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Preface

The great stillness in these landscapes that once made me restless seeps into

me day by day, and with it the unreasonable feeling that I have found what I

was searching for without ever having discovered what it was.

—PETER MATTHIESSEN, “The Tree Where Man Was Born”

VER THE PAST TWO DECADES I’VE HAD THE GREAT PLEASURE OF PARTICIPATING IN

a wonderful scienti�c endeavor. Whether this quest is on the fringe or

the frontier of science may well depend on where you stand and the

direction in which you are looking. When I started down this path, I took

to heart Thomas Pynchon’s edict that “we have to look for routes of power

our teachers never imagined, or were encouraged to avoid,” and I embraced

a new style of modeling that used the ever-growing power of computation

on problems that heretofore had been too complex to analyze. My goal was

to focus on the big problems that had motivated me to pursue science in the

�rst place, notwithstanding the constant pressure in graduate school and

beyond to redirect such inquiries down a narrow path prescribed by the

prevailing paradigm.

In 1988 I was fortunate to join a small group of like-minded thinkers

hiding out in the high deserts of New Mexico. From such modest

beginnings a new wave of complex-systems thinking emerged. Given the

heavy investment of most academic institutions and scientists in traditional

paradigms and �elds, this new work was easily dismissed at �rst. This

dismissal turned out to be rather fortunate, as it allowed an ever-growing

group of creative and talented scientists—each of whom for one reason or

another felt the need to think di�erently—to escape the bounds dictated by



the academic establishment and to create new forms of scienti�c inquiry and

institutions better suited to taking on the important problems in the world.

Our group formulated problems around core ideas, such as adaptation and

robustness, rather than traditional academic �elds. We embraced a new set of

tools made possible by the information age and developed new methods to

move beyond the nineteenth- century toolbox used by most scientists. We

created new forms of academic institutions, such as the Santa Fe Institute,

that embodied the revolutionary mind-set that was fermenting, allowing the

easy interchange of ideas, examples, and tools across formerly isolated

academic �elds. The act was outrageous enough that the traditional

academic powers ignored our activities, giving us the needed time to re�ne

our ideas and methods so that we could start to seriously challenge the

prevailing norms.

In the intervening years, the �eld of complex systems has had time to

coalesce. Complex systems has always been a �eld that transcends the usual

academic boundaries. Yet, across this vast array of science, a small set of key

ideas has emerged, and it is these ideas that will be the focus of this book.

My own interests center around complex social systems—that is, systems

composed of interacting, thoughtful (but perhaps not brilliant) agents—and

most of the examples presented here will be drawn from this domain.

Since the �eld of complex systems is rapidly evolving, this book is about

both the known and the possible. Thus, some of the work discussed here is

well grounded in long-standing research e�orts, while other parts are of a

more speculative nature. My hope is that the combination will convey the

excitement of the ongoing quest while also establishing the future prospects

for the complex-systems point of view. Of course, any such excursion will,

by necessity, be a selective swath through a large �eld of existing ideas.

Some of the research discussed in this book is the result of past or

ongoing collaborations with Simon DeDeo, Russell Golman, Steve Lansing,

Scotte Page, Tom Seeley, Michele Tumminello, and Ralph Zinner.

Discussions with Walter Fontana, Van Savage, and Geo�rey West have also

been instrumental in re�ning some of the material. Moreover, the various

threads of thought weaving their way throughout this work have bene�ted



from discussions with, and encouragement from, Phil Anderson, Ken Arrow,

Brian Arthur, Bob Axelrod, Ted Bergstrom, Ken Boulding, Jim Crutch�eld,

Robyn Dawes, Doyne Farmer, Paul Fischbeck, Murray Gell-Mann, John

Holland, Erica Jen, Stu Kau�man, Steven Klepper, Blake LeBaron, George

Loewenstein, Cormac McCarthy, Norman Packard, Richard Palmer, John

Rust, Cosma Shalizi, Carl Simon, Herb Simon, Peter Stadler, and Hal

Varian. Robert Hanneman, Steve Lansing, Baldomero Olivera, Jacob Peters,

Tom Seeley, and Geo� West were all kind enough to provide some of their

research materials to generate some of the �gures. Laurence Gonzales

undertook a careful reading of the manuscript, as did my editor, T. J.

Kelleher, and I’m grateful to both of them for their suggestions. During the

�nal stages of the book, Sue Warga and Melissa Veronesi provided key

contributions. Finally, thanks to my agent, Jim Levine, for championing this

project.

I’ve also been fortunate to participate in two remarkable scienti�c

institutions: Carnegie Mellon University (CMU) and the Santa Fe Institute

(SFI). Both places have the same ethos, namely, to �nd incredibly creative

and smart people and put them in an environment that encourages

answering the important questions by collaborating across the usual

boundaries while minimizing institutional distractions. Maintaining such an

environment is hard, and I’m thankful for farsighted and entrepreneurial

administrators, such as SFI’s founder, George Cowan, who create such

academic playgrounds. After a long stint as a department head at CMU, I’ve

come to recognize the challenges of making such institutions work, and I’m

grateful to Jerry Sablo� (president of SFI), Jennifer Dunne and Doug Erwin

(current and former, respectively, chairs of faculty of SFI), Mark Kamlet

(former provost of CMU), and John Lehoczky (former dean of CMU), who

devote a remarkable amount of energy to making such institutions work.

Other key folks at SFI who have been helpful include Marcella Austin,

Patrisia Brunello, Ronda Butler-Villa, Juniper Lovato, Nate Metheny,

Ginger Richardson, Janet Rubenstein, Hilary Skolnik, Laura Ware, and

Chris Wood. At CMU I headed the Department of Social and Decision

Sciences (aka the department that studies interacting and thoughtful agents),



and I’m grateful for the wonderful group of colleagues who have surrounded

me while in Pittsburgh. Writing a book and running a department are not

always compatible activities, and my business manager, Sarah Bernardini, has

been gracious and productive throughout this process; I’m thankful to her, to

my assistant, Mary Anne Hunter, and to my other sta� members for their

help throughout the years.

Finally, thanks to my family and the “Lower-Waldron Commune,” my

friends and neighbors in Pittsburgh, who allow me to participate in a

remarkable and vibrant community that demonstrates daily the right purpose

and wonderful promise of complex social systems.

J. H. Miller,

August, 2014, Tesuque, New Mexico
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Prologue

Humanity today is like a waking dreamer, caught between the fantasies of

sleep and the chaos of the real world. The mind seeks but cannot �nd the

precise place and hour. We have created a Star Wars civilization, with Stone

Age emotions, medieval institutions, and godlike technology. We thrash

about. We are terribly confused by the mere fact of our existence, and a

danger to ourselves and to the rest of life.

—E. O. WILSON, The Social Conquest of Earth

Better a cruel truth than a comfortable delusion.

—EDWARD ABBEY

OMPLEXITY ABOUNDS.
Yet our traditional scienti�c way of thinking relies on reductionism,

an idea that has given us both the Archimedean tools to move the world and

the delusion that we understand what we are doing. We inhabit a world

where even the simplest parts can interact in complex ways, and in so doing

create an emerging whole that exhibits behavior seemingly disconnected

from its humble origins. This is at once both a magical and dangerous world,

where out of simple beginnings can emerge either a marvelous outcome or

an awe-inspiring catastrophe.

By its very nature, emergent behavior is easy to anticipate but hard to

predict. Sometimes emergence coincides with our needs. Markets may create

prices that transmit a vast array of critical information, resulting in the

allocation of goods and services to their best use. At other times emergence

works against us. The same markets may inadvertently start to feed on one



another, creating a sequence of crashes and altered expectations that cripple a

world economy and impact the lives of billions for years.

So complexity abounds, and the same complex powers that gave us life

on earth and the ability to think have also allowed us to create productive

systems that, on occasion, go terribly wrong. Maddeningly, even when we

try to anticipate such failures and build in mechanisms to keep our systems

under control, we necessarily increase the level of complexity in the system

and create new paths for failure. Whether we are trying to engineer physical

systems, such as nuclear power plants, spaceships, or bridges, or engineer

social systems, such as health care, tax policy, or food supplies, we are

creating systems that will fail in unanticipated ways.

Indeed, to think that we might create complex systems that do only good

is a delusion. That said, complex systems that work well provide so many

bene�ts that we are (and ought to be) willing to accept some occasional

failures. A temporary �ash crash across a few markets may be a small price to

pay for the countless bene�ts that accrue to society when those same markets

work well.

When complexity abounds, there be dragons. Nonetheless, it’s better to

encounter the dragons you know than the ones you don’t. Thus, devoting

some of our scienti�c enterprise to understanding better how complex

systems work—and, we hope, in that process learning how they can be

created and controlled—is a critical investment as we advance into a world of

hyperinteractivity. To survive this looming age of complexity, we need to

become proactive rather than reactive. In response to the �ash crash of 2010,

the Securities and Exchange Commission implemented new “circuit

breakers” in the trading of stocks on some markets, yet this policy was driven

far more by intuition than by insights from a scienti�c test bed. In the wake

of the 2008 �nancial meltdown, we implemented various stress tests on

banks to try to prevent an individual bank failure, yet it is the systemwide

connections that lead to ruin.

Ironically, the same computational and communication advances that are

driving the complexity of our era are the same tools that may give us the

necessary power to understand, and perhaps even harness, that complexity.



Computers provide a new window from which to observe and experiment

on complex systems. Moreover, our newfound ability to communicate and

collaborate rapidly across previously insurmountable distances may accelerate

the needed pace of scienti�c discovery and innovation.

In the past, the term complex was used to describe phenomena that were

beyond our understanding and, by implication, beyond our ability to

in�uence. This labeling served as a convenient crutch for scientists (and

politicians) to dismiss whole swaths of some of the most critical problems

facing society, ranging from climate change to �nancial collapse to terrorism.

However, as discussed in the chapters that follow, complexity is an aspect of

nature that is amenable to scienti�c analysis, understanding, and perhaps even

control. Once this is recognized, a vast frontier of discovery opens up,

allowing us to �nally make sense of our world.

We �nd ourselves in a race for knowledge and control of the complex

world around us. This is a race that we must win if we are to thrive, and

perhaps even survive, as a species. Our very existence relies on the complex

systems that bind our food supplies to our energy networks to our global

climate to every institution in our society. We have grown to a sheer size and

degree of connectivity where local actions now have global consequences.

We thrash about, with the potential of emergent bliss or disaster with

every twitch.
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ONE

Introduction: True Places

It is not down in any map; true places never are.

—HERMAN MELVILLE, Moby Dick

CIENCE IS ABOUT MAPMAKING. IT’S ABOUT TAKING A COMPLICATED WORLD AND

reducing it to some sparse set of markings on a map that provides new

guidance across an otherwise incomprehensible, and potentially hostile,

landscape. A good map eliminates as much spurious information as possible,

so that what remains is just enough to guide our way. Moreover, when the

map is well made we gain a deeper understanding of the world around us.

We begin to recognize that rivers �ow in certain directions, towns are not

randomly placed, economic and political systems are tied to geography, and

so on.

Maps—and science—are often more about what we leave out than what

we put in. As Jorge Luis Borges catalogs in his one-paragraph-long short

story “On Exactitude in Science,” “The Cartographers Guilds struck a Map

of the Empire whose size was that of the Empire, and which coincided point

for point with it. The following Generations, who were not so fond of the

Study of Cartography as their Forebears had been, saw that that vast Map

was Useless.”

Di�erent maps—even of the same landscape—provide di�erent insights

into the world. A topographic map provides information on the various hills

and dales in the world in just enough detail to be useful to a hiker. A road

map, with its sparse set of major cities and the roads that connect them,

provides just enough information for a cross-country drive. Divorcing a map



from its purpose inevitably leads to frustration. Too little of the right kind of

detail, or too much of the wrong kind, encumbers our ability to understand

the world.

Science has proceeded by developing increasingly detailed maps of

decreasingly small phenomena. At the heart of this reductionist strategy is a

hope that once we have detailed maps of the smallest of parts, we can paste

the mosaic together and have a useful map of Borges’s Empire. That strategy

fails, and while the result might please Borges’s Cartographers Guild, the

mosaic is as much a fool’s errand as Borges envisioned.

The problem lies not in the incompleteness of our knowledge but in the

dream—no, the fallacy—of reductionism. Reductionism fails because even if

you know everything possible about the individual pieces that compose a

system, you know very little about how those pieces interact with one

another when they form the system as a whole. Detailed knowledge of a

piece of glass does not help you see, and appreciate, the image that emerges

from a stained-glass window.

Over the past few decades a new science has been brewing. It is a science

that recognizes that there are fundamental principles governing our world—

such as emergence and organization—that appear in various guises across all

of the nooks and crannies of science. For example, in physics, individual

atoms organize into magnets, in biology, cells organize into organisms, and

in economics, traders organize into markets. The universality of these

principles was a surprise to scientists accustomed to thinking in terms of

scienti�c disciplines, and by necessity, this new science transcends the

traditional boundaries imposed by our current academic institutions. It is a

science where simple things produce complexity and complex things

produce simplicity. It is a science that embraces new investigative tools, such

as computers serving as modeling substrates, in order to escape the bounds

imposed by our usual collection of scienti�c tools, such as the various pieces

of mathematics, largely derived in the late 1600s, that we so often rely on

today. More fundamentally, it is a science that challenges our traditional

notion that understanding comes from reducing things to their simplest

components.



Alas, the new science we are after, the one that may hold sway over

critical aspects of our life and destiny, is, as Herman Melville says, “not down

in any map; true places never are.” Science as currently practiced—with

psychology separate from economics, physics separate from biology, and on

and on—has been remarkably productive. The creative destruction of

scienti�c ideas, with its inherent quest to de�ne the frontier by publicly

disclosing, evaluating, and correcting ideas, has provided us with an engine

of insight. The cost, however, is that individual �elds have become

increasingly separated from one another intellectually. Taking an exact look

at a small piece of the world has become the academic norm and has almost

fully displaced taking what my Santa Fe Institute colleague Murray Gell-

Mann calls “a crude look at the whole.”

That may seem a minor problem, but we see its importance when we

look at the true places we wish to explore. Take any global-scale, societal

challenge, such as �nancial collapse, climate change, terrorism, epidemics,

revolution, or social change: not one neatly aligns with any particular

academic �eld. Moreover, even if one did, the reductionist approach still

may not let us understand the whole. The fundamental principles of

complexity describe how even simple parts, once together, seemingly take

on a life of their own. Having intimate knowledge of, say, each part of an

engine, every bolt, piston, cam, and so on, tells us little about what happens

when we put those pieces together and they begin to interact with one

another. Moreover, such intimate knowledge gives us no insight into what

would happen to the engine as a whole if, say, we increase the size of one of

the cylinders.

Reduction gives us little insight into construction. And it is in

construction that complexity abounds.

From agoras to amoebas, from bees to brains, from cities to collapse, and

on up to zebra stripes, the world around us is an encyclopedia of complexity.

Sometimes this complexity arises shaped by natural forces such as evolution,

as in the consciousness that emerges from our brains. At other times we have

a hand in its creation, as in the steady stream of prices that arises from the

seemingly chaotic noise and gestures in a commodities trading pit. Without a



science of complex systems, we have little chance to understand, let alone

shape, the world around us.

The initial academic discussions of complex systems can be traced back to

at least 1776, when Adam Smith, in his Wealth of Nations, brie�y discusses

the “invisible hand” as a force that leads self-interested traders to

unintentional, socially desirable outcomes. Of course, scienti�c propositions

that are based on an invisible hand are more akin to the invocation of a deity

than to a scienti�c theory and are about as useful to an economist as one of

Rudyard Kipling’s just-so stories is to a biologist trying to explain how a

leopard gets its spots.

The modern movement of complex-systems thinking can be tied to the

beginnings of the atomic and information ages, when scientists such as

Stanislaw Ulam and John von Neumann, using some of the world’s �rst

programmable electronic computers, began to blur the lines between

traditional academic �elds as they pursued questions such as whether a

machine could be truly self-reproducing. Out of this e�ort arose a class of

models that, starting with a collection of simple, well-de�ned pieces and

interactions, results in a surprisingly rich set of global patterns.

The study of those patterns was an important step toward understanding

not just the purpose of an animal’s markings—say, camou�age—but also how

they arise. Is it necessary that there be some master plan contained within

the DNA of a leopard that speci�es the color of each location on its skin,

similar to how a digital image �le directs the color of each pixel on a

computer display, or is there a more universal explanation that can tell us

how a leopard gets its spots?

The simple mathematical and computational models begun by Ulam and

von Neumann have given us a lens through which to look at the origins of

such complexity. We �nd that the combination of simple pieces, locally

interacting with one another, is su�cient to lead to global behavior that is

rather alien to its origins. Thus, the likely answer to how the leopard gets its

spots—or how a lowly (but dangerous) sea snail gets its shell pattern, or even

how the cacophony of a trading pit results in a well-organized set of trades



and prices—is at once far simpler, far more universal, and far more

fascinating than we might imagine.

Over the last few decades, the study of interacting systems has opened up

a new frontier in our understanding of complex systems. Whether we

consider abstract models running at the speed of light inside a computer or

the carefully curated anthropological evidence of a century of rice farming, a

small set of core principles governing complex systems has emerged.

Interacting systems develop feedback loops among the agents, and these

loops drive the system’s behavior. Such feedback is moderated or exacerbated

depending on the degree of heterogeneity among the agents. Interacting

systems also tend to be inherently noisy, and such randomness can have

surprising global consequences. Of course, who interacts with whom is a

fundamental property of these systems, and such networks of interaction are

an essential element of complex systems.

Core principles such as feedback, heterogeneity, noise, and networks can

be used to understand new layers of complexity. For example, there are

complex systems, such as your mind, that generate coherent and productive

decisions in a completely decentralized manner, seemingly without control.

Other systems, facing deeply embedded constraints such as getting oxygen to

all of the cells in your body, lead to scaling laws that can take seemingly

disconnected parts of the world and align them along a simple relationship.

Yet other systems, such as the members of a social movement, self-organize

into critical states that begin to exhibit a common characteristic behavior.

Many interacting systems develop cooperation among the agents, a complex

behavior that, once arisen, allows agents to shift into a new realm of

opportunity, and we are now in a position to understand such a transition.

Finally, by repurposing methods and ideas that were �rst developed at the

dawn of the modern science of complex systems, we can generate a new

theorem about the behavior of adaptive systems.

These core principles driving complex systems, and their application to

understanding new layers of complexity, are the focus of the pages that

follow.



One critical aspect of interactions is feedback. Sometimes feedback

stabilizes the system, as happens when we install a not-too-touchy

thermostat to control the furnace. Other times feedback causes a system to

go out of control, as happens when we place a microphone too close to a

loudspeaker, producing an ever-increasing screech. The recent growth of

market interconnectivity has resulted in a system rife with feedbacks. This

has come about through new communication links, the rise of derivative

securities, and the use of high-speed, computer-automated trading. Indeed,

these changes have easily outpaced our ability to truly understand their

implications, and �nancial markets have become an unintentional

Promethean experiment upon which we now base our economic livelihood.

An example is the “�ash crash” of May 6, 2010, when a simple oversight

in the programming of a trading computer in a suburb of Kansas City,

Kansas, caused a temporary collapse of global markets. The havoc that

ensued resulted in dramatic price changes on key stock indices and caused

the shares of previously valuable mainstay companies to be sold for pennies

(not pennies on the dollar, mind you, but pennies). A �ve-second trading

pause invoked �fteen minutes into the crisis was, fortunately (and

remarkably), su�cient to begin to restore the system, and the markets settled

back into a more familiar pattern.

In 2008 a much larger event happened that resulted in a �nancial tsunami

that rolled across the world’s economy, a�ecting the lives of billions and

plaguing us to this day. Examining this crisis, we �nd a situation where any

single agent on the economic landscape, from homeowners to mortgage

brokers to rating agencies, was making sane decisions, yet the connections

among these agents created a series of unfortunate feedback loops that

destined the system to fail.

The economic collapse of 2008 represents a major failure for the

profession of economics. Not only did economists fail to see the onslaught

coming, but once the crisis arose, they had no idea how to deal with it. Part

of this failure can be traced to the reductionist desire to break things down to

simple parts. In the language of modern economic theory, this led to a

reliance on “representative agents,” constructs that attempt to capture the



behavior of, say, all consumers using a single megaconsumer. In part, such a

choice arises from the fourteenth-century friar Father William of Ockham’s

dictate to prefer simpler explanations to more complicated ones. Of course,

Ockham still requires that the model, complicated or not, explain what we

want to understand. In reality, the use of representative agents is also driven

by the limitations of the modeling tools typically used by economists, as

these tools can be deployed only if there is a high degree of homogeneity in

the system.

While homogeneity is a useful assumption—for both philosophical and

practical reasons—the study of complex systems suggests that the behavior of

heterogeneous systems may not be so easily averaged out. Whether we are

looking at the temperature control of a honeybee hive or the likelihood of a

riot, heterogeneous systems often function in ways that are di�erent from

homogeneous ones.

Recognizing heterogeneity not only changes our predictions about how a

system will behave but also alters our policy prescriptions. Homogeneous

systems tend to undergo rapid changes and oscillations, while heterogeneous

ones tend to react more slowly. Thus, your ability to start, or quash, a social

movement is tied to the degree of heterogeneity among the people involved.

Similarly, markets may require some heterogeneity among the traders to

remain stable.

C������ ������� ����� ���� ���� �������� ������ �� ���������� ����

to the behavior of the agents or the structure of interactions. Perhaps

surprisingly, such randomness can be useful. We often dread randomness in

systems. Indeed, a key dictate in modern business management is to seek

quality by removing all sources of randomness from any process. Given such

imperatives, it is easy to think of randomness as a foe to be fought rather

than as an opportunity to be embraced. The study of complexity suggests

otherwise. Randomness is fundamental to Darwin’s theory of evolution,

which relies on the notion that errors (variations) during reproduction will

provide grist for the mill of selection and result in “endless forms most

beautiful and most wonderful.”



Darwin’s theory, and the role of randomness therein, is really about

discovery on rugged landscapes. Our ability to discover new opportunities,

whether new forms of animal life or novel technologies, is tied to both the

ruggedness of the underlying landscape and our search skills. On simple

landscapes, even simple searches can �nd good outcomes. On rugged

landscapes, such searches founder.

Landscapes become more rugged as the elements that compose them

interact more. Suppose we are seeking, say, a novel drug cocktail to �ght

some disease. If each drug we add to the mix has an e�ect that is

independent of the others, then we can quickly �nd the best cocktail just by

adding the drugs one at a time and keeping only the ones that improve the

cocktail’s overall e�cacy. However, if the drugs interact with one another,

this simple search strategy breaks down, as the various interactions no longer

provide a clear signal on how best to proceed.

It turns out that the introduction of randomness can greatly improve our

ability to search on rugged landscapes. As James Joyce noted, “Errors . . . are

the portals of  discovery.” Just as evolution relies on variation to uncover most

wonderful forms, introducing errors into a search can be a powerful strategy

for discovery.

Accepting randomness in a system forces us to give up some control. Yet

when we are facing hard problems, this may be the right thing to do if we

want to improve the outcome. More generally, it may be the case that

carefully controlled, centralized systems are more of a modern artifact,

driven by reductionist thinking, than a universal norm. Indeed, there are

plenty of examples where the principles of feedback, heterogeneity, and

randomness conspire to create complex systems that are without centralized

control, yet quite productive. E�ective decentralized decision making may be

one of the best new old ideas to emerge from complex systems.

When we think about decision making, our natural tendency is to focus

on our own decisions. Over the last few decades entire academic �elds have

been devoted to understanding how humans make decisions. While

unraveling the mysteries of our deciding brain is a worthy enterprise, it is far

too easy to overlook the vast number of decisions that take place elsewhere



in the biological world. To take just one example, bacteria exist in

environments that contain both useful and harmful chemicals, and thus they

constantly must make life-and-death decisions about where to move, given

the trade-o�s among various opportunities. How is this possible without a

brain? Even more intriguing, humans (presumably using a brain) and bacteria

(presumably not using one) demonstrate similar patterns of choice errors in

simple experiments.

The notion that one doesn’t need a brain to make good decisions is

startling. From the lone bacterium on up to large-scale social systems such as

honeybee hives and �nancial markets, we are surrounded by decision

making. How can a swarm of honeybees make good decisions? The queen is

not the leader. She leads a rather insular life, serving as a well-tended egg-

laying machine, able to emit only signals about her health and existence,

rather than operating instructions to the rest of the hive.

Karl von Frisch’s discoveries about honeybee communication in the late

1940s inspired generations of scientist to undertake the careful observation

and analysis of honeybee behavior. Through this work, we are beginning to

understand how a colony can sort out its various options and make good

decisions without any central leadership. One particularly important decision

for a colony—the di�erence between its perpetuation and demise—is

�nding a new location when the old one becomes too crowded.

A swarm of bees solves the problem of �nding a new location through

the use of a few simple rules and feedback mechanisms. Scout bees, after

identifying a potential new site, advertise it to other scouts. The better the

site, the more vigorously the scout promotes it. This decentralized process

allows the sites to be sorted out and suitably investigated, and ultimately it

results in the swarm tending to choose the best site relatively quickly without

any central direction.

Understanding such decentralized processes has numerous bene�ts. It

solves an interesting, life-or-death case of honeybee natural history. It also

shows how decentralized mechanisms can be used to solve hard problems.

This suggests an approach that we might be able to hijack for our own use

in, say, coordinating computer networks or large-scale human organizations.



Finally, and perhaps most profoundly, such decentralized mechanisms give us

new insights into related phenomena. For example, perhaps bees are to

neurons as hives are to brains. Are swarm decisions akin to human

consciousness?

Complexity arises in systems of interacting agents. Take some agents with

simple behavior, connect them together in a particular way, and some global

behavior will result. Alter the connections and, often, new global behavior

arises. Given this, knowing how patterns of interactions—that is, networks—

in�uence behavior is fundamental to understanding complex systems.

Even in simple models such as lakeside neighbors competing to keep up

with one another, interesting patterns begin to emerge. Starting from such a

simple system, we can alter the connections slightly and �nd radically

di�erent behavior taking over. Indeed, by introducing only a few long-range

connections, we �nd that it may be a small world after all, where anyone can

connect to anyone else using only a few intermediaries. If neighbors can

connect to one another, they can in�uence one another. Thus, the networks

that de�ne neighborhoods drive system-wide behavior. This behavior is

often surprising. For example, a well-mixed world where neighbors are

tolerant of others easily segregates into neighborhoods of homogeneous

types.

One of the more surprising principles coming out of the complexity that

abounds is the existence of scaling laws. Starting in the late 1800s, biologists

began to notice that, when appropriately scaled, various physical and

physiological features of a variety of organisms aligned in a simple way. A

simple rule links the metabolism of a single cell to that of a blue whale.

Knowing the heart rate and weight of, say, a mouse allows us to predict the

heart rate of, say, a thousand-pound cow. The ability to make such

predictions is tied to the fundamental constraints that govern such complex

systems. In this case, limits on how densely we can pack the pathways

needed to provide resources to the organism drive the scaling.

Scaling laws arise in other complex systems as well. The size of cities or

�rms tends to follow well-de�ned laws, with the largest having twice the

size of the second-largest, three times that of the third-largest, and so on.



Similarly, in a book, the word that is most commonly used is twice as likely

to occur as the next most commonly used word. Even the number and death

tolls of wars are governed by a scaling law.

Knowing the scaling laws that govern our lives provides a portal into our

future. For example, over the last century we have seen a trend toward

urbanization. More than half of the world’s population now lives in urban

areas. Is such a trend good or bad for humanity? The answer to this question

is tied to the coe�cients of various scaling laws of cities. These will tell us

whether more urbanization will allow us to use fewer resources, be more

inventive, and so on. Similarly, the scaling laws of wars may hint at how

many con�icts with how many deaths we are likely to see in the future.

In complex social systems we often see the emergence of cooperation.

Agents in systems can either compete or cooperate with one another.

Competition makes you slightly better o�, while cooperation makes you

much better o�. Unfortunately, most social systems have incentives that

favor, at least individually, competition over cooperation. Such systems can

easily end up with the inferior, competitive outcome.

Notwithstanding incentives to compete rather than cooperate, complex

social systems may �nd ways to achieve the cooperative and socially superior

outcome. On the island of Bali, farmers have been farming the picturesque

rice terraces sustainably for more than a thousand years. This cooperation

persists despite what would appear to be overwhelming economic incentives

to compete with one another for the scarce water. However, by carefully

unraveling the complex dynamics that govern this ecosystem and applying

the principles of feedback and networks discussed above, we can resolve this

apparent anomaly. Oddly, the neighborhood feedbacks from the presence of

damaging crop pests and diseases realign each farmer’s incentive to share

water, and with such sharing, society is better o�. Moreover, the newfound

need for coordinated cropping opens up a niche for an elaborate religious

institution with various shrines and temples tied to the irrigation systems.

We can also formulate an abstract model from which we can observe and

understand the emergence and persistence of cooperation. We �nd that in a

world red in tooth and claw, where competition can easily overwhelm the



system, slight variations in competitive strategies provide a means by which

cooperation can emerge. Cooperative agents develop a way to communicate

so as to recognize one another. By doing so, they get the bene�ts of

cooperation while minimizing losses when they encounter competitive

agents. Through such a mechanism, cooperation can emerge and be

sustained.

The �nal principle we will explore is that of self- organized criticality.

Consider grains of sand being slowly piled on a table. As we drop each grain,

it might land on a stable spot and increase the pile, but in doing so it makes

that spot less stable than it was before. Alternatively, it might land on an

unstable part of the pile, triggering an avalanche.

Over time, this interplay of stability and instability self-organizes the sand

pile into a critical state. Once this happens, we �nd that avalanches of all

sizes are possible (the distribution of which is described by a scaling law),

with smaller ones far more likely than larger ones.

One implication of the sand pile is that once we enter the critical regime,

the dropping of a single grain of sand can cause, on rare occasions, an

avalanche encompassing the entire pile. Various social systems may evolve

toward similar critical states. We might �nd ourselves in a world governed by

the mathematics of the sand pile. Stock markets may be subject to numerous

routine adjustments as typical world events transpire. Yet these same types of

events will, on rare occasions, lead to a massive readjustment. Civilizations

may be governed by political systems that tend to push people toward critical

states, where small events occasionally result in the collapse of an ancient

civilization or, as we saw in the Arab Spring, modern governments.

W� ���� �������� ��� ����������� �� ���������� �� ��������� �� ���

that begins with our desire to understand atomic interactions at the start of

the atomic and information ages and ends with a new fundamental theorem

about complex adaptive systems. In the early 1950s Nicholas Metropolis and

others developed an algorithm to explore interacting molecular systems. At

the core of this algorithm is a set of simple manipulations that ultimately

allows one to recover a critical piece of information that is impossible to



generate directly; as if by magic, this algorithm produces the unknowable.

Related algorithms have become a critical component in our emerging

analytic age, as they solve a key problem in applying the eighteenth- century

statistical ideas of Presbyterian minister Thomas Bayes to real-world

problems ranging from targeted web advertisements to driverless cars.

At the heart of complex adaptive systems are agents searching for better

outcomes. With a few simpli�cations, the key aspects of this search behavior

can be linked to elements of the algorithm above. Thus, agents in such

systems are, unknowingly, performing a dance governed by a cosmic

algorithm. Given this connection, we derive a new theorem of complex

adaptive systems that embraces the magic inherent in the algorithm. This

new theorem implies that as agents adapt in these complex systems, their

adaptations are governed by probabilities tied to their underlying �tness.

While agents are more likely to be found concentrating on the better

solutions, there is always a (lower) chance that they will �nd themselves in

suboptimal circumstances. This is a result that is at once both gratifying and

humbling, as it suggests that while agents will often �nd the best outcomes,

they will inevitably fail on occasion.

Complexity abounds. Exploring its core principles will take us on a

journey across the scienti�c landscapes outlined above. It is a journey marked

by awe, inspiration, and ultimately insights that are critical to our scienti�c

understanding of the world around us and to our ability to survive when

confronted by our most challenging problems. It is a journey about true

places, where the maps are not always well formed, but they are suggestive

enough to be of use given our innate desire and need to explore this frontier.
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From So Simple a Beginning: Interactions

There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet
has gone cycling on according to the �xed law of gravity, from so simple a
beginning endless forms most beautiful and most wonderful have been, and
are being, evolved.

—CHARLES DARWIN, The Origin of Species

E ARE SURROUNDED BY “ENDLESS FORMS MOST BEAUTIFUL AND MOST

wonderful,” whether they are embodied by one of the myriad of

species we �nd on our planet or in arti�cial structures such as the New York

Stock Exchange. Darwin’s keen insight, the one that put grandeur in his

view of life, was that reproduction with variable inheritance and natural

selection could move us from simple beginnings to extraordinary ends. A

related insight, �rst postulated by physicist Phil Anderson in 1972, sits at the

heart of complex systems. It holds that simple pieces, interacting together,

can result in the emergence of new, most wonderful forms.

The potential emergence of new forms from the aggregation of simple

pieces is known as the “more is di�erent” hypothesis. This hypothesis is a

direct challenge to the foundations of modern science.

At the core of modern science is a belief in the power of reductionism:

the idea that to understand the world we only need to understand its pieces.

Thus, if we can fully understand atoms, we will then understand chemistry,

as chemistry just studies collections of atoms, and from there we will know

biology, as it relies on chemistry, and on and on. Similarly, in social systems,



if we can understand a neuron, we will understand the brain, and thus know

individual decision making, which allows us to understand group decision

making, which gives us deep knowledge of governments and �rms, and

ultimately a full understanding of economics, politics, and society at large.

The key insight from the “more is di�erent” hypothesis is that

reductionism does not imply constructionism. That is, even if we can study

and know the world’s simplest components, that does not imply that we will

understand everything just because the world is constructed from these

components. Indeed, to reconstruct the world we have to have a theory of

how components, once put together, interact. There is an old Su� adage that

even if you understand the number 1 and know that 1 and 1 make 2, you

don’t understand 2 until you know what “and” means.

Take the letters on this page. Each letter is composed of a few hundred

dots per inch in careful relation to one another. Yet there is something

inherent in these dots that allows letters to emerge, even if the relationship of

the dots is somewhat altered, as you might see in the distorted image from a

CAPTCHA challenge found on some web pages (see Figure 2.1).

FIGURE 2.1: The distorted letters of a Completely Automated Public Turing Test to Tell
Computers and Humans Apart (CAPTCHA) rely on the complexity inherent in the emergence
of letter forms within the human mind.

Moreover, the letters, when placed near one another, take on new

properties and meaning, and ultimately result in the emergence of words.

Such emergence is so strong that it persists even if we scramble the letters

between each word’s start and end, that is, such eregmnece is so stnorg taht it

pesstirs eevn if we sabcmlre the ltteres betewen ecah wrod’s satrt and end.



Illustrating the above ideas is a branch of mathematics—initiated by the

freakishly accomplished John von Neumann—that studies structures called

cellular automata. Start with an empty checkerboard, and across the top row

randomly place some checkers. For each subsequent row, we will place a

checker in a particular square based on the pattern of occupied squares in the

row above and some �xed rule. For example, suppose the rule is that you

only place a checker on a square if the square immediately above it is

occupied. If we dutifully follow this rule, each new row will duplicate the

row above, and slowly our checkerboard will be �lled with vertical stripes

located wherever we happened to have placed a random checker in the top

row. Obviously, this rule is rather boring, though it does hint at how a

simple, very localized rule (it just looks at the square immediately above and

ignores squares that are more distant) can result in a global pattern, in this

case a set of vertical stripes that, if you are willing to be indulgent, resemble

the stripes of a zebra.

Let’s add a bit of complication to the rule. Suppose our rule depends not

only on the square above but also on that square’s immediate left- and right-

side neighbors. There are 256 possible rules of this type, and with some

malice aforethought, let’s use one of the following form: if only one of the

three squares above is occupied or if only the square above and its right-side

neighbor are occupied, then add a checker, otherwise leave it empty (for

a�cionados of this genre, this is known as Rule 30). Figure 2.2 illustrates one

of the possible patterns that can emerge from this rule. Notice how the

pattern has a lovely theme of inverted triangles of various sizes being placed

at seemingly random locations. Furthermore, note how some of these

structures extend across many squares of the checkerboard. Such large-scale

structures are surprising, given that any individual square uses information

only from the three squares immediately above it, yet the structures that

form span tens of squares rather than just triplets.



FIGURE 2.2: A pattern emerging from a cellular automaton using Rule 30 and random initial
conditions. Here there are a large number of cells across the lattice and the left side wraps
around to the right side, forming a cylinder. (Generated by WolframAlpha.)

Our exploration above provides a proof of the concept that interesting

(and perhaps even complex) global patterns can emerge from simple local

rules. Of course, knowing that something is possible doesn’t mean that it

exists in nature or, even if it does, that it is important. However, in this case,

such behavior appears to be an important part of our world.

Consider a cone snail, a seemingly lowly species of sea snail. There are at

least two surprises that make cone snails remarkable. The �rst is that they are

potentially deadly, as they have a harpoon-like tooth (which comes out of

the pointy end with surprising speed and dexterity) that is attached to a

poison gland that contains some very e�ective neurotoxins. (Beware the

escargot!) The second surprise, relevant to this discussion, is that the outside

of the shell of some species is beautifully patterned, as seen in Figure 2.3.



FIGURE 2.3: The shell pattern on a Conus omaria sea snail. (Photograph by the author.)

What makes these cone snail shell patterns particularly intriguing is their

similarity to the patterns that emerge in the cellular automaton discussed

above. We are not claiming that cone snails use Rule 30 to pattern their

outside, but only that it is possible that some local rule, rather than some

global plan, is responsible for what we see.

Indeed, could it be any other way? At one extreme we could think of a

global plan for the pattern of the shell. As the shell grows, the snail knows

what goes where based on the encoded master plan and directs the

construction accordingly. One could even invoke an intelligent designer for

the resulting pattern, perhaps to give the shell some camou�age for hunting.

Alas, such explanations seem rather super�uous given a much simpler

alternative.

The snail’s shell grows by accretion at its edge. As it adds new material,

the pigmentation is determined by various chemical processes of activation

and inhibition that by physical necessity are tied to local conditions. Thus, a

natural rule along the lines of something like “If there is only one dark-

pigmented cell in your neighborhood, accrete a dark-pigmented cell,

otherwise accrete a light- colored cell” (perhaps because too many dark cells

inhibit the formation of new ones and too many light ones activate the

formation of a dark one) gets us almost to Rule 30. Of course, Rule 30 also

di�erentiates between right- and left-side neighbors. However, such

asymmetry (known as chirality) arises in biological systems as well. For



example, in seashells, almost all individuals in any given species have shells

that coil in the same direction.

Given the above two options about how the pattern arises on the outside

of a cone snail shell—a master pigmentation plan that is maintained by the

snail with additions to the shell being carefully monitored and directed, or

one where very localized chemical interactions determine the pigmentation

of added cells—it is not hard to favor the simpler explanation. The only

non-intuitive part of such a hypothesis is that the patterns that emerge, with

their ri�s on the inverted-triangle theme, seem a bit too clever to be

generated by such local means. If not for the existence proof provided by the

cellular automata above, we might not believe that such a thing was possible.

The notion that local interactions can result in interesting global patterns

has some important implications for evolution. Indeed, a new branch of

evolutionary science that focuses on the relationship between evolution and

the developmental processes of organisms, called evo-devo for short,

embraces this perspective.

Consider the purpose of the pattern that we see on the cone snail shell. In

a world driven by evolution, that pattern is more likely associated with the

more successful cone snails, either because it provides some direct �tness

advantage or because it takes a free ride on something that does. In this case,

the pattern likely helps our slow- moving yet carnivorous sea snail either by

providing it some camou�age from, or by making it attractive to, its prey.

In the checkerboard automata above, we saw how a simple rule can

generate a global pattern. Indeed, for automata that only depend on the

square above and its immediate neighbors, we need just eight bits of

information to de�ne a rule. (There are eight possible con�gurations of three

contiguous squares, and we need one bit of information to determine

whether we place a checker in the lower square given each con�guration.)

By making a minor change to one of these eight bits, we will get a new rule

that most likely generates an entirely new pattern. For example, in Figure

2.4 we took Rule 30 and made a minor change, namely, placing a checker

only if there is exactly one checker in the three neighbors above (recall that



Rule 30 did this, but it also placed a checker if the parent and right-side

neighbor were both occupied).

FIGURE 2.4: A pattern emerging from a cellular automaton using Rule 22, a “one-mutant”
neighbor of Rule 30, and random initial conditions.  (Generated by WolframAlpha.)

This new rule is known as Rule 22. As you can see, it results in a more

regular and symmetric pattern, which is probably bad if you want to

camou�age yourself. On the other hand, this new pattern seems much

bolder, and the additional symmetry induces some curiosity in the viewer (at

least in this viewer). Thus, by a slight alteration to the underlying chemistry

(rule), the development process results in a very di�erent pattern that

potentially could bene�t the cone snail—especially if feeding on curious

humans drawn by the additional symmetry proves to be an advantage.

Regardless of this particular example, the core idea, that even small changes

to local processes can have big implications, is important: from so simple a

beginning endless forms . . .

Like any good model, cellular automata are able to capture the essence of

an important phenomenon in a very exact and sparse way. By doing so, they

provide a constructive proof of how simple local rules can have complex



global implications. There is an alternative form of complexity that is also of

interest, namely, systems where complex local behavior results in a simple

global outcome. Such systems were �rst formally discussed more than two

hundred years ago, and they form the basis of our modern economy.

In 1776, Adam Smith published An Inquiry into the Nature and Causes of

the Wealth of Nations. In a brief passage within this tome he wrote, “He

intends only his own gain, and he is in this, as in many other cases, led by an

invisible hand to promote an end which was no part of his intention.”

Almost two hundred years later, in 1954, Ken Arrow and Gerard Debreu

provided a formal existence proof of Smith’s hypothesis, namely, that under

certain conditions one can �nd a set of prices under which economic agents

—each out for her own gain—will want to buy or sell just enough of each

commodity to equilibrate prices and maximize society’s gains from trade.

Thus, the apparent chaos of the marketplace is replaced fortuitously by a

grand clockwork, not part of anyone’s intention, that brings everything into

balance, and even results in a set of trades whereby we cannot improve

anyone’s lot in life without harming someone else. As Smith put it: “By

pursuing his own interest he frequently promotes that of the society more

e�ectually than when he really intends to promote it. I have never known

much good done by those who a�ected to trade for the public good.”

Smith’s insights into what economists call general equilibrium are part of

a remarkable arc of economic thinking and intellectual triumph spanning

hundreds of years. Such thinking is often driven by trying to resolve a

paradox. For example, water, an essential element for life, is cheap, while

diamonds, an inessential bauble, are expensive. How can this be?

The answer to such a conundrum is that considering only the need for a

good—the so-called demand side of the market—gives us only part of the

picture. Along with the demand for a good, one must also consider its

supply. Thus, drinkable water is abundant (though this is changing), while

diamonds are rare and (somewhat) di�cult to �nd. The medieval Muslim

economist Ibn Taymiyyah wrote in the 1300s, “If desire for the good

increases while its availability decreases, its price rises. On the other hand, if

availability of the good increases and the desire for it decreases, the price



comes down.” Such thinking gets re�ned in subsequent generations by

thinkers such as John Locke in 1691 and James Denham-Steuart (who �rst

used the phrase “supply and demand” in a book published in 1767, just nine

years before Smith’s Wealth of Nations).

In 1870, Fleeming Jenkin published a paper, “On the Graphical

Representation of Supply and Demand and Their Application to Labour,”

that illustrated the power of the supply and demand graphs that—after some

re�nements and popularization by Alfred Marshall in 1890—every budding

economist learns in her introductory class. The supply and demand diagram

is one of those rare and remarkable scienti�c illustrations that takes a

complex reality and summarizes it in a simple, valuable way. (Other such

diagrams range from the commonplace, such as the high- and low-pressure

fronts shown in the daily weather map, to the exotic, such as Feynman

diagrams, used to track the contributions of particular particle classes in

quantum �eld theory.)

The basic ideas behind supply and demand are straightforward (at least in

hindsight). First, we separately consider the behavior of the potential

suppliers and demanders of the good in response to various price changes.

For example, suppose we have two suppliers who can produce a good at a

cost of $10 and two who can do it for $30. We can summarize the behavior

of these four suppliers by drawing a supply curve that shows how many

goods will be o�ered for sale (on the x-axis) under various prices (on the y-

axis), as shown in Figure 2.5. (Alas, the axis designations used here are a

historical artifact at odds with the usual scienti�c convention of listing the

independent variable—here, the price—on the x-axis.) Thus, at a price of

$5, no one is willing to sell, while at a price of $25, both of the suppliers

with costs of $10 will o�er their goods to the market, while the two

suppliers with costs of $30 will abstain, and so on. Similarly, we can

summarize the demand side of the market by graphing the potential actions

of the demanders. Suppose we have three demanders who would be willing

to pay up to $20 for a good, and one that is willing to pay $40. Then, at a

price of $30, only the demander with the $40 value for the good will want



to buy, while at a price of $20 or below, all four demanders will want to

purchase a good.

FIGURE 2.5: Supply and demand in a simple market. This market has two sellers with
production costs of $10 and two with costs of $30, and one demander with a value of $40
and three with values of $20. In competitive equilibrium we would expect two goods to be
traded at a price of $20. These trades would be among the two sellers with production costs
of $10 trading with the one demander with a value of $40 and one of the three demanders
with values of $20.

The supply and demand diagram represents a nifty summary of a

remarkable amount of information. Neatly contained within each of the

curves are the inherent forces that drive the market. The supply curve

captures the current production technology, the motivation of workers, the

availability of the input goods that must be transformed into the �nal



product, and so on. The demand curve captures the desires that individuals

have for the good, the availability of alternative goods, and other such

factors.

Knowing the shape of the supply and demand curves alone is like

knowing where the high- and low-pressure areas are on a weather map—

somewhat interesting, but useful only if you have some theory for what

happens when the two fronts interact.

Economists typically rely on the notion that systems will seek out an

equilibrium, and from this principle, they predict what will happen. Of

course, there is nothing inherent in our world that suggests systems

equilibrate, but such an assumption does have a few advantages. First, there

may be systems where external forces do indeed tend to push the system to a

state of rest. For example, consider dropping a ball into a bowl—the

gravitational force will cause the ball to roll downhill, and it will eventually

come to rest at the lowest point of the bowl (or, if the bowl is badly dented,

at the bottom of one of the dents). Moreover, if you give the ball a slight

push from its resting place, the forces will conspire to move it back to its

original position. Of course, not all equilibria are so stable. For example, if

we invert the bowl and carefully balance the ball on top, the ball will remain

there, but even a slight whi� of air will have the ball heading o� the bowl

and settling somewhere far away. The second advantage of seeking out an

equilibrium is that it tends to make the analysis much easier (though

sometimes an equilibrium is easy to recognize once you �nd it but hard to

�nd in the �rst place, as in the case of a combination on a safe). Finally, an

emphasis on equilibrium is innately comforting, as it is much nicer to think

of a system as part of a grand clockwork aligning the world into a �nely

balanced state, rather than as something undergoing random wanderings.

In markets, economists have a notion of competitive equilibrium. The

idea is simple: markets should equilibrate at a price where the amount that

the suppliers want to sell just equals the amount that the demanders want to

buy. Thus, by announcing such a price to the market, the desire for goods

will just equal their availability, and every supplier who wants to sell can �nd

a demander who wants to buy, and equilibrium will ensue. In our previous



graph of supply and demand, competitive equilibrium occurs at a price of

$20. At this price, the two $10 suppliers want to sell, while the two $30

suppliers do not. At the same price, the $40 demander wants to buy, while

the remaining three $20 demanders are indi�erent, being equally well o�

whether they buy or not. Thus, the theory of competitive equilibrium

predicts that only one of these remaining three demanders will come onto

the market and buy, resulting in an equilibrium with a price of $20 and two

goods sold.

There is, surprisingly, a more subtle result embedded in competitive

equilibrium. If you think about the total amount of pro�t earned by the

traders in the equilibrated market, you will see that they walk away with $40

(the high-valued demander paid $20 for something she valued at $40, so she

earns $20, and the two suppliers each earn $10 by trading at the equilibrium

price of $20). Is there some way to rearrange trades that would increase the

total amount earned? Suppose that the high-valued demander traded with

one of the sellers with a cost of $30, generating $10 of pro�t between the

two of them (with the share of the pro�ts going to each depending on the

speci�c price they agree upon). This would leave the two $10 suppliers to

deal with the three remaining $20 demanders, so two additional trades

would result, each generating a pro�t of $10. Here, the total amount of

pro�t earned by the three trades is $30, which is $10 less than what we had

before. Indeed, one can show that trading patterns other than the one

resulting from competitive equilibrium will only reduce the amount of total

pro�t earned by all of the traders.

The focus on maximizing the total pro�t from trade is important, since if

we are not maximizing this pro�t, we are losing out on an opportunity to

make at least one person better o� without harming anyone else (assuming

our traders only care about their individual pro�ts). To see this, suppose that

the market outcome is ine�cient in the sense that the resulting set of trades

does not maximize total pro�t. Whatever total pro�t was earned in this

ine�cient market gets divided among the traders somehow. Now, rerun the

market and maximize total pro�ts. Since the maximized pro�ts are greater

than the pro�ts from the ine�cient market, this time we have enough pro�t



to give every trader exactly what she earned in the ine�cient market and

still have some pro�t left over. We can then take this leftover pro�t and give

it to one (or more) of the traders, making the recipient(s) better o� without

harming anyone else. This latter insight, plus the idea that the traders are out

for themselves, brings us full circle back to what Smith wrote: “He is in this,

as in many other cases, led by an invisible hand to promote an end which

was no part of his intention.”

The complex-systems view of markets di�ers from the above account.

Recall that to equilibrate the market, we �rst announced the competitive

equilibrium price, and from there, all was well. But where did that price

come from? The market is composed of individual suppliers and demanders,

each of whom knows only her own cost of selling or value of buying. Given

this, how does the competitive equilibrium price ever emerge? As Friedrich

Hayek—an early proponent of the complex-systems perspective—made clear

in 1945:

The problem is thus in no way solved if we can show that all the facts, if they were known to a

single mind (as we hypothetically assume them to be given to the observing economist), would

uniquely determine the solution; instead we must show how a solution is produced by the

interactions of people each of whom possesses only partial knowledge. To assume all the

knowledge to be given to a single mind in the same manner in which we assume it to be given

to us as the explaining economists is to assume the problem away and to disregard everything

that is important and signi�cant in the real world.

Answering Hayek’s challenge may not be as hopeless as it appears at �rst

blush, as we may be able to hypothesize some market mechanism—for

example, an auctioneer who stands up in front of everyone and announces

potential prices, getting a sense of how many suppliers and demanders want

to trade at each price, and from this tedious exercise she can generate the

competitive equilibrium price. Of course, we see no such auctioneers in the

real world. Instead we see various auction institutions such as specialists in

the New York Stock Exchange or the colorfully jacketed traders yelling and

gesturing to one another in the commodity pits of Chicago.



Unfortunately, it has been extremely di�cult to derive a well-grounded

theory of how prices arise in markets. While the theory of competitive

equilibrium is innately compelling given that any imbalances in supply and

demand should push prices in a way that will bring trades in line, it is hard

to imagine how such forces are actually directed in the real world.

Can we build an alternative complex-systems theory of markets from the

bottom up? That is, can we make some simple assumptions about trading

and, from these, show how global patterns of trades and prices emerge?

My colleague Michele Tumminello and I have been pursuing this

approach by considering a simple trading bazaar. In this bazaar, traders

wander around and bump into one another. When they meet, traders blurt

out a random o�er, with the only proviso being that if that o�er is accepted,

the trader will not lose money. To make this conceptually simpler, let’s just

assume that if two traders bump into each other and there is the possibility of

a mutually pro�table trade, they will trade at a price given by the midpoint

between the supplier’s cost and the demander’s value (it is an easy extension

to make the traders a bit more coy). If two traders cannot agree on a deal,

they continue to wander around and bump into new potential trading

partners.

In such a bazaar, using the same set of suppliers and demanders discussed

above, there are two possible con�gurations of trades that can arise. The �rst,

closely related to that arising under competitive equilibrium, has the $40

demander trading with a $10 supplier (at a price of $25) and one of the $20

demanders trading with the other $10 supplier (at a price of $15). Note that

while these are the same traders that are involved in transactions under

competitive equilibrium, the prices di�er, since competitive equilibrium

predicts that both trades will occur at a price of $20, versus the $25 and $15

predicted here.

An alternative trading con�guration is also possible. Suppose instead that

the $40 demander initially bumps into one of the $30 suppliers. In this case,

they will agree to trade at a price of $35. At this point, the only remaining

pairings that can result in mutually agreeable trades are between the $20

demanders and $10 suppliers, so we would predict that two such trades will



occur eventually (since we have three such demanders but only two such

suppliers) at a price of $15. Thus, if history unfolds as in this scenario, we get

three trades, one at a price of $35 and two at a price of $15. This

con�guration is quite di�erent from what we would predict under

competitive equilibrium, and it is ine�cient in the sense that the total pro�t

earned across all of the traders is only $30, versus the $40 we get under

competitive equilibrium. Thus, the system as a whole lost out on $10 of

additional pro�t that could have been used to improve at least one person’s

lot.

While it is somewhat tedious (without a computer, especially for big

systems), one can work out the likelihood of the two con�gurations above

arising in the bazaar. About one-third of the time (8/25, to be exact), we

will get the con�guration associated with the competitive equilibrium

outcome, and the alternative con�guration will arise around two-thirds of

the time (17/25).

Thus, under the bazaar model—with the potential for easy wordplay fully

acknowledged—there is roughly a one-third chance that we will end up

with the same trades that we see under competitive equilibrium, though at

slightly di�erent prices. The remaining two-thirds of the time we expect to

see a very di�erent outcome, with one trade at $35 and two at $15. In both

worlds, traders acting only in their own interests produce an outcome that

was no part of anyone’s intention, namely, a set of prices and a pattern of

trades that result in some aggregate pro�t across society.

Given the above two models, which one should we believe? This is a

di�cult question. If we look at data (see Figure 2.6) generated in

experimental markets (similar to the one above but with many more traders),

we see peaks in the data that correspond to the midpoint values we predict

from the bazaar model, rather than the uniform price predicted by

competitive equilibrium. Of course, with any model of behavior, we allow

some room for error. Thus, having prices that don’t quite line up is

expected, and one needs to make a judgment about whether the misaligned

prices are closer to those emerging from the competitive equilibrium model



or those from the bazaar model. Given our data, it seems that the bazaar

model cannot easily be dismissed.

Di�erent views of the same phenomenon are often useful in gaining a

deeper understanding of a system. In many ways, the competitive

equilibrium and bazaar models complement each other, improving our

understanding of markets. Of course, academic paradigms often solidify

around a particular view, and the ability to alter this point of view depends

on the �eld. In physics, for example, simple models that better explain the

data tend to quickly win the day. In economics, accepting new approaches

that may better explain the data is a much slower process. Economists

ignored experimental data until relatively recently and typically embrace a

very prescribed modeling paradigm that relies on optimization and

equilibrium. Ultimately, we must follow Kenneth Boulding’s �rst law,

namely, “Anything that exists is possible”—an obvious and useful

observation that often gets ignored.



FIGURE 2.6: Price distributions arising from some experimental markets with human subjects.
Each market had multiple subjects, with demander values of $20 and $40, and seller
production costs of $10 and $30. Each panel of the �gure shows the distribution of observed
trading prices between buyers and sellers with the indicated values (s for seller costs of $10,
S for seller costs of $30, b for buyer values of $20, and B for buyer values of $40).
Competitive equilibrium predicts that all trades will occur at a price of $20 (indicated by the
light vertical lines in those distributions where trades are predicted) and that the underlying
buyer value and seller cost in each trade will make no difference in the distribution of
observed prices. The bazaar model predicts trades at the intermediate price between the
buyer values and seller costs (indicated by the dark vertical lines in those distributions where
trades are predicted).

Whether the competitive equilibrium or bazaar model is the right

description of our world is an open question. Experimental markets with

naive traders, like those shown in Figure 2.6, certainly seem to carry the

signature of a trading bazaar rather than a carefully orchestrated market.

Indeed, one might put more faith in the competitive equilibrium model if



our traders found themselves in the same market day after day, or if we

introduce some additional rules of engagement—for example, perhaps bids

and o�ers must be clearly posted for all to see and for anyone to accept. Such

additional conditions might push the outcome of the market more toward

the predictions of competitive equilibrium.

Regardless, both models are interesting in that they embrace the

fundamental notion of complex systems: that interactions among individuals

can result in the emergence of global outcomes—in this case, patterns of

prices and trades—that were no part of anyone’s intention.

For more than one hundred years, economists have been relying on the

competitive equilibrium model to predict how markets will behave and, in

turn, how policies should be made. The competitive equilibrium model and

the tools of supply and demand are a real triumph of science. Consider again

the fundamental problem we face when analyzing a market. Potential traders,

knowing only their own values and costs, come together to try to make self-

interested deals with one another. These potential traders, some bored and

tired, others motivated and sharp, randomly get together and try to close a

pro�table deal as they gather pieces of information from the shouts and

murmurs of their fellow traders along the way. Perhaps some traders are

calculating thinkers who derive the best trading rules possible given the

limited information they face, while others are more reckless and trade

willy-nilly.

Out of such chaos comes order, in the form of a stream of trades and

prices. The idea of competitive equilibrium is an extreme version of such

order, where the cacophony of shouts results in a single price su�cient to

balance everyone’s desire to trade, with just enough goods being o�ered by

the sellers to meet the buyers’ demands, and the resulting trades maximizing

the total pro�t available in the market. In such a model, displacing even one

of these trades would result in society having less.

An alternative tale of order is that of the trading bazaar. In this world, we

dismiss the notion that a unique, global, competitive equilibrium price

emerges, and we embrace the chaotic machinations of the traders. Potential

buyers randomly encounter potential sellers, and seemingly randomly



generated o�ers are pro�ered. When an o�er results in a mutually pro�table

trade, it is accepted and the traders leave the market. Again, a predictable

(though here with a bit less certainty) set of prices and trades emerges in the

market. The result is certainly messier than that arising in competitive

equilibrium, and formal tests of the performance and utility of the two

approaches are only now being conducted.

The power of local interactions to form unexpected global patterns is

remarkable. Whether these local interactions lead to the beautiful design on

the shell of a sea snail or to a set of prices and trades that maximize society’s

bounty, from such simple beginnings wonderful forms are emerging.
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From Flash Crashes to Economic

Meltdowns: Feedback

Without calling the overall national issue a bubble, it’s pretty clear that it’s an

unsustainable underlying pattern.

—ALAN GREENSPAN

N THURSDAY, MAY 6, 2010, AT 2:32 P.M. EASTERN STANDARD TIME, A

sequence of events began that led to chaos in the securities markets for

the next half an hour. During the �rst few minutes of this period, major

United States equity indices plummeted 5–6 percent (see Figure 3.1). At

2:45 p.m. a �ve-second trading pause was imposed on the market, and the

indices miraculously rebounded. However, the tsunami that started in the

indices began to wash over the entire equities market. Trading prices for

more than three hundred individual stocks deviated by more than 60 percent

of their previous values. As liquidity dried up in some stocks, markets failed,

and at the extreme the prices of shares in formerly well-regarded companies

began to �uctuate wildly, with a company such as Accenture, previously

trading at $40, selling for only a penny, and shares of Apple quickly moving

from $250 to $100,000. By 3:00 p.m. the tsunami had subsided, and the

markets returned to more normal behavior.



FIGURE 3.1: Major US market indices on May 6, 2010, including the Dow Jones Industrial
Average (DJIA, left-hand scale) and the Standard and Poor’s 500 Index (S&P 500 Index,
right-hand scale). (Source: US Securities and Exchange Commission.)

What could have possibly started such turmoil? Was there some news

report of a cataclysmic event, like a major war breaking out or the

assassination of a key world leader? Did some European country suddenly

default on its debt? Was there some terrorist strike on the homeland or

cyberattack on the trading system? Alas, the triggering event was at once far

more mundane, and far more worrisome, than any of these.

The proximate cause of the above turmoil appears to have been a set of

trades initiated by a money-managing �rm whose address was a post o�ce

box in Shawnee Mission, Kansas. This �rm used a computerized trading

program to sell some securities, relying on an algorithm that tied its trading

behavior only to the current volume of trades on the market, rather than to a

more obvious factor such as the security’s price. While in hindsight it is easy

to see how such a program could induce a ripple in the market waters, the

far greater concern is how the ever-growing set of interconnections and

interactions across the complex �nancial system was su�cient to allow this



ripple to grow into a full-�edged tsunami that, at least for half an hour,

wreaked havoc upon the �nancial shores.

In September 2010, the US Commodity Futures Trading Commission

and the US Securities and Exchange Commission released a joint report on

the aptly named “�ash crash,” entitled Findings Regarding the Market Events of

May 6, 2010, and many of the market details below are drawn from this

source. The report provides a detailed economic autopsy of the events that

unfolded on that day, and it’s rather good reading (and easily available by

download), all things considered, for those inclined to explore the intimate

details. Like any good autopsy, contained within its dry descriptions and

careful analyses is a remarkable story of how the death came about. Yet the

real intrigue comes from what is not discussed, namely, the mystery about

who did it, why, and whether it could have been avoided.

May 6, 2010, had begun with the �nancial markets already on edge. The

European debt crisis dominated the political and economic landscape,

especially the possibility that Greece might default on its debts. Changes in

various market indicators, such as the expected stock market volatility, the

premium on debt insurance, the exchange rate of the euro, and the prices of

gold and safe securities such as Treasuries, all re�ected the unease brought

about by these conditions. These changes likely pushed the markets toward a

critical state (an idea that we will explore in Chapter 11), where even a small

event had the potential to cascade into a much larger chain reaction.

The start of the tsunami began innocently enough. A �rm that managed

mutual funds wanted to hedge its existing equity positions against future

changes in the US equities market. This is a common desire, as presumably

the �rm wanted to lock in some pro�ts it had recently gained against the

possibility that the US equities market might decline. To accomplish this

hedge, the �rm wanted to sell 75,000 E-mini futures contracts that would

become due that June. E-minis are a derivative security, that is, their value is

tied to something else—in this case, each one is worth �fty times the value

of the S&P 500 Index (which represents about 70 percent of the market

capitalization of all US-listed equities). Thus, if the S&P 500 Index is at

$1,000, each E-mini is worth �fty times that, or $50,000. The 75,000



contracts represented roughly 3.4 percent of the average daily volume traded

during 2010, and they were worth a total of about $4.1 billion at the

prevailing price. Having a single individual wanting to sell 75,000 contracts is

unusual, although there had been two occasions in the preceding twelve

months where trades of this size or larger had been conducted.

Such trades are not without hazards. The problem with selling such a

large number of shares all at once is that you can easily cause the price to

plummet if you are not careful. Suppose you decide to sell a large number of

shares by just dumping them all on the market at once. Initially, if the market

is liquid, there are some buyers around to purchase your shares at roughly the

going price. As these buyers’ demands are satis�ed they leave the market, and

your shares begin to �ow to preexisting o�ers to buy that have been

recorded by the exchange in its “order book.” As your shares satisfy the

highest of these preexisting o�ers, they next �ow to lower ones, and on and

on. As your orders eat well into the order book, prices continue to fall, and

any potential new buyers coming onto the market recognize what is

happening and make much less aggressive o�ers in anticipation of lower

prices, putting even more downward pressure on prices. While any large

o�er to sell will have a tendency to depress the overall price regardless, given

the microdynamics of the order book, dumping the shares on the market all

at once will have a larger, short-lived impact, resulting in the seller getting

much worse prices overall than she could have gotten if the shares were sold

more slowly.

Thus, to get the best prices possible for a large order, the seller needs to

carefully manage the block of trades and slowly release shares onto the

market. This allows new buyers to �nd their way to the market during the

sale, re�lling the order book in the process, and ultimately resulting in the

seller getting much higher prices overall for the entire lot.

One way to manage the sale of a large block of trades is to employ an

automated trading algorithm that executes the orders in a reasonable manner.

Such an algorithm should be programmed to track key data from the market,

such as the current trading volume, price, and time of day. Based on this



information, the computer will release the shares so as to get the best deals

possible consistent with moving the entire block in a timely manner.

The �rm that catalyzed the �ash crash used such an algorithm. Of course,

the devil is in the details, and in this case there was a devil indeed. The �rm’s

algorithm had one simple rule: feed in orders to the market so that these

orders constitute less than 9 percent of the overall trading volume during the

previous minute. Note that this algorithm completely ignores the trading

price. That being said, at some level it is not a completely absurd algorithm,

as normally volume is a good indicator of the market’s liquidity, and liquidity

is tied to stable prices. In theory, if you remain a small part of the market

(here, less than 9 percent) and the market is functioning in a “normal” way,

this algorithm should result in stable and reasonable prices. In essence, the

algorithm hitches a free ride on the volume information coming from the

market and uses this as a proxy for reasonable prices. By doing so, it avoids

having to make any di�cult predictions about when to sell.

Unfortunately, there have been two recent changes in trading that have

made this volume-based proxy quite dangerous. First, the rise of derivative

securities has interconnected various markets. E-minis are linked to the S&P

500 Index. There are other derivatives with slightly di�erent designs, such as

S&P Depositary Receipts (known as SPDRs or “Spiders” and traded under

the ticker symbol SPY), that are also tied to this index. If the price of one of

these derivatives di�ers substantially from the others, there is an arbitrage

opportunity to lock in a pro�t, regardless of what happens to the underlying

prices, by selling the more expensive security and buying the cheaper one to

make good on the previous sale. An alternative arbitrage opportunity

interconnects the derivatives market to the broader markets: given that the

price of the derivatives is tied to a bundle of individual stocks (which make

up the index), you can always make a pro�t by o�setting the purchase (or

sale) of the derivative by selling (or buying) the underlying bundle of stocks

whenever the price of that bundle di�ers from the price of the associated

derivative.

This latter opportunity is facilitated by the second major change we have

seen in markets, namely, the ability to get information about the trading



conditions across a vast array of securities and markets, calculate potential

opportunities, and execute any needed trades, all in the blink of an eye. This

revolution in trading is due to the rise of the computer and, indeed, things

now happen far faster than the blink of an eye (which takes a somewhat

poky 350 milliseconds, a length of time in which an electron can travel more

than 65,000 miles).

The combination of highly connected markets and quickly conducted

trades has formed a new kind of complex system unforeseen even a decade

ago. A trade in one market reverberates across the others, as the various

inconsistencies it induces get corrected. Of course, those corrections can

start their own reverberations. If the (unintended) feedback loops emerging

from the various connections are negative, the reverberations in the system

slowly die out, and the markets are better for the experience, as prices

realign with one another. If, however, the feedback loops are positive, we

end up with the reverberations amplifying one another, creating something

akin to the horrible screeching sound we hear when a microphone is held

too close to a loudspeaker.

Over the past few years, a new kind of trading �rm has arisen on the

market scene: the high-frequency trader (HFT). These �rms have fully

embraced the information age and have created algorithmic traders that

watch over markets and execute any desirable trades on a remarkably short

time scale. For this type of trading, getting your buy or sell message to the

exchange before anyone else is so important that factors such as where you

physically locate your computer hardware matter—an electron travels about a

foot each nanosecond, so every foot closer to the exchange’s machines gives

you a nanosecond advantage over your competitors.

HFTs now account for an enormous volume of trades. In general, they

don’t like holding too many shares at any one time. Thus, while they might

buy a lot, they also sell a lot, so at the end of the day (though the new reality

is that with global, interconnected markets, there really is no end of the day)

their net holdings of any given security are small.

The existence of HFTs certainly alters the dynamics of markets. In the

late 1980s at the Santa Fe Institute, my colleagues Richard Palmer, John



Rust, and I created the Double Auction Tournament to test some core ideas

about markets. Academics, professional traders, and interested amateurs

tested their trading strategies over the web (to our knowledge, this was the

�rst Internet-based auction) and then submitted �nal versions to us for

analysis.

One of our interests was what would happen in a hybrid market

composed of both machine and human traders. When we ran such a market

without any compensation for the innate speed di�erences between humans

and machines, we found that when the market opened there was a �urry of

trades by the machines before the humans could even react. After that point,

the machines just stayed quietly in the background as the humans traded

with each other, activating only when a human made a bad o�er, in which

case a machine would jump into the market and steal the deal.

One suspects that our current market system, with both human traders

and HFTs, may behave in an analogous way to the hybrid Double Auction

Tournament. HFTs’ distinct speed advantages may be causing �urries of

machine trading, punctuated by quieter periods where the machines remain

in the background waiting to take advantage of human errors. When we

eliminated the speed advantages of the machines, humans and machines

easily coexisted and were di�cult to tell apart given the data, with the one

exception being that humans tended to place o�ers that ended in digits of

either zero or �ve, while machines were not so constrained.

Returning to that fateful day in May, at 2:32 p.m. our trader presumably

pushed the enter key in response to some innocuous-sounding prompt along

the lines of “Are you sure you want to execute these trades?” and a stone was

dropped into the market pond, causing a small ripple. The market was able

to absorb the initial trade volume, as HFTs and other intermediaries bought

the newly o�ered contracts. Over the next ten minutes, the HFTs

accumulated quite a few of these contracts, and in order to balance out their

positions, they began to sell. A game of high-stakes hot potato ensued, in

which the HFTs began to buy and sell to one another, with only occasional

leaks of the contracts out to other market participants.



It is at this point that the fatal �aw in the algorithm becomes apparent.

The game of hot potato started to generate a lot of market volume, with

more than 100,000 shares being exchanged in a very short time. The

algorithm, blind to everything but the volume, saw this increased activity as a

sign that the market was liquid and that prices were stable, and it began to

dump even more shares into an already volatile mix. This new action

destabilized things even further, as any real liquidity in the E-mini shares

dried up and the prices began to plummet. In the thirteen minutes after the

enter key was pressed, the algorithm sold 35,000 contracts, and the

remaining 40,000 contracts were sold o� in a scant seven minutes more.

Thus, all of the initial 75,000 contracts were sold in under twenty minutes—

whereas in the past, using more standard algorithms, it had taken around six

hours to dispose of similarly sized lots. The initial trades and subsequent

activity, not surprisingly, resulted in a substantial drop in the price of the E-

mini contracts (see Figure 3.2).

However, at 2:45:28 p.m. an event happened that likely prevented an

even deeper disaster. At that time, an automated mechanism paused trading

for �ve seconds. This mechanism had been put in place by the exchange,

and it was designed to recognize market conditions in which the execution

of further trades would result in unnaturally large price swings. While �ve

seconds seems like an inconsequential amount of time, it is an eternity in an

era when nanoseconds rule. It was long enough to allow other traders to

enter the market and get things on the road to recovery. Over the next

twenty-three minutes, buyers with a more fundamental focus began to �ood

the market, and prices rebounded.



FIGURE 3.2: The price and volume of E-mini contracts on May 6, 2010. (Source: US
Securities and Exchange Commission.)

The proximate cause of the bad behavior in the E-mini market is easily

tied to the �aw in the trading algorithm. By linking the number of trades to

only volume, a positive feedback loop was unintentionally embedded in the

algorithm: if the initial trades cause a big increase in volume, then the

algorithm trades even more, which will further increase volume. If the HFTs

had not been in the picture, the naive trading algorithm might not have

induced enough extra trades to trigger the feedback loop. However, with the

rapidly trading HFTs and their desire to maintain relatively neutral share

positions, a new market dynamic formed that embedded a positive feedback

loop into the system.

If this were just the story of the E-mini market, it would be worth telling

as a parable about algorithmic—actually, human—hubris and the dangers of

unintended consequences and positive feedback. But the story does not end

here.



Given the interconnectedness of markets, what happens in the E-mini

market does not stay there. As the E-mini declined in value, traders started to

look for arbitrage opportunities elsewhere—in this case, either in SPDRs or

in the stocks that make up the index itself. While the E-mini’s price was

rapidly declining, driven by the positive feedback loop, the prices of SPDRs

and the stocks that formed the index moved much more slowly. This created

a new opportunity to pro�t by buying the relatively cheap E-minis and

selling their more expensive equivalents in the form of SPDRs or the bundle

of underlying stocks.

In a well-functioning market system, the arbitrage opportunities created

by the collapsing E-minis would normally dampen the price dynamics. The

pro�t-seeking activities of the arbitrageurs would raise the price of the E-

mini (given the newfound demand to buy) and lower the price of the SPDR

or bundle (given the newfound desire to sell), and the prices would realign

and remove the opportunity for pro�table arbitrage. Unfortunately, given the

preexisting turmoil and the positive feedback loop, the markets failed to

realign very quickly, and the arbitrage opportunity remained. This resulted in

trading pressure on the other markets, and they started to eat into their

respective order books as well. Moreover, the newly generated chaos made

many potential market makers nervous, as nothing in the incoming data

streams—which by this time were starting to falter given the massive in�ux

of trading—could account for the large price changes being observed. This

triggered data integrity checks, where �rms paused their trading activity.

Other �rms withdrew entirely from the market as automatic systems that

continuously monitor a �rm’s position and potential exposure to �nancial

risk began to exceed preset limits and halted the �rm’s trading. Finally, in

some �rms, humans overseeing all of this bizarre activity simply lost their

nerve (or behaved wisely) and withdrew their o�ers from the market.

As the market makers withdrew, the order books began to empty out,

leaving only long-standing orders and, at the extremes, automated “stub”

orders set at ridiculous price points just to ensure that there would always be

someone willing to buy or sell any given share. Thus, the transactions that

did occur were happening at prices that became more and more extreme



over time. More than three hundred stocks experienced price changes of as

much as 60 percent (more than 20,000 trades, constituting 5.5 million shares,

were executed at such extremes). At the most extreme, securities were traded

at their stub prices, with some shares going for a penny and others for

$100,000.

The aftermath of the events of May 6, 2010, was signi�cant. In the short

term, there was a realization that the events were far from the “fair and

orderly” markets that the exchanges want to oversee, and the trades that took

place far from the prices prevailing just before the chaos began were broken

by the exchanges, as they were considered “clearly unrealistic prices” that

were “clearly erroneous” given the severe market conditions. While

exchanges have always had the power to break such trades (always read the

�ne print), the actual mechanisms used for determining “clearly erroneous”

were not well de�ned, and this has prompted a reform in this area. The

second major reform has altered how various circuit breakers get deployed.

Individual markets often have mechanisms designed to halt trading when

unexpected conditions arise, and in practice, even very short halts have

allowed markets to stabilize quickly and resume in an orderly fashion.

Unfortunately, even the existence of circuit breakers can have unintended

consequences, as multiple halts in a given security might cause market

makers to withdraw their liquidity. Also, given global connectivity and many

markets trading the same security, a trading halt in one market might just

shift the displaced trades to another market, circumventing the original

breaker and exacerbating the problem.

The one area that has not been reformed is limiting the HFTs. For

example, the feedback loops induced by the HFTs could be dampened by

imposing transaction taxes or redesigning markets to lessen the importance of

nanosecond-scale speed.

Even the above repairs do not address the fundamental problem that

caused the �ash crash. We have unknowingly created a complex adaptive

�nancial system that we do not understand and cannot control. At each stage

of its creation, we have accrued additional complexity in the name of added

bene�ts: connecting markets with one another will ensure that price



discrepancies will be eliminated quickly, having high-frequency traders will

guarantee a ready trading partner for any transaction, using derivatives will

provide a means for farmers to hedge the risks of bad weather and for

pension funds to insure their portfolios, and so on. While each of these

individual pieces makes sense, the collection may not.

As we have already seen, reductionism does not imply constructionism.

Thus, while the motivation for, and understanding of, any single piece in the

system may be sound, that should not give us any con�dence in the behavior

of the whole. The �ash crash occurred not by design but through

emergence.

The �ash crash was a surprisingly gentle warning that we must heed. The

events during that thirty-minute period in May, while striking, were

reversible. While careful autopsies of dramatic events are useful, we need to

be in a position to prevent the appearance of the bodies in the �rst place.

Unfortunately, the �ash crash has shown us that, however good our

retrospective investigations might be, our prospective knowledge is weak. We

can’t even begin to grasp the implications of the �nancial systems we have

built.

While the �ash crash was driven by greed in the pursuit of pro�t, it

fortunately involved ignorance, not malice. Imagine the chaos and long-term

devastation that could happen if malice and a bit more forethought were

involved. How di�cult would it be for, say, a terrorist organization or rogue

state to in�ltrate either the computer or human systems that underlie our

markets and wreak havoc on a much larger, and longer-lasting, scale? This

does not seem all that hard. Attacks on the cyber infrastructure, such as

cracking the actual systems of the exchange or those of the numerous

decentralized trading operations, or somehow disrupting or altering the

communication �ows that direct or report trades, seem possible, especially

given examples such as the Stuxnet computer worm, which hampered Iran’s

ability to enrich uranium. The human systems connected with �nancial

institutions are also vulnerable. Indeed, there are examples where the actions

of a single trader brought down an entire institution, as with the fall of the

233-year-old Barings Bank in 1995. Thus, inserting one or more traders into



the system with enough access to the trading desks to launch a carefully

coordinated, malicious attack is feasible. A more ambitious approach might

include setting up an apparently legitimate fund or HFT operation that gets

privileged and unfettered access to the trading systems, or, if that is too

bothersome, simply executing a large number of simultaneous transactions

spread across legitimate traders. The impact of such an attack is hard to

predict, but at the very least it would seriously erode con�dence, and it

could be far more consequential, leading to a partial collapse of the very

markets that ensure our economic survival.

Unfortunately, the story encapsulated in the �ash crash may not be all

that unique. Indeed, the recent worldwide �nancial collapse that started in

2008 has similar undertones.

At the heart of the 2008 �nancial collapse was an economic crisis that

fully embraced all of the seven deadly sins. Gluttonous �xed-income-asset

buyers, for the promise of slightly higher returns, were willing to buy up

newly formed collateralized debt obligations. Extravagant home buyers,

hoping that rising house prices would allow re�nancing in the future, opted

for houses and ballooning mortgage payments well beyond their current

means. Greedy mortgage brokers, able to pass on even suspect mortgages to

�rms that created and quickly sold o� mortgage-backed securities, were

willing to qualify almost any buyer. Envious �rms, wanting to boost their

bottom lines, began leveraging themselves while marketing suspect

derivatives to their customers. Slothful rating agencies, relying on the word

of the �rms and outdated statistical models, gave absurdly high ratings to

novel securities while collecting commissions. Prideful government agencies,

relishing the increase in home ownership and the power of the unregulated

market, stood idly by. As for wrath, hell hath no fury like a complex

economic system scorned.

The point of the previous paragraph is not to tell some modern morality

tale but rather to emphasize how, at each level of the system, the entities

involved were following perfectly understandable—though perhaps not

virtuous—incentives. Thus, in a very real sense, economists and policy

makers were fully equipped to understand each part of the system.



Unfortunately, as we have seen before, thinking that understanding the parts

of a system implies that you understand the whole system is a sin that is

committed all too often.

As we saw in the case of the �ash crash, positive feedback mechanisms

amplify small events into large ones. The housing market is rife with positive

feedbacks. If mortgage money becomes easier to get, the demand for houses

goes up, resulting in higher house prices. These higher house prices make

lenders more willing to grant mortgages, as rising prices ensure that

su�cient collateral exists to lower the risk of the loans.

In the US housing market, the positive feedbacks tended to reinforce

every part of the system. Higher house prices encouraged more buyers,

lowered lending standards, and resulted in less risky derivatives and easier

government policies, and each of these fed back on the others, reinforcing

the chain of e�ects. Alas, the same forces that ampli�ed the system on the

way up accelerated its demise on the way down. Unfortunately, unlike with

the �ash crash, there were few circuit breakers, or anything like them, in

place during the �nancial collapse.

The interactions and connections among the various parts of the system

are critical here. Imagine any of the key markets associated with the �nancial

collapse as a timber farm along a lightning-prone ridge. Every now and then,

lightning strikes, and if it hits a tree, that tree goes up in �ames and ignites

any neighboring trees. If you want to maximize the timber harvest, you must

make a trade-o� between growing more trees to get more timber and

keeping land fallow to contain neighboring �res. The best choice here

depends on various underlying factors, such as the frequency of lightning

and the growth rate of trees, but whether the best choice gets made depends

on who owns the ridge. If a single person owns the ridge, it will be in her

interest to include a few �rebreaks, so that a single spark won’t lead to a

con�agration that takes out the entire ridge. Unfortunately, such �rebreaks

may not arise in a system where each potential tree site is owned by a

di�erent individual following her own incentives. In this situation, while all

individuals would bene�t from the inclusion of �rebreaks, no individual

wants to be the person who provides the �rebreak, since she would have no



timber to harvest. In economic terms, �rebreaks are underprovided, and this

results in far more destructive �res and much lower harvests than are possible

under a more coordinated regime.

So it was with mortgages at the start of the �nancial crisis. No entity

wanted to forgo any possible trade and lose some immediate pro�t. Thus, a

single bank �nds it individually pro�table to hold securities issued by another

bank, even though that other bank has bought securities from another bank,

and so on down the line, to the point where the failure of a very distant

bank can cause the whole system of promises to unravel. Similarly, a single

�rm may simultaneously buy and sell insurance-like policies on the risk of

default (known as credit default swaps) and feel that its position is safe, since

any loss to one of the policies will be perfectly o�set by a gain to the other.

However, if one �rm fails to meet its obligation to pay in the case of a

default (think American International Group, aka AIG), the entire system

unravels. In these and countless other situations, what is important here is

the chain of connections that results from individually rational, but globally

irrational, arrangements. Without well-placed �rebreaks, these systems are

subject to small events having catastrophic consequences.

In both the 2008 �nancial collapse and the �ash crash, we saw systems

that were vital and thriving at one moment suddenly become quiescent.

This type of switching happens in a variety of complex systems. For

example, a living organism exists in a dynamic state where its many

interacting parts result in a vital and robust organism. Now introduce, say, a

well-placed shock, and the once vital organism is pushed into a death state

where none of its parts interact. Unfortunately, this too is a robust state.

Expectations often keep social systems, and especially markets, operating.

Expectations can lead to self-ful�lling prophecies, both good and bad. Thus,

in a �ash crash, once liquidity dries up, the expectations of market makers

may change to the point where they believe they will no longer be able to

�nd reasonable trading partners, which causes them to withdraw their orders

and realize their expectations, further exacerbating the liquidity crisis. Once

a housing bubble begins to pop, the downward spiral of house prices alters

the expectations of the lenders, and they become wary of granting new (or



re�nancing old) mortgages without extreme levels of collateral, which in

turn causes prices to fall and the newly formed expectations to be

reinforced. In both cases, feedback loops concerning expectations exacerbate

a bad situation.

When emergence is working for you, the invisible hand of Adam Smith

is a wonderful thing. Life would be a lot more fun, albeit much less

intriguing, if emergence arose only when it led to good things.

Unfortunately, we have seen the dark side of emergence, in which a

seemingly innocuous event triggers a cascade that leads to disaster. Complex

systems, whether intentional or not, are playing an increasingly important

role in our world. While we might not ever be able to fully control such

systems, we may be able to mitigate their downsides through the clever

introduction of metaphorical �rebreaks such as the circuit breakers that are

used in �nancial markets. Our understanding of how to create such controls

is lagging well behind our need to implement them, and we must quickly

develop this knowledge so that the kingdom won’t be lost for want of a nail.
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From One to Many: Heterogeneity

One Ring to rule them all, One Ring to �nd them,

One Ring to bring them all and in the darkness bind them.

—J. R. R. TOLKIEN, The Fellowship of the Ring

CONOMISTS ARE FOND OF THE “REPRESENTATIVE AGENT,” A THEORETICAL

convention that makes the math much, much easier. The idea behind

the representative agent is that instead of having to worry about, say, every

consumer in the economy, we can substitute a single consumer to represent

everyone—one agent to rule them all, as it were. Obviously, such an

assumption greatly simpli�es the resulting model, as the representative agent

can stand in for a vast horde of individually quirky consumers who might be

di�cult to track one by one. Indeed, theoretical economists and policy

makers often use such a trick in models that in�uence the lives of hundreds

of millions. As long as individual behaviors average out appropriately, using

such an approach seems like an obvious choice.

Whether we can use representative agents to model complex systems is

really a question about whether heterogeneity matters. If it doesn’t matter,

then assuming average behavior embodied in the form of a representative

agent su�ces: the same behavior will emerge from a system modeled by a

population of actors as from one consisting of a single representative agent. If

it does matter, then we need a new approach to understand, predict, and

control our world.

Jane Jacobs, in her remarkable book Cities and the Wealth of Nations,

admonishes economists to get the answer right here:



We think of the experiments of particle physicists and space explorers as being extraordinarily

expensive, and so they are. But the costs are as nothing compared with the incomprehensibly

huge resources that banks, industries, governments and international institutions like the World

Bank, the International Monetary Fund and the United Nations have poured into tests of

macro- economic theory. Never has a science, or supposed science, been so generously

indulged. And never have experiments left in their wake more wreckage, unpleasant surprises,

blasted hopes and confusion, to the point that the question seriously arises whether the

wreckage is reparable; if it is, certainly not with more of the same. Failures can help set us

straight if we attend to what they tell us about realities. But observation of realities has never,

to put it mildly, been one of the strengths of economic development theory.

Consider a honeybee hive. Every egg laid by the queen goes through a

delicate sequence of development from egg to larva to pupa to �nally

emerging from its honeycomb cell as a fully formed bee. For this sequence

to be successful, it requires a narrow range of temperatures to be maintained

inside the hive (close to 94 degrees Fahrenheit). Of course, the temperature

outside the hive varies wildly, so how can bees keep the inside temperature

con�ned to such a small range?

It turns out that worker bees have two temperature- related behaviors.

When a worker gets too cold, it seeks out other bees and rapidly buzzes its

wings to generate heat. When it gets too warm, it moves away from others

and fans its wings to form air currents that will cool things down (see Figure

4.1).

The temperature in the hive depends on the actions of its workers. There

is no central command center in the hive, and it is only through the

decisions and actions of each individual bee that things get done. It turns out

that an individual honeybee’s temperature-related behavior is given by a

genetically determined set point. Temperatures much above or below this set

point cause the bee to undertake cooling or warming behavior, respectively.



FIGURE 4.1: Worker honeybees spread out at the entrance of their hive and fan their wings
to create air currents that will cool the hive. This behavior is activated by a genetically
determined set point. (Photograph courtesy of Jacob Peters.)

Temperature control seems like a situation in which a population would

bene�t from homogeneity—in which nature would evolve a representative

agent. Researchers at the University of Sydney (see Jones et al., “Honey Bee

Nest Thermoregulation: Diversity Promotes Stability,” Science, 2004)

investigated this question and found a surprising result.

As a thought experiment, suppose we observe a hive of bees in which

every bee’s genetic thermostat is set to the same ideal temperature. You

might think that since all of the bees are so precisely calibrated, the hive will

maintain a constant temperature. This is not what happens. When the

temperature creeps below the set point, large numbers of bees instantly

huddle together and buzz their wings, causing a large increase in the

temperature. As the temperature rises, it quickly goes past the ideal point,



and all of the bees switch to their cooling behavior and scatter and fan,

inducing a rapid drop in temperature. As the temperature plummets below

the ideal point, the mass of bees switches behavior yet again. What emerges

is not a hive with a tightly controlled temperature but one that experiences

wild swings in temperature.

As an alternative, suppose that we have a hive of heterogeneous bees, each

with a slightly di�erent set point around the ideal temperature. In this hive,

as the temperature starts to creep below the ideal point, only a few bees start

to huddle together and provide a little additional warmth, slowly raising the

temperature. Indeed, any time the temperature overshoots or undershoots

the ideal point, there is a graduated response by the bees, with only a few

joining in at �rst, and more joining in only if things start to stray further

from the ideal. Ultimately, this heterogeneous strategy allows the hive to

maintain a precise temperature with only minimal oscillations.

Thus, having a heterogeneous population of honeybees is adaptive to the

hive, leading to a much more tightly controlled temperature and greater

success in brood rearing. In real hives the virgin queen spends her �rst few

days going out on �ights where she mates with around eight to twenty drone

(male) honeybees from di�erent hives, rather than just one. Once the queen

is back in her hive, she produces worker bees that are either sisters or half-

sisters to one another, guaranteeing some heterogeneity among them.

The average temperature set point of the honeybees was the same in both

our homogeneous and heterogeneous hives. The di�erence was that in the

heterogeneous hive there was some variance of the set points around this

average, whereas in the homogeneous hive every worker had the same set

point. So, at least in terms of a honeybee hive, the representative agent

model would be very misleading, implying hive temperatures that oscillate

wildly when in fact they are actually quite stable.

Now consider a model of a market. Let’s assume that the market is

populated by homogeneous representative traders who decide to buy or sell

based on incoming information. Just as we saw with the honeybees, this type

of model is going to result in some unusual market behavior. As the

information in the market begins to change, at some point the representative



trader is going to want to buy. Since all of the traders use the same rule, this

is going to cause a drastic increase in demand, and prices will experience a

rapid rise. As prices go up, the information eventually changes to a point

where, in perfect synchronicity, all of the traders want to sell, inducing a

price crash. As in the case of the hive, a market with homogeneous traders

leads to wild price oscillations.

Stable markets emerge only with heterogeneous agents. With many types

of traders, responses to changing information are graduated, with slight

changes in information in�uencing only the most sensitive traders, and more

extreme changes provoking responses from the less sensitive traders. Such a

market will be much better behaved than a homogeneous one, experiencing

milder price swings and more reasonable “price discovery.”

In hives and markets heterogeneity provides needed stability, but this is

not always the case in other systems. Suppose we want to model the

dynamics of a social movement, ranging from a neighborhood-level riot to

the overthrow of a national government. Let’s assume that each of, say, one

hundred people in our society has a sensitivity level, S, such that if she

observes S or more people participating in the movement, then she will join.

Finally, let’s assume that there is a group of outside rabble-rousers that tries

to start the movement.

Assume that our one hundred people all have the same sensitivity level set

at, say, 50. How many rabble-rousers will it take to trigger an all-out social

movement? If the number of rabble-rousers is less than �fty, then no one else

joins in the fray. If the number of rabble-rousers is �fty or above, then

everyone joins. Thus, in a homogeneous world, it takes at least as many

rabble-rousers as the �xed sensitivity level to catalyze a movement. In this

example, we need a fairly large number of rabble-rousers—equal to half of

the population—before we see a full-blown social movement.

Alternatively, assume that we have a very heterogeneous population, with

each of our one hundred people having a unique sensitivity. To make this an

extreme example, line up the population and give the �rst person a

sensitivity of 1, the second a sensitivity of 2, and so on down the line, until

the last person is assigned a sensitivity of 100. In this world, how many



rabble-rousers are needed to catalyze a society-wide social movement? The

answer, of course, is one. One single rabble-rouser is enough to get the

person with a sensitivity of 1 to join in, and once we have two people in the

movement, that is enough to get the person with a sensitivity of 2 to join,

and this triggers the third (which, according to Arlo Guthrie’s song “Alice’s

Restaurant,” constitutes an organization), and so on down the line, until all

one hundred members of our society have joined the movement.

Both of the social worlds above are characterized by a critical tipping

point, whereby below this point no one joins the movement and above it

everyone does. Of course, this tipping point is dramatically di�erent in the

two worlds, being equal to �fty (half the population) in the �rst and only

one in the second. Note that in both worlds, the average threshold for the

population is about �fty, so the di�erent tipping points are due to the

variations in the thresholds of the two worlds. In the �rst world, the

presence of homogeneous agents implies no variance, while in the second

agent heterogeneity induces a lot of variance.

Thus, in the social movement model, we �nd a case where heterogeneity

leads to instability rather than stability. However, both the bees and the

protest share important characteristics that underlie the dramatic di�erence

in outcomes. In both cases, heterogeneity leads to a graduated response,

where slight changes in the environment cause slight changes in the system’s

behavior. The di�erence between the models is in the type of feedback they

engender. In the case of hive temperature regulation, the system is governed

by negative feedback, and having a graduated response tends to stabilize the

system. In the case of the social movement, there is positive feedback, and a

graduated response is like a rolling snowball, where the accumulation of

snow makes it bigger and heavier and more likely to pick up additional snow.

D������ ��� ���� �� �������� �� ����, ���� ������ ���� ��� ����

essential point about representative agents: they can be quite misleading, as

the mean is not the message. If we consider systems with all agents acting at

the mean, we will often make bad predictions, expecting too little stability in

the case of the honeybees and too much in the case of social movements.



Policy can often in�uence the level of heterogeneity in the system and

thus determine the system’s overall behavior. Heterogeneity is likely to be a

stabilizing force in markets, and therefore we might want to encourage

diversity by ensuring that we have many moderately sized trading houses

competing with one another using proprietary trading algorithms. However,

if you want to quash a social rebellion, having a homogeneous population

with a high threshold will prevent small events from growing into

revolutions. While policy can’t dictate a homogeneous population, it can

in�uence the feedback loops by, say, altering the information individuals

receive about reasonable threshold levels or the number of activists.

Alternatively, if you want to initiate a social movement from a small spark,

then you want to encourage a diversity of views and a sense that everyone is

participating, so that a single spark can lead to a cascade that ignites a full-

blown movement—it takes just one ring to bring them all.
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From Six Sigma to Novel Cocktails: Noise

Errors . . . are the portals of discovery.

—JAMES JOYCE

IX SIGMA IS A BUSINESS MANAGEMENT SYSTEM DEVELOPED BY MOTOROLA

starting in the 1980s. It was designed to improve manufacturing

processes. At its heart is a set of techniques that attempts to limit the number

of defects in a process to 3.4 per million or fewer (or, equivalently, having

99.99966 percent of the products emerging from the process defect free).

The application of Six Sigma ideas and, more generally, the notion of

improving quality by eliminating errors have likely resulted in substantial

savings to producers and increased bene�ts to consumers in industries

ranging from microchip fabrication to health care.

Given examples such as Six Sigma and our own intuitions, it is easy to

think that eliminating errors in a system—what often gets classi�ed as

“noise”—will lead to a better outcome. Manufacturing is in many respects

the opposite of an emergent system. It is a system that thrives on

homogeneity. But, as we saw in the previous chapter, there are times when

you need heterogeneity to drive a system. While error avoidance is useful in

the manufacture of a well-de�ned good, it is a dangerous bias if we want to

discover new things.

Consider the problem of �nding the highest elevation on some landscape.

As you tread across the landscape, you change your latitude and longitude

with each step, and if the landscape has hills and dales, you’ll also change

your elevation. Such elevation seeking is an example of a simple search



problem (searching for the highest elevation) across two dimensions (latitude

and longitude).

If the day is clear and we can take a hot-air balloon journey and rise

above the landscape, or if we can quickly scan a topographic map (composed

of contour lines of elevation spreading out like ripples around various hills

and dales), then �nding the highest elevation is fairly easy. With either type

of view we can quickly identify the highest point in the land and �nd its

associated latitude and longitude. In such a situation, with either view of the

world, the error-eliminating Six Sigma approach would work like a charm.

To make this scenario a bit more challenging, suppose a dense fog rolls in,

thus limiting our vision to just a few feet surrounding our current position.

Under such conditions—which are the norm in real-world search problems

—what can we do?

An obvious search strategy here is to simply look around our current fog-

bound location and take a step uphill. Once we take that step, we can look

around anew, as a bit of new territory will be revealed, and we can again step

uphill. At times we might look around and �nd that everything is the same

elevation, and if so, we can just step in a random direction. As we continue

to follow this search strategy, we will eventually �nd ourselves at a point

where, as we look around in the dense fog, all directions lead downhill. Here

we note our coordinates and declare to the world that we have found a high

point. This type of search strategy is known, not surprisingly, as hill

climbing.

How well does hill climbing work? If, when we look around, all roads

lead downhill, we can at least guarantee that when the fog lifts we will be at

a local high point. There is no guarantee, however, that this local high point

will also be the global high point. Thus, while we might declare at the end

of our fog-bound climbing e�orts that we have found the top of the world,

when the fog lifts we might �nd ourselves standing on an anthill at the base

of Mount Everest.

The problem with a hill-climbing search is that we might end up at a

local, rather than global, optimum at the end of our journey. One way to

improve our odds of �nding the higher points on the landscape is to do



multiple hill climbs, each starting from a di�erent, randomly chosen

location. Return to our fog-encrusted landscape and think about randomly

parachuting down a few hill climbers, each of whom pursues a hill-climbing

algorithm from wherever he or she lands. If there are many hills on the

landscape, then these di�erent climbers are likely to end up atop di�erent

peaks, some higher than others. Thus with multiple, random starting points

we are likely to uncover new and better optima.

The e�ectiveness of hill climbing is tied to the ruggedness of the

landscape. If the landscape looks like that around Mount Fuji, dominated by

its symmetrical volcanic cone, then regardless of where a hill climber lands,

when she walks uphill she will end up at the peak and �nd herself at the

highest point. If, instead, the landscape resembles that of the Himalayas,

Andes, or Rockies, then it will be quite likely that our hill climbers will end

up on local rather than global peaks.

Consider the one-dimensional problem shown in Figure 5.1. For any

location along the x-axis, there is an associated elevation given by the y-axis.

Note that we can take any point on the x-axis and �gure out where a hill

climber who starts from this point will end up after marching uphill.

Alternatively, we can take any peak on the landscape and map out all of the

x-axis values that will lead, after hill climbing, to it. Such a map gives us the

“basin of attraction” for each local optimum. If the world is like Mount Fuji

(think of a single pyramidal shape dominating the diagram), then all of the

x-axis values are in the same basin of attraction, and that basin leads to the

global high point. If, instead, the world looks like that of the �gure, then

there are three basins, each leading to a di�erent peak with a di�erent

height.



FIGURE 5.1: A one-dimensional search problem, along with its associated basins of attraction
(assuming hill climbing). As the landscape becomes more “rugged,” the number of peaks,
and thus the number of basins of attraction, increases.

One can also identify basins of attraction in landscapes with more than

one dimension. In the case of the two- dimensional landscape we initially

discussed, think about a great �ood inundating the world. As the waters

begin to evaporate, the �rst bit of land that emerges will be the global peak.

As the waters move down the sides of this peak, the associated basin of

attraction is revealed. If the landscape is rugged, at some point another island

of land will emerge from the receding waters, revealing the second-highest

peak, and we can begin to identify its basin of attraction. As the waters fall

further, the various islands of land that are emerging will eventually touch

one another, and it is at these points that the boundaries of the basins of

attraction are identi�ed. If, as the waters recede, we have a single point of

land growing to encompass the entire world, then hill climbing will easily



�nd the global peak. If, instead, numerous islands pop up, then hill climbing

will likely get trapped on a lower-lying peak.

From the above, we see that the ruggedness of the landscape is an

important factor in the ability of hill climbing to discover the highest point.

This leaves open two key questions: what determines ruggedness, and are

there better ways to search than hill climbing when we confront a rugged

landscape?

The issue of ruggedness is tied to the predictability of elevation changes as

we traverse the landscape in any given direction. If we start at a random

location on the edge of the landscape, pick a random direction, and start

walking in a straight line, we can keep track of the number of times we

switch from ascending to descending, and vice versa. Landscapes will be

relatively smooth if these traverses tend to have very few switches, and

rugged when they have a lot. When we have very few switches, the

coordinates (dimensions) of the search are relatively independent of one

another. That is, if along our traverse the gains or declines in elevation are

not tied to where we are on the landscape, then the landscape will not be

rugged. However, if the dimensions of the search start to react with one

another—that is, if the elevation change that I experience when I change my

longitude by a little is closely tied to my current latitude—then the landscape

will be rugged.

Systems that have a lot of interaction among their various dimensions are

known as nonlinear systems. Oddly, there is a specialized area of science

devoted to the study of nonlinear systems. The reason this is odd is that

some degree of nonlinearity is present in almost all real-world systems, so

science treats as some sideshow curiosity an aspect of the world that is

actually the norm. This observation was captured in a remark apparently

made by the mathematician Stan Ulam: “Using a term like nonlinear science

is like referring to the bulk of zoology as the study of non- elephant animals.”

The notion of interacting dimensions and ruggedness gets far more

interesting if we consider search problems other than �nding the highest

point on a physical landscape. For example, think about trying to dress in a

fashionable way. Some of the potential dimensions here might be the style of



the out�t, its color, choice of belt, type of shoe, and so on. If these

dimensions don’t interact, then leaving the house in a fashionable out�t is

relatively easy. First you �nd the best belt among the lot. Then you pick the

most fashionable shoes. Next, pick the best color. And on and on, until you

leave the house dressed in the ideal combination.

Of course, in fashion, as in life, di�erent dimensions do interact quite a

bit. The choice of shoes depends on the color and type of out�t, the belt

needs to be coordinated with the shoes (or so I’m often told), and so on.

Thus, optimizing on each dimension alone and ignoring the others is likely

to lead to an overall ensemble that is a fashion faux pas. Moreover, there are

likely to be many di�erent ensembles that work well together, each

representing a local optimum (style) that cannot be improved upon by

making minor changes in any one element. Perhaps one of these ensembles

is better than all of the others, and we can �nd the ultimate in fashion-

forward thinking, though more likely than not these radically di�erent

ensembles may each solve the problem of looking fashionable with roughly

equal success.

A lot of other choices tend to be characterized by rugged landscapes.

Consider �nding the best design for a car. The various features of a car, such

as the number of doors, presence or absence of tail �ns, size of the engine,

hard or rag top, wheelbase, weight, mileage, and so on, all interact with one

another in surprising ways, and thus the space of car designs is likely to be

very rugged. Out of such a landscape, a Ferrari 250 GTO, a Toyota Corolla,

and a Ford F150 might all emerge as locally optimal solutions to the problem

of car design. Similarly, consider the problem of �nding the best cocktail, in

either the mixed-drink or drug sense. If the various elements of the cocktail

do not interact, then we can just optimize on one element at a time, �nd its

ideal, and from such a search combine all of the ideal points to make the

ultimate cocktail. Of course, such an approach tends to result in cocktails

that are fairly unappetizing in the case of mixed drinks (with perhaps a rare

counterexample given by the Manhattan iced tea) and ine�ective and (likely)

dangerous in the case of drugs.



While hill climbing could lead us to a Jeep and a pair of hiking boots to

explore Canyonlands National Park and a Bentley and a tuxedo for a formal,

it has the potential to leave us trapped on much less desirable peaks. One

escape from the traps of hill climbing on a rugged landscape is to introduce

noise or error into the search algorithm. Our intrepid hill climbers above

followed the Six Sigma mantra and always headed uphill without the

possibility of error. However, what’s good for re�ning a manufacturing

process is likely bad for discovery.

Return to our fog-bound, elevation-seeking hiker who is standing on an

anthill at the base of Mount Everest. When she looks around from her

current perch, she sees only opportunities to descend. If she is to escape the

mound and climb Everest, she must take some downhill steps. This implies

that she will need to make an error in her hill-climbing search and take at

least one step downhill. While this is seemingly at odds with her overall goal

of �nding the highest point possible, this short-term loss o�ers the long-

term potential of moving her to a new slope that might result in her

discovering a much higher peak.

A search algorithm that embraces this hill-climbing-with-error idea is

known as simulated annealing. In real annealing, the properties of a material

such as glass or metal are improved by heating the object and then allowing

it to cool slowly. Within such materials, the individual atoms have a

tendency to align with one another, all else being equal. When heated, this

tendency gets overwhelmed by the noise introduced by the outside energy,

and the atoms �op about in all directions. If the heated material is quickly

cooled, the atoms get frozen in whatever scrambled directions they were

facing at the time of the quenching. However, if the material is cooled very

slowly, as the �opping about of the atoms slowly diminishes with the

lowering temperature, their desire to align with one another begins to take

over. Eventually the material cools to a state in which most of the atoms are

aligned. Such crystalline structures often give the resulting material desirable

properties.

Simulated annealing uses an idea very similar to that of real annealing. We

take our standard hill-climbing algorithm, with its desirable tendency to



march uphill, and impose on it some noise via a high “temperature.” While

the algorithm still wants to march uphill, the noise makes it willing to accept

occasional errors and march downhill as long as the temperature is high or

the loss of elevation is small. Over time, we reduce the temperature,

lessening the algorithm’s tendency to take large downhill steps, until the

temperature is so low that the algorithm reverts to its pure hill-climbing

behavior.

The intentional introduction of such errors into the search process gives

us the ability to overcome the usual traps of rugged landscapes (see Figure

5.2). In essence, the noise we introduce begins to vibrate the landscape,

�lling in the small valleys enough so that the searcher can traverse these

previously insurmountable obstacles on her way to higher ground. Noise

allows the hiker to step o� the anthill and proceed up Everest. There is, as in

most things, a trade-o� here. The addition of noise, at least in the short

term, tends to lessen performance, and on easily surmounted landscapes such

as Mount Fuji, it adds additional time to the search, as well-directed uphill

steps are occasionally counteracted by downward ones. Of course, the

bene�t of noise is that on more rugged landscapes it results in much better

performance overall, as it allows the climbers to escape low-lying local

optima.



FIGURE 5.2: The occasional downhill steps introduced by simulated annealing allow the hiker
to escape inferior local optima and ultimately discover the global optimum.

A nice application of the above ideas is to the problem of discovering

novel and e�ective cocktails of drugs for chemotherapy. Drug discovery has

taken many forms over the years. Sometimes drugs were isolated from folk

remedies, such as the bark of the willow tree, which gave us aspirin. At other

times we found new drugs by collecting chemical compounds from various

plants, animals, and microbes and then screening these compounds against

various diseases in the hope of �nding something that works, such as the

fungus that resulted in penicillin. More recently we have tried to design

drugs directly, by �rst identifying a potential molecular weakness in a disease

and then designing an appropriate drug to attack this vulnerability—this

typically comes down to identifying the shape of a protein needed to exploit

the weakness, and then generating that shape using knowledge about how

various combinations of molecules fold into three-dimensional objects.

All of these approaches have resulted in useful, albeit at times expensive,

drugs. Unfortunately, the hope of �nding a single drug to cure each disease

assumes that the disease has an Achilles’ heel that can be attacked by the

chemical equivalent of the arrow of Paris. However, most diseases exist in



the realm of complex biological systems, and such systems tend to have

built-in redundancies that make the system as a whole robust in the face of a

single line of  attack. While such systems will not succumb to a single  attack,

they are vulnerable to a salvo of arrows each destined for a di�erent target,

with the overall goal of simultaneously neutralizing enough of the

redundancies so that the system as a whole will fail. This complex-systems

view of disease suggests that drug cocktails, with each drug acting like an

arrow in the aforementioned salvo, may be needed if we are to cure what ails

us.

Perhaps the best-known drug cocktail is the set of antiretroviral drugs

used in the treatment of HIV/AIDS. The human immunode�ciency virus

undergoes rapid mutation, and so while targeting only one part of the virus

will provide some short-term success, this strategy will ultimately fail, as

mutations will arise that circumvent the initial target. However, by attacking

the virus with several drugs at the same time—each focused on a di�erent

aspect of how the virus propagates, such as the transcription of the viral code

or its assembly—single mutations capable of circumventing one drug are

nevertheless overwhelmed by the attacks of the other drugs, and no single

mutation can ever gain enough of a foothold to allow the viral population to

survive. In the language of landscapes, these drugs interact in a nonlinear

way with one another. Each drug may fail on its own, but a cocktail of all of

the drugs defeats the disease.

The HIV/AIDS cocktail is a triumph of modern science. Understanding

the role of mutation and the various molecular mechanisms driving the

disease required the costly e�orts of thousands of researchers. Once this

understanding arose, the strategy of simultaneously using multiple drugs,

each of which defeated a di�erent class of viral mutations, became an

obvious approach.

While developing treatments based on a deep understanding of the

underlying molecular principles involved in a disease is desirable, such

knowledge tends to be extremely costly to acquire. This cost restricts the

number of drugs and drug cocktails that can be developed via this route.

Occasionally new therapies arise by accident. For example, the drug cocktail



used to treat Hodgkin’s lymphoma was discovered by guesswork on the part

of a rebel doctor who experimented on desperate patients. Still, as noted

above, there are sound reasons to think that drug cocktails might be a good,

and perhaps even necessary, way to treat disease. Moreover, we already have a

vast collection of chemical compounds—discovered by serendipity, hard

work, or both—available for inclusion in drug cocktails. Thus we should be

in a great position to develop new, cocktail-based approaches to curing

disease. Of course, the di�culty with pursuing this scienti�c program is that

drugs often interact with one another in surprising ways, and therefore we

face a nonlinear landscape in which simple methods, like forming cocktails

from those drugs that work well individually, are likely to fail. Fortunately,

our knowledge of how to search rugged landscapes provides a potential way

out of this conundrum.

In collaboration with Ralph Zinner, a medical doctor at MD Anderson

Cancer Center, and some of his colleagues, I have been using various search

algorithms inspired by complex systems to �nd novel and e�ective

chemotherapy cocktails. Our �rst test involved a set of nineteen therapeutic

drugs that we were able to beg, borrow, and appropriate from fellow

researchers. For each drug, we �rst found the dose that would typically kill

o� 10 percent of a particular strain of lung cancer cells, which we grew in

plastic plates dotted by ninety-six wells, each roughly the size of a pencil

eraser. There are more than half a million (219) unique cocktails that you can

form from nineteen drugs each used at a �xed dose. Unfortunately, even

with the heroic e�orts of our laboratory technician and key collaborator,

Brittany Barrett, we could test only about twenty cocktails every week,

given the constraints of having to grow the various cell lines, mix the drugs,

incubate the cells, and assay the outcomes.

To overcome these limitations, we introduced a search algorithm much

like the hill climber described previously. We started with twenty randomly

formulated cocktails. Each cocktail was added to a few wells growing the

cancer cells, and after a few days we did an assay to see how many of the

cancer cells survived. Cocktails that killed more cancer cells or used fewer

drugs (with an implicit trade-o� of including a drug in the mix if it killed at



least 10 percent more of the cancer cells) were judged to have more �tness, a

measure akin to our hiker’s elevation. We took the �ttest cocktail out of the

initial twenty and made that our status quo. Then we started to hill climb.

For each step, we looked at the nineteen drug cocktails that were identical to

the  status quo except for either including one drug that was not in the status

quo or excluding one that was. Then we tested these nineteen variations

against the status quo. If the �ttest one of these variations was better than the

status quo, we made that cocktail the new status quo and continued our

search. If, on the other hand, when we looked at all of the variants we found

that the status quo was still the �ttest, the search was over, as we had found a

local peak.

Within about nine steps, in which we investigated a couple of hundred

cocktails out of the 524,288 possible ones, we found a three-drug cocktail

that had a �tness more than four standard deviations above what we would

have expected if we generated cocktails at random. Moreover, after

discovering this three-drug cocktail, we did a literature search and found that

two of the drugs had previously been suggested as being useful in a

chemotherapy cocktail for another type of cancer. The third drug in our

cocktail was not one we had expected to see, insofar as it tended to increase

the growth of the cancer when used alone. However, in hindsight, there

might be good reasons for including it. For example, the other two drugs

might be particularly e�ective during cell division. If so, a drug promoting

division might be a good thing to have in combination with the other two

drugs.

This work was merely proof of a principle. It suggests that using the

concepts of search on a rugged landscape may be a useful way to discover

novel and e�ective chemotherapy cocktails.

In general, there are two serious challenges to discovering e�ective drug

cocktails. First, nonlinear interactions among the drugs make simple search

strategies, such as combining the best individual drugs, ine�ective. Second,

we face a combinatorial explosion of possible cocktails—that is, every time

we add a drug (even at a �xed dose), we double the number of possible

cocktails that we could test (namely, all of the previous cocktails with and



without the new addition). With twenty drugs, for example, we have more

than a million possible cocktails, with twenty-one drugs we have two

million, with forty drugs we have a million million, and so on. Given this

combinatorial explosion, we cannot feasibly generate and test all possible

cocktails, even given modern advances in robotic laboratories. Most research

gets around the combinatorial explosion by focusing on cocktails with only a

couple of drugs—with twenty drugs, there are more than a million possible

cocktails, but there are only 190 two-drug cocktails (if we ignore the

ordering of the two drugs). Fortunately, search algorithms arising from the

study of complex systems o�er a possible solution to both of these

challenges, as they are designed to �nd good solutions on nonlinear

landscapes using only a limited number of experiments.

In many ways, the directed-discovery drug cocktail research above goes

against various trends in medicine. A lot of recent work in chemotherapy has

focused on drugs that target well-understood molecular mechanisms. While

this is a useful approach, the e�ort it requires to uncover the underlying

mechanism and design an appropriate drug is daunting. Directed discovery

takes almost the opposite approach, even at times ordering the lab worker to

make mistakes. An algorithm running in Santa Fe, New Mexico, with no

knowledge of medicine or biology, takes a set of symbols and manipulates

these based on feedback received from a laboratory in Houston (where a

skilled technician mixes up the appropriate cocktails given the symbols she

receives from the algorithm, adds them to a well of living cells, and after a

few days of incubation reports back to the algorithm how many cells died in

each well). While such a blind search may seem to be extreme, especially

compared to the intensive, intelligent, and dedicated work of molecular

researchers, ultimately what we really care about is �nding useful cocktails,

however they are discovered.

The directed-discovery approach to �nding drug cocktails inhabits an

interesting middle ground between intuitive leaps on the part of renegade

doctors and the resource-intensive e�orts needed to acquire deep molecular

knowledge or to conduct large-scale screenings of natural compounds.

Moreover, if directed discovery is successful, having information about what



cocktails are e�ective may provide new insights into the underlying

molecular mechanisms of the disease.

Notwithstanding the sound biological and complex- systems basis for

pursuing drug cocktails, there are various institutional, legal, and regulatory

constraints that favor single drugs. For example, drug companies like to focus

their e�orts on discovering (and patenting) a single, easily marketable,

blockbuster drug, rather than seeking out cocktails that might involve drugs

from other companies or component drugs that may have many substitutes.

Even government regulations tend to favor single drugs. For example, the

Food and Drug Administration currently requires that cocktails be tested and

approved as a cocktail—an extremely costly process—even when the drugs

that make up the cocktail are all individually approved. Recently there has

been some promising movement on the part of such agencies to recognize

the value of cocktails and encourage their use.

Over the coming decade we are likely to enter a new era of personalized

medicine. For example, current cancer treatments tend to crudely classify

types of cancers into overly broad categories and treat everyone within a

category as if they shared the identical disease. Doctors run them through

general protocols of treatment in the hope that something will work. The

fact that people respond quite di�erently to the same treatment suggests that

cancer is far more individually speci�c. For example, we know that there are

various types of mutations in melanoma that make it more or less susceptible

to di�erent drugs. There is good reason to think that with further

investigation and information, we will uncover many such speci�cities. As

we enter an era of cheap genotyping, it is likely that future cancer diagnoses

will be tied to the genotype of an individual’s cancer. Once this occurs, we

may enter a world in which each patient has what is essentially an “orphan”

disease, shared with only a few others. In such a world we will need a way to

quickly customize each patient’s treatment. Directed discovery may prove to

be a key enabling technology in such a future.

Ultimately, the notion of using cocktails to treat complex diseases is

sound, and we need a systematic way to discover such cocktails given the

innately rugged landscapes and combinatorial explosion underlying such



searches. There are thousands of chemical compounds in the world that

could be used to construct drug cocktails, and many of those compounds are

quite inexpensive because their governing patents have expired. This

storehouse of embodied chemical knowledge, linked with new developments

in robotics and micro�uidics, places us on the cusp of an era in which novel

and e�ective drug cocktails, personalized to each patient, are waiting to be

discovered—if, contrary to Six Sigma, we are willing to make some errors.
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SIX

From Scarecrows to Slime Molds:

Molecular Intelligence

If you only had brains in your head you would be as good a man as any of

them, and a better man than some of them. Brains are the only things worth

having in this world, no matter whether one is a crow or a man.

—L. FRANK BAUM, The Wonderful Wizard of Oz

RAINS ARE OVERRATED, GENERALLY BY THOSE WHO HAVE THEM. THINK (WE

didn’t say brains weren’t useful, they’re just overrated) about all of the

entities in the world that have to make good decisions with nary a neuron to

be had. To take one example, each neutrophil granulocyte (a type of white

blood cell, which you may have encountered in the form of pus emerging

from a wound) in your body is capable of moving to sites of infection based

on chemical signals. Once there, it can identify foreign microbes and destroy

them by ingesting them or releasing antimicrobial chemicals. Such complex

behavior abounds in every corner of our world. And it happens without

neurons or a brain.

At one level, choice without neurons is not all that surprising. Even

inanimate things, such as a drop of water or a rolling stone, have to decide

where to go as they map out routes to low points in the landscape, and they

do so in (at least ostensibly) clever ways. Indeed, countless computer hours

are devoted to solving similar types of problems as we, say, try to �nd the

shortest route for delivery trucks to follow. Of course, in the case of water



and stones there is an external force, gravity, that drives the solutions—

solutions that, despite our clever brains, we struggle to discover ourselves.

Water and stones, then, provide an existence proof that cleverness is not

restricted to smart things. Yet the issue becomes far more interesting when

we look at living things, which are making choices in arenas much closer to

what we hold dear.

When Antonie van Leeuwenhoek perfected the microscope su�ciently

to observe single-celled organisms, he noted that cells migrated in apparently

purposeful ways. These observations were re�ned over the next few hundred

years as various researchers realized that certain types of cells and organisms

were directing their movements according to chemical signals in the

environment.

The general name for this phenomenon is chemotaxis. To understand

how it works, consider a lowly bacterium: E. coli. On its outside surface are

several whiplike, semirigid, helical �agella. Each �agellum is attached to a

chemical motor that can rotate it in either direction. When the �agella rotate

counterclockwise, they all align into a single, corkscrew-like bundle, and in

doing so propel the bacterium along a straight path. However, clockwise

rotation causes the bundle to break apart, and the �agella �ail about in all

directions, causing the bacterium to tumble randomly. When one observes a

bacterium, its motion alternates between these random tumbles and straight

runs.

Although those may seem like limited behaviors, they are enough to get

the bacterium where it needs to go. Suppose we place a drop of some

chemical into the bacterium’s world. The slow dispersal of the drop forms a

chemical gradient with a high concentration where we placed the drop and a

decreasing concentration as we move away from that point. Assume that the

chemical we added is a nutritious food such as sugar. Once the drop begins

to disperse, we will notice some interesting behavior on the part of the

bacterium. While the bacterium still alternates between straight runs and

tumbles, the time spent doing each action varies depending on the direction

in which it is heading. When the bacterium is moving toward the drop, it

tends to spend more time going straight than tumbling. When it is heading



away from the drop, it tends to tumble more. This type of behavior will, in

general, cause the bacterium to move up the chemical gradient (see Figure

6.1). Similarly, if the chemical is something that the bacterium wants to

avoid, it will tend to tumble more when it is headed toward the source and

less when it is headed away, and by doing so it will move away from the area

of highest concentration.

FIGURE 6.1: A simulated bacterium using chemotaxis to seek out a goal. The bacterium
begins in the upper left part of the diagram at coordinates (0,200), and the goal is located in
the lower right (200,0). The bacterium alternates between tumbles (solid circles), which
redirect it in a random direction, and straight runs. The time spent in a straight run is
proportionate to the change in the number of molecules it encounters diffusing from the goal
—in the case of this simulation, it is controlled by a logistic probability function of the
distance to the goal from the old and new points. As seen in the �gure, this simple behavior is
suf�cient to direct the bacterium toward, and have it remain around, the goal.



We know that the bacterium doesn’t have any neurons or other obvious

parts that could constitute a brain, yet somehow it is able to move toward

good things and away from bad ones. In this case, molecules substitute for

brains. While the exact molecular mechanisms and chemical reactions are a

bit complicated (at least to an economist), in the end the bacterium is

controlled by a complex system of molecules interacting with one another

through the rules of chemistry.

When two molecules encounter each other, one or both of them may be

altered. These alterations are tied to the physical shapes of the molecules, and

there is a large amount of science devoted to understanding how chains of

proteins fold into various molecular structures. At times, one molecule may

“�t” into another, causing the receptor molecule to undergo a change. At

other times, molecules can add or remove chemical groups to one another,

roughly equivalent to turning on or o� a chemical switch. Take these core

abilities and mix in a few billion years’ worth of evolution to tune various

feedback loops and decay processes, and some rather sophisticated behaviors

can emerge.

In the case of simple chemotaxis, the process is roughly as follows. When

we place a drop of chemical into the environment, the enormous number

(for argument’s sake, let’s say 6 × 1023 or so) of molecules it contains

immediately begin to di�use. Over time, this di�usion will form a gradient,

with fewer and fewer molecules of the chemical as we move away from the

initial drop.

As the bacterium moves around in its world, it encounters these

molecules. The bacterium has receptors on the outside of its membrane that

bind easily with the molecules—a common analogy here is to think of the

molecules as keys that can attach to and open the lock-like receptors. When

a molecule binds to the receptor, it causes a cascade of chemical changes

inside the cell that lead to two important behaviors on the part of the

bacterium.

The �rst behavior caused by the binding of, say, a repellent molecule is

that the receptor releases a new set of molecules—to avoid confusion, we

will just call these latter molecules signals—inside the cell. These signals lead



to various cascades of reactions in the bacterium that propagate the initial

signal and eventually cause the production of a new, short-lived signal to be

sent that reverses the �agellar motor. Normally these motors run

counterclockwise (at around 6,000 rpm), implying swimming in a straight

line, but when the motor reverses, the �agella become all askew and the

bacterium tumbles. The short-lived signal causes tumbling, after which the

motor quickly resumes its normal rotation and the bacterium is back on the

straight and narrow. If, instead of a repellent binding to the outside receptor,

an attractant binds, then fewer such reversal signals are produced and the

bacterium tumbles less. Thus, the molecular pathways induce a very adaptive

behavior: when the bacterium is around attractants, it tends to go straight,

but when it encounters repellents, it changes directions.

The second behavior caused by the binding of the outside molecule

involves a feedback loop on the outside receptor itself. The sensitivity of the

receptor is tied to the binding of external molecules and to some internal

changes caused by such bindings. As more binding occurs, the receptor

desensitizes itself to the outside molecules, essentially adapting—on a short-

term basis, over the time span of a minute or so—to the outside level of the

chemical. Thus, when an attractant molecule binds to the receptor, it both

immediately reduces the number of tumbles (as previously discussed) and

makes the receptor less sensitive to the attractant for a short while thereafter.

If the bacterium meets a similar level of attractant over the next few minutes,

it will tumble at its normal rate rather than the reduced one. This feedback

mechanism allows the bacterium to “remember” its short-term past. Thus, if

it �nds itself in roughly the same situation it found itself in just a short while

ago, it reverts to its normal behavior (occasional tumbles), and it alters this

pattern only if it detects a change relative to the recent past. This memory

induces exploratory behavior in the bacterium when it �nds itself in the

same situation as in the past.

Above, we focused on the case when the bacterium confronts either an

attractant or a repellent, but what happens if it encounters both

simultaneously? In such a case, the bacterium needs to decide what to do by

making a trade-o� between the potential bene�ts of the attractant and the



costs of the repellent. This question was �rst explored by Wilhelm Pfe�er in

1888, and he found that the relative strength of the two gradients is what

matters—if the attractant gradient is stronger than that of the repellent, the

bacterium moves forward, and if not, it moves away. Thus, the same

molecular decision-making process that allows the bacterium to seek out

good things and avoid bad ones is also capable of making trade-o�s when

both are present, giving the bacterium a set of preferences.

To move up a notch of behavioral complexity from our simple

bacterium, consider the amoeba Physarum polycephalum, better known as a

type of slime mold. During one part of its life cycle, this slime mold consists

of a single-celled entity (with multiple nuclei, no less) that searches for food

in an amoeba-like manner. Like our bacterium, this animal has no neurons,

so its behavior must be dictated by various molecular pathways as well.

This slime mold enjoys food but dislikes light (which, among other

harmful e�ects, disrupts its cellular processes). As a �rst step in understanding

its decision making, two researchers in Australia, Tanya Latty and Madeleine

Beekman (“Irrational Decision-Making in an Ameboid Organism,”

Proceedings of the Royal Society B, 2011), created an environment that

contained patches that varied in the available amounts of food and light.

Then, by introducing a slime mold into this environment, they could see

which patch it preferred.

By mixing the conditions of the patches, they could derive the

preferences of the slime mold—for example, does it prefer high food and

light over low food and darkness? It turns out that a starved slime mold

prefers a dark and high-food patch to a light and high-food patch, which is

better than a dark and medium-food patch, and so on. A well-fed slime

mold has slightly di�erent preferences, preferring a dark and high-food patch

to a dark and medium-food patch, which is better than a light and high-food

patch, and so on. These and other tests reveal that the slime mold’s molecular

decision-making mechanism seems to be able to make reasonable trade-o�s

between various levels of good and bad things. Moreover, it demonstrates

how those preferences can be in�uenced by the slime mold’s internal state:



when it is starved, it will trade o� additional risk (in the form of being

exposed to more light) for extra food.

This seems rational enough, but consider decision making in more

complicated settings. It is well known that humans often violate what seem

to be reasonable tenets of decision making. For example, suppose you give

someone a choice between dining at a restaurant with good food and a

crummy location (the Dive) or one with crummy food and a great location

(the Tourist Trap). By tinkering with the food and location qualities between

these two places, we can create a situation in which an individual is

indi�erent about whether she goes to either the Dive or the Tourist Trap.

Now, add a third restaurant that is clearly inferior to the Dive—for example,

the same type of location but slightly worse food. A priori, you might

predict that such an addition will make no di�erence to the individual’s �nal

choice, since the new option is inferior to an already existing choice, and

thus it should be immediately discarded as irrelevant. However, studies show

that the addition of such an irrelevant alternative actually alters people’s

behavior, causing them now to favor the Dive over the Tourist Trap (see

Figure 6.2). Marketers are well aware of this attraction e�ect and will often

introduce an inferior product to boost sales of an existing one. By the way,

there are other manipulations one can do, such as introducing another

restaurant that is like the Dive but is a bit better on one dimension (say,

slightly better food) and a bit worse on the other (slightly worse location),

that will also alter decision making in unexpected ways (in this case, making

consumers now prefer the Tourist Trap).

It turns out that slime molds fall prey to the same decision errors that

humans do. Start by creating two patches, one that is dark with little food

and one that is light with more food, such that the slime molds choose each

one about equally. Now introduce a third, inferior option (such as a dark

patch with even less food than the preexisting dark patch). Even though this

new patch is inferior to one of the existing patches and thus should be

irrelevant to the two preexisting choices, we �nd that it causes the slime

molds to gravitate to the preexisting dark patch over the one with more light

and food (at least if they are not starved).



FIGURE 6.2: Two restaurants, the Dive and the Tourist Trap, differ across two dimensions in
such a way that people are indifferent between the two (left panel). The addition of an
irrelevant alternative (in this case, a restaurant that is inferior to the Dive on both dimensions)
causes a shift in preferences to favor the Dive over the Tourist Trap (right panel).

Not much is known about the mechanisms that underlie the slime mold’s

choices. It is likely that some molecular mechanism, perhaps similar in spirit

to what we see in chemotaxis, is at play here. Regardless, both slime molds

and bacteria, without a neuron to be had between them, can make

productive decisions.

The ability to change behavior depending on the environment one

encounters and to make (at least most of the time) appropriate trade-o�s is

crucial for survival. As complicated as this behavioral complexity seems, it’s

not hard to imagine how such mechanisms could evolve. Cellular

mechanisms that take molecules from outside the cell, such as nutrients, and

transport them into the cell are a fundamental part of life. Cells with more

speci�c transport mechanisms that, say, move only particular types of

molecules are far more likely to survive if the selective transport is bene�cial.

From such simple beginnings, it is easy to develop receptors that, instead of



transporting speci�c molecules into the cell, just communicate the outside

molecule’s presence by emitting an intracellular signal. From here, it is not a

great leap to have such signals induce productive internal actions (such as

controlling the rotation of the �agella), cascade or degrade in useful ways,

and even provide feedback to the initial receptor.

All things considered, the behavior we observe in these single cells is

fairly sophisticated. Nevertheless, it is tempting to minimize the bacterium’s

accomplishment by claiming that because it is only the result of a set of

straightforward molecular reactions, it is therefore trivial and should not

qualify as any real form of thinking. Surely brains composed of neurons must

provide a deeper form of thinking.

But what is so special about neurons anyway, other than that humans tend

to have more of them than most other species? What neurons are really good

at is transmitting signals across large distances. Our bacterium is relatively

tiny, so molecules �oating around and randomly bumping into one another

are su�cient to transmit signals, as even randomly drifting things bump into

one another quite often on such small scales. However, as an organism gets

bigger, it needs a more reliable and rapid mechanism to convey signals across

large distances—“when it absolutely, positively has to be there,” you need

something like a neuron to quickly transmit and connect signals. Other than

the necessities of scale, there may not be much di�erence between these

systems. Indeed, the fact that molecular decision mechanisms lead both to

rational decisions and to errors similar to the ones humans make with fully

developed nervous systems suggests that the two systems may be driven by

similar principles.

If that is true, it may be the case that thinking exists on a much broader

scale than we normally imagine. If simple molecular mechanisms allow

bacteria, slime molds, and their lot to incorporate fairly sophisticated

behavior, we might want to examine other systems of signals and reactions to

see if they, too, embrace thinking. Perhaps any set of interacting molecules

can be interpreted as performing a thinking-like computation.

Moreover, if signals and reactions are all that are needed for thinking,

then brains may not be restricted to individuals. Perhaps larger-scale social



systems, such as honeybees in a hive, people in an organization, or a

collection of interconnected markets, may be performing thinking-like

computations. We’ll explore this topic in the next chapter.

We likely are surrounded by brains everywhere, some of which we easily

recognize and admire and others of which we are only beginning to

understand.



C

SEVEN

From Bees to Brains: Group Intelligence

For so work the honey-bees, creatures that by a rule in nature teach the act of

order to a peopled kingdom.

—WILLIAM SHAKESPEARE

ONSIDER FOR A MOMENT HAPPENING UPON AN ALIEN ORGANISM. IT HAS AN

outer membrane that contains its insides while also keeping the outside

world at bay. When potential predators approach, it has the ability to send

out poisonous projectiles to repel them. Inside the organism, tens of

thousands of particles perform a variety of functions, including maintaining

this apparently warm-blooded organism’s interior temperature within narrow

bounds, transporting waste products to the outside world, creating new

particles and maintaining old ones, and many other internal processes

necessary for survival. The organism can send out into the world long, thin

tendrils that grope randomly about, apparently in search of nutrients. Once a

tendril happens upon a rich source of nutrients, the organism sends out

additional tendrils that go directly to this location to help transport back the

�nd. Incoming nutrients are converted by various processes into a form of

storable energy that can be used to keep the organism alive (much the way

our own cells convert molecules such as glucose into ATP). Finally, we �nd

that there is one speci�c particle in the organism that appears to serve a role

akin to our own DNA, as it contains the needed information to create a

constant stream of the other particles critical to the organism’s vitality.

As we continue to observe the organism over the course of a year we

notice an interesting phenomenon. Typically during the spring, the organism



appears to erupt about half of its particles, which then settle in a nearby

location. Tendrils emerge from this mass, too, but rather than seeking out

nutrients they seem to be searching for a new outer membrane—much the

way a hermit crab seeks a new shell. As we watch, the tendrils connecting

the mass to potential membranes either strengthen or wither away, until

eventually only one strong tendril remains. At this point, it is as if this tendril

pulls the entire mass of particles into its new skin. Through this process,

what started out as a single organism has divided into two. These two newly

constituted organisms return to the necessities of survival, seeking out new

sources of nutrients, growing in strength, and, if conditions remain favorable,

dividing anew.

The organism described above is not some strange new form of

extraterrestrial life but rather a colony of honeybees viewed from enough

distance that we have di�culty making out the individual bees. This new

point of view suggests that it may be useful to think of a hive of honeybees

as a single superorganism, rather than as tens of thousands of individual bees.

How does such a superorganism function? When we normally think of a

hive, it is all too easy to view it as a monarchy ruled by a benevolent queen,

who directs her workers on the daily tasks of gathering nectar and pollen,

processing and storing honey, and all of the other duties that keep the hive

alive. Alas, this comforting story of a �nely tuned aristocracy could not be

further from the truth, though the reality here is far more rich, fascinating,

and useful.

As we saw in Chapter 6, even collections of molecules interacting via a

�xed set of chemical rules can display intelligent behavior, like a bacterium

seeking out good things and avoiding bad ones. Given that molecular

interactions can provide a cell with the ability to make intelligent decisions,

then perhaps interactions of other types of particles, here honeybees, could

bestow intelligence on those systems as well. As we will see, what’s true of

honeybees will help us unlock the mysteries of other systems of

decentralized, interacting particles that are making intelligent decisions, from

molecules in cells to neurons in brains, bees in colonies, traders in markets,

workers in �rms, and beyond.



H������� ��������, ����� ������� ������ ��� ������ ��� ������, ���

often on the edge of survival during the winter as temperatures drop and

nectar ceases to �ow. To successfully overwinter, the hive must have enough

workers to maintain its temperature and to rapidly repopulate the colony

when the nectar begins to �ow in the spring, but too many workers will

exhaust the limited stores of honey before winter ends. Thus, colonies must

carefully control their size.



FIGURE 7.1: A swarm of wild honeybees that formed under the eave of a building just down
the hall from my Carnegie Mellon of�ce. After many days of an unsuccessful search for a new
home, the swarm began to build the comb in this exposed location. After a few weeks the
swarm disappeared. (Photograph by the author.)

Swarming typically occurs in the spring, when nectar is plentiful, honey

has been stored, and the colony is rapidly growing. When the colony

swarms, the old queen takes o� with roughly half of the hive. The exiting

workers take their share of honey, and the resulting swarm alights nearby (see

Figure 7.1). The swarm, with the queen huddled in the middle, is vulnerable

at this time, as it is exposed to the vagaries of weather and predation. As the

swarm settles in, a few scouts head o� and search for potential nesting sites—

perhaps a hollow in a tree or a cavity in a building. When a scout �nds a

possible site, she explores it and makes an evaluation of its overall quality.

(Through a clever set of tedious experiments, we now have a good sense of

the qualities that scouts are seeking in a new home. In particular, they want

some combination of a properly sized cavity, a certain height above the

ground, and an entrance of a certain size and orientation.) Once a scout

explores a particular site, she returns to the swarm and begins to

communicate the location to the other scouts by way of a waggle dance

performed on the outside surface of the swarm. The key to this step of the

process is that the time spent dancing is tied to the scout’s perception of the

quality of the site, with higher-quality sites receiving longer dances. Other

scouts on the swarm observe the dancing and are induced to check out the

advertised location for themselves.

It is at this juncture that we get our �rst hint about how such a

decentralized system could possibly work. Since the sites that are perceived

to be better receive longer dances, and since new scouts are recruited by

observing the dances, it is more likely that recruits will be sent to the

potentially better locations. This results in a positive feedback loop for the

higher-quality sites. Even with this positive feedback, there is a subtle

mechanism built into this system that prevents locking into a bad choice too

quickly. Since potentially better sites are explored more often, they receive



many more evaluations of quality, so even if the initial scouts are somehow

poorly calibrated about the site’s true quality, subsequent investigations will

tend to correct such errors.

Imagine observing the outside of the swarm and tracking what locations

are being advertised by the dancers. When the swarm �rst alights, we see no

activity other than scouts heading o� in random directions. As the �rst scout

returns, she dances for whatever location was uncovered, and perhaps this

induces some other scouts to go see it for themselves. Soon other scouts

return from their initial forays, and new locations are advertised. Over time

we start to see several sites being advertised, and we could even track a site’s

popularity by counting the number of dancers over some given time

interval. Like the Billboard music charts, we see some sites that have been

charting for a few periods, with new sites occasionally breaking into the mix

rising with a bullet and, at times, once popular sites falling from grace like

one-hit wonders, never to be heard from again.

This mechanism allows the swarm to conduct many parallel searches and

to �nd a new home relatively quickly. There is no central accountant noting

each scout’s �ndings and deciding where to send the next scout or when to

end the search and move. Rather, scouts are directed by their own, local

observations of what is happening in their small neighborhood on the

swarm’s surface. The system has various indirect checks and balances, such as

more intensively investigating the more promising sites while also

maintaining a variety of other options.

After a day or two of dances, one location begins to emerge as the

favorite (see Figure 7.2). At this point, the decentralized system has

essentially made its choice.

How is this ultimate choice �nalized and communicated to the swarm?

While it might be possible for all of the bees to somehow sense that the

dances have converged, this strains any reasonable notion of a decentralized

system governed by only local communication. It is here that the second key

element emerges in our story, one that has the simplicity and pure

functionality of a Shaker chair. Rather than being driven by any action on

the surface of the swarm, the �nal decision is made at the discovered site.



Studies have shown that scouts exploring a site have the ability to sense

when a quorum of around twenty bees has formed, and it is the occurrence

of such a quorum that triggers the �nal decision. Once a quorum is present

at the new site (note that sensing such a quorum is not all that di�cult given

the information locally available to the congregating scouts), all of the scouts

return to the swarm and begin to make speci�c noises (known as piping) and

perform “buzz runs” that are akin to some crazed motivational speaker

running through an audience. This causes the honeybees in the swarm to

warm up their �ight muscles and get ready to make the big move.

FIGURE 7.2: A time series of panels representing the number of honeybees dancing for



various hive locations on the surface of an actual swarm. Each arrow represents the direction
and distance to a potential hive site, with the width of the arrow indicating the number of
dances for that particular site. The swarm identi�es eleven different sites during the search.
Eventually the swarm begins to concentrate on sites B and G, and after a pause due to rain
on the second day, site G becomes the consensus choice. (The data and �gure are courtesy
of Thomas Seeley.)

All that remains is the issue of how a few tens of bees that know where to

go can lead a few thousand that do not. The answer to this quandary turns

out to be that a handful of well-directed and fast-moving bees is su�cient to

direct the large, slower-moving swarm to its new home.

Russell Golman, David Hagmann, and I have modeled the decentralized

decision system above in a simple way. Consider an urn �lled with one

di�erently colored ball for each potential site. We mix these balls about and

then blindly reach in and pick one. Whatever color we pick is the option we

investigate, and we then place the chosen ball back in the urn and also add

more balls of the same color. The number of additional balls depends on the

“quality” of the color that we picked. For example, suppose we have four

di�erent colors in the urn and whenever we pick, say, a red one, we put it

back with two new red balls (similar to how a scout does a longer dance after

visiting a good site), while whenever we pick any of the other colors, we

replace it and add only one new ball of the same color. After we replace the

balls, we mix the balls up again and draw anew.

This urn process is similar to what happens in the honeybee system. At

any stage of the process, the likelihood of picking a particular color

(potential site) depends on the proportion of that color in the urn. When we

�rst reach into the bin, we have an equal chance of picking any color. Once

we make our �rst choice, the scheme for replacing subsequent balls has an

e�ect similar to the dancing scouts, as the better option (here, the red ball)

gets more balls added back into the urn than the other colors. This increases

the likelihood that the better option will be chosen in the future. The system

makes a choice as soon as the number of balls of a particular color equals or

exceeds a preset quorum level.



The behavior of this model is shown in Figure 7.3. Since we start with

one ball of each color, if the quorum is two, then whatever color ball that

we pick �rst will become the �nal choice, as the addition of a new ball (or

two) of that same color will meet the threshold. Thus, with a quorum of

two, there is an equal chance (25 percent) of choosing any of the four colors.

As the quorum increases, the di�erential addition of balls based on color (the

best getting two, the others getting one) begins to matter more and the

system becomes more likely to pick the best choice. For example, at a

quorum of �ve, the system picks the best choice about 50 percent of the

time. At a quorum of twenty, there is a 70 percent chance of picking the best

option. We can prove mathematically that as we increase the required

quorum, the system is more likely to pick the best option (and as we allow

the threshold to increase without bounds, the system always converges to the

best option).



FIGURE 7.3: Likelihood of a quorum forming for the best choice (y-axis) with four different
colors in the urn given different quorum thresholds (x-axis). Here, anytime the best color is
chosen we add two additional same- colored balls to the urn, while choosing any of the other
colors results in the addition of only one same-colored ball. As the required quorum size
increases, the likelihood of picking the best choice increases, but so does the time that it takes
(not shown) to reach that quorum.

There is an important trade-o� in this decentralized system: as the

required quorum level increases, so does the time needed to hit that

quorum. Thus, if we want the system to make better choices, we need to

wait longer. Typically, waiting is costly, especially in a system such as our

honeybee swarm, which is quite vulnerable to the elements and predators

and which cannot, in its current con�guration, make and store honey.

Swarms usually have only a few days to �nd a new home before they are so



compromised that their continued survival is unlikely. Thus, waiting too

long may be worse than picking an inferior choice. Given this, we might

expect that evolution would result in required quorum levels that satis�ce—

that is, that cause bees to choose a reasonable, even if not optimal, home

rather than wait too long. It appears that swarms use quorum thresholds of

around twenty, and given our model, this results in a mechanism that works

relatively quickly with a good, but not perfect, chance of �nding the best

home.

Another interesting feature of the above decentralized decision-making

system is how it weighs risky choices. A typical way to derive the risk

preferences of decision makers is to give them choices between a safe

alternative and an equivalent (in terms of expected value) risky one. For

example, suppose you have a bet that on average pays $2. You have a choice

of how you can get that average value, however: win $2 for sure or take a

gamble that 50 percent of the time pays $1 and 50% of the time pays $3.

Which would you pick? If the second gamble had an 80 percent chance of

paying $1 and a 20 percent chance of paying $6, would your choice change?



FIGURE 7.4: Probability of choosing the safe choice (2 for sure) versus the risky choice
(various probabilities of receiving either 1 or a higher value than 2, such that the expected
value of the gamble is always 2—for example, in the topmost gamble, there is an 80 percent
chance of receiving 1 and a 20 percent chance of receiving 6). As long as the required
quorum is greater than 2, then (with one exception) the system is more likely to take the safe
choice instead of the risky one, since the probability for that outcome is over 0.50. As the
gambles become more risky (the legend on the right is ordered from most risky at top to least
risky at bottom), the system displays increased risk aversion by choosing the safe option more
often.

In Figure 7.4 we show how our urn makes such choices. The system

must pick between receiving two additional balls for sure or one of the risky

gambles shown in the legend on the right. While all of the gambles have an

expected value of 2, the variance—a proxy for riskiness—of the gambles



decreases as you move from the top down. The graph shows the likelihood

of picking the safe choice on the y-axis, so anytime this is above 0.50 the

system is risk averse. As soon as the threshold exceeds 2, the urn system is

more likely to choose the safe choice over the risky one in all but one quirky

case, and as the variance of the gamble increases, the system prefers the safe

choice even more. Thus, the decentralized decision system used by the

swarm, insofar as we can capture its behavior using our urn, is risk averse.

Risk aversion may be an important strategy in evolutionary systems, since

a single failure of a species to reproduce will prune its branch o� the

evolutionary tree. You are the result of a very long chain of successful matings

going all the way back to the origin of life. One broken link in this chain

and you would not be here. Of course, there is a di�erence between you not

being here and Homo sapiens going extinct, but the general idea still holds.

An evolutionary strategy that relies on gambles versus sure things is, literally,

quite risky. Under some circumstances, playing the odds could potentially

make sense, but the huge cost of failure—extinctions, like diamonds, are

forever—may restrict such a strategy to very particular conditions. Often,

slow and steady wins the evolutionary race. In the case of a honeybee hive,

there is a tremendous investment involved in cleaving the hive. Given this,

evolutionary success comes from �nding a reasonable home for sure rather

than taking a gamble that gives the bees a small chance of a much better

home and a large chance of a much worse one.

Honeybees are not unique in having a decentralized decision-making

process. Some species of ants have a related approach to �nding new homes.

When a colony of these ants decides to move, it sends out scouts to search

for new possibilities. The speed at which scouts that have investigated a

possible site return to the original colony to recruit new ants is tied to the

quality of the new site—better-quality sites cause the scouts to return faster.

When a scout returns to the original colony, it teaches another ant the

way back to the new home by a process called tandem running. Tandem

running requires the tedious training of the recruit, but it has the advantage

that the recruit learns the needed landmarks along the way so that it too can

return to the original colony and teach others. Like the bees, when a



quorum forms at the new site, there is a change in behavior. Rather than

using tandem running, the ants returning to the original home just pick up

their nestmates and carry them to the new home. The advantage of carrying

is that it is about three times faster than tandem running. The disadvantage is

that it doesn’t allow the new recruits to learn the path, but such knowledge

is not needed once the new nest is chosen.

Do we see hivelike minds forming in human systems? Perhaps. Think

back to the analogy to the Billboard music charts. As songs get discovered,

they get played more often. As they get played more often, more people hear

them, and if they like them, they start to play the song as well (or, more

likely, listen to stations that play the song more often). Over time, the most

popular songs rise to the top and can often remain there for long periods of

time. Low-quality songs fail to recruit new listeners and fall o� the charts,

never to be heard again.

Consumer goods, such as MP3 players and smartphones, may follow

similar processes. At the start of these markets, early-adopting consumers go

out and buy on a whim. Every time these adopters use the product, they are

essentially performing a waggle dance for the other members of the hive.

The better the product, the more likely they are to use it—that is, the longer

the dance. As new consumers enter the market, they observe others, and

those observations in�uence their own purchasing behavior. Note that

having a product with distinctive observable features (think of the iPod’s

white earbuds) is an advantage here (and especially in this case, since the

main bulk of the product is usually hidden away in a pocket). As the positive

feedback loops begin to mount, we often see one product take o� and begin

to dominate the market.

Another example of human social systems undergoing hivelike processes

arises in political contests. In primary races, we have numerous candidates

vying for recognition. Candidates get their buzz from contributions and the

loyalty that they engender from potential voters who show up at rallies and

promote the candidate to their friends and neighbors. Of course, there are

forums such as debates, where candidates get exposed to large swaths of the

citizenry, but even during these events support from the audience (via, for



example, applause) or from the moderator (by asking more questions of the

front-runners) in�uences the views of others. In the early stages of these

races, front-runners come and go as political fortunes rise and fall. Over

time, though, a clear front-runner emerges and the nomination becomes

solidi�ed. (I’ll leave the question of whether this person represents the best

of the bunch for another time.)

While these examples focus on large-scale social choices, we can take the

same ideas and look inward to the choices that each of us makes.

When we considered the honeybee hive, we ignored the fact that the

behavior of each scout bee was directed by a brain with around 1 million

neurons (by comparison, ants have from 100,000 to 250,000 neurons, and

we have around 11 billion). Instead, we abstracted away the issue of each

bee’s behavior being controlled by a bunch of neurons and just considered

each bee as being a particle following some simple rules. By doing so, we

were able to gain insight into the behavior of the swarm as a whole.

One of the hallmarks of the study of complex systems is that the

particulars of the system’s behavior at one level, say, the neurons in a

honeybee’s brain, can be treated abstractly at another level, say, by

introducing the assumption that individual bees follow simple rules,

regardless of how such rules are generated. By making such abstractions, we

can then focus our investigation on the current level of behavior, which in

the above case is how interactions of individual honeybees allow the swarm

to make a uni�ed choice about where to relocate. When we take this

journey of abstraction and move either up or down a level, we can (we

hope) apply the same general principles we’ve uncovered at one level to

another. Perhaps the ways that interacting atoms create molecular behavior,

interacting molecules create chemical behavior, interacting chemicals create

neuron behavior, interacting neurons create individual behavior, interacting

individuals create colony behavior, and interacting colonies create ecosystem

behavior are all governed by similar principles.

If we are lucky, insights from one level will seamlessly �ow into our

understanding of what happens at another level. This o�ers the possibility

that there is a deep similarity among such systems. If so, maybe the insights



we gained from studying how the decentralized interactions of honeybees

result in swarm choice can be used to understand the choice behavior of

other systems. Perhaps we have come upon a simple way of understanding

choice making ranging from bees to brains.

One advantage of observing a swarm of honeybees is that we can see all

of the honeybees and track their individual movements. Of course, even in

this case doing so is not trivial, as you have to label and track thousands of

honeybees, but it’s still easier than tracking the billions of neurons that can

make up a brain. While we can’t track billions of neurons, we can insert

extremely thin probes into a brain and observe the activity of a single

neuron. From many such observations, we begin to understand how the

behavior of individual neurons results in a collective decision.

William Newsome and his colleagues have been using this technique to

analyze how macaque monkeys make decisions. For example, they present a

monkey with a screen of randomly placed and moving dots, with some set

proportion of these dots all moving either to the left or to the right. The

monkey is trained to decide whether the majority of the coherent dots are

moving left or right and to indicate this decision by moving its eyes to a

particular spot on the screen.

Such a decision is possible because within the visual cortex of a mammal’s

brain are highly specialized neurons that can detect some remarkably speci�c

features of what is being viewed. For example, certain neurons �re only

when the eye sees, say, a horizontal edge. Other neurons specialize in

detecting motion in a speci�c direction. It is the �ring of these motion-

detecting neurons that is the crucial sensory input into the decision that

Newsome’s monkeys were making. Recall that only a proportion of the dots

are moving coherently, so the input signals from these neurons are rather

noisy. In another area of the brain, a di�erent set of neurons begins to weigh

the incoming sensory evidence. These neurons track how much the left-

favoring motion neurons are �ring over time compared to the right-favoring

motion neurons, and when the total amount of observed �ring in one of the

two directions begins to dominate, a decision is made. When a lot of the

dots on the screen are moving in the same direction, the decision is easy,



quick, and free of error. When the signals are more mixed, such as when

there is only a small proportion of coherent dots, the decision takes more

time and is less accurate.

The accumulation of evidence in support of one position or another,

eventually leading to a �nal decision, is similar to what we see in honeybee

swarms. In both systems, evidence is slowly accumulated over time to the

point where it becomes so overwhelming that a �nal decision is made. In the

honeybee system, as we have seen, safeguards are built into the process that

result in more testing of the better-appearing choices. It is not immediately

obvious that the brain has an analog to this, though it is possible that �ring

neurons might either atrophy or alter the sensitivity of related neurons,

resulting in similar behavior. Even without this, the similarities between

what might at �rst appear to be rather disparate systems is compelling—bees

and brains may be closely related.

There is no guarantee in any of these systems that the �nal decision will

be the right one. It is possible for the honeybee swarm to choose an inferior

hive, perhaps because the best option was never identi�ed in the �rst place,

or because, given chance events, it was not su�ciently reinforced while an

inferior choice was able to get enough of a foothold that the positive

feedback worked in its favor. Similarly, random events in the brain can cause

enough noise in the �ring patterns of the motion neurons or errors in the

decision neurons to reverse the choice. The monkeys get about 95 percent

of the decisions correct when 51 percent of the dots moved coherently and

only 70 percent correct when 13 percent were coherent.

The similarity of mechanisms between bees and brains suggests that

perhaps a deeper connection across systems can be made. It may be that a lot

of systems that seem intelligent are in fact the result of simple, interacting

particles. We know that complex systems are adept at taking groups of

interacting particles and forming larger-scale structures that are no part of

any particle’s intention or individual ability. Thus, perhaps having larger-scale

structures display some extraordinary intelligence is not too surprising.

An ant colony, like a bee colony, has to make a variety of decisions, such

as whether to send out workers to �nd food versus repairing the mound and



so on. Deborah Gordon and others have found that when an ant decides

what to do, it is in�uenced by the actions of other ants. If an ant encounters

a lot of other ants returning with food, she too will go out and gather food.

If food is plentiful, it will be easy to �nd and ants will return faster with

food. That will encourage other ants to seek food as well. If food is scarce or

if there is a predator about, few ants will return with food, and workers will

do other tasks. In either case, the rule that says “Do what other ants are

doing” leads to productive behavior for the colony.

That is not to say that blindly following a rule will always be optimal. For

example, army ants follow the chemical signals laid by others. This behavior

is usually adaptive, as it organizes the actions of tens of thousands of ants into

formations suitable for quickly moving the colony or hunting prey, based

only on local signals and without the need for global directions.

Unfortunately, such a strategy can sometimes fail when a line of army ants

inadvertently begins to follow its own trail, forming a circular mill (see

Figure 7.5) that, with time, ends badly for all involved.



FIGURE 7.5: A circular mill of ants forms when the simple rule governing each ant’s behavior
—namely, follow the pheromone trail left by other ants—goes awry, and they accidentally
begin to track themselves. Within a couple of days, ants caught in the mill will perish.

Global behavior is the necessary result of any set of interacting particles.

Sometimes this behavior is chaotic, disorganized, and hard to fathom, as in

the molecules of air that surround you, bumping o� one another like pool

balls—although even in this kind of system there is an average behavior that,

with good reliability, distributes molecules roughly evenly about the room

instead of having them all concentrated in one corner. (This latter behavior

is possible, though not very likely.) At other times, local interactions result in

global behavior that appears far more organized and coherent. There is no

guarantee that such organized behavior is productive and useful, though we



do have examples where this is so. Army ants can form sixty-foot-wide,

three-foot-thick fronts that go through the forest seeking prey like a

bulldozer blade. Honeybee swarms make life-and-death decisions about

where to relocate tens of thousands of bees. Neurons sense the outside world

and formulate useful decisions about what action to take.

Such productive, self-organizing systems can be honed by evolutionary

forces. While the laws of physics may be �xed, the internal chemical

environments in which these play out are not. Thus, by recombining

molecular soups of one type or another, di�erent rules can be invoked, and if

a particular set of rules results in global actions that lead to some higher

purpose, evolution can capture these conditions for future generations. As a

result, evolutionary forces can form organisms relying on complex molecular

interactions that allow metabolisms, information processing, reproduction,

and even thoughtful decision making by individuals and superorganisms.

M��� �� ���� ������� ��� ������, ���� ��� ���� �� ������� ��� �����

by humans. An interesting case of human- derived, local rules being designed

for productive global outcomes arises in auction markets. Auctions are

composed of simple sets of rules that every participant must obey. The

obvious goal here is to �nd sets of rules that, even with self-interested

individuals, will result in a sequence of trades that has some nice global

properties, such as ensuring that the most pro�table deals possible are made

by the participants during the auction.

The earliest auction on record is from around 500 B.C. in Babylon.

Women were auctioned o� for marriage, with the revenue acquired from the

sale of the most desirable wives being used to subsidize the trades of the less

desirable wives. Such a mechanism reemerged in the 1990s in discussions of

“feebate” systems. In these auctions, fees imposed on less-e�cient

technologies, such as a gas-guzzling truck, are used to fund rebates that

subsidize the purchase of more energy-e�cient vehicles.

Since Babylonian times, hundreds of di�erent auction mechanisms have

been developed, though only a few types are widely used. When most

people think of an auction, it is the open-outcry English auction that comes



to mind. Participants in this auction increase the bid until no one wants to

bid any higher, at which point the good is sold to the highest bidder at the

last price bid. In a Dutch auction—used to sell, among other goods, large

quantities of freshly cut �owers each morning in Holland—prices start out

well above what anyone would want to pay for the good. The price is then

lowered until a buyer agrees to take the o�ered lot. Some auctions, like those

commonly used in �nancial markets, combine features of both English and

Dutch auctions, with potential buyers making ever- increasing o�ers to buy

(bids) while potential sellers make ever-decreasing o�ers to sell (asks) until

someone agrees to accept one of the currently available o�ers. Other auction

mechanisms alter the rules in interesting ways. For example, in a second-

price or Vickery auction, the potential buyers covertly submit their bids, and

the highest bidder wins the auction—but the price she pays is determined by

the second-highest bid instead of her own. A variant of the Vickery auction

is used to sell billions of dollars’ worth of United States Treasury bills each

week.

The rules of an auction—created by the ingenuity and greed of man and

the trials of history—are much like the behavioral genes that arise in the

honeybee colony. Individuals, interacting through these rules, create global

behavior that may be disconnected from the rules that have been imposed or

even the goals of any individual. Some sets of rules lead to bad outcomes

where, say, buyers or sellers are able to collude and take advantage of one

another, or goods do not �ow in a timely manner to their best use. Auction

institutions associated with such bad outcomes tend to die out. Other rules,

such as the English auction, persist over time, as both buyers and sellers �nd

value in participating in such auctions. Moreover, societies that embrace

these rules tend to thrive.

Auctions are just one example of how a human social system can adopt a

set of simple rules designed to generate spontaneous and productive social

order. Of course, many other examples exist. Robert’s Rules of Order (�rst

published in 1876) was modeled on the rules being used in parliaments and

legislative houses, with the goal of directing the interactions of individuals in

groups in a way that would result in the emergence of productive, group-



level decisions. Similarly, constitutions, rules of law, courts, and international

treaties are all derived in the hope of emergent wisdom, though even the

best-laid rules can lead to a circular mill at times.

The theory of complex systems is still in its infancy. We know that there

may be many sets of rules that lead to similar emergent properties, and thus

one might suspect that this is also true for the types of systems discussed

above. Take, for example, the notion of a democratic system. Since the time

of the Greek city-states—at roughly the same time as the Babylonian

auctions—a variety of democratic rules have been tried. They often di�er

from one another in the amount of representation and freedom given each

citizen, yet a similar sense of democracy emerges from all of them.

Alternatively, consider the various tenets contained in religious systems,

all trying to invoke a set of beliefs that will result in a productive society.

Di�erent religions try to invoke such beliefs in di�erent ways, and even

within a given religious branch there are often re�nements (comedian

George Carlin was able to reduce the Ten Commandments down to just

two: “Thou shall always be honest and faithful” and “Thou shall try really

hard not to kill anyone”), yet they all may lead to similar outcomes.

Having a better theory of emergent organization would have a lot of

practical bene�ts, allowing us to generate or simplify sets of rules that will

result in productive ends. Think about the value of such an approach for

something like our tax code. In the United States, the current tax code

contains around 3.4 million words (the equivalent of about twenty-four

megabytes of data). These words create a set of tax rules that, for better or

worse, organize key parts of our society, including government spending,

income inequality, employment opportunities, industrial production,

investment options, political a�liations, the likelihood of cheating on taxes,

and on and on. The complexity of the current system is very high, and

perhaps unnecessarily so. A theory of emergent organization might point to

a vastly simpli�ed set of rules that could produce better outcomes.

Even without a full-blown theory of emergence, examples such as

honeybees searching for a new hive location may provide some useful

insights. Evolution has enabled the honeybees to discover a good home



without relying on centralized information or authority. Similar problems

exist in social, government, military, and business domains, and perhaps these

problems could be solved using related mechanisms. Various engineering

problems may also be amenable to such solutions, and honeybee-based

mechanisms could be used to, say, create decentralized decision systems that

gather and highlight key information ranging from web-based searches to

intelligence gathering for business or national security.

While trying to modify Shakespeare for scienti�c accuracy is a fool’s

errand, nonetheless we’ll try: “For so work the honey-bees [and brains and

societies], creatures that by a [simple] rule in nature teach the act of [self-

organized] order to a peopled kingdom [of scientists and practitioners].”

While the poetry of the language is seriously compromised by these

modi�cations, the poetry of the science is not. Governed by simple rules,

interacting systems can result in spontaneous, system-wide behavior that is

both a part of those underling rules yet wholly disconnected from them.

Such magic can, and does, happen at all levels of our world, from bees to

brains and beyond.



A

EIGHT

From Lawn Care to Racial Segregation:

Networks

Conspicuous consumption of valuable goods is a means of reputability to the

gentleman of leisure.

—THORSTEIN VEBLEN, Theory of the Leisure Class

T THE HEART OF ANY COMPLEX SYSTEM IS A SET OF INTERACTING AGENTS. IF WE

track who interacts with whom, we can uncover a network of

connections among the agents. Not too surprisingly, the structure of these

networks matters, both in terms of what types of networks exist across

various complex systems and in terms of how di�erent network structures

in�uence system-wide behavior.

Consider a lake surrounded by houses. Each house in Lakeland is on the

water, so for any given house there is only one neighbor to its left and one

to its right. From a bird’s-eye view, each house occupies a bit of space on a

circle formed by the lake’s edge (see Figure 8.1).



FIGURE 8.1: The community of Lakeland. Houses are arrayed around a lake, with each
household interacting with its immediate left- and right-side neighbors.

As in most neighborhoods, the behavior of each resident is in�uenced by

her neighbors. To take just one example, suppose that each resident has to

decide how much e�ort to spend on her lawn—say, whether to mow or not.

The amount of e�ort that one exerts here may depend on the actions of

one’s neighbors. If the neighbors keep immaculate, putting-green-like lawns,

then you might be inclined to do so as well. If the neighboring lawns

resemble weed-infested jungles, then your lawn care e�orts might wane.

To explore this world, let’s assume that every Sunday each resident

decides whether to mow her lawn. This decision is strongly in�uenced by

her two immediate neighbors (one to the left and one to the right). To keep

things simple, we assume that if both neighbors took the action opposite of



what she did last week, then she will alter her action this week. Otherwise

she will continue to do what she did the prior week.

This rule of behavior is equivalent to a crude form of majority rule.

There is a group of three (the resident and her two neighbors) that is

“voting” on what to do. If the resident and at least one of her neighbors did

the same action last week, then this majority decision dictates what the

resident does this week. If, instead, the resident deviated from both of her

neighbors last week, then their two votes overrule hers, and she alters her

behavior.

We have almost enough elements in place to begin exploring the system-

wide behavior inherent in Lakeland. The one remaining piece is what

happens during the �rst week of the lawn care season. The behavior above is

predicated on the previous week’s behavior, and obviously there is no

previous week at the start of the season. So to initialize the system, we will

�ip a coin for each resident to determine her initial action.

At �rst glance you might think that, given majority rule, whatever choice

is in the majority the �rst week will dictate the behavior for the second

week, and everyone in Lakeland will either always mow their lawn or never

mow it. While this seems intuitive, recall that the behavior of each resident is

tied only to that of her immediate neighbors, so there is no way for the

global information about the initial majority choice across everyone in

Lakeland to be instantly transmitted to each resident during the second

week. Given this observation, you might modify your initial intuitions and

imagine that over time, as neighbor in�uences neighbor, the initial majority

will slowly �ow around the lake in such a way that the system eventually

ends up, after a few extra weeks, coordinating on whatever majority decision

was initially drawn. Alas, as in most complex systems, such sensible intuitions

are wrong.

Suppose, for whatever reason, two next-door neighbors start to take the

same action. If this occurs, each of these two residents will always have at

least one immediate neighbor taking the same action that she is doing. Given

majority rule, this implies that neither of these two neighbors will ever

change her action in the future.



Thus, anytime two neighbors take the same action, they will lock

themselves into that action for the rest of the season. Since this lock-in

depends on the action that is common across the pair, it suggests that as we

watch the system over time we will see the formation of islands of neighbors

taking a common action (either always or never mowing).

For the moment, focus on the edge of one of these islands. If the nearest

neighbor next to the island’s edge ever decides to take the same action as the

island, then that neighbor becomes part of the island, since she will always

have at least one neighbor (the one next to her on the previous edge of the

island) taking the same action as she is, and hence she will never want to

change her action for the rest of the season. Over time, we might see the

various islands slowly accreting new members as they absorb like-actioned

nearest neighbors.

Thus, part of the dynamics of this system is a set of isolated islands of

common action being established as pairs of neighbors happen upon the

same action. At the start of the season, these islands will be scattered about

the circle, with the exact location of, and common action for, each island

being tied to the random initial conditions. Once established, these islands

are likely to grow in size as they accrete like-actioned neighbors.

Do these growing islands slowly merge into a single, all-encompassing

island that takes over the entire shoreline? To answer this question, think

about what happens when two islands of opposite actions meet. At the

boundary between these islands, we have two nearest neighbors taking

di�erent actions, but each one takes the same action as the neighbor on her

other side. Thus, each of these nearest neighbors has one neighbor (the

island mate) doing the same action and one neighbor (the boundary mate)

doing the opposite. Given majority rule, neither one will want to change her

chosen action. Thus, when two islands of opposite actions meet up, they

both stop growing at the meeting point and a stable border is established.

Given the above, we now have enough insights to understand the

dynamics of Lakeland. Whatever the random initial conditions, we will see

islands of common action emerging from those spots on the shore where at

least two nearest neighbors happen to take the same action.a Each of these



islands will lock into having all of the island mates taking the identical action

for the rest of the season, though that common action will vary across the

di�erent islands. Over time, residents that are not part of any existing island

eventually get accreted into an island. When two islands of opposite action

meet, a stable boundary is formed. These processes eventually lead Lakeland

to a stable state that has contiguous groups of residents all taking the same

action, with that action alternating as we go from group to group around the

circle (see Figure 8.2).

FIGURE 8.2: The community of Lakeland begins with random initial actions (left), evolves
based on majority rule (middle), and �nally reaches a stable con�guration (right).

Thus, Lakeland breaks down into a set of very stable groups pursuing

very di�erent actions, even though all of the residents follow the same

behavioral rule. Moreover, the formation of these groups is tied to the initial

conditions. If we rerun the model with new initial conditions, we might �nd

that one season’s meticulous lawn keeper becomes next season’s cad letting

her lawn go to seed.



Models become valuable when their insights can be applied to situations

far beyond their initial motivation. So even if focusing on lawn care in

Lakeland doesn’t seem of interest in and of itself, there are in fact a number

of phenomena, such as lawn care, home maintenance, and what color you

paint the exterior of your house, that are similarly in�uenced by social

behavior and that can a�ect everything from property values to the long-

term stability of a neighborhood. Thus, a basic model of lawn care can give

us insights into how neighborhoods can fall apart, and perhaps even suggest

policies that might put them back together—such as strategically targeting

particular residents for behavioral changes that will result in large positive

impacts on the overall state of the system.

A variety of other social behaviors may be in�uenced by neighbors.

Consider education. The desire to do your homework (rather than go to a

party), participate in class discussions, or even go to college is often

in�uenced by the actions of your friends, and thus a Lakeland-like model

may o�er insight. Similar forces may in�uence criminal behavior, as the

actions of one’s neighbors may encourage or discourage criminal activities,

ranging from selling drugs to joining gangs. Indeed, in some communities,

ignoring your lawn is viewed as an o�ense that is at best antisocial and

perhaps even illegal.

Another obvious set of Lakeland-like models might involve religious and

political choices. Religious practices, from celebrating particular holidays to

decorating your house in lights to the choice of a religion itself, are often

in�uenced by social networks and one’s desire to conform. Similarly, views

on political issues and choice of political party can be in�uenced by social

networks.

In Lakeland, we assumed that everyone lived on a circle, and that social

in�uences came only from one’s nearest neighbors. This is a very extreme

and sparse social network, and in more realistic models we might incorporate

more complicated networks. For example, even in Lakeland, residents might

be in�uenced not only by their nearest neighbors but also by their next-

nearest neighbors. Furthermore, perhaps they can see across the lake, so the

actions of more remote neighbors might be in�uential as well.



It has been found that changes to the structure of a network often have a

big in�uence on system-wide behavior. Consider the problem of relaying a

message to someone you don’t know via people you do know. Suppose that

you want to send a message to a randomly chosen person in the network and

that you are only allowed to pass this message to someone you are directly

connected to, who in turn must pass it to someone she is directly connected

to, and so on, until the message arrives at its destination. What is the smallest

number of links (on average) that it will take for you to make the needed

connection?

In Lakeland, where everyone lives on a circle and is only connected to

her immediate neighbors, a randomly chosen recipient is likely to be one-

quarter of the way around the circle from the original sender in one

direction or the other (at most, the recipient and sender can be directly

opposite each other, which is halfway around, so on average they will be at

the one-quarter mark). Since messages can �ow only across links in the

network, the most direct route to the target will have the sender passing the

message to her nearest neighbor in the shortest direction to the target. The

neighbor will do the same, and so on. Therefore, the message will be passed

through, on average, a quarter of the population of Lakeland before it arrives

at the target. Note that as the population gets larger, the length of time to

get the message to the target increases linearly. If there are 6 billion people

arrayed around the lake, it will take, on average, 1.5 billion steps to deliver

the message.

In Lakeland, everyone knows only her two nearest neighbors. In real

networks, while we likely have a lot of very local connections, we often have

a few more distant ones as well. So let’s modify Lakeland by giving some of

the residents a connection to a randomly chosen person. This new network

is like our original Lakeland, with everyone still connected to their nearest

neighbors, but with the addition of a few new connections randomly

spanning the lake. This new type of network (see Figure 8.3) is known as a

small world network, for reasons that will become obvious in a moment.



FIGURE 8.3: A small world network formed by taking Lakeland and adding some random,
distant connections. The addition of such connections dramatically alters the message-passing
dynamics of the system.

Passing messages in a small world is very di�erent from what we

originally did in Lakeland. In Lakeland, we had the tedious process of going

around the circle from nearest neighbor to nearest neighbor until we �nally

arrived at our target. In a small world, you can exploit the new, long-range

connections to expedite delivery of the message. A small world resembles

something akin to a network of local roads and highways. If you want to go

somewhere fast, you take a few local roads to get on the highway, stay on the

highway until you can exit near your destination, then proceed to your

destination on the local roads.

While it is clear that small world networks should speed up message

passing (after all, it can’t take any more steps than before, since you can



always revert to the outer-ring, nearest-neighbor approach if need be), it is

surprising how much less time it takes. Taking the example of 6 billion

residents above, and assuming that each resident knows thirty people, then

the expected number of passes is only about 6.6—it’s a small world after all!

Recall that for a Lakeland with 6 billion residents we needed 1.5 billion steps

if each resident had only two friends. If we assume thirty nearest neighbors,

the equivalent calculation would require a message in Lakeland to be passed

100 million times.

Thus, if we are willing to accept the assumptions of small world

networks, there is a little more than six degrees of  separation between you

and someone else on the planet (if we allow for the loss of a billion or so

folks given their inability to participate on various grounds). The small world

model assumes that random connections are possible between any two

people in the world, and this assumption may not hold, so consider the

estimate of six degrees of separation as a lower bound. Regardless, the result

is remarkable.

Researchers have investigated various networks, including coauthors of

scienti�c papers, people who friend each other on Facebook, the links that

make up our electric power grid, biological regulatory networks that control

the expression of genes, the connections across neurons in simple brains, and

links across web pages, to name just a few. The evidence is slowly

accumulating that many of these networks have a deep common structure

that may provide a basis for developing some uni�ed theories of how such

networks arise and behave.

In 1969 Thomas Schelling created an interesting model similar to the

ones discussed above. Schelling was interested in understanding issues

surrounding segregation. Instead of people arrayed around a lake, suppose

that each resident occupies a square on a checkerboard (where not all of the

squares are occupied). Each resident in the interior of the board is

surrounded by eight neighboring squares.

Suppose that each resident is either a type X or O. We assume that the

two types of residents are tolerant of each other and that as long as at least 30

percent of their neighbors are the same type as they are, they are content to



stay in place. However, if the proportion of same-type neighbors drops

below 30 percent, that resident will randomly relocate to one of the empty

squares.

Given the very weak preference for having neighbors of the same type,

one might expect that the world described by this model would quickly

settle down to a state with very little segregation between the two types.

Unfortunately, the actual behavior confounds such an expectation.

Figure 8.4 shows the arrangement of residents both randomly arrayed on

the landscape (top) and after everyone who wants to move has done so

(bottom). At the start of the model, since residents are randomly placed on

the board, on average 50 percent of a resident’s neighbors are of the same

type and 50 percent are di�erent. If you look at the initial con�guration of

residents, there is little evidence of segregation—whatever patterns you

perceive are due to your mind wanting to put order and pattern on the

randomness (this is a common phenomenon—for example, random

sequences of coin �ips look far more like HTHHHTTH  .  .  . than

HTHTHTHT . . . ).



FIGURE 8.4: The Schelling segregation model with 360 agents, where residents move if 30
percent or fewer of their neighbors are of the same type. The two types of residents are
shown by the differently shaded cells, with the white cells being unoccupied. Both random
starting states (top) lead to the corresponding ending states directly below. In both runs of the
model, what begins as a world where on average the likelihood of a similar-type neighbor is
around 50 percent transforms into a segregated world with a greater than 70 percent
likelihood of similar-type neighbors. (The program that generated this output was created by
Robert Hanneman.)

From the initial starting conditions, we allow any resident who has 30

percent or fewer neighbors of the same type to randomly relocate. As can be

seen in the �gure, such a process quickly leads to large, segregated

neighborhoods. Indeed, we �nd that after the system settles down, each

resident, on average, has around 70 percent of her neighbors being of the

same type. Thus, a slight preference for having at least 30 percent of your



neighbors being like you leads to having 70 percent of your neighbors being

like you.

You might at �rst think that the random mixing we used to initialize the

system would be su�cient to keep everyone in place, as on average each

resident has 50 percent of her neighbors being similar. Of course, the 50

percent is an overall average, and some residents will live in neighborhoods

with a higher or lower percentage of similar residents. Thus, some of the

randomly placed residents will �nd themselves in neighborhoods with an

insu�cient number of same-type neighbors, and they will move. When a

resident moves, each of her eight neighbors loses a neighbor of that type, and

this may be su�cient to tip the balance of same-type residents for some of

the old neighbors, inducing them to move as well. As the proportion of a

given type of resident in a neighborhood goes well above 30 percent, it not

only becomes more stable to that particular type but also drives out the

opposite type. Similar to what happened in Lakeland, stable con�gurations of

contiguous, same-type- resident islands begin to form, and these slowly grow

as they accrete any newly displaced, same-type residents that happen to land

nearby.

We have seen before how positive feedback loops can cause a system to

rapidly tip into a new, self-reinforcing con�guration that is far away from its

starting point. Schelling’s system is governed by such feedback loops. Agents

with a slight preference to be with same-type neighbors form positive

feedback loops, with like begetting like.

If we alter the networks, we may induce very di�erent behavior in the

system. For example, the degree of segregation that arises in Schelling’s

checkerboard tends to increase with some reasonable alternative network

con�gurations such as Lakeland’s loops. In general, it can be shown that the

key driving factor in these segregation systems is the amount of overlap any

given resident has with her neighbors’ neighbors.

For the �rst part of human history, we were embedded in fairly static

networks, consisting of some dense connections across a small tribe with

occasional, though often transient, connections to outsiders. Over time,

these networks have grown far more dense and dynamic as we have



developed the ability to easily move and communicate across large distances.

In the twentieth century, social networks grew more connected as mass

media developed and a small group of people began to broadcast messages to

others.

More recently, with the advent of computers, our networks have become

even more complex, as we become “friends” with people we have never met

in person who live in locations that we have never visited. We now interact

with anywhere from a few dedicated friends to thousands of followers

through email, blogs, status updates, and 144-character messages. We �nd

ourselves at the nexus of overlapping networks consisting of large groups of

friends, coworkers, and various other contacts. We are only beginning to

understand the impact of this new, hypernetworked world in terms of

complex social dynamics. Posting a picture of your freshly mowed lawn on

Facebook may have social impacts far beyond your immediate

neighborhood.

a There is one perverse case that can occur when the initial conditions and number of agents are such

that the actions perfectly alternate as we go around the circle. In this case, every resident will switch
her action at each time step, and the system will never settle down. The likelihood of such a case
arising is vanishingly small as the system increases in size.
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From Heartbeats to City Size: Scaling

“Villains!” I shrieked, “dissemble no more! I admit the deed!—tear up the

planks! here, here!—it is the beating of his hideous heart!”

—EDGAR ALLAN POE, “The Tell-Tale Heart”

AMMALS LIVE, ON AVERAGE, FOR ROUGHLY 1 BILLION HEARTBEATS. NO MATTER

how large or small, their lives are ticking away with every beat. Thus,

a mouse, with an average heart rate of about �ve hundred beats per minute,

is expected to live for four years. A human, with �fty beats per minute, lives

for around forty years. With a �xed number of lifetime heartbeats, the slower

your base heart rate, the longer you live.

Such relationships are useful for predicting, and perhaps even

understanding, the world around us. From a mouse to a blue whale, and

every mammal in between, we can now make a useful prediction about an

animal’s life span knowing only its pulse rate. Moreover, heartbeat is tied to

other physiological features, such as body mass and metabolic rate, so these

too can be predicted. The existence of such scaling relationships suggests that

there may be some greater, universal laws that underlie these systems.

Mathematically, there are many ways one variable could be related to

another. Two variables could have a linear relationship, such as y = x. A

speci�c type of relationship that arises regularly in a variety of systems is

known as a power law. A power law states that something scales as something

else raised to some �xed power, such as y = x2. For example, the area of a

square is equal to the length of its side raised to the power of 2 (that is,

multiplied by itself twice). If we double the length of each side, the square



doesn’t double in area, it quadruples (2 × 2 = 4). The volume of a cube

scales as the length of its side raised to the power of 3 (multiplied by itself

thrice). Therefore, doubling the length of a cube’s sides results in eight times

the volume (2 × 2 × 2 = 8).

These geometric relationships may seem too simple to shed much light

on how complex systems work, but they have some interesting implications

for biology. In a world of roughly cube-shaped animals, as we double their

size their surface area (think amount of skin) goes up by a factor of four,

while their volume (think guts) goes up by a factor of eight. Thus, there is

less surface area per unit of volume, which makes it is easier to stay warm

when you get bigger (since you lose heat through your skin and generate it

via your guts). These geometric relationships also imply that as animals grow

larger, their bone structure has to change in a disproportionate way, as the

bones’ ability to support the animal (which is tied to the bones’ cross section

or area) grows only as the square of size, while the weight of the animal

(volume) grows as the cube. The good news of this latter result is that your

typical B-movie attack of the giant whatever caused by a clumsy janitor

knocking over a vat of radioactive whatnot during a late-night laboratory

cleaning would be doomed from the start, as the creature’s proportionately

sized appendages would collapse under its disproportionate weight—

elephants have thick legs for a reason.

Knowing the value of the power in a power law tells us how the system

scales. If the power is 1, then as we double the independent variable (say, the

length of a stick), we simply double the dependent one (say, the stick’s

weight). When the power is greater than 1, the system scales superlinearly, so

when we double the independent variable, the dependent variable more than

doubles. This is the type of scaling we saw in the area and volume

relationships above, where the powers were 2 and 3, respectively. Finally, if

the power is below 1, the system scales sublinearly, and doubling the

independent variable results in less than a doubling of the dependent

variable.

Allometry is the study of relationships between the physical and

physiological features of organisms. Such studies date back at least to Otto



Snell’s work in 1892. In the 1930s, Max Kleiber noted that the metabolic

rate of an animal scales to its mass raised to the ¾ power (that is, it scales

sublinearly). The metabolic rate tells us the amount of energy needed for an

organism to survive. A power of ¾ implies that we only need two times the

energy to sustain two and a half times the mass. In general, this relationship

implies that as animals get larger they are more e�cient in the amount of

energy needed per unit of mass.

Since metabolism is tied to all kinds of other factors, such as oxygen

intake and heart rate, it is not surprising that scaling laws exists for these

factors as well. Breathing and heart rates scale with mass to the −¼ power.

Note that if we have a �xed number of breaths or heartbeats in a given life

span, then this implies that life span scales with mass to the ¼ power. Under

this type of scaling, if you are sixteen times as big, you will live twice as long.

With allometric scaling laws in hand, we are now able to predict some

critical outcomes—such as metabolism and life span—knowing only an

organism’s mass (see Figure 9.1). While many of the examples above focused

on mammals, you can extend the allometric scaling laws to other organisms

as well. Even at extremely small scales, such as a single cell, they still hold.

Thus, over a vast swath of life on earth encompassing more than twenty

orders of magnitude of mass, we �nd a simple law that connects them all.

When such laws appear, it suggests some underlying mechanism driving

the entire system. In the case of metabolism, such a mechanism has been

identi�ed by Geo�rey West, Jim Brown, and Brian Enquist. The idea behind

this mechanism is that even complex structures such as bodies face some

constraints. Here, the constraint is on physical limits to the size of features

required to exchange nutrients, such as the capillaries in your circulatory

system. If there is a limit to how small capillaries can become, then to grow

bigger you need to �nd a way to pack enough of them into the larger space

so that they can oxygenate the tissues. Such a requirement constrains the

whole system.



FIGURE 9.1: Metabolic scaling across various animals. Both axes use logarithmic scales, and
therefore under a power law the plotted points should all fall on a line. Here the implied
power is ¾, leading to sublinear scaling. This implies that as organisms get larger their
relative metabolic needs decrease—an organism twice as large needs less than two times the
total metabolism. (Figure courtesy of Geoffrey West.)

Imagine a group of thirsty people sitting in a single row of a stadium on a

hot day. Suppose we have a vendor on the aisle who can hand the �rst

person in the row a cup, and that person will either drink it if she is thirsty

or pass it on to the next person, who will follow the same behavior. Here,

the constraints are the ability of the vendor to hand out new cups and the

size of each cup. If very few people are in the row, the water will easily

satisfy everyone’s thirst. However, as we add more people to the row, if



everyone drinks the same amount as she did before, the water will never

reach the people located at the end of the row. But if everyone’s thirst is

reduced—that is, if we metaphorically lower each person’s metabolism—

then everyone’s thirst can be satis�ed. To sustain longer rows we need

patrons who are less thirsty. We can even quantify how much less thirsty they

must be: in the case of our stadium it is 1 over the number of patrons (giving

us a power of −1 for thirst per person, and of 0 for total thirst). Thus, when

we add an eighth person, if everyone’s thirst goes down by one-eighth, the

existing amount of water will still su�ce. Moving from our one-dimensional

stadium to three-dimensional biological systems is more involved and leads

to a power of −¼ for metabolism per unit of mass and a power of ¾ for total

metabolism, but the fundamental idea is the same.

So we now have a simple biological relationship, in the form of a power

law. It provides a nifty summary of the world around us, along with an

identi�able reason for why such a law exists: physical constraints. Of course,

the notion of “law” here is more along the lines of posted speed limits on a

road (it is just a good idea) versus a �xed law such as gravity, as we do see

some violations. For example, primates and parrots live about twice as long

as one would predict using the scaling law. This may be tied to the longer

developmental stages needed for their relatively bigger brains to realize their

evolutionary potential. Humans are even greater outliers, likely because of

improved sanitation and medicine (thus allowing us to live far longer than

the expected forty years). Some domestic animals, such as dogs and cats and

perhaps even cattle and horses, also overperform. This may be due to

domestication and arti�cial selection. Thus—and oddly, given the scaling law

—small dogs tend to live longer than large ones (though mice, guinea pigs,

and rabbits tend to line up as expected, pet-buying parents beware). Animals

that �y, including both birds and bats, tend to live longer than expected.

This might not be too surprising if �ying somehow implied lower

metabolism, but the opposite is true, as beating wings require more

heartbeats, not fewer.

While it would be nice if the “law” worked perfectly, even an imperfect

law is useful. In science we often face trade-o�s between having a complete



understanding of some speci�c thing and an incomplete understanding of

many things. In biology, for example, a huge amount of e�ort has been spent

trying to understand single organisms, and there are biologists who specialize

in a particular species of worm (and, within that species, speci�c aspects

therein). While such studies provide key insights, Murray Gell-Mann’s

“crude look at the whole” suggests that there is power in being able to

develop generalized insights across broad domains, even if these e�orts

sometimes fail. Indeed, such failures often provide new insights. Thus,

knowing that big-brained or domesticated creatures tend not to follow the

general scaling law may give us some new insights if we are careful not to tell

just-so stories.

Finding a general law in one area may inspire us to search for related laws

in other domains. If biological systems face constraints leading to scaling

laws, then perhaps other systems do so as well.

Lewis Fry Richardson pioneered modern techniques for forecasting both

the weather and wars. In his Statistics of Deadly Quarrels (1950) he gave war a

statistical face. Table 9.1 shows some of his key data. As can be seen, the

higher the number of deaths in a given war, the fewer such wars we observe

(thankfully). The numbers in parentheses provide some useful

approximations to the data, and using these, we can see that as deaths

increase by a factor of ten, the number of wars decreases by a factor of three.

Richardson’s �ndings can be translated into the language of power laws.

Doing so, we �nd that the number of wars is proportionate to the number of

deaths raised to roughly the −½ power. This implies that when you double

the number of deaths, the expected number of wars is 70 percent of the

previous value. One implication of this relationship is that we should expect

one war with around 42 million deaths at some point. Of course, the power

law doesn’t tell us when such a war will happen, only that one such war is

expected if the predicted distribution holds.



George Kingsley Zipf was an American linguist interested in the statistics

underlying word use in languages. It’s not too surprising that if we count the

number of occurrences of various words in a text, we �nd that some words

are used far more often than others. The frequency with which a word is

used (designated by its rank) is described by a power law with an exponent

of −1. So the word that is the second most commonly used in a text will

occur about half as often as the word that’s most commonly used. The third-

most-common word occurs one-third as often, and so on. This relationship

holds across a variety of languages (including languages that are randomly

generated).

Zipf-like laws occur in other contexts as well. For example, the

distribution of the size of cities or corporations also follows Zipf ’s law. The

largest city in a country has about twice the population of the second-

largest, three times that of the third-largest, and so on. As with Zipf ’s law of

languages, this relationship holds across a variety of di�erent contexts (such

as di�erent countries or time periods), so, as before, there appears to be a

certain universality in these observations.

Scaling laws may provide some useful insights into our ability to survive

as a species. World population is roughly 7 billion people, and it is growing

at about 1 percent per year (which implies that it will double in size every

seventy years). Throughout human history, the majority of people lived in

rural areas, though the proportion of people living in urban areas has been

steadily increasing. Just recently the balance has shifted enough so that the

majority of the world’s population now lives in cities.

TABLE 9.1: Deaths in warfare, 1820–1945, from Richardson (1950). The values in
parentheses provide useful approximations to the data.

Approximate Deaths Number of Wars

10,000,000 (107) 2 (2 × 30)
1,000,000 (106) 5 (2 × 31)
100,000 (105) 24 (2 × 32)
10,000 (104) 63 (2 × 33)
1,000 (103) 188 (2 × 34)



Cities are not all that di�erent from biological organisms. They have

metabolisms tied to the �ow of energy and people along various

transportation and communication networks that produce knowledge and

economic outputs along with various streams of waste that get processed and

released into the surrounding air, water, and land. So it may not be too far-

fetched to think that universalities similar to what we see in biological

systems might also apply to human-made ones, and if that is the case, urban

systems may be governed by related scaling laws. If such laws exist, they may

give us some insights into what the future holds for humankind.

Luis Bettencourt, José Lobo, Deborah Strumsky, Geo�rey West, and

colleagues have calculated power law coe�cients for a variety of urban

metrics tied to a city’s population size. Some metrics, such as the amount of

road surface or gasoline sales, scale sublinearly, implying that as the

population of a city gets larger, each person uses less of that resource. That is,

bigger cities tend to have lower gasoline sales and less road surface per capita

than smaller ones. Intuitively, this makes sense, as cities tend to build up

rather than out, and that requires fewer roads, makes public transportation

more viable, and leads to more energy- e�cient transportation overall—in

general, larger cities tend to economize on such infrastructure. There are

other metrics, such as economic output, inventive activity (measured by, say,

patents or R&D employment), crime, and disease, that scale superlinearly.

Thus, larger cities are relatively more economically productive and creative

than smaller cities, along with being more crime- and disease-ridden. This

superlinearity tends to be tied to the more social elements of cities. Finally, a

number of metrics, mostly linked to individual human needs such as

housing, consumption of household resources, and employment, scale

linearly, implying that on a per capita basis, all cities are the same.

These power law coe�cients are preliminary estimates based on existing

data. Moreover, they provide only a snapshot of the situation, and as we

move to cities of vastly di�erent size from those we have now, or as new

inventions alter our opportunities, we might see these laws diverge as limits

to growth start to bind or as new technological life rafts are deployed.

Nonetheless, they do provide a sense of our future.



If the estimates are to be believed, as the world’s population grows,

concentrating more and more people in urban areas, megacities will relieve

some of the demands for resources such as roads and fuel. Unfortunately,

increasing urbanization will not mitigate the demands for individual needs,

such as housing and electricity, which rise linearly.

It’s the superlinear factors that likely hold the key to our future. The old

woes of crime and disease—prominently  featured in the dystopian views of

most science �ction  movies—will likely increase per capita as cities become

bigger. Balancing this unfortunate scaling of woes is the prospect of per

capita increases in economic growth and inventiveness in the emerging

megacities.

Like the steady beat of a heart, world population continues to grow and

concentrate into urban centers. Perhaps out of such concentrations, an

inventive spark will emerge that allows us to prolong our existence beyond

the allotted number of beats.
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From Water Temples to Evolving

Machines: Cooperation

Now join your hands, and with your hands your hearts.

—WILLIAM SHAKESPEARE, Henry VI

ALINESE FARMERS HAVE GROWN RICE ON TERRACED HILLSIDES FOR THE LAST FEW

centuries (see Figure 10.1). Rice demands water, as several important

biochemical cycles that govern the production of the rice paddy ecosystem,

such as soil pH, temperature, nutrient circulation, aerobic conditions, and

microorganism growth, are directly tied to the carefully controlled �ow of

water. Thus, accompanying the terraces is an elaborate, gravity-fed irrigation

system dependent on seasonal rivers, groundwater �ows, and the creation

and maintenance of various irrigation canals, tunnels, and diversion weirs.

While these irrigation works are impressive—especially considering the

di�culty of digging kilometer-long tunnels and the like using hand tools and

primitive surveying instruments—they cannot overcome the inherent

scarcity of water.



FIGURE 10.1: Rice terraces in Subak Pakudui, Bali, currently �ooded to control pests. These
terraces are a striking modi�cation of the landscape, representing both a coherent synthesis
and an abject alteration of nature’s inclinations. (Photograph courtesy of J. Stephen Lansing.)

Given the scarce water and the lack of central control of Bali’s farmers,

economists would expect to see a harsh, competitive outcome, best

characterized by Thomas Hobbes in Leviathan: “And the life of man, solitary,

poore, nasty, brutish, and short.” This prediction is due to the presence of

externalities—costs or bene�ts imposed on parties outside of (external to)

the immediate transaction—within the system. In a world with scarce,

gravity-fed water supplies, we might expect that upstream farmers would pay

no heed to the needs of downstream farmers. Thus, an upstream farmer,

thinking only of her own good, is willing to consume additional water as

long as it results in at least a trivial gain in her own output, even when

passing that water downstream might allow other farmers to reap a much

larger gain. In such a situation, we could reallocate the water and maximize



the total crop—in theory we could give every farmer as much crop as she

was getting before and still have some left over, which could make at least

one person better o�.

Externalities represent just one example of where individual incentives

result in inferior outcomes. Such situations, where being competitive makes

you slightly better o� while being cooperative makes you remarkably better

o�, are all too common.

Notwithstanding the Hobbesian prediction for Balinese rice farming,

thanks to the work of Steve Lansing and his collaborators, we �nd on the

island an example of system- wide cooperation among the farmers leading to

many centuries of sustainable agriculture. Rather than hogging the water,

the upstream farmers carefully coordinate and cooperate with the

downstream ones, resulting in much larger overall harvests.

One potential clue to this cooperative mystery is that we �nd an elaborate

religious system of water temples in Bali that closely parallels the physical

system of terraces and irrigation works. Individual weirs in the system are

associated with shrines, and those shrines get aggregated into temples

dedicated to agricultural deities. Thus, local weirs are nested into local

temples that get further nested into still other temples, with the various

aggregations of these pieces being closely associated with the underlying

irrigation system and the physical watershed. The congregations of the

shrines and temples meet once a year to coordinate each individual farmer’s

use of water.

While it’s tempting to end our story here, knowing that a religious

institution has arisen to solve the externality problem and has resulted in

harmony and happiness throughout the system, such a conclusion is far less

interesting than what really drives this system’s cooperation.

Like all agricultural systems, the rice ecosystem must overcome attacks by

pests, including insects, rodents, microorganisms, and the diseases they bear.

Pests can sometimes destroy almost the entire crop. The ultimate amount of

pest damage is tied to both natural and human factors, such as patterns of

water �ow and harvesting.



As crops grow, so do the pests. When a crop is harvested, the nutrients

are removed, and pest populations crash. However, if the newly fallow �eld

is near an unharvested �eld, the pests will move over and continue to grow.

This latter piece of ecosystem dynamics results in the second major

externality found in the Balinese system—a farmer harvesting her rice crop

may impose an uncompensated cost on neighboring farmers as the pests

from her crop migrate to the neighboring crops.

In the 1970s, the Indonesian government inadvertently tested the

ecosystem dynamics of Bali’s rice �elds. Based on advice from consultants at

the Asian Development Bank, the Indonesian government undertook a

massive redirection of agricultural policy and legally mandated the double-

and triple-season cropping of newly developed, high-yielding varieties of

rice. These mandates led to the abandonment of the temple system (noted in

o�cial reports as a Balinese “rice cult”) of coordinated, cooperative

agriculture.

Soon after this change, reports of “chaos in the water scheduling” and

“explosions of pest populations” began to trickle into district agricultural

o�ces. The pest problems that arose were �rst mitigated by the introduction

of new crop varieties resistant to the pests at hand. Alas, nature �nds a way,

and these new varieties soon succumbed to new pests. Government reports

begin to read like a tragic farce: the plague of brown planthoppers was

reduced by the introduction of the planthopper-resistant rice strain IR-36,

but this new variety of rice was quickly overwhelmed by tungro virus,

which was countered by the introduction of  PB-50, which unfortunately

was susceptible to brown leaf spots caused by the H. oryzae pathogen, and so

on. Crop losses due to pests approached 100 percent during this time, and

Balinese farmers remember this period as a time of poso (hunger and harvest

failures).

The discussion above contains the needed clues for piecing together the

emergence of cooperation in Balinese rice farming. As the irrigation systems

developed, the upstream farmers likely ignored the needs of the downstream

ones and took whatever water they wanted. Rice requires periodic �oods, so

presumably the downstream farmers were able to exist only by o�setting



their planting so that their peak use of water occurred during ebbs in the

water demands of the upstream farmers. This resulted in staggered harvests,

where the upstream farmer would harvest her crop while the downstream

farmer’s crop was still growing and vice versa. As long as the pest populations

were modest and the �elds far apart, this was a workable system. As the

population grew, however, the demand for rice increased and more terraces

were developed and put under production. This resulted in more closely

packed �elds and a monocultural ecosystem, two factors that favor the

growth of pests and their transmission across �elds if farmers do not

coordinate fallow periods.

Since the upstream farmers have �rst access to the water, they are best o�

if they take as much water as they want and minimize damage from pests by

having the same fallow periods as the downstream farmers. However, if the

externality costs of the pests �owing between the �elds are low relative to

the damage caused by scarce water, the downstream farmers would rather

wait for the bigger water �ows and not have identical fallow periods. Under

such conditions, the farmers �nd themselves in a strategic situation akin to a

duel between a baseball pitcher and a batter, where the pitcher wants to

throw the ball where the batter isn’t swinging.

As the damage from pests increases, however, a remarkable system-wide

transition becomes possible. If the external costs from pests exceed those

from scarce water, downstream farmers will want to cooperate and plant at

the same time as the upstream farmers, since now it is better to lose due to

water scarcity than to pest damage. When this happens, a new equilibrium

becomes possible in which the farmers coordinate so that both �elds

simultaneously lie fallow, killing o� the pests. Under certain conditions,

increasing the amount of damage caused by pests can, rather

counterintuitively, increase the total output of crops. This occurs because as

pests become worse, they cause the system to transition into a cooperative

regime under which the farmers coordinate planting, and since both farmers

pay a cost (now avoided) from pests while only the downstream farmer pays

a cost from water scarcity, the total production in the system increases.



So why do we see temples if the motivation for cooperation is so directly

tied to the farmers’ costs and bene�ts? To cooperate, the farmers need to

coordinate. Thus, there is a role for some type of institution—the water

temples—to serve as a coordination device. Since all farmers want to

coordinate, it is in their self-interest to seek and follow whatever advice is

given by the temples. Even without threats of force, fear of calamity, or

ostracism, the water temples have an implicit power to dictate planting times

to all of the farmers (see Figure 10.2).

FIGURE 10.2: Offerings to the Goddess of the Lake during the festival of the full moon of the
tenth Icaka month on the island of Bali, March 2011. This temple controls the access of
various irrigation systems to a key water reservoir in the ecosystem. (Photograph courtesy of
J. Stephen Lansing.)

The story of farming in Bali is a tale of cooperation arising in a complex

system. We began with what, on the face of it, should be a disastrous



situation in which upstream farmers, paying attention to only their own

welfare, hog all the water, resulting in a greatly diminished output of crops.

Then we added a complex set of dynamics, both natural and human, that

realigned incentives in such a way that cooperation became possible and crop

output increased, making everyone better o�. To realize this new outcome,

there was a need for a coordination device, and thus a new social niche

opened up for a religious institution that, rather than practicing some

arbitrary ideology, was in fact driven by the underlying hydrology, crop

growth patterns, and pest population dynamics, regardless of whether any of

its founders or practitioners actually realize it. The interaction of complex

natural and social systems led the entire system to a remarkably better place

than would otherwise arise.

I� ��� �������� ��� ��������, ����������� �� ��� �������� ���� ����� ��

provide a de�nitive edge. “Tho’ Nature,” as Tennyson says, may be “red in

tooth and claw,” the ability to cooperate rather than compete often allows a

group to thrive far beyond its apparent means. Cooperation leverages �tness,

and examples of this abound across all levels of existence. A bacterium can

do little harm to a host, yet a group of bacteria, coordinating their attack

through a set of chemical signals, is deadly. A small �sh is an easy target for a

predator, while a school of such �sh can move with relative impunity.

Humans in groups, whether undertaking trade in a village or �ghting within

an army, are far more likely to survive than their solitary brethren.

Thus, understanding how cooperation can emerge and be maintained is a

key issue in furthering our understanding of how interacting agents survive

in complex worlds. The case of Balinese rice farming illustrates one

approach. To understand the embedded complexities of that system, it took a

variety of contributions from across the sciences. Anthropologists looked at

current farming and religious practices on the island and, in conjunction

with archaeologists, reconstructed past practices. Historians investigated the

impact of the green revolution on Balinese agricultural policy. Biologists,

agricultural specialists, hydrologists, and geographers developed insights

about the ecosystem, delineating all of the interactions among crops, water,



and pests. Computer scientists developed agent-based models of farmers

making adaptive decisions about cropping choices. An anthropologist and I

used ideas from game theory to develop the sparse model of choice between

upstream and downstream farmers used above. Together, we were able to put

together the various pieces of the puzzle and develop a coherent story of the

emergence and maintenance of cooperation on Bali.

Of course, these insights required an amazing span of professional

expertise and e�ort. An alternative approach to understanding cooperation is

to rely on a relatively stark abstract model. Such an approach is perhaps the

polar opposite of what my colleagues and I undertook on Bali. But if we are

skilled, and lucky, the details that we ignore will not matter much, and we

can use this abstract model to gain some new general insights.

The quintessential, stylized problem for exploring cooperation is known

as the prisoner’s dilemma. In its original version, two co-conspirators have

just been apprehended by the police and placed in separate cells. Although

the police suspect them of committing a capital crime, there is little

evidence, so if neither prisoner confesses, both will be jailed for one year.

The police o�er each prisoner the following deal: if he confesses and

becomes a witness for the state, then he can go free, though his accomplice

will be put to death. The only proviso to this deal is that if both prisoners

confess, each will be jailed for ten years. Each prisoner must decide what to

do without any knowledge of whether the co-conspirator has confessed.

Each prisoner faces an interesting dilemma. If he confesses and his

accomplice stays quiet, then he will go free rather than spending a year in

jail. Similarly, if he confesses and his accomplice also confesses, then he will

only get ten years in jail instead of being put to death. Regardless of what

the accomplice does, the prisoner is always better o� confessing, that is,

defecting on his accomplice. Of course, both prisoners face the same

situation, so for both of them it is in their interest to confess, which means

that they both will spend ten years in jail. If, instead, they could have

cooperated and stayed quiet, they would have been jailed for only a year. As

we saw before, while being competitive makes you slightly better o�, being

cooperative makes you remarkably better o�.



If the prisoner’s dilemma were only about prisoners, it would be of

passing interest. However, the basic framework here captures many

interesting scenarios. Opposing soldiers dug into trenches on a battle�eld can

choose to make a predictable and passive show of force that both allows

them to stay safe and keeps their commanding o�cers at bay (that is, they

can cooperate), or each side can attack the other (that is, they can defect).

Infantryman or lionesses on the hunt can stay at the front of the line

(cooperate) or fall back a bit to let others bear the brunt of the attack

(defect). Two rival �rms can tacitly keep their prices high (cooperate) or

provide hidden discounts to customers (defect). Fishermen can limit their

catches to maintain a reproductive stock of �sh (cooperate) or can violate

such limits when others are not looking (defect). Polluters can limit their

output of carbon dioxide (cooperate) or not (defect). Bacteria can release a

toxin simultaneously (cooperate) or avoid doing so and save on energy

(defect). Sellers on eBay can accurately describe their items and follow

through on sales (cooperate) or be misleading before or after the sale

(defect). And on and on.

Note that the labels “cooperate” and “defect” capture only the actions

and respective incentives of the individual agents. They do not re�ect the

goals of society. In some cases, such as the rival �rms setting either high or

low prices, cooperation leading to a lack of competition and high prices is a

bad social outcome. In other cases, such as the �sheries, having �shermen

cooperate and limit their catch in order to ensure that the stock of �sh can

be maintained is a good social outcome. Regardless, in the absence of

mitigating factors, the logic of the prisoner’s dilemma leads to defection—

which is a good outcome if we are consumers of a product such as oil and a

bad one if we care about our planet’s �sheries and carbon dioxide level.

Defection is the obvious outcome to predict if we are in the stark

prisoner’s dilemma world described above. However, if we alter some of the

underlying conditions, cooperation may become a more reasonable

outcome. For example, the two prisoners were not allowed to communicate

with each other, yet if they could communicate (and trust each other’s

word), they would agree to stay quiet. Another feature of the game that



encourages defection is its one-shot nature. When the players interact only a

single time, the logic of “regardless of what the other player does, I’ll be

better o� defecting” holds. However, if the players are going to play the

game repeatedly, then the shadow of the future becomes important and

cooperation becomes an attractive choice, since the short-term gain of

defecting can be overwhelmed by the potential for a longer stream of

cooperative bene�ts.

Cooperation in the prisoner’s dilemma has been studied in a variety of

ways. One method is to do case studies of real-world examples, such as

trench warfare during World War I or the behavior of lobster �shermen in

Maine. Another approach uses the mathematical tools of game theory to

explore the limits of cooperation in a very abstract world. A third approach

studies the game using experiments, either in the laboratory or in the �eld,

where we observe subjects (ranging from college undergraduates to bacteria

in a petri dish) under randomized and controlled conditions. All of these

techniques have yielded useful insights into the origins of cooperation.

The di�erent approaches all have strengths and weaknesses. Case studies

provide direct evidence of cooperation arising in real-world contexts, though

it is often hard to gather the needed historical data and analyze it given the

complexities involved in the actual events. Mathematical approaches provide

a nice abstract formulation of the problem, but at times such abstractions can

be too stark. For example, a repeated game that is certain to end after a

thousand rounds results in a dramatically di�erent outcome from one that is

only expected to end after a thousand rounds—in the former case the known

�nal round leads to a defection on that round, which eventually unravels

through all of the previous rounds, leading to mutual defection throughout

the game, while in the latter case the uncertainty of the �nal round makes

cooperative strategies possible. Experiments have been extremely useful in

giving us some sense of the conditions needed to establish and maintain

cooperation, though we are often limited by the subjects we can use, by our

ability to uncover their underlying strategies, and by di�culties in creating

suitable experimental environments.



To further our understanding of cooperation, we need to create new

approaches that will allow us to gain better insights into the problem of

cooperation. Over the last two decades, colleagues and I have been

developing a high-technology hybrid of what has been done before. It has

provided an important new window into the emergence of cooperation in

complex systems.

The idea behind this new approach is to create an arti�cial world inside a

computer. As with case studies, we want to allow for a fairly complex set of

interactions among agents that can actively adapt to their experiences. As

with the mathematical approach, we want to rely on some core, tractable,

abstract concepts that can provide the needed structure and direction. As

with the experimental approach, we want to be able to carefully observe and

manipulate the world in which our agents interact. In the end, the approach

combines key ideas from computer science, game theory, mathematics, and

biology to give us a new view of cooperation.

Each of the various elements of this new approach is simple. We use the

repeated prisoner’s dilemma game as the foundational physics of the system.

Agents in our arti�cial world play against one another by submitting a

sequence of either cooperate or defect actions based on what happened in

the previous periods, and then receive payo�s given by the game (here,

instead of prison sentences, players receive appropriately scaled points).

Each player’s strategy is represented by a simple computing machine

called a �nite automaton. These machines are composed of a set of internal

states, with each state dictating an action to be taken and a set of transitions

to other states that depend on the observed action of the opponent. Figure

10.3 illustrates one such automaton. While automata are simple in structure,

they can lead to complex strategies that react to their opponent’s actions

based on conditional behavior, history, counting, and even randomness.

Finally, to allow the agents to adapt and improve their strategic machines,

we use a simple version of arti�cial evolution called a genetic algorithm. As

with evolution in the real world, a genetic algorithm selects machines for

reproduction based on how well they are performing in the game, with the

better-performing machines being more likely to be reproduced. Each



machine’s behavior is captured in the computer-coded description of its

automaton, and like DNA, this description is passed on to the o�spring with

perhaps a few slight changes (mutations) that might either lead to a subtle

change in the player’s behavior or perhaps create one of Goldschmidt’s

“hopeful monsters” with a heretofore unseen and deviously clever strategy.

As Darwin reminds us, “From so simple a beginning endless forms most

beautiful and most wonderful have been, and are being, evolved.”

FIGURE 10.3: A simple two-state automaton. The leftmost �gure shows an automaton with its
two states represented by the labeled circles. Contained within each circle is the action (either
cooperate (C) or defect (D)) that the automaton will take when it enters that respective state.
The dashed arrows emerging from each state point to the transition state based on the
observed action of the opponent in the previous period (either cooperate (c) or defect (d)—
note the use of lower-case letters here). If this automaton always begins in its top state, it will
initially cooperate (indicated by the lightning bolt). If the opponent also cooperates, the
machine will follow the appropriate transition arrow (middle �gure, solid arrow) and stay in
its top state, so it will cooperate again. If the opponent defects (rightmost �gure, solid arrow),
the automaton transitions to its bottom state and defects next time. The logic governing
transitions in the bottom state is similar to that for the top state. Thus, this automaton begins
by cooperating and then mimics the opponent’s previous move, a useful strategy known
formally as tit-for-tat.

While each of the elements of this computational model is simple, the

arti�cial world that the model creates is not. We begin by randomly

generating the machines. In such a world there is little order, as each

machine cycles through its various states emitting random sequences of



cooperate and defect. In this environment, machines that defect more than

normal, due to the stochastic luck bestowed upon them when the strategies

were randomly endowed, will do better than average, because in the absence

of any order on the part of the opponents, defection leads to higher payo�s.

Consequently, the initial evolution of this system favors machines that defect

more often, and out of the chaos of our randomly created soup of life comes

a wave of order red in tooth and claw, as defection takes over our

computational ecosystem.

The machines that arise during this initial wave of evolution are

surprisingly well structured. While the automaton has access to a large

number of potential states, the surviving machines use very few of these,

favoring simple structures that always defect. Even though larger machines

could also implement an always-defect strategy, such machines are far more

sensitive than smaller ones to mutations during reproduction. Given that

most mutations are detrimental (here leading to cooperation when facing a

sea of defection), smaller machines prevail. Thus, evolution initially creates a

world composed of simple machines that always defect.

Imagine trying to gain a foothold in such a world. The only way to do

better than the other players is to somehow establish cooperation with

someone. However, always cooperating would make you much worse o�, as

cooperating against a defector gives you the lowest payo� possible (the death

penalty in the example of our prisoners) and your opponent the highest

(going free). So if a strategy spontaneously arises that always cooperates, it

will be an easy mark for the defectors and will quickly die out.

Suppose, however, that two such cooperative strategies arise

simultaneously. In this case, when they meet, they achieve a payo� much

higher than average. Unfortunately, even this cooperative bounty will be

insu�cient to o�set the losses incurred when these cooperative machines

play the much larger number of defectors. Even if small numbers of

unconditional cooperators arise, they will eventually be overwhelmed by

defectors. This, then, is also not a viable way for cooperation to arise in this

world.



There is a slightly di�erent path that could allow for the emergence of

cooperation. Suppose that agents could interact with only a select few of the

other agents. If, say, cooperators can stick together and only play the game

among themselves while avoiding playing the defectors, then they would

receive very high payo�s relative to the rest of the world. Unfortunately, our

model provides no explicit way to directly recognize one’s opponents, as

there are no externally observable features that would allow a machine to

make some inference or categorization of its next opponent. Even if this

were possible, the machines have no memory of past opponents. Thus,

interacting only with cooperators is not going to work.

However, something akin to selective interaction— albeit a bit more

clever—does allow an enlightened, cooperative path to arise in the model.

While machines cannot recognize their opponent at the outset, the sequence

of actions that is played as the game progresses may allow machines to

recognize one another. Our initial wave of evolution resulted in a world

where opponents always defect, and thus a machine could signal that it is

di�erent by initially cooperating. We saw that a blind strategy of always

cooperating is doomed to failure, so the only way such a strategy could work

is if the machine alters its behavior based on how the opponent reacts to the

cooperative overture. If a machine cooperates and �nds that its opponent

does not reciprocate, then the machine can start to defect and avoid being

exploited further. If, instead, the cooperative moves cause the opponent to

alter its behavior and begin to cooperate, then the two machines can

establish mutual cooperation and do well together. To establish cooperation,

a machine needs to arise that is willing to take the short-term risk of

cooperating (in the face of a world of defectors), given the potential long-

term bene�t of identifying and establishing cooperation with a like-minded

machine. It also needs to avoid being exploited by an opponent that is

unwilling to establish cooperation—that is, it must learn to cautiously

cooperate.

Such a machine embraces the seemingly infeasible ideal of a strategy that

plays only with cooperators and (indirectly) avoids defectors. While

machines cannot explicitly avoid playing defectors, they can do so implicitly



by recognizing the opponent’s type during the initial play of the game. If an

opponent is identi�ed as cooperative, the machines can establish and

maintain mutual cooperation for the remainder of the game. If an opponent

is identi�ed as a defector and one cannot avoid playing them outright,

mutually defecting for the remainder of the game is a second-best solution.

One particularly fascinating aspect of the above scenario is that these new

machines are spontaneously learning how to communicate with one another.

Here, the initial actions in a game are also serving as a communication

device that either signals cooperative intent or not. Thus, the evolving

machines hijack their initial actions and repurpose them to serve as

communication signals. This entails a short-term cost of taking less-than-

ideal actions against some opponents, in the hope of achieving the long-term

bene�t of establishing cooperation.

Thus even in a world of all defectors, cooperation can emerge. If at least

two cautiously cooperative strategies emerge simultaneously, they can receive

higher-than-average payo�s, and evolution will favor their perpetuation.

While it is easy to see how a few cautiously cooperative machines could

thrive in a nasty world of defectors and eventually take it over, that leaves the

question of how such strategies can spontaneously arise in the �rst place.

Cautiously cooperative machines embody a fairly sophisticated strategy that

must �rst send some sort of cooperative signal, and then, based on the

opponent’s response, play appropriately and either establish cooperation or

avoid exploitation. Such a strategy requires some careful coordination.

One way this coordination could arise is if machines simultaneously

receive a set of mutations that recon�gure them into cautiously cooperative

strategies. Unfortunately, the likelihood of having such a set of carefully

aligned mutations is small—using the creationist-embraced analogy

employed by the astronomer Fred Hoyle, it’s like the chance of a tornado

sweeping through a junkyard and assembling a functional Boeing 747. The

alternative is that a single mutation somehow results in the needed strategy.

While on the face of it this idea seems equally implausible, in reality it is not.

If we start with a simple always-defect machine, a single mutation can have

one of two possible e�ects. The �rst is that it alters the single action of the



machine from defect to cooperate, turning it into an always-cooperate

machine and thereby sounding its death knell. The other possibility is that

the mutation transitions the machine into a heretofore unused part of the

automaton, resulting in a radically di�erent strategy.

By de�nition, unused parts of the machines are not tested against nature.

Therefore, mutations that occur in these areas are not subject to evolutionary

pressure, and the unused structure can drift around without any immediate

impact on the machine’s overall performance. Such alterations are known as

neutral mutations, since the changes they make have no observable

consequences on how the machine behaves, and thus no impact on the

machine’s immediate �tness. So even in a world of simple, always-defect

machines, all is not static, as the unused parts of these machines undergo

neutral drift.

With neutral drift, it is possible for a single mutation to result in a radical

change in behavior, such as having an always-defect strategy become a

cautiously cooperative one. Once we have a couple of cautiously cooperative

strategies, evolutionary forces will be su�cient to tip the system from a

world where everyone defects to one �lled with cooperation. So the real

issue for the emergence of cooperation here is how likely is it that two or

more cautiously cooperative strategies will spontaneously arise.

One way for this to happen is that the needed mutation simultaneously

occurs in two machines. This is possible, since evolutionary selection and

reproduction can, at times, result in the neutral parts of a machine getting

replicated across the population for short periods of time. If this happens,

and if the neutral con�guration is right, a single mutation at the same spot

on two separate machines can lead to the creation of two cautiously

cooperative strategies.

There are also conditions in which even a single machine becoming

cautiously cooperative is su�cient to tip the system. If a single such machine

arises, it will do slightly worse than those machines that always defect. But if

the degradation in performance is not too extreme, the machine may survive

and replicate, resulting in enough cautiously cooperative machines in the

next generation to tip the system. Another possibility is that a lone



cautiously cooperative machine, since it is facing opponents that have only

ever known defection, will inadvertently trigger cooperative behavior in

some of the always- defecting machines. The always-defecting machines have

never encountered a cooperative action and don’t, in an evolutionary sense,

know what to do. Like dodo birds meeting sailors for the �rst time, one or

more subservient always-defect machines can provide enough of a �tness

boon to the lone cautiously cooperative machine to allow it to replicate in

the next generation and, eventually, tip the entire system into cooperation.

Since evolution is always in search of weaknesses, the newly cooperative

strategies must always remain vigilant and able to react to an opponent’s

defection, even after cooperation has been established worldwide. If not,

then there is the possibility of a mimic arising that sends all of the right

handshake signals to establish cooperation but then defects. To maintain such

vigilance, machines need at least two active states. Tit-for-tat, shown in

Figure 10.3, is su�cient to establish cooperation with similar-type machines

but, at the same time, avoids being badly exploited by an opponent that

always or occasionally defects. As always, there is evolutionary pressure on

the more advanced cooperative machines to create structures that can

withstand deleterious mutations that might cause the machines to

malfunction.

Of course, the same forces that allow the emergence of cooperation can

also conspire to destroy it. A population of cooperators can become

evolutionary lazy if they are rarely tested by defection. If this happens, the

strategies can drift to the point where the machines simply cooperate, either

from the start of the game or after con�rming the initial handshake. Once

this happens, machines that always defect (in the �rst case) or mimic the

handshake and then always defect (in the second case) can enter and take

over the world.

Our cautiously cooperative strategies are, in essence, evolving the ability

to distinguish self from other. If an opponent gives the proper handshake,

then it is considered self. If not, it is other. Thus, cooperation emerges in

this system by having strategies play against themselves, which easily solves

the cooperative dilemma. This new route to cooperation is an interesting



variant on kin selection, whereby cooperation emerges in a system because

the agents share a common genetic basis. Here, the notion of kin

spontaneously arises as a function of the handshake that provides an

alternative sense of group cohesion. The notion that communication allows

such cohesion is a tempting hypothesis. It suggests that the emergence of

communication could be a key path to cooperation in social systems and

ultimately to survival.

The observation that being competitive makes you slightly better o�

while being cooperative makes you remarkably better o� may be a

fundamental property of social worlds. Unfortunately, another fundamental

property of these worlds is that individual incentives tend to favor

competition over cooperation. That being said, our exploration of two

dramatically di�erent systems gives us a ray of hope. By focusing the various

lenses used in the study of complex systems, ranging from careful

anthropological work on the religious practices of Balinese rice farmers to

the analysis of computational ecosystems driven by arti�cial evolution and

abstract theories of automata, we �nd that cooperation can arise and be

maintained, even in systems that seemingly favor competition.

Perhaps the joining of hands and hearts is easier than we imagine.
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ELEVEN

From Stones to Sand: Self-Organized

Criticality

Nothing is built on stone; all is built in sand. But we must build as if the sand

were stone.

—JORGE LUIS BORGES

ERE WE BEGIN WITH A PILE OF SAND AND, ALAS, END WITH ONE. WE OFTEN

observe that complex systems, after having developed a beautiful and

seemingly robust structure, can collapse in an instant. Consider your body, a

collection of billions of cells, each interacting and forming a recognizable

and vital you. Yet all of those interactions, all that you are and could be, can

cease in only a few minutes if, say, you experience a misplaced shock to your

heart. Or consider a civilization such as the Maya in their Classic period, in

which a vibrant Mesoamerican culture suddenly falls apart. Is there

something innate about complex systems that demands an inescapable

vulnerability to collapse?

To explore this question, let’s randomly sprinkle grains of sand on top of

an empty table. At �rst, as the grains fall, they stay where they land. With

time, an occasional grain lands on top of another grain, and as long as the

new height is not much higher than that of the surrounding grains, it will

balance. As the sand continues to pile up, we eventually reach a point where

a grain can no longer balance where it falls, and a little avalanche ensues as

the grain tumbles onto its neighbor. With few grains on the table, such

tumbles result in a slight displacement of the ever-growing pile. However, as



the sand continues to mound on the table, tumbles begin to cause

imbalances at neighboring locations, resulting in new tumbles and a larger

avalanche, perhaps even to the point where some sand falls o� the edge of

the table.

How such sand piles behave forms the core of a model of self-organized

criticality developed by the physicist Per Bak. Sometimes a falling grain has

little impact other than to add itself to the spot where it landed. At other

times the grain begins an avalanche that triggers a chain reaction of

additional grains tumbling across the pile. Indeed, avalanches of all possible

sizes, following a well-speci�ed probability distribution (yet another power

law), characterize this system’s behavior (see Figure 11.1).

FIGURE 11.1: Random additions of sand eventually result in a self- organized critical system.
Once the system achieves this critical state, additional sand can result in avalanches of any
size, characterized by a power law distribution. (Photograph by the author.)



At any given time during our sand-pouring experiment, we could pause

and take stock of the conditions at any location on the table. At every

location, the pile is either subcritical (that is, adding a grain will just increase

its height by one) or critical (that is, it’s teetering in such a way that the

addition of a single grain of sand will cause it to tumble onto a neighboring

spot). Every grain of sand we add, every tumble that occurs, is continually

pushing the system toward a critical state. At times, large swaths of the pile

are poised so that the addition of a single grain of sand will cause an

avalanche across the entire area. After that avalanche has devastated the pile,

the system has relaxed enough so that new additions of sand either stay

where they land or result in only small, localized avalanches that are quickly

absorbed by subcritical neighbors. Overall, we observe long periods of

relatively localized turmoil that increasingly drive the system toward

widespread criticality, setting the stage for even a small event to trigger

another widespread avalanche.

There is a relentless logic that drives such systems. Above, we assumed a

simple physics with nicely behaved grains of sand that topple due to gravity

when they pile too high. Even if we modify the physics by making the grains

more irregular or by altering the force of gravity, similar behavior emerges.

Under these new conditions, the system is still driven toward critical states.

So whether we experiment with beach sand here on earth or dust on the

moon, the self-organized criticality of the system remains a fundamental,

emergent feature.

While the sand pile is dominated by simple physics, other systems may be

driven by other mechanisms. For example, criticality in social systems might

depend on features such as laws and regulations or �nancial risk. Laws and

regulations may have little impact on social behavior at times. But as the

circumstances of agents change, policies begin to bind, forcing agents into

critical states where even small events can trigger large responses. Thus, we

might see segments of society rise up against the government’s taxation and

�scal policy, perhaps at �rst just forming local Tea Party–like movements, but

on occasion triggering widespread social revolts. Or consider the banking

and investment system, where various institutions try to maximize their



returns by leveraging their assets and taking on risk. Over time, these systems

can enter critical regimes where even small changes, perhaps the inability of

one bank to repay a single loan, can result in a large avalanche as failure

begets failure.

While in physical systems the drivers of criticality (such as gravity) are

exogenous, in social systems they are often endogenous. Social elements such

as tax rates and the amount of leverage banks are allowed to exercise are

under the control of the government, typically through some political

process. Political actors often have incentives to alter such policies in ways

that might change the key determinants of criticality.

Consider a Classic-period Mayan city. The city proper is surrounded by

farmers who must pay a tax to the government, either by turning over a

share of their crops or by providing labor. In return, the farmers receive

services from the city, such as protection, governance, and some insurance in

case their crops fail. At low tax rates, the farmers are happy, because the

amount they pay in taxes is more than compensated for by the services they

receive. As the taxes are raised, the farmers become increasingly disgruntled

with the trade-o� they must make. At some point, things may become so

bad that a farmer might rebel or move elsewhere.

Suppose our Mayan government, like most governments, prefers more

revenue rather than less, perhaps because there is always a demand to build

more elaborate temples. As the government raises tax rates, it starts to push

the system closer to criticality. Every farmer is continually making a choice,

weighing the bene�ts of staying at his current location against the tax he

must pay. He’ll consider his investments in improving the �elds, his network

of friends, his ancestral ties to the place, and so on. As the tax rate rises, the

imbalance between the bene�ts of staying and the costs of leaving lessens,

and the farmer is pushed closer to a critical state where even a small change

—some bad weather or the loss of a cooperative neighbor, let alone a new

government demand—could cause the farmer to up and leave.

If a farmer decides to leave, we see impacts that resemble those in our

sand pile. On one hand, the farmer’s �eld, now fallow and needing minimal

investment to put it into production, might simply be taken over by



someone else. Here, the departing farmer is like a grain of sand forming a

subcritical hole in the pile. Alternatively, when the farmer leaves he might

trigger his neighbors to leave as well. After all, the neighbors lost an

important social connection who provided friendship and cooperation, and

who by moving lessened the taboo against relocating the bones of one’s

ancestors. This latter situation is much like a grain of sand surrounded by

other grains all in a critical state.

Unlike physical systems, social systems are likely to embody additional

endogenous forces that could accelerate their criticality. For example, the

immediate loss of production from the relocating Mayan farmer may force

the government to increase its taxation on the remaining farmers. This will

cause a further increase in system-wide criticality. Indeed, such endogenous

drives toward increased criticality may be a natural outcome of social

governance, as governments in pursuit of their goals tend to push citizens

toward action. Once the system becomes critical, even trivial external events

or policy changes can provoke system-wide reactions.

The idea of self-organized criticality may provide some needed insight

into social phenomena involving rapid collapse and change. The rapid

abandonment of Mayan cities in the Classic period could have been presaged

by years of social policy that forced the system into a critical state. Once the

society was in this state, the dynamics of the sand pile took over. Any social

system is continually perturbed by seemingly insigni�cant events such as

bouts of bad weather, missteps by the ruler, and so on. These perturbations

usually have few noticeable consequences. Perhaps, on occasion, a farmer

and maybe a neighbor or two decide to leave and set up operations

elsewhere, but nothing much more than that. Yet such actions and reactions

slowly �ow through the system and inexorably drive it to a critical state.

Once there, a seemingly minor a�ront to the system can trigger a large-scale

avalanche.

On December 17, 2010, a Tunisian street vendor, Mohamed Bouazizi, set

himself on �re to protest years of harassment by authorities. The event that

triggered his protest was a municipal o�cial publicly humiliating him by

con�scating the scale he used to weigh his produce. Bouazizi tried to



complain to the governor, but the governor refused to see him. This led him

to the act that would eventually take his life.

Thus began the Arab Spring, where the con�scation of a vendor’s scale in

a rural Tunisian town started a wave of unrest that rippled outward from

Tunisia into Algeria, Lebanon, Jordan, Mauritania, Sudan, Oman, Saudi

Arabia, Egypt, Yemen, Iraq, Bahrain, Libya, Kuwait, Morocco, Western

Sahara, Syria, and Israel’s border towns. The outcome to date is a number of

revolutions resulting in dramatic changes in governments, harsh crackdowns,

and diplomatic maneuvering. The full impact of these events on the course

of world history will likely be signi�cant, but it’s hard to fathom at this stage.

One can easily postulate forces, such as unhappy citizens or the dictates of

an autocratic ruler, that could force a society into a critical state. Moreover,

when one citizen is pushed so far that he decides to protest, this increases the

likelihood that those nearby might take up the protest as well. Protests in

various guises had been occurring in these countries for some time, but most

of these e�orts were quite localized. Nevertheless, they had been quietly

driving the system to a more critical state. Once the system entered such a

state, even an inconsequential act could trigger large-scale change, the

consequences of which we are only starting to grasp. While such a

hypothesis is speculative, one could test it by looking for the signatures of

growing criticality in the various data feeds, such as Twitter, that may well

have both captured and contributed to these events.

Self-organized criticality is an interesting form of complexity where small

pieces of the system interact locally with one another, mediated by a very

simple rule governing change. Over time, the system abstracts itself away

from the particular local rule, and its global behavior is dominated by a

characteristic pattern of avalanches at all scales. Most of these avalanches are

small, but on rare occasions one encompasses the entire system. When global

events occur, we want to invoke global causes. But the lesson from self-

organized criticality is that there are forces underlying systems such that even

small events, normally inconsequential, can have huge impacts.

At the slightest touch, our world can go from stones to sand.
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From Neutrons to Life: A Complex Trinity

As West and East

In all �att Maps—and I am one—are one,

So death doth touch the Resurrection.

—JOHN DONNE, “Hymn to God, My God, in My Sickness”

N JULY 16, 1945, THE ATOMIC AGE BEGAN. AT JUST PAST 5:29 A.M.
Mountain War Time, in the remote Jornada del Muerto basin (a desert

in southern New Mexico aptly named by Spanish conquistadors for its

“single day’s journey of the dead man”), the Manhattan Project tested an

implosion- initiated plutonium device that released the equivalent of around

twenty kilotons of TNT. The test, conducted under the auspices of the

project’s scienti�c leader, J. Robert Oppenheimer, was code-named Trinity,

apparently derived from Oppenheimer’s reading of two John Donne poems:

“Hymn to God,” which opens this chapter, and “Batter my heart, three

person’d God.” Three weeks later, an atomic bomb based on an untested but

simpler design using uranium-235 was dropped on Hiroshima, Japan. Three

days after that, a device based on the Trinity design was dropped on

Nagasaki. Shortly thereafter, Japan surrendered, ending World War II.

Nuclear reactions, whether used for civilian power or for nuclear bombs,

rely on interactions. In one type of reaction, energetic neutrons potentially

collide with nearby nuclei, perhaps resulting in a �ssion event that releases

some energy and even more energetic neutrons into the mix. Note the use

of the words “potentially” and “perhaps.” Chance plays an important role in

such systems. If neutrons beget neutrons, there is the potential to transform



mass into energy à la Einstein’s famous E = mc2. Depending on the speed of

that transformation, we can get either warming leading to the carbon-free

generation of civilian power or the destructive force of a nuclear blast. Given

the potential energy inherent in an atom, it is not surprising that at the start

of the war there was an intense interest in understanding the complex

interactions that take place at this atomic scale. Such interactions embody the

�rst branch of a complex trinity that leads us to a fundamental theorem

about complex adaptive systems.

The second branch of our trinity begins with a decision to build a secret

new device called the Electronic Numerical Integrator and Computer at the

University of Pennsylvania’s Moore School of Electrical Engineering. Called

the ENIAC, it was the �rst programmable electronic computer, and it was a

milestone development in the information age. The initial proposal to build

ENIAC was made to the United States Army’s Ballistics Research

Laboratory at Aberdeen Proving Ground in Maryland by the physicist John

Mauchly. Mauchly was inspired to �nd a better way to generate ballistic

�ring tables after encountering a group of women—known at the time as

“computers”—literally cranking out such tables on desk calculators.

Mauchly and an engineer, Presper Eckert, took charge of the ENIAC

program, resulting in the eventual development of a thirty-ton electronic

computer requiring 1,800 square feet of �oor space, 17,500 vacuum tubes,

and an astounding number of solder joints.

John von Neumann was a consultant to Aberdeen. Upon learning about

ENIAC, he realized that it might be repurposed to help solve the

“thermonuclear problem”—that is, a bomb predicated on nuclear fusion

rather than �ssion—being pursued by some of von Neumann’s Los Alamos

colleagues led by physicist Edward Teller. In March 1945, von Neumann,

Nick Metropolis, and Stan Frankel visited the Moore School and began to

�nalize plans for building a computational model of a thermonuclear

reaction that would be run on ENIAC.

While the war ended before they had completed their work, by the

spring of 1946 Metropolis and Frankel had discussed ENIAC with and

presented their calculations and conclusions to a high-level group in Los



Alamos, including von Neumann, Teller, Los Alamos director Norris

Bradbury, Enrico Fermi, and Stan Ulam. Although the model was simple,

the results were encouraging. In the annals of complex systems, this

represents an important milestone in the use of electronic computation to

understand complex interactions with serious, real-world implications.

Inspired by the results of Metropolis and Frankel, Ulam realized that a

number of cumbersome but powerful statistical sampling techniques could

be implemented using electronic computers. Ulam discussed this idea with

von Neumann, who broached it with the leader of the Los Alamos

Theoretical Division. The approach used computationally generated

randomness to solve complex problems, and it marks the formal beginning

of what has come to be known as the Monte Carlo method.a (The name was

suggested by Metropolis, and it was “not unrelated to the fact that Stan

[Ulam] had an uncle who would borrow money from relatives because he

‘just had to go to Monte Carlo.’”) By the late 1940s the Monte Carlo

method, promoted by various symposia, had become an accepted scienti�c

tool.

Monte Carlo methods played a key role in a groundbreaking paper,

“Equation of State Calculations by Fast Computing Machines,” published in

1953. The paper had �ve authors: Metropolis, Arianna and Marshall

Rosenbluth, and Augusta and Edward Teller. At the heart of the paper was

“a general method, suitable for fast electronic computing machines, of

calculating the properties of any substance which may be considered as

composed of interacting individual molecules.” This has become known as

the Metropolis algorithm.

The paper focused on the question of how interacting particles will be

distributed in space. Each particle interacts with the others, and we can

calculate the overall energy for any given con�guration. The challenge posed

in the paper was to �nd the most likely con�gurations for this system.

One approach to solving this problem would be to model particles as

coins and space as a tabletop. We could randomly toss coins on the table,

calculate the energy of the resulting con�guration as if the coins represented

the position of atoms, and repeat. After numerous repetitions, we would



begin to get a sense of the distribution of possible energy states for the

system. Alas, the problem with this approach is that a lot of our e�ort will be

spent on generating con�gurations that are not all that likely to appear. In

physics, it is assumed that systems seek out lower-energy con�gurations, and

a lot of our random tosses would result in high-energy con�gurations that

we are not likely to observe.

Metropolis and colleagues provided an alternative solution for �nding the

most-likely con�gurations, and the technique embodied in this solution has

profound implications both for modern statistical methods and, as we will

see in the last branch of our trinity, for understanding complex adaptive

systems.

The solution suggested by Metropolis and his coauthors seems remarkably

simple on its face. First, begin with a randomly derived con�guration of the

coins and label this the status quo. Next, consider a new con�guration of the

coins generated by taking the status quo and randomly moving one of the

coins by a small amount using a random process driven by a proposal

distribution. We now calculate some measure of interest tied to the resulting

con�gurations (in the above system, the amount of energy resulting from the

interactions of atoms tied to the locations of the coins) for both the status

quo and the new con�guration. We then use an acceptance function to

decide which of these two con�gurations will become the new status quo. If

the candidate con�guration is superior to the previous status quo, the

candidate is accepted immediately as the new status quo. If the candidate

con�guration is inferior, then the likelihood that it replaces the previous

status quo is proportional to their respective measures of interest. The more

inferior the candidate is to the previous status quo, the less likely it will

become the new status quo.

The algorithm proceeds by iterating the steps above using the current

status quo. Amazingly, if we track the various con�gurations that this

algorithm visits over time, we �nd that these con�gurations converge on the

exact distribution underlying the measure of interest. That is, the system will

spend relatively more time in those con�gurations that have the highest

measure of interest. In the case of our particle system above, if we run the



algorithm for a while and then randomly sample the status quo, we will tend

to �nd the system in low-energy states.

Intuitively, the algorithm’s behavior makes sense, as our acceptance

criteria tend to direct the system into areas with higher measures of interest

while avoiding areas with lower values. That being said, the fact that the

system perfectly aligns with the distribution tied to the measure of interest is

much more surprising, given that the algorithm never uses any global

information about the underlying distribution.

However miraculous the algorithm’s behavior may seem, it is possible to

understand it mathematically. The �rst key piece is that the algorithm always

uses the existing status quo as an anchor. The status quo embodies some

important information, and thus the algorithm is not just randomly

searching across possible con�gurations, which would result in a very

di�erent outcome. For example, we can forecast the weather by simply

calculating the number of days that it rains throughout the year and then

using this proportion as our prediction of rain on any given day.

Alternatively, we could calculate the likelihood of rain on a particular day

given that it rained on the previous day. As you might suspect, the latter

approach gives us a very di�erent set of probabilities and, in the case of

weather, a much more accurate prediction, since the weather today is a good

predictor of the weather tomorrow.

The idea that one event—say, yesterday’s weather or the status quo

con�guration—might in�uence the probability of the next event goes back

to the Russian mathematician Andrey Andreyevich Markov in the early

1900s, who developed a number of important results about these systems

that are now known as Markov chains. The 1953 paper of Metropolis and

colleagues used some of Markov’s ideas to create a new class of algorithms

called Markov chain Monte Carlo (MCMC) methods.

If the probabilities that govern the transitions from one state to another

make it possible to go from every state to every other state (though not

necessarily in one move), then the Markov chain is known as ergotic (or

irreducible). If such transitions are always possible after n or more steps, the

chain is called regular.b In the MCMC algorithm, it is easy to choose a



proposal distribution for the next con�guration that will guarantee that the

resulting Markov chain will be regular. Typically, it also is useful to have a

symmetric proposal distribution (as was done in the original Metropolis

algorithm). This requires that the probability of proposing x given y is

identical to the probability of proposing y given x.

The fact that MCMC algorithms are driven by a regular Markov chain is

useful, as these chains become increasingly well behaved as the system runs

forward. Such systems collapse into a very well-behaved regime where the

probability of �nding it in any particular state is �xed and independent of

where the system started. That is, if we run our MCMC algorithm long

enough, the system will start to visit the various states in a predictable way.

In the case of weather, regardless of the weather today, if we wait long

enough, the chance of rain on a randomly chosen day in the future will be

�xed. These systems do, however, require a certain amount of burn-in time.

While we can start the system anywhere, it takes the chain a certain amount

of time to forget where it began and to �nd its more fundamental behavior.

Exactly how long that takes has important implications for adaptation.

The second key aspect of the MCMC’s remarkable behavior involves the

acceptance criteria. The choice of the acceptance criteria is made with

careful forethought, as it guarantees that the algorithm converges to the

underlying probability distribution implied by our measure of interest. The

odd thing about this convergence is that we typically cannot calculate this

probability distribution directly, as it requires information about all possible

con�gurations of the system, and the number of such con�gurations is

usually so large that performing this calculation is impossible. Fortunately,

the algorithm doesn’t need to directly perform such a calculation. A

su�cient condition that guarantees the needed convergence is a property

known as detailed balance. Detailed balance requires that when the system

converges, the resulting transitions are reversible in the sense that the

equilibrium probability of moving from one con�guration to another is the

same in either direction. If detailed balance holds, then the system converges

to the underlying probability distribution driving the measure of interest.



Arthur C. Clarke noted that “any su�ciently advanced technology is

indistinguishable from magic,” and perhaps MCMC is one such technology.

Through a very simple set of manipulations—randomly creating a candidate

con�guration contingent on the status quo and possibly replacing the status

quo with that candidate con�guration based on a roll of the dice tied to the

relative measures of interest of the two con�gurations—we create a system

that is driven by a much deeper force, one that was previously inaccessible to

us given the impossibility of making the required calculations. MCMC

methods have radically altered the scienti�c landscape. In particular, such

algorithms are needed for the widespread application of Bayesian statistics, a

now ubiquitous approach that is ushering in a new analytic age characterized

by everything from targeted web ads to driverless cars. At the heart of

Bayesian methods is the need to calculate some key probability distributions.

Such distributions are often computationally impossible to calculate directly,

but we can invoke the magic of MCMC.

This brings us to the third branch of our complex trinity, namely, the

implications of the �rst two branches for understanding complex adaptive

systems. The impetus for the original development of MCMC algorithms

was to �nd a simple method that could reveal a previously hidden but vitally

important distribution. In the case of Metropolis and colleagues, this was the

distribution of the likely energy states for a system of interacting particles. To

accomplish this goal, the creators of the algorithm developed a set of simple,

iterative steps that generated the needed candidates. As if by magic, such

simple steps are su�cient to uncover the desired distribution. The

implications of MCMC algorithms are even more profound for complex

adaptive systems. The mechanisms that drive adaptive systems, such as

evolution, have direct analogs to the key elements of the MCMC algorithm.

In short, a complex adaptive system behaves as if it were implementing a

MCMC algorithm.

Consider a pond covered with lily pads, on one of which sits a frog. We

assume that each lily pad, depending on its location, has some inherent value

for the frog—say, the number of �ying insects that the frog can snatch in a

given time (assuming that the supply of such insects is constantly renewed).



Suppose the frog behaves as follows: Every minute it randomly picks a

neighboring lily pad, and if the number of insects at that new pad is greater

than the number at the current pad, it jumps to the neighboring pad.

Otherwise, it jumps to the new pad with a probability proportionate to the

relative number of insects at the two locations. Thus the chance of moving

will be higher the closer the number of insects at the neighboring pad is to

the number at the current one.

As might be apparent, the frog is in the midst of a MCMC algorithm.

The lily pads represent various states of the system, and the location of the

frog marks the status quo con�guration. When the frog considers a randomly

chosen neighboring lily pad, it is drawing from a proposal distribution. The

frog’s decision to jump to the new pad (that is, to create a new status quo) is

implemented via the acceptance criteria used in the Metropolis algorithm,

always accepting the new pad (state) if it is better, and if it is worse, accepting

it with a probability tied to the relative quality.

Given that the frog is implementing a MCMC algorithm, we can easily

characterize its long-run behavior. After a certain amount of initial hopping

(aka burn-in time), if we track the frog’s location, we will �nd that the

amount of time it spends on any particular lily pad is given by the number of

insects found at that pad divided by the total number of insects across all of

the pads. These fractions, taken together, give us a probability distribution

describing the likelihood of the frog being on a particular lily pad sometime

in the future. For example, if we have three lily pads, the �rst one with �fty

insects, the second one with thirty, and the third one with twenty, then over

time the frog will be on the �rst pad 50 percent of the time, on the second

one 30 percent of the time, and on the third one 20 percent of the time (see

Figure 12.1).



FIGURE 12.1: Three lily pads with different numbers of �ying insects given by the numeric
label in each pad. We assume that at each time step the frog has an equal chance of picking
one of the two neighboring lily pads and moving to it based on the Metropolis acceptance
criteria. The diagram on the left illustrates the overall design, with the labeled arcs providing
the probability of choosing that neighbor (½ in all cases) × the acceptance probability. The
top matrix on the right gives the transition probabilities for the resulting Markov chain Monte
Carlo process, that is, the probability of moving to the pad designated by the column, given
that you are currently on the pad designated by the row. After many time steps, the system
converges to the bottom transition matrix, with the frog residing on the 50-, 30-, and 20-insect
lily pads 50 percent, 30 percent, and 20 percent of the time, respectively. This bottom matrix
is the result of repeatedly multiplying the top matrix by itself.

What’s true for frogs and ponds can also be true for other adaptive

systems. Con�gurations of an agent in an adaptive system represent various

states of the system. An agent pursues goals by recon�guring itself in

constrained ways and moving toward new con�gurations that result in better

outcomes. So if we are willing to make some key simpli�cations of reality,

we can generate a useful model of an adaptive agent in a complex system and

use MCMC ideas to derive a fundamental theorem about this system’s

behavior.

To begin this process, we need to think about how an agent represents

various states. In biology, for example, an organism’s genotype represents a

possible state of the system of all genotypes. In economics, states can

represent, say, the standard operating procedures of a �rm, the design of a



product, the consumption bundle of a consumer, or some rule of behavior.

In a city, states could represent the network of roads or the locations of

activities.

Given the state space of an adaptive system, the MCMC approach

requires a notion of identifying new possible states using a proposal

distribution. For a well-behaved MCMC, the requirements for the form of

the proposal distribution are relatively light—not much more than some

reasonable ability to move, eventually, from one state to another. (For

convenience, we might want to impose some more restrictions, such as

requiring that this distribution be symmetric.) In adaptive systems, the

notion that existing structures can be randomly altered by a mutation-like

operator tends to be an easy assumption to embrace and one that meets the

above requirements. Indeed, mutation is central to biological systems, and it

also approximates the behavior observed in a variety of other systems. For

example, new products are often slight variants of old ones, new

technological or scienti�c ideas rest on the shoulders of giants, consumers

make slight alterations in the goods that they buy, and so on.

The algorithm needs a measure of �tness for any given state of the

system. For our frog, insects serve as this measure, as presumably the more

insects the frog consumes, the happier it is. Similar measures of �tness arise

in other adaptive systems. For example, in biology there is a notion of �tness

that is tied not only to the food supply but also to the overall ability of an

organism to survive and reproduce. In economics, we often think of agents

pursuing pro�t (in the case of �rms) or happiness (in the case of consumers).

Thus, as long as agents in an adaptive system are pursuing a goal, we can use

the measure of this goal as a means to drive our model.

Finally, our model requires that the adaptive system adopt the proposed

variant based on a MCMC-compatible acceptance criteria. The criteria

developed by Metropolis and his coworkers always accepted any variant that

had higher �tness than the status quo, and when the �tness of that variant

was less than that of the status quo, the criteria adopted it probabilistically,

with the likelihood diminishing as the di�erence in �tness between the two



options increased. Such a rule seems to be a reasonable approximation for

many adaptive systems.

There may be other acceptance criteria that will also result in detailed

balance and thereby provide the needed convergence. For example, if the

proposal distribution is symmetric, an acceptance criterion that adopts the

variant with a probability given by the variant’s �tness divided by the �tness

of both the variant and the status quo also results in detailed balance. Under

such a rule, if the value of the variant is equal to that of the status quo, there

is a 50 percent chance that it is adopted, and as the variant’s value rises (falls)

the adoption probability increases (decreases) away from 50 percent. (By the

way, all is not lost if the system has acceptance criteria without detailed

balance, as it will still converge to a unique distribution, but that distribution

will di�er from the one speci�ed below, though perhaps only slightly.)

Suppose we have an adaptive system where an agent represents a possible

state of the system. At each time step, a reasonable variant of this agent is

tested against the environment, and that variant replaces the existing agent

based on detailed-balance-compatible acceptance criteria tied to relative

�tness. This leads to a fundamental theorem of complex adaptive systems: in

the above adaptive system, after su�cient burn-in time, the distribution of

the agent (states) in the system is given by the normalized �tness

distribution.

The proof of this theorem is simply noting that the above system is

implementing a MCMC algorithm, and that such algorithms converge to

the (implicitly) normalized distribution of the measure of interest—here, the

�tness used in the acceptance criteria.

This theorem implies that, in general, such adaptive systems converge to a

distribution of states governed by the normalized �tness. Thus, adaptive

agents are not perfectly able to seek out, and remain on, the best solutions to

the problems they face. Rather, they tend to concentrate on the better

solutions (given su�cient time), though on rare occasions they will �nd

themselves in suboptimal circumstances. If we throw our frog into the pond

and give it a chance to adapt for a while, when we return the frog is most

likely to be on the lily pad with the most insects, but there is always a chance



that we will �nd it on any of the other lily pads—a lower chance for those

lily pads with fewer insects, but a chance nonetheless.

One implication of the theorem is that while adaptive agents tend to do

well, they are not perfect. Such a statement is both comforting and

disconcerting. While it is nice to know that, given su�cient time, adaptive

systems tend to concentrate on the �tter outcomes in the world, on rarer

occasions they will end up in the bad outcomes. While the acceptance

criteria tend to bias movement toward better parts of the space, there is

always a chance that the system will move from a high-�tness outcome to a

low-�tness one.

The obvious question here is whether the system would be better o� by

avoiding such �tness-decreasing moves. By preventing such moves, we could

ensure that the algorithm always walks toward areas of higher �tness but, as

we saw in Chapter 5, such an algorithm can easily get caught at a local

maximum—a point where all roads lead downhill even though much higher

terrain exists in the distance. Thus, the need to accept con�gurations of

lower �tness is a necessary evil that prevents the system from getting stuck on

local maxima.

One could modify the algorithm by, say, introducing a temperature, as is

done in simulated annealing. Early on in the process, the temperature is kept

high, allowing the algorithm to proceed normally. As time passes, we cool

the search, lessening the chance of accepting �tness-reducing moves. Given

enough time and a carefully controlled annealing schedule, the system will

tend to lock into areas of higher �tness. But the design of such annealing

schedules is tricky, and once the system is cooled, it would be unable to

adapt to a change in the underlying �tness landscape.

Note that the theorem requires su�cient burn-in time. Recall that

Markov chains link the probability of the next state to the current state. In

this sense they have some memory, since where you are now in�uences

where you can go in the short run. Under the right conditions (which hold

in our theorem), these initial in�uences dissolve away over time and the

subsequent links in the chain are driven by the more fundamental forces

characterizing the Markov process. Burn-in is the amount of time it takes for



the system to forget its initial conditions and fall into its fundamental

distribution. The needed burn-in time depends on a number of factors. As

we increase the size of the underlying space, the burn-in time increases,

since it takes longer to explore the larger space. Moreover, the burn-in time

can be in�uenced by our proposal distribution. If the proposal distribution

produces variants that are very close to the  status quo, then the Markov

chain will be slow to form, given the plodding search. If instead the variants

are far from the status quo, then rejections are quite likely, and again the

chain will slow down. Finally, the shape of the space itself can in�uence

burn-in time. For example, if there are large areas of low �tness, the chain

can get caught in these desolate �atlands for long periods of time before it

happens upon the �tter parts of the space.

Unfortunately, other than the intuitive arguments above, our ability to

succinctly characterize the burn-in process at a theoretical level is quite

limited. Nonetheless, burn-in has some interesting implications for adaptive

systems. While our theorem guarantees that the adaptive system will

eventually fall into the normalized �tness distribution, the speed at which this

happens depends on how quickly it can traverse the burn-in period. Systems

with larger state spaces, more anomalous �tness landscapes, particularly bad

starting conditions, or proposal distributions generating variants that are

either too near or too far will tend to hamper the ability of adaptation to

quickly converge on the �tter variants governed by the normalized �tness

distribution. In this sense, longer burn-in times make adaptation more

di�cult.

The above theorem, like all theorems, was predicated on a set of

simpli�cations. It assumes that adaptive systems work by marching from one

structure to the next, with new structures being generated via a proposal

distribution and being accepted based on acceptance criteria that are tied to

the relative �tness of the proposed variant. This is a somewhat static model,

as the �tness distribution is unchanging in the sense that the identical

structure gets the same measure of �tness in perpetuity. In more realistic

systems, one might want to include an endogenous notion of �tness,

whereby the �tness of a given structure depends on, say, what other



structures are in the world. This may be possible by extending the notion of

structure in the model. Instead of thinking of it as de�ning a single agent, it

could de�ne an entire population of agents, but such an elaboration is non-

trivial, since the �tness function is typically de�ned at the level of the

individual, not at the group level. In such an extended system, it is as if we

are running multiple MCMC algorithms, with each agent adapting to the

(transient) world created by the other structures.

The other two key elements driving our theorem are the proposal

distribution and the acceptance criteria. MCMC algorithms tend to be fairly

robust if the choice of the proposal distribution is reasonable, though, as

noted, this choice may in�uence burn-in time. Unfortunately, clean

theoretical results about the relationship between proposal distributions and

burn-in time are di�cult to derive, apart from the notion that tuning the

distance of the search can in�uence burn-in time, with a Goldilocks-like

region of jumps that are neither too large nor too small leading to the fastest

burn-in time.

The acceptance criteria are another interesting element of the algorithm.

The original acceptance criteria used in the Metropolis algorithm were

driven by necessity of design, and while they provide a reasonable analog to a

lot of adaptive processes, other criteria may be of interest. There are

alternative acceptance functions, for example, some that use a more direct

measure of relative �tness that can also result in detailed balance, thereby

allowing the system to converge as per the theorem. Having a better

characterization of the class of acceptance criteria that results in detailed

balance would be useful. Also, even when detailed balance doesn’t hold, the

system still converges to a unique state distribution, but that distribution will

not be given by the normalized �tness. In these cases it is still likely that the

alternative acceptance criteria will lead to system behavior that approximates

the results above or, alternatively, have interesting implications of their own.

W� ����� ���� ������� ���� ��� ���������� �� ���, ����� �������� ��

the need to understand interacting atomic systems and to develop novel tools

(such as programmable computers) and methods (such as Monte Carlo) that



could be used to provide essential insights into such systems. Taking place at

the dawn of both the atomic and information ages, it is a story of great

genius and, at times, even playfulness. Our complex trinity was completed

by repurposing the algorithms of war to gain some fundamental insights into

the behavior of an adaptive agent in a complex system. We �nd that such

agents are unknowingly implementing an algorithm that locks them into a

cosmic dance of �tness. As Metropolis noted, “What a pity that war seems

necessary to launch such revolutionary scienti�c endeavors.”

a It appears that Enrico Fermi used Monte Carlo–like methods in the early thirties to solve problems

in neutron di�usion. Apparently he enjoyed impressing his colleagues by o�ering quite accurate
predictions of experimental outcomes based on clandestine mechanical calculations made during bouts
of insomnia. There are also earlier examples of using randomness to perform important calculations,
such as Bu�on’s needle from the eighteenth century being used to approximate the value of π.

b All regular chains are ergotic, but not all ergotic chains are regular. For example, if you have a two-

state system that alternates from one state to the other at each time step, it will be ergotic, because it is
possible to go from any state to any other state, but not regular, since it visits a given state only on
either even or odd time steps.
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Epilogue: The Learn’d Astronomer

When I heard the learn’d astronomer,

When the proofs, the �gures, were ranged in columns before me,

When I was shown the charts and the diagrams, to add, divide, and measure

them,

When I sitting heard the astronomer where he lectured with much applause in the

lecture-room,

How soon unaccountable I became tired and sick,

Till rising and gliding out I wander’d off by myself,

In the mystical moist night-air, and from time to time,

Look’d up in perfect silence at the stars.

—WALT WHITMAN, Leaves of Grass

E HAVE ALL HEARD THE LEARN’D ASTRONOMER IN ONE FORM OR ANOTHER.
That is, we have encountered a carefully laid out analysis that, while

perhaps worthy of applause, seems terribly disconnected from the stars we

wish to gaze upon and know.

A similar discomfort is pervasive in modern academics. We have carefully

worked out analyses of, say, the chemical interactions in the brain or the

optimal bidding strategy in a simpli�ed auction, yet the connection from

these studies to the phenomena that truly awe us, such as the ability of brains

to think or markets to organize trades, seems rather specious.

While we might want to blame the scientists for caring about the wrong

things, it’s not that easy. The reductionist approach to the world—breaking

down complicated things to their constituent parts and then carefully

dissecting these parts until we know them—has provided a useful

Archimedean purchase from which to lever our complex world into the light

of understanding. Unfortunately, there is only so far we can move the world

using such tools.



As we have seen throughout this book, knowing the parts is not

equivalent to knowing the whole. Reduction does not tell us about

construction. This is the fundamental insight of the study of complex

systems. Even if we could fully understand how an individual worker bee’s,

market trader’s, or neuron’s behavior is determined by its environment, we

would have little idea about how a hive, market, or brain works. To truly

understand hives, markets, and brains, we need to understand how the

interactions of honeybees, traders, and neurons result in system-wide,

aggregate behavior. Take a single worker bee and fully analyze how she

responds to the chemical, visual, and audio inputs she receives, and we gain

some new knowledge about how a simple organism responds to its world.

Take a hive of such honeybees and allow them to interact, and we begin to

see new behaviors emerge that, while obviously tied to the actions of each

individual honeybee, are at the same time wholly disconnected from these

actions and not easily predicted from only our observations of the individual

worker. Like other biological organisms that we know (including us), this

newly emerged entity has the ability to regulate its own temperature, gather

needed nutrients, store and use energy, protect itself from outsiders, dispose

of waste, attack internal and external threats, and even reproduce.

The ultimate hope in the science of complex systems is that honeybee

hives, �nancial markets, and brains are deeply connected—or, for that

matter, not all that di�erent from other biological organisms, cities,

companies, political systems, computer networks, and on and on. A

honeybee swarm may just be a more easily observed instance of a brain. If so,

the general processes of positive feedback for better choices and quorum-

based triggers to �nalize the decision may drive not only a swarm’s choices

but also our own.

Over the last two decades, various strands of complex- systems thinking

have slowly come together in an emerging tapestry of understanding that

considers not just one particular thing but the whole. The warp of this

tapestry, stretched tight on the loom of science, is composed of the key ideas

and tools that have become integral to the study of complex systems. The

weft, weaving through the warp and binding it together, is beginning to �ll



in a slowly emerging pattern. There are many weavers working on this

tapestry, each attempting to keep coherence and beauty in her own part of

the work. Recently we have been starting to see these various pieces begin

to meld into one another, marked only by faint lazy lines like those seen in

Navajo rugs. The various strands of complex-systems ideas and examples

explored here are starting to create a beautiful, and quite useful, tapestry.

W� ����� ��� ����������� ���� ������� ������� �� ������� �� ���

simple, local actions, once connected, can result in new global patterns.

These types of systems abound in our world, and we now know that from

simple beginnings we can get marvelous ends. Small pieces of colored glass,

once connected, result in a stained-glass window that creates an image in our

mind’s eye that inspires faith and spirituality. Even now, as you read these

words, pixels are becoming letters, letters are becoming words, words are

developing meaning, and meaning is rolling into thought.

To understand how simple parts result in global patterns, we used the

mathematics of cellular automata. These abstract creations, linked with the

utility of a computer to help visualize their implications, show how simple,

local, decentralized processes can result in global patterns.

More than two hundred years ago, Adam Smith invoked the “invisible

hand”—not far removed from “then a miracle happens”—to explain how

the individual actions of traders, each out for her own gain, result in an

outcome that was no part of anyone’s intention. The complex- systems

perspective begins to make visible Smith’s guiding hand as we investigate the

trades that arise in a bustling bazaar. Markets, when conditions are right,

leverage the power of simple beginnings to lead to emerging global patterns

(prices) that allocate resources and economic production to best use.

When systems are simple, we can easily trace their behavior from step to

step, and in so doing make accurate predictions about the overall system’s

behavior. When systems are complex, such tracing becomes far more

di�cult, as each new trace alters previous ones, making it extremely tricky

and at times impossible to predict what will happen—as when, on May 6,

2010, a computer in Shawnee Mission, Kansas, compounded a seemingly



insigni�cant error in its trading program and created an unanticipated

feedback loop that wreaked havoc on the �nancial shores.

Anytime we interconnect systems, we build in feedback loops. Some

types of feedback result in stabilizing forces, calming the system as a whole.

Alas, other types of feedback destabilize systems, and even with careful

thinking and design, it is easy to build systems with unintentional—and

unfortunate—feedback loops. The worldwide �nancial collapse of 2008, the

reverberations of which are still playing out today, was the result of a system

in which each of the parts seemed rational—or at least responded in a

reasonable way to local incentives. Unfortunately, what was true for the parts

was not true for the whole, and the interconnections among the parts

resulted in a series of feedback loops able to take down a worldwide

economy. We often hear that some disastrous event was the result of a

“perfect storm” of events. However, in a world of increasing complexity, we

are simply perfecting our ability to create such storms.

When complexity abounds, diversity matters. Systems composed of

homogeneous agents behave quite di�erently than those composed of

heterogeneous ones. Homogeneous systems, with all of the agents taking the

same actions based on the same cues, can have much more dramatic

responses to new events than heterogeneous ones. Thus, if we want to

predict better how a system will behave, we need to account explicitly for its

heterogeneity rather than rely on theoretical expediencies such as

representative (and hence homogeneous) agents.

The value of heterogeneity depends on the system we are considering.

Heterogeneity is useful when a graduated response is needed, and so in

systems like honeybees attempting to control their hive’s temperature or

traders wanting to stabilize prices, having more heterogeneity is better.

However, there are other systems where such heterogeneity is detrimental. A

government wanting to control a social movement or a population of

bacteria wanting to release a toxin might bene�t from less heterogeneity.

When complexity abounds, discovering solutions to problems is often

di�cult. The various interdependencies and feedbacks that are innate in a

complex system make searching such systems for new solutions extremely



hard. In less complex parts of our world, �nding good answers is like

climbing Mount Fuji, where if you just keep going uphill, you will reach the

top. In such a world, errors—taking a step in the wrong direction—only

hamper progress. Complex systems involve a very di�erent kind of search,

where the mountain range is not only rugged but also fog-bound, and

perhaps even undulating with every step we take. Such complex ranges are

common when we have interconnected and interdependent pieces making

up the whole, such as we might see in consumer goods, technologies,

manufacturing processes, and drug cocktails. In such a world, even if we

hike up the fog-bound hill without error, we might miss the highest point

on the landscape. Indeed, we might �nd ourselves victoriously standing on

top of a molehill, falsely thinking that we have made it to the top of the

mountain. To avoid making mountains out of molehills, we need new ways

to search in complex worlds. In particular, introducing errors into our search

process—that is, occasionally taking random steps downhill—may allow us

to escape the trap of the molehill and head to the mountaintop.

When complexity abounds, decision making becomes ubiquitous. As

thinking beings, we �nd it all too easy to believe that decision making

requires intelligence, and that intelligence requires a brain. Yet in a world of

complex connections and interactions, simple parts can result in intelligent

decisions.

From the white blood cells in our immune systems to the multitude of

bacteria inhabiting our bodies, trillions upon trillions of intelligent decisions

are being made every second, without a neuron to be had. We live in a sea

of computation and decision making. Nature has, by linking together simple

chemical and physical processes, created biological computers capable of

taking input from the world, remembering it, and acting upon it in useful

ways.

Such biological decision-making systems, shaped by evolution and

operating without a neuron-driven brain, are capable of making intelligent

choices. Remarkably, even lowly bacteria are taking actions driven by well-

de�ned sets of preferences. More surprising is that, like their big-brained

human brethren, these simple systems also fall prey to various biases in



decision making that result in suboptimal performance. Neurons are useful

in that they can quickly transmit signals across (biologically) large distances,

but of course many organisms are not all that big. Once we give up the need

for neurons, the decision-making processes used by a bacterium and a

human may not be all that di�erent. We may well exist in a world where

thinking is everywhere.

If individual decision making and intelligence do not require the

existence of a brain, then it is not too far a leap to think about how such

intelligence could emerge in collections of agents. For example, a honeybee

worker has a limited set of behaviors tied to cleaning the hive, nursing

brood, forming comb, collecting nectar and pollen, and so on. However,

place thousands of such workers into a colony, and we get an entirely new

set of useful, colony-level behaviors. Out of the interactions of thousands of

honeybees emerges a superorganism capable of a survival-tested behavioral

repertoire. And what is true for a collection of honeybees also holds for

collections of other types of agents. Each year, tens of thousands of recorded

songs are released, and society attempts to identify the better ones via top-

ten lists and the like. It is not hard to take the insights we gained from

swarming honeybees and apply them to the Billboard Hot 100 list, as the

likelihood of a particular song making it onto the list is indirectly tied to its

quality and to how often it gets heard. Political primaries and public debates

are subject to similar mechanisms.

One of the most intriguing links to group decision making is to our own

consciousness. Neurons in the brain and honeybees in a colony may not be

all that di�erent, and if so, we have a new way to think about thinking.

Following such a path suggests that the mind of the hive that emerges in

honeybees may explain the hive of our own mind.

When complexity abounds, networks of connections matter. These

networks, determining the interaction possibilities of agents, result in the

emergence of global patterns. Sometimes these patterns are useful, as in the

case of swarming honeybees �nding a good location for the next hive. Other

times, networks result in undesirable outcomes. For example, even if we

begin with people who have only a slight preference to live among similar



types of people, we can easily end up with a highly segregated society. What

is true for a neighborhood is also true for political choices, religious beliefs,

crime, and other social norms. We live in a world where even good

intentions can easily get overwhelmed as complexity plays out over the

network, forcing us to an outcome that no one intended or desired.

When complexity abounds, scaling laws may prevail. We are only slowly

uncovering the potential laws that may govern the various complex systems

we inhabit. Knowing the population of the largest city in a country can tell

us the population of the second-largest city. Knowing the heart rate of a

mouse can tell us the life span of an elephant. Knowing the number of wars

in which a thousand people died can tell us the number of wars in which a

million will perish.

The existence of scaling laws is not only empirically convenient but also

theoretically suggestive of a deeper uni�cation among systems. The same

approach that allows us to derive scaling laws for biological systems may also

work for social and arti�cial systems as well. Cities are organisms that require

energy to be transported, stored, and used, and thus cities might exhibit

scaling laws akin to biological systems. The key demographic trends over the

last century have been continued population growth and increased

urbanization. We now exist in a world of more than 7 billion people, with

more than half of them living in urban areas. Knowing the power laws of

cities will give us key insights into our future prospects on this planet.

When complexity abounds, cooperation can emerge. The ability to

cooperate is a key element in the success of our species. In most social

worlds, competition makes you slightly better o�, while cooperation makes

you remarkably better o�. Unfortunately, individual incentives tend to favor

competition over cooperation.

Notwithstanding a world red in tooth and claw predicted by individual

incentives, there are enough examples of cooperation emerging in complex

systems to provide a ray of hope. Rice farming on the island of Bali occurs-  

under conditions that seemingly favor the suboptimal, competitive outcome.

Yet as the human and natural ecosystems became more tightly coupled,



farmers began to cooperate and coordinate their farming activities, resulting

in more food for all.

Cooperation appears to emerge in other systems as well, despite what

appear to be compelling reasons for competition to prevail. Using abstract

models of evolving computer programs, we can explore the origins of

cooperation. In such worlds, cooperation emerges when evolving strategies

repurpose their early plays of the game and learn to communicate with one

another and signal a willingness to cooperate. When such signals are sent and

acted upon, something like a secret handshake spontaneously arises as a way

to distinguish self from other, and cooperation can thrive.

When complexity abounds, self-organized criticality can arise. Complex

systems often organize themselves into characteristic con�gurations that

embody unintentional order. This order implies a system that is near the

edge of action. Self-organizing critical systems result in a world where

activity can occur across all scales. The majority of events tend to result in

small, localized avalanches, though rarely a small event can result in an

avalanche that encompasses the entire pile.

Certain types of social systems may self-organize into critical states as

well. In these systems, small actions that normally have little consequence,

such as the protest of a desperate Tunisian street vendor in a remote town,

can at times trigger large results, such as the subsequent wave of government

overthrows across the Middle East starting in late 2010, known as the Arab

Spring.

Complexity abounds even in our attempts to understand complexity. The

desire to harness the atom for war led to a remarkable web of interacting

people, ideas, and technologies. From this web emerged a Promethean

bargain, creating not only the most destructive weapons humankind has ever

known but also a core set of ideas and tools that have set the stage for the

modern science of complex systems. By cleverly harnessing the

computational substate that arose during this period, we have been able to

rapidly advance our understanding of interacting systems over the past few

decades.



Indeed, algorithms originally designed to understand the behavior of

atoms, and currently used to drive our emerging age of analytics, provide a

new view of complex life. Adaptive agents are part of a cosmic algorithmic

dance, subject to deep forces that determine their fate.

U���������, ���������� ������� �� ��� ���������� ���� �� ���� �� �

society. Take any of the major issues confronting humanity—climate change,

�nancial collapse, ecosystem survival, terrorism, disease epidemics, social

revolution—and you will see that they have a grounding in complex systems.

Ideas from complex systems are starting to reshape the way we think about

and act on our world. Policies that follow the reductionist model—for

example, considering only the securities held by a single bank while

ignoring the interconnections and codependencies that bind banks together

—are doomed to fail. It is only by embracing the broader complex-systems

perspective that policy making can keep up with our increasingly complex

world.

The various strands of ideas, theories, and observations explored here are

forming an important new tapestry that will give us fresh perspectives on our

world and provide novel ways to advance our goals. The emerging tapestry

of our understanding of complex systems is itself subject to the laws of

complex systems. Thus, it is taking on a global beauty, coherence, and utility

that were no part of any individual weaver’s intention or ability. The various

proofs, observations, and conclusions that form each thread are beginning to

fade into a deeper understanding as we look, in perfect silence, at the

complexity that abounds.
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