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This book focuses on a subtopic of explainable AI (XAI) called explainable 
agency (EA), which involves producing records of decisions made during an 
agent’s reasoning, summarizing its behavior in human-accessible terms, and 
providing answers to questions about specific choices and the reasons for 
them. We distinguish explainable agency from interpretable machine learning 
(IML), another branch of XAI that focuses on providing insight (typically, for 
an ML expert) concerning a learned model and its decisions. In contrast, 
explainable agency typically involves a broader set of AI-enabled techniques, 
systems, and stakeholders (e.g., end users), where the explanations provided 
by EA agents are best evaluated in the context of human subject studies. 

The chapters of this book explore the concept of endowing intelligent 
agents with explainable agency, which is crucial for agents to be trusted by 
humans in critical domains such as finance, self-driving vehicles, and 
military operations. This book presents the work of researchers from a 
variety of perspectives and describes challenges, recent research results, 
lessons learned from applications, and recommendations for future 
research directions in EA. The historical perspectives of explainable 
agency and the importance of interactivity in explainable systems are 
also discussed. Ultimately, this book aims to contribute to the successful 
partnership between humans and AI systems. 

Features:   

• Contributes to the topic of explainable artificial intelligence (XAI)  

• Focuses on the XAI subtopic of explainable agency  

• Includes an introductory chapter, a survey, and five other original 
contributions 
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Preface   

MOTIVATION 
As artificial intelligence (AI) begins to impact our everyday lives as well 
as industry, government, and society at large with tangible consequences, 
it becomes increasingly important for practitioners and users to 
understand the reasons and models underlying an AI-enabled system’s 
decisions and recommendations. Explainable agency captures the idea 
that AI systems will need to be trusted by humans and, as autonomous 
agents themselves, “must be able to explain their decisions and the 
reasoning that produced their choices” (Langley et al. 2017). 

In contrast to the much broader topic of explainable AI (XAI), and its 
predominant focus on interpretable machine learning (IML), this book 
focuses on explainable agency. It addresses a gap in the literature on 
published volumes concerning this subtopic of XAI. 

This book presents the work of researchers focused on different facets of 
explainable agency, from diverse backgrounds, and describes challenges, 
new directions, recent research results, and lessons from applications. 
It includes or references contributions from AI, human-computer 
interaction, human-robot interaction, cognitive science, human factors, 
and philosophy. 

DEFINITION OF EXPLAINABLE AGENCY 
Endowing agents with explainable agency is not only an academic 
exercise but a foremost priority in many real-world scenarios. In 
financial markets, self-driving vehicles, robot-assisted surgery, military 
operations, and other critical domains, whenever the behavior of these 
systems does not match human expectations (e.g., the car takes an 
unfamiliar turn), it is necessary to inform humans about how and why a 
certain decision has been taken. Providing these types of explanations 
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impacts human trust towards the system (Doshi-Velez & Kim 2017;  
Gunning & Aha 2019; Kocielnik et al. 2019; Lipton 2018; Miller 2019) 
and contributes to creating a shared mental model among the human 
and the AI system, leading to a more successful human-AI partnership 
(Kamar et al. 2012; Zhang et al. 2021). 

Given a set of objectives and the necessary background knowledge that is 
relevant to these objectives, to be explainable an intelligent agent should 
produce records of decisions made during its reasoning, summarize its 
behavior in human-accessible terms, and provide answers to questions 
about specific choices and the reasons for them (Langley 2019). Producing 
records of decisions made during planning should include stating the 
alternatives the agent considered, giving its reasons for selecting them over 
alternatives, and describing its expectations for each option (Zhang et al. 
2015). The information provided by the agent needs to be expressed at 
different levels of abstraction as appropriate and clarify how the performed 
actions relate to inferences made by the agent. Explanations should be given 
especially in situations where actual events diverged from expectations and 
the agent had to adapt in response (Kulkarni et al. 2019). To ensure 
intelligibility, the information should be presented in terms of beliefs, goals, 
and activities that people find to be familiar (Miller 2017). 

Since explainable agency is an attribute given by the observer 
inherently motivated by the human quest of understanding an agent’s 
behavior, human judgments have a pivotal role in the evaluation process. 
Measures on the effectiveness of the explanations include the evaluation 
of mental representations of the inferential process that end users have of 
a given model (Hoffman et al. 2018; Vilone et al. 2021). 

HISTORICAL PERSPECTIVES 
During the infancy of intelligent systems, notions of explainable agency 
and the importance of being explainable to end-users began to be 
developed. Examples of early explainable systems are from critical 
domains like healthcare (Swartout et al. 1993). The XPLAIN system 
(Swartout et al. 1983, 1985), which attempted to provide generated 
explanations for an intelligent medical therapy program, is an early 
example of explainable agency used in practice. In addition to providing 
explanations of the system’s goals, XPLAIN could also provide 
justifications. Other explainable methods in the medical domain aimed 
at strategic-level explanations (Hasling et al. 1984). Notably, these early 
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examples of explainable agency in systems were focused on the end user 
and communicating explanations. 

Interactivity played a central role in early explainable systems, and the 
importance of the user was highlighted in several research contributions. 
The impact of a user-centered explainable system on the end user was 
studied by Ye and Johnson (1995); they affirmed how such a facility can 
boost the user’s confidence and attitude towards the system. To further 
provide more targeted explanations, attempts were also made to model the 
user’s mental model, with different levels of abstraction (Chandrasekaran 
& Tanner 1989). Arguably, early work focused substantial attention on the 
user and interactive aspects of explainable systems, perhaps more so than 
in recent years. 

An XAI winter followed this early time period that was characterized 
by a relative dearth of relevant research reported at major AI venues, 
although exceptions included efforts by some research groups (e.g., van 
Lent et al. 2004) and some meetings such as the series of Explanation- 
aware Computing (ExaCt) Symposia and Workshops (2005–2012). More 
recently, the advent of deep neural networks, their utility in critical 
applications, and their opaque models have driven an XAI resurgence. For 
example, this motivated DARPA’s Explainable AI program (Gunning & 
Aha 2019; Gunning et al. 2021) and dozens of workshops and other events 
held annually at many AI conferences (e.g., IJCAI). While IML has 
received the vast majority of attention during this time period, research on 
explainable agency has also been increasingly pursued (e.g., Anjomshoae 
et al. 2019; Sado et al. 2023; Sreedharan et al. 2022). This motivated the 
Explainable Agency in AI Workshops held at the annual AAAI Conference 
on AI in 2021 and 2022, and led to this volume. The chapters in this book 
focus primarily on the explainable agency perspective of XAI. 

CHAPTER SUMMARIES 
Our book begins with Pat Langley’s introductory chapter on explainable 
agency titled From Explainable to Justified Agency. In it, he provides 
motivations for studying explainable agents, frames the topic, discusses 
representational issues, and then presents three forms of self explanation 
(i.e., structural, preference, and process explanations), distinguishing 
them according to their abilities, and raising hypotheses concerning 
them. Pat then describes normative and justified agents, and how these 
relate to explainable agents (i.e., they describe their activities in reference 
to environment norms). This is an excellent introduction to explainable 

xii ▪ Preface 



agents that frames and distinguishes this topic from research on 
interpretable machine learning. 

Next, the chapter A Survey of Global Explanations in Reinforcement 
Learning by Yotam Amitai and Ofra Amir contributes to the field of 
explainable agency by reviewing research on global explanations for 
reinforcement learning (RL) agents. RL is increasingly deployed in real- 
world settings, and understanding the overall behavior, strategy, or 
reasoning of RL agents is crucial for explainable agency. Their chapter 
identifies three main types of global explanations proposed in the 
literature for RL agents, including interpretable representations of 
policies or the underlying Markov decision process, demonstrations of 
policy behavior, and rule-based methods using logical rules. The authors 
also discuss evaluation methods used to assess the contribution of global 
explanations, such as user studies, qualitative analyses, and quantitative 
measures. This chapter is unique in its focus on global explanations in 
RL, and it identifies emerging trends, gaps, and potential avenues for 
future research in this area. 

In his chapter Integrated Knowledge-Based Reasoning and Data-Driven 
Learning for Explainable Agency in Robotics, Mohan Sridharan describes 
a robotics architecture that integrates model-based and data-driven 
methods to enable explainable agency. In doing so, it combines non- 
monotonic and probabilistic methods to reason at multiple abstraction 
levels, and interactive learning to provide on-demand explanations that 
describe its decisions and beliefs. Mohan describes an evaluation of this 
architecture on computer vision and planning tasks for robotic hand 
manipulation of interpreted objects, demonstrating its ability to answer 
factual and contrastive questions about its actions as well as temporally 
situated questions about its beliefs. This contribution is novel, in this 
volume, in its focus on a robotics architecture. 

Ashok Goel, Vrinda Nandan, Eric Gregori, Sungeun An, and Spencer 
Rugaber’s chapter Explanation as Question Answering Based on User 
Guides instead focuses on the importance for an explainable agent to 
leverage knowledge of its design and operation to answer user questions. 
Their use case concerns ecology, and specifically the Smithsonian 
Institution’s Encyclopedia of Life (EoL). They describe how their 
AskJill question-answering agent employs EOL’s user guide to answer 
users’ questions during interaction with VERA, an AI-enabled interactive 
learning environment. In their human subjects evaluation, they found 
that AskJill performed admirably, answering 95% of user questions 
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correctly among those within scope of its capabilities. This contribution 
is unique among this book’s chapters in its focus on explanations 
concerning the design of an intelligent agent. 

The chapter Interpretable Multi-Agent Reinforcement Learning with 
Decision-Tree Policies by Milani et al. focuses on interpreting and verifying 
policies learned from deep multi-agent reinforcement learning algorithms. 
It introduces two novel algorithms, IVIPER and MAVIPER, for learning 
interpretable decision-tree policies in multi-agent reinforcement learning. 
This chapter provides a comprehensive background on Markov games 
and multi-agent reinforcement learning algorithms, and presents 
experiments validating the effectiveness of the algorithms in 
producing high-quality decision-tree policies for coordination in 
cooperative environments. 

Abhijeet Krishnan and Chris Martens’s chapter Towards the Automatic 
Synthesis of Interpretable Chess Tactics focuses on an explainable agent that 
can describe a policy for playing chess. They describe a method for 
generating an interpretable policy that incorporates symbolic domain 
knowledge learned by an inductive logic programming system. They 
also describe a measure for tactic divergence and used it to evaluate a set 
of learned tactics. Their contribution is unique here due to its focus 
on improving interpretability of a reinforcement learning policy by 
incorporating domain knowledge of game-playing tactics. 

Finally, the chapter The Need for Empirical Evaluation of Explanation 
Quality by Nicholas Halliwell, Fabien Gandon, Freddy Lecue, and Serena 
Villata contributes to the field of explainable agency by proposing and 
evaluating an approach to identify relevant features in the input space 
used by prototype networks, leveraging latent features learned by the 
model, with the goal of improving interpretability and understandability. 
It discusses the challenges of evaluating explanation quality without 
ground truth explanations and emphasizes the need for methods to 
generate explanations and compare their suitability. 

FINAL REMARKS 
This volume contains a selection of extended papers presented at the 
Explainable Agency in Artificial Intelligence workshops held in 
conjunction with the 2021 and 2022 AAAI Conferences on Artificial 
Intelligence. In addition, more recent contributions from the workshops’ 
invited speakers have been added. 
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C H A P T E R 1 

From Explainable to 
Justified Agency 

Pat Langley 
Center for Design Research, Stanford University, Stanford, USA; Institute for 
the Study of Learning and Expertise, Palo Alto, CA, USA   

INTRODUCTION 
Intelligent systems are becoming more widely adopted for critical tasks 
like driving cars and controlling military robots. Naturally, increased 
reliance on such devices has led to concerns about the interpretability of 
their complex behavior. Before people will fully trust such autonomous 
agents, they must be able to explain their decisions so that we can gain 
insight into their operation. There is now a substantial literature on 
explanation in systems that learn from experience, but it has focused on 
tasks like object recognition and reactive control, typically using opaque 
encodings of expertise that lend themselves only to shallow elucidation, 
as in ‘heat maps’ that display activation levels. 

However, we also need research on explanation for more complex 
tasks that involve multi-step decision making, such as the generation and 
execution of plans. Approaches to these problems rely on high-level 
representations that are themselves easily interpreted, but challenges 
arise in communicating solutions that combine these elements and the 
reasons they were chosen. In this chapter, I focus on such settings. Some 
work on explanation, especially with opaque models, has dealt with post 
hoc rationalizations of behavior, rather than the actual reasons for it. In 
the pages that follow, I concentrate on the latter. Moreover, I will focus 
on self explanations, that is, the reasons the explaining agent carried out 
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certain activities. Elsewhere (Langley 2019), I have referred to this ability 
as explainable agency.1 

We can specify the task of explainable agency in generic terms. Given 
domain knowledge for generating task solutions and criteria for evalu-
ating candidates, the agent attempts to find one or more solutions. After 
generating, and possibly executing, these solutions, a human asks the 
agent to clarify its decisions, at which point it must share its reasoning in 
comprehensible terms. One example involves an intelligent robot that 
plans and executes a reconnaissance mission, after which it takes part in 
an ‘after-action review’ where it answers questions from a human 
supervisor. There has been some research on such explainable planning 
(Fox et al. 2017; Smith 2012; Zhang et al. 2017), but we need more effort 
devoted to this important topic. 

In the sections that follow, I discuss different senses of the term ‘ex-
planation’ and consider some factors that arise when representing such 
structures. Next, I discuss three types of self explanation, along with 
approaches to indexing, retrieving, and transmitting them. After this, I 
introduce the notion of normative agency, which takes social maxims 
into account during decision making, and justified agency, which ex-
plains choices in terms of social norms. Along the way, I also propose 
some hypotheses about self explanation that merit further study. 

ASPECTS OF EXPLANATION 
Two aspects of human explanations place constraints on AI approaches 
to replicating their generation. First, they invariably involve some form 
of cognitive structure that relates items of interest. For instance, a diag-
nosis links observed symptoms to hypothesized problems, often through 
multiple steps. Second, these structures typically comprise elements of 
knowledge that have been instantiated for the task at hand. Thus, the 
steps in a diagnosis might be instances of generic rules that relate 
symptoms to causes. Explanatory structures vary along a number of 
dimensions. They may be entirely qualitative, as in a geometry proof, or 
they may include quantitative annotations, as in the solution to a physics 
word problem. Accounts also differ in their complexity (e.g., the number 
of knowledge elements) and their depth (e.g., the length of reasoning 
chains). Nevertheless, they share many features that one can discuss in 
general terms. 

We should distinguish between two uses of ‘explanation’ that com-
monly appear in English. The word sometimes refers to a mental, written, 
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or spoken structure that serves to elucidate some phenomena or behaviors. 
Thus, we refer to a scientific explanation of pulsar cycles, a mechanical 
explanation of how a toilet flushes, or an introspective explanation for 
one’s home-buying decision. In other cases, the term denotes the process 
or activity of generating such an explanatory structure. We say that an 
astrophysicist engages in explanation of pulsar behavior, a plumber fo-
cuses on explanation of a leak, or a home buyer carries out explanation of 
his residential choice. This chapter will use both senses of the term, but its 
meaning should be clear from the context in which it appears. 

We can further differentiate between two specializations of explanatory 
processes. The first refers to the construction of accounts for observed 
situations or events. A geologist posits a set of processes for the origin of a 
landform, a reader infers the goals of a novel’s character, and a home buyer 
records the reasons for his decisions. The result is a cognitive structure in 
the explainer’s own mind. The second meaning instead deals with the 
communication of such mental structures once they exist. The geologist 
presents a talk about his account of a landform’s evolution, the reader 
shares with a friend his guesses about the character’s motivations, and the 
home buyer tells his partner why he favors one house over others. This 
second sense applies not only to sharing accounts of external events, but 
also to communicating why one made a given decision or generated a 
particular plan. Thus, it includes the process of self explanation, the 
important specialization on which I will concentrate here. 

REPRESENTING EXPLANATIONS 
We have seen that explanations are cognitive structures an intelligent 
system can construct or communicate, so both their form and content 
merit discussion. Such accounts link a set of observations or decisions to 
each other through a set of relations that serve as connective tissue. 
Explanations invariably draw on background knowledge, typically at the 
domain level (e.g., how refrigerators operate, regulations about driving), 
but they sometimes involve the meta level (e.g., conventions of dialogue). 
However, they do not incorporate generalized knowledge elements 
themselves, but rather refer to instances of such knowledge elements that 
connect facts or queries to each other. 

In rule-based frameworks, explanations are organized as one or more 
proof trees with shared subproofs, where each rule instance links 
observed or inferred beliefs (e.g., Ng & Mooney 1990). For instance, an 
account for why an automobile does not start might connect observed 
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behaviors through instantiated rules that describe a generic car’s oper-
ation (e.g., Reiter 1987). In script and frame paradigms, the knowledge 
elements are large enough that some accounts involve a single instanti-
ated structure, although they can combine more than one (e.g., Shrager 
1987). An explanation can also involve an analogy, where knowledge 
corresponds to stored cases (linked facts), one of which maps onto ele-
ments of the new situation. Any formalism (e.g., rules, scripts, frames, or 
cases) that encodes knowledge structures can serve in this capacity. 

In addition, explanations can differ in the ontological character of the 
knowledge elements on which they draw. These may denote logical 
relations, like those in geometry proofs, but they may also incorporate 
numeric calculations, as arise in solutions to textbook physics problems 
(e.g., VanLehn & Jones 1993). Moreover, the knowledge elements can 
include likelihood information, as in the rules of a probabilistic context- 
free grammar. In such frameworks, explanations can have the same 
organization as in logical ones (e.g., proof trees), but they attach proba-
bilities to constituents. Knowledge structures may also have a causal 
interpretation, which can be either deterministic (e.g., a broken wire leads 
a starter to fail) or stochastic (e.g., a loose wire sometimes causes failure). 
Accounts that focus on an agent’s behavior may be teleological in that they 
refer to the goals that guide its decisions and actions (e.g., Meadows, 
Langley, & Emery 2014). Other explanations involve predictable patterns 
that lack further justification; many social norms and conventions (e.g., 
expected behavior in churches or restaurants) take this form. 

Finally, facts can play two distinct roles in explanatory structures, as  
Langley and Meadows (2019) have noted. In derivational explanations, 
observations serve as root nodes in a set of connected proof trees, while 
rule instances or other instantiated knowledge structures show how they 
follow from other facts and assumptions. Many scientific explanations 
adopt this scheme, as do causal diagnoses and teleological plans. In 
associative explanations, observed beliefs appear only as terminal nodes, 
which let one deduce new beliefs that follow from these facts. Such ac-
counts use instantiated knowledge structures to connect observations to 
each other, but not to derive them. Parse trees for sentences are classic 
instances of this paradigm, but script-based interpretations of stories also 
illustrate the idea. This distinction is less relevant to self explanations, 
our focus here, as agents have access to their reasoning chains, but some 
(e.g., plans) have a hierarchical or derivational structure, whereas others 
(e.g., schedules) are relational but nonhierarchical. 
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VARIETIES OF SELF EXPLANATION 
With these points in mind, we can now examine three forms of self ex-
planation2 and how they differ. Efforts to develop new AI functionality 
often start with a cognitive task analysis that identifies component abilities. 
Elsewhere (Langley 2019) I have proposed four such abilities that underlie 
explainable agency:  

• Generating decision-making content. When carrying out problem 
solving, the agent must consider different candidate solutions, 
evaluate them, and select which ones to pursue.  

• Indexing generated content. When making decisions, the agent must 
store and index details about its choices in an episodic memory or 
similar repository.  

• Retrieving stored content. After it has solved a problem, the agent 
must transform questions into cues that let it retrieve relevant 
information from this memory. 

• Transmitting retrieved content. Once it has retrieved this informa-
tion, the agent must translate the results into an understandable 
form and convey it to others. 

All approaches to explainable agency must draw on their generated 
content, which in turn influences their downstream processing. Thus, it 
makes sense to discuss in some detail not the mechanisms involved in 
the first stage of processing, but instead the results they produce. 

Structural Explanations 

One form of self explanation – structural – clarifies how a collection of 
steps is rational in Newell’s (1982) sense that an agent believes they could 
help achieve its goals. For instance, a plan incorporates a sequence of 
actions that, if carried out, should produce an end state that satisfies 
some goal description while not violating any known constraints. Thus, a 
route for driving must include contiguous segments from the starting 
point to the target destination. The explanatory structure shows how the 
steps link the goals or query to the initial situation through knowledge: it 
focuses on the means of achieving objectives. We can specify the generic 
task of explaining the qualitative structure of a problem solution in terms 
of inputs and outputs: 
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• Given: A solution to a problem that specifies steps linking the initial 
state to the goal description;  

• Given: Domain knowledge that defines the problem space in which 
the agent sought solutions;  

• Given: A query about whether or why the candidate is acceptable or 
about the role played by given steps;  

• Produce: An explanation for why the candidate is or is not 
acceptable or how given steps aid the solution. 

Structural explanations need not focus on successful solutions; they can 
also clarify why a candidate does not resolve the problem. Note that this 
formulation does not mention how the agent generated its reasoning 
chain and concerns only its logical or causal structure. 

However, the details of a structural explanation can depend on the 
problem-solving strategy that generates it. For example, many planners 
find a sequence of actions that transform the initial state into one that 
satisfies the goal description, with each step moving closer to the 
objective. Other systems create partial-order plans that specify which 
actions must occur before others and which do not, giving a finer- 
grained analysis of causal dependencies. Deductive proofs specify how a 
conclusion follows logically from a set of given facts through chains of 
inference steps. Each explanation type describes structural dependences 
among their elements and each has a recursive character in which sub-
graphs are themselves explanations. Storage happens during construc-
tion, with the causal or logical links serving as building blocks. 

The character of structural explanations has implications for later 
stages of processing. This lets the agent answer questions like Why did 
you take action A?, How did you achieve goal G?, and Why did you do A 
before B?, but requires appropriate indexing, retrieval, and transmis-
sion.3 For instance, given a partial order plan, one might index actions 
by the goals or subgoals they achieve and by their matched conditions. 
When asked a question about the role an action plays in a given plan, 
the agent translates the query into a retrieval cue, maps it to an 
appropriate index, and returns the retrieved structure. Finally, the 
transmission process converts this content into natural language, a 
diagram, or other format to provide an answer. This may invoke tem-
plates associated with different question types and instantiate them as 
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needed, producing a response like I turned left from Main onto Campus 
so I would be heading north on Campus. 

The AI literature includes some relevant research on these topics. For 
instance, work on analogical planning (e.g., Jones & Langley 2005; Veloso 
et al. 1995) has addressed generation, storage, and retrieval, but not their 
use for self explanation. Some expert systems recorded their reasoning and 
played them back on request (Clancey 1983; Swartout et al. 1991), while  
Johnson (1994) and van Lent et al. (2004) developed agents that recorded 
their decisions during execution of military missions and later answered 
questions about their reasoning, including what they would have done in 
counterfactual scenarios. In other work, Bench-Capon and Dunne (2007) 
adapted computational models of argument to explain how alternative 
conclusions are supported or contradicted by available evidence, whereas  
Briggs and Scheutz (2015) reported an interactive robot that gives five 
types of reasons why it cannot carry out a task. 

Preference Explanations 

A second form of self explanation focuses on the desirability of solutions 
that an agent’s finds, without concern for their internal structures. This is 
especially relevant for tasks like route finding and job scheduling that 
have many possible solutions, some of which are more desirable than 
others. We can state the task of explaining such preferences more pre-
cisely in terms of the inputs required and the outputs produced:  

• Given: A set of solutions that the agent has generated for some 
decision-making task; 

• Given: Domain knowledge that defines a problem space of candi-
date solutions and their quality;  

• Given: A query about why the agent ranks a given solution above 
other candidates;  

• Produce: An explanation for why the agent prefers that solution 
over alternatives. 

This activity is quite different from explaining how the component steps 
of a plan or derivation achieve some goal. Rather, it more closely re-
sembles the task addressed by recommender systems, which often pro-
duce a ranked list of candidates for users to consider. 
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The distinction between structural and preference explanations is not 
a matter of granularity, but whether one cares about means of reaching 
results or about their overall quality. To clarify this point, consider a 
travel planner that finds multiple routes for reaching some target loca-
tion. A structural account would store, for each route, the road segments 
and turns that lead from the start to end point, including how each step 
enables the next one. In contrast, a preference explanation would 
describe each candidate route in terms of driving distance, number of 
traffic lights, or other global characteristics. When multiple criteria come 
into play, preference accounts clarify their relative importance and how 
decisions resolve trade-offs. They may also specify why a candidate’s 
score did not exceed an acceptability threshold. 

The details of this self-explanation ability will depend on how the 
agent’s scoring and ranking process operates. One common method uses 
a linear utility function that computes each candidate’s score on k fea-
tures, multiplies each score by a weight, and calculates a weighted sum, 
then orders candidates by this total. A second scheme uses a lexico-
graphic function, which orders attributes by importance. Candidates are 
partitioned based on scores for the initial attribute, then ranked within 
these sets based on the second attribute, and so forth, much as words in a 
dictionary. A third alternative relies on preference rules that rank some 
candidates as better than others, without assigning numeric scores, to 
give a partial ordering over them. 

Preference explanations support different types of questions than 
structural accounts. These include queries like Why did you prefer 
solution X to solution Y?, How did X compare to Y on criterion C?, and 
Why did X not appear in the solution set? In this case, indexing and 
retrieval are simple processes, as the agent can store values for individual 
attributes with each solution and retrieve them as needed. As before, the 
final transmission stage can draw on templates that specify forms of 
answers for alternative types of queries, although these will differ from 
those for structural explanations. They will also depend on whether 
orderings are based on a numeric evaluation function, a lexicographic 
scheme, or preference rules. For instance, to clarify why it favored one 
solution over another, the agent might unpack calculations for the two 
candidates, note that they tied on the first attribute but that one did 
better on the second, or report the rule responsible for the decision. 

This emphasis on preferences does not imply that explanation must 
deal only with complete solution structures. For example, if a planner 
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uses a hierarchical task network to guide its search, then a user should be 
able to question why it selected one subplan for a given subtask rather 
than an alternative. The same idea applies to a system that finds proofs 
using monotonic inference rules, where a user may ask why it favored 
one subproof over a different candidate that leads to the same inter-
mediate conclusion. The ability to focus attention on elements of hier-
archical solutions does not necessarily mean that explanations must 
touch on their logical structure or how they were found. Moreover, the 
same mechanisms for indexing, retrieving, and transmitting results can 
apply to any level of hierarchical explanations. 

As noted above, recommender systems often rely on a learned user 
profile to rank candidate items like books or movies, but one can also 
use such profiles as heuristics to guide search on complex reasoning 
tasks and to rank the solutions. Rogers et al. (1999) applied this idea to 
route planning, drawing on a user profile, represented as weights on 
complete route features, to find personalized directions in a digital road 
map. Gervasio et al. (1999) adopted a similar approach to personalized 
scheduling, invoking a user profile, encoded as weights on global 
schedule features, to evaluate candidates and rank solutions. These two 
efforts are interesting because one used best-first search through a 
space of partial routes, whereas the other used repair-space search 
through a space of complete schedules. This shows that radically 
different search methods can produce the same type of preference 
accounts. 

Process Explanations 

The final form of self explanation focuses on the processes by which an 
agent generates its plans or other mental structures. This view 
revolves around the widespread assumption, which had its origins in 
the earliest days of artificial intelligence, that complex cognition 
requires heuristic search through a problem space (Newell & Simon 
1976). This posits that the recipients of explanations are interested in 
details about how the system carried out that search, including which 
alternatives it considered, why it decided to pursue some in favor of 
others, and even when it decided to change its mind (e.g., by choosing 
to backtrack). 

We can specify the generic task of explaining the problem-solving 
processes that an agent used to make its decisions and generate it solu-
tions as: 
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• Given: An annotated search tree that stores options considered and 
decisions made in problem solving;  

• Given: Domain knowledge that defines a problem space in which 
the agent seeks solutions;  

• Given: A query about why the agent considered an alternative or 
made a choice during problem solving; 

• Produce: An explanation for why the agent considered that alter-
native or made that choice. 

This task formulation is similar in spirit to the generation of think-aloud 
protocols (Newell & Simon 1972), which gave early insights about 
human problem solving and which led directly to the creation of early AI 
systems. In this setting, a researcher presents a subject with some problem 
(e.g., a theorem to prove or a puzzle to solve), asking the subject to talk 
aloud as he works on it. The scientist records this verbal report, transcribes 
it, and analyzes it to understand the subject’s thinking processes. One 
important difference is that our explanation task occurs after problem 
solving is complete. 

As before, the details of process explanations differ considerably 
depending on the problem-solving strategy. For instance, a forward- 
chaining planner would store actions it considers at each state, 
including the successor states that would result and the order in 
which each was generated. The system would also retain its reasons 
for pursuing one option before others, as well as reasons for back-
tracking or declaring success. In contrast, a means-ends problem 
solver would record its reasons for selecting a goal on which to focus 
or an action on which to chain backward. Alternatively, a case-based 
planner would note why it favored one retrieved solution over com-
petitors, why it took certain adaptation steps, and so forth. Even 
within the same framework and given the same goals, different 
heuristics can guide search down different paths. This means that 
different problem solvers can arrive at the same solutions by divergent 
trajectories, each of which constitutes a separate process account of 
the agent’s decision making. 

Process explanations combine elements of structural and preference 
accounts, the key difference being that they retain decisions about 
the search effort itself rather than only about solutions. As a result, they 
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support questions like Why did you select action A on step S?, How did 
you achieve goal G on step S?, Why did you prefer A over B on step S?, 
and Why did you backtrack after trying action A? Note that each of 
these refers to some point in the search process, as the agent may 
consider the same action or goal in different contexts. Thus, the agent 
must incorporate this information during indexing and retrieval in 
addition to the cues used for structural and preference accounts. There 
appears to have been little AI research on storing, retrieving, and 
transmitting process explanations either during problem solving or 
during retrospective reports, although studies of verbal protocols 
(Ericsson & Simon 1984) offer clues about the mechanisms that pro-
duce them. 

The concern with traces of decision making raises the question of 
what counts as a legitimate process explanation. People are good at 
generating verbal protocols during problem solving, but they are 
notoriously unreliable at reproducing their reasoning later and 
instead often provide at least partial rationalizations. Such re-
constructions are similar to accounts of external events, in that they 
explain incomplete memories in terms of plausible inferences over 
background knowledge. This form of explanation is relevant to 
modeling humans, but it is less defensible when developing synthetic 
agents, which need not suffer from the same memory limitations. For 
most applications, researchers can assume that process accounts are 
based on accurate traces based on the decision maker’s actual rea-
soning and conclusions. 

Hypotheses about Explanation Types 

Now that we have identified and characterized three forms of self ex-
planations, we can ask which of them is most useful to humans who 
interact with intelligent agents. Some might argue that process ex-
planations are the natural choice, as they provide more details and thus 
will offer greater insight into an agent’s operation. Others might instead 
hold that structural or preference accounts are inherently superior, 
because people have no need to know how an intelligent system decided 
on its actions but will care only how it achieved the objectives how it 
ranked the alternative solutions. 

I will not take either position, but instead claim that the most 
appropriate form of self explanation depends on its intended purpose. 
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This argument assumes that there are different types of consumers, 
which leads to two hypotheses. We can state the first as:  

• Process explanations will be favored by researchers interested in the 
details of problem solving. 

This conjecture posits that some users care primarily about the process 
of finding solutions. This group includes cognitive psychologists who 
want to understand the ways in which an intelligent system mimics, or 
fails to mimic, a human problem solver. Yet it also includes many AI 
researchers who are concerned with the detailed operation of their AI 
systems, both for debugging purposes and for improving the effective-
ness of their search mechanisms. 

However, not all people who interact with intelligent systems will care 
about detailed traces of their problem-solving behavior. This suggests a 
second conjecture, which we can state as: 

• Structural and process explanations will be favored by users inter-
ested in outcomes of problem solving. 

This group includes end users of autonomous agents who had no role in 
their development. These are analogous to people who use recommender 
systems but have little idea how they operate, but who still want to know 
why one option was ranked as better than another. But it will also 
include AI researchers, and even psychologists, who are concerned more 
with the correctness of solutions and the criteria used to evaluate them 
than with the mechanisms used to find them. Preference accounts are 
likely to be more useful on tasks that involve many solutions of differing 
quality. 

NORMATIVE AGENCY 
Explainable agency is linked to the pursuit of goals, but not all goals are 
egocentric, which requires us to take a slight detour, as humans must 
operate within their societies. When a hungry person seeks food, he buys 
it rather than stealing it. When a passenger wants to board a bus, she 
waits in a queue rather than cutting in front of others. When a soldier 
desires sleep, he nevertheless gets up when he hears reveille. In other 
words, people generally follow the norms of their society. These may 
involve formal laws, military orders, informal customs, or moral tenets, 
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but they all influence and canalize behavior in certain directions, and we 
would like intelligent agents to behave in similar ways. We will say that:  

• An intelligent system exhibits normative agency if, to the extent 
possible, it follows its society’s norms. 

Let us return to the domain of autonomous vehicles. Clearly, we want self- 
driving cars to obey established laws, such as staying within the posted 
speed limit, driving on the correct side of the road, and stopping at red 
lights. However, we also want them to follow informal customs, such as 
not cutting in front of other vehicles and moving over to let faster ones 
pass. At the same time, we want them to realize that norms may come into 
conflict and they may need to favor some at the expense of others. 

Consider a scenario in which a driver takes a friend with a ruptured 
appendix to the hospital. He exceeds the speed limit, weaves in and out of 
traffic, slows for red lights but then runs them, and even drives briefly on a 
sidewalk, although he is still careful to avoid hitting other cars or losing 
control on turns. The driver takes these drastic actions because he thinks 
the passenger’s life is in danger, so reaching medical treatment rapidly is 
more important than being polite to others along the way or obeying 
routine traffic laws. This example of normative agency illustrates that 
societal norms can conflict with each other and thus requires reasoning 
about trade-offs. The scenario also reminds us that driving is a far more 
complex task than simply staying on the road and avoiding collisions. 

Before intelligent agents can use norms to guide behavior in such a 
human-like manner, we must first decide what content they will encode. 
One option is to specify what actions the agent should or should not 
carry out in certain classes of situations. This view is closely related to 
deontological accounts of ethics, championed by Kant, which emphasize 
fulfilling one’s duties or obligations. Another choice is to associate dif-
ferent values with distinct states and to favor actions that produce better 
outcomes. This idea is linked to consequentialist approaches to ethics, 
due originally to Hume, Bentham, and Mill, with utilitarianism an 
important special case. At first glance, these frameworks appear to be 
competitors, but Spranca, Minsk, and Baron (1991) report studies that 
suggest people use a mixture of deontic and consequentialist methods. 

A related issue concerns how an intelligent agent represents such 
normative content. One approach, adopted by Mikhail (2007), specifies 
moral tenets using logical rules, much as one can do with many formal 
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laws. A second alternative is to state norms in terms of numeric value 
functions, like those used in many game-playing systems. Rules are often 
linked to deontic frameworks and value functions to consequentialist 
ones, but one can also apply rules to states and functions to actions. 
These approaches seem mutually exclusive, but Iba and Langley (2011) 
have shown how they map onto an agent architecture that associates 
numeric values with rule-generated structures. Norms can also specify 
both prescribed and proscribed actions or states (Malle et al. 2015), akin 
to positive and negated ‘trajectory’ goals. 

To develop human-like normative agents, the research community 
must address a number of open issues that deserve attention. These 
include extending intelligent systems to handle:  

• Conditional values. We can easily associate numeric values with 
normative rules, but some norms may only come into play in 
certain contexts, and their importance may vary with situational 
factors. Thus, we must develop representations for laws, morals, 
and other norms that specify conditional values or utilities.  

• Trade-offs among norms. In some cases, norms are incompatible, 
forcing the agent to decide which to obey and which to ignore. We 
must develop agent architectures that examine the values of rele-
vant norms, evaluate trade-offs among different choices, and select 
plans or actions that give better overall scores.  

• Mitigating factors. The importance of norms can be altered by other 
factors that make their violation no less serious but more forgivable. 
We must develop representations of such mitigating factors and 
methods for combining them when making choices about actions.  

• Domain-independent norms. Many norms are domain specific, but 
others are quite general, like being sensitive to a friend’s concerns 
or avoiding unnecessary emotional harm. These require formalisms 
for beliefs about others’ mental states and ways to combine such 
constraints with domain-level concerns. 

The AI literature reports some work on such normative reasoning, with 
the earliest focused on legal inference (e.g., Branting 2000). Equally 
relevant has been research on machine ethics and moral reasoning (e.g.,  
Anderson et al. 2006; Bringsjord et al. 2006; Dehghani et al. 2008;  

14 ▪ Explainable Agency in Artificial Intelligence 



Guarini 2005; McLaren 2005). Some researchers have developed new 
representations and mechanisms to support normative judgments and 
decisions, but others (Iba & Langley 2011; Liu et al. 2013) have treated 
moral reasoning as a form of everyday cognition. Authors have dem-
onstrated their systems on a variety of scenarios, showing that AI can 
address many aspects of legal, moral, and other normative reasoning, but 
this remains a relatively unexplored arena. 

JUSTIFIED AGENCY 
Although people can explain their goal-oriented activities, many of their 
accounts incorporate societal norms. When a pedestrian clarifies why he 
followed an indirect path, he may say that he did it to avoid walking 
across a neighbor’s lawn. When a homeless person is asked why he begs for 
a handout rather than mugging someone, he might state that he knew the 
latter was against the law. And when a shopper explains why she let 
another customer with only a few items check out ahead of her, she might 
say that, if their positions were reversed, she would have appreciated the 
same treatment. Our explanations often include a mixture of personal 
goals and more generic social constraints. We maintain that intelligent 
agents should demonstrate similar abilities and we will say that:  

• An intelligent system exhibits justified agency if it follows its society’s 
norms to the extent possible and if it explains its activities in those 
terms. 

Let us return to the example of taking someone with peritonitis to the 
emergency room, driving aggressively and breaking traffic laws along the 
way. This scenario is interesting because the explanation revolves almost 
entirely around social norms – not only the laws and customs the driver 
chose to ignore, but the idea that saving someone’s life should take 
precedence over other factors. Personal goals come into play, such as 
avoiding collisions and not turning over, but they also support this top- 
level normative aim. 

If we want to develop justified agents of this sort, we must decide on 
how their justifications map onto the three forms of explanations dis-
cussed earlier. Recall that structural accounts specify how a sequence of 
steps leads to the agent’s goals, so the natural response is to replace some 
egocentric goals with societal ones. Many societal norms specify actions 
or states that the agent should avoid while achieving its aims, but we can 
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encode these in much the same way as trajectory constraints in AI 
planning systems. Preference explanations specify the overall qualities of 
problem solutions, values of their constituents, and how these are 
combined. They are relevant to scenarios that involve trade-offs among 
norms, where the agent must balance societal aims against each other or 
against its own. Process accounts that describe the course of the agent’s 
decision making, including structural relations and preferences, can also 
incorporate social norms. 

Thus, initial analysis suggests there are no serious obstacles to 
adapting the three types of self explanation to include norms in support 
of justified activities. When generating, evaluating, and storing plans, a 
justified agent must encode, consider, and record not only its personal 
goals but also social concerns. Some justifications will treat norms as 
hard constraints that forced the agent to carry out some actions and 
avoid others, but others will include reasoning about trade-offs that arose 
when norms came into conflict. When asked a question about its 
activities, the agent must be able to retrieve the ways in which its choices 
relate to norms and then communicate them in accessible terms. This 
leads to another hypothesis: 

• Any intelligent system that supports explainable agency and nor-
mative agency will exhibit justified agency. 

In other words, once we have developed the representations and 
mechanisms to support the first two abilities, we will need no additional 
structures or processes to let agents justify their activities in normative 
terms. If we simply augment our goals and preferences with similar 
encodings of social mores, then we will obtain justified agency with no 
extra effort. This means that developing agents with the ability to justify 
their behavior will not be as difficult as it first appears. 

Some readers will think that this conclusion follows logically from our 
definitions, but it is actually a scientific hypothesis that merits empirical 
tests. The definition of justified agency requires that it incorporate both 
the ability to explain decisions and to reason about norms, but it does 
not imply these alone are sufficient. For example, agency may be more 
complex than we have posited (Bello & Bridewell 2017) and fuller 
analysis may reveal that norms demand richer forms of explanation. 
Similarly, taking such factors into account during plan generation may 
depend on reasoning beyond that needed with goals and utilities, or 
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answering normative questions may require new forms of response. Such 
extensions may not be necessary, but we need further research to 
determine whether the hypothesis is accurate. 

One can also ask which form of self explanation is more relevant to 
settings that require justified agency. We have already seen that social 
norms can appear, in different guises, in structural, preference, and 
process accounts. However, the most challenging instances of justified 
agency in humans involve conflicts and trade-offs among norms. These 
are the mainstay of moral dilemmas studied by philosophers, but they 
also occur in legal cases and everyday life. The centrality of trade-offs 
suggests that preference explanations will play the most important role in 
justified agency, but we must develop intelligent systems that commu-
nicate their reasoning about social norms to test this conjecture. 

CONCLUDING REMARKS 
In this chapter, I defined the notion of explainable agents, which convey 
the reasons behind their decisions and actions. I also distinguished 
among three varieties of self explanation – structural, preference, and 
process – that store different types of content and I hypothesized when 
each of them is likely to be most useful. In each case, I examined how 
these accounts might be encoded, along with their implications for in-
dexing, retrieval, and transmission. After this, I introduced the idea of 
normative agents, which attempt to follow societal maxims, and justified 
agents, which explain their decisions and activities in terms of those 
norms, along with a conjecture that joining explainable and normative 
agency will enable justified agency with no additional effort. 

The theoretical analysis that I offered for explainable, normative, and 
justified agency is far from complete, but it suggests clear avenues for 
how to elaborate it. Researchers interested in the topic should develop 
architectures for agents that support all three types of self explanation, 
develop normative agents that guide their decisions by knowledge about 
social norms, and combine these elements to produce justified agents. 
They should demonstrate and evaluate these agents’ ability to plan and act 
in complex domains (e.g., in urban driving simulations), to take into 
account laws, customs, and moral tenets when making decisions in these 
settings, and to answer questions about the reasons for these decisions. 
Undoubtedly, these efforts will encounter unexpected obstacles that reveal 
new challenges, but they will take us closer to understanding the structures 
and processes needed to replicate explainable agency in humans. 
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NOTES  

1. This problem is arguably less challenging than postulating the reasons that 
another agent behaved as it did, sometimes called plan recognition, as the 
system can store and access traces of its own decision making.  

2. Another important variety of self explanation addresses how the agent 
revised a plan during execution because unexpected events occurred.  

3. In this chapter, I focus on indexing and retrieval of elements for a specified 
task, rather than dealing with cases in which the agent must access structures 
from a memory that stores results for many distinct problems. 
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C H A P T E R 2 

A Survey of Global 
Explanations in 
Reinforcement 
Learning 
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INTRODUCTION 
As artificial intelligence (AI) technology becomes more advanced, it is 
becoming increasingly integrated into society (Stone et al. 2016). From 
voice assistants in smartphones to online recommendation systems, AI 
agents are becoming a part of everyday life. In order to effectively interact 
with these AI agents, people need to be able to anticipate and understand 
their behavior. A lack of understanding of how these AI agents operate can 
lead to mistrust, reduced effectiveness, and even dangerous outcomes. 

The idea of making AI systems explainable is itself not new. It was 
discussed since the early days of expert systems (Swartout 1983;  
Chandrasekaran et al. 1989), and more broadly relates to the literature on 
human-automation interaction (Janssen et al. 2019), which also con-
sidered explanations of automated systems. The maturing of AI methods 
and their growing complexity have led to a resurgence in interest in 
developing “explainable AI” methods (Aha et al. 2017; Doshi-Velez & Kim 
2017; Gunning 2017). 

The majority of existing explainable AI methods (often referred to as 
“interpretable machine learning” Doshi-Velez & Kim 2017) focus on 
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providing “local” explanations to specific decisions made by a machine 
learning model (e.g., showing the features that contributed most to a 
model’s decision that a tumor is benign). Recent studies show, 
however, that in some cases users may be more interested in globally 
understanding the behavior of the model, rather than assessing it at 
each decision point (Jacobs et al. 2021). While some work addresses 
the problem of demonstrating the “global” behavior of the model, e.g., 
by showing examples of different tumor scans and how they were 
classified (Kim et al. 2016; Ribeiro et al. 2016), they still focus on one- 
shot decisions of classifiers and are not applicable to describing 
the behavior of agents acting in the world over an extended time 
duration. Other work explored the problem of generating plans that 
are more explicable to people (Cashmore et al. 2019; Chakraborti 
et al. 2019; Kulkarni et al. 2019), but only considered goal-based plans 
for short-term tasks. 

The problem of explaining the behavior of reinforcement learning 
(RL) agents has been relatively under-studied (Alharin et al. 2020). This 
setting raises additional explainability challenges beyond those of ex-
plainability in supervised learning settings, as the environment is sto-
chastic, the state space is typically large (or infinite), and the learned 
policy is affected by delayed rewards (i.e., an action might be taken 
because it benefits the agent in the long run). As in interpretable machine 
learning, most explainable RL (XRL) approaches focus on explaining 
local decisions (Anderson et al. 2020; Greydanus et al. 2017; Hayes & 
Shah 2017; Khan et al. 2011; Krarup et al. 2019; Madumal et al. 2020), 
e.g., by showing what information a game-playing agent attends to in a 
specific game state. However, some studies suggest that users tend to 
favor global explanations (Van der Waa et al. 2018) which, for supervised 
learning provide insights with respect to how the model classifies dif-
ferent instances, and in the case of RL, explain the policy or agent as 
opposed to a particular action. 

In this chapter, we review the existing literature on global explain-
able reinforcement learning (GXRL). That is, explanations that attempt 
to describe to users aspects of the overall policy of an RL agent. We 
identify three main classes of GXRL explanations, which we categorize 
according to the type of explanation and describe some of the ap-
proaches in each class. We further discuss the way explanations 
are evaluated. We end by discussing gaps and opportunities for future 
work in the area. 
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SCOPE 
In this review, we focus on global explainable RL methods for single 
agents (which are the focus of the vast majority of approaches). We 
performed a Google Scholar search on explainable reinforcement 
learning and reviewed the publications from several existing surveys 
(Cruz & Igarashi 2020; Heuillet et al. 2021; Milani et al. 2022; Puiutta & 
Veith 2020). We then extended the set of publications to include those 
that these cite as well as publications that cite them. The review is likely 
incomplete but covers a large fraction of the work in this area. 

CHAPTER STRUCTURE 
We begin with a brief background of RL and distinguish between local 
and global explanations of RL policies. We then classify the existing 
approaches into three main explanation types and describe the key ap-
proaches in each type: explanation by representation, explanation by 
demonstration and rule-based explanations. We then discuss evaluation 
methods and the gaps and opportunities for future work before finally 
concluding this chapter. 

BACKGROUND: REINFORCEMENT LEARNING 
Reinforcement learning (RL), as described by Sutton and Barto (2018), is a 
computational approach to understanding and automating goal-directed 
learning and sequential decision making. It distinguishes itself from other 
machine learning fields through its emphasis on learning from direct 
sequential interactions of an agent in its environment, without the need for 
exemplary supervision or a complete model of the environment. 

The agent interacts with its environment over a series of time steps, 
where at each time step the agent receives an observation of the en-
vironment and takes an action based on it. The agent accumulates 
rewards, positive or negative valued, from certain states it arrives at 
during its sequence. The agent’s goal is to maximize the cumulative 
reward it receives over time. 

The Markov decision process (MDP) is a common mathematical 
framework for modeling decision-making problems where the out 
comes are influenced by the sequence of actions taken. It is widely 
used in the reinforcement learning setting. Formally, an MDP is a 
tuple S A R T, , , , :  

• S: The set of possible environment states. 
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• A: The set of possible actions available to the agent.  

• R: A reward function R S A R: × , mapping the transition 
from one state to another via an action, to a reward.  

• T: A transition probability function T s a s s t s( , | , ) [0, 1] . . ,
s S a A, , denoting the probability of reaching state s′ by 

initiating action a in state s.  

• γ: A discount factor, determining the importance of future rewards 
relative to immediate rewards. 

At each time step t, the agent observes the state of the environment st and 
chooses an action at based on this observation. The environment then 
transitions to a new state st+1 with probability T (st+1|st, at) and the agent 
gains the reward R(st, at, st+1). 

A solution to an MDP is a policy denoted π. An agent’s policy is a 
probability distribution over the set of possible actions in a given state. 
More generally, the policy is a function, mapping a state s and action a to 
a probability: s a( , ) [0, 1]. 

GLOBAL AND LOCAL EXPLANATIONS 
RL explanation approaches are commonly categorized using two axes: 
(1) Intrinsic vs. Post-hoc: Frameworks dedicated to ensuring the intrinsic 
interpretability of the original model as opposed to post-hoc ones con-
cerned with providing an explanation for some given (possibly black 
box) model in retrospect, and (2) Local vs. Global: Refer to the scope of 
what is being explained. This chapter will focus solely on the second axis, 
specifically, on the global section of its spectrum. In the context of XRL, 
local explanations are highly more abundant, partly due to similarities 
between their setup and supervised learning approaches. In this chapter 
we dive deep into global explanation approaches; hence, we first char-
acterize the differences between local and global explanations. 

Local explanations address the ability to understand the decisions 
made by a model for specific individual states. This means being able to 
explain what affected an agent’s choice of a particular action in a given 
world state. Local interpretability is useful for justifying individual 
decisions (Doshi-Velez & Kim 2017), such as why a certain loan appli-
cation was denied in the case of supervised learning, or why an action 
was taken by a policy in the case of RL. 
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Global explanations, on the other hand, refer to the ability to capture 
and describe general patterns and trends of a model. In the case of RL 
policies, this means identifying the agent’s behavior, strategy, or rea-
soning that governs the choices it makes. In other words, global inter-
pretability is concerned with understanding the model as a whole. Global 
interpretability may be useful for gaining an understanding which can be 
useful for debugging, detecting biases, improving the model, and en-
suring that it is behaving as intended. 

Both global and local interpretability are important aspects of 
machine learning and AI more generally. Global interpretability tech-
niques primarily lead to establishing user trust in the model, while local 
ones mainly focus on inducing trust in a single prediction (Puiutta & 
Veith 2020). 

WHAT CONSTITUTES A GLOBAL EXPLANATION? 
The distinction between global and local explanations is not always clear 
or trivial. Indeed, when surveying previous XRL survey publications 
(Cruz & Igarashi 2020; Heuillet et al. 2021; Milani et al. 2022; Puiutta & 
Veith 2020), inconsistencies regarding this definition and the methods 
associated with it arose. 

It can be argued that any information regarding the strategy of the 
agent provides some insight into its global behavior. For instance, 
reward decomposition methods (Juozapaitis et al. 2019) visualize the 
agent’s expected utility for different reward components in a specific 
world state but also shed light on the agent’s preferences more broadly. 
Similarly, saliency methods (Greydanus et al. 2018) visualize the focus 
of the agent and what it pays more attention to in a specific state and 
can reveal potentially generalizable insights. In this survey, we chose 
to focus on methods that provide global information as their main 
focus but discuss some aspects of local explanations in the discussion 
(Section 8). 

Beyond the distinction between local and global explanations, the 
higher-level question of what constitutes an explanation is also open to 
debate. In this chapter, we take a broad view of explanation methods and 
include a variety of approaches that provide users with information re-
garding an agent’s policy, including the use of more interpretable models 
(e.g., decision trees) and more descriptive approaches that demonstrate the 
agent’s policy. 
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GLOBAL EXPLANATION APPROACHES 
Explanation methods can be categorized through various perspectives. 
We chose to differentiate between methods by the explanation type, i.e. 
in terms of how the information is communicated to users. We attempt 
to answer the question “How does the described method make the ele-
ment (that is being explained) more understandable?” We believe this 
distinction could be valuable for developing suitable benchmarks and 
baselines for future researchers and methods. 

We identify three main explanation types:  

• Interpretable representations: explanation methods that aim to 
make the policies of RL agents more transparent using policy 
representations such as decision trees.  

• Demonstrations: explanation methods that aim to describe the 
behavior of the agent by demonstrating how the agent acts in dif-
ferent scenarios.  

• Rule-based: explanation methods that try to present users with 
logical rules describing key aspects of the agent’s policy. 

We note that these three categories are not mutually exclusive. In par-
ticular, some of the approaches that present logical rules can also be 
considered interpretable representations, and any decision tree repre-
sentation can be converted to a set of rules. We attempted to distinguish 
between interpretable representations such as decision trees that aim to 
present the entire policy and rule-based methods that typically show a 
subset of rules that may depend on a user’s query. 

An alternative taxonomy that was suggested in a previous XRL survey 
(Milani et al. 2022) is based on the RL framework element being explained; 
specifically, whether the explanation refers to the immediate context, 
denoted as feature importance (FI), the learning process and MDP (LPM), 
or to the policy level and behavior (PL). While this is not our main cat-
egorization, we believe it to be of complementary value for identifying gaps 
and trends in this area and therefore discuss it in the survey. 

Methods categorized as FI primarily provide local explanations and 
are therefore less relevant for our survey. However, as mentioned in 
Section 3.1, this distinction is not always clear cut. In this survey, we have 
decided to include publications that explain feature importance if these 
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were deemed to benefit or enhance global understanding. In such cases, 
we classified these publications either as LPM or PL. 

We elaborate and provide examples for each explanation type in the 
following sections. We summarize the classification of the surveyed 
publications by explanation type and provide (1) a mapping between the 
categories and their explained RL element (Table 2.1), and (2) a cate-
gorization by the explanation evaluation made in each paper (Table 2.2). 

TABLE 2.1 A Summary of the Classification of the Surveyed Publications Based on the 
Explanation Approaches and the RL Element Being Explained     

Explained Element/ 
Explanation Type 

Learning Process 
and MDP 

Policy Level and Behavior  

Interpretable 
Representations  

Beyret et al. 2019;   
Shu et al. 2017  

Bansal et al. 2020;  Verma et al. 2018;  Koul 
et al. 2018;  Danesh et al. 2021, 69;   
Jhunjhunwala et al. 2020;  Liu et al. 2019, 19;   
Bastani et al. 2018;  Topin & Veloso 2019 

Demonstrations  Guo et al. 2021;   
Dao et al. 2018;   
Gottesman et al. 
2020  

Zahavy et al. 2016;  Bewley et al. 2021;  Amir 
& Amir 2018;  Sequeira & Gervasio 2020;   
Amitai & Amir 2023;  Amitai & Amir 2022;   
Rupprecht et al. 2019;  Huang et al. 2018;   
Huang et al. 2019;  Lage et al. 2019;  Boggess 
et al. 2022 

Rule-based –  Hein et al. 2017;  Hein et al. 2018;  Zhang 
et al. 2021;  Hayes & Shah 2017;  Sreedharan 
et al. 2020;  Bewley et al. 2021;  Landajuela 
et al. 2021;  Finkelstein et al. 2022;  Van der 
Waa et al. 2018     

TABLE 2.2 A Summary of the Classification of the Surveyed Publications Based on the 
Explanation Type and Evaluation Approaches      

Evaluation 
Approach/ 
Explanation Type 

Computational Case Studies User Studies  

Interpretable 
Representations  

Liu et al. 2019;   
Coppens et al. 2019;   
Bastani et al. 2018;   
Topin & Veloso 
2019;  Verma et al. 
2018;  Jhunjhunwala 
et al. 2020;  Silva 
et al. 2020;  Topin et 
al 2021;  Beyret et al. 
2019;  Shu et al. 2017  

Liu et al. 2019;   
Coppens et al. 
2019;  Bastani et al. 
2018, 41;  Koul 
et al. 2018;  Danesh 
et al. 2021  

Silva et al. 2020 

(Continued) 
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EXPLANATION THROUGH INTERPRETABLE 
REPRESENTATION 
One of the main approaches to GXRL aims to make the policies of RL 
agents more interpretable by using simpler representations of either the 
learned policy or of the problem structure itself (i.e., the underlying MDP). 

Several methods have been proposed to approximate a DQN using 
some form of decision tree (Bastani et al. 2018; Coppens et al. 2019;  
Jhunjhunwala et al. 2020; Liu et al. 2019; Silva et al. 2020; Topin et al. 
2021). For instance, Bastani et al. (2018) proposed the VIPER algorithm, 
which learns a decision tree policy guided by an oracle DNN policy, and 
showed that the decision tree achieved performance that is close to that 
of the DNN. Another work proposed an intrinsic explainability 
approach, using Iterative Bounding MDPs for which it is guaranteed that 
there exists a decision tree policy that can accurately capture any learned 
policy (Topin et al. 2021). 

A different approach for elucidating agent policies is by applying ab-
stractions. Such methods include learning a relatively small, finite repre-
sentation of recurrent policy networks (Koul et al. 2018, 20) or generating 
abstracted policy graphs that summarize a policy (Topin & Veloso 2019). 

TABLE 2.2 (Continued) A Summary of the Classification of the Surveyed Publications 
Based on the Explanation Type and Evaluation Approaches     

Evaluation 
Approach/ 
Explanation Type 

Computational Case Studies User Studies  

Demonstrations  Lage et al. 2019;   
Huang et al. 2019;   
Guo et al. 2021;   
Bewley et al. 2021  

Gottesman et al. 
2020;  Dao et al. 
2018;  Guo et al. 
2021;  Rupprecht 
et al. 2019;  Zahavy 
et al. 2016;  Bewley 
et al. 2021  

Boggess et al. 2022;   
Amitai & Amir 
2022;  Amitai & 
Amir 2023;  Sequeira 
& Gervasio 2020;   
Huang et al. 2019;   
Amir & Amir 2018;   
Huang et al. 2018;   
Lage et al. 2019 

Rule-based  Zhang et al. 2021;   
Landajuela et al. 
2021;  Hein et al. 
2018;  Hein et al. 
2017;  Sreedharan 
et al. 2020;   
Finkelstein et al. 
2022  

Bewley et al. 2021;   
Hayes & Shah 
2017;  Hein et al. 
2018;  Hein et al. 
2017  

Sreedharan et al. 
2020;  Van der Waa 
et al. 2018     
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Another form of abstraction is through generating hierarchical rep-
resentations. In hierarchical reinforcement learning (Barto & Mahadevan 
2003), multiple levels of abstraction are introduced, often by utilizing 
multiple policies that interact with one another. Each policy is either 
aimed at solving a unique sub-task (low-level) or dictating which policy 
to enact and when (high-level). These policies can be generated, for 
example, by decomposing the agent’s task into sub-tasks (Beyret et al. 
2019; Shu et al. 2017). 

Verma et al. (2018) developed the PIRL framework for representing 
and generating policies in a human-readable form by using a domain- 
specific high-level programming language. 

EXPLANATION BY DEMONSTRATION 
Some work attempts to explain a policy to the user by demonstrating the 
actions taken by the policy in some example world states. These dem-
onstrations can improve users’ mental models of how the agent acts 
(Dragan & Srinivasa 2014). 

One formulation of explanations by demonstration is “policy summa-
rization” (Amir et al. 2018, 2019). In policy summarization, the input is the 
policy of an agent and a budget k for the amount of information that can be 
included in the summary, and the output is a summary consisting of k 
state-action pairs demonstrating the behavior of the agent in selected world 
states. Several approaches have been proposed in the literature for selecting 
which state-action pairs to include in the summary. Some approaches use 
heuristics that aim to quantify the importance or interestingness of a state 
(Amir & Amir 2018; Huang et al. 2018; Sequeira & Gervasio 2020). For 
instance, a state might be considered important if the decision taken at that 
state has a substantial impact on the agent’s long-term utility, as quantified 
by the differences between the Q-values of alternative actions that can be 
taken in that state (Amir & Amir 2018; Huang et al. 2018). Other measures 
of interestingness included the likelihood of reaching a state and global 
minima or maxima (Sequeira & Gervasio 2020). The DISAGREEMENTS 
summary method aims to compare two policies by selecting states where 
the policies diverge (Amitai & Amir 2022)]. A different approach to policy 
summaries utilizes machine teaching methods and aims to optimize the 
summary for policy reconstruction, i.e., by selecting state-action pairs that 
allow recovering the original policy (Huang et al. 2019; Lage et al. 2019). 
Policy summarization has also been extended to summarize multi-agent 
policies (Boggess et al. 2022). 
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Other approaches do not generate a summary, but rather extract 
specific states based on some criteria. Guo et al. (2021) suggest a method 
that presents states based on their importance to the reward function.  
Rupprecht et al. (2019) suggest a method for generating states of interest 
that can be defined based on a target function (e.g., generating world 
states where the agent evaluates all actions highly). 

Finally, Amitai et al. (2023) designed an interactive system that allows 
users to formulate queries about an agent’s behavior (e.g., by formulating 
a start state and an end state) and retrieves demonstrations of the agent 
acting in scenarios that correspond to the given specification. 

Some work presented methods for explaining the training of the agent 
by demonstration. For example, Gottesman et al. (2020) explain policies 
that were learned offline by presenting to users transitions from the 
training data that had a substantial influence on the learned policy. Dao 
et al. (2018) monitor deep RL by memorizing important moments 
during training and store snapshots of these moments that can be pre-
sented to users and help interpret the learned policy. 

Zahavy et al. (2016) depict the relation between states through their 
embedding in the last hidden state of the DQN, and visualize it using a t- 
SNE projection and saliency to discover and identify state clusters and 
patterns that correlate to behavior. 

RULE-BASED EXPLANATIONS 
Another way to describe an agent’s global behavior is by describing 
underlying patterns that dictate how the agent behaves in different sit-
uations. Rule extraction is the process of identifying and extracting such 
rules or patterns from a given data set. These rules can typically be ex-
pressed in the form of “if-then” statements, where the “if” specifies 
the conditions under which a particular action should be taken, and the 
“then” part specifies the action that should be taken. In the context of 
global explanations of policies, a set of logical rules describing the behavior 
of the agent can provide users with a global understanding of the policy. 
This approach shares some similarities with the approaches that use a 
decision tree policy in that each leaf node in the decision tree can be 
considered a rule. However, the approaches we review in this section differ 
in that the explanation to the user is given as a set of rules. 

Different methods have been proposed for extracting logical rules that 
describe aspects of a policy. Some approaches use an underlying decision 
tree (similarly to those described in Section 4) and extract rules based on 
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it (Bewley et al. 2021). Hein et al. (2017) leverage particle swarm opti-
mization on past agent transitions to identify and generate a set of if-then 
rules (fuzzy-logic controllers). Hein et al. (2018) utilizes genetic pro-
gramming to automatically extract formulas describing the agent policy 
from previous agent trajectories while controlling for their level of 
complexity. Sreedharan et al. (2020) define the concept of MDP land-
marks as environment conditions, described through propositional 
formulas, which must be achieved in order for the agent to reach its goal. 
Their method, TLdR, identifies these landmarks and displays in graphical 
form possible routes for reaching the goal state through the transition 
between them. Hayes and Shah (Hayes & Shah 2017) develop an inter-
active approach that allows querying the agent regarding when or why an 
action will take place. Using statistical analysis, the states relevant to the 
query are identified and the minimal Boolean logic expression that 
covers these is obtained and converted to text. Similarly, van der Waa 
et al. (2018) generate textual explanations for an agent’s behavior when 
given a contrastive query as input using a modified MDP that abstracts 
the state space into classes and the rewards into concepts. 

Other approaches generate a symbolic policy (Landajuela et al. 2021;  
Zhang et al. 2021). For instance, Landajuela et al. (2021) describe a 
method that generates symbolic policies by modeling agent trajectories 
as mathematical transitions on a symbolic expression tree. Zhang et al. 
(2021) propose generating interpretable and verifiable logic rules by 
learning an unconstrained policy via an MLP-based Q-function and 
projecting it into a constrained policy space using symbolic compilers. 
Their method, deep symbolic policy, iteratively searches for mathemat-
ical expressions to be used as policies. 

Finally, Finkelstein et al. (2022) explain the gap between an antici-
pated policy, provided by the user, and the agent’s true policy, by 
identifying which transformations to the MDP generate an agent that 
acts in the anticipated way. 

EVALUATION METHODS 
A key challenge in explainable AI in general is evaluating the usefulness 
of explanations. Various metrics have been previously proposed in the 
literature (Hoffman et al. 2018). However, the evaluation problem is 
inherently context-dependent, as ultimately the question is whether the 
explanation was useful for downstream user tasks and this can vary 
depending on the user’s goal, role, or expertise. The evaluation of global 
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explanations is particularly challenging since the notion of explaining the 
behavior of a policy can be ambiguous. 

In this section, we review and summarize the evaluation methods used 
in the surveyed publications. Broadly, these can be divided into three 
categories: (1) computational evaluation that does not involve any 
assessment with users and often does not include any evaluation of the 
usefulness of the explanation itself, (2) case studies that typically display 
specific examples of how the explanations might shed light on the policy, 
and (3) user studies that assess the effect of showing the explanation to 
users. We also discuss the particular tasks used in these evaluations. 
Table 2.2 classifies the surveyed publications based on the evaluation 
approach (as well as by the explanation type). 

Computational Evaluations. Many of the studies on global explana-
tions include some form of computational evaluation. These evaluations 
typically focus on quantitative measures related to the fidelity of the 
explanation, and the complexity of the explanation. Computational 
evaluations are particularly common in the interpretable representation 
and rule-based categories. 

For example, many of the proposed approaches that employ a decision 
tree approximation of a complex policy assess the extent to which the 
simplified policy agrees with the original one (see Table 2.2). With 
respect to the complexity of the explanation, evaluations often assess 
aspects such as the size of the explanation (e.g., the number of nodes in a 
decision tree or the number of extracted rules). 

Case Studies. A very common evaluation approach in the surveyed 
publications is describing some form of a case study. These case studies 
typically demonstrate the explanation for some examples and describe 
what can be inferred from these explanations. For example, Zhang et al. 
(2021) describe a case study of extracting rules for various tasks such as 
car avoidance and then show which rules were extracted for the learned 
policy. Some case studies also include more specific analyses that are 
facilitated based on the explanations. For instance, this may involve 
verifying the correctness of a policy based on a simplified representation 
(Bastani et al. 2018), computing feature importance (Jhunjhunwala et al. 
2020), or comparing an expert description of the agent to the description 
based on the explanations (Hayes & Shah 2017). 

User Studies. We advocate that explanations should be evaluated based 
on user studies and experiments that examine their effect on the 
intended user audience of the explanations. Conducting these studies has 
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the potential to (1) elucidate true user needs and preferences and (2) 
indicate the usefulness and benefits of proposed methods to downstream 
user tasks. However, fewer than half of the publications we surveyed 
included such studies. Notably, all work in the demonstration explana-
tion category included a case study or some form of a user study, while 
few of the publications in other categories described user studies that go 
beyond small case studies. In general, the number of participants in the 
user studies ranged from about 15–200 (mean of 40 participants). 

Each user study included some form of task that users were asked to 
perform, and examined whether explanations helped users in the task, 
compared to some baseline explanations or no explanations. Some 
studies included only subjective questions. For example, one study 
showed examples of contrastive explanations to participants and asked 
them to select the explanation that most helped them understand the 
agent’s behavior (Van der Waa et al. 2018). Additional subjective mea-
sures included the explainability assessment scale suggested by Hoffman 
et al. (2018). 

Other studies included both subjective and objective measures. One 
type of objective task was determining which of two alternative agents 
would perform better on a task (Amir & Amir 2018; Amitai & Amir 
2022). In this study, policy summaries of alternative agents were shown 
and users were asked which agent they would select for the task (while 
the agents’ true capabilities, i.e. the ground truth, is known to the au-
thors). Another objective task used for evaluation is asking users to 
predict what the agent would do in different scenarios (world states) 
(Boggess et al. 2022; Huang et al. 2019; Lage et al. 2019; Sequeira & 
Gervasio 2020; Silva et al. 2020). This task requires the user to generalize 
and infer the agent’s policy based on the explanation. Additional tasks 
include identifying an agent’s preferences (with the ground truth being 
based on its reward function) (Amitai et al. 2023; Sequeira & Gervasio 
2020) and identifying areas in which the agent needs to improve 
(Sequeira & Gervasio 2020). 

DISCUSSION: DIMENSIONS, GAPS, AND TRENDS 
There are now many approaches that approximate a complex policy 
(typically, a DQN) with a simpler representation of the policy. There are 
also several approaches for extracting rules describing key aspects of a 
policy. These two classes of explanations are similar in that they aim to 
provide a simplified view of the policy. They differ mainly in how the 
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explanation is represented (e.g., a complete decision tree vs. a list of 
rules). The third major class of explanations aims at describing a policy 
by demonstrating its behavior in a subset of regions in the state space. 
The review of the emerging literature on global explainable RL highlights 
the current areas of focus in the communities, as well as areas that could 
benefit from further exploration. 

Lack of Consistent Standards. While the literature in Global XRL is 
growing, it lacks consistency in standards and definitions. This has also 
been pointed out for the XAI literature more broadly (Lipton 2018). 
Work in the area makes different, and often implicit, assumptions re-
garding what explainability for RL means. The goal of the explanation 
as well as the intended users of the explanations often remain unstated or 
vague (e.g., “improve user understanding of the policy”). Several reviews 
of XRL have offered dimensions along which approaches to XRL can be 
classified, but currently, this is done retrospectively. 

Moving forward, we propose that work on this area clearly state the 
following:  

• Explanation goal: what user tasks does the explanation aim to 
support? e.g., policy debugging, comparison of policies, etc.  

• Intended users: who will be presented with the explanations? e.g., 
model developers, domain experts, or end-users. 

• Explained RL Element:1 What is being explained? e.g., are we ex-
plaining the policy, the underlying MDP, the reward function, etc.  

• Explanation approach: How is the information explained? e.g., by a 
simplified policy representation, rules, demonstrations, etc.1 We 
believe that by better specifying these aspects, it will be easier to 
design explanations that are useful for supporting users’ tasks. 
Additionally, these distinctions will highlight which methods should 
be compared and evaluated as baselines for future work and possibly 
help establish benchmark standards. Importantly, better distilling the 
goals of the explanation methods would also guide the design of 
more informative evaluation methods, as discussed next. 

Gaps in Evaluation. There is currently no clear standard for evaluating 
explainable RL methods. A large fraction of studies includes only com-
putational evaluations. Such evaluations are important for ensuring, for 
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example, that an approach that claims to approximate a policy indeed 
does so accurately. However, they do not provide evidence as to the 
extent to which the explanations contribute to user understanding, rather 
than assume implicitly that this would be the case. Some work goes 
beyond computational evaluations and demonstrates how explanations 
can be useful for some tasks, or in some domains, by giving specific 
examples. While this is a step forward, it still does not provide strong 
evidence that the intended users of the explanations would be able to 
reach such insights, and there is a danger that the explanations will only 
be useful to their developers (Miller et al. 2017). 

Encouragingly, there is a growing number of researchers that do 
conduct user studies to evaluate explanations. It would be useful for the 
community to draw on methods from the human-computer interaction 
literature and establish standards for such user studies (see, for example, 
evaluation discussions by Hoffman (2013)). It could also be useful to 
develop a set of evaluation tasks. Several such tasks have already been 
introduced, e.g., action prediction, assessment of agent performance, etc. 
There are many considerations in designing such tasks that can affect the 
outcomes. For instance, while predicting the decision of a policy might 
seem appealing, due to the typically large (often infinite) size of the state 
space, it is not feasible to cover it with such questions. Then, the choice 
of prediction tasks can be important (e.g., randomly selecting states vs. 
asking about frequent states). In addition, considering a prediction in a 
binary manner (success/failure) does not account for the extent of the 
mistake. A user may predict an action that the agent’s policy assigns a 
high or low value to, and yet these cases often receive the same “score” in 
a user study. 

The community could benefit from creating a set of benchmarks and 
tasks that can be used for evaluation. An immediate extension to this 
survey could be to distinguish and classify these tasks to their relevant 
“explained RL element.” We note though that ultimately, the evaluation 
should be based on the goals of the explanation, and evaluate the con-
tributions of the explanations to the underlying downstream user task. 

Underexplored Directions and Opportunities. The review suggests that 
the literature on GXRL has begun to explore several directions in depth. 
Here we highlight additional directions that are still underexplored. 

The existing methods are for the most part developed and evaluated 
separately, and often provide different information to the user. It could 
be beneficial to design systems that present the user with a set of 
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complementary explanations that together provide a more complete 
picture of an agent’s policy. Moreover, it might be particularly useful to 
explore the integration of global and local explanations, which has not 
yet been explored in depth (Huber et al. 2021; Septon et al. 2022). 

While the literature on explainability from the social sciences (Miller 
2019) suggests that useful explanations are often contrastive and provide 
counterfactual information, few of the existing XRL approaches present 
such information. The social science literature also suggests that ex-
planations are often given as a dialogue between an “explainer” and 
“explainee.” This implies an interactive process in which the explainee 
can ask for clarifications and elaborations. Currently, few XRL methods 
provide interactive explanations that allow the user to iteratively explore 
an agent’s policy. Moreover, to the best of our knowledge, prior work in 
the area did not attempt to design global RL explanations that are tai-
lored to specific needs elicited from users. Such attempts have been made 
for supervised learning models (e.g., see Liao et al. 2020), which are more 
commonly used in industry. Conducting such studies for RL agents 
could help identify additional gaps and opportunities for improved ex-
planation methods. 

When examining the categorization of global explanations to methods 
that explain the learning process and MDP vs. methods that explain the 
behavior and policy proposed by Milani et al. (Milani et al. 2022), we can 
see that the vast majority of methods are categorized into the latter 
category (Table 2.1). Developing additional methods that explain the 
learning process and the MDP could help address settings in which users 
are non-expert in the domain and need to be familiarized not only with 
the policy but also with the underlying world representation. These 
methods might also be useful for expert users who wish to debug the 
training process and the world simulator, which is typically only an 
approximation of the real world. 

The vast majority of existing approaches attempt to explain the policy 
of a single agent. Explaining the policies of multi-agent systems presents 
qualitatively new challenges to GXRL. Just as planning for multi-agent 
systems is not simply stitching together single-agent plans, the ex-
planations of such policies also require more than explaining the 
behavior of each agent in the team separately. In particular, distributed 
multi-agent policies require coordination and communication mecha-
nisms. Describing and explaining these mechanisms to users will require 
completely new explanation methods. 
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Finally, most of the current work on GXRL and XRL more broadly 
studies the explanation question in isolation from other aspects of human- 
AI collaboration. Since explanations ultimately aim to support such col-
laboration, it would be interesting to study explanations in conjunction 
with problems such as collaboration and communication in human-AI 
teams and assess the contribution of explanations to such teamwork more 
explicitly. 

CONCLUSION 
In this chapter, we reviewed the existing literature on global explana-
tions for reinforcement learning. We identified emerging themes in the 
area and the key classes of explanation methods that have been ex-
plored so far. We suggest several avenues that the community could 
explore to further develop this area of research, including the inte-
gration of different explanation methods, the design of new methods 
that focus on under-explored questions, and better standardization of 
evaluation methodologies. We hope that addressing the current gaps 
would help advance the development of global RL explanations that 
support users’ downstream tasks when deploying and collaborating 
with RL agents. 

NOTE  

1. Based on taxonomy proposed by Milani et al. [52]. 
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C H A P T E R 3 

Integrated Knowledge- 
Based Reasoning and 
Data-Driven Learning 
for Explainable Agency 
in Robotics 

Mohan Sridharan 
Intelligent Robotics Lab, School of Computer Science, University of 
Birmingham, Birmingham, UK   

MOTIVATION 
Consider an assistive robot that has to: (a) estimate the occlusion of objects 
and stability of object configurations in specific scenes—Figure 3.1; and (b) 
compute and execute plans to achieve desired configurations. To perform 
these tasks, the robot extracts information from on-board sensors (e.g., 
camera), and reasons with this information and prior domain knowledge. 
The uncertainty in its perception and actuation is represented probabil-
istically (e.g., “I am 90% certain I saw the robotics book in the study”). The 
robot’s prior knowledge includes knowledge of some domain attributes 
(e.g., the arrangement of rooms); some object attributes (e.g., shape, sur-
face); grounding of some prepositional words (e.g., above, in) that rep-
resent the spatial relations between objects; some axioms governing 
actions and change in the domain (e.g., “picking up an object will cause it 
to be in the robot’s hand”); and default statements (e.g., “books are usually 
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in the study”) that hold in all but a few exceptional circumstances (e.g., 
“cookbooks are in the kitchen”). Furthermore, the existing knowledge has 
to be revised over time, and the robot has to answer questions about its 
decisions and beliefs during or after planning and execution. For example, 
if the goal in Figure 3.1 (right) is to have the yellow ball on the orange 
block, and the plan is to move the blue block to the table before placing the 
ball on the orange block, the robot may be asked “Why do you want to pick 
up the blue block first?”, “Why did you not pick up the pig?”, or “What will 
happen if you rolled the ball?”. 

Our architecture seeks to jointly address the knowledge represen-
tation, reasoning, learning, and control challenges posed by the moti-
vating scenario. In this chapter, we focus on the ability to provide on- 
demand explanations of decisions and beliefs in the form of relational 
descriptions of relevant objects, object attributes, actions, and robot 
attributes. Providing such explanations can help improve the algo-
rithms and establish accountability, but it is difficult to do so in inte-
grated robot systems that use knowledge-based reasoning methods 
(e.g., for planning) and data-driven learning methods (e.g., for object 
recognition). It requires the associated architecture to support the 
key functional capabilities of explainable agency, namely: provide on- 
demand justification of decisions made during (or after) plan genera-
tion and execution by considering alternative choices; present infor-
mation at a suitable level of abstraction; and communicate information 
such that it makes contact with human concepts such as beliefs and 
goals (Langley et al. 2017). Our architecture draws on cognitive systems 
research, which highlights the benefits of coupling different represen-
tations, reasoning schemes, and learning methods (Laird 2012;  
Winston & Holmes 2018), to implement these functional capabilities. 
Specifically, our architecture: 

FIGURE 3.1 Scenario for some robot experiments.    
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• Combines the principles of non-monotonic logical reasoning and 
deep learning for decision making, and automatically learns pre-
viously unknown axioms of state constraints, action preconditions, 
and action effects;  

• Leverages the interplay between representation, reasoning, and 
learning to embed the principles of explainable agency, enabling a 
robot to provide on-demand relational descriptions of its decisions 
and beliefs. 

These capabilities are evaluated in the context of a robot arranging objects 
in desired configurations, and estimating occlusion of objects and stability 
of object configurations, in simulated scenes and in the real world. Results 
indicate the ability to: (i) incrementally learn previously unknown axioms 
governing domain dynamics and (ii) construct explanations reliably and 
efficiently by automatically identifying and reasoning with the relevant 
knowledge. We begin with a discussion of related work (Section 2), fol-
lowed by a description of the architecture (Section 3), experimental results 
(Section 4), and conclusions (Section 5). 

RELATED WORK 
Early work on explanation generation drew on research in cognition, 
psychology, and linguistics to characterize explanations in terms of 
generality, objectivity, connectivity, relevance, and information content 
(Friedman 1974). Subsequent studies involving human subjects have also 
indicated that the important attributes of good explanations include 
coherence, simplicity, generality, soundness, and completeness (Read & 
Marcus-Newhall 1993). In parallel, fundamental computational methods 
were developed for explaining unexpected outcomes by reasoning logi-
cally about potential causes (de Kleer & Williams 1987). 

In recent years, the increasing use of AI methods in different domains 
has renewed the interest in understanding the decisions of these 
methods, with many dedicated workshops and special tracks at premier 
conferences. This understanding can be used to improve the underlying 
algorithms, and to make automated decision making more acceptable or 
trustworthy to humans (Anjomshoae et al. 2019; Miller 2019). Existing 
work in explainable AI can be broadly grouped into two categories 
(Sreedharan, Kulkarni, & Kambhampati 2022a). Methods in one cate-
gory modify or map learned models or reasoning systems to make their 
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decisions more interpretable, e.g., by tracing decisions back to input data 
(Koh & Liang 2017) or explaining the predictions of any classifier by 
learning equivalent interpretable models (Ribeiro, Singh, & Guestrin 
2016), or biasing a planning system towards making decisions easier for 
humans to understand (Chakraborti, Sreedharan, & Kambhampati 2018). 
The other category of methods provides descriptions that make a rea-
soning system’s decisions more transparent, e.g., explaining planning 
decisions (Borgo, Cashmore, & Magazzeni 2018), providing causal and 
temporal relations (Seegebarth et al. 2012), or reconciling the differences 
between the planner’s decisions and the human expectations (Sreedharan, 
Kulkarni, & Kambhampati 2022b). Much of this research is agnostic to 
how an explanation is structured or assumes comprehensive domain 
knowledge. 

Since deep networks represent the state of the art for different robotics/ 
AI problems, methods have been developed specifically to understand the 
operation of these networks, e.g., by computing a heatmap of features most 
relevant to a deep network’s outputs (Assaf & Schumann 2019). There has 
also been work on reasoning with learned symbolic structure, or with a 
learned graph encoding scene structure, in conjunction with deep net-
works to answer questions about images of scenes (Norcliffe-Brown, 
Vafeais, & Parisot 2018; Yi et al. 2018). However, these approaches do not 
fully integrate reasoning and learning to inform and guide each other; or 
use the rich commonsense domain knowledge for reliable and efficient 
reasoning, learning, and the generation of explanations. 

This chapter focuses on integrated robot systems that combine 
knowledge-based and data-driven methods to reason with and learn from 
incomplete commonsense domain knowledge and observations. We 
describe an architecture that enables such a robot to generate relational 
descriptions of its decisions and beliefs in response to different kinds of 
questions. This architecture builds on our previous refinement-based 
architecture that represents and reasons at two coupled resolutions 
(Sridharan et al. 2019). It implements a theory of explanations (Sridharan 
& Meadows 2019), and leverages the interplay between knowledge-based 
reasoning and data-driven learning (Sridharan & Mota 2023) to enable the 
functional capabilities of explainable agency (Langley et al. 2017). 

ARCHITECTURE DESCRIPTION 
Our architecture encodes the principle of step-wise iterative refinement. It 
is based on tightly coupled transition diagrams at different resolutions. 
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These transition diagrams are described using an action language ALd 

(Gelfond & Inclezan 2013), which has a sorted signature with statics, 
fluents, and actions, and supports causal laws, state constraints, and 
executability conditions; the fluents can be non-Boolean and axioms can 
be non-deterministic. The architecture may be viewed as a logician, stat-
istician, and an explorer working together, as shown in Figure 3.2. For ease 
of understanding, we will limit our discussion of the architecture to two 
resolutions. For any given goal, the logician performs non-monotonic 
logical reasoning at the coarse resolution based on commonsense domain 
knowledge to provide a sequence of abstract actions. Each abstract tran-
sition is implemented by the statistician as a sequence of finer-granularity 
actions, incorporating probabilistic models of uncertainty (e.g., in per-
ception) and communicating the outcomes to the logician. In addition, the 
explorer revises the existing knowledge (e.g., of action capabilities) when 
needed (e.g., in response to unexpected action outcomes). The interplay 
between the architecture’s components enables the desired functional 
capabilities of explainable agency, with the robot providing relational 
descriptions of its decisions and beliefs at the desired resolution in 
response to queries from a human. We will use the following example to 
describe the architecture’s components. 

FIGURE 3.2 Our architecture leverages strengths of declarative programming, 
probabilistic reasoning, and interactive learning to represent, reason, and learn 
at different resolutions.    
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Example: Assistive Robotics (AR) Domain. A robot: (i) estimates 
occlusion of scene objects and stability of object structures, and com-
putes and executes plans to achieve desired object configurations; and (ii) 
provides on-demand relational descriptions of decisions and evolution of 
beliefs. There is uncertainty in the robot’s perception and actuation; 
probabilistic algorithms are used for visual object recognition and to 
move objects. The robot has some prior domain knowledge, which 
includes object attributes such as shape and surface; spatial relations 
between objects (e.g., above, below, behind, in); some domain attributes; 
and some axioms governing domain dynamics such as:  

• Placing an object on top of an object with an irregular surface 
results in an unstable object configuration.  

• Removing all objects blocking the view of an object’s frontal face 
causes this object to be not occluded.  

• An object below another object cannot be picked up. 

This knowledge may need to be revised over time; some axioms and the 
value of some attributes may be unknown or may change, as described in 
Section 3.2. 

Knowledge Representation and Reasoning 

The coarse resolution domain description comprises system descrip-
tion Dc of transition diagram τc, a collection of ALd statements, and 
history Hc. Subscript “c” refers to the coarse resolution. Dc comprises 
sorted signature Σc and axioms. For the AR domain, Σc includes basic 
sorts such as place, thing, robot, person, object, cup, surface, and step; 
statics such as next_to(place, place) and obj_surface(obj, surface); flu-
ents such as loc(thing, place), obj_rel(relation, object, object), and in_-
hand(entity, object); and actions such as move(robot, place) and give 
(robot, object, person). Axioms in Dc (for the AR domain) are state-
ments such as: 

move(rob1, P) causes loc(rob1, P) 
putdown(rob1, Ob1, Ob2) causes obj_rel(on, Ob1, Ob2) 
loc(O, P) if loc(rob1, P), in_hand(rob1, O) 
impossible give(rob1, O, P) if loc(rob1, L1)!= loc(P, L2)  
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which correspond to two causal laws, a state constraint, and an execut-
ability condition, respectively. We also include axioms in Dc to encode 
theories of intention and affordance. The history Hc of a dynamic domain 
is typically a record of fluents observed to be true or false at a particular 
time step, obs(fluent, boolean, step); and of actions that “happened,” i.e., 
were executed at a particular time step, hpd(action, step). This definition is 
expanded to represent prioritized defaults describing the values of fluents 
in the initial state, e.g., “books are usually in the library; if not there, they 
are in the office,” along with exceptions (if any). 

To reason with domain knowledge, we construct a program Π(Dc, Hc) 
in CR-Prolog, a variant of Answer Set Prolog (ASP) that incorporates 
consistency restoring (CR) rules (Gebser et al. 2012). Π includes Σc and 
axioms of Dc, inertia axioms, reality checks, closed world assumptions for 
actions, and observations, actions, and defaults from Hc. Π also includes 
statements encoding information extracted from sensor inputs (e.g., spa-
tial relations, object attributes) with sufficiently high probability. ASP is 
based on stable model semantics, and supports default negation, epistemic 
disjunction, and non-monotonic logical reasoning. Unlike “¬a” that states 
a is believed to be false, “not a” only implies a is not believed to be true, i.e., 
each literal can be true, false or unknown. An answer set of Π represents 
the beliefs of the robot associated with Π, with the literals at each time step 
representing the corresponding state. The non-monotonic logical rea-
soning ability enables recovery from incorrect inferences obtained due to 
reasoning with incomplete knowledge or noisy sensor inputs. Entailment, 
planning, and diagnostics can be reduced to computing answer sets of Π; 
we do so using the SPARC system (Balai, Gelfond, & Zhang 2013). 

For any given goal, reasoning at the coarse-resolution provides a plan of 
abstract actions. To implement the abstract actions, we define a fine- 
resolution system description Df as a refinement of Dc such that any given 
abstract transition between two states in τc has a path in τf between a 
refinement of the two states. In the AR domain, a robot would (for ex-
ample) reason about grid cells in rooms and parts of objects, attributes 
previously abstracted away by the designer. To support interaction with 
the physical world, we extend Df by introducing a theory of observation 
that encodes knowledge-producing actions and fluents, and non- 
determinism (Dfr). Since reasoning with Dfr can become computationally 
intractable for complex domains, we enable the robot to automatically 
zoom to Dfr(T), the part of Dfr relevant to any given abstract transition T. 
Reasoning with Dfr(T) provides a sequence of concrete actions that 
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implement T, incorporating relevant probabilistic models of uncertainty 
(e.g., in perception or in the outcomes of executed actions) as appropriate. 
Fine-resolution outcomes with a high probability are committed to the 
fine-resolution history, and the corresponding coarse-resolution outcomes 
are added to Hc. For a more detailed description of refinement and 
zooming, and the use of such a knowledge representation and reasoning 
architecture on physical robots, please see (Sridharan et al. 2019). For an 
extension of this architecture to encode an adaptive theory of intentions in 
the coarse resolution, please see Gomez, Sridharan, & Riley (2021). 

Interactive Learning 

Reasoning with incomplete knowledge (e.g., to fetch target objects or 
estimate the occlusion of objects) can result in incorrect outcomes. The 
state of the art for learning previously unknown actions, axioms, or 
object models is based on “end-to-end” data-driven methods that require 
many labeled examples. It is difficult to provide such examples in 
complex domains or to interpret the decisions made. Figure 3.3 shows 
the components for learning and explanation generation in our 

FIGURE 3.3 Non-monotonic logical reasoning guides interactive (e.g., deep, 
inductive) learning of previously unknown domain knowledge to complete 
desired estimation tasks, and to provide relational descriptions of knowledge 
and beliefs.    
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architecture, where red (green) arrows denote inputs (outputs) from (to) 
humans. The robot first attempts to use ASP-based logical reasoning to 
complete the desired tasks (e.g., planning, estimation). If this reasoning 
does not provide any outcome (e.g., no plan), or provides an incorrect 
outcome (e.g., incorrect stability label), it is considered to indicate that 
the knowledge is incomplete or incorrect, triggering learning. The 
learning component’s implementation is described below in the context 
of the estimation tasks. 

Classification Block (CNNs) 
The main sensor inputs are RGB/D images that are processed to extract 
spatial relations and other attributes that are encoded as ASP statements. 
The extraction of spatial relations is based on our prior work that in-
crementally revises the physical world grounding of prepositional words 
(e.g., “in,” “above”) representing these relations (Mota & Sridharan 2018). 
For any given image, the robot tries to estimate the occlusion and stability 
of objects using ASP-based reasoning. If an answer is not found, or an 
incorrect answer is found (for training images), the robot automatically 
extracts relevant regions of interest (ROIs) from the image. Parameters of 
existing convolutional neural network (CNN) architectures (e.g., LeNet 
(LeCun et al. 1998), AlexNet (Krizhevsky, Sutskever, & Hinton 2012)) are 
tuned to map information from each ROI to the corresponding labels. The 
robot automatically identifies and reasons with the relevant axioms and 
relations to determine the ROIs; the notion of relevance is also expanded 
to construct explanations efficiently in Section 3.3. 

Decision Tree induction 
The images used to train the CNNs are considered to contain infor-
mation about missing or incorrect constraints related to the estimation 
tasks (occlusion, stability). Image features and spatial relations extracted 
from ROIs in each such image, and the known occlusion and stability 
labels (during training), are used to incrementally learn a decision tree 
summarizing the corresponding state transitions. This process repeatedly 
splits nodes based on unused attributes likely to provide the highest 
entropy reduction. Trees are learned separately for different actions, and 
branches of a tree that satisfy minimal thresholds on purity at the leaf 
and on the level of support from labeled examples, are used to construct 
candidate constraints. Candidates without a minimal level of support on 
unseen examples are removed and similar axioms are merged. Specifically, 
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axioms with the same head and some overlap in the body are grouped. 
Each combination of one axiom from each group is encoded in an ASP 
program along with axioms that are not in any group. This program is 
used to classify ten labeled scenes, retaining only axioms in the program 
that provides the highest accuracy on these scenes. Also, axioms that cease 
to be useful over time are removed by associating each axiom with a 
strength that decays exponentially if it is not used or learned again. 

In addition to constraints, the robot learns previously unknown causal 
laws and executability conditions if there is a mismatch between the 
observed state after action execution and the expected state based on rea-
soning with existing knowledge. Any expected but unobserved fluent literal 
indicates missing executability condition(s); any observed unexpected 
fluent literal suggests missing causal law(s). Examples of learned axioms 
include: 

¬stable(A) ← obj_relation(above, A, B), obj_surface(B, irregular) 
¬pickup(rob1, Ob1) ← in_hand(rob1, Ob2)  

which correspond to a state constraint (“an object placed on another 
with an irregular surface is unstable”) and an executability condition 
(“the robot cannot pick up an object if it is already holding another 
object”), respectively. For more details, see Sridharan & Mota (2023). 

Although we do not describe it in detail in this chapter, our architecture 
includes a similar learning scheme for planning and diagnostics tasks. This 
scheme learns actions and axioms from human descriptions of desired 
behavior, or observations obtained through active exploration or reactive 
action execution in response to unexpected outcomes. Reasoning auto-
matically limits this learning to states, actions, and observations relevant to 
task(s) and goal(s) at hand; see Sridharan & Meadows (2018) for more detail. 

Explanation Generation 

We consider an “explanation” to be a relational description of the robot’s 
decisions or beliefs. This component is based on a theory of explanations 
that maps the postulates of explainable agency to: (i) claims about rep-
resenting, reasoning with, and learning knowledge to support explana-
tions; (ii) a characterization of explanations along axes based on 
abstraction, specificity, and verbosity; and (iii) a methodology for con-
structing explanations (Sridharan & Meadows 2019). This component is 
described below. 
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Interaction Interface 
Human interaction with our architecture is through speech or text. 
Existing software and a controlled vocabulary are used to parse human 
verbal input and to convert text to verbal response. Specifically, human 
verbal input is transcribed into text from the controlled vocabulary. This 
(or input) text is labeled using a part-of-speech (POS) tagger, and nor-
malized with the lemma list (Someya 1998) and related synonyms and 
antonyms from WordNet (Miller 1995). The processed text helps iden-
tify the type of request: a desired goal or a question about decisions, 
beliefs, or hypothetical situations. Any goal is sent to the ASP program for 
planning; the robot executes the plan, performing diagnostics and re-
planning as needed, until the goal is achieved. For any question, the 
“Program Analyzer” considers the domain knowledge, inferred beliefs, 
and processed human input to automatically identify relevant axioms and 
literals. These literals are inserted into generic response templates based on 
the controlled vocabulary, resulting in (textual) descriptions that make 
contact with human concepts such as beliefs and goals, which are con-
verted to synthetic speech if needed. Whenever the posed query or request 
is ambiguous, the robot constructs and poses queries to remove the 
ambiguity. Some examples of such interactions are provided in Section 4.2. 

Mental Simulations 
To explain the evolution of a particular belief or the (non)selection of a 
particular action at a particular time step, our architecture includes the 
ability to infer the associated sequence of beliefs and axioms. This ability 
is used by the “Program Analyzer” (below) to construct explanations. We 
adapt proof trees, which have been used to explain observations in the 
context of classical first-order logic statements (Ferrand, Lessaint, & 
Tessier 2006), to our formulation based on non-monotonic logic using 
the following methodology:  

1. Select axioms with the target belief or action in the head.  

2. Ground literals in the body of each selected axiom. Check if they 
are supported by the current answer set.  

3. Create a new branch in a proof tree (with the target belief or action 
as the root) for each selected axiom supported by the answer set, 
and store the axiom and the related supporting ground literals in 
suitable nodes. 
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4. Repeats Steps 1–3 with the supporting ground literals in Step 3 as 
target beliefs in Step 1, until all branches reach a leaf node without 
any further supporting axioms. 

Paths from the root to the leaves in these trees provide candidate ex-
planations. If multiple paths exist, one of the shortest branches is selected 
and used to construct answers—see (Mota, Sridharan, & Leonardis 2021) 
for examples. 

Program Analyzer 
Algorithm 1 describes the approach for automatically identifying and 
reasoning with the relevant information to construct relational descrip-
tions in response to questions or requests. It does so in the context of 
four types of explanatory requests or questions. The first three types were 
introduced in prior work as questions to be considered by any ex-
plainable planning system (Fox, Long, & Magazzeni 2017), while the 
fourth type considers the evolution of beliefs. 

Algorithm 1: (Program Analyzer) Answer query 

Input: Literal of input question; Π(D, H); answer templates. 
Output: Answer and answer Literals. 
// Compute answer set 

1 AS = AnswerSet(Π) 
2 if question = plan description then  

// Retrieve actions from answer set 
3 answer literals = Retrieve(AS, actions) 
4 else if question = “why action X at step I?” then  

// Extract actions after step I 
5 next actions = Retrieve(AS, actions for step > I)  

// Extract axioms influencing these actions 
6 relevant axioms = Retrieve(Π, head = ¬ next actions)  

// Extract relevant literals from Answer Set 
7 relevant literals = Retrieve(AS, Body(relevant axioms)  

∈ I ∧ ∉ I + 1)  
// Output literals 

8 answer literals = pair(relevant literals, next actions) 
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9 else if question = “why not action X at step I?” then  
// Extract axioms relevant to action 

10 relevant axioms = Retrieve(Π, head = ¬ occurs(X))  
// Extract relevant literals from Answer Set 

11 answer literals = Retrieve(AS, Body(relevant axioms)  
∈ I∧ ∉ I + 1) 

12 else if question = “why belief Y at step I?” then  
// Extract axioms influencing this belief 

13 relevant axioms = Retrieve(Π, head = Y)  
// Extract body of axioms 

14 answer literals = Recursive Examine(AS, Body(relevant axioms)) 
15 Construct_Answer(answer literals, answer templates)   

1. Plan description. When asked to describe a particular plan, the 
robot parses the related answer set(s) to extract a sequence of actions 
of the form occurs(action1, step1), …, occurs(actionN, stepN) (line 
3, Algorithm 1). These actions are used to construct the response. 

2. Action justification: Why action X at step I? To justify the ex-
ecution of any particular action at step I: 

a. For each action A that occurred after time step I, the robot ex-
amines relevant executability condition(s) and identifies literal(s) 
that would prevent A’s execution (lines 5–7). For the goal of 
placing the orange block on the table in Figure 3.1 (right), assume 
that the actions executed include occurs(pickup(robot, blue 
block), 0), occurs(putdown(robot, blue block), 1), and occurs 
(pickup(robot, orange block), 2). If the focus is on the first pickup 
action, an executability condition related to the second pickup 
action: ¬occurs(pickup(robot, A), I):- holds(obj_relation(below, 
A, B), I) is ground in the scene to obtain obj_relation(below, 
orange block, blue block) as a literal of interest.  

b. If any identified literal is in the answer set at the time step of interest 
(0 in current example), and is absent or negated in the next step, it 
is a reason for executing the action (X) being considered (line 7).  

c. The condition modified by the execution of the action of 
interest (X) is paired with the subsequent action (A) to con-
struct the answer (line 8). For instance, the question “Why did 
you pick up the blue block at time step 0?”, receives the answer 
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“I had to pick up the orange block. It was located below the blue 
block”.   

A similar approach is used to justify the selection of any particular 
action in a plan that has not been executed.  

3. Hypothetical actions: Why not action X at step I? For questions 
about actions not selected for execution:  

a. The robot identifies executability conditions with action X in the 
head, i.e., conditions that (if true) would prevent X from being 
included in plans (line 10).  

b. For each identified executability condition, the robot examines 
whether literals in the body are satisfied in the corresponding 
answer set (line 11). If so, these literals are used to construct the 
answer.   

Suppose action putdown(robot, blue block, table) occurred at step 1 
in Figure 3.1 (right). For the question “Why did you not put the blue 
block on the tennis ball at step 1?”, the following executability 
condition is identified: ¬occurs(putdown(robot, A, B), I):- has_sur-
face(B, irregular), which implies that an object cannot be placed on 
another object with an irregular surface. The answer set indicates 
that the tennis ball has an irregular surface. The robot answers 
“Because the tennis ball has an irregular surface”. This process uses 
the mental simulations approach described above.  

4. Belief query: Why belief Y at step I? To explain any particular 
belief, the robot uses the mental simulations approach to identify 
the supporting axioms and relevant literals to construct the answer. 
For example, to explain the belief that object ob1 is unstable in step 
I, the robot finds the support axiom: ¬holds(stable(ob 1), I) ← 
holds(small_base(ob 1), I). 

Assume that the current beliefs include that ob1 has a small base. 
Searching for why ob1 is believed to have a small base identifies the 
axiom: 

holds(small_base(ob1), I):- holds(relation(below, ob2, ob1), I), 
has_size(ob2, small), 
has size(ob1, big). 
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Asking “why do you believe object ob1 is unstable at step I?” would yield 
the answer “Because object ob2 is below object ob1, ob2 is small, and ob1 

is big”. 

Disambiguation 
Questions or requests posed by humans may be ambiguous in terms of 
the objects or the time step that they reference. Our architecture includes 
a method to automatically construct questions to address such ambi-
guities. Inspired by findings in psychology and cognitive science 
(Friedman 1974; Read & Marcus-Newhall 1993), this method enables the 
robot to construct queries comprising the set of object attributes most 
likely to address the ambiguity. The method is based on three heuristic 
rules: (i) select attributes that match with a minimum number of 
ambiguous objects for the query and scene under consideration; (ii) since 
queries with many attributes are more likely to confuse a human, select 
questions with the minimum number of attributes; (iii) assign higher 
priority to attributes that are preferred by humans (if known) and are 
easy for the robot to detect. We only summarize this capability here to 
provide a complete description of the architecture. For more details 
about the heuristic rules and their use to construct disambiguation 
queries, see (Mota & Sridharan 2021). 

EXPERIMENTAL RESULTS 
We evaluated the ability of our system to learn axioms and construct 
relational descriptions of decisions and beliefs in response to different 
types of questions. Section 4.1 describes the experimental setup, followed 
by execution traces in Section 4.2 and quantitative results in Section 4.3. 

Experimental Setup 

We experimentally evaluated the following hypotheses: 

H1: Our architecture supports reliable learning of unknown axioms, 
improving the quality of plans generated; and 

H2: Leveraging the links between reasoning and learning improves the 
accuracy of the explanatory descriptions. 

Experimental trials considered images from the robot’s camera and 
simulated images. Real world images contained 5−7 objects of different 
colors, textures, shapes, and sizes in different locations of the AR domain. 
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The objects included cubes (blocks), a pig, a bell pepper, a tennis ball, cups, 
an apple, an orange, and a pot. These objects were either stacked on each 
other or spread on a table in different locations—see Figure 3.1 (left). A 
total of 40 configurations were created, each with five different goals for 
planning and four different questions for each plan (one for each question 
type), resulting in a total of 200 plans and 800 questions. We used a Baxter 
robot to manipulate objects on a tabletop. 

Since it is difficult to explore a wide range of objects and scenes with 
physical robots, we also used a real-time physics engine (Bullet) to create 
40 simulated images, each with 7−9 objects (3−5 stacked and the 
remaining on a flat surface). Objects included cylinders, spheres, cubes, a 
duck, and five household objects from the Yale-CMU-Berkeley dataset 
(apple, pitcher, mustard bottle, mug, and box of crackers). We once 
again considered five different goals for planning and four different 
questions (one for each type) for each plan, resulting in the same number 
of plans (200) and questions (800) as with the real-world data. To explore 
the interplay between reasoning and learning, we focused on the effect of 
learned knowledge on planning and constructing explanations. 
Specifically, we prepared a knowledge base in which some axioms gov-
erning the domain dynamics were missing. We then ran experiments in 
which our architecture learned the missing axioms over time, as 
described in Section 3.2, and used them for planning and explanation 
generation. The baseline for comparison in these experiments included 
the reasoning and explanation generation components of our architec-
ture but did not support any learning (i.e., it used only the initial 
knowledge base with some axioms missing). During planning, the per-
formance measures included the number of optimal, suboptimal, and 
incorrect plans, and the planning time. An “optimal” plan is a minimal 
plan; the quality of a plan was measured in terms of the ability to 
compute plans that require the least number of actions to achieve the 
goal. The quality of an explanation was measured in terms of precision 
and recall of the literals in the answer provided by our architecture in 
comparison with the expected (“ground truth”) response provided 
manually (by the designer). Any claims of statistical significance were 
based on a paired t-test. 

Note that the experimental setup described above does not include 
any studies with human subjects evaluating the quality of the explana-
tions provided by our architecture. Such studies provide important 
feedback that can be used to evaluate and improve the architecture, but 
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we leave such studies for future work. Instead, we present some execu-
tion traces describing the operation of our architecture. followed by a 
discussion of quantitative experimental results. 

Execution Traces 

The following execution traces demonstrate the capabilities of our 
architecture. 

Execution Example 1: [Planning and learning] 
The robot in the AR domain is in the study and it is asked to bring a cup 
to the study, where the goal state contains: loc(C, study) and not in_hand 
(rob1, C), where C is a cup.  

• The computed plan of abstract actions is:   

move(rob1, kitchen), pickup(rob1, C), move(rob1, study), putdown 
(rob1, C)  

• This plan uses the default knowledge that cups are usually in the 
kitchen that is next to the study.  

• To implement each abstract transition T, the robot zooms to Df(T). 
For instance, only cells in the study and the kitchen are relevant to 
the first move action; irrelevant objects and locations are auto-
matically ignored.  

• The zoomed description is used to obtain a probabilistic policy that is 
invoked repeatedly to execute a sequence of concrete actions that 
implements the abstract action (e.g., robot is in a cell in the kitchen 
after the first move). Other actions are executed in a similar manner.  

• The robot’s attempt to pick up a cup in the kitchen failed. The 
robot observes that the cup is heavy while its arm is light. It then 
learns the following executability condition (written as a statement 
in ALd):   

impossible pickup(rob1, C) if arm(rob1, light), obj_weight(C, heavy)  

• It is also possible to learn and merge other kinds of axioms with the 
existing knowledge. 

• The robot is also able to automatically provide on-demand ex-
planations at a suitable level of abstraction. 
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Human: “Please describe the executed plan in detail.” 
Robot: “I moved to cell c2 in the kitchen. I picked the large cup by its 
handle from the counter […] I moved to cell c4 of the study. I put the 
cup down on the red table.”  

Next, consider the robot’s ability to provide explanations to different 
kinds of queries. 

Execution Example 2: [Explain plans and beliefs] 
In the scene in Figure 3.4 (left), the robot’s goal is to achieve a state in 
which the red cube is on top of the orange cube. The following interaction 
takes place after the robot has executed a plan to achieve the goal.  

• Human: “Please describe the plan.” 
Baxter: “I picked up the blue cube. I put the blue cube on the table. 
I picked up the orange cube. I put the orange cube on the table. I 
picked up the red cube. I put the red cube on the orange cube.”  

• The robot may have to justify a particular action. 
Human: “Why did you pick up the blue cube at Step 0?” 
Baxter: “Because I had to pick up the red cube, and it was below the 
blue cube.” 

This answer is also used to automatically highlight the relevant 
image regions that influenced this answer, providing additional 
transparency—see Figure 3.4 (left).  

• The robot may have to justify the choice of actions. 

FIGURE 3.4 (Left) relation between blue cube and red cube is important for the 
explanation in Execution Example 2; (Right) simulated image used in Execution 
Example 3.    
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Human: “Why did you not put down the orange cube on the blue 
cube?” 
Baxter: “Because the blue cube is small.” 

In the absence of any reference to a particular time step, the 
robot considers the single instance (in the executed plan) of putting 
the orange cube on another cube or surface. The answer is based on 
learned default knowledge that any structure with a large object on 
a small object is typically unstable.  

• The human may ask the robot to justify beliefs. 
Human: “Why did you believe that the red cube was below the blue 
cube in the initial state?” 
Baxter: “Because I observed the red cube below the blue cube in 
Step 0.”  

• The robot can run mental simulations to answer counterfactual 
(i.e., hypothetical) questions. 
Human: “What will happen if the ball is rolled?” 
Baxter: “The structure of blocks will be unstable.”  

Execution Example 3: [Disambiguation] 
Consider the simulated scenario in Figure 3.4 (right).  

• Human: “Move the yellow object onto the green cube.” 
There is ambiguity in the reference to a yellow object. Since the 
yellow cube is already on the green cube, and the yellow cylinder 
is below other objects, the robot poses the following clarification 
question. 
Robot: “Should I move the yellow duck on top of the green cube?” 
Human: “No. Please move the yellow cylinder on top of the green 
cube.”  

• The robot computes the plan: pick up the green mug; put the green 
mug on the table; pick up the red cube; put the red cube on the table; 
pick up the yellow cube; put the yellow cube on the table; pick up the 
yellow cylinder; put the yellow cylinder on the green cube.  

• Note that there are other equally valid plans (e.g., one that moves 
the yellow cube to the table first). 
Human: “Why do you want to pick up the green mug?” 

Reasoning and Learning for Explainable Agency in Robotics ▪ 61 



Robot: “I have to place the yellow cylinder on the green cube, and 
the yellow cylinder is below the green mug.” 

The robot can also trace the evolution of particular beliefs and the 
application of relevant axioms to answer questions after plan execution.  

• Human: “Why did you not pick up red cube at Step 1?” 
Robot: “Because the red cube is below the green mug.” 
Human: “Why did you move the yellow cube onto the table?” 
Robot: “I had to put the yellow cylinder on top of the green cube. 
The green cube was below the yellow cube.” 

Empirical Results 

To evaluate H1, we removed five axioms (two causal laws and three 
executability conditions) from the robot’s knowledge, and ran the 
learning algorithm 20 times. We measured the precision and recall of 
learning these axioms in each run. Table 3.1 summarizes the results. 
Each run was terminated if the robot executed a number of actions 
without detecting any inconsistency, or if the number of decision trees 
constructed exceeded a number. The row labeled “Strict” summarizes 
results when any variation in the target axiom (i.e., axioms with addi-
tional irrelevant literals) was considered to be incorrect. One example of 
such an axiom in which the second literal in the body is irrelevant is 
shown below. 

¬holds(in_hand(R1, O1), I + 1):- occurs(putdown(R1, O1, O2), 
I), ¬holds(in_hand(R1, O5), I).  

The row labeled “Relaxed” summarizes results when over-specifications 
were not counted as errors. High precision and recall support hypoth-
esis H1. 

TABLE 3.1 Precision and Recall for Learning 
Previously Unknown Axioms. Errors under 
“Strict” Mainly Correspond to the Inclusion of 
Additional Irrelevant Literals     

Missing Axioms Precision Recall  

Strict 69% 78% 
Relaxed 96% 95%     
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The next set of experiments further evaluated H1.  

1. For the 40 initial object configurations (Section 4.1), information 
extracted from the images corresponding to top and front views 
(i.e., from the camera on each gripper) was encoded as the initial 
state in the ASP program.  

2. For each initial state, five goals were randomly encoded (one at a time) 
in the ASP program. The robot reasoned with the existing knowledge 
to create plans for these 200 combinations (40 initial states, five goals).  

3. Plans were evaluated based on the number of optimal, sub-optimal, 
and incorrect plans, and planning time. Trials were repeated with 
and without the learned axioms. 

Recall that our architecture reasons with a knowledge base that includes 
the learned axioms whereas the knowledge base used by the baseline does 
not include these axioms. We conducted paired trials with and without the 
learned axioms in the ASP program used for reasoning. The initial con-
ditions and goal were identical in each paired trial, but differed between 
paired trials. We expressed the number of plans and the planning time 
with the learned axioms as a fraction of the corresponding values obtained 
by reasoning without the learned axioms. The average of these fractions 
over all the trials is reported in Table 3.2. We also computed the number 
of optimal, sub-optimal, and incorrect plans in each trial as a fraction of 
the total number of plans; we did this with and without the learned axioms 
and the average over all trials is summarized in Table 3.3. 

These results indicate that for images of real scenes, reasoning with 
the learned axioms reduced the search space, resulting in a smaller 
number of plans and a reduced planning time. The use of the learned 

TABLE 3.2 Number of Plans and Planning Time After 
Including the Learned Axioms for Reasoning (Our 
Architecture), Expressed as a Fraction of the Values Without 
Including the Learned Axioms (Baseline)     

Measures Ratio (with/without)  

Real Scenes Simulated Scenes  

Number of steps  1.15  1.23 
Number of plans  0.81  1.08 
Planning time  0.96  1.02 
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axioms did not make any significant difference with the simulated scenes. 
This is understandable because the simulated images had more objects 
(than real scenes) with several of them being small objects. This 
increased the number of plans to achieve any given goal. Also, when the 
robot used the learned axioms for reasoning, it reduced the number of 
sub-optimal plans and eliminated all incorrect plans; almost every sub- 
optimal plan corresponded to a goal that could not be achieved without 
creating an exception to a default. Without the learned axioms, a larger 
fraction of the plans were sub-optimal or incorrect, particularly for 
simulated scenes with multiple objects. These results further support H1. 

The next set of experiments evaluated H2:  

1. For each of the 200 combinations from the first set of experiments 
with real-world data, we considered knowledge bases with and 
without the learned axioms and asked the robot to compute plans 
to achieve the goals. 

2. The robot had to describe the plan and justify the choice of a par-
ticular action (chosen randomly) in the plan. Then, one parameter of 
the chosen action was changed randomly to ask why this new action 
could not be applied. Finally, a belief related to the previous two 
questions had to be justified—see Execution Example 2. 

3. The literals present in the answers were compared against the lit-
erals in the “ground truth” response, with the average precision and 
recall scores shown in Table 3.4.  

4. We also performed these experiments with simulated images, with 
the results summarized in Table 3.5. 

TABLE 3.3 Number of Optimal, Sub-Optimal, and Incorrect Plans Expressed 
as a Fraction of the Total Number of Plans. Reasoning With the Learned Axioms 
(Our Architecture) Improves Performance Compared With the Baseline that 
Reasons Without the Learned Axioms       

Plans Real Scenes Simulated Scenes 

Without With Without With  

Optimal  0.4  0.9  0.14  0.3 
Sub-optimal  0.11  0.1  0.46  0.7 
Incorrect  0.49  0  0.4  0     
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Tables 3.4 and 3.5 show that for all but one type of question (i.e., 
counterfactual) posed about real world scenes, the precision and recall of 
relevant literals (for constructing explanations) were higher when the 
learned axioms were used for reasoning compared with the baseline 
(which did not use these learned axioms). The improvement in per-
formance was particularly pronounced when the robot had to answer 
certain types of questions about certain types of scenes (e.g., justification 
of action choices). For certain types of questions (e.g., about specific 
beliefs), the precision and recall rates were reasonable even when the 
learned axioms were not included. This is because not all the learned 
axioms were needed to answer each question. When the learned axioms 
were used for reasoning, errors were rare and corresponded to additional 
literals being included in the explanation (i.e., over-specified explana-
tions). Enabling reasoning and learning to inform each other thus 
resulted in more accurate relational descriptions of decisions and beliefs 
in response to different types of questions. These results support H2. 

TABLE 3.4 (Real Scenes) Precision and Recall of Retrieving Relevant Literals for 
Constructing Answers to Questions With and Without Using the Learned Axioms 
for Reasoning. Using the Learned Axioms Significantly Improves the Ability to 
Provide Accurate Explanations in All but One Type of Query       

Query Type Precision Recall 

Without With Without With  

Plan description 78.5% 100% 67.5% 100% 
Why X? 76.3% 95.3% 66.8% 95.3% 
Why not X? 96.6% 96.6% 64% 100% 
Why belief Y? 96.7% 99% 95.6% 99.2%     

TABLE 3.5 (Simulated Scenes) Precision and Recall of Retrieving Relevant Literals 
for Constructing Answers to Questions With and Without Reasoning with Learned 
Axioms. Using the Learned Axioms Significantly Improves the Ability to Provide 
Accurate Explanations for All Four Types of Queries       

Query Type Precision Recall 

Without With Without With  

Plan description 70.8% 100% 58% 100% 
Why X? 65.6% 93% 57% 93% 
Why not X? 90.5% 96.4% 65.2% 100% 
Why belief Y? 92.7% 98.4% 90.3% 99.2%     
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CONCLUSIONS 
The architecture described in this paper is a step towards greater 
transparency in reasoning and learning for integrated robot systems. The 
architecture encodes the principle of stepwise refinement to leverage the 
complementary strengths of non-monotonic logical reasoning with com-
monsense domain knowledge, data-driven learning from a limited set of 
examples, and the inductive learning of previously unknown axioms 
governing domain dynamics. After the designer provides the domain- 
specific information, then planning, diagnostics, and execution are auto-
mated. In addition, the interplay between representation, reasoning, and 
learning is used to embed the principles of explainable agency, enabling a 
robot to reliably and efficiently construct and provide on-demand rela-
tional descriptions of its decisions and beliefs in response to different types 
of questions. Experimental results described in this chapter, and those 
described in other related publications (Sridharan & Meadows 2019; Mota, 
Sridharan, & Leonardis 2021), demonstrate the smooth transfer of control 
and relevant knowledge between components of the architecture, confi-
dence in the correctness of the robot’s behavior, and the applicability of the 
underlying methodology to different domains. 

Our architecture opens up multiple directions of future work. For 
example, we will further explore how the interplay between representa-
tion, reasoning, and learning can be leveraged to support explainable 
agency in one or more robots assisting humans in dynamic domains. In 
addition, we will conduct experimental studies with human participants 
evaluating the quality of our explanations, and use the feedback from 
these participants to make revisions of our architecture and algorithms. 
Furthermore, we will investigate whether our architecture can be ex-
tended to consider social norms while generating explanations of the 
decisions and beliefs of a robot assisting humans in complex domains. 
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INTRODUCTION, BACKGROUND, AND GOALS 
AI research on explanation has a long history that dates at least as far 
back as the rise of expert systems in the 1960s, e.g., DENDRAL (Lindsay 
et al. 1993). Mueller et al. (2019) provide a recent and comprehensive 
review of this research. One of the key ideas to emerge out of this early 
research was the importance of the explicit representation of knowledge 
of the design of an AI system (Chandrasekaran & Swartout 1991;  
Chandrasekaran & Tanner 1989): An explicit representation of the 
design knowledge of an AI system enables the generation of explanations 
of the tasks it accomplishes, the domain knowledge it uses, as well as the 
methods that use the knowledge to achieve the tasks. This raised the 
question of how this design knowledge can be identified, acquired, 
represented, stored, accessed, and used for generating explanations. One 
possible answer was to endow the AI agent with meta-knowledge of its 
own design (e.g., Goel et al. 1996) and enable the agent to generate ex-
planations through introspection of its meta-knowledge. However, much 
of AI research on expert systems collapsed by the mid-1990s. 
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Starting in the 1970s, AI research on explanation also encompassed 
intelligent tutoring systems (Buchanan 2006). Indeed, in the 1990s, given 
the collapse of AI research on expert systems, the focus of AI research on 
explanation shifted to intelligent tutoring systems. Unlike the design 
stance towards explanations adopted by the research on expert systems, 
research on tutoring systems took a strongly human-centered perspec-
tive. This view emphasized the users and the uses of explanations (e.g.,  
Woolf 2007). For example, Graesser, Baggett, and Williams (1996) 
describe question-answering as a basic mechanism for generating ex-
planations in intelligent tutoring systems, where the answers to the 
questions meet the requirements and expectations of the human users, 
and Aleven and Koedinger (2002) present explanations of reasoning as a 
source of new knowledge and learning for the users. However, much of 
this work perhaps lay a little outside mainstream AI research. 

Over the last several years, explanation has again entered mainstream 
AI research (e.g., Gunning & Aha 2019). This is in part because of ad-
vances in machine learning, such as deep learning, that have refocused 
attention on the need for interpretability and explainability of internal 
representations and processing in AI agents in general (Gilpin et al. 2018;  
Rudin 2019). However, explanation of knowledge-based AI systems is 
also important for reasons of fairness, transparency, accountability, 
trustworthiness, and human understanding and learning. 

In this chapter, we take the two ideas from explanations in expert 
systems and tutoring systems mentioned above as our starting points for 
generating explanations in knowledge systems: (1) use of the knowledge 
of the design of an AI agent as the basis for generating explanations, and 
(2) human-centered question-answering as the basic mechanism for 
generation of explanations. They add a third idea to this mix: Given that 
most practical AI agents, for example almost all intelligent tutoring 
systems, come with a User Guide that contains knowledge about the 
domain, design and operation of the agent (Ko et al. 2011), might the 
User Guide act as a basis for generating explanations? Note that almost 
by definition, the User Guide contains information about many types of 
explanations that users want. For example, a User Guide for an AI agent 
typically contains information about the domain of the agent, the 
vocabulary for representing the domain knowledge, the tasks and sub-
tasks the agent accomplishes (what it does), the knowledge and the data 
the agent uses (its basic components), the methods in the agent that use 
the knowledge to accomplish its tasks (how the agent accomplishes its 
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tasks), as well as the operation of the agent (how to use the agent). 
However, few humans actually read the User Guide in any detail 
(Mehlenbacher et al. 2002; Novick & Ward 2006; Rettig 1991). Instead, 
most users want answers to their questions on demand, as and when 
needed. Thus, (3) we propose to use the User Guide to generate answers 
to users’ questions. 

In this chapter, we describe the use of a question-answering agent 
(called AskJill) for generating explanations about an interactive learning 
environment (named VERA) based on the latter’s Users Guide. AskJill is 
intended to automatically answer users’ questions and thereby explain 
VERA’s domain, functioning, and operation. We also present a pre-
liminary formative assessment of AskJill in VERA. 

VERA, AN INTERACTIVE LEARNING ENVIRONMENT 
The VERA project addresses the issues of availability, achievability, and 
quality of online education. Residential students in higher education 
have access to physical laboratories, where they conduct experiments and 
participate in research, thus discovering new knowledge grounded in 
empirical evidence and connecting it with their prior knowledge. Online 
learners do not have access to physical laboratories, which impairs the 
quality of their learning. Thus, we developed a Virtual Experimentation 
Research Assistant (VERA for short) for inquiry-based learning of sci-
entific knowledge (An et al. 2020; 2021): VERA helps learners build 
conceptual models of complex phenomena, evaluate them through 
simulation, and revise the models as needed. VERA’s capability of 
evaluating a model by simulation provides formative assessment on the 
model; its support for the whole cycle of model construction, evaluation, 
and revision fosters self-regulated learning. Given that residential stu-
dents have only limited access to physical laboratories, VERA is also 
useful for blended learning. VERA is available online (https://vera.cc. 
gatech.edu) for free and public use. 

For the domain of ecology, we have integrated VERA with the 
Smithsonian Institution’s Encyclopedia of Life that is available as an 
open-source library and software (EOL; Parr et al. 2016). EOL’s 
TraitBank supports ecological modeling in VERA in several ways: it 
provides (i) the ontology of conceptual relations for conceptual 
modeling, (ii) knowledge of specific relations among biological species in 
a given ecological system, and (iii) the parameters for setting up the 
simulations. Thus, in VERA, biological species are modeled using data 
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directly retrieved from EOL such as lifespan, body mass, offspring count, 
reproductive maturity, etc. Given that the space of simulation parameters 
can be very large, and a learner may not know the “right” values for the 
parameters, once the learner sets up the conceptual model using the EOL 
digital library, VERA further uses EOL’s knowledge of biological species 
to directly set initial values of the simulation parameters. The learner 
may then tweak the parameter values and experiment with them.  
Figure 4.1 illustrates the use of VERA to model the impact of a kudzu 
“bug” to moderate the impact of kudzu, an Asian invasive species, on the 
American hornbeam, a kind of tree common in the eastern half of the 
United States. In Figure 4.1(a), the learner interactively builds a con-
ceptual model, and in Figure 4.1(b) VERA illustrates the results of an 
agent-based simulation of the model. In this case, the simulation results 
show that because of the introduction of the kudzu bug, the population 
of kudzu will decline over time and the American hornbeam will survive. 

VERA uses agent-based simulations to provide formative assessment on 
the conceptual models. An AI compiler inside VERA understands enough 
of the syntax and semantics of both the conceptual models and agent- 
based simulations that it can automatically spawn the latter from the 
former. This is another example of learning assistance in VERA. This 
learning assistance enables both student scientists and citizen scientists to 
model complex phenomena without requiring expertise in the mathe-
matics or mechanics of agent-based simulations. Further, VERA’s support 
for the whole cycle of model construction, evaluation, and revision fosters 
self-regulated learning. 

In 2019, the Smithsonian Institution started providing access to VERA 
directly through the main page on its EOL website (www.eol.org). This 
means that the hundreds of thousands of EOL users across the world 
each year, including learners and teachers as well as citizen and pro-
fessional scientists, now have direct access to VERA. This also makes 
explanations of VERA’s domain, functioning, and operation critically 
important. 

USER GUIDE IN VERA 
VERA’s User Guide and table of contents are available on its website 
under the Help section. It includes a written guide describing how users 
can build and simulate ecological experiments on VERA, the tool’s ex-
pected behavior, explanations for the vocabulary terms and parameters 
users can manipulate, and screenshots showing the tool’s structure 
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Conceptual model of the relationships between species.

Simulation result when running the model.

(a)

(b)

FIGURE 4.1 (a) An example of a conceptual model (the top half of the figure) and (b) its agent-based simulation automatically 
generated by VERA (the bottom half).    
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(screens and buttons). Specifically, the 27-page User Guide covers an 
introduction to VERA, system requirements, steps to access the tool, 
general approach to build and evaluate a conceptual model of an eco-
logical system, how to use the VERA tool for modeling and simulation 
(including steps to create a project describing a phenomena and asso-
ciated models to test various hypotheses), how to use the model editor to 
manage constituent components and their relationships, how to simulate 
a model, how to edit model parameters to manipulate results, and ways 
to get help on the tool. 

The User Guide provides illustrative descriptions of the user’s work-
flow on VERA. For example, in its “Getting to know the model editor” 
section, the User Guide provides an example of a “starter” conceptual 
model of a simple ecosystem composed of wolves, sheep, and grass, to 
walk the user through the steps needed to create a the “biotic population” 
components for each of the three populations. It also shows the user how 
to define the ecological relationships (destroys, produces, consumes, 
becomes, affects, can migrate to) between each set of components (e.g., 
wolves “consume” sheep, sheep “consume” grass), and simulate the 
model. The User Guide describes how users can set up, start, stop, reset 
the simulation and export resulting graphs. The User Guide also pro-
vides example parameter values showing how parameters can be ini-
tialized (Smithsonian’s EOL supplies default values) and tuned (provides 
tuning values) to get the desired population behavior (shows resulting 
graphs for reference) in the simulation. Last but not the least, the User 
Guide provides definitions and explanations for commonly used model 
components (e.g., biotic substance, abiotic substance, and habitat) and 
their associated simulation parameters (e.g., some parameters for a biotic 
substance are lifespan, carbon biomass, minimum population, etc.). 

ASKJILL, A QUESTION-ANSWERING AGENT 
AskJill is a question-answering agent embedded in the VERA interactive 
learning environment that automatically answers users’ questions and 
thereby explains VERA’s domain, functioning, and operation. When a 
user first logs in on the VERA website, AskJill welcomes them and 
prompts them to ask their questions about VERA. The user can type 
their questions into the AskJill question-answering interface (integrated 
into the VERA website). AskJill provides accurate answers to the ques-
tions within the scope of the User Guide within a few seconds. Figure 4.2 
shows examples of question-answering in AskJill. 
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ASKJILL’S GENERATION OF AN ANSWER TO A QUESTION 
Figure 4.3 shows AskJill’s question-answering data flow diagram. After a 
user asks a question in VERA’s AskJill interface, it is sent to the AskJill 
system via a REST API. Inside AskJill, the question is parsed, and then 
sent to a 2D hybrid classification system. The system contains a two- 
stage classification process (Goel 2020). The first is a pre-trained NLP- 
based intent classification layer that classifies each new question into one of 
the existing question categories based on user intents. The second is a 
semantic processing stage that uses the intent to select a rule-based query 
template. From the 2D hybrid classification system, a query is sent to 
the VERA’s design knowledge database and a response is generated. The 
response generation system retrieves the associated query response and 

FIGURE 4.2 A couple of user questions to AskJill about VERA and AskJill’s 
answers to the questions.    
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returns an answer if its confidence value exceeds the minimum threshold 
(97%). Finally, the dialogue management system post-processes the 
resulting response, converts it into a “human-like” natural language answer, 
and sends it back to AskJill in the VERA user interface. After answering, 
AskJill prompts the user to provide feedback, asking “Was this answer 
helpful,” and stores the user feedback in her database. That feedback is 
subsequently used for retraining the agent. If AskJill is unable to answer 
a question, it can (a) gently redirect the conversation into its domain of 
competence by suggesting alternate topics associated with the questions it is 
trained on and/or (b) share relevant links to the User Guide. 

AGENT SMITH: BUILDING ASKJILL FOR VERA’S USER GUIDE 
AskJill evolved from our earlier work on the Jill Watson project (Goel & 
Polepeddi 2018) that automatically answered students’ questions on 
discussion forums of online and hybrid classes. Agent Smith is an 
interactive generator for generating Jill Watson teaching assistants for 
different classes (Goel 2020; Goel, Sikka, & Gregori 2021): it combines 
knowledge-based AI, supervised machine learning, and human-in-the- 
loop machine teaching for training a Jill Watson assistant for a new class. 
Since AskJill for VERA’s User Guide has the same architecture and al-
gorithms as the original Jill Watson for class syllabi, we were able to 
reuse the Agent Smith generator to build the AskJill for VERA. Similar to 
previous Jill Watson applications, Smith builds a semantic memory for 
VERA’s vocabulary, system requirements, structure, and tool behavior. It 
also generates a knowledge base consisting of user intents, keywords, and 

VERA
Knowledge

Base

VERA User
Interface

FIGURE 4.3 AskJill question-answering data flow diagram.    
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associated answers. Agent Smith then uses supervised learning to train a 
classifier to generate an AskJill for VERA. Reusing the Agent Smith 
technology allows us to train, retrain, and generate AskJill agents based 
on VERA’s User Guide efficiently and easily. AskJill for VERA is en-
coded in the form of unique question templates related to goals, getting 
started, definitions, and how-to pointers, simulation parameter default 
values, and units. 

While the rest of the technology from Jill Watson TA (teaching 
assistant) is reused, Agent Smith utilizes a brand-new set of template 
questions as well as VERA design knowledge base. A new set of template 
questions is needed because users pose different related questions (and 
underlying intents) to AskJill in VERA as compared to course related 
questions in Jill Watson TA. Similarly, a new knowledge base is needed 
because the AskJill agent for VERA is based on the User Guide, while the 
Jill Watson agent is based on course syllabus and schedule. Figure 4.4 

FIGURE 4.4 Some examples of Agent Smith Question Templates for VERA 
Q&A AskJill Agent.    
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shows an example of the question templates used for training AskJill in 
VERA. Agent Smith projects the templates onto the VERA ontology and 
generates the training dataset. The AskJill agent uses the trained model 
for run-time question answering. Over time, as the authors collect user 
feedback and analyze missed questions, they can expand the training 
dataset and retrain AskJill enabling it to answer more and more ques-
tions. As a by-product of developing, testing, and training the AskJill 
Q&A agent, we identified definitions and parameters that were initially 
missing in the User Guide. We have since updated the User Guide to 
include those missed aspects. 

EVALUATION OF ASKJILL IN VERA 
We collected AskJill user data both during its use in an introduction 
to biology class at Georgia Tech, as well as from citizen scientists 
discovering VERA through Smithsonian’s website or while browsing 
the Internet (An et al. 2020, 2021). Currently, AskJill can answer 
questions belonging to seven categories (intents) of questions, shown 
in Figure 4.5. 

Figure 4.6 shows examples of a human-generated question from each 
question category above as well as AskJill’s responses. The current 
training data set consists of 3,053 questions containing both the actual 
user questions and anticipated questions from the User Guide. 

Given that Agent Smith automatically generated the training data set 
using a combination of template questions and relevant keywords, we 
also tested for the grammatical correctness of the generated training 
dataset. Out of 3,053 questions, 2,907 or 95.2% were accurate. The 
remaining 4.8% of questions were not grammatically correct but AskJill 
was still able to resolve the associated intents and answer them correctly.  
Figure 4.7 shows our validation results for the current training question 
set (3,053 questions): 100% of the agent-generated responses that are 

Goal

What is
the goal of

VERA? 

Ge ng Started

How do I
get started?

System
Requirements

What are
the system

requirements?

Defini#ons and 
Parameters

Defini"ons: What
is a carbon cycle?,
What is ecological

efficiency?

Parameters: What is
photosynthesis rate?

Default Values

What is the
default value of
photosynthesis

rate?  

Value Units

What are the
units of

move velocity?

How Do I …

How do I
add a

component?

FIGURE 4.5 User Intent (question) categories on AskJill.    
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What is the goal of VERA? How do I add a component?What is a carbon cycle?

How do I get started?

What are the system requirements?

What is photosynthesis rate?

What is the default value of
photosynthesis rate?

What are the units for
move velocity?

FIGURE 4.6 Human-generated questions and AskJill’s agent-generated answers.    
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semantically correct. It also shows the split between syntactically correct 
and incorrect agent-generated questions. 

We have also collected a small data set consisting of in-situ obser-
vations. Figure 4.8 shows a comparison of data collected from eight 
users, including external users as well as members of our research lab-
oratory. AskJill correctly answered 19 out of 31 unique questions for all 
users. They measured user satisfaction using the integrated feedback 
prompt (Was this answer helpful?) built into the agent’s interface and 
validated that the users confirmed (in some cases there was no feedback) 
that the correctly answered responses were indeed helpful to the user. 
Out of the 12 questions that were not answered correctly, a majority are 
related to simulation parameters, simulation properties, and how-to 
information specific to a given simulation and thus were outside the 
competence of AskJill (only 1 out of 12 questions is related to a missed 
definition). Taking the user feedback a step further, we also revised the 

FIGURE 4.7 Agent response semantic correctness and training question syn-
tactic correctness.    

FIGURE 4.8 The bar plots show the correct vs incorrect responses (includes “I 
do not know”), the number of unique user questions, and the total number of 
users.    
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VERA User Guide to include answers to previously unanswered questions. 
The closed-loop process has resulted in significant improvements (i.e., 
adding information related to missed questions to the VERA knowledge 
domain, updating the User Guide, and retraining AskJill to expand its 
question-answering abilities) to the entire VERA and AskJill pipeline. 

DISCUSSION 
As Mueller et al. (2019) observe, explanations can be of multiple 
types. Tanner, Keuneke, and Chandrasekaran (1993) specifically distinguish 
between explanations of a phenomenon in the world and self-explanations 
about an agent’s own design. The VERA interactive learning environ-
ment, for example, helps users generate explanations of ecological 
phenomena, such as the effect of the kudzu bug on the growth of kudzu 
in the southeast USA; in contrast, AskJill, the question-answering agent 
embedded in VERA, generates explanations about VERA’s domain, 
design, and operation. 

Generation of explanations of an AI agent typically requires specifi-
cation and encoding of knowledge of the agent’s design (Chandrasekaran 
& Swartout 1991; Chandrasekaran & Tanner 1989). In contrast, AskJill 
generates answers to a user’s questions about an AI agent based on its 
User Guide, which, for fielded AI agents comes for “free.” To put it 
another way, we recast explanation of practical AI agents as an inter-
active User Guide for answering users’ questions. A corollary here is that 
we seek to identify the design knowledge a User Guide must contain to 
act as a basis for generating explanations. 

While searching the User Guide for the specific information can be 
laborious and tedious, each information source has its own trade-offs. On 
one hand, the AskJill agent provides just-in-time, curated, and accurate 
answers to the user’s questions. On the other, we expect the User Guide to 
offer its readers an opportunity to ponder and deepen their understanding 
as they search for some specific information and inadvertently discover 
new knowledge (including context and motivation) due to the inherent 
differences in the User Guide’s structure and format (i.e., system diagrams, 
relationship tables, UI screenshots, related content, and references). 

While our approach enables general-purpose explanations, it does not 
afford explanations of specific instances of reasoning and action by the 
AI agent. Thus, this approach likely has to be complemented with an 
episodic approach that relies on specific cases of decision making. 
Indeed, the case-based reasoning research community has developed 
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several schemes for case-based explanation of decision making (Leake & 
McSherry 2005). In our work along these lines, we used meta-cases to 
capture derivational traces in an earlier interactive learning environment 
and used the meta-cases to explain the agent’s decision making (Goel & 
Murdock 1996). A future version of AskJill may similarly keep a deri-
vational trace of VERA’s decision making and augment its explanatory 
capability based on a replay of the derivational trace. 

Nevertheless, even in its current form, our approach provides insight 
into specific episodes of decision making both by explaining the 
vocabulary and the general mechanism of decision making. Consider 
again the explanation of decisions about the values of the simulation 
parameters in a specific episode of VERA’s agent-based simulation. 
While AskJill cannot explain why the parameter values led to the specific 
simulation results in the given episode, it can and does explain each 
simulation parameter, the role it plays in the simulation, as well as the 
general mechanism of the agent-based simulation. 

As mentioned earlier, AskJill builds on our earlier work on the Jill 
Watson project (Goel & Polepeddi 2018) that automatically answers 
students’ questions on discussion forums of online and hybrid classes. 
One of the main reasons for the success of Jill Watson is that it took a 
very human-centric approach: it was trained to answer questions that 
students had actually asked in online discussion forums over a few years. 
However, Jill Watson answered questions based on course materials such 
as class syllabi and schedule. By answering questions based on VERA’s 
Users Guide, AskJill generalizes the approach. 

SUMMARY AND CONCLUSIONS 
Explanation of an AI agent requires knowledge of its domain, design, 
and operation. Acquiring, representing, accessing, and using this design 
knowledge for generating explanations is challenging. However, almost 
all practical AI products and services come with a Users Guide that 
explains both how the product works and how to use the product. This is 
especially true for AI agents that actually get fielded in real settings and 
used by real users. Thus, we described the design of a question-answering 
agent (AskJill) that relies on the User Guide to an interactive learning 
environment (VERA) to explain its domain, functioning, and operation. 
This means that general explanations of the design of an AI agent now 
can be generated for “free,” without requiring any special encoding of 
knowledge of the agent’s design. 
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* This book chapter extends a full paper that appeared in the European Conference on Machine 
Learning and Principles and Practice of Knowledge Discovery in Databases 2022 (Milani & Zhang, 
et al., 2022) by Springer Nature with the following novel contributions. First, we have significantly 
rewritten the abstract, background, and related work, which makes it more accessible to a general 
audience. This chapter incorporates more high-level insights and explanations of key equations. 
Second, we provide a more detailed explanation of the IVIPER and MAVIPER algorithms, making 
them easier to understand. This chapter includes intuition about when the IVIPER algorithm is 
useful, a more extensive description of the MAVIPER motivation, important implementation 
details for MAVIPER, and more. Third, we have added additional statistical analyses to validate the 
significance of the empirical results, including the performance and robustness. These analyses 
resulted in the addition of the fourth contribution: a series of tables to showcase the findings 
(Tables 5.1–5.6). Furthermore, it strengthened the conclusions of the conference paper by dem-
onstrating the superior or comparable performance of MAVIPER and/or IVIPER with the base-
lines. Given the time passage between the publication of the book chapter and the ECML 
publication, this chapter also features an updated related work section. 
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MARKOV GAMES AND MULTI-AGENT REINFORCEMENT 
LEARNING ALGORITHMS 
In multi-agent reinforcement learning, a collection of N agents act in an 
environment defined by a Markov game (Shapley 1953; Littman 1994). A 
Markov game consists of a set of states S describing all possible configu-
rations for all agents, the initial state distribution S: [0, 1], and the 
set of actions A A, …, N1 and observations O O, …, N1 for each agent 
i N . Each agent aims to maximize its own total discounted expected 
return R r= .i t

t
i
t

=0 Here, is the discount factor that prioritizes the 
relative importance of future rewards and ri

t is the reward achieved by 
agent i at timestep t . Toward this goal, each agent selects actions using a 
policy O A: i ii , which is a mapping from an agent’s private observa-
tion space to actions. The collection of policies for all agents is a policy 
profile = ( , …, );N1 a policy profile excluding agent i is i. After the 
agents execute their actions, the environment produces the next state and a 
reward vector. The next state is determined according to the state tran-
sition function P S A A S: × × … × N1 ; the reward vector is produced 
according to each agent’s reward function r S A R i N: × ,i i . Each 
agent receives its own reward ri and a private observation, consisting of a 
vector of features, correlated with the state o S O:i i. 

Multi-agent reinforcement learning algorithms broadly fall under two 
categories: value-based (Sunehag et al. 2017; Rashid et al. 2018; Son et al. 
2019) and policy gradient (most commonly, actor-critic) (Lowe et al. 
2017; Foerster et al. 2018; Li et al. 2019; Yu et al. 2021). Value-based 
methods often model each agent’s Q-function in the form of Q o a( , )i i i
and derive the policy i by greedily choosing the action with the highest 
Q-value for that observation. Given a policy profile , agent i‘s value 
function is defined as: 

V s r P s o o s V s( ) = + ( , ( ), …, ( ), ) ( ),i i
s S

N N i
’

1 1

which computes the agent-specific quality of a state. Its state-action value 
function is: 

Q s a a r P s a a s V s( , , …, ) = + ( , , …, , ) ( ),i N i
s S

N i1 1

which computes the quality of an action at a given state. 
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In contrast, actor-critic methods directly model the policy i, often 
with a neural network. These techniques typically follow the centralized 
training and decentralized execution paradigm (Oliehoek, Spaan, & 
Vlassis 2008). Each agent’s policy must only take as input its private 
observation oi to ensure decentralized execution. However, agents may 
leverage information beyond their private observation during training. 
Commonly, each agent i uses a centralized critic network Qi , which 
takes as input some state information x (including the observations of all 
agents) and the actions of all agents. The use of this centralized critic 
addresses the stationarity issue in multi-agent reinforcement learning: 
without access to the actions of other agents, the environment seems 
non-stationary from the perspective of any one agent (Lowe et al. 2017). 

Policies can also be modeled by decision trees (McCallum 1997). A 
decision tree induction algorithm is a non-parametric supervised 
learning algorithm that visualizes a decision-making process through a 
flowchart-like model (Quinlan 1986). It recursively partitions the input 
space along a specific feature using a cutoff value, called a split. The result 
of these splits are axis-parallel partitions. Internal nodes are the inter-
mediate partitions, and leaf nodes are the final partitions. Figure 5.1 
depicts an example decision tree policy for a single agent in the context 
of reinforcement learning. When used to model policies for 
reinforcement learning, the internal nodes represent the features and 
values of the input state used by the agent to choose its action, and the 
leaf nodes correspond to chosen actions given some input state. In multi- 
agent reinforcement learning, the most straightforward use of decision 

FIGURE 5.1 A decision tree of depth two learned by MAVIPER in a fully 
cooperative environment. The learned decision tree captures the expert’s 
behavior of navigating to Landmark 1. First published in  Milani et al. (2022) by 
Springer Nature. Reproduced with permission by Springer Nature.    
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tree policies applies one per agent, which means that the number of 
decision tree policies grows linearly with the number of agents. 

Algorithm 1: Single-Agent VIPER 

Input: S A P R Q K M( , , , ), , , ,
Output: A decision tree policy ˆ

1: Initialize dataset D

2: Initialize policy ˆ0

3: for iteration m = 1 to M do  

4: Sample K trajectories according to: D s s d{( , ( )) }m ˆm 1

5: Aggregate dataset D D Dm

6: Resample dataset according to loss: 
D s a p s a l s I s a D{( , ) (( , )) ˜( ) [( , ) ]}

7: Train decision tree TrainDecisionTree Dˆ ( )m

8: return Best policy ˆ { ˆ , , ˆ }M1 on cross validation 

EXTRACTING DECISION TREE POLICIES WITH  
SINGLE-AGENT VIPER 
IVIPER and MAVIPER are based on single-agent VIPER (Bastani et al. 
2018), which is a popular decision tree learning algorithm (Meng et al. 
2020; Chen et al. 2021; Luss, Dhurandhar, & Liu 2022). Typically, re-
searchers employ VIPER as a post-hoc explanation-generation method, 
in which the resulting decision tree only explains the guiding expert policy. 
Instead, this chapter uses the generated trees as the deployed policies. 
Crucially, VIPER extracts a decision tree given an expert policy trained 
using any single-agent reinforcement learning algorithm. It combines 
ideas from model compression (Buciluǎ, Caruana, & Niculescu-Mizil 
2006; Hinton, Vinyals, & Dean 2015) and imitation learning (Abbeel & Ng 
2004) − specifically, a variation of the classic DAGGER algorithm (Ross, 
Gordon, & Bagnell 2011). Different from DAGGER, VIPER uses the 
Q-function for the oracle and produces policies in the form of decision 
trees. This oracle guides the training of a decision tree policy. This section 
describes the VIPER algorithm. 
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As shown in Algorithm 1, VIPER trains a decision tree policy ˆm in 
each iteration m; the final output is the best policy ˆ among all itera-
tions. In iteration m, it samples K trajectories: s s d{( , ˆ ( )) }m 1 ˆ 1m

following the decision tree policy trained at the previous iteration. Then, 
it uses the expert policy to suggest actions for each visited state, 
leading to the data set D s s d= {( , ( )) }m ˆm 1

(Algorithm 1, Line 4), 
where d ˆm 1

is the distribution induced by the agent following its decision 
tree policy from the previous iteration. It therefore obtains expert-labeled 
data following the state visitation distribution induced by the decision 
tree policy. VIPER adds these relabeled experiences to a data set D
consisting of experiences from previous iterations (Algorithm 1, Line 5). 
Let V and Q be the state value function and state-action value 
function given the expert policy . Because the standard loss function 
for decision trees is not convex, VIPER does not optimize for it. Instead, 
VIPER resamples points s a D( , ) weighted according to: 

l s V s min Q s a˜( ) = ( ) ( , ),
a A

as in Line 6 in Algorithm 1. This resampling produces a new, weighted 
data set D’. Using CART (Breiman et al. 2017) to train a decision tree on 
D‘ is equivalent in expectation to training a decision tree with a poten-
tially non-convex loss function. Single-agent VIPER forms the basis for 
the IVIPER and MAVIPER algorithms. 

Algorithm 2: IVIPER for the Multi-Agent Setting 

Input: X A P R Q K M( , , , ), , , ,
Output: A decision tree policy profile ˆ = ( ˆ , …, ˆ )N1

1: for agent i = 1 to N do  

2: Initialize data set Di and policy ˆi i
0

3: for iteration m = 1 to M do  

4: Sample K trajectories according to: 
D x o o d{( , ( ), … ( )) }i

m
N N1 1

ˆ ,i
m

i
1

5: Aggregate dataset D D Di i i
m
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6: Resample dataset according to loss: 
D x a p x a l x I x a D{( , ) (( , )) ˜ ( ) [( , ) ]}i i i

7: Train decision tree TrainDecisionTree Dˆ ( )i
m

i

8: Get best decision tree policy BestPolicyˆ ( ˆ , …, ˆ , )i
m

i i
M

i
1

9: return Best policies for each agent ˆ = ( ˆ , …, ˆ )N1 on cross 
validation 

IVIPER 
Motivated by the success of single-agent reinforcement learning algo-
rithms in the multi-agent reinforcement learning setting (Matignon, 
Laurent, & Le Fort-Piat 2012; Berner et al. 2019), IVIPER independently 
applies the single-agent VIPER algorithm to each agent, with a few 
critical changes. Algorithm 2 shows the full IVIPER pseudocode. At a 
high level, each agent independently trains a collection of decision tree 
policies, then selects the best policy from the collection. To account for 
the behavior of other agents, the expert policies of the other agents are 
used for environment rollouts. 

The important changes for moving to the multi-agent setting are as 
follows. First, each agent i must have sufficient information for training 
its decision tree policy. As shown in Algorithm 2, Lines 2 and 4, each 
agent maintains its own data set of training tuples D x a a N= { , , …, _ }i 1 . 
When using VIPER with multi-agent actor-critic methods that leverage a 
per-agent centralized critic network Qi , we ensure that each agent’s data 
set Di contains, at a minimum, the observations and actions for all 
agents. The action for each other agent is provided by the expert policy 
corresponding to that agent o j i( )j j . By giving each agent infor-
mation about all other agents, IVIPER accounts for the influence of other 
agents on the environment. The use of a per-agent data set means that 
any data set-level operations are performed independently, on a per- 
agent basis. 

Second, IVIPER accounts for important changes that emerge from 
moving from single-agent to multi-agent formalism. Specifically, when 
IVIPER samples and relabels trajectories for training each agent’s 
decision-tree policy, it must sample from the distribution d induced by 
multiple agents acting in the environment. As a result, the distribution in 
Algorithm 2, Line 4, becomes d ˆ ,i

m
i

1
, which is induced by agent i’s 
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decision-tree policy at the previous iteration ˆi
m 1 and the expert policies 

of all other agents i. Additionally, in Line 4, IVIPER relabels only the 
action for agent i because the other agents i choose their actions ac-
cording to i. This setup is equivalent to treating all other experts as 
part of the environment and using only a decision-tree policy for agent i. 

Third, rather than considering only the actions of agent i, IVIPER 
incorporates the actions of all agents when resampling the data set 
(Algorithm 2, Line 6). If the multi-agent reinforcement learning algo-
rithm uses a centralized critic Q s a a( , , …, )N1 , then it resamples points 
according to: 

p x a a l x I x a a D(( , , …, )) ˜ ( ) [( , ,…, ) ],N i N i1 1

where 

l x V x Q x a a˜ ( ) = ( ) ( , , )| .i i i i i a o j i= ( )i j j

Note that IVIPER includes the actions of all other agents to select agent i’s 
minimum Q-value from its centralized Q-function. In contrast, when 
applied to value-based methods, IVIPER more closely resembles single- 
agent VIPER. In Algorithm 2, Line 4, it is sufficient to store only oi and ai , 
where ai is the action chosen by the expert using Qi , in the data set Di

m. 
Trajectories must still be sampled according to ˆi

m 1 and the Q-functions 
of the other agents Q i. To remove the reliance of the loss on the cen-
tralized critic, IVIPER uses the loss from single-agent VIPER in line 6: 

l s V o min Q o a( ) = ( ) ( , ).i i i
a A

i i i
i i

These algorithmic changes form the basis of the IVIPER algorithm. A 
helpful way to view this algorithm is as a transformation of the multi- 
agent learning problem into a single-agent one, in which other agents are 
folded into the environment. Since this algorithm is fully decentralized, 
agents may be trained in parallel. This approach is well suited for situ-
ations when only an interpretable policy for a single agent in a multi- 
agent setting is desired or agents do not need to coordinate with each 
other. As a motivating example of this algorithm’s challenges with 
coordination, consider the case where two agents must split up to 
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navigate to two different landmarks. These agents must coordinate to 
prevent the agents from navigating to the same landmark. With IVIPER, 
each agent is trained independently without consideration for what the 
other agent’s resulting decision-tree policy will learn. As a result, the 
agents may learn to navigate to the same landmark. This problem of 
reliable coordination motivates the MAVIPER algorithm. 

MAVIPER 
MAVIPER is a novel algorithm for learning coordinated multi-agent 
decision tree policies in a centralized manner. For exposition, this section 
first describes MAVIPER in a fully cooperative setting, and then explains 
how to use MAVIPER for mixed competitive-cooperative settings. At a 
high level, MAVIPER jointly grows the trees – one for each agent – by 
predicting the behavior of the other agents in the environment using 
their anticipated trees. To train each decision tree policy, MAVIPER 
employs a novel resampling technique to find states that are critical for 
its interactions with other agents. Algorithm 3 depicts the full MAVIPER 
algorithm. Specifically, MAVIPER is built upon the following extensions 
to IVIPER that aim at addressing the issue of coordination. 

Algorithm 3: MAVIPER (Joint Training) 

Input: X A P R Q K M( , , , ), , , ,
Output: A decision tree policy profile ˆ = ( ˆ , …, ˆ )N1

1: Initialize dataset D and policies ˆi i
0 for agent i = 1 to N

2: for iteration m = 1 to M do  

3: Sample K trajectories according to: 
D x o o d{( , ( ), … ( )) }m

N N1 1
ˆ , …, ˆm

N
m

1
1 1

4: Aggregate data set D D Dm

5: for each agent i, resample Di according to loss: 
D x a p x a l x I x a D i N{( , ) (( , )) ˜ ( ) [( , ) ]}i i i

6: Jointly train decision trees:  
TrainJointTrees D D( ˆ , …, ˆ ) ( , …, )m

N
m

N1 1

7: return Best policies for each agent 
ˆ = ( ˆ , …, ˆ ) {( ˆ , …, ˆ ), …, ( ˆ ,…, ˆ )}N N

M
N
M

1 1
1 1

1
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function TrainJointTrees  

1: Initialize decision tree policies ˆ , …, ˆm
N
m

1

2: while all trees are not at maximum depth  

3: Grow one more level for agent i’s tree Build Dˆ ( ˆ , …, ˆ , )i
m m

N
m

i1

4: Move to the next agent i i N( + 1)%

5: return decision trees ˆ , …, ˆm
N
m

1

First, notice that the IVIPER loss treats the other agents as stationary 
experts. This assumption is problematic, as finding a decision tree policy 
that is consistent with the training set is NP-hard (Hancock et al. 1996): 
there is no guarantee that the learned decision tree policies will be 
optimal. As a result, the assumption that the decision tree policies of the 
other agents will align with the corresponding experts is unlikely to be 
true in practice. It is also worth mentioning that the training set may not 
fully represent the expert policies, making it even more challenging to 
align the decision tree policies with the experts’ behavior. 

To mitigate this issue, MAVIPER alters the resampling probability 
p x a a(( , , …, ))N1 by focusing on the critical states where taking a joint 
action can make a difference. Using the insight that agents should care 
most about states in which there is a large gap between its worst-case 
performance and the expert performance, the loss function for each 
agent becomes: 

[ ]l x E Q x o a minQ x a a( ) = ( , ( ), ) ( , , ) .i a i i i i
a A

i i ii
i i

The first term in the loss measures the best-case performance of agent i, 
measured by the largest Q-value following the expert i . The second 
term measures the worst-case performance of agent i, measured by the 
smallest Q-value according to Qi . The loss function then becomes the 
difference between the best-case and worst-case performance of agent i, 
rather than the difference between the average performance (calculated 
by V ( )i ) and the worst-case performance. Furthermore, note that the 
expectation is taken over the actions of all other agents. 

Second, rather than using the expert policies of all other agents to 
perform rollouts and collect new data, MAVIPER uses the decision tree 
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policies ˆ = ( ˆ , …, ˆ )m
N
m

1
1 1 from the last iteration. Consequently, the 

distribution in Algorithm 3, Line 3, becomes d ˆ , …, ˆm
N

m
1

1 1
. The goal of 

this change is to align more closely with the original DAGGER algo-
rithm, where the idea is to aggregate a data set of inputs that the learned 
policy is likely to encounter during execution. Because there is typically 
some approximation error when constructing decision tree policies, the 
states encountered by following them will likely differ from those en-
countered by following the expert policies. 

function Build D( ˆ , …, ˆ , )m
N
m

i1

1: for each data point do  

2: // will agent j’s (projected) final decision tree policy predict its 
action correctly? 

v I Predict x a j N[ ( ˆ , ) = ]j j
m

j

3: // this data point is useful only if many agents’ final decision- 
tree policies correctly predict their actions from it 

if v <j
N

j=1 then remove d from data set D D x a\ {( , )}i i

4: Calculate best next feature split for decision tree ˆi
m using Di

5: return decision tree ˆi
m

function Predict( xˆ , )j
m

1: Use x to traverse until leaf node L x( )

2: Train a projected final decision-tree policy  
TrainDecisionTree Dˆ‘ ( ’)1

3: return prediction: predict xˆ‘. ( )j

Third, MAVIPER adds a prediction module to increase the joint 
accuracy, which means that the predicted actions by most of the 
decision-tree policies align with the actions that the corresponding 
experts would take. This prediction module is utilized in the Build 
function, which is called when training the trees jointly, as detailed in 
the TrainJointTrees function. The goal of the prediction module is to 
incorporate predictions of the actions that the other decision trees 
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might make at each split point during the tree-growing process. The 
Predict function shows this process. 

The prediction module works as follows. MAVIPER evenly grows the 
trees using a breadth-first ordering to avoid biasing toward the result of 
any specific tree. Because the true decision tree policies are incomplete at 
the time of prediction, MAVIPER instead uses the output of another tree 
ˆ J for the prediction. This decision tree is trained with the data set 
associated with the node for that prediction. Following the intuition that 
the correct prediction of one agent alone may not yield much benefit if 
the other agents are incorrect, the data set used for training the agent is 
filtered using the following rule. If the proportion of correct predic-
tions for a data point is less than a predefined threshold , it is removed 
from the training data set for that node. The Build function shows this 
filtering process. MAVIPER then calculates the splitting criteria based 
on this modified data set and continues iteratively growing the tree. 
These changes comprise the MAVIPER algorithm for the fully coop-
erative setting. 

This section now focuses on mixed competitive-cooperative settings, 
in which agents in a team share goals and require coordination with each 
other but encounter other agents or teams with potentially conflicting 
goals. In these settings, MAVIPER follows a similar procedure but 
applied on a per-team basis. More specifically, for a team Z , MAVIPER 
constrains the Build and Predict functions to make predictions for only 
the agents in the same team. Therefore, the loss in Algorithm 3, Line 5, 
takes the expectation over the joint actions for agents outside the team 
and becomes: 

l x E Q x o a Q x a a( ) = [ ( , ( ), ) ( , , )].i a i i i Z i i ZZ

This change is sufficient to move to the mixed competitive-cooperative 
setting. 

There are a few additional implementation details worth mentioning. 
To optimize running speed, MAVIPER adopts a caching mechanism for 
the decision trees. This caching mechanism enables MAVIPER to avoid 
training a new decision tree for each data point being predicted in the 
Build function. To speed up the Predict function, MAVIPER initially 
gathers all the necessary predictions for a particular tree and then con-
ducts a batched traversal to obtain the predictions. This optimization 
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technique substantially reduces the need for multiple tree traversals, 
which leads to an improvement in efficiency. 

These changes comprise the MAVIPER algorithm. Because MAVIPER 
explicitly accounts for the anticipated behavior of other agents in both 
the predictions and the sampling probability, it should better capture 
coordinated behavior. 

EXPERIMENTS 
This section investigates how well MAVIPER and IVIPER agents perform 
in a variety of environments. Because the goal is to learn high-performing 
yet interpretable policies, the quality of the trained policies is empirically 
evaluated in three multi-agent environments: two mixed competitive- 
cooperative environments and one fully cooperative environment. Agents 
are evaluated based on the performance of the decision tree policies 
because the goal is to deploy these policies in place of the expert ones. The 
hypotheses tested by the experiments are: 

H1: MAVIPER and IVIPER learn decision-tree policies that achieve 
higher individual performance than the baselines. 

H2: MAVIPER learns better coordinated decision-tree policies than 
IVIPER and the baselines. 

H3: MAVIPER learns decision-tree policies that are more robust to 
different adversaries. 

Since small decision trees are considered interpretable, the maximum 
depth is constrained to be at most 6. The expert policies used to guide the 
decision-tree training are generated by MADDPG (Lowe et al. 2017). The 
Pytorch (Paske et al. 2017) implementation is used for MADDPG: 
https://github.com/shariqiqbal2810/maddpg-pytorch. The experiments 
include comparisons to two baselines. 

Fitted Q-Iteration 

This baseline does not explicitly aim to imitate an expert; instead, it 
directly learns a Q-function and uses it to choose actions. Fitted Q- 
Iteration iteratively approximates the Q-function with a regression deci-
sion tree (Ernst, Geurts, & Wehenkel 2005). To account for continuous 
state values, the states are first heuristically discretized with 10 evenly 
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spaced bins: ( , 1), [ 1, .75), …, [.5, .75), [.75, 1. ), (1, ). 
Each agent derives its policy by taking the action associated with the 
highest estimated Q-value for that input state. 

Imitation DT 

This baseline is a simple imitation learning algorithm. First, a data set is 
collected by running the expert policies for multiple episodes. Using this 
data set, each decision tree policy is trained independently. No resam-
pling is performed. The observations for an agent are the features, and 
the actions for that agent are the labels. 

The hyperparameters and the hyperparameter selection process can be 
found in Milani & Zhang et al. 2022. A high-performing MADDPG 
expert is trained for each environment, then each decision tree learning 
algorithm is run 10 times with different random seeds. All policies are 
evaluated after training by running 100 episodes. The algorithms are 
evaluated on three multi-agent particle world environments (Lowe et al. 
2017), described below. Episodes terminate after T = 25 timesteps. 

Physical Deception 

In this mixed competitive-cooperative environment, a team of N
defenders protect N targets from one adversary. One of the targets is 
the true target. This information is known to the defenders but not 
to the adversary. For these experiments, N = 2. During an episode, 
the defenders succeed if they split up to simultaneously cover all 
targets; the adversary succeeds if it reaches the true target during the 
episode. Covering and reaching targets is defined as being -close to a 
target for at least one timestep during the episode. The primary 
performance metric for this environment is the defenders’ and ad-
versary’s success rate. 

Cooperative Navigation 

This fully cooperative environment consists of a team of N agents that 
must learn to cover all N targets while avoiding collisions with each 
other. For these experiments, N = 3. Agents succeed during an episode 
if they split up to simultaneously cover all targets without colliding. The 
primary performance metric is the summation of the distance of the 
closest agent to each target, for all targets. Low values of the metric 
indicate that the agents correctly learn to split up. 
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Predator–Prey 

This environment variant involves a team of K slower, cooperating 
predators that chase M faster prey. There are L = 2 landmarks impeding 
the way. For these experiments, K M= = 2. Different from the original 
environment, the observation space of each agent is restricted to mostly 
consist of binarized relative positions and velocity (if applicable) of the 
landmarks and other agents in the environment. The primary per-
formance metric is the number of collisions between predators and prey. 
For prey, lower is better as it means that the predators catch them less 
often; in contrast, for predators, higher is better. 

INDIVIDUAL PERFORMANCE COMPARED TO EXPERTS 
This section investigates whether a single agent can perform similarly 
when it adopts its decision-tree policy compared with its expert policy, in 
the setting where all other agents use expert policies. Given a decision 
tree policy profile ˆ and the expert policy profile , if agent i from team 
Z uses its decision tree policy, then the individual performance ratio is 
defined as: 

[ ]Individual performance ratio E U
U

U
= =

( ˆ , )
( )

,i
Z i i

Z

i

where U (·)Z is team Z ’s performance given the agents’ policy profile 
(since the primary performance metric is at the team level). A per-
formance ratio of 1 means that the decision-tree policies perform as well 
as the expert ones. A ratio of above 1 is possible because the comparison 
is between the performance, not the similarity, of the decision tree and 
expert policies. This set of experiments tests hypothesis H1. Figure 5.2 
reports the mean individual performance ratio averaged over all trials 
and all agents in the team. MAVIPER and IVIPER defenders outperform 
the two baselines for all maximum depths in physical deception; how-
ever, MAVIPER and IVIPER adversaries appear indistinguishable from 
each other and from Imitation DT adversaries in physical deception. 
MAVIPER outperforms the other algorithms in cooperative navigation 
and predator–prey. 

First looking at the adversaries, a one-way ANOVA was performed for 
each maximum depth to compare the effect of the four different decision 
tree training algorithms on the adversary’s individual performance ratio 
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(Table 5.1, left side of the three rightmost columns). This test revealed a 
statistically significant difference in the individual performance ratio of 
the adversary between at least two groups for all maximum depths 
(maximum depth of F p2: (3, 36) = 13.5623, = 0.0000; maximum 

(a) (b)

(c)

(d) (e)

FIGURE 5.2 Individual performance ratio: relative performance when only one 
agent adopts a decision-tree policy. Higher is better. Error bars correspond to the 
95% confidence interval. (First published in  Milani et al. 2022 by Springer Nature. 
Reproduced with permission by Springer Nature.). (a) Individual adversary per-
formance, Physical Deception. (b) Individual defender performance, Physical 
Deception. (c) Individual agent performance, Cooperative Navigation. (d) Individual 
predator performance, Predator–Prey. (e) Individual prey performance, Predator–Prey.    
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TABLE 5.1 Tukey’s HSD Test Results Comparing the Average Individual Performance of the Adversary and Defender in the Physical Deception 
Environment. The Highest-Performing, Statistically Significant Results for Each Tree Depth (and the Corresponding p-Value) are in Bold. To 
Distinguish the Results, the Best-Performing Adversary is Denoted in Underline, and the Best-Performing Defender Is Denoted in Italic (If the Results 
Are Statistically Significant). Results Are Presented as: Predator, Prey. The Level Is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 Mean 
Adversary, 
Defender 

Algorithm 2 Mean 
Adversary, 
Defender 

p-value 
Adversary, 
Defender  

MAVIPER IVIPER 2 
4 
6 

0.5275, 0.8450 
0.6494, 0.9112 
0.9656, 0.9399 

0.4211, 0.5787 
0.7191, 0.7843 
0.6717, 0.8460 

0.3470, 0.0000 
0.4415, 0.0000 
0.0000, 0.0000 

MAVIPER Imitation DT 2 
4 
6 

0.5275, 0.8450 
0.6494, 0.9112 
0.9656, 0.9399 

0.3710, 0.5787 
0.7512, 0.7003 
0.7761, 0.7833 

0.0808, 0.0000 
0.1405, 0.0000 
0.0117, 0.0000 

MAVIPER Fitted Q-Iteration 2 
4 
6 

0.5275, 0.8450 
0.6494, 0.9112 
0.9656, 0.9399 

0.1380, 0.1191 
0.1406, 0.1204 
0.1390, 0.1940 

0.0000, 0.0000 
0.0000, 0.0000 
0.0000, 0.0000 

IVIPER Imitation DT 2 
4 
6 

0.4211, 0.5787 
0.7191, 0.7843 
0.6717, 0.8460 

0.3710, 0.5787 
0.7512, 0.7003 
0.7761, 0.7833 

0.8567, 1.0000 
0.8978, 0.0016 
0.2850, 0.0119 

IVIPER Fitted Q-Iteration 2 
4 
6 

0.4211, 0.5787 
0.7191, 0.7843 
0.6717, 0.8460 

0.1380, 0.1191 
0.1406, 0.1204 
0.1390, 0.1940 

0.0004, 0.0000 
0.0000, 0.0000 
0.0000, 0.0000 

Imitation DT Fitted Q-Iteration 2 
4 
6 

0.3710, 0.5787 
0.7512, 0.7003 
0.7761, 0.7833 

0.1380, 0.1191 
0.1406, 0.1204 
0.1390, 0.1940 

0.0039, 0.0000 
0.0000, 0.0000 
0.0000, 0.0000     
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depth of F p4: (3, 36) = 76.9866, = 0.0000; maximum depth of 
F p6: (3, 36) = 75.4581, = 0.0000). To determine the groups that con-

tributed to this result, a post-hoc Tukey’s HSD test for multiple com-
parisons with Bonferroni correction was conducted. This test showed 
that, for all maximum depths, the following pairs have significant 
differences: MAVIPER and Fitted Q-Iteration, IVIPER and Fitted 
Q-Iteration, and Imitation DT and Fitted Q-Iteration. For a maximum 
depth of 6, only IVIPER and Imitation DT did not exhibit significant 
differences. These results mean there is almost no difference between 
MAVIPER, IVIPER, and Imitation DT in the case of this adversary, so 
the correct strategy may be simple enough to capture with a less- 
sophisticated algorithm. 

Now looking at the defenders, a one-way ANOVA was similarly per-
formed. It revealed that there was a statistically significant difference in the 
individual performance ratio for the defenders between at least two groups 
for all depths (maximum depth of F p2: (3, 36) = 76.2633, = 0.0000; 
maximum depth of F p4: (3, 36) = 558.7447, = 0.0000; maximum 
depth of F p6: (3, 36) = 786.663, = 0.0000). A post-hoc Tukey’s HSD 
test for multiple comparisons with Bonferroni correction determined that 
MAVIPER defenders significantly outperform all other algorithms. This 
test further revealed that IVIPER defenders significantly outperform 
Imitation DT (on all depths except for 2) and Fitted Q-Iteration defenders. 
Table 5.1 shows the full results of these tests, where the defender per-
formance is recorded on the right side of the three rightmost columns. 
Because MAVIPER significantly outperforms all other algorithms when 
coordination is needed, these results indicate that it promotes coordina-
tion between agents even in the single-agent training regime. 

Figure 5.2c indicates that agents perform similarly on the coopera-
tive navigation environment. These results are not unexpected because 
the original MADDPG paper mentions that this environment has a less 
stark contrast between success and failure (Lowe et al. 2017). For each 
maximum depth, a one-way ANOVA was conducted to compare 
the effect of the four different decision-tree training algorithms on the 
individual performance ratio for this environment (Table 5.2). This test 
revealed that there was a statistically significant difference in the 
individual performance ratio between at least two algorithms for all 
depths (maximum depth of F p2: (3, 36) = 10.3421, = 0.0000; max-
imum depth of F p4: (3, 36) = 16.3784, = 0.0000; maximum depth of 
of F p6: = 41.4938, = 0.0000). A post-hoc Tukey’s HSD test with 
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Bonferroni correction showed that MAVIPER significantly outperformed 
the other algorithms, with the exceptions of: IVIPER and Imitation DT at a 
maximum depth of 6, and Fitted Q-Iteration at a maximum depth of 2. 
Those two comparisons did not exhibit a statistically significant difference. 
Furthermore, IVIPER and Imitation DT did not have statistically signifi-
cant differences for all maximum depths. Indeed, IVIPER only signifi-
cantly outperformed Fitted Q-Iteration when the maximum depth is 6; 
their means were indistinguishable otherwise. These results indicate that 
MAVIPER tends to yield higher-performing individual agents than the 
other algorithms. In contrast, IVIPER is generally indistinguishable from 
the baselines. 

Figures 5.2d and 5.2e indicate that both MAVIPER predators and prey 
generally outperform those trained by the other algorithms. Looking first 
at the predators, a one-way ANOVA was again performed. This test 
showed a statistically significant difference in mean individual per-
formance ratio between at least two of the algorithms for each maximum 
depth (maximum depth of 2: F p(3, 36) = 10.7644, = 0.0000; max-
imum depth of 4: F p(3, 36) = 20.2408, = 0.0000; maximum depth of 

TABLE 5.2 Tukey’s HSD Results Comparing the Average Individual Performance for 
Cooperative Navigation. The Highest-Performing, Statistically Significant Results for Each 
Tree Depth (and the Corresponding p-Value) Are in Bold. The Level is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 
Mean 

Algorithm 2 
Mean 

p-value  

MAVIPER IVIPER 2 
4 
6 

0.6830 
0.7596 
0.7811 

0.6470 
0.7052 
0.7677 

0.0378 
0.0036 
0.7680 

MAVIPER Imitation DT 2 
4 
6 

0.6830 
0.7596 
0.7811 

0.6153 
0.7139 
0.7837 

0.0000 
0.0177 
0.9975 

MAVIPER Fitted Q-Iteration 2 
4 
6 

0.6830 
0.7596 
0.7811 

0.6665 
0.6574 
0.6525 

0.5741 
0.0000 
0.0000 

IVIPER Imitation DT 2 
4 
6 

0.6470 
0.7052 
0.7677 

0.6153 
0.7139 
0.7837 

0.0804 
0.9318 
0.6562 

IVIPER Fitted Q-Iteration 2 
4 
6 

0.6470 
0.7052 
0.7677 

0.6665 
0.6574 
0.6525 

0.4359 
0.0871 
0.0000 

Imitation DT Fitted Q-Iteration 2 
4 
6 

0.6153 
0.7139 
0.7837 

0.6665 
0.6574 
0.6525 

0.0016 
0.0025 
0.0000     
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6: F p(3, 36) = 13.0601, = 0.0000). As shown in Table 5.3 (left-hand 
side of the rightmost columns), a post-hoc Tukey’s HSD test with 
Bonferroni correction revealed MAVIPER-trained predators only sig-
nificantly differed from the IVIPER-trained and Imitation-DT-trained 
predators when the maximum depth is 4. Otherwise, their means did not 
exhibit significant differences. However, MAVIPER and IVIPER signif-
icantly outperformed Fitted Q- Iteration for all depths. IVIPER only 
significantly outperformed Imitation DT with maximum depth 2. 

Looking now at the prey, a one-way ANOVA was similarly conducted. 
This test revealed a statistically significant difference in the mean indi-
vidual performance ratio between at least two groups for all maximum 
depths (maximum depth of 2: F p(3, 36) = 10.2907, = 0.0000; max-
imum depth of 4: F p(3, 36) = 25.1552, = 0.000; maximum depth of 6: 
F p(3, 36) = 44.5994, = 0.0000). As shown in Table 5.3 (right-hand side 
of the results columns), a post-hoc Tukey’s HSD test with Bonferroni 
correction determined that MAVIPER significantly outperforms all other 

TABLE 5.3 Tukey’s HSD Results Comparing the Average Individual Performance 
for Predators and Prey in the Predator–Prey Environment. The Highest-Performing, 
Statistically Significant Results for Each Tree Depth (and the Corresponding p-Value) Are 
in Bold. To Further Distinguish the Results, the Best-Performing Predator Is Denoted in 
Underline, and the Best-Performing Prey Is Denoted in Italic (if the Results Are 
Statistically Significant). Results Are Presented as: Predator, Prey. The Level Is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 Mean 
Predator, Prey 

Algorithm 2 Mean 
Predator, Prey 

p-value 
Predator, Prey  

MAVIPER IVIPER 2 
4 
6 

0.6013, 1.0261 
0.7261, 0.9191 
0.7679, 0.9420 

0.6265, 0.6828 
0.6531, 0.8765 
0.7211, 0.8076 

0.7441, 0.0006 
0.0344, 0.8403 
0.6136, 0.0044 

MAVIPER Imitation 
DT 

2 
4 
6 

0.6013, 1.0261 
0.7261, 0.9191 
0.7679, 0.9420 

0.5456, 0.6965 
0.6296, 0.5676 
0.7010, 0.5748 

0.1314, 0.0009 
0.0031, 0.0000 
0.3111, 0.0000 

MAVIPER Fitted  
Q-Iteration 

2 
4 
6 

0.6013, 1.0261 
0.7261, 0.9191 
0.7679, 0.9420 

0.4976, 0.6404 
0.5291, 0.6023 
0.5435, 0.6055 

0.0010, 0.0001 
0.0000, 0.0000 
0.0000, 0.0000 

IVIPER Imitation 
DT 

2 
4 
6 

0.6265, 0.6828 
0.6531, 0.8765 
0.7211, 0.8076 

0.5456, 0.6965 
0.6296, 0.5676 
0.7010, 0.5748 

0.0127, 0.9981 
0.7945, 0.0000 
0.9519, 0.0000 

IVIPER Fitted  
Q-Iteration 

2 
4 
6 

0.6265, 0.6828 
0.6531, 0.8765 
0.7211, 0.8076 

0.4976, 0.6404 
0.5291, 0.6023 
0.5435, 0.6055 

0.0000, 0.9486 
0.0001, 0.0000 
0.0002, 0.0000 

Imitation 
DT 

Fitted  
Q-Iteration 

2 
4 
6 

0.5456, 0.6965 
0.6296, 0.5676 
0.7010, 0.5748 

0.4976, 0.6404 
0.5291, 0.6023 
0.5435, 0.6055 

0.2344, 0.8907 
0.0020, 0.9055 
0.0011, 0.8372     
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algorithms, except for IVIPER with a maximum depth of 4. In this case, 
there is no statistically significant difference between their means. IVIPER 
also significantly outperforms Imitation DT and Fitted Q-Iteration, except 
when the maximum depth is 2. In this case, there is no statistically sig-
nificant difference between their means. Taken together, these results 
indicate that MAVIPER enables the prey agents to better avoid capture 
compared to IVIPER and the baselines, and that IVIPER enables the prey 
agents to better avoid capture compared to the baselines. 

In summary, MAVIPER training tends to lead to higher-performing 
individual agents, especially when those agents are part of a team. This 
result suggests that MAVIPER-trained agents exhibit improved per-
formance due to better coordination with their team. 

JOINT PERFORMANCE COMPARED TO EXPERTS 
A crucial aspect of multi-agent environments is agent coordination, 
especially when agents are on the same team with shared goals. One 
metric for coordination is the performance of the decision-tree policies 
when all agents in a team adopt decision-tree policies compared with 
their expert policies, while other agents deploy their expert policies. 
Specifically, the joint performance ratio is: 

[ ]Joint performance ratio E U
U

U
= =

( ˆ , )
( )

,Z
Z Z Z

Z

Z

where U ( ˆ , )Z Z Z is the utility of team Z when using their decision-tree 
policies against the expert policies of the other agents Z . This metric 
captures any performance degradation compared to the experts. These 
experiments test hypothesis H2. 

Figure 5.3 shows the mean joint performance ratio for each team, 
averaged over all trials. Compared with Figure 5.2, Figure 5.3 highlights 
the performance degradation when moving from individual to joint 
performance. This outcome is expected: MADDPG policies can capture 
more nuanced behavior, so they are more readily able to compensate for 
deficiencies in their “partner” policies. Figure 5.3a shows that MAVIPER 
defenders achieve higher joint performance than defenders trained by 
IVIPER and the baselines in physical deception, indicating that it better 
captures the coordinated behavior necessary for success. IVIPER 
defenders also perform better than the baselines. In contrast, Fitted 
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Q-Iteration struggles to achieve coordinated behavior, despite obtaining 
non-zero success for individual agents. This algorithm likely struggles 
due to poor Q-value estimates. 

A closer look into the performance of these algorithms revealed that there 
was a statistically significant difference in the joint performance ratio 
between at least two of the algorithms for each maximum depth (Table 5.4). 
This result was determined by a one-way ANOVA conducted for each 
maximum depth (maximum depth of 2: F p(3, 36) = 88.8662, = 0.0000; 
maximum depth of 4: F p(3, 36) = 83.3715, = 0.0000; maximum depth of 
6: F p(3, 36) = 380.76, = 0.0000). A post-hoc Tukey’s HSD test deter-
mined which algorithms are responsible for this difference. Critically, 
MAVIPER agents significantly outperformed all other agent types for all 
maximum depths. IVIPER agents also significantly outperformed the 

(a) (b)

(c) (d)

FIGURE 5.3 Joint performance ratio: relative performance when a team adopts 
their decision tree policies and all other agents use an expert policy. Higher is 
better. Error bars correspond to the 95% confidence interval. (First published in   
Milani et al. 2022 by Springer Nature. Reproduced with permission by Springer 
Nature.) (a) Joint defender performance, Physical Deception. (b) Joint agent per-
formance, Cooperative Navigation. (c) Joint predator performance, Predator–Prey. 
(d) Joint prey performance, Predator–Prey.    
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baselines for all maximum depths, except for Imitation DT when the 
maximum depth is 4. In this case, there was no statistically significant dif-
ference between the two algorithms. These results indicate that both 
MAVIPER and IVIPER achieve better coordinated performance than the 
baselines; however, MAVIPER achieves the highest joint performance and, 
therefore, produces the best agents for coordination. 

The superior performance of MAVIPER in this environment is likely 
due to the defender agents correctly splitting their “attention” to induce 
the correct behavior of covering both targets. Figure 5.4 investigates this 
possibility by showing the normalized average feature importance of the 
decision-tree policies of depth 4 for both IVIPER and MAVIPER over 5 
(out of 10) randomly selected trials. Each of the MAVIPER defenders 
(top) most commonly focuses on the attributes associated with one 
specific target: defender 1 focuses on target 2, and defender 2 focuses on 
target 1. In contrast, both IVIPER defenders (bottom) mostly focus on 
the attributes associated with the goal target. Not only does this overlap 
in feature space mean that defenders are unlikely to capture the correct 

TABLE 5.4 Tukey’s HSD Results Comparing the Average Joint Performance for the 
Defenders in the Physical Deception Environment. The Highest-Performing, Statistically 
Significant Results for Each Comparison at Each Tree Depth (and the Corresponding 
p-Value) Are in Bold. The Level Is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 
Mean 

Algorithm 2 
Mean 

p-value  

MAVIPER IVIPER 2 
4 
6 

0.6150 
0.8454 
0.9450 

0.1879 
0.3621 
0.6548 

0.0000 
0.0000 
0.0000 

MAVIPER Imitation DT 2 
4 
6 

0.6150 
0.8454 
0.9450 

0.0465 
0.2237 
0.2943 

0.0000 
0.0000 
0.0000 

MAVIPER Fitted Q-Iteration 2 
4 
6 

0.6150 
0.8454 
0.9450 

0.0000 
0.0000 
0.0110 

0.0000 
0.0000 
0.0000 

IVIPER Imitation DT 2 
4 
6 

0.1879 
0.3621 
0.6548 

0.0465 
0.2237 
0.2943 

0.0095 
0.0773 
0.0000 

IVIPER Fitted Q-Iteration 2 
4 
6 

0.1879 
0.3621 
0.6548 

0.0000 
0.0000 
0.0110 

0.0004 
0.0000 
0.0000 

Imitation DT Fitted Q-Iteration 2 
4 
6 

0.0465 
0.2237 
0.2943 

0.0000 
0.0000 
0.0110 

0.6884 
0.0015 
0.0000     
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covering behavior, but it also leaves them more vulnerable to an 
adversary because it is easier to infer the goal target. 

MAVIPER also exhibits this better-coordinated behavior in the coop-
erative navigation environment. Indeed, Figure 5.3b shows that MAVIPER 
agents outperform all other algorithms in the cooperative navigation en-
vironment for all maximum depths. A one-way ANOVA for each max-
imum depth was conducted to compare the effect of the four different 
decision-tree training algorithms on the joint performance ratio for each 
maximum depth. This test revealed that there was a statistically significant 
difference in mean joint performance ratio for all maximum depths 
(maximum depth of 2: F p(3, 36) = 98.2534, = 0.0000; maximum depth 
of 4: F p(3, 36) = 166.533, = 0.0000; maximum depth of 6: 
F p(3, 36) = 202.3992, = 0.0000). Table 5.5 shows the results of a post- 
hoc Tukey’s HSD test with Bonferroni correction applied to each max-
imum depth. Based on these results, MAVIPER significantly outperformed 
all other algorithms. IVIPER significantly outperformed the baselines for 
most conditions, with the exceptions of Imitation DT at a maximum 
depth of 4 and Fitted Q-Iteration at a maximum depth of 2. In those cases, 
the mean joint performance ratios were indistinguishable. Recall that, 
compared to physical deception, cooperative navigation introduces an 

FIGURE 5.4 Feature importance of the two defenders trained by IVIPER and 
MAVIPER in the physical deception environment. Actual features are the rel-
ative positions of that agent and the labeled feature. Darker squares correspond 
to higher feature importance. MAVIPER defenders (top) frequently split 
importance across the two targets. In contrast, IVIPER defenders (bottom) most 
commonly focus on the same target (the goal target). To succeed in this en-
vironment, defenders must split their attention to the two different targets, not 
focusing on the goal target at the same time. (First published in  Milani et al. 
2022 by Springer Nature. Reproduced with permission by Springer Nature.)    
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additional agent with which the defenders must coordinate (and re-
moves the adversary). The superior performance of MAVIPER agents 
indicates that MAVIPER better captures coordinated behavior, even as 
the complexity of the problem is increased by introducing another 
cooperating agent. 

Figures 5.3c and 5.3d depicts the results for both teams in the 
predator–prey environment. These results do not offer a straightforward 
conclusion. To compare the effect of the choice of the decision-tree 
training algorithm on the joint performance ratio of the predators, a one- 
way ANOVA test for all maximum depths was conducted. This test 
revealed that there was a statistically significant difference in mean 
joint performance ratio between at least two groups for all maximum 
depths (maximum depth of 2: F p= 48.0960, = 0.0000; maximum 
depth of 4: F p= 140.8732, = 0.0000; maximum depth of 6: 
F p= 87.5597, = 0.0000). A post-hoc Tukey’s HSD test with Bonferroni 
correction, applied for all maximum depths, found that MAVIPER- 
trained predator teams significantly outperform the two baselines. 

TABLE 5.5 Tukey’s HSD Results Comparing the Average Joint Performance for the 
Agents in the Cooperative Navigation Environment. The Highest-Performing, Statistically 
Significant Results for Each Comparison at Each Tree Depth (and the Corresponding 
p-Value) Are in Bold. The Level Is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 
Mean 

Algorithm 2 
Mean 

p-value  

MAVIPER IVIPER 2 
4 
6 

0.4957 
0.6948 
0.7287 

0.3659 
0.4400 
0.5210 

0.0000 
0.0000 
0.0000 

MAVIPER Imitation DT 2 
4 
6 

0.4957 
0.6948 
0.7287 

0.3223 
0.4598 
0.4598 

0.0000 
0.0000 
0.0000 

MAVIPER Fitted Q-Iteration 2 
4 
6 

0.4957 
0.6948 
0.7287 

0.3705 
0.3653 
0.3657 

0.0000 
0.0000 
0.0000 

IVIPER Imitation DT 2 
4 
6 

0.3659 
0.4400 
0.5210 

0.3223 
0.4598 
0.4598 

0.0012 
0.5900 
0.0016 

IVIPER Fitted Q-Iteration 2 
4 
6 

0.3659 
0.4400 
0.5210 

0.3705 
0.3653 
0.3657 

0.9737 
0.0002 
0.0000 

Imitation DT Fitted Q-Iteration 2 
4 
6 

0.3223 
0.4598 
0.4598 

0.3705 
0.3653 
0.3657 

0.0004 
0.0000 
0.0000     
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However, predators trained by MAVIPER only significantly out-
performed those trained by IVIPER when the maximum depth is 4; in all 
other settings, the two algorithms do not exhibit a statistically significant 
difference between means. IVIPER predators significantly outperform 
the baselines, except Imitation DT when the maximum depth is 6. In that 
case, the means are indistinguishable. 

To compare the effect of the different decision tree training algorithms 
on the joint performance ratio of the prey, a one-way ANOVA was con-
ducted for all maximum depths (Table 5.6). This test revealed that there 
was indeed a statistically significant difference in the mean joint per-
formance ratio between at least two groups for all maximum depths 
(maximum depth of 2: F p= 35.08693, = 0.0000; maximum depth of 4: 
F p= 28.3989, = 0.0000; maximum depth of 6: F p= 60.6513, = 0.0000). 
A post-hoc Tukey’s HSD test with Bonferroni correction, applied for all 
maximum depths, found that MAVIPER-trained prey significantly 

TABLE 5.6 Tukey’s HSD Results Comparing the Average Joint Performance for the 
Predators and Prey in the Predator–Prey Environment. The Highest-Performing, 
Statistically Significant Results for Each Comparison at Each Tree Depth (and the 
Corresponding p-Value) Are in Bold. To Further Distinguish the Results, the Best- 
Performing Predator is Denoted in Underline, and the Best-Performing Prey Is Denoted in 
Italic (if the Results Are Statistically Significant). Results Are Presented as: Predator, Prey. 
The Level Is 0.05        

Algorithm 1 Algorithm 2 Depth Algorithm 1 
Mean 

Predator, Prey 

Algorithm 2 
Mean 

Predator, Prey 

p-value 
Predator, Prey  

MAVIPER IVIPER 2 
4 
6 

0.2648, 1.0453 
0.5554, 0.9153 
0.5834, 0.8464 

0.2713, 0.6515 
0.3455, 0.7932 
0.4906, 0.7750 

0.9917, 0.0000 
0.0000, 0.2107 
0.0520, 0.2896 

MAVIPER Imitation DT 2 
4 
6 

0.2648, 1.0453 
0.5554, 0.9153 
0.5834, 0.8464 

0.1566, 0.5904 
0.2510, 0.4244 
0.4182, 0.3878 

0.0002, 0.0000 
0.0000, 0.0000 
0.0002, 0.0000 

MAVIPER Fitted  
Q-Iteration 

2 
4 
6 

0.2648, 1.0453 
0.5554, 0.9153 
0.5834, 0.8464 

0.0359, 0.5151 
0.0536, 0.5115 
0.0585, 0.5012 

0.0000, 0.0000 
0.0000, 0.0000 
0.0000, 0.0000 

IVIPER Imitation DT 2 
4 
6 

0.2713, 0.6515 
0.3455, 0.7932 
0.4906, 0.7750 

0.1566, 0.5904 
0.2510, 0.4244 
0.4182, 0.3878 

0.0000, 0.7031 
0.0029, 0.0000 
0.1771, 0.0000 

IVIPER Fitted  
Q-Iteration 

2 
4 
6 

0.2713, 0.6515 
0.3455, 0.7932 
0.4906, 0.7750 

0.0359, 0.5151 
0.0536, 0.5115 
0.0585, 0.5012 

0.0004, 0.0921 
0.0000, 0.0003 
0.0000, 0.0000 

Imitation 
DT 

Fitted  
Q-Iteration 

2 
4 
6 

0.1566, 0.5904 
0.2510, 0.4244 
0.4182, 0.3878 

0.0359, 0.5151 
0.0536, 0.5115 
0.0585, 0.5012 

0.0000, 0.5475 
0.0000, 0.4963 
0.0000, 0.0339     
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outperformed the two baselines for all maximum depths. However, there 
was no statistically significant difference in the mean joint performance 
ratio between MAVIPER and IVIPER for maximum depths of 4 and 6. 
Indeed, MAVIPER-trained prey only significantly outperformed IVIPER- 
trained prey when the maximum depth is 2. IVIPER prey significantly 
outperformed the baselines, except for Imitation DT and Fitted Q- 
Iteration when the maximum depth is 2. There was no statistically sig-
nificant difference in joint performance ratio in that setting. 

Unlike the other environments, there is a less stark difference between 
the performance of MAVIPER and IVIPER. The main difference between 
the algorithms is when they are compared to the baselines: MAVIPER 
predators and prey outperformed all baselines for all maximum depths; 
this was not the case for IVIPER, as there were a few instances where its 
mean joint performance ratio was statistically indistinguishable from the 
mean joint performance ratio of a baseline algorithm. 

Taken together, the results on all three of these environments indicate 
that IVIPER and MAVIPER better capture the coordinated behavior 
necessary for a team to succeed, with MAVIPER significantly out-
performing IVIPER in several environments. For all environments and 
all maximum depths, MAVIPER significantly outperforms the baselines 
when measuring the mean joint performance ratio. In general, these 
results support the hypothesis that MAVIPER-trained agents exhibit 
better-coordinated behavior than IVIPER and the baselines. 

ROBUSTNESS TO DIFFERENT OPPONENTS 
Given that the goal is deploying these policies in real-world scenarios 
with potentially many different types of adversaries, this section inves-
tigates the robustness of the decision tree policies. Specifically, this sec-
tion investigates when a team using decision tree policies plays against a 
variety of opponents in mixed competitive-cooperative environments. 

In this set of experiments, the decision trees are constrained to a max-
imum depth of 4. Given a decision tree policy profile ˆ , a team Z ’s per-
formance against an alternative policy profile ′ used by the opponents is: 

Team performance against opponent U= ( ˆ , ).Z Z Z

Each of the defender teams is evaluated against a broad set of opponent 
policies π′: the policies generated by MAVIPER, IVIPER, Imitation DT, 
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Fitted Q-Iteration, and MADDPG. Note that, in contrast to the other 
metrics, the scores reported here are the raw success ratios for physical 
deception and the number of collisions for predator–prey. These ex-
periments test H3. 

Table 5.7 shows the mean team performance averaged over all oppo-
nent policies for both environments. Bolded values correspond to the best- 
performing algorithm for each agent type. Only results where the means 
do not overlap when accounting for the standard deviation are bolded. 

For physical deception, MAVIPER defenders outperform all other 
algorithms, with a gap of 0.44 between the team performance of agents 
trained by MAVIPER and the performance of agents trained by the 
next-best algorithm, IVIPER. This result indicates that MAVIPER 
learns coordinated defender policies that perform well against various 
adversaries. Also in the physical deception environment, MAVIPER, 
IVIPER, and Imitation DT adversaries perform similarly on average, 
with a similar standard deviation, which supports the idea that the 
adversary’s desired behavior is simple enough to capture with a less- 
sophisticated algorithm. For predator–prey, MAVIPER predators out-
perform all other algorithms. Although Imitation DT prey exhibit the 
highest mean performance, it is indistinguishable from MAVIPER and 
IVIPER. 

Tables 5.8 and 5.9 contain the full results for the two environments. 
For space reasons, only the averages are reported. Rather than presenting 
the full results, the best-performing agent of each type are labeled in 
either underline or italic. However, the best-performing agents of each 
type are only labeled in underline or italic if the 95% confidence intervals 
do not overlap. MADDPG is excluded from this calculation, since it is 
expected that MADDPG agents will outperform all other agent types. 

TABLE 5.7 Average Robustness Results on Physical Deception and Predator–Prey. 
Reported Here Is the Mean Team Performance and Standard Deviation of the Decision 
Tree Policies for Each Team, Averaged Across a Variety of Opponent Policies. The Best- 
Performing Algorithm for Each Agent Type Is Shown in Bold. First Published in  Milani 
et al. 2022 by Springer Nature. Reproduced with Permission by Springer Nature        

Environment Team MAVIPER IVIPER Imitation DT Fitted  
Q-Iteration  

Physical 
deception 

Defender 
Adversary 

0.77 ± 0.01 
0.42 ± 0.03 

0.33 ± 0.01 
0.41 ± 0.03 

0.24 ± 0.03 
0.42 ± 0.03 

0.00 ± 0.00 
0.07 ± 0.01 

Predator–prey Predator 
Prey 

2.51 ± 0.72 
1.76 ± 0.80 

1.98 ± 0.58 
2.16 ± 1.24 

1.14 ± 0.28 
2.36 ± 1.90 

0.26 ± 0.11 
1.11 ± 0.82     
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Table 5.8 shows the results for the physical deception environment. 
MAVIPER defenders are more robust than all agents, excluding 
MADDPG, to different types of adversaries. This result can be easily seen 
by fixing the adversary row and comparing the success ratios of the dif-
ferent defenders in each column. In contrast, MAVIPER, IVIPER, and 
Imitation DT adversaries perform similarly. This result can be easily seen 
by fixing the defender column and comparing the success ratios of the 
different adversaries in each row. For simplicity, only the best-performing 
adversaries are noted in bold, since the 95% confidence intervals tend to 
overlap for most adversary types. MAVIPER adversaries perform best 
against MAVIPER defenders; MAVIPER and IVIPER adversaries perform 

TABLE 5.8 Robustness Results of Decision Tree Agents in the Physical Deception 
Environment. Results Are Presented as: Adversary Success Ratio, Defender Success Ratio. 
Higher Is Better. Excluding MADDPG, the Best-Performing Defender for Each 
Adversary Type Is in Italic and the Best-Performing Adversary for Each Defender Type 
Is in Underline. First Published in  Milani et al. 2022 by Springer Nature. Reproduced 
With Permission by Springer Nature           

Defender   

Adversary MAVIPER IVIPER Imitation DT Fitted Q-Iteration MADDPG  

MAVIPER 0.42, 0.76 0.45, 0.33 0.45, 0.23 0.37, 0.01 0.40, 0.93 
IVIPER 0.39, 0.78 0.45, 0.32 0.40, 0.23 0.38, 0.00 0.43, 0.92 
Imitation DT 0.40, 0.79 0.42, 0.34 0.46, 0.26 0.38, 0.01 0.46, 0.92 
Fitted Q-Iteration 0.07, 0.77 0.06, 0.33 0.07, 0.19 0.08, 0.00 0.08, 0.79 
MADDPG 0.71, 0.76 0.77, 0.32 0.77, 0.26 0.58, 0.00 0.62, 0.90     

TABLE 5.9 Robustness Results of Decision Tree Agents in the Predator–Prey 
Environment. Results Are Presented as: Average Number of Collisions per Episode 
(Predator), Average Number of Collisions per Episode (Prey). These Values Are the Same, 
but They Are Duplicated to Show Which Algorithms Are the Best-Performing Ones for 
Both Types of Agents. Higher is Better for the Predator, and Lower is Better for the Prey. 
Excluding MADDPG, the Best-Performing Prey for Each Predator Type Is in Italic and the 
Best-Performing Predator for Each Prey Type Is in Underline. First Published in  Milani 
et al. 2022 by Springer Nature. Reproduced With Permission by Springer Nature           

Prey   

Predator MAVIPER IVIPER Imitation DT Fitted Q-Iteration MADDPG  

MAVIPER 2.28, 2.28 3.49, 3.49 2.41, 2.41 3.01, 3.01 1.37, 1.37 
IVIPER 1.95, 1.95 2.46, 2.46 2.17, 2.17 2.44, 2.44 0.88, 0.88 
Imitation DT 1.32, 1.32 1.17, 1.17 1.18, 1.18 1.40, 1.40 0.61, 0.61 
Fitted Q-Iteration 0.46, 0.46 0.30, 0.30 0.24, 0.24 0.18, 0.18 0.14, 0.14 
MADDPG 2.78, 2.78 3.36, 3.36 5.82, 5.82 4.98, 4.98 2.54, 2.54     
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best against IVIPER defenders; Imitation DT adversaries perform best 
against Imitation DT and MADDPG defenders; and MAVIPER, IVIPER, 
and Imitation DT adversaries perform best against Fitted Q-Iteration 
defenders. This result aligns with the previous performance results, where 
MAVIPER, IVIPER, and Imitation DT adversaries performed similarly 
against MADDPG agents. 

Table 5.9 shows the results for the predator–prey environment. 
MAVIPER predators are strictly more robust than all other agents, ex-
cluding MADDPG, to different types of prey. This result can be easily 
seen by fixing the prey column and comparing the average number of 
collisions per episode in each row. Recall that, for predators, a higher 
value is better. Furthermore, MAVIPER prey are generally either the 
most robust or the second-most robust to different types of predators. 
This result can be seen by fixing the predator row and comparing the 
average number of collisions per episode in each column. Recall that, for 
the predators, a higher value is better. In this environment, predator 
coordination is more critical because predators must work together to 
strategically catch the prey. On the other hand, the prey does not require 
much coordination. This lack of coordination explains the robustness of 
the Imitation DT prey by imitating the actions of the corresponding 
single-agent expert. 

Taken together, these results indicate that MAVIPER-trained agents 
are generally more robust than agents trained with the other decision 
tree learning algorithms. These results indicate that MAVIPER-trained 
agents may be better suited for deployment in real-world scenarios where 
one expects to encounter a variety of attacker types, such as cyberse-
curity. Further work is needed to investigate the robustness of these 
policies in more realistic domains. 

ABLATION STUDY OF MAVIPER 
Given the improved performance of MAVIPER compared to IVIPER, it 
is important to understand which changes contribute to these differ-
ences. Recall the differences between MAVIPER and IVIPER. First, 
MAVIPER utilizes the predicted behavior of the anticipated decision 
trees of the other agents to grow each agent’s tree. In contrast, IVIPER 
trains each agent’s decision tree policy without utilizing these predic-
tions. Second, the resampling probability of MAVIPER incorporates the 
average Q-values over all actions for the other agents. In contrast, 
IVIPER only considers the optimal actions of the other agents. 
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To investigate the contribution of these changes to the performance of 
MAVIPER, this section analyzes an ablation study with a maximum tree 
depth of 4 on the physical deception environment. In this setting, 
MAVIPER and IVIPER defenders achieve similar individual perform-
ance, but MAVIPER defenders outperform IVIPER defenders when 
measuring joint performance. Figure 5.5 shows the mean independent 
and joint performance ratios for each defender team, comparing 
MAVIPER and IVIPER to two variants of MAVIPER without one of the 
two critical changes. 

This section first investigates the differences in the individual perform-
ance ratios for the adversaries. A one-way ANOVA was conducted to 
determine the effect of the algorithmic changes on the individual per-
formance ratio. This test revealed that there was not a statistically significant 
difference between the group means (F p(3, 36) = 0.6314, = 0.5995). 
Therefore, all algorithms are effectively equivalent for the adversaries. 

The next investigation is into the differences in the individual per-
formance ratios for the defenders. To determine the effect of the 
algorithmic changes on the individual performance ratio, a one-way 
ANOVA test was conducted. This test revealed that there was a sta-
tistically significant difference between at least two groups 
(F p(3, 36) = 5.7287, = 0.0026). A post-hoc Tukey’s HSD test with 
Bonferroni correction revealed that the mean value of individual per-
formance ratios was significantly different between MAVIPER and 
MAVIPER with IVIPER resampling, referred to as MAVIPER (IVIPER 
Resampling) (p = 0.0128), and MAVIPER and IVIPER (p = 0.0025). 

FIGURE 5.5 Ablation study for MAVIPER for a maximum depth of 4. MAVIPER 
(No prediction) does not utilize the predicted behavior of the other agents’ an-
ticipated decision trees to grow each agent’s tree. MAVIPER (IVIPER Resampling) 
uses the same resampling method as IVIPER. (First published in  Milani et al. 2022 
by Springer Nature. Reproduced with permission by Springer Nature.)    
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In both of these cases, MAVIPER has a higher mean. All other pairs 
had p-values greater than the chosen , so their differences in means 
were not statistically significant. As a result, the most significant 
algorithmic change for this metric seems to be the prediction module. 

The final investigation is into the differences in the joint performance 
ratios for the defender. A one-way ANOVA was conducted to determine 
the effect of the algorithmic changes on the joint performance ratio. This 
test revealed that there was a statistically significant difference between at 
least two groups (F p(3, 36) = 10.6768, = 0.0000). A post-hoc Tukey’s 
HSD test with Bonferroni correction revealed that the mean value of 
joint performance ratios was significantly different between the following 
pairs MAVIPER and IVIPER p( = 0.0000), MAVIPER with no predic-
tion module, referred to as MAVIPER (No Prediction), and IVIPER 
(p = 0.0010), and MAVIPER (IVIPER Resampling) and IVIPER 
(p = 0.0039). In all cases, the first algorithm in the comparison has a 
higher mean. All other pairs had differences in means that were not 
statistically significant. This means that both ablated changes contribute 
to the improvement over IVIPER for this metric. 

RELATED WORK 
Most work on interpretable reinforcement learning is in the single-agent 
setting (Milani et al. 2022). Some work directly learns decision tree 
policies by augmenting the environment to include actions corre-
sponding to splits of a decision tree and recording the outcomes in the 
state (Topin et al. 2021). Although it enables training with any function 
approximator during training, this transformation renders the learning 
problem more complex, especially in multi-agent settings. Other publi-
cations present custom algorithms that directly learn decision tree pol-
icies (McCallum 1997; Uther & Veloso 2000; Ernst et al. 2005), but not 
for interpretability. These algorithms cannot use a high-performing 
neural network to guide training. 

Despite increased interest in interpretable single-agent reinforcement 
learning, there are few research efforts in interpretable multi-agent 
reinforcement learning. The majority of work uses attention (Iqbal & Sha 
2019; Li, Jin, & Wang 2019; Motokawa & Sugawara 2021) to select and 
focus on critical factors that impact agents’ decision making. Other work 
generates verbal explanations with predefined rules (Wang et al. 2020) or 
Shapley values (Heuillet, Couthouis, & Díaz-Rodríguez 2022). The most 
similar line of work (Kazhdan, Shams, & Liò 2020) to IVIPER and 
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MAVIPER constructs argument preference graphs, not decision tree pol-
icies, given manually provided arguments. Since the publication of Milani 
et al. (2022), a couple more relevant works have emerged. Grupen et al. 
(2022) propose to utilize concept bottlenecks in multi-agent reinforcement 
learning to understand emergent behavior. Guo et al. (2022) demonstrates 
how explanations in the form of decision tree policies can be used as a 
knowledge transfer technique in multi-agent reinforcement learning. 

CONCLUSION 
This chapter discussed IVIPER and MAVIPER, the first algorithms that 
extract interpretable decision tree policies for multi-agent reinforcement 
learning. This chapter presented results from evaluating these algorithms 
in cooperative and mixed competitive-cooperative environments. The 
results demonstrated that IVIPER and MAVIPER achieve near-expert 
performance: a single agent trained with these algorithms can recover at 
least 75% of expert performance in most environment settings – even 
with a small maximum depth – and over 90% in some. Furthermore, the 
results empirically validated that MAVIPER effectively captures co-
ordinated behavior by showing that teams of MAVIPER-trained agents 
recover more of the expert performance on nearly all environments and 
maximum depths compared to the other algorithms. The chapter further 
showed that MAVIPER generally produces more robust agents than the 
other learning algorithms. Future work should seek to validate the 
effectiveness of these policies in assisting people with performing multi- 
agent tasks through extensive, task-grounded user studies. 
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C H A P T E R 6 

Towards the Automatic 
Synthesis of 
Interpretable  
Chess Tactics 

Abhijeet Krishnan and Chris Martens 
North Carolina State University, Raleigh, NC   

INTRODUCTION 
Recent advancements in reinforcement learning (RL) have produced 
agents capable of competing with and even outperforming the best 
human experts at various games like chess (Silver et al. 2018), Go (Silver 
et al. 2016), Shogi (Li et al. 2020), Mahjong (Silver et al. 2018), StarCraft 
II (Vinyals et al. 2019), and Dota 2 (Berner et al. 2019). These agents do 
not simply take advantage of faster reaction and calculation abilities, but 
are actually employing new, better strategies that lead to more victories. 
Borrowing from Jeanette Wing’s definition of computational thinking 
(Wing 2008), these agents have better abstractions than human experts 
for the games they are trained to play. 

Despite the existence of such agents in various competitive games, we 
still see human competition continue to thrive, with these agents leading to 
new ways of thinking and a re-evaluation of long-held beliefs about the 
game. These discoveries have, so far, involved manual or engine-assisted 
analysis of the games played by the agents (Sadler & Regan 2019; Zhou 
2018). If the agents could themselves explain their strategies and decision 
making to human players, we posit that it would help improve their play. 
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Such chess-playing agents (chess engines) are used extensively in game 
analysis (Smith 2004; Tukmakov 2020) and tournament preparation 
(Andrei 2021). Expert chess players utilize engine move suggestions and 
evaluations to analyze new lines to play (PTI 2016). Most current engines 
use a neural network model with many thousands of parameters trained 
using deep reinforcement learning (DRL) in conjunction with a search 
algorithm to produce game moves. Examples include Monte Carlo Tree 
Search in AlphaZero (Silver et al. 2016), Predictor+Upper Confidence 
Bound tree search in Leela Chess Zero (Pascutto and Linscott 2019), or 
alpha-beta pruning in Stockfish 14 (Romstad, Costalba, & Kiiski 2021). 
However, this differs from how human chess players employ pattern 
recognition to produce moves (de Groot 1946; Connors, Burns, & 
Campitelli 2011). 

Current research in the newly emerging field of explainable RL 
(XRL) attempts to develop methods to help humans understand RL 
agent decisions. Multiple techniques like t-SNE (Moore & Stamper 
2019), trajectory clustering (Osborn, Samuel, & Mateas 2018), and 
heatmaps (Broll et al. 2019) have been applied to visualize agent 
behavior in games. Symbolic policies have been investigated as inter-
pretable representations of neural network policies learned via DRL. 
They have been learned directly from reward signals (Trivedi et al. 
2021; Landajuela et al. 2021), as surrogate models for more complex 
policies (Verma et al. 2018) or from input/output pairs (Derner, 
Kubalík, & Babuška 2018). However, most research in this area learns 
policies for optimal control in continuous environments, with discrete 
game environments like chess receiving little attention. 

In this chapter, we propose a framework to learn a symbolic sub- 
policy model for chess. We describe our sub-policy as being a collection 
of first-order logic rules that model chess tactics. We use patterns 
learned by an existing inductive logic programming (ILP) system called 
PAL (Patterns and Learning) (Morales 1992) to derive these tactics. We 
contribute a divergence metric to evaluate our model of a tactic using the 
move evaluation capabilities of a chess engine. We present an evaluation 
of a set of tactics obtained from PAL against a random baseline using 
our metrics. Finally, we propose a computational evaluation of this 
approach by augmenting a chess engine with the synthesized tactics. We 
conclude with a discussion on the limitations of this approach, along 
with future work. 
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RELATED WORK 

Strategy Synthesis 

A number of research efforts attempt to learn rule-based agents using 
evolutionary approaches to play role-playing games like Neverwinter 
Nights (Spronck, Sprinkhuizen-Kuyper, & Postma 2004), board games like 
Checkers and Reversi (Benbassat & Sipper 2011), cooperative games like 
Hanabi (Canaan et al. 2018), platforms like Mario (de Freitas, de Souza, & 
Bernardino 2018), and real-time strategy games like µRTS (Mariño et al. 
2021). Partially applicable strategies for puzzle games have been learned 
using constraint satisfaction (Butler, Torlak, & Popovic 2017). Our model 
for chess tactics is learned using ILP, and incorporates domain knowledge 
of the concept of a tactic in order to improve interpretability. 

Explainable RL 

Attempts to make RL agent policies amenable to human interpretation 
have been pursued in the XRL field. Puiutta and Veith (2020) provide a 
survey of recent XRL methods. An interpretability technique that has 
received some attention is that of training an inherently interpretable 
surrogate model that matches the performance of the original agent. 
Options for this surrogate model that have been investigated include 
decision trees (Bastani, Pu, & Solar-Lezama 2018; Coppens et al. 2019;  
Sieusahai and Guzdial 2021) and programmatic policies (Verma et al. 
2018; Trivedi et al. 2021). Our proposed sub-policy model is only par-
tially applicable, and attempts to improve interpretability for chess by 
incorporating domain knowledge of how chess tactics are structured. 

Chess Pattern Learning 

Chess has been called the drosophila1 of artificial intelligence (McCarthy 
1990). It has been a mainstay of AI research from the invention of the 
digital computer (Shannon 1950) to the neural network revolution (Silver 
et al. 2018). Given the depth of experimentation with AI techniques for 
chess, it is not surprising that the idea of using patterns to guide a com-
puter to play chess is not new. Patterns have been used to suggest moves 
and guide playing strategies in middle-game positions (Berliner 1975;  
Pitrat 1977; Wilkins 1979) and endgames (Huberman 1968; Bramer 1977;  
Bratko 1982). Levinson and Snyder (1991) used weighted patterns in their 
Morph system as an evaluation function to guide playing strategy. Recent 
work has attempted to directly probe neural network engines to test for the 
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presence of human concepts (McGrath et al. 2021). Morales (1992) 
developed the PAL system to learn first-order patterns in chess using ILP. 
We build upon this work by taking advantage of modern chess engines to 
serve as the reference evaluation function to select learned patterns instead 
of hand-crafted heuristics. 

BACKGROUND 

Inductive Logic Programming 

Inductive logic programming (ILP) is a form of symbolic machine 
learning where the goal is to induce a hypothesis (a set of logical rules) 
that generalizes given training examples (Cropper & Dumančić 2020). It 
can learn human-readable hypotheses from smaller amounts of data than 
neural network models. 

An ILP problem is specified by three sets of Horn clauses—B; the 
background knowledge, E+, the set of positive examples of the concept; 
and E−, the set of negative examples of the concept. The ILP problem is 
to induce a hypothesis H that, in combination with the background 
knowledge, entails all the positive examples and none of the negative 
examples. Formally, this can be written as: 

e E H B e H is complete
e E H B e H is consistent

, (i.e. , )
, (i.e. , )

+

To make the ILP problem more concrete, we provide a toy example below. 
E+ and E− contain positive and negative examples of the target 

knight_move relation, respectively. B contains background knowledge (i.e., 
clauses that might be useful in inducing a hypothesis for knight_move). 

E knight move d c knight move d e

knight move d b knight move d f
E knight move d d knight move d b

knight move d e knight move d h
B l move d c l move d e l move d b

l move d f

= { _ ( 4, 6). _ ( 4, 6).

_ ( 4, 5). _ ( 4, 5). }

= { _ ( 4, 5). _ ( 4, 6).

_ ( 4, 1). _ ( 4, 7). }

= { _ ( 4, 6). _ ( 4, 6). _ ( 4, 5).

_ ( 4, 5). }

+
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From this information, we could induce a hypothesis for knight_move as 
knight_move(From,To):− l_move(From,To). 

PAL System 

The PAL (patterns and learning) system was introduced by Morales 
(1992). It attempts to use ILP to synthesize patterns for chess play, which 
are expressed using a subset of Horn clause logic. It contributes a predicate 
vocabulary for expressing these patterns and chess positions as Horn 
clauses. The pattern-learning problem is framed as an ILP problem, for 
which a heuristically constrained version of the rlgg (relative least general 
generalization) algorithm is used to induce plausible hypotheses. Patterns 
learned can be static and not involve any piece movement, or be dynamic 
and describe multi-move tactics. We expand upon how the PAL system 
formally defines and synthesizes these chess patterns. 

Pattern Formalism 
A pattern in PAL is formally defined as a non-recursive Horn clause of 
the form 

D D D F F FHead: , , ···, , , , ···,n m1 2 1 2

where:  

• Head is the head of the pattern definition  

• The Di are “input” predicates used to describe the position and 
represent pieces involved in the pattern  

• The Fj are instances of definitions that are either provided as 
background knowledge or learned by PAL, and represent the 
conditions (relations between pieces and places) to be satisfied by 
the pattern. 

An example of a checking move pattern, where a move that puts the 
opponent king in check is suggested, is reproduced from Morales (1992) 
in Figure 6.1. A key predicate is make_move, which determines whether 
a pattern is static or dynamic. The contents predicates are used to 
describe the position on the board. The remaining predicate definitions 
are provided as background knowledge. 
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Pattern Synthesis 
The input to the PAL generalization algorithm is a set of pattern defini-
tions (both predefined and learned) along with a description of a chess 
position (as ground unit clauses). The algorithm extends Buntine’s (1988) 
method for constructing the rlgg of two clauses to multiple clauses. It uses 
the following constraints and heuristics to limit hypothesis size and 
increase the algorithm’s generalization steps:  

• Disallowing variables in the head or body of a rule that are 
not connected to a literal (i.e., not equal to a variable of that 
literal)  

• Labeling constants occurring in the ground literals of a rule body to 
make patterns piece-invariant  

• Restricting the legal moves from a position to be only those that 
introduce a new predicate name or remove an existing predicate 
name 

PAL uses an automatic example generator to manually guide the gen-
eralization algorithm towards learning desired concepts. Given an ex-
ample of the target concept, the generator perturbs the example to create 
a new example for which a classification label must be provided. To 
restrict the example space searched, the automatic example generator 
attempts to generate examples which specialize the current hypothesis in 
case of a prior positive example, or generalize it in case of a prior neg-
ative example. We refer interested readers to the original thesis for 
further details. 

FIGURE 6.1 A PAL rule for the can_check pattern. A piece (P1) belonging to 
the side S1 can check the opponent’s (S2) King after moving to (X3,Y3).    
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METHODOLOGY 

Chess Tactic Model 

We conceptualize our sub-policy model as a chess tactic. Formally, we 
define a tactic as a first-order logic rule that can bind to a chess position. A 
position is expressed in first-order logic using an appropriate predicate 
vocabulary. If a tactic binds to (matches) a particular position, it suggests a 
move (or moves) to be played. The moves suggested must be legal in the 
given position. This is described in Figure 6.2 as a Prolog pseudo-definition. 

A single tactic, or even a set of tactics, does not represent a complete 
policy for playing chess. This is because we might encounter a position 
for which no tactic matches. In this case, our model cannot make a move. 
There might also be positions to which multiple tactics apply, in which 
case an arbitration process for selecting a single move among the various 
suggestions is not obvious. 

Tactic Utility Metrics 

We introduce two metrics, coverage and divergence, to measure the utility 
of a learned tactic. 

Coverage 
A tactic t’s coverage for a set of positions P is calculated as: 

Coverage
P

P
=t

match

where a position p ∈ Pmatch if there is a binding assignment of the 
variables in the rule head of the tactic t to the position p. 

Divergence 
To measure the quality of moves suggested by a tactic, we extend a metric 
previously used to analyze world chess champions (Guid & Bratko 2006;  

FIGURE 6.2 A Prolog pseudo-definition for a 
tactic. “!” is the Prolog cut operator.     
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2011; Romero 2019) to multiple moves using discounted cumulative 
gain (DCG) (Järvelin & Kekäläinen 2002). A move’s error in a position 
p is measured by comparing it to the best move suggested by the engine 
in that position. This comparison is done quantitatively by using the 
engine’s move evaluation function eval(·,p). In case an engine evaluates 
a position to be a ‘Mate in X’ rather than a centipawn score (a com-
monly used metric in computer chess to evaluate a position; defined as 
1/100ths of the value of a pawn), we assign an arbitrary large value to 
the evaluation. 

move p eval move p eval move pError( , ) = | ( , ) ( , )|engine

Since a tactic might suggest multiple moves, we propose the use of DCG 
as a metric to compare ranked move suggestion lists. Assuming the list of 
suggestions output by a tactic to be in ranked order, we obtain a list of 
best moves from the engine of similar length as the suggestions, and 
compare the two using DCG. Thus, the final divergence metric for a 
tactic t over a set of positions P is: 

Divergence
P

Error m p
log i

= 1 ( , )
(1 + )t

match p P i

M
i

=1 2match

t

where Mt is the ranked list of move suggestions output by a tactic, and mi is 
the ith move in Mt. The divergence of a tactic (to the reference engine) is 
low and close to 0 when its suggestions are similar in evaluation to the 
engine’s best moves, and takes on large values when it differs substantially. 

Implementation using PAL 

We use the PAL system to synthesize tactics. We select seven patterns 
that PAL was shown to learn, and modify them to output a move sug-
gestion. These patterns and their verbal definitions are listed in Table 6.1. 
All patterns learned other than pin are one-ply dynamic patterns, which 
means they include a single make_move predicate in the rule body 
looking ahead one move. We modify these patterns to introduce a 
suggestion predicate with the same variables as make_move. For pin, 
which is a static pattern as learned by PAL, we convert it into a dynamic 
pattern as shown in Figure 6.3 and introduce the suggestion predicate in 
the same way. 
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EVALUATION 
We wish to investigate whether the synthesized tactics tend to suggest 
good moves to play. We do this by measuring coverage and divergence 
for each of our tactics over a set of positions using both a strong and a 
weak reference engine. For our strong reference engine, we use Stockfish 
14, the winner of the TCEC 2020 Championship (Haworth & Hernandez 
2021). For our weak reference engine, we use Maia Chess (McIlroy- 
Young et al. 2020), a chess engine trained to produce human-like moves. 
We use the maia1 model, which is targeted toward 1100 ELO (a measure 
of relative playing strength, and roughly equal to a beginner). We limit 
the search depth to one-ply for both Stockfish 14 and Maia 1100 to 
resemble our tactics. As a baseline, we use a random tactic which is 
applicable to all positions and produces a random legal move in the 
position. We limit the number of suggestions from a tactic to 3, and 

TABLE 6.1 Patterns Learned by the PAL System That Are Used to Create Tactics    

Pattern Definition  

can_threat A piece (P1) can threaten another piece (P2) after making a move 
to (X3,Y3) 

can_fork A piece (P1) can produce a fork to the opponent’s King and 
another piece (P3) after making a move to (X4,Y4) 

can_check A piece (P1) can check the opponent’s King after moving to 
(X3,Y3) 

discovered_check A check by piece (P2) can be “discovered” after moving another 
piece (P1) to (X4,Y4) 

discovered_threat A piece (P1) can threaten an opponent’s piece (P3) after moving 
another piece (P2) to (X4,Y4) 

skewer A King in check by a piece (P1) “exposes” another piece (P3) when 
it is moved out of check to (X4,Y4) 

pin A piece (P3) cannot move because it will produce a check on its 
own side by piece (P1)     

FIGURE 6.3 Modified PAL rule for the pin pattern to convert it into a tactic.    
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assume the output order of tactic suggestions as the intended ranked 
order. For ease of implementation, we manually translated the tactics 
from Prolog definitions to Python functions. We use 5,000 games from 
the January 2013 archive of standard rated games played on lichess.com 
(lichess.org 2021). For each game, we generate positions by iterating 
through the move list, making the move, and adding the resulting 
position to the evaluation set. In total, we generate 325,830 positions. 

RESULTS AND ANALYSIS 
We summarize the results of our evaluation in Table 6.2. From the high 
coverage values obtained, we conclude that tactics like can_threat and 
discovered_threat are too general, whereas tactics like discovered_threat 
are too specific. Tactics like can_check, can_fork, and skewer strike a 
balance between these extremes. 

From the divergence metrics calculated using Maia 1100 (our weak 
engine), we see that most of our tactics have lower divergence scores than 
our random baseline, indicating that they tend to produce moves that are 
evaluated somewhat similarly to a weak engine’s best moves. For 
Stockfish 14 (SF14), however, all our tactics have higher divergence 
scores than random, indicating that they do not tend to produce moves 
similar to a strong engine. Thus, we qualitatively conclude that our 
tactics resemble that of a beginner chess player. 

PROPOSED EVALUATION 
We propose an experiment to investigate whether the identified set of 
tactics are useful for a human player to learn in order to generate good 
moves. To do this, we will measure the win-rate of a chess engine against 

TABLE 6.2 Coverage and DCG for Each Tactic      

Tactic Coverage Divergence 

SF14 Maia  

can_threat  0.96  378.94  9.22 
can_check  0.45  549.19  4.02 
can_fork  0.32  676.45  4.67 
discovered_check  ≈0  338.55  18.64 
discovered_threat  0.96  375.97  1.19 
skewer  0.22  748.4  5.41 
pin  0.79  526.45  4.9 
random  1  328.09  8.28     
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a version of itself augmented with these tactics. As a human proxy, we 
plan to use Maia Chess, specifically the maia1 model targeted toward 
1100 ELO. We will play games between the engines of 30 minutes + 
5 seconds time control, following the TCEC League rules (kanchess 
2021) and starting from the default start position. As before, we will limit 
the evaluation depth of the search tree for the augmented and un-
augmented engines to 1. We measure the divergence scores for our tactics 
with a strong reference engine (Stockfish 14). We will modify the action- 
selection procedure of Maia Chess to utilize the first suggestion of the 
lowest divergence tactic applicable to a given position, instead of the en-
gine’s move choice. This is made explicit in Algorithm 1. Finally, we will 
compare the win rates of the augmented engine against the unmodified 
version of itself over multiple games. Our hypothesis is that the augmented 
engine will have significantly higher win rate, enabling us to conclude that 
the set of tactics tend to suggest good moves. 

Algorithm 1: Augmented engine move selection 

Input: Set of tactics T, position p, chess engine move selection procedure 
C.make_move(·) 

Output: Legal move in position p 
1: move ← C.make_move(p) 
2: min_divg ← ∞ 
3: for t ∈ T do 
4: if t matches p and divg(t) < min_divg then 
5: move ← t.suggestion 
6: min_divg ← divg(t) 
7: end if 
8: end for 
9: return move 

CONCLUSION AND FUTURE WORK 
We have described a symbolic sub-policy model for chess inspired by the 
pattern-action model of chess tactics. We have used patterns learned by 
an ILP system to construct these tactics. We have contributed a metric 
for measuring the divergence of these tactics to a reference chess-playing 
agent. We evaluated a set of tactics learned by a chess pattern learning 
system using our metric to find that they resembled a weak engine, but 
were not similar to a strong one. 
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We use patterns learned by PAL to obtain our tactics. However, PAL 
uses manual labeling of generated examples to learn specific concepts, 
and requires additional effort to convert the learned patterns into tactics 
for our model. We aim to investigate the automatic learning of tactics 
from a data set of chess positions and move suggestions using ILP as 
implemented by modern systems like Popper (Cropper & Morel 2021). 
Future work could investigate alternate ILP algorithms (e.g., the δILP 
system (Evans & Grefenstette 2018)) that use our divergence metric as a 
loss function to optimize tactics. 

Our tactic model is loosely inspired by how chess tactics are learned and 
practiced. However, our tactics are limited to looking 1-ply in the future 
(i.e., they can recognize only the presence of a matching pattern in the 
immediately next position). Many chess tactics suggest combinations of 
moves, a series of moves where the matching pattern shows up only in a 
particular sequence (see Figure 6.4). Extending the tactic model to express 
and recognize such combinations will be a useful avenue for future work. 
We also wish to investigate the expression of longer-term plans from chess 
literature like centre control and pawn structure using tactics. 

Our appeal to the interpretability of these tactics rests on similar 
claims made regarding the interpretability of rule-based strategies. 
Future work will involve rigorously testing these assumptions with user 
studies using evidence-based measures of interpretability (Lage et al. 
2019; Kliegr, Bahník, & Fürnkranz 2021). Specifically, we wish to 
investigate the ease of learning and applying these tactics in real games 
played by human players. 

NOTE  

1. Fruit fly; easily bred and thus extensively used in genetics research. 

FIGURE 6.4 An example of the limitations of our 
one-ply can_fork tactic. White has no immediate 
forking move here, leading to the tactic not 
matching. However, if they play 1. Nxb4, then 
Black’s best response is 1 … . Rxc7 which allows a 
fork with 2. Nd5+ leading to the capture of the 
rook.     
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INTRODUCTION 
Deep learning models are used to serve automated decisions in settings 
such as banks, insurance, and health care. These models are typically 
treated as a black box, where no insight is given as to how they make 
decisions. This lack of transparency has hindered adoption of these 
models into production. Much research has been devoted to developing 
algorithms, or explanation methods, to interpret their predictions. 

Indeed, there are many approaches for generating post-hoc explana-
tions. For example, feature importance methods (Lundberg & Lee 2017;  
Ribeiro, Singh, & Guestrin 2016; Kim et al. 2018) identify relevant 
dimensions and assign a score to rank their importance relative to the 
other dimensions. For image data, saliency maps (Simonyan, Vedaldi, & 
Zisserman 2014; Springenberg et al. 2015; Bach et al. 2015; Selvaraju et al. 
2016; Shrikumar, Greenside, & Kundaje 2017; Shrikumar et al. 2016;  
Zeiler & Fergus 2014; Smilkov et al. 2017; Sundararajan, Taly, & Yan 
2017; Montavon et al. 2017) identify relevant pixels in the input image. 
Counterfactual explanations (Wachter, Mittelstadt, & Russell 2017) 
determine the smallest possible perturbation to the given input that will 
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change the prediction to a desired target outcome. Lastly, prototype 
explanations (Chen et al. 2019; Li et al. 2018; Ming et al. 2019) learn a 
continuous vector that represents a “typical” training example, where 
explanations are given based on their relative distance to a prototype 
vector. 

The prototype network architecture from Li et al. (2018) combines 
an autoencoder with a prototype layer, where each observation in the 
training set is classified based on its distance to a prototype vector. 
The encoded input from the autoencoder is used as features for 
predictions downstream. The prototype vectors learned by this net-
work are defined as typical observations in the training set and, 
because they are learned in the same space as the encoded input, they 
can be mapped back into the original input space for visualization 
using the decoder. 

Explanations are given in the form of a most similar prototype vector. 
The specific architecture of this network allows us to further develop and 
improve the types of explanations generated post hoc. 

This chapter expands the type of explanations generated by the pro-
totype network to identify relevant features in the input space. Due to the 
architecture of this network, the latent features learned by the model can 
be exploited to identify relevant input space features. We make use of the 
network’s encoded input to randomly set latent features to zero, and use 
the network’s decoder to determine which input space values changed 
the most. Finally, this work allows us to open a general discussion about 
generating explanations, identifying when one explanation method is 
preferable to another, and the complications that arise when measuring 
explanation quality. 

PROTOTYPE NETWORK 
This section provides necessary background information on the proto-
type network from Li et al. (2018), including the architecture and loss 
function. 

ARCHITECTURE DETAILS 
The prototype network architecture can be visualized in Figure 7.1. It 
consists of an autoencoder (the encoder defined as f R R: p q and the 
decoder, defined as g R R: q p), a prototype layer p R R: q m, and a 
dense (fully connected) layer w R R: m K that feeds into a softmax 
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layer. The prototype layer takes as input encoded training points, 
denoted f x( )i , and computes the L2 distance between f x( )i and m
prototype vectors denoted p p R, …, m

q
1 . The overall network is 

given by h R R: q K . In this prototype network architecture, obser-
vations are classified based on their distance to a prototypical observa-
tion, and the loss function ensures that each prototype vector is similar 
to an encoded training point. We denote the data set D x y= {( , )}i i i

n
=1, 

where y K{1, …, }i and K being the number of classes. 

LOSS FUNCTION 
The loss function given by Li et al. (2018) is broken down into the fol-
lowing four parts below: 

E h f D
n

y k log h f x( , ) = 1 1[ = ] (( ) ( ))
i

n

k

K

i k i
=1 =1

(7.1) 

R g f D
n

g f x x( , ) = 1 ||( )( ) ||
i

n
i i

=1
2 (7.2) 

R p p D
m

min p f x( , …, , ) = 1 || ( )||m
j

m
i n j i1 1

=1
[ ] 2 (7.3) 

R p p D
n

min f x p( , …, , ) = 1 || ( ) ||m
i

n
i m i j2 1

=1
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FIGURE 7.1 Prototype network architecture ( Li et al. 2018).    
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The complete loss function is given by 

L f g h D E h f D R g f D
R p p D R p p D

(( , , ), ) = ( , ) + ( , )
+ ( , …, , ) + ( , …, , )m m

0

1 1 1 2 2 1
(7.5)  

where , ,0 1 2 are hyperparameters. 

PROPOSED APPROACH 
The encoder function f maps a p dimensional vector to a q dimensional 
vector where p q> . This encoded input contains relevant information 
for classification, as it is used as features downstream, and is using a 
lower-dimensional representation of the input data. Identifying relevant 
information in the encoded latent space should provide further insight 
into how the model is making decisions. For some observation x, we 
want an explanation for, we encode the input using the prototype 
network’s encoder f . We then make m copies of the encoded input 
f x( ), and apply m different masks element-wise. Each mask, denoted 
mi, is the same dimensions as the encoded input f x( ), where each 
element of a mask is assigned a 1 with 90% probability and a 0 with 10% 
probability. The element-wise product is then averaged across the m
masks, given by: 

f x
m

f x mˆ ( ) = 1 ( )
i

m
i i

=1
(7.6)  

The result f xˆ ( ) is then decoded by the prototype network’s decoder g
for visualization, given by: 

g g f xˆ = (ˆ ( )) (7.7)  

To identify the relevant dimensions in the input space, the input is 
mapped through the encoder and then decoded, denoted g f x(ˆ ( )). We 
then compute the absolute difference between the decoded input and the 
decoded masked input given by: 

x g g f x= |ˆ ( ( ))| (7.8)  
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where x gives the feature importance scores of x for each dimension. 
Here, the absolute difference gives the features in the input space with 
the largest change. The code for this chapter is available online.1 

EXPERIMENTS 

Image Data 

With image data, we have the ability to visualize the explanation. We 
train a prototype network on the MNIST data set (LeCun et al. 1998) 
with three encoding layers, three decoding layers, one prototype layer, 
and one fully connected layer. This model learns ten prototype vectors 
(one for each class), achieving 99.1% accuracy on the test set. 

Figure 7.3 shows saliency maps of the proposed approach for each 
image in Figure 7.2. We can see that the proposed approach produces 
saliency maps that outline the digit in the original image. We perform 
the model parameter randomization and data randomization test 
(Adebayo et al. 2018). The model parameter randomization test gener-
ates saliency maps from a model with untrained, random parameters. 
The resulting saliency maps should be random noise. The data ran-
domization test trains a model where the training labels have been 
randomly shuffled. Like the model parameter randomization test, the 
resulting saliency maps should be random noise and the end user should 
not be able to determine the object in the image. Figure 7.4 shows 

FIGURE 7.2 MNIST images.    

FIGURE 7.3 Saliency maps: Proposed approach.    

FIGURE 7.4 Saliency maps: Proposed approach-randomly initialized untrained 
network.    
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saliency maps from an untrained prototype network with randomly 
initialized parameters (model parameter randomization test). Figure 7.5 
shows saliency maps for a model trained on random labels (data ran-
domization test). From these figures, we can see the proposed approach 
passes the model parameter randomization test but fails the data ran-
domization test. In other words, the proposed approach to generating 
explanations is not providing insight into what the model has learned. 

Tabular Data 

We demonstrate our approach on a well-known tabular data set, the 
California Housing data set (Pace & Barry, 1997). Here, we are tasked 
with determining if houses should be sold above or below the median 
price. We train a prototype network on the California Housing data set 
with two encoding layers, two decoding layers, one prototype layer, and 
one fully connected layer. This model learns two prototype vectors, 
achieving 84.2% accuracy on the test set. 

Figure 7.6 compares relevant features identified by Lime (Ribeiro, 
Singh, & Guestrin 2016) to our proposed approach for selected obser-
vations. For both observations, we can see that the top three dimensions 
with the highest attribution scores are the same for both explanation 
methods. Although both explanations are similar, they are not exactly 
equal. From these examples, which explanation method is actually dis-
playing what the model has learned? In other words, which explanation 
method is preferable to the other? These questions are difficult to answer 
without ground truth explanations to quantitatively compare against. 

FIGURE 7.5 Saliency maps: Proposed approach-network trained on randomly 
permuted labels.    

Lime features:
Observation 1

Proposed features:
Observation 1

Lime features:
Observation 2

Proposed features:
Observation 2

FIGURE 7.6 Explanations generated by Lime and the proposed approach on 
California Housing data set.    
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DISCUSSION 
From the experiments on tabular and image data, we found our approach 
produced what looked like faithful explanations on both types of data. After 
using the robustness tests from Adebayo et al. (2018) on an image data set, 
we were able to determine that this was not the case. For image data, we 
have the ability to visually verify any explanation generated in the input 
space. With tabular data, we do not have this luxury. Depending on the type 
of data used for experimentation, researchers can be misled into thinking 
the explanations their model is generating are faithful because they are 
similar to a state-of-the-art method. With ground truth explanations, re-
searchers would not have to rely on previous state-of-the-art explanation 
methods to determine if their approach is generating faithful explanations. 

In general, this is a common problem in the field of XAI. When a new 
explanation method is proposed, researchers often show several “good 
looking” examples to display to the reader the capability of the proposed 
method. Comparisons against a state-of-the-art method typically involve 
a small number of cherry-picked examples to demonstrate the ability of 
an explanation method. This can be misleading. Indeed, a small number 
of selected examples do not truly represent how the explanation method 
is performing on the entire test set. As we demonstrated on the tabular 
data set, our proposed approach can compete with Lime on “selected” 
examples. However, this is not conclusive evidence that this explanation 
method is preferable to Lime. In order to accurately determine which 
explanation method is preferable, ground truth explanations are needed. 
In this chapter, we propose an explanation method for the sole purpose 
of demonstrating that the current standard for developing explanation 
methods does not rigorously evaluate the quality of explanations pro-
duced. This can lead to explanation methods producing explanations 
that do not truly reflect what the model has learned. 

Defining ground truth explanations may be more difficult for different 
tasks, and different types of data. Additionally, there may be more than 
one way to explain a particular observation. Data sets with ground truth 
explanations must include all possible ways to explain each observation. 
Failing to include all possible ground truth explanations can unfairly 
penalize an explanation method for identifying a correct explanation not 
included in the ground truths. 

There is existing work on qualitative evaluation of explanations.  
Poursabzi-Sangdeh et al. (2021) perform a user experiment to determine 
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what makes a model interpretable. Jeyakumar et al. (2020) perform a 
user experiment to determine what style of explanation is preferred by 
users. Adebayo et al. (2020) develop a series of debugging tests, and 
include a user experiment to determine if users can identify defective 
models. Not much existing research focuses on quantitatively evaluating 
all test set explanations for quantitative comparisons across explanation 
methods. Relying on users to evaluate each explanation in the test set 
does not scale to large data sets, and cannot be performed on certain 
types of data (tabular data for example, users shown an explanation 
would not know if it is an accurate explanation or not). Additionally, 
users without a background in machine learning may not be able to 
determine a good explanation. For quantitative evaluations of explana-
tions that scales to large data sets, scoring metrics must be defined that 
give an accurate representation of the explanation method’s perform-
ance. Scoring metrics that measure explanation quality can be formally 
defined with ground truth explanations. Recently, researchers have 
proposed several data sets with ground truth explanations. For example, 
this includes the Royalty-20k and Royalty-30k data sets (Halliwell, 
Gandon, & Lecue 2021a) and the FrenchRoyalty-200k data set (Halliwell, 
Gandon, & Lecue 2021b), which were proposed along with several 
scoring metrics to quantitatively evaluate explanations. These data sets 
are Knowledge Graphs; they are limited to evaluating explanation 
methods of link prediction models on Knowledge Graphs. 

CONCLUSION 
In this chapter, we proposed a method to expand prototype networks to 
identify relevant features in the input space. We compared selected ex-
amples against a state-of-the-art explanation method on tabular data and 
verified that the explanations are similar. On image data, however, our 
approach passes the model parameter randomization test but fails the 
data randomization test. It is common practice in the field of XAI to 
compare explanation methods using a few selected examples. This is not 
a thorough evaluation of explanation quality. 

We discussed the development of explanation methods, identifying 
when one explanation method is preferable to another, and the compli-
cations that arise when measuring explanation quality. Much research in 
the field of XAI is devoted to developing new explanation methods. This 
chapter points out that more work should be devoted to evaluating the 
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quality of explanation generated. Many of these issues can be solved with 
ground truth explanations. We recognize this can be difficult with tabular 
data. Research should be devoted to defining ground truth explanations for 
all domains in order to quantitatively evaluate explanations. 

NOTE  

1.  https://github.com/halliwelln/prototype-explanations. 
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