roy and Rao (2017).

a4.3.1  stochastic processes –  a Brief oVerView

We find uncertainties invariably in all physical phenomena that are known to behave 
randomly in time and/ or space. The typical wind velocity wave forms in Figure 4.3 
in Chapter 4 (assumed to be a collection at a location for a short period on different 
days under ‘identical’ conditions) show intrinsic random fluctuations in their his-
tories, extreme values and possibly in the frequency content. One may find similar 
randomness/ stochasticity in many other system models –  for instance, communica-
tion signals (Gray and Davisson 2004, Jhonson 2013), stock price variations in finan-
cial markets (Karatzas and Shreve 1991, Vecer 2011) and mechanics (Vanmarcke 
1983, Nigam and Narayanan 1994). Such randomly varying functions in time are 
often described as stochastic processes. Given a probability space Ω, , P( ), we 
may define a stochastic process X  as a parametrized family of random variables 

X X t t T
t

= ( ) ≥ ∈ ∈{ }ω ω: , , .0 Ω The indexing parameter t generally refers to time 

(or a time- like variable), discrete or continuous and taking values in + .  For a   
fixed ′ ∈ω Ω,  X t′( )ω ,  is often called a path of the stochastic process. For a 
fixed ′ ∈t T ,  X tω, ′( )  is a random variable in Ω, , P( ) . A stochastic process is 
path- wise continuous at any t T

k
∈[ ]0, , if, for almost all ω ∈Ω , t t

k
→  implies 

X t X t
k

ω ω, ,( ) → ( ). Thus, a process is continuous if, for almost all ω ∈Ω , X ω,.( )  

is a continuous function. We may treat a stochastic process either as an ensemble of 
(possibly infinitely many) trajectories evolving in time or as a collection of random 
variables sampled at (possibly infinitely many) time instants. A brief exposition on 
random variables (both scalar and vector), their distributions/ density functions and 
properties such as independence is provided in Appendix 1.

A stochastic process is represented by the set of its finite dimensional distributions 

(fdds), i.e. by seeking probabilities of the form P X t X t X t
k1 1 2 2( ) ∈ ( ) ∈ … ( )(  , , .,
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∈ )k for any partition of 0,T[ ]  with 0
1 2

≤ ≤ ≤ …… ≤t t t T
k

.  
i

i k, , ..,= 1 2  are 

Borel sets1 in n .  A stochastic process is typically characterized by all its finite 
dimensional joint distributions of the form:

 F x x x t t t P X t x X t x X t x
X m m m m1 2 1 2 1 1 2 2

, , .. ; , , ., , , ,… …( ) = ( ) ≤ ( ) ≤ … ( ) ≤( ))  

(A4.5)

If the distribution function is differentiable, one gets the joint pdf f x x x
X m1 2

, , .. ;…(

t t t
F x x x t t t

x x xm

m
X m m

m
1 2

1 2 1 2

1 2

, , .,
, , .. ; , , .,

, ..
.… ) =

∂ … …( )
∂ ∂ … ∂

 The finite dimensional joint 

distributions are associated with RVs which in turn correspond to the snapshots of 
the stochastic process at different time instants. In the rest of the appendix, X t( )  or 
X

t
 is used to denote a stochastic process for the sake of brevity. In practice, we will 

often have a countable sequence of random variables X j n
t j

, , , , , ,= … …{ }0 1  n ∈,  
representing a stochastic process.

a4.3.2  Brownian motion/ wiener process

Brownian motion is a continuous time stochastic process and it is often used to 
describe irregular and animated motion of particles suspended in fluid, first observed 
by Robert Brown (1827). It was mathematically constructed by Wiener (1923) 
and this is the reason that Brownian motion is also known as the Wiener process. 
A Brownian motion may be thought of as the limiting form of a random walk model.

Proof: A random walk is a discrete stochastic process and is represented by the index 
set t  being finite or countable, e.g. , ...t ∈ = { } 1 2 . Thus, a random walk is a finite/ 

countable collection of random variables X X i
t ii

ω ω( ) = ( ) ∈{ }: ,  . Now, refer to the 

random motion of a particle in a fluid and let s
j

= ±σ be the distance travelled, say 

on ,  by the particle due to a bombardment by the fluid particles at each discrete 

time instant t
j
.  s

j
 is a Bernoulli RV like the tossing of a coin with only two possible 

outcomes and probability measure P s
j

= +( ) =σ 1
2  and P s

j
= −( ) =σ 1

2 . The 

RVs s
j
,  j = …1 2, ,  are independent with E s

j
  = 0  and E s

j
2 2  = σ . Thus, if k  is 

the number of movements equal to +  σ  out of n  bombardments per unit time and 
∆t , the time between two successive bombardments, a random walk is described by 
the total distance travelled by the particle as
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 X X t n t s k n
n n

j

n t

j
: .= = ∆( ) = −( )=

=

∆

∑
1

2 σ  (A4.6)

The associated binomial measure2 given by:

 P B m
n

k
m k n

n n
=( ) =







= −( )σ 1

2
2with  (A4.7)

This leads to E B
n

  = 0  and E B n
t

tn
2 2 2  = =

∆
σ σ . In the limit as 

n or equivalently as t→ ∞ ∆ →(    0 ), the probability measure approaches the Gaussian 
(by DeMoivre– Laplace limit theorem –  see Papoulis 1991) and the probability distri-
bution takes the form of the standard normal distribution:

 P B m F z m n
n Z

≤( ) → =( )σ /  (A4.8)

where Z ~ , 0 1( ). In the limit as ∆ →t 0,  we assume that σ ≈ ∆( ) →o t 0  so 

that E B t
t
2  →remains finite and α  where α σ

=
∆

2

t
. Now, with b = mσ, we have 

m

n t
=

b
α

  and the one - dimensional probability density of the limiting Brownian 

motion (Wiener process) B
t

ω( )  is given by:

 
f

t t B t
B

b b( ) = −( ) ( )1

2 2 0
2

πα α αexp , . ~ ,i e. 
 

(A4.9)

■

If B
t
 denotes (a scalar valued) Brownian motion B t( )  with B 0 0( ) = , the random 

variables B B i
t ii

: ,={ } ∈,  ( )0
0 1 2

= < < …t t t  are zero mean normal. The incre-

mental random variables B B
1 0

− ,  B B
2 1

− ,  etc. are also zero mean normals and, in 
addition, are independent. It is thus a Gaussian stochastic process with independent 
increments. A stochastic process B

t
ω( ),  t ≥ 0  adapted to the filtration3 

t
 is called 

an 
t
- measurable standard Brownian motion if:

 1 0
0

. . .B = a s  

 2. The random variable B B t s
t s

− −( )~ , 0  for all s t≤  (A4.10)

Thus, a (standard) Brownian motion evolves with zero mean at any time instant 
and with a variance equal to t s−  that increases with time. Since a Brownian 
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motion is normal, the finite dimensional distribution of the random variables   

 
B t B j n

j j( ) ={ } = …: , , , ,1 2 , is jointly normal. Note that, given a jointly normal   

RV X  with the pdf:

   (A4.11)

where µ µ µ µ= …( )1 2
, , ,

n

T
 is the mean vector with components μ

j
 = E[X

j
], j = 1,2,...,n 

and C  is the covariance matrix with C E X X
lm l l m m

= −( ) −( ) µ µ  l m n, , , ,= …1 2 . 

Note that C  is positive definite and symmetric:

 C =





















C C C

C C C

C C C

n

n

n n nn

11 12 1

12 22 2

1 2

…
…

…

. . . .

. . . .

. . . .








 (A4.12)

The properties in Equation (A4.10) lead to a simple algorithm to generate a standard 

Brownian motion. That is, with B
0

0= ,  we have B B t
n t n t∆ −( )∆

= + ∆( )1
0 , .  

FIGURE A4.1a Brownian motion B
t
;  a few typical trajectories/ paths.
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Figure  A4.1a shows some typical Brownian motion sample paths generated with 

∆ =t 0 01.  and over the interval t = [ ]0 1, .

The process mean µ
B t

t E B( ) =    and variance σ
B t t

t E B E B2
2( ) = −  ( )





 are 

computed over 1000 sample paths and it may be observed from Figures A4.1b– c that 
the ensemble mean is almost zero and ensemble variance linearly varies (subject to 
sampling errors) with time.

Note that the Brownian motion is a process with unbounded variation. In this 
connection, it is useful to define the ‘quadratic variation’ of a stochastic process X

t
,   

denoted by X X t, ,[ ]( )  as:

 X X t X X
N

j j
j

N

t t
, : lim[ ]( ) = −( )∆ →

=

−

∑
+0

0

1 2

1
 (A4.13)

where the limit on the RHS envisages a partition Π
N

 of the interval 0, t[ ]  given 

by 0
0 1

= < < … < =t t t t
N

 and ∆ = −( )
≤ ≤ +N j N j j

t tmax
1 1

, j = …0 1, , . Now, if we denote 

B B
t tj j+

−
1

 by ∆B
j
 and t t

j j+ −
1

 by ∆t
j
, then ∆ ∆( )B t

j j
~ , 0  and the quadratic 

variation of Brownian motion is found to be unbounded with time:

 B B t B B t
N

j j
j

N

t t
, lim[ ]( ) = −( ) =

∆ →
=

−

∑
+0

0

1 2

1
 (A4.14)

Proof   for B B t B t B t t
N j

N

j j
, lim[ ]( ) = ( ) − ( )( ) =

∆ →
=

−

+∑
0

0

1

1

2

FIGURE A4.1b–c Brownian motion: (b) ensemble mean and (c) ensemble variance over 
1000 samples.
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Letting Q B t B t
N

j

N

j j
= ( ) − ( )( )

=

−

+∑
0

1

1

2

, we have:

 E Q E B t B t
N

j

N

j j
  = ( ) − ( )( )









=

−

+∑
0

1

1

2

 

 = ( ) − ( )( )



=

−

+∑
j

N

j j
E B t B t

0

1

1

2

 

 = −( ) = − =
=

−

+∑
j

N

j j
t t t t

0

1

1
0  (A4.15)

Since the fourth moment of  0,σ( )  is 3 4σ , we have:

 var var varQ t B t B t t B t
N

j

N

j j
j

N

j
−( ) = ( ) − ( )( ) −







=

=

−

−
=

−

∑ ∑
1

1

1

2

1

1

(( ) − ( )( )−B t
j 1

2

 

 = −( ) ≤ −( ) = ∆
=

−

− −∑ j

N

j j j j N
t t t t t t

1

1

1

2

1
3 3 3 max  (A4.16)

Thus, clearly, lim∆ → −( ) =
N

Q t
N0

0var . This shows that Q t
N

−  is non- random as 

N → ∞ and B B t Q t
N N

, ,[ ]( ) = →→∞0 lim in L P2 ( ). Note that even though the sums 

involved in the definition of Q
N

 are random, the limit is non- random.
■

Indeed, an interesting property of the squared increment of B
t
 is its determin-

istic character which is evident from the proof. More general variants of this identity 
in terms of deterministic functions multiplying B

t
 and deterministic functions of 

Brownian motion are:

 lim
∆ →

=

−

∑ ∫∆( ) = ( )
N

j
j

N

t j

t
B s ds

0
0

1 2

0
ψ ψ  

 or, lim
∆ →

=

−

∑ ∫( ) ∆( ) = ( )
N

j
j

N

t j

t

s
B B B ds

0
0

1 2

0
ψ ψ  (A4.17)
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a4.3.3  Brownian motion, thoUGh continUoUs, is not differentiaBle 
anywhere

Since every increment ∆ = − −( )B B B t s
s t s

~ , 0 , there exists a continuous version 

of the Brownian motion. But it is not differentiable anywhere. This can be shown to 

be true by the simple means of testing the convergence of lim lim
h

t

h

t h t
B h

h

B B

h→ →

+∆ ( )
=

−
0 0

 

with h  being an interval in .  The limit is not continuous and hence the derivative of 
the Brownian motion does not converge in any sense.

Proof: Brownian motion is not differentiable anywhere.

To show this, consider 
∆ ( )

=
−+B h

h

B B

h
t t h t  with h  being an interval in .  

∆ ( )B h

h
t  

is a zero- mean random variable with E
B h

h h
t

∆ ( )

















=
2

1
.  If lim

h

t
B h

h→

∆ ( )
0

 converges   

in some sense to a limit, then the sequence of the characteristic functions E e
i

B h

h
tλ

∆ ( )







  

converges to a limit which must be continuous in λ. We know that for a zero- mean 

normal random variable Z, the characteristic function Φ
Z

i zE e e
z

λ λ
λ σ

( ) = [ ] = −
2 2

2  

where σ
z
2  is the variance of Z. Hence, we have:

 lim lim ,
h

i
B h

h
h

hE e e
t

→

∆ ( )

→

−







 = = =

0 0
2

2

1 0
λ λ

λif  

 = 0, otherwise  (A4.18)

We find from the above equation that the characteristic function in the limit is not 
continuous in λ and hence the derivative of the Weiner process does not converge in 
any sense.

♦

a4.3.4  white noise process

By a non- rigorous approach, one may define a white noise process W t( )  as a  
‘generalized’ derivative of a Brownian motion B t( ). The word ‘generalized’ is used  
since a white noise process W t( )  is not a derivative in the usual sense; see Roy and  

 

 

 

 

 

 



455Appendix 4

Rao (2017) for details. This is the Einstein’s model (1905) of Brownian motion in his  
studies on the microscopic motion of particles suspended in fluid and, formally, it is  
the solution of:

 
dB

dt
W t= ( )  (A4.19)

Langevin’s alternative model (1908) of Brownian motion is formally the solution of:

 
d B

dt
c

dB

dt
W t

2

2
+ = ( )  (A4.20)

c
dB

dt
 is velocity term denoting random friction forces due to the particles’ collisions 

while 
d B

dt

2

2
 is the inertia term associated with the particle mass. The white noise pro-

cess W W t
t

:= ( )  is a stochastic process with E W
t

  = 0  and E W W t s
t s

  = −( )δ ,   
where δ .( )  is the Dirac delta function. The Dirac delta property of the autocor-

relation function R t s E W W
W t s

,( ) =    indicates that (i) the RVs W
t
 and W

s
 are   

independent for every t s≠  and (ii) it is a stationary stochastic process. The definition 
of a stationary process is given in Section A4.3.13. Figure A4.2 shows the autocor-
relation function of a white noise process. White noise models find wide applications 
in applied sciences and engineering and myriad other fields (Cohen 2005, Boyat and 
Joshi 2015, Azizi and Yazdi 2019).

FIGURE A4.2 Autocorrelation function of a white noise process W t( ) which is a stationary 
process.
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a4.3.5  Brownian motion is a markoV process

A Brownian motion or Wiener process B
t
 possesses the Markovian prop-

erty.4 A Markov process is characterized by the transition probability function 
defined as:

 P y t x s P X t y X s x, | , ( | )( ) = ( ) ≤ ( ) =  (A4.21)

P y t x s, | ,( )  is the conditional probability distribution function of the process at time 

t  given that it is x  at time s t< . Since the increment B B t s
t s

− −( )~ , 0  for a 
Brownian motion, the transition probability function is given by:

 P y t x s P B y B x
t s

e du
t s

y
u x

t s, | ,( ) = ≤ =( ) =
−( ) −∞

−
−( )

−( )∫|  
1

2

2

2

π
 (A4.22)

The corresponding transition probability density function is:

   
(A4.23)

a4.3.6 a  wiener process is a martinGale5

An 
t
- adapted Wiener process B

t
 is a martingale with respect to 

t
 and the proof 

follows.

Proof: We first note that the Brownian motion B
t
 is integrable with E B

t
  = < ∞0 .   

With 0 ≤ <s t , we have:

E B E B B B
t s t s s s
| |   = − + 

 = −( )  +  E B B E B
t s s s s

| |   

FIGURE A4.3 Dynamical system under external input.
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 = −  +E B B B
t s s

 (A4.24)

Note that 
t s

B s t= ≤( )σ :  and hence B B
t s

−  is independent of 
s
 leading to 

E B B E B B
t s s t s

−( )  = −  =| 0. It follows that:

 E B B
t s s
|  =  (A4.25)

Thus, a Brownian motion is a martingale.
♦

With this brief description of Brownian motion, we proceed to the topic of sto-
chastic differential equations (SDEs), deferring the issue of how these concepts in 
conjunction with Riemannian geometry are utilized to handle optimization problems 
for later.

a4.3.7  ordinary differential eqUations (odes) Vs. stochastic 
differential eqUations (sdes)

Let us consider an ODE modelling a dynamical system (Figure A4.3) in the state 
space form:

 x f x t x x= ( ) ( ) =, , 0
0
 (A4.26)

Here f x t,( )  may contain the external input functions U t( ). Now, assuming that the 
system parameters and the input functions are deterministic, the ODE may be written 
in the integral form:

 x t x f x s ds
t( ) = + ( )∫0 0

,  (A4.27)

By Picard’s iteration, if we start with an initial approximation φ
0 0

0t x x( ) = ( ) =: , we 
recursively obtain:

 φ φ
k

t

k
t X f s s ds+ ( ) = + ( )( )∫1 0 0

,  (A4.28)

lim
n n

t
→∞

( )φ  converges to a unique solution x t( )  provided that f x t,( )  is continuous in 

both arguments X and t and Lipschitz continuous6 in x.
If either the system parameters or the external inputs are inherently stochastic 

which is indeed the case in general, the DE governing the system dynamics is known 
as an SDE. The integral representation in Equation (A4.27) typically contains integrals 
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where the integrand and integrator may be stochastic processes. Note that for ODEs 
or SDEs, the system dynamics may be described by integrals of the following kind:

 I t X s ds
t

0
0

,( ) = ( )∫  

 = ( ) ( )∫ 0

t
X s dY s  (A4.29a,b)

Equation (A4.29a) is the familiar Riemannian integral and (A4.29b) is Riemann- 
Stieltjes integral. X t( ) or/ and Y t( )  may be stochastic processes in an SDE. In either 
of the above integral types, the continuity condition of the integrand or the integrator 
may not be satisfied for an SDE. The reason is that the SDEs may involve, in gen-
eral, Brownian motion that is not differentiable. Suppose, in general, that an SDE is 
written in the following differential form:

 dX t t X dt t X W t dt( ) = ( ) + ( ) ( )α σ, ,  

 = ( ) + ( ) ( )α σt X dt t X dB t, ,  (A4.30)

That W t( )  is a ‘generalized’ derivative of a Brownian motion B t( )  is utilized in 
writing the second part of the last equation. α t X,( )  is known as the drift term and 
σ t X,( )  the diffusion term. In integral form, one writes the SDE as:

 X t X s X s ds s X s dB s
t t( ) = + ( )( ) + ( )( ) ( )∫ ∫0 0 0
α σ, ,  (A4.31)

The random variable X
0

 denotes a measurable initial state of X t( ). The first integral 
on the RHS of the last equation is similar to the one in Equation (A4.29a) and the 
second one is similar to the integral in Equation (A4.29b). Under these situations, 
a proper interpretation of the existence of such integrals in Equation (A4.29) must 
be laid out, in order to make the stochastic analogue of Picard’s iteration valid over 
0,T[ ]  for the SDE in Equation (A4.30). In particular, the task is to properly define 

the stochastic integral:

 T X X s dB s
T( ) = ( ) ( )∫ 0

 (A4.32)

where the upper limit is taken as T ∈. With any partition Π
N

 of the interval a b,[ ]  

given by a t t t b
N

= < < … < =
0 1

 and with ∆ = −( )≤ ≤ − +N j N j j
t tmax

0 1 1
, the inte-

gral T X( )  is approximated in the Riemannian sense (Rudin 1976) by the following 
limiting sequence:
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 T = ( ) −( )( )′→∞
=

−

+∑lim ) (
N

j

N

j j
X t B t B t

0

1

1
 (A4.33)

In principle, one can create an infinite sequence of such summands corresponding 

to a choice of ′ ∈  ∀+t t t j
j j
,

1
 and thus define an approximation to T  as 

≅ ′ = −( )
=

−

′∑
+

T
j

N

t t t
X B B

j j
0

1

1
. Thus, the choice of ′t  matters in defining a stochastic inte-

gral (see Section A4.3.14 for a corroboration through examples). Specifically, the 

integral T for ′ =t t
j
 is called the Ito integral (Ito 1951). Note that if ′ = +( )+t t t

j j 1
2/  

(the mid point in t t
j j
, +

 1
), it leads to another integral representation known as the 

Stratonovich integral (Stratonovich 1966).

a4.3.8  existence and UniqUeness of solUtion to sdes

In the case of the ODE (A4.26), a solution exists if f X t,( )  is continuous and bounded 

in a hyper rectangle R X X r t t sn : ,− < − <
0 0

. In addition, if 
∂
∂

f

X
 is continuous and 

bounded, the solution is unique. However, the uniqueness is guaranteed if f X t,( )  is 

only Lipschitz continuous (which is a weaker condition than the requirement of 
∂
∂

f

X
 

being continuous), i.e.:

 f X t f X t L X X
2 1 2 1
, ,( ) − ( ) ≤ −( )  (A4.34)

for some positive constant L.
Similarly, for the SDE in Equation (A4.30) with the coefficients α t x,( ):

0, ,∞[ ] × → m m  σ t X m m n, : ,( ) ∞[ ] × → ×0    and E X
0

2



 < ∞,  a stochastic 

process X t( )  is a unique and time- continuous solution if:

(i) α  and σ  are measurable functions, uniformly continuous in t T∈[ ]0,  and 
Lipschitz in X, i.e.:

 

α α σ σt X t Y t X t Y L X Y X Y

t T

m, , , , , ,

,

( ) − ( ) + ( ) − ( ) ≤ − ∈

≤ ≤

 

 



and 0  (A4.35)

 for some positive constant L  and
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(ii) the coefficients satisfy a linear growth condition, i.e.:

 α σt X t X C X X t Tm, , ,( ) + ( ) ≤ +( ) ∈ ≤ ≤1 0   and  (A4.36)

for some positive constant C (see Karatzas and Shreve 1991, Klebaner 1998, 
Øksendal 2003, Roy and Rao 2017 for a comprehensive exposition).

So far, an Ito integral T = ( ) ( )∫ 0

T
X s dB s (similar to the second integral on RHS 

of Equation A4.31) is defined for a fixed terminal time T. Since T  is a random vari-

able for any fixed t T≤ , it immediately follows that 
0

t
X s dB s∫ ( ) ( )  as a function of 

the upper limit t can be considered as a stochastic process –  generally known as an 
Ito process. An Ito process may, in general, be expressed as the integral form of the 
SDE in Equation (A4.31). The last integral on the RHS of this equation is the Ito inte-
gral and the preceding one a non- stochastic integral (despite α t X,( )  being possibly 
stochastic).

From physical considerations, the drift part α t X,( )  of the SDE could be a force 
term derivable from a potential (this is often the case with mechanical oscillators). 
The diffusion part α t X,( )  represents the external ‘noise’ term that arises from the 
stochastic environment to which the system is subjected. The noise coefficient σ  in 
the above equation might be system- dependent, i.e. dependent on X t( )  also. In this 
case, the noise is referred to as multiplicative. Otherwise, it is known as additive, i.e., 
when the diffusion coefficient is just σ t( ).

a4.3.9  ito’s formUla

Stochastic integration thus defined via Ito integral leads us to a new form of differ-
ential calculus applicable to SDEs commonly referred to as ‘stochastic calculus’. An 
insightful treatment of dynamical systems under stochastic loading is possible via a 
systematic application of stochastic calculus using the Ito integral. The primary tool 
here is Ito’s formula which plays the counterpart of the conventional chain rule in 
ordinary differential calculus. For example, if X t( ) ∞[ ) →: ,0   is continuous and of 
bounded variation and g X t,( )  a continuously differentiable function of X,  then the 
fundamental theorem of conventional calculus gives:

 dg X t t g X t t dt g X t t dX t( )( ) = ( )( ) + ( )( ) ( )′, , ,  (A4.37)

where g t dg dt( ) = /  and ′ =g dg dX/ .
Ito’s formula is a stochastic analogue of the above rule when X t( )  is a stochastic 

(Ito) process. Specifically, if g t X t, ( )( )  is twice continuously differentiable on 

0, ,∞[ ) ×  i.e., g C∈ ∞[ ) ×( )2 0, ,  we have Ito’s formula:

 dg t X
g

t
t X dt

g

x
t X dX

g

x
t X dX

t t t t t t
, , , ,( ) =

∂
∂ ( ) +

∂
∂ ( ) +

∂
∂ ( )( )1

2

2

2

2
 (A.4.38)
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Note that, in contrast to Equation (A4.37), Ito’s formula contains an additional 
term containing the second- order derivative of g t X,( ). When X t( )  is governed by 

a scalar SDE similar to Equation (A4.30), then we get Ito’s formula for g t X
t

,( )  as:

 

dg t X
g

t
t X a

g

x
t X

g

x
t X dt

t t t t t t
, , , ,( ) =

∂
∂ ( ) +

∂
∂ ( ) +

∂
∂ ( )





1

2
2

2

2
σ

                  +
∂
∂ ( )σ

t t t

g

x
t X dB,

 (A4.39)

The last result is obtained by substituting for dX
t
 (from Equation A4.30 into Equation 

A4.38) and via simplification using the properties of a Brownian motion (Roy and 

Rao 2017). When X ∈m , Ito’s formula for a scalar function ,g t
t

X( )  is:

 dg t
g

t
t L g t dt

g
t d

t t t t t t t
, , , ,X X X

x
X B( ) =

∂
∂ ( ) + ( )( )





+
∂
∂ ( )σ  (A4.40)

where the operator L
t
 is known as backward Kolmogorov operator defined as:

 L a t
x

t t
xt

i

m

i t
i i j

m

l

n

il t jl t
i

= ( ) ∂
∂

+ ( ) ( ) ∂
∂= = =

∑ ∑∑
1 1 1

21

2
, , ,

,

X X Xσ σ
∂∂x

j

 (A4.41)

Note that, in Equation (A4.40), 
∂
∂ ( ) =

∂
∂

∂
∂

…
∂

∂












g

x
t

g

x

g

x

g

xt
m

, , , ..,X
1 2

 is a vector, σ  is an 

m n×  dimensional diffusion matrix and B
t
 is an n - dimensional Brownian motion 

(with independently evolving scalar Brownian components). The integral form of 
Equation (A4.40) may be written as:

 

g t g
g

x
s L g s ds

t

t

s s t
, , , ,X X X Xs( ) = ( ) +

∂
∂ ( ) + ( )( )



∫0

0 0

                +
∂
∂ ( )∫ 0

t

s s s

g

x
s d, X Bσ  (A4.42)

where the last term (Ito integral) on the RHS of the above equation is a zero- mean   

martingale (as 
∂
∂

g

x
 is bounded owing to the stipulated continuity of g  with respect to 

the components of X –  see Roy and Rao [2017] for details). By taking expectations 
on  both sides of Equation (A4.42), we arrive at what is referred to as Dynkin’s 
formula:
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 E g t g E
g s

s
L g s ds

t

t s

s s
, ,

,
,X X

X
X( )  = ( ) +

∂ ( )
∂

+ ( )( )







∫0

0 0
 (A4.43)

X
0
 is assumed to be non- random in arriving at the last equation. Note that given 

an SDE, one may obtain the underlying system statistics using Ito’s and Dynkin’s 
formulae. The statistics are the expectations/ moments of a required order obtained 
in terms of the solution X t( ).  Solutions of SDEs characterized in terms of these 
expectations are often referred to as weak solutions which may only be of interest in 
most cases. On the other hand, some applications may particularly need computation 
of strong solutions –  path- wise solutions –  for example, in the stochastic optimization 
problems. These problems obviously require methods to solve SDEs numerically. We 
provide in the next section a brief outline on numerical methods for solving SDEs to 
obtain strong solutions. Rigorous treatment of the topic may be found in Kloeden and 
Platen (1992) and Roy and Rao (2017).

a4.3.10  nUmerical solUtions to sdes

Deterministic ODEs may be numerically solved to different orders of accuracy, 
say by classical Taylor expansion (Simmons and Krantz 2006, Roy and Rao 
2012). Similar expansions based on an iterated Ito’s formula which is the sto-
chastic analogue of the classical Taylor expansion help to construct numerical 
integration schemes for SDEs.

a4.3.11  classical taylor’s expansion for odes

Consider a (scalar) ODE of the form:

 
dx

dt
a t x= ( ),  (A4.44)

Assuming that a t x,( )  is sufficiently smooth and varies as an at most linear function 
of x  as x → ∞  so that a unique solution x t( )  exists, we get the familiar Taylor 
expansion of x t h+( )  in a neighbourhood of t  in powers of the increment h  and in 

different derivatives of a t x t, ( )( ) :

 x t h x t ha t x t
h

La t x t
h

L a t x t
m

m
m+( ) = ( ) + ( )( ) + ( )( ) +…+ ( )( )−, ,

!
,

2
1

2
 

 + remainder  (A4.45)

where L  is a differential operator:

 L
t

a t x
x

=
∂
∂

+ ( ) ∂
∂

,  (A4.46)
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The truncated expansion excluding the remainder term corresponds to an explicit 
method with an accuracy of the mth  local order.

a4.3.12  ito- taylor’s expansion for sdes

Now, consider a scalar SDE as in (A4.30) driven by Brownian motion B t( ) :

 dX t a t X dt t X dB t t T X X( ) = ( ) + ( ) ( ) ≤ ≤ ( ) =, , , ,σ 0 0
0

 (A4.47)

With t s s s s t h≤ ≤ = +
1 2 3
, , , repeated applications of Ito’s formula (A4.42) yield the 

following Ito- Taylor expansion for one- step approximation:

 X t h X t dB s a ds L dB s dB s
t

t h

t

t h

t

t h

t

s
+( ) = ( ) + ( ) + + ( )( )+ + +

∫ ∫ ∫ ∫σ σ
1 1 1 2

1

11( )  

 + ( ) + ( )+ +

∫ ∫ ∫ ∫L ds dB s L a dB s ds
t

t h

t

s

t

t h

t

s

0 2 1 1 2 1

1 1σ  

 + ( )( ) ( )



 ( ) + ( )+ +

∫ ∫ ∫ ∫ ∫L dB s dB s dB s L a d
t

t h

t

s

t

s

t

t h

t

s

1
2

3 2 1 0

1 2 1σ ss ds
2 1

 

 +  remainder  (A4.48)

FIGURE A4.4a Numerical solution to the SDE (A4.49) by the EM method; a = 1 0. and 
σ = 0 2. , time step ∆ =t 0 01. , two solution paths X t1( ) ( ) and X t2( ) ( ) shown by dark lines and 
dotted lines, respectively.
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where L
t

a
x x0

2
2

2

1

2
≡

∂
∂

+
∂
∂

+
∂
∂

σ  and L
x1

≡
∂
∂

σ . See Roy and Rao (2017) for a der-

ivation of the last equation and the associated orders of convergence. Depending on 
the truncation of the one- step approximation above, one gets explicit integration 
schemes for SDEs with different orders of accuracy. For instance, the expansion in 
Equation (A4.48), if truncated beyond the first three terms on the RHS gives the 

explicit Euler- Maruyama (EM) method (1955) with O h
1

2






 global order of conver-

gence (Milstein 1974, Kloeden and Platen 1992). The EM method is the stochastic 
analogue of the classical Euler method for solving ODEs. One may retain the first 
five terms in Equation (A4.48) (Milstein 1974) and have an Ito- Taylor scheme of 

order O h( ).

Example A4.1. Let us consider the following one- dimensional SDE and use the EM 
method to numerically integrate it:

 dX t aX t dt dB t( ) = − ( ) + ( )σ  (A4.49)

Solution. The solution to the SDE (A4.49) is popularly known as the Ornstein– 
Uhlenbeck process. Two solution trajectories (paths) of X t( )  are obtained by the 
EM method and shown in Figure A4.4a. The parameters a  and σ are taken as 1.0 and 
0.2, respectively. A step size of ∆ =t 0 01.  is used. The initial condition X

0
 is taken 

as a deterministic constant equal to 0 1. .

FIGURE A4.4b Ensemble (sample) averages –  mean E X t( )  and variance 

E X t E X t( ) − ( ) ( )





2
–  using 1000 EM- simulated samples from the SDE (A4.49); a = 1 0.

and σ = 0 2. , time step ∆ =t 0 01. .
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Note that it is possible to get weak solutions (moments) for the SDE (A4.49) in 
closed from. If we apply the expectation operator on both sides of the SDE, we get:

 E dX t aE X t dt E dB t( )  = − ( )  ( )  =( )since 0  

 ⇒ ( )  = − ( ) dE X t aE X t dt  

 ⇒ ( )  = ( ) 
−E X t E X e at0  (A4.50)

As t → ∞, the mean process E X t( )   approaches zero. This is also evident from 

Figure A4.4b where the history is obtained as an ensemble average over 1000 EM- 
simulated samples. Now, similar to the mean history, the variance history is also 
obtained as an ensemble average and shown in the same figure. The variance tends 
to a value 0.02 as t → ∞. In fact, this result may be verified from a closed- form solu-
tion. If we take g X X t( ) = ( )2  and apply Ito’s formula (Equation A4.40), one obtains:

 dg aX dt XdB t= − +( ) + ( )2 22 2σ σ  

 ⇒ ( ) = − +( ) + ( )dX t aX dt XdB t2 2 22 2σ σ  (A4.51)

Applying the expectation operator on both sides of the last equation, one gets:

 d E X t aE X t dt E dB t2 2 22 0( ) ( ) = − ( )  +( ) ( )  =( )σ since  (A4.52)

With E X E X2
0
20( )  =   ,  integration once of the ODE (A4.52) gives:

 

E X t e E X
a

eat at2 2
0
2

2
2

2
1( )  =   + −( )





− σ

                   = +   −





−σ σ2
2

0
2

2

2 2a
e E X

a
at  (A4.53)

As t → ∞, E X t
a

2
2

2
( )  →

σ
. Since E X t( )  → 0  for large t , the variance tends to 

σ2

2a
 which is 0.02 for the selected values of a  and σ  (as also indicated by the vari-

ance history in Figure A4.4b obtained by simulation).
An extension of the numerical integration scheme to vector SDEs is straight-

forward (though the algebra associated with the Ito- Taylor expansion might be 
cumbersome).

■
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Suppose that we have an SDE with X m∈  and driven by an n- dimensional Brownian 
motion:

 d t t dt t d t t TX a X X B X X( ) = ( ) + ( ) ( ) ≤ ≤ ( ) =, , , ,σ 0 0
0
 (A4.54)

Here a Xt m m, :( ) × →+    and σ t m m n, : .X( ) × →+ ×    Following similar 
steps as in the one - dimensioanl case, one gets the Ito- Taylor expansion for one- step 
approximation:

 X X Xt h t L t ds
t

t h
+( ) = ( ) + ( ) +

∫0 1
 

 + ( ) +

∫ ∫L t ds ds
t

t h

t

s

0
2

2 1

1X  

 + ( ) ( )
=

+

∑ ∫ ∫
k

n

k t

t h

t

s

k
L L t dB s ds

1
1 0 2 1

1X  

 + ( ) ( )
=

+

∑ ∫
k

n

k t

t h

k
L t dB s

1
1 1

X  

 + ( ) ( )
=

+

∑ ∫ ∫
k

n

k t

t h

t

s

k
L L t ds dB s

1
0 1 2 1

1X  

 + ( ) ( ) ( )
= =

+

∑∑ ∫ ∫
k

n

j

n

j k t

t h

t

s

j k
L L t dB s dB s

1 1
1 1 2 1

1X  

 +  remainder  (A4.55)

Here L
0

2 = L L
0 0
 , i.e. the composition of L

0
 with itself. Similar definitions apply to 

L L
k1 0

,  L L
k0 1

 and L L
j k1 1

.  One may identify different numerical integration schemes 

of increasing order of accuracy from the expansion.

a4.3.13  stationary stochastic process

Suppose that the random vectors X X X
t t tk1 2
, , .,…{ }  and X X X

t t tk1 2+ + +
…{ }

τ τ τ
, , .,  have 

the same probability distribution, i.e., the probability density function f is invariant in 
time- translations, i.e., for any τ > 0,  we have:

 f x x x t t t f x x x t t t
k k k k1 2 1 2 1 2 1 2

, , ., ; , , ., , , ., ; , , .,… …( ) = … + + … +( τ τ τ))  (A4.56)
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Such a stochastic process is called stationary and the property is referred to as 
stationarity of order k. The process X  is weakly or wide- sense stationary if k .= 2  

Weak stationarity implies that µ
t t

E X=    is constant and the covariance C s t
XX

,( )  

is a function of only the time difference t s− . The covariance function is also known 

as the autocovariance function and is given by E X X
s s t t

−( ) −( ) µ µ . Note that 

stationarity of order k  implies stationarity of all lower orders.

Example A4.2. We show that X t A t( ) = +( )cos λ θ is a weakly stationary stochastic 
process where θ  is a uniformly distributed RV over −[ ]π π, and A,λ ∈.

Solution. The first- order moment is:

 E X t E A t A tE A tE( )  = +( )  = [ ] − [ ]cos cos sin sinλ θ λ θ λ θcos  

 = ( ) − ( )
− −∫ ∫A t f d A t f dcos λ θ θ θ λ θ θ θ

π

π

θ π

π

θcos sin sin  

 = − =
− −∫ ∫

A t
d

A t
d

cos 
  

λ
π

θ θ λ
π

θ θ
π

π

π

π

2 2
0cos

sin
sin  (A4.57)

Denoting E X t( )   by µ t( ), one has:

 R s t E A t t A s s
XX

, cos cos( ) = +( ) − ( )( ) +( ) − ( )( ) λ θ µ λ θ µ  

 = +( ) +( ) A E t s2 cos cosλ θ λ θ  

(since µ µt s( ) = = ( )0 ) 

 = [ ] + [ ]( )A t s E t s E2 2 2cos cos cos sin sin sinλ λ θ λ λ θ  

 − [ ] + [ ]( )A t s E t s E2 cos sin cos sin sin cos cos sinλ λ θ θ λ λ θ θ  

 = −( )A t s2 cos λ  (A4.58)

The result in the last step is obtained because E Ecos sin2 21θ θ[ ] = = [ ]
and E cos sin .θ θ[ ] = 0
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a4.3.14  the choice of ′t  matters in defininG a stochastic 

inteGral T X = X s dB s
0

T( ) ( ) ( )∫
With ∆ = −

+
B B B

j t tj j1
, let us have:

 T = ∆
=

−

∑
j

N

t j
X B

j
0

1

 

 T = ∆
=

−

∑
+

j

N

t j
X B

j
0

1

1
 (A4.59a,b)

Since X
t j

 is 
t j

- measurable and hence independent of ∆B
j
, it follows that:

 E E X B
j

N

t jj
T)[ ] = ∆



 =

=

−

∑
0

1

0  

 var T( ) = ( ) ( )( )







 = 



 −( )∫ ∑

=

−

+E X s dB s E X t t
T

j

N

t j jj0

2

0

1
2

1
 (A4.60a,b)

However, for T  in Equation (A4.59b), X
t j+1

 is not independent of ∆B
j
 and the 

moment information for the integral cannot be so easily evaluated. Therefore, the two 
integrals should be different from each other.

A4.4  TO DRAW SAMPLES OF A GIVEN PROBABILITY 
DISTRIBUTION: EXAMPLE FOR A SAMPLING PROBLEM

In the example, we solve an over- damped Langevin SDE and generate a Markov 
chain. The generated sample x t( ) is expected to converge to the target pdf. converge 
to a limiting distribution that approximates the target pdf , i.e. . The SDE

is of the form:

   (A4.61)

In discretized form by EM method:

   (A4.62)

At each time step, Metropolis- Hastings algorithm (Appendix 3) is used to accept 
or reject the sample X

k+1
. The scheme is equally applicable for sampling a multi- 

variate pdf.
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Example A4.3. We sample a bivariate normal X = ( )X X
T

2 2
,  with mean vector 

µ = ( )2 5,  
T

 and covariance matrix Σ =










2 0 5

0 5 1

.

.
.

Solution. In this case, the target pdf  is:

   (A4.63)

The log likelihood function is:

   (A4.64)

and

   (A4.65)

In solving the SDE (A4.61) by the EM method, the discrete map in Equation (A4.62) 
is similar to maximizing L x( ).  During the implementation of the EM method, the 
first derivative  is obtained by numerical differentiation. In these MCMC 

methods, it is always preferred to leave out a few initial samples before accepting the  
rest and this phase goes by the name ‘burn- in period’. We simply discard the samples  
collected during the burn- in and conduct the MH acceptability test at each time step.  
Figures A4.5– A4.8 show the sampling results for the target pdf. The burn- in ratio is  
0.2, that is, out of the accepted samples, 20% of the samples are ignored.

FIGURE A4.5 Sampling of a bivariate Gaussian pdf; samples before burn- in; X
0

10 10= ( ), ,  
dt = 0 2. , number of samples =  20000, burn- in ratio =  0.2.
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FIGURE A4.7 Sampling of a bivariate Gaussian pdf: (a) original and sampled pdfs for the 
first RV and (b) original and sampled pdfs for the second RV, X

0
10 10= ( ), , dt = 0 2. , number 

of samples =  20,000, burn- in ratio =  0.2, dashed line –  original pdf and dark line –  sampled pdf.

FIGURE A4.6 Sampling of a bivariate Gaussian pdf; samples after burn- in; X
0
 = (10, 10), 

dt = 0 2. ,  number of samples =  20000, burn- in ratio =  0.2.
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■

A4.5  MATRIX g  AND THE CONNECTION MATRICES FOR THE 
ACKLEY FUNCTION IN EXAMPLE 4.9

The Ackley function is given in Equation (4.112). Let

 T b
n

x T
n

cx
i

n

i
i

n

i1
1

2
2

1

1 1
= −









 = ( )



= =

∑ ∑exp , exp cos  (A4.66)

The first- order Euclidean derivative is:

 
∂
∂

= −
∂
∂

−
∂
∂

f

x
a

T

x

T

x
i i i

1 2  (A4.67)

where

 dT
T

x

bT

n

x

x
dT

T

x
c

T

n
cx

i

i

i

n

i
i

i
1 21 1

1
2

2 2: : sin=
∂
∂

= − =
∂
∂

= − ( )
=∑

  and  (A4.68)

FIGURE A4.8 Sampling of a bivariate Gaussian pdf; 3- D plot of the two- dimensional 
multivariate normal pdf, X

0
10 10= ( ), , dt = 0 2. , number of samples =  20,000, burn- in   

ratio =  0.2.
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Matrix g  associated with the Riemannian metric g:

Let S = 
i

n

i
x

=
∑

1

2  and ddT1 and ddT2 stand for the Hessian matrices of T
1

 and T
2

. Then:
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2
2 2[ ] = − ( ) −

( ) ( ),
cos sinδ  (A4.69a,b)

 g = − [ ] − [ ]* *0 5 1 0 5 2. .a ddT ddT  (A.4.70)

Matrices corresponding to the Cristoffel symbols:
Let dddT1and dddT 2 stand for the third derivatives of T

1
 and T

2
. Then:
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 (A4.71a)

and

 dddT j k m c
T

n
cx

c

n
cx ddT

j km j km
2 23 2, , sin sin[ ) = ( ) − ( ) [ ]δ  

 − ( ) ( ) − ( ) ( )c

n
cx dT

c

n
cx dT

j jk m j jm k

2 2

2 2cos cosδ δ  (A4.71b)
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The derivatives of the matrix g  are given by:

 
∂
∂

= … = − [ ] − [ ]g

x
j m a dddT dddT

j

, , , , . .1 2 0 5 1 0 5 2*  (A4.72)

The Christoffel symbols are given by Equation (A4.1):

 Γ
ij
k kl jl

i

il

j

ij

lu u u
=

∂

∂
+

∂
∂

−
∂

∂






1

2
g

g g g
 (A4.73)

NOTES

1 Borel sets are the sets that can be constructed from open or closed sets through the 
operations of countable union and intersection. For example, if Ω = ( ]0 1, , then any open or 
closed interval in Ω is a Borel set. Note that the collection of all Borel sets on Ω constitutes 
a Borel σ - algebra. See p. 449.

2 Binomial measure
 A binomial measure is the probability measure P corresponding to binomial distribu-

tion. Binomial distribution is a discrete probability distribution B n p,( )  characterized by 
two parameters n and p. n represents the number of independent experiments and each 
experiment is called a binomial trial having only two outcomes, say success or failure, 
with respective probabilities p  and 1− p. If X  denotes the binomial random variable, 
X B n p~ ,( )  with n ∈ and p = [ ]0 1, . The probability of getting exactly k  successes out 

of n  experiments (or trials) is:

 
P X k

n

k
p pk n k=( ) =







−( ) −
1

 
(i)

where 
n

k







is the binomial coefficient and is equal to 
n

k n k

!

! !−( ) . See p. 450.

3 Filtration
If, for every i I∈ , where I ⊂   is an index set starting from 1, t ti ≤  is a sub- σ - algebra of 

  defining a probability space, then filtration is the set 
t

i Ii
{ }

∈
. Intuitively, it is an ordered 

collections of subsets that are used to model the information available on a random process 
at a given time. See p. 450.

4 Markovian property
A stochastic process X t( )  is Markov if the conditional distribution of X t +( )τ  given 

t
 

is the same as the conditional distribution of X t +( )τ  given X
t
 for any time increment 

τ > 0. In other words,

 P X t x P X t x X
t t

( | ) ( | )+( ) ≤ = +( ) ≤τ τ  (i)

Thus, for a Markov process, a future state is dependent only on the present and not on the 
past. Markovian property is crucial in characterizing solutions to SDEs. See p. 456.

 

 

 

 

 

 

 

 

 

 



474 Elements of Classical and Geometric Optimization

5 A martingale  t( )  is a special type of 
t
- adapted L1 ( i e E t. . ( )  < ∞ ) stochastic pro-

cess satisfying the condition:

E t s
s

M F M( )  = ( )|  a.s. (almost surely) for every s t≤  (i)

If E t s
s

M F M( )  ≥ ( )|  a.s. for every s t≤ ,  t( )  is a sub- martingale.

If E t s
s

M F M( )  ≤ ( )|  a.s. for every s t≤ ,  t( )  is a super- martingale.

Brownian motion is an example for a martingale. A stopped stochastic process is also an 
example; it is defined as:

 X X t
t t
τ τ= < < ∞,  

 = ≥X t
t
, τ  (ii)

Here τ  is a random variable with sample space Ω = … ∞{ }0 1, , , . See p. 456.
6 Lipschitz continuity

A function f x t,( )  is said to be Lipschitz continuous in the variable x  on a set S ∈2, if 
there exists a constant L > 0  such that:

 f x t f x t L x x
1 2 1 2
, ,( ) − ( ) ≤ −  (i)

whenever both points x t
1
,( )  and x t

2
,( )  are in S. The constant L  is called the Lipschitz 

constant for f. A sufficient condition for Lipschitz condition is the differentiability of 

f x t,( )  in the variable x  on the set S. In other words, if:

 ∂ ( )
∂

≤ ∀ ∈
f x t

x
L x t S

,
, ,  (ii)

then, f x t,( )  is Lipschitz continuous. This is verifiable by means of the mean value the-

orem. See p. 457.
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A5.1  MATRIX g  AND THE CONNECTION MATRICES FOR   
THE RASTRIGIN FUNCTION IN EXAMPLE 5.2

The Rastrigin function is given in Equation (5.32) in Chapter 5. Let

 f x x
j

m

j j
x( ) = − +{ }

=
∑

1

2 10 2 10cos π  (A5.1)

The first- order Euclidean derivative is:

 
∂
∂

= +
f

x
x x

j
j j

2 20 2π πcos   (A5.2)

 
∂

∂ ∂
= + =

2
22 40 2

f

x x
x i j

i j
j

π πcos ,     if and zero otherwise  (A5.3)

Now, the matrix g  associated with the Riemannian metric g  is:

 g
ij

i j

f

x x
=

∂
∂ ∂

0 5
2

.  (A5.4)

Matrices corresponding to the Cristoffel symbols:

The derivatives of the matrix g  are given by:

 
∂

∂
=

∂
∂ ∂ ∂

= …
g

ij

k k i j
x

f

x x x
k m0 5 1 2
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. , , , ,  (A5.5)
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where

 
∂

∂ ∂ ∂
= − = =

2
380 2

f

x x x
x i j k

k i j
j

π πcos ,     if and zero otherwise  (A5.6)

The Christoffel symbols are obtained from the expressions:

 Γ
ij
k kl jl

i

il

j

ij

lu u u
k m=

∂

∂
+

∂
∂

−
∂

∂






= …

1

2
1 2g

g g g
, , , ,  (A5.7)

where gkl  is the kl
th( )  element of g−1.

A5.2  FIRST-  AND SECOND- ORDER DERIVATIVES OF   
THE BUMP FUNCTION

Choosing the bump function as the kernel, one has:

 ψ y x−( ) = −
− −( ) −( )









 ∈exp ,

1

1 y x y x
x

T
n  (A5.8)

It follows that:
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(A5.9)

The derivative of the g  matrix is given by:
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  (A5.10)

where
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∂
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and
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∂ ∂
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and
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 (A5.12b)

Knowing 
∂ −( )

∂ ∂

2ψ y xj

x x
k i

 from the last equation, 
∂

∂
∂ ( )

∂





x

E

x
k i

x
 is computable from 

Equation (A5.11) from which the derivative of  g  matrix is obtained from Equation 
(A5.10).

A5.3  RIEMANNIAN GRADIENT OF LOG- LIKELIHOOD FUNCTION 
l Zθt ;( )  AND THE DERIVATIVES OF g  FOR THE EXAMPLE 

PROBLEM 5.4

The log- likelihood function l θt ; Z( ) is given in Equation (4.93) in Chapter 4. With 

 given by Equation (5.42), the Euclidean gradient of the log- likelihood

function l tθt ; Z( )  is given by:
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 (A5.13)

The Riemannian gradient is given by g− ∂
∂ ( )1 l

kθ
θ ; Z  where g  is the matrix associated 

with the Riemannian metric and it is the same as the Fisher information matrix 
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With g = ( )I
n k

θ  and θ
k k k

T
= ( )α λ,   at any kth  iteration, its derivatives with respect 

to the two parameters are:
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Index

absolutely continuous 316
acceptance probability 16, 18, 234– 6, 433– 5
Ackley function 323, 327, 356, 471
action integral 26, 31– 2, 34, 42, 54
additive regularizer 356
admissible control 53, 56, 58, 405
admissible trajectory 53
annealing parameter 356– 7
ant colony optimization 182, 217, 258
anti- development 348– 9, 355
artificial variables 139, 141– 2
augmented Lagrangian method 120, 169– 70, 213, 

222
azimuth angle 285, 287

backward Kolmogorov operator 342, 461
basic gradient methods 77
basic variables 136
basis set 37, 96, 141
Bellman principle of optimality 61, 64, 404
BFGS method 77, 107, 169
bijective map 270
bilinear form 36, 38, 96, 400
binomial measure 450, 473
blending parameter 222
Boltzmann constant 18, 233, 236, 269
Boltzmann distribution 17, 233– 5, 387, 419, 436
Borel sets 449, 473
Box- Muller transformation 160, 397
brachistochrone problem 6, 20, 24, 28
Brownian motion 268, 339, 350– 1, 449– 58
brute- force solution 12– 14
bump function 362– 3, 477

camelback function 171, 250
canonical basis 345
cardinality 431
central limit theorem 388, 436
central moments 389
Cholesky decomposition 91, 103
Christoffel symbols 285, 289– 90, 295, 446
Chromosome 217– 20, 222
classical methods 64, 265, 302, 307, 328
complete graph 4
computational complexity 14, 381
conditional pdf 391
condition number 79– 80, 91
confidence intervals 201– 2, 315, 438

conjugate directions 82– 3, 202, 206– 10
conjugate gradient method 82, 97, 100– 1, 104, 306
connection (on a manifold) 284, 289
connection matrices 357, 363, 471, 476
conservative system 31, 72
constraints: equality 40; inequality 43
control (input) variable 53
convex function 8
coordinate chart 270
correlation 269, 391– 2
costate variables 56
cotangent bundle 277
cotangent space 277
cotangent vectors 277
covariance matrix 391
covariance matrix adaptation 217, 252
covariant derivative 288– 91
crossover probability 222
cubic fit 67, 70, 78

derivation 274, 276– 7
derivative- based 77
derivative- free 182– 3
descent cone 48
design: space 1; variable 7
detailed balance equation 431, 433– 4
DFP method 102, 104, 107, 110
diffeomorphism 270– 1
differential 278, 303
differential evolution 241– 2, 246
differential geometry 264, 339, 345
diffusion coefficient (term) 320– 1
diffusion process 320– 1, 342, 350
Dirac delta function 269, 385, 455
direct search method 182– 3
direction of steepest ascent 38
direction of steepest descent 38– 9, 77
directional derivative 43, 273– 4
Dirichlet BCs 33
drift (coefficient or term) 320– 1

eigenvalue 71, 80, 91, 304– 6, 315, 402
eigenvector 71, 80, 304– 6
Einstein convention 274, 277, 281, 284
EL equation 31, 33– 4, 42, 403– 4
element shape functions 38
elliptic boundary value problem 95
essential BCs 33
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482 Index

evolute 27, 72
evolutionary methods 35– 6, 182, 214, 246
Euclidean basis 345
Euclidean norm 104, 210
Euler- Lagrange (EL) equation 26, 284
Euler- Maruyama (EM) method 321, 464
existence and uniqueness 459
expectation 199, 316, 362, 389
exploratory move 183– 5
exponential map 295– 7
exponential- time 411

failure surface 152– 7, 159, 164, 412
Farkas lemma 48, 401
feasibility cone 48– 9
feasibility direction 48
feasible solution 137– 9, 141– 2, 162
Fermat’s principle 6, 28
Fibonacci method 68
Fibonacci numbers 68– 9
Filtration 353, 450, 473
finite element method 6, 64, 96, 398
first fundamental form 281
first variation 24, 54– 5, 57
Fisher information matrix 197, 316, 436, 479
Fokker- Planck equation 269, 321
frame bundle 345– 8, 355, 376
frequency response 226– 8, 442– 4
functional 24– 5
functional derivatives 11, 24, 77

gain matrix 60– 61
Galerkin method 36
general linear group 345
generalized coordinates 34, 36– 7
generalized exponential pdf 193– 4, 318
generalized reduced gradients 143
genetic algorithm 182, 214, 217, 246, 322
geodesic equation 284– 7, 298, 340
geodesic search 264– 5, 317
geometric CGM 307– 8
geometric methods of optimization 36, 264– 5, 

268, 301– 2, 327, 341
geometric SDM 304, 307– 8, 311, 318– 20, 323, 

341
Geometrically Adapted Langevin Algorithm 339, 

356, 376
global solution 15– 16, 182, 217
gradient projection 160– 3, 265
gradient vector 39– 41
Gram- Schmidt orthogonalization  

procedure 202– 3, 439– 40
Green’s identity 35– 6, 398
golden section method 67– 9, 174

Hamiltonian cycle 4– 5
Hamilton- Jacobi- Bellman (HJB)  

equation 64, 404
Hamilton’s principle 30– 2
Hessian matrix 7
Hilbert space 35– 6, 398, 400, 408
Himmelblau function 128– 31, 377
Homeomorphism 270
horizontal lift 347– 9, 355
horizontal subspace 346– 7

IC decomposition 97, 100
Implicit function theorem 144, 271
infinitesimal generator 342– 3
injective map 265
inner product 35
interval bracketing 67– 8, 78
isomorphism 295, 345– 7, 376
Ito diffusion process 320– 1
Ito integral 350– 2, 459– 61
Ito’s formula 351, 460– 3, 465
Ito sense 350, 352
Ito- Taylor’s expansion 463

Jacobian matrix 149, 176, 211, 279, 396
Jacobi pre- conditioner 97, 100
joint probability (cumulative) distribution 390

Karush- Kuhn- Tucker (KKT) conditions 38
KKT condition 38
KL divergence 316– 17, 322, 328, 366
Kolmogorov- Chapman equation 426
Kolmogorov operator 320
Kronecker delta 277, 354
Kullback- Leibler (KL) distance 316

Lagrangian 42
Lagrangian density 31– 3
Lagrange multipliers 143
Langevin diffusion 320, 339, 367, 376
Langevin dynamics 269, 320
Langevin SDE 268– 9, 320– 1
Laplace- Beltrami (LB) operator 341
Laplacian operator 94, 341
law of large numbers 422, 436
LB operator 342
Legendre transform 56, 402– 4
Leibniz property 276
Levi- Civita connection 292– 3, 295, 300, 302, 330
Lie bracket 293– 4, 299
limit state function 412– 14
line search 78, 83, 89
linear form 36, 96, 400
linear dependence 431
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483Index

linear independence 34, 41, 397
Linear programming 70, 126, 132, 149, 166, 411
linear quadratic regulator problem 59
linear transformation 278, 300, 345, 395
Lipschitz continuous 78– 9, 320, 457, 459, 474
local coordinates 275
local Euclidean property 270– 1, 274, 280, 302
local solution 15– 16, 21– 3, 228
logarithmic map 295– 6
log- likelihood function 71, 193
loss function 315– 16

Markov chain 424; discrete 320, 425; ergodic 
320, 430; limiting distribution of 429; 
irreducibility of 427; periodicity of 428;  
reversible 431– 3

Markov chain Monte Carlo (MCMC) 36, 195, 433
Markov process 425, 456, 473
Markov property 425
Martingale 351– 3, 456– 7, 461, 474; sub-  474; 

super-  474
mass matrix 38, 226
maximum likelihood estimation 71, 192, 247, 250
MC simulation 17, 20, 159, 195, 234, 318, 397, 

416
mean- variance portfolio theory 247
meta- heuristic 35, 182, 217, 238, 246
method of feasible directions 149– 50
method of Hooke and Jeeves 183
method of Nelder and Mead 188
metric 15, 264, 382
metric space 382– 3, 398
Metropolis algorithm 16, 233– 6, 251, 383
Metropolis- Hastings algorithm 251, 433, 435, 468
microeconomics level 1
moment generating function 248
Monte Carlo simulation 11, 267, 429
multi- normal pdf 438
Mutation probability 221– 2, 226, 238

natural BCs 33– 5, 55
natural frequency 226, 441, 443
negative definiteness 8
neighbourhood 15
Newton’s method 100– 1, 126– 8, 130, 169, 241, 

311– 13
non- basic variables 137
non- holonomic constraints 52
normal coordinates 295– 7
NP- complete 14, 381– 2
NP- Hard 14, 246, 381– 2

optimal control 52– 4, 56– 8, 61, 238
optimality conditions 38, 43, 45, 47

optimization: continuous 1, 5– 6, 20; constrained 
38, 50, 52, 77, 126, 222, 401; derivative- 
based 9, 77, 110, 166, 183, 206, 210; 
derivative free 166, 182– 3, 214, 232, 251– 2; 
discrete 4– 5; functional 52; unconstrained 
7, 38, 43, 49– 50, 77, 126, 210, 217, weight 
117, 185

order of approximation 38, 128
Ornstein- Uhlenbeck process 464
orthogonal projection 35
orthogonality conditions 34
orthonormal bases 273, 296, 342; basis 295, 345
overdamped Langevin SDE 321, 356

parallel subspace property 207
parallel transport 291– 3, 300
parameter estimation 341, 366
parameters: cognitive 238, 241; social 238, 241; 

weight 239
particle swarm optimization 182, 217, 238, 246
pattern move 184
path- breaking algorithm 233
pattern search 182– 5
penalty function methods 110, 119;  

exterior 110– 11; interior 115, 185
penalty parameter 110– 11, 120, 127, 187, 214
performance index 53– 4, 58
Plane truss 117, 185
Poisson equation 94
polar coordinates 282, 396
polynomial basis set 37, 96
polynomial time 381– 2, 411
Pontryagin’s minimum (or maximum) principle 54
positive definiteness 8, 101, 110, 356
positive semidefinite 59
Powell’s conjugate directions method 202
preconditioned CG 91
preconditioners 91, 94, 97, 100; Jacobi 97, 100; 

by IC decomposition 97, 100
probabilistic route 16
probability: crossover 218; mutation 218
probability density function 71, 389, 456, 466
probability distribution function 385, 413, 456
probability of failure 152, 158, 412
probability space 384, 424, 448
probability theory 16, 64, 72, 267, 383, 436, 447
projection map 346, 349
projection matrix 160– 2
pull- back 278– 9
push forward 278– 9, 347

quadratic covariation 351– 2
quadratic fit 67
quadratic function 82– 3
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484 Index

quadratic time 381, 411
quasi- Newton methods 77, 101– 12, 253, 312

radial basis function 362– 3
random number generation 383, 392
random variables: Bernoulli 449; discrete 385; 

continuous 386– 9; normal (Gaussian) 388– 9, 
437, 454; Rayleigh 397, 419; uniform 387, 
417

random walk 449
Rastrigin function 357, 363, 476
Rayleigh damping 226
Rayleigh quotient 71, 170, 304
Rayleigh- Ritz method 34, 36
reduced gradient 143, 173
reduced variates 412– 14
refractive index 28
relative entropy 316, 322
reliability 152– 3, 163, 411; system 411
reliability index 154, 158– 9, 164, 411
resonance 224, 439
Riccati equation 60, 407
Riccati matrix 60– 1
Riemannian connection 312, 347
Riemannian curvature 298– 9
Riemannian gradient 303, 307, 311, 318, 323, 478
Riemannian manifold 280, 341– 3
Riemannian metric 280– 2
Riemannian sum 350
Rosenbrock function 9, 218, 307– 8, 312– 14, 447
Rosen- Suzuki function 123, 213, 222
rotating coordinates method 202– 4

sample space 383
sampling 195, 320; inversion method of 416; 

rejection 420; importance 421
sampling distribution 197, 201, 315, 423
self- adjoint 341
semi- discretization 37
sensitivity matrix 118, 408
Sequential quadratic programming  

method 126
Sherman- Morrison (inversion) formula 110
sigma algebra 384
simplex method 132
simulated annealing 232
slack variables 121, 132, 136, 143
smooth manifold 273
smooth surface 265
Sobolev space 36, 96, 398, 408
spherical coordinates 285, 446
square integrable functions 341, 408
Snell’s law of refraction 28– 9

standard deviation 389
standard normal distribution 450
stationarity condition 31
stationary point 7, 207, 402
stationary stochastic process 455, 467
statistical estimation 192, 265, 315, 341
statistical sampling 267, 320, 356
steepest descent method 78, 302– 3
Stieltjes sense 350
stiffness matrix 38, 118
stochastic calculus 267, 339, 345, 447
stochastic development on a manifold 330, 341
stochastic integral 350– 1, 458
stochastic optimization 267, 320, 425, 462
stochastic processes 267, 328, 447
stochastic search 214, 267, 328, 356, 447
Stratonovich: integral 459; SDE 351;  

sense 350– 2
support of a function 422
system identification problem 251– 2

tangent : bundle 277; plane 51– 2, 265, 345– 6; 
space 50, 273– 4; vector 273– 4

Taylor’s expansion 79, 316, 406
test function 36– 7
thermal equilibrium 233
topological space 273
Torsion- free property 293
transformation of (RVs) random variables 153, 

195, 393
transition probability matrix 426
transmissibility 250
traveling salesman problem 11
trial function 36– 7
triangle inequality 382
trust region method 210, 312

utility function 1– 2

variance 389
variational: approach 24; calculus 6, 11, 30; 

problem 284
vector field 277– 8

weak derivatives 36, 408
weak form 398– 9
Weierstrass theorem 7
weighted residuals 34
White noise process 454– 5
Whitney’s embedding theorem 341
Wiener process 449, 456

Zoutendijk’s method 170
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