
Quantum
Computing
by Practice

Python Programming in the Cloud
with Qiskit and IBM-Q
—
Second Edition
—
Vladimir Silva

Quantum Computing
by Practice

Python Programming in the Cloud
with Qiskit and IBM-Q

Second Edition

Vladimir Silva

Quantum Computing by Practice: Python Programming in the Cloud with Qiskit and
IBM-Q, Second Edition

ISBN-13 (pbk): 978-1-4842-9990-6		 ISBN-13 (electronic): 978-1-4842-9991-3
https://doi.org/10.1007/978-1-4842-9991-3

Copyright © 2024 by Vladimir Silva

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image by WangXiNa on Freepik (https://www.freepik.com/)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

Paper in this product is recyclable

Vladimir Silva
CARY, NC, USA

https://doi.org/10.1007/978-1-4842-9991-3

To my dear parents, Manuel and Anissia, and beloved siblings,
Natasha, Alfredo, Sonia, and Ivan.

v

About the Author�� xiii

About the Technical Reviewer��xv

Introduction��xvii

Chapter 1: �Quantum Fields: The Building Blocks of Reality�������������������������������������� 1

Enter Max Planck, the Father of Quantum Mechanics��� 2

Planck Hits the Jackpot, Einstein Collects a Nobel Prize��� 4

The Nature of Light Before Planck�� 4

After Planck, Physics Will Never Be the Same�� 5

Quantum Mechanics Comes in Many Flavors�� 9

Copenhagen Interpretation��� 9

Many Worlds Interpretation�� 21

Supplementary Interpretations��� 23

From Quantum Mechanics to Quantum Fields: Evolution or Revolution�������������������������������������� 28

We Are All Made of Quantum Fields, but We Don’t Understand Them������������������������������������ 31

The Recipe to Build a Universe��� 32

The Fantastic Four Forces of Nature: Enter the Higgs Field��� 33

Standard Model and the Super-Equation of Physics�� 35

Chasing the Unexplained�� 36

Dark Energy Will Determine the Ultimate Fate of the Universe�� 39

Beyond the Standard Model��� 40

Exercises�� 42

Table of Contents

vi

Chapter 2: Richard Feynman, Demigod of Physics, Father of the Quantum
Computer��� 49

Mysteries of QFT: The Plague on Infinities��� 50

Electron Scattering According to QED�� 51

Perturbation Theory: If You Can’t Do Something Perfectly, Maybe Near Enough Is Good
Enough��� 53

Tackling Those Pesky Infinities with Renormalization�� 53

Renormalization: Electrons Do Not Have Infinite Mass��� 55

QFT’s Holy Trinity: Perturbation Theory, Renormalization, and Feynman Diagrams��������������� 56

Feynman Diagrams: Formulas in Disguise��� 57

Feynman Approach to Quantum Mechanics: The Path Integral�� 57

Unraveling the Impossible: Feynman Diagrams to the Rescue�� 58

A Few Simple Diagram Rules Are All That Is Needed��� 60

The Strangeness of Virtual Particles��� 64

The Power of Feynman Diagrams to Simplify QFT-QED Calculations������������������������������������� 65

Antimatter As Time Reverse Matter and the Mirror Universe��� 67

The Foundations of Quantum Theory Rest on Symmetries�� 68

Broken Symmetries Threaten to Break All of Physics Along with Them��������������������������������� 74

Particles in a Rewinding Universe�� 80

CPT Is Safe: The 70-Year Rollercoaster Ride for the Symmetries of Nature��������������������������� 81

Exercises�� 82

Chapter 3: �Behold, the Qubit Revolution�� 87

Your Friendly Neighborhood Quantum Computer��� 87

Two-Photon Quantum Interference��� 93

Mathematics Behind Photonic Interference��� 95

Output States of the Control-Z Gate��� 97

Lowering Error Rates�� 99

Superconducting Loops vs. Linear Optics�� 100

Superconducting Loops�� 100

Breaking Out of the Lab: IBM-Q Qubit Design��� 102

Pros and Cons of Superconductor Loops��� 109

Table of Contents

vii

The Many Flavors of the Qubit��� 110

Exercises�� 116

Chapter 4: Enter IBM Quantum: A One-of-a-Kind Platform for
Quantum Computing in the Cloud�� 119

Getting Your Feet Wet with IBM Quantum�� 120

Quantum composer�� 120

Quantum Gates��� 121

Quantum Backends Available for Use��� 123

Entanglement: Bell and GHZ States��� 128

Two Qubit Entanglement with Bell States�� 128

Three Qubit Entanglement with GHZ States Tests�� 133

Super Determinism: A Way Out of the Spookiness. Was Einstein Right All Along?��������������� 136

Remote Access via the REST API��� 139

Authentication�� 140

List Available Backends�� 141

Get Backend Parameters�� 143

Get the Status of a Processor’s Queue��� 146

List Jobs in the Execution Queue��� 147

Get Account Information��� 149

List User’s Experiments�� 150

Run a Job on Hardware�� 152

Get the API Version��� 154

Exercises�� 155

Chapter 5: �Mathematical Foundation: Time to Dust Up That Linear Algebra��������� 159

Qubit 101: Vector, Matrices, and Complex Numbers�� 160

Transpose of a Matrix MT�� 161

Conjugate Transpose or Adjoint Mϯ��� 162

Complex Numbers: The Mathematical Magic Hats��� 162

Euler’s Identity: A Wonderful Masterpiece��� 164

Tensor Product of a Matrix ⊗�� 165

Table of Contents

viii

Postulates of Quantum Mechanics�� 167

Postulate 1: State and Vector Space��� 167

Postulate 2: Observables and Operators�� 167

Postulate 3: Measurement�� 168

Postulate 4: Collapse of the Wave Function�� 168

Postulate 5: Unitary Transformations�� 169

Linear Algebra and Quantum Mechanics Cheat Sheet��� 169

Algebraic Representation of the Qubit��� 172

Dirac’s Ket Notation�� 172

Superposition Is a Fancy Word��� 174

Kets Are Column Vectors�� 174

Orient Yourself in the Bloch Sphere��� 174

Changing the State of a Qubit with Quantum Gates��� 176

NOT Gate (Pauli X)��� 177

Truly Quantum: Super Positions with the Hadamard Gate�� 178

Measurement of a Quantum State Is Trickier Than You Think�� 179

Generalized Single Qubit Gates�� 180

Unitary Matrices Are Good for Quantum Gates��� 181

Other Single Qubit Gates�� 182

Qubit Entanglement with the Controlled-NOT Gate�� 182

Universal Quantum Computation Delivers Shortcuts over Classical Computation��������������������� 184

Gate Identity Cheat Sheet�� 184

Quantum Gate vs Boolean Gate Cheat Sheet��� 186

Exercises�� 187

Chapter 6: �Qiskit, Awesome SDK for Quantum Programming in Python��������������� 189

Installing Qiskit�� 189

Setting Up in Windows��� 190

Setting Up in Linux CentOS��� 191

Credentials Configuration��� 195

Table of Contents

ix

Your First Quantum Program�� 196

Quantum Lab: A Hidden Jewel Within the Cloud Console��� 199

SDK Internals: Circuit Compilation�� 201

Running in a Real Quantum Device�� 206

Result Visualization Types�� 213

Noise Models and Fake Providers�� 218

Exercises�� 222

Extended Qiskit Exercises�� 223

Chapter 7: Start Your Engines: From Quantum Random Numbers to
Teleportation and Super Dense Coding�� 229

Quantum Random Number Generation�� 229

Random Bit Generation Using the Hadamard Gate��� 230

Putting Randomness Results to the Test�� 235

Super Dense Coding��� 237

Circuit for composer��� 239

Running in Python�� 240

Looking at the Results�� 242

Quantum Teleportation��� 244

Circuit for composer��� 246

Running in Python�� 247

Looking at the Results�� 252

Exercises�� 254

Chapter 8: Game Theory: With Quantum Mechanics, Odds Are Always
in Your Favor��� 259

Counterfeit Coin Puzzle�� 260

Counterfeit Coin, the Quantum Way�� 262

Step 1: Query the Quantum Beam Balance�� 262

Step 2: Construct the Quantum Balance��� 265

Step 3: Identify the False Coin�� 266

Generalization for Any Number of False Coins��� 270

Table of Contents

x

Mermin-Peres Magic Square��� 271

Mermin-Peres Magic Square Exercise��� 272

Quantum Winning Strategy��� 273

Shared Entangled State�� 273

Unitary Transformations��� 275

Measure in the Computational Basis�� 281

Answers for the Mermin-Peres Magic Square Exercise��� 286

Chapter 9: Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and
Simon’s Algorithms��� 289

Phase Kickback�� 291

Kickback with Arbitrary Phases��� 293

Deutsch-Jozsa��� 294

Bernstein-Vazirani (BV)�� 299

Simon’s Algorithm�� 302

Rules for Simon Oracle Construction�� 307

Dissecting Simon’s Oracle�� 307

Extended Practice Exercises�� 310

Chapter 10: Advanced Algorithms: Unstructured Search and Integer
Factorization with Grover and Shor��� 313

Quantum Unstructured Search��� 314

Phase Inversion�� 315

Inversion About the Mean��� 316

Practical Implementation��� 318

Generalized Circuit��� 321

Integer Factorization with Shor’s Algorithm��� 324

Challenging Asymmetric Cryptography with Quantum Factorization����������������������������������� 325

Period Finding�� 326

Shor’s Algorithm by ProjectQ�� 330

Table of Contents

xi

Chapter 11: Quantum in the Real World: Advanced Chemistry and
Protein Folding�� 339

The Significance of Eigenvalues�� 339

Eigenvalues in a Quantum Computer��� 342

Why Use a Quantum Computer�� 343

Molecule Ground States��� 344

The Lattice�� 344

The Heisenberg Spin ½ Hamiltonian�� 346

The VQE�� 350

The Results��� 352

Protein Folding��� 355

The Protein Folding Problem�� 356

Protein Folding Using a Quantum Computer�� 357

Exciting Times Lie Ahead��� 364

�Appendix: Exercise Answers��� 367

Index�� 399

Table of Contents

xiii

About the Author

Vladimir Silva was born in Quito, Ecuador. He received a System’s Analyst degree from

the Polytechnic Institute of the Army in 1994. In the same year, he came to the United

States as an exchange student pursuing an M.S. degree in Computer Science at Middle

Tennessee State University. After graduation, he joined IBM as a software engineer. His

interests include Quantum Computing, Neural Nets, and Artificial Intelligence. He also

holds numerous IT certifications including OCP, MCSD, and MCP. He has written many

technical books in the fields of distributed computing and security. His previous books

include Grid Computing for Developers (Charles River Media), Practical Eclipse Rich

Client Platform Projects (Apress), Pro Android Games (Apress), and Advanced Android 4

Games (Apress).

xv

About the Technical Reviewer
Jason Whitehorn is an experienced entrepreneur and soft-

ware developer and has helped many companies automate

and enhance their business solutions through data synchro-

nization, SaaS architecture, and machine learning. Jason

obtained his Bachelor of Science in Computer Science from

Arkansas State University, but he traces his passion for de-

velopment back many years before then, having first taught

himself to program BASIC on his family’s computer while

still in middle school.

When he’s not mentoring and helping his team at work, writing, or pursuing one of

his many side-projects, Jason enjoys spending time with his wife and four children and

living in the Tulsa, Oklahoma, region. More information about Jason can be found on his

website: https://jason.whitehorn.us.  

https://jason.whitehorn.us

xvii

Introduction

�The Quantum Computing Revolution
I wrote this book to be the ultimate guide for programming a quantum computer in the

cloud. IBM has made their quantum rig (known as the IBM Quantum) available not

only for research but for individuals, in general, interested in this exciting new field of

computing.

Quantum computing is gaining traction and now is the time to learn to program

these machines. In years to come, the first commercial quantum computers should be

available, and they promise significant computational speedups compared to classical

computers. Nowhere is this more apparent than in the field of cryptography where the

quantum integer factorization algorithm can outperform the best classical solution by

orders of magnitude, so much so that a practical implementation of this algorithm will

render current asymmetric encryption useless.

All in all, this book is a journey of understanding. You may find some of the concepts

explained throughout the chapters difficult to grasp; however, you are not alone. The

great physicist Richard Feynman once said: “If somebody tells you he understands

quantum mechanics, it means he doesn’t understand quantum mechanics.” Even the

titans of this bizarre theory have struggled to comprehend what it all means.

I have tried to explore quantum computation to the best of my abilities by using real-

world algorithms, circuits, code, and graphical results. Some of the algorithms included

in this manuscript defy logic and seem more like voodoo magic than a computational

description of a physical system. This is the main reason I decided to tackle this subject.

Even though I find the mind-bending principles of quantum mechanics bizarre, I’ve

always been fascinated by them. Thus, when IBM came up with its one-of-a-kind

quantum computing platform for the cloud and opened it up for the rest of us, I jumped

to the opportunity of learning and creating this manuscript.

Ultimately, this is my take on the subject, and I hope you find as much enjoyment

in reading it as I did writing it. My humble advice: Learn to program quantum

computers; soon they will be ever present in the data center, doing everything from

search and simulations to medicine and artificial intelligence. Here is an overview of the

manuscript’s contents.

xviii

�Chapter 1: Quantum Fields: The Building Blocks
of Reality
It all began in the 1930s with Max Planck’s reluctant genius. He came up with a new

interpretation for the energy distribution of the light spectrum. He started it all by

unwillingly postulating that the energy of the photon was not described by a continuous

function, as believed by classical physicists, but by tiny chunks, which he called quanta.

He was about to start the greatest revolution in science in this century: quantum

mechanics. This chapter is an appetizer to the main course and explores the clash

of two titans of physics: Albert Einstein and Niels Bohr. Quantum mechanics was a

revolutionary theory in the 1930s, and most of the scientific establishment was reluctant

to accept it, including the colossus of the century: Albert Einstein. Fresh from winning

the Nobel Prize, Einstein never accepted the probabilistic nature of quantum mechanics.

This caused a rift with its biggest champion: Niels Bohr. The two greats debated it out

for decades and never resolved their differences. Ultimately, quantum mechanics

has withstood 70 years of theoretical and experimental challenges, to emerge always

triumphant. Read this chapter and explore the theory, experiments, and results, all

under the cover of the incredible story of these two extraordinary individuals.

�Chapter 2: Richard Feynman, Demigod of Physics,
Father of the Quantum Computer
In the 1980s, the great physicist Richard Feynman proposed a quantum computer. That

is a computer that can take advantage of the principles of quantum mechanics to solve

problems faster. The race is on to construct such a machine. This chapter explores, in

general terms, the basic architecture of a quantum computer: qubits – the basic blocks

of quantum computation. They may not seem like much but they have almost magical

properties: Superposition, believe it or not, a qubit can be in two states at the same time:

0 and 1. This is a concept hard to grasp at the macroscale where we live. Nevertheless,

at the atomic scale, all bets are off. This fact has been proven experimentally for over

70 years. Thus, superposition allows a quantum computer to outmuscle a classical

computer by performing large amounts of computation with relatively small numbers

of qubits. Another mind-bender is qubit entanglement: entangled qubits transfer states,

when observed, faster than the speed of light across time or space! Wrap your head

Introduction

xix

around that. All in all, this chapter explores all the physical components of a quantum

computer: quantum gates, types of qubits such as superconducting loops, ion traps,

topological braids, and more. Furthermore, the current efforts of all major technology

players in the subject are described, as well as other types of quantum computation such

as quantum annealing.

�Chapter 3: Behold, the Qubit Revolution
In this chapter, we look at the basic architecture of the qubit as designed by the

pioneering IT companies in the field. You will also learn that although qubits are mostly

experimental and difficult to build, it doesn’t mean that one can’t be constructed with

some optical tools and some ingenuity. Even if a little crude and primitive, a quantum

gate can be built using refraction crystals, photon emitters, and a simple budget. This

chapter also explores superconducting loops as the de facto method for building qubits

along with other popular designs and their relationship to each other.

�Chapter 4: Enter IBM Quantum: A One-of-a-Kind
Platform for Quantum Computing in the Cloud
In this chapter, you will get your feet wet with the IBM Q Experience. This is the first

quantum computing platform in the cloud that provides real or simulated quantum

devices for the rest of us. Traditionally, a real quantum device will be available only for

research purposes. Not anymore, thanks to the folks at IBM who have been building this

stuff for decades and graciously decided to open it up for public use.

Learn how to create a quantum circuit using the visual composer or write it down

using the excellent Python SDK for the programmer within you. Then execute your

circuit in the real thing, explore the results, and take the first step in your new career as a

quantum programmer. IBM may have created the first quantum computing platform in

the cloud, but its competitors are close behind. Expect to see new cloud platforms soon

from other IT giants. Now is the time to learn.

Introduction

xx

�Chapter 5: Mathematical Foundation: Time to Dust
Up That Linear Algebra
Matrices, complex numbers, and tensor products are the holy trinity of quantum

computing. The bizarre properties of quantum mechanics are entirely described by

matrices. It is the rich interpretation of matrices and complex numbers that allows for a

bigger landscape resulting in an advantage over traditional scaler-based mathematics.

Quantum mechanics sounds and looks weird but at the end is just fancy linear algebra.

�Chapter 6: Qiskit, Awesome SDK for Quantum
Programming in Python
Qiskit stands for Quantum Information Software Kit. It is a Python SDK to write quantum

programs in the cloud or a local simulator. In this chapter, you will learn how to set up

the Python SDK on your PC. Next, you will learn how quantum gates are described using

linear algebra to gain a deeper understanding of what goes on behind the scenes. This

is the appetizer to your first quantum program, a very simple thing to familiarize you

with the syntax of the Python SDK. Finally, you will run it in a real quantum device. Of

course, quantum programs can also be created visually in the composer. Gain a deeper

understanding of quantum gates, the basic building blocks of a quantum program. All

this and more is covered in this chapter.

�Chapter 7: Start Your Engines: From Quantum
Random Numbers to Teleportation and Super
Dense Coding
This chapter is a journey through three remarkable information-processing capabilities

of quantum systems. Quantum random number generation explores the nature of

quantum mechanics as a source of true randomness. You will learn how this can be

achieved using very simple logic gates and the Python SDK. Next, this chapter explores

two related information processing protocols: super dense coding and quantum

teleportation. They have exuberant names and almost magical properties. Discover

their secrets, write circuits for the composer, execute remotely using Python, and finally

interpret and verify their results.

Introduction

xxi

�Chapter 8: Game Theory: With Quantum Mechanics,
Odds Are Always in Your Favor
Here is a weird one: this chapter explores two game puzzles that show the remarkable

power of quantum algorithms over their classical counterparts – the counterfeit coin

puzzle and the Mermin-Peres Magic Square. In the counterfeit coin puzzle, a quantum

algorithm is used to reach a quartic speed up over the classical solution for finding a fake

coin using a balance scale a limited number of times. The Mermin-Peres Magic Square

is an example of quantum pseudo-telepathy or the ability of players to almost read each

other’s minds, achieving outcomes only possible if they communicate during the game.

�Chapter 9: Quantum Advantage with Deutsch-Jozsa,
Bernstein-Vazirani, and Simon’s Algorithms
This chapter looks at three algorithms of little practical use but important, because they

were the first to show that quantum computers can solve problems significantly faster

than classical ones: Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s algorithms. They

achieve significant performance boost via massive parallelism by using the Hadamard

gate to put the input in superposition. They also illustrate critical concepts such as

oracles or black boxes that perform some transformation on the input, and phase

kickback, a powerful technique used to alter the phase of inputs so they can cancel

each other.

�Chapter 10: Advanced Algorithms: Unstructured
Search and Integer Factorization with Grover
and Shor
This chapter showcases two algorithms that have generated excitement about the

possibilities of practical quantum computation: Grover’s Search, an unstructured

quantum search algorithm capable of finding inputs at an average of the square root of

N steps. This is much faster than the best classical solution at N/2 steps. It may not seem

that much, but when talking about very large databases, this algorithm can crush it in

the data center. Expect all web searches to be performed by Grover’s in the future. Shor’s

Introduction

xxii

Integer Factorization: the notorious quantum factorization that experts say could bring

current asymmetric cryptography to its knees. This is the best example of the power

of quantum computation by providing exponential speedups over the best classical

solution.

�Chapter 11: Quantum in the Real World: Advanced
Chemistry and Protein Folding
Quantum is already working hard to make a difference in the fields of Chemistry and

Medicine. This chapter showcases two amazing real-life experiments that illustrate

its power: ground states are important in molecular chemistry, with most elements

modeled using lattices where vertices represent interacting atoms. In this chapter, you

will learn how to minimize the energy Hamiltonian of a molecule to reach its ground

state using lattices. Next, proteins are the fundamental building blocks that power all

life. Reliably predicting protein structures is extremely complicated and can change

our understanding of nature. In this experiment, you will learn about protein amino

acids, peptides, chains, nomenclature, and more; and best of all, you will learn how its

structure can be predicted using a quantum computer.

Introduction

1

CHAPTER 1

Quantum Fields:
The Building Blocks
of Reality
The beginning of the 20th century, more specifically 1930s Europe, witnessed the

dawn of arguably one of the greatest theories in human history: quantum mechanics.

After almost a century of change, this wonder of imagination has morphed and taken

many directions. One of these is quantum field theory (QFT) which is the subject of this

chapter. If you enjoy physics and wish to understand why things are the way they are,

then you must get your feet wet with QFT. It has been called the most successful theory

in history, riding high since the 1950s and giving rise to the standard model of particle

physics. This is the modern view of how nature works at the smallest scale, being proven

right time and again by countless experiments and instruments like the Large Hadron

Collider (LHC). All in all, the story of how QFT came to be, and the Masters of Physics

behind it, is a tale of wonder, furious rivalry but ultimate collaboration.

Our story begins in 1900 when Lord Kelvin stood in front of the British Science Royal

Society and enunciated: “There is nothing else to be discovered in physics” – a powerful

statement at the time but clearly wrong in hindsight. Perhaps, we should thank the lord

for such a bold proclamation because it is statements like that that drive others to prove

them wrong. This was put to the test 30 years later in Germany.

Around the 1930s, the great German physicist Max Plank (1858–1947) was working

on the black-body radiation problem, more specifically in the ultraviolet catastrophe.

To understand this problem, let’s backtrack to the physics of how materials glow in

multiple colors at different temperatures. In 1900 British physicist Lord Rayleigh derived

an approximation to predict that process. To accomplish his task, Rayleigh used the

so-called black body, a simple object that would absorb and emit light but not reflect it.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_1

https://doi.org/10.1007/978-1-4842-9991-3_1

2

Note that the term black doesn’t mean its color is black but that it simply absorbs and

emits light but does not reflect it, so when observed, you’ll see its glow or radiation.

Rayleigh’s work is known as the Rayleigh-Jeans law for spectral radiation of a black body

as a function of its wavelength λ (lambda) and its temperature in Kelvin degrees (K) (see

Equation 1.1):

	
B T cK TB
� �
� � � 2

4 � (1.1)

where

•	 c = speed of light (299792458 m/s)

•	 KB, the Boltzmann constant = 1.38064852 × 10-23 m2 kg s-2 K-1

•	 λ = wavelength

•	 T = temperature in Kelvin degrees

�Enter Max Planck, the Father of Quantum Mechanics
The Rayleigh-Jeans law works great for higher wavelengths (in the infrared spectrum

outside of visible light) but gives infinite values in the visible spectrum. Figure 1-1 shows

a graph of the Rayleigh-Jeans spectral radiance for wavelengths of visible and infrared for

a black body at 5000 degrees Kelvin. This is what is known as the ultraviolet catastrophe:

the infinite values of radiation of light in the visible spectrum as predicted by classical

physics. This is simply not possible; if this was true, then we’ll all get cooked up by simply

getting close to a candle light! Max Planck realized this and found a solution in the 1930s

earning him a Nobel Prize and a place in history.

Chapter 1 Quantum Fields: The Building Blocks of Reality

3

Figure 1-1.  Graph of the Rayleigh-Jeans law vs. Planck’s solution for the
ultraviolet catastrophe

Planck altered Rayleigh’s original derivation by changing the formula to match

experimental results as shown in Equation 1.2.

	
B T cK TB
� �
� � � 2

4 � (1.1)

	

B T hc

e
hc
K TB

�
�

�
�

,� � �
�

2 1

1

2

5

�
(1.2)

where h is Planck’s constant = 6.62 × 10-34 m2kg/s.

He made an incredible assumption for the time: energy can be emitted or absorbed

in discrete chunks which he called quanta: E hv h c
� �

�
 where v is the frequency. Note

that frequency equals the speed of light divided by the wavelength v c
�
�

. This may

seem trivial nowadays, but in the 1930s was ground-breaking; not even Planck fully

understood what he had unleashed. He gave birth to a brand new theory: quantum

mechanics.

Chapter 1 Quantum Fields: The Building Blocks of Reality

4

�Planck Hits the Jackpot, Einstein Collects
a Nobel Prize
So at the time, Planck didn’t realize how huge his postulate of energy quanta was, as he

admitted that his solution for the ultraviolet catastrophe was simply a workaround for

the maths of the Rayleigh-Jeans law to make it fit well-known experimental results. To

grasp the power of this postulate, one must look at the view of the nature of light pre-post

Planck’s era.

�The Nature of Light Before Planck
Since the 19th century, it was well accepted that light behaved like a wave. Scottish

physicist James Clerk Maxwell (1831–1979) provided a description of the fundamental

properties of such waves (see Figure 1-2).

Figure 1-2.  The nature of light in the 19th century

•	 A fundamental property of a light wave is its wavelength or

lambda (λ).

•	 Look at the right side of Figure 1-2: At very short wavelengths, we

have lots of waves; the reverse is also true at higher wavelengths. This

is the frequency (v), a second fundamental property of light waves.	

It seems logical to assume that at high frequencies (short wavelengths), the energy of

the wave is higher (as there is more stuff flowing in) and that at lower frequencies (higher

wavelengths) the energy decreases. Therefore the energy (E) is directly proportional to

Chapter 1 Quantum Fields: The Building Blocks of Reality

5

its frequency (v) and inversely proportional to its wavelength (λ). This knowledge gave

rise to the standard spectrum of light in the 19th century:

•	 On the left side of the spectrum (at the shortest wavelengths between

1 picometer and 0.01 nanometers [nm]), sit the gamma rays: very

dangerous, the usual result of a supernova explosion, they are the

most energetic. A gamma-ray burst from a supernova can destroy

everything in its path: all life on Earth, for example, even the solar

system. You don’t want to be in the crosshairs of a gamma-ray burst!

•	 Next, at a wavelength of 0.01–10nm, sit the well-known x-rays: very

helpful for looking inside of things: organic or inorganic, but still

dangerous enough to cause cancer over persistent exposure.

•	 At a wavelength of 10–400 nm, we have ultraviolet light (UV): this

is the radiation from the sun that gives life to our Earth but can be

harmful in high doses. Lucky for us, the ozone layer on Earth keeps

the levels in balance to make life possible.

•	 At a tiny sort after the UV range sits the visible light spectrum that

allows us to enjoy everything we see in this beautiful universe.

•	 Next, infrared at wavelengths up to 1050 nanometers. It is used

in industrial, scientific, military, law enforcement, and medical

applications. In such devices as night vision goggles, heat sensors,

and others.

•	 Finally, radio waves above the infrared range. These are used by most

human technology to send all kinds of information such as audio,

video, TV, radio, cell phones, you name it.

�After Planck, Physics Will Never Be the Same
In the 1930s Planck turned the classical understanding of the nature of light upside

down. Even though his postulate of energy quanta was dubbed lunacy by most physicists

and remained unnoticed for years, it will take another giant of the century, Albert

Einstein, to seize on this discovery and come up with a brand new interpretation of light.

Thus, the photon was born.

Chapter 1 Quantum Fields: The Building Blocks of Reality

6

This is not well known to most people, but Einstein didn’t win a Nobel Prize for

his masterpiece on The Theory of Relativity, but for his work on the quantum nature

of light and the photoelectric effect. Using Planck’s idea, Einstein imagined light as

discrete waves (particles) which he called photons. He used this to solve a paradox in the

photoelectric effect unknown at the time (see Figure 1-3).

Figure 1-3.  A fresh idea on the photoelectric effect earned Einstein the Nobel Prize
in Physics in 1921

As its name indicates, the photoelectric effect seeks to describe the behavior

of electrons over a metal surface when light is thrown in the mix. To this end, the

experiment in Figure 1-3 was devised:

•	 Start with two metal plates. Let’s call them the emitter and the

collector. Both are attached via a cable to a battery. The negative

end of the battery is connected to the emitter, and the positive to the

collector.

Chapter 1 Quantum Fields: The Building Blocks of Reality

7

•	 As we all know, electrons have a negative charge; thus, they flow

to the emitter while the positive charge gathers in the collector.

Remember also that opposite charges attract.

•	 The idea is to measure the kinetic energy of the electrons when they

flow from the emitter to the collector when a light source is thrown

into the emitter. To achieve this accurately, a vacuum is set among

the two.

•	 If light flows as a wave as classical physics demands, then when

the light hits the electrons, they will become energized and escape

the surface of the emitter toward the collector. Furthermore, as the

intensity (the amount) of light is increased, more electrons will get

energized and escape in larger quantities. This increase in charge can

be measured by the gauge as shown.

However, this is not what happens. Two things were observed in reality:

	 1.	 The increase in charge (the kinetic energy of the electrons) does

not depend on the intensity of the light but on its frequency.

	 2.	 Even stranger, not all frequencies energize the electrons to

escape the emitter. If we were to draw the kinetic energy (KE)

as a function of the frequency (f) (see the lower right side

of Figure 1-3), then there is a point in the curve (threshold

frequency) after which the electrons escape. Values below

this threshold and the electrons remain unchanged. This is a

puzzle indeed!

Einstein proposed a solution to this puzzle: by postulating that energy behaves as

a particle, he solved the paradox of item 2 of the list. Imagine that you are at the county

fair looking to win a prize by knocking down pins with a ball. If you throw marbles at the

pins, they won’t budge; however, throw a baseball, and the pins will be knocked down

earning you that desired prize. This is what Einstein thought occurred in this situation.

Low frequency photons don’t have enough energy to power up the electrons to escape

the emitter. Increase the frequency of the light; it increases the energy of the electrons

so they escape generating a current that can be measured. From this, a mathematical

model can be derived (see Figure 1-4).

Chapter 1 Quantum Fields: The Building Blocks of Reality

8

Figure 1-4.  Equation for the photoelectric effect

Figure 1-4 shows a graph of the kinetic energy of the electron (EK) as a function

of the light frequency (f). At low frequencies, no electrons escape until the threshold

frequency is reached. Now, extend the line as shown by the dotted track in the figure,

and we have a straight line graph (note that the point at which the dotted track intersects

the Y axis is named by the Greek letter φ (Phi)). This is the energy needed to liberate the

electron. Thus, this line graph can be described by the algebraic equation Y = mx + c

where m is the gradient and c is the Y-intercept.

Now instead of Y, substitute the kinetic energy, with the gradient m being Planck’s

constant (h), the frequency (f) instead of x, and c being the energy needed to liberate or –φ.

Therefore, our line graph equality becomes Ek = hf − φ.

This is the equation for the photoelectric effect: the energy leftover after the electron

is liberated equals the energy given by the photon minus the energy needed to liberate it.

Tip I ncidentally, the first scientist to think of light as a particle was Isaac Newton.
He thought light traveled in small packets which he called co-puzzles. He also
thought these packets had mass; something that is incorrect. Unfortunately, this
idea never took off and lay dormant until it was revived by the Planck-Einstein
revolution of the 1930s.

Chapter 1 Quantum Fields: The Building Blocks of Reality

9

�Quantum Mechanics Comes in Many Flavors
There is little doubt that the 1930s were the golden age of physics in the 20th century.

Nobel prizes were awarded like candy, and it seemed that nothing could stop humanity

in its quest to unravel the secrets of nature. Since then, quantum mechanics has stood

tall for almost a century of endless theoretical and experimental challenges. All in all, it

has seen a good deal of change over the years. These are the so-called interpretations of

quantum mechanics, and they come in really bizarre flavors.

�Copenhagen Interpretation
This is the earliest consensus about the meaning of quantum mechanics, and was born

out of the golden age of physics with contributions from Max Planck, Niels Bohr, Werner

Heisenberg, and others in Copenhagen during the 1920s.

�The Revolution Begins with Planck, Bohr, and Schrödinger

Max Planck’s postulate of energy quanta started the revolution with contributions

by Einstein on the duality and/or quantum nature of light. That is, the idea that light

behaves as both a wave and a particle.

Danish physicist Niels Bohr (1885–1962) funded the Institute of Theoretical Physics

in Copenhagen in the 1920s to work on the brand-new field of atomic research. At the

time, the atom was thought to look like a tiny solar system with a nucleus at the center

made of protons, neutrons, and electrons orbiting around. This was known as the

Rutherford model, but it had a terrible problem: electric charge! If the negatively charged

electrons orbit around the positively charged nucleus, then as opposite charges attract,

the electrons will eventually collapse into the nucleus destroying all matter in existence.

Bohr foresaw this situation and used Planck’s idea of energy quanta to theorize that

electrons jump from one orbit to another by gaining or losing energy; something that

he called a quantum jump. This idea later became known as the Bohr atom, but it had

a weird characteristic: electrons didn’t simply travel from one orbit to another. They

instantaneously disappear from one orbit and reappear in another. This did not sit well

with another colossus of physics: Erwin Schrödinger.

Austrian physicist Erwin Schrödinger (1887–1961) is the father of the famous wave

function ѱ (Cyrillic - Psi). Schrödinger was looking to describe the energy of a physical

system; he came up with what is now considered the most powerful tool in physics in the

last century (see Figure 1-5).

Chapter 1 Quantum Fields: The Building Blocks of Reality

10

Figure 1-5.  Schrödinger wave function ѱ is the cornerstone of quantum mechanics

Schrödinger detested Bohr’s interpretation of the atom famously stating that “If I am

to accept the quantum jump, then I am sorry I ever got into the field of atomic research.”

As a matter of fact, his wave function was an attempt to defeat Planck-Bohr-Einstein. He

wanted to throw away the nascent theory of energy quanta and return to the continuous

classical model of wave physics, even pushing the idea that all reality can be described

entirely by waves. So why is ѱ used nowadays everywhere in quantum mechanics?

Thank this to our next physicist: Max Born.

German-Jewish physicist Max Born (1882–1970) took Schrödinger’s wave function

in an entirely new direction. Born proposed a probabilistic interpretation of ѱ, that

is, the state of a particle exists in constant flux, and the only thing we can know is the

probability of the particle at a given state. Born postulated that this probability is

P = ѱ2. Needless to say, Schrödinger didn’t like this at all as he thought his wave function

was being misused. He took a swing at Born with his now famous thought experiment:

the quantum cat. But before we check if the cat in the box is dead or alive and why,

consider this witty story: In the quintessential American cartoon Futurama (by Matt

Groening – creator of The Simpsons), our hero Fry enrolls in the police academy in

New-NewYork on Earth in the year 3000. One day while on patrol, Fry chases a bandit

carrying a mysterious box in the trunk of his car. Once in custody, the bandit is revealed

to be Werner Heisenberg. Fry looks at the box with a face full of trepidation and asks:

“What’s in the box?” To which Heisenberg replies, “a cat.” “Is the cat dead or alive?” asks

Fry. Heisenberg replies: “the cat is neither dead nor alive but in a superposition of states

with a probability assigned to each.” Long story short, Heisenberg the bandit is arrested

as a major violator of the laws of physics. This was a funny tale for the physics buff.

Nevertheless, it shows the quantum cat has become folklore, and the prime example

used to explain the probabilistic nature of quantum mechanics.

Chapter 1 Quantum Fields: The Building Blocks of Reality

11

The powerful Heisenberg’s uncertainty principle (HUP) is the work of German

physicist Werner Heisenberg (1901–1976), and it is one of the foundations of quantum

theory. It describes a degree of uncertainty in the relationship between the position (x)

and the momentum (ρ) of a particle. More clearly, we can measure the exact position

or momentum of a particle but not both. The uncertainty principle arises from the

fundamental wave-matter duality of quantum objects (see Figure 1-6).

Figure 1-6.  Uncertainty is a fundamental property of the wave-particle duality of
a quantum object’s complementary variables such as position and momentum

Tip A remarkable point is that at the beginning, this degree of uncertainty was
confused with the observer effect, which states that the act of measurement alters
the state of a quantum system. As a matter of fact, Heisenberg himself used the
observer effect as a physical explanation of this postulate. Since then this has
been proven untrue with a rigorous mathematical derivation of HUP provided by
physicist Earle Hesse Kennard in 1928.

The uncertainty principle has a profound effect in the world of thermodynamics:

for example, it gave rise to the notion of zero-point energy. In the Kelvin scale of

temperature, zero kelvin is called the absolute zero or the temperature at which

all molecular activity stops. This fact is forbidden by quantum mechanics and the

uncertainty principle because, if all molecular activity ceases, then the position and

momentum of a particle will be known. This is not possible; you either know the position

or the momentum of a particle but not both. Thus even at absolute zero, particles are

vibrating with a tiny amount of energy, hence the term zero-point energy.

Chapter 1 Quantum Fields: The Building Blocks of Reality

12

Austrian physicist Wolfgang Pauli (1900–1958) was a dear colleague of Einstein and a

Nobel laureate for the remarkable Exclusion Principle which states that no two electrons

can have the same set of quantum numbers. These numbers describe the state of the

electron; therefore, no two electrons can be in the same quantum state at a time. In

Pauli’s time, the chemical effect of the electron was described by a set of three quantum

numbers:

•	 n: The principal quantum number

•	 l: The orbital angular momentum

•	 ml: The magnetic quantum number

Pauli studied experimental results from chemical tests on the stability of atoms

with even vs. odd numbers of electrons. At the time it was thought that an atom with

even numbers of electrons was chemically more stable than one with odd numbers.

Furthermore, these numbers were thought to be arranged in symmetric clusters or

closed shells around the nucleus. Pauli realized that these complex shells can be reduced

to a single electron by adding a new quantum number to the trio above. Pauli introduced

a new two-valued quantum number that will later be known as the quantum spin. Pauli’s

discovery was later generalized for all particles in the standard model:

•	 Fermions: Named after one of the architects of the nuclear age

(Enrico Fermi), these obey Fermi-Dirac statistics and Pauli’s

exclusion principle. Fermions have a half-integer spin and include

electrons, quarks, and leptons (electrons, neutrinos).

•	 Bosons: These obey Bose-Einstein statistics and do not follow Pauli’s

exclusion principle. Furthermore, they have integer value spin and

include photons, gluons, W-Z bosons, and the almighty Higgs boson

(the so-called god particle).

Pauli’s exclusion principle is important in that it helps explain the complex shell

structure of atoms and its effect on their chemical stability. It also explains the way

atoms share electrons explaining the chemical variety of elements in nature and their

combinations. For this, Pauli received a Nobel Prize in 1945 for “a contribution through

his discovery of a new law of Nature, the exclusion principle or Pauli principle,” with the

incredible honor of being nominated by Albert Einstein.

Chapter 1 Quantum Fields: The Building Blocks of Reality

13

�The Genius of Paul Dirac

English physicist Paul Dirac (1902–1984) is considered one of the most significant

contributors to the development of quantum mechanics and quantum electrodynamics.

You probably heard of the term antimatter, that is, matter with the same mass as regular

matter but opposite charge. Dirac was the first to derive an equation to predict its

existence. Among many of Dirac’s contributions are

•	 Dirac equation: This equation is considered an incredible achievement

for quantum mechanics for two important reasons: First, it was an

attempt to account for special relativity (space-time coordinates)

within Schrödinger’s wave function (see Figure 1-7). Such a feat is

considered to be the holy grail of physics: merging relativity and

quantum mechanics into a single theory of everything. Unfortunately,

Dirac’s equation fell a little short of the feat of the millennium.

We’ll explain that later on. Second, it predicts the existence of

antimatter, unsuspected and unobserved at the time, yet confirmed

experimentally years later via experiments of particle colliders.

Figure 1-7.  The Dirac equation was the first attempt to inject relativistic space-
time in the context of quantum mechanics

Chapter 1 Quantum Fields: The Building Blocks of Reality

14

•	 Dirac’s intentions of treating the atom in a manner consistent

with relativity had a profound effect in the structure of matter. His

equation introduced two new mathematical objects which now are

fundamental in physics and quantum field theory:

•	 ak and β: These are 4x4 matrices closely related to Pauli’s

matrices. Remembering Pauli’s exclusion principle, it introduced

a new quantum number to explain electron shell clusters using

a 2x2 matrix that was later known as electron spin (or spinor). In

the same line, Dirac’s matrices are called bispinors.

•	 A four-component wave function ѱ: It has four components

because its evaluation at any given point is a bispinor. Physically,

it is interpreted as the superposition of a spin-up electron, spin-

down electron, spin-up positron, and spin-down positron. Note

that Dirac’s four-component wave function differs from Pauli’s

two-component wave function and Schrödinger’s wave function

for a single complex value.

•	 Hole theory: Dirac’s equation has solutions with negative energies.

To cope with this fact, Dirac introduced the hypothesis of Hole theory.

This theory postulates that the vacuum is a many body quantum state

where all the negative energy electron eigenstates are occupied. This

description came to be known as the Dirac sea. Furthermore, since

Pauli’s exclusion principle forbids two electrons from occupying the

same quantum state, additional electrons will be forced to occupy

a positive eigenstate with positive-energy electrons forbidden from

decaying into negative-energy eigenstates. Dirac reasoned that there

may be unoccupied negative-energy eigenstates in this sea which

he called holes reasoning that they behave like positively charged

particles because positive energy is required to create a particle-hole

pair from the vacuum. He initially thought that the hole may be the

proton; however, it was pointed out later that the hole should have

the same mass as the electron; thus, it could not be the proton as it

is around 1800 times as massive as the electron. This hole was later

identified as the positron which was discovered experimentally by

American physicist Carl Anderson in 1932!

Chapter 1 Quantum Fields: The Building Blocks of Reality

15

�Einstein vs. Bohr, Nonlocality and Spooky Action at a Distance
(EPR Paradox)

In the early part of the 19th century, an unknown battle was being fought by two titans

of physics: Niels Bohr and Albert Einstein. Einstein did not like Max Born’s probabilistic

interpretation of the wave function. He wanted to extend his relativity to the atomic

scale for a single unified theory of physics. Thus in 1935, he along with colleagues Boris

Podolsky and Nathan Rosen published the notorious EPR paradox. The goal of this paper

was to drive a coup de grâce at the heart of quantum mechanics by showing the absurdity

of one of its fundamental principles: entanglement. Entanglement is a fundamental

property of quantum systems that originates when two particles interact with each other.

For example, if one has spin-up, the other particle will instantaneously show spin-down

when measured, and thus they are said to be entangled. The bizarre part is that this

event occurs instantaneously across space, even time (nonlocality). So, for example, take

two entangled particles, leave one on Earth, and move the other to the edge of the solar

system, then perform a measurement on the spin of the first. The second particle at the

edge of the solar system will instantaneously take the opposite spin value. This seemed

absurd to Einstein who believed that the speed of light was the ultimate speed limit in

the universe. If nothing can travel faster than light, how can the first particle notify the

other about its spin instantaneously? Einstein called this spooky action at a distance.

Tip E instein abhorred the probabilistic interpretation of quantum mechanics
because he could not bear the idea that the act of observation (measurement) is
what defines the state of a particle. He believed that states (properties) of a particle
were defined at the moment of its creation, famously writing to Bohr, “God does
not throw dice.” To which Bohr replied: “You should stop telling God what to do.”
Einstein sought to defeat this idea, and he spent the last decades of his life looking
for the holy grail of physics: a unified theory of relativity and quantum mechanics.
He was unsuccessful, and so the holy grail still eludes us: the mother of all
equations to unite the Heavens, the Earth, and the atom.

Chapter 1 Quantum Fields: The Building Blocks of Reality

16

�Bell’s Theorem Settles Einstein vs. Bohr and the EPR Paradox

Einstein vs. Bohr raged over the years with no clear winner in sight. Both physicists

passed away without settling their differences. However, in 1964, Irish physicist John

Stewart Bell (1928–1990) published a theorem to settle things once and for all. Bell’s

theorem did not seek to prove who’s right: quantum mechanics or relativity. It simply

provides the means to test the principle of nonlocality in entangled particles. In simple

terms, Bell’s theorem states that the sum of probabilities for a correlated three variable

quantum system is less than or equal to 1. That is, P (A = B) − P(A = C) − P (B = C) ≤ 1.

Figure 1-8.  Explanation of Bell’s theorem using photon polarization at
three angles

To illustrate Bell’s theorem, consider photon polarization at three different angles

(A, B, and C) in Figure 1-8. We seek to calculate the minimum probability that the

polarization (indicated by +/−) for two neighbors is the same. For that purpose, we use a

table with the eight possible permutations of A, B, and C plus the neighbor polarization

(+/− columns 5,6,7). We also calculate the sum and average. Note that equal neighbor

polarization is indicated by ++ or −− in which case we count a 1. The average is the sum

divided by 3. The results above show that the minimum probability must be greater than

Chapter 1 Quantum Fields: The Building Blocks of Reality

17

or equal to 1/3; what Bell’s theorem is saying here is that if reality is defined by the act of

observation as quantum mechanics predicts, then the minimum probability must be less

than 1/3.

On the other hand, if relativity is correct (the state of a particle is defined at creation),

then the probability must be greater than or equal to 1/3. Now the trick is to find out

if quantum mechanics violates Bell’s inequality. If it does, then our universe is bizarre

(Bohr and Planck were correct and quantum mechanics is saved). On the other hand,

if the inequality is not violated, then Einstein’s relativity wins and quantum mechanics

is wrong.

Amazingly, in 1982, French physicist Alain Aspect (1947–present) came up with

an experiment to test if quantum mechanics violates Bell’s theorem (see top right

side of Figure 1-8). The experiment used a laser and a calcium source to create pairs

of entangled photons. These photons travel in opposite directions passing through a

polarization filter with the results accounted for at the end. The goal was to calculate the

probability that both photons either pass thru or not at different angles, count the totals,

and see if the sum of probabilities is greater than or equal to 1/3. Remember that each

photon pair is entangled thus spooky action at a distance may occur when they pass the

filter. The results were astounding. The probability sum was around 1/4; Bell’s inequality

was violated as quantum mechanics predicted. It looks like God does throw dice after all!

Tip T he late physicist Steven Hawking (1942–2018) once said “Not only god
throws dice but he is a compulsive gambler.” Some predictions of quantum
mechanics are so bizarre that they escape understanding. Our brains are wired to
make sense of the world around us; however, at the quantum scale, some things
cannot be understood, only accepted.

Aspect’s experiment also took a shot at spooky action at a distance. Testing if a

photon is capable of telling its entangled partner about its polarization instantaneously

is not an easy task. To achieve this, the experiment was slightly modified to use an optical

switch that selectively shifts optical signals on or off at a rate of around 2 nanoseconds

(ns). Now it takes light traveling at 186 thousand miles/sec around 20 ns to travel

from one side of the experiment to the other (close to 14m). The goal was to run the

experiment again and see if the new results match the old ones. If they do then, the

photon was able to tell its partner about the polarization faster than light can travel from

one end of the experiment to the other, something that is forbidden by relativity which

Chapter 1 Quantum Fields: The Building Blocks of Reality

18

says that nothing in the universe can travel faster than the speed of light. The results

matched exactly in both instances: astounding and scary at the same time; imagine if

both photons were placed at the edges of the galaxy.

In an interview for the British BBC, John Bell spoke about these results: In physics,

some things escape our understanding, and we are left with no choice but to accept

them, as if reality is playing a trick on all of us. Amazing things occur at the quantum

scale, but the ultimate irony is that we cannot use them. Even though entangled particles

can send signals faster than light across huge distances, information cannot be sent in

the signal. A fact that is also predicted by quantum mechanics; what a bummer, forget

about texting your alien buddies on Alpha Centauri.

Tip I t is hard to believe that Bell’s masterful theorem remained unnoticed for
years. Of course, that changed to the point that prominent physicists have called it
“The most profound discovery in science.”

�Consciousness, Mysticism, and the Collapse
of the Wave Function

Quantum mechanics tells us that the states of particles exist in superposition within a

probabilistic curve or wave function. Furthermore, when a measurement is performed

on the particle via a detector or measuring device, the wave function is said to collapse

to a single state. Why the collapse remains a mystery, all we know is that the collapse

signifies the transition from the quantum to the classical realm. Nevertheless, this

seems to occur whenever a quantum system interacts with the outside world. When

such bizarre physical phenomena were discovered, physicists turned to philosophy and

mysticism to make sense of what is going on. As a matter of fact, sacred Hindu texts like

The Vedas, Bhagavad Gita, Ramayana, and Mahabharata have entities popping in and

out of existence. In the sacred text of the Rigveda, the speed of light is calculated at 2202

Yojanas in a half Nimesa which in ancient units translates to around 185K miles/second.

Quantum principles have been used through the ages to validate metaphysical

concepts such as divinity, consciousness, and positive thinking among others. But

setting all this aside, why has quantum mechanics convinced leading physicists of the

intrinsic role mind-consciousness could play in reality? There is a fundamental principle

Chapter 1 Quantum Fields: The Building Blocks of Reality

19

in science called causality. It is so embedded in our everyday existence that we take

it for granted: cause-and-effect, for every action there is an equal opposite reaction,

actions have consequences, etc. But what if there was scientific proof that causality can

be violated? Such proof will be incomprehensible as it would challenge the very fabric

of reality; after all, a scientist’s brain is wired to make sense of physical phenomena via

observation. Such an experiment does exist, and it is called the double-slit experiment

first performed by Thomas Young in 1801 (see Figure 1-9).

Figure 1-9.  The double-slit experiment showing wave-particle duality appears to
violate causality

In the double-slit experiment in Figure 1-9, photons originating from a laser beam

travel through a metal plate with two close slits with the resulting projection recorded

on a detector screen. In the first step, an observer or measuring device is placed on the

screen resulting in the interference pattern shown on top of the figure. In this case, the

pattern indicates that light behaves like a wave. Now, if the observer is moved close to

the two slits to look at which slit the photon goes through, then the resulting pattern

Chapter 1 Quantum Fields: The Building Blocks of Reality

20

changes to a cluster of two lines (bottom of the figure); here the photons behave like

particles. Why this happens is one of the great mysteries in physics. A few concrete

conclusions were drawn by experts at this point:

•	 The experiment illustrates the wave-particle duality of photons

intrinsic to all quantum phenomena. Note that since the days

Thomas Young first performed the experiment, the same results have

been replicated for electrons, atoms, and molecules; thus, the effect

applies to objects at the atomic-quantum scale only.

•	 Quantum systems are fundamentally probabilistic: There are no

exact answers in quantum mechanics, only the probability of an

object at a given state and its almighty wave function.

Then there are the really strange implications. The great American physicist Richard

Feynman once said of the double-slit experiment, “the secrets of quantum mechanics

can be gleaned from careful study of this single experiment.” There seems to be one or

two bizarre things at work here depending on how you look at them:

•	 Reality appears to be created or described by the act of observation. It

is our choice which defines the state in which the light is: particle or

wave. This is so strange; will things exist if the observer was removed?

Why do we need an observer in the first place? Who or what created

the observer?

•	 The arbitrary choice of moving the observer between the screen

and slits appears to travel back in time to decide in which state

the light should be (wave or particle). This goes beyond strange; a

more palatable explanation for this would be to think in terms of

superposition of states: the light exists in probabilistic superposition

of wave-particle states when not observed.

So the role consciousness plays in this saga remains. Is consciousness-observation

fundamental to our reality? If so, wouldn’t that challenge scientific dogma which says

that consciousness is an isolated illusion of the brain? Science allows us to gather

independent and verifiable evidence untainted by expectations and flourishes by

removing all traces of the mind from physical phenomena.

Chapter 1 Quantum Fields: The Building Blocks of Reality

21

Science seeks to build objective and reliable models of the world thriving on the

standard and verifiable experimental method. Quantum mechanics now seems to reveal

that, at the deepest level of nature, objective science is no longer possible. Could the

mind play an intrinsic role in the unfolding of the world? Max Planck once said: “It seems

like the mysteries of nature cannot be solved by ourselves as we are part of nature and thus

the mystery we are trying to solve in the first place.”

Tip S ome quantum mechanics principles appear to defy understanding, and
when faced with the unbelievable, master physicists like Planck, Schrödinger, and
others have turned to philosophy to make sense of their scientific discoveries.

�Many Worlds Interpretation
In the many worlds interpretation (MWI) of quantum mechanics, the wave function

is universal. It exists in all realities, and it does not collapse in our universe when we

observe phenomena. The multiverse is much weirder than we ever imagined.

In the Copenhagen interpretation, the collapse of the wave function signals the

transition between the quantum and classical realms. However, there is another way to

interpret this, which is in a set of infinite realities where all outcomes are possible.

When Erwin Schrödinger came up with his quantum cat thought experiment to

challenge the principle of superposition that he called absurd, he thought that if we open

the box and find out the cat is alive is because we are part of an entire quantum timeline

in which the poisoning of the cat never occurred. Nonetheless, there is an equally valid

timeline in which the cat died with another version of us experiencing it. Not only that,

but the number of timelines is infinite and occurs simultaneously. Sounds outrageous,

but it is a very serious interpretation of the mathematics.

Tip T he many worlds interpretation was proposed by American physicist Hugh
Everett (1930–1982) in his 1957 PhD thesis “Theory of the Universal Wave
Function.”

Chapter 1 Quantum Fields: The Building Blocks of Reality

22

In the context of the double-slit experiment, the Copenhagen interpretation says

that, at the moment of observation, all superimposed photon trajectories (histories)

merge (collapse) into a single timeline of the observer’s reality. The many worlds

interpretation on the other hand says that this merge never happens, all possible

histories continue, and we find ourselves in one of those timelines (see Figure 1-10).

Note that all histories are equally likely. However, some are similar to each other, and we

tend to land in the most common history.

Figure 1-10.  In MWI all possible photon trajectories continue in their own
timelines

Tip E verett’s idea was not taken seriously when first proposed, probably because
he was a graduate student at the time.

All in all, MWI may be the purest interpretation of quantum mechanics as its maths

does not require the collapse of the wave function. Nevertheless, the idea of realities

branching out of each other at every instance induces an existential crisis that could

justify its unpopularity. Imagine infinite versions of yourself out there going through

every possible life path. It just sounds too bizarre. All in all, the most important specifics

about MWI are

•	 Many worlds is a deterministic interpretation: It eliminates the

probabilities intrinsic to the wave function by postulating that

any given timeline is a predictable chain of cause and effect. No

superposition of states.

Chapter 1 Quantum Fields: The Building Blocks of Reality

23

•	 Even though it has gained popularity in recent years, there is no

evidence of its existence. It is supported by the mathematics of

quantum mechanics but still remains an interpretation.

•	 It has not provided predictions to distinguish itself from other

interpretations, nor is it complete in its explanation. It fails to explain

what happens when neighboring histories interact or why the wave

function translates to probabilities.

•	 Aside from the existential crisis it incites, it presents another deep

philosophical unease: What happens to free will? If we live in a

deterministic universe, then we are making all possible decisions at

any given time; therefore, we have no free will. A valid thesis yet a

dreadful view of existence.

�Supplementary Interpretations
When it comes to interpretations of quantum mechanics, Copenhagen and many worlds

are the most popular. Yet there are many more, which fall in two big categories: collapse

vs. no-collapse of the wave function, further classified by determinism, nonlocality

(spooky action at a distance), and observer presence. The following list describes some

of them according to the collapse of the wave function.

�Conscious Observer

Also known as the von Neumann-Wigner interpretation, proposed by Hungarian

mathematician John von Neumann (1903–1957) with contributions by Hungarian

physicist Eugene Wigner (1902–1995). It dwells in the realm of philosophy by

hypothesizing that the wave function is universal and that it is the consciousness of the

experimenter which collapses it. There is not much meat in the bones of this theory;

nevertheless, over the years it has branched into ideas such as

•	 Subjective reduction: As consciousness collapses the wave function,

there is a point of intersection between quantum mechanics and

mind-body. Researchers in this field are hard at work on finding a

correlation between conscious and physical events.

Chapter 1 Quantum Fields: The Building Blocks of Reality

24

•	 Participatory anthropic principle: Championed by legendary

American physicist John Archibald Wheeler (1911–2008). It says that

consciousness plays a role in bringing the universe into existence. A

bizarre idea, if things can get any weirder; all in all, consider this: if

consciousness may bring reality into existence, then what happened

before humans evolved to try to uncover it? Could a dinosaur’s

consciousness do the trick? Furthermore, if consciousness is an

intrinsic property of life, what happened before life evolved on Earth?

Did reality exist at the dawn of the solar system or after the big bang?

�Quantum Information

A truly fascinating theory, this is an attempt to eliminate the indeterminism (chance)

in the collapse of the wave function by taking cues from standard quantum physics

which says that information is recorded irreversibly. In this context, information means

a quantity that can be understood mathematically and physically, and irreversible

means that quantum states cannot roll back to previous ones due to the second law of

thermodynamics: entropy. Entropy states that the disorder (entropy) of the universe

can only increase. Perhaps, this could be better understood from the perspective of

the so-called arrow of time. That is, because time can only increase, and because of

Heisenberg’s uncertainty principle where quantum states are intrinsically random,

recorded information is irreversible due to the fundamental uncertainty of quantum

mechanics. All in all, the quantum information interpretation is based on three

principles:

•	 The wave function evolves deterministically, going through

all possibilities. A particle will randomly choose one of those

possibilities to become real.

•	 The conscious observer is allowed; however, it cannot gain

knowledge until information has been recorded irreversibly in the

universe. Once recorded, the information becomes knowledge in the

observer’s mind.

•	 The measuring apparatus is quantum not classical, but it can

be statistically determined and capable of recording irreversible

information. So is the human mind that gains knowledge.

Chapter 1 Quantum Fields: The Building Blocks of Reality

25

Tip I n this interpretation, there is only one world: the quantum world, and the
quantum to classical transition. Furthermore, the determinism of classical laws of
motion and causality are fundamentally statistical. Everything is probabilistic, but
near certainty.

The following theories eradicate the notion of the wave function collapse.

�Pilot Wave Theory

Also known as de Broglie-Bohm theory named after pioneer physicists Louis de Broglie

(1892–1987) and David Bohm (1917–1992). It accommodates the wave function with

the notion of configurations (the position of all particles in a quantum system). This

theory is deterministic (no randomness is allowed); this implies that configurations exist

even when systems are not observed (no superposition of states). It is also nonlocal and

accepts spooky (instantaneous) action at a distance. Most notable is the presence of a

guiding equation that governs the evolution of the configurations over time. In particular,

this theory consists of two components:

•	 A configuration for the entire universe. These are the positions of all

particles in our universe q(t) ∈ Q where Q is the configuration space.

•	 A pilot wave ѱ (q, t) ∈ C. This is a two-component wave function that

governs the evolution of the configuration over time (t).

So, at every moment there exists not only a wave function (pilot wave), but also

a well-defined configuration of the whole universe. This effectively gets rid of the

indeterminism of the Copenhagen interpretation and the superposition of states (no

quantum cat is allowed). Thus, what we perceive as reality is made by the identification

of the configuration of our brain with some part of the configuration of the whole

universe.

•	 Double-slit: In the context of the double-slit experiment, pilot wave

says that each photon has a well-defined trajectory that passes

exactly through one of the slits. This is in contrast to Copenhagen

which states that the photons are not localized in space until detected

(observed). Furthermore, the final position of the particle on the

detector screen and the slit through which it passes is determined

Chapter 1 Quantum Fields: The Building Blocks of Reality

26

by the initial position of the particle; with the crucial assumption

that the initial position is not knowable or controllable by the

experimenter, so there is an appearance of randomness in the pattern

of detection. According to Bohm, the wave function interferes with

itself and guides the particles through the quantum potential in such

a way that the particles avoid the regions in which the interference is

destructive and are attracted to the regions in which the interference

is constructive resulting in the pattern obtained experimentally.

•	 Relativity: Pilot wave conflicts with special relativity in the sense that

it is nonlocal (accepts instantaneous action at a distance). Over the

years, several extensions have been added in an attempt to overcome

this conflict. Bohm himself in 1953 presented an extension to the

theory using absolute time (where time is the same everywhere –

something that is a big no in special relativity; where time is highly

malleable and may be different relative to the position of the

observer).

•	 Heisenberg’s uncertainty principle: Copenhagen tells us that we

cannot measure two correlated variables (position and momentum)

in a quantum system at the same time due to the intrinsic uncertainty

of quantum mechanics. In pilot wave theory, however, we can

measure the position and momentum of a particle at the same time.

Each particle has a well-defined trajectory, as well as a wave function.

Observers have limited knowledge as to what this trajectory is (and

thus the position and momentum). It is the lack of knowledge of the

particle’s trajectory that accounts for the uncertainty.

•	 Entanglement and Bell’s theorem: Pilot wave theory makes the

same empirically correct predictions for the Bell test experiments as

ordinary quantum mechanics. This is because of the fundamental

nonlocality of this theory. As stated in the previous section (see Bell’s

theorem), in 1982 Alain Aspect showed experimentally that Bell’s

inequality is violated; furthermore, he showed the instantaneous

(faster than light) action between the two entangled photons as

predicted. Pilot wave theory describes the physics of Aspect’s

experiment by setting up a wave equation for both particles with

Chapter 1 Quantum Fields: The Building Blocks of Reality

27

the orientation of the apparatus affecting the wave function. It is the

wave function that carries the faster-than-light effect when changing

the orientation of the polarization filters. It is worth reiterating that

quantum mechanics as well as Bell’s theorem and pilot wave theory

do not allow information to travel faster than light. A very important

distinction.

�Time-Symmetric Theories

These are a set of theories championed by pioneers of quantum field theory Richard

Feynman and John Wheeler. They introduce the concept of retro-causality. This is the

notion that events in the future can affect ones in the past (just like events in the past

affect ones in the future). In time symmetry, a single measurement cannot describe

the state of a particle, but given two measurements performed at different times, it is

possible to calculate the exact state of the system at all intermediate times. This notion

affects the fundamentals of quantum systems in two ways:

•	 The collapse of the wave function is not a physical change to the

system, but a change in our knowledge of it due to the second

measurement.

•	 When it comes to entanglement, it is not a true physical state but just

an illusion created by ignoring retro-causality. The point where two

particles become entangled is simply a point where each particle

is being influenced by events that occur to the other particle in

the future.

�De-coherence

This is an interpretation introduced in 1970 by the German physicist Heinz Dieter Zeh

(1932–2018). According to Zeh, de-coherence is the loss of information from a system

into the environment. For this to occur the following must be true:

•	 Viewed in isolation, the system’s dynamics are non-unitary (this

means that the time evolution of a quantum state according to the

Schrödinger equation is represented by a non-unitary operator).

Although the combination of the isolated system and environment

evolves in a unitary fashion.

Chapter 1 Quantum Fields: The Building Blocks of Reality

28

•	 The dynamics of the system alone must be irreversible.

•	 Entanglements can be generated between the system and

environment having the effect of transferring quantum information

to the surroundings.

Even though de-coherence discards the collapse of the wave function, it is an

attempt to understand it. It does not generate an actual wave function collapse.

It only provides an explanation for its apparent collapse, as the quantum system

leaks information into the environment. Note that de-coherence fails to explain the

measurement problem¸ that is, how and why the wave function collapses. It tries to,

nonetheless, by the transition of states from the quantum system to the environment.

�From Quantum Mechanics to Quantum Fields:
Evolution or Revolution
After the golden age of physics in the 1930s, came what has been called the Second

Quantization Revolution spearheaded by the great British physicist Paul Dirac. He made

a profound contribution by finding a way to describe the behavior of the electron in

relativistic terms using his great equation. Dirac not only gave us a relativistic description

of the electron but also provided the basic recipe to quantize other properties of our

universe such as mass, charge, position, and energy. In the following years, these ideas

became the foundation to quantize all the subatomic forces in nature such as the weak,

strong nuclear forces, and electromagnetism. These are examples of what is now called

quantum field theory (QFT): the basis of modern physics.

Chapter 1 Quantum Fields: The Building Blocks of Reality

29

Figure 1-11.  Basic description of an electron quantum field (top) and the electron
emitting a photon (bottom)

The fundamentals of QFT are simple, yet as bizarre as the theory it splinters from:

•	 In the subatomic world, fields span the entire universe. There is a

field for each particle in the standard model: electrons, protons,

quarks, photons, etc.

•	 The particles we know and love are just localized vibrations in their

respective field.

•	 Fields can interact with one another to explain how particles are

created and destroyed.

To understand interactions between particles, consider Figure 1-11 showing an

electron field. The electron is a localized vibration in this field (top); if the electron emits

a photon, then QFT says that some of the energy of the electron sets up another vibration

in the photon field (bottom) which then moves away.

Chapter 1 Quantum Fields: The Building Blocks of Reality

30

Tip T he idea of a field was started around 250 years ago by the English
scientist Michael Faraday (1791–1867) with his experiments in electromagnetism.
Over a decade of experimentation, Faraday developed an intuition of how
electric and magnetic phenomena behave. The result: the modern view of the
electromagnetic field.

For a scientist like Faraday to come up with the abstract idea of a field spanning all of

space, in the 1700s, was one of the most revolutionary ideas in science. Faraday’s eureka

moment came when he realized the repelling action that resulted when trying to put two

magnets together. He imagined there is something in there even though we cannot see it.

He called this something, lines of force; we call it the magnetic field (see Figure 1-12).

Figure 1-12.  Faraday’s experiment in electromagnetic induction and his theory of
lines of force gave us the present notion of the electromagnetic field

It will take another 50 years for Faraday’s idea to be scientifically proved by his pupil

James Clerk Maxwell and later Heinrich Rudolf Hertz. Furthermore, another 150 years

for it to be used as the basis of QFT in modern day physics.

Tip  QFT takes ideas from quantum mechanics, such as energy flowing as
discrete chunks (quanta), and combines it with Faraday’s idea of fields which are
continuous, smooth objects oscillating in space. This is Faraday’s legacy: there are
no particles in our universe, only fields and the vibrations they produce. Thus, QFT

Chapter 1 Quantum Fields: The Building Blocks of Reality

31

seems like a simple combination of two old principles into a modern description
of reality; nevertheless, its mathematics are complicated. So much so that solving
most of the equations in QFT requires supercomputing power.

�We Are All Made of Quantum Fields, but We Don’t
Understand Them
In modern physics, the periodic table describes the basic particles we are all made of.

It starts with three particles: the electron (discovered by JJ Thomson in 1897) and two

quarks (up and down at the top of Figure 1-13). In the 1970s, we learned that the familiar

parts of the nucleus, the proton and neutron, are themselves made of smaller bits

quarks, with the proton made of two up quarks and one down quark and the neutron

made of two down quarks and an up quark.

Tip T he names of the quarks seem bizarre (up, down, strange, charm). Physicists
in the 1970s used these names for no good reason. It’s not like the up quark points
upward or the down quark points downward; they are simply names given by the
individuals who discovered them.

Figure 1-13.  The physics equivalent to the periodic table showing the basic
building blocks of the universe: the electron, neutrino, quarks, and the
fundamental forces of nature

Chapter 1 Quantum Fields: The Building Blocks of Reality

32

It is perplexing to imagine that all that exists can be made of different arrangements

of an electron and two quarks. It is a very simple and comforting picture but

unfortunately incomplete.

�The Recipe to Build a Universe
The periodic table of physics starts with the electron; the first and smallest particle

discovered and assigned a mass of one. The mass of all other particles in the standard

model is measured in terms of the mass of the electron.

•	 Besides the electron and up-down quarks that make up protons

and neutrons, a fourth particle, the neutrino (proposed by Pauli in

1930 to explain radioactive decay), was detected experimentally in

1956. The neutrino is tiny, with a millionth the mass of the electron;

it is not part of the atoms we are made of but emanates from solar

radiation and is very hard to detect due to its tiny size. As a matter of

fact, around 1014 neutrinos emanating from the sun are going through

your body every minute. They don’t interact with matter much, and

if we wish to build a neutrino observatory, we must do it deep inside

the Earth.

•	 Thus we have four particles that constitute the bedrock of our

universe; however, for an unknown reason, nature took these

four particles and reproduced them twice over (see the left side of

Figure 1-13). In the case of the electron, it turns out that there are two

extra particles that behave in the same exact way as the electron but

with different masses: the muon with a mass 200 times the electron,

and the tau, 3000 times heavier. Why do they exist? Remains a

mystery.

•	 The same principle applies to the neutrino. It comes in two extra

flavors: the muon neutrino and the tau neutrino except that all three

types have the same mass, 1-millionth smaller than the electrons.

•	 Finally, the two original quarks (up, down) are joined by four others:

strange, charm, bottom, and top, much more massive than their

archetypes.

Chapter 1 Quantum Fields: The Building Blocks of Reality

33

Tip P hysicists have a very clear understanding of the four cornerstone particles
(electron, neutrino, up-down quarks), their properties, and roles in nature; however,
why mother nature decided to reproduce them twice with different mass is
unknown, and the subject of active research in particle physics. There may be
more replicas out there hidden from our current collider technology.

QFT says everything is made of the 12 particle fields above, and these fields may

interact not only with each other but with the four fundamental forces of nature (see

Figure 1-13), which are also described by quantum fields:

•	 Two of these forces are very familiar: Gravity and electromagnetism.

They work at the galactic scale, and we feel them every day binding

the Heavens and the Earth.

•	 At the atomic scale there are two extra forces in action: The strong

nuclear force that holds the quarks that make protons and neutrons

together and the weak nuclear force which is responsible for

radioactive decay and the stars in the sky.

Tip I n QFT, the four forces in nature have their own field: Faraday discovered the
electromagnetic field. The field associated with the strong nuclear force is called
the gluon field; the field associated with the weak nuclear force is called the w-z
boson field.

There is a field associated with gravity too, described by Einstein as the fabric of

space-time. This is the foundation of his theory of relativity and the subject of much

discussion. You probably have heard that relativity and quantum mechanics are like oil

and water; they don’t mix at all. But that is the subject of another story.

�The Fantastic Four Forces of Nature: Enter the Higgs Field
In the universe we live in, everything that exists results from the combination and

interaction of all these fields; and the theory that comprises it all, the standard model.

It has a mundane name, but it is the most successful theory in science. But, there is

one extra field that became famous in recent years. The Higgs field was postulated by

Chapter 1 Quantum Fields: The Building Blocks of Reality

34

Scottish scientist Peter Higgs (1929–present) in the 1960s; you may know it by its nom

de guerre, the god particle. It is called that because the Higgs field is believed to be

responsible for the mass of all particles in the standard model. By the 1970s it became an

integral part of QFT, though experimental proof of its existence remained elusive until

2015 when ripples of the Higgs field were detected by the Large Hadron Collider (LHC)

in Switzerland (see Figure 1-14).

Figure 1-14.  Experimental results1 from LHC showing a crest around 125 Giga-
Electron-Volts (GeV). The crest is believed to be the so-called god particle or
Higgs boson

The Higgs boson is about 2.4 x 106 heavier than the electron and doesn’t last for long,

about 10-22 seconds. Higgs is the final piece of the puzzle, and it is important for two reasons:

•	 It is responsible for all the mass in the universe. It explains the

property we call particle mass as a manifestation of the interaction

of that particle’s field with the Higgs field. Higgs gives us a clear

understanding of the meaning of mass.

1 Image and results courtesy of the LHC-CMS available online at https://cms.cern/news/
cms-closes-major-chapter-higgs-measurements

Chapter 1 Quantum Fields: The Building Blocks of Reality

https://cms.cern/news/cms-closes-major-chapter-higgs-measurements
https://cms.cern/news/cms-closes-major-chapter-higgs-measurements

35

•	 It is the final piece of the jigsaw: Since the 1970s the standard model

has been incredibly successful in describing mother nature at the

atomic scale both at the theoretical and experimental level. Physicists

have been chasing the god particle since the 1970s and finally found

it in 2015; but it took the most expensive scientific instrument ever

built to do it: a 27 km superconducting ring and 46m long detectors

at an estimated cost of USD 4.4 billion.

�Standard Model and the Super-Equation of Physics
The current understanding of physics as described by the standard model has given

us a master equation that has been dubbed the theory of almost everything. That is

an equation that describes the behavior of the universe and everything on it (see

Figure 1-15).

Figure 1-15.  Lagrangian of the standard model of physics as displayed in coffee
mugs at CERN (image courtesy of2)

2 Sit down for coffee with the Standard Model. Available online at https://home.cern/news/
news/cern/sit-down-coffee-standard-model

Chapter 1 Quantum Fields: The Building Blocks of Reality

https://home.cern/news/news/cern/sit-down-coffee-standard-model
https://home.cern/news/news/cern/sit-down-coffee-standard-model

36

The so-called equation of almost everything is called a Lagrangian or an equation

to determine the state of a changing system and the maximum possible energy it can

maintain. This super equation encompasses everything we have seen so far: from

Faraday’s electromagnetic field, the 12 particle fields, the 4 fields for the forces of nature,

and the Higgs field:

•	 The first line describes the forces of nature: electromagnetism and

strong and weak nuclear forces.

•	 The second line describes how these forces act on the fundamental

particles of matter, namely, the quarks and leptons.

•	 The third line describes how these particles obtain their masses from

the Higgs boson.

•	 The last line enables the Higgs boson to do its job.

It looks like gibberish to the average man, but this equation correctly predicts the

result of every experiment done in science. It is the pinnacle of the reductionist approach

to physics. An astonishing achievement and our current limit of knowledge – the best we

can do so far.

�Chasing the Unexplained
In the cosmic game of science, every time you figure out a mystery, another one pops

out even more mysterious. The standard model super-equation may explain everything

that happens at the atomic scale; however, when looking at the sky, some things remain

unexplained:

•	 While studying the movement of galaxies and the gravity that holds

them together, astronomers found a discrepancy. Galaxies should

be moving away much faster than observed for the amount of matter

they contain, something is holding them, something that is invisible

(it doesn’t show on instruments and it doesn’t interact with light):

dark matter. Note that the name dark doesn’t mean the matter is

actually dark, but we simply don’t know what it is.

Chapter 1 Quantum Fields: The Building Blocks of Reality

37

•	 Dark matter may not be observable, but its gravitational effect can

be precisely measured and it surrounds all galaxies (at around 27%

of all mass energy – see Figure 1.16). Additionally, there is something

even more mysterious called dark energy. It is believed to be culpable

for the acceleration of the universe. In 1998 astronomers used the

light of supernovae to calculate the rate of expansion of the universe;

what they found is astounding: the universe is actually picking up

speed, and its ultimate fate is a topic of hot discussion. Some say it

will rip itself apart accelerating faster than light (Big Rip), others say

it will disintegrate into isolated stable particles such as electrons

and neutrinos, with all complex structures dissipating away (heat

death), while others say it will eventually stop and gravity will take

over resulting in a Big Crunch. All in all, dark energy makes up an

unbelievable 68% of all there is (see Figure 1-16).	

Figure 1-16.  Two mysterious things: dark matter and dark energy make up 95% of
the entire visible universe

•	 Inflation: Yet another enigma about the early life of the universe.

Inflation is the rapid phase of expansion of the early universe

discovered using the cosmic background radiation (CBR), and it is

believed to be the reason why galaxies, stars, planets, and ultimately

us humans exist the way we are. We know it happened, but it is not

explained by the standard model equation.

Chapter 1 Quantum Fields: The Building Blocks of Reality

38

Figure 1-17.  CBR image taken by the Wilkinson Microwave Anisotropy Probe
(WMAP) (left); a 3D simulation of a quantum fluctuation of the vacuum of
space (right)

In Figure 1-17 we see an image taken by NASA’s WMAP instrument which depicts

a snapshot of the early universe an instance after the big bang. The red, yellow, green,

and blue regions denote temperature variations with an average of 2.72 degrees Kelvin

(-273.15 C). The CBR is essentially an image of the fireball created by the big bang, and

the temperature variations (the flickering of colors in the image) are believed to be

caused by quantum fluctuations of the vacuum (right side of Figure 1-17). The reason

for this is the presence of quantum fields; even though particles didn’t exist in that early

time, quantum fields were everywhere along with quantum fluctuations, and these

fluctuations are thought to be the reason for the flickering of colors in the CBR. Because

inflation occurred very quickly, it caught these fluctuations in the act and stretched

them across the sky. Thus, the quantum fluctuations on the right of Figure 1-17 are

the ripples of color in the CBR on the left. As a matter of fact, astronomers have done

the calculations and determined that the quantum fluctuations occurred around 10-20

seconds after the big bang, and now they are stretched 14 billion years across the

entire universe. Galaxies, stars, and everything we see exist thanks to the presence of

quantum fields and their fluctuations at the big bang. Another great triumph of quantum

field theory.

Yet still there are unanswered questions: for example, what field is depicted in

the CBR snapshot? Some believe it is the Higgs, but others say it is not the Higgs but

something new; the truth is we don’t know.

Chapter 1 Quantum Fields: The Building Blocks of Reality

39

�Dark Energy Will Determine the Ultimate Fate
of the Universe
With the information provided by the CBR and the discovery of the acceleration of the

universe due to the presence of dark energy, the fate of the universe has been propelled

to the top of the list of unsolved mysteries in cosmology. For this purpose, astronomers

have created the equation of state (w). w p
�
�

 where p is the pressure that dark energy

puts on the universe and ρ (Greek – Rho) is the energy density (of dark energy in this

case). The value of w will be the supreme arbiter of the end of days:

•	 A value of w < −1 indicates an accelerating universe, expanding at

an ever-increasing rate. This expansion will continue unimpeded

until it surpasses the speed of light, overcoming even the strong

and weak nuclear forces that hold atoms together. Everything will

rip itself apart faster than light, even quarks until nothing remains.

This hypothesis was proposed by Robert R. Caldwell of Dartmouth

College which estimated the Big Rip to occur in 22 billion years given

w = −1.5. If the universe is to be no more, let it be in a blaze of glory

(compared to the other alternatives).

•	 A value of w = −1 indicates dark energy is a positive cosmological

constant, where the universe will continue expanding forever, and a

heat death is expected to occur. The hypothesis of heat death stems

from Lord Kelvin’s theory of heat and from the first two laws of

thermodynamics extrapolated to a universal scale.

•	 A value w > −1 indicates a Big Crunch where the expansion of the

universe eventually reverses and eventually re-collapses into a

singularity (an infinite point of density) potentially followed by

another big bang universe. An eternal cycle of big bangs if you will;

nevertheless, the vast majority of evidence indicates that this theory

is not correct. Instead, astronomical observations show that the

expansion of the universe is accelerating, rather than being slowed

down by gravity.

Chapter 1 Quantum Fields: The Building Blocks of Reality

40

These are some of the things we need to understand to move forward with physics

beyond the standard model and uncover the next laws of nature; although the way

things go, when we finally figure out what dark matter-energy is made of, something

even stranger will pop out. Nevertheless, careful study of the CBR is the best hope for

the future.

�Beyond the Standard Model
In 1900 Lord Kelvin stood in front of the British scientific society and pronounced: “There

is nothing else to be discovered in physics.” He was very wrong; in the 1930s Max Planck

came along and turned the world of physics upside down with quantum mechanics.

Einstein, Pauli, Dirac, Born, Heisenberg, Schrödinger, and many more ran with it and

created the golden age of physics. The trend continued in the 1950s and 1960s with

the pioneers of quantum field theory, and the list goes on: inflation, dark matter, dark

energy, string theory, quantum loop gravity, etc. Our universe is full of mysteries, and

physicists are already looking at the next revolution. There are many instruments hard at

work on this, but the most powerful is without a doubt the Large Hadron Collider (LHC).

�LHC Is Back with a Vengeance

LHC is the Mecca for experimental physicists and the place to discover new laws of

nature. In 2012 the LHC discovered the Higgs boson, and then it shut down for two years

for upgrades but came back in 2015 with double the energy throughput it had when it

discovered the Higgs. The goals of this new and improved LHC are twofold: (1) Have a

better understanding of the Higgs and (2) discover new physics beyond the standard

model. Physicists have great hopes and expectations about this. Here are some of them:

•	 Within the inner patterns of the standard model equation dwells a

big mystery exposed when similarities were noticed between the

equations of electromagnetism and the weak, strong nuclear forces.

In other words, the three forces look similar, so we might wonder if

in reality, the three are simply separate manifestations of the same

super-force. Maybe there is only one force, and what we experience

as three is in reality one thing looked from different perspectives.

Chapter 1 Quantum Fields: The Building Blocks of Reality

41

•	 The calculations for the 12 matter fields, electron, neutrino, and

quarks, are based on the same equation: the famous Dirac equation.

So again, maybe there are no 12 matter fields in nature but a single

field, and the reason we see 12 is because we are looking at the same

thing from different perspectives.

�Grand Unification and Supersymmetry: The Holy Grail of Physics

The ideas from the previous section go by the name of grand unification. That is the idea

that electromagnetism and the weak and strong nuclear forces are the same super-force.

However, there is another possibility: because both matter and forces are described

by quantum fields, physicists have wondered if there is some way in which matter and

forces are related to each other; the theory for that is called supersymmetry. Another

bizarre theory out there proposes we just get rid of all the terms in the standard model

equation and combine them all into a single term from which everything emerges:

gravity, nuclear forces, particles, and the Higgs. – This is what string theory aims to find.

Tip T hese ideas have driven theoretical physics for the last 30 years, and that
is what the LHC aims to do. Right now there are no means to test string theory
experimentally; however, grand unification and supersymmetry may be at the LHC
grasp in the future. Altogether, the reason the LHC was built was to find the Higgs
boson, but now with the job done, physicists think it is time to point the LHC’s guns
toward grand unification and supersymmetry.

�Doom and Gloom in the Horizon

Since 2015 when a biffed LHC came online in search of grand unification and

supersymmetry, the results have been disappointing: nothing has been observed. The

physics community has been shell-shocked by this, and there is no consensus on what is

going on; nonetheless, here are some of their responses:

•	 Have patience: We need a little more time; if nothing has been

observed this year, perhaps something will show up in the future.

In the end, if the LHC doesn’t find something in the next few years,

experts agree that it is highly unlikely that it will find anything at all.

Chapter 1 Quantum Fields: The Building Blocks of Reality

42

•	 We are on the right track, but what we really need is a bigger machine

to discover new physics. All in all, at a price tag of 4.4 billion USD for

the LHC, and estimates around 10 billion for a bigger one to unravel

grand unification. Not many governments in the world are willing to

cover the price tag to explore these ideas.

•	 A third response is more speculative and not endorsed by many

experts. Although physicists know that the standard model equation

is correct, some believe that there are mysteries still hidden within it.

Thus, perhaps the clues of a grand unification within this equation

are just red hearings, and we need to get back to the drawing board

to better understand it. This idea challenges the assumptions and

paradigms of the last 30 years.

�When We Are Wrong, We Start to Make Progress

Perhaps the lack of results by the LHC is what we need to get back to basics; sometimes

we need to take a step backward to advance two steps forward. Some physicists feel

energized by this lack of results because at the crossroads is where new ideas come along.

For example, connections have been drawn between the standard model equation to

other areas of science like condensed matter physics (the science of how materials work),

quantum information science (the quest for quantum computer), and many more.

All in all, physicists are optimistic we can make progress, not in the way we wanted

but progress nonetheless. The standard model equation may be king right now, but the

hope is that we can come up with something better.

�Exercises
Put your knowledge of basic quantum mechanics to the test with these easy exercises. If

you get stuck, answers are provided in the appendix.

	 1.	 Fill in the blanks. The prominent physicist _____, said in _____:

There is nothing else to be discovered in physics.

	 2.	 What German physicist is considered the father of quantum

mechanics and what problem was he working on when he found a

seminal discovery.

Chapter 1 Quantum Fields: The Building Blocks of Reality

43

	 3.	 Write a small program to plot the experimental data for the

ultraviolet catastrophe using the Rayleigh-Jeans law for spectral

radiation of a black body as a function of its wavelength λ

(lambda) and is temperature in Kelvin degrees (K) (Equation 1.1)

vs. the adjusted Planck curves (Equation 1.2).

	
B T cK TB
� �
� � � 2

4 	 (1.1)

	

B T hc

e
hc
K TB

�
�

�
�

,� � �
�

2 1

1

2

5

	
(1.2)

Use c = speed of light (299792458 m/s), KB = Boltzmann constant =

1.38064852 × 10-23 m2 kg s-2 K-1 for temperatures of T = 3000, 4000

and 5000 K.

•	 Hint1: the x-axis of the plot is the wavelength λ. The y-axis is the

spectral radiation Bλ.

•	 Hint2: The fastest way to do it is using the open source GNUPlot

software; also save the plot as a JPEG image.

	 4.	 Give a brief description of the photoelectric effect experiment.

What does the photoelectric effect indicate about the nature

of light?

	 5.	 Who won the Nobel Prize for his new insight into the photoelectric

effect? What was the old notion before this new insight? What was

actually observed in the experiment?

	 6.	 True or false.

	 a.	 The Copenhagen interpretation was the first and originated in the 1930s.

	 b.	 The notion that energy travels not in continuous form but in discrete

packets called quanta was postulated by Bernard Heisenberg.

	 c.	 Niels Bohr is not the father of the quantum jump.

	 d.	 The Rutherford model of the atom was the perfect and flawless description

of the atomic structure at the beginning of the 19th century.

Chapter 1 Quantum Fields: The Building Blocks of Reality

44

	 e.	 Albert Einstein said about the Bohr atom (quantum jump): If I am to

accept the quantum jump, then I am sorry I ever got into the field of atomic

research.

	 f.	 The father of the wave function ѱ is Erwin Schrödinger.

	 g.	 The wave function now is considered the most powerful tool in physics in

the last century.

	 h.	 German-Jewish physicist Max Born’s description of the wave function

sought to return to the continuous classical model of wave physics.

	 i.	 Schrödinger pushed the idea that all reality can be described entirely by

waves and his wave function ѱ.

	 j.	 Max Born came up with the quantum cat thought experiment to challenge

Schrödinger.

	 7.	 Multiple choice: Which of the following are valid interpretations of

quantum mechanics:

	 a.	 The star-gate interpretation

	 b.	 The many worlds interpretation

	 c.	 The Tijuana flats interpretation

	 d.	 The captain crunch interpretation

	 e.	 Quantum information

	 f.	 The Copenhagen interpretation

	 g.	 The quantum cat scratching the quantum dog interpretation

	 8.	 The uncertainty principle says what about the position and

momentum of a particle?

	 9.	 True or false. The uncertainty principle gave rise to the notion of

zero point energy.

	 10.	 What does zero point energy says about absolute zero?

	 11.	 In one sentence, define Pauli’s exclusion principle.

Chapter 1 Quantum Fields: The Building Blocks of Reality

45

	 12.	 Multiple choice: which of the following is true about Pauli’s

exclusion principle?

	 a.	 The quantum cat used the exclusion principle to escape from the box.

	 b.	 Pauli introduced a new two-valued quantum number that will later be

known as the quantum spin.

	 c.	 The exclusion principle was later generalized for all particles in the

standard model.

	 d.	 Bosons (photons, gluons, force carriers) do not obey the exclusion

principle.

	 e.	 The quantum dog does not obey the exclusion principle.

	 f.	 Fermions (electrons, quarks, neutrinos) obey the exclusion principle.

	 13.	 The Dirac equation was an attempt of what?

	 14.	 In one sentence: What is the Dirac equation?

	 15.	 Which of the following is true about the Dirac equation?

	 a.	 It predicts the existence of antimatter.

	 b.	 It injects relativistic space time in the context of quantum mechanics.

	 c.	 It follows Pauli’s exclusion principle.

	 d.	 It violates the uncertainty principle.

	 e.	 It uses a two-component wave function with space-time coordinates (x,t).

	 f.	 Dirac’s equation has solutions with positive energies only.

	 16.	 Fill the blanks. In Dirac’s Hole theory, holes in the ______ require

______ energies to create a particle-hole pair. The holes were later

proven to be the ______, discovered experimentally by American

physicist Carl Anderson in 1932.

	 17.	 In simple terms define particle entanglement.

	 18.	 What famous physicist called entanglement Spooky action at a

distance? Why is it so spooky? Can we send text messages using

entangled particles? If so, why?

Chapter 1 Quantum Fields: The Building Blocks of Reality

46

	 19.	 Provide a brief description of Bell’s theorem. Why is it important?

	 20.	 Multiple choice: Select the true statements about Bell’s theorem:

	 a.	 Defeated quantum mechanics.

	 b.	 It was proven experimentally by French physicist Alain Aspect that

quantum mechanics violates Bell’s inequality.

	 c.	 It proves that the properties of a particle are defined at the moment of

observation.

	 d.	 Einstein thought entanglement was a stroke of genius and came up with the

EPR paradox to celebrate.

	 21.	 Fill in the blanks: the double-slit experiment shows the _____

duality of particles when a laser beam travels through a metal

plate with two close slits with the resulting projection on

a detector screen. If the measuring device is placed on the

screen, the resulting interference pattern displays a _____. If

the measuring device is placed on the slit, the interference

pattern indicates a _____. This indicates that Quantum systems

are fundamentally _____ (there are no exact answers) with the

astounding implication that properties are defined at the moment

of _____, instead of creation.

	 22.	 What are the differences between the Copenhagen and the many

worlds interpretations of quantum mechanics?

	 23.	 In simple terms describe two additional interpretations of

quantum mechanics besides the Copenhagen and many worlds

interpretations.

	 24.	 Fill in the blanks. In quantum field theory (QFT), fields span

the entire_____, the particles in the standard model are simply

_______ in their respective field. Fields may _____ with one

another.

	 25.	 Faraday is the father of what field? What was the original name he

used for this field?

Chapter 1 Quantum Fields: The Building Blocks of Reality

47

	 26.	 What are the four basic particle fields in QFT from which all

particles in the standard model are defined? Which are the four

force fields in nature?

	 27.	 What are the two partners of the electron in QFT? Why is it said

that the electron field was reproduced twice?

	 28.	 What are the QFT partners of the neutrino, up quark, and

down quark?

	 29.	 Why is the Higgs field called the god particle? What instrument

was used in its discovery? At what energy level?

	 30.	 What is the Lagrangian of the standard model? Why is it

important?

Chapter 1 Quantum Fields: The Building Blocks of Reality

49

CHAPTER 2

Richard Feynman,
Demigod of Physics,
Father of the Quantum
Computer
In the rankings of the greatest physicists of the last century, American physicist Richard

Feynman (1918–1988) levels just a few notches below Albert Einstein. His name, legend,

and legacy live in the halls of academia as the labors of a demigod. Feynman achieved so

much in his 5+ decades in the field of physics: he was part of the Manhattan project that

developed the first atomic weapon; his lectures and books in computation and quantum

electrodynamics (QED) are the stuff of legend; his book Six Easy Pieces revolutionized

the teaching of physics around the world. Feynman was one of the pioneers of quantum

field theory (QFT), the modern view of quantum mechanics; his contributions were

profound, earning him the Nobel Prize in 1965 for his work in quantum electrodynamics.

A little and obscure nugget about Feynman is that he was the first to propose the idea

of a quantum computer. He realized that the tremendous complexity required to study

phenomena at the atomic scale, ought to be performed by a machine designed with

atomic principles in mind; that was the dawn of the quantum machine. This chapter is

my take on the life and contributions of this remarkable individual.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_2

https://doi.org/10.1007/978-1-4842-9991-3_2

50

�Mysteries of QFT: The Plague on Infinities
QFT has been fabulously successful in describing the smallest scales of reality, building

on top of the Copenhagen interpretation of quantum mechanics to become the

contemporary view of physics. However, this success has come at a cost, since even the

most powerful equations in QFT such as the Dirac equation (see Chapter 1 for details) or

Feynman’s path integral become extremely difficult to solve even when used against the

simplest particle interactions. Nonetheless, that hasn’t stopped physicists in searching

for clever ways to make them workable. Such efforts include

	 1.	 First, reduce the complexity by approximation into solvable form.

	 2.	 Next, deal with the irritating infinities that appear in these

approximate equations.

	 3.	 Finally, group the whole thing into a pictorial system that most

humans can understand; the grand result: Feynman diagrams.

To get an idea of how messy QFT can be, consider the simplest particle interaction:

electron scattering (when two electrons bump into each other – see Figure 2-1).

Figure 2-1.  (Top) Electron scattering according to classical electro dynamics,
(bottom) the same process according to QFT

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

51

In old fashioned classical electrodynamics, Coulomb’s law quantifies the amount

of force between two stationary, electrically charged particles. That is because each

electron produces an electromagnetic field, and that field exerts a repulsive force in the

other electron. The force is inverse to the square of the distance:

	
F k q q

r
= 1 2

2 	

where

•	 k is the Coulomb’s constant, sometimes called electric force constant

or electrostatic constant k = 8.99x109 Nm2C-2 in the vacuum. Note that

its value depends on the medium where the particles are immersed.

•	 q1, q2 are the charges of the electrons.

•	 r is the distance between them.

For mostly the simplest cases, Coulomb’s law works well for this subatomic billiard

shot, and it is easy to solve. However, in modern quantum field theory, specifically

quantum electrodynamics (QED), the story is different. In QFT the electron is not a

particle, but a vibration in the electron field (see Figure 2-1). Note that this field (and all

quantum fields) permeates the entire universe, omnipresent whether or not there is an

electron out there. Furthermore, the electron field may interact with other fields such

as the electromagnetic (EM) field whose vibrations are responsible for producing the

photon or what we perceive as light. This is how QED describes electron scattering.

�Electron Scattering According to QED
A vibration in the electron field produces what we identify as a particle; this field in turn

is connected to the EM field (vibrations in one may produce vibrations in the other).

When the electron excites the EM field, it produces a photon which in turn delivers a bit

of the momentum from the first electron to the second. In QFT, the exchanged photon is

called a virtual particle, and its existence is clouded in mystery as a result of the quantum

event, suffice to say that this virtual photon exists long enough only to communicate the

force. There are other types of virtual particles whose existence is equally ambiguous but

more on that in the next section on Feynman diagrams.

This is the perfect time to get our feet wet with our first Feynman diagram, one for

electron scattering according to QED. We’ll go under the hood further down.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

52

Figure 2-2.  Feynman diagram for the most probable case of electron scattering

In Figure 2-2, we see two electrons traveling toward each other in a coordinate

system where the Y-axis represents time and the X-axis represents space. Note that the

actual distances in the space axis are not relevant:

•	 The electrons exchange a virtual photon (denoted by the Greek letter

Gamma γ), that is, the 3 point vertex with the squiggly line.

•	 The electrons move away at the end.

But Feynman diagrams aren’t just drawings of the interaction, as we’ll see in the next

section, but equations in disguise, with each part of the diagram representing a chunk

of the maths. Where things get really bizarre is at the vertex with the squiggle (the virtual

photon exchange), so much saw that QFT states that:

Tip T here are infinite ways electron scattering can occur; furthermore, all
intermediate events that lead to the same result do happen. Thus, to perfectly
calculate the scattering of two electrons, we need to add up all the ways this
could happen.

With infinite possibilities behind this simple process, a complete quantum field

theory solution is not possible. Enter perturbation theory, an absolutely indispensable

tool to solve QFT problems.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

53

�Perturbation Theory: If You Can’t Do Something Perfectly,
Maybe Near Enough Is Good Enough
Perturbation theory is the art of solving unsolvable equations: If you have an impossible

equation, just find a similar equation that is solvable and make small changes to it

(perturb it) so the result is similar. It will never be exact but it will get you close enough.

In the case of electron scattering, it turns out that the most likely interaction is

the exchange of a single virtual photon. All other interactions contribute less to the

probability of the event.

Tip R ichard Feynman said that the more complicated the interaction, the less
it contributes to the final probability amplitude, and here is where his diagrams
come in handy; as a matter of fact, it turns out that the probability of a particular
interaction depends on the number of connections (vertices); so much so that
each additional vertex in an interaction reduces the final probability by a factor of
around 100.

Thus, the most probable interaction for electron scattering is the simple case

in Figure 2-2 with two vertices and a single virtual photon exchange; a three vertex

exchange would contribute about 1% of the probability of the two vertex interaction, a

four vertex interaction would contribute about 1% of 1%, and so on. Perturbation theory

and Feynman diagrams help identify the important additions to the final equation, and

which interactions we can ignore. They make the complex calculation possible, but we

are not done yet.

The low probability of intermediate states opens a new enigma which is especially

true for the loop interactions. Let’s take a closer look.

�Tackling Those Pesky Infinities with Renormalization
Loop interactions are weird intermediate states that wreak havoc in Feynman diagrams.

Two quintessential examples of loop interactions are (see Figure 2-3)

	 1.	 A photon momentarily becomes an electron, positron pair, and

reverts to a photon again.

	 2.	 An electron emits and then reabsorbs the same photon.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

54

Figure 2-3.  Two examples of loop interactions: on the left a photon creates an
electron, positron pair, then reverts to a photon; on the top right, an electron emits
then reabsorbs the same photon; on the bottom right, the effects self-energy loops
due to virtual photon interactions

Tip  For the second case, QED states that the electron causes a constant
disturbance in the EM field, due to the fact that electrons are constantly interacting
with virtual photons; this slows down the electron and increases its effective mass.
This effect is known as self-energy.

When trying to calculate the self-energy correction of the electron mass using QED,

the result is infinite extra mass. Things don’t look good for QED thus far, but why is it

infinite? QED says that to calculate the mass correction from these self-energy loops, we

need to add all possible photon energies, but those energies can be arbitrarily large, thus

sending the corrected mass to infinity and beyond.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

55

Tip P hysicists have speculated that in reality, self-energy loops must have
a limit, but we don’t know what that limit is; yet another mystery in our crazy
universe, although some say that the answer lies in quantum theory of gravity
which we don’t yet have.

All in all, just like with perturbation theory, physicists have found a cunning solution

to keep in check the infinities in self-energy loops: renormalization.

�Renormalization: Electrons Do Not Have Infinite Mass
Renormalization is the second tool in QFT’s arsenal against the infinity horde. We know

that electrons don’t have infinite mass as its value has been calculated experimentally,

and here is where the renormalization trick comes into play (see Figure 2-4).

Figure 2-4.  Self-energy loops slow down the momentum of the electron and send
its effective mass to infinity

Renormalization says: don’t start with the corrected (or fundamental) mass of the

electron – it is unmeasurable – use the experimentally measured mass instead. In other

words, don’t use its theoretically calculated value but its experimental (finite) number,

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

56

and then solve the equations from there. This clever trick can be used to eliminate many

of the infinities that arise in QFT! Here are two specific scenarios where renormalization

is an essential tool:

	 1.	 Calculation of the corrected mass of the electron due to self-

energy loops

	 2.	 Infinite shielding of electric charge due to a virtual particle,

antiparticle pairs popping in and out of existence

Note R enormalization works because experimental measurements of the mass of
the electron include some of its self-energy loops. Consequently, this measurement
is not that far off its fundamental or bare mass. With that in mind, renormalization
can only make predictions of a particle’s mass relative to its lab measurements.

So renormalization is a god-send against those nasty infinities; nonetheless, there

is a price to pay for this rule: For each infinity you want to get rid of, you must measure

some property in the lab, which means the theory can’t predict that particular property

from scratch; it can only predict other properties relative to your lab measurement. All in

all, renormalization saved QFT from the plague of infinities. We finish the trinity with the

super slick Feynman diagrams!

�QFT’s Holy Trinity: Perturbation Theory, Renormalization,
and Feynman Diagrams
In QFT, all subatomic particles are expressed as vibrations in quantum fields. But even

the most elegant formulations become impossibly complicated when used in anything

but the simplest particle interactions. Richard Feynman gave us a simple set of pictorial

rules to manage this complexity. His diagrams have become one of the de facto tools in

contemporary physics. They successfully describe things like

•	 Particle scattering

•	 Self-energy interactions

•	 Matter, antimatter creation and annihilation

•	 All sorts of decay processes

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

57

Feynman diagrams are an incredibly powerful tool to predict the behavior of the

subatomic world and are a central part of the standard model of particle physics.

�Feynman Diagrams: Formulas in Disguise
Feynman diagrams revolutionized theoretical physics by providing a pictorial

representation of the infinite possibilities of particle interactions. Feynman diagrams are

awesome because

•	 Their beauty and simplicity provide striking insights into the nature

of reality.

•	 Behind their pictorial look and feel hides a mathematical formula

about particle interactions. This simplifies things enormously to the

point of making the tedious and complicated mathematics of particle

physics enjoyable and intriguing.

•	 They are a tool to crack an impossible equation: the infinite

possibilities hidden between two measured states of a particle.

�Feynman Approach to Quantum Mechanics:
The Path Integral
Feynman’s remarkable work on the path integral earned him a Nobel Prize in physics in

1965. His brainchild, the path integral, states that to properly calculate the probability

of a particle traveling between two points A and B, we need to add the contributions

from all conceivable paths between those points (left side of Figure 2-5) including the

impossible paths (right side of Figure 2-5).

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

58

Figure 2-5.  In the path integral every conceivable happening from a measured
initial state to a measured final state does happen in the maths

�Unraveling the Impossible: Feynman Diagrams
to the Rescue
The path integral tells us that there are infinite possible intermediate states in a

quantum system evolving between two states. Furthermore, to calculate the probability

of this evolution, we need to add all conceivable intermediate states. This is simply

not possible; however, here is where Feynman diagrams shine at their brightest:

they allow physicists to figure out which possibilities need to be considered to get an

acceptable answer.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

59

Figure 2-6.  Feynman diagram showing electron scattering, or the interaction of
two electrons (e-) resulting in the emission of a photon (γ)

Each diagram represents a family of particle interactions (left side of Figure 2-6)

and gives the equation to calculate the contribution of that interaction to the total

probability (right side of Figure 2-6). In this particular case, we use a diagram for electron

scattering where

•	 υ υ υ υ
1 2 1 2

 represent the incoming and outgoing charges of electrons

1 and 2, respectively.

•	 ieγμ  ieγv represent the absorption and emission of the photon (these

are connecting points or vertices).

•	 The squiggle
�i g
p

v�
2 is the quantized field excitation of the photon.

The equation coming out of this diagram represents all the ways two electrons can

bounce off each other, involving a single photon, and from this equation, it is possible to

calculate the effect of the exchange. Unfortunately, electron scattering at the quantum

level is a lot more complicated than this.

When we observe electron scattering, all we see are two electrons bouncing off each

other; however, the quantum event at the center of the scattering remains a mystery.

Quantum mechanics says there are infinite ways that scattering can occur, and the

weirdest part is that they all happen at the same time!

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

60

Tip T he genius of Feynman diagrams is that a ridiculously simple set of rules
allows us to find all the important interactions in the path integral and other QED
interactions such as electron scattering. Let’s take a look at these easy rules and
how to apply them to do some basic quantum field theory ourselves.

�A Few Simple Diagram Rules Are All That Is Needed
When it comes to quantum field theory, quantum electrodynamics (QED) was the

first, and it is currently the most powerful of the field theories out there. QED studies

the interactions of the electron field with the electromagnetic field, that is, interactions

among the electron, its antimatter partner the positron, and the photon.

In a Feynman diagram, the electron (e-) is depicted as an arrow pointing forward in

time, while the positron (e+) is an arrow pointing backward in time. Note that depicting

antimatter as backward in time looks strange, but it is by design and provides a very

powerful mechanism as we’ll soon see. Finally, the photon (Υ) is shown a wavy line

without any time direction. Stick these three elements in the space time coordinate

system, and we have a basic Feynman diagram, a useless one nonetheless.

Figure 2-7.  Building blocks of a Feynman diagram

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

61

To start realizing the power and simplicity of this approach, the electric and

electromagnetic fields need to interact. Things start to get interesting when particles

interact; this interaction is depicted as a vertex in the diagram. A vertex is the point

where the lines representing the different particles come together.

Tip I t turns out that, in QED, only one vertex is possible: one with an arrow
pointing in, one with an arrow pointing out, and a single photon connection (see
Figure 2-7). This vertex alone represents six different interactions and can be used
to construct infinite Feynman diagrams.

In Figure 2-8, we see the possible interactions from the basic vertex diagram (a) with

time increasing upward:

	 a.	 This diagram represents an initial electron that emits a photon;

afterward both particles move in opposite directions; now if we rotate

the vertex so the electron and photon come from below (b), then

	 b.	 This diagram represents an electron absorbing an incoming

photon, the photon vanishes, and its momentum is completely

transferred to the electron. Rotate again then,

Figure 2-8.  Possibilities from a single incoming, outgoing electron-photon vertex
in a Feynman diagram

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

62

	 c.	 The picture is of a photon coming in and giving up its energy to

produce an electron-positron pair (a process that is called pair

production). Rotate again then,

	 d.	 Here we have a positron absorbing a photon,

	 e.	 A positron emitting a photon, and finally,

	 f.	 An electron and a positron annihilate each other to produce a

photon. These are all the ways the electron and electromagnetic

fields can interact.

Every single QED interaction is built from Figure 2-8. Note that Feynman diagrams

must obey conservation laws including

•	 Particles cannot appear nor vanish from the void (if something goes

in, then something else must come out).

•	 Charge must be conserved too (if one electron goes in, the one

electron must come out; if one positron goes in, then one positron

must come out).

•	 If an electron and positron both go in, then they cancel with a zero

charge photon coming out.

•	 Similarly, if a photon creates a positively charged positron, then it

must create a negatively charged electron.

There are more complex ways in which incoming-outgoing particles can balance

charge (see Figure 2-9); however, they are all built up from the single vertex (right side a

Figure 2-5).

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

63

Figure 2-9.  Endless diagrams can be constructed from a single three path
vertex in QED

A final and perhaps one of the most important rules is that the overall interaction

described by a set of diagrams is defined by the incoming particles (particles going in)

and the outgoing particles (particles going out). These are the particles to be measured

(e.g., for energy or momentum), and they must obey the energy-momentum relation:

	 E p c m c2 2 2 2 4� �
 	

where E is the object’s total energy, m is the rest mass, and p is the momentum.

Tip T he energy-momentum relation is a relativistic equation closely related to
Einstein's famous mass-energy equation E = mc2, and it was first established by

Paul Dirac in 1928 as E c p m c V� � � � �2 2 2 2
 where V is the amount of potential

energy. Dirac used the energy-momentum relation to describe the behavior of the
electron in relativistic terms and in doing so took the first crack at unifying special
relativity with quantum mechanics; a feat that earned him world fame, a Nobel
Prize, and a place in history.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

64

�The Strangeness of Virtual Particles
The incoming and outgoing particles in a Feynman diagram are said to be on-shell

because they sit on the mass shell structure we get when we plot Einstein’s equation of

energy, momentum, and mass (see Figure 2-10).

Figure 2-10.  Set of Feynman diagrams showing on-shell particles along with
virtual particles (top), plus a hyperboloid surface (shell) of the equation for energy,
momentum, and mass

On the other hand, everything that goes on between the incoming and outgoing

tracks of the diagram is said to be virtual, and the possibilities are endless. That is, each

possible diagram that results in the same set of incoming-outgoing particles is a valid

path for the possibility space of that interaction (see top of Figure 2-10).

Tip  Virtual particles exist between vertices within the diagram but don’t enter or
leave. They are also by definition unmeasurable.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

65

Other peculiar characteristics of virtual particles include

•	 They do not obey the mass-energy-momentum equivalence; thus,

they are called off-shell.

•	 They are not limited by the speed of light or the direction of time!

This leads to the endless possibilities mentioned before.

�The Power of Feynman Diagrams to Simplify
QFT-QED Calculations
We saw from the previous section that the set of diagrams for the simplest electron

scattering interaction can be endless. As long as the end result is the same, all

possibilities must be considered. The genius of Feynman diagrams is that they are

an incredibly powerful tool in simplifying QED interactions. This is because the

interpretation of the interactions is irrelevant; all we care about is the topology of the

diagram, which is how the vertices are connected to each other.

Tip  Feynman diagrams simplify QFT calculations by reducing the number of
contributing interactions that need to be solved. For example, for two electrons
exchanging a single photon (see top of Figure 2-7), it doesn’t matter if we draw
the photon going from the first vertex to the second or the second to the first,
even though both seem like two different interactions. Feynman thought of this
difference simply as the photon traveling forward in time in the first case and
backward in time in the other. The maths covering the transfer is the same in both
cases. A weird yet powerful characteristic of Feynman diagrams.

QED is a really tough nut to crack and here is why:

•	 Each diagram represents an infinite number of specific interactions.

For example, each of the particle paths is actually infinite, as well as

infinite possibilities for particle momenta.

•	 All possible paths must be considered, even the impossible ones,

such as faster than light paths, something that is a big no-no in

Einstein’s relativity.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

66

•	 For any virtual particle (off-shell, neither incoming nor outgoing),

any energy, speed, and even direction of time must be considered,

and by considered we mean mathematically solved.

This last point that any direction of time must be considered in QED interactions

is where Feynman diagrams shine at their brightest. To illustrate this point, let’s look

at another quintessential electron interaction, one called Compton scattering (see

Figure 2-7).

In Figure 2-11 an electron and a photon bounce off each other. On the left side we

see the on-shell electron and photon; we can measure properties on these two such

as momentum or energy, but whatever goes on off-shell (within the cloud) cannot

be measured and that falls in the realm of the bizarre. QED says there are infinite

possibilities for whatever happens within, and they all must be solved, even the

impossible ones such as paths backward in time. It looks like an impossible task, but

not so when Feynman diagrams are used. Feynman diagrams can easily represent paths

backward in time using antimatter. Consider the right side of Figure 2-11 where we have

diagrams for two different paths of Compton scattering:

•	 One way this may occur is if the electron emits a new photon and

later absorbs the incoming photon (top right of Figure 2-11). In the

intermediate stage between vertices, the electron is a virtual particle

which means we include all possible paths it may take as long as the

result is the same (including paths backward in time).

Figure 2-11.  Compton scattering where an electron and a photon bump into
each other

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

67

•	 According to Feynman an electron traveling backward in time looks

like a positron; thus, an impossible path can be easily represented as

follows (bottom right of Figure 2-11): The same particles go in and

out (as in the previous option); however, the interaction looks a little

different. Instead of an electron emitting a new photon, we have an

incoming photon emitting a positron-electron pair. The new electron

becomes our outgoing electron, and the positron annihilates the

incoming electron to produce the outgoing photon.	

These may seem like two different interactions; however, in the world of Feynman

diagrams, the maths is the same; whatever happens off-shell is irrelevant as long as

the result is the same. We don’t care about the interpretation of an interaction in the

diagram, only about its topology (how the vertices are connected). All in all, by using

Feynman diagrams, we end up vastly reducing the number of contributing interactions

that need to be solved in QED, simplifying the complex maths required in QFT

calculations.

In the next section, we look at how fabulously ingenious the idea of describing

antimatter as time reversed matter is, and how it saved physics from its biggest threat

yet: symmetry violations.

�Antimatter As Time Reverse Matter
and the Mirror Universe
Comic book lore is full of parallel dimensions, multiple universes, and that sort; in that

context, there is a seminal story line in DC comics called Crisis on Infinite Earths. In

that story there is an all-powerful being, the Monitor, who can bend the laws of time

and space to his will, shaping reality as he wishes. The Monitor wages war against an

evil, equally powerful but symmetrically opposite being: The Anti-Monitor. This evil

entity unleashes a wave of antimatter to destroy all universes and all Earths within

them. In the end, the antimatter wave destroys the multiverse; however, the Monitor

gathers the greatest heroes of the multiverse for a final battle against the Anti-Monitor.

In that climax, the Anti-Monitor is defeated, and our heroes can reboot the multiverse

releasing an event that looks a lot like a quantum fluctuation (or a big bang). Finally, the

multiverse is saved, although not exactly as before, and life goes on.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

68

Not a far-fetched story by any means, as there are interpretations of quantum

mechanics that include infinite realities (Earths), multi-verses, quantum fluctuations,

and other bizarre stuff. All in all, in our reality there is no such thing as an Anti-Monitor

or an antimatter wave annihilating everything in its path; nevertheless, that didn’t stop

our universe’s physicists on imagining a mirror universe where the laws of physics work

the same but in opposite direction; Feynman called this universe parity symmetric.

�The Foundations of Quantum Theory Rest on Symmetries
Look at yourself in the mirror; could that be a symmetric version of you? Now imagine

your reflection is made of matter of the opposite charge; not only that but imagine time

flowing in the opposite direction within the mirror, if that reflection could be yanked

into reality then, your alter ego would be a perfectly symmetric you. But let’s start at

the beginning, what is the first thing that comes to your mind when you hear the word

symmetry?

In the classical definition of symmetry, we may think of reflective or mirror

symmetry: try this, draw a square or a circular face in paper, then draw a vertical axis in

the center, fold the pieces, and if they are identical, then you have a symmetric shape.

That is known as geometrical or reflective symmetry (see Figure 2-12).

Tip I n physics, symmetry results when the laws of physics are unchanged under
a transformation of coordinates; our universe is symmetric to coordinate shifts in
space, time, and when it comes to the atomic scale, under the abstract phase of
the wave function in quantum mechanics.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

69

Figure 2-12.  (Top) Examples of continuous or reflective symmetries; (middle)
discrete parity symmetry given by translation in the spatial axes (XYZ); (bottom)
handiness in a regular versus a mirror reflection

There are ways, however, under which our universe is not symmetric; as a matter of

fact, the laws of physics are not the same for a mirror universe, but to understand this we

need to understand the meaning of a parity transformation.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

70

In the realm of physics, the geometric symmetries at the top of Figure 2-12 are said

to be continuous because there is no such thing as a partial reflection; you either reflect

the whole thing or you don’t (think of symmetry as a motion or change in position over

time). Parity, on the other hand, is a discrete symmetry. A discrete symmetry describes

non-continuous (disconnected) changes in a system. For example, a square has discrete

rotational symmetry, as only rotations by multiples of right angles (90 degrees) will

preserve the square’s original appearance (e.g., rotate the square 45 degrees to become a

rhombus). Other types of discrete symmetries in physics include

•	 Charge conjugation: Flipping the sign of the electric charge

•	 Time reversal: Having a clock tick backward

A parity transformation involves the flipping of the spatial axis. When you put your

hand in front of a mirror, you have a parity transformation in the z-axis; your reflected

hand has turned back to front, and it looks like your left hand becomes your right and

vice versa. The weird thing is that it seems that your hand flipped in the x-axis, not the

z-axis. As a matter of fact, a true x-axis transformation results when left becomes right

and forward facing stays the same, that is, a true x-axis transformation equals a z-axis

reflection plus a rotation (see Figure 2-12).

Tip  Formally, a full parity inversion involves flipping all three axes. Furthermore,
when something remains identical under a parity transformation, it is said to be
parity symmetric or P-symmetric.

Also, a reflection in any single axis can be reproduced by a reflection on a different

axis plus a rotation:

•	 A reflection in 2 axes pushes things back to the way they were.

•	 A reflection in 3 axes gives the same result as a reflection in one axis.

Now, in the case of our reflected universe, if we throw a ball to the mirror, then it

looks like it is coming toward us. Here we realize that even though some properties flip

signs in the mirror, others remain the same (see Figure 2-12). Thus

Properties that flipped called odd-functions are

•	 Spatial axes: X, Y, Z

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

71

Properties that do not change in the mirror (even-functions) are

•	 Angular momentum

•	 Energy of the ball, its mass, gravity

•	 Time in the clock

Tip T he laws of physics should work the same in the mirror world even if the
spatial axes get flipped. For example, Newton’s laws of motions can be used to
calculate the ball’s velocity and trajectory, but that is true only if the ball remains
unchanged in the reflection.

Now imagine that we add spin to the motion of the ball (see bottom right of

Figure 2-12); notice that this spin or angular momentum remains unchanged in the

reflection, but yet the momentum vector or direction of motion is flipped. This is similar

to the switching of left-right hands in a mirror reflection and introduces the critical

concept of handiness.

Note P icture grabbing the ball with the fingers pointing in the direction of the
spin, and the thumb pointing in the direction of motion. If we use the right hand to
do it, then we have right-handed spin relative to the motion vector; if we use the
left hand, then we have left-handed spin. In physics, the handiness of a spinning
moving object is called chirality.

Chirality in quantum mechanics has a specific meaning nonetheless: quantum

chirality is related to quantum spin where motion doesn’t factor in. Instead, it is

considered to be a fundamentally internal left- or right-handed asymmetry. Most

particles have both left- and right-handed versions, and it was believed at the beginning

that both behaved equally. This was the consensus given by early experiments involving

gravity, electromagnetism, and the strong nuclear force. At the time, the same was

thought to be true for the yet untested weak nuclear force. As we’ll soon find out, this

turned out to be untrue.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

72

Richard Feynman, in his famous lectures on physics, talked about such a mirror

universe and described what it would take for it to be parity symmetric. He imagined a

clock in a mirror reflection where numbers are backward, components are flipped left to

right, and it ticks counter clockwise. Finally he invited us to build that clock in our reality:

•	 By constructing every piece of the clock as though reflected: Numbers

painted backward.

•	 Every right-handed screw or coil is replaced by a left-handed version

and vice versa.

Finally he asked: Will this mirror clock tick the same exact way counter clockwise?

Our intuition tells us that it should, as we replaced all mechanical components with their

mirror opposite; unfortunately this is wrong; the mirror clock will still tick clockwise.

Tip A parity transformation is obtained by substitution of the properties of an
object with their mirror opposite: Positive charge becomes negative, left becomes
right, up becomes down, and so forth. The laws of physics are not symmetric to
this type of parity transformation.

This fact was proved experimentally in 1956 by the brilliant Chinese-American

experimental physicist Chien-Shiung Wu (1912–1997) using the radioactive isotope of

Cobalt (Cobalt-60) atom.

Wu started with the simple argument, that if parity is conserved, then there should

not be an experiment to determine if we live in the regular or the mirror universe; in

other words, it makes no difference which universe we find ourselves in as long as parity

is conserved. Thus, she came up with an experiment to test if parity is conserved in our

universe. It is slick and works as follows:

The Cobalt-60 radioactive isotope decays into nickel by the effect of the weak nuclear

force, emitting an electron, some gamma ray photons, and neutrinos in the process.

Its nucleus also happens to have an unusually strong spin, so Wu and colleagues used

this fact to align the axis of the spin of a set of atoms using a magnetic field and watched

them decay (top of Figure 2-13). They found that the electrons produced in the decay

emerged in the opposite direction on the spin. This was the smoking gun that proved

that parity symmetry is violated in our universe. Let’s see why.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

73

Figure 2-13.  (Top) Atoms of Cobalt-60 with spin aligned upward using a
magnetic field ejecting electrons in the opposite direction. (Bottom) Momentum of
the ejected electron for Cobalt-60 in a regular vs. mirror reflection as proof of parity
violation

Tip T he fact that the spin of the nucleus is correlated to the momentum of the
ejected electron is the clue that convinced Wu that parity transformation is violated.
This is because the spin of the nucleus (represented by the angular momentum
vector along the axis – or the arrow pointing up off the nucleus) in a reflected
universe does not change (spins in the same direction, pointing up in both cases);
however, the ejected electron momentum points in the opposite direction for the
mirror reflection (bottom of Figure 2-13). It turns out that for parity to be conserved,
there must not be any correlation between the direction of the spin of the nucleus
and the direction of the ejected electron. This way nothing would change in the
reflection, yet that is not what the experiment showed.

Feynman used Wu and colleagues’ experiment to propose a clock governed by

the decay of Cobalt-60 using the spin of the aligned atoms and adding a detector at

the bottom which ticks every time an electron is ejected downward. He then showed

that in a reflected clock where the Cobalt atoms are replaced by the parity inverted

counterparts, the decaying electrons travel upward instead, away from the detector. He

concluded that a perfectly constructed Cobalt-60 mirror clock would never tick at all.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

74

Tip  Feynman understood that the violation of parity symmetry poses a threat to
a higher symmetry: The so-called CPT symmetry or charge-parity-time symmetry
(that is the combined flipping of charge, parity, and time); and this one lies at the
foundation of quantum field theory.

�Broken Symmetries Threaten to Break All of Physics
Along with Them
The absolute rule in QFT says that physics must work the same if we flip these three

properties (charge-parity-time), else all hell breaks loose and QFT along with it. With

parity already violated, Feynman sought to save QFT by showing that charge-parity

or CP symmetry could be saved. He proposed a modified Cobalt-60 clock made of

antimatter where

•	 Electrons become positrons.

•	 Quarks become antiquarks sending protons and neutrons to their

anti-counter parts.

•	 Cobalt-60 becomes anti-cobalt-60.

Tip  Charge conjugation (flipping) is the C-part in a CP transformation. That is
what switching to antimatter means.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

75

Figure 2-14.  (Left) Feynman’s Cobalt-60 matter, antimatter clock showing how
CP symmetry holds in a mirror universe. (Right) Tau Theta experiment by Cronin
and Fitch to test for CP violations

�Can CP Symmetry Be Saved by a Clock?

In Figure 2-14 we see Feynman’s Cobalt-60 antimatter clock in action; on the left side the

regular universe and on the right its mirrored reflection:

•	 On the top left, the regular matter Cobalt-60 atom with its spin

axis aligned to the top by a magnetic field, and at the bottom, its

antimatter counterpart. Because the antimatter atom has negatively

charged nuclei, its nuclear magnetic field will point in the opposite

direction relative to regular matter. Thus when the magnetic field is

applied, the antimatter Cobalt-60 will align to the bottom as shown.

•	 In the mirror reflected antimatter clock, both the direction of the

decaying electrons, and the direction of the spin are flipped; once

due to the mirror reflection, and one due to the switch to antimatter.

This leaves the electrons in the mirror, traveling in the original direction – down, and

the clock ticking as usual. All in all, even if our universe is not parity symmetric, maybe it

is symmetric under a charge-parity (CP) transformation.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

76

Under Feynman’s thought experiment, CP symmetry appears to hold, by flipping

left to right and using antimatter instead of regular matter. Over the years, experimental

physicists have shown this to be true for most of the particles in the standard model.

Tip P arity symmetry violations are the result of the weak atomic force which only
affects left-handed fermions (quarks, electrons, neutrinos). Right-handed fermions
don’t feel the weak force at all. Note that the opposite is true about antimatter:
Left-handed anti-fermions do not feel the weak force, while right-
handed anti-fermions do. Thus, we may find ourselves in the same situation for a
CP transformation when it comes to the weak force.

All in all, the key to this puzzle is to find out if an experiment exists that violates a

CP transformation. If CP symmetry holds, at least in theory it does, then we shouldn’t

be able to do an experiment to tell whether we live in a regular or a CP transformed

universe. All physics must work the same in both.

�Strike 2: CP Symmetry Is Violated, Three Strikes, and Physics
Is Ruined

In the cosmic game of broken symmetries, strike 1 was dealt when experimentalist

Chien-Shiung Wu showed that parity transformations are violated in the Cobalt-60

radioactive isotope. Now we find ourselves at the bottom of the 9th, all bases covered,

and CP symmetry in the spot. With the roar of the crowd, we seek to find out if an

experiment exists that violates CP transformations. Physicists started to worry when such

a thing was found around the so-called Tau Theta Problem.

Tau and Theta are two particles that were thought to be the same; they have the

same mass, electric charge, and spin, but decayed into different products: Tau decays

into three Pions while Theta decays into two Pions, that being the only difference.

Furthermore Tau’s decay products have odd parity while Theta’s have even parity (this

implied a violation of parity conservation, thus giving rise to the so-called Tau Theta

problem). In 1956 physicists Tsu-Dao Lee and Chen Ning Yang proposed a solution:

They claimed that Tau and Theta are in reality the same particle, known today as Kaon

(K+), and that the weak nuclear force responsible for its decay, does not preserve parity.

This solution earned them a Nobel Prize in 1957.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

77

Later on, in 1964 American nuclear physicists James Cronin (1931–2016) and Val

Fitch (1923–2015) looked at the outcomes of the decay of a weird form of Kaon called

Neutral Kaon looking for hints of parity violations.

Tip N eutral Kaons are a weird quantum mix of its own particle, anti-particle.
This mix exists in two states: KS

o (K-S) is short lived and doesn’t change under
a combined charge-parity transformation (CP: even). The second type KL

o (K-L) is
long lived and has an odd CP state (it changes under a CP transformation). If CP
symmetry is to be conserved, KS and KL should never transform into each other
because they have different CP states.

Cronin and Fitch found out that Neutral Kaons display a bizarre behavior in this

universe: they sent a bunch of both types of Neutral Kaon down a tube into a detector

in the far end (right side of Figure 2-14). The short lived KS particles should never have

completed the journey given their short lives, and yet, a significant number of decay

products from KS particles were found at the detector.

Note T he only explanation for Cronin and Fitch result is that the long lived
KL particles transformed into KS particles violating CP symmetry. It looks like
Feynman’s mirror reflected antimatter Cobalt-60 clock is a bust after all!

�Time Symmetry Conservation: The Hallowed CPT Looks in Danger

The violation of CP symmetry has dire consequences for the laws of physics; the only

remaining hope in the C-P-T trinity is time reversal symmetry. All the results so far

suggest that time symmetry is broken as well, but for that, we need to get back to the

past, to the beginnings of quantum field theory.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

78

We find ourselves in the 1950s, at the dawn of QFT; at the time it was thought that

this new promising theory required certain symmetry. As time went on, and the theory

developed, it became clear the demand for symmetry under the combined action of

charge conjugation, parity inversion, and time reversal:

•	 The axiomatic foundations of QFT state that an antimatter, mirror

reflected, and time reversed version of our universe should have

the same laws of physics (this is known as the CPT theorem which

postulates that QFT must be CPT invariant).

•	 CPT invariance was the definite view of physicists throughout the

1950s: The laws of physics must work the same under a flip of charge,

parity, and direction of time, but then experiments popped out that

showed the violation first of parity, then CP symmetry, so we are left

holding to our last hope: T-symmetry.

Tip I f CPT symmetry holds (to save the world of physics) but CP symmetry is
violated, then T-symmetry must also be violated. This is because the time reversal
transformation needs to bring us from a broken CP mirrored universe into a stable
CPT universe.

The problem with the statement above is that if we go the other way around, with a

T-transformation from the stable CPT to the broken CP mirror universe, then the time

reversal transformation changes the way the universe behaves. That is really bad, as

physics is supposed to work the same whether we go forward or backward in time. So

T-symmetry goes out the window; of course this is all theoretical; nothing has been set

in stone.

Note T ime reversal symmetry is required by quantum mechanics in order to
conserve quantum information. Quantum mechanics says that information cannot
be destroyed.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

79

So what is it? Is T-symmetry violated or not? The answer depends on what we mean

by time reversal:

	 1.	 The most obvious interpretation of time reversal is when we flip

the so-called arrow of time, having the universe travel backward

in time. Presumably under this T-transformation quantum

information is preserved.

	 2.	 A second interpretation for time reversal is shown in the right

side of Figure 2-15. This interpretation is thought of as flipping

the direction of the evolution of a physical system: For example,

an explosion becomes an implosion, or particle decay becomes

particle creation. In other words, don’t rewind time nor convert

matter to antimatter, but reverse all momentum and spin.

Tip O ption one is not what physicists meant by T in CPT. In reality, the correct T
comes from option two where all momentum and spin are reversed, that is, taking
all particles and pointing them back to where they came from. If this T-symmetry
holds then, after reversing all particle motion, these particles should retrace their
steps, reactions, and histories. Furthermore, as this motion-spin reversed universe
evolves forward in time, it should end up in its starting arrangement. On the other
hand, if this T-symmetry is broken, then the future will not perfectly mirror the past.

Physicists argue that one prediction of this T-symmetry is that all processes should

take the same amount of time going forward as going backward. If that is true, then an

experiment could be created to put this to the test by timing the quantum transition

between one particle type and another; it should be the same in either direction. As a

matter of fact, in 2012, physicists from the Babar Collaboration at the Stanford linear

accelerator tested the speed at which B-mesons transition between two types. If this

T-symmetry holds, then the speed should be the same in either direction; their result:

the transition speeds were not the same. Reversing the direction of the transition changed

something about the physics indicating a T-symmetry violation.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

80

�Particles in a Rewinding Universe
Mathematically, particles in a T-transformation with a rewinding universe look like they

went under a charge-parity inversion (left side of Figure 2-15).

Matter that goes forward in time looks like antimatter going backward in time.

This interpretation of antimatter as time reversed matter was first proposed by Swiss

mathematician Ernst Stueckelberg in 1945; however, nowadays it is largely associated

with Richard Feynman.

Tip T his interpretation is essential for Feynman’s path integral approach to
quantum mechanics and his ubiquitous Feynman diagrams. Furthermore, it is the
inverse of a CP transformation, that is, the two undo each other. This means that
if CP is violated, then the simple time reversal is also violated. This T-violation has
been observed experimentally in the asymmetry between matter and antimatter.

Figure 2-15.  T-transformations in CPT: (a) time reversal of antimatter as time
reversed matter. (b) T-transformation by reversing all momentum and spin

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

81

�CPT Is Safe: The 70-Year Rollercoaster Ride
for the Symmetries of Nature
All physicists nowadays agree that quantum field theory is right as far as it goes. So much

so that it is the most successful theory science has come up with. It is backed by an

arsenal of experimental results that match the theory as closely as it can be expected.

All in all, we found out that the Stanford experiment pointed to a T-symmetry

violation in this universe, but that is a good thing; remember that with CP symmetry also

violated then T-symmetry violation saves CPT at the end. Thus far, in this decades-long

rollercoaster, we have seen how symmetries have been broken one by one:

•	 First, parity was broken by the Cobalt-60 radioactive isotope

experiment by Chien-Shiung Wu.

•	 Next, charge-parity was broken by the Neutral Kaon experiment by

Cronin and Fitch.

•	 Finally, we were left with the choice of giving up on the symmetry of

time itself in order to save CPT, but now, with T-symmetry looking

like it is broken too, the CPT theorem is safe.

In the end, Feynman’s antimatter time reversed clock works just fine, and our perfect

mirrored universe works under a reversal of all three: charge, parity, and time.

Richard Feynman, the great pioneer of quantum field theory, passed away in 1988,

at age 69 from liposarcoma, a rare form of cancer in soft tissue. His death was and

always will be a terrible loss for the world of physics. I compare his death to the loss of

Chopin or Mozart, like the master composer; he dedicated his life to creating masterful

works, and in that journey he became one of the most original minds of his generation.

Feynman became a legend in the scientific community not only for his groundbreaking

work on the path integral approach to quantum mechanics and quantum field theory,

but for his outrageous and dazzling method of teaching. His lectures in physics and his

book Six Easy Pieces are mythical and earned him monikers such as The Great Explainer

and Physics Most Brilliant Teacher. Near his death, he told a colleague that after teaching

so much and meeting so many people, he may not be really gone. If his theories about

quantum fields prove to be ultimately correct, then his genius will not be gone, just

recycled, perhaps into the mind of a young child out there riding his first bike, looking at

the stars, and wondering about the sea of truth out there waiting to be discovered. Long

live Richard Feynman: The Great Explainer.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

82

�Exercises
Put your knowledge of QFT and QED to the test with this exercise set.

	 1.	 What do QFT and QED stand for? How does QED relate to QFT?

	 2.	 In one sentence, what does QED study?

	 3.	 What three ways of managing the complexity in QFT such as in the

Dirac equation or Feynman path integral?

	 4.	 In one sentence define electron scattering. What law or equation

is used to describe it in classical electrodynamics?

	 5.	 In classical electrodynamics, what formula is used to calculate the

force between two stationary charged electrons?

	 6.	 Which of the following is true:

	 a.	 In QFT electrons are vibrations in the electron field.

	 b.	 Quantum fields permeate the entire universe.

	 c.	 The electron field does not interact with the electromagnetic field.

	 d.	 Vibrations in the electromagnetic field generate protons and quarks.

	 7.	 Fill in the blanks. Feynman diagrams are also _______ in disguise

with each part of the diagram representing a chunk of the maths.

In a Feynman diagram when two electrons travel toward each

other, they may exchange a _____ _____.

	 8.	 Which of the following is true about perturbation theory:

	 a.	 It is the art of drawing equations.

	 b.	 If you have an impossible equation, find a similar equation that is solvable

and make small changes to it so the result is similar.

	 c.	 The more complicated the interaction, the less it contributes to the final

probability amplitude.

	 d.	 The probability of a particular interaction depends on the number of

vertices of a Feynman diagram.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

83

	 9.	 What is a loop interaction in a Feynman diagram? Give two

examples.

	 10.	 Why may a loop interaction become infinite?

	 11.	 How does renormalization eliminate infinite loops in QFT?

	 12.	 Describe a pitfall of renormalization.

	 13.	 Which of the following is true about the Feynman path integral:

	 a.	 There are infinite possible intermediate states in a quantum system

evolving between two states.

	 b.	 Impossible paths must not be considered.

	 c.	 The probability of a path is impossible to calculate even with Feynman

diagrams.

	 14.	 Draw the basic elements of a Feynman diagram as well as

coordinates.

	 15.	 Draw the most probable interaction for electron scattering using

a Feynman diagram. Explain what is going on. Don’t use any

formulas.

	 16.	 What is a virtual particle?

	 17.	 Give two weird characteristics of virtual particles.

	 18.	 How do Feynman diagrams simplify QFT calculations?

	 19.	 There is an interesting case in QED called Bhabha scattering,

named after the father of the Indian nuclear program, physicist

Homi J. Bhabha (1909–1966). Bhabha scattering is the electron-

positron scattering process. In this exercise, you must draw the

two most important Feynman diagrams for Bhabha scattering

using a single virtual photon and two vertices each. Also, describe

in a few words what goes on in each interaction.

•	 Hint 1: Use two vertices with a single virtual photon for both cases.

Note that both diagrams may seem to describe two very different

events but must give the same result.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

84

•	 Hint 2: Use the simple rules described in this chapter and remember

the power of diagram rotation.

	 20.	 Draw all the possible four vertex diagrams for Bhabha scattering

from the previous exercise. Ignore all self-energy diagrams (when

an electron or positron emits and reabsorbs a photon). Explain

what transpires on each diagram.

Hint: Ignore all diagrams showing self-energy loops as shown in

the following diagram.

	 21.	 Fill in the blanks. A line dividing a square, triangle, or circle in the

middle creates halves that are examples of _____ symmetry.

	 22.	 Briefly describe two types of symmetries in nature. Give an

example of each.

	 23.	 Fill in the blanks. A parity transformation involves the flipping

of___ ____. A true x-axis transformation equals a z-axis reflection

plus a ____.

	 24.	 What does it mean to be P-symmetric?

	 25.	 In a mirror universe what properties get flipped and which

ones do not?

	 26.	 True or false: The laws of physics should work the same in the

mirror world even if the spatial axes get flipped.

	 27.	 Is parity symmetry (P-symmetry) violated in our universe? Why or

why not?

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

85

	 28.	 In a few sentences describe CP symmetry.

	 29.	 Briefly describe the experiment that showed CP symmetry

violation.

	 30.	 What is CPT symmetry? Why is it so important?

	 31.	 Give two examples of T-symmetry transformations.

Chapter 2 Richard Feynman, Demigod of Physics, Father of the Quantum Computer

87
© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_3

CHAPTER 3

Behold, the Qubit
Revolution
At the heart of a quantum computer is the qubit, designed as the analog of the classical bit,

the deterministic component at the heart of all electronics out there. Bits are physically

constructed using a transistor. Transistors are tiny, at around 15 nanometers (nm) where

1 nm = 10-12m; qubits, on the other hand, are big – a few meters tall. In this chapter, we

look at the basic architecture of the qubit as designed by the pioneering IT companies in

the field.

You will also learn that although qubits are mostly experimental and difficult to

build, it doesn’t mean that one can’t be constructed with some optical tools and some

ingenuity. Even if crude and primitive, a quantum gate can be built using refraction

crystals, photon emitters, and a low budget. This chapter also explores superconducting

loops as the main method for building qubits along with other popular designs and their

relationship to each other. Each particular design has its own benefits and caveats when

it comes to size, cost, and performance. So let’s get started.

�Your Friendly Neighborhood Quantum Computer
In the last few decades, quantum computers took the leap from the theoretical realm

into the experimental one. And, although regular people cannot afford the 15 million

USD for a shiny 2000 qubit D-Wave system, believe or not a very primitive quantum

gate can be constructed using some understanding of optics and a sanguine knowledge

of physics. In this section, we take the experimentalist plunge and build a crude yet

effective quantum gate capable of entangling photons to produce a controlled-Z (CZ)

gate. This gate is the hardest to build and demonstrates the quantum property of

superposition. But before we look at the hardware required to build this gate, let’s look at

the theory behind it.

https://doi.org/10.1007/978-1-4842-9991-3_3

88

In the golden age of quantum mechanics in the early 20th century, the great Austrian

physicist Wolfgang Pauli (1900–1958) won the Nobel Prize for his remarkable research

on the Exclusion Principle. In simple terms, this principle states that: no two particles

can occupy the same quantum state at the same time. This may not sound like much to

the un-initiated in atomic physics, but it was a stroke of genius by Pauli. As a matter of

fact, Einstein in his letter of recommendation on behalf of Pauli to the Novel committee

stated: For his scientific research on discovering a new law of nature.

Pauli’s exclusion principle explains the stability of electron states in heavy elements

with some physicists suggesting that Pauli’s principle is responsible for the fact that

ordinary bulk matter is stable and occupies volume. Results of this remarkable research

are the Pauli spin matrices (X, Y, Z) commonly denoted by the Greek letter sigma (σ)

thus:

	
σ σ σx y z

i

i
=








 =

−







 =

−










0 1

1 0

0

0

1 0

0 1 	

Pauli’s matrices are 2x2 complex matrices where (i) denotes the imaginary

number −1 .

Tip  In quantum mechanics the Pauli matrices are used to describe the spin of a
particle when it interacts with an external electromagnetic field.

Pauli gates, in turn, can be used to construct more complex gates. For example, here

is a 2 qubit controlled gate using the Z-gate. This one is more powerful, and capable of

superposition and entanglement (see Figure 3-1).

Figure 3-1.  Controlled Z-gate (CZ) shown in diagram and matrix modes. Note
that all quantum gates have a corresponding matrix representation

Chapter 3 Behold, the Qubit Revolution

89

In Figure 3-1, the horizontal lines represent the qubits. The black dot is called the

control, and it operates in the second qubit by performing the Z operation only when the

first qubit is |1>, and otherwise leaves it unchanged.

Tip  In quantum mechanics, all gates are described using matrices and
column vectors or kets |0>, |1> (more about this in the next chapter). It is the
rich representation of matrices that gives the performance boost over classical
computing.

Table 3-1 details the hardware components that can be used to build a rudimentary (CZ)

quantum gate as well as their estimated cost. These components cannot be found at the

local radio shack but can be purchased from eBay for cheap. They can also be purchased

from any optics manufacturer.

Table 3-1.  Required hardware to build a photonic CZ quantum gate

Item Quantity Description Estimated
cost (USD)

USHIO EXCIMER PHOTON SOURCE UER20H,

UER 20 H - 126 VA, USHIO EH0019

2 Single photon source 800

USHIO EXCIMER Photon Source Power

Supply B0083

1 Photon source power supply 1350

Partially Polarizing Beam Splitters (PPBS) 3 An optical device that splits a

beam of light in two

20

Let’s look at these items in more detail:

•	 Single photon source: This is a light source that emits single particles

of photons. Each source represents an input qubit to the CZ gate.

•	 Power supply: It would be great if we could plug in our photon source

to the AC power outlet; however, this is not possible; we need a

pricey custom power supply. In this case, I have used a device from

Japanese optics manufacturer USHIO from eBay.

Chapter 3 Behold, the Qubit Revolution

90

•	 Partially Polarizing Beam Splitter (PPBS): This is essentially a crystal

with two specific properties perfect to study quantum mechanical

effects:

•	 It splits a beam of light in two.

•	 It acts as an optical filter that lets light waves of a specific

polarization pass through while blocking light waves of other

polarizations.

Figure 3-2.  Polarizing beam splitter types

A beam splitter crystal comes in two flavors:

	 1.	 A cube constructed using two right triangle prisms: The hypotenuse

of one prism is coated, and the two prisms are cemented together

to form a cube (see left side of Figure 3-2). This model has the

advantage of eliminating beam shift with equally reflected

and transmitted optical paths. However, its heavy solid glass

construction is more difficult and expensive to build in large sizes.

	 2.	 Linear plates: Made of a thin, flat glass plate coated on the

first surface of the substrate. They are lightweight, relatively

inexpensive, and easy to manufacture in larger sizes. However,

their reflected and transmitted optical paths are of different

lengths, and they produce a beam shift of transmitted light (right

side of Figure 3-2).

Chapter 3 Behold, the Qubit Revolution

91

Tip U sing optics to build a quantum gate is described in the New Journal
of Physics by T Nagata et al.1 As a matter of fact, our setup seeks to replicate
Nagata’s experiment more cheaply.

With the hardware from Table 3-1, we can replicate Nagata’s pioneering work of

building a quantum CZ gate using optics. His setup is described in Figure 3-3.

Figure 3-3.  CZ gate constructed using optics as described by Nagata and colleagues

The experimental setup in Figure 3-3 uses

•	 Two photon sources representing the control and target qubits of

the gate.

•	 Both photons must enter the Partially Polarizing Beam Splitter (PPBS-A)

simultaneously. The reflectivity of splitter-A is 1/3 for horizontally polarized

light (H) and 1 for vertically polarized light (V). When the photons hit the

splitter, a quantum mechanical effect (two-photon quantum interference)

occurs only for the horizontally polarized photons (H).

•	 At the gate output, we count the cases in which single photons are

emitted to both output modes: control and target.

1 T Nagata et al. 2010 New J. Phys. 12 043053

Chapter 3 Behold, the Qubit Revolution

92

The combination of two-photon interference and post-selection flips the phase or

sign, that is, <H,H> becomes <-H, -H> of the input state only when both of the input

photons are horizontally polarized.

Tip T he control-Z has the property that it does nothing to all input pairs except
<H,H> which get mapped to <-H,-H>. This requires superposition of states and
entanglement.

Furthermore, this operation also weakens the probability amplitude of horizontally

polarized photons while preserving that of vertically polarized photons. To compensate

for this weakness in the probability amplitudes of H and V polarized photons, two

extra beam splitters (PPBS-B) are introduced at the outputs of PPBS-A. The gate then

functions as a CZ gate for horizontal and vertical basis with a success probability of 1/9.

Tip A ccording to Nagata and colleagues, the success probability of our photonic
CZ gate is 1/9. This is really low. This means that 89% of the time we will get
erroneous results (8/9 *100). Can you see how he came up with 1/9 value?
Remember that the reflectivity of the beam splitter is 1/3 for horizontally polarized
light (H), and we have two qubits: control and target. Therefore, P = 1/32 = 1/9.

The high error probability of the photonic CZ gate is probably one of the reasons

optical quantum gates have not taken off, with most of the big players in quantum

choosing superconducting loops instead. As we’ll see later on in this chapter, errors

introduced by particle interactions with the external environment are a major source of

headaches for quantum computation, and where most of the current research is geared

toward. This is the age of the Noisy Intermediate Scale Quantum (NISQ) computer. As

a matter of fact, most of Nagata’s work on this experiment is concentrated on reducing

the error rates produced by the beam splitters, but now let’s take a closer look at the

quantum effect at the heart of the gate: two-photon quantum interference.

Chapter 3 Behold, the Qubit Revolution

93

�Two-Photon Quantum Interference
Also known as the Hong-Ou-Mandel effect, it was demonstrated in 1987 by physicists

Chung Ki Hong, Zhe Yu Ou, and Leonard Mandel at Rochester University. This effect

occurs when two identical single photons enter a 1:1 beam splitter. The 1:1 means

that the photon has a 50:50 chance of being reflected or transmitted. Under perfect

conditions, the following applies:

•	 When the temporal overlap of the photons is perfect (they hit the

splitter at the same time), the two photons will always exit the beam

splitter together in the same output mode.

•	 If the photons become more distinguishable, the probability of them

going to different detectors will increase.

•	 An interferometer, an instrument that merges two or more sources

of light to create an interference pattern, which can be measured

and analyzed, can be used to accurately measure bandwidth, path

lengths, and timing.

Tip T wo-photon interference relies on the existence of photons and cannot be
fully explained by classical optics. This effect provides the underlying physical
mechanism for logic gates in linear optical quantum computation.

Thus, when the photons hit the splitter at the same instant, they can either be

reflected or transmitted with four possibilities shown in Figure 3-4 and Table 3-2.

Figure 3-4.  Reflection/transmission possibilities in two-photon interference

Chapter 3 Behold, the Qubit Revolution

94

Table 3-2.  Possible outcomes of two-photon interference

Top Bottom

1 Reflected Transmitted

2 Transmitted Transmitted

3 Reflected Reflected

4 Transmitted Reflected

Note  In physics, the so-called Feynman rule states that since the splitter does
not record the state of the photons (is not a measuring device), then we must add
all the possible states (paths) to calculate its probability amplitude. In quantum
mechanics, the modulus squared of this value represents the probability of a
specific outcome.

Furthermore,

•	 The reflection from the bottom side of the beam splitter introduces

a relative phase shift of π, corresponding to a factor of −1 in the

associated term in the superposition (this means options 3 and 4

must be subtracted from the probability amplitude). Note that this

is required by the reversibility of the quantum states of the beam

splitter.

•	 Because the two photons are identical, we cannot distinguish

between the output states of possibilities 2 and 3; therefore, the

minus sign of option 3 ensures that these two terms cancel each

other. In wave mechanics this is called destructive interference (see

right side Figure 3-5).

Chapter 3 Behold, the Qubit Revolution

95

Figure 3-5.  Interference in wave mechanics. Add waves A and B to get
constructive interference (left) or cancel each other (destructive) on the right

Tip  Quantum mechanics asserts that the state of a quantum system is described
by a probability amplitude vector where all possibilities must sum to unity.
This idea was proposed by German physicist Max Born (1882–1970) who was
instrumental in the development of quantum mechanics in its early days. In Born’s
interpretation, any transformation of a quantum state must preserve the length
of the state vector. This implies that linear transformations between quantum
states must be unitary and reversible (all states are described by probabilities with
complex coefficients and must add to 1).

�Mathematics Behind Photonic Interference
To understand what goes on behind two-photon interference, quantum mechanics

relies on annihilation and creation operators. These operators provide a solution to the

quantum harmonic oscillator problem using the algebra, and are widely used in many-

particle systems and the study of photons:

•	 The creation operator ˆ†a (a-hat-dagger): Increases the number

of particles in a given state by one, and it is the inverse of the

annihilation operator â which decreases the number of

particles by one.

•	 Consider two optical modes a and b (one for each photon) with

creation/annihilation operators: ˆ ˆ ˆ ˆ, ,† †a a and b b .

Chapter 3 Behold, the Qubit Revolution

96

Given a single photon state described using Dirac’s ket-notation as | 1⟩, then the state

of the two photons can be described using the operators above as

	
ˆ ˆ† †a b

ab ab
| , | ,0 0 1 1= 	

That is, apply the creation operator to the basis photon state for optical modes

(a, b) to obtain its current state. Now, when the two photons hit the beam splitter, one on

each side, the optical modes (a, b) undergo a unitary transformation into (c, d) with the

creation and annihilation operators transforming accordingly:

	
ˆ

ˆ ˆ
ˆ ˆ ˆ

†
† †

†
† †

a
c d

and b
c d

→
+

→
−

2 2 	

The minus sign in the second operator comes from the unitary transformation

performed in matrix form:
ˆ

ˆ

ˆ

ˆ

a

b

c

d









 = −




















1

2

1 1

1 1

Finally, the state of the two photons is shown in Figure 3-6.

Figure 3-6.  State of the two photons when they enter the beam splitter along with
their experimental signature

Experimentally, two-photon interference can be observed using two photodetectors

by monitoring the output modes (a, b) of the beam splitter: The coincidence rate of

the detectors will drop to zero when the photons hit the splitter at the same time. This

produces the supposed Hong-Ou-Mandel dip. Note that the coincidence count reaches

zero when the two photons are perfectly identical in all properties (bottom of Figure 3-6).

Chapter 3 Behold, the Qubit Revolution

97

Tip  Ket-notation ∣1, 1⟩ is fundamental in the mathematical description of
quantum mechanics and was developed by the great English physicist Paul
Dirac. A ket is essentially a vector of the states (s1, s2, …, sn) of a system or
∣s1, s1, .., sn⟩. Note that, what goes inside the ket are labels: symbols, letters,
numbers, or even words. For example, the basis states of a qubit are denoted by
the kets ∣0⟩, ∣1⟩ where 0, 1 are labels (not the numbers 0, 1) – an unfortunate yet
confusing accident. Additionally, since kets are vectors, they obey the usual rules of
linear algebra. For example, ∣A⟩ = ∣B⟩ + ∣C  ⟩.

�Output States of the Control-Z Gate
In Nagata’s gate when two photons enter beam splitter-A, quantum interference kicks in,

then by using the creation/annihilation operators for the input modes (a,b), the unitary

transformation UA becomes

	

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

†

†

a

b
U

a

b

R i R

i R R

a

b
A









 =









 =

−

−



















1

1
 	

where (R) is the reflectivity of the splitter and (i) is the imaginary number. In

contrast, beam splitter-B has four input modes when accounting for the vertical (V) and

horizontal (H) polarizations (right side of Figure 3-7).

	

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

†

†

†

†

a

b

a

b

U

a

b

a

b

H

H

V

V

B

H

H

V

V





















=





















	

	

U
U

e U

RH i RH

i R RH

e Rv ie Rv

ie

B
A

i
A

i i

i

=








 =

−

−

−

0

0

1 0 0

1 0 0

0 0 1

0 0 1

ϕ ϕ ϕ

ϕ −−





















Rv e Rviϕ
	

Chapter 3 Behold, the Qubit Revolution

98

where φ (Phi) is the phase difference between horizontally polarized light and

vertically polarized light. In the ideal case, the parameters of PPBS-A are RH = 1/3,

RV = 1, and φ = 0, so that the matrix UB becomes

	

U

i

i
B =





















1 3 2 3 0 0

2 3 1 3 0 0

0 0 1 0

0 0 0 1

/ /

/ /

	

Figure 3-7.  Output states of the CZ gate

•	 Beam splitter-A puts both photons in superposition. This is also

known as a Hadamard transformation (a very useful transform/gate

in quantum computation). The state of the system at this point for

photon polarizations (H,V) is H V i H V i H= +() +()()1

2
| | , | | .

•	 When the photon cross beam splitter-B, four input

modes are introduced for the vertical (V) and horizontal

(H) polarizations with the final state of the system (Psi)

ѱ = 1/3(−α| HH⟩ + β| VH⟩ + γ| HV⟩ + δ| VV⟩).

The final state ѱ is obtained by applying the unitary transformation UB the four basis

states for the photons with polarizations (H,V) using the creation operators with the ideal

values for reflectivity (RH = 0, RV = 2/3). See Table 3-3.

Chapter 3 Behold, the Qubit Revolution

99

Table 3-3.  Final states of the CZ gate

Basis state Resulting state

UB ∣ H, H ⟩a, b − 1
3
|H, H

UB ∣ H, V ⟩a, b 1
3
|H, V

UB ∣ V, H ⟩a, b 1
3
|V, H

UB ∣ V, V ⟩a, b 1
3
|V, V

Building quantum gates using linear optics seems easy when compared with other

qubit designs such as superconducting loops which are complex and dangerous to build

requiring cooling to almost absolute zero; the trade-off being significant reduction in

error rates. Nevertheless, the race is on to build a high fidelity quantum gate. Who will

win, nothing is set in stone when it comes to gate design.

�Lowering Error Rates
Nagata and colleagues conclude their research with a deep analysis of the error sources

for the photonic CZ gate, looking for clues on how to lower the error rate to achieve high

fidelity. They identified the following sources of error:

•	 Optical birefringence error δφ: Birefringence is formally defined as

the double refraction of light in a transparent, molecularly ordered

material, which is manifested by the existence of orientation-

dependent differences in the refractive index. All transparent solids

such as glass, crystal polymers, even table salt produce optical

birefringence.

•	 Mode mismatch error δε: This error is introduced by the two

optical modes (a, b) of each photon and their creation/annihilation

operators.

Chapter 3 Behold, the Qubit Revolution

100

•	 Reflectivity error for the horizontally polarized photons δRH: This

value has an effect in the accuracy of measurements.

•	 Reflectivity error for the vertically polarized photons δRV.

The requirements for achieving a high-fidelity gate have been investigated by

manipulating these four error sources with some potential innovations:

•	 High-reflectivity mirrors: These are ultra-high-tech crystals where

the sum of the transmittance and the loss (~1 − R) < 10−5. They

can be effective in reducing reflectivity errors as well as optical

birefringence.

•	 Gates using fibers or waveguides to minimize the spatial mode

mismatch δε.

•	 Single-photon sources with small temporal jitter can also minimize

temporal mode mismatch.

�Superconducting Loops vs. Linear Optics
A gate made using linear optics is relatively simple, and inexpensive to build, but has

high error rates. On the other hand, a superconducting loop gate is more complex and

requires near absolute zero temperature. Yet they have a much lower error rate than

photonics.

In this section, we look at the inner workings of these superconductor devices which

a few years ago only existed in theoretical physics but now, slowly yet steadily, are

becoming a reality, and soon will be all over the data center.

�Superconducting Loops
When an electric current passes through a conductor, some of the energy is lost in the

form of heat and light. This is called resistance, and it depends on the type of material;

some metals like copper or gold are great conductors of electricity and have low

resistance. Scientists discovered that the colder the material is the better conductor of

electricity it becomes (with lower temperature comes less resistance). The problem was,

no matter how cold the material gets, it will always show a level of resistance.

Chapter 3 Behold, the Qubit Revolution

101

Note  In 1911, scientists discovered that when cooling down mercury to 4.2
degrees Kelvin (above absolute zero), its resistance becomes zero. This Eureka
moment leads to the discovery of the superconductor, a material that has zero
electrical resistance at very low temperatures.

Since then, many other superconducting materials have been found: aluminum,

gallium, niobium, and others which show zero resistance at a critical temperature (see

Table 3-4). The great thing about superconductors is that electricity flows without any

loss, so a current in a closed loop can theoretically flow forever. As a matter of fact,

this principle has been proved experimentally when scientists were able to maintain

electricity flowing over superconducting rings for years.

Tip  In a qubit made of a superconductor loop, a current oscillates back and
forth around a loop. A microwave is injected which excites the current into a
superposition of states.

Table 3-4.  Common superconductors and their critical temperatures

Material Temperature (K) Details

Mercury 4.2 First superconductor discovered in 1911 by Heike

Kamerlingh Onnes

Lead 7 Found to superconduct in 1941

Niobium-nitride 16 A compound (alloy) of niobium and nitrogen

commonly used in infrared light detectors

Niobium-titanium 16 Also known as a type II superconductor commonly

used in industrial wires for superconducting magnets

Ceramics consisting

of mercury, barium,

calcium, copper, and

oxygen

133 These are called high-temperature superconductors

and are very desirable because they can be cooled

with cheaper materials such as liquid nitrogen

instead of the more expensive liquid helium

Chapter 3 Behold, the Qubit Revolution

102

�Breaking Out of the Lab: IBM-Q Qubit Design
Figure 3-8 shows a scaled down diagram of the basic components of a qubit using

superconducting loops by the IBM-Q platform2, as well as the temperature in Kelvin

degrees. An important component of this design is the Qubit Signal Amplifier.

�Qubit Signal Amplifier

This is a quantum mechanical signal booster used to read the qubit signal. Optical

amplifiers are important in communications and laser physics. For example, they

are widely used as repeaters in long distance fiber-optic cables to carry digital

telecommunications.

Tip T here are two main properties of the quantum amplifier: its amplification
coefficient and its uncertainty (noise). These are closely dependent: the higher the
amplification coefficient, the higher the noise. Quantum systems are extremely
sensitive to environmental noise.

For a qubit to do its job, we need the ability to read its quantum state with high

fidelity in real time. To this purpose, a signal amplifier of a special kind can be used:

quantum-limited amplifier (QLA). QLA devices use a low-noise microwave to probe

the quantum state of the qubit while minimizing environmental noise. Nevertheless,

this low noise comes at a price: The temperatures must be low, really low, colder than

any place on Earth or even outer space (just a few notches above absolute zero). In

Figure 3-8, QLAs are used in two places: on the top chamber of the qubit block at around

4K and in the inner chamber (where the superconducting loop lives) at a super frosty 10

millikelvin (10mK).

2 IBM Quantum systems overview. Available online at https://quantum-computing.ibm.com/
docs/manage/backends/

Chapter 3 Behold, the Qubit Revolution

https://quantum-computing.ibm.com/docs/manage/backends/
https://quantum-computing.ibm.com/docs/manage/backends/

103

Figure 3-8.  Rough draft of the basic qubit design used by IBM-Q

Note T o achieve these ultra-low temperatures, the qubit blocks are encased
in a special cylindrical-shaped cryogenic chamber called a dilution fridge. The
chamber has three temperature stages at 4K, 100mK, and 10mK with microwave
signals carried by input and output chains designed to minimize the qubit exposure
to noise. These include some microwave components, such as microwave and
coaxial lines, cryogenic insulators, and shields.

�Microwave and Superconducting Coaxial Lines

These are superconducting cables used to raise the overall current carrying capability

and are widely used in cryogenic applications for the medical, scientific, and aerospace

industries. They are useful because of their ability to carry very large currents in a

Chapter 3 Behold, the Qubit Revolution

104

relatively small cross-section with a minimum electrical loss, and when it comes to

energy transmission across lines, there are four important parameters to consider:

resistance, inductance, capacitance, and conductance.

•	 Resistance and inductance together are called transmission

line impedance. These two are critical when working with

superconducting loops.

•	 Capacitance and conductance together are called line admittance. In

this particular case, these two are eliminated by the vacuum chamber

enclosing the qubit.

Tip T he resistance offered by the material in a transmission line increases as
the line current increases; this is called the Ohmic-loss (I2Rloss). Furthermore,
the resistance “R” of a conductor of length “l” and cross-section “a” is given by

R
l

a
= ρ where (ρ) is the constant resistivity of the conductor material.

Temperature and the frequency of the current are the main factors that affect the

resistance of a line: It is important to remember that the resistance of a conductor

varies linearly with the change in temperature, whereas if the frequency of the current

increases, the current density toward the surface of the conductor also increases. On the

other hand, if the frequency decreases, the current tends to flow toward the center of the

conductor (the more the current flows toward the surface, the less it flows toward the

center, a property that is known as the skin effect).

This change in frequency gives rise to the concept of inductance (see Figure 3-9). In

an AC transmission line, the current flows sinusoidally. This current induces a magnetic

field perpendicular to the electric field, which also varies sinusoidally (an effect known

as Faraday’s law).

Chapter 3 Behold, the Qubit Revolution

105

Figure 3-9.  Inductance or current flow in a transmission line

This varying magnetic field induces an electro-magnetic-field (EMF) into the

conductor which flows in the opposite direction of the initial current. This EMF flow in

the opposite direction is described by the parameter known as inductance, which is the

property to oppose the shift in the current.

Note  Superconductors reduce resistance and inductance to almost zero by
lowering the temperature to a critical value and using special metals (mercury
and lead) or ceramic alloys (niobium and titanium). This magic cocktail allows the
transfer of high voltages with minimal loss/heat over tiny wires.

�Cryogenic Insulators and Shields

Their job is to provide thermal insulation while maintaining the best radiant energy

barrier available for cryogenic containers and vacuum pipes. In other words, they

prevent the toxic liquid nitrogen from escaping. All these components come together to

tackle the big picture challenge: reading the qubit state with minimal noise, a difficult

task commonly known as the readout problem of superconducting qubits.

Chapter 3 Behold, the Qubit Revolution

106

�The Non-destructible Way of Reading the Quantum State
of a Qubit

The current and best way to read the quantum state of a superconductor is to probe its

readout pulse with a weak microwave signal (around 7 GHz), that is, probe the signal

with few microwave photons. However, this is not feasible at room temperatures without

significantly boosting their energy, since the readout pulse is extremely weak (in the

order of 10-16 Watts (W) or less; this adds appreciable noise to the amplified output.

Tip T he device used to probe the readout pulse is called a Low Noise
Amplifier (LNA). This is a state-of-the-art, high-gain, and low-noise
semiconductor-based amplifier to boost the signal. LNAs by themselves are not
enough to read the qubit state as they add about 1000 times as much noise as
the quantum signal itself (top of Figure 3-10).

Engineers at IBM-Q solved the readout problem by adding a device called Quantum

Limited Amplifier (QLA) as the first-stage amplification in the chain (see bottom of

Figure 3-10).

Figure 3-10.  Qubit signal amplification chain using LNAs and QLAs with a high
signal-to-noise ratio (above) and low signal-to-noise (below)

Chapter 3 Behold, the Qubit Revolution

107

QLAs add only the minimum amount of noise required by quantum mechanics

to the input signal (equal to the ambient quantum noise or half a photon at the signal

frequency).

Tip  In the ideal case, the signal-to-noise ratio at the output of the QLA is only
degraded by a factor of two (since the added noise and input noise are equal).
QLAs work because the noise performance of a chain of microwave amplifiers is
primarily set by the noise characteristics of the first amplification stage.

In Figure 3-10 a readout pulse enters the quantum chip (superconducting loop) and

comes out as either ground ∣g⟩ or excited ∣e⟩; to probe the signal, an amplification chain

is created using either LNAs or QLAs.

•	 By using only an LNA, the signal is blurred by a factor of 1000 and

very difficult to resolve (due to the high signal-to-noise ratio).

•	 By using a QLA as the first amplification stage, the phase of the

amplified readout signal at the output of the chain is easy to resolve

as the ratio of the signal-to-noise is similar to that of the signal

leaving the qubit chip.

To determine the final state of the qubit, researchers at IBM-Q use a metric called

readout fidelity3.

3 Baleegh Abdo. Rising above the noise: quantum-limited amplifiers empower the readout
of IBM Quantum systems. Available online at www.ibm.com/blogs/research/2020/01/
quantum-limited-amplifiers/

Chapter 3 Behold, the Qubit Revolution

http://www.ibm.com/blogs/research/2020/01/quantum-limited-amplifiers/
http://www.ibm.com/blogs/research/2020/01/quantum-limited-amplifiers/

108

Figure 3-11.  Readout fidelity histogram of 2 qubits as reported by Abdo and
colleagues from IBM research showing low (noisy) fidelity (left) and high
(accurate) fidelity (right)

Tip  Readout fidelity represents the probability of a successful determination of
the qubit state. This metric is encoded as a real number between 0.5 and 1, where
1 means we know the qubit state with certainty (no readout error) and 0.5 means
failure to read the qubit state (readout error).

Figure 3-11 shows a histogram plot of the measurements of two qubit readout

signals in the ground ∣g⟩ (blue) and excited ∣e⟩ (red) states. The diagram explains how

readout fidelity is calculated: it is the overlap or separation of the ground or excited

signals. The dots represent readout data points of I and Q, microwave signals; on top

we see the Gaussian distributions of mean values (representing the signal strength) and

the standard deviations (representing the noise level). On the left, both signals overlap

with a fidelity of 0.6 (readout error); on the right, the signals are clearly distinguishable

(fidelity = 0.97 – no error).

Chapter 3 Behold, the Qubit Revolution

109

This readout fidelity measurement is the key to determine the qubit state in real

time. In general, the separation between the signals depends on the strength of the

probe signal (the number of photons used in the readout signal and the total gain of the

output chain), while the standard deviation (measurement noise) depends on the noise

in the output chain and the averaging time.

Note R eadout fidelity above 0.9 taken in less than 1 microsecond is highly
desirable, and it is possible thanks to QLAs.

Thus, researchers at IBM-Q are hard at work enhancing the performance of the

readout fidelity of their quantum processors with a twofold goal: tighter distributions

in the readout fidelities and better control over time. This pioneering work has created

quantum processors ranging from 5 to 53 qubits by the time of this writing. Furthermore,

their plans for scaling are ambitious: A 1000 qubit processor by 20234 with an ultimate

goal of millions of qubits.

�Pros and Cons of Superconductor Loops
The race between optics and superconductors to build the ultimate quantum

gate continues. Nevertheless, it is easy to see why big organizations have chosen

superconducting loops. Here is a list of the most critical factors to be considered when

building a high fidelity qubit:

•	 Error level: This is the probability of success or obtaining a valid

result. For the photonic quantum gate described by Nagata, the

success rate is 1/9 (11%). On the other hand, superconducting loops

have success rates above 99%.

4 Jay Gambetta. IBM’s Roadmap for Scaling Quantum Technology. Available online at www.ibm.
com/blogs/research/2020/09/ibm-quantum-roadmap/

Chapter 3 Behold, the Qubit Revolution

http://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
http://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

110

•	 Longevity: This is the minimum amount of time a superposition of

states can be kept. A very important metric, as this bizarre quantum

mechanical effect is what gives quantum the performance edge over

classical computing: Qubits exist in 0/1 superposition of states with

a given probability, providing more paths to find a solution to the

problem at hand.

•	 Cost: The average Joe may not be able to afford the cryogenic

insulation required by superconductors, so physics labs at colleges

may choose linear optics instead.

With this in mind, here are the pros vs. cons of superconductor qubits:

Advantages

•	 Low error levels (around 99.4% logic success rates).

•	 Fast, built on existing materials. Although very expensive and

complex.

•	 Decent number of entangled qubits (around 9) capable of performing

a 2-qubit operation.

Disadvantages

•	 Low longevity: 0.00005s. This is really low: superposition of states can

be kept for at most 50 millionths of a second.

•	 Must be kept very cold, at a super frosty -271C. This is colder than

space, just a few notches above absolute zero.

Lucky for us, optics or superconductors are not the only choices when building a

high performance qubit. There are many options out there, with more popping out all

the time.

�The Many Flavors of the Qubit
The great physicist Richard Feynman once theorized that the bizarre properties of

quantum mechanics could be used to construct an information processing device. As

it turns out, any two-state (or two-level) quantum-mechanical system can be used to

represent a qubit. The simplest examples of such states include

Chapter 3 Behold, the Qubit Revolution

111

•	 The two level spin of the electron: Spin up and spin down (commonly

used in superconducting loops)

•	 Single photon polarization: Vertical polarization and horizontal

polarization (used in linear optics)

More esoteric two-state quantum systems include

•	 Electron charge: No electron, one electron.

•	 Nuclear spin via magnetic resonance: Where nuclei kept in a strong

constant magnetic field produces an electromagnetic signal when

perturbed by a weak oscillating magnetic field (up or down).

•	 Optical lattices: It uses laser beams to create periodic polarization

patterns with states: up or down.

•	 Quantum dots: These are theoretical, tiny semiconductor particles

nanometers in size that differ from larger particles due to quantum

mechanics: when illuminated by UV light, an electron in the

quantum dot can be excited to a state of higher energy (up). The

excited electron can drop back into the basis state (down) releasing

its energy by the emission of light.

All in all, there are plenty of two-state quantum mechanical systems that can be used

to build a high fidelity qubit. Table 3-5 lists some of them, not counting the ones we have

seen so far: superconducting loops and linear optics.

Chapter 3 Behold, the Qubit Revolution

112

Ta
bl

e
3-

5.
 S

om
e

of
 th

e
co

m
m

on
 q

u
bi

t d
es

ig
n

s
ou

t t
he

re

Io
n

Tr
ap

s

An
 io

n
tra

p
is

 a
 te

ch
ni

qu
e

th
at

 u
se

s
a

co
m

bi
na

tio
n

of
 e

le
ct

ric
 o

r

m
ag

ne
tic

 fi
el

ds
 to

 c
ap

tu
re

 c
ha

rg
ed

 p
ar

tic
le

s
(io

ns
) i

n
a

sy
st

em

is
ol

at
ed

 fr
om

 th
e

ex
te

rn
al

 e
nv

iro
nm

en
t.

La
se

rs
 a

re
 a

pp
lie

d
to

 c
ou

pl
e

qu
bi

t s
ta

te
s

fo
r s

in
gl

e
op

er
at

io
ns

 o
r c

ou
pl

in
g

be
tw

ee
n

th
e

in
te

rn
al

st
at

es
 a

nd
 th

e
ex

te
rn

al
 m

ot
io

na
l s

ta
te

s
fo

r e
nt

an
gl

em
en

t

Sc
al

ab
ili

ty
Io

n
tr

ap
s

se
ek

 to
 re

al
iz

e
th

e
dr

ea
m

 o
f l

ar
ge

 s
ca

le
 u

ni
ve

rs
al

 q
ua

nt
um

co
m

pu
tin

g
by

 s
ca

lin
g

w
ith

 a
rr

ay
s

of
 io

n
tr

ap
s.

 T
hi

s
te

ch
ni

qu
e

is
 a

ls
o

ca
pa

bl
e

of
 b

ui
ld

in
g

la
rg

e
en

ta
ng

le
d

st
at

es
 v

ia
 p

ho
to

n
co

nn
ec

te
d

ne
tw

or
ks

 o
f r

em
ot

el
y

en
ta

ng
le

d
io

n
ch

ai
ns

, o
r c

om
bi

na
tio

ns
 o

f

th
es

e
tw

o

Pr
os

•
�Hi

gh
 lo

ng
ev

ity
: E

xp
er

ts
 c

la
im

 th
at

 tr
ap

pe
d

io
ns

 c
an

 h
ol

d

en
ta

ng
le

m
en

t f
or

 u
p

to
 1

00
0s

 w
hi

ch
 is

 p
re

tty
 g

oo
d

co
m

pa
re

d
to

 s
up

er
co

nd
uc

to
r l

oo
ps

 (0
.0

00
05

s)

•
�Be

tte
r s

uc
ce

ss
 ra

te
s

(9
9.

9%
) t

ha
n

su
pe

rc
on

du
ct

or
s

(9
9.

4%
).

No
t m

uc
h

bu
t s

til
l

•
�Hi

gh
es

t n
um

be
r s

o
fa

r (
14

) o
f e

nt
an

gl
ed

 q
ub

its
 c

ap
ab

le
 o

f

pe
rfo

rm
in

g
a

2-
qu

bi
t o

pe
ra

tio
n

Co
ns •

Sl
ow

 o
pe

ra
tio

n.
 R

eq
ui

re
s

lo
ts

 o
f l

as
er

s

Chapter 3 Behold, the Qubit Revolution

113

5  H
al

l,
E

. H
. (

18
79

).
 “

O
n

 a
 N

ew
 A

ct
io

n
 o

f t
h

e
M

ag
n

et
 o

n
 E

le
ct

ri
c

C
u

rr
en

ts
”.

A
m

er
ic

an
 Jo

u
rn

al
 o

f M
at

h
em

at
ic

s.
 JS

T
O

R
. 2

 (
3)

: 2
87

.
d

oi
:1

0.
23

07
/2

36
92

45

(c
on

ti
n

u
ed

)

Si
lic

on
 Q

ua
nt

um
 D

ot
s

In
 a

 s
ili

co
n

qu
an

tu
m

 d
ot

, e
le

ct
ro

ns
 a

re
 c

on
fin

ed
 v

er
tic

al
ly

 to
 th

e

gr
ou

nd
 s

ta
te

 o
f a

 q
ua

nt
um

 g
al

liu
m

 a
rs

en
id

e
(G

aA
s)

 fo
rm

in
g

a
tw

o-

di
m

en
si

on
al

 e
le

ct
ro

n
ga

s
(2

DE
G)

. T
hi

s
tw

o-
di

m
en

si
on

al
 e

le
ct

ro
n

ga
s

is
 fr

ee
 to

 m
ov

e
in

 tw
o

di
m

en
si

on
s,

 b
ut

 ti
gh

tly
 c

on
fin

ed
 in

 th
e

th
ird

.

Th
is

 ti
gh

t c
on

fin
em

en
t l

ea
ds

 to
 q

ua
nt

iz
ed

 e
ne

rg
y

le
ve

ls
 fo

r m
ot

io
n

in

th
e

th
ird

 d
ire

ct
io

n
w

hi
ch

 a
re

 u
se

d
to

 d
es

cr
ib

e
th

e
st

at
e

of
 a

 q
ub

it

No
te

: 2
DE

G
ga

se
s

ar
e

co
m

m
on

ly
 u

se
d

in
 tr

an
si

st
or

s
m

ad
e

fro
m

se
m

ic
on

du
ct

or
s

an
d

ca
n

al
so

 e
xh

ib
it

qu
an

tu
m

 e
ffe

ct
s

w
he

n

co
nd

uc
ta

nc
e

be
co

m
es

 q
ua

nt
iz

ed
 a

t l
ow

 te
m

pe
ra

tu
re

s
an

d
st

ro
ng

m
ag

ne
tic

 fi
el

ds
 (s

ee
 th

e
Ha

ll
ef

fe
ct

5)

Pr
os

•
St

ab
le

, b
ui

lt
on

 e
xi

st
in

g
se

m
ic

on
du

ct
or

 m
at

er
ia

ls

•
Be

tte
r l

on
ge

vi
ty

 th
an

 s
up

er
co

nd
uc

to
r l

oo
ps

 0
.0

3s

Co
ns •

�Lo
w

 n
um

be
r o

f e
nt

an
gl

ed
 q

ub
its

 (2
) c

ap
ab

le
 o

f p
er

fo
rm

in
g

a

2-
qu

bi
t o

pe
ra

tio
n

•
�Lo

w
er

 s
uc

ce
ss

 ra
te

 th
an

 s
up

er
co

nd
uc

to
r l

oo
ps

 o
r t

ra
pp

ed

io
ns

, b
ut

 s
til

l h
ig

h
at

 a
ro

un
d

99
%

Chapter 3 Behold, the Qubit Revolution

114

To
po

lo
gi

ca
l Q

ub
its

A
to

po
lo

gi
ca

l q
ub

it
us

es
 tw

o-
di

m
en

si
on

al
 q

ua
si

pa
rti

cl
es

 c
al

le
d

an
yo

ns
 w

ho
se

 p
at

hs
 p

as
s

ar
ou

nd
 o

ne
 a

no
th

er
 to

 fo
rm

 b
ra

id
s

in
 a

th
re

e-
di

m
en

si
on

al
 s

pa
ce

-t
im

e.
 T

he
se

 b
ra

id
s

fo
rm

 th
e

lo
gi

c
ga

te
s

th
at

m
ak

e
up

 th
e

co
m

pu
te

r.
To

po
lo

gi
ca

l q
ub

its
 s

ee
k

to
 e

lim
in

at
e

th
e

er
ro

r

le
ve

ls
 c

ha
ra

ct
er

is
tic

 o
f q

ua
nt

um
 c

om
pu

te
rs

 w
hi

ch
 a

re
 d

ue
 to

 th
e

pr
ob

ab
ili

st
ic

 n
at

ur
e

of
 q

ua
nt

um
 m

ec
ha

ni
cs

 a
nd

 a
re

 d
es

cr
ib

ed
 b

y
th

e

lo
ng

ev
ity

 o
r t

he
 d

ur
at

io
n

of
 q

ub
it

en
ta

ng
le

m
en

t

Pr
os

•
�St

ab
le

, e
rr

or
-f

re
e

(lo
ng

ev
ity

 d
oe

sn
’t

ap
pl

y)
. T

hi
s

is
 in

cr
ed

ib
le

,

if
to

po
lo

gi
ca

l q
ub

its
 c

ou
ld

 b
e

re
al

iz
ed

, a
ll

th
e

he
ad

ac
he

s
of

cu
rr

en
t q

ua
nt

um
 p

ro
ce

ss
or

s
w

ou
ld

 b
e

el
im

in
at

ed

Co
ns •

�Pu
re

ly
 th

eo
re

tic
al

 a
t t

hi
s

po
in

t,
al

th
ou

gh
 re

ce
nt

 e
xp

er
im

en
ts

in
di

ca
te

 th
es

e
el

em
en

ts
 m

ay
 b

e
cr

ea
te

d
in

 th
e

re
al

 w
or

ld

us
in

g
se

m
ic

on
du

ct
or

s
m

ad
e

of
 g

al
liu

m
 a

rs
en

id
e

at
 a

te
m

pe
ra

tu
re

 n
ea

r a
bs

ol
ut

e
ze

ro
 a

nd
 e

xp
os

ed
 to

 s
tro

ng

m
ag

ne
tic

 fi
el

ds

Ta
bl

e
3-

5.
 (

co
n

ti
n

u
ed

)

Chapter 3 Behold, the Qubit Revolution

115

Di
am

on
d

Va
ca

nc
ie

s

Di
am

on
d

va
ca

nc
ie

s
ar

e
m

ea
nt

 to
 s

ol
ve

 th
e

pe
re

nn
ia

l p
ro

bl
em

 o
f

re
ad

in
g

in
fo

rm
at

io
n

ou
t o

f q
ub

its
 (m

ea
su

re
m

en
t p

ro
bl

em
) i

n
a

si
m

pl
e

w
ay

. R
em

em
be

r t
ha

t m
ea

su
rin

g
th

e
qu

bi
t s

ta
te

 c
ol

la
ps

es
 it

s
w

av
e

fu
nc

tio
n

an
d

sh
ou

ld
 b

e
th

e
ve

ry
 la

st
 th

in
g

in
 th

e
ex

ec
ut

io
n

ch
ai

n.
 N

ow
,

be
ca

us
e

di
am

on
ds

 a
re

 n
at

ur
al

 li
gh

t e
m

itt
er

s,
 th

e
lig

ht
 p

ar
tic

le
s

em
itt

ed

pr
es

er
ve

 th
e

su
pe

rp
os

iti
on

 o
f s

ta
te

s;
 th

us
, t

he
y

co
ul

d
m

ov
e

in
fo

rm
at

io
n

be
tw

ee
n

qu
an

tu
m

 c
om

pu
tin

g
de

vi
ce

s,
 a

 fe
at

 th
at

 w
ou

ld
 b

e
co

ns
id

er
ed

th
e

ho
ly

 g
ra

il
of

 q
ua

nt
um

 c
om

pu
ta

tio
n.

 B
es

t o
f a

ll,
 th

ey
 w

or
k

at
 ro

om

te
m

pe
ra

tu
re

; t
he

re
 is

 n
o

ne
ed

 to
 c

oo
l t

hi
ng

s
do

w
n

to
 -2

72
C

de
gr

ee
s!

On
e

pi
tfa

ll
of

 d
ia

m
on

d
va

ca
nc

ie
s

is
 th

at
 o

nl
y

ab
ou

t 2
 p

er
ce

nt
 o

f t
he

su
rfa

ce
 o

f a
 n

at
ur

al
 d

ia
m

on
d

ha
s

th
em

. N
ev

er
th

el
es

s,
 re

se
ar

ch
er

s

ar
e

de
ve

lo
pi

ng
 p

ro
ce

ss
es

 fo
r b

la
st

in
g

th
e

di
am

on
d

w
ith

 b
ea

m
s

of

el
ec

tro
ns

 to
 p

ro
du

ce
 m

or
e

va
ca

nc
ie

s

Pr
os

•
Hi

gh
 lo

ng
ev

ity
: 1

0s

•
Hi

gh
 s

uc
ce

ss
 ra

te
: 9

9.
2%

•
�De

ce
nt

 n
um

be
r o

f e
nt

an
gl

ed
 q

ub
its

 (6
) c

ap
ab

le
 o

f

pe
rfo

rm
in

g
a

2-
qu

bi
t o

pe
ra

tio
n

•
Qu

bi
ts

 o
pe

ra
te

 a
t r

oo
m

 te
m

pe
ra

tu
re

Co
ns •

Sm
al

l n
um

be
r o

f v
ac

an
ci

es
 in

 s
ur

fa
ce

 m
at

er
ia

ls
: a

bo
ut

 2
%

•
Di

ffi
cu

lt
to

 e
nt

an
gl

e

Chapter 3 Behold, the Qubit Revolution

116

Quantum computers have come a long way since the days of Richard Feynman

with some of the world’s biggest companies looking to get in the game. Right now

superconductor loops are leading the pack. However, there are amazing new designs,

such as ion traps or diamond vacancies, seeking to realize the dream of large scale

quantum computing.

�Exercises
Here is a set of easy exercises to review the main concepts in this chapter. Answers are

provided in the appendix.

	 1.	 Write down the matrix representation of the Pauli spin

matrices X, Y, Z.

	 2.	 What is the matrix representation of a control-Z gate?

	 3.	 Briefly describe two types of bean splitter.

	 4.	 Give one reason why optical quantum gates have not taken off.

	 5.	 Briefly state the Feynman rule in physics.

	 6.	 What is two-photon quantum interference?

	 7.	 What are two types of wave interference?

	 8.	 What is destructive wave interference?

	 9.	 Give two sources of error in photonic gates.

	 10.	 In one sentence define a superconductor.

	 11.	 Give two examples of superconducting materials.

	 12.	 What is the temperature of the inner (lower) chamber of a

superconducting qubit?

	 13.	 List three components of the IBM-Q superconducting chamber.

	 14.	 What do superconducting coaxial lines do in the IBM-Q design?

	 15.	 What is the job of a cryogenic insulator?

	 16.	 What is a non-destructible way of reading the quantum state of

a qubit?

Chapter 3 Behold, the Qubit Revolution

117

	 17.	 What are two devices used to probe the readout pulse in IBM-Q?

	 18.	 What is readout fidelity?

	 19.	 List three factors to be considered when building a high

fidelity qubit.

	 20.	 What is the Born rule?

	 21.	 List three types (designs) of qubit systems.

Chapter 3 Behold, the Qubit Revolution

119

CHAPTER 4

Enter IBM Quantum:
A One-of-a-Kind Platform
for Quantum Computing
in the Cloud
In this chapter we take a look at quantum computing in the cloud with IBM Q: the

first platform of its kind. The chapter starts with an overview of the composer, the

web console used to visually create circuits, submit experiments, explore hardware

devices, and more. Next, you will learn how to create your first experiment and

submit it to the simulator or real quantum device. IBM Quantum features a powerful

REST API to control the life cycle of the experiment, and this chapter will show you

how with detailed descriptions of the endpoints and request parameters. Finally, the

chapter ends with a series of exercises to put your REST API skills to the test. Let’s get

started.

IBM has certainly taken an early lead in the race for quantum computing in the

cloud. They came up with a powerful platform to run experiments remotely called IBM

Quantum. Let’s see how this platform has the power to transform the status quo.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_4

https://doi.org/10.1007/978-1-4842-9991-3_4

120

�Getting Your Feet Wet with IBM Quantum
This is IBM’s platform for quantum computing; let’s take a look – follow the steps

outlined here (All Reprints Courtesy of International Business Machines Corporation,

© International Business Machines Corporation):

•	 Create an account in https://quantum-computing.ibm.com/. You

will need an email; wait for the approval and confirm.

•	 Login to the web console and navigate to the composer tab by

clicking the Learning menu from the application switcher in the top

right of the main menu.

�Quantum composer
The composer is the visual tool used to create your quantum circuits. At the top, it shows

the experiment histogram with qubits available for use (see Figure 4-1).

Figure 4-1.  Experiment histogram from the composer

•	 On the right side, we see the histogram with 4 qubits available for use.

They are all initialized to the ground state |0>. This is where you place

your quantum gates.

•	 On the left side, we have the quantum gates. Drag gates into the

histogram location of a specific qubit to start building a circuit.

Let’s look at the gates and their meaning.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://quantum-computing.ibm.com/

121

�Quantum Gates
The quantum gates supported by IBM Quantum are described in Table 4-1.

Table 4-1.  Quantum gates for IBM Quantum

Gate Description

Pauli X It rotates the qubit 180 degrees in the X-axis. Maps |0> to |1> and |1> to |0>.

Also known as the bit flip or NOT gate. It is represented by the matrix:

X �
�

�
�

�

�
�

0 1

1 0

Pauli Y It rotates around the Y-axis of the Bloch sphere by π radians It is represented

by the Pauli matrix:

Y
i

i
�

�
�
�

�
�

�

�
�

0
0

where i � �1 is known as the imaginary unit

Pauli Z It rotates around the Z-axis of the Bloch sphere by π radians It is represented

by the Pauli matrix:

Z �
�

�

�
�

�

�
�

1 0

0 1

Hadamard It represents a rotation of π on the axis X Z�� � / 2 . In other words, it maps

the states:

• |0> to 0 1 2� � �� � /

• |1> to 0 1 2� � �� � /
This gate is required to make superpositions

Phase Z It has the property that it maps X→Y and Z→Z. This gate extends H to make

complex superpositions

Transposed

Conjugate of S

It maps X→-Y, and Z→Z

(continued)

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

122

Table 4-1.  (continued)

Gate Description

Controlled

NOT (CNOT)

This is a two qubit gate that flips the target qubit (applies Pauli X) if the control

is in state 1. This gate is required to generate entanglement

Phase S The S gate performs a halfway rotation of a two-qubit swap. It is universal

such that any gate can be constructed from only sqrt(swap) and single qubit

gates. It is represented by the matrix:

S
i i
i i

�
�� � �� �
�� � �� �

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 1 2 1 1 2 1 0

0 1 2 1 1 2 1 0

0 0 0 1

/ /

/ /

Transposed

Conjugate of T or

Dagger-T

Represented by the matrix:

S
i i
i i

�
�� � �� �
�� � �� �

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 1 2 1 1 2 1 0

0 1 2 1 1 2 1 0

0 0 0 1

/ /

/ /

Barrier It prevents transformations across its source line

Measurement The measurement gate takes a qubit in a superposition of states as input and

spits either a 0 or 1. There is a probability of a 0 or 1 as output depending on

the original state of the qubit. Always remember that measurement should be

the last thing done in the circuit

Conditional Conditionally apply a quantum operation

Identity The identity gate performs an idle operation on the qubit for a time equal to

one unit of time

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

123

You can drag gates from the left side of the composer to create a circuit, or if you

prefer to write code, you can switch to the editor mode as shown in Figure 4-2.

Figure 4-2.  Experiment editor in QASM editor mode

Tip T he editor gives you two language choices: Qiskit or QASM (Quantum
Assembly). At the end, your circuits or Python code will be translated into QASM for
submission into a real device.

Now let’s take a look at the various quantum processors available for use.

�Quantum Backends Available for Use
There are many quantum processors available for experimentation under the open

(free) plan (from the main menu click Compute Resources). Table 4-2 shows a

partial list ranked by the number of qubits according to the IBM Quantum backend

information site.1

1 IBM Quantum backend information available at https://quantum-computing.ibm.com/lab/
docs/iql/manage/account/ibmq

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://quantum-computing.ibm.com/lab/docs/iql/manage/account/ibmq
https://quantum-computing.ibm.com/lab/docs/iql/manage/account/ibmq

124

Table 4-2.  Partial list of quantum backends

available for IBM Quantum users under the

open plan

Name Details

ibm_perth Processor: Falcon r5.11H

Qubits: 7

Quantum Volume: 32

ibm_lagos Processor: Falcon r5.11H

Qubits: 7

Quantum Volume: 32

ibm_nairobi Processor: Falcon r5.11H

Qubits: 7

Quantum Volume: 32

Here is a little secret: there is a very interesting way to get an updated list of available

machines in real time using the excellent REST API. This API is described in more detail

in the “Remote Access” section in this chapter, but for now let’s demonstrate how to

obtain an always up-to-date list of backends using the Available Backend List REST

endpoint: https://api-qcon.quantum-computing.ibm.com/api/Backends?access_

token=ACCESS-TOKEN.

Tip T o obtain an access token, see the section “Authentication via API Token”
under “Remote Access” of this chapter. Note that an API token is not the same as
an access token. API tokens are used for authentication. Access tokens are used to
invoke operations using the REST API.

The URL in the previous paragraph returns a list of quantum processors in JSON

format. This is what it looks like by the time of this writing. Note that your results may be

different:

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACCESS-TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACCESS-TOKEN

125

Listing 4-1.  HTTP response from the backend information REST API call

[{

 "name": " ibm_lagos",

 "version": "1",

 "status": "on",

 "serialNumber": "Real5Qv2",

 "description": "5 transmon bowtie",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-01-10T12:00:00.000Z",

 "chipName": "Sparrow",

 "id": "28147a578bdc88ec8087af46ede526e1",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "url": "https://ibm.biz/qiskit-ibmqx2",

 "simulator": false,

 "nQubits": 7,

 "couplingMap": [

 [0, 1],

 [0, 2],

 [1, 2],

 [3, 2],

 [3, 4],

 [4, 2]

]

}, {

 "name": "ibm_nairobi ",

 "version": "1",

 "status": "on",

 "serialNumber": "ibmqx5",

 "description": "16 transmon 2x8 ladder",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-09-21T11:00:00.000Z",

 "chipName": "Albatross",

 "id": "f451527ae7b9c9998e7addf1067c0df4",

 "topologyId": "ad8b182a0653f51dfbd5d66c33fd08c7",

 "url": "https://ibm.biz/qiskit-ibmqx5",

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

126

 "simulator": false,

 "nQubits": 7,

 "couplingMap": [

 [1, 0],

 ...

 [15, 14]

]

},

{

 "name": "ibmqx_hpc_qasm_simulator",

 "status": "on",

 "serialNumber": "hpc-simulator",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-12-09T12:00:00.000Z",

 "id": "084e8de73c4d16330550c34cf97de3f2",

 "topologyId": "7ca1eda6c4bff274c38d1fe66c449dff",

 "simulator": true,

 "nQubits": 32,

 "couplingMap": "all-to-all"

},

{

 "name": "ibmqx_qasm_simulator",

 "status": "on",

 "description": "online qasm simulator",

 "basisGates": "u1,u2,u3,cx,id",

 "id": "18da019106bf6b5a55e0ef932763a670",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "simulator": true,

 "nQubits": 24,

 "couplingMap": "all-to-all"

}]

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

127

Listing 4-1 shows that there is a lot of extra interesting information about the

structural layout of these machines:

•	 Extra processors and simulators:

•	 There are a few remote simulators available for use (ibmq_

qasm_simualtor, simulator_mps, ibmq_qasm_simualtor). This

information can come in handy when testing complex circuits:

more simulators are always a good thing.

•	 Rumors of a 475 qubit processor have been swirling around

for some time. There is even talk of an upcoming 1000 qubit

processor by the end of 2023, but don’t get excited just yet; this

machine is only available for corporate customers. IBM has put

an ambitious road map to reach a million qubits in the future.

Check it out at www.ibm.com/quantum/roadmap.

•	 Besides the usual information such as machine name, version, status,

number of qubits, and others. There are some terms we should be

familiarized with:

•	 basisGates: These are the physical qubit gates of the processor.

They are the foundation under which more complex logical

gates can be constructed. Most of the processors in the list use

u1,u2,u3,cx,id.

•	 Gates u1, u2, u3 are called partial NOT gates and perform

rotations on axes X, Y, Z by theta, phi, or lambda radians of

a qubit.

•	 Cx is called the controlled NOT gate (CNOT or CX). It acts

on 2 qubits and performs the NOT operation on the second

qubit only when the first qubit is |1>, and otherwise leaves it

unchanged.

•	 Id is the identity gate that performs an idle operation on a

qubit for one unit of time.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

http://www.ibm.com/quantum/roadmap

128

•	 couplingMap: The coupling map defines interactions between

individual qubits while retaining quantum coherence. Qubit

coupling is important, to simplify quantum circuitry and allow

the system to be broken up into smaller units.

Now back to the composer for our first quantum circuit.

�Entanglement: Bell and GHZ States
Entanglement experiments are used to demonstrate the weirdness of quantum

mechanics and come in two flavors:

•	 Bell states: They demonstrate that physics is not described by local

reality. This is what Einstein called spooky action at a distance

(2-qubit entanglement).

•	 GHZ states: Even stranger than Bell states (named after their creators:

Greenberger-Horne-Zeilinger), they describe 3 qubit entanglement.

Let’s look at them in more detail.

�Two Qubit Entanglement with Bell States
Bell states are the experimental test of the famous Bell inequalities. In 1964 Irish

Physicist John Bell proposed a way to put quantum entanglement (spooky action at a

distance) to the test. He came up with a set of inequalities that have become incredibly

important in the physics community. This set of inequalities is known as Bell’s theorem

and it goes something like this.

Consider photon polarization (when light oscillates in a specific plane) at three

different angles A = 0, B = 120, C = 240. Realism says that a photon has definite

simultaneous values for these three polarization settings, and they must correspond to

the eight cases shown in Table 4-3.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

129

Table 4-3.  Permutations for photon polarizations at three angles

Count A(0) B(120) C(240) [AB] [BC] [AC] Sum Average

1 A+ B+ C+ 1(++) 1(++) 1(++) 3 1

2 A+ B+ C- 1(++) 0 0 1 1/3

3 A+ B- C+ 0 0 1(++) 1 1/3

4 A+ B- C- 0 1(--) 0 1 1/3

5 A- B+ C+ 0 1(++) 0 1 1/3

6 A- B+ C- 0 0 1(--) 1 1/3

7 A- B- C+ 1(--) 0 0 1 1/3

8 A- B- C- 1(--) 1(--) 1(--) 3 1

Now Bell’s theorem asks: What is the probability that the polarization at any

neighbor will be the same as the first? We also calculate the sum and average of the

polarization. Assuming realism is true, then by looking at Table 4-1, the answer to

the question must be the probability must be >= 1/3. This is what the Bell inequality

gives: A means to put this assertion to the test. Here is the incredible part: Believe

it or not quantum mechanics violates Bell’s inequality giving probabilities less than

1/3. This was proven experimentally for the first time in 1982 by French physicist

Alain Aspect.

So now let’s translate the photon polarization above into an experiment that can

be run in a quantum computer. In 1969 John Clauser, Michael Horne, Abner Shimony,

and Richard Holt came up with a proof for Bell’s theorem: The CHSH inequality which

formally states:

	 S A B A B A B A B� � � �� � � �, , , , 	

	 S ≤ 2	

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

130

To illustrate this we have two detectors: Alice and Bob. Given A and A′ are detector

settings on side Alice, B and B′ on side Bob, with the four combinations being tested in

separate experiments. Realism says that for a pair of entangled particles the parity table

showing all possible permutations looks as shown here:

A B 1

A B' 0

A' B 0

A' B' 1

In classical realism, the CHSH inequality becomes |S| = 2. However, the mathematical

formalism of quantum mechanics predicts a maximum value for S of |S|=2 2, thus

violating this inequality. This can be put to the test using four separate quantum circuits

(1 per measurement) with 2 qubits each. To simplify things, let measurements on Alice’s

detector be A = Z, A' = X, and Bob's detector B = W, B' = V (see Table 4-2). To begin the

experiment, a basis Bell state must be constructed which matches the identity (see

Figure 4-5):

	
1 2 00 11/ �� � 	

The preceding expression essentially means: The qubit held by Alice can be 0 or 1.

If Alice measured her qubit in the standard basis, the outcome would be perfectly

random, either possibility having probability 1/2. But if Bob then measured his qubit, the

outcome would be the same as the one Alice got. So, if Bob measured, he would also get

a random outcome on first sight, but if Alice and Bob communicated they would find out

that, although the outcomes seemed random, they are correlated.

Figure 4-3.  Basis Bell state

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

131

In Figure 4-3 two qubits are prepared in the ground state |0>. The H gate creates a

superposition of the first qubit to the state 1 2 00 10/ �� � . Next, the CNOT gate flips

the second qubit if the first is excited, resulting in the state 1 2 00 11/ �� � . This is

the initial entangled state required for the four measurements in Table 4-2 (All reprints

courtesy of International Business Machines Corporation, © International Business

Machines Corporation).

•	 To rotate the measurement basis to the ZW axis, use the sequence of

gates S-H-T-H.

•	 To rotate the measurement basis to the ZV axis, use the sequence of

gates S-H-T’-H.

•	 The XW and XV measurement is performed the same way as above

and the X via a Hadamard gate before a standard measurement.

Tip  Before performing the experiment in the composer, make sure its topology
(the number of qubits and target device) in the score is set to two over a simulator.
Some topologies (like the 5 qubit in a real quantum device) do not support
entanglement for qubits 0 and 1 giving errors at design. Note that the target device
can be a real quantum processor or a simulator.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

132

Table 4-4.  Quantum circuits for Bell states

Bell state measurement Result for 100 shots

AB (ZW)
c[2] Probability

11 0.39

10 0.06

00 0.46

01 0.09

AB’ (ZV)
c[2] Probability

11 0.49

10 0.07

00 0.36

01 0.08

A’B (XW)
c[2] Probability

11 0.42

10 0.05

00 0.49

01 0.04

A’B’ (XV)
c[2] Probability

11 0.05

10 0.52

00 0.03

01 0.40

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

133

Now we need to construct a table with the results of each measurement from

Table 4-4 plus the correlation probability between A and B <AB>. The sum of the

probabilities for the parity of the entangled particles is given by:

	 AB P P P P� � � � � � � � � � � �11 0 0 1 0 01, , , , 	

Remember that the ultimate goal is to determine if S ≤ 2 or |S| = 2; thus, by compiling

the results of all measurements, we obtain Table 4-5.

Table 4-5.  Compiled results from the Bell experiment

P(00) P(11) P(01) P(10) <AB>

AB (ZW) 0.46 0.39 0.09 0.06 0.68

AB’ (ZV) 0.36 0.49 0.08 0.07 0.73

A’B (XW) 0.49 0.42 0.04 0.05 0.47

A’B’(XV) 0.03 0.05 0.4 0.52 -0.32

Add the absolute values of column <AB> and we obtain |S| = 2.2. These results violate

the Bell inequality (as predicted by quantum mechanics).

�Three Qubit Entanglement with GHZ States Tests
These are named after physicists Greenberger-Horne-Zeilinger who came up with a

generalization test for N entangled qubits with the simplest being a 3 qubit GHZ state:

	
GHZ � �� �1 2 000 111/ 	

Note T he importance of the GHZ states is that they show that the entanglement
of more than two particles conflicts with local realism not only for statistical
(probabilistic) but also nonstatistical (deterministic) predictions.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

134

In simple terms, GHZ states show a stronger violation of Bell's inequality. Let's

see how with a simple puzzle: imagine three independent boxes each containing two

variables X, Y. Each variable has two possible outcomes: 1, -1. The question is to find a

set of values for X, Y that solves the following set of identities:

(1) XYY = 1

(2) YXY = 1

(3) YYX = 1

(4) XXX = -1

For the impatient out there, there is no solution for this. For example, replace Y = 1 in

(1) (2) and (3) then multiply them, that is, (5) = (1) * (2) * (3). The set then becomes:

(1) X11 = 1

(2) 1X1 = 1

(3) 11X = 1

(4) XXX = -1

(5) Multiply (1) (2) (3) and we get XXX = 1

There is no solution because identity (4) XXX = -1 contradicts identity (5) XXX = 1.

The scary part is that a GHZ state can indeed provide a solution to this problem. This

seems impossible in the deterministic view of classical reality, but nothing is impossible

in the world of quantum mechanics, just improbable.

Incredibly, GHZ tests can rule out the local reality description with certainty after a

single run of the experiment, but first we must construct a GHZ basis state. Try building

the circuit in Table 4-6 in the composer to see the probabilities match the left side chart.

Table 4-6.  Basis GHZ state

GHZ � �� �1 2 000 111/

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

135

To kick start the experiment, the basis GHZ state (as well as probability results which

should be around half) is shown in Table 4-6:

	 1.	 In the basis circuit, Hadamard gates in qubits 1 and 2

put them in superposition |00,01,01,11>. At the same

time, the X gate negates qubit 3; thus, we end up with the

states 1 2 001 101 011 111/ � � �� � .

	 2.	 The two CNOT gates entangle all qubits into the

state 1 2 001 010 100 111/ � � �� � .

	 3.	 Finally, the three Hadamard gates map step 2 to the

state ½(| 000⟩ − | 111⟩).

Now, create the quantum circuits for identities XYY, YXY, XYY, and XXX from the

previous section as shown in Table 4-7 (All reprints courtesy of International Business

Machines Corporation, © International Business Machines Corporation).

Table 4-7.  Quantum circuits for GHZ states

Measurement Results for 100 shots

YYX
c[3] Probability

011 0.34

101 0.23

110 0.23

000 0.20

YXY
c[3] Probability

011 0.23

101 0.28

110 0.25

000 0.24

(continued)

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

136

Table 4-7.  (continued)

Measurement Results for 100 shots

XYY
c[3] Probability

011 0.23

101 0.26

110 0.35

000 0.16

XXX
c[3] Probability

010 0.25

100 0.32

111 0.22

001 0.21

•	 For the measurement of X apply the H gate to the

corresponding qubit.

•	 For each instance of Y apply the S† (S-dagger), and H gates to the

corresponding qubit.

All in all, the principles of entanglement shown in this section were not popular in

the early years of the 20th century. As a matter of fact, they were challenged by a theory

called super determinism which sought to give a way out.

�Super Determinism: A Way Out of the Spookiness.
Was Einstein Right All Along?
In an interview for BBC in 1969, Physicist John Bell talked about his work on quantum

mechanics. He said that we must accept the predictions that actions are transferred

faster than the speed of light between entangled particles, but at the same time we

cannot do anything with it. Information cannot travel faster than the speed of light, a

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

137

fact that is also predicted by quantum mechanics. As if nature is playing a trick on us.

He also mentioned that there is a way out of this riddle through a principle called super

determinism.

Particle entanglement implies that measurements performed in one particle affect

the other instantaneously, even across large distances (think opposite sides of the

galaxy or the universe), and even across time. Einstein was an ardent opponent of this

theory famously writing to Neils Bohr God does not throw dice. He could not accept the

probabilistic nature of quantum mechanics so in 1935, along with colleagues Podolsky

and Rosen, they came up with the infamous EPR paradox to challenge its foundation.

In the EPR paradox if two entangled particles are separated by a tremendous distance,

a measurement in one could not affect the other instantaneously as the event will have

to travel faster than the speed of light (the ultimate speed limit in the universe). This will

violate general relativity, thus creating a paradox: nothing travels faster than the speed of

light that is the absolute rule of relativity.

Nevertheless, in 1982 the predictions of quantum mechanics were confirmed by

French Physicist Alain Aspect. He devised an experiment that showed Bell's inequality

is violated by entangled photons. He also proved that a measurement in one of the

entangled photons travels faster than the speed of light to signal its state to the other.

Since then, Aspect's results have been proven correct time and again (details on his

experiment are shown in Chapter 1). The irony is that there is a chance that Einstein

was right all along and entanglement is just an illusion. It is the principle of super

determinism.

Tip  In simple terms super determinism says that freedom of choice has
been removed since the beginning of the universe. All particle correlations and
entanglements were established at the moment of the big bang. Thus, there
is no need for a faster than light signal to tell particle B what the outcome of
particle A is.

If true, this loophole will prove that Einstein was right when postulating the EPR

paradox and all our hard work thus far is just an illusion. But this principle sounds more

like religious dogma (all outcomes are determined by fate) than science as Bell argued

that super determinism was implausible. His reason was that freedom of choice is

effectively free for the purpose at hand due to alterations introduced by a large number

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

138

of very small effects. Super determinism has been called untestable as experimenters

would never be able to eliminate correlations that were created at the beginning of the

universe. Nevertheless, this hasn’t stopped scientists from trying to prove Einstein right

and particle entanglement an illusion. As a matter of fact, there is an experiment hard at

work to settle things up and is really inventive. Let’s see how.

Figure 4-4.  Bell’s inequality experiment using cosmic photons vs. the standard test

Figure 4-4 shows the standard Bell inequality test experiment (at the bottom) and a

variation of the experiment using cosmic photons (at the top) by Andrew Friedman and

colleagues at MIT.2

2 Jason Gallicchio, Andrew S. Friedman, and David I. Kaiser. Testing Bell’s Inequality with Cosmic
Photons: Closing the Setting-Independence Loophole. available online at https://arxiv.org/
abs/1310.3288

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://arxiv.org/abs/1310.3288
https://arxiv.org/abs/1310.3288

139

Tip F or a full description of the standard Bell inequality test, see Chapter 1.

Friedman and colleagues came up with a novel variation of the standard Bell

experiment using cosmic rays. The idea is to use real-time astronomical observations

of distant stars in our galaxy, distant quasars, or patches of the cosmic microwave

background, to essentially let the universe decide how to set up the experiment instead

of using a standard quantum random number generator. That is, photons from distant

galaxies are used to control the orientation of the polarization filters just before the

arrival of entangled photons.

If successful, the implications would be groundbreaking. If the results from such an

experiment do not violate Bell’s inequality, it would mean that super determinism could

be true after all. Particle entanglement will be an illusion, and signal transfer between

entangled particles could not travel faster than light as predicted by relativity. Einstein

will be right and there is no spooky action at a distance.

Luckily for quantum mechanics, no such thing has happened so far. Keep in mind

that Friedman and colleagues are not the only team getting into the action. There are

multiple teams trying to crack this riddle. As a matter of fact most of their results agree

with quantum mechanics. That is, their results violate Bell’s inequality. So it seems that

the rift created by Einstein and Bohr in their struggle between relativity and quantum

mechanics has not been settled yet. The next section shows how IBM Quantum can be

accessed remotely via its slick REST API.

�Remote Access via the REST API
Quantum features a relatively unknown REST API that handles all remote

communications behind the scenes. It is used by the current Python SDKs:

•	 Qiskit: The Quantum Information Software Kit is the de facto access

tool for quantum programming in Python.

•	 QiskitIBMQProvider: A lesser known library bundled with Qiskit that

wraps the REST API in a Python client.

In this section, we peek inside IBMQprovider and look at the different REST

endpoints for remote access. But first, authentication is required.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

140

�Authentication
To invoke any REST API call, we must first obtain an access token. This will be the access

key to invoke any of the calls in this section. There are two ways of obtaining this token:

•	 Using your API token: To obtain the API token, login to the IBM Q

console and copy it from the dashboard (see Figure 4-5).

•	 Using your account user name and password: Let’s see how this is

done using REST.

Figure 4-5.  Obtain your API token from the console.

�Authentication via API Token

•	 HTTP method: POST

•	 URL: https://auth.quantum-computing.ibm.com/api/users/
loginWithToken

•	 Payload: {“apiToken”: “YOUR_API_TOKEN”}

�Authentication via User-Password

•	 HTTP method: POST

•	 URL: https://auth.quantum-computing.ibm.com/api/users/login

•	 Payload: {“email”: “USER-NAME”, “password”: “YOUR-PASSWORD”}

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://auth.quantum-computing.ibm.com/api/users/loginWithToken
https://auth.quantum-computing.ibm.com/api/users/loginWithToken
https://auth.quantum-computing.ibm.com/api/users/login

141

The response for both methods is:

{

 "id": "ACCESS_TOKEN",

 "ttl": 1209600,

 "created": "2018-04-15T20:21:03.204Z",

 "userId": "USER-ID"

}

where id is your access token, ttl is the time to live (or expiration time) in

milliseconds, and userId is your user id. Save the access token and the user id for use

in this section. Note that when your session expires, a new access token needs to be

generated.

�List Available Backends
This call returns a JSON list of all available backends and simulators in IBM Q:

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/
Backends?access_token=ACESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACESS-TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACESS-TOKEN

142

�Response Sample

The response content type for all API calls is application/json. The next paragraph shows

the partial result of a call to this endpoint. Note that this endpoint will return both real

processors and simulators.

[{

 "name": "ibmqx2",

 "version": "1",

 "status": "on",

 "serialNumber": "Real5Qv2",

 "description": "5 transmon bowtie",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-01-10T12:00:00.000Z",

 "chipName": "Sparrow",

 "id": "28147a578bdc88ec8087af46ede526e1",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "url": "https://ibm.biz/qiskit-ibmqx2",

 "simulator": false,

 "nQubits": 5,

 "couplingMap": [

 [0, 1],

 [0, 2],

 [1, 2],

 [3, 2],

 [3, 4],

 [4, 2]

]

},..]

The most important keys from the response above are described in Table 4-8.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

143

3 J. Koch et al., “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A
76, 04319 (2007), doi:10.1103/PhysRevA.76.042319, arXiv:0703002

Table 4-8.  Available backends response keys

Key Description

Name The name id of the processor to be used when executing code against it

Version A string or positive integer used to track changes to the processor

Description This is probably a description of the hardware used to build the chip. You may

see things like

• 5 transmon bowtie

• 16 transmon 2x8 ladder

Note: A trasmon is defined as a type of noise-resistant superconducting charge

qubit. It was developed by Robert J. Schoelkopf, Michel Devoret, Steven

M. Girvin, and their colleagues at Yale University in 20073

basisGates These are the physical qubit gates of the processor. They are the foundation

under which more complex logical gates can be constructed

nQubits The number of qubits used by the processor

copulingMap The coupling map defines interactions between individual qubits while retaining

quantum coherence. It is used to simplify quantum circuitry and allow the

system to be broken up into smaller units

�Get Backend Parameters
This call returns a JSON list of the backend parameters for a given processor in Q

Experience. Some of these parameters include

•	 Qubit cool down temperature in Kelvin degrees: For example, I got

0.021 K for ibmqx4 – that is a super frosty -459.6 F or -273.1 C.

•	 Buffer times in ns.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

144

4 IBM Quantum backend information available online at https://github.com/QISKit/
ibmqx-backend-information

•	 Gate times in ns.

•	 Other quantum specs are documented in more detail at the backend

information site.4

The request type and endpoint URL are

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/
Backends/NAME/properties?access_token=ACCESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 4-2 shows a simplified response for ibmqx4 parameters in JSON.

Listing 4-2.  Simplified response for ibmqx4 parameters

{

 "lastUpdateDate": "2018-04-15T10:47:03.000Z",

 "fridgeParameters": {

 "cooldownDate": "2017-09-07",

 "Temperature": {

 "date": "2018-04-15T10:47:03Z",

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information
https://api-qcon.quantum-computing.ibm.com/api/Backends/NAME/properties?access_token=ACCESS-TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/NAME/properties?access_token=ACCESS-TOKEN

145

 "value": 0.021,

 "unit": "K"

 }

 },

 "qubits": [{

 "name": "Q0",

 "buffer": {

 "date": "2018-04-15T10:47:03Z",

 "value": 10,

 "unit": "ns"

 },

 "gateTime": {

 "date": "2018-04-15T10:47:03Z",

 "value": 50,

 "unit": "ns"

 },

 "T2": {

 "date": "2018-04-15T10:47:03Z",

 "value": 16.5,

 "unit": "μs"
 },

 "T1": {

 "date": "2018-04-15T10:47:03Z",

 "value": 45.2,

 "unit": "μs"
 },

 "frequency": {

 "date": "2018-04-15T10:47:03Z",

 "value": 5.24208,

 "unit": "GHz"

 }

 },..]

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

146

�Get the Status of a Processor’s Queue
This call returns the status of a specific quantum processor event queue.

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/
Backends/NAME/queue/status?access_token=ACCESS-TOKEN

�Request Parameters

It seems strange but this API call appears not to ask for an access token.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

For example, to get the event queue for ibmqx4, paste the following URL in your browser:

https://quantumexperience.ng.bluemix.net/api/Backends/ibmqx4/

queue/status

The response looks like: {"state":true,"status":”active”,"lengthQue

ue":0} where

•	 state: It is the status of the processor. If alive true else false.

•	 status: It is the status of the execution queue: active or busy.

•	 lengthQueue: It is the size of the execution queue or the number of

simulations waiting to be executed.

Tip  When you submit an experiment to IBM Q Experience, it will enter an
execution queue. This API call is useful to monitor how busy the processor is at a
given time.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/Backends/NAME/queue/status?access_token=ACCESS-TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/NAME/queue/status?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/ibmqx4/queue/status
https://quantumexperience.ng.bluemix.net/api/Backends/ibmqx4/queue/status

147

�List Jobs in the Execution Queue
This call returns a list of jobs in the processor execution queue.

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/
jobs?access_token=ACCESS-TOKEN&filter=FILTER

�Request Parameters

Name Value

access_token Your account access token

filter A result size hint in JSON. For example: {"limit":2} returns a maximum of 2 entries

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 4-3 shows the response format for this call. The information appears to be a

historical record of experiment executions containing information such as status, dates,

results, code, calibration, and more.

Listing 4-3.  Simplified response for the get jobs API call

[{

 "qasms": [{

 "qasm": "...",

 "status": "DONE",

 "executionId": "331f15a5eed1a4f72aa2fb4d96c75380",

 "result": {

 "date": "2018-04-05T14:25:37.948Z",

 "data": {

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/jobs?access_token=ACCESS-TOKEN&filter=FILTER
https://api-qcon.quantum-computing.ibm.com/api/jobs?access_token=ACCESS-TOKEN&filter=FILTER

148

 "creg_labels": "c[5]",

 "additionalData": {

 "seed": 348582688

 },

 "time": 0.0166247,

 "counts": {

 "11100": 754,

 "01100": 270

 }

 }

 }

 }],

 "shots": 1024,

 "backend": {

 "name": "ibmqx_qasm_simulator"

 },

 "status": "COMPLETED",

 "maxCredits": 3,

 "usedCredits": 0,

 "creationDate": "2018-04-05T14:25:37.597Z",

 "deleted": false,

 "id": "d405c5829274d0ee49b190205796df87",

 "userId": "ef072577bd26831c59ddb212467821db",

 "calibration": {}

}, ...]

Note D epending on the size of the execution queue, you may get an empty
result ([]) if there are no jobs in the queue or a formal result as shown
in Listing 4-3. Whatever the case, make sure the HTTP response code is
200 (OK).

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

149

�Get Account Information
When an account is created, each user is assigned several execution credits which are

spent when running experiments. This call lists your credit information.

•	 HTTP method: GET

•	 URL: https://auth.quantum-computing.ibm.com/api/users/USER-
ID?access_token=ACCESS-TOKEN

Tip T he user id can be obtained from the authentication response via API token
or user-password. See the “Authentication” section for details.

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 4-4 shows a sample response for this call.

Listing 4-4.  Credit information sample response

{

 "institution": "Private Research",

 "status": "Registered",

 "blocked": "None",

 "dpl": {

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://auth.quantum-computing.ibm.com/api/users/USER-ID?access_token=ACCESS-TOKEN
https://auth.quantum-computing.ibm.com/api/users/USER-ID?access_token=ACCESS-TOKEN

150

 "blocked": false,

 "checked": false,

 "wordsFound": {},

 "results": {}

 },

 "credit": {

 "promotional": 0,

 "remaining": 150,

 "promotionalCodesUsed": [],

 "lastRefill": "2018-04-12T14:05:09.136Z",

 "maxUserType": 150

 },

 "additionalData": {

 },

 "creationDate": "2018-04-01T15:36:16.344Z",

 "username": "",

 "email": "",

 "emailVerified": true,

 "id": "",

 "userTypeId": "…",

 "firstName": "…",

 "lastName": "…"

}

�List User’s Experiments
This call lists all experiments for a given user id.

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/users/
USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExe

cutions=true

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true
https://api-qcon.quantum-computing.ibm.com/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true
https://api-qcon.quantum-computing.ibm.com/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true

151

�Request Parameters

Name Value

USER-ID Your user id obtained from the authentication step

access_token Your account access token

includeExecutions If true, include executions in the result

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 4-5 shows a sample response from this call.

Listing 4-5.  Experiment list response

{

 "total": 17,

 "count": 17,

 "codes": [{

 "type": "Algorithm",

 "active": true,

 "versionId": 1,

 "idCode": "…",

 "name": "3Q GHZ State YXY-Measurement 1",

 "jsonQASM": {

 ...

 },

 "qasm": "",

 "codeType": "QASM2",

 "creationDate": "2018-04-14T19:09:51.382Z",

 "deleted": false,

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

152

 "orderDate": 1523733740504,

 "userDeleted": false,

 "displayUrls": {

 "png": "URL"

 },

 "isPublic": false,

 "id": "…",

 "userId": "…"

 }]}

�Run a Job on Hardware
Use this call to submit a Quantum Job to a hardware processor available in your

customer plan.

•	 HTTP method: POST

•	 URL: https://runtime-us-east.quantum-computing.ibm.com/jobs

�HTTP Headers

Name Value

X-Access-Token Access token

Content-Type application/json

�Payload Format

The format of the payload embeds all execution parameters: backend name, shots, and

code in a single JSON document as shown in the following.

{

 "program_id": "circuit-runner",

 "hub": "ibm-q",

 "group": "open",

 "project": "main",

 "backend": "ibmq_quito",

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://runtime-us-east.quantum-computing.ibm.com/jobs

153

 "params": {

 "shots": 1024,

 "circuits": [

 �" OPENQASM 2.0;\ninclude \"qelib1.inc\";\n\nqreg q[4];\ncreg c[4];\

nh q[0];\nh q[1];\nx q[0];\nmeasure q[0] -> c[0];"

]

 },

 "tags": [

 "composer-info:composer:true",

 �"composer-info:code-id:d2262dd4e07a9f894caabd977b10c7e98d90537228723dd1

4dceaab023c36098",

 "composer-info:code-version-id:646d2a856260a179aa094d3e"

]

}

The preceding payload submits a random experiment to the real device ibm_quito.

Make sure it is online before submission (or use the simulator instead). Also make sure

the QASM code is in a single line including line feeds (\n). Note that double quotes must

be escaped. If the submission fails, it probably means that the device is offline or your

QASM payload is invalid.

�Response Format

If everything goes OK, the response will look like:

{

 "id": "chn19jpike34bjj7d400",

 "backend": "ibmq_quito"

}

The id value represents the Job id. You can monitor its status in the Jobs menu of the

dashboard (see Figure 4-6).

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

154

Figure 4-6.  Job status in the web console

Note D epending on the size of the execution queue, your job may sit for a while.
Please keep the queue clean by canceling your test jobs.

�Get the API Version
It returns the version of the Q Experience REST API.

•	 HTTP method: GET

•	 URL: https://api-qcon.quantum-computing.ibm.com/api/
version?access_token=ACCESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/version?access_token=ACCESS-TOKEN
https://api-qcon.quantum-computing.ibm.com/api/version?access_token=ACCESS-TOKEN

155

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Format

It returns a string with the version of the API, by the time of this writing 0.153.0.

We have peaked inside the IBM Quantum REST API to see what goes on behind the

scenes. Now let’s put that knowledge to the test with a simple set of exercises.

�Exercises
The IBM Quantum REST API can be a powerful tool to add functionality to your

client apps. In this exercise set, we will use a platform desktop client to set up a REST

workspace for the API calls we have seen in this chapter.

	 1.	 Install the Postman desktop client from www.postman.com/. Hint:

When you start Postman, do not sign in to the cloud. This will

allow you to work locally.

	 2.	 Create a new collection for the IBM Quantum REST API. Name

the workspace IBM Quantum. Tip: Read about the very useful
Postman Global Variables to quickly store information such
as API or access tokens. See https://learning.postman.com/

docs/sending-requests/variables/.

	 3.	 Create a new request: Authenticate via token. Use the following

parameters:

	 a.	 Type: POST

	 b.	 URL: from the authentication section of this chapter: https://

auth.quantum-computing.ibm.com/api/users/loginWithToken

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

http://www.postman.com/
https://learning.postman.com/docs/sending-requests/variables/
https://learning.postman.com/docs/sending-requests/variables/
https://auth.quantum-computing.ibm.com/api/users/loginWithToken
https://auth.quantum-computing.ibm.com/api/users/loginWithToken

156

	 c.	 Payload: {“apiToken”: “YOUR_API_TOKEN”}. Tip: Copy the

API token from the dashboard of the IBM Q console. Verify the

Response returns an id (access token). Please note that the API
token (used for authentication) is not the same as the access
token (used to invoke operations). Tip: Store the access token in a

Postman global variable for use in further operations.

	 4.	 Create a new request: Authenticate via password. Use the

following parameters:

	 a.	 Type: POST

	 b.	 URL: from the authentication section of this chapter: https://

auth.quantum-computing.ibm.com/api/users/login

	 c.	 Payload: {“email”: “USER-NAME”, “password”: “YOUR-

PASSWORD”}. Verify the Response returns an id (access token).

	 5.	 Create a GET request to fetch the list of available backends:

	 a.	 Type: GET

	 b.	 URL: https://api-qcon.quantum-computing.ibm.com/api/

Backends?access_token=ACCESS_TOKEN

	 c.	 Verify the response information. Tip: Use the access token from

Exercise 3. Do not use the API token from the dashboard.

	 6.	 Create a GET request to fetch processor parameters (use

processor ibm_perth or your favorite name from the console):

	 a.	 Type: GET

	 b.	 URL: https://api-qcon.quantum-computing.ibm.com/api/

Backends/ibm_perth/properties?access_token=ACCESS_TOKEN

	 c.	 Verify the response JSON. Name your request Get Backend

properties. Tip: Use a Global variable to store the processor name.

	 7.	 Create a GET request to fetch the queue status of the previous

processor:

	 a.	 URL: https://api-qcon.quantum-computing.ibm.com/api/Backends/

ibm_perth/queue/status?access_token=ACCESS_TOKEN

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://auth.quantum-computing.ibm.com/api/users/login
https://auth.quantum-computing.ibm.com/api/users/login
https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/ibm_perth/properties?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/ibm_perth/properties?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/ibm_perth/queue/status?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/Backends/ibm_perth/queue/status?access_token=ACCESS_TOKEN

157

	 b.	 Type: GET

	 c.	 Verify the JSON response.

	 8.	 Create a GET request to List Jobs in the execution queue:

	 a.	 Name: List Jobs

	 b.	 Type: GET

	 c.	 URL: https://api-qcon.quantum-computing.ibm.com/api/

jobs?access_token=ACCESS_TOKEN

	 d.	 Verify the JSON response.

	 9.	 Create a GET request to List user experiments:

	 a.	 Name: List Experiments

	 b.	 Type: GET

	 c.	 URL: https://api-qcon.quantum-computing.ibm.com//api/

users/USER_ID/codes/lastest?access_token=ACCESS_TOKEN

(Tip: The user id is returned in the authentication request).

	 d.	 Verify the JSON response.

	 10.	 Create a GET request to get the API version:

	 a.	 Type: GET

	 b.	 Name: Get API Version

	 c.	 URL: https://api-qcon.quantum-computing.ibm.com/api/

version?access_token=ACCESS_TOKEN

	 d.	 Verify the JSON response.

Finally, export your collection. This will be a helpful tool if you plan to integrate the

IBM Quantum REST API into your existing desktop or web app. Your Postman workspace

should look similar to Figure 4-7.

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

https://api-qcon.quantum-computing.ibm.com/api/jobs?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/jobs?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com//api/users/USER_ID/codes/lastest?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com//api/users/USER_ID/codes/lastest?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/version?access_token=ACCESS_TOKEN
https://api-qcon.quantum-computing.ibm.com/api/version?access_token=ACCESS_TOKEN

158

Figure 4-7.  Postman desktop app with the Quantum REST API collection

Chapter 4 Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud

159

CHAPTER 5

Mathematical Foundation:
Time to Dust Up That
Linear Algebra
Matrices, complex numbers, and tensor products are the holy trinity of quantum

computing. During my quantum learning curve on the mathematical background, I

wondered as you may: Where is the quantum magic in all this? How can a complex

number or a matrix tell me about superposition or entanglement? Where is the

spookiness? My immature understanding of superposition was that a system existed

in multiple states at the same time: Like the cat in the box, it is dead and alive at once.

However that is incorrect, the cat cannot be dead and alive at the same time just like a

quantum system cannot exist in two simultaneous states.

My linear algebra was rusty to say the least. So after a while, I understood that

superposition is simply an algebraic sum. I was a little disappointed after realizing this,

and no, the cat is not dead and alive simultaneously: The cat is in a sum of probabilities:

50% death plus 50% alive. All in all, the bizarre properties of quantum mechanics:

entanglement and superposition are completely described by matrices. It is the rich

interpretation of matrices and complex numbers that allows for a bigger landscape, and

it is what gives the quantum advantage over traditional scaler-based mathematics. Think

of it as traveling from one city to another: scalers give a single road to travel. Matrices

give countless paths, some of them bad, some good, and that is the key to the whole

thing. That is what makes quantum algorithms superior to classical ones. Things get a

little more complicated nonetheless, but at the end it’s all linear algebra. So let’s dust up

that good old algebra.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_5

https://doi.org/10.1007/978-1-4842-9991-3_5

160

�Qubit 101: Vector, Matrices, and Complex Numbers
Before we start digging into quantum programs and algorithms, we need to refresh

some fundamental mathematics to understand what goes on behind the scenes. A

fundamental way of understanding the basic model of the qubit and the effects of

quantum gates is to use its algebraic representation. For this purpose you need some

basic linear algebra concepts including

•	 Linear vectors: Simple vectors such as
1

0

�

�
�
�

�
� which will be used to

represent the basis states of the qubit.

•	 Complex numbers: A complex number is a number composed of real

and imaginary parts denoted by a + bi where i � �1. Note that the

coefficients α, β of the super imposed state of a qubit ѱ = α∣0⟩ + β∣1⟩

are complex numbers.

•	 Complex conjugate: A term that you will often hear when talking

about quantum gates. To obtain a complex conjugate, simply flip the

sign of the imaginary part; thus, a + bi becomes a − bi and vice versa.

•	 Matrix multiplication: if A is an n × m matrix and B is an m × p matrix,

their product AB is an n × p matrix, in which the m entries across a

row of A are multiplied with the m entries down a column of B and

summed to produce an entry of AB. Take the first row from the first

matrix and multiply each element for the first column of the second

matrix, which becomes the first element in the result matrix.

•	 Matrix determinant det(M): It is a single numerical value useful when

calculating the inverse or when solving a system of linear equations. For a

2x2 matrix, multiply the elements in the main diagonal, then subtract the

product of the elements in the anti-diagonal: A
a b

c d
A ad - bc.= , det =

�

�
�

�

�
� � �

Similarly, for 3x3 matrix, split in 3 2x2 determinants. Thus,

given A
a b c
d e f
g h i

A a
e f
h i

b
d f
g i

�
�

�

�
�
�

�

�

�
�
�

� � � �

�
�

�

�
� �

�

�
�

�

�
�, det det det ��

�

�
�

�

�
�c

d e
g h

det .

Note that there is a method to calculate the determinant for an NxN matrix but
is complicated and outside the scope of this chapter.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

161

Let’s practice these concepts with a set of easy exercises.

Exercise 5.1: Find the product C of matrices A B
a b
c d
e f

� �
�

�
�

�

�
�

�

�

�
�
�

�

�

�
�
�

1 2 3

4 5 6
,

	
AB

a c e b d f
a c e b d f

�
� � � �
� � � �

�

�
�

�

�
�

2 3 2 3

4 5 6 4 5 6 	

Exercise 5.2: Remember that matrix product is not commutative: AB ≠BA. Show that

this is the case for the previous matrices A,B.

	

BA
a b
c d
e f

a b a b a b
c d c d c�

�

�

�
�
�

�

�

�
�
�

�

�
�

�

�
� �

� � �
� � �

12 3

4 5 6

4 2 5 3 6

4 2 5 3 66

4 2 5 3

d
e f e f e ef� � �

�

�

�
�
�

�

�

�
�
�	

Exercise 5.3: Calculate the determinant of A �
�

�
�

�

�
�

1 2

3 4

|A| = 1*4 – 3*2 = -2

Exercise 5.3a: Trickier – Calculate the determinant of the 3x3 matrix: M
a b c
d e f
g h i

�
�

�

�
�
�

�

�

�
�
�

	
M a

e f
h i

b
d f
g i

c
d e
g h

a ei hf b di gf c d�
�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
� � �� � � �� � � hh ge�� �

	

Try these on your own. If you get stuck, answers are provided in the appendix.

Exercise 5.4: Represent the values: 1.2, 3.0, −0.1 as a column vector.

Inner product: The inner product (a generalization of the dot product) of two

vectors a and b, represented as (a.b) or <a,b>, is a way to multiply them together, with the

result being a scalar. Thus, <(x1, x2,..)<(y1, y2,..)> = x1y1 + x2+y2+…

Exercise 5.5: Find the inner product of the vectors: a b� �
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1

2

3

4

5

6

, .

�Transpose of a Matrix MT

The transpose of a matrix is a flipped version of the original matrix obtained by switching

its rows with its columns.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

162

Exercise 5.6: Find the transpose of A �
�

�
�

�

�
�

1 2 3

4 5 6

	

AT �
�

�

�
�
�

�

�

�
�
�

1 4

2 5

3 6 	

Exercise 5.7: Try this one on your own. Find the transpose of A �
�

�

�
�
�

�

�

�
�
�

1

2

3

.

�Conjugate Transpose or Adjoint Mϯ

The conjugate transpose, or Hermitian transpose, of an m × n complex matrix A is an

n × m matrix obtained by transposing A and applying the complex conjugate on each

entry. Where the complex conjugate of z = a + ib, is z* = a – ib (more about complex

numbers in the next section).

Exercise 5.8: What is the conjugate transpose of A
a i
b i
c

�
�
�

�

�

�
�
�

�

�

�
�
�

2

3

	 A a i b i c† � � �� �2 3 	

Try these on your own.

Exercise 5.9: What is the conjugate transpose vector v
a
b
c

�
�

�

�
�
�

�

�

�
�
�

, where a, b, and c are

complex numbers?

Exercise 5.10: Given the complex vector from the previous question, what is vϯv.

Exercise 5.11 Calculate the product of

a
b
c

x y z
�

�

�
�
�

�

�

�
�
�
� �.

�Complex Numbers: The Mathematical Magic Hats
You probably heard of the famous imaginary number i or i� � � �1 1

2 . It was coined in

the 17th century by French philosopher René Descartes to find a solution to a paradox

such as this:

	 x2
1� � 	

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

163

We know that any number squared must be positive so how can you solve the

previous equation? Simply let i � �1 then you have x = i. This is the equivalent of

pulling a rabbit from the magician’s hat. In fact, imaginary numbers are a fundamental

part of the mathematical arsenal and an integral part of quantum mechanics. Complex

numbers can be represented geometrically in the complex plane using a Cartesian

coordinate system (see Figure 5-1).

Figure 5-1.  Complex plane for the complex number Z, where the X-axis is the real
part and the y-axis is the imaginary part

Tip  We know that x = r·cos(φ) and y = r·sin(φ); therefore, we can write a
complex number as z = r cos(φ) + i(r)sin(φ). After factorization and using the
almighty Euler identity formula (see next section), we obtain z = r eφ. This is
known as the polar form of a complex number where r is the magnitude and φ is
the rotation angle in the complex plane. Try to remember this polar form and the
superb Euler identity. They are extremely important.

Exercise 5.12: Here is a trick question: Which of the following is a square root of −16?

a) -4, b) 4i.

Exercise 5.13: Find the powers of i: i-3, i-2, i-1, i0, i1, i2, i3.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

164

�Euler’s Identity: A Wonderful Masterpiece
A cornerstone of quantum computing is Euler’s identity, developed by the Swiss

mathematician of the same name. Here it is in all its glory:

	 e x i xix � �cos sin 	

You must engrave this formula deep in your mind because it is everywhere, not only

in quantum mechanics but virtually in all fields of mathematics. What makes Euler’s

identity so incredible? Because it links

•	 Three basic arithmetic operations: addition, multiplication, and

exponentiation

•	 Three powerful constants: π (pi, used in Geometry), e

(Euler’s number, used in mathematical analysis), and i (the

imaginary number)

•	 The additive identity (0), the multiplicative identity (1)

Thus, this powerhouse of a formula brings together three of the biggest fields in

mathematics: geometry, numerical analysis, and complex numbers. This is why it has

been called “the most beautiful theorem in mathematics” and “the greatest equation

ever” just to name a few. Euler’s contributions to mathematics are too long to count, so

let’s dive inside this little gem to understand its brilliance.

Exercise 5.14: Euler’s identity is closely related to the infinite series for the sine,

cosine, and exponent where:

	
sin

! ! !
x x x x x
� � � � ��� �

3 5 7

3 5 7
1 	

	
cos

! ! !
x x x x
� � � � ��� �1

2 4 6
2

2 4 6

	

	
e x x x x xx � � � � � � ��� �1

1 2 3 4 5
3

1 2 3 4 5

! ! ! ! !
	

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

165

Prove Euler’s identity using the preceding infinite series. Hint: Start with ex and apply

the powers of i: i-3 = i, i-2 = -1, i-1 = -i, i0 = 1, etc. Finally group the terms that contain i and

compare with the series for the cosine and sine.

	
e ix

ix ix ix ixix � � �
� �

�
� �

�
� �

�
� �

��1
2 3 4 5

2 3 4 5

! ! ! !
	

	
� � � � ��
�

�
�

�

�
� � � � � ��

�

�
�

�

�
� � �1

2 4 6 3 5 7

2 4 6 3 5 7x x x i x x x x x i
! ! ! ! ! !

cos ssin x
	

Try these on your own. Use the identities Sin x = Sin(-x), Cos x = Cos(-x), and Euler’s.

Hint: Apply Euler’s to all exponentials, then simplify.

Exercise 5.15: Show that Cos x = 1/2(eix + e−ix)

Exercise 5.16: Show that Sin x = 1/2i(eix − e−ix)

All in all, Euler’s identity is critical to our understanding of quantum computing. As a

matter of fact, any single qubit gate can be generalized as a rotation over 3 Euler angles,

truly a masterpiece.

	

U

i

i i

� � �

� �

� �

�

� � �
, , =

cos
2

-e sin
2

e sin
2

e cos
2

+

� �
�

�

�
�
�
�

�

�

�
�
�
�

� �
	

�Tensor Product of a Matrix ⊗
Tensor products are important in areas of abstract algebra, algebraic topology, geometry,

as well as differential geometry and physics. In quantum computing, pretty much

everything is a tensor product of vectors or matrices (operators). You must get familiar

with this concept. Tensor products are important because

	 1.	 They allow you to change the ring over which a module is defined.

	 2.	 They allow you to transform bilinear maps into linear ones, to

which you can apply linear algebra.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

166

In simple terms the tensor product of two matrices A
a b
c d

B
e f
g h

� �
�

�
�

�

�
�

�

�
�

�

�
�, is

denoted by A B
a
e f
g h

b
e f
g h

c
e f
g h

d
e f
g h

� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

.

Tip I n quantum mechanics, the tensor product is mostly abbreviated; thus, we
can write |0>⊗|1> = |0>|1> = |01>.

Let’s illustrate points 1 and 2 earlierwith a simple example using quantum gates.

Exercise 5.17: The Control-X Gate (CX) is made of the

tensor product of the identity CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X where:

I X� � � � � �
�
��

�
��

�
��

�
��

�
��
�
��

� � �
��
�
��

1 0

0 1

0 1

1 0

0

1

0

1 0 1

0

1

1 0, , , 0 , , 11� � . Calculate the tensor product

of the identity and verify the result with the matrix representation for CX �

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

	
0 0

1

0

1 0

1 0

0 0

1 1

0

1

0 1

0 0

0 1

� � � �
�
��
�
��
� � �

��
�
��

�
��
�
��
� � �

��
�
��

,

	

	

CX �
�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

1 0

0 0

1 0

0 1

0 0

0 1

0 1

1 0

1
1 0

0 1
00

1 0

0 1

0
1 0

0 1
0

1 0

0 1

0
0 1

1 0

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�

�

��
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0
0 1

1 0

0
0 1

1 0
1
0 1

1 0

	

CX �

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0 	

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

167

�Postulates of Quantum Mechanics
This section may be a little tough for the not mathematically inclined; however, we need

to dive a little, not too deep into quantum mechanics to have a solid understanding and

complement the linear algebra.

�Postulate 1: State and Vector Space
A quantum system is completely described by a state vector in Hilbert space:

	
� � �� �

i i

i
� �e

i
,

2

1

	

This postulate is telling us that any quantum state ѱ is described by a linearly

independent superposition (sum) of states ei multiplied by a complex coefficient αi. A

very important requirement is that the sum of the squares of the complex coefficients

must be 1. In quantum computing all transformations must be unitary (reversible) and

this property ensures that. Another important concept to remember is the basis vector.

For a single qubit, the basis vectors are 0 1=
1

0
, =

0

1

�
��
�
��

�
��
�
��

. For a 2 qubit system we have

22 = 4 basis vectors:

	

00

1

0

0

0

01

0

1

0

0

10

0

0

1

0

� � �

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

, ,

��

�

�

�
�
�
�

�

�

�
�
�
�

�, 11

0

0

0

1 	

Finally, an n-quibit system will have 2n basis vectors. Note that they are linearly

independent (only 1 element in the column contains a 1).

�Postulate 2: Observables and Operators
Every observable of a physical system is described by an operator that acts on the states

that describe the system.

•	 Observable: Is a measurable property of a particle such as spin,

position, polarization, or charge.

•	 Operator: Is a synonym for Hermitian matrix which is a complex

square matrix equal to its conjugate transpose.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

168

Operators give rise to the concept of eigenstate and eigenvalue.

•	 Eigenstate: It is a quantum state changed only by a scalar multiplier.

Thus for operator M acting on state |a>: M ∣ a⟩ = λ ∣ a⟩.

•	 Eigenvalue: It is the scalar λ that corresponds to the eigenstate |a>.

�Postulate 3: Measurement
When an observable is measured, the only possible outcome will be an eigenvalue of the

operator for that observable.

Note P hysical measurements are always real numbers; any imaginary part
will vanish.

•	 Measurement of eigenstates: The eigenstates aj of an operator are

orthogonal (perpendicular) and form a basis. ⟨aj| ak⟩ = δj, k. Any state

can be expressed as a linear combination with complex coefficients

of these eigenstates.

•	 Probability amplitude: When a system |ѱ> is measured, the

probability of obtaining eigenvalue λ for eigenstate |a> is: |⟨aj| ѱ⟩|2.

Note that <a|ѱ> is a complex value (or probability amplitude). It must

be squared to obtain a real value.

•	 Expected value: It is the estimated result of running a measurement

multiple times on state |ѱ> using operator A: � � �� ��
i

i j
a A� Pr(| |

�Postulate 4: Collapse of the Wave Function
The wave function for state |ѱ> “collapses” on measurement and all information

embodied in the superposition is lost permanently.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

169

Note N obody knows why or how the wave function collapses. This is one of the
great mysteries in physics. One bizarre theory, for example, proposes it is the result
of energy transfer among parallel universes.

The collapse of the wave function implies a very ominous truth (depending on the

point of view at least): We cannot “peek” inside the box, because doing so will destroy

its quantum state. This is bad news for debugging a quantum circuit but good news for

cryptographers where maintaining privacy is important.

�Postulate 5: Unitary Transformations
A unitary transformation describes the evolution of a closed quantum system over

time. Thus, given the state |ѱ> at time t1 and the state |ѱ2> at state t2 with unitary U

depending only on t1, t2: ∣ѱ2⟩ = U ∣ ѱ⟩.

Tip U nitary transformations ensure that the sum of probabilities for all states
equals 1. All operations are reversible (except measurement), and the system is
closed (it has no interactions with the environment).

�Linear Algebra and Quantum Mechanics
Cheat Sheet
Table 5-1 is a handy compilation of the most important concepts we have seen thus far.

Keep it handy as you work through the exercises at the end of the chapter.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

170

Table 5-1.  Linear algebra and quantum mechanics cheat sheet

Name Description

Bra-ket vector notation

Bra = Row vector <a|

Ket = column vector |a>

Bra is the adjoint (complex conjugate transpose) of

a ket

0 1 0 1 0 1�� � �� �

0
1

0
1

0

1
� �
�

�
�
�

�
�

�

�
�
�

�
�

Basis vectors and standard basis are linearly

independent; they cannot be written as a linear

combination of other vectors

Any vector can be written as a linear combination

of basis vectors: |ѱ> = c1{00> + c2|01> + c3|10>

+ c4|11>

Two qubit basis vectors:

0

1

0

0

0

1

0

1

0

0

0

0

0

1

0

10 0 1� � �

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

11

0

0

0

1

�

�

�

�
�
�
�

�

�

�
�
�
�

Inner product <a|b> results in a scalar

Outer product |a><b|: Can be thought as an

operator that transforms |b> to |a>

1 0
0 1

0 0
0 1

0 0

1 0
�
�

�
�

�

�
� �

�

�
�

�

�
�

Unitary matrix: It is a square complex matrix whose

adjoint equals its inverse

Hermitian: U = UϮ

State vector (wave function) |ѱ> ∣ѱ⟩ = ∑i αi ∣ ei⟩, ∑i |α|2 = 1

Superposition |ѱ⟩ = α|0⟩ + β ∣ 1⟩ where |α|2 + |β|2 = 1

(continued)

0 0 1 0
1

0
1| � � ��

�
�
�

�
� �

0 0
1 0

0 0
1 1

0 0

0 1
� �
�

�
�

�

�
�

�

�
�

�

�
�

U
a b
c d

U
a b
c da

UU U U I� � � �
�

�
�

�

�
�

�

�
�

�

�
�

� �

� �

† † †,

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

171

Table 5-1.  (continued)

Name Description

Tensor product of two operators A⊗B

A
a b
c d

B
e f
g h

�
�

�
�

�

�
� �

�

�
�

�

�
�,

A B
a
e f
g h

b
e f
g h

c
e f
g h

d
e f
g h

� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

A B

ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

� �

�

�

�
�
�
�

�

�

�
�
�
�

Entangled vs separable states: Entangled states

cannot be expressed as the tensor product of

independent qubit states
� � � � �1

2
01

1

2
11 separable

Eigenstate and eigenvalue M ∣a⟩ = λ∣a⟩
λ (lambda) is the eigenvalue for eigenstate |a>

Pauli operators X ∣0⟩ = ∣1⟩, X ∣1⟩ = ∣0⟩
Y ∣0⟩ = ∣0⟩, Y ∣1⟩ = −∣i ⟩
Z ∣0⟩ = ∣0⟩, Z ∣1⟩ = −∣1⟩

Measurement probability for state |a>>

Note: <a|ѱ> is the probability amplitude

|⟨aj| ѱ⟩|2

Expected value <ѱ> after repeated measurements

is always different
� � �� ��

i

i j
a A� Pr(

Unitary transformation

 • Preserves norm: the sum of probabilities = 1

 • �Ensures the system is reversible (required by

quantum mechanics)

 • �Ensures a closed system (no interaction with

the environment)

∣ѱ2⟩ = U ∣ѱ⟩

� � � � �1

2
00

1

2
11 entangled

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

172

A solid understanding of the algebra will help you realize how a quantum circuit can

achieve massive parallelism and advantage over the traditional bit/transistor logic of the

classical computer. Next, let’s dive into basic gates and circuits.

�Algebraic Representation of the Qubit
In the classical model, the fundamental unit of information is the bit which is

represented by a zero or one. The bit physically translates to the voltage flow through a

transistor. In quantum computation, the fundamental unit is the quantum bit (qubit)

which physically translates to manipulations on photons, electrons, or atoms.

Algebraically, the qubit is represented by Ket notation.

Tip  Ket notation was introduced in 1939 by Physicist Paul Dirac and is also
known as the Dirac notation. The ket is typically represented as a column vector
and written∣φ⟩.

�Dirac’s Ket Notation
Using Dirac’s notation the basic quantum states of the qubit are represented by the

vectors |0> and |1>. These are called the computational basis states.

Tip T he quantum state of a qubit is a vector in a two-dimensional complex vector
space. Take a look at the following simple graph.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

173

Figure 5-2.  Quantum states of the qubit

Figure 5-2 shows the complex vector space used to represent the state of a qubit. On

the left side, the so-called basis sate is made up of two unit vectors in Dirac notation for

the states |0> and |1>. On the right side, a general quantum state is made up of a linear

combination of the two. Thus, the basis states and general quantum states can be written

as vectors:

	
0 1

1

0

0

1

� �
�
��
�
��

�
��
�
��

,
	

	
� �0 1� 	

where α and β are amplitude coefficients of the unit vector. Note that a unit vector’s

amplitude must be 1; therefore, α and β must obey the constraint |α|2 + |β|2 = 1. This

algebraic representation is the key to understanding the effect of a logic gate in the qubit

as you will see later on.

So why is the state of a qubit represented as a vector in a seemingly more

complicated representation than its classical counterpart? Why vectors at all? The reason

is that it allows for building a better model of computation as will be shown once we look

at quantum gates and superposition of states. All in all, quantum mechanics is a theory

that has evolved over many decades, and at the end of the day, a vector is a very simple

mathematical object, easy to understand and manipulate. Probably the best tool for

the job.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

174

�Superposition Is a Fancy Word
Superposition can be easily confused with the property of atomic particles (or qubits)

to exist in multiple states at the same time. This is not true; nothing can be in multiple

states at the same time. Here is where linear algebra can help.

Tip S uperposition is simply the linear combination of the |0> and |1> states. That
is, α| 0⟩ + β∣1⟩ where the length of the state vector is 1 as shown in Figure 5-3.

�Kets Are Column Vectors
If you find the ket notation confusing, just use the familiar vector representation instead.

Thus, the superposition from the previous section can be written as:

	
� � � �

�

�
�
�

�
� �

�

�
�
�

�
� �

�

�
�

�

�
�� � � �

�
�

0 1
1

0

0

1 	

Note that, because kets are vectors, they obey the same rules as vectors do, for

example, multiplication by a scalar:

	
2 0 1 2

2

2
� �

�
�

�
�

�� � � �

�
�

�

�
� �

�

�
�

�

�
� 	

�Orient Yourself in the Bloch Sphere
Let’s go beyond the algebraic 2D representation of the qubit; enter the Bloch sphere:

a 3D representation of a single pure state (noiseless) qubit. Here is where the Euler

formula you saw in the previous section shines. Consider Figure 5-3; let’s define some

important parts in the sphere.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

175

Figure 5-3.  The Bloch sphere named after Swiss-American physicist Felix Bloch is
a geometrical representation of a single pure state qubit

Euler’s magic formula unlocks the secret of describing |ѱ> in the sphere. This is how:

•	 We start with the algebraic representation of ∣ѱ⟩ = α∣0⟩ + β∣1⟩

where α, β are complex coefficients.

•	 Next, use Euler’s formula for a complex in polar form z = reiφ; thus,

the state becomes:

	
� � �r e r ei i

1 0 2 1
1 2� �

	

•	 We can extract the term eφ1 then we have:

	
� � ��

�
�
�

�� �e r r ei i� � �1 2 1
1 0 2 1 	

•	 The term eiφ1 is a global phase. Global phases cannot be measured

and therefore can be discarded. Also we can rename φ = φ2 – φ1.

Apply these rules to obtain:

	
� � �r r ei1 0 2 1

�
	

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

176

•	 Finally, the normalization condition: r12 + r22 = 1 implies that r1 = cos(θ/2)

and r2 = sin(θ/2) where θ/2 is an arbitrary angle selected for reasons that will

become apparent soon. Thus, by replacing r1 and r2, we obtain:

		
� � �cos sin

� ��

2
0

2
1ei

	

Tip E uler’s formula allows us to describe the pure state |ѱ> of the qubit using
only two polar angles α[0,π] and φ[0,2π] instead of the four parameters: r1, r2,
and (θ, φ). Also note that, in the sphere, the basis vectors |0>, |1> point in opposite
directions (anti-polar) whereas they are orthogonal (perpendicular) in the 2D
Cartesian plane. This is why the angle in |ѱ> is θ/2.

Exercise 5.18: Calculate the state |ѱ> for the basis vectors of the computational basis

|0>, |1>. Hint: Look at the sphere to see that |0>: θ = 0, φ = 0, |1>: θ = π, φ = 0.

	
0 0 0 0 1 0� � � � � � �cos sin 	

	
1 2 0 2 1 1� � � � � � �cos / sin /� � 	

Exercise 5.19: Calculate the state |ѱ> for the basis vectors of the Hadamard basis |+>,

|->. Hint: For |+>: θ = π/2, φ = 0, |->: θ = π/2, φ = π.

Exercise 5.20: Calculate the state |ѱ> for the basis vectors of the imaginary basis |i>,

-|i>. Hint: For |i>: θ = π/2, φ = π/2, -|i>: θ = π/2, φ = -π/2.

�Changing the State of a Qubit with Quantum Gates
The purpose of quantum gates is to manipulate the state of a qubit to achieve a desired

result. They are the basic building blocks of quantum computation just as classic logic

gates are for the classical world. Some quantum gates are the equivalent of their classical

counterparts. Let’s take a look.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

177

�NOT Gate (Pauli X)
This is the simplest gate and it acts in a single qubit. It is the quantum equivalent of the

classical NOT gate, and just like its counterpart, it flips the state of the qubit. Thus:

|0> → |1> ,|1> → |0>

For a superposition, the X gate acts linearly, meaning it flips the corresponding state;

thus, |0> becomes |1> and |1> becomes |0>; thus: α|0⟩ + β|1⟩ → α|1⟩ + β|0⟩
In a quantum circuit, the NOT gate is represented by an X or Pauli X, named after

Austrian physicist Wolfgang Pauli, one of the fathers of quantum mechanics.

The circuit starts with the basis state |0> for qubit 0, the state flows through

the quantum wire until a manipulation is done in the state, then the output

continues through the wire.

There is another way of looking at the X gate in action, by using its matrix

representation we can see exactly how the state is flipped by using the Pauli

Matrix X �
�

�
�

�

�
�

0 1

1 0
.

The state of the qubit is flipped by using the matrix representation of X and the

vectors for 0
1

0
�
�

�
�
�

�
� and 1

0

1
�
�

�
�
�

�
� thus:

	
X 0

0 1

1 0

1

0

0 0

1 0

0

1
1�

�

�
�

�

�
�
�

�
�
�

�
� �

�
�

�

�
�

�

�
� �

�

�
�
�

�
� � 	

	
X 1

0 1

1 0

0

1

0 1

0 0

1

0
0�

�

�
�

�

�
�
�

�
�
�

�
� �

�
�

�

�
�

�

�
� �

�

�
�
�

�
� � 	

There is an even simpler quantum circuit, the simplest of them all, and it is the

quantum wire denoted by the Greek symbol (Psi) ∣ѱ⟩ _ _ _ _ _ _ _ _ _ ∣ ѱ⟩ which

describes the computational state over time. It may seem trivial, but physically this is

the hardest thing to implement. Because of the atomic scale of the quantum wire (think

photons, electrons, or single atoms), it is very fragile and prone to errors introduced by

the environment.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

178

Another interesting property of the X gate is that two NOT gates in a row give the

identity matrix (I), a very important tool in linear transformations. Let’s do the math:

∣ѱ⟩ → XX ∣ ѱ⟩

To understand the effects of the circuit, let’s see what happens when

we multiply two X matrices:

XX I�
�

�
�

�

�
�
�

�
�

�

�
� �

� �
� �

�

�
�

�

�
� �

�

�
�

�

�
� �

0 1

1 0

0 1

1 0

0 1 0 0

0 0 1 0

1 0

0 1

The X gate is the simplest example of a quantum logic gate, circuit and computation.

In the next section, we look at a truly quantum gate: Hadamard and how it can trigger

super positions using circuits and algebra.

�Truly Quantum: Super Positions with the Hadamard Gate
The effects of the Hadamard gate in the basis states are formally defined as:

	
0

0 1

2
1

0 1

2
�

�
�

�
,

	

Furthermore, for a superposition state α|0⟩ + β|1⟩ the Hadamard maps to:

	
� � � �

� � � �
0 1

0 1

2

0 1

2 2
0

2
1� �

��

�
�

�

�
� �

��

�
�

�

�
� �

�
�

�

	

For the circuit and matrix presentation, the Hadamard acts on a single qubit.

H �
�

�

�
�

�

�
�

1

2

1 1

1 1

Applying H to the basis states 0
1

0
�
�

�
�
�

�
� and 1

0

1
�
�

�
�
�

�
� :

H 0
1

2

1 1

1 1

1

0

1

2

1

1

1

2

1

0

0

1
�

�
�

�
�

�

�
�
�

�
�
�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
�

�

�
�

��

�
� �

�0 1

2

H 1
1

2

1 1

1 1

0

1

1

2

1

1

1

2

1

0

0

1
�

�
�

�
�

�

�
�
�

�
�
�

�
� � �

�

�
�

�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
�

�

�
��

�

�
� �

�0 1

2

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

179

So what is the computational reason for the Hadamard gate? What does this buy us?

Without getting too technical, the answer is that the Hadamard gate expands the range

of states that are possible for a quantum circuit. This is important because the expansion

of states creates the possibility of finding shortcuts therefore doing computations faster.

An analogy would be to a game of chess. For example, if your knight was allowed to move

like a queen and knight at the same time (an expansion of states), this will tilt the game

in your favor and allow you to checkmate faster. This is what Hadamard gives: more

horsepower to our quantum machine.

�Measurement of a Quantum State Is Trickier Than
You Think
Imagine you have a lab in the basement of your home. You are given a qubit in

state|ѱ⟩ = α|0⟩ + β ∣ 1⟩ , a measurement apparatus and asked to calculate the α and β

coefficients. That is, compute the quantum state. It may seem like a trivial task; however,

this is not possible. The principles of quantum mechanics state that the quantum state of

a system is not directly observable. The best we can do is guess approximate information

about α and β. This process is called measurement in the computational basis.

The outcome of a measurement on the quantum state |ѱ⟩ = α|0⟩ + β∣1⟩ gives

the classical bits:

α ∣0⟩ + β∣1⟩ → 0 with probability |∝2|

α ∣0⟩ + β∣1⟩ → 1 with probability |β2|

Thus, the measurement process spits the probabilities of the classical bits 0 and 1

equal to the absolute values of the coefficients α and β squared. Physically, the way to

imagine this process taking place is by observing a physical photon, atom, or electron

with a measurement apparatus. This is the reason why measurement is often regarded as

a quantum gate.

Measurement disturbs the state of the quantum system giving a classical bit

outcome. The important thing to remember is that, after the process, the coefficients α

and β are destroyed. This means that we cannot store large amounts of information in a

qubit. Imagine if we could measure the exact values for α and β, then by using complex

numbers, it would be possible in theory to store infinite amounts of classical information

in the qubit state. By calculating the exact values of α and β, we could extract all that

classical information. However, this is not possible. Quantum mechanics forbids it.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

180

One final point on measurement is the normalization of the quantum state: Given a

measurement in the computational basis α∣0⟩ + β∣1⟩, then the probability of the classical

bit 0 and 1 must add to one. That is:

	
Probability Probability0 1 1

2 2� � � � � � � � �� 	

This means that the length of the quantum state vector must be one (normalized).

This comes from the fact that measurement probabilities add to one. In the next section

we’ll talk about how single qubit gates are generalized, what they are, and how they are

used to build more complex circuits.

�Generalized Single Qubit Gates
So far we have seen two simple gates: X and H represented by the matrices:

	
X H�

�

�
�

�

�
� �

�
�

�
�

�

�
�

0 1

1 0

1

2

1 1

1 1
,

	

Remember also that the superposition of the quantum state is expressed as a the

vector � �
�

�
�

�

�
�

�
� . Then applying both gates to the quantum state can be generalized for

any unitary matrix:

	
H X U whereU H X

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
� �, , ,

	

U is called the generalized single qubit gate given the constraint that U must be

unitary.

Tip A matrix U is unitary if multiplied by its Hermitian transpose U †gives the
identity matrix: U †U = I. The Hermitian transpose or conjugate transpose is denoted
by a dagger (†) symbol U † = (U T )∗ that is the complex conjugate of the transposed.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

https://en.wikipedia.org/wiki/Hermitian_conjugate
https://en.wikipedia.org/wiki/Dagger
https://en.wikipedia.org/wiki/†

181

The transpose of a matrix is a new matrix whose rows are the columns of the original.

For example, if A
a b
c d

then A
a c
b d

T�
�

�
�

�

�
� �

�

�
�

�

�
� . Then, to obtain the Hermitian transpose

A
a c
b d

 �
�

�
�

�

�
�

�

, take the complex conjugate of each entry. (The complex conjugate of a + bi,

where a and b are reals, is a – bi, that is switch the sign of the imaginary part if any).

Note that both gates H and X must be unitary. This can be easily verified by

calculating X†X = I and H†H = I:

	
X X X X XX I�

�

�
�

�

�
� �

�

�
�

�

�
� � � �

0 1

1 0

0 1

1 0

† †

	

	
H H H H HH I�

�
�

�
�

�

�
� �

�
�

�
�

�

�
� � � �

1

2

1 1

1 1

1

2

1 1

1 1

† †

	

�Unitary Matrices Are Good for Quantum Gates
A question that arises from the previous section: Why go through all the trouble above?

Why do X and H need to be unitary? The answer is that unitary matrices preserve vector

length. This is useful for quantum gates because quantum gates require input and output

states to be normalized (have a vector length of one). In fact unitary matrices are the

only type of matrices that preserve length and therefore the only type of matrix that can

be used for quantum gates. All in all, a deeper question arises, why do quantum gates

should be linear in the first place and why use a matrix representation at all? We’ll try to

answer this in a later section, but for now, we’ll just have to accept it.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

182

�Other Single Qubit Gates
In the previous section we saw the single qubit gates X and H. At the same time, there are

other single qubit gates that are useful in quantum computation.

The X gate has two partners Y, Z. These

form the trio known as the Pauli Sigma (σ)

gates.

X Y
i

i
Z�

�

�
�

�

�
� �

��

�
�

�

�
� �

�
�

�
�

�

�
�

0 1

0 1

0

1

1 0

0 1
, ,

These three matrices are useful for information

processing tasks such as super dense coding, a process

that seeks to store classical information efficiently in

a qubit. They also come up when analyzing atomic

properties such as electron spin. Plus they are closely

related to the three dimensions of space XYZ.

The rotation gate

cos sin

sin cos

� �
� �

��

�
�

�

�
�

It is the familiar rotation on real space by an angle θ.

This is a unitary matrix, and in this particular case the

T gate performs a Π/4 rotation around the Z-axis. This

gate is required for universal control.

Gates can also manipulate many qubits as we’ll see in the next section.

�Qubit Entanglement with the Controlled-NOT Gate
This gate completes the arsenal of quantum gates required for quantum computation.

The controlled NOT (CNOT) is a two qubit gate with four computational basis states.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

183

For a superposition the four basis states CNOT gives:

α∣00⟩ + β∣01⟩ + δ∣10⟩ + γ∣11⟩

where (alpha) α, (beta) β, (delta) δ, and (gamma)

γ are the superposition coefficients. The quantum

circuit is shown as follows:

The matrix representation of CNOT for the basis

states is given by:

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

�

�

�
�
�
�

�

�

�
�
�
�

∣00⟩
∣01⟩
∣10⟩
∣11⟩

The plus (+) symbol is called the target qubit,

and the blue dot (below it) is the control

qubit. What it does is simple:

• �If the control qubit is set to 1, then it flips

the target qubit.

• Otherwise, it does nothing.

To be more precise if the first bit is the

control then:

∣00⟩ → ∣00⟩ control 0 do nothing
∣01⟩ → ∣01⟩ control 0 do nothing
∣10⟩ → ∣11⟩ control 1 flip 2nd
∣11⟩ → ∣10⟩ control 1 flip 2nd

An easy representation of the above is

∣xy⟩ → ∣ x y ⊕ x⟩

Tip T he CNOT gate is required to generate entanglement, and it is critical in all
kinds of tasks including quantum teleportation, super dense coding, and almost
any quantum algorithm out there.

For example, to entangle 2 qubits, apply the Hadamard gate (H) to the first qubit and

then apply the CNOT to the second qubit as shown in the following:

For the basis state in qubit (2) the Hadamard gives:

00
00 10

2
�

�

After applying the cNOT, we flip the second qubit if the control is 1, thus:

00
00 11

2
�

�

This effectively creates an entangled state between qubits 1 and 2.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

184

All in all, CNOT and single qubit gates are a powerful arsenal for quantum

computation. Because they build up unitary operations on any number of qubits, they

are said to be universal for quantum computation. This means that to build a quantum

computer that can solve any quantum task, it is enough to use single qubit gates along

with CNOT and measurement gates.

�Universal Quantum Computation Delivers Shortcuts
over Classical Computation
You may wonder how all the circuits and algebra above can help in solving computation

tasks that can be easily performed, and probably cheaper, in a classical system. If you

consider the so-called bit strength of a classical system

	 x f x� � �	

When given some input x, the goal is to compute a function f(x) with at least

2k-1 elementary operations (where k is the bit strength). Then universal quantum

computation can provide an equivalent circuit of roughly the same size that contains the

same classical model:

	
x x f x, ,0 � � � 	

What is exciting about the circuit above is that there are sometimes shortcuts

provided by quantum computation that get results faster. This means that you can

compute f(x) in fewer than 2k-1 operations. For some quantum algorithms such as

factorization, the speedups are exponential. This is a brand new algorithmic paradigm

with very few implementations out there where the possibilities are endless. Let’s finish

up with a review of these concepts and a set of practice exercises.

�Gate Identity Cheat Sheet
These series of identities are useful for circuit optimization. Remember that quantum

gates have a noise attached to them, which accrues as the circuit complexity increases;

thus, reducing their number is important.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

185

CZ � �� �� � �� � �

�

�

�

�
�
�
�

�

�

�
�
�
�

I H CX I H

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

RY x

x x

x x
x� � �

��

�

�
�
�
�

�

�

�
�
�
�

�
cos sin

sin cos

,
2 2

2 2

4

�

HXH = Z Sandwich the X gate between two Hadamards to obtain Z. Thus

Z �
�

�

�
�

�

�
�
�

�
�

�

�
� �

�

�
�

�

�
� � �

�

�
�

�

�
�

1

2

1 1

1 1

0 1

1 0

1

2

1 1

1 1

1 0

0 1

HZH = X The same rule applies to the Z gate:

X �
�

�

�
�

�

�
� �
�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

1

2

1 1

1 1

1 0

0 1

1

2

1 1

1 1

0 1

1 0

Control-Z

Generally, we can transform a single CNOT into a controlled version of any rotation

around the Bloch sphere by an angle Pi by simply preceding and following it with the

correct rotations.

Control-Y The S gate rotates by π/2 over the Z-axis of the

Bloch sphere:

S
i

S
i

�
�

�
�

�

�
� �

�
�

�
�

�

�
�

1 0

0

1 0

0
,

†

Control-H

This is a doozy: The SWAP-Gate can be

represented by 3 CNOTs:

SWAP ZC CZ ZC� � �� �� � �

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

186

Exercise 5.20: Show by matrix multiplication that SWAP = (ZC)(CZ)(ZC). Hint: The Z

gate is its own inverse; thus, ZC = CZ.

	

SWAP � � �� �� � �

�

�

�

�
�
�
�

�

�

�
�
�
�

ZC CZ ZC

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 00

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0

�

�

�

�
�
�
�

�

�

�
�
�
� �

�

�

�
�
�
�

�

�

�
�
�
�

�
11 0 0

0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

Exercise 5.21: Which of the following quantum gates resembles the probability of

classical coin flip: X, Z, Z, H?

�Quantum Gate vs Boolean Gate Cheat Sheet
Boolean gates have their quantum counterparts which can be constructed using the

so-called Clifford set (X, Y, Z, H, Toffoli, and S). Here is another very useful set of

identities you should remember.

Boolean AND is equivalent to Toffoli (CCX).

CCX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

�

�

�
�
�
�

�

�

�
�
�
�

Boolean XOR can be constructed with 3 qubits and

2 CX.

Boolean OR is made of an XOR plus a Toffoli (AND)

gate.

The NAND gate is very important because any

boolean function can be implemented by using a

combination of NAND gates. This property is called

functional completeness. NAND is made of 3 qubits

with Toffoli and CX in the last qubit.

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

187

Exercise 5.22: The Half Adder is a useful electronic circuit to add two single binary

digits and provide the output plus a carry value. It has two inputs, A and B, and two

outputs S (sum) and C (carry). The circuit and truth table is shown as follows.

Write a quantum circuit to implement the Half Adder. Use the identities in the

previous section. Hint: Your circuit will have 4 qubits (A, B, S, C) with S = A⊕B and

C = A AND B.

�Exercises
Sharpen your knowledge of complex numbers and linear algebra even further with this

extended set of exercises.

5.23 What is the complex conjugate z* of z = a+ib?

5.24 Calculate the sum of a + ib and c + id.

5.25 Calculate the product of a + ib and c + id.

5.26 What is the magnitude |z| of a complex z?

5.27 Calculate the product of a b c
x x x
y y y
z z z

� �
�

�

�
�
�

�

�

�
�
�

0 1 2

0 1 2

0 1 2

5.28 Which of the following gates act as Hermitian operators? (select 3): X, S, H, T, Z.

Tip: Gates that are their own unitary inverses are called Hermitian operators.

5.29 Gates X, Y, and Z perform rotations on a Bloch sphere around the X-, Y-, and

Z-axis, respectively. By which angle are these rotations performed?

It is important to have a solid mathematical background if one is to program a

quantum computer. At the end, the magic of quantum boils down to clever linear

algebra. Like the man hiding behind the curtain of the almighty wizard. Don’t be

frightened when you hear the phrase quantum mechanics. It may sound and look

spooky, but at the core is just linear algebra. Now, let’s set aside the maths and start

coding our first quantum program.

A B C S
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Chapter 5 Mathematical Foundation: Time to Dust Up That Linear Algebra

189
© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_6

CHAPTER 6

Qiskit, Awesome SDK for
Quantum Programming
in Python
In this chapter, you will get started with Qiskit, the top SDK out there for quantum

programming. You will learn how easy it is to install it in your local system. This section

also shows how quantum computation can mirror its classical counterpart and find

shortcuts to get results even faster. Next, the chapter walks through the anatomy of a

quantum program including system calls, circuit compilation and design, quantum

assembly, and more.

Qiskit packs a set of helpful simulators to execute your programs locally or remotely,

but it also allows you to run in a real processor. Step by step, you will learn how to run

your quantum programs in a real device within the IBM Quantum cloud platform. So

let’s get to it.

�Installing Qiskit
Qiskit is the Quantum Information Software Kit, the de facto SDK for quantum

programming in the cloud. It is written in Python, a powerful scripting language for

scientific computing. Let’s see how the SDK can be installed in Linux or Windows

systems. We'll begin with the easiest (Windows) and then jump to Linux (CentOS,

Ubuntu).

https://doi.org/10.1007/978-1-4842-9991-3_6

190

�Setting Up in Windows
Qiskit requires Python 3.6 or later. If you have a Windows system, chances are that you

don’t have Python installed. If so, you can get the installers from the Python.org website.

Download the installer, run it, and verify your installation by running the following from

the command window:

C:\>Python -V

Python 3.8.10

Wrangling Python versions can be confusing. Nevertheless, it is recommended that

you use a version above 3.8 to access the latest features of the SDK. Python features

an amazing package manager called PIP (preferred installer program) which makes

installing modules very easy. Thus, to install Qiskit simply type at the console:

C:\>pip install qiskit qiskit-aer qiskit-ibmq-provider

The packages you need to get started include qiskit (core libraries), qiskit-aer

(simulators and device libraries), and qiskit-ibmq-provider (for access to the hardware

processors). You can see the list of packages installed in your host by typing: pip list. Here

is a sample of my configuration (Listing 6-1).

Listing 6-1.  Python package information for Qiskit SDK

qiskit 0.39.0

qiskit-aer 0.11.0

qiskit-experiments 0.3.1

qiskit-ibmq-provider 0.19.2

qiskit-metal 0.1.2

qiskit-nature 0.6.0

That is it; you have taken the first step in this journey as a quantum programmer. For

the Linux user, let’s set things up in CentOS 7.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

191

�Setting Up in Linux CentOS
Things are a bit trickier to setup in CentOS 7. This is because CentOS focuses mainly on

stability than bleeding edge software. Thus, CentOS comes with Python 2.7 out of the

box; furthermore, the official distribution does not provide packages for Python 3.6. This

doesn’t mean however that Python 3.6 cannot be installed. Let’s see how.

Tip T he instructions in this section should work for any Linux flavor based on the
Red Hat base such as RHEL 7, CentOS7, and Fedora Core.

�Step 1: Prepare Your System

First, make sure that Yum (The Linux Update Manager) is up to date by running the

command:

$ sudo yum -y update

Next, install yum-utils, a collection of utilities and plugins that extend and

supplement yum:

$ sudo yum -y install yum-utils

Install the CentOS Development Tools. These include compilers and libraries to

allow for building and compiling many types of software:

$ sudo yum -y groupinstall development

Now, let’s install Python 3. Note that we’ll run multiple versions of Python: The

official, 2.7 and 3.6 for development.

�Step 2: Install Python 3

To break out of the chains of the default CentOS distribution, we can use a community

project called Inline with Upstream Stable (IUS). This is a set of the latest development

libraries for OSes that don’t provide them such as CentOS. Let’s install IUS through yum:

$ sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm

(CentOS7)

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

192

Once IUS is finished installing, we can install the most recent version of Python (3.6):

$ sudo yum -y install python36u

Check to make sure that the installation is correct:

$ python3.6 -V

Python 3.6.4

Now, let’s install pip and verify:

$ sudo yum -y install python36u-pip

$ pip3.6 -V

Finally, we will need to install the IUS package python36u-devel, which provides

useful Python development libraries:

$ sudo yum -y install python36u-devel

�Step 3: Don’t Disturb Others – Set Up a Virtual Environment

This step is useful only if you run Linux and have a multiuser system running multiple

versions of Python and don’t want to disturb other users. For example, to create a virtual

environment in your home folder:

$ mkdir $HOME/qiskit

$ cd $HOME/qiskit

$ python3 -m venv qiskit

The command sequence above creates a folder called qiskit in the user’s home to

contain all your quantum programs. Inside this folder, a virtual Python 3 environment

called qiskit is also created. To activate the environment run the command:

$ source qiskit/bin/activate

(qiskit) [centos@localhost qiskit]$

Within the virtual environment, you can use the command python instead of

python3, and pip instead of pip3 if you prefer:

$ python3 -V

Python 3.9.4

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

193

Tip I f you don’t activate your virtual environment, then you must use python3
and pip3 instead of python and pip. Also keep in mind that things may be different
depending on your Linux flavor.

�Step 4: Install Qiskit

Activate your virtual environment and install Qiskit with the command:

$ pip install qiskit qiskit-aer qiskit-ibmq-provider matplotlib

Listing 6-2 shows the standard output of the preceding command.

Listing 6-2.  Qiskit installation in CentOS 7

Collecting qiskit

 Downloading qiskit-0.5.7.tar.gz (4.5MB)

 100% |████████████████████| 4.5MB 183kB/s

Collecting matplotlib<2.2,>=2.1 (from qiskit)

 Downloading matplotlib-2.1.2.tar.gz (36.2MB)

 100% |████████████████████| 36.2MB 18kB/s

 Complete output from command python setup.py egg_info:

 ==

 Edit setup.cfg to change the build options

...

Installing collected packages: IBMQuantum, numpy, python-dateutil, pytz,

cycler, pyparsing, matplotlib, decorator, networkx, ply, scipy, mpmath,

sympy, pillow, qiskit

 Running setup.py install for pycparser ... done

 Running setup.py install for matplotlib ... done

 Running setup.py install for networkx ... done

 Running setup.py install for ply ... done

 Running setup.py install for mpmath ... done

 Running setup.py install for sympy ... done

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

194

 Running setup.py install for qiskit ... done

Successfully installed IBMQuantum-1.9.0 qiskit-0.4.11 requests-2.18.4

requests-ntlm-1.1.0 scipy-1.0.1 six-1.11.0 sympy-1.1.1 urllib3-1.22

(qiskit) [centos@localhost qiskit]$

Tip U nder a virtual environment, Python packages will be installed in the
environment’s home lib/python3.6/site-packages instead of the system’s path as
shown in Figure 6-1.

Figure 6-1.  Python virtual environment folder layout

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

195

�Credentials Configuration
This step is required to run your programs on hardware or a remote simulator. It

involves storing your API token in local disk under your home directory, so the SDK can

talk to the cloud. As a matter of fact, Qiskit uses the REST API described in Chapter 4.

Configuration can be done programmatically, by typing the following lines in the python

interpreter from the command line:

from qiskit import IBMQ

IBMQ.save_account('MY_API_TOKEN')

It also can be done manually:

	 1.	 From the IBM Quantum dashboard https://quantum-

computing.ibm.com/, copy the API token.

	 2.	 In your home directory, add the token to the file $HOME/.qiskit/

qiskitrc.

[ibmq]

token = API-TOKEN

url = https://auth.quantum-computing.ibm.com/api

verify = True

	 3.	 Add the token to the file $HOME/.qiskit/qiskit-ibm.json.

{

 "default-ibm-quantum": {

 "channel": "ibm_quantum",

 "token": “API-TOKEN”,

 "url": "https://auth.quantum-computing.ibm.com/api"

 }

}

Note to Linux users T he permissions should be 755 for the folder and 644 for
all files.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/

196

We are now ready to start writing quantum code. Let’s see how.

�Your First Quantum Program
Let’s look at the anatomy of a quantum program with a bare bones example. In this

example we create a single qubit, 1 classic register to measure the qubit, then we apply

the Pauli X gate (bit flip) on the qubit and finally measure its value. The basic pseudo

code of the program can be resumed as follows:

	 1.	 Create a quantum program.

	 2.	 Create one or more qubits and classical registers to measure

the qubits.

	 3.	 Create a circuit which groups the qubits in a logical

execution unit.

	 4.	 Apply quantum gates on the qubits to achieve the desired result.

	 5.	 Measure the qubits into the classical register to collect a

final result.

	 6.	 Execute in the simulator or real quantum device.

	 7.	 Fetch the results.

Now let’s look at the Python code as well as the composer circuit in detail.

Listing 6-3.  Anatomy of a quantum program

#############################

from qiskit import *

from qiskit.tools.visualization import *

def main():

 # create a 1 qubit circuit with 1 classic register

 qc = QuantumCircuit(1,1)

 # Pauli X gate

 qc.x(0)

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

197

 # measure gate from qubit 0 to classical bit 0

 qc.measure(0, 0)

 # Print in studout

 print(qc)

 # backend simulator

 backend = 'qasm_simulator'

 # run in simulator

 job = execute(qc, Aer.get_backend(backend))

 # Show result counts

 print (job.result().get_counts())

if __name__ == '__main__':

 main()

Let’s see what is going on in Listing 6-3:

•	 Lines 2-3 import the required libraries: qiskit (quantum classes),

qiskit.tools.visualization (for circuit visualization).

•	 Next, line 7 creates a QuantumCircuit. This is the access point to

all operations. This circuit has 1 quibit and 1 classical register to

measure it.

•	 Line 10 adds a Pauli X gate (bit flip) to the first qubit. This will flip the

initial state |0> to |1>.

•	 Line 13 measures the qubit to the classical register. Line 16 dumps a

text graph of the circuit to standard output.

•	 Finally, run in the simulator qasm_simulator (lines 19-25).

Windows developers, watch out. You must wrap your program in a main function

and then call it with:

if __name__ == '__main__':

 main()

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

198

This is required in Windows because Qiskit executes the program using

asynchronous tasks (executors), and when the task fires, the subprocess will execute

the main module at start-up. Thus, you need to protect the main code to avoid creating

subprocesses recursively. I found this out the hard way when my programs run properly

in CentOS but failed in Windows with:

RuntimeError:

 An attempt has been made to start a new process before the

 current process has finished its bootstrapping phase.

 This probably means that you are not using fork to start your

 child processes and you have forgotten to use the proper idiom

 in the main module:

 if __name__ == '__main__':

 freeze_support()

 ...

 The "freeze_support()" line can be omitted if the program

 is not going to be frozen to produce an executable.

This can be a source of grief for the newcomer to Python. Now, run the program to

see its output:

python p1.py

 ┌───┐┌─┐
 q: ┤ X ├┤M├
 └───┘└╥┘
c: 1/══════╩═
 0

{'1': 1024}

The result is the JSON document {'1': 1024} where 1 is the measurement of the qubit

(remember that we used an X gate to flip the bit) and 1024 is the number of iterations

(shots) of that result. The probability of this result is calculated by dividing the number of

the result iterations (1024) by the total number of iterations of the program (1024). In this

case P = 1024/1024 = 1.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

199

Tip  Quantum computers are probabilistic machines. Thus, all measurements
come attached with a probability for that specific result.

Listing 6-3 can also be described with an equivalent quantum circuit quickly

constructed and executed in the Quantum composer as shown in Figure 6-2.

Figure 6-2.  Composer experiment for program 6-3

Figure 6-2 shows the quantum circuit for Listing 6-3 including the result of the

experiment as well as the attached probability. The circuit is very simple as you can see:

In the composer, drag an X gate over qubit 0, then perform a measurement on the same

qubit. You will find the composer a wonderful tool to construct relatively simple circuits,

execute them, and visualize their results.

�Quantum Lab: A Hidden Jewel Within the Cloud Console
You have used the command line and the composer to run your first program, but there

is a very powerful tool in the IBM console arsenal that is very useful when you need to

test your program quickly. It’s called the Quantum Lab.

�Exercise 6.1

From the console main menu, select Quantum Lab; you will be presented with a Launcher.

Select a Python 3 Notebook and paste lines 2, 3, and 6-25 from Listing 6-3 (remove all

indentations). Press the Run button to see your program in action (see Figure 6-3).

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

200

Figure 6-3.  Quantum Lab execution for Listing 6-3

Tip T he Quantum Lab is a great tool to test your code without having to install
Qiskit or design a circuit in the composer.

�Exercise 6.2

Modify the program to display the circuit in the browser by invoking the Quantum

Circuit draw() method to display it. (Hint: add qc.draw() at the end of the code). Verify

your circuit looks like the bottom of Figure 6-3.

�Exercise 6.3

Plot a histogram of the result counts. Verify it matches the output of the program and the

composer. (Hint: use the plot_histogram() system call, passing the job result counts as a

parameter).

Now let’s peek into the SDK internals to see how this code gets massaged behind

the scenes.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

201

�SDK Internals: Circuit Compilation
Figure 6-4 shows what goes on behind the scenes when your program is run:

•	 Qiskit compiles your program’s circuit(s) into a JSON document to be

submitted to the local simulator.

•	 The simulator parses the document, runs the circuit, and returns an

opaque JSON document (hidden from the developer).

•	 Qiskit wraps the results JSON document in an object available

to the main program: For example, a call to result.get_

counts('Circuit') extracts the count information from this

document.

Figure 6-4.  Sequence diagram between the program, Qiskit, and local simulator

�Circuit Compilation

Listing 6-4 shows the format of the compiled program before submission to the

simulator. The document is made up of

•	 An execution id.

•	 A header with information about the simulator including name,

number of credits used in the execution plus number of run

interactions (shots).

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

202

•	 The circuits section contains an array of circuit objects. Each circuit

is made of

•	 A circuit name.

•	 A header (config) with information such as qubit coupling map,

basis (physical) gates, run time seed, and more.

•	 A compiled circuit section with a header containing information

about the qubits and classical registers. As well as an array of

operations (or gates) applied to the circuit and their parameters.

Listing 6-4.  Compilation format for program 6-3

{

 "id": "aA46vJHgnKQko3u5L1QqbUDk31sY2m",

 "config": {

 "max_credits": 10,

 "backend": "local_qasm_simulator",

 "shots": 1024

 },

 "circuits": [{

 "name": "Circuit",

 "config": {

 "coupling_map": "None",

 "layout": "None",

 "basis_gates": "u1,u2,u3,cx,id",

 "seed": "None"

 },

 "compiled_circuit": {

 "operations": [{

 "name": "u3",

 "params": [3.141592653589793, 0.0, 3.141592653589793],

 "texparams": ["\\pi", "0", "\\pi"],

 "qubits": [0]

 }, {

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

203

 "name": "measure",

 "qubits": [0],

 "clbits": [0]

 }],

 "header": {

 "number_of_qubits": 1,

 "qubit_labels": [

 ["qr", 0]

],

 "number_of_clbits": 1,

 "clbit_labels": [

 ["cr", 1]

]

 }

 },

 �"compiled_circuit_qasm": "OPENQASM 2.0;\ninclude \"qelib1.inc

\";\nqreg qr[1];\ncreg cr[1];\nu3(3.14159265358979,0,3.14159265358979)

qr[0];\nmeasure qr[0] -> cr[0];\n"

 }]

}

Note T he compilation format is opaque to the programmer and not meant to be
accessed directly but via the SDK API. The reason is that its format may change
from version to version. However, it is always good to understand what occurs
behind the scenes.

�Execution Results

This is the response document from the backend simulator to the client. The format of

this document is shown in Listing 6-5. Remarkable information includes

•	 Status of the run, execution time, simulator name, and more.

•	 Result data. This is the information available within your program

including circuit name, execution time, status, measurement shots,

and more.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

204

Listing 6-5.  Results document from local simulator

{

 "backend": "qasm_simulator",

 "id": "aA46vJHgnKQko3u5L1QqbUDk31sY2m",

 "result": [{

 "data": {

 "counts": {

 "1": 1024

 },

 "time_taken": 0.0780002

 },

 "name": "Circuit",

 "seed": 123,

 "shots": 1024,

 "status": "DONE",

 "success": true,

 "threads_shot": 4

 }],

 "simulator": "qubit",

 "status": "COMPLETED",

 "success": true,

 "time_taken": 0.0780002

}

Obtaining the results document is a bit trickier because it is an opaque object not

exposed to the user’s program. The important thing to remember is that the results

document (as well as the compilation format) is hidden from the programmer. The

reason is that their formats may change over time; nonetheless, it is always helpful to

understand how things work behind the scenes.

Tip T he compilation and results formats are useful for simulator and integration
developers. For example, you could add quantum functionality to your organization
web applications.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

205

�Assembly Code

The compiled circuit in Listing 6-4 includes a section that contains a translation of the

program into Quantum Assembly (QASM) as shown in the next paragraph.

OPENQASM 2.0;

include "qelib1.inc";

qreg qr[1];

creg cr[1];

x qr[0];

measure qr[0] -> cr[0];

Tip  QASM is useful only if running in the remote simulator provided by IBM
Quantum.

�Qiskit Simulators

Access to real quantum devices comes at a premium; thus, we shouldn’t run trivial

programs such as Listing 6-3 in real devices. For testing purposes, Qiskit packs a small

army of simulators to satisfy all your needs. Table 6-1 provides a list of some of them

available at the time of this writing.

Table 6-1.  List of local and remote simulators for IBM Quantum

Name Description

qasm_simulator This is the default Python simulator bundled with Qiskit. It is slow but

does the job

simulator_mps Matrix product state, an efficient classical simulation of entangled states

simulator_statevector A Statevector Simulator supports CPU and GPU simulation methods

Complete list. Check out the full list at https://qiskit.org/ecosystem/aer/

tutorials/1_aer_provider.html

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

https://qiskit.org/ecosystem/aer/tutorials/1_aer_provider.html
https://qiskit.org/ecosystem/aer/tutorials/1_aer_provider.html

206

As a simple exercise, obtain a list of IBM Quantum simulators and real devices by

pasting the following REST API URL into your browser:

 �https:// api-qcon.quantum-computing.ibm.com/api/Backends?access_

token=ACCESS_TOKEN.

Note that you need an access token which can be easily obtained using the REST

API described in Chapter 4. Now that you have learned how to run a program in the

simulator, let’s do it in the real thing.

�Running in a Real Quantum Device
There are three ways of running in a real device from easiest to hardest:

	 1.	 Use the composer to create your circuit and quickly run on

hardware. This method is mostly for didactic purposes to test

things quickly.

	 2.	 Use Python on your local desktop to execute your program. This

method is for serious quantum programming and algorithm

development.

	 3.	 Use the REST API: This method can be used if you work for a

service provider and wish to integrate quantum into your web or

desktop platform.

Let’s modify the program from the previous section to make a more complex circuit

instead. Listing 6-6 shows a circuit that performs a series of rotations on the first qubit.

The rotations demonstrate the use of the physical U-gate to rotate a single qubit over the

X-, Y-, and Z-axis of the Bloch sphere by theta, phi, or lambda degrees.

Tip P hysical gates (also known as basis gates) are important because they
constitute the foundation under which more complex logical gates are constructed.

Listing 6-6 performs the following steps:

•	 Allocates 5 qubits and 5 classical measurement registers

corresponding to the 5 qubits available from the quantum processor

ibm_perth form Quantum (line 8).

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

207

•	 Next, a sequence of rotations on the first qubit are performed using

the basis gates u1, u2, and u3 (lines 29-34).

•	 Finally, a measurement is performed in the qubit, and the result is

stored in the classical register.

•	 Before execution the backend is set to ibmqx4 (a 5 qubit processor –

line 42), and the authentication token and API URL are set via set_

api(Qconfig.APItoken, Qconfig.config['url']).

•	 To execute in the real quantum device use the execute system call

execute(NAMES, BACKEND, shots=SHOTS, timeout=TIMEOUT) where

•	 NAMES is a list of circuit names.

•	 SHOTS is the number of iterations performed in the circuit. The

higher the number, the greater the accuracy.

•	 TIMEOUT is the read timeout from the remote end point.

Listing 6-6.  Sample circuit #2

import sys,time,math

from qiskit import *

from qiskit.tools.visualization import *

Main sub

def main():

 # Circuit with 5 qubits, 5 classic bits

 circuit = QuantumCircuit (5,5)

 # first physical gate: u1(lambda) to qubit 0

 circuit.u(math.pi/2, -4 *math.pi/3, 2 * math.pi, 0)

 circuit.u(math.pi/2, -3 *math.pi/2, 2 * math.pi, 0)

 circuit.u(-math.pi, 0, -math.pi, 0)

 circuit.u(-math.pi, 0, -math.pi/2, 0)

 circuit.u(math.pi/2, math.pi, -math.pi/2, 0)

 circuit.u(-math.pi, 0, -math.pi/2, 0)

 # measure gate from qubit 0 to classical bit 0

 circuit.measure_all()

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

208

 # dump to stdout

 print (circuit)

 # HW

 name = 'ibm_perth'

 IBMQ.load_account()

 provider = IBMQ.get_provider(hub='ibm-q', group='open',

project='main')

 backend = provider.get_backend(name)

 # Group of circuits to execute

 circuits = [circuit]

 job = execute(circuits, backend, shots=512)

 # Show result counts

 print ("Job id=" + str(job.job_id()) + " Status:" + str(job.status()))

###

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

�Run via composer

The program in Listing 6-6 can also be created in the Quantum composer using its slick

drag and drop user interface. Simply drag the gates into the qubit histogram as shown in

Figure 6-5, set the parameters for the gate(s), and finally save and run in the simulator or

real device.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

209

Figure 6-5.  Quantum composer Circuit for program 6-6

For those of you who prefer the raw power of assembly, the composer allows to

copy-paste code directly into the console in Assembly mode as shown in Figure 6-6. It

will even parse any syntax errors in your code and show you the offending line(s).

Figure 6-6.  Composer in assembly mode for circuit in Figure 6-5

There are multiple ways of executing your experiment in IBM Quantum; one of the

most interesting is using their awesome REST API.

�Run via Your Local Desktop

This method is for the python programmer within you. Run the program in Listing 6-6,

then monitor its status using the IBM Jobs menu from the web console (see Figure 6-7).

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

210

Figure 6-7.  Jobs’ view for Listing 6-6 running on hardware (ibm_perth) within the
web console

Note  Depending on the size of the execution queue, your job will surely enter
a PENDING state. You may have to wait for a while. Use the Compute Resources
menu to monitor the size of the queue or run in the simulator until you finalize your
work. Hardware resources are always at a premium.

�Run via Your Favorite REST Client

This is one of the most exiting ways to interact with Quantum, but the most difficult. By

using simple REST requests, you can do pretty much anything:

•	 List backend devices.

•	 List hardware or calibration parameters for the real devices.

•	 Get information about the job execution queue.

•	 Get the status of a job or experiment.

•	 Run or cancel jobs.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

211

Tip T he REST API allows you to use any language to create your own interface
to IBM Quantum (even a web browser). This API is described in full detail in
Chapter 4. As a matter of fact, Python and the composer invoke the REST API
behind the scenes.

To submit an experiment using REST, we use the jobs API. Let’s see how.

Run via the Jobs API

You can use your favorite browser REST client to submit the experiment in Listing 6-6.

For example, using Chrome’s YARC (Yet Another REST Client), create an HTTP POST

request to the endpoint:

https://runtime-us-east.quantum-computing.ibm.com/jobs

The tricky part is getting your access token or access key. For this part you must

authenticate using your API token or user name and password. Note that the API token

is not to be confused with the access token. To obtain an access token, you must do an

authentication request. (Take a look at Chapter 4 under Remote REST API.)

Tip  Chrome’s YARC allows you to construct REST requests and save them
as favorites. Create an authentication request to IBM Quantum as described in
Chapter 4, save it as a favorite, and use it every time to obtain an access token to
test other REST API calls.

The request payload is a JSON document shown in Listing 6-7. The format is

described in Table 6-2.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

212

Table 6-2.  Request format for the Jobs API

Key Description

Circuits This is an array of assembly code programs all in one line separated by

the line feed character (\n)

shots The number of iterations you code will go through

backend This is an object that describes the backend. In this case ibm_quito

Hub, Group, Project For the open (free) plan: ibm-q, open, main

Listing 6-7.  HTTP Request for the Jobs API

{

 "program_id": "circuit-runner",

 "hub": "ibm-q",

 "group": "open",

 "project": "main",

 "backend": "ibmq_quito",

 "params": {

 "shots": 1024,

 "circuits": [

 �"\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\

nu2(-4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi)

q[0];\nu3(-pi,0,-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2)

q[0];\nmeasure q -> c;\n"

]

 },

 "tags": [

 "composer-info:composer:true",

 �"composer-info:code-id:d2262dd4e07a9f894caabd977b10c7e98d90537228723

dd14dceaab023c36098",

 "composer-info:code-version-id:646d2a856260a179aa094d3e"

]

}

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

213

Once you have obtained an access token, add the HTTP header X-Access-Token:
ACESS_TOKEN to the request, then copy-paste the payload from Listing 6-7 into the

REST client payload, submit, and wait for a response. If all goes well, you should get the

following response:

{

 "id": "chobhqanajhpa6495on0",

 "backend": "ibmq_quito"

}

The Job id can be used to inspect the status or retrieve results from the console.

Tip T he Jobs API is undocumented and not meant to be accessed directly at this
point. Thus, the response format may vary over time. Perhaps, this will change
in the future, and the REST API will be part of the official SDK. In the meantime
however your results may be different.

�Result Visualization Types
Qiskit packs a sophisticated visualization library to display your results. Here are some of

the types:

•	 Histogram: By far the most popular. It draws a histogram of the

counts data.

•	 State City: It draws the cityscape of a quantum state; that is, two 3D

bar graphs of the real and imaginary parts of the density matrix rho.

•	 State Hinton: It represents the values of a matrix using squares,

whose size indicates the magnitude of their corresponding value

and their color encodes its sign. A white square means the value is

positive and a black one means negative.

•	 Quantum Sphere (QSphere): It plots a sphere representation of a

quantum state. Here, the size of the points is proportional to the

probability of the corresponding term in the state, and the color

represents the phase.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

214

•	 PauliVec: It draws a bar graph of the density matrix of a quantum

state using as a basis all possible tensor products of Pauli operators

and identities.

•	 Bloch Multivector: It draws a Bloch sphere for each qubit.

Note A ll visualization types except Histogram require the state vector simulator.

Let’s see these diagrams in action by plotting the results for the First Bell

(entangled) state ϕ+ = +()1

2
00 11| |

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.measure_all()

job = execute(qc, Aer.

get_backend("qasm_

simulator"))

plot_histogram (job.

result().get_counts())

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

215

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

job = execute(qc,

Aer.get_

backend("statevector_

simulator"))

plot_state_city

(job.result().get_

statevector())

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

job = execute(qc,

Aer.get_

backend("statevector_

simulator"))

plot_state_hinton(job.

result().get_

statevector())

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

216

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

job = execute(qc,

Aer.get_

backend("statevector_

simulator"))

plot_state_qsphere(job.

result().get_

statevector())

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

job = execute(qc,

Aer.get_

backend("statevector_

simulator"))

plot_state_paulivec

(job.result().

get_statevector())

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

217

from qiskit import *

from qiskit.

visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

job = execute(qc,

Aer.get_

backend("statevector_

simulator"))

plot_bloch_

multivector(job.

result().get_

statevector())

•	 For the histogram plot, the X-axis shows the measurement results:

00, 11 for the corresponding Bell states. The y-axis shows the result

counts which amount to a probability of 1/2 (497/1024 and 527/1024

given that 497+527=1024 – the total number of shots).

•	 The state city plot is trickier to understand, but if you look carefully,

you realize the states 00, 11 are the only ones that have a 3D bar. On

the y-axis the probability is 1/2. Note that the imaginary part (right

side) is empty (remember that after measurement the imaginary part

will always vanish).

•	 The state Hinton shows white squares for the states 00, 11. The white

color means the value is positive.

•	 The Qsphere plot shows blue circles for states 00, 11 as well; here the

blue shade indicates a positive phase (sign) as shown in the legend.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

218

•	 The Paulivec plot is the hardest to understand: We can rewrite the

quantum state as the combination of all permutations for two qubits

such that |ѱ> = 0.70|00> + 0|01> + 0|10> + 0.70|11>. Because the

probability of measuring 00 or 11 is 1/2, we can represent the state as

the tensor product of all Pauli matrices where 0.25I + 0.25XX - 0.25YY

+ 0.25ZZ map to 0.70|00> + 0.70|11>. In this context, I maps to 00 and

ZZ to 11 (the middle terms cancel each other).

•	 Finally, the Multivector plot shows the measurement result 00. Note

that both 00 and 11 are equally probable.

Try the following practice exercises to see this more clearly. A few more result

visualization exercises are available at the end of the chapter.

�Exercise 6.4

Plot the histogram and state city results for the second Bell state ϕ− = −()1

2
00 11| | .

Tip: Add an X gate to the first qubit. Notice that the phase (sign) does not show in the

histogram but it does show in state city. Why is that? Hint: Can probabilities be negative?

�Exercise 6.5

Plot the histogram and state city results for the third Bell state θ+ = +()1

2
01 10| | .

Compare your results with the diagrams above and verify the result shows the correct

outputs: 01, 10. Tip: Add an X gate to the second qubit.

�Noise Models and Fake Providers
So far you have seen how to display results from perfect (noiseless) simulators.

However, in reality, quantum circuits are fragile and noisy. They are easily obfuscated

by interactions with the environment. It is a good idea to try your circuits in a noisy

simulator first, and then move to the real device for several reasons:

•	 Large wait times in the execution queues.

•	 Your work may require a large number of qubits not available on your

payment plan.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

219

•	 Your time constraints may require testing your work quickly, or

simply you don’t have the time or patience to wait hours or days on

the hardware execution queue.

Whatever the reason, Qiskit provides a robust noise simulation system, and it comes

in two flavors:

•	 Fine-grained noise control using modules from the Aer package:

A high performance simulator for quantum circuits.

•	 Fake providers: These are backends built to mimic the behaviors of

IBM Quantum hardware using system snapshots. Fake providers

run in the local desktop and are named after the processor’s name.

For example, for processor ibm_perth, its fake counterpart is named

FakePerth.

Note W e live in the age of NISQ, Noisy Intermediate Scale Quantum Computing,
with error correction being one of the hottest areas of research right now. You will
soon realize that noise is a big problem in experimental results, especially with
large numbers of qubits where it accrues.

Let’s add some noise to one of the Bell states we have studied so far. Take a look at

Listing 6-8 (Figure 6-10). It creates a noise model for the Bell state ϕ+ = +()1

2
00 11

from the previous section.

Listing 6-8.  Noise model of 10% for the first Bell state φ+

from qiskit import *

from qiskit.tools.visualization import*

from qiskit.providers.aer.noise.errors import pauli_error,

depolarizing_error

from qiskit.providers.aer.noise import NoiseModel

def get_noise (p_meas, p_gate):

 error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)])

 error_gate1 = depolarizing_error(p_gate, 1)

 error_gate2 = error_gate1.tensor(error_gate1)

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

220

 noise_model = NoiseModel()

 # measurement error is applied to measurements

 noise_model.add_all_qubit_quantum_error(error_meas, "measure")

 # single qubit gate error is applied to x gates

 noise_model.add_all_qubit_quantum_error(error_gate1, ["x"])

 # two qubit gate error is applied to cx gates

 noise_model.add_all_qubit_quantum_error(error_gate2, ["cx"])

 return noise_model

noise_model = get_noise(0.1,0.1) # 10%

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.measure_all()

backend = Aer.get_backend("qasm_simulator")

job = execute(qc, backend, noise_model = noise_model)

plot_histogram(job.result().get_counts())

Figure 6-10.  Result counts of noiseless simulation (left) vs a noise model of 10%
using the qasm_simulator from Listing 6-8 (right)

We start by importing the required modules from the package qiskit.providers.aer.

noise. Some of the key system calls include

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

221

•	 NoiseModel: A class that stores a noise model used for the

simulation.

•	 pauli_error: An n-qubit Pauli error channel (mixed unitary) given as

a list of Pauli Gates and probabilities.

•	 depolarizing_error: An n-qubit depolarizing error channel

parameterized by a depolarization probability p.

Running in a fake provider is even easier; let’s update the code in Listing 6-8 to use

the qiskit.providers.fake_provider package for FakePerth with an error model of around

1%. Compare your result with the noiseless result from Figure 6-10 (left).

from qiskit import *

from qiskit.tools.visualization

import*

from qiskit.providers.fake_provider

import *

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.measure_all()

backend = FakePerth()

job = execute(qc, backend)

plot_histogram(job.result().get_

counts())

�Exercise 6.6

Use the Quantum Lab to create a circuit for the first GHZ state W+ = +()1

2
000 111| |

. Plot the histogram for noisy FakePerth. Tip: GHZ is the name for a quantum state for 3

entangled qubits. Verify the result counts are highest for 000 and 111.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

222

�Exercises
Let’s create quantum circuits for the Bell states describing two entangled qubits. There

are 4 Bell states:

	
ϕ+ = +()1

2
00 11

	

	
ϕ− = −()1

2
00 11

	

	
ϕ+ = +()1

2
01 10

	

	
ϕ− = −()1

2
01 10

	

They use the Greek letters phi+- and psi+-, respectively.

�Exercise 6.7
Use the Quantum Lab to write a program to draw φ+. Verify the circuit looks as

shown here.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

223

�Exercise 6.8
Run the previous circuit in the qasm_simulator and display the result counts on

standard output. Verify they match the expected values. For example, {'00': 517, '11': 507}.

Plot a histogram of the counts. (Hint: use the plot_histogram system call).

�Exercise 6.9
Modify the previous circuit to draw φ-. Note that the phase (negative sign) will not show

when running in the qasm_simulator. How can we visualize the negative sign? Hint:

switch the qasm_simulator to the state vector simulator (statevector_simulator), then

use the job.result().get_statevector() system call to print the result. Verify the negative

sign shows up. Tip: the system call array_to_latex(job.result().get_statevector()) will

display the output in the very nice Latex format: [1/√2, 0, 0, −1/√2].

�Exercise 6.10
Write a program to display the Bell state ѱ+. Use the qasm_simulator. Verify the output is

similar to: {'01': 517, '10': 507}. Plot the histogram.

�Exercise 6.11
Finally, write a program to display the Bell state ѱ-. Use the statevector_simulator. Verify

the state and phase matches the algebra: [0, 1/√2, −1/√2, 0].

�Extended Qiskit Exercises
Here is an enhanced set to sharpen your understanding of the Qiskit SDK. Use the

Quantum Lab to quickly test your solutions. If you get stuck, the answers are provided in

the appendix.

6.12 Which quantum gate is similar to classical NOT gate? X, H, Y, CNOT.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

224

6.13 Which of the following commands will convert the below quantum circuit to a

qasm string?

qc = QuantumCircuit(2,2)

qc.h(0)

qc.h(1)

qc.qasm_simulator(), qc.qasm_str() , qc.qasm()

6.14 What is the depth of the following quantum circuit? Tip: The depth of a circuit is

the longest path in the circuit. The path length is always an integer number, representing

the number of gates it has to execute in that path.

6.15 Which of the following statements prints the qiskit version?

import qiskit

print(qiskit.__version__)

print(qiskit.__qiskit_version__)

print(qiskit.version())

print(qiskit_version())

6.16 What will be the output for the below snippet?

q = QuantumRegister(2,"qreg")

c = ClassicalRegister(2,"creg")

qc = QuantumCircuit(q,c)

qc.x(q[0])

qc2.measure(q,c)

job = execute(qc2,Aer.get_backend('qasm_simulator'),shots=1024)

counts = job.result().get_counts(qc2)

print(counts)

{'00': 1024}

{'11': 1024}

{'10': 1024}

{'01': 1024}

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

225

6.17 Which of the following statements returns the depth of the following circuit?

q = QuantumRegister(3)

c = ClassicalRegister(3)

qc = QuantumCircuit(q,c)

qc.h(q[0:3])

qc.x(q[0:3])

qc.z(q[0:3])

qc.draw(output='mpl')

qc.size(), qc.path(), qc.depth()

6.18 Which of the following options will be best suited for the missing statement in

the following snippet to achieve the quantum state i|10>? Tip: Y|0> = i|1>, also remember

that Qiskit uses little endian bit ordering (qubit-zero starts on the right).

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit,

execute, Aer

qc= QuantumCircuit(2,2)

#missing statement

a) qc.z(1) qc.x(1)

b) qc.y(1)

c) qc.y(0)

d) qc.s(0) qc.z(1)

6.19 In our quantum circuit, we have a single qubit initialized to the |0> state. Which

of the following quantum gates gives the same output state |0>? (select 3): S, T, HSH,

HYH, I, HZH. Tip: What gate(s) leaves a state unchanged?

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

226

6.20 In the quantum circuit below, which instruction should you use to measure the

qubit output? Tip: The circuit has no classical register.

qc = QuantumCircuit(1)

qc.x(0)

qc.measure(0), qc.measure(0,0), qc.measure(), qc.measure_all()

6.21 In the code below, which of the following statement is non-unitary? Tip: Ignore

QuantumCircuit.

qc= QuantumCircuit(2,2)

qc.x(0)

qc.y(1)

qc.z(1)

qc.measure([0,1],[0,1])

6.22 Choose the best option to display the following plot.

a) legend = ['All H gates']

title= 'Superposition states of three qubits'

plot_histogram(counts, legend=legend, title=tile)

b) title = ['All H gates']

legend = 'Superposition states of three qubits'

plot_histogram(counts, legend=legend, title=tile)

c) plot_histogram(counts)

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

227

6.23 Which of the following qsphere plots given below is the correct one for the given

Bell quantum circuit.

bell = QuantumCircuit(2)

bell.h(0)

bell.x(1)

bell.cx(0,1)

6.24 Which option describes the following given quantum circuit correctly in its

state_city plot?

bell = QuantumCircuit(2)

bell.x(0)

bell.h(0)

bell.cx(0,1)

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

228

6.25 Given the state vector represented by this Bloch sphere of a single qubit

quantum circuit (qc), choose the operations that lead to this state by assuming the circuit

is initialized to |0> (select 3).

a) qc.h(0)

b) qc.h(0)

 qc.x(0)

c) qc.ry(pi/2,0)

 qc.x(0)

d) qc.rx(pi,0)

e) qc.rx(pi,0)

 qc.ry(pi,0)

You have taken the first step in this journey as a quantum programmer in the cloud.

By using the Python SDK and powerful Quantum Assembly engine, experiments can

be run in the awesome IBM Quantum platform. These skills will be valuable in a few

years when quantum computers start to join the data center. In the next chapter, we take

things to the next level with a set of algorithms that show the true power of quantum

mechanics when applied to computation. So let’s continue.

Chapter 6 Qiskit, Awesome SDK for Quantum Programming in Python

229

CHAPTER 7

Start Your Engines: From
Quantum Random
Numbers to Teleportation
and Super Dense Coding
This chapter takes you on a journey about three remarkable information processing

capabilities of quantum systems. We start with one of the simplest procedures by

exploring the fundamentally random nature of quantum mechanics as a source of true

randomness. Next, the chapter looks at perhaps two exuberant but related procedures

called super dense coding and quantum teleportation. In super dense coding, you will

learn how it is possible to send two classical bits of information using a single qubit. In

quantum teleportation you will learn how the quantum state of a qubit can be recreated

by a hybrid classical-quantum information transfer procedure. All algorithms include

circuit design for the IBM Quantum composer as well as Python and QASM code. Results

will be gathered for display and analysis, so let’s get started.

�Quantum Random Number Generation
In this section, you will learn how the probabilistic nature of a quantum computer can

be exploited to generate random bits or numbers using the Hadamard gate.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_7

https://doi.org/10.1007/978-1-4842-9991-3_7

230

�Random Bit Generation Using the Hadamard Gate
Hadamard is one of fundamental gates in any quantum information system. It is used to

put a qubit in a superposition of states. Algebraically, it is described by the matrix:

	
H �

�
�

�
�

�

�
�

1

2

1 1

1 1 	

To understand better how this matrix puts a qubit in super position, consider the

geometrical representation of a single qubit:

In Figure 7-1, the basis states of the qubit are described using ket notation where

0
1

0
�
�

�
�
�

�
� and 1

0

1
�
�

�
�
�

�
� . Remember from the previous chapter that a ket is simply a unitary

vector (a vector of length 1). Thus, the general (or superposition) state is then defined by

the unitary vector ѱ = α|0⟩ + β|1⟩ where α ab β are complex coefficients. Applying H to the

basis states gives:

	
H 0

1

2

1 1

1 1

1

0
1

2

1

1
1

2

1

0

0

1
�

�
�

�
�

�

�
�
�

�
�
�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
�

�

�
�

��

�
� �

�0 1

2 	

	
H 1

1

2

1 1

1 1

0

1
1

2

1

1
1

2

1

0

0

1
�

�
�

�
�

�

�
�
�

�
�
�

�
� � �

�

�
�

�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
�

�

�
��

�

�
� �

�0 1

2 	

Figure 7-1.  Geometric representation of the general (superimposed) state ѱ
of a qubit

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

231

And for the superimposed state ѱ:

	
� � � �

��

�
�

�

�
� �

��

�
�

�

�
� �

�
�

�
� � � �

� � � �
0 1

0 1

2

0 1

2 2
0

2
1

	

All in all, the Hadamard gate expands the range of states that are possible for a

quantum circuit. This is important because the expansion of states creates the possibility

of finding shortcuts resulting in faster computation.

Tip  Quantum mechanics says that we can’t predict with certainty the values of
coefficients α, β above, even given complete knowledge of the laws of physics or a
particle’s initial conditions. The best we can do is to calculate a probability.

With this in mind, a random bit generator circuit implementation is simple: In the

IBM Quantum composer, create a circuit with a Hadarmard gate for the first qubit and

then perform a measurement in the basis state as shown in Figure 7-2.

Figure 7-2.  Circuit for a random bit generation

It is probably not a good idea to run this in the real device as it may take a while

(remember that executions are scheduled and may take time depending on the number

of jobs in the run queue). Plus each execution in a real device depletes your credits.

Run the circuit in the simulator to obtain an immediate result (see Figure 7-3). Note

that each outcome (0 or 1) has a probability of ½; thus, you can create random bits if the

probability for outcome 1 is > ½ you get a 1 else you get a 0.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

232

Figure 7-3.  Execution results for circuit 7-2

Of course, this is a very inefficient way of generating random bits. A better way would

be to write a Qiskit Python script to programmatically create a circuit to do the job.

Listing 7-1 shows a simple script to generate n random numbers using x qubits where

the number of bits is 2x. By default, the script generates 10 8-bit random numbers using

3 qubits, that is, n = 10 and x = 3, given 23 = 8. Let’s take a closer look:

•	 Line 6 defines the function qrng to create a circuit using n qubits.

•	 Using the QISKitAPI, lines 8-15 create a QuantumProgram with n

qubits and n classical registers to store the measurements.

•	 A Hadamard gate is applied to all qubits, then a measurement is

performed on each, and finally the result stored in classical register n

(lines 17-23).

•	 The circuit is compiled to run in the qasm_simulator. The circuit gets

executed, and the result counts are collected (lines 26-36).

•	 Finally, to generate random bits look at the outcome counts. For

example, given the results {‘100’: 133, ‘101’: 134, ‘011’: 131, ‘110’: 125,

‘001’: 109, ‘111’: 128, ‘010’: 138, ‘000’: 126}. For each outcome, if the

count is greater than the average probability, then write a 1; else write

a zero. The average probability is calculated by dividing the number

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

233

of shots (1024 in this case) by the number of outcomes (2x where x

is the number of qubits (default is 3) – 1024/8 = 128). Thus, for the

results above the final random binary string becomes 11100010 (226):

Listing 7-1.  Quantum program to generate 100 8-bit random numbers

#############################

import sys,time

from qiskit import *

Generate an 2**n bit random number where n = # of qubits

def qrng(n):

 # create n qubit(s)

 quantum_r = QuantumRegister(n, "qr")

 # create n classical registers

 classical_r = ClassicalRegister(n, "cr")

 # create a circuit

 circuit = QuantumCircuit(quantum_r, classical_r, name = "QRNG")

 # Hadamard gate to all qubits

 for i in range(n):

 circuit.h(quantum_r[i])

 # measure qubit n and store in classical n

 for i in range(n):

 circuit.measure(quantum_r[i], classical_r[i])

 # backend simulator

 backend = Aer.get_backend('qasm_simulator')

 # Group of circuits to execute

 circuits = [circuit]

 shots = 1024

 result = execute(circuits, backend, shots=shots).result()

 # Show result counts

 # counts={'100': 133, '101': 134,… , '010': 138, '000': 126}

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

234

 counts = result.get_counts()

 bits = ""

 # convert the random count to binary

 for v in counts.values():

 if v > shots/(2**n) :

 bits += "1"

 else:

 bits += "0"

 return int(bits, 2)

###

if __name__ == '__main__':

 start_time = time.time()

 numbers = []

 # generate 10 8 bit random numbers

 size = 100

 qubits = 3 # bits = 2**qubits

 for i in range(size):

 n = qrng(qubits)

 numbers.append(n)

 print (str(numbers) .replace('[','').replace(']',''))

Note  Before executing a program, always make sure your account is configured.
Your account API token must exist in the file $HOME/.qiskit/qiskitrc. This is a major
source of headaches. If you use the Qiskit runtime, you also need to update the file
qiskit-ibm.json in the same folder.

A quantum circuit for Listing 7-1 is shown in Figure 7-4. The circuit uses 3 qubits to

generate an 8-bit random number between 0 and 255.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

235

Figure 7-4.  Q Experience circuit for Listing 7-1

Let’s gather some data from multiple runs and put the results to the test.

�Putting Randomness Results to the Test
Linux provides a neat program called ent (short for entropy) which is called a

pseudorandom number sequence test program.1 We can use this command to test the

numbers generated in the previous section.

Tip  Windows users – a Windows32 binary is available for download from the
ENT project site. A binary is also included in the source for this chapter under
Workspace\Ch07\ent.exe. Mac users should be able to run the Linux binary from
the command line.

Thus, generate 100 random 8-bit numbers using Listing 7-1, then run ent, to test your

sequence with the command ent [infile] as shown in the next paragraph.

C:\Workspace\Ch07> python p7-1-qrng.py > qrnd-stdout.txt

C:\Workspace\Ch07>ent qrnd-stdout.txt

Entropy = 3.122803 bits per byte.

Optimum compression would reduce the size of this 805 byte file by 60 percent.

1 ENT – A Pseudorandom Number Sequence Test Program available at www.fourmilab.ch/random/

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

http://www.fourmilab.ch/random/

236

Chi square distribution for 805 samples is 29149.54, and randomly would

exceed this value less than 99.9 percent of the time.

Arithmetic mean value of data bytes is 46.1503 (127.5 = random).

The Monte Carlo value for Pi is 4.000000000 (error 27.32 percent).

Serial correlation coefficient is -0.356331 (totally uncorrelated = 0.0).

According to the authors of ENT, the Chi-square Test determines the quality of

the random sequence. If the Chi-square percent distribution is less than 1% or greater

than 99%, then the sequence is no good. My output shows a percentage of 99.9% which

indicates the randomness of the numbers is low. This is probably due to the fact that I

used the remote simulator. This simulator is probably based in the default UNIX random

number generator (a poor-quality generator). See if your sequence does any better.

Table 7-1 shows the results from various deterministic and quantum sources head to

head provided by the developers of ENT.

Table 7-1.  Randomness test results from various sources gathered by ENT1

Source Chi-square percentage

UNIX rand() 99.9% for 500000 samples (bad)

Improved UNIX generator by Park and Miller 97.53% for 500000 samples (better)

HotBits: random numbers, generated by radioactive decay2 40.98% for 500000 samples (the best)

Table 7-1 shows that UNIX rand() shouldn’t be trusted for random number

generation. If you need lots of truly random numbers (to generate encryption keys,

for example), use a quantum source such as HotBits. All in all, the purpose of this

section has been to get your feet wet with a simple quantum circuit for random number

generation. The next section takes things to the next level with the bizarre quantum data

transfer protocol dubbed super dense coding.

2 HotBits: Genuine random numbers, generated by radioactive decay available online at
www.fourmilab.ch/hotbits/

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

http://www.fourmilab.ch/hotbits/

237

�Super Dense Coding
Super dense coding (SDC) is a data transfer protocol that demonstrates the remarkable

information processing capabilities of a quantum system. Formally, SDC is a simple

procedure that allows for transferring two classical bits of information to another party

using a single qubit. The protocol is illustrated in Figure 7-5.

Figure 7-5.  Super dense coding protocol

	 1.	 The process starts with a third party (Eve) generating what is

called a Bell Pair. Eve starts with 2 qubits in the basis state |0>. She

applies a Hadamard gate to the first qubit to create superposition.

It then applies a CNOT gate using the first qubit as the control

(dot) and the second as the target (+). This results in the states

shown in Table 7-2.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

238

Table 7-2.  Bell Pair states

Gate Outcome states Details

H ∣00⟩ → ∣00⟩ + ∣10⟩ When the H gate is applied to the first qubit, it enters

superposition; thus, we get the states 00 + 10 where the

second qubit remains as 0. Note that the square root (2)

from the Hadamard matrix has been omitted for simplicity

CNOT ∣00⟩ + ∣10⟩ → ∣00⟩ + ∣11⟩ The CNOT gate entangles both qubits. In particular, it flips

the target (+) if the control (.) is one, else it leaves intact.

Thus, we flip the second qubit if the first is 1 resulting in

00 + 11

	 2.	 In the second step of the process, the first qubit is sent to Alice

and the second to Bob. Note that Alice and Bob may be in remote

places. The goal of the protocol is for Alice to send two classical

bits of information to Bob using her qubit. But before she does,

she needs to apply a set of quantum rules (or gates) to her qubit

depending on the 2 bits of information she wants to send. (See

Table 7-3.)

Table 7-3.  Encoding rules for super dense coding

Rules Outcome states

00: I (Identity gate)

01: X

10: Z

11: ZX

I(00+11) = 00 + 11

X(00+11) = 10 + 01

Z(00+11) = 00 – 11

ZX(00+11) = 10 – 11

	 3.	 Thus, if Alice sends a 00, she does nothing to her qubit (applies

the identity gate). If she sends a 01, then she applies the X gate

(or bit-flip). For a 10 she applies the Z gate. Note that the Z

gate flips the sign (phase) of the qubit if the qubit is 1. Thus,

Z ∣0⟩ = |0⟩, Z|1⟩ = − ∣1⟩. Finally, if she sends 11, then she applies

gates XZ to her qubit. Alice then sends her qubit to Bob for the

final step in the process.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

239

	 4.	 Bob receives Alice’s qubit (qubit-0) and uses his qubit to reverse

the process of the Bell state created by Eve. That is, he applies the

CNOT gate to the first qubit followed by the Hadamard gate (H)

and finally performs a measurement in both qubits to extract the 2

classical bits encoded in Alice’s qubit (see Table 7-4).

Table 7-4.  Qubit states after recovery

Gate Outcome states Details

CNOT 00 +10

11 + 01

00 -10

11 -10

We start with Alice’s’ states from step 2:

00 + 11

10 + 01

00 – 11

10 - 11

The CNOT gate flips the second qubit if the first is 1 resulting in

the states in column #2

H 00

01

10

-11

Applying the Hadamard to the first qubit in the last row results in

the outcomes in column #2. When Bob performs measurements

in the computational basis states, he ends up with four possible

outcomes with probability 1 each. These outcomes match

what Alice meant to send in step 2 column 1. Note that the

last outcome has a negative sign. Nevertheless, because the

probability is calculated as the amplitude squared, the -1

becomes 1 which is correct

Let’s put all this together in a circuit within the IBM Quantum composer.

�Circuit for composer
Figure 7-6 shows the super dense coding circuit as well as the state vector probability

within the composer:

•	 The circuit begins by creating a Bell Pair, that is, it puts qubit[0] in

superposition (using the Hadamard gate) and then entangles it with

qubit[1] via the CNOT gate.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

240

•	 The next two gates represent Alice’s encoding rules. Remember that

she applies the identity (nothing) to encode bits 00, X to encode

01, Z to encode 10, and ZX to encode 11. In this particular case, the

encoded bits are 11. This is shown on the left of the barrier symbol

in Figure 7-6. Note that the barrier will block execution until all gates

are consumed by both qubits.

•	 To the right side of the barrier symbol, there is Bob’s protocol. He

does the reverse operation as Alice’s. He applies the CNOT gate

and then a Hadamard gate on the qubits. Finally, a measurement is

performed on both qubits to extract the two encoded classical bits.

Figure 7-6.  Super dense circuit for the composer

Run the preceding circuit in the simulator, and the result should be a bar graph with

the probability for outcome 11 very close or equal to 1. This result should match the

result obtained in the next section using a Python script.

�Running in Python
Listing 7-2 shows the equivalent Python script for the circuit in Figure 7-6:

•	 Lines 17-19 create two qubits and two classical registers to hold the

outcomes.

•	 Next the superdense circuit is created with the entangled Ball Pair

(lines 22-14).

•	 Alice encodes 11 by applying the ZX gates. Optionally, comment any

of these statements to encode a different pair, and then make sure the

result matches Alice’s encoding scheme (lines 32-35).

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

241

•	 Bob reverses Alice’s operation and measures the qubits (lines 38-41).

•	 Finally, the circuit gets executed in the remote simulator (ibmq_

qasm_simulator), and the results are displayed using Python’s

excellent plotting support.

Listing 7-2.  Super dense coding Python script

import sys,time,math

Importing QISKit

from qiskit import *

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

def main():

 # Creating registers

 q = QuantumRegister(2, "q")

 c = ClassicalRegister(2, "c")

 # Quantum circuit to make the shared entangled state

 superdense = QuantumCircuit(q, c, name="superdense")

 superdense.h(q[0])

 superdense.cx(q[0], q[1])

 # For 00, do nothing

 # For 10, apply X

 # superdense.x(q[0])

 # For 01, apply Z

 # superdense.z(q[0])

 # Alice: For 11, apply ZX

 superdense.z(q[0])

 superdense.x(q[0])

 superdense.barrier()

 # Bob

 superdense.cx(q[0], q[1])

 superdense.h(q[0])

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

242

 superdense.measure(q[0], c[0])

 superdense.measure(q[1], c[1])

 superdense.draw(filename='superdense-circ.png')

 circuits = [superdense]

 print(superdense.qasm())

 backend = Aer.get_backend("qasm_simulator")

 result = execute(circuits, backend=backend).result()

 print("Counts:" + str(result.get_counts("superdense")))

 plot_histogram(result.get_counts(), filename="superdense-res.png")

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

Let’s look at the results of a single run of script 7-2 in the next section.

�Looking at the Results
The standard output of a run of Listing 7-2 is shown in the next paragraph:

C:\python36-64\python.exe p07-superdensecoding.py

OPENQASM 2.0;

include "qelib1.inc";

qreg q[2];

creg c[2];

h q[0];

cx q[0],q[1];

z q[0];

x q[0];

barrier q[0],q[1];

cx q[0],q[1];

h q[0];

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

243

measure q[0] -> c[0];

measure q[1] -> c[1];

Counts:{'11': 1024}

--- 167.52969431877136 seconds ---

The script dumps the assembly code of the circuit as well as the counts for the

outcome: {‘11’: 1024} plus the execution time. The result count is used to calculate the

probability of the outcome by dividing the number of shots (1024) by the outcome

count (1024). Thus, the probability is 1 for outcome 11, as shown in the plot run as the

final step in Listing 7-2 (see Figure 7-7). Note that when executed in the simulator, the

probability will always be 1, that is, counts = shots. However, if you run in a real quantum

device, because of noise and environmental error, the number of counts should be less

than 1024 resulting in a probability less than 1.

Figure 7-7.  Super dense coding result and circuit plots

Thus, super dense coding provides the means to encode two classical bits in a single

qubit. Note that it is worth mentioning that quantum computation states that it is not

possible to store more than a single classical bit per qubit which seems to contradict

what has been shown in this protocol. As a matter of fact there is no contradiction. The

protocol works because Alice’s and Bob’s qubits are entangled via a Bell Pair. This allows

for sending two classical bits in Alice’s entangled qubit. All in all, you can store at most

2 classical bits per qubit provided that your qubit is entangled to another via a Bell Pair.

Note that we are assuming that the Bell Pair can be transferred somehow between Alice

and Bob when in reality this is a difficult task and subject to extensive research.

In general terms, this protocol could be interpreted as a set of modularized

abstractions: a Bell Pair Generator module to create two entangled qubits, followed by

an information encoder module that applies Alice’s rules to encode the 2 classical bits

of information. Finally, a decoder module extracts the classical bits from the qubits

provided by the Bell Pair as well as the encoder module (sort of a quantum

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

244

zip/unzip tool if you will). Super dense coding provides a high level picture for quantum

information processing and will help you understand the next item in this chapter:

quantum teleportation.

Tip  This simple protocol was developed in 1992 by physicist Charles Bennett
almost 70 years after the discovery of quantum mechanics. Despite its relative
simplicity, it is not an obvious procedure, and remarkable things can be learned by
studying it in detail.

�Quantum Teleportation
Quantum teleportation is a procedure closely related to super dense coding. Perhaps,

the term teleportation is a little extravagant, as we are not teleporting anything, at least

not in the sci-fi/Star Trek sense. Formally, quantum teleportation is the process by

which the state of a qubit (Ψ) can be transmitted from one location to another, with the

help of classical communication and a Bell Pair discussed in the previous section. The

procedure is summarized in Figure 7-8.

Figure 7-8.  Quantum teleportation workflow

	 1.	 Alice and Bob start by sharing a Bell Pair of entangled qubits.

One goes to Alice and the other goes to Bob at separate remote

locations. Imagine that the Bell Pair is prepared by a third

party (Eve).

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

245

	 2.	 Alice prepares her qubit to be teleported in state |Ψ ⟩ = α|0⟩ + β∣1⟩.

She then performs a Bell basis measurement of her qubit and the

entangled qubit from the Bell Pair provided by Eve. Alice then

sends the measurement result by classical means to Bob.

	 3.	 At this point, there is a posterior state for Bob’s qubit as a

function of the measurement performed by Alice. This is the

key to understanding the procedure; remember that both share

an entangled qubit. Thus, we’ll see how Bob, by applying the

appropriate quantum gate, can recover the original state Ψ

created by Alice.

Let’s figure this out by looking at Bob’s posterior state at the moment of Alice’s

measurement before the recovery operation. To do this, we write the joined states of the

three qubits involved in the process. Note that the ket notation is ignored for simplicity.

Thus, given Alice’s state |Ψ ⟩ = α|0⟩ + β∣1⟩, if we combine it with the shared entangled

qubit from the Bell Pair provided by Eve, we get:

(α0 +β1) (00 + 11) = α000 + α011 + β100 +β111 (1)

Now we need to write the state of the first two qubits using the Bell basis states

B0 = 00 + 11

B1 = 10 + 01

B2 = 00 - 11

B3 = 10 - 01

00 = B0 - B1

01 = B1 - B3

10 = B1 - B3

11 = B0 - B2

Expression (1) becomes:

(α0 +β1) (00 + 11) = B0 (α0 + β1) + B1 (α1 + β0) + B2 (α0 - β1) +
B3 (-α1+ β0) (2)

Expression (2) shows the states for the three qubits after Alice performs her

measurement. Bob knows how to recover Alice’s Ψ by looking at the posterior state of the

qubits in expression 2 (the states within the parenthesis). This is shown more clearly in

Table 7-5.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

246

Table 7-5.  Quantum teleportation recovery

Bell state Posterior state Bob’s recovery operation

B0 α0 + β1 Ψ

B1 α1 + β0 XΨ

B2 α0 - β1 ZΨ

B3 -α1+ β0 ZXΨ

All in all, the quantum teleportation protocol provides the means to recover the state

Ψ of any qubit by sharing an entangled Bell Pair between two remote parties, hence the

name teleportation. Now let’s build a circuit for this protocol, run it in the simulator, and

finally look at the results.

�Circuit for composer
Figure 7-9 shows the composer circuit as well as the execution results (simulator

only – no real device at this time) for the quantum teleportation protocol:

•	 The gates left of the barrier symbol (the dotted line) represent the

Bell Pair prepared by the third party (Eve): qubits 1 and 2.

•	 Alice prepares her qubit (0) to a given state Ψ. The actual value of

Ψ is irrelevant as it will be recovered by Bob at the final stage of the

process. Alice receives qubit[1] from Eve; qubit[2] goes to Bob.

•	 Alice performs a measurement on her qubits [0,1] (shown to the right

of the dotted line) and sends the results by classical means to Bob.

•	 Bob applies the recovery rules to his qubit (2) mentioned in the

previous section depending on the outcomes sent by Alice. Finally,

after a measurement of qubit[2], Bob recovers the state Ψ originally

created by Alice. All this is made possible by the fact that Alice

and Bob share an entangled pair of qubits which makes the whole

thing work.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

247

Figure 7-9.  Quantum teleportation circuit for the composer

Of course, the execution results in Figure 7-9 need to be massaged to verify that Bob’s

Ψ matches Alice’s. The best way to do this is to use a Python script. In the next section,

we’ll run the same circuit remotely and look at the results to verify the protocol works.

�Running in Python
In this section we use Python to run the quantum teleportation protocol remotely in

the simulator. Note that, at this time, quantum teleportation cannot be run in a real
quantum device on IBM Q Experience. This is due to the fact the hardware does not

support the rotation gate required by Alice to create her state Ψ. Thus, we’ll use the

remote simulator instead – a local Python simulator will be fine too. Listing 7-3 shows

the protocol in action. In particular

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

248

•	 Three qubits are created to be shared by both parties: Alice and

Bob, plus three classical registers (c0, c1, c2) to store Alice’s results

(lines 20-23).

•	 The Bell Pair is prepared by Eve by applying a Hadamard gate (H)

followed by a controlled NOT (CNOT) gate in qubits 1 and 2

(lines 35-37).

•	 Alice prepares her state ѱ on qubit 0 by rotating on the Y axis by π/4

radians (line 32).

•	 Alice now entangles her qubit[0] with the Bell Pair qubit given to her,

qubit[1], to entangle them. She then performs a measurement in both

and stores the outcomes in classical registers 0, 1 (lines 35-41).

•	 Now its Bob’s turn: He applies a Z or X gate on his qubit (2)

depending on the outcomes sent by Alice: If classical register 0 is 1,

then he applies a Z gate. If classical register 1 is 1, then he applies

an X gate. Then he measures his qubit and stores the outcome in

classical register 2 (lines 47-50).

•	 The program is executed in the remote simulator (ibmq_qasm_

simulator) and the results collected for display and verification

(lines 58-79).

Tip  The source for this program is included in the book source under Workspace\
Ch07\p07-teleport.py.

Listing 7-3.  Python script for quantum teleportation

import sys,time,math

import numpy as np

Importing QISKit

from qiskit import *

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

249

def main():

 # Creating registers

 q = QuantumRegister(3, 'q')

 c = ClassicalRegister(3,'c')

 # Quantum circuit to make the shared entangled state (Bell Pair)

 teleport = QuantumCircuit(q, c, name='teleport')

 teleport.h(q[1])

 teleport.cx(q[1], q[2])

 # Alice prepares her quantum state to be teleported,

 # �psi = a|0> + b|1> where a = cos(theta/2), b = sin (theta/2),

theta = pi/4

 teleport.ry(np.pi/4,q[0])

 # �Alice applies CNOT to her two quantum states followed by H, to

entangle them

 teleport.cx(q[0], q[1])

 teleport.h(q[0])

 teleport.barrier()

 # Alice measures her two quantum states:

 teleport.measure(q[0], c[0])

 teleport.measure(q[1], c[1])

 # dump qasm. Note: cannot dump after c_if

 circuits = [teleport]

 print(circuits[0].qasm())

 ##### BOB Depending on the results applies X or Z, or both, to his state

 teleport.z(q[2]).c_if(c[0], 1)

 teleport.x(q[2]).c_if(c[1], 1)

 teleport.measure(q[2], c[2])

 # Execute in the simulator

 backend = Aer.get_backend("qasm_simulator")

 result = execute(circuits, backend=backend).result()

 print("Counts:" + str(result.get_counts("teleport")))

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

250

 # RESULTS

 # Alice's measurement:

 data = result.get_counts('teleport')

 print (data)

 alice = {}

 alice['00'] = data['000'] + data['100']

 alice['10'] = data['010'] + data['110']

 alice['01'] = data['001'] + data['101']

 alice['11'] = data['011'] + data['111']

 plot_histogram(alice, filename='alice.png')

 #BOB

 bob = {}

 bob['0'] = data['000'] + data['010'] + data['001'] + data['011']

 bob['1'] = data['100'] + data['110'] + data['101'] + data['111']

 plot_histogram(bob, filename='bob.png')

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

To verify the results, the outcome counts returned by the simulator must be gathered

for Alice and Bob. A plot of the results is the best way to verify that Alice’s state Ψ has

been recovered by Bob. Here is a sample of what the simulator returns:

{'100': 37, '101': 45, '111': 43, '011': 215, '001': 200, '000': 206,

'010': 230, '110': 48}

In this JSON string the left side is the outcome(s) of the three qubits in reverse order.

For example, in the first outcome 1 0 0: B(1) A(0) A(0) for Alice = A and Bob = B. To the

right is the count obtained for that specific outcome. Remember that the probability of

this outcome (used for graphing purposes) is calculated by dividing by the total number

of shots (1024), thus:

P(1 0 0) = 37/1024 = 0.036

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

251

The histogram plots for the results for Alice and Bob from the execution of Listing 7-3

are shown in Figure 7-10.

Figure 7-10.  Probability results for Alice and Bob measurements

So what does this all mean? And how do we know that the state Ψ has been

recovered by Bob? Let’s look at these results in more detail.

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

252

�Looking at the Results
To interpret these results, first let’s see how the probabilities are calculated from the

counts returned from Listing 7-3:

{'1 0 0': 37, '1 0 1': 45, '1 1 1': 43, '0 1 1': 215, '0 0 1': 200, '0 0

0': 206, '0 1 0': 230, '1 1 0': 48}

Using these counts we can calculate the probabilities for Alice’s and Bob’s outcomes

shown in Figure 7-10 (see Table 7-6).

Table 7-6.  Probability results for the quantum teleportation experiment

Row Outcome Count Probability Alice Probability sum

0 Alice(00) Bob(0) 0 0 0 206 0.201171875 0 0 0.237304688

1 Alice(01) Bob(0) 0 0 1 200 0.1953125 1 0 0.239257813

2 Alice(10) Bob(0) 0 1 0 230 0.224609375 0 1 0.271484375

3 Alice(11) Bob(0) 0 1 1 215 0.209960938 1 1 0.251953125

4 Alice(00) Bob(1) 1 0 0 37 0.036132813

5 Alice(01) Bob(1) 1 0 1 45 0.043945313 Bob

6 Alice(10) Bob(1) 1 1 0 48 0.046875 0 0.831054688

7 Alice(11) Bob(1) 1 1 1 43 0.041992188 1 0.168945313

As shown in Table 7-6, to calculate the total probability of Alice’s outcome 00, we

need to sum the probability columns for rows 0 and 4. That is, P(A00) = 0.201 + 0.036 =

0.237. The same rules apply to Bob. For example, P(B0) = 0.20 + 0.19 + 0.22 + 0.20 = 0.83

(add probability columns for rows 0-3) This is shown on the right side for all outcomes

of Alice and Bob. This is how the script in Listing 7-3 massages the data before plotting

the results shown in Figure 7-10. But what does this mean, and how do we know that Bob

has recovered Alice’s Ψ? Let’s look at Bob’s total probability for his qubit:

Bob

0 0.20 + 0.19 + 0.22 + 0.20 = 0.83

1 0.036 + 0.043 + 0.046 + 0.041 = 0.168

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

253

Quantum mechanics says that the probability of Ψ is given by P(Ψ) = |Ψ |2. That

is, the probability density is the modulus squared of Ψ. Now remember that Alice

prepared Ψ as:

	
� � � � �RY Where� �

�
4 	

That is, Alice applied a π/4 rotation over the Y-axis on her qubit. To see this more

clearly, let’s visualize the state Ψ using geometry (see Figure 7-11).

Figure 7-11.  Superimposed state for Alice’s Ψ

Remember that the superimposed state Ψ is described in terms of the complex

coefficients α and β as:

	 � � �� �0 1 	

	 Probability Probability0 1
2 2� �� �, 	

But from Figure 7-11 we can represent the coefficients as α = cos(θ/2) and β = sin(θ/2).

Thus finally, if θ= π/4 then:

Probability (α) = |cos(π/8)|2 = 0.85

Probability (β) = |sin(π/8)|2 = 0.14

This matches Bob’s results from the plot created by the teleportation script 7-3 (see

Figure 7-12). Great success!

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

254

Figure 7-12.  Teleportation results for Bob

You have taken the first step in understanding the remarkable information

processing capabilities of quantum systems. We started with a simple procedure to

exploit the source of true randomness intrinsic to quantum mechanics to generate

random numbers. We also explored two bizarre protocols: super dense coding to encode

classical information and quantum teleportation to recover the state of a qubit by a

remote party. These protocols have been described using circuits for IBM Quantum

as well as Python scripts for remote execution in a simulator or real quantum device.

Results have been collected and explained to understand what goes on behind the

scenes. The next chapter explores the lighter side of quantum computing, by having fun

creating a simple game using quantum gates: A break before we get to heavy stuff in later

chapters.

�Exercises
7.1 Predict the output counts for the given snippet.

q = QuantumRegister(2,'q')

c = ClassicalRegister(2,'c')

qc = QuantumCircuit(q,c)

qc.h(0)

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

255

qc.h(1)

qc.measure([0,1],[0,1])

backend = BasicAer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=100)

counts = job.result().get_counts()

	 a.	 {‘11’: 50, ‘00’: 50}

	 b.	 {‘00’: 100}

	 c.	 {‘11’: 30, ,’01’: 27, ‘10’: 22, ‘00’: 21}

	 d.	 {‘11’: 100}

7.2 What is the output if the following GHZ-circuit is simulated 100 times? Tip:

W � �
1

2
000 111(

{'101': 50, '010': 50}

{'000': 51, '111': 49}

{'111': 5, '000': 50, '101': 45}

7.3 What is the result of CNOT(1/sqrt(2) (|10> + |11>)) if qubit-1 is the control and the

qubit-0 is the target? (Use little endian bit ordering.)

1/sqrt(2) (|10> + |10>)

1/sqrt(2) (|11> + |10>)

|11>

7.4 Which quantum circuits will produce a Bell state (maximum entangled state)?

(Select 3)

bell = QuantumCircuit(2)

bell.h(0) #A

bell.cx(0,1)

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

256

bell.h(0) # B

bell.x(1)

bell.cx(0,1)

bell.h(0) # C

bell.h(1)

bell.cx(0,1)

bell.h(0) # D

bell.x(1)

bell.cx(0,1)

bell.z(1)

7.5 In the QuantumCircuit below, how many Qubits are there?

bob = QuantumRegister(8,'b')

alice = ClassicalRegister(2,'a')

eve = QuantumRegister(4,'e')

qc = QuantumCircuit(bob,alice,eve)

7.6 Given the following Quantum Circuit, choose the best option to run it 2000 times

in the qasm_simulator.

qc= QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

sim = Aer.get_backend('qasm_similator')

a) execute (qc, sim, shots=2000)

b) execute (qc, sim, shot=2000)

c) execute (qc, sim, repeat=2000)

d) execute (qc, sim, repeats=2000)

7.7 In the circuit given below using the unitary simulator as the backend, choose the

_missing_element_ from the options.

qc = QuantumCircuit(1)

qc.h(0)

backend_unitary = BasicAer.get_backend('unitary_simulator')

result = execute(qc,backend_unitary).result()._missing_element_

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

257

a) get_unitary()

b) get_unitary_matrix()

c) get_unitary_result()

d) get_unitary_simulator()

7.8 To return the individual list of measurement outcomes for each individual

shot (provided the backend supports it), which argument needs to be set to true in the

execute function?

memory, memory_shots, shots, single_shot

7.9 Which one of the below statements is invalid when drawing the quantum circuit?

a) qc.draw(output='mpl1')

b) qc.draw(output='text')

c) qc.draw(output='latex')

d) qc.draw(output='png')

7.10 Which code snippet would execute a circuit given these parameters?

•	 Use the QASM simulator

•	 Use a coupling map that connects three qubits linearly

•	 Run the circuit 100 times

a) sim = Aer.get_backend('ibm_similator)

execute (qc, loop=100, copulping_map=[[0,1],[0,2])

b) sim = Aer.get_backend('qasm_similator)

execute (qc, sim, shots= 100, copulping_map=[[0,1],[1,2])

c) sim = Aer.get_backend('qasm_similator)

execute (qc, sim, repeat= 100, copulping_map=[[0,1],[1,2])

CHAPTER 7 �START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION AND SUPER
DENSE CODING

259

CHAPTER 8

Game Theory: With
Quantum Mechanics,
Odds Are Always in Your
Favor
This chapter explores two game puzzles that show the remarkable power of quantum

algorithms over their classical counterparts:

•	 The counterfeit coin puzzle: It is a classical balance puzzle proposed

by mathematician E.D. Schell in 1945. It is about balancing coins to

determine which holds a different value (counterfeit) using a balance

scale and a limited number of tries.

•	 The Mermin-Peres Magic Square Game: This is an example of

quantum pseudo-telepathy or the ability of players to achieve

outcomes that would only be possible if they mysteriously

communicate during the game.

In both cases, quantum computation gives quasi-magical abilities to the players, just

as if they were cheating all along. Let’s see how.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_8

https://doi.org/10.1007/978-1-4842-9991-3_8

260

�Counterfeit Coin Puzzle
In this puzzle, the player has eight coins and a beam balance. One of the coins is fake

and thus underweight. The goal of the game is to figure out which coin is fake by using

the balance only twice. Can you figure out how? Let’s run through the solution shown in

Figure 8-1.

	 1.	 Given 8 coins put coins (1-3) on the left side of the balance, 4-6 on

the right side. Leave the last 2 coins 7 and 8 on the side, and weigh.

	 2.	 If the balance leans right, the counterfeit is among 1-3 (left).

Remember that the fake coin is lighter. Thus, take out the last coin

from the left (3) and weigh it again (for the second time).

•	 If the beam leans right, the counterfeit is 1. Stop.

•	 If the beam leans left, the counterfeit is 2. Stop.

	 3.	 If the balance leans left, the counterfeit is within 4-6. Take out the

last coin (6) and weigh it again.

•	 If the beam leans right, the counterfeit is 5. Stop.

•	 If the beam leans left, the counterfeit is 6. Stop.

	 4.	 If the beam is balanced, the counterfeit is either 7 or 8. Put 7 and

8 in the balance and weigh again.

•	 If the beam leans right, the counterfeit is 7. Stop.

•	 If the beam leans left, the counterfeit is 8. Stop.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

261

Figure 8-1.  Counterfeit puzzle solution for eight coins

From the procedure in the previous section, a classical algorithm can be

implemented independent of the total number of coins N and the number of counterfeit

coins k. In general terms, the time complexity of the generalized counterfeit coin puzzle

is given by:

	
O k N klog /� �� � 	

Tip I t has been proven that the minimal number of tries required to find a single
counterfeit coin using the balance beam in a classical computer is two.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

262

�Counterfeit Coin, the Quantum Way
Believe it or not, there is a quantum algorithm that can find the counterfeit using a

quantum balance only once, independent of the number of coins N! In general terms,

for any number of counterfeit coins k, independent of N, the time complexity of such

algorithm is given by:

	
O k1 4/� � 	

Tip T he quantum counterfeit coin algorithm is an example of quartic speedup
over its classical counterpart.

Thus Figure 8-2 shows the power of a quantum algorithm over its classical

counterpart for the counterfeit coin puzzle. Now, let’s dig deeper: A quantum algorithm

to find a single counterfeit coin (k = 1) can be summarized in three stages: query the

quantum beam balance, construct the quantum balance, and identify the false coin.

Figure 8-2.  Quantum vs. classical time complexities for the counterfeit coin puzzle

�Step 1: Query the Quantum Beam Balance
A quantum algorithm will query the beam balance in superposition. To do this,

we use a binary query string to encode coins placed on the pans. For example, the

query string 11101111 means all coins are on the beam except coin with index 3. The

beam is balanced when no false coin is included, and tilted otherwise. The next table

illustrates this.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

263

N (# of coins) F (index of false coin) Query string Result

8 3 11101111 balanced (0)

8 3 11111111 tilted (1)

The procedure can be summarized as follows:

	 1.	 Use two quantum registers to query the quantum balance, where

the first register is for the query string and the second register is

for the result.

	 2.	 Prepare the superposition of all binary query strings with an even

number of 1s.

	 3.	 To obtain the superposition of states of an even number of 1s,

perform a Hadamard transformation on the basis state |0>, and

check if the Hamming weight of |x| is even. It can be shown that the

Hamming weight of |x| is even if and only if x1 ⊕ x2 ⊕ … ⊕ xN = 0

Tip T he Hamming weight (hw) of a string is the number of symbols that are
different from the zero-symbol of the alphabet used. For example: hw(11101) = 4,
hw(11101000) = 4, hw(000000) = 0.

	 4.	 Finally, measure the second register, and if |0> is observed, then

the first register is the superposition of all binary query strings we

want. If we get |1>, then repeat the procedure until |0> is observed.

Note that each repetition is guaranteed to succeed with a probability of exactly half.

Hence, after several repetitions, we should be able to obtain the desired superposition

state. Listing 8-1 shows an implementation of a quantum program to query the beam

balance with the corresponding graphical circuit shown in Figure 8-3.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

264

Note  For illustration purposes the full counterfeit coin program has been broken
in Listings 8-1 thru 8-3; to run the program, use the full listing available from the
source at Workspace\Ch08\p_counterfeitcoin.py.

Listing 8-1.  Script to query the quantum beam balance

 # ------- Query the quantum beam balance

 qr = QuantumRegister(numberOfCoins + 1, "qr")

 # for recording the measurement on qr

 cr = ClassicalRegister(numberOfCoins+1, "cr")

 circuitName = "QueryStateCircuit"

 circuit = QuantumCircuit(qr, cr, name = circuitName)

 N = numberOfCoins

 #Create uniform superposition of all strings of length N

 for i in range(N):

 circuit.h(qr[i])

 #Perform XOR(x) by applying CNOT gates sequentially from qr[0]

 #to qr[N-1] and storing the result to qr[N]

 for i in range(N):

 circuit.cx(qr[i], qr[N])

 # Measure qr[N] and store the result to cr[N].

 # We continue if cr[N] is zero, or repeat otherwise

 circuit.measure(qr[N], cr[N])

 # Query the quantum beam balance

 # if the value of cr[0]...cr[N] is all zero

 # by preparing the Hadamard state of |1>, i.e., |0> - |1> at qr[N]

 circuit.x(qr[N]).c_if(cr, 0)

 circuit.h(qr[N]).c_if(cr, 0)

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

265

 # we rewind the computation when cr[N] is not zero

 for i in range(N):

 circuit.h(qr[i]).c_if(cr, 2**N)

Figure 8-3 shows a complete circuit for the counterfeit coin puzzle for 8 coins, 1

counterfeit at index 6. The circuit displays all the stages described here for the IBM

Q Experience platform. The second stage in the algorithm is to construct the beam

balance.

�Step 2: Construct the Quantum Balance
In the previous section, we constructed the superposition of all binary query strings

whose Hamming weights are even. In this step, we construct the quantum beam by

setting the position of the false coin. Thus, given k the position of the false coin with

regard to the binary string |x1, x2, …, xN>|0>, the quantum beam balance returns:

|x1, x2, … , xN> |0⊕xk>

This is implemented with a CNOT gate with xk as the control and the second register

as the target (see partial Listing 8-2).

Listing 8-2.  Construct the quantum beam balance.

#----- Construct the quantum beam balance

k = indexOfFalseCoin

Apply the quantum beam balance on the desired superposition state

#(marked by cr equal to zero)

circuit.cx(qr[k], qr[N]).c_if(cr, 0)

Figure 8-3.  Quantum circuit for the counterfeit coin puzzle with N = 8, k = 1, and
fake at index 6

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

266

�Step 3: Identify the False Coin
To identify the false coin after querying the balance, apply a Hadamard transformation

on the binary query string. Assuming that we query the quantum beam balance with

binary strings of even Hamming weight, then by measuring the computational basis

after the Hadamard transform, we can identify the false coin because it is the one whose

label is different from the majority (see Listing 8-3).

Listing 8-3.  Identify the false coin.

--- Identify the false coin

Apply Hadamard transform on qr[0] ... qr[N-1]

for i in range(N):

 circuit.h(qr[i]).c_if(cr, 0)

Measure qr[0] ... qr[N-1]

for i in range(N):

 circuit.measure(qr[i], cr[i])

results = execute([circuit], backend=backend, shots=shots).result()

answer = results.get_counts(circuitName)

print("Device " + str(backend) + " counts " + str(answer))

Get the most common label

for key in answer.keys():

 normalFlag, _ = Counter(key[1:]).most_common(1)[0]

 for i in range(2,len(key)):

 if key[i] != normalFlag:

 print("False coin index is: ", len(key) - i - 1)

When the left-most bit is 0, the index of the false coin can be determined by finding

the one whose values are different from others. For example, for N =8, and false index 6,

the result should be 010111111 or 001000000. Note that because we use cr[N] to control

the operation prior to and after the query to the balance, thus

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

267

•	 If the left-most bit is 0, then we succeed in identifying the false coin.

•	 If the left-most bit is 1, we failed to obtain the desired superposition

and must repeat the process from the beginning. This may result in

a different simulator count result from what I show in the following;

also keep in mind that the program may fail to identify the false

coin; thus you may need to run the script a few times. All in all, the

execution parameters can be tuned in the script such as index of the

false coin, number of qubits, and total number of coins.

Running the program against the remote IBM-Q simulator gives the result (Under

book source Workspace\Ch07\p_counterfeitcoin.py). Note that I am using Windows in

this instance:

c:\python36-64\python.exe p_counterfeitcoin.py

Device ibmq_qasm_simulator counts {'001000000': 1}

False coin index is: 2

If you don’t have access to the book source and still want to play with this script,

Listing 8-4 is a condensed version of the whole thing. Give it a try.

Listing 8-4.  Counterfeit coin puzzle main container script

import sys

import matplotlib.pyplot as plt

import numpy as np

useful math functions

from math import pi, cos, acos, sqrt

from collections import Counter

importing the QISKit

from qiskit import *

import basic plot tools

from qiskit.tools.visualization import plot_histogram

def main(M = 16, numberOfCoins = 8 , indexOfFalseCoin = 6

 , backend = None , shots = 1):

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

268

 if numberOfCoins < 4 or numberOfCoins >= M:

 raise Exception("Please use numberOfCoins between 4 and ", M-1)

 if indexOfFalseCoin < 0 or indexOfFalseCoin >= numberOfCoins:

 raise Exception("indexOfFalseCoin must be between 0 and ",

numberOfCoins-1)

 # ------- Query the quantum beam balance

 # Create registers

 qr = QuantumRegister(numberOfCoins + 1, "qr")

 # for recording the measurement on qr

 cr = ClassicalRegister(numberOfCoins+1, "cr")

 circuitName = "QueryStateCircuit"

 circuit = QuantumCircuit(qr, cr, name = circuitName)

 N = numberOfCoins

 #Create uniform superposition of all strings of length N

 for i in range(N):

 circuit.h(qr[i])

 #Perform XOR(x) by applying CNOT gates sequentially from qr[0]

 #to qr[N-1] and storing the result to qr[N]

 for i in range(N):

 circuit.cx(qr[i], qr[N])

 # Measure qr[N] and store the result to cr[N].

 # We continue if cr[N] is zero, or repeat otherwise

 circuit.measure(qr[N], cr[N])

 # we proceed to query the quantum beam balance

 # if the value of cr[0]...cr[N] is all zero

 # by preparing the Hadamard state of |1>, i.e., |0> - |1> at qr[N]

 circuit.x(qr[N]).c_if(cr, 0)

 circuit.h(qr[N]).c_if(cr, 0)

 # we rewind the computation when cr[N] is not zero

 for i in range(N):

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

269

 circuit.h(qr[i]).c_if(cr, 2**N)

 #----- Construct the quantum beam balance

 k = indexOfFalseCoin

 # Apply the quantum beam balance on the desired superposition

 # state (marked by cr equal to zero)

 circuit.cx(qr[k], qr[N]).c_if(cr, 0)

 # --- Identify the false coin

 # Apply Hadamard transform on qr[0] ... qr[N-1]

 for i in range(N):

 circuit.h(qr[i]).c_if(cr, 0)

 # Measure qr[0] ... qr[N-1]

 for i in range(N):

 circuit.measure(qr[i], cr[i])

 print(circuit.qasm())

 results = execute([circuit], backend=backend, shots=shots).result()

 answer = results.get_counts(circuitName)

 print("Device " + str(backend) + " counts " + str(answer))

 #plot_histogram(answer)

 for key in answer.keys():

 �normalFlag, _ = Counter(key[1:]).most_common(1)[0] #get most

common label

 for i in range(2,len(key)):

 if key[i] != normalFlag:

 print("False coin index is: ", len(key) - i - 1)

###

main

###

if __name__ == '__main__':

 M = 8 #Maximum qubits available

 numberOfCoins = 4 #Up to M-1, where M is the number of qubits

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

270

 indexOfFalseCoin = 2 #This should be 0, 1, ..., numberOfCoins - 1,

 # simulator

 name = "qasm_simulator"

 backend = Aer.get_backend(name)

 shots = 1 # We perform a one-shot experiment

 main(M, numberOfCoins, indexOfFalseCoin, backend, shots)

�Generalization for Any Number of False Coins
The counterfeit coin puzzle has been generalized by any number of fake coins (k>1) by

mathematicians Terhal and Smolin in 1998. Their implementation uses a Balance Oracle

model (B-Oracle) such that

•	 Given an input of N bits x = x1x2…xn Є {0, 1}N

•	 Construct a query string of N tri-bits such that q = q1q2…

qn ∈ {0, 1, −1}N with the same number of 1s and -1s.

•	 The answer is 1 bit such that

� x q

if q x q x qnxn balanced

otherwise tilted
;� � �

� �� � � �
� �

�
�
�0 1 1 2 2 0

1���

Tip A n oracle is the portion of an algorithm regarded as a black box. It is used
to simplify circuits and provide complexity comparisons between quantum and
classical algorithms. A good oracle should provide speed, generality, and feasibility.

An example of the B-Oracle in action is shown in Figure 8-4 for 2 fake coins: k = 2

and N= 6.

Figure 8-4.  B-Oracle for N = 6 and k = 2

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

271

All in all, the counterfeit puzzle is the quintessential example of quartic speedup of a

quantum algorithm over its classical counterpart. In the next section, we look at another

bizarre quasi-magical puzzle called the Mermin-Peres Magic Square.

�Mermin-Peres Magic Square
This is another classic puzzle first proposed by physicists David Mermin and A. Peres

as an example of quantum pseudo-telepathy or the ability of two players to have

some supernatural communication to outside observers. Thanks to the magic of

entanglement, this is possible. Let’s take a closer look.

The game starts with two players Alice and Bob against a referee. The magic square is

a 3x3 matrix with the following rules (see Figure 8-5):

•	 All entries are either 0 or 1 such that the sum of entries on each row

is even, and the sum of each column is odd. The game is called the

magic square because such a square is impossible, as shown in

Figure 8-5; there is no valid combination where the sum of rows is

even and the sum of columns is odd (try it yourself with pen and

paper). This is due to the odd number of entries in the matrix.

•	 The referee sends an integer a Є {1,2,3} to Alice and another

b Є {1,2,3} to Bob. Alice must reply with the a-th row of the square.

Bob must reply with the b-th column.

Figure 8-5.  Mermin-Peres Magic Square

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

272

•	 Alice and Bob win if the sum of Alice’s entries is even, the sum of

Bob’s is odd, and their intersecting answer is the same. Otherwise,

the referee wins.

•	 Prior to the start, Alice and Bob can strategize and share information.

For example, they could decide to answer using the matrix in

Figure 8-5. However, they are not allowed to communicate during

the game.

For example, in the preceding matrix, if the referee sends a = 1 to Alice and b = 2 to

Bob, Alice would reply with 110 (row 1) and Bob with 100 (column 2). The element in the

intersection of the answers (row1-column2) is the same (1), so they win the game. It can

be shown that in a classical setting, the winning probability for Alice and Bob is at most

8/9. That is, there are eight out of nine permutations in the square for victory. Therefore,

Alice and Bob’s winning strategy is at most 88.8%.

Let’s put this assertion to the test with a neat exercise to prove that indeed the

classical winning strategy for the magic square is at most 8/9 (88.88%).

�Mermin-Peres Magic Square Exercise

	 1.	 Construct a magic square similar to Figure 8-5 using the binary

code (1,-1) instead of (1, 0) where the product of the row elements

is 1 (even), and the product of the column elements is -1 (odd).

Confirm that, in fact, this is not possible.

	 2.	 Create a permutation table for the referee values for a and b using

the square in step 1 including

•	 A permutation count number.

•	 The values for a, b.

•	 Alice and Bob’s response.

•	 The intersection of Alice and Bob’s response. Remember that it

must be equal for them to win.

•	 The result of the game iteration: Win = W, Loose = L.

	 3.	 Finally, calculate the winning probability and prove that it is at

most 8/9. Note: answers are at the end of the section.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

273

�Quantum Winning Strategy
Thanks to the power of quantum mechanics and the magic of entanglement, Alice and

Bob can do much better. In fact, they can win the game 100% of the time. As if they

were communicating telepathically, hence the term pseudo-telepathy. A quantum

winning strategy was first proposed by Brassard and colleagues,1 and it is divided into

three stages:

•	 Shared entangled state: This is the key for Alice and Bob to win 100%

of the time.

•	 Unitary transformations for Alice and Bob’s inputs: These provide the

responses to be sent back to the referee.

•	 Measure in the computational basis: The final stage to construct a

final response.

�Shared Entangled State
In the quantum winning strategy, Alice and Bob share the entangled state:

	
� � � � �

1

2
0011

1

2
0110

1

2
1001

1

2
1100 	

A circuit implementation requires 2 qubits for Alice and 2 for Bob as shown in

Figure 8-6.

Figure 8-6.  Entangled state for the magic square

1 Brassard, Broadbent, and Tapp. Quantum Pseudo-Telepathy. pp 22, available online at https://
arxiv.org/abs/quant-ph/0407221v3

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

https://arxiv.org/abs/quant-ph/0407221v3
https://arxiv.org/abs/quant-ph/0407221v3

274

•	 We know that the Hadamard maps the basis state

H 0
1

2
0 1� �� � . Thus, applying for the first two qubits

yields: � � � � �
1

2
00

1

2
01

1

2
10

1

2
11 .

•	 Next, apply a Z gate to the first two qubits. Remember that

Z leaves the 0 state unchanged and maps 1 to -1 (flipping

the sign of the third term above). At this stage the state

becomes: � � � � �
1

2
00

1

2
01

1

2
10

1

2
11 .

•	 Next, apply the CNOT gate to entangle qubits 0-2

and 1-3: � � � � �
1

2
0000

1

2
0101

1

2
1010

1

2
1111 .

•	 Finally, flip the last 2 qubits with the X

gate for � � � � �
1

2
0011

1

2
0110

1

2
1001

1

2
1100 .

The Python script to construct the entangled state is given in Listing 8-5.

Note T he magic square program has been broken down into listings 8-5, 8-6,
and 8-7. You can run the full script from the chapter source at Workspace\Ch08\p_
magicsq.py.

Listing 8-5.  Quantum winning strategy entangled state

Create the entangled state

Q_program = QuantumProgram()

Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])

4 qubits (Alice = 2, Bob = 2)

N = 4

Creating registers

qr = Q_program.create_quantum_register("qr", N)

for recording the measurement on qr

cr = Q_program.create_classical_register("cr", N)

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

275

circuitName = "sharedEntangled"

sharedEntangled = Q_program.create_circuit(circuitName, [qr], [cr])

#Create uniform superposition of all strings of length 2

for i in range(2):

 sharedEntangled.h(qr[i])

#The amplitude is negative for an odd number of 1s

for i in range(2):

 sharedEntangled.z(qr[i])

#Copy the content of the first two qubits to the last two qubits

for i in range(2):

 sharedEntangled.cx(qr[i], qr[i+2])

#Flip the last two qubits

for i in range(2,4):

 sharedEntangled.x(qr[i])

With the shared entangled state, Alice and Bob can now start the game and receive

inputs from the referee.

�Unitary Transformations
Upon receiving their inputs a Є {1,2,3} and b Є {1,2,3}, Alice and Bob apply the following

unitary transformations: A1, A2, A3 for Alice and B1, B2, B3 for Bob to the shared

entangled states:

	

A

i

i

i

i

A

i i

i i

i i

i

1
1

2

0 0 1

0 1 0

0 1 0

1 0 0

2
1

2

1 1

1 1

1 1

1

�
�

�

�

�
�
�
�

�

�

�
�
�
�

�
� �

�
�

,

�� �

�

�

�
�
�
�

�

�

�
�
�
�

�

� � �
�

�
� � �

�

�

�
�
�
�

�

�

�
�
�

1

3
1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1i

A,

��
	

	

B

i i

i i

i i

i i

B

i i

i i

i
1

1

2

1 1

1 1

1 1

1 1

2
1

2

1 1

1 1

1
�

�
� � �

�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�
�

�
,

11

1 1

3
1

2

1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0

i

i i

B

� � �

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

,

	

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

276

Note R emember that by applying the above transformations to their entangled
states, Alice and Bob can construct the first 2 bits of their respective responses to
the referee.

Listing 8-6 shows the unitary transformations for Alice and Bob with equivalent

graphical circuits in Table 8-1.

Listing 8-6.  Unitary transformations for Alice and Bob

#------ circuits of Alice's and Bob's operations.

#we first define controlled-u gates required to assign phases

from math import pi

def ch(qProg, a, b):

 """ Controlled-Hadamard gate """

 qProg.h(b)

 qProg.sdg(b)

 qProg.cx(a, b)

 qProg.h(b)

 qProg.t(b)

 qProg.cx(a, b)

 qProg.t(b)

 qProg.h(b)

 qProg.s(b)

 qProg.x(b)

 qProg.s(a)

 return qProg

def cu1pi2(qProg, c, t):

 """ Controlled-u1(phi/2) gate """

 qProg.u(0,0,pi/4.0, c)

 qProg.cx(c, t)

 qProg.u(0,0,-pi/4.0, t)

 qProg.cx(c, t)

 qProg.u(0,0,pi/4.0, t)

 return qProg

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

277

def cu3pi2(qProg, c, t):

 """ Controlled-u3(pi/2, -pi/2, pi/2) gate """

 qProg.u(0,0,pi/2.0, t)

 qProg.cx(c, t)

 qProg.u(-pi/4.0, 0, 0, t)

 qProg.cx(c, t)

 qProg.u(pi/4.0, -pi/2.0, 0, t)

 return qProg

#--

Define circuits used by Alice and Bob for each of their inputs: 1,2,3

dictionary for Alice's operations/circuits

aliceCircuits = {}

Quantum circuits for Alice 1, 2, 3

for idx in range(1, 4):

 circuitName = "Alice"+str(idx)

 aliceCircuits[circuitName]

 = QuantumCircuit (qr, cr, name = circuitName)

 theCircuit = aliceCircuits[circuitName]

 if idx == 1:

 #the circuit of A_1

 theCircuit.x(qr[1])

 theCircuit.cx(qr[1], qr[0])

 theCircuit = cu1pi2(theCircuit, qr[1], qr[0])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit = cu3pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit = ch(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

278

 theCircuit.cx(qr[1], qr[0])

 theCircuit.x(qr[1])

 elif idx == 2:

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.h(qr[0])

 theCircuit.h(qr[1])

 elif idx == 3:

 theCircuit.cz(qr[0], qr[1])

 theCircuit.swap(qr[0], qr[1]) # not supported in composer

 theCircuit.h(qr[0])

 theCircuit.h(qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit.cz(qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 #measure the first two qubits in the computational basis

 theCircuit.measure(qr[0], cr[0])

 theCircuit.measure(qr[1], cr[1])

dictionary for Bob's operations/circuits

bobCircuits = {}

Quantum circuits for Bob when receiving 1, 2, 3

for idx in range(1,4):

 circuitName = "Bob"+str(idx)

 bobCircuits[circuitName]

 = QuantumCircuit(qr, cr, name = circuitName)

 theCircuit = bobCircuits[circuitName]

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

279

 if idx == 1:

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[3])

 theCircuit.u1(pi/2.0, qr[2])

 theCircuit.x(qr[2])

 theCircuit.z(qr[2])

 theCircuit.cx(qr[2], qr[3])

 theCircuit.cx(qr[3], qr[2])

 theCircuit.h(qr[2])

 theCircuit.h(qr[3])

 theCircuit.x(qr[3])

 theCircuit = cu1pi2(theCircuit, qr[2], qr[3])

 theCircuit.x(qr[2])

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

 elif idx == 2:

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[3])

 theCircuit.u1(pi/2.0, qr[3])

 theCircuit.cx(qr[2], qr[3])

 theCircuit.h(qr[2])

 theCircuit.h(qr[3])

 elif idx == 3:

 theCircuit.cx(qr[3], qr[2])

 theCircuit.x(qr[3])

 theCircuit.h(qr[3])

 #measure the third and fourth qubits in the computational basis

 theCircuit.measure(qr[2], cr[2])

 theCircuit.measure(qr[3], cr[3])

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

280

Table 8-1 shows quantum circuits for the unitary transformations A1-3, B1-3 for IBM

Q Experience composer.

Table 8-1.  Quantum circuits for the unitary transformations in Listing 8-6

Transformation Circuit

A

i

i

i

i

1 =
1

2

0 0 1

0 - 1 0

0 1 0

1 0 0

�

�

�
�
�
�

�

�

�
�
�
�

A

i i

i i

i i

i i

2 =
1

2

1 1

- 1 -1

1 1 -

- 1 -1 -

�

�

�
�
�
�

�

�

�
�
�
�

B

i i

i i

i i

i i

1 =
1

2

- 1 1

- - 1 -1

1 1 -

- 1 1

�

�

�
�
�
�

�

�

�
�
�
�

B

i i

i i

i i

i i

2 =
1

2

-1 1

1 1 -

1 - 1

-1 - 1 -

�

�

�
�
�
�

�

�

�
�
�
�

B3 =
1

2

1 0 0 1

-1 0 0 1

0 1 1 0

0 1 -1 0

�

�

�
�
�
�

�

�

�
�
�
�

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

281

In Table 8-1 note that A3 is not included because the composer does not support

the swap gate required by Listing 8-5. This does not mean the quantum program can’t

be run in the simulator or real device, however. It simply means the circuit cannot be

created in the composer. Thus, for the final step, Alice and Bob measure their qubits in

the computational basis.

�Measure in the Computational Basis
After measurement, Alice and Bob end up with two bits each which represent their

respective outputs. To obtain the third bit, and thus a final answer, they apply their parity

rules. That is, Alice’s sum must be even, and Bob’s must be odd. For example, for a = 2, b

= 3 (see Table 8-2):

	
A B2 3

1

2 2
0000 0010 0101 0111 1001 1011 1100 1110�� � � � � � � � � ��� ���

	

Table 8-2.  Answer permutations for a = 2, b =3 of the magic square

Ψ Alice’s answer Bob’s answer Square

|0000> 000 001 0
0 0 0

1

�

�

�
�
�

�

�

�
�
�

|0010> 000 100 1
0 0 0

0

�

�

�
�
�

�

�

�
�
�

|0101> 011 010 0
0 1 1

0

�

�

�
�
�

�

�

�
�
�

(continued)

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

282

Ψ Alice’s answer Bob’s answer Square

|0111> 011 111 1
0 1 1

1

�

�

�
�
�

�

�

�
�
�

|1001> 101 010 0
1 0 1

0

�

�

�
�
�

�

�

�
�
�

|1011> 101 111 1
1 0 1

1

�

�

�
�
�

�

�

�
�
�

|1100> 110 001 0
1 1 0

1

�

�

�
�
�

�

�

�
�
�

|1110> 110 101 1
1 1 0

1

�

�

�
�
�

�

�

�
�
�

Table 8-2.  (continued)

Listing 8-7 shows a section of the script to loop through all the rounds of the

magic square:

•	 It loops through a [1,3] and b[1,3] inclusive.

•	 For each (a, b), a circuit for Alice (Alice-a) and a circuit for Bob

(Bob-b) are retrieved from Listing 8-5.

•	 The shared entangled state Ψ, Alice-a and Bob-b circuits are

submitted for execution to the simulator or real quantum device.

•	 Two bits are extracted for Alice and two for Bob from the answer such

as {'0011': 1}.

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

283

•	 The parity rules are applied: Alice’s sum must be even, and Bob’s sum

must be odd.

•	 Finally, the answer is verified, and the winning probability is

displayed.

Listing 8-7.  Script for all rounds of the magic square

def all_rounds(backend, real_dev, shots=10):

 nWins = 0

 nLost = 0

 for a in range(1,4):

 for b in range(1,4):

 print("For a = " + str(a) + " , b = " + str(b))

 rWins = 0

 rLost = 0

 aliceCircuit = aliceCircuits["Alice" + str(a)]

 bobCircuit = bobCircuits["Bob" + str(b)]

 circuitName = "Alice" + str(a) + "Bob"+str(b)

 root = sharedEntangled.compose(aliceCircuit).compose(bobCircuit)

 if real_dev:

 device_cfg = backend.configuration()

 device_coupling = device_cfg.coupling_map

 results = execute([root], backend=backend, shots=shots

 , coupling_map=device_coupling).result()

 else:

 results = execute([root], backend=backend, shots=shots).result()

 answer = results.get_counts()

 for key in answer.keys():

 kfreq = answer[key] #frequencies of keys obtained from measurements

 aliceAnswer = [int(key[-1]), int(key[-2])]

 bobAnswer = [int(key[-3]), int(key[-4])]

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

284

 if sum(aliceAnswer) % 2 == 0:

 aliceAnswer.append(0)

 else:

 aliceAnswer.append(1)

 if sum(bobAnswer) % 2 == 1:

 bobAnswer.append(0)

 else:

 bobAnswer.append(1)

 �print(str(backend) + " answer: " + key + " Alice: " +

str(aliceAnswer)

 + " Bob:" + str(bobAnswer))

 if(aliceAnswer[b-1] != bobAnswer[a-1]):

 #print(a, b, "Alice and Bob lost")

 nLost += kfreq

 rLost += kfreq

 else:

 #print(a, b, "Alice and Bob won")

 nWins += kfreq

 rWins += kfreq

 print("\t#wins = ", rWins, "out of ", shots, "shots")

 print("Number of Games = ", nWins+nLost)

 print("Number of Wins = ", nWins)

 print("Winning probabilities = ", (nWins*100.0)/(nWins+nLost))

###

main

###

if __name__ == '__main__':

 name = "qasm_simulator"

 backend = Aer.get_backend(name)

 real_dev = False

 all_rounds(backend, real_dev)

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

285

A run of the full script at Workspace\Ch08\p_magicsq.py against the remote

simulator is shown in listing 8-8.

Listing 8-8.  Simplified standard output from a run of all rounds of the

magic square

c:\python36-64\python.exe p_magicsq.py

For a = 1 , b = 1

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1010 Alice: [0, 1, 1] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1111 Alice: [1, 1, 0] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0111 Alice: [1, 1, 0] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0000 Alice: [0, 0, 0] Bob:[0, 0, 1]

ibmq_qasm_simulator answer: 0101 Alice: [1, 0, 1] Bob:[1, 0, 0]

 #wins = 10 out of 10 shots

For a = 1 , b = 2

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1001 Alice: [1, 0, 1] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1111 Alice: [1, 1, 0] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0110 Alice: [0, 1, 1] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0000 Alice: [0, 0, 0] Bob:[0, 0, 1]

ibmq_qasm_simulator answer: 0001 Alice: [1, 0, 1] Bob:[0, 0, 1]

 #wins = 10 out of 10 shots

...

For a = 3 , b = 3

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1011 Alice: [1, 1, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1101 Alice: [1, 0, 1] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 1110 Alice: [0, 1, 1] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0111 Alice: [1, 1, 0] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0010 Alice: [0, 1, 1] Bob:[0, 0, 1]

 #wins = 10 out of 10 shots

Number of Games = 90

Number of Wins = 90

Winning probability = 100.0

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

286

Note I f running in a real device, the winning probability will not be 100% due to
environmental noise and gate error.

�Answers for the Mermin-Peres Magic Square Exercise

	 1.	 A magic square whose row product is even and whose column

product is odd is given here. Note that such a square is not

possible due to the odd number of cells.

	 2.	 The permutation table for the square in answer 1 is:

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

287

	 3.	 Note that, in the previous step for rows 7-9, Alice’s answer must

be -1 so the product can be even (1). Plus, in columns 3, 6, and 9,

Bob's answer must be 1 so his product can be odd (-1). Finally, the

probability is calculated by dividing the total number of wins by

the total number of permutations. Thus:

	
P

W

N
�
�

� �
8

9
88 88. % 	

In this chapter, you have learned how the power of quantum entanglement can

provide significant speedups over classical computation. With a quantum beam balance,

it is possible to achieve quartic speedups for classical puzzles like the counterfeit coin

problem. For others, such as the magic square, entanglement gives quasi-magical

telepathy among players. All in all, this chapter has shown how quantum mechanics is as

confusing, bizarre, and fascinating as always. It never fails to deliver.

In the next chapter, you will learn about arguably the most famous quantum

algorithm of them all: the notorious Shor’s integer factorization. An algorithm that may

smash asymmetric cryptography!

Chapter 8 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

289

CHAPTER 9

Quantum Advantage
with Deutsch-Jozsa,
Bernstein-Vazirani,
and Simon’s Algorithms
In this chapter, we study three algorithms of little practical use but important because

they were the first to show that quantum computers can solve problems significantly

faster than classical ones. Consider the time complexities O(n) for the algorithms:

classical vs. quantum in Table 9-1 (where n is the size of the input).

Table 9-1.  Time complexities for Deutsch-Jozsa,

Bernstein-Vazirani, and Simon algorithms

Name Classical Quantum

Deutsch-Jozsa 2n-1 + 1 1

Bernstein-Vazirani n 1

Simon 2n/2 n

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_9

https://doi.org/10.1007/978-1-4842-9991-3_9

290

Besides the significant performance boost, these algorithms illustrate fundamental

concepts that apply to virtually all algorithms out there:

•	 Massive parallelism: By applying the Hadamard gate to all inputs,

we create a set of all binary permutations, and most incredible of

all, they are all consumed at the same time. This may not sound like

much, but consider a 40 qubit processor: It can consume 240 = 1TB of

binary permutations at once. That is an astounding amount of raw

power that no supercomputer in existence can match.

•	 Oracles: These are black boxes that perform some transformation on

the binary permutations. When you have a huge permutation space,

the oracle gives the means of changing most of them so they can

cancel each other. Virtually all quantum algorithms will use some

kind of oracle.

•	 Phase kickback: This is an extremely useful concept that you must

fully understand to build quantum algorithms. Phase kickback

essentially changes the phase (sign) of some permutations so they

can cancel each other (after being transformed by the oracle). The

result of this process is a reduced permutation space that will contain

the solution to the problem. But more about this in the next section.

In these three concepts lies the key to quantum advantage: imagine you have a

binary permutation space of 240 created using Hadamard gates of your qubits. Within

this space lies a single permutation waiting to be found giving the solution to the

problem. We need a mechanism for altering some permutations so they can cancel

each other (the oracle). Also, we need a way to change their phase (phase kickback) so

that when we bring them out of superposition they will cancel by addition (remember

that superposition is simply the addition of quantum states). The final measurement

will trigger this process resulting in a reduced permutation set that gives the solution

to the problem; the hardest part of all this is to encode the problem in such a binary

permutation space, and that is where all research takes place. So let’s take a look at

this quintessential part of quantum information science: we start with the extremely

important concept of phase kickback.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

291

�Phase Kickback
Phase kickback occurs when the eigenvalue added by a gate to a qubit is “kicked back”

into a different qubit via a controlled operation. For this to occur, the qubits must be in

superposition: Remember that:

	 H H X0 1� � � � � � � �, , 	

In a 2 qubit state, when the control qubit is not in superposition |0> or |1>, the phase

is global and has no observable effect (global phases are irrelevant), Thus, applying the

Control-X operator gives:

	 CX X I CX X I� � � � � � � � � � � � �0 0 0 1 1 1, 	

Note that we are using Qiskit little endian bit ordering (the control or least

significant goes on the right). Phase kick back occurs when the control (right) qubit is in

superposition. The control qubit in state |1> applies a phase factor to the corresponding

target qubit. This applied phase factor in turn introduces a relative phase into the control

qubit thus:

	
CX CX CX�� � � � �� � � � � �� �1

2
0 1

1

2
0 1

	

	
CX �� � � � �� � � ��

1

2
0 1

	

Let’s put this to the test with a simple lab exercise.

Exercise 9.1: Start the Quantum Lab to quickly create a circuit for the 2 qubit state

|-+>, and display the Bloch spheres to visualize the rotations using the state vector

simulator. Note that qubit 0 will be in state (+).

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

292

from qiskit import *

from qiskit.visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.x(1)

qc.h(1)

display (qc.draw())

backend = Aer.get_backend("statevector_

simulator")

result = execute(qc, backend).result()

plot_bloch_multivector(result.get_

statevector())

Exercise 9.2: Add a Control-X (0,1) operator to the circuit to visualize how the

negative phase is kicked back from qubit-1 (target) to qubit-0 (control in superposition)

resulting in the state |-->

from qiskit import *

from qiskit.visualization import *

qc = QuantumCircuit(2)

qc.h(0)

qc.x(1)

qc.h(1)

qc.cx(0,1)

display (qc.draw())

backend = Aer.get_backend("statevector_

simulator")

result = execute(qc, backend).result()

plot_bloch_multivector(result.get_

statevector())

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

293

�Kickback with Arbitrary Phases
In quantum mechanics, phase and sign flips are used interchangeably. For example,

a negative phase kickback is a rotation of pi degrees over the Bloch sphere. This is a

powerful concept that allows for phase kickbacks of arbitrary angles between qubits

provided that we use a controlled operation and the target qubit is in superposition.

Such a feat can be achieved using the handy phase gate which performs a rotation over

the Z axis of λ (lambda) degrees: P
ei

� �� � � �

�
�

�

�
�

1 0

0
.

Let’s see how this is done. Consider Listing 9-1. We start with two qubits in the state

|+1> (left side of Figure 9-1). We then apply a controlled phase of pi/4 degrees (T-gate).

This has the effect of a phase kickback of a quarter turn (over the Z axis) from the control

qubit-1 to the target qubit-0 which is in superposition (right side of Figure 9-1).

Listing 9-1.  Phase kickback using the T-gate

from qiskit import *

from qiskit.visualization import *

from math import pi

qc = QuantumCircuit(2)

qc.h(0)

qc.x(1)

Add Controlled-T gate:

1) Comment this to view the left side of figure 9-1.

2) Uncomment to view the right side of figure 9-1.

#qc.cp(pi/4, 0, 1)

display (qc.draw())

backend = Aer.get_backend("statevector_simulator")

result = execute(qc, backend).result()

plot_bloch_multivector(result.get_statevector())

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

294

Figure 9-1.  Phase kickback using the T-gate

Exercise 9.3: What would be the position of qubit-0 if we apply a rotation of –pi/2

(S-dagger)? Tip: Given that S rotates by pi/2 degrees over the Z-axis, update the rotation

angle of the qc.cp() instruction.

Phase kickback is used in all three algorithms studied in the next sections.

�Deutsch-Jozsa
This algorithm was introduced in 1992 by David Deutsch and Richard Jozsa.1 Given a

hidden Boolean function f({x0,x1,..,xn}) where {x0,x1,..,xn} is a string of bits, it returns 0 if

the function is constant or 1 if balanced. A Boolean constant function returns all 0’s or 1’s

for any input. A Boolean balanced function returns 0’s for half the inputs and 1’s for the

other half. The task is to determine whether the given function is balanced or constant.

Tip E xamples of balanced Boolean functions are the function that copies the first
bit of its input to the output, and the XOR (exclusive or – verify this by looking at its
truth table). Balanced Boolean functions are primarily used in cryptography.

1 David Deutsch and Richard Jozsa (1992). “Rapid solutions of problems by quantum
computation”. Proceedings of the Royal Society of London A. 439: 553–558. doi:10.1098/
rspa.1992.0167

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

295

Figure 9-2.  Deutsch-Jozsa quantum circuit

The circuit in Figure 9-2 can solve the problem with 100% confidence after a single

call. Let’s see how this is done. We start with:

	
| | |�

0
0 1� �n

	

The Hadamard gates put the input bits in superposition and the ancillary qubit|1> in |->:

	
| | |�1 1

0

2 11

2
� �

�
�

�

�n
x

n

x
	

where x is the input bit string and next the function Uf is the oracle which uses phase

kickback to transform the state | x⟩| y⟩ → | x⟩| y ⊕ fx⟩

	
�2 1

0

2 1

1
0

2 11

2
1

1

2
1 0 1� � �� � � �� � �� �

�
�

�

�
�

�

� �n
x

n
x

fx
n n

x fx fx x
	

Next, the ancillary qubit is discarded; apply the Hadamard to the first register;

we obtain:

	
�2

0

2 1

0

2 11

2
1 1� �� � �� �

�

�
�

�

�
�

�

�

�

�

� �n
y x

fx x y
n n

y
.

	

where x.y is the bitwise product of the input bit string x and the ancillary qubit (y).

Finally, after measuring the first register, the probability becomes Pr � �� �
�

�

�
x

fx
n

0

2 1
2

1 which

evaluates to 1 if f(x) is balanced. Let’s implement this algorithm for a 3 qubit circuit with

a 2-bit size -x and 1-bit size-y for two functions:

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

296

	 1.	 A constant function using the identity gate

	 2.	 A balanced function using the Boolean XOR

Run Listing 9-2 in the Quantum Lab to construct the Deutsch-Jozsa circuit for a 2 bit

function; it contains two functions, constant2 and balanced2, which create the oracles for

a constant and balanced f(x), respectively. This code starts by

	 1.	 Putting the input qubits (x) in superposition.

	 2.	 It then applies the oracle for the constant or balanced function.

	 3.	 It moves the inputs back to the computational basis.

	 4.	 Measures the input x. If 0 the function is constant, else it is

balanced.

Listing 9-2.  Deutsch-Jozsa for 2 qubits with constant or balanced functions

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

from qiskit import Aer, execute

from qiskit.tools.visualization import plot_histogram

Create quantum/classical registers and a quantum circuit

qin = QuantumRegister(2, 'x')

qout = QuantumRegister(1, 'y')

c = ClassicalRegister(2)

qc = QuantumCircuit(qin,qout,c)

This is a balanced function XOR

def balanced2(circ, input, output) :

 circ.cx(input[0],output)

 circ.cx(input[1],output)

This is a constant function that doesn't change anything

def constant2(circ, input, output) :

 circ.i(output)

Build the Deutsh-Josza circuit

First apply phase shift to negate where f(x) == 1

qc.h(qin)

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

297

qc.x(qout)

qc.h(qout)

balanced2() for balanced or constant2() for constant

constant2(qc,qin,qout)

#balanced2(qc,qin,qout)

qc.h(qout)

qc.barrier() # barrier to make circuit look nicer

Then Walsh-Hadamard on input bits

qc.h(qin)

For constant function, output is |00> with probability 1

For balanced function, output is |11> with probability 1

qc.measure(qin,c)

display only works in Quantum Lab

display(qc.draw())

Simulate and show results

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=512)

result = job.result()

plot_histogram(result.get_counts())

Run Listing 9-2 in the Quantum Lab to obtain the result shown in Figure 9-3.

Figure 9-3.  Deutsch-Jozsa circuit and result for a constant function

Exercise 9.4: Modify Listing 9-2 to use the balanced XOR function instead. Run in the

Quantum Lab and verify the circuit and results histogram matches Figure 9-4.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

298

Figure 9-4.  Deutsch-Jozsa circuit and result for the XOR balanced function

Exercise 9.5: Modify Listing 9-2 to generalize the Deutsch-Jozsa algorithm for

any number of qubits. Run with a balanced XOR function for 3 qubits and verify

the result matches Figure 9-5. Tip: Set a variable n = 3, then simply update qin =

QuantumRegister(n, ‘x’). Finally, update the balanced XOR function with a for loop

from 0 to n:

def balanced(n, circ, input, output) :

 for i in range (n):

 circ.cx(input[i],output)

Figure 9-5.  Deutsch-Jozsa circuit for 3 qubit XOR balanced function

Deutsch-Jozsa was the first to showcase the advantage of quantum. Researchers

quickly built upon this design to create the algorithms in the next sections.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

299

�Bernstein-Vazirani (BV)
Bernstein-Vazirani is an extension of the Deutsch-Jozsa algorithm introduced in 1997.2

The algorithm is similar yet more complex than Deutsch-Jozsa:

	 1.	 We start with the same function f({x0,x1,..,xn}) where {x0,x1,..,xn}

is a string of bits, f(x) returns 0 or 1.

	 2.	 Here is the difference: Instead of the function being balanced or

constant as in Deutsch-Jozsa, f(x) returns the bitwise product of

the input x with some secret string s.

	 3.	 The goal is to find the secret string s for which f(x) = s . x (mod 2)

using the transformation H s xn

n
x

s x�

�� �
� �� ��1

2
1

0 1.

.

where |s> is an n–qubit state permutation of the secret bit string and |x> is the input

space. The circuit and mathematical explanation are shown in Figure 9-6.

2 Ethan Bernstein and Umesh Vazirani (1997) “Quantum Complexity Theory” SIAM Journal on
Computing, Vol. 26, No. 5: 1411-1473, doi:10.1137/S0097539796300921

Figure 9-6.  Quantum circuit
for Bernstein-Vazirani

- The Hadamard applied at two qubits gives:

H � � � � �� �2 00
1

2
00 01 01 11

H � � � � �� �2 01
1

2
00 01 01 11

H � � � � �� �2 10
1

2
00 01 01 11

H � � � � �� �2 11
1

2
00 01 01 11

This can be expressed as a sum over the input string of

bits x:

H a x
x

a x�

�� �
� �� ��2

0 1

1

2
1

.

.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

300

Tip R emember that H H0
1

2
0 1 1

1

2
0 1 0 0 00� �� � � �� � � �, , .

Exercise 9.6: Show by mul�tiplication that H � � � � �� �2 00
1

2
00 01 01 11 .

	
H � � �� �� �� � � � � �� �2 00

1

2
0 1

1

2
0 1

1

2
00 01 01 11

	

Exercise 9.7: Show by multiplication that H � � � � �� �2 01
1

2
00 01 01 11

A generalized algorithm for any secret string size is shown in Listing 9-3, the circuit

and results in Figure 9-7.

Listing 9-3.  Bernstein-Vazirani algorithm generalized for any hidden string (s)

initialization

import matplotlib.pyplot as plt

import numpy as np

from qiskit import *

from qiskit.visualization import *

generator for a hidden function with n qubits as input

def bv_oracle (n, s) : #, qc) :

 # reverse s to fit qiskit's qubit ordering

 s = s[::-1]

 qc = QuantumCircuit(n + 1)

 for q in range(n):

 if s[q] == '0':

 qc.i(q)

 else:

 qc.cx(q, n)

 return qc

n-qubit input version for the Bernstein-Vazirani (BV) Algorithm

def bv_circuit (n, s):

 # We need a circuit with n qubits, plus one auxiliary qubit

 # Also need n classical bits to write the output to

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

301

 bv = QuantumCircuit(n + 1, n)

 # put auxiliary in state |->

 #bv.x(n)

 bv.h(n)

 bv.z(n)

 # Apply Hadamard gates before querying the oracle

 for i in range(n):

 bv.h(i)

 # Apply barrier

 bv.barrier()

 # Apply the inner-product oracle

 bv = bv.compose(bv_oracle (n, s))

 # Apply barrier

 bv.barrier()

 #Apply Hadamard gates after querying the oracle

 for i in range(n):

 bv.h(i)

 # Measurement

 for i in range(n):

 bv.measure(i, i)

 return bv

Main

s = '101' # the hidden binary string

n = len(s) # number of qubits used to represent s

bvc = bv_circuit (n, s)

Run in simulator

backend = Aer.get_backend('qasm_simulator')

results = execute(bvc, backend).result()

answer = results.get_counts()

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

302

display (bvc.draw())

print ('s =',s , ' n =',n , ' Result =', answer)

plot_histogram(answer)

Figure 9-7.  Bernstein-Vazirani circuit and results for hidden bit string 101

Exercise 9.8: Run listing 9-3 in the Quantum Lab for different secret strings of

multiple sizes and permutations. Verify that the results are correct.

Exercise 9.9: How would the oracle circuits look for secret strings 011 and 110? Tip:

Use the Quantum Lab and remember that Qiskit uses little-endian bit ordering (the least

significant bit draws at the top of the circuit).

�Simon’s Algorithm
Simon’s algorithm was introduced in 19973 and was the first quantum algorithm to show

an exponential speed-up versus the best classical solution. As a matter of fact, this work

inspired the notorious Quantum Fourier Transform, which is the groundwork for the

famous Shor's factorization algorithm. Just like the previous algorithms, we are given an

oracle f(x) which maps an input to its output in two ways:

•	 One to one: It maps exactly one output for every input. For example,

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 3

•	 Two to one: It maps two inputs to every output. For example, f(0) = 0,

f(1) = 1, f(2) = 0, f(3) = 1

3 Daniel R. Simon (1997) “On the Power of Quantum Computation” SIAM Journal on Computing,
26(5), 1474–1483, doi:10.1137/S0097539796298637

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

303

The catch is that there is a hidden bit string b where f(x1) = f(x2) given x1 ⊕ x2 = b.

The task is to find the hidden bit string b such that b = x1x2x3… represents a one-to-one

mapping of f(x). Let's take a look at the internals in Figure 9-8.

Figure 9-8.  Quantum circuit for Simon’s
algorithm

1) Two n-qubit registers are initialized.

| ѱ1⟩ = | 0⟩⊗n | 0⟩⊗n

2) Apply a Hadamard to the 1st register:

�2
1

2
0

0 1

�
�� �

��n
x

n
x

.

3) Apply the oracle Qf:

�3
1

2 0 1

� � �
�� �
�n

x

x f x
.

4) Measure the 2nd register:

�4
1

2
� �� � � �x y y x b,

5) Apply the Hadamard to the 1st register:

�5
1

2
1 1

1
0 1

� �� � � �� ��
�

�
��

�� �
�n

x

x z y z
z

.

. .

6) Measure the 1st register:

(−1)x. z = (−1)y. z

Finally, by executing this circuit multiple times and solving x.z = y.z where y = x ⊕ b,

we end up with a system of equations from which the secret string b can be found:

	

b z

b z

b zn

.

.

.

1 0

2 0

0

�
�

�
�

�

�
�
�

�
�
� 	

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

304

Let's take a look at how this works for b = 10:

	 1.	 The two registers are initialized to the zero state | ѱ1⟩ = | 00⟩| 00⟩.

	 2.	 Apply the Hadamard to the first register. This builds all

permutations for 2 qubits. Thus, �2
1

2
00 01 10 11� � � �� � .

	 3.	 Here is the key to the whole thing. The oracle Qf must be defined

for b = 10. To do so follow the following two rules:

	 a.	 Apply CX gates from qubits of the first register to qubits of the second

register. We do it to copy the states of the first register to the second register.

	 b.	 Find the index (i) for the first 1 in (s), then apply n-CX gates from (i) to the

indices of each 1 occurrence in the second register (n is the number of 1’s in

s). Thus for string 10, the oracle looks like this:

	

�3
1

2

00 0 0 0 0 0 0 01 0 0 1 0 0 1

10 0 1 0 0 1 0 11 0 1 1 0 1
�

� � � � � � � � �

� � � � � � � � �

, ,

, , ��

�

�
�
�

�

�
�
�1 	

�3
1

2
00 00 01 11 10 11 11 00� � � �� �

	 4.	 If we measure the 2nd register, we get 50% probabilities for either

00 or 11. If, for example, we measure 11, then �4
1

2
01 10� �� � .

	 5.	 After Hadamard in the 1st register:

 �5
1

2
00 01 10 11 00 01 11 11 00 10� � � � � � � �� � � �� �

.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

305

	 6.	 Finally, measure the 1st register to get | 00⟩ − | 10⟩ with equal

probability. This gives the system of equations
b

b

.

.

00 0

10 0

�
�

�
�
�

 .

	 7.	 Solve the system of equations to obtain b2(1) + b1(0) = 0, b2 = 1,

b1 = 0. Thus b = b2b1 = 10.

Listing 9-4 shows the generalized algorithm for an n-qubit string (b). Its output is

shown in Figure 9-9.

Figure 9-9.  Simon’s algorithm circuit with output for b = 10

Note L isting 9-4 uses the qiskit textbook package which is not a standard
module; it has to be installed separately with the command: pip install
git+https://github.com/qiskit-community/qiskit-textbook.
git#subdirectory=qiskit-textbook-src.

Listing 9-4.  Simon’s algorithm for an n-qubit arbitrary string (b)

from qiskit import *

from qiskit.visualization import *

from qiskit_textbook.tools import simon_oracle

def dotprod(a, b):

 temp_sum = 0

 for i in range(len(a)):

 temp_sum += int(a[i])*int(b[i])

 return temp_sum % 2

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src
https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src

306

Main function

b = '10'

n = len(b)

1st register

x = QuantumRegister(n, 'x')

2nd register

y = QuantumRegister(n, 'y')

measurement

c = ClassicalRegister (n)

qc = QuantumCircuit(x,y, c)

H in 1st register

qc.h(x)

qc.barrier()

qc = qc.compose(simon_oracle(b))

qc.barrier()

H in 1st register

qc.h(x)

Measure 1st register

qc.measure(x, c)

display(qc.draw())

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend=backend)

counts = job.result().get_counts()

display(plot_histogram(counts))

for code in counts:

 �print("(" + str(b) + " dot " + str(code) + ")%2 = "

+ str(dotprod(b, code)))

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

307

Exercise 9.10: Run Listing 9-4 in the Quantum Lab and construct Simon oracles for

the three bit strings 110, 101.

�Rules for Simon Oracle Construction
Try to keep these two rules handy when building a Simon oracle. They are the key to the

whole algorithm:

	 1.	 Copy the states of the first register to the second register. That

is, apply CX gates from all qubits of the first register to the

corresponding qubit of the second register.

	 2.	 Find the index (i) of the first 1 in (s), then apply n-CX gates from

(i) to the indices of each occurrence in the second register where n

is the number of 1’s in the string. This is equivalent to | x⟩ → | s. x⟩ if

qubit(i) = = 1.

From these rules, we can see that the total number of CX gates equals the number of

qubits in the string plus the number of 1s. Let's take a closer look. Also, note that rule one

applies to all permutations.

�Dissecting Simon’s Oracle
In this section we’ll practice building Simon oracles for 3-bit strings: Table 9-2 shows

some of the permutations, along with the CX gates required by the oracle. Remember

that, Qiskit uses little-endian bit ordering; the zero-index starts at the right of the string

(bottom of the circuit). Also, remember that all permutations start with the sequence

CX(0,0) CX(1,1) CX(2,2).

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

308

Table 9-2.  Simon oracles for a 3-bit string

000

001 CX(0,0)

111 CX(1,1)CX(1,2)CX(1,3)

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

309

Exercise 9.11: Complete the gate sequence for the 3-bit permutations of

Simon’s oracle.

	

000 0 0 1 1 2 2

001 0 0 1 1 2 2 0 0

010

CX , CX , CX ,

CX , CX , CX , CX ,

� � � � � �
� � � � � � � �

CCX , CX , CX , CX ,
CX , CX

0 0 1 1 2 2 1 1

011

100

101

110

111 0 0 1
� � � � � � � �

� �?

?

?

?

,, CX , CX CX , CX ,1 2 2 0 0 0 1 0 2� � � � � � � � � �. 	

Exercise 9.12: Write a python function to build a Simon oracle for any bit string.

Test your function in the Quantum Lab to visualize oracles and verify they are correct.

Tip: Use the following skeleton which already implements rule 1 (add rule 2). You can

compare your function with the official Qiskit’s simon_oracle(b) from package qiskit_

textbook.tools.

n-qubit version for Simon's oracle

def oracle (s):

 # reverse b for qiskit's qubit ordering

 s = s[::-1]

 n = len(s)

 qc = QuantumCircuit(n * 2)

 # all 0s, so just exit

 if '1' not in s:

 return qc

 # index of first non-zero bit in s

 i = s.find('1')

 for q in range(n):

 # Rule1: Copy; |x>|0> -> |x>|x>

 qc.cx(q, q+n)

 # Add Rule 2: |x> -> |s.x> if q(i) == 1

 # ...

 return qc

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

310

�Extended Practice Exercises
9.13 Select the involutory gates in the following list (Select 3): S, T, X, Y, H

(Tip: Involutory gates equal their own inverse M = M-1).

9.14 T-gate is a phase gate with what value of the phase?

9.15 Which of the following code snippets for the following quantum circuit will put

the given qubits in an equiprobable state (equal probability of being in all states).

qc=QuantumCircuit(2)

a) qc.h(0) qc.cx(0,1) b) qc.h(0) qc.h(1) c) qc.x(0) qc.h0)

9.16 Which coding snippet will create a quantum circuit with three quantum bits and

three classical bits?

a) QuantumCircuit(3,3) b) QuantumCircuit(3) c) QuantumCircuit([3,3])

9.17 Which of the following multi qubit-gate represents the controlled-z gate?

9.18 In the following quantum circuit, which statement should be added in the

missing code to get the desired state 1/sqrt(2) [1 0 0 0 0 0 0 1] (select 2).

qc = QuantumCircuit(3)

qc.h(0)

qc.cx([0,1],[1,2])

backend = BasicAer.get_backend('statevector_simulator')

job = execute(qc, backend, shots=1024)

result = job.result()

Missing code

a) result.get_statevector(qc)

b) sv = StateVector.from_label('000')

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

311

 sv.evolve(qc).draw()

c) result.get_state(qc)

d) result.get_stateevolve(qc)

9.19 Which option will implement an operator that represents a single qubit Z-gate?

a) op = Operator(([1,0,0,1]])

b) op = Operator(([j,0,0,-j]])

c) qc = QuantumCircuit(2)

 qc.z(0)

 op = Operator(qc)

9.20 What is the output of the result variable in the following snippet?

q = QuantumRegister(1,'q')

qc = QuantumCircuit(q)

qc.y(0)

backend_unitary = BasicAer.get_backend('unitary_simulator')

result = execute(qc,backend_unitary).result().get_unitary(decimals=3)

a) ([0, -i],[i,0])

b) ([0, -i])

c) [0, -0.70i],[0.70i,0])

The algorithms in this section constitute the foundation upon which the more

powerful Grover search and Shor factorization algorithms are built. Let's take a look at

these remarkable creations in the next chapter.

Chapter 9 Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms

313

CHAPTER 10

Advanced Algorithms:
Unstructured Search
and Integer Factorization
with Grover and Shor
This chapter brings two algorithms that have generated excitement about the

possibilities of practical quantum computation:

•	 Grover’s search: This is an unstructured quantum search algorithm

created by Lov Grover which is capable of finding an input with high

probability using a black box function or oracle. It can find an item in

O N� � steps as opposed to a classical average of N/2 steps.

•	 Shor’s integer factorization: The notorious quantum factorization

that experts say could bring current asymmetric cryptography to

its knees. Shor can factorize integers in approximately log(n3) steps

as opposed to the fastest classical algorithm, the Number Field

Sieve at exp log loglogk n n�
�

�
�

�

�
� � �

�

�
��

�

�
��

1

3
2

3 .

Let’s get started.

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_10

https://doi.org/10.1007/978-1-4842-9991-3_10

314

�Quantum Unstructured Search
Grover’s algorithm is an unstructured search quantum procedure to find an entry of

n bits on a digital haystack of N elements. As shown in Figure 10-1, Grover’s quantum

algorithm provides significant speedup at O N� � steps. It may not seem much

compared to the classical solution, but when we are talking millions of entries, then the

square root of 106 is much faster than 106.

Figure 10-1.  Unstructured search time complexities

If x is the element we are looking for, then Grover’s algorithm can be described by the

following pseudo code:

	 1.	 Prepare the input given f: {0, 1, … , N-1} → {0,1}. Note that the

size of the input is 2n where n is the number of bits, and N is the

number of steps or size of the haystack. The ultimate goal being

find x such that f(x) = 1.

	 2.	 Apply a basis superposition to all qubits in the input.

	 3.	 Perform a phase inversion on the input qubits.

	 4.	 Perform an inversion about the mean on the input.

	 5.	 Repeat steps 3 and 4 at least N times. There is a high probability

that x will be found at this point.

Let’s take a closer look at the critical phase inversion and inversion about the

mean steps.

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

315

�Phase Inversion
This is the first step in the algorithm and must be performed in a superposition of all

states in the haystack. If the element we are looking for is x’ where f(x’) = 1 then, the

superposition can be expressed as ∑α∣x⟩. Ultimately, what phase inversion does is:

	
�

� �
�

�
�

�
�

�
x Phase Inversion

x if x x

x Otherwise
 � ����������������

��
�
�

�� 	

That is, if a given x is not the element we are looking for (x ≠x’), then it leaves the

superposition intact; otherwise it inverts the phase (the sign of the complex coefficient α

of the qubit – see Figure 10-2 for a pictorial representation).

Figure 10-2.  Pictorial representation of phase inversion

This is the first step in Grover’s algorithm; we’ll see how phase inversion helps in

finding the element we are looking for, but for now let’s look at the second step: inversion

about the mean.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

316

�Inversion About the Mean
Given the previous superposition ∑α∣x⟩, we define the mean μ, as the average value of

the amplitudes:

	
� �

�
�

�

�
x

N

x

N
0

1

	

Now we must flip the amplitudes about this mean. That is:

	 � � �x x� �� �2 	

	 � �� �� �� � �x xx x2 	

To better understand this, Figure 10-3 shows a pictorial representation of inversion

about the mean.

Figure 10-3.  Graphical representation of inversion about the mean

Figure 10-3 shows the superimposed state of the qubits as defined by the wave

function Ψ. The mean or μ of this function is shown as the horizontal line in the chart.

What inversion about the mean does is mirrors the wave function Ψ over the mean μ

resulting in a mirror wave (shown with a dotted line). This is equivalent to rotating the

waves over the axis μ. Let’s make sense of all this by putting all steps together to see them

in action.

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

317

Figure 10-4.  Single Grover’s iteration

In Figure 10-4:

•	 The superposition of all qubits puts all amplitudes at
1

N
.

•	 Next, a phase inversion puts the amplitude for x’ at −
1

N
. Note that

this has the effect of lowering slightly the value of the mean μ, as

shown by the dotted line in Figure 10-4 step 2.

•	 After the inversion about the mean, the mean amplitude drops a little

bit, but x’ goes way high, as much as
2

N
 above the mean μ.

•	 If we repeat this sequence, the amplitude of x’ increases by about

2

N
 until that, in about N steps the amplitude becomes

1

2
.

•	 At this point, if we measure our qubits, the probability of finding x’

(the element we are looking for), as defined by quantum mechanics,

is the square of the amplitude. That is ½.

•	 Thus, we are done. In roughly N steps, we have found the marked

element x’.

Now, let’s put all this together in a quantum circuit and corresponding code

implementation.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

318

�Practical Implementation
We’ll take a look at a circuit for Grover’s algorithm in IBM Quantum. The circuit

demonstrates a single iteration of the algorithm using two qubits as shown in

Figure 10-5.

Figure 10-5.  Quantum circuit for Grover’s algorithm with 2 qubits and A = 01

A Python script that creates the circuit in Figure 10-5 is shown in Listing 10-1.

Listing 10-1.  Python script for circuit in Figure 10-5

import sys,time,math

import numpy as np

from qiskit import *

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

Set the input bits to search for

def input_phase (circuit, qubits):

 # Uncomment for A = 00

 # Comment for A = 11

 #circuit.s(qubits[0])

 #circuit.s(qubits[1])

 return

circuit: Grover 2-qubit circuit

qubits: Array of 2 qubits

def invert_over_the_mean (circuit, qubits):

 for i in range (2):

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

319

 circuit.h(qubits[i])

 circuit.x(qubits[i])

 circuit.h(qubits[1])

 circuit.cx(qubits[0], qubits[1])

 circuit.h(qubits[1])

 for i in range (2):

 circuit.x(qubits[i])

 circuit.h(qubits[i])

def invert_phase (circuit, qubits):

 # Oracle

 circuit.h(qubits[1])

 circuit.cx(qubits[0], qubits[1])

 circuit.h(qubits[1])

def main():

 # Create qubits/registers

 size = 2

 q = QuantumRegister(size, 'q')

 c = ClassicalRegister(size, 'c')

 # Quantum circuit

 grover = QuantumCircuit(q, c, name = 'grover')

 # loops = sqrt(2^n) * PI/4

 #loops = math.floor(math.sqrt(2**size) * (math.pi/4))

 # 1. put all qubits in superposition

 for i in range (size):

 grover.h(q[i])

 # Set the input

 input_phase(grover, q)

 # 2. Phase inversion

 invert_phase(grover, q)

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

320

 input_phase(grover, q)

 # 3. Invert over the mean

 invert_over_the_mean (grover, q)

 # measure

 for i in range (size):

 grover.measure(q[i], c[i])

 circuits = [grover]

 # Execute the quantum circuits on the simulator

 backend = Aer.get_backend("qasm_simulator")

 result = execute(circuits, backend=backend).result()

 counts = result.get_counts()

 print("Counts:" + str(counts))

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

•	 Listing 10-1 performs a single interaction of Grover’s algorithm for

a 2 bit input using two qubits. Even though the pseudo code in the

previous section states that the total number of iterations is given by

roughly N steps, the inversion about the mean requires this value

to be multiplied by π/4 and its floor extracted (see the proof next to

Figure 10-8). Therefore, we end up with IT floor N� ��
�
�

�
�
�

�
4

 where

N = 2bits. Thus, for two bits we get IT floor floor� ��
�
�

�
�
� � � � �4

4
1 57 1

�
. .

•	 The script begins by creating a quantum circuit with 2 qubits and two

classical registers to store their measurements.

•	 Next, all qubits are put in superposition using the Hadamard gate.

•	 Before the iteration, the input is prepared using the phase gate (S)

and the rules in Table 10-1.

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

321

Table 10-1.  Input preparation rules for Listing 10-1

Input (A) Gates/qubits

00 S(01)

10 S(0)

01 S(1)

11 None

•	 Next, perform a phase inversion followed by an inversion over the

mean on the input qubits corresponding to a single iteration of the

algorithm.

•	 Finally, measure the results and execute the circuit in the local or

remote simulator. Print the result counts.

�Generalized Circuit
In broad terms, the circuit in Figure 10-5 can be generalized to any number of input

qubits as shown in Figure 10-6.

Figure 10-6.  Generalization of Grover’s algorithm for an arbitrary number
of qubits

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

322

•	 The first box in Figure 10-6 puts all qubits in superposition by

applying the Hadamard gate to the input of size n. This is the

initialization step.

•	 Next, the phase inversion circuit (Uf) receives the superimposed

input Ψ = ∑α ∣ x⟩ and a phase input (minus state). This has the

desired effect of putting the phase exactly where we want it. Thus, the

output becomes ∑α (−1)f(x) ∣ x⟩. But how can this be achieved? The

answer is that, by applying an exclusive OR on the minus state input,

we obtain the desired effect ∣b⟩ → ∣ f(x) ⊕ b⟩ as shown in Figure 10-7.

The third row of the XOR truth table between f(x) and b (the right side

of Figure 10-7) shows the phase inversion effect.

Figure 10-7.  Phase inversion circuit

•	 Finally, as shown in Figure 10-3, inversion about the mean is the

same as doing the reflection about � � �1/ N x
x

. To better

visualize this, the superimposed state Ψ and the mean μ can be

represented as vectors over a 2D space as shown in Figure 10-8. To

reflect Ψ, create an orthogonal vector to μ, then project Ψ over the

new quadrant at the same angle θ.

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

323

Figure 10-8.  Inversion over the mean circuit

The proof that inversion over the mean transforms ∑αx ∣ x⟩ → ∑ (2μ − αx) ∣ x⟩

involves three steps, as shown by the circuit in Figure 10-8.

	 1.	 Transform |μ> to the all zeros vector ∣0, …, 0⟩. This is achieved by

applying the Hadamard gate to the input.

	 2.	 Reflect about the all zeros vector ∣0, …, 0⟩. This can be done by

multiplying by the sparse matrix

1 0

0 1

0 1

� �
�

� � � �
�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

.

	 3.	 Transform ∣0, …, 0⟩ back to |μ> by applying the Hadamard

again. Thus:

	

H H Hn n n� � ��

�

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�

�
�
�

�

�

�
�
�
�

1 0

0 1

0 1

2 0

0 0

� �
�

� � � �
�

�
� � �

�
II H H H H I Hn n n n n

�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

�� � � � �

2 0

0 0

�
� � �

�

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

324

	

�
�

�

�
�
�

�

�

�
�
�
� �

�

�

�

�

�
�
�
�
�

�
2 2

2 2

2
1 2

2
2

1

/ /

/ /

/

/

N N

N N

I
N

N

N
N

�
� � �

�

�

� � �

�
��

�
�
�
�
� 	

(1)

Note that H I H I and H
N

xn n� � � �
2

. Finally, applying matrix (1) to the state

Ψ = αx ∣ x⟩ yields:

	

2
1 2

2
2

1

0

1

N
N

N
N

x

N

�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�

�

�

� � �

�

�

�

/

/

�

�

� ��

� � �

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

� � � �
�

�
2 2 2 2/ /N where Ny x x y� � � � ��

	

So this is Grover’s algorithm for unstructured search. It is fast, powerful, and soon to

be hard at work on the data center cranking up all kinds of database searches. Given its

significant performance boost over its classical cousin, chances are that in a few years,

when quantum computers become more business friendly, most web searches will be

performed by this quantum powerhouse. Before we finish it is worth noting, that by the

time of this writing, a useful implementation or experiment (one that can find a real

thing) does not exist for IBM Quantum. Hopefully, this will change in the future, but for

now, Grover's algorithm lives in the theoretical side of things. In the next section, we

close strongly by looking at the famous Shor algorithm for integer factorization.

�Integer Factorization with Shor’s Algorithm
The game of cat and mouse between cryptography and crypto-analysis rages on: the

first, devising new ways to encrypt our everyday data; the latter probing for weaknesses,

always looking for a crack to bring it down. Current asymmetric cryptography relies

on the well-known difficulty of factoring very large primes (in the hundreds of digits

range). This section looks at the inner workings of Shor’s algorithm, a method that

gives exponential speedup for integer factorization using a quantum computer. This is

followed by an implementation using a library called ProjectQ. Next, we simulate for

sample integers and evaluate the results. Finally we look at current and future directions

of integer factorization in quantum systems. Let’s get started.

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

325

�Challenging Asymmetric Cryptography
with Quantum Factorization
In the pivotal paper “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer,”1 Peter Shor proposed a quantum factorization

method using a principle known to mathematicians for a long time: find the period (also

known as order) of an element a in the multiplicative group modulo N; that is, the least

positive integer such that:

	 x Nr � � �1 mod 	

where N is the number to factor and r is the period of x modulo N.

Tip  Large integer factorization is a problem that has puzzled mathematicians for
millennia. In 1976, G. L. Miller postulated that using randomization, factorization
can be reduced to finding the period of an element A modulo N, thus greatly
simplifying this puzzle. This is the basic idea behind Shor’s algorithm.

Shor divided his algorithm in three stages, two of which are performed by a classical

computer in polynomial time:

	 1.	 Input preparation: Done in a classical computer in polynomial

time log (n).

	 2.	 Find the period r of the element a such that ar ≡ 1 (mod N) via a

quantum circuit. According to Shor, this takes O((log n)2(log

log n)(log log log n)) steps on a quantum computer.

	 3.	 Post processing: Done in a classical computer in polynomial time

log (n).

But why is there so much excitement about this method? Compare its time

complexity (Big-O) against the current classical champ: The Number Field Sieve as

shown in Table 10-2 (plus another fan favorite, the venerable quadratic sieve).

1 Peter Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

326

exp log log log
1/3

2

3c n n� � � ��
�
�

�
�
�

Table 10-2.  Time complexities for common factorization algorithms

Algorithm Time complexity

Shor’s (log n)2(log log n) (log log log n)

Number Field Sieve

Quadratic Sieve exp ln ln lnn n� �

Incredibly, Shor’s algorithm has a polynomial time complexity, far superior to the

exponential time by the Number Field Sieve, the fastest known method for factorization

in a classical computer. As a matter of fact, experts have estimated that Shor’s could

factor a 200+ digit integer in a matter of minutes. Such a feat would rock the foundation

of current asymmetric cryptography used to generate the encryption keys for all of our

web communications.

Tip  Symmetric cryptography is highly resistant to quantum computation and thus
to Shor’s algorithm.

But don’t panic yet; a practical implementation in a real quantum computer is still a

long way off. Nevertheless, the algorithm can be simulated in a classical system using the

slick Python library: Project Q. We’ll run Project Q’s implementation in a further section,

but next let’s see how period finding can solve the factorization problem efficiently.

�Period Finding
Period finding is the basic building block of Shor’s algorithm. By using modular

arithmetic, the problem is reduced to finding the period (r) of the function

f(x) = ax mod N (see Figure 10-9).

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

327

Figure 10-9.  Periodic function f(x)

Figure 10-9 gives an example of a periodic function f(x) with period r = 4. For the

algorithm to work, f(x) must meet three conditions:

	 1.	 f(x) is one-to-one on each period, that is, the values of f(x) must

not repeat. In Figure 10-9 these values are represented by the

vertices of each line per period.

	 2.	 For any given M or the number of periods, r must divide M. For

example, given M = 100 and the period r = 4 M/r = 25.

	 3.	 M divided by r must be greater than r. That is M > r2.

Shor’s algorithm transforms f(x) into a quantum circuit Uf where the inputs are

in superposition. If we measure the second register in Uf, we may see values for

the amplitudes
x

M

x x
�

�

� �
0

1

 as shown in the amplitude chart of Figure 10-9. Here the

amplitudes are exactly 4 units apart which is the period we are looking for. In this

particular case, we get periodic superpositions with r = 4. But what do we do with this

periodic superposition? Shor relies on another trick: Fourier sampling or Quantum

Fourier Transform.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

328

�Fourier Sampling

Fourier sampling is a data manipulation process that has the following properties:

•	 It allows for input shifting without changing the output distribution.

•	 This is good because now we have a periodic superposition where

the non-zero amplitudes are the multiples of the period (see

Figure 10-10).

Figure 10-10.  Fourier sampling showing periodic superposition

But what is the output of Fourier sampling? And how does it help? The answer is

that its output is a random multiple of M/r. In this case, given M= 100 and r = 4, we get a

random multiple of 100/4 = 25. This is advantageous for our goal. Let’s see how.

�Feed the Fourier Sampling Results to Euclid Greatest
Common Divisor

If we were to run Fourier sampling multiple times, we will get random multiples of M/r.

For example, we may get 50, 75, 25, etc. Now, if we apply Euclid’s Greatest Common

Divisor (gcd) to our random outputs, then viola: by dividing M by the gcd, we get the

period r. Thus:

r = M/gcd(50, 75, …) = 100 /25 = 4

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

329

So this is the outline for period finding via a quantum circuit. To understand how

this method can find a factor efficiently, let’s run through an example by factoring the

number N = 21. Our task relies in two very efficient operations:

•	 Modular arithmetic: a = b (mod N). For example, 3 = 15 (mod 12).

•	 Greatest common divisor gcd(a, b). For example, gcd(15, 21) = 3.

Thus for N = 21, we need to solve the equation x2 ≡ 1 (mod 21). That is, find the non-

trivial square root x such that

•	 N divides (x +1) (x -1).

•	 N does not divide (x ± 1).

•	 Finally, recover a prime factor by applying gcd(N, x+1).

To find the non-trivial factor for N = 21, pick a random x. For example, given N = 21,

choose x = 2, thus:

20 ≡ 1 (mod 21)
21 ≡ 2 (mod 21)
22 ≡ 4 (mod 21)
23 ≡ 8 (mod 21)
24 ≡ 16 (mod 21)
25 ≡ 11 (mod 21)
26 ≡ 1 (mod 21). Got the period r = 6.

In this case, 26 = (23)2. Thus, 23 = 8 is a non-trivial factor such that 21 divides (8 + 1)

(8 -1). Finally, we recover a factor with the greatest common divisor gcd (N, x+1) = gcd

(21, 9) = 3. In general terms, pick an x at random, then loop through x0, x1,…, xr ≡ mod N.

if we are lucky then r is even, that is, (xr/2)2 ≡ 1 (mod N). And thus we have a non-trivial

square root of 1 mod N.

Tip  It has been proven that, the probability that we get lucky, that is, r is even for
x2 ≡ 1 (mod N) is ½. If we are unlucky, on the other hand, then we must repeat the
procedure all over again. However, given the high probability of success, this would
be insignificant in the great scheme of things.

Now, let’s run the algorithm using the slick Python library ProjectQ.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

330

�Shor’s Algorithm by ProjectQ
ProjectQ is an open source platform for quantum computing that implements Shor’s

algorithm using the circuit proposed by Stéphane Beauregard2. This circuit uses 2n + 3

qubits where n is the number of bits of the number N to factor. Beauregard’s method is

divided into the following steps:

	 1.	 If N is even, return the factor 2.

	 2.	 Classically determine if N = pq for p ≥ 1 and q ≥ 2, and if so

return the factor p (in a classical computer this can be done in

polynomial time).

	 3.	 Choose a random number a, such that 1 < a ≤ N – 1. Using Euclid’s

greatest common divisor, determine if gcd (a, N) > 1. If so, return

the factor gcd(a,N).

	 4.	 Use the order-finding quantum circuit to find the order r of

a modulo N. In a quantum computer, this step is done in

polynomial time.

	 5.	 If r is odd or r is even but ar/2 = -1 (mod N), then go to step (3).

Otherwise, compute gcd(ar/2 - 1 , N) and gcd(ar/2 + 1 , N). Test to

see if one of these is a non-trivial factor of N, and return the factor

if so (in a classical computer this can be done in polynomial time).

2 Stéphane Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits. Département de Physique
et, Université de Montréal

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

331

Beauregard implements period finding by using a series of controlled additions

and multiplications in Fourier space to solve f(x) = ax(mod N) → ar ≡ 1 mod N (see

Figure 10-11):

•	 A controlled multiplier Ua maps ∣x⟩ → ∣ ax (mod N)⟩ where

•	 a is a classical relative prime to use as the base for ax (mod N).

•	 x is the quantum register.

•	 c is the register of control qubits such that Ua = ax (mod N) if c =1,

and x otherwise.

•	 The controller multiplier Ua is in turn implemented as a series of

doubly controlled modular adder gates such that

•	 If both control qubits c1 = c2 = 1, the output is

f (x) = ∣φ(a + b mod N)⟩. That is, a + b (mod N) in Fourier space.

Note that this gate adds two numbers: a relative prime (a) and a

quantum number (b).

•	 If either control qubit (c1, c2) is in state |0> then f(x) = ∣φ(b)⟩.

Figure 10-11.  Beauregard quantum circuit for period finding

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

332

•	 The doubly controlled modular adder gate is in turn built on top of the

quantum addition circuit by Draper.3 This circuit implements addition

of a classical value (a) to the quantum value (b) in Fourier space.

�Factorization with ProjectQ

Let’s install ProjectQ and put the algorithm to the test. The first thing to do is to use the

Python package manager to download and install ProjectQ (note that I am using Windows

for the sake of simplicity. Linux users should be able to follow the same procedure):

C:\> pip install projectq

Next, grab the shor.py script from Project Q’s examples folder4 or the book source

under Workspace\Ch10\p10-shor.py. Now, run the script and enter a number to factor

(see Listing 10-2).

Listing 10-2.  Shor’s algorithm by ProjectQ in action. Keep in mind that the odds

of success are not perfect; therefore, you may need to run a few times to obtain

the correct factors

C:\>python shor.py

Number to factor: 21

Factoring N = 21:

Factors found : 7 * 3 = 21

Gate class counts:

 AllocateQubitGate : 166

 CCR : 1467

 CR : 7180

 CSwapGate : 50

 CXGate : 200

 DeallocateQubitGate : 166

 HGate : 2600

3 T. Draper (2000), Addition on a quantum computer, quant-ph/0008033. Available online at
https://arxiv.org/abs/quant-ph/0008033
4 ProjectQ - An open source software framework for quantum computing. Available online at
https://github.com/ProjectQ-Framework/ProjectQ

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

https://arxiv.org/abs/quant-ph/0008033
https://github.com/ProjectQ-Framework/ProjectQ

333

 MeasureGate : 11

 R : 608

 XGate : 206

Gate counts:

 Allocate : 166

 CCR(0.098174770425) : 18

 CCR(0.196349540849) : 30

 CCR(0.392699081699) : 70

 CCR(0.490873852124) : 18

 CCR(0.785398163397) : 80

 CCR(0.981747704246) : 38

 CCR(1.079922474671) : 20

 CCR(1.178097245096) : 16

 ...

 R(5.252350217719) : 1

 R(5.301437602932) : 1

 R(5.497787143782) : 1

 X : 206

Max. width (number of qubits) : 13.

--- 5.834410190582275 seconds ---

For N = 21, the script dumps a set of very helpful statistics such as

•	 The number of qubits used. Given N = 21 we need 5 bits, thus total-

qubits = 2 * 5 + 3 = 13.

•	 The total number of gates used by type: In this case, doubly

controlled CCR = 1467, CR = 7180, CSwap = 50, CX = 200, R = 608,

X = 206, and others, for a grand total of 12646 quantum gates.

ProjectQ implements quantum period finding using Beauregard algorithm as shown

in Listing 10-3:

•	 The run_shor function takes three arguments:

•	 The quantum engine or simulator provided by project Q plus

•	 N: the number to factor

•	 a: The relative prime to use as a base for ax mod N

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

334

•	 The function then loops from a = 0 to a = ln(N) with the quantum

input register x in superposition; it then performs the quantum

circuit for f(a) = ax mod N as shown in Figure 10-11.

•	 Next, it performs Fourier sampling on the x register conditioned on

previous outcomes and performs measurements.

•	 Finally, it sums the measured values into a number in range [0,1]. It

then uses continued fraction expansion to return the denominator or

potential period (r).

Listing 10-3.  ProjectQ period finding quantum subroutine

def run_shor(eng, N, a):

 n = int(math.ceil(math.log(N, 2)))

 x = eng.allocate_qureg(n)

 X | x[0]

 measurements = [0] * (2 * n) # will hold the 2n measurement results

 ctrl_qubit = eng.allocate_qubit()

 for k in range(2 * n):

 current_a = pow(a, 1 << (2 * n - 1 - k), N)

 # one iteration of 1-qubit QPE

 H | ctrl_qubit

 with Control(eng, ctrl_qubit):

 MultiplyByConstantModN(current_a, N) | x

 # perform inverse QFT --> Rotations conditioned on previous outcomes

 for i in range(k):

 if measurements[i]:

 R(-math.pi/(1 << (k - i))) | ctrl_qubit

 H | ctrl_qubit

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

335

 # and measure

 All(Measure) | ctrl_qubit

 eng.flush()

 measurements[k] = int(ctrl_qubit)

 if measurements[k]:

 X | ctrl_qubit

 All(Measure) | x

 # turn the measured values into a number in [0,1)

 y = sum([(measurements[2 * n - 1 - i]*1. / (1 << (i + 1)))

 for i in range(2 * n)])

 # continued fraction expansion to get the period

 r = Fraction(y).limit_denominator(N-1).denominator

 # return the (potential) period

 return r

The next section compiles a set of factorization results for various values of N.

�Simulation Results

ProjectQ’s period finding subroutine is a simulation of a quantum circuit on a classical

computer so it is not practical to use it to factorize large numbers. As a matter of fact,

it is not capable to factor numbers larger than 4 digits in a reasonable time on a home

PC. Table 10-3 shows a set of results for various values of N gathered from my laptop up

to 2491.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

336

Table 10-3.  Factorization results for various values of N

Number (N) Qubits Time (s) Memory (MB) Quantum gate counts

15 11 2.44 50 CCR =792

CR =3186

CSwap = 32

CX = 128

H = 1408

R =320

X = 130

Measure = 9

105 17 27.74 200 CCR =3735

CR =25062

CSwap = 98

CX = 392

H = 6666

R =1568

X = 393

Measure = 15

1150 25 17542.12 (4.8h) 500 CCR =15366

CR =139382

CSwap = 242

CX = 968

H = 24222

R =5829

X = 981

Measure = 23

2491 27 246164.74

(68.3h)

2048 CCR = 20601

CR = 194670

CSwap = 288

CX = 1152

H = 31126

R =7509

X = 1166

Measure = 25

CHAPTER 10� �ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

337

Factoring the 4-digit number 2491 took more than 68 hours on a 64 bit Windows 7

PC with an Intel® Core i-5 CPU @ 2.6 GHz with 16 GB of RAM. I tried to go a bit higher by

attempting to factorize N = 8122 but gave up after 1 week. All in all, these results show

that the algorithm can be simulated successfully for small numbers of N; however, it

needs to be implemented in a real quantum computer to test its real power.

In this chapter, you have seen two algorithms that have generated excitement about

the possibilities of practical quantum computation: Grover’s algorithm, an unstructured

quantum search method capable of finding inputs at an average of square root of N

steps. This is much faster than the best classical solution at an average of N/2 steps.

Expect all web searches to be performed by Grover’s algorithm in the future.

Shor's algorithm for factorization in a quantum computer which experts say could

bring current asymmetric cryptography to its knees. Shor’s, arguably the most famous

quantum algorithm out there, is a prime example of the power of quantum computation

by providing exponential speedups over the best classical solution.

CHAPTER 10 ADVANCED ALGORITHMS: UNSTRUCTURED SEARCH AND INTEGER FACTORIZATION
WITH GROVER AND SHOR

339

CHAPTER 11

Quantum in the Real
World: Advanced
Chemistry and Protein
Folding
My physics teacher used to say that quantum computers are notoriously bad calculators,

and then he’ll quote Richard Feynman to emphasize that these machines were

conceived with atomic principles in mind; therefore, they should tackle problems at

the atomic scale. Nowhere else is this more tangible than in the fields of chemistry

and medicine where quantum is already working hard to make a difference. In this

chapter, we showcase two amazing real-life experiments that illustrate how the power of

quantum computation can make a difference in the real world.

�The Significance of Eigenvalues
Eigenvalues take center stage in this context. An eigenvalue is a special scalar associated

with a linear system of equations (matrix equation) extremely important in physics and

engineering. The eigenvalue λ (lambda) is calculated from a transformation matrix (A)

and vector (v) using the equation:

	 Av v� � �� 11 1. 	

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3_11

https://doi.org/10.1007/978-1-4842-9991-3_11

340

The vector v is known as the eigenvector; now solving the equation for λ, we obtain:

	 A I v�� � � � �� 0 11 2. 	

where (I) is the identity matrix; note that it is mathematically legal to multiply the

scalar λ by the identity matrix so it can be subtracted from matrix A. Finally, we can

obtain λ by calculating the matrix determinant of:

	 det .A I�� � � � �� 0 11 3 	

Here the eigenvector v cannot be zero; therefore, the determinant must be zero for

equation 11.2 to hold.

Tip  Eigenvalues are also known as characteristic or latent roots and are heavily
used in stability analysis, rotating body physics, oscillations of vibrating systems,
molecular chemistry, graphics transformations, and many others.

Look at Figure 11-1 to understand this better; λ acts as a scalar of the transformation

Av. Note that the direction could be opposite; however, the angle of the vector remains

the same.

Figure 11-1.  Pictorial description on an eigenvalue along with a shear mapping
of the Mona Lisa where the red vector is an eigenvector of the transformation

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

341

Eigenvalues are important in

•	 Physics: They are used to measure the energy of a particle or the

value of a measurable quantity associated with the wave function.

•	 Chemical engineering: They are used to solve differential equations

and to analyze the stability of a system.

•	 Data science: They are used to extract the most important features of

a dataset by identifying the directions of maximum variation in the

data. These directions can be represented as eigenvectors, and the

amount of variation can be represented as the eigenvalue.

Just to name a few, in our case, eigenvalues will be used to find ground states of a

chemical element and in a protein folding experiment. Let’s practice this important

concept with some easy exercises.

Exercise 11.1: Find the eigenvalues and eigenvectors of the Pauli Matrix X �
�

�
�

�

�
�

0 1

1 0
.

Tip: Use Equation 11.3 to find the 2 eigenvalues, and then use Equation 11.1 to find the

eigenvectors.

	
det , det ,

0 1

1 0

0

0
0

1

1
0

�

�
�

�

�
� �

�

�
�

�

�
�

�

�
�

�

�
� �

�
�

�

�
�

�

�
�

�

�
�

�

�
� �

�
�

�
�

� 22 1 1� � �,�
	

	
for

x

y

x

y

y

x

x

y
v� �

�

�
�

�

�
�
�

�
�

�

�
� �

�

�
�

�

�
�

�

�
�

�

�
� �

�

�
�

�

�
� �1

0 1

1 0
1

1

1
, , ,

��

�
�
�

�
� 	

	
for

x

y

x

y

y

x

x

y
� � �

�

�
�

�

�
�
�

�
�

�

�
� � �

�

�
�

�

�
�

�

�
�

�

�
� �

�
�
�

�
�

�

�
�1

0 1

1 0
1, , , vv2

1

1
�

�
�

�
�

�

�
� 	

Try these on your own. As always, answers are provided in the appendix.

Exercise 11.2: Find the eigenvalues and eigenvectors of the Pauli Matrix Y
i

i
�

��

�
�

�

�
�

0

0
.

Exercise 11.3: Find the eigenvalues and eigenvectors of the Pauli Matrix Z �
�

�

�
�

�

�
�

1 0

0 1
.

What conclusion can you draw from the eigenvalues obtained from the XYZ Pauli

matrices?

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

342

�Eigenvalues in a Quantum Computer
To find eigenvalues in a quantum computer, we must use the Variational Quantum

Eigensolver (VQE). This algorithm is made of the following components (see

Figure 11-2):

•	 Ansatz: From the German for “guess,” this is a parameterized

quantum circuit for the wave function. As its name suggests, it is a

conjecture where the parameters are a set of theta angles.

•	 Optimizer: This is a classical solver that takes the expected value

of the wave function 〈Ψ(θ)| H| Ψ(θ)〉, evaluates its Hamiltonian (H),

and adjusts the set of parameters θ to minimize the energy of the

Hamiltonian.

Figure 11-2.  Variational Quantum Eigensolver component layout

This process repeats for a number of cycles (defined by the optimizer) until a desired

minimum is reached. This would be the eigenvalue we are looking for.

Tip I n physics, a Hamiltonian is the total energy of a system, that is its kinetic
energy (that of motion) and its potential energy (that of position).

But why use a Quantum computer if there are many classical solvers to do the job. Is

there an advantage by using Quantum?

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

343

�Why Use a Quantum Computer
Eigenvalues can be easily calculated in a classical computer; however, as the size of

the transformation matrix (A) increases, any classical machine will run out of memory.

Consider the estimated execution metrics for the classical Python and VQE solvers used

to find the eigenvalues for a weighted lattice (see Table 11-1).

Table 11-1.  Execution metrics for the ground state calculation of the Kagome

lattice using the Python's eigensolver vs. the VQE simulated and in-hardware1

Lattice
dimension

Execution time
(s) Classic

Memory
(bytes)

Execution time (s)
quantum simulator

Execution time IBM-
Quantum HW

12 2 64K 2 1.5h

13 12 192K 21 3.1h

14 116 520M 1104 ?

15 1233 1G 7012 ?

16 Crash ? ? ?

Note: Question marks indicate missing data due to lack of resources or hardware limitations.

Right now classical solvers are significantly faster than VQE (in simulation or

hardware), however as the size of the transformation matrix increases, the execution

time grows exponentially, and even worse the software runs out of memory and crashes.

This is the fatal flaw of classical hardware. A quantum computer, on the other hand,

has no memory and consumes qubit states in parallel. Currently, we live in the noisy

quantum age, so the hardware is slow and limited to small samples; however, that will

change in the future. Consider this: a 50 qubit transformation matrix requires 250 =

1125 Terabytes of RAM in simulation. No supercomputer will ever be capable of going

above 50 qubits, whereas a quantum computer can crunch thousands even millions of

dimensions in parallel!

Thus VQE will be the algorithm that showcases this set of remarkable experiments

already making a difference out there.

1 High Fidelity Noise-Tolerant State Preparation of a Heisenberg spin-1/2 Hamiltonian for the
Kagome Lattice on a 16 Qubit Quantum Computer. https://arxiv.org/abs/2304.04516

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://arxiv.org/abs/2304.04516

344

�Molecule Ground States
Our goal is to compute the ground state (stationary state of lowest energy) of a lattice

using a molecular Hamiltonian. Remember from the last section that the Hamiltonian

of a system specifies its total kinetic and potential energy. In molecular chemistry,

most elements are modeled using lattices where vertices represent interacting atoms;

therefore, the minimum Hamiltonian will give us the value we are looking for. Thus, to

reach the ground state, we need to minimize it.

Tip G round states are important as they tell where the excited electrons went to
and returned from when they emit a photon. They also reveal the atomic number of
elements. The ground state is known as the zero-point energy of the system.

�The Lattice
When we think about the behavior of electrons in a solid, we can model them on a

lattice where the vertices point to the position of atoms. This is a common practice in

quantum physics, condensed matter physics, and quantum chemistry among others.

Run Listing 11-1 to display a square lattice of six vertices (see Figure 11-3).

Note L isting 11-1 uses custom modules not available in Qiskit or the Quantum
Lab. Please run from the book source under Workspace\Ch11\vqelattice.py. The
Lab is helpful for running quick and simple circuits; however, more complex
programs with specialized dependencies can only be run from the command line.

Listing 11-1.  Lattice construction

from qiskit_nature.second_q.hamiltonians.lattices import *

from qiskit_nature.second_q.hamiltonians import *

import matplotlib.pyplot as plt

from qiskit_nature.second_q.problems import LatticeModelProblem

from heisenberg_model import HeisenbergModel

from qiskit_nature.mappers.second_quantization import LogarithmicMapper

from qiskit.algorithms.minimum_eigensolvers import VQE

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

345

from qiskit.algorithms.optimizers import *

from qiskit.primitives import Estimator

from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD

from qiskit import *

from qiskit.primitives import BackendEstimator

from qiskit.circuit.library import *

from custom_vqe import CustomVQE

t = 1.0 # the interaction parameter

v = 0.0 # the onsite potential

rows=2

cols=3

nqubits = rows * cols

####### Square Lattice

square_lattice = SquareLattice(rows=rows, cols=cols, boundary_

condition=BoundaryCondition.PERIODIC)

square_lattice.draw()

#plt.savefig('sq.png')

plt.show()

Figure 11-3.  Square lattice with six vertices and periodic boundaries

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

346

Tip  Qiskit implements an extensive library of lattice models for quantum
chemistry. For details, see2.

�The Heisenberg Spin ½ Hamiltonian
We will use the Heisenberg Spin ½ model for the study of critical points and phase

transitions of magnetic systems. It is given by the Hamiltonian:

	
H J X Y Z X Y Z h X Y Z

i j
i i i j j j

i
i i i� � � �� �

, 	

where X Y
i

i
Z�

�

�
�

�

�
� �

��

�
�

�

�
� �

�
�

�
�

�

�
�

0 1

1 0

0

0

1 1

0 1
, , are the Pauli spin-1/2 matrices, J is the

coupling constant (the strength exerted in an interaction), and h is the external magnetic

field. The spectrum of this Hamiltonian describes the statistical properties of a system in

thermodynamic equilibrium (see Listing 11-2).

Listing 11-2.  Heisenberg model for the study of critical points and phase

transitions of magnetic systems

"""The Heisenberg model"""

import logging

import numpy as np

from fractions import Fraction

from typing import Optional

from qiskit_nature.operators.second_quantization import SpinOp

from qiskit_nature.problems.second_quantization.lattice.lattices

import Lattice

from qiskit_nature.problems.second_quantization.lattice.models.lattice_

model import LatticeModel

2 Qiskit Lattice models available at https://qiskit.org/ecosystem/nature/tutorials/10_
lattice_models.html

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://qiskit.org/ecosystem/nature/tutorials/10_lattice_models.html
https://qiskit.org/ecosystem/nature/tutorials/10_lattice_models.html

347

class HeisenbergModel(LatticeModel):

 """The Heisenberg model."""

 def coupling_matrix(self) -> np.ndarray:

 """Return the coupling matrix."""

 return self.interaction_matrix()

 @classmethod

 def uniform_parameters(

 cls,

 lattice: Lattice,

 uniform_interaction: complex,

 uniform_onsite_potential: complex,

) -> "HeisenbergModel":

 return cls(

 cls._generate_lattice_from_uniform_parameters(

 lattice, uniform_interaction, uniform_onsite_potential

)

)

 @classmethod

 def from_parameters(

 cls,

 interaction_matrix: np.ndarray,

) -> "HeisenbergModel":

 return cls(cls._generate_lattice_from_parameters(interaction_matrix))

 def second_q_ops(self, display_format: Optional[str] = None) -> SpinOp:

 if display_format is not None:

 logger.warning(

 �"Spin operators do not support display-format. Provided

display-format "

 "parameter will be ignored."

)

 ham = []

 weighted_edge_list = self._lattice.weighted_edge_list

 register_length = self._lattice.num_nodes

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

348

 # kinetic terms

 for node_a, node_b, weight in weighted_edge_list:

 if node_a == node_b:

 index = node_a

 ham.append((f"X_{index}", weight))

 else:

 index_left = node_a

 index_right = node_b

 coupling_parameter = weight

 ham.append((f"X_{index_left} X_{index_right}", coupling_parameter))

 ham.append((f"Y_{index_left} Y_{index_right}", coupling_parameter))

 ham.append((f"Z_{index_left} Z_{index_right}", coupling_parameter))

 �return SpinOp(ham, spin=Fraction(1, 2), register_

length=register_length)

Now let’s run the Heisenberg model within the main program to see how the

Hamiltonian is constructed (see Listings 11-3, 11-4). Note that Listing 11-3 is a

continuation of Listing 11-1.

Listing 11-3.  Hamiltonian for the square lattice from Listing 11-1

Build Hamiltonian from graph edges

heis = HeisenbergModel.uniform_parameters(

 lattice=square_lattice,

 uniform_interaction=t,

 uniform_onsite_potential=v,

)

Map from SpinOp to qubits just as before.

log_mapper = LogarithmicMapper()

ham = 4 * log_mapper.map(heis.second_q_ops().simplify())

print(ham)

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

349

Listing 11-4.  Heisenberg Hamiltonian for the square lattice using 6 qubits

1.0 * ZZIIII

+ 1.0 * ZIZIII

+ 1.0 * IZIZII

+ 1.0 * IIZZII

+ 1.0 * ZIIIZI

+ 1.0 * IIZIZI

+ 1.0 * IZIIIZ

+ 1.0 * IIIZIZ

+ 1.0 * IIIIZZ

+ 1.0 * YYIIII

+ 1.0 * YIYIII

+ 1.0 * IYIYII

+ 1.0 * IIYYII

+ 1.0 * YIIIYI

+ 1.0 * IIYIYI

+ 1.0 * IYIIIY

+ 1.0 * IIIYIY

+ 1.0 * IIIIYY

+ 1.0 * XXIIII

+ 1.0 * XIXIII

+ 1.0 * IXIXII

+ 1.0 * IIXXII

+ 1.0 * XIIIXI

+ 1.0 * IIXIXI

+ 1.0 * IXIIIX

+ 1.0 * IIIXIX

+ 1.0 * IIIIXX

Look at Listing 11-4 and Figure 11-3; the lattice has 9 edges, and our Hamiltonian is

made of interactions of the X,Y,Z Pauli matrices; therefore, we get 27 (9*3) terms. Note

that the indices in the Hamiltonian match the indices of the edges in Figure 11-3 (verify

this by comparing the indices in the terms from Listing 11-4 with the indices from the

connecting edges in Figure 11-3). With this in mind, we are ready to feed these objects to

the VQE to extract the ground state of the lattice. Let’s see how.

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

350

�The VQE
The final piece of the puzzle is a CustomVQE object class (see Listing 11-5). It uses the

minimum Eigensolver interface to compute a minimum eigenvalue for a given operator

or Hamiltonian. Its job is to

Implement the objective function from Figure 11-2.

•	 Within the objective function, it invokes the Qiskit Runtime Estimator

primitive service to obtain the expectation value of the quantum

circuit (Ansatz) and observables (the terms in the Hamiltonian).

Note that this value is the energy collected for each interaction of the

optimizer and optionally sent back to the client.

•	 It runs the optimizer to minimize the energy. The optimizer runs for

a number of cycles which is implementation specific. For each cycle,

an energy value is produced and sent back through a result callback.

•	 It defines the initial point of random parameters (angles) for the

Ansatz sent to the optimizer.

•	 It collects the final VQE energy result (after the optimizer completes)

and returns it to the client.

Listing 11-5.  Custom VQE for the ground state calculation

from qiskit.algorithms import MinimumEigensolver, VQEResult

import numpy as np

Define a custom VQE class

class CustomVQE(MinimumEigensolver):

 def __init__(self, estimator, circuit, optimizer, callback=None):

 self._estimator = estimator

 self._circuit = circuit

 self._optimizer = optimizer

 self._callback = callback

 def compute_minimum_eigenvalue(self, operators, aux_operators=None):

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

351

 # Define objective function to classically minimize over

 def objective(x):

 # Execute job with estimator primitive

 job = self._estimator.run([self._circuit], [operators], [x])

 # Get results from jobs

 est_result = job.result()

 # Get the measured energy value

 value = est_result.values[0]

 # Save result information using callback function

 if self._callback is not None:

 self._callback(value)

 return value

 # Select an initial point for the ansatzs' parameters

 x0 = np.pi/4 * np.random.rand(self._circuit.num_parameters)

 # Run optimization

 res = self._optimizer.minimize(objective, x0=x0)

 # Populate VQE result

 result = VQEResult()

 result.cost_function_evals = res.nfev

 result.eigenvalue = res.fun

 result.optimal_parameters = res.x

 return result

Now we are ready to run the experiment. Collect Listings 11-1, 11-3, and 11-6 in a

single file. Note that Listings 11-2 and 11-5 live in separate files in the same location. All

files are provided with the source code of this manuscript.

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

352

�The Results
Listing 11-6 is the third and final part of the main program. It does a few

important things:

•	 It calculates the ground state using the classical solver

NumPyEigensolver. This is for comparison purposes only to have a

baseline against the quantum result.

•	 It invokes the CustomVQE to minimize the lattice Hamiltonian

collecting energies at each step of the optimizer. These energies

will be plotted along with the baseline classical ground state for

comparison.

•	 A relative error between the last energy from the VQE and the

classical ground state is computed to give a final relative error

percentage. This tells us the accuracy of the experiment. The lower

the better.

Listing 11-6.  VQE execution and results

########## Classic

Compute ground state energy

from qiskit.algorithms import NumPyEigensolver

find the first three (k=3) eigenvalues

exact_solver = NumPyEigensolver(k=3)

exact_result = exact_solver.compute_eigenvalues(hamiltonian)

print(exact_result.eigenvalues)

Save ground state energy for later

gs_energy = np.round(exact_result.eigenvalues[0], 4)

print("Ground state energy " + str(gs_energy))

######### VQE

ansatz = EfficientSU2(nqubits)

optimizer = NFT(maxiter=100)

#ansatz = TwoLocal(nqubits)

#optimizer = SLSQP(maxiter=75)

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

353

intermediate_info = []

def callback(value):

 intermediate_info.append(value)

Define instance of qiskit-terra's Estimator primitive

estimator = Estimator() #[ansatz], [ham])

Setup VQE algorithm

custom_vqe = CustomVQE(estimator, ansatz, optimizer, callback=callback)

Run the custom VQE function and monitor execution time

start = time()

result = custom_vqe.compute_minimum_eigenvalue(ham)

end = time()

print(result)

print(f'execution time (s): {end - start:.2f}')

def rel_err(target, measured):

 return abs((target - measured) / target)

Compute the relative error between the expected ground state energy

and the VQE

rel_error = rel_err(gs_energy, result.eigenvalue)

print(f'Expected ground state energy: {gs_energy:.10f}')

print(f'Computed ground state energy: {result.eigenvalue:.10f}')

print(f'Relative error: {rel_error:.8f}')

#Let's plot the energy convergence data the callback function acquired.

plt.plot(intermediate_info, color='purple', lw=2, label='Simulated VQE')

plt.ylabel('Energy')

plt.xlabel('Iterations')

plt.axhline(y=gs_energy, color="tab:red", ls="--", lw=2, label="Target: " +

str(gs_energy))

plt.legend()

plt.grid()

plt.savefig("plot.png")

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

354

Run the experiment and compare your result with Figure 11-4 showing a 17% error

between the VQE and classical solvers. Do you get a better result?

Figure 11-4.  VQE results from the ground state experiment

Exercise 11.4: Change Listing 11-6 to use a different Ansatz, Optimizer combo from

Qiskit circuit library3 and Optimizer library4. Tip: All circuits are built using interfaces;

thus, simply substitute the old names with new ones. Note that I have used (EfficientSU2,

NFT): Compare your results with mine. See if you get a lower error rate.

Exercise 11.5: Qiskit packs an extensive library of lattices from [2]. Change Listing 11-1

to use other lattice types: For example, use the line lattice from the following snippet

with a periodic boundary.

Line

line_lattice = LineLattice (num_nodes=nqubits, boundary_

condition=BoundaryCondition.PERIODIC)

line_lattice.draw(style=LatticeDrawStyle(with_labels=True, font_color='w'))

3 Qiskit circuit library available at https://qiskit.org/documentation/apidoc/circuit_
library.html
4 Qiskit optimizer library available at https://qiskit.org/documentation/stubs/qiskit.
algorithms.optimizers.html

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://qiskit.org/documentation/apidoc/circuit_library.html
https://qiskit.org/documentation/apidoc/circuit_library.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html

355

All in all, VQE is a powerful algorithm in the quantum arsenal. It is so flexible,

that it can be used pretty much in any optimization task. Let’s continue with another

remarkable experiment to showcase its power. This time in bioinformatics: enter protein

folding.

�Protein Folding
Proteins are the fundamental building blocks that power all life on Earth. A protein is

a chain of amino acids that folds into a compact shape (conformation); they start as a

linear chain of amino acids or a random coil with an unstable 3D structure. Eventually,

the amino acids interact to form a well-defined, folded protein; these chemical

machines create life. Reliably predicting protein structures is extremely complicated

and can change our understanding of nature. Quantum computers can help unlock this

complexity by predicting protein structure which is crucial to its function.

Note P rotein folding is the holy grail of biology, because the amino acid sequence
determines the 3D structure of the protein; failure to fold properly produces a toxic
compound that may cause a number of diseases.

There are a few important concepts to understand in this problem:

•	 Peptide: it is a small chain of amino acids (organic compounds made

of amino and carboxylic acids – there are more than 500 amino acids

in nature).

•	 Polypeptide: A longer, continuous, and unbranched peptide chain

linked by chemical or peptide bonds.

•	 Folding stages: There are four stages that determine the protein

structure and control its function:

•	 Primary structure: This is a linear sequence of amino-acid

residues in the polypeptide chain.

•	 Secondary structure: Results from folds of the primary structure

into either alpha helices or beta-sheets.

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

356

•	 Tertiary structure: Results from the folding of multiple secondary

structures into one another. This is the geometric shape of the

protein (see left side of Figure 11-5).	

•	 Quaternary structure: Results from multiple tertiary structures

interacting with each other to give rise to a functional protein

such as hemoglobin (see right side of Figure 11-5).	

�The Protein Folding Problem
According to the National Library of Medicine, the protein folding problem is made

of three puzzles: (a) What is the folding code, (b) what is the folding mechanism, and

(c) what is the protein 3D structure? Right now, only powerful supercomputers can be

used to predict the 3D structure from its amino acid sequence along with sophisticated

tools such as protein structure databases, computational physics methods, and complex

algorithms like Monte Carlo sampling.6

Figure 11-5.  Left E-coli protein showing primary, secondary, and tertiary
structures. Right: hemoglobin showing quaternary structures (from the AlphaFold5
Protein Structure Database)

5 AlphaFold Protein Structure Database available online at https://alphafold.ebi.ac.uk/
entry/A0A5E8GAP1
6 The Protein Folding Problem from the National Library of Medicine available online at
www.ncbi.nlm.nih.gov/pmc/articles/PMC2443096/

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://alphafold.ebi.ac.uk/entry/A0A5E8GAP1
https://alphafold.ebi.ac.uk/entry/A0A5E8GAP1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443096/

357

Tip I n 1994, CASP (Critical Assessment of Techniques for Protein Structure
Prediction) was created to predict the unknown structures of proteins. CASP has
grown from a small group into a worldwide initiative of more than 200 groups in
19+ countries.

�Protein Folding Using a Quantum Computer
We can get into the protein folding game using Qiskit’s research package, a library

somewhat obscure by the time of this writing. This library is in alpha stage for now,

and it is not part of the official distribution; however, it can be easily installed with the

command:

pip install qiskit-research

Now we are ready to start folding. Let’s see how.

�Problem Initialization

The code in this section is divided into three parts. We start with the initialization step

(see Listing 11-7). In this step we define

•	 A protein amino acid chain or peptide: In chemistry, amino acids are

described using 1-letter notation. In this case the chain is APRLR: A =

Alanine, P = Proline. R = Arginine, L = Leucine. For a full description

of amino acid notation, see7. Note that a protein may contain side

chains; these can bond with one another to hold the protein in a

certain shape or conformation.

•	 Next, it defines an energy interaction process between the amino

acids. In this case, we use the Miyazawa-Jernigan contact energy

interaction. This is a widely used knowledge-based contact potential

7 A One-Letter Notation for Amino Acid Sequences. https://febs.onlinelibrary.wiley.com/
doi/pdf/10.1111/j.1432-1033.1968.tb00350.x

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1968.tb00350.x
https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1968.tb00350.x

358

for globular proteins. It uses a probabilistic model to compare a one-

body term with several hydrophobicity scales of amino acids. This

method provides a strong correlation with layers of a protein when it

is viewed as an ellipsoid8.

•	 The contact energy interaction, along with the peptide is sent to the

ProteinFoldingProblem which is an object that encapsulates this

information to be passed to algorithms. Note that a set of penalty

parameters is also defined. These parameters describe the strength of

constraints enforcing the problem.

Note P rotein folding should be run from the command line via the book
source at Workspace\Ch11\proteinfolding.py. This script cannot be run from the
Quantum Lab.

Listing 11-7.  Initialization step of the protein folding problem

from qiskit_research.protein_folding.interactions.miyazawa_jernigan_

interaction import *

from qiskit_research.protein_folding.peptide.peptide import Peptide

from qiskit_research.protein_folding.protein_folding_problem import *

from qiskit_research.protein_folding.penalty_parameters import

PenaltyParameters

from qiskit.utils import algorithm_globals, QuantumInstance

from qiskit.circuit.library import *

from qiskit.algorithms.optimizers import *

from qiskit.algorithms import NumPyMinimumEigensolver

from qiskit.algorithms.minimum_eigensolvers import SamplingVQE

from qiskit import execute, Aer

from qiskit.primitives import Sampler

import matplotlib.pyplot as plt

8 The Miyazawa-Jernigan Contact Energies Revisited. https://openbioinformaticsjournal.
com/contents/volumes/V6/TOBIOIJ-6-1/TOBIOIJ-6-1.pdf

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://openbioinformaticsjournal.com/contents/volumes/V6/TOBIOIJ-6-1/TOBIOIJ-6-1.pdf
https://openbioinformaticsjournal.com/contents/volumes/V6/TOBIOIJ-6-1/TOBIOIJ-6-1.pdf

359

Protein without side chains

#main_chain = "APRLRFY"

#side_chains = [""] * 7

with side chains

main_chain = "APRLR"

side_chains =["", "", "F", "Y", ""]

interactions

#random_interaction = RandomInteraction()

mj_interaction = MiyazawaJerniganInteraction()

phys constraints

penalty_back = 10

penalty_chiral = 10

penalty_1 = 10

penalty_terms = PenaltyParameters(penalty_chiral, penalty_back, penalty_1)

peptide

peptide = Peptide(main_chain, side_chains)

Problem

protein_folding_problem = ProteinFoldingProblem(peptide, mj_interaction,

penalty_terms)

qubit_op = protein_folding_problem.qubit_op()

dump Hamiltonian

#print(qubit_op)

�Running the VQE

To run the VQE, we need to define a few objects (see Listing 11-8):

•	 Ansatz – RealAmplitudes: It is a heuristic trial wave function used in

chemistry applications or classification circuits in machine learning.

The circuit is made of (RY) rotations over the y-axis of the Bloch

sphere along with entanglements (CX gates) on neighboring qubits;

its prepared quantum states will only have real amplitudes; the

complex part is always 0.

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

360

•	 Optimizer – COBYLA (Constrained Optimization by Linear

Approximation): It is a numerical optimization method for

constrained problems where the derivative of the objective function

is used to find the local minima.

•	 Hamiltonian: It describes the kinetic and potential energy of the

system. This particular case uses a tetrahedral lattice (diamond

shaped or cubic lattice) to encode the movement of amino acids

through the configuration qubits. More details on how this encoding

works are provided in9.

Listing 11-8.  VQE execution part for the protein folding problem

############## Run VQE

classical optimizer

optimizer = COBYLA(maxiter=50)

variational ansatz

ansatz = RealAmplitudes(reps=1)

counts = []

values = []

def store_intermediate_result(eval_count, parameters, mean, std):

 counts.append(eval_count)

 values.append(mean)

initialize VQE using CVaR with alpha = 0.1

vqe = SamplingVQE(

 Sampler(),

 ansatz=ansatz,

 optimizer=optimizer,

9 A.Robert, P.Barkoutsos, S.Woerner and I.Tavernelli, Resource-efficient quantum algorithm
for protein folding, NPJ Quantum Information, 2021, https://doi.org/10.1038/
s41534-021-00368-4

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://doi.org/10.1038/s41534-021-00368-4
https://doi.org/10.1038/s41534-021-00368-4

361

 aggregation=0.1,

 callback=store_intermediate_result,

)

raw_result = vqe.compute_minimum_eigenvalue(qubit_op)

�Result Interpretation and Display

Finally, the binary probabilities returned by the VQE eigenstate are used to compute

a best turn sequence bitstring which along with the peptide and unused qubits in the

lattice are sent to a Protein Result class. This class interprets the bitstring and generates

an XYZ file containing the Cartesian coordinates of each atom in the protein. This file is

used to plot the protein in a 3D coordinate system (see Listing 11-9).

Listing 11-9.  Result interpretation and display of the protein fold

########### Display Result interpretation

result = protein_folding_problem.interpret(raw_result=raw_result)

print(

 "The bitstring shape representation : ",

 result.turn_sequence,

)

print("The expanded expression:", result.get_result_binary_vector())

print(

 f"Main sequence of turns: {result.protein_shape_decoder.main_turns}"

)

print(f"Side turn sequences: {result.protein_shape_decoder.side_turns}")

print(result.protein_shape_file_gen.get_xyz_data())

########### Plot conformation (Shape) energy

fig = plt.figure()

plt.plot(counts, values)

plt.ylabel("Conformation Energy")

plt.xlabel("VQE Iterations")

fig.add_axes([0.44, 0.51, 0.44, 0.32])

plt.plot(counts[40:], values[40:])

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

362

plt.ylabel("Conformation Energy")

plt.xlabel("VQE Iterations")

plt.show()

#plt.savefig('protein-energy.png')

######### Plot Main chain

fig = result.get_figure(title="Protein Structure", ticks=False, grid=True)

fig.get_axes()[0].view_init(10, 70)

#plt.savefig('protein-main-chain.png')

plt.show()

Let’s see the whole process in action:

Exercise 11.6: Concatenate Listings 11-7, 11-8, and 11-9, and run the experiment for

Peptide (APRLRFY). Verify your results with Figure 11-6.

Figure 11-6.  Experimental results for the protein folding experiment using
side chains

Exercise 11.7: Alter your code to use the EfficientSU2 Ansatz circuit which consists

of layers of single qubit operations spanned by SU(2) (Special Unitary group of degree

2, or unitary matrices with determinant 1), and CX entanglements. This is a heuristic

pattern to prepare trial wave functions for machine learning. Switch the optimizer to

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

363

the Nakanishi-Fujii-Todo (NFT) algorithm (a method using gradient descent). Compare

results for both experiments. Hint: rename the two instructions that create the Ansatz,

Optimizer, and run; for a complete list of circuits and optimizers, see10.

�About the Peptide

The amino sequence used in this experiment is the neuro-peptide APRLRFY (NPID:

NP02949) for organism: Aplysia californica (UniProt ID: ELH1_APLCA). You can get

information about this protein from a neuro-peptide database such as11. The European

Bioinformatics Institute also features a powerful 3D viewer to visualize your folds (see

Figure 11-7).

Figure 11-7.  3D visualization for neuro-peptide APRLRFY (NPID: NP02949) from
the AlphaFold project from the European Bioinformatics Institute

10 Circuit Library available online at https://qiskit.org/documentation/apidoc/circuit_
library.html
11 Neuropeptide database - http://isyslab.info/NeuroPep/basic_search.jsp, AlphaFold
Protein Structure Database -https://alphafold.ebi.ac.uk/

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://qiskit.org/documentation/apidoc/circuit_library.html
https://qiskit.org/documentation/apidoc/circuit_library.html
http://isyslab.info/NeuroPep/basic_search.jsp
https://alphafold.ebi.ac.uk/

364

�Exciting Times Lie Ahead
You have seen just a small sample of the impact quantum computers are having in the

real world. But there is more, much more to cover for a single chapter. As a matter of fact,

quantum is already carving inroads in major fields in science, industry, and business.

Here is a small sample:

In physics and chemistry12

•	 Electronic structure: It aims to describe the quantum mechanical

motion of a molecular system including the state of motion of

electrons in an electrostatic field created by stationary nuclei.

•	 Vibrational structure: It is a technique for studying the structure

and dynamics of photo excited molecules via monitoring of the

vibrational spectrum in real-time.

•	 Ground state solvers: The goal is to compute the ground state of a

molecular Hamiltonian using electronic or vibrational structure.

•	 Excited states solvers: The goal is to compute the excited states of

a molecular Hamiltonian. This Hamiltonian can be electronic or

vibrational.

In business13

•	 Portfolio optimization: It is the process of selecting the best

asset distribution (portfolio), out of the set of all portfolios being

considered.

•	 Portfolio diversification: It is the practice of spreading your

investments around so that losses are limited.

•	 Credit risk analysis: It aims to determine the creditworthiness of a

customer by assessing the probability that a customer will default on

a payment before credit is extended.

•	 Option pricing theory: It provides an evaluation of an option's fair

value, which traders incorporate into their strategies.

12 Qiskit Nature available at https://qiskit.org/ecosystem/nature/tutorials/index.html
13 Qiskit Finance available at https://qiskit.org/ecosystem/finance/tutorials/index.html

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

https://qiskit.org/ecosystem/nature/tutorials/index.html
https://qiskit.org/ecosystem/finance/tutorials/index.html

365

Quantum computers are poised to revolutionize information technology. By the end

of 2023, IBM plans to release a 1000 qubit processor. A device that will be more powerful

than all supercomputers ever created put together. Now is the time to learn about these

incredible machines!

Chapter 11 Quantum in the Real World: Advanced Chemistry and Protein Folding

367

�APPENDIX

Exercise Answers

�Chapter 1

	 1.	 Lord Kelvin. 1900.

	 2.	 Max Planck. The ultraviolet catastrophe.

	 3.	 A gnuplot program:

set term jpeg

set termoption enhanced

set encoding utf8

save as JPEG

set output 'uvc.jpg'

unset key

set tics nomirror out

set border 3

set xrange [0:3]

set yrange [0:15]

set ylabel "Spectral radiance" # (kW • sr-1 • m-2 • nm-1)"

set xlabel "Wavelength (μm)"
set label "Planck 5000K" at 0.3,13.1

set label "4000 K" at 0.6,4.55

set label "3000 K" at 0.8,1.4

set label "Rayleigh-Jeans (5000K)" at 1.1,11

set grid lc rgb "light-blue"

© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3

https://doi.org/10.1007/978-1-4842-9991-3

368

length unit is micrometers

c=3e14 # speed of light

h=6.626e-22 # Planck constant

k=1.38e-11 # Boltzmann constant

Planck curves at 3000, 4000, and 5000K

p1(x)=1e-6*2*h*c**2/(x**5*(exp(h*c/(x*k*3000))-1))

p2(x)=1e-6*2*h*c**2/(x**5*(exp(h*c/(x*k*4000))-1))

p3(x)=1e-6*2*h*c**2/(x**5*(exp(h*c/(x*k*5000))-1))

Rayleigh-Jeans curve @ 5000K

rj(x)=1e-6*2*c*k*5000/(x**4)

plot p1(x) lw 2, p2(x) lw 2, p3(x) lw 2, rj(x) lw 2 lc rgb "black"

	 4.	 The photoelectric effect seeks to describe the behavior of

electrons over a metal surface when light is thrown in the mix.

Start with two metal plates (emitter and collector), attached via a

cable to a battery. The negative end of the battery is connected to

the emitter, and the positive to the collector. Measure the kinetic

energy of the electrons when they flow from the emitter to the

collector when a light source is thrown into the emitter; a vacuum

must be set among the two. The photoelectric effect demonstrates

the duality of the nature of light: both as particle (photon)

and wave.

Appendix Exercise Answers

369

	 5.	 Albert Einstein.

a.	 Old notion: If light flows as a wave as classical physics demands,

then when the light hits the electrons, they will become energized

and escape the surface of the emitter toward the collector.

Furthermore, as the intensity (the amount) of light is increased,

more electrons will get energized and escape in larger quantities.

b.	 Observed: The increase in charge (the kinetic energy of the

electrons) does not depend in the intensity of the light but in

its frequency. Also, not all frequencies energize the electrons to

escape the emitter. If we were to draw the kinetic energy (KE) as

a function of the frequency (f), then there is a point in the curve

(threshold frequency) after which the electrons escape. Albert

Einstein proposed a solution postulating that light behaves as a

particle which he called a photon.

	 6.	 True or false: (a) true, (b) false, (c) false, (d) false, (e) false, (f) true,

(g) true, (h) false, (i) true, (k) false.

	 7.	 Multiple choice: b, e, f.

	 8.	 We can measure the exact position or momentum of a particle but

not both.

	 9.	 True.

	 10.	 At absolute zero atomic activity cannot seize because it will violate

the uncertainty principle (momentum and position of particles

will be known which is forbidden); therefore, there is still a tiny

amount of energy.

	 11.	 Electrons cannot occupy the same quantum state at a time.

	 12.	 Multiple choice: false, true, true, true, false, true.

	 13.	 It was an attempt to account for special relativity (space-time

coordinates) within Schrödinger’s wave function.

	 14.	 Dirac equation describes the behavior of the electron in

relativistic terms.

	 15.	 True: a, b, e.

Appendix Exercise Answers

370

	 16.	 Vacuum, positive, positron.

	 17.	 Entanglement is a fundamental property of quantum systems

that originates when two particles interact with each other.

For example, if one has spin-up, the other particle will

instantaneously show spin-down when measured. This action

propagates instantaneously across space, even time.

	 18.	 Albert Einstein. Because actions propagate instantaneously across

space, time faster than the speed of light. No. Because quantum

mechanics forbids information traveling faster than the speed

of light.

	 19.	 Bell’s theorem states that the sum of probabilities for a correlated

three variable quantum system is less than or equal to 1. That

is, P (A = B) - P(A = C) - P (B = C) ≤ 1. It is important because

it provides the means to test the principle of nonlocality in

entangled particles.

	 20.	 Multiple choice: b, c.

	 21.	 Matter-wave, wave, particle, probabilistic, observation.

	 22.	 Many worlds is a deterministic interpretation: It eliminates the

probabilistic nature of the Copenhagen interpretation.

a.	 In many worlds there are no superposition of states; each history

occurs in its own reality. In Copenhagen states of a particle exist

in superposition until observed.

b.	 In many worlds the wave function is universal. It does not

collapse but it exists in infinite realities (worlds). In the

Copenhagen interpretation, the collapse of the wave function

signals the transition between the quantum and classical realms.

c.	 In the double slit experiment on many worlds, all possible photon

trajectories continue in their own timelines. In Copenhagen,

photon trajectories are superimposed until the moment of

observation (measurement).

Appendix Exercise Answers

371

	 23.	 Additional interpretations of quantum mechanics:

a.	 Pilot-wave theory: This theory is deterministic (no randomness is

allowed), no superposition of states, and accepts instantaneous

action at a distance (nonlocality). It implies that configurations

exist even when quantum systems are not observed. It

uses a guiding equation which governs the evolution of the

configurations over time.

b.	 Quantum information: Postulates that notion that information

is recorded irreversibly. The wave function evolves

deterministically, going thru all possibilities. The conscious

observer is allowed; however, it cannot gain knowledge until

information has been recorded irreversibly. The measuring

apparatus is quantum, but it can be statistically determined and

capable or recording irreversible information.

	 24.	 Universe, vibrations, interact.

	 25.	 Electromagnetic field, lines of force.

	 26.	 Electron, neutrino, up quark, down quark. Gravity,

electromagnetism, strong and weak nuclear forces.

	 27.	 The muon, the tau. All partners behave in the same way but have

different mass.

	 28.	 Moun neutrino, tau neutrino, strange – bottom quarks, charm –

top quarks.

	 29.	 The Higgs field is believed to be responsible for the mass of all

particles in the standard model. It was discovered in the Large

Hadron Collider (LHC) at 125 GeV.

	 30.	 The Lagrangian of the standard model is an equation to determine

the state of a changing system and explain the maximum possible

energy the system can maintain. It is important because it

encompasses everything we have seen so far: the 12 particle fields,

the 4 fields for the forces of nature, and the Higgs field.

Appendix Exercise Answers

372

�Chapter 2

	 1.	 QFT is quantum field theory. QED is quantum electrodynamics.

QED is a subset of QFT.

	 2.	 QED studies the interactions between the electron and

electromagnetic fields.

	 3.	 Perturbation, theory, renormalization, and Feynman diagrams.

	 4.	 Electron scattering is the interaction of two electrons bumping

into each other. In classical electro dynamics, this interaction is

described by Coulomb’s law.

	 5.	 F = k
q q

r
1 2
2

 where k = Coulomb’s, q1, q2 = charges of the electrons,

and r = distance between them

	 6.	 True: a, b.

	 7.	 Equations. Virtual photon.

	 8.	 True: b, c, d.

	 9.	 Loop interactions are weird intermediate states that are

problematic in Feynman diagrams because they may increase the

effective mass of an electron arbitrarily. Examples:

•	 A photon momentarily becomes an electron, positron pair, and

reverts to a photon again.

•	 An electron emits then reabsorbs the same photon.

	 10.	 Loop interactions become infinite because to calculate the mass

correction from self-energy loops, we need to add all possible

photon energies, but those energies can be arbitrarily large, thus

sending the corrected mass to infinity.

	 11.	 Renormalization says: don’t start with the corrected (or

fundamental) mass of the electron but the experimentally

measured mass instead. On other words, don’t use its theoretically

calculated value (infinite) but its experimental (finite) number,

and then solve the equations from there.

Appendix Exercise Answers

373

	 12.	 In renormalization, for each infinity you want to get rid of,

you must measure some property in the lab. It can’t predict

that particular property from scratch; it can only predict other

properties relative to your lab measurement.

	 13.	 True: a.

	 14.	 Elements of a Feynman diagram:

	 15.	 Most probable interaction for electron scattering:

Two electrons (e-) move toward each other. They exchange a

virtual photon (γ) and move away.

	 16.	 Virtual particles exist between vertices within the diagram but

don’t enter or leave. They are also by definition unmeasurable.

Appendix Exercise Answers

374

	 17.	 Two weird characteristics of virtual particles:

•	 They do not obey the mass-energy-momentum equivalence and

are dubbed off-shell.

•	 They are not limited by the speed of light or the direction of time.

	 18.	 Feynman diagrams reduce the number of contributing

interactions that need to be solved. They can easily represent

paths backward in time using antimatter.

	 19.	 Two vertex diagrams for Bhabha scattering:

	 20.	 Four vertex diagrams for Bhabha scattering:

	 21.	 Continuous or reflective.

	 22.	 Two types of symmetries in nature

Appendix Exercise Answers

375

•	 Continuous: The concept of viewing symmetry as motions or

changes in position over time. Circle divided in the middle.

•	 Discrete: It describes non-continuous (disconnected) changes in

a system. Charge conjugation.

	 23.	 Spatial axis. Rotation.

	 24.	 When something remains identical under a parity transformation,

it is said to be parity symmetric or P-symmetric. A full parity

inversion involves flipping all three axes: X, Y, Z.

	 25.	 Flipped: Spatial axes: x, y, z. Not flipped: Angular momentum,

energy, mass, gravity and time.

	 26.	 True.

	 27.	 Yes. The Wu experiment showed in 1956 that electrons produced

in the decay if the Colbalt-60 radioactive isotope emerged in the

opposite direction on the spin. This was the smoking gun that

proved that parity symmetry is violated because of the correlation

of spin and momentum of the ejected electron. Parity symmetry

violations are the result of the weak atomic force.

	 28.	 CP symmetry involves charge conjugation and parity

transformation. Experiments have indicated that CP symmetry is

violated in our universe.

	 29.	 Cronin and Fitch sent a bunch of both types of Neutral Kaon (Hs,

KL) down a tube into a detector in the far end. The short-lived Ks

particles should never have completed the journey given their

short lives, and yet, a significant number of decay products from

Ks particles were found at the detector. The only explanation

is that the long-lived KL particles transformed into Ks particles

violating CP symmetry.

	 30.	 CPT symmetry means charge conjugation, parity inversion, and

time reversal. The laws of physics must work the same under a flip

of charge, parity, and direction of time (CPT transformation).

Appendix Exercise Answers

376

	 31.	 Two examples of T-symmetry transformations

•	 Time reversal is when we flip the so-called arrow of time, having

the universe travel backward in time.

•	 Flipping the direction of the evolution of a physical system, that

is, reverse all momentum and spin.

�Chapter 3

	 1.	 � � �x y z

i

i
=

0 1

1 0
=

0

0
=

1 0

0 1

�

�
�

�

�
�

��

�
�

�

�
� �

�

�
�

�

�
�

	 2.	

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1�

�

�

�
�
�
�

�

�

�
�
�
�

	 3.	 Crystal cube constructed using two right triangle prisms. Linear

plates made of a thin, flat glass plate that has been coated on the

first surface of the substrate.

	 4.	 The high error probability.

	 5.	 When the state of a photon is not recorded then is not a measuring

device, then we must add all the possible states (paths) to

calculate its probability amplitude.

	 6.	 When two identical single photons enter a 1:1 beam splitter.

	 7.	 Constructive: add two waves. Destructive: waves cancel

each other.

	 8.	 When waves cancel each other.

	 9.	 Reflectivity error for the horizontally polarized photons.

Reflectivity error for the vertically polarized photons.

	 10.	 When electricity flows through a conductor with no resistance.

	 11.	 Mercury, Niobium-nitride.

	 12.	 10mk.

Appendix Exercise Answers

377

	 13.	 Signal amplifier, mixing chamber, and cryoperm shield.

	 14.	 Cables used to raise the overall current carrying capability.

	 15.	 To provide thermal insulation while maintaining the best radiant

energy barrier available.

	 16.	 To probe its readout pulse with a weak microwave signal (7Ghz).

	 17.	 Low Noise Amplifier (LNA), Quantum Limited Amplifier (QLA).

	 18.	 The probability of a successful determination of the qubit state.

	 19.	 Error level, longevity, and cost.

	 20.	 The probability of finding a particle at a given point is

proportional to the square of the magnitude of the particle's wave-

function at that point.

	 21.	 Ion traps, silicon quantum dots, diamond vacancies.

�Chapter 4
3.

 {

 "id": "access-token",

 "ttl": 1209600,

 "created": "2023-05-18T18:15:04.557Z",

 "userId": "5ae875060f0205003931559a"

}

5. [

 {

 "name": "ibm_lagos",

 "deleted": false,

 "costParameters": {

 "fixedOverhead": 20,

 "calCircuits": 0,

 "repRate": 3500

 },

Appendix Exercise Answers

378

 "specificConfiguration": {

 "simulator": false,

 "backend_name": "ibm_lagos",

 "backend_version": "1.2.5",

 "basis_gates": [

 "cx",

 "id",

 "rz",

 "sx",

 "x"

],

 "max_shots": 100000,

 "max_experiments": 900,

 }

 ...

]

6.

{

 "backend_name": "ibm_perth",

 "backend_version": "1.2.7",

 "gates": [

 {

 "gate": "id",

 "name": "id0",

 "parameters": [

 ...

 }

7.

{

 "state": true,

 "status": "active",

 "message": "active",

 "lengthQueue": 586,

 "backend_version": "1.1.43"

}

Appendix Exercise Answers

379

8.

[

 {

 "qasms": [

 {

 �"qasm": "\ninclude \"qelib1.inc\";\nqreg q[4];

\ncreg cr[4];\nu2(3.14159265358979,3.14159265358979) q[1];

\nu3(-3.14159265358979,1.57079632679490,4.71238898038469) q[0];

\ncx q[2],q[1];\nu2(0,3.14159265358979) "ip": {

 "ip": "162.202.136.6",

 "country": "United States",

 "continent": "North America"

 },

 "id": "5bb19bca6975ec004aa5ab7b",

 "userId": "5ae875060f0205003931559a",

 "maxCredits": 3,

 "usedCredits": 0

 }

]

9.

{

 "total": 30,

 "count": 30,

 "codes": [

 {

 "id": "6330b11c0d4167a5ab08cc83",

 "description": {

 ...

 "userId": "5ae875060f0205003931559a",

 "lastUpdateDate": "2018-04-10T23:11:36.566Z"

 }

]

}

Appendix Exercise Answers

380

10.

{

 "api-q": "0.153.0",

 "api-app": "0.153.0",

 "api-utils": "0.153.0",

 "version": "0.153.1"

}

�Chapter 5
5.4

	

v =

1.2

3.0

0.1�

�

�

�
�
�

�

�

�
�
� 	

5.5

a.b = 1*4 + 2*5 + 3*6 = 32

5.7

	 AT = 1 2 3� � 	

5.9

	 v a b c† = []* * * 	

5.10

	 v v a b c
2 2 2† = + + 	

5.11

	

ax ay az
bx by bz
cx cy cz

�

�

�
�
�

�

�

�
�
�	

Appendix Exercise Answers

381

5.12

4i

5.13

i-3 = i, i-2 = -1, i-1 = -i, i0 = 1, i1 = I, i2 = -1, i3 = -i

5.15

Cos x = ½ (eix + e-ix) = ½[Cos x + iSin x + Cos(-x) + iSim(-x)]

= ½[Cos x + iSin x+ Cos x – iSinx]

= ½[2Cos x] = Cos x

5.16

Sin x = ½i (eix - e-ix) = 1/2i [Cos x + iSin x – [Cos (-x) + iSin (-x)]]

=1/2i [Cos x +iSin x – Cos x +iSin x]

= 1/2i [2iSin x] = Sin x

5.19

	
� � �

�
�

�
�
�

�
�
�

�
�
� � � cos

4
0 + e sin

4
1 = 1/ 2 0 + 1i /4� ��

	

	
� � ��

�
�

�
�
� � ��

�
�

�
�
� � �� �cos sin /�

4
0

4
1 1 2 0 1ei� �

	

5.20

	
i e ii� �

�
�

�
�
� � �

�
�

�
�
� � �� �cos sin //�

4
0

4
1 1 2 02� �

	

	
� � �

�
�

�
�
� � �

�
�

�
�
� � �� �i e iicos sin //�

4
0

4
1 1 2 03 4� �

	

Appendix Exercise Answers

382

5.21

H

5.22 Half Adder

5.23

z* = a – ib

5.24

a + c + i(b + d)

5.25

(ac − bd) + i(ad + bc)

5.26

	
z z Im z� � � � � �Re

2 2
	

5.27

	 ax by cz ax by cz ax by cy0 0 0 1 1 1 2 2 2� � � � � �� �	

Appendix Exercise Answers

383

5.28

X, H, Z

Gates that are their own unitary inverses are called Hermitian operators. Elementary

gates such as the Hadamard (H) and the Pauli gates (I, X, Y, Z) are Hermitian operators,

while others like the phase shift (S, T, P, CPHASE) gates are not.

5.29

Π

�Chapter 6
6.1

from qiskit import *

from qiskit.tools.visualization import *

create a 1 qubit circuit with 1 classic register

qc = QuantumCircuit(1,1)

Pauli X gate

qc.x(0)

measure gate from qubit 0 to classical bit 0

qc.measure(0, 0)

backend simulator

backend = 'qasm_simulator'

run in simulator

job = execute(qc, Aer.get_backend(backend))

Appendix Exercise Answers

384

Show result counts

print (job.result().get_counts())

Print in studout

qc.draw()

6.2

6.3

plot_histogram(job.result().get_counts())

Appendix Exercise Answers

385

6.4

from qiskit import *

from qiskit.visualization import *

qc = QuantumCircuit(2)

qc.x(0)

qc.h(0)

qc.cx(0,1)

qc.measure_all()

job = execute(qc, Aer.get_backend

("qasm_simulator"))

plot_histogram (job.result().get_

counts())

from qiskit import *

from qiskit.visualization import *

qc = QuantumCircuit(2)

qc.x(0)

qc.h(0)

qc.cx(0,1)

job = execute(qc, Aer.get_

backend("statevector_simulator"))

plot_state_city(job.result().get_

statevector())

Appendix Exercise Answers

386

6.5

from qiskit import *

from qiskit.visualization

import *

qc = QuantumCircuit(2)

qc.h(0)

qc.x(1)

qc.cx(0,1)

qc.measure_all()

job = execute(qc, Aer.get_

backend("qasm_simulator"))

plot_histogram (job.result().

get_counts())

from qiskit import *

from qiskit.visualization

import *

qc = QuantumCircuit(2)

qc.h(0)

qc.x(1)

qc.cx(0,1)

job = execute(qc, Aer.

get_backend("statevector_

simulator"))

plot_state_city(job.result().

get_statevector())

Appendix Exercise Answers

387

6.6

from qiskit import *

from qiskit.tools.visualization import*

from qiskit.providers.fake_provider

import *

qc = QuantumCircuit(3)

qc.h(0)

qc.cx(0,1)

qc.cx(0,2)

qc.measure_all()

print (qc)

backend = FakePerth()

job = execute(qc, backend)

plot_histogram(job.result().get_

counts())

6.7

create a 2 qubit circuit with 1 classic register

qc = QuantumCircuit(2)

Phi+

qc.h(0)

qc.cx(0,1)

qc.measure_all()

backend simulator

backend = 'qasm_simulator'

run in simulator

job = execute(qc, Aer.get_backend(backend))

Show result counts

print (job.result().get_counts())

Print in studout

qc.draw()

Appendix Exercise Answers

388

6.8

6.9

qc = QuantumCircuit(2)

Phi-

qc.x(0)

qc.h(0)

qc.cx(0,1)

backend simulator

backend = 'statevector_simulator'

run in simulator

job = execute(qc, Aer.get_backend(backend))

Print in stdout

array_to_latex(job.result().get_statevector())

6.10

create a 2 qubit circuit with 1 classic register

qc = QuantumCircuit(2)

psi +

qc.h(0)

qc.x(1)

Appendix Exercise Answers

389

qc.cx(0,1)

qc.measure_all()

backend simulator

backend = 'qasm_simulator'

run in simulator

job = execute(qc, Aer.get_backend(backend))

Show result counts

print (job.result().get_counts())

Print in studout

qc.draw()

6.11

qc = QuantumCircuit(2)

Psi-

qc.h(0)

qc.x(1)

qc.cx(0,1)

qc.z(1)

backend simulator

backend = 'statevector_simulator'

Appendix Exercise Answers

390

run in simulator

job = execute(qc, Aer.get_backend(backend))

Print in studout

array_to_latex(job.result().get_statevector())

6.12

X

6.13

qc.qasm()

6.14

1

6.15

import qiskit

print(qiskit.__qiskit_version__)

6.16

Applying X-gate to qubit 0, it will flip the state |0> to |1>. Therefore

the corresponding state is |01>. The default number of shots is 1024.

{'01': 1024}

6.17

qc.depth()will return the depth of any given quantum circuit.

6.18

b) qc.y(1). Applying Y-gate to the qubit 1 will put in i|1> state and qubit

0 will be in |0> state. The resultant tensor-product will be i|10>.

6.19

S, T, I: Quantum gates such as S,T and I will leave the state |0>

unchanged.

Appendix Exercise Answers

391

6.20

In the quantum circuits, with no classical register specified in the code,

we have to use qc.measure_all() to measure the output of the qubit.

6.21

qc.measure([0,1],[0,1]). The measurement part to the circuit is considered as

non-unitary.

6.22

a) For adding the legend and title use legend and title respectively in

plot_histogram

legend = ['All H-gates']

title = "superposition states of 3 qubits"

plot_histogram(counts,legend=legend,title=title)

6.23

The Bell state returned by the given quantum circuit is 1/√2 (|10> + |01>) and option
1 suits best for that (with a positive phase).

Appendix Exercise Answers

392

6.24

The bell circuit returns 1√2 (|00> - |11>) which is plotted correctly in option 1.

6.25

a,b,c. Note: the X gate has no effect when a qubit is in superposition.

�Chapter 7
7.1

Applying Hadamard gate to each and every qubit in the quantum circuit will put the

circuit in superposition: C) {'11': 30, ,'01': 27, '10': 22, '00': 21}.

7.2

{'000': 51, '111': 49}

7.3

1/sqrt(2) (|11> + |10>)

7.4

A, B, D

Appendix Exercise Answers

393

7.5

12

7.6

a) execute (qc, sim, shots=2000)

7.7

a) get_unitary()

7.8

memory (bool): If True, per-shot measurement bitstrings are returned as well

(provided the backend supports it).

7.9

d) qc.draw(output='png') - PNG format is not supported.

7.10

b) Invalid: a) has an invalid simulator, c) has invalid parameter repeat.

�Chapter 9

9.3

Appendix Exercise Answers

394

9.5

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

from qiskit import Aer, execute

from qiskit.tools.visualization import plot_histogram

Create quantum/classical registers and a quantum circuit

n = 3

qin = QuantumRegister(n, 'x')

qout = QuantumRegister(1, 'y')

c = ClassicalRegister(n)

qc = QuantumCircuit(qin,qout,c)

This is balanced function

def balanced(n, circ, input, output) :

 for i in range (n):

 circ.cx(input[i],output)

This is a constant function that doesn't change anything

def constant(circ, input, output) :

 circ.i(output)

Build the Deutsh-Josza circuit

First apply phase shift to negate where f(x) == 1

qc.h(qin)

qc.x(qout)

qc.h(qout)

#is equal2() for balanced or constant2() for constant in line below

#constant(qc,qin,qout)

balanced(n, qc,qin,qout)

qc.h(qout)

qc.barrier()

Then Walsh-Hadamard on input bits

qc.h(qin)

Appendix Exercise Answers

395

For constant function, output is |00> with probability 1

For balanced function, output is something other than |00> with

probability 1

qc.measure(qin,c)

display(qc.draw())

Simulate and show results

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=512) # shots default = 1024

result = job.result()

plot_histogram(result.get_counts())

9.7

	
H � � �� �� �� � � � � �� �2 01 1

2
0 1 1

2
0 1 1

2
00 01 01 11

	

9.9

011

110

Appendix Exercise Answers

396

9.10

110

101

9.11

011 CX(0,0) CX(1,1) CX(2,2) CX(0,0) CX(0,1)

100 CX(0,0) CX(1,1) CX(2,2) CX(2,2)

101 CX(0,0) CX(1,1) CX(2,2) C(0,0) C(0,2)

110 CX(0,0) CX(1,1) CX(2,2) C(1,1) C(1,2)

9.12

n-qubit version for Simon's oracle

def oracle (s):

 # reverse b for qiskit's qubit ordering

 s = s[::-1]

 n = len(s)

 qc = QuantumCircuit(n * 2)

 # all 0s, so just exit

 if '1' not in s:

 return qc

 # index of first non-zero bit in s

 i = s.find('1')

Appendix Exercise Answers

397

 for q in range(n):

 # Copy; |x>|0> -> |x>|x>

 qc.cx(q, q+n)

 # |x> -> |s.x> if q(i) == 1

 if s[q] == '1':

 qc.cx(i, (q)+n)

 return qc

9.13

X, Y, H. Phase gates such as S-gate, T-gate and CPHASE-gate are not

Involutory.

9.14

Pi/4

9.15 Applying Hadamard gate to all qubits in the given quantum circuit will put

qubits in an equiprobable state (equal probability of being in all states).

b) qc.h(0) qc.h(1)

9.16

a) QuantumCircuit(3,3)

9.17

Option 1 is swap gate.

Option 2 is ccnot gate or toffoli gate.

Option 3 is controlled Z-gate.
Option 4 is controlled T-gate.

9.18

a,b

9.19

c. A = Identity, b = Y gate.

9.20

a) ([0, -i],[i,0]) This is the Y gate.

Appendix Exercise Answers

399
© Vladimir Silva 2024
V. Silva, Quantum Computing by Practice, https://doi.org/10.1007/978-1-4842-9991-3

Index

A, B
Beauregard’s method, 330
Bell’s theorem, 16, 370
Bernstein-Vazirani (BV), 299–302
Broken symmetries

CP, 74–77
time symmetry conservation, 77–79

C
Charge-parity (CP) symmetry, 74
Chemical engineering, 341
Controlled NOT (CNOT), 135, 182, 248
Controlled-Z (CZ) gate, 87
Copenhagen Interpretation

Bell’s theorem, 16, 17
Einstein vs. Bohr, 15
genius of Paul Dirac, 13, 14
Planck/Bohr/Schrödinger,

revolution, 9–12
wave function, 18, 20

Cosmic background radiation
(CBR), 37–40

Counterfeit coin puzzle
false coins, generalization, 270, 271
goal, 260
identify false coin, 266–270
quantum balance, 265
quantum beam balance, 262–265
quantum vs. classical time

complexities, 262

solution, eight coins, 261
CPT symmetry, 375

decades-long rollercoaster, 81
T-transformation, 80

Crisis on Infinite Earths, 67

D
Dark energy, 37, 39–40
de Broglie-Bohm theory, 25
De-coherence, 27–28
Deutsch-Jozsa

ancillary qubit, 295
boolean balanced function, 294
constant/balanced functions, 296, 297
quantum circuit, 295
2 bit function, 296
XOR balanced function, 298

Dirac’s notation, 172
D-Wave system, 87

E
Eigenvalues

characteristic/latent roots, 340
linear system, 339
physics, 341
quantum computer, 342

Electron scattering, 50–53, 59, 60, 65, 372
Entanglement, 15, 26, 28, 128, 136
Exclusion principle, 12, 14, 88

https://doi.org/10.1007/978-1-4842-9991-3

400

F
Feynman diagrams

particle interactions, 57
path integra, 57–59
QFT-QED calculations, 65–67
rules, 60, 61, 63
virtual particles, 64

G
Grover’s algorithm

circuit, 321–324
inversion about mean, 316, 317
phase inversion, 315
practical implementation, 318,

320, 321
unstructured search, 314

Grover’s search, 313
Guantum gallium arsenide (GaAs), 113

H
Hadamard, 230
Hadamard gate, 392, 394, 397
Heisenberg Spin ½ model, 346
Heisenberg’s uncertainty principle

(HUP), 11

I, J
IBM-Q platform

cryogenic containers, 105
microwave/superconducting coaxial

lines, 103–105
quantum state, 106–109
signal amplifier, 102, 103

IBM quantum
backends, 123–127
composer, 120
entanglement experiments

Bell states, 128, 130–133
Einstein, 136, 138, 139
GHZ states, 133–136
quantum mechanics, 128

exercises, 155–158
gates, 121, 123

Inline with Upstream Stable (IUS), 191

K
Kinetic energy (KE), 369

L
Lagrangian, 35, 36, 371
Large Hadron Collider (LHC), 1,

34, 40, 371
Linear algebra

algebraic sum, 159
block sphere, 174–176
boolean gates, 186, 187
Euler’s identity, 164, 165
exercises, 187
gate identity cheat sheet, 184, 186
quantum computation shortcuts, 184
quantum mechanics, 167–169
quantum mechanics review sheet,

170, 172
Qubit, 172–174
tensor products, 165, 166
vectors/marrices/complex

numbers, 160–163
Low Noise Amplifier (LNA), 106, 377

INDEX

401

M
Many worlds interpretation (MWI), 21–23
Mermin-Peres Magic Square

computational basis measurement,
281, 282, 284, 285

exercise, 272, 286, 287
pseudo-telepathy, 271
quantum winning strategy, 273
shared entangled state, 273, 274
unitary transformations, 275, 276, 278,

280, 281
Molecule ground states

Hamiltonian, 344
Heisenberg Spin ½ model, 346–349
lattice, 344, 345
results, 352, 354
VQE, 350, 351

N
Nakanishi-Fujii-Todo (NFT) algorithm, 363
Noisy Intermediate Scale Quantum

(NISQ) computer, 92, 219

O
Oracle, 270, 290

P
Partially Polarizing Beam Splitter

(PPBS), 89–91
Perturbation theory, 53
Phase kickback, 290

arbitrary phases, 293
target qubit, 291, 292

Photoelectric effect, 368
Postman global variable system, 377,

378, 380

ProjectQ, 324, 330–335
Protein folding

3D structure, 355
left E-coli protein, 356
quantum computer

execution times, 364
interpretation/display, run, 361–363
peptide, 363
problem initialization, 357, 359
running VQE, 359, 360

tools, 356

Q
Qiskit

credentials configuration, 195
definition, 189
exercises, 222–225, 227, 228
setting up CentOS 7, installation

prepare system, 191
Python 3, 191, 192
virtual environment, 192–194

setting up Windows, installation, 190
Qiskit little endian bit ordering, 291
Quantum electrodynamics (QED),

13, 49, 51
Quantum field theory (QFT), 28, 49

black-body radiation problem, 1, 2
dark energy, 39
electron, 29, 31
electron scattering, QED, 51, 52
exercises, 42–45, 82–85
Faraday, 30
forces of nature, 33, 34
infinities, plague, 50, 51
Max Planck, 2–8
periodic table of physics, 32, 33
perturbation theory, 53

INDEX

402

Pesky infinities, renormalization, 53, 54
renormalization, 55
standard model, 35, 36

grand unification, 41, 42
LHC, 40, 41

standard model super-equation, 36–38
trinitiy, 56

Quantum Fourier Transform, 302, 327
Quantum gates

CNOT, 182, 184
Hadamard, 178, 179
NOT, 177, 178
single qubit, 180, 182
state, 179, 180
unitary matrices, 181

Quantum Lab, 199
Quantum-limited amplifier (QLA), 102, 377
Quantum mechanics

Copenhagen Interpretation, 9
MWI, 21, 22
supplementary interpretations, 23

Quantum program, qubit
composer, 199
local desktop, run via, 209, 210
noise models/fake providers, 218–221
pseudo code, 196, 197
Quantum lab, 199, 200
REST client, run via, 210–213
running real device, 206, 207
run via composer, 208, 209
SDK internals

assembly code, 205
circuit compilation, 201–203
execution results, 203, 204
local simulator, 201
program, 201
Qiskit simulators, 205

visualization types, 213, 217, 218
Quantum random number generation

exercises, 254–257
Hadamard, 230–234
test, 235, 236

Quantum teleportation
composer circuit, 246, 247
definition, 244
recovery, 246
results, 252–254
running Python, 247–251
workflow, 244

Qubit
designs, 112, 113
Diamond vacancies, 115
exclusion principle, 88
exercises, 116
quantum computer

CZ gate, 89, 91, 97–99
lowering error rate, 99, 100
photonic interference, 95, 96
PPBS, 90
two-photon quantum

interference, 93, 94
superconducting loops vs. linear

optics, 100
pros/cons, 109, 110
resistance, 100
temperatures, 101

toplogical, 114
two-state quantum systems, 111

R
Rayleigh-Jeans law, 2
Readout fidelity, 107
Reflective/mirror symmetry, 68–71, 73
REST API, remote access

Quantum field theory (QFT) (cont.)

INDEX

403

account information, 149, 150
API version, 154, 156
authentication, 140, 141
backend parameters, 143–145
backends, 141, 142
execution queue, 147, 148
list users experiment, 150–152
processor queue, 146
Python SDKs, 139
response sample, 146
run job hardware, 152, 153

Retro-causality, 27

S
Schrödinger’s wave function, 369
Second Quantization Revolution, 28
Shor factorization algorithms, 311
Shor’s integer factorization, 313

asymmetric cryptography, 325
period finding, 326–329
ProjectQ, 324, 331

Beauregard’s
method, 330, 331

factorization, 332–335
simulation results, 335, 337

Simon’s algorithm, 289
circuit, 303–305
dissecting Oracle, 307, 309
exercises, 310
rules, 307

String theory, 40, 41
Super dense coding (SDC)

Bell pair states, 238
composer, 239, 240
definition, 237
encoding rules, 238
protocol, 237

results, 242, 243
running Python, 240–242

Supersymmetry, 41
Supplementary interpretations

conscious observer, 23
de-coherence, 27
plot wave theory, 25, 26
quantum information, 24
time-symmetric theories, 27

T
Tau Theta Problem, 76
Two-dimensional electron gas

(2DEG), 113
Two-state quantum mechanical

systems, 111

U
Ultraviolet catastrophe, 2, 367
Ultraviolet light (UV), 5
Universe parity symmetric, 68

V
Variational Quantum Eigensolver

(VQE), 342
von Neumann-Wigner interpretation, 23

W, X, Y
Wilkinson Microwave Anisotropy Probe

(WMAP), 38

Z
Zero-point energy, 11

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Quantum Fields: The Building Blocks of Reality
	Enter Max Planck, the Father of Quantum Mechanics
	Planck Hits the Jackpot, Einstein Collects a Nobel Prize
	The Nature of Light Before Planck
	After Planck, Physics Will Never Be the Same

	Quantum Mechanics Comes in Many Flavors
	Copenhagen Interpretation
	The Revolution Begins with Planck, Bohr, and Schrödinger
	The Genius of Paul Dirac
	Einstein vs. Bohr, Nonlocality and Spooky Action at a Distance (EPR Paradox)
	Bell’s Theorem Settles Einstein vs. Bohr and the EPR Paradox
	Consciousness, Mysticism, and the Collapse of the Wave Function

	Many Worlds Interpretation
	Supplementary Interpretations
	Conscious Observer
	Quantum Information
	Pilot Wave Theory
	Time-Symmetric Theories
	De-coherence

	From Quantum Mechanics to Quantum Fields: Evolution or Revolution
	We Are All Made of Quantum Fields, but We Don’t Understand Them
	The Recipe to Build a Universe
	The Fantastic Four Forces of Nature: Enter the Higgs Field
	Standard Model and the Super-Equation of Physics
	Chasing the Unexplained
	Dark Energy Will Determine the Ultimate Fate of the Universe
	Beyond the Standard Model
	LHC Is Back with a Vengeance
	Grand Unification and Supersymmetry: The Holy Grail of Physics
	Doom and Gloom in the Horizon
	When We Are Wrong, We Start to Make Progress

	Exercises

	Chapter 2: Richard Feynman, Demigod of Physics, Father of the Quantum Computer
	Mysteries of QFT: The Plague on Infinities
	Electron Scattering According to QED
	Perturbation Theory: If You Can’t Do Something Perfectly, Maybe Near Enough Is Good Enough
	Tackling Those Pesky Infinities with Renormalization
	Renormalization: Electrons Do Not Have Infinite Mass
	QFT’s Holy Trinity: Perturbation Theory, Renormalization, and Feynman Diagrams

	Feynman Diagrams: Formulas in Disguise
	Feynman Approach to Quantum Mechanics: The Path Integral
	Unraveling the Impossible: Feynman Diagrams to the Rescue
	A Few Simple Diagram Rules Are All That Is Needed
	The Strangeness of Virtual Particles
	The Power of Feynman Diagrams to Simplify QFT-QED Calculations

	Antimatter As Time Reverse Matter and the Mirror Universe
	The Foundations of Quantum Theory Rest on Symmetries
	Broken Symmetries Threaten to Break All of Physics Along with Them
	Can CP Symmetry Be Saved by a Clock?
	Strike 2: CP Symmetry Is Violated, Three Strikes, and Physics Is Ruined
	Time Symmetry Conservation: The Hallowed CPT Looks in Danger

	Particles in a Rewinding Universe
	CPT Is Safe: The 70-Year Rollercoaster Ride for the Symmetries of Nature

	Exercises

	Chapter 3: Behold, the Qubit Revolution
	Your Friendly Neighborhood Quantum Computer
	Two-Photon Quantum Interference
	Mathematics Behind Photonic Interference
	Output States of the Control-Z Gate
	Lowering Error Rates

	Superconducting Loops vs. Linear Optics
	Superconducting Loops
	Breaking Out of the Lab: IBM-Q Qubit Design
	Qubit Signal Amplifier
	Microwave and Superconducting Coaxial Lines
	Cryogenic Insulators and Shields
	The Non-destructible Way of Reading the Quantum State of a Qubit

	Pros and Cons of Superconductor Loops

	The Many Flavors of the Qubit
	Exercises

	Chapter 4: Enter IBM Quantum: A One-of-a-Kind Platform for Quantum Computing in the Cloud
	Getting Your Feet Wet with IBM Quantum
	Quantum composer
	Quantum Gates
	Quantum Backends Available for Use

	Entanglement: Bell and GHZ States
	Two Qubit Entanglement with Bell States
	Three Qubit Entanglement with GHZ States Tests
	Super Determinism: A Way Out of the Spookiness. Was Einstein Right All Along?

	Remote Access via the REST API
	Authentication
	Authentication via API Token
	Authentication via User-Password

	List Available Backends
	Request Parameters
	HTTP Headers
	Response Sample

	Get Backend Parameters
	Request Parameters
	HTTP Headers
	Response Sample

	Get the Status of a Processor’s Queue
	Request Parameters
	HTTP Headers
	Response Sample

	List Jobs in the Execution Queue
	Request Parameters
	HTTP Headers
	Response Sample

	Get Account Information
	Request Parameters
	HTTP Headers
	Response Sample

	List User’s Experiments
	Request Parameters
	HTTP Headers
	Response Sample

	Run a Job on Hardware
	HTTP Headers
	Payload Format
	Response Format

	Get the API Version
	Request Parameters
	HTTP Headers
	Response Format

	Exercises

	Chapter 5: Mathematical Foundation: Time to Dust Up That Linear Algebra
	Qubit 101: Vector, Matrices, and Complex Numbers
	Transpose of a Matrix MT
	Conjugate Transpose or Adjoint Mϯ
	Complex Numbers: The Mathematical Magic Hats

	Euler’s Identity: A Wonderful Masterpiece
	Tensor Product of a Matrix ⊗
	Postulates of Quantum Mechanics
	Postulate 1: State and Vector Space
	Postulate 2: Observables and Operators
	Postulate 3: Measurement
	Postulate 4: Collapse of the Wave Function
	Postulate 5: Unitary Transformations

	Linear Algebra and Quantum Mechanics Cheat Sheet
	Algebraic Representation of the Qubit
	Dirac’s Ket Notation
	Superposition Is a Fancy Word
	Kets Are Column Vectors

	Orient Yourself in the Bloch Sphere
	Changing the State of a Qubit with Quantum Gates
	NOT Gate (Pauli X)
	Truly Quantum: Super Positions with the Hadamard Gate
	Measurement of a Quantum State Is Trickier Than You Think
	Generalized Single Qubit Gates
	Unitary Matrices Are Good for Quantum Gates
	Other Single Qubit Gates
	Qubit Entanglement with the Controlled-NOT Gate

	Universal Quantum Computation Delivers Shortcuts over Classical Computation
	Gate Identity Cheat Sheet
	Quantum Gate vs Boolean Gate Cheat Sheet
	Exercises

	Chapter 6: Qiskit, Awesome SDK for Quantum Programming in Python
	Installing Qiskit
	Setting Up in Windows
	Setting Up in Linux CentOS
	Step 1: Prepare Your System
	Step 2: Install Python 3
	Step 3: Don’t Disturb Others – Set Up a Virtual Environment
	Step 4: Install Qiskit

	Credentials Configuration

	Your First Quantum Program
	Quantum Lab: A Hidden Jewel Within the Cloud Console
	Exercise 6.1
	Exercise 6.2
	Exercise 6.3

	SDK Internals: Circuit Compilation
	Circuit Compilation
	Execution Results
	Assembly Code
	Qiskit Simulators

	Running in a Real Quantum Device
	Run via composer
	Run via Your Local Desktop
	Run via Your Favorite REST Client
	Run via the Jobs API

	Result Visualization Types
	Exercise 6.4
	Exercise 6.5

	Noise Models and Fake Providers
	Exercise 6.6

	Exercises
	Exercise 6.7
	Exercise 6.8
	Exercise 6.9
	Exercise 6.10
	Exercise 6.11

	Extended Qiskit Exercises

	Chapter 7: Start Your Engines: From Quantum Random Numbers to Teleportation and Super Dense Coding
	Quantum Random Number Generation
	Random Bit Generation Using the Hadamard Gate
	Putting Randomness Results to the Test

	Super Dense Coding
	Circuit for composer
	Running in Python
	Looking at the Results

	Quantum Teleportation
	Circuit for composer
	Running in Python
	Looking at the Results

	Exercises

	Chapter 8: Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor
	Counterfeit Coin Puzzle
	Counterfeit Coin, the Quantum Way
	Step 1: Query the Quantum Beam Balance
	Step 2: Construct the Quantum Balance
	Step 3: Identify the False Coin
	Generalization for Any Number of False Coins

	Mermin-Peres Magic Square
	Mermin-Peres Magic Square Exercise
	Quantum Winning Strategy
	Shared Entangled State
	Unitary Transformations
	Measure in the Computational Basis
	Answers for the Mermin-Peres Magic Square Exercise

	Chapter 9: Quantum Advantage with Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s Algorithms
	Phase Kickback
	Kickback with Arbitrary Phases
	Deutsch-Jozsa
	Bernstein-Vazirani (BV)
	Simon’s Algorithm
	Rules for Simon Oracle Construction
	Dissecting Simon’s Oracle

	Extended Practice Exercises

	Chapter 10: Advanced Algorithms: Unstructured Search and Integer Factorization with Grover and Shor
	Quantum Unstructured Search
	Phase Inversion
	Inversion About the Mean
	Practical Implementation
	Generalized Circuit

	Integer Factorization with Shor’s Algorithm
	Challenging Asymmetric Cryptography with Quantum Factorization
	Period Finding
	Fourier Sampling
	Feed the Fourier Sampling Results to Euclid Greatest Common Divisor

	Shor’s Algorithm by ProjectQ
	Factorization with ProjectQ
	Simulation Results

	Chapter 11: Quantum in the Real World: Advanced Chemistry and Protein Folding
	The Significance of Eigenvalues
	Eigenvalues in a Quantum Computer
	Why Use a Quantum Computer
	Molecule Ground States
	The Lattice
	The Heisenberg Spin ½ Hamiltonian
	The VQE
	The Results

	Protein Folding
	The Protein Folding Problem
	Protein Folding Using a Quantum Computer
	Problem Initialization
	Running the VQE
	Result Interpretation and Display
	About the Peptide

	Exciting Times Lie Ahead

	Appendix: Exercise Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 9

	Index

