

Explainable Agency in Artificial
Intelligence

This book focuses on a subtopic of explainable AI (XAI) called explainable
agency (EA), which involves producing records of decisions made during an
agent’s reasoning, summarizing its behavior in human-accessible terms, and
providing answers to questions about specific choices and the reasons for
them. We distinguish explainable agency from interpretable machine learning
(IML), another branch of XAI that focuses on providing insight (typically, for
an ML expert) concerning a learned model and its decisions. In contrast,
explainable agency typically involves a broader set of AI-enabled techniques,
systems, and stakeholders (e.g., end users), where the explanations provided
by EA agents are best evaluated in the context of human subject studies.

The chapters of this book explore the concept of endowing intelligent
agents with explainable agency, which is crucial for agents to be trusted by
humans in critical domains such as finance, self-driving vehicles, and
military operations. This book presents the work of researchers from a
variety of perspectives and describes challenges, recent research results,
lessons learned from applications, and recommendations for future
research directions in EA. The historical perspectives of explainable
agency and the importance of interactivity in explainable systems are
also discussed. Ultimately, this book aims to contribute to the successful
partnership between humans and AI systems.

Features:

• Contributes to the topic of explainable artificial intelligence (XAI)

• Focuses on the XAI subtopic of explainable agency

• Includes an introductory chapter, a survey, and five other original
contributions

Chapman & Hall/CRC Artificial Intelligence and Robotics
Series
Series Editor: Roman Yampolskiy

Digital Afterlife and the Spiritual Realm
Maggi Savin-Baden

A First Course in Aerial Robots and Drones
Yasmina Bestaoui Sebbane

AI by Design: A Plan for Living with Artificial Intelligence
Catriona Campbell

The Global Politics of Artificial Intelligence
Edited by Maurizio Tinnirello

Unity in Embedded System Design and Robotics: A Step-by-Step Guide
Ata Jahangir Moshayedi, Amin Kolahdooz, Liao Liefa

Meaningful Futures with Robots: Designing a New Coexistence
Edited by Judith Dörrenbächer, Marc Hassenzahl, Robin Neuhaus,
Ronda Ringfort-Felner

Topological Dynamics in Metamodel Discovery with Artificial
Intelligence: From Biomedical to Cosmological Technologies
Ariel Fernández

A Robotic Framework for the Mobile Manipulator: Theory and
Application
Nguyen Van Toan and Phan Bui Khoi

AI in and for Africa: A Humanist Perspective
Susan Brokensha, Eduan Kotzé, Burgert A. Senekal

Artificial Intelligence on Dark Matter and Dark Energy: Reverse
Engineering of the Big Bang
Ariel Fernández

Explainable Agency in Artificial Intelligence: Research and Practice
Silvia Tulli and David W. Aha

For more information about this series please visit: https://www.routledge.
com/Chapman--HallCRC-Artificial-Intelligence-and-Robotics-Series/book-
series/ARTILRO

https://www.routledge.com/Chapman--HallCRC-Artificial-Intelligence-and-Robotics-Series/book-series/ARTILRO
https://www.routledge.com/Chapman--HallCRC-Artificial-Intelligence-and-Robotics-Series/book-series/ARTILRO
https://www.routledge.com/Chapman--HallCRC-Artificial-Intelligence-and-Robotics-Series/book-series/ARTILRO

Explainable Agency in
Artificial Intelligence

Research and Practice

Edited by
Silvia Tulli

David W. Aha

https://www.crcpress.com
https://www.crcpress.com

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Silvia Tulli and David W. Aha; individual chapters,
the contributors

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 978-1-032-40913-9 (hbk)
ISBN: 978-1-032-39258-5 (pbk)
ISBN: 978-1-003-35528-1 (ebk)

DOI: 10.1201/9781003355281

Typeset in Minion
by MPS Limited, Dehradun

www.copyright.com
www.copyright.com
https://doi.org/10.1201/9781003355281

Contents

Preface, x

Editor Biographies, xviii

Contributors, xix

CHAPTER 1 ■ From Explainable to Justified Agency 1
PAT LANGLEY

INTRODUCTION 1

ASPECTS OF EXPLANATION 2

REPRESENTING EXPLANATIONS 3

VARIETIES OF SELF EXPLANATION 5

Structural Explanations 5
Preference Explanations 7
Process Explanations 9
Hypotheses about Explanation Types 11

NORMATIVE AGENCY 12

JUSTIFIED AGENCY 15

CONCLUDING REMARKS 17

NOTES 18

CHAPTER 2 ■ A Survey of Global Explanations in
Reinforcement Learning 21
YOTAM AMITAI AND OFRA AMIR

INTRODUCTION 21

SCOPE 23

v

CHAPTER STRUCTURE 23

BACKGROUND: REINFORCEMENT LEARNING 23

GLOBAL AND LOCAL EXPLANATIONS 24

WHAT CONSTITUTES A GLOBAL EXPLANATION? 25

GLOBAL EXPLANATION APPROACHES 26

EXPLANATION THROUGH INTERPRETABLE
REPRESENTATION 28

EXPLANATION BY DEMONSTRATION 29

RULE-BASED EXPLANATIONS 30

EVALUATION METHODS 31

DISCUSSION: DIMENSIONS, GAPS, AND TRENDS 33

CONCLUSION 37

NOTE 37

CHAPTER 3 ■ Integrated Knowledge-Based Reasoning
and Data-Driven Learning for Explainable
Agency in Robotics 43
MOHAN SRIDHARAN

MOTIVATION 43

RELATED WORK 45

ARCHITECTURE DESCRIPTION 46

Knowledge Representation and Reasoning 48
Interactive Learning 50
Explanation Generation 52

EXPERIMENTAL RESULTS 57

Experimental Setup 57
Execution Traces 59
Empirical Results 62

CONCLUSIONS 66

vi ▪ Contents

CHAPTER 4 ■ Explanation as Question Answering Based
on User Guides 70
ASHOK GOEL, VRINDA NANDAN, ERIC GREGORI, SUNGEUN AN,

AND SPENCER RUGABER

INTRODUCTION, BACKGROUND, AND GOALS 70

VERA, AN INTERACTIVE LEARNING ENVIRONMENT 72

USER GUIDE IN VERA 73

ASKJILL, A QUESTION-ANSWERING AGENT 75

ASKJILL’S GENERATION OF AN ANSWER TO A
QUESTION 76

AGENT SMITH: BUILDING ASKJILL FOR VERA’S USER
GUIDE 77

EVALUATION OF ASKJILL IN VERA 79

DISCUSSION 82

SUMMARY AND CONCLUSIONS 83

CHAPTER 5 ■ Interpretable Multi-Agent Reinforcement
Learning with Decision-Tree Policies 86
STEPHANIE MILANI, ZHICHENG ZHANG, NICHOLAY TOPIN,

ZHEYUAN RYAN SHI, CHARLES KAMHOUA,

EVANGELOS E. PAPALEXAKIS, AND FEI FANG

MARKOV GAMES AND MULTI-AGENT
REINFORCEMENT LEARNING ALGORITHMS 87

EXTRACTING DECISION TREE POLICIES WITH
SINGLE-AGENT VIPER 89

IVIPER 91

MAVIPER 93

EXPERIMENTS 97

Fitted Q-Iteration 97
Imitation DT 98
Physical Deception 98
Cooperative Navigation 98
Predator–Prey 99

INDIVIDUAL PERFORMANCE COMPARED TO EXPERTS 99

Contents ▪ vii

JOINT PERFORMANCE COMPARED TO EXPERTS 105

ROBUSTNESS TO DIFFERENT OPPONENTS 111

ABLATION STUDY OF MAVIPER 114

RELATED WORK 116

CONCLUSION 117

CHAPTER 6 ■ Towards the Automatic Synthesis of
Interpretable Chess Tactics 121
ABHIJEET KRISHNAN AND CHRIS MARTENS

INTRODUCTION 121

RELATED WORK 123

Strategy Synthesis 123
Explainable RL 123
Chess Pattern Learning 123

BACKGROUND 124

Inductive Logic Programming 124
PAL System 125

METHODOLOGY 127

Chess Tactic Model 127
Tactic Utility Metrics 127
Implementation using PAL 128

EVALUATION 129

RESULTS AND ANALYSIS 130

PROPOSED EVALUATION 130

CONCLUSION AND FUTURE WORK 131

NOTE 132

CHAPTER 7 ■ The Need for Empirical Evaluation
of Explanation Quality 137
NICHOLAS HALLIWELL, FABIEN GANDON, FREDDY LECUE,

AND SERENA VILLATA

INTRODUCTION 137

PROTOTYPE NETWORK 138

viii ▪ Contents

ARCHITECTURE DETAILS 138

LOSS FUNCTION 139

PROPOSED APPROACH 140

EXPERIMENTS 141

Image Data 141
Tabular Data 142

DISCUSSION 143

CONCLUSION 144

NOTE 145

INDEX, 148

Contents ▪ ix

Preface

MOTIVATION
As artificial intelligence (AI) begins to impact our everyday lives as well
as industry, government, and society at large with tangible consequences,
it becomes increasingly important for practitioners and users to
understand the reasons and models underlying an AI-enabled system’s
decisions and recommendations. Explainable agency captures the idea
that AI systems will need to be trusted by humans and, as autonomous
agents themselves, “must be able to explain their decisions and the
reasoning that produced their choices” (Langley et al. 2017).

In contrast to the much broader topic of explainable AI (XAI), and its
predominant focus on interpretable machine learning (IML), this book
focuses on explainable agency. It addresses a gap in the literature on
published volumes concerning this subtopic of XAI.

This book presents the work of researchers focused on different facets of
explainable agency, from diverse backgrounds, and describes challenges,
new directions, recent research results, and lessons from applications.
It includes or references contributions from AI, human-computer
interaction, human-robot interaction, cognitive science, human factors,
and philosophy.

DEFINITION OF EXPLAINABLE AGENCY
Endowing agents with explainable agency is not only an academic
exercise but a foremost priority in many real-world scenarios. In
financial markets, self-driving vehicles, robot-assisted surgery, military
operations, and other critical domains, whenever the behavior of these
systems does not match human expectations (e.g., the car takes an
unfamiliar turn), it is necessary to inform humans about how and why a
certain decision has been taken. Providing these types of explanations

x

impacts human trust towards the system (Doshi-Velez & Kim 2017;
Gunning & Aha 2019; Kocielnik et al. 2019; Lipton 2018; Miller 2019)
and contributes to creating a shared mental model among the human
and the AI system, leading to a more successful human-AI partnership
(Kamar et al. 2012; Zhang et al. 2021).

Given a set of objectives and the necessary background knowledge that is
relevant to these objectives, to be explainable an intelligent agent should
produce records of decisions made during its reasoning, summarize its
behavior in human-accessible terms, and provide answers to questions
about specific choices and the reasons for them (Langley 2019). Producing
records of decisions made during planning should include stating the
alternatives the agent considered, giving its reasons for selecting them over
alternatives, and describing its expectations for each option (Zhang et al.
2015). The information provided by the agent needs to be expressed at
different levels of abstraction as appropriate and clarify how the performed
actions relate to inferences made by the agent. Explanations should be given
especially in situations where actual events diverged from expectations and
the agent had to adapt in response (Kulkarni et al. 2019). To ensure
intelligibility, the information should be presented in terms of beliefs, goals,
and activities that people find to be familiar (Miller 2017).

Since explainable agency is an attribute given by the observer
inherently motivated by the human quest of understanding an agent’s
behavior, human judgments have a pivotal role in the evaluation process.
Measures on the effectiveness of the explanations include the evaluation
of mental representations of the inferential process that end users have of
a given model (Hoffman et al. 2018; Vilone et al. 2021).

HISTORICAL PERSPECTIVES
During the infancy of intelligent systems, notions of explainable agency
and the importance of being explainable to end-users began to be
developed. Examples of early explainable systems are from critical
domains like healthcare (Swartout et al. 1993). The XPLAIN system
(Swartout et al. 1983, 1985), which attempted to provide generated
explanations for an intelligent medical therapy program, is an early
example of explainable agency used in practice. In addition to providing
explanations of the system’s goals, XPLAIN could also provide
justifications. Other explainable methods in the medical domain aimed
at strategic-level explanations (Hasling et al. 1984). Notably, these early

Preface ▪ xi

examples of explainable agency in systems were focused on the end user
and communicating explanations.

Interactivity played a central role in early explainable systems, and the
importance of the user was highlighted in several research contributions.
The impact of a user-centered explainable system on the end user was
studied by Ye and Johnson (1995); they affirmed how such a facility can
boost the user’s confidence and attitude towards the system. To further
provide more targeted explanations, attempts were also made to model the
user’s mental model, with different levels of abstraction (Chandrasekaran
& Tanner 1989). Arguably, early work focused substantial attention on the
user and interactive aspects of explainable systems, perhaps more so than
in recent years.

An XAI winter followed this early time period that was characterized
by a relative dearth of relevant research reported at major AI venues,
although exceptions included efforts by some research groups (e.g., van
Lent et al. 2004) and some meetings such as the series of Explanation-
aware Computing (ExaCt) Symposia and Workshops (2005–2012). More
recently, the advent of deep neural networks, their utility in critical
applications, and their opaque models have driven an XAI resurgence. For
example, this motivated DARPA’s Explainable AI program (Gunning &
Aha 2019; Gunning et al. 2021) and dozens of workshops and other events
held annually at many AI conferences (e.g., IJCAI). While IML has
received the vast majority of attention during this time period, research on
explainable agency has also been increasingly pursued (e.g., Anjomshoae
et al. 2019; Sado et al. 2023; Sreedharan et al. 2022). This motivated the
Explainable Agency in AI Workshops held at the annual AAAI Conference
on AI in 2021 and 2022, and led to this volume. The chapters in this book
focus primarily on the explainable agency perspective of XAI.

CHAPTER SUMMARIES
Our book begins with Pat Langley’s introductory chapter on explainable
agency titled From Explainable to Justified Agency. In it, he provides
motivations for studying explainable agents, frames the topic, discusses
representational issues, and then presents three forms of self explanation
(i.e., structural, preference, and process explanations), distinguishing
them according to their abilities, and raising hypotheses concerning
them. Pat then describes normative and justified agents, and how these
relate to explainable agents (i.e., they describe their activities in reference
to environment norms). This is an excellent introduction to explainable

xii ▪ Preface

agents that frames and distinguishes this topic from research on
interpretable machine learning.

Next, the chapter A Survey of Global Explanations in Reinforcement
Learning by Yotam Amitai and Ofra Amir contributes to the field of
explainable agency by reviewing research on global explanations for
reinforcement learning (RL) agents. RL is increasingly deployed in real-
world settings, and understanding the overall behavior, strategy, or
reasoning of RL agents is crucial for explainable agency. Their chapter
identifies three main types of global explanations proposed in the
literature for RL agents, including interpretable representations of
policies or the underlying Markov decision process, demonstrations of
policy behavior, and rule-based methods using logical rules. The authors
also discuss evaluation methods used to assess the contribution of global
explanations, such as user studies, qualitative analyses, and quantitative
measures. This chapter is unique in its focus on global explanations in
RL, and it identifies emerging trends, gaps, and potential avenues for
future research in this area.

In his chapter Integrated Knowledge-Based Reasoning and Data-Driven
Learning for Explainable Agency in Robotics, Mohan Sridharan describes
a robotics architecture that integrates model-based and data-driven
methods to enable explainable agency. In doing so, it combines non-
monotonic and probabilistic methods to reason at multiple abstraction
levels, and interactive learning to provide on-demand explanations that
describe its decisions and beliefs. Mohan describes an evaluation of this
architecture on computer vision and planning tasks for robotic hand
manipulation of interpreted objects, demonstrating its ability to answer
factual and contrastive questions about its actions as well as temporally
situated questions about its beliefs. This contribution is novel, in this
volume, in its focus on a robotics architecture.

Ashok Goel, Vrinda Nandan, Eric Gregori, Sungeun An, and Spencer
Rugaber’s chapter Explanation as Question Answering Based on User
Guides instead focuses on the importance for an explainable agent to
leverage knowledge of its design and operation to answer user questions.
Their use case concerns ecology, and specifically the Smithsonian
Institution’s Encyclopedia of Life (EoL). They describe how their
AskJill question-answering agent employs EOL’s user guide to answer
users’ questions during interaction with VERA, an AI-enabled interactive
learning environment. In their human subjects evaluation, they found
that AskJill performed admirably, answering 95% of user questions

Preface ▪ xiii

correctly among those within scope of its capabilities. This contribution
is unique among this book’s chapters in its focus on explanations
concerning the design of an intelligent agent.

The chapter Interpretable Multi-Agent Reinforcement Learning with
Decision-Tree Policies by Milani et al. focuses on interpreting and verifying
policies learned from deep multi-agent reinforcement learning algorithms.
It introduces two novel algorithms, IVIPER and MAVIPER, for learning
interpretable decision-tree policies in multi-agent reinforcement learning.
This chapter provides a comprehensive background on Markov games
and multi-agent reinforcement learning algorithms, and presents
experiments validating the effectiveness of the algorithms in
producing high-quality decision-tree policies for coordination in
cooperative environments.

Abhijeet Krishnan and Chris Martens’s chapter Towards the Automatic
Synthesis of Interpretable Chess Tactics focuses on an explainable agent that
can describe a policy for playing chess. They describe a method for
generating an interpretable policy that incorporates symbolic domain
knowledge learned by an inductive logic programming system. They
also describe a measure for tactic divergence and used it to evaluate a set
of learned tactics. Their contribution is unique here due to its focus
on improving interpretability of a reinforcement learning policy by
incorporating domain knowledge of game-playing tactics.

Finally, the chapter The Need for Empirical Evaluation of Explanation
Quality by Nicholas Halliwell, Fabien Gandon, Freddy Lecue, and Serena
Villata contributes to the field of explainable agency by proposing and
evaluating an approach to identify relevant features in the input space
used by prototype networks, leveraging latent features learned by the
model, with the goal of improving interpretability and understandability.
It discusses the challenges of evaluating explanation quality without
ground truth explanations and emphasizes the need for methods to
generate explanations and compare their suitability.

FINAL REMARKS
This volume contains a selection of extended papers presented at the
Explainable Agency in Artificial Intelligence workshops held in
conjunction with the 2021 and 2022 AAAI Conferences on Artificial
Intelligence. In addition, more recent contributions from the workshops’
invited speakers have been added.

xiv ▪ Preface

We would like to acknowledge the insightful exchanges we had with
our collaborators, Mark Keane and Prashan Madumal, who co-organized
the AAAI-22 workshop with us. Their contributions provided the
foundation for this book and we are grateful for their partnership.
Additionally, we would like to express our appreciation to all the authors
who contributed to this book. Your insights, knowledge, and hard work
were instrumental in creating this book. Thank you!

Silvia Tulli
Institut des systèmes intelligents et de robotique,

Sorbonne University, Paris, France
David W. Aha

Navy Center for Applied Research in AI,
Naval Research Laboratory, Washington, DC, USA

REFERENCES

Anjomshoae, S., Najjar, A., Calvaresi, D., & Främling, K. (2019). Explainable agents
and robots: Results from a systematic literature review. Proceedings of the
Eighteenth International Conference on Autonomous Agents and Multiagent
Systems (pp. 1078–1088). Montreal, Canada: International Foundation for
Autonomous Agents and Multiagent Systems.

Buijsman, S. (2023). Why and how should we explain AI? In M. Chetouani, V.
Dignum, P. Lukowicz, & C. Sierra (Eds.), Human-Centered Artificial
Intelligence: Advanced Lectures (pp. 196–215). Chambery, France: Springer
International Publishing.

Cau, F. M., Hauptmann, H., Spano, L. D., & Tintarev, N. (2023). Supporting
high-uncertainty decisions through AI and logic-style explanations.
Proceedings of the Twenty-Eighth International Conference on Intelligent
User Interfaces (pp. 251–263). New York, NY: ACM Press.

Chandrasekaran, B., & Tanner, M. (1989). Explaining control strategies in
problem solving. IEEE Intelligent Systems, 4, 9–15.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608.

Ehsan, U., Wintersberger, P., Liao, Q. V., Watkins, E. A., Manger, C., Daumé III,
H., Riener, A., & Riedl, M. O. (2022). Human-centered explainable AI
(HCXAI): Beyond opening the black-box of AI. Extended Abstracts of the
CHI Conference on Human Factors in Computing Systems (pp. 1–7). New
York, NY: ACM Press.

Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence
program. AI Magazine, 40(2), 44–58.

Gunning, D., Vorm, E., Wang, Y., & Turek, M. (2021). DARPA’s explainable AI
(XAI) program: A retrospective. Authorea Preprints.

Preface ▪ xv

Gutiérrez, F., Htun, N. N., Abeele, V. V., De Croon, R., & Verbert, K. (2022).
Explaining call recommendations in nursing homes: A user-centered design
approach for interacting with knowledge-based health decision support
systems. Proceedings of the Twenty-Seventh International Conference on
Intelligent User Interfaces (pp. 162–172). Helsinki, Finland: ACM Press.

Hasling, D. W., Clancey, W. J., & Rennels, G. D. (1983). Strategic explanations
for a diagnostic consultation system. International Journal of Man-
Machine Studies, 20, 3–19.

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for ex
plainable AI: Challenges and prospects. arXiv preprint arXiv:1812.04608.

Kamar, E., Hacker, S., & Horvitz, E. (2012). Combining human and machine
intelligence in large-scale crowdsourcing. Proceedings of the Autonomous
Agents and Multiagent Systems Conference (pp. 467–474). Valencia, Spain:
International Foundation for Autonomous Agents and Multiagent Systems.

Kulkarni, A., Zha, Y., Chakraborti, T., Vadlamudi, S. G., Zhang, Y., &
Kambhampati, S. (2019). Explicable planning as minimizing distance from
expected behavior. Proceedings of the Eighteenth International Conference
on Adaptive Agents and Multi-Agent Systems (pp. 2075–2077). Montreal,
Canada: International Foundation for Autonomous Agents and Multiagent
Systems

Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency
for intelligent autonomous systems. Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (pp. 4762–4763). San Francisco, CA:
AAAI Press.

Langley, P. (2019). Explainable, normative, and justified agency. Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (pp. 9775–9779).
Honolulu, HI: AAAI Press.

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing design
practices for explainable AI user experiences. Proceedings of the CHI
Conference on Human Factors in Computing Systems (pp. 1–15). Honolulu,
HI: ACM Press.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.

Ooge, J., & Verbert, K. (2022). Explaining artificial intelligence with tailored
interactive visualisations. In Proceedings of the Twenty-Seventh International
Conference on Intelligent User Interfaces. Helsinki, Finland: ACM Press.

Pearl, J. (2000). Models, reasoning and inference. Cambridge, UK: Cambridge
University Press.

Schoonderwoerd, T. A. J., Jorritsma, W., Neerincx, M. A., & Van Den Bosch, K.
(2021). Human-centered XAI: Developing design patterns for explanations
of clinical decision support systems. International Journal of Human
Computer Studies, 154, 1–25.

Sado, F., Loo, C. K., Liew, W. S., Kerzel, M., & Wermter, S. (2023). Explainable
goal-driven agents and robots: A comprehensive review. ACM Computing
Surveys, 55(10), 1–41.

xvi ▪ Preface

Sreedharan, S., Kulkarni, A., & Kambhampati, S. (2022). Explainable human-AI
interaction: A planning perspective. Morgan and Claypool Publishers.

Swartout, W. R. (1983). XPLAIN: A system for creating and explaining expert
consulting programs. Artificial Intelligence, 21(3), 285–325.

Swartout, W. R. (1985). Explaining and justifying expert consulting programs.
In Computer-assisted medical decision making (pp. 254–271). New York,
NY: Springer New York.

Swartout, W. R., & Moore, J. D. (1993). Explanation in second generation expert
systems. In Second Generation Expert Systems (pp. 543–585). Springer
Berlin Heidelberg.

Van Lent, M., Fisher, W., & Mancuso, M. (2004). An explainable artificial
intelligence system for small-unit tactical behavior. Proceedings of the
Nineteenth National Conference on Artificial Intelligence (pp. 900–907).
San Jose, CA: AAAI Press.

Vilone, G., & Longo, L. (2021). Notions of explainability and evaluation ap
proaches for explainable artificial intelligence. Information Fusion, 76,
89–106.

Waa, J., Nieuwburg, E., Cremers, A., & Neerincx, M. (2020). Evaluating XAI: A
comparison of rule-based and example-based explanations. Artificial
Intelligence, 291, 103404.

Ye, L. R., & Johnson, P. E. (1995). The impact of explanation facilities on user
acceptance of expert systems advice. Management Information Systems
Quarterly, 19, 157–172.

Zhang, Y., Zhuo, H., & Kambhampati, S. (2015). Plan explainability and pre
dictability for cobots. ArXiv, abs/1511.08158.

Zhang, R., McNeese, N. J., Freeman, G., & Musick, G. (2021). An ideal human:
Expectations of AI teammates in human-AI teaming. Proceedings of the
ACM Conference on Human-Computer Interaction (pp. 1–25). ACM Press.

Preface ▪ xvii

Editor Biographies

Dr. Silvia Tulli is an Assistant Professor at Sorbonne University. She
received her Marie Curie ITN research fellowship and completed her Ph.D.
at Instituto Superior Técnico. Her research interests lie at the intersection of
explainable AI, interactive machine learning, and reinforcement learning.
Silvia has co-organized multiple workshops around the themes of
explainable AI at top conferences such as IJCAI, AAAI, ICAPS, and
ICRA. Silvia’s work has been showcased at conferences such as NeurIPS and
AAAI, and recognized with various awards and scholarships, including the
Best Student Paper Award at ICSR 2020.

Dr. David W. Aha (UC Irvine, 1990) serves as the Director of the AI
Center at the Naval Research Laboratory in Washington, DC. His research
interests include goal reasoning agents, deliberative autonomy, case-based
reasoning, explainable AI, machine learning (ML), reproducible studies,
and related topics. David launched the UCI Repository for ML Databases,
served as a AAAI Councilor, co-created the AAAI Video Competition,
received AAAI’s Robert S. Engelmore Memorial Lecture Award, and
received awards for five publications. He has led the evaluation teams for
four DARPA programs and one ONR program.

xviii

Contributors

David W. Aha
Naval Research Laboratory
Washington, DC

Ofra Amir
Technion – Israel Institute of

Technology
Haifa, Israel

Yotam Amitai
Technion – Israel Institute of

Technology
Haifa, Israel

Sungeun An
Georgia Institute of Technology
Atlanta, GA

Fei Fang
Carnegie Mellon University
Pittsburgh, PA

Fabien Gandon
Inria, Université Côte d’Azur, and

CNRS
Valbonne, France

Ashok Goel
Georgia Institute of Technology
Atlanta, GA

Eric Gregori
Georgia Institute of Technology
Atlanta, GA

Nicholas Halliwell
Inria, Université Côte d’Azur,

and CNRS
Valbonne, France

Charles Kamhoua
Army Research Laboratory
Adelphi, MD

Abhijeet Krishnan
North Carolina State University
Raleigh, NC

Pat Langley
Stanford University
Stanford, CA
and
The Institute for the Study of

Learning and Expertise
Palo Alto, CA

xix

Freddy Lecue
Inria, Université Côte d’Azur,

CNRS
Valbonne, France
and
CortAIx, Thales
Montreal, Canada

Chris Martens
North Carolina State University
Raleigh, NC

Stephanie Milani
Carnegie Mellon University
Pittsburgh, PA

Vrinda Nandan
Georgia Institute of Technology
Atlanta, GA

Evangelos E. Papalexakis
University of California
Riverside, CA

Spencer Rugaber
Georgia Institute of Technology
Atlanta, GA

Zheyuan Ryan Shi
Carnegie Mellon University
Pittsburgh, PA

Mohan Sridharan
University of Birmingham
Birmingham, UK

Nicholay Topin
Carnegie Mellon University
Pittsburgh, PA

Silvia Tulli
Sorbonne University
Paris, France

Serena Villata
Inria, Université Côte d’Azur,

CNRS
Valbonne, France

Zhicheng Zhang
Carnegie Mellon University
Pittsburgh, PA
and
Army Research Laboratory
Adelphi, MD

xx ▪ Contributors

C H A P T E R 1

From Explainable to
Justified Agency

Pat Langley
Center for Design Research, Stanford University, Stanford, USA; Institute for
the Study of Learning and Expertise, Palo Alto, CA, USA

INTRODUCTION
Intelligent systems are becoming more widely adopted for critical tasks
like driving cars and controlling military robots. Naturally, increased
reliance on such devices has led to concerns about the interpretability of
their complex behavior. Before people will fully trust such autonomous
agents, they must be able to explain their decisions so that we can gain
insight into their operation. There is now a substantial literature on
explanation in systems that learn from experience, but it has focused on
tasks like object recognition and reactive control, typically using opaque
encodings of expertise that lend themselves only to shallow elucidation,
as in ‘heat maps’ that display activation levels.

However, we also need research on explanation for more complex
tasks that involve multi-step decision making, such as the generation and
execution of plans. Approaches to these problems rely on high-level
representations that are themselves easily interpreted, but challenges
arise in communicating solutions that combine these elements and the
reasons they were chosen. In this chapter, I focus on such settings. Some
work on explanation, especially with opaque models, has dealt with post
hoc rationalizations of behavior, rather than the actual reasons for it. In
the pages that follow, I concentrate on the latter. Moreover, I will focus
on self explanations, that is, the reasons the explaining agent carried out

DOI: 10.1201/9781003355281-1 1

https://doi.org/10.1201/9781003355281-1

certain activities. Elsewhere (Langley 2019), I have referred to this ability
as explainable agency.1

We can specify the task of explainable agency in generic terms. Given
domain knowledge for generating task solutions and criteria for evalu-
ating candidates, the agent attempts to find one or more solutions. After
generating, and possibly executing, these solutions, a human asks the
agent to clarify its decisions, at which point it must share its reasoning in
comprehensible terms. One example involves an intelligent robot that
plans and executes a reconnaissance mission, after which it takes part in
an ‘after-action review’ where it answers questions from a human
supervisor. There has been some research on such explainable planning
(Fox et al. 2017; Smith 2012; Zhang et al. 2017), but we need more effort
devoted to this important topic.

In the sections that follow, I discuss different senses of the term ‘ex-
planation’ and consider some factors that arise when representing such
structures. Next, I discuss three types of self explanation, along with
approaches to indexing, retrieving, and transmitting them. After this, I
introduce the notion of normative agency, which takes social maxims
into account during decision making, and justified agency, which ex-
plains choices in terms of social norms. Along the way, I also propose
some hypotheses about self explanation that merit further study.

ASPECTS OF EXPLANATION
Two aspects of human explanations place constraints on AI approaches
to replicating their generation. First, they invariably involve some form
of cognitive structure that relates items of interest. For instance, a diag-
nosis links observed symptoms to hypothesized problems, often through
multiple steps. Second, these structures typically comprise elements of
knowledge that have been instantiated for the task at hand. Thus, the
steps in a diagnosis might be instances of generic rules that relate
symptoms to causes. Explanatory structures vary along a number of
dimensions. They may be entirely qualitative, as in a geometry proof, or
they may include quantitative annotations, as in the solution to a physics
word problem. Accounts also differ in their complexity (e.g., the number
of knowledge elements) and their depth (e.g., the length of reasoning
chains). Nevertheless, they share many features that one can discuss in
general terms.

We should distinguish between two uses of ‘explanation’ that com-
monly appear in English. The word sometimes refers to a mental, written,

2 ▪ Explainable Agency in Artificial Intelligence

or spoken structure that serves to elucidate some phenomena or behaviors.
Thus, we refer to a scientific explanation of pulsar cycles, a mechanical
explanation of how a toilet flushes, or an introspective explanation for
one’s home-buying decision. In other cases, the term denotes the process
or activity of generating such an explanatory structure. We say that an
astrophysicist engages in explanation of pulsar behavior, a plumber fo-
cuses on explanation of a leak, or a home buyer carries out explanation of
his residential choice. This chapter will use both senses of the term, but its
meaning should be clear from the context in which it appears.

We can further differentiate between two specializations of explanatory
processes. The first refers to the construction of accounts for observed
situations or events. A geologist posits a set of processes for the origin of a
landform, a reader infers the goals of a novel’s character, and a home buyer
records the reasons for his decisions. The result is a cognitive structure in
the explainer’s own mind. The second meaning instead deals with the
communication of such mental structures once they exist. The geologist
presents a talk about his account of a landform’s evolution, the reader
shares with a friend his guesses about the character’s motivations, and the
home buyer tells his partner why he favors one house over others. This
second sense applies not only to sharing accounts of external events, but
also to communicating why one made a given decision or generated a
particular plan. Thus, it includes the process of self explanation, the
important specialization on which I will concentrate here.

REPRESENTING EXPLANATIONS
We have seen that explanations are cognitive structures an intelligent
system can construct or communicate, so both their form and content
merit discussion. Such accounts link a set of observations or decisions to
each other through a set of relations that serve as connective tissue.
Explanations invariably draw on background knowledge, typically at the
domain level (e.g., how refrigerators operate, regulations about driving),
but they sometimes involve the meta level (e.g., conventions of dialogue).
However, they do not incorporate generalized knowledge elements
themselves, but rather refer to instances of such knowledge elements that
connect facts or queries to each other.

In rule-based frameworks, explanations are organized as one or more
proof trees with shared subproofs, where each rule instance links
observed or inferred beliefs (e.g., Ng & Mooney 1990). For instance, an
account for why an automobile does not start might connect observed

From Explainable to Justified Agency ▪ 3

behaviors through instantiated rules that describe a generic car’s oper-
ation (e.g., Reiter 1987). In script and frame paradigms, the knowledge
elements are large enough that some accounts involve a single instanti-
ated structure, although they can combine more than one (e.g., Shrager
1987). An explanation can also involve an analogy, where knowledge
corresponds to stored cases (linked facts), one of which maps onto ele-
ments of the new situation. Any formalism (e.g., rules, scripts, frames, or
cases) that encodes knowledge structures can serve in this capacity.

In addition, explanations can differ in the ontological character of the
knowledge elements on which they draw. These may denote logical
relations, like those in geometry proofs, but they may also incorporate
numeric calculations, as arise in solutions to textbook physics problems
(e.g., VanLehn & Jones 1993). Moreover, the knowledge elements can
include likelihood information, as in the rules of a probabilistic context-
free grammar. In such frameworks, explanations can have the same
organization as in logical ones (e.g., proof trees), but they attach proba-
bilities to constituents. Knowledge structures may also have a causal
interpretation, which can be either deterministic (e.g., a broken wire leads
a starter to fail) or stochastic (e.g., a loose wire sometimes causes failure).
Accounts that focus on an agent’s behavior may be teleological in that they
refer to the goals that guide its decisions and actions (e.g., Meadows,
Langley, & Emery 2014). Other explanations involve predictable patterns
that lack further justification; many social norms and conventions (e.g.,
expected behavior in churches or restaurants) take this form.

Finally, facts can play two distinct roles in explanatory structures, as
Langley and Meadows (2019) have noted. In derivational explanations,
observations serve as root nodes in a set of connected proof trees, while
rule instances or other instantiated knowledge structures show how they
follow from other facts and assumptions. Many scientific explanations
adopt this scheme, as do causal diagnoses and teleological plans. In
associative explanations, observed beliefs appear only as terminal nodes,
which let one deduce new beliefs that follow from these facts. Such ac-
counts use instantiated knowledge structures to connect observations to
each other, but not to derive them. Parse trees for sentences are classic
instances of this paradigm, but script-based interpretations of stories also
illustrate the idea. This distinction is less relevant to self explanations,
our focus here, as agents have access to their reasoning chains, but some
(e.g., plans) have a hierarchical or derivational structure, whereas others
(e.g., schedules) are relational but nonhierarchical.

4 ▪ Explainable Agency in Artificial Intelligence

VARIETIES OF SELF EXPLANATION
With these points in mind, we can now examine three forms of self ex-
planation2 and how they differ. Efforts to develop new AI functionality
often start with a cognitive task analysis that identifies component abilities.
Elsewhere (Langley 2019) I have proposed four such abilities that underlie
explainable agency:

• Generating decision-making content. When carrying out problem
solving, the agent must consider different candidate solutions,
evaluate them, and select which ones to pursue.

• Indexing generated content. When making decisions, the agent must
store and index details about its choices in an episodic memory or
similar repository.

• Retrieving stored content. After it has solved a problem, the agent
must transform questions into cues that let it retrieve relevant
information from this memory.

• Transmitting retrieved content. Once it has retrieved this informa-
tion, the agent must translate the results into an understandable
form and convey it to others.

All approaches to explainable agency must draw on their generated
content, which in turn influences their downstream processing. Thus, it
makes sense to discuss in some detail not the mechanisms involved in
the first stage of processing, but instead the results they produce.

Structural Explanations

One form of self explanation – structural – clarifies how a collection of
steps is rational in Newell’s (1982) sense that an agent believes they could
help achieve its goals. For instance, a plan incorporates a sequence of
actions that, if carried out, should produce an end state that satisfies
some goal description while not violating any known constraints. Thus, a
route for driving must include contiguous segments from the starting
point to the target destination. The explanatory structure shows how the
steps link the goals or query to the initial situation through knowledge: it
focuses on the means of achieving objectives. We can specify the generic
task of explaining the qualitative structure of a problem solution in terms
of inputs and outputs:

From Explainable to Justified Agency ▪ 5

• Given: A solution to a problem that specifies steps linking the initial
state to the goal description;

• Given: Domain knowledge that defines the problem space in which
the agent sought solutions;

• Given: A query about whether or why the candidate is acceptable or
about the role played by given steps;

• Produce: An explanation for why the candidate is or is not
acceptable or how given steps aid the solution.

Structural explanations need not focus on successful solutions; they can
also clarify why a candidate does not resolve the problem. Note that this
formulation does not mention how the agent generated its reasoning
chain and concerns only its logical or causal structure.

However, the details of a structural explanation can depend on the
problem-solving strategy that generates it. For example, many planners
find a sequence of actions that transform the initial state into one that
satisfies the goal description, with each step moving closer to the
objective. Other systems create partial-order plans that specify which
actions must occur before others and which do not, giving a finer-
grained analysis of causal dependencies. Deductive proofs specify how a
conclusion follows logically from a set of given facts through chains of
inference steps. Each explanation type describes structural dependences
among their elements and each has a recursive character in which sub-
graphs are themselves explanations. Storage happens during construc-
tion, with the causal or logical links serving as building blocks.

The character of structural explanations has implications for later
stages of processing. This lets the agent answer questions like Why did
you take action A?, How did you achieve goal G?, and Why did you do A
before B?, but requires appropriate indexing, retrieval, and transmis-
sion.3 For instance, given a partial order plan, one might index actions
by the goals or subgoals they achieve and by their matched conditions.
When asked a question about the role an action plays in a given plan,
the agent translates the query into a retrieval cue, maps it to an
appropriate index, and returns the retrieved structure. Finally, the
transmission process converts this content into natural language, a
diagram, or other format to provide an answer. This may invoke tem-
plates associated with different question types and instantiate them as

6 ▪ Explainable Agency in Artificial Intelligence

needed, producing a response like I turned left from Main onto Campus
so I would be heading north on Campus.

The AI literature includes some relevant research on these topics. For
instance, work on analogical planning (e.g., Jones & Langley 2005; Veloso
et al. 1995) has addressed generation, storage, and retrieval, but not their
use for self explanation. Some expert systems recorded their reasoning and
played them back on request (Clancey 1983; Swartout et al. 1991), while
Johnson (1994) and van Lent et al. (2004) developed agents that recorded
their decisions during execution of military missions and later answered
questions about their reasoning, including what they would have done in
counterfactual scenarios. In other work, Bench-Capon and Dunne (2007)
adapted computational models of argument to explain how alternative
conclusions are supported or contradicted by available evidence, whereas
Briggs and Scheutz (2015) reported an interactive robot that gives five
types of reasons why it cannot carry out a task.

Preference Explanations

A second form of self explanation focuses on the desirability of solutions
that an agent’s finds, without concern for their internal structures. This is
especially relevant for tasks like route finding and job scheduling that
have many possible solutions, some of which are more desirable than
others. We can state the task of explaining such preferences more pre-
cisely in terms of the inputs required and the outputs produced:

• Given: A set of solutions that the agent has generated for some
decision-making task;

• Given: Domain knowledge that defines a problem space of candi-
date solutions and their quality;

• Given: A query about why the agent ranks a given solution above
other candidates;

• Produce: An explanation for why the agent prefers that solution
over alternatives.

This activity is quite different from explaining how the component steps
of a plan or derivation achieve some goal. Rather, it more closely re-
sembles the task addressed by recommender systems, which often pro-
duce a ranked list of candidates for users to consider.

From Explainable to Justified Agency ▪ 7

The distinction between structural and preference explanations is not
a matter of granularity, but whether one cares about means of reaching
results or about their overall quality. To clarify this point, consider a
travel planner that finds multiple routes for reaching some target loca-
tion. A structural account would store, for each route, the road segments
and turns that lead from the start to end point, including how each step
enables the next one. In contrast, a preference explanation would
describe each candidate route in terms of driving distance, number of
traffic lights, or other global characteristics. When multiple criteria come
into play, preference accounts clarify their relative importance and how
decisions resolve trade-offs. They may also specify why a candidate’s
score did not exceed an acceptability threshold.

The details of this self-explanation ability will depend on how the
agent’s scoring and ranking process operates. One common method uses
a linear utility function that computes each candidate’s score on k fea-
tures, multiplies each score by a weight, and calculates a weighted sum,
then orders candidates by this total. A second scheme uses a lexico-
graphic function, which orders attributes by importance. Candidates are
partitioned based on scores for the initial attribute, then ranked within
these sets based on the second attribute, and so forth, much as words in a
dictionary. A third alternative relies on preference rules that rank some
candidates as better than others, without assigning numeric scores, to
give a partial ordering over them.

Preference explanations support different types of questions than
structural accounts. These include queries like Why did you prefer
solution X to solution Y?, How did X compare to Y on criterion C?, and
Why did X not appear in the solution set? In this case, indexing and
retrieval are simple processes, as the agent can store values for individual
attributes with each solution and retrieve them as needed. As before, the
final transmission stage can draw on templates that specify forms of
answers for alternative types of queries, although these will differ from
those for structural explanations. They will also depend on whether
orderings are based on a numeric evaluation function, a lexicographic
scheme, or preference rules. For instance, to clarify why it favored one
solution over another, the agent might unpack calculations for the two
candidates, note that they tied on the first attribute but that one did
better on the second, or report the rule responsible for the decision.

This emphasis on preferences does not imply that explanation must
deal only with complete solution structures. For example, if a planner

8 ▪ Explainable Agency in Artificial Intelligence

uses a hierarchical task network to guide its search, then a user should be
able to question why it selected one subplan for a given subtask rather
than an alternative. The same idea applies to a system that finds proofs
using monotonic inference rules, where a user may ask why it favored
one subproof over a different candidate that leads to the same inter-
mediate conclusion. The ability to focus attention on elements of hier-
archical solutions does not necessarily mean that explanations must
touch on their logical structure or how they were found. Moreover, the
same mechanisms for indexing, retrieving, and transmitting results can
apply to any level of hierarchical explanations.

As noted above, recommender systems often rely on a learned user
profile to rank candidate items like books or movies, but one can also
use such profiles as heuristics to guide search on complex reasoning
tasks and to rank the solutions. Rogers et al. (1999) applied this idea to
route planning, drawing on a user profile, represented as weights on
complete route features, to find personalized directions in a digital road
map. Gervasio et al. (1999) adopted a similar approach to personalized
scheduling, invoking a user profile, encoded as weights on global
schedule features, to evaluate candidates and rank solutions. These two
efforts are interesting because one used best-first search through a
space of partial routes, whereas the other used repair-space search
through a space of complete schedules. This shows that radically
different search methods can produce the same type of preference
accounts.

Process Explanations

The final form of self explanation focuses on the processes by which an
agent generates its plans or other mental structures. This view
revolves around the widespread assumption, which had its origins in
the earliest days of artificial intelligence, that complex cognition
requires heuristic search through a problem space (Newell & Simon
1976). This posits that the recipients of explanations are interested in
details about how the system carried out that search, including which
alternatives it considered, why it decided to pursue some in favor of
others, and even when it decided to change its mind (e.g., by choosing
to backtrack).

We can specify the generic task of explaining the problem-solving
processes that an agent used to make its decisions and generate it solu-
tions as:

From Explainable to Justified Agency ▪ 9

• Given: An annotated search tree that stores options considered and
decisions made in problem solving;

• Given: Domain knowledge that defines a problem space in which
the agent seeks solutions;

• Given: A query about why the agent considered an alternative or
made a choice during problem solving;

• Produce: An explanation for why the agent considered that alter-
native or made that choice.

This task formulation is similar in spirit to the generation of think-aloud
protocols (Newell & Simon 1972), which gave early insights about
human problem solving and which led directly to the creation of early AI
systems. In this setting, a researcher presents a subject with some problem
(e.g., a theorem to prove or a puzzle to solve), asking the subject to talk
aloud as he works on it. The scientist records this verbal report, transcribes
it, and analyzes it to understand the subject’s thinking processes. One
important difference is that our explanation task occurs after problem
solving is complete.

As before, the details of process explanations differ considerably
depending on the problem-solving strategy. For instance, a forward-
chaining planner would store actions it considers at each state,
including the successor states that would result and the order in
which each was generated. The system would also retain its reasons
for pursuing one option before others, as well as reasons for back-
tracking or declaring success. In contrast, a means-ends problem
solver would record its reasons for selecting a goal on which to focus
or an action on which to chain backward. Alternatively, a case-based
planner would note why it favored one retrieved solution over com-
petitors, why it took certain adaptation steps, and so forth. Even
within the same framework and given the same goals, different
heuristics can guide search down different paths. This means that
different problem solvers can arrive at the same solutions by divergent
trajectories, each of which constitutes a separate process account of
the agent’s decision making.

Process explanations combine elements of structural and preference
accounts, the key difference being that they retain decisions about
the search effort itself rather than only about solutions. As a result, they

10 ▪ Explainable Agency in Artificial Intelligence

support questions like Why did you select action A on step S?, How did
you achieve goal G on step S?, Why did you prefer A over B on step S?,
and Why did you backtrack after trying action A? Note that each of
these refers to some point in the search process, as the agent may
consider the same action or goal in different contexts. Thus, the agent
must incorporate this information during indexing and retrieval in
addition to the cues used for structural and preference accounts. There
appears to have been little AI research on storing, retrieving, and
transmitting process explanations either during problem solving or
during retrospective reports, although studies of verbal protocols
(Ericsson & Simon 1984) offer clues about the mechanisms that pro-
duce them.

The concern with traces of decision making raises the question of
what counts as a legitimate process explanation. People are good at
generating verbal protocols during problem solving, but they are
notoriously unreliable at reproducing their reasoning later and
instead often provide at least partial rationalizations. Such re-
constructions are similar to accounts of external events, in that they
explain incomplete memories in terms of plausible inferences over
background knowledge. This form of explanation is relevant to
modeling humans, but it is less defensible when developing synthetic
agents, which need not suffer from the same memory limitations. For
most applications, researchers can assume that process accounts are
based on accurate traces based on the decision maker’s actual rea-
soning and conclusions.

Hypotheses about Explanation Types

Now that we have identified and characterized three forms of self ex-
planations, we can ask which of them is most useful to humans who
interact with intelligent agents. Some might argue that process ex-
planations are the natural choice, as they provide more details and thus
will offer greater insight into an agent’s operation. Others might instead
hold that structural or preference accounts are inherently superior,
because people have no need to know how an intelligent system decided
on its actions but will care only how it achieved the objectives how it
ranked the alternative solutions.

I will not take either position, but instead claim that the most
appropriate form of self explanation depends on its intended purpose.

From Explainable to Justified Agency ▪ 11

This argument assumes that there are different types of consumers,
which leads to two hypotheses. We can state the first as:

• Process explanations will be favored by researchers interested in the
details of problem solving.

This conjecture posits that some users care primarily about the process
of finding solutions. This group includes cognitive psychologists who
want to understand the ways in which an intelligent system mimics, or
fails to mimic, a human problem solver. Yet it also includes many AI
researchers who are concerned with the detailed operation of their AI
systems, both for debugging purposes and for improving the effective-
ness of their search mechanisms.

However, not all people who interact with intelligent systems will care
about detailed traces of their problem-solving behavior. This suggests a
second conjecture, which we can state as:

• Structural and process explanations will be favored by users inter-
ested in outcomes of problem solving.

This group includes end users of autonomous agents who had no role in
their development. These are analogous to people who use recommender
systems but have little idea how they operate, but who still want to know
why one option was ranked as better than another. But it will also
include AI researchers, and even psychologists, who are concerned more
with the correctness of solutions and the criteria used to evaluate them
than with the mechanisms used to find them. Preference accounts are
likely to be more useful on tasks that involve many solutions of differing
quality.

NORMATIVE AGENCY
Explainable agency is linked to the pursuit of goals, but not all goals are
egocentric, which requires us to take a slight detour, as humans must
operate within their societies. When a hungry person seeks food, he buys
it rather than stealing it. When a passenger wants to board a bus, she
waits in a queue rather than cutting in front of others. When a soldier
desires sleep, he nevertheless gets up when he hears reveille. In other
words, people generally follow the norms of their society. These may
involve formal laws, military orders, informal customs, or moral tenets,

12 ▪ Explainable Agency in Artificial Intelligence

but they all influence and canalize behavior in certain directions, and we
would like intelligent agents to behave in similar ways. We will say that:

• An intelligent system exhibits normative agency if, to the extent
possible, it follows its society’s norms.

Let us return to the domain of autonomous vehicles. Clearly, we want self-
driving cars to obey established laws, such as staying within the posted
speed limit, driving on the correct side of the road, and stopping at red
lights. However, we also want them to follow informal customs, such as
not cutting in front of other vehicles and moving over to let faster ones
pass. At the same time, we want them to realize that norms may come into
conflict and they may need to favor some at the expense of others.

Consider a scenario in which a driver takes a friend with a ruptured
appendix to the hospital. He exceeds the speed limit, weaves in and out of
traffic, slows for red lights but then runs them, and even drives briefly on a
sidewalk, although he is still careful to avoid hitting other cars or losing
control on turns. The driver takes these drastic actions because he thinks
the passenger’s life is in danger, so reaching medical treatment rapidly is
more important than being polite to others along the way or obeying
routine traffic laws. This example of normative agency illustrates that
societal norms can conflict with each other and thus requires reasoning
about trade-offs. The scenario also reminds us that driving is a far more
complex task than simply staying on the road and avoiding collisions.

Before intelligent agents can use norms to guide behavior in such a
human-like manner, we must first decide what content they will encode.
One option is to specify what actions the agent should or should not
carry out in certain classes of situations. This view is closely related to
deontological accounts of ethics, championed by Kant, which emphasize
fulfilling one’s duties or obligations. Another choice is to associate dif-
ferent values with distinct states and to favor actions that produce better
outcomes. This idea is linked to consequentialist approaches to ethics,
due originally to Hume, Bentham, and Mill, with utilitarianism an
important special case. At first glance, these frameworks appear to be
competitors, but Spranca, Minsk, and Baron (1991) report studies that
suggest people use a mixture of deontic and consequentialist methods.

A related issue concerns how an intelligent agent represents such
normative content. One approach, adopted by Mikhail (2007), specifies
moral tenets using logical rules, much as one can do with many formal

From Explainable to Justified Agency ▪ 13

laws. A second alternative is to state norms in terms of numeric value
functions, like those used in many game-playing systems. Rules are often
linked to deontic frameworks and value functions to consequentialist
ones, but one can also apply rules to states and functions to actions.
These approaches seem mutually exclusive, but Iba and Langley (2011)
have shown how they map onto an agent architecture that associates
numeric values with rule-generated structures. Norms can also specify
both prescribed and proscribed actions or states (Malle et al. 2015), akin
to positive and negated ‘trajectory’ goals.

To develop human-like normative agents, the research community
must address a number of open issues that deserve attention. These
include extending intelligent systems to handle:

• Conditional values. We can easily associate numeric values with
normative rules, but some norms may only come into play in
certain contexts, and their importance may vary with situational
factors. Thus, we must develop representations for laws, morals,
and other norms that specify conditional values or utilities.

• Trade-offs among norms. In some cases, norms are incompatible,
forcing the agent to decide which to obey and which to ignore. We
must develop agent architectures that examine the values of rele-
vant norms, evaluate trade-offs among different choices, and select
plans or actions that give better overall scores.

• Mitigating factors. The importance of norms can be altered by other
factors that make their violation no less serious but more forgivable.
We must develop representations of such mitigating factors and
methods for combining them when making choices about actions.

• Domain-independent norms. Many norms are domain specific, but
others are quite general, like being sensitive to a friend’s concerns
or avoiding unnecessary emotional harm. These require formalisms
for beliefs about others’ mental states and ways to combine such
constraints with domain-level concerns.

The AI literature reports some work on such normative reasoning, with
the earliest focused on legal inference (e.g., Branting 2000). Equally
relevant has been research on machine ethics and moral reasoning (e.g.,
Anderson et al. 2006; Bringsjord et al. 2006; Dehghani et al. 2008;

14 ▪ Explainable Agency in Artificial Intelligence

Guarini 2005; McLaren 2005). Some researchers have developed new
representations and mechanisms to support normative judgments and
decisions, but others (Iba & Langley 2011; Liu et al. 2013) have treated
moral reasoning as a form of everyday cognition. Authors have dem-
onstrated their systems on a variety of scenarios, showing that AI can
address many aspects of legal, moral, and other normative reasoning, but
this remains a relatively unexplored arena.

JUSTIFIED AGENCY
Although people can explain their goal-oriented activities, many of their
accounts incorporate societal norms. When a pedestrian clarifies why he
followed an indirect path, he may say that he did it to avoid walking
across a neighbor’s lawn. When a homeless person is asked why he begs for
a handout rather than mugging someone, he might state that he knew the
latter was against the law. And when a shopper explains why she let
another customer with only a few items check out ahead of her, she might
say that, if their positions were reversed, she would have appreciated the
same treatment. Our explanations often include a mixture of personal
goals and more generic social constraints. We maintain that intelligent
agents should demonstrate similar abilities and we will say that:

• An intelligent system exhibits justified agency if it follows its society’s
norms to the extent possible and if it explains its activities in those
terms.

Let us return to the example of taking someone with peritonitis to the
emergency room, driving aggressively and breaking traffic laws along the
way. This scenario is interesting because the explanation revolves almost
entirely around social norms – not only the laws and customs the driver
chose to ignore, but the idea that saving someone’s life should take
precedence over other factors. Personal goals come into play, such as
avoiding collisions and not turning over, but they also support this top-
level normative aim.

If we want to develop justified agents of this sort, we must decide on
how their justifications map onto the three forms of explanations dis-
cussed earlier. Recall that structural accounts specify how a sequence of
steps leads to the agent’s goals, so the natural response is to replace some
egocentric goals with societal ones. Many societal norms specify actions
or states that the agent should avoid while achieving its aims, but we can

From Explainable to Justified Agency ▪ 15

encode these in much the same way as trajectory constraints in AI
planning systems. Preference explanations specify the overall qualities of
problem solutions, values of their constituents, and how these are
combined. They are relevant to scenarios that involve trade-offs among
norms, where the agent must balance societal aims against each other or
against its own. Process accounts that describe the course of the agent’s
decision making, including structural relations and preferences, can also
incorporate social norms.

Thus, initial analysis suggests there are no serious obstacles to
adapting the three types of self explanation to include norms in support
of justified activities. When generating, evaluating, and storing plans, a
justified agent must encode, consider, and record not only its personal
goals but also social concerns. Some justifications will treat norms as
hard constraints that forced the agent to carry out some actions and
avoid others, but others will include reasoning about trade-offs that arose
when norms came into conflict. When asked a question about its
activities, the agent must be able to retrieve the ways in which its choices
relate to norms and then communicate them in accessible terms. This
leads to another hypothesis:

• Any intelligent system that supports explainable agency and nor-
mative agency will exhibit justified agency.

In other words, once we have developed the representations and
mechanisms to support the first two abilities, we will need no additional
structures or processes to let agents justify their activities in normative
terms. If we simply augment our goals and preferences with similar
encodings of social mores, then we will obtain justified agency with no
extra effort. This means that developing agents with the ability to justify
their behavior will not be as difficult as it first appears.

Some readers will think that this conclusion follows logically from our
definitions, but it is actually a scientific hypothesis that merits empirical
tests. The definition of justified agency requires that it incorporate both
the ability to explain decisions and to reason about norms, but it does
not imply these alone are sufficient. For example, agency may be more
complex than we have posited (Bello & Bridewell 2017) and fuller
analysis may reveal that norms demand richer forms of explanation.
Similarly, taking such factors into account during plan generation may
depend on reasoning beyond that needed with goals and utilities, or

16 ▪ Explainable Agency in Artificial Intelligence

answering normative questions may require new forms of response. Such
extensions may not be necessary, but we need further research to
determine whether the hypothesis is accurate.

One can also ask which form of self explanation is more relevant to
settings that require justified agency. We have already seen that social
norms can appear, in different guises, in structural, preference, and
process accounts. However, the most challenging instances of justified
agency in humans involve conflicts and trade-offs among norms. These
are the mainstay of moral dilemmas studied by philosophers, but they
also occur in legal cases and everyday life. The centrality of trade-offs
suggests that preference explanations will play the most important role in
justified agency, but we must develop intelligent systems that commu-
nicate their reasoning about social norms to test this conjecture.

CONCLUDING REMARKS
In this chapter, I defined the notion of explainable agents, which convey
the reasons behind their decisions and actions. I also distinguished
among three varieties of self explanation – structural, preference, and
process – that store different types of content and I hypothesized when
each of them is likely to be most useful. In each case, I examined how
these accounts might be encoded, along with their implications for in-
dexing, retrieval, and transmission. After this, I introduced the idea of
normative agents, which attempt to follow societal maxims, and justified
agents, which explain their decisions and activities in terms of those
norms, along with a conjecture that joining explainable and normative
agency will enable justified agency with no additional effort.

The theoretical analysis that I offered for explainable, normative, and
justified agency is far from complete, but it suggests clear avenues for
how to elaborate it. Researchers interested in the topic should develop
architectures for agents that support all three types of self explanation,
develop normative agents that guide their decisions by knowledge about
social norms, and combine these elements to produce justified agents.
They should demonstrate and evaluate these agents’ ability to plan and act
in complex domains (e.g., in urban driving simulations), to take into
account laws, customs, and moral tenets when making decisions in these
settings, and to answer questions about the reasons for these decisions.
Undoubtedly, these efforts will encounter unexpected obstacles that reveal
new challenges, but they will take us closer to understanding the structures
and processes needed to replicate explainable agency in humans.

From Explainable to Justified Agency ▪ 17

ACKNOWLEDGMENTS
This chapter incorporates and elaborates on content from previous
publications, including Langley et al. (2017) and Langley (2019a; 2019b;
2020). The analysis was supported by AFOSR Grant FA9550-20-1-0130
and by Grant N00014-20-1-2643 from the Office of Naval Research,
neither of which are responsible for its contents. I owe thanks to many
colleagues – especially David Aha, Dongkyu Choi, Ben Meadows, and
Mohan Sridharan – for discussions that led to these ideas about ex-
plainable agency.

NOTES

1. This problem is arguably less challenging than postulating the reasons that
another agent behaved as it did, sometimes called plan recognition, as the
system can store and access traces of its own decision making.

2. Another important variety of self explanation addresses how the agent
revised a plan during execution because unexpected events occurred.

3. In this chapter, I focus on indexing and retrieval of elements for a specified
task, rather than dealing with cases in which the agent must access structures
from a memory that stores results for many distinct problems.

REFERENCES

Anderson, M., Anderson, S. L., & Armen, C. (2006). An approach to computing
ethics. IEEE Intelligent Systems, 21, 56–63.

Bello, P., & Bridewell, W. (2017). There is no agency without attention. AI
Magazine, 38, 27–33.

Bench-Capon, T., & Dunne, P. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171, 619–641.

Branting, L. K. (2000). Reasoning with rules and precedents: A computational
model of legal analysis. Dordrecht: Kluwer.

Briggs, G., & Scheutz, M. (2015). “Sorry, I can’t do that:” Developing mechanisms to
appropriately reject directives in human-robot interactions. In Proceedings of
the AAAI Fall Symposium on AI and HRI. Arlington, VA: AAAI Press.

Bringsjord, S., Arkoudas, K., & Bello, P. (2006). Toward a general logicist
methodology for engineering ethically correct robots. IEEE Intelligent
Systems, 21, 38–44.

Clancey, W. J. (1983). The epistemology of a rule-based expert system: A
framework for explanation. Artificial Intelligence, 20, 215–251.

Dehghani, M., Tomai, E., Forbus, K., & Klenk, M. (2008). An integrated rea-
soning approach to moral decision making. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (pp. 1280–1286). Menlo
Park, CA: AAAI Press.

18 ▪ Explainable Agency in Artificial Intelligence

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data.
Cambridge, MA: MIT Press.

Fox, M., Long, D., & Magazzeni, D. (2017). Explainable planning. In Proceedings
of the IJCAI-17 Workshop on Explainable AI (pp. 24–30). Melbourne.

Gervasio, M. T., Iba, W., & Langley, P. (1999). Learning user evaluation functions
for adaptive scheduling assistance. In Proceedings of the Sixteenth
International Conference on Machine Learning (pp. 152–161). Bled, Slovenia:
Morgan Kaufmann.

Guarini, M. (2005). Particularism and generalism: How AI can help us to better
understand moral cognition. In Machine Ethics: Papers from the 2005
AAAI Fall Symposium. Menlo Park, CA: AAAI Press.

Iba, W. F., & Langley, P. (2011). Exploring moral reasoning in a cognitive
architecture. In Proceedings of the Thirty-Third Annual Meeting of the
Cognitive Science Society. Boston, MA.

Johnson, W. L. (1994). Agents that learn to explain themselves. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (pp. 1257–1263).
Seattle, WA: AAAI Press.

Jones, R. M., & Langley, P. (2005). A constrained architecture for learning and
problem solving. Computational Intelligence, 21, 480–502.

Langley, P. (2019a). Explainable, normative, and justified agency. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence (pp. 9775–9779).
Honolulu, HI: AAAI Press.

Langley, P. (2019b). Varieties of explainable agency. In Proceedings of the Second
ICAPS Workshop on Explainable Planning. Berkeley, CA.

Langley, P. (2020). Explanation in cognitive systems. Advances in Cognitive
Systems, 9, 3–12.

Langley, P., & Meadows, B. (2019). Heuristic construction of explanations
through associative abduction. Advances in Cognitive Systems, 8, 93–112.

Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency
for intelligent autonomous systems. In Proceedings of the Twenty-Ninth
Annual Conference on Innovative Applications of Artificial Intelligence
(pp. 4762–4763). San Francisco: AAAI Press.

Liu, L., Langley, P., & Meadows, B. (2013). A computational account of complex
moral judgement. In Proceedings of the Annual Meeting of the International
Association for Computing and Philosophy. College Park, MD: IACAP.

Malle, B. F., Scheutz, M., & Austerweil, J. L. (2015). Networks of social and
moral norms in human and robot agents. Proceedings of the International
Conference on Robot Ethics (pp. 3–17). Lisbon, Portugal.

McLaren, B. M. (2005). Lessons in machine ethics from the perspective of two
computational models of ethical reasoning. In Machine Ethics: Papers from
the 2005 AAAI Fall Symposium. Menlo Park, CA: AAAI Press.

Meadows, B., Langley, P., & Emery, M. (2014). An abductive approach to un-
derstanding social interactions. Advances in Cognitive Systems, 3, 87–106.

Mikhail, J. (2007). Universal moral grammar: Theory, evidence and the future.
Trends in Cognitive Science, 11, 143–152.

From Explainable to Justified Agency ▪ 19

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87–127.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs,

NJ: Prentice-Hall.
Newell, A. & Simon, H. A. (1976). Computer science as empirical inquiry:

Symbols and search. Communications of the ACM, 19, 113–126.
Ng, H. T. & Mooney, R. J. (1990). On the role of coherence in abductive ex-

planation. In Proceedings of the Eighth National Conference on Artificial
Intelligence (pp. 337–342). Cambridge, MA: AAAI Press.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence,
32, 57–95.

Rogers, S., Fiechter, C., & Langley, P. (1999). An adaptive interactive agent for
route advice. In Proceedings of the Third International Conference on
Autonomous Agents (pp. 198–205). Seattle: ACM Press.

Shrager, J. (1987). Theory change via view application in instructionless
learning. Machine Learning, 2, 247–276.

Smith, D. E. (2012). Planning as an iterative process. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence (pp. 2180–2185).
Toronto: AAAI Press.

Spranca, M., Minsk, E., & Baron, J. (1991). Omission and commission in judg-
ment and choice. Journal of Experimental Social Psychology, 27, 76–105.

Swartout, W. R., & Moore, J. D. (1993). Explanation in second generation expert
systems. In J.-M. David, J.-P. Krivine, & R. Simmons (Eds.), Second
Generation Expert Systems. Berlin: Springer-Verlag.

Van Lent, M., Fisher,W., & Mancuso, M. (2004). An explainable artificial
intelligence system for small-unit tactical behavior. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence (pp. 900–907).
San Jose, CA: AAAI Press.

VanLehn, K., & Jones, R. M. (1993). Integration of analogical search control and
explanation-based learning of correctness. In S. Minton (Ed.), Machine
Learning Methods for Planning. San Mateo, CA: Morgan Kaufman.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995).
Integrating planning and learning: The PRODIGY architecture. Journal of
Experimental and Theoretical Artificial Intelligence, 7, 81–120.

Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., &
Kambhampati, S. (2017). Plan explicability and predictability for robot task
planning. In Proceedings of the 2017 International Conference on Robotics
and Automation (pp. 1313–1320). Singapore.

20 ▪ Explainable Agency in Artificial Intelligence

C H A P T E R 2

A Survey of Global
Explanations in
Reinforcement
Learning

Yotam Amitai and Ofra Amir
Technion, Israel Institute of Technology, Haifa, Israel

INTRODUCTION
As artificial intelligence (AI) technology becomes more advanced, it is
becoming increasingly integrated into society (Stone et al. 2016). From
voice assistants in smartphones to online recommendation systems, AI
agents are becoming a part of everyday life. In order to effectively interact
with these AI agents, people need to be able to anticipate and understand
their behavior. A lack of understanding of how these AI agents operate can
lead to mistrust, reduced effectiveness, and even dangerous outcomes.

The idea of making AI systems explainable is itself not new. It was
discussed since the early days of expert systems (Swartout 1983;
Chandrasekaran et al. 1989), and more broadly relates to the literature on
human-automation interaction (Janssen et al. 2019), which also con-
sidered explanations of automated systems. The maturing of AI methods
and their growing complexity have led to a resurgence in interest in
developing “explainable AI” methods (Aha et al. 2017; Doshi-Velez & Kim
2017; Gunning 2017).

The majority of existing explainable AI methods (often referred to as
“interpretable machine learning” Doshi-Velez & Kim 2017) focus on

DOI: 10.1201/9781003355281-2 21

https://doi.org/10.1201/9781003355281-2

providing “local” explanations to specific decisions made by a machine
learning model (e.g., showing the features that contributed most to a
model’s decision that a tumor is benign). Recent studies show,
however, that in some cases users may be more interested in globally
understanding the behavior of the model, rather than assessing it at
each decision point (Jacobs et al. 2021). While some work addresses
the problem of demonstrating the “global” behavior of the model, e.g.,
by showing examples of different tumor scans and how they were
classified (Kim et al. 2016; Ribeiro et al. 2016), they still focus on one-
shot decisions of classifiers and are not applicable to describing
the behavior of agents acting in the world over an extended time
duration. Other work explored the problem of generating plans that
are more explicable to people (Cashmore et al. 2019; Chakraborti
et al. 2019; Kulkarni et al. 2019), but only considered goal-based plans
for short-term tasks.

The problem of explaining the behavior of reinforcement learning
(RL) agents has been relatively under-studied (Alharin et al. 2020). This
setting raises additional explainability challenges beyond those of ex-
plainability in supervised learning settings, as the environment is sto-
chastic, the state space is typically large (or infinite), and the learned
policy is affected by delayed rewards (i.e., an action might be taken
because it benefits the agent in the long run). As in interpretable machine
learning, most explainable RL (XRL) approaches focus on explaining
local decisions (Anderson et al. 2020; Greydanus et al. 2017; Hayes &
Shah 2017; Khan et al. 2011; Krarup et al. 2019; Madumal et al. 2020),
e.g., by showing what information a game-playing agent attends to in a
specific game state. However, some studies suggest that users tend to
favor global explanations (Van der Waa et al. 2018) which, for supervised
learning provide insights with respect to how the model classifies dif-
ferent instances, and in the case of RL, explain the policy or agent as
opposed to a particular action.

In this chapter, we review the existing literature on global explain-
able reinforcement learning (GXRL). That is, explanations that attempt
to describe to users aspects of the overall policy of an RL agent. We
identify three main classes of GXRL explanations, which we categorize
according to the type of explanation and describe some of the ap-
proaches in each class. We further discuss the way explanations
are evaluated. We end by discussing gaps and opportunities for future
work in the area.

22 ▪ Explainable Agency in Artificial Intelligence

SCOPE
In this review, we focus on global explainable RL methods for single
agents (which are the focus of the vast majority of approaches). We
performed a Google Scholar search on explainable reinforcement
learning and reviewed the publications from several existing surveys
(Cruz & Igarashi 2020; Heuillet et al. 2021; Milani et al. 2022; Puiutta &
Veith 2020). We then extended the set of publications to include those
that these cite as well as publications that cite them. The review is likely
incomplete but covers a large fraction of the work in this area.

CHAPTER STRUCTURE
We begin with a brief background of RL and distinguish between local
and global explanations of RL policies. We then classify the existing
approaches into three main explanation types and describe the key ap-
proaches in each type: explanation by representation, explanation by
demonstration and rule-based explanations. We then discuss evaluation
methods and the gaps and opportunities for future work before finally
concluding this chapter.

BACKGROUND: REINFORCEMENT LEARNING
Reinforcement learning (RL), as described by Sutton and Barto (2018), is a
computational approach to understanding and automating goal-directed
learning and sequential decision making. It distinguishes itself from other
machine learning fields through its emphasis on learning from direct
sequential interactions of an agent in its environment, without the need for
exemplary supervision or a complete model of the environment.

The agent interacts with its environment over a series of time steps,
where at each time step the agent receives an observation of the en-
vironment and takes an action based on it. The agent accumulates
rewards, positive or negative valued, from certain states it arrives at
during its sequence. The agent’s goal is to maximize the cumulative
reward it receives over time.

The Markov decision process (MDP) is a common mathematical
framework for modeling decision-making problems where the out
comes are influenced by the sequence of actions taken. It is widely
used in the reinforcement learning setting. Formally, an MDP is a
tuple S A R T, , , , :

• S: The set of possible environment states.

A Survey of Global Explanations in Reinforcement Learning ▪ 23

• A: The set of possible actions available to the agent.

• R: A reward function R S A R: × , mapping the transition
from one state to another via an action, to a reward.

• T: A transition probability function T s a s s t s(, | ,) [0, 1] . . ,
s S a A, , denoting the probability of reaching state s′ by

initiating action a in state s.

• γ: A discount factor, determining the importance of future rewards
relative to immediate rewards.

At each time step t, the agent observes the state of the environment st and
chooses an action at based on this observation. The environment then
transitions to a new state st+1 with probability T (st+1|st, at) and the agent
gains the reward R(st, at, st+1).

A solution to an MDP is a policy denoted π. An agent’s policy is a
probability distribution over the set of possible actions in a given state.
More generally, the policy is a function, mapping a state s and action a to
a probability: s a(,) [0, 1].

GLOBAL AND LOCAL EXPLANATIONS
RL explanation approaches are commonly categorized using two axes:
(1) Intrinsic vs. Post-hoc: Frameworks dedicated to ensuring the intrinsic
interpretability of the original model as opposed to post-hoc ones con-
cerned with providing an explanation for some given (possibly black
box) model in retrospect, and (2) Local vs. Global: Refer to the scope of
what is being explained. This chapter will focus solely on the second axis,
specifically, on the global section of its spectrum. In the context of XRL,
local explanations are highly more abundant, partly due to similarities
between their setup and supervised learning approaches. In this chapter
we dive deep into global explanation approaches; hence, we first char-
acterize the differences between local and global explanations.

Local explanations address the ability to understand the decisions
made by a model for specific individual states. This means being able to
explain what affected an agent’s choice of a particular action in a given
world state. Local interpretability is useful for justifying individual
decisions (Doshi-Velez & Kim 2017), such as why a certain loan appli-
cation was denied in the case of supervised learning, or why an action
was taken by a policy in the case of RL.

24 ▪ Explainable Agency in Artificial Intelligence

Global explanations, on the other hand, refer to the ability to capture
and describe general patterns and trends of a model. In the case of RL
policies, this means identifying the agent’s behavior, strategy, or rea-
soning that governs the choices it makes. In other words, global inter-
pretability is concerned with understanding the model as a whole. Global
interpretability may be useful for gaining an understanding which can be
useful for debugging, detecting biases, improving the model, and en-
suring that it is behaving as intended.

Both global and local interpretability are important aspects of
machine learning and AI more generally. Global interpretability tech-
niques primarily lead to establishing user trust in the model, while local
ones mainly focus on inducing trust in a single prediction (Puiutta &
Veith 2020).

WHAT CONSTITUTES A GLOBAL EXPLANATION?
The distinction between global and local explanations is not always clear
or trivial. Indeed, when surveying previous XRL survey publications
(Cruz & Igarashi 2020; Heuillet et al. 2021; Milani et al. 2022; Puiutta &
Veith 2020), inconsistencies regarding this definition and the methods
associated with it arose.

It can be argued that any information regarding the strategy of the
agent provides some insight into its global behavior. For instance,
reward decomposition methods (Juozapaitis et al. 2019) visualize the
agent’s expected utility for different reward components in a specific
world state but also shed light on the agent’s preferences more broadly.
Similarly, saliency methods (Greydanus et al. 2018) visualize the focus
of the agent and what it pays more attention to in a specific state and
can reveal potentially generalizable insights. In this survey, we chose
to focus on methods that provide global information as their main
focus but discuss some aspects of local explanations in the discussion
(Section 8).

Beyond the distinction between local and global explanations, the
higher-level question of what constitutes an explanation is also open to
debate. In this chapter, we take a broad view of explanation methods and
include a variety of approaches that provide users with information re-
garding an agent’s policy, including the use of more interpretable models
(e.g., decision trees) and more descriptive approaches that demonstrate the
agent’s policy.

A Survey of Global Explanations in Reinforcement Learning ▪ 25

GLOBAL EXPLANATION APPROACHES
Explanation methods can be categorized through various perspectives.
We chose to differentiate between methods by the explanation type, i.e.
in terms of how the information is communicated to users. We attempt
to answer the question “How does the described method make the ele-
ment (that is being explained) more understandable?” We believe this
distinction could be valuable for developing suitable benchmarks and
baselines for future researchers and methods.

We identify three main explanation types:

• Interpretable representations: explanation methods that aim to
make the policies of RL agents more transparent using policy
representations such as decision trees.

• Demonstrations: explanation methods that aim to describe the
behavior of the agent by demonstrating how the agent acts in dif-
ferent scenarios.

• Rule-based: explanation methods that try to present users with
logical rules describing key aspects of the agent’s policy.

We note that these three categories are not mutually exclusive. In par-
ticular, some of the approaches that present logical rules can also be
considered interpretable representations, and any decision tree repre-
sentation can be converted to a set of rules. We attempted to distinguish
between interpretable representations such as decision trees that aim to
present the entire policy and rule-based methods that typically show a
subset of rules that may depend on a user’s query.

An alternative taxonomy that was suggested in a previous XRL survey
(Milani et al. 2022) is based on the RL framework element being explained;
specifically, whether the explanation refers to the immediate context,
denoted as feature importance (FI), the learning process and MDP (LPM),
or to the policy level and behavior (PL). While this is not our main cat-
egorization, we believe it to be of complementary value for identifying gaps
and trends in this area and therefore discuss it in the survey.

Methods categorized as FI primarily provide local explanations and
are therefore less relevant for our survey. However, as mentioned in
Section 3.1, this distinction is not always clear cut. In this survey, we have
decided to include publications that explain feature importance if these

26 ▪ Explainable Agency in Artificial Intelligence

were deemed to benefit or enhance global understanding. In such cases,
we classified these publications either as LPM or PL.

We elaborate and provide examples for each explanation type in the
following sections. We summarize the classification of the surveyed
publications by explanation type and provide (1) a mapping between the
categories and their explained RL element (Table 2.1), and (2) a cate-
gorization by the explanation evaluation made in each paper (Table 2.2).

TABLE 2.1 A Summary of the Classification of the Surveyed Publications Based on the
Explanation Approaches and the RL Element Being Explained

Explained Element/
Explanation Type

Learning Process
and MDP

Policy Level and Behavior

Interpretable
Representations

Beyret et al. 2019;
Shu et al. 2017

Bansal et al. 2020; Verma et al. 2018; Koul
et al. 2018; Danesh et al. 2021, 69;
Jhunjhunwala et al. 2020; Liu et al. 2019, 19;
Bastani et al. 2018; Topin & Veloso 2019

Demonstrations Guo et al. 2021;
Dao et al. 2018;
Gottesman et al.
2020

Zahavy et al. 2016; Bewley et al. 2021; Amir
& Amir 2018; Sequeira & Gervasio 2020;
Amitai & Amir 2023; Amitai & Amir 2022;
Rupprecht et al. 2019; Huang et al. 2018;
Huang et al. 2019; Lage et al. 2019; Boggess
et al. 2022

Rule-based – Hein et al. 2017; Hein et al. 2018; Zhang
et al. 2021; Hayes & Shah 2017; Sreedharan
et al. 2020; Bewley et al. 2021; Landajuela
et al. 2021; Finkelstein et al. 2022; Van der
Waa et al. 2018

TABLE 2.2 A Summary of the Classification of the Surveyed Publications Based on the
Explanation Type and Evaluation Approaches

Evaluation
Approach/
Explanation Type

Computational Case Studies User Studies

Interpretable
Representations

Liu et al. 2019;
Coppens et al. 2019;
Bastani et al. 2018;
Topin & Veloso
2019; Verma et al.
2018; Jhunjhunwala
et al. 2020; Silva
et al. 2020; Topin et
al 2021; Beyret et al.
2019; Shu et al. 2017

Liu et al. 2019;
Coppens et al.
2019; Bastani et al.
2018, 41; Koul
et al. 2018; Danesh
et al. 2021

Silva et al. 2020

(Continued)

A Survey of Global Explanations in Reinforcement Learning ▪ 27

EXPLANATION THROUGH INTERPRETABLE
REPRESENTATION
One of the main approaches to GXRL aims to make the policies of RL
agents more interpretable by using simpler representations of either the
learned policy or of the problem structure itself (i.e., the underlying MDP).

Several methods have been proposed to approximate a DQN using
some form of decision tree (Bastani et al. 2018; Coppens et al. 2019;
Jhunjhunwala et al. 2020; Liu et al. 2019; Silva et al. 2020; Topin et al.
2021). For instance, Bastani et al. (2018) proposed the VIPER algorithm,
which learns a decision tree policy guided by an oracle DNN policy, and
showed that the decision tree achieved performance that is close to that
of the DNN. Another work proposed an intrinsic explainability
approach, using Iterative Bounding MDPs for which it is guaranteed that
there exists a decision tree policy that can accurately capture any learned
policy (Topin et al. 2021).

A different approach for elucidating agent policies is by applying ab-
stractions. Such methods include learning a relatively small, finite repre-
sentation of recurrent policy networks (Koul et al. 2018, 20) or generating
abstracted policy graphs that summarize a policy (Topin & Veloso 2019).

TABLE 2.2 (Continued) A Summary of the Classification of the Surveyed Publications
Based on the Explanation Type and Evaluation Approaches

Evaluation
Approach/
Explanation Type

Computational Case Studies User Studies

Demonstrations Lage et al. 2019;
Huang et al. 2019;
Guo et al. 2021;
Bewley et al. 2021

Gottesman et al.
2020; Dao et al.
2018; Guo et al.
2021; Rupprecht
et al. 2019; Zahavy
et al. 2016; Bewley
et al. 2021

Boggess et al. 2022;
Amitai & Amir
2022; Amitai &
Amir 2023; Sequeira
& Gervasio 2020;
Huang et al. 2019;
Amir & Amir 2018;
Huang et al. 2018;
Lage et al. 2019

Rule-based Zhang et al. 2021;
Landajuela et al.
2021; Hein et al.
2018; Hein et al.
2017; Sreedharan
et al. 2020;
Finkelstein et al.
2022

Bewley et al. 2021;
Hayes & Shah
2017; Hein et al.
2018; Hein et al.
2017

Sreedharan et al.
2020; Van der Waa
et al. 2018

28 ▪ Explainable Agency in Artificial Intelligence

Another form of abstraction is through generating hierarchical rep-
resentations. In hierarchical reinforcement learning (Barto & Mahadevan
2003), multiple levels of abstraction are introduced, often by utilizing
multiple policies that interact with one another. Each policy is either
aimed at solving a unique sub-task (low-level) or dictating which policy
to enact and when (high-level). These policies can be generated, for
example, by decomposing the agent’s task into sub-tasks (Beyret et al.
2019; Shu et al. 2017).

Verma et al. (2018) developed the PIRL framework for representing
and generating policies in a human-readable form by using a domain-
specific high-level programming language.

EXPLANATION BY DEMONSTRATION
Some work attempts to explain a policy to the user by demonstrating the
actions taken by the policy in some example world states. These dem-
onstrations can improve users’ mental models of how the agent acts
(Dragan & Srinivasa 2014).

One formulation of explanations by demonstration is “policy summa-
rization” (Amir et al. 2018, 2019). In policy summarization, the input is the
policy of an agent and a budget k for the amount of information that can be
included in the summary, and the output is a summary consisting of k
state-action pairs demonstrating the behavior of the agent in selected world
states. Several approaches have been proposed in the literature for selecting
which state-action pairs to include in the summary. Some approaches use
heuristics that aim to quantify the importance or interestingness of a state
(Amir & Amir 2018; Huang et al. 2018; Sequeira & Gervasio 2020). For
instance, a state might be considered important if the decision taken at that
state has a substantial impact on the agent’s long-term utility, as quantified
by the differences between the Q-values of alternative actions that can be
taken in that state (Amir & Amir 2018; Huang et al. 2018). Other measures
of interestingness included the likelihood of reaching a state and global
minima or maxima (Sequeira & Gervasio 2020). The DISAGREEMENTS
summary method aims to compare two policies by selecting states where
the policies diverge (Amitai & Amir 2022)]. A different approach to policy
summaries utilizes machine teaching methods and aims to optimize the
summary for policy reconstruction, i.e., by selecting state-action pairs that
allow recovering the original policy (Huang et al. 2019; Lage et al. 2019).
Policy summarization has also been extended to summarize multi-agent
policies (Boggess et al. 2022).

A Survey of Global Explanations in Reinforcement Learning ▪ 29

Other approaches do not generate a summary, but rather extract
specific states based on some criteria. Guo et al. (2021) suggest a method
that presents states based on their importance to the reward function.
Rupprecht et al. (2019) suggest a method for generating states of interest
that can be defined based on a target function (e.g., generating world
states where the agent evaluates all actions highly).

Finally, Amitai et al. (2023) designed an interactive system that allows
users to formulate queries about an agent’s behavior (e.g., by formulating
a start state and an end state) and retrieves demonstrations of the agent
acting in scenarios that correspond to the given specification.

Some work presented methods for explaining the training of the agent
by demonstration. For example, Gottesman et al. (2020) explain policies
that were learned offline by presenting to users transitions from the
training data that had a substantial influence on the learned policy. Dao
et al. (2018) monitor deep RL by memorizing important moments
during training and store snapshots of these moments that can be pre-
sented to users and help interpret the learned policy.

Zahavy et al. (2016) depict the relation between states through their
embedding in the last hidden state of the DQN, and visualize it using a t-
SNE projection and saliency to discover and identify state clusters and
patterns that correlate to behavior.

RULE-BASED EXPLANATIONS
Another way to describe an agent’s global behavior is by describing
underlying patterns that dictate how the agent behaves in different sit-
uations. Rule extraction is the process of identifying and extracting such
rules or patterns from a given data set. These rules can typically be ex-
pressed in the form of “if-then” statements, where the “if” specifies
the conditions under which a particular action should be taken, and the
“then” part specifies the action that should be taken. In the context of
global explanations of policies, a set of logical rules describing the behavior
of the agent can provide users with a global understanding of the policy.
This approach shares some similarities with the approaches that use a
decision tree policy in that each leaf node in the decision tree can be
considered a rule. However, the approaches we review in this section differ
in that the explanation to the user is given as a set of rules.

Different methods have been proposed for extracting logical rules that
describe aspects of a policy. Some approaches use an underlying decision
tree (similarly to those described in Section 4) and extract rules based on

30 ▪ Explainable Agency in Artificial Intelligence

it (Bewley et al. 2021). Hein et al. (2017) leverage particle swarm opti-
mization on past agent transitions to identify and generate a set of if-then
rules (fuzzy-logic controllers). Hein et al. (2018) utilizes genetic pro-
gramming to automatically extract formulas describing the agent policy
from previous agent trajectories while controlling for their level of
complexity. Sreedharan et al. (2020) define the concept of MDP land-
marks as environment conditions, described through propositional
formulas, which must be achieved in order for the agent to reach its goal.
Their method, TLdR, identifies these landmarks and displays in graphical
form possible routes for reaching the goal state through the transition
between them. Hayes and Shah (Hayes & Shah 2017) develop an inter-
active approach that allows querying the agent regarding when or why an
action will take place. Using statistical analysis, the states relevant to the
query are identified and the minimal Boolean logic expression that
covers these is obtained and converted to text. Similarly, van der Waa
et al. (2018) generate textual explanations for an agent’s behavior when
given a contrastive query as input using a modified MDP that abstracts
the state space into classes and the rewards into concepts.

Other approaches generate a symbolic policy (Landajuela et al. 2021;
Zhang et al. 2021). For instance, Landajuela et al. (2021) describe a
method that generates symbolic policies by modeling agent trajectories
as mathematical transitions on a symbolic expression tree. Zhang et al.
(2021) propose generating interpretable and verifiable logic rules by
learning an unconstrained policy via an MLP-based Q-function and
projecting it into a constrained policy space using symbolic compilers.
Their method, deep symbolic policy, iteratively searches for mathemat-
ical expressions to be used as policies.

Finally, Finkelstein et al. (2022) explain the gap between an antici-
pated policy, provided by the user, and the agent’s true policy, by
identifying which transformations to the MDP generate an agent that
acts in the anticipated way.

EVALUATION METHODS
A key challenge in explainable AI in general is evaluating the usefulness
of explanations. Various metrics have been previously proposed in the
literature (Hoffman et al. 2018). However, the evaluation problem is
inherently context-dependent, as ultimately the question is whether the
explanation was useful for downstream user tasks and this can vary
depending on the user’s goal, role, or expertise. The evaluation of global

A Survey of Global Explanations in Reinforcement Learning ▪ 31

explanations is particularly challenging since the notion of explaining the
behavior of a policy can be ambiguous.

In this section, we review and summarize the evaluation methods used
in the surveyed publications. Broadly, these can be divided into three
categories: (1) computational evaluation that does not involve any
assessment with users and often does not include any evaluation of the
usefulness of the explanation itself, (2) case studies that typically display
specific examples of how the explanations might shed light on the policy,
and (3) user studies that assess the effect of showing the explanation to
users. We also discuss the particular tasks used in these evaluations.
Table 2.2 classifies the surveyed publications based on the evaluation
approach (as well as by the explanation type).

Computational Evaluations. Many of the studies on global explana-
tions include some form of computational evaluation. These evaluations
typically focus on quantitative measures related to the fidelity of the
explanation, and the complexity of the explanation. Computational
evaluations are particularly common in the interpretable representation
and rule-based categories.

For example, many of the proposed approaches that employ a decision
tree approximation of a complex policy assess the extent to which the
simplified policy agrees with the original one (see Table 2.2). With
respect to the complexity of the explanation, evaluations often assess
aspects such as the size of the explanation (e.g., the number of nodes in a
decision tree or the number of extracted rules).

Case Studies. A very common evaluation approach in the surveyed
publications is describing some form of a case study. These case studies
typically demonstrate the explanation for some examples and describe
what can be inferred from these explanations. For example, Zhang et al.
(2021) describe a case study of extracting rules for various tasks such as
car avoidance and then show which rules were extracted for the learned
policy. Some case studies also include more specific analyses that are
facilitated based on the explanations. For instance, this may involve
verifying the correctness of a policy based on a simplified representation
(Bastani et al. 2018), computing feature importance (Jhunjhunwala et al.
2020), or comparing an expert description of the agent to the description
based on the explanations (Hayes & Shah 2017).

User Studies. We advocate that explanations should be evaluated based
on user studies and experiments that examine their effect on the
intended user audience of the explanations. Conducting these studies has

32 ▪ Explainable Agency in Artificial Intelligence

the potential to (1) elucidate true user needs and preferences and (2)
indicate the usefulness and benefits of proposed methods to downstream
user tasks. However, fewer than half of the publications we surveyed
included such studies. Notably, all work in the demonstration explana-
tion category included a case study or some form of a user study, while
few of the publications in other categories described user studies that go
beyond small case studies. In general, the number of participants in the
user studies ranged from about 15–200 (mean of 40 participants).

Each user study included some form of task that users were asked to
perform, and examined whether explanations helped users in the task,
compared to some baseline explanations or no explanations. Some
studies included only subjective questions. For example, one study
showed examples of contrastive explanations to participants and asked
them to select the explanation that most helped them understand the
agent’s behavior (Van der Waa et al. 2018). Additional subjective mea-
sures included the explainability assessment scale suggested by Hoffman
et al. (2018).

Other studies included both subjective and objective measures. One
type of objective task was determining which of two alternative agents
would perform better on a task (Amir & Amir 2018; Amitai & Amir
2022). In this study, policy summaries of alternative agents were shown
and users were asked which agent they would select for the task (while
the agents’ true capabilities, i.e. the ground truth, is known to the au-
thors). Another objective task used for evaluation is asking users to
predict what the agent would do in different scenarios (world states)
(Boggess et al. 2022; Huang et al. 2019; Lage et al. 2019; Sequeira &
Gervasio 2020; Silva et al. 2020). This task requires the user to generalize
and infer the agent’s policy based on the explanation. Additional tasks
include identifying an agent’s preferences (with the ground truth being
based on its reward function) (Amitai et al. 2023; Sequeira & Gervasio
2020) and identifying areas in which the agent needs to improve
(Sequeira & Gervasio 2020).

DISCUSSION: DIMENSIONS, GAPS, AND TRENDS
There are now many approaches that approximate a complex policy
(typically, a DQN) with a simpler representation of the policy. There are
also several approaches for extracting rules describing key aspects of a
policy. These two classes of explanations are similar in that they aim to
provide a simplified view of the policy. They differ mainly in how the

A Survey of Global Explanations in Reinforcement Learning ▪ 33

explanation is represented (e.g., a complete decision tree vs. a list of
rules). The third major class of explanations aims at describing a policy
by demonstrating its behavior in a subset of regions in the state space.
The review of the emerging literature on global explainable RL highlights
the current areas of focus in the communities, as well as areas that could
benefit from further exploration.

Lack of Consistent Standards. While the literature in Global XRL is
growing, it lacks consistency in standards and definitions. This has also
been pointed out for the XAI literature more broadly (Lipton 2018).
Work in the area makes different, and often implicit, assumptions re-
garding what explainability for RL means. The goal of the explanation
as well as the intended users of the explanations often remain unstated or
vague (e.g., “improve user understanding of the policy”). Several reviews
of XRL have offered dimensions along which approaches to XRL can be
classified, but currently, this is done retrospectively.

Moving forward, we propose that work on this area clearly state the
following:

• Explanation goal: what user tasks does the explanation aim to
support? e.g., policy debugging, comparison of policies, etc.

• Intended users: who will be presented with the explanations? e.g.,
model developers, domain experts, or end-users.

• Explained RL Element:1 What is being explained? e.g., are we ex-
plaining the policy, the underlying MDP, the reward function, etc.

• Explanation approach: How is the information explained? e.g., by a
simplified policy representation, rules, demonstrations, etc.1 We
believe that by better specifying these aspects, it will be easier to
design explanations that are useful for supporting users’ tasks.
Additionally, these distinctions will highlight which methods should
be compared and evaluated as baselines for future work and possibly
help establish benchmark standards. Importantly, better distilling the
goals of the explanation methods would also guide the design of
more informative evaluation methods, as discussed next.

Gaps in Evaluation. There is currently no clear standard for evaluating
explainable RL methods. A large fraction of studies includes only com-
putational evaluations. Such evaluations are important for ensuring, for

34 ▪ Explainable Agency in Artificial Intelligence

example, that an approach that claims to approximate a policy indeed
does so accurately. However, they do not provide evidence as to the
extent to which the explanations contribute to user understanding, rather
than assume implicitly that this would be the case. Some work goes
beyond computational evaluations and demonstrates how explanations
can be useful for some tasks, or in some domains, by giving specific
examples. While this is a step forward, it still does not provide strong
evidence that the intended users of the explanations would be able to
reach such insights, and there is a danger that the explanations will only
be useful to their developers (Miller et al. 2017).

Encouragingly, there is a growing number of researchers that do
conduct user studies to evaluate explanations. It would be useful for the
community to draw on methods from the human-computer interaction
literature and establish standards for such user studies (see, for example,
evaluation discussions by Hoffman (2013)). It could also be useful to
develop a set of evaluation tasks. Several such tasks have already been
introduced, e.g., action prediction, assessment of agent performance, etc.
There are many considerations in designing such tasks that can affect the
outcomes. For instance, while predicting the decision of a policy might
seem appealing, due to the typically large (often infinite) size of the state
space, it is not feasible to cover it with such questions. Then, the choice
of prediction tasks can be important (e.g., randomly selecting states vs.
asking about frequent states). In addition, considering a prediction in a
binary manner (success/failure) does not account for the extent of the
mistake. A user may predict an action that the agent’s policy assigns a
high or low value to, and yet these cases often receive the same “score” in
a user study.

The community could benefit from creating a set of benchmarks and
tasks that can be used for evaluation. An immediate extension to this
survey could be to distinguish and classify these tasks to their relevant
“explained RL element.” We note though that ultimately, the evaluation
should be based on the goals of the explanation, and evaluate the con-
tributions of the explanations to the underlying downstream user task.

Underexplored Directions and Opportunities. The review suggests that
the literature on GXRL has begun to explore several directions in depth.
Here we highlight additional directions that are still underexplored.

The existing methods are for the most part developed and evaluated
separately, and often provide different information to the user. It could
be beneficial to design systems that present the user with a set of

A Survey of Global Explanations in Reinforcement Learning ▪ 35

complementary explanations that together provide a more complete
picture of an agent’s policy. Moreover, it might be particularly useful to
explore the integration of global and local explanations, which has not
yet been explored in depth (Huber et al. 2021; Septon et al. 2022).

While the literature on explainability from the social sciences (Miller
2019) suggests that useful explanations are often contrastive and provide
counterfactual information, few of the existing XRL approaches present
such information. The social science literature also suggests that ex-
planations are often given as a dialogue between an “explainer” and
“explainee.” This implies an interactive process in which the explainee
can ask for clarifications and elaborations. Currently, few XRL methods
provide interactive explanations that allow the user to iteratively explore
an agent’s policy. Moreover, to the best of our knowledge, prior work in
the area did not attempt to design global RL explanations that are tai-
lored to specific needs elicited from users. Such attempts have been made
for supervised learning models (e.g., see Liao et al. 2020), which are more
commonly used in industry. Conducting such studies for RL agents
could help identify additional gaps and opportunities for improved ex-
planation methods.

When examining the categorization of global explanations to methods
that explain the learning process and MDP vs. methods that explain the
behavior and policy proposed by Milani et al. (Milani et al. 2022), we can
see that the vast majority of methods are categorized into the latter
category (Table 2.1). Developing additional methods that explain the
learning process and the MDP could help address settings in which users
are non-expert in the domain and need to be familiarized not only with
the policy but also with the underlying world representation. These
methods might also be useful for expert users who wish to debug the
training process and the world simulator, which is typically only an
approximation of the real world.

The vast majority of existing approaches attempt to explain the policy
of a single agent. Explaining the policies of multi-agent systems presents
qualitatively new challenges to GXRL. Just as planning for multi-agent
systems is not simply stitching together single-agent plans, the ex-
planations of such policies also require more than explaining the
behavior of each agent in the team separately. In particular, distributed
multi-agent policies require coordination and communication mecha-
nisms. Describing and explaining these mechanisms to users will require
completely new explanation methods.

36 ▪ Explainable Agency in Artificial Intelligence

Finally, most of the current work on GXRL and XRL more broadly
studies the explanation question in isolation from other aspects of human-
AI collaboration. Since explanations ultimately aim to support such col-
laboration, it would be interesting to study explanations in conjunction
with problems such as collaboration and communication in human-AI
teams and assess the contribution of explanations to such teamwork more
explicitly.

CONCLUSION
In this chapter, we reviewed the existing literature on global explana-
tions for reinforcement learning. We identified emerging themes in the
area and the key classes of explanation methods that have been ex-
plored so far. We suggest several avenues that the community could
explore to further develop this area of research, including the inte-
gration of different explanation methods, the design of new methods
that focus on under-explored questions, and better standardization of
evaluation methodologies. We hope that addressing the current gaps
would help advance the development of global RL explanations that
support users’ downstream tasks when deploying and collaborating
with RL agents.

NOTE

1. Based on taxonomy proposed by Milani et al. [52].

BIBLIOGRAPHY

Aha, D., Darrell, T., Pazzani, M., Reid, D., Sammut, C., & Stone, P. (2017). IJCAI-
17 Workshop on Explainable AI. IJCAI-17 Workshop on Explainable AI.

Alharin, A., Doan, T., & Sartipi, M. (2020). Reinforcement learning interpre-
tation methods: A survey. IEEE Access, 8, 171058–171077.

Amir, D., & Amir, O. (2018). Highlights: Summarizing agent behavior to people.
In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 1168–1176.

Amir, O., Doshi-Velez, F., & Sarne, D. (2018). Agent strategy summarization. In
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 1203–1207.

Amir, O., Doshi-Velez, F., & Sarne, D. (2019). Summarizing agent strategies.
Autonomous Agents and Multi-Agent Systems, 33, 5, 628–644.

Amitai Y., & Amir O. (2022). I Don’t Think So¨: Summarizing Policy
Disagreements for Agent Comparison. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, AAAI Press, 5269–5276.

A Survey of Global Explanations in Reinforcement Learning ▪ 37

Amitai, Y., Avni, G., & Amir, O. (2023). ASQ-IT: Interactive Explanations for
Reinforcement-Learning Agents, arXiv preprint arXiv:2301.09941.

Anderson, A., Dodge, J., Sadarangani, A., Juozapaitis, Z., Newman, E., Irvine, J.,
Chattopadhyay, S., Olson, M., Fern, A., & Burnett, M. (2020). Mental
models of mere mortals with explanations of reinforcement learning. ACM
Transactions on Interactive Intelligent Systems (TiiS), 10, 2, 1–37.

Arzate Cruz, C., & Igarashi, T. (2020). A survey on interactive reinforcement
learning: Design principles and open challenges. In Proceedings of the 2020
ACM designing interactive systems conference, 1195–1209. https://dl.acm.
org/doi/abs/10.1145/3357236.3395525

Bansal, G., Nushi, B., Kamar, E., Horvitz, E., & Weld, D. S. (2020). Optimizing ai
for teamwork. arXiv preprint arXiv:2004.13102.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13, 1, 41–77.

Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learning
via policy extraction. Advances in Neural Information Processing Systems, 31.

Bewley, T., & Lawry, J. (2021). Tripletree: A versatile interpretable representa-
tion of black box agents and their environments. Proceedings of the AAAI
Conference on Artificial Intelligence, 35, 11415–11422.

Beyret, B., Shafti, A., & Faisal, A. A. (2019). Dot-to-dot: Explainable hierarchical
reinforcement learning for robotic manipulation. 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
5014–5019. IEEE.

Boggess, K., Kraus, S., & Feng, L. (2022). Toward policy explanations for multi-
agent reinforcement learning. arXiv preprint arXiv:2204.12568.

Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D., & Smith, D.
(2019). Towards explainable AI planning as a service., arXiv preprint
arXiv:1908.05059.

Chakraborti, T., Sreedharan, S., Grover, S., & Kambhampati, S. (2019). Plan
explanations as model reconciliation. 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction, 258–266. IEEE.

Chandrasekaran, B., Tanner, M. C., & Josephson, J. R. (1989). Explaining
control strategies in problem-solving. IEEE Intelligent Systems, 1, 9–15.

Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A., Miller, T., Weber, R., &
Magazzeni, D. (2019). Distilling deep reinforcement learning policies in
soft decision trees. In Proceedings of the IJCAI 2019 workshop on ex-
plainable artificial intelligence, 1–6.

Danesh, M. H., Koul, A., Fern, A., & Khorram, S. (2021). Reunderstanding
finite-state representations of recurrent policy networks. In International
Conference on Machine Learning, 2388–2397. PMLR.

Dao, G., Mishra, I., & Lee, M. (2018). Deep reinforcement learning monitor for
snapshot recording. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), 591–598. IEEE.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608.

38 ▪ Explainable Agency in Artificial Intelligence

https://dl.acm.org
https://dl.acm.org

Dragan, A., Srinivasa, S. (2014). Familiarization to robot motion. In Proceedings
of the 2014 ACM/IEEE international conference on Human- robot inter-
action, 366–373.

Finkelstein, M., Liu, L., Levy Schlot, N., Kolumbus, Y., Parkes, D. C.,
Rosenshein, J. S., & Keren, S. (2022). Explainable reinforcement learning
via model transforms. arXiv preprint arXiv:2209.12006.

Gottesman, O., Futoma, J., Liu, Y., Parbhoo, S., Celi, L., Brunskill, E., & Doshi-
Velez, F. (2020). Interpretable off-policy evaluation in reinforcement
learning by highlighting influential transitions. In International Conference
on Machine Learning, 3658–3667. PMLR.

Greydanus, S., Koul, A., Dodge, J., & Fern, A. (2017). Visualizing and under-
standing atari agents. arXiv preprint arXiv:1711.00138.

Greydanus, S., Koul, A., Dodge, J., & Fern, A. (2018). Visualizing and under-
standing atari agents. In International conference on machine learning,
1792–1801. PMLR.

Gunning, D. (2017). Explainable artificial intelligence. Defense Advanced
Research Projects Agency (DARPA), nd Web.

Guo, W., Wu, X., Khan, U., & Xing, X. (2021). Edge: Explaining deep
reinforcement learning policies. Advances in Neural Information Processing
Systems, 34, 12222–12236.

Hayes, B., & Shah, J. A. (2017). Improving robot controller transparency
through autonomous policy explanation. In 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction, 303–312. IEEE.

Hein, D., Hentschel, A., Runkler, T., & Udluft, S. (2017). Particle swarm opti-
mization for generating interpretable fuzzy reinforcement learning poli-
cies. Engineering Applications of Artificial Intelligence, 65, 87–98.

Hein, D., Udluft, S., & Runkler, T. A. (2018). Interpretable policies for
reinforcement learning by genetic programming. Engineering Applications
of Artificial Intelligence, 76, 158–169.

Heuillet, A., Couthouis, F., & Díaz-Rodríguez, N. (2021). Explainability in deep
reinforcement learning. Knowledge-Based Systems, 214, 106685. https://
www.sciencedirect.com/science/article/abs/pii/S0950705120308145

Hoffman, G. (2013). Evaluating fluency in human-robot collaboration. In
International conference on human-robot interaction, workshop on human-
robot collaboration, 381, 1–8.

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for ex-
plainable ai: Challenges and prospects. arXiv preprint arXiv:1812.04608.

Huang, S. H., Bhatia, K., Abbeel, P., & Dragan, A. D. (2018). Establishing
appropriate trust via critical states. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 3929–3936. IEEE.

Huang, S. H., Held, D., Abbeel, P., & Dragan, A. D. (2019). Enabling robots to
communicate their objectives. Autonomous Robots, 43, 2, 309–326.

Huber, T., Weitz, K., André, E., & Amir, O. (2021). Local and global explana-
tions of agent behavior: Integrating strategy summaries with saliency
maps. Artificial Intelligence, 301, 103571.

A Survey of Global Explanations in Reinforcement Learning ▪ 39

https://www.sciencedirect.com
https://www.sciencedirect.com

Jacobs, M., He, J., Pradier, M., Lam, B., Ahn, A., McCoy, T., Perlis, R., Doshi-
Velez, F., & Gajos, K. (2021). Designing ai for trust in collaboration in
time-constrained medical decisions: A sociotechnical lens. In Proceeding at
the Conference on Human Factors in Computing Systems, 1, 1–14.

Janssen, C. P., Donker, S. F., Brumby, D. P., & Kun, A. L. (2019). History and
future of human-automation interaction. International Journal of Human-
Computer Studies, 131, 99–107.

Jhunjhunwala, A., Lee, J., Sedwards, S., Abdelzad, V., & Czarnecki, K. (2020).
Improved policy extraction via online q-value distillation. In 2020
International Joint Conference on Neural Networks, 1–8. IEEE.

Juozapaitis, Z., Koul, A., Fern, A., Erwig, M., & Doshi-Velez, F. (2019).
Explainable reinforcement learning via reward decomposition. In IJCAI/
ECAI Workshop on explainable artificial intelligence.

Khan, O., Poupart, P., Black, J., Sucar, L. E., Morales, E. F., & Hoey, J. (2011).
Automatically generated explanations for Markov Decision Processes.
Decision Theory Models for Applications in AI: Concepts and Solutions,
144–163.

Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to
criticize criticism for interpretability. In Advances in Neural Information
Processing Systems, 2280–2288.

Koul, A., Greydanus, S., & Fern, A. (2018). Learning finite state representations
of recurrent policy networks. , arXiv preprint arXiv:1811.12530.

Krarup, B., Cashmore, M., Magazzeni, D., & Miller, T. (2019). Model-based
contrastive explanations for explainable planning.

Kulkarni, A., Zha, Y., Chakraborti, T., Vadlamudi, S. G., Zhang, Y., &
Kambhampati, S. (2019). Explicable planning as minimizing distance from
expected behavior. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, 2075–2077. International
Foundation for Autonomous Agents and Multiagent Systems.

Lage, I., Lifschitz, D., Doshi-Velez, F., & Amir, O. (2019). Exploring computa-
tional user models for agent policy summarization. In IJCAI: proceedings of
the conference, 28, 1401. NIH Public Access.

Landajuela, M., Petersen, B. K., Kim, S., Santi-ago, C. P., Glatt, R., Mundhenk,
N., Pettit, J. F., & Faissol, D. (2021). Discovering symbolic policies with
deep reinforcement learning. In International Conference on Machine
Learning, 5979–5989. PMLR.

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the ai: informing design
practices for explainable ai user experiences. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, 1–15.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue, 16, 3, 31–57.

Liu, G., Schulte, O., Zhu, W., & Li, Q. (2019). Toward inter- pretable deep
reinforcement learning with linear model u-trees. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
414–429. Springer.

40 ▪ Explainable Agency in Artificial Intelligence

Madumal, P., Miller, T., Sonenberg, L., & Vetere, F. (2020). Explainable
reinforcement learning through a causal lens. In Proceedings of the AAAI
Conference on Artificial Intelligence, 34, 2493–2500.

Milani, S., Topin, N., Veloso, M., & Fang, F. (2022). A survey of explainable
reinforcement learning. arXiv preprint arXiv:2202.08434. https://arxiv.org/
abs/2202.08434

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.

Miller, T., Howe, P., & Sonenberg, L. (2017). Explainable AI: Beware of inmates
running the asylum or: How I learnt to stop worrying and love the social
and behavioural sciences. arXiv preprint arXiv:1712.00547.

Puiutta, E., & Veith, E. (2020). Explainable reinforcement learning: A survey. In
International cross-domain conference for machine learning and knowledge
extraction, 77–95. Springer.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I Trust you?:
Explaining the predictions of any classifier. In Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining,
1135–1144. ACM.

Rupprecht, C., Ibrahim, C., & Pal, C. J. (2019). Finding and visualizing weaknesses of
deep reinforcement learning agents. arXiv preprint arXiv:1904.01318.

Septon, Y., Huber, T., André, E., & Amir, O. (2022). Integrating policy sum-
maries with reward decomposition for explaining reinforcement learning
agents. arXiv preprint arXiv:2210.11825.

Sequeira, P., & Gervasio, M. (2020). Interestingness elements for explainable
reinforcement learning: Understanding agents’ capabilities and limitations.
Artificial Intelligence, 288, 103367.

Shu, T., Xiong, C., & Socher, R. (2017). Hierarchical and interpretable skill acqui-
sition in multi-task reinforcement learning. arXiv preprint arXiv:1712.07294.

Silva, A., Gombolay, M., Killian, T., Jimenez, I., & Son, S. (2020). Optimization
methods for interpretable differentiable decision trees applied to
reinforcement learning. In International conference on artificial intelligence
and statistics, 1855–1865. PMLR.

Sreedharan, S., Srivastava, S., & Kambhampati, S. (2020). Tldr: Policy summari-
zation for factored SSP problems using temporal abstractions. In Proceedings
of the International Conference on Automated Planning and Scheduling, 30,
272–280.

Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G.,
Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown,
K., Parkes, D., William, P., AnnaLee, S., Julie, S., Milind, T., & Astro, T.
(2016). Artificial intelligence and life in 2030. One Hundred Year Study on
Artificial Intelligence: Report of the 2015–2016 Study Panel.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction,
MIT press.

Swartout, W. R. (1983). Xplain: A system for creating and explaining expert
consulting programs. Artificial Intelligence, 21, 3, 285–325.

A Survey of Global Explanations in Reinforcement Learning ▪ 41

https://arxiv.org
https://arxiv.org

Topin, N., & Veloso, M. (2019). Generation of policy-level explanations for
reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 2514–2521.

Topin, N., Milani, S., Fang, F., & Veloso, M. (2021). Iterative bounding MDPs:
Learning interpretable policies via non-interpretable methods. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, 9923–9931.

Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. (2018).
Programmatically interpretable reinforcement learning. In International
Conference on Machine Learning, 5045–5054. PMLR.

Waa, J. V. D., Diggelen, J. V., Bosch, K. V. D., & Neerincx, M. (2018). Contrastive
explanations for reinforcement learning in terms of expected consequences.
arXiv preprint arXiv:1807.08706.

Zahavy, T., Ben-Zrihem, N., & Mannor, S. (2016). Graying the black box:
Understanding DQNs. In International conference on machine learning,
1899–1908. PMLR.

Zhang, L., Li, X., Wang, M., & Tian, A. (2021). Off-policy differentiable logic
reinforcement learning. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 617–632. Springer.

42 ▪ Explainable Agency in Artificial Intelligence

C H A P T E R 3

Integrated Knowledge-
Based Reasoning and
Data-Driven Learning
for Explainable Agency
in Robotics

Mohan Sridharan
Intelligent Robotics Lab, School of Computer Science, University of
Birmingham, Birmingham, UK

MOTIVATION
Consider an assistive robot that has to: (a) estimate the occlusion of objects
and stability of object configurations in specific scenes—Figure 3.1; and (b)
compute and execute plans to achieve desired configurations. To perform
these tasks, the robot extracts information from on-board sensors (e.g.,
camera), and reasons with this information and prior domain knowledge.
The uncertainty in its perception and actuation is represented probabil-
istically (e.g., “I am 90% certain I saw the robotics book in the study”). The
robot’s prior knowledge includes knowledge of some domain attributes
(e.g., the arrangement of rooms); some object attributes (e.g., shape, sur-
face); grounding of some prepositional words (e.g., above, in) that rep-
resent the spatial relations between objects; some axioms governing
actions and change in the domain (e.g., “picking up an object will cause it
to be in the robot’s hand”); and default statements (e.g., “books are usually

DOI: 10.1201/9781003355281-3 43

https://doi.org/10.1201/9781003355281-3

in the study”) that hold in all but a few exceptional circumstances (e.g.,
“cookbooks are in the kitchen”). Furthermore, the existing knowledge has
to be revised over time, and the robot has to answer questions about its
decisions and beliefs during or after planning and execution. For example,
if the goal in Figure 3.1 (right) is to have the yellow ball on the orange
block, and the plan is to move the blue block to the table before placing the
ball on the orange block, the robot may be asked “Why do you want to pick
up the blue block first?”, “Why did you not pick up the pig?”, or “What will
happen if you rolled the ball?”.

Our architecture seeks to jointly address the knowledge represen-
tation, reasoning, learning, and control challenges posed by the moti-
vating scenario. In this chapter, we focus on the ability to provide on-
demand explanations of decisions and beliefs in the form of relational
descriptions of relevant objects, object attributes, actions, and robot
attributes. Providing such explanations can help improve the algo-
rithms and establish accountability, but it is difficult to do so in inte-
grated robot systems that use knowledge-based reasoning methods
(e.g., for planning) and data-driven learning methods (e.g., for object
recognition). It requires the associated architecture to support the
key functional capabilities of explainable agency, namely: provide on-
demand justification of decisions made during (or after) plan genera-
tion and execution by considering alternative choices; present infor-
mation at a suitable level of abstraction; and communicate information
such that it makes contact with human concepts such as beliefs and
goals (Langley et al. 2017). Our architecture draws on cognitive systems
research, which highlights the benefits of coupling different represen-
tations, reasoning schemes, and learning methods (Laird 2012;
Winston & Holmes 2018), to implement these functional capabilities.
Specifically, our architecture:

FIGURE 3.1 Scenario for some robot experiments.

44 ▪ Explainable Agency in Artificial Intelligence

• Combines the principles of non-monotonic logical reasoning and
deep learning for decision making, and automatically learns pre-
viously unknown axioms of state constraints, action preconditions,
and action effects;

• Leverages the interplay between representation, reasoning, and
learning to embed the principles of explainable agency, enabling a
robot to provide on-demand relational descriptions of its decisions
and beliefs.

These capabilities are evaluated in the context of a robot arranging objects
in desired configurations, and estimating occlusion of objects and stability
of object configurations, in simulated scenes and in the real world. Results
indicate the ability to: (i) incrementally learn previously unknown axioms
governing domain dynamics and (ii) construct explanations reliably and
efficiently by automatically identifying and reasoning with the relevant
knowledge. We begin with a discussion of related work (Section 2), fol-
lowed by a description of the architecture (Section 3), experimental results
(Section 4), and conclusions (Section 5).

RELATED WORK
Early work on explanation generation drew on research in cognition,
psychology, and linguistics to characterize explanations in terms of
generality, objectivity, connectivity, relevance, and information content
(Friedman 1974). Subsequent studies involving human subjects have also
indicated that the important attributes of good explanations include
coherence, simplicity, generality, soundness, and completeness (Read &
Marcus-Newhall 1993). In parallel, fundamental computational methods
were developed for explaining unexpected outcomes by reasoning logi-
cally about potential causes (de Kleer & Williams 1987).

In recent years, the increasing use of AI methods in different domains
has renewed the interest in understanding the decisions of these
methods, with many dedicated workshops and special tracks at premier
conferences. This understanding can be used to improve the underlying
algorithms, and to make automated decision making more acceptable or
trustworthy to humans (Anjomshoae et al. 2019; Miller 2019). Existing
work in explainable AI can be broadly grouped into two categories
(Sreedharan, Kulkarni, & Kambhampati 2022a). Methods in one cate-
gory modify or map learned models or reasoning systems to make their

Reasoning and Learning for Explainable Agency in Robotics ▪ 45

decisions more interpretable, e.g., by tracing decisions back to input data
(Koh & Liang 2017) or explaining the predictions of any classifier by
learning equivalent interpretable models (Ribeiro, Singh, & Guestrin
2016), or biasing a planning system towards making decisions easier for
humans to understand (Chakraborti, Sreedharan, & Kambhampati 2018).
The other category of methods provides descriptions that make a rea-
soning system’s decisions more transparent, e.g., explaining planning
decisions (Borgo, Cashmore, & Magazzeni 2018), providing causal and
temporal relations (Seegebarth et al. 2012), or reconciling the differences
between the planner’s decisions and the human expectations (Sreedharan,
Kulkarni, & Kambhampati 2022b). Much of this research is agnostic to
how an explanation is structured or assumes comprehensive domain
knowledge.

Since deep networks represent the state of the art for different robotics/
AI problems, methods have been developed specifically to understand the
operation of these networks, e.g., by computing a heatmap of features most
relevant to a deep network’s outputs (Assaf & Schumann 2019). There has
also been work on reasoning with learned symbolic structure, or with a
learned graph encoding scene structure, in conjunction with deep net-
works to answer questions about images of scenes (Norcliffe-Brown,
Vafeais, & Parisot 2018; Yi et al. 2018). However, these approaches do not
fully integrate reasoning and learning to inform and guide each other; or
use the rich commonsense domain knowledge for reliable and efficient
reasoning, learning, and the generation of explanations.

This chapter focuses on integrated robot systems that combine
knowledge-based and data-driven methods to reason with and learn from
incomplete commonsense domain knowledge and observations. We
describe an architecture that enables such a robot to generate relational
descriptions of its decisions and beliefs in response to different kinds of
questions. This architecture builds on our previous refinement-based
architecture that represents and reasons at two coupled resolutions
(Sridharan et al. 2019). It implements a theory of explanations (Sridharan
& Meadows 2019), and leverages the interplay between knowledge-based
reasoning and data-driven learning (Sridharan & Mota 2023) to enable the
functional capabilities of explainable agency (Langley et al. 2017).

ARCHITECTURE DESCRIPTION
Our architecture encodes the principle of step-wise iterative refinement. It
is based on tightly coupled transition diagrams at different resolutions.

46 ▪ Explainable Agency in Artificial Intelligence

These transition diagrams are described using an action language ALd

(Gelfond & Inclezan 2013), which has a sorted signature with statics,
fluents, and actions, and supports causal laws, state constraints, and
executability conditions; the fluents can be non-Boolean and axioms can
be non-deterministic. The architecture may be viewed as a logician, stat-
istician, and an explorer working together, as shown in Figure 3.2. For ease
of understanding, we will limit our discussion of the architecture to two
resolutions. For any given goal, the logician performs non-monotonic
logical reasoning at the coarse resolution based on commonsense domain
knowledge to provide a sequence of abstract actions. Each abstract tran-
sition is implemented by the statistician as a sequence of finer-granularity
actions, incorporating probabilistic models of uncertainty (e.g., in per-
ception) and communicating the outcomes to the logician. In addition, the
explorer revises the existing knowledge (e.g., of action capabilities) when
needed (e.g., in response to unexpected action outcomes). The interplay
between the architecture’s components enables the desired functional
capabilities of explainable agency, with the robot providing relational
descriptions of its decisions and beliefs at the desired resolution in
response to queries from a human. We will use the following example to
describe the architecture’s components.

FIGURE 3.2 Our architecture leverages strengths of declarative programming,
probabilistic reasoning, and interactive learning to represent, reason, and learn
at different resolutions.

Reasoning and Learning for Explainable Agency in Robotics ▪ 47

Example: Assistive Robotics (AR) Domain. A robot: (i) estimates
occlusion of scene objects and stability of object structures, and com-
putes and executes plans to achieve desired object configurations; and (ii)
provides on-demand relational descriptions of decisions and evolution of
beliefs. There is uncertainty in the robot’s perception and actuation;
probabilistic algorithms are used for visual object recognition and to
move objects. The robot has some prior domain knowledge, which
includes object attributes such as shape and surface; spatial relations
between objects (e.g., above, below, behind, in); some domain attributes;
and some axioms governing domain dynamics such as:

• Placing an object on top of an object with an irregular surface
results in an unstable object configuration.

• Removing all objects blocking the view of an object’s frontal face
causes this object to be not occluded.

• An object below another object cannot be picked up.

This knowledge may need to be revised over time; some axioms and the
value of some attributes may be unknown or may change, as described in
Section 3.2.

Knowledge Representation and Reasoning

The coarse resolution domain description comprises system descrip-
tion Dc of transition diagram τc, a collection of ALd statements, and
history Hc. Subscript “c” refers to the coarse resolution. Dc comprises
sorted signature Σc and axioms. For the AR domain, Σc includes basic
sorts such as place, thing, robot, person, object, cup, surface, and step;
statics such as next_to(place, place) and obj_surface(obj, surface); flu-
ents such as loc(thing, place), obj_rel(relation, object, object), and in_-
hand(entity, object); and actions such as move(robot, place) and give
(robot, object, person). Axioms in Dc (for the AR domain) are state-
ments such as:

move(rob1, P) causes loc(rob1, P)
putdown(rob1, Ob1, Ob2) causes obj_rel(on, Ob1, Ob2)
loc(O, P) if loc(rob1, P), in_hand(rob1, O)
impossible give(rob1, O, P) if loc(rob1, L1)!= loc(P, L2)

48 ▪ Explainable Agency in Artificial Intelligence

which correspond to two causal laws, a state constraint, and an execut-
ability condition, respectively. We also include axioms in Dc to encode
theories of intention and affordance. The history Hc of a dynamic domain
is typically a record of fluents observed to be true or false at a particular
time step, obs(fluent, boolean, step); and of actions that “happened,” i.e.,
were executed at a particular time step, hpd(action, step). This definition is
expanded to represent prioritized defaults describing the values of fluents
in the initial state, e.g., “books are usually in the library; if not there, they
are in the office,” along with exceptions (if any).

To reason with domain knowledge, we construct a program Π(Dc, Hc)
in CR-Prolog, a variant of Answer Set Prolog (ASP) that incorporates
consistency restoring (CR) rules (Gebser et al. 2012). Π includes Σc and
axioms of Dc, inertia axioms, reality checks, closed world assumptions for
actions, and observations, actions, and defaults from Hc. Π also includes
statements encoding information extracted from sensor inputs (e.g., spa-
tial relations, object attributes) with sufficiently high probability. ASP is
based on stable model semantics, and supports default negation, epistemic
disjunction, and non-monotonic logical reasoning. Unlike “¬a” that states
a is believed to be false, “not a” only implies a is not believed to be true, i.e.,
each literal can be true, false or unknown. An answer set of Π represents
the beliefs of the robot associated with Π, with the literals at each time step
representing the corresponding state. The non-monotonic logical rea-
soning ability enables recovery from incorrect inferences obtained due to
reasoning with incomplete knowledge or noisy sensor inputs. Entailment,
planning, and diagnostics can be reduced to computing answer sets of Π;
we do so using the SPARC system (Balai, Gelfond, & Zhang 2013).

For any given goal, reasoning at the coarse-resolution provides a plan of
abstract actions. To implement the abstract actions, we define a fine-
resolution system description Df as a refinement of Dc such that any given
abstract transition between two states in τc has a path in τf between a
refinement of the two states. In the AR domain, a robot would (for ex-
ample) reason about grid cells in rooms and parts of objects, attributes
previously abstracted away by the designer. To support interaction with
the physical world, we extend Df by introducing a theory of observation
that encodes knowledge-producing actions and fluents, and non-
determinism (Dfr). Since reasoning with Dfr can become computationally
intractable for complex domains, we enable the robot to automatically
zoom to Dfr(T), the part of Dfr relevant to any given abstract transition T.
Reasoning with Dfr(T) provides a sequence of concrete actions that

Reasoning and Learning for Explainable Agency in Robotics ▪ 49

implement T, incorporating relevant probabilistic models of uncertainty
(e.g., in perception or in the outcomes of executed actions) as appropriate.
Fine-resolution outcomes with a high probability are committed to the
fine-resolution history, and the corresponding coarse-resolution outcomes
are added to Hc. For a more detailed description of refinement and
zooming, and the use of such a knowledge representation and reasoning
architecture on physical robots, please see (Sridharan et al. 2019). For an
extension of this architecture to encode an adaptive theory of intentions in
the coarse resolution, please see Gomez, Sridharan, & Riley (2021).

Interactive Learning

Reasoning with incomplete knowledge (e.g., to fetch target objects or
estimate the occlusion of objects) can result in incorrect outcomes. The
state of the art for learning previously unknown actions, axioms, or
object models is based on “end-to-end” data-driven methods that require
many labeled examples. It is difficult to provide such examples in
complex domains or to interpret the decisions made. Figure 3.3 shows
the components for learning and explanation generation in our

FIGURE 3.3 Non-monotonic logical reasoning guides interactive (e.g., deep,
inductive) learning of previously unknown domain knowledge to complete
desired estimation tasks, and to provide relational descriptions of knowledge
and beliefs.

50 ▪ Explainable Agency in Artificial Intelligence

architecture, where red (green) arrows denote inputs (outputs) from (to)
humans. The robot first attempts to use ASP-based logical reasoning to
complete the desired tasks (e.g., planning, estimation). If this reasoning
does not provide any outcome (e.g., no plan), or provides an incorrect
outcome (e.g., incorrect stability label), it is considered to indicate that
the knowledge is incomplete or incorrect, triggering learning. The
learning component’s implementation is described below in the context
of the estimation tasks.

Classification Block (CNNs)
The main sensor inputs are RGB/D images that are processed to extract
spatial relations and other attributes that are encoded as ASP statements.
The extraction of spatial relations is based on our prior work that in-
crementally revises the physical world grounding of prepositional words
(e.g., “in,” “above”) representing these relations (Mota & Sridharan 2018).
For any given image, the robot tries to estimate the occlusion and stability
of objects using ASP-based reasoning. If an answer is not found, or an
incorrect answer is found (for training images), the robot automatically
extracts relevant regions of interest (ROIs) from the image. Parameters of
existing convolutional neural network (CNN) architectures (e.g., LeNet
(LeCun et al. 1998), AlexNet (Krizhevsky, Sutskever, & Hinton 2012)) are
tuned to map information from each ROI to the corresponding labels. The
robot automatically identifies and reasons with the relevant axioms and
relations to determine the ROIs; the notion of relevance is also expanded
to construct explanations efficiently in Section 3.3.

Decision Tree induction
The images used to train the CNNs are considered to contain infor-
mation about missing or incorrect constraints related to the estimation
tasks (occlusion, stability). Image features and spatial relations extracted
from ROIs in each such image, and the known occlusion and stability
labels (during training), are used to incrementally learn a decision tree
summarizing the corresponding state transitions. This process repeatedly
splits nodes based on unused attributes likely to provide the highest
entropy reduction. Trees are learned separately for different actions, and
branches of a tree that satisfy minimal thresholds on purity at the leaf
and on the level of support from labeled examples, are used to construct
candidate constraints. Candidates without a minimal level of support on
unseen examples are removed and similar axioms are merged. Specifically,

Reasoning and Learning for Explainable Agency in Robotics ▪ 51

axioms with the same head and some overlap in the body are grouped.
Each combination of one axiom from each group is encoded in an ASP
program along with axioms that are not in any group. This program is
used to classify ten labeled scenes, retaining only axioms in the program
that provides the highest accuracy on these scenes. Also, axioms that cease
to be useful over time are removed by associating each axiom with a
strength that decays exponentially if it is not used or learned again.

In addition to constraints, the robot learns previously unknown causal
laws and executability conditions if there is a mismatch between the
observed state after action execution and the expected state based on rea-
soning with existing knowledge. Any expected but unobserved fluent literal
indicates missing executability condition(s); any observed unexpected
fluent literal suggests missing causal law(s). Examples of learned axioms
include:

¬stable(A) ← obj_relation(above, A, B), obj_surface(B, irregular)
¬pickup(rob1, Ob1) ← in_hand(rob1, Ob2)

which correspond to a state constraint (“an object placed on another
with an irregular surface is unstable”) and an executability condition
(“the robot cannot pick up an object if it is already holding another
object”), respectively. For more details, see Sridharan & Mota (2023).

Although we do not describe it in detail in this chapter, our architecture
includes a similar learning scheme for planning and diagnostics tasks. This
scheme learns actions and axioms from human descriptions of desired
behavior, or observations obtained through active exploration or reactive
action execution in response to unexpected outcomes. Reasoning auto-
matically limits this learning to states, actions, and observations relevant to
task(s) and goal(s) at hand; see Sridharan & Meadows (2018) for more detail.

Explanation Generation

We consider an “explanation” to be a relational description of the robot’s
decisions or beliefs. This component is based on a theory of explanations
that maps the postulates of explainable agency to: (i) claims about rep-
resenting, reasoning with, and learning knowledge to support explana-
tions; (ii) a characterization of explanations along axes based on
abstraction, specificity, and verbosity; and (iii) a methodology for con-
structing explanations (Sridharan & Meadows 2019). This component is
described below.

52 ▪ Explainable Agency in Artificial Intelligence

Interaction Interface
Human interaction with our architecture is through speech or text.
Existing software and a controlled vocabulary are used to parse human
verbal input and to convert text to verbal response. Specifically, human
verbal input is transcribed into text from the controlled vocabulary. This
(or input) text is labeled using a part-of-speech (POS) tagger, and nor-
malized with the lemma list (Someya 1998) and related synonyms and
antonyms from WordNet (Miller 1995). The processed text helps iden-
tify the type of request: a desired goal or a question about decisions,
beliefs, or hypothetical situations. Any goal is sent to the ASP program for
planning; the robot executes the plan, performing diagnostics and re-
planning as needed, until the goal is achieved. For any question, the
“Program Analyzer” considers the domain knowledge, inferred beliefs,
and processed human input to automatically identify relevant axioms and
literals. These literals are inserted into generic response templates based on
the controlled vocabulary, resulting in (textual) descriptions that make
contact with human concepts such as beliefs and goals, which are con-
verted to synthetic speech if needed. Whenever the posed query or request
is ambiguous, the robot constructs and poses queries to remove the
ambiguity. Some examples of such interactions are provided in Section 4.2.

Mental Simulations
To explain the evolution of a particular belief or the (non)selection of a
particular action at a particular time step, our architecture includes the
ability to infer the associated sequence of beliefs and axioms. This ability
is used by the “Program Analyzer” (below) to construct explanations. We
adapt proof trees, which have been used to explain observations in the
context of classical first-order logic statements (Ferrand, Lessaint, &
Tessier 2006), to our formulation based on non-monotonic logic using
the following methodology:

1. Select axioms with the target belief or action in the head.

2. Ground literals in the body of each selected axiom. Check if they
are supported by the current answer set.

3. Create a new branch in a proof tree (with the target belief or action
as the root) for each selected axiom supported by the answer set,
and store the axiom and the related supporting ground literals in
suitable nodes.

Reasoning and Learning for Explainable Agency in Robotics ▪ 53

4. Repeats Steps 1–3 with the supporting ground literals in Step 3 as
target beliefs in Step 1, until all branches reach a leaf node without
any further supporting axioms.

Paths from the root to the leaves in these trees provide candidate ex-
planations. If multiple paths exist, one of the shortest branches is selected
and used to construct answers—see (Mota, Sridharan, & Leonardis 2021)
for examples.

Program Analyzer
Algorithm 1 describes the approach for automatically identifying and
reasoning with the relevant information to construct relational descrip-
tions in response to questions or requests. It does so in the context of
four types of explanatory requests or questions. The first three types were
introduced in prior work as questions to be considered by any ex-
plainable planning system (Fox, Long, & Magazzeni 2017), while the
fourth type considers the evolution of beliefs.

Algorithm 1: (Program Analyzer) Answer query

Input: Literal of input question; Π(D, H); answer templates.
Output: Answer and answer Literals.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve actions from answer set
3 answer literals = Retrieve(AS, actions)
4 else if question = “why action X at step I?” then

// Extract actions after step I
5 next actions = Retrieve(AS, actions for step > I)

// Extract axioms influencing these actions
6 relevant axioms = Retrieve(Π, head = ¬ next actions)

// Extract relevant literals from Answer Set
7 relevant literals = Retrieve(AS, Body(relevant axioms)

∈ I ∧ ∉ I + 1)
// Output literals

8 answer literals = pair(relevant literals, next actions)

54 ▪ Explainable Agency in Artificial Intelligence

9 else if question = “why not action X at step I?” then
// Extract axioms relevant to action

10 relevant axioms = Retrieve(Π, head = ¬ occurs(X))
// Extract relevant literals from Answer Set

11 answer literals = Retrieve(AS, Body(relevant axioms)
∈ I∧ ∉ I + 1)

12 else if question = “why belief Y at step I?” then
// Extract axioms influencing this belief

13 relevant axioms = Retrieve(Π, head = Y)
// Extract body of axioms

14 answer literals = Recursive Examine(AS, Body(relevant axioms))
15 Construct_Answer(answer literals, answer templates)

1. Plan description. When asked to describe a particular plan, the
robot parses the related answer set(s) to extract a sequence of actions
of the form occurs(action1, step1), …, occurs(actionN, stepN) (line
3, Algorithm 1). These actions are used to construct the response.

2. Action justification: Why action X at step I? To justify the ex-
ecution of any particular action at step I:

a. For each action A that occurred after time step I, the robot ex-
amines relevant executability condition(s) and identifies literal(s)
that would prevent A’s execution (lines 5–7). For the goal of
placing the orange block on the table in Figure 3.1 (right), assume
that the actions executed include occurs(pickup(robot, blue
block), 0), occurs(putdown(robot, blue block), 1), and occurs
(pickup(robot, orange block), 2). If the focus is on the first pickup
action, an executability condition related to the second pickup
action: ¬occurs(pickup(robot, A), I):- holds(obj_relation(below,
A, B), I) is ground in the scene to obtain obj_relation(below,
orange block, blue block) as a literal of interest.

b. If any identified literal is in the answer set at the time step of interest
(0 in current example), and is absent or negated in the next step, it
is a reason for executing the action (X) being considered (line 7).

c. The condition modified by the execution of the action of
interest (X) is paired with the subsequent action (A) to con-
struct the answer (line 8). For instance, the question “Why did
you pick up the blue block at time step 0?”, receives the answer

Reasoning and Learning for Explainable Agency in Robotics ▪ 55

“I had to pick up the orange block. It was located below the blue
block”.

A similar approach is used to justify the selection of any particular
action in a plan that has not been executed.

3. Hypothetical actions: Why not action X at step I? For questions
about actions not selected for execution:

a. The robot identifies executability conditions with action X in the
head, i.e., conditions that (if true) would prevent X from being
included in plans (line 10).

b. For each identified executability condition, the robot examines
whether literals in the body are satisfied in the corresponding
answer set (line 11). If so, these literals are used to construct the
answer.

Suppose action putdown(robot, blue block, table) occurred at step 1
in Figure 3.1 (right). For the question “Why did you not put the blue
block on the tennis ball at step 1?”, the following executability
condition is identified: ¬occurs(putdown(robot, A, B), I):- has_sur-
face(B, irregular), which implies that an object cannot be placed on
another object with an irregular surface. The answer set indicates
that the tennis ball has an irregular surface. The robot answers
“Because the tennis ball has an irregular surface”. This process uses
the mental simulations approach described above.

4. Belief query: Why belief Y at step I? To explain any particular
belief, the robot uses the mental simulations approach to identify
the supporting axioms and relevant literals to construct the answer.
For example, to explain the belief that object ob1 is unstable in step
I, the robot finds the support axiom: ¬holds(stable(ob 1), I) ←
holds(small_base(ob 1), I).

Assume that the current beliefs include that ob1 has a small base.
Searching for why ob1 is believed to have a small base identifies the
axiom:

holds(small_base(ob1), I):- holds(relation(below, ob2, ob1), I),
has_size(ob2, small),
has size(ob1, big).

56 ▪ Explainable Agency in Artificial Intelligence

Asking “why do you believe object ob1 is unstable at step I?” would yield
the answer “Because object ob2 is below object ob1, ob2 is small, and ob1

is big”.

Disambiguation
Questions or requests posed by humans may be ambiguous in terms of
the objects or the time step that they reference. Our architecture includes
a method to automatically construct questions to address such ambi-
guities. Inspired by findings in psychology and cognitive science
(Friedman 1974; Read & Marcus-Newhall 1993), this method enables the
robot to construct queries comprising the set of object attributes most
likely to address the ambiguity. The method is based on three heuristic
rules: (i) select attributes that match with a minimum number of
ambiguous objects for the query and scene under consideration; (ii) since
queries with many attributes are more likely to confuse a human, select
questions with the minimum number of attributes; (iii) assign higher
priority to attributes that are preferred by humans (if known) and are
easy for the robot to detect. We only summarize this capability here to
provide a complete description of the architecture. For more details
about the heuristic rules and their use to construct disambiguation
queries, see (Mota & Sridharan 2021).

EXPERIMENTAL RESULTS
We evaluated the ability of our system to learn axioms and construct
relational descriptions of decisions and beliefs in response to different
types of questions. Section 4.1 describes the experimental setup, followed
by execution traces in Section 4.2 and quantitative results in Section 4.3.

Experimental Setup

We experimentally evaluated the following hypotheses:

H1: Our architecture supports reliable learning of unknown axioms,
improving the quality of plans generated; and

H2: Leveraging the links between reasoning and learning improves the
accuracy of the explanatory descriptions.

Experimental trials considered images from the robot’s camera and
simulated images. Real world images contained 5−7 objects of different
colors, textures, shapes, and sizes in different locations of the AR domain.

Reasoning and Learning for Explainable Agency in Robotics ▪ 57

The objects included cubes (blocks), a pig, a bell pepper, a tennis ball, cups,
an apple, an orange, and a pot. These objects were either stacked on each
other or spread on a table in different locations—see Figure 3.1 (left). A
total of 40 configurations were created, each with five different goals for
planning and four different questions for each plan (one for each question
type), resulting in a total of 200 plans and 800 questions. We used a Baxter
robot to manipulate objects on a tabletop.

Since it is difficult to explore a wide range of objects and scenes with
physical robots, we also used a real-time physics engine (Bullet) to create
40 simulated images, each with 7−9 objects (3−5 stacked and the
remaining on a flat surface). Objects included cylinders, spheres, cubes, a
duck, and five household objects from the Yale-CMU-Berkeley dataset
(apple, pitcher, mustard bottle, mug, and box of crackers). We once
again considered five different goals for planning and four different
questions (one for each type) for each plan, resulting in the same number
of plans (200) and questions (800) as with the real-world data. To explore
the interplay between reasoning and learning, we focused on the effect of
learned knowledge on planning and constructing explanations.
Specifically, we prepared a knowledge base in which some axioms gov-
erning the domain dynamics were missing. We then ran experiments in
which our architecture learned the missing axioms over time, as
described in Section 3.2, and used them for planning and explanation
generation. The baseline for comparison in these experiments included
the reasoning and explanation generation components of our architec-
ture but did not support any learning (i.e., it used only the initial
knowledge base with some axioms missing). During planning, the per-
formance measures included the number of optimal, suboptimal, and
incorrect plans, and the planning time. An “optimal” plan is a minimal
plan; the quality of a plan was measured in terms of the ability to
compute plans that require the least number of actions to achieve the
goal. The quality of an explanation was measured in terms of precision
and recall of the literals in the answer provided by our architecture in
comparison with the expected (“ground truth”) response provided
manually (by the designer). Any claims of statistical significance were
based on a paired t-test.

Note that the experimental setup described above does not include
any studies with human subjects evaluating the quality of the explana-
tions provided by our architecture. Such studies provide important
feedback that can be used to evaluate and improve the architecture, but

58 ▪ Explainable Agency in Artificial Intelligence

we leave such studies for future work. Instead, we present some execu-
tion traces describing the operation of our architecture. followed by a
discussion of quantitative experimental results.

Execution Traces

The following execution traces demonstrate the capabilities of our
architecture.

Execution Example 1: [Planning and learning]
The robot in the AR domain is in the study and it is asked to bring a cup
to the study, where the goal state contains: loc(C, study) and not in_hand
(rob1, C), where C is a cup.

• The computed plan of abstract actions is:

move(rob1, kitchen), pickup(rob1, C), move(rob1, study), putdown
(rob1, C)

• This plan uses the default knowledge that cups are usually in the
kitchen that is next to the study.

• To implement each abstract transition T, the robot zooms to Df(T).
For instance, only cells in the study and the kitchen are relevant to
the first move action; irrelevant objects and locations are auto-
matically ignored.

• The zoomed description is used to obtain a probabilistic policy that is
invoked repeatedly to execute a sequence of concrete actions that
implements the abstract action (e.g., robot is in a cell in the kitchen
after the first move). Other actions are executed in a similar manner.

• The robot’s attempt to pick up a cup in the kitchen failed. The
robot observes that the cup is heavy while its arm is light. It then
learns the following executability condition (written as a statement
in ALd):

impossible pickup(rob1, C) if arm(rob1, light), obj_weight(C, heavy)

• It is also possible to learn and merge other kinds of axioms with the
existing knowledge.

• The robot is also able to automatically provide on-demand ex-
planations at a suitable level of abstraction.

Reasoning and Learning for Explainable Agency in Robotics ▪ 59

Human: “Please describe the executed plan in detail.”
Robot: “I moved to cell c2 in the kitchen. I picked the large cup by its
handle from the counter […] I moved to cell c4 of the study. I put the
cup down on the red table.”

Next, consider the robot’s ability to provide explanations to different
kinds of queries.

Execution Example 2: [Explain plans and beliefs]
In the scene in Figure 3.4 (left), the robot’s goal is to achieve a state in
which the red cube is on top of the orange cube. The following interaction
takes place after the robot has executed a plan to achieve the goal.

• Human: “Please describe the plan.”
Baxter: “I picked up the blue cube. I put the blue cube on the table.
I picked up the orange cube. I put the orange cube on the table. I
picked up the red cube. I put the red cube on the orange cube.”

• The robot may have to justify a particular action.
Human: “Why did you pick up the blue cube at Step 0?”
Baxter: “Because I had to pick up the red cube, and it was below the
blue cube.”

This answer is also used to automatically highlight the relevant
image regions that influenced this answer, providing additional
transparency—see Figure 3.4 (left).

• The robot may have to justify the choice of actions.

FIGURE 3.4 (Left) relation between blue cube and red cube is important for the
explanation in Execution Example 2; (Right) simulated image used in Execution
Example 3.

60 ▪ Explainable Agency in Artificial Intelligence

Human: “Why did you not put down the orange cube on the blue
cube?”
Baxter: “Because the blue cube is small.”

In the absence of any reference to a particular time step, the
robot considers the single instance (in the executed plan) of putting
the orange cube on another cube or surface. The answer is based on
learned default knowledge that any structure with a large object on
a small object is typically unstable.

• The human may ask the robot to justify beliefs.
Human: “Why did you believe that the red cube was below the blue
cube in the initial state?”
Baxter: “Because I observed the red cube below the blue cube in
Step 0.”

• The robot can run mental simulations to answer counterfactual
(i.e., hypothetical) questions.
Human: “What will happen if the ball is rolled?”
Baxter: “The structure of blocks will be unstable.”

Execution Example 3: [Disambiguation]
Consider the simulated scenario in Figure 3.4 (right).

• Human: “Move the yellow object onto the green cube.”
There is ambiguity in the reference to a yellow object. Since the
yellow cube is already on the green cube, and the yellow cylinder
is below other objects, the robot poses the following clarification
question.
Robot: “Should I move the yellow duck on top of the green cube?”
Human: “No. Please move the yellow cylinder on top of the green
cube.”

• The robot computes the plan: pick up the green mug; put the green
mug on the table; pick up the red cube; put the red cube on the table;
pick up the yellow cube; put the yellow cube on the table; pick up the
yellow cylinder; put the yellow cylinder on the green cube.

• Note that there are other equally valid plans (e.g., one that moves
the yellow cube to the table first).
Human: “Why do you want to pick up the green mug?”

Reasoning and Learning for Explainable Agency in Robotics ▪ 61

Robot: “I have to place the yellow cylinder on the green cube, and
the yellow cylinder is below the green mug.”

The robot can also trace the evolution of particular beliefs and the
application of relevant axioms to answer questions after plan execution.

• Human: “Why did you not pick up red cube at Step 1?”
Robot: “Because the red cube is below the green mug.”
Human: “Why did you move the yellow cube onto the table?”
Robot: “I had to put the yellow cylinder on top of the green cube.
The green cube was below the yellow cube.”

Empirical Results

To evaluate H1, we removed five axioms (two causal laws and three
executability conditions) from the robot’s knowledge, and ran the
learning algorithm 20 times. We measured the precision and recall of
learning these axioms in each run. Table 3.1 summarizes the results.
Each run was terminated if the robot executed a number of actions
without detecting any inconsistency, or if the number of decision trees
constructed exceeded a number. The row labeled “Strict” summarizes
results when any variation in the target axiom (i.e., axioms with addi-
tional irrelevant literals) was considered to be incorrect. One example of
such an axiom in which the second literal in the body is irrelevant is
shown below.

¬holds(in_hand(R1, O1), I + 1):- occurs(putdown(R1, O1, O2),
I), ¬holds(in_hand(R1, O5), I).

The row labeled “Relaxed” summarizes results when over-specifications
were not counted as errors. High precision and recall support hypoth-
esis H1.

TABLE 3.1 Precision and Recall for Learning
Previously Unknown Axioms. Errors under
“Strict” Mainly Correspond to the Inclusion of
Additional Irrelevant Literals

Missing Axioms Precision Recall

Strict 69% 78%
Relaxed 96% 95%

62 ▪ Explainable Agency in Artificial Intelligence

The next set of experiments further evaluated H1.

1. For the 40 initial object configurations (Section 4.1), information
extracted from the images corresponding to top and front views
(i.e., from the camera on each gripper) was encoded as the initial
state in the ASP program.

2. For each initial state, five goals were randomly encoded (one at a time)
in the ASP program. The robot reasoned with the existing knowledge
to create plans for these 200 combinations (40 initial states, five goals).

3. Plans were evaluated based on the number of optimal, sub-optimal,
and incorrect plans, and planning time. Trials were repeated with
and without the learned axioms.

Recall that our architecture reasons with a knowledge base that includes
the learned axioms whereas the knowledge base used by the baseline does
not include these axioms. We conducted paired trials with and without the
learned axioms in the ASP program used for reasoning. The initial con-
ditions and goal were identical in each paired trial, but differed between
paired trials. We expressed the number of plans and the planning time
with the learned axioms as a fraction of the corresponding values obtained
by reasoning without the learned axioms. The average of these fractions
over all the trials is reported in Table 3.2. We also computed the number
of optimal, sub-optimal, and incorrect plans in each trial as a fraction of
the total number of plans; we did this with and without the learned axioms
and the average over all trials is summarized in Table 3.3.

These results indicate that for images of real scenes, reasoning with
the learned axioms reduced the search space, resulting in a smaller
number of plans and a reduced planning time. The use of the learned

TABLE 3.2 Number of Plans and Planning Time After
Including the Learned Axioms for Reasoning (Our
Architecture), Expressed as a Fraction of the Values Without
Including the Learned Axioms (Baseline)

Measures Ratio (with/without)

Real Scenes Simulated Scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08
Planning time 0.96 1.02

Reasoning and Learning for Explainable Agency in Robotics ▪ 63

axioms did not make any significant difference with the simulated scenes.
This is understandable because the simulated images had more objects
(than real scenes) with several of them being small objects. This
increased the number of plans to achieve any given goal. Also, when the
robot used the learned axioms for reasoning, it reduced the number of
sub-optimal plans and eliminated all incorrect plans; almost every sub-
optimal plan corresponded to a goal that could not be achieved without
creating an exception to a default. Without the learned axioms, a larger
fraction of the plans were sub-optimal or incorrect, particularly for
simulated scenes with multiple objects. These results further support H1.

The next set of experiments evaluated H2:

1. For each of the 200 combinations from the first set of experiments
with real-world data, we considered knowledge bases with and
without the learned axioms and asked the robot to compute plans
to achieve the goals.

2. The robot had to describe the plan and justify the choice of a par-
ticular action (chosen randomly) in the plan. Then, one parameter of
the chosen action was changed randomly to ask why this new action
could not be applied. Finally, a belief related to the previous two
questions had to be justified—see Execution Example 2.

3. The literals present in the answers were compared against the lit-
erals in the “ground truth” response, with the average precision and
recall scores shown in Table 3.4.

4. We also performed these experiments with simulated images, with
the results summarized in Table 3.5.

TABLE 3.3 Number of Optimal, Sub-Optimal, and Incorrect Plans Expressed
as a Fraction of the Total Number of Plans. Reasoning With the Learned Axioms
(Our Architecture) Improves Performance Compared With the Baseline that
Reasons Without the Learned Axioms

Plans Real Scenes Simulated Scenes

Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7
Incorrect 0.49 0 0.4 0

64 ▪ Explainable Agency in Artificial Intelligence

Tables 3.4 and 3.5 show that for all but one type of question (i.e.,
counterfactual) posed about real world scenes, the precision and recall of
relevant literals (for constructing explanations) were higher when the
learned axioms were used for reasoning compared with the baseline
(which did not use these learned axioms). The improvement in per-
formance was particularly pronounced when the robot had to answer
certain types of questions about certain types of scenes (e.g., justification
of action choices). For certain types of questions (e.g., about specific
beliefs), the precision and recall rates were reasonable even when the
learned axioms were not included. This is because not all the learned
axioms were needed to answer each question. When the learned axioms
were used for reasoning, errors were rare and corresponded to additional
literals being included in the explanation (i.e., over-specified explana-
tions). Enabling reasoning and learning to inform each other thus
resulted in more accurate relational descriptions of decisions and beliefs
in response to different types of questions. These results support H2.

TABLE 3.4 (Real Scenes) Precision and Recall of Retrieving Relevant Literals for
Constructing Answers to Questions With and Without Using the Learned Axioms
for Reasoning. Using the Learned Axioms Significantly Improves the Ability to
Provide Accurate Explanations in All but One Type of Query

Query Type Precision Recall

Without With Without With

Plan description 78.5% 100% 67.5% 100%
Why X? 76.3% 95.3% 66.8% 95.3%
Why not X? 96.6% 96.6% 64% 100%
Why belief Y? 96.7% 99% 95.6% 99.2%

TABLE 3.5 (Simulated Scenes) Precision and Recall of Retrieving Relevant Literals
for Constructing Answers to Questions With and Without Reasoning with Learned
Axioms. Using the Learned Axioms Significantly Improves the Ability to Provide
Accurate Explanations for All Four Types of Queries

Query Type Precision Recall

Without With Without With

Plan description 70.8% 100% 58% 100%
Why X? 65.6% 93% 57% 93%
Why not X? 90.5% 96.4% 65.2% 100%
Why belief Y? 92.7% 98.4% 90.3% 99.2%

Reasoning and Learning for Explainable Agency in Robotics ▪ 65

CONCLUSIONS
The architecture described in this paper is a step towards greater
transparency in reasoning and learning for integrated robot systems. The
architecture encodes the principle of stepwise refinement to leverage the
complementary strengths of non-monotonic logical reasoning with com-
monsense domain knowledge, data-driven learning from a limited set of
examples, and the inductive learning of previously unknown axioms
governing domain dynamics. After the designer provides the domain-
specific information, then planning, diagnostics, and execution are auto-
mated. In addition, the interplay between representation, reasoning, and
learning is used to embed the principles of explainable agency, enabling a
robot to reliably and efficiently construct and provide on-demand rela-
tional descriptions of its decisions and beliefs in response to different types
of questions. Experimental results described in this chapter, and those
described in other related publications (Sridharan & Meadows 2019; Mota,
Sridharan, & Leonardis 2021), demonstrate the smooth transfer of control
and relevant knowledge between components of the architecture, confi-
dence in the correctness of the robot’s behavior, and the applicability of the
underlying methodology to different domains.

Our architecture opens up multiple directions of future work. For
example, we will further explore how the interplay between representa-
tion, reasoning, and learning can be leveraged to support explainable
agency in one or more robots assisting humans in dynamic domains. In
addition, we will conduct experimental studies with human participants
evaluating the quality of our explanations, and use the feedback from
these participants to make revisions of our architecture and algorithms.
Furthermore, we will investigate whether our architecture can be ex-
tended to consider social norms while generating explanations of the
decisions and beliefs of a robot assisting humans in complex domains.

ACKNOWLEDGMENTS
This work is the result of research threads pursued in collaboration with
Tiago Mota, Heather Riley, Ben Meadows, Rocio Gomez, Michael
Gelfond, Jeremy Wyatt, and Shiqi Zhang. This work was supported in
part by the U.S. Office of Naval Research Science of Autonomy Awards
N00014-13-1-0766, N00014-17-1-2434 and N00014-20-1-2390, the Asian
Office of Aerospace Research and Development award FA2386-16-1-
4071, and the U.K. Engineering and Physical Sciences Research Council
award EP/S032487/1. All conclusions are those of the author.

66 ▪ Explainable Agency in Artificial Intelligence

REFERENCES

Anjomshoae, S., Najjar, A., Calvaresi, D., & Framling, K. (2019). Explainable
agents and robots: Results from a systematic literature review. In Proceedings
of the Eighteenth International Conference on Autonomous Agents and
Multiagent Systems (pp. 1078–1088). Montreal, Canada: International
Foundation for Autonomous Agents and Multiagent Systems.

Assaf, R., & Schumann, A. (2019). Explainable deep neural networks for mul-
tivariate time series predictions. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (pp. 6488–6490).
Macao, China: ijcai.og.

Balai, E., Gelfond, M., & Zhang, Y. (2013). Towards answer set programming
with sorts. Proceedings of the Twelfth International Conference on Logic
Programming and Nonmonotonic Reasoning (pp. 135–147). Corunna,
Spain: Springer.

Borgo, R., Cashmore, M., & Magazzeni, D. (2018). Towards providing ex-
planations for ai planner decisions. In D.W. Aha, T. Darrell, P. Doherty, &
D. Magazzeni (Eds.) Explainable Artificial Intelligence: Papers from the
IJCAI Workshop.

Chakraborti, T., Sreedharan, S., & Kambhampati, S. (2018). Explicability
versus explanations in human-aware planning. In Proceedings of the
Seventeenth International Conference on Autonomous Agents and
Multiagent Systems (pp. 2180–2182). Stockholm, Sweden: International
Foundation for Autonomous Agents and Multiagent Systems.

de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial
Intelligence, 32, 97–130.

Ferrand, G., Lessaint, W., & Tessier, A. (2006). Explanations and proof trees.
Computing and Informatics, 25, 1001–1021.

Fox, M., Long, D., & Magazzeni, D. (2017). Explainable planning. In D.W. Aha,
T. Darrell, M. Pazzani, D. Reid, C. Sammut, & P. Stone (Eds.) Explainable
Artificial Intelligence: Papers from the IJCAI Workshop.

Friedman, M. (1974). Explanation and scientific understanding. Philosophy,
71(1), 5–19.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set
solving in practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(3), 1–238.

Gelfond, M., & Inclezan, D. (2013). Some properties of system descriptions of.
Journal of Applied Non-Classical Logics, 23(1–2), 105–120.

Gomez, R., Sridharan, M., & Riley, H. (2021). What do you really want to do?
Towards a theory of intentions for human-robot collaboration. Annals of
Mathematics and Artificial Intelligence, 89, 179–208.

Koh, P. W., & Liang, P. (2017). Understanding black-box predictions via
influence functions. In Proceedings of the Thirty-Fourth International
Conference on Machine Learning (pp. 1885–1894). Sydney, Australia:
PMLR 70.

Reasoning and Learning for Explainable Agency in Robotics ▪ 67

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. In Proceedings of the Twenty-
Sixth Annual Conference on Neural Information Processing Systems
(pp. 1106–1114). Lake Tahoe, NV.

Laird, J. E. (2012). The Soar cognitive architecture. MIT Press.
Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency

for intelligent autonomous systems. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (pp. 4762–4763). San Francisco,
CA: AAAI Press.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning
applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.

Miller, G. A. (1995). WordNet: A lexical database for English. Communications
of the ACM, 38(11), 39–41.

Miller, T. (2019). Explanations in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.

Mota, T., & Sridharan, M. (2018). Incrementally grounding expressions for
spatial relations between objects. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (pp. 1928–1934).
Stockholm, Sweden: ijcai.org.

Mota, T., & Sridharan, M. (2021). Answer me this: Constructing disambiguation
queries for explanation generation in robotics. In Proceedings of the IEEE
International Conference on Development and Learning (pp. 1–8). Beijing,
China: IEEE Press.

Mota, T., Sridharan, M., & Leonardis, A. (2021). Integrated commonsense
reasoning and deep learning for transparent decision making in robotics.
Springer Nature CS, 2(242), 1–18.

Norcliffe-Brown, W., Vafeais, E., & Parisot, S. (2018). Learning conditioned
graph structures for interpretable visual question answering. In
Proceedings of the Thirty-First Annual Conference on Neural Information
Processing Systems (pp. 8344–8353). Montreal, Canada.

Read, S. J., & Marcus-Newhall, A. (1993). Explanatory coherence in social ex-
planations: A parallel distributed processing account. Personality and Social
Psychology, 65(3), 429.

Ribeiro, M., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining
the predictions of any classifier. In Proceedings of the Twenty-Second ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (pp. 1135–1144). San Francisco, CA: ACM Press.

Seegebarth, B., Müller, F., Schattenberg, B., & Biundo, S. (2012). Making hybrid
plans more clear to human users: A formal approach for generating sound
explanations. In Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (pp. 225–233). São Paulo, Brazil:
AAAI Press.

Someya, Y. (1998). Lemma list for English language.
Sreedharan, S., Kulkarni, A., & Kambhampati, S. (2022a). Explainable human-AI

interaction: A planning perspective. Springer.

68 ▪ Explainable Agency in Artificial Intelligence

Sreedharan, S., Kulkarni, A., & Kambhampati, S. (2022b). Explanation as model
reconciliation. In Explainable Human-AI Interaction: A Planning Perspective
(pp. 59–80). Springer.

Sridharan, M., & Meadows, B. (2018). Knowledge representation and interactive
learning of domain knowledge for human-robot collaboration. Advances in
Cognitive Systems, 7, 77–96.

Sridharan, M., & Meadows, B. (2019). Towards a theory of explanations for
human-robot collaboration. Kunstliche Intelligenz, 33(4), 331–342.

Sridharan, M., & Mota, T. (2023). Towards combining commonsense reasoning
and knowledge acquisition to guide deep learning. Autonomous Agents and
Multi-Agent Systems, 37(1), 4.

Sridharan, M., Gelfond, M., Zhang, S., & Wyatt, J. (2019). REBA: A refinement-
based architecture for knowledge representation and reasoning in robotics.
Journal of Artificial Intelligence Research, 65, 87–180.

Winston, P. H., & Holmes, D. (2018). The Genesis Enterprise: Taking artificial
intelligence to another level via a computational account of human story
understanding (Computational Models of Human Intelligence Report 1).
Computer Science and Artificial Intelligence Laboratory, Center for Brains,
Minds, and Machines, Massachusetts Institute of Technology.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., & Tenenbaum, J. B. (2018).
Neural-symbolic VQA: Disentangling reasoning from vision and language
understanding. In Proceedings of the Thirty-First Annual Conference on
Neural Information Processing Systems (pp.1039–1050). Montreal, Canada.

Reasoning and Learning for Explainable Agency in Robotics ▪ 69

C H A P T E R 4

Explanation as
Question Answering
Based on User Guides

Ashok Goel, Vrinda Nandan, Eric Gregori,
Sungeun An, and Spencer Rugaber
Design Intelligence Laboratory, School of Interactive Computing,
Georgia Institute of Technology, Atlanta, GA, USA

INTRODUCTION, BACKGROUND, AND GOALS
AI research on explanation has a long history that dates at least as far
back as the rise of expert systems in the 1960s, e.g., DENDRAL (Lindsay
et al. 1993). Mueller et al. (2019) provide a recent and comprehensive
review of this research. One of the key ideas to emerge out of this early
research was the importance of the explicit representation of knowledge
of the design of an AI system (Chandrasekaran & Swartout 1991;
Chandrasekaran & Tanner 1989): An explicit representation of the
design knowledge of an AI system enables the generation of explanations
of the tasks it accomplishes, the domain knowledge it uses, as well as the
methods that use the knowledge to achieve the tasks. This raised the
question of how this design knowledge can be identified, acquired,
represented, stored, accessed, and used for generating explanations. One
possible answer was to endow the AI agent with meta-knowledge of its
own design (e.g., Goel et al. 1996) and enable the agent to generate ex-
planations through introspection of its meta-knowledge. However, much
of AI research on expert systems collapsed by the mid-1990s.

70 DOI: 10.1201/9781003355281-4

https://doi.org/10.1201/9781003355281-4

Starting in the 1970s, AI research on explanation also encompassed
intelligent tutoring systems (Buchanan 2006). Indeed, in the 1990s, given
the collapse of AI research on expert systems, the focus of AI research on
explanation shifted to intelligent tutoring systems. Unlike the design
stance towards explanations adopted by the research on expert systems,
research on tutoring systems took a strongly human-centered perspec-
tive. This view emphasized the users and the uses of explanations (e.g.,
Woolf 2007). For example, Graesser, Baggett, and Williams (1996)
describe question-answering as a basic mechanism for generating ex-
planations in intelligent tutoring systems, where the answers to the
questions meet the requirements and expectations of the human users,
and Aleven and Koedinger (2002) present explanations of reasoning as a
source of new knowledge and learning for the users. However, much of
this work perhaps lay a little outside mainstream AI research.

Over the last several years, explanation has again entered mainstream
AI research (e.g., Gunning & Aha 2019). This is in part because of ad-
vances in machine learning, such as deep learning, that have refocused
attention on the need for interpretability and explainability of internal
representations and processing in AI agents in general (Gilpin et al. 2018;
Rudin 2019). However, explanation of knowledge-based AI systems is
also important for reasons of fairness, transparency, accountability,
trustworthiness, and human understanding and learning.

In this chapter, we take the two ideas from explanations in expert
systems and tutoring systems mentioned above as our starting points for
generating explanations in knowledge systems: (1) use of the knowledge
of the design of an AI agent as the basis for generating explanations, and
(2) human-centered question-answering as the basic mechanism for
generation of explanations. They add a third idea to this mix: Given that
most practical AI agents, for example almost all intelligent tutoring
systems, come with a User Guide that contains knowledge about the
domain, design and operation of the agent (Ko et al. 2011), might the
User Guide act as a basis for generating explanations? Note that almost
by definition, the User Guide contains information about many types of
explanations that users want. For example, a User Guide for an AI agent
typically contains information about the domain of the agent, the
vocabulary for representing the domain knowledge, the tasks and sub-
tasks the agent accomplishes (what it does), the knowledge and the data
the agent uses (its basic components), the methods in the agent that use
the knowledge to accomplish its tasks (how the agent accomplishes its

Explanation as Question Answering Based on User Guides ▪ 71

tasks), as well as the operation of the agent (how to use the agent).
However, few humans actually read the User Guide in any detail
(Mehlenbacher et al. 2002; Novick & Ward 2006; Rettig 1991). Instead,
most users want answers to their questions on demand, as and when
needed. Thus, (3) we propose to use the User Guide to generate answers
to users’ questions.

In this chapter, we describe the use of a question-answering agent
(called AskJill) for generating explanations about an interactive learning
environment (named VERA) based on the latter’s Users Guide. AskJill is
intended to automatically answer users’ questions and thereby explain
VERA’s domain, functioning, and operation. We also present a pre-
liminary formative assessment of AskJill in VERA.

VERA, AN INTERACTIVE LEARNING ENVIRONMENT
The VERA project addresses the issues of availability, achievability, and
quality of online education. Residential students in higher education
have access to physical laboratories, where they conduct experiments and
participate in research, thus discovering new knowledge grounded in
empirical evidence and connecting it with their prior knowledge. Online
learners do not have access to physical laboratories, which impairs the
quality of their learning. Thus, we developed a Virtual Experimentation
Research Assistant (VERA for short) for inquiry-based learning of sci-
entific knowledge (An et al. 2020; 2021): VERA helps learners build
conceptual models of complex phenomena, evaluate them through
simulation, and revise the models as needed. VERA’s capability of
evaluating a model by simulation provides formative assessment on the
model; its support for the whole cycle of model construction, evaluation,
and revision fosters self-regulated learning. Given that residential stu-
dents have only limited access to physical laboratories, VERA is also
useful for blended learning. VERA is available online (https://vera.cc.
gatech.edu) for free and public use.

For the domain of ecology, we have integrated VERA with the
Smithsonian Institution’s Encyclopedia of Life that is available as an
open-source library and software (EOL; Parr et al. 2016). EOL’s
TraitBank supports ecological modeling in VERA in several ways: it
provides (i) the ontology of conceptual relations for conceptual
modeling, (ii) knowledge of specific relations among biological species in
a given ecological system, and (iii) the parameters for setting up the
simulations. Thus, in VERA, biological species are modeled using data

72 ▪ Explainable Agency in Artificial Intelligence

https://vera.cc.gatech.edu
https://vera.cc.gatech.edu

directly retrieved from EOL such as lifespan, body mass, offspring count,
reproductive maturity, etc. Given that the space of simulation parameters
can be very large, and a learner may not know the “right” values for the
parameters, once the learner sets up the conceptual model using the EOL
digital library, VERA further uses EOL’s knowledge of biological species
to directly set initial values of the simulation parameters. The learner
may then tweak the parameter values and experiment with them.
Figure 4.1 illustrates the use of VERA to model the impact of a kudzu
“bug” to moderate the impact of kudzu, an Asian invasive species, on the
American hornbeam, a kind of tree common in the eastern half of the
United States. In Figure 4.1(a), the learner interactively builds a con-
ceptual model, and in Figure 4.1(b) VERA illustrates the results of an
agent-based simulation of the model. In this case, the simulation results
show that because of the introduction of the kudzu bug, the population
of kudzu will decline over time and the American hornbeam will survive.

VERA uses agent-based simulations to provide formative assessment on
the conceptual models. An AI compiler inside VERA understands enough
of the syntax and semantics of both the conceptual models and agent-
based simulations that it can automatically spawn the latter from the
former. This is another example of learning assistance in VERA. This
learning assistance enables both student scientists and citizen scientists to
model complex phenomena without requiring expertise in the mathe-
matics or mechanics of agent-based simulations. Further, VERA’s support
for the whole cycle of model construction, evaluation, and revision fosters
self-regulated learning.

In 2019, the Smithsonian Institution started providing access to VERA
directly through the main page on its EOL website (www.eol.org). This
means that the hundreds of thousands of EOL users across the world
each year, including learners and teachers as well as citizen and pro-
fessional scientists, now have direct access to VERA. This also makes
explanations of VERA’s domain, functioning, and operation critically
important.

USER GUIDE IN VERA
VERA’s User Guide and table of contents are available on its website
under the Help section. It includes a written guide describing how users
can build and simulate ecological experiments on VERA, the tool’s ex-
pected behavior, explanations for the vocabulary terms and parameters
users can manipulate, and screenshots showing the tool’s structure

Explanation as Question Answering Based on User Guides ▪ 73

www.eol.org

Conceptual model of the relationships between species.

Simulation result when running the model.

(a)

(b)

FIGURE 4.1 (a) An example of a conceptual model (the top half of the figure) and (b) its agent-based simulation automatically
generated by VERA (the bottom half).

74
▪

Explainable A
gency in A

rtificial Intelligence

(screens and buttons). Specifically, the 27-page User Guide covers an
introduction to VERA, system requirements, steps to access the tool,
general approach to build and evaluate a conceptual model of an eco-
logical system, how to use the VERA tool for modeling and simulation
(including steps to create a project describing a phenomena and asso-
ciated models to test various hypotheses), how to use the model editor to
manage constituent components and their relationships, how to simulate
a model, how to edit model parameters to manipulate results, and ways
to get help on the tool.

The User Guide provides illustrative descriptions of the user’s work-
flow on VERA. For example, in its “Getting to know the model editor”
section, the User Guide provides an example of a “starter” conceptual
model of a simple ecosystem composed of wolves, sheep, and grass, to
walk the user through the steps needed to create a the “biotic population”
components for each of the three populations. It also shows the user how
to define the ecological relationships (destroys, produces, consumes,
becomes, affects, can migrate to) between each set of components (e.g.,
wolves “consume” sheep, sheep “consume” grass), and simulate the
model. The User Guide describes how users can set up, start, stop, reset
the simulation and export resulting graphs. The User Guide also pro-
vides example parameter values showing how parameters can be ini-
tialized (Smithsonian’s EOL supplies default values) and tuned (provides
tuning values) to get the desired population behavior (shows resulting
graphs for reference) in the simulation. Last but not the least, the User
Guide provides definitions and explanations for commonly used model
components (e.g., biotic substance, abiotic substance, and habitat) and
their associated simulation parameters (e.g., some parameters for a biotic
substance are lifespan, carbon biomass, minimum population, etc.).

ASKJILL, A QUESTION-ANSWERING AGENT
AskJill is a question-answering agent embedded in the VERA interactive
learning environment that automatically answers users’ questions and
thereby explains VERA’s domain, functioning, and operation. When a
user first logs in on the VERA website, AskJill welcomes them and
prompts them to ask their questions about VERA. The user can type
their questions into the AskJill question-answering interface (integrated
into the VERA website). AskJill provides accurate answers to the ques-
tions within the scope of the User Guide within a few seconds. Figure 4.2
shows examples of question-answering in AskJill.

Explanation as Question Answering Based on User Guides ▪ 75

ASKJILL’S GENERATION OF AN ANSWER TO A QUESTION
Figure 4.3 shows AskJill’s question-answering data flow diagram. After a
user asks a question in VERA’s AskJill interface, it is sent to the AskJill
system via a REST API. Inside AskJill, the question is parsed, and then
sent to a 2D hybrid classification system. The system contains a two-
stage classification process (Goel 2020). The first is a pre-trained NLP-
based intent classification layer that classifies each new question into one of
the existing question categories based on user intents. The second is a
semantic processing stage that uses the intent to select a rule-based query
template. From the 2D hybrid classification system, a query is sent to
the VERA’s design knowledge database and a response is generated. The
response generation system retrieves the associated query response and

FIGURE 4.2 A couple of user questions to AskJill about VERA and AskJill’s
answers to the questions.

76 ▪ Explainable Agency in Artificial Intelligence

returns an answer if its confidence value exceeds the minimum threshold
(97%). Finally, the dialogue management system post-processes the
resulting response, converts it into a “human-like” natural language answer,
and sends it back to AskJill in the VERA user interface. After answering,
AskJill prompts the user to provide feedback, asking “Was this answer
helpful,” and stores the user feedback in her database. That feedback is
subsequently used for retraining the agent. If AskJill is unable to answer
a question, it can (a) gently redirect the conversation into its domain of
competence by suggesting alternate topics associated with the questions it is
trained on and/or (b) share relevant links to the User Guide.

AGENT SMITH: BUILDING ASKJILL FOR VERA’S USER GUIDE
AskJill evolved from our earlier work on the Jill Watson project (Goel &
Polepeddi 2018) that automatically answered students’ questions on
discussion forums of online and hybrid classes. Agent Smith is an
interactive generator for generating Jill Watson teaching assistants for
different classes (Goel 2020; Goel, Sikka, & Gregori 2021): it combines
knowledge-based AI, supervised machine learning, and human-in-the-
loop machine teaching for training a Jill Watson assistant for a new class.
Since AskJill for VERA’s User Guide has the same architecture and al-
gorithms as the original Jill Watson for class syllabi, we were able to
reuse the Agent Smith generator to build the AskJill for VERA. Similar to
previous Jill Watson applications, Smith builds a semantic memory for
VERA’s vocabulary, system requirements, structure, and tool behavior. It
also generates a knowledge base consisting of user intents, keywords, and

VERA
Knowledge

Base

VERA User
Interface

FIGURE 4.3 AskJill question-answering data flow diagram.

Explanation as Question Answering Based on User Guides ▪ 77

associated answers. Agent Smith then uses supervised learning to train a
classifier to generate an AskJill for VERA. Reusing the Agent Smith
technology allows us to train, retrain, and generate AskJill agents based
on VERA’s User Guide efficiently and easily. AskJill for VERA is en-
coded in the form of unique question templates related to goals, getting
started, definitions, and how-to pointers, simulation parameter default
values, and units.

While the rest of the technology from Jill Watson TA (teaching
assistant) is reused, Agent Smith utilizes a brand-new set of template
questions as well as VERA design knowledge base. A new set of template
questions is needed because users pose different related questions (and
underlying intents) to AskJill in VERA as compared to course related
questions in Jill Watson TA. Similarly, a new knowledge base is needed
because the AskJill agent for VERA is based on the User Guide, while the
Jill Watson agent is based on course syllabus and schedule. Figure 4.4

FIGURE 4.4 Some examples of Agent Smith Question Templates for VERA
Q&A AskJill Agent.

78 ▪ Explainable Agency in Artificial Intelligence

shows an example of the question templates used for training AskJill in
VERA. Agent Smith projects the templates onto the VERA ontology and
generates the training dataset. The AskJill agent uses the trained model
for run-time question answering. Over time, as the authors collect user
feedback and analyze missed questions, they can expand the training
dataset and retrain AskJill enabling it to answer more and more ques-
tions. As a by-product of developing, testing, and training the AskJill
Q&A agent, we identified definitions and parameters that were initially
missing in the User Guide. We have since updated the User Guide to
include those missed aspects.

EVALUATION OF ASKJILL IN VERA
We collected AskJill user data both during its use in an introduction
to biology class at Georgia Tech, as well as from citizen scientists
discovering VERA through Smithsonian’s website or while browsing
the Internet (An et al. 2020, 2021). Currently, AskJill can answer
questions belonging to seven categories (intents) of questions, shown
in Figure 4.5.

Figure 4.6 shows examples of a human-generated question from each
question category above as well as AskJill’s responses. The current
training data set consists of 3,053 questions containing both the actual
user questions and anticipated questions from the User Guide.

Given that Agent Smith automatically generated the training data set
using a combination of template questions and relevant keywords, we
also tested for the grammatical correctness of the generated training
dataset. Out of 3,053 questions, 2,907 or 95.2% were accurate. The
remaining 4.8% of questions were not grammatically correct but AskJill
was still able to resolve the associated intents and answer them correctly.
Figure 4.7 shows our validation results for the current training question
set (3,053 questions): 100% of the agent-generated responses that are

Goal

What is
the goal of

VERA?

Ge ng Started

How do I
get started?

System
Requirements

What are
the system

requirements?

Defini#ons and
Parameters

Defini"ons: What
is a carbon cycle?,
What is ecological

efficiency?

Parameters: What is
photosynthesis rate?

Default Values

What is the
default value of
photosynthesis

rate?

Value Units

What are the
units of

move velocity?

How Do I …

How do I
add a

component?

FIGURE 4.5 User Intent (question) categories on AskJill.

Explanation as Question Answering Based on User Guides ▪ 79

What is the goal of VERA? How do I add a component?What is a carbon cycle?

How do I get started?

What are the system requirements?

What is photosynthesis rate?

What is the default value of
photosynthesis rate?

What are the units for
move velocity?

FIGURE 4.6 Human-generated questions and AskJill’s agent-generated answers.

80
▪

Explainable A
gency in A

rtificial Intelligence

semantically correct. It also shows the split between syntactically correct
and incorrect agent-generated questions.

We have also collected a small data set consisting of in-situ obser-
vations. Figure 4.8 shows a comparison of data collected from eight
users, including external users as well as members of our research lab-
oratory. AskJill correctly answered 19 out of 31 unique questions for all
users. They measured user satisfaction using the integrated feedback
prompt (Was this answer helpful?) built into the agent’s interface and
validated that the users confirmed (in some cases there was no feedback)
that the correctly answered responses were indeed helpful to the user.
Out of the 12 questions that were not answered correctly, a majority are
related to simulation parameters, simulation properties, and how-to
information specific to a given simulation and thus were outside the
competence of AskJill (only 1 out of 12 questions is related to a missed
definition). Taking the user feedback a step further, we also revised the

FIGURE 4.7 Agent response semantic correctness and training question syn-
tactic correctness.

FIGURE 4.8 The bar plots show the correct vs incorrect responses (includes “I
do not know”), the number of unique user questions, and the total number of
users.

Explanation as Question Answering Based on User Guides ▪ 81

VERA User Guide to include answers to previously unanswered questions.
The closed-loop process has resulted in significant improvements (i.e.,
adding information related to missed questions to the VERA knowledge
domain, updating the User Guide, and retraining AskJill to expand its
question-answering abilities) to the entire VERA and AskJill pipeline.

DISCUSSION
As Mueller et al. (2019) observe, explanations can be of multiple
types. Tanner, Keuneke, and Chandrasekaran (1993) specifically distinguish
between explanations of a phenomenon in the world and self-explanations
about an agent’s own design. The VERA interactive learning environ-
ment, for example, helps users generate explanations of ecological
phenomena, such as the effect of the kudzu bug on the growth of kudzu
in the southeast USA; in contrast, AskJill, the question-answering agent
embedded in VERA, generates explanations about VERA’s domain,
design, and operation.

Generation of explanations of an AI agent typically requires specifi-
cation and encoding of knowledge of the agent’s design (Chandrasekaran
& Swartout 1991; Chandrasekaran & Tanner 1989). In contrast, AskJill
generates answers to a user’s questions about an AI agent based on its
User Guide, which, for fielded AI agents comes for “free.” To put it
another way, we recast explanation of practical AI agents as an inter-
active User Guide for answering users’ questions. A corollary here is that
we seek to identify the design knowledge a User Guide must contain to
act as a basis for generating explanations.

While searching the User Guide for the specific information can be
laborious and tedious, each information source has its own trade-offs. On
one hand, the AskJill agent provides just-in-time, curated, and accurate
answers to the user’s questions. On the other, we expect the User Guide to
offer its readers an opportunity to ponder and deepen their understanding
as they search for some specific information and inadvertently discover
new knowledge (including context and motivation) due to the inherent
differences in the User Guide’s structure and format (i.e., system diagrams,
relationship tables, UI screenshots, related content, and references).

While our approach enables general-purpose explanations, it does not
afford explanations of specific instances of reasoning and action by the
AI agent. Thus, this approach likely has to be complemented with an
episodic approach that relies on specific cases of decision making.
Indeed, the case-based reasoning research community has developed

82 ▪ Explainable Agency in Artificial Intelligence

several schemes for case-based explanation of decision making (Leake &
McSherry 2005). In our work along these lines, we used meta-cases to
capture derivational traces in an earlier interactive learning environment
and used the meta-cases to explain the agent’s decision making (Goel &
Murdock 1996). A future version of AskJill may similarly keep a deri-
vational trace of VERA’s decision making and augment its explanatory
capability based on a replay of the derivational trace.

Nevertheless, even in its current form, our approach provides insight
into specific episodes of decision making both by explaining the
vocabulary and the general mechanism of decision making. Consider
again the explanation of decisions about the values of the simulation
parameters in a specific episode of VERA’s agent-based simulation.
While AskJill cannot explain why the parameter values led to the specific
simulation results in the given episode, it can and does explain each
simulation parameter, the role it plays in the simulation, as well as the
general mechanism of the agent-based simulation.

As mentioned earlier, AskJill builds on our earlier work on the Jill
Watson project (Goel & Polepeddi 2018) that automatically answers
students’ questions on discussion forums of online and hybrid classes.
One of the main reasons for the success of Jill Watson is that it took a
very human-centric approach: it was trained to answer questions that
students had actually asked in online discussion forums over a few years.
However, Jill Watson answered questions based on course materials such
as class syllabi and schedule. By answering questions based on VERA’s
Users Guide, AskJill generalizes the approach.

SUMMARY AND CONCLUSIONS
Explanation of an AI agent requires knowledge of its domain, design,
and operation. Acquiring, representing, accessing, and using this design
knowledge for generating explanations is challenging. However, almost
all practical AI products and services come with a Users Guide that
explains both how the product works and how to use the product. This is
especially true for AI agents that actually get fielded in real settings and
used by real users. Thus, we described the design of a question-answering
agent (AskJill) that relies on the User Guide to an interactive learning
environment (VERA) to explain its domain, functioning, and operation.
This means that general explanations of the design of an AI agent now
can be generated for “free,” without requiring any special encoding of
knowledge of the agent’s design.

Explanation as Question Answering Based on User Guides ▪ 83

ACKNOWLEDGMENTS
Research on the VERA project is funded by an US NSF BigData Grant
#1636848 and US NSF AI Institutes Grant #2112532. Both Jill Watson
and AskJill use IBM’s Watson platform for intent classification; the au-
thors thank IBM for its support for our work. The authors also thank our
collaborators on the VERA project, including Dr. Jennifer Hammock at
Smithsonian Institution and Dr. Emily Weigel at Georgia Tech.

REFERENCES

Aleven, V., & Koedinger, K. (2002). An effective metacognitive strategy:
Learning by doing and explaining with a computer-based cognitive tutor.
Cognitive Science, 26(2), 147–179.

An, S., Bates, R., Hammock, J., Rugaber, S., Weigel, E. & Goel, A. (2020).
Scientific modeling using large scale knowledge. In Proceedings of the
Twenty-First International Conference on AI in Education (pp. 20–24).
Ifrane, Morocco: Springer.

An, S., Broniec, W., Rugaber, S., Weigel, E., Hammock, J., & Goel, A. (2021).
Recognizing novice learner’s modeling behaviors. In Proceedings of the
Seventeenth International Conference on Intelligent Tutoring Systems
(pp. 189–200). Springer. https://www.wikidata.org/wiki/Q21820634

Buchanan, B. (2006). A (very) brief history of artificial intelligence. AI Magazine,
26(4), 53–60.

Chandrasekaran, B., & Swartout, W. (1991). Explanations in knowledge systems:
The role of explicit representation of design knowledge. IEEE Expert, 6(3),
47–49.

Chandrasekaran, B., & Tanner, M. (1989). Explaining control strategies in
problem solving. IEEE Intelligent Systems, 4, 9–15.

Gilpin, L, Bau, D., Yuan, B., Bajwa, A., Spector, M., & Kagai, L. (2018). Explaining
explanations: An overview of interpretability of machine learning. In
Proceedings of the Fifth IEEE Conference on Data Science and Advanced
Analytics (pp. 80–89). Turin, Italy: IEEE Press.

Goel, A. (2020). AI-powered learning: Making Education accessible, affordable,
and achievable. arXiv preprint arXiv:2006.01908.

Goel, A., & Murdock, W. (1996). Meta-cases: Explaining case-based reasoning.
In Proceedings of the Third European Workshop on Case-Based Reasoning
(pp. 150–163). Lausanne, Switzerland: Springer.

Goel, A., & Polepeddi, L. (2018). Jill Watson. In C. Dede, J. Richards, &
B. Saxberg (Eds.) Learning Engineering for Online Education: Theoretical
Contexts and Design-Based Examples. New York, NY: Routledge.

Goel, A., Gomes, A., Grue, N., Murdock, W., Recker, M., & Govindaraj, T.
(1996). Explanatory interfaces in interactive design environments. In
Proceedings of the Fourth International Conference on AI in Design
(pp. 1–20). Stanford, CA: Kluwer.

84 ▪ Explainable Agency in Artificial Intelligence

https://www.wikidata.org

Goel, A., Sikka, H., & Gregori, E. (2021). Agent Smith: Teaching question an-
swering to Jill Watson. arXiv preprint arXiv:2112.13677.

Graesser, A., Baggett, W., & Williams, K. (1996). Question-driven explanatory
reasoning. Applied Cognitive Psychology, 10(7), 17–31.

Gunning, D. & Aha, D., (2019). DARPA’s Explainable Artificial Intelligence
(XAI) Program. AI Magazine, 40(2), 44–58.

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M.,
Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B. & Rosson, M.B. (2011).
The state of the art in end-user software engineering. ACM Computing
Surveys, 43(3), 1–44.

Leake, D. & McSherry, D. (2005). Introduction to the special issue on explanation
in case-based reasoning. Artificial Intelligence Review, 24(2), 103–108.

Lindsay, R., Buchanan, B., Feigenbaum, E., & Lederberg, J. (1993). DENDRAL:
A case study in the first expert system for scientific hypothesis formation.
Artificial Intelligence, 61(2), 209–261.

Mehlenbacher, B., Wogalter, M., & Laughery, K. (2002). On the reading of
product owner’s manuals: Perceptions and product complexity. In
Proceedings of the Forty-Sixth Human Factors and Ergonomics Society
Annual Meeting (pp. 730–734). Los Angeles, CA: SAGE Publications.

Mueller, S. T., Hoffman, R. R., Clancey, W., Emrey, A., & Klein, G. (2019).
Explanation in human-AI systems: A literature meta-review, synopsis of
key ideas and publications, and bibliography for explainable AI. arXiv
preprint arXiv:1902.01876.

Novick, D., & Ward, K. (2006). Why don’t people read the manual? In
Proceedings of the Twenty-Fourth Annual ACM International Conference
on Design of Communication (pp. 11–18). Myrtle Beach, SC: ACM Press.

Parr C., Wilson, N., Schulz, K., Leary, P., Hammock, J., Rice, J, Corrigan Jr., R.
(2016). TraitBank: Practical semantics for organism attribute data.
Semantic Web, 7(6), 577–588.

Rettig, M. (1991). Nobody reads documentation. Communications of the ACM,
34(7), 19–24.

Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1, 206–215.

Tanner M., Keuneke A., & Chandrasekaran B. (1993). Explanation using task
structure and domain functional models. In J. David, J. Krivine, & R.
Simmons (Eds.), Second Generation Expert Systems. Berlin: Springer Science
& Business Media.

Woolf, B. (2007). Building intelligent interactive tutors: Student-centered strate-
gies for revolutionizing e-learning. Morgan Kaufmann Publishers.

Explanation as Question Answering Based on User Guides ▪ 85

C H A P T E R 5

Interpretable Multi-
Agent Reinforcement
Learning with
Decision-Tree Policies *

Stephanie Milani1, Zhicheng Zhang1,
Nicholay Topin1, Zheyuan Ryan Shi1,
Charles Kamhoua2, Evangelos E. Papalexakis3,
and Fei Fang1

1Carnegie Mellon University, Pittsburgh, PA, USA
2Army Research Laboratory, Adelphi, MD, USA
3University of California, Riverside, CA, USA

* This book chapter extends a full paper that appeared in the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases 2022 (Milani & Zhang,
et al., 2022) by Springer Nature with the following novel contributions. First, we have significantly
rewritten the abstract, background, and related work, which makes it more accessible to a general
audience. This chapter incorporates more high-level insights and explanations of key equations.
Second, we provide a more detailed explanation of the IVIPER and MAVIPER algorithms, making
them easier to understand. This chapter includes intuition about when the IVIPER algorithm is
useful, a more extensive description of the MAVIPER motivation, important implementation
details for MAVIPER, and more. Third, we have added additional statistical analyses to validate the
significance of the empirical results, including the performance and robustness. These analyses
resulted in the addition of the fourth contribution: a series of tables to showcase the findings
(Tables 5.1–5.6). Furthermore, it strengthened the conclusions of the conference paper by dem-
onstrating the superior or comparable performance of MAVIPER and/or IVIPER with the base-
lines. Given the time passage between the publication of the book chapter and the ECML
publication, this chapter also features an updated related work section.

86 DOI: 10.1201/9781003355281-5

https://doi.org/10.1201/9781003355281-5

MARKOV GAMES AND MULTI-AGENT REINFORCEMENT
LEARNING ALGORITHMS
In multi-agent reinforcement learning, a collection of N agents act in an
environment defined by a Markov game (Shapley 1953; Littman 1994). A
Markov game consists of a set of states S describing all possible configu-
rations for all agents, the initial state distribution S: [0, 1], and the
set of actions A A, …, N1 and observations O O, …, N1 for each agent
i N . Each agent aims to maximize its own total discounted expected
return R r= .i t

t
i
t

=0 Here, is the discount factor that prioritizes the
relative importance of future rewards and ri

t is the reward achieved by
agent i at timestep t . Toward this goal, each agent selects actions using a
policy O A: i ii , which is a mapping from an agent’s private observa-
tion space to actions. The collection of policies for all agents is a policy
profile = (, …,);N1 a policy profile excluding agent i is i. After the
agents execute their actions, the environment produces the next state and a
reward vector. The next state is determined according to the state tran-
sition function P S A A S: × × … × N1 ; the reward vector is produced
according to each agent’s reward function r S A R i N: × ,i i . Each
agent receives its own reward ri and a private observation, consisting of a
vector of features, correlated with the state o S O:i i.

Multi-agent reinforcement learning algorithms broadly fall under two
categories: value-based (Sunehag et al. 2017; Rashid et al. 2018; Son et al.
2019) and policy gradient (most commonly, actor-critic) (Lowe et al.
2017; Foerster et al. 2018; Li et al. 2019; Yu et al. 2021). Value-based
methods often model each agent’s Q-function in the form of Q o a(,)i i i
and derive the policy i by greedily choosing the action with the highest
Q-value for that observation. Given a policy profile , agent i‘s value
function is defined as:

V s r P s o o s V s() = + (, (), …, (),) (),i i
s S

N N i
’

1 1

which computes the agent-specific quality of a state. Its state-action value
function is:

Q s a a r P s a a s V s(, , …,) = + (, , …, ,) (),i N i
s S

N i1 1

which computes the quality of an action at a given state.

Interpretable Multi-Agent Reinforcement Learning ▪ 87

In contrast, actor-critic methods directly model the policy i, often
with a neural network. These techniques typically follow the centralized
training and decentralized execution paradigm (Oliehoek, Spaan, &
Vlassis 2008). Each agent’s policy must only take as input its private
observation oi to ensure decentralized execution. However, agents may
leverage information beyond their private observation during training.
Commonly, each agent i uses a centralized critic network Qi , which
takes as input some state information x (including the observations of all
agents) and the actions of all agents. The use of this centralized critic
addresses the stationarity issue in multi-agent reinforcement learning:
without access to the actions of other agents, the environment seems
non-stationary from the perspective of any one agent (Lowe et al. 2017).

Policies can also be modeled by decision trees (McCallum 1997). A
decision tree induction algorithm is a non-parametric supervised
learning algorithm that visualizes a decision-making process through a
flowchart-like model (Quinlan 1986). It recursively partitions the input
space along a specific feature using a cutoff value, called a split. The result
of these splits are axis-parallel partitions. Internal nodes are the inter-
mediate partitions, and leaf nodes are the final partitions. Figure 5.1
depicts an example decision tree policy for a single agent in the context
of reinforcement learning. When used to model policies for
reinforcement learning, the internal nodes represent the features and
values of the input state used by the agent to choose its action, and the
leaf nodes correspond to chosen actions given some input state. In multi-
agent reinforcement learning, the most straightforward use of decision

FIGURE 5.1 A decision tree of depth two learned by MAVIPER in a fully
cooperative environment. The learned decision tree captures the expert’s
behavior of navigating to Landmark 1. First published in Milani et al. (2022) by
Springer Nature. Reproduced with permission by Springer Nature.

88 ▪ Explainable Agency in Artificial Intelligence

tree policies applies one per agent, which means that the number of
decision tree policies grows linearly with the number of agents.

Algorithm 1: Single-Agent VIPER

Input: S A P R Q K M(, , ,), , , ,
Output: A decision tree policy ˆ

1: Initialize dataset D

2: Initialize policy ˆ0

3: for iteration m = 1 to M do

4: Sample K trajectories according to: D s s d{(, ()) }m ˆm 1

5: Aggregate dataset D D Dm

6: Resample dataset according to loss:
D s a p s a l s I s a D{(,) ((,)) ˜() [(,)]}

7: Train decision tree TrainDecisionTree Dˆ ()m

8: return Best policy ˆ { ˆ , , ˆ }M1 on cross validation

EXTRACTING DECISION TREE POLICIES WITH
SINGLE-AGENT VIPER
IVIPER and MAVIPER are based on single-agent VIPER (Bastani et al.
2018), which is a popular decision tree learning algorithm (Meng et al.
2020; Chen et al. 2021; Luss, Dhurandhar, & Liu 2022). Typically, re-
searchers employ VIPER as a post-hoc explanation-generation method,
in which the resulting decision tree only explains the guiding expert policy.
Instead, this chapter uses the generated trees as the deployed policies.
Crucially, VIPER extracts a decision tree given an expert policy trained
using any single-agent reinforcement learning algorithm. It combines
ideas from model compression (Buciluǎ, Caruana, & Niculescu-Mizil
2006; Hinton, Vinyals, & Dean 2015) and imitation learning (Abbeel & Ng
2004) − specifically, a variation of the classic DAGGER algorithm (Ross,
Gordon, & Bagnell 2011). Different from DAGGER, VIPER uses the
Q-function for the oracle and produces policies in the form of decision
trees. This oracle guides the training of a decision tree policy. This section
describes the VIPER algorithm.

Interpretable Multi-Agent Reinforcement Learning ▪ 89

As shown in Algorithm 1, VIPER trains a decision tree policy ˆm in
each iteration m; the final output is the best policy ˆ among all itera-
tions. In iteration m, it samples K trajectories: s s d{(, ˆ ()) }m 1 ˆ 1m

following the decision tree policy trained at the previous iteration. Then,
it uses the expert policy to suggest actions for each visited state,
leading to the data set D s s d= {(, ()) }m ˆm 1

(Algorithm 1, Line 4),
where d ˆm 1

is the distribution induced by the agent following its decision
tree policy from the previous iteration. It therefore obtains expert-labeled
data following the state visitation distribution induced by the decision
tree policy. VIPER adds these relabeled experiences to a data set D
consisting of experiences from previous iterations (Algorithm 1, Line 5).
Let V and Q be the state value function and state-action value
function given the expert policy . Because the standard loss function
for decision trees is not convex, VIPER does not optimize for it. Instead,
VIPER resamples points s a D(,) weighted according to:

l s V s min Q s a˜() = () (,),
a A

as in Line 6 in Algorithm 1. This resampling produces a new, weighted
data set D’. Using CART (Breiman et al. 2017) to train a decision tree on
D‘ is equivalent in expectation to training a decision tree with a poten-
tially non-convex loss function. Single-agent VIPER forms the basis for
the IVIPER and MAVIPER algorithms.

Algorithm 2: IVIPER for the Multi-Agent Setting

Input: X A P R Q K M(, , ,), , , ,
Output: A decision tree policy profile ˆ = (ˆ , …, ˆ)N1

1: for agent i = 1 to N do

2: Initialize data set Di and policy ˆi i
0

3: for iteration m = 1 to M do

4: Sample K trajectories according to:
D x o o d{(, (), … ()) }i

m
N N1 1

ˆ ,i
m

i
1

5: Aggregate dataset D D Di i i
m

90 ▪ Explainable Agency in Artificial Intelligence

6: Resample dataset according to loss:
D x a p x a l x I x a D{(,) ((,)) ˜ () [(,)]}i i i

7: Train decision tree TrainDecisionTree Dˆ ()i
m

i

8: Get best decision tree policy BestPolicyˆ (ˆ , …, ˆ ,)i
m

i i
M

i
1

9: return Best policies for each agent ˆ = (ˆ , …, ˆ)N1 on cross
validation

IVIPER
Motivated by the success of single-agent reinforcement learning algo-
rithms in the multi-agent reinforcement learning setting (Matignon,
Laurent, & Le Fort-Piat 2012; Berner et al. 2019), IVIPER independently
applies the single-agent VIPER algorithm to each agent, with a few
critical changes. Algorithm 2 shows the full IVIPER pseudocode. At a
high level, each agent independently trains a collection of decision tree
policies, then selects the best policy from the collection. To account for
the behavior of other agents, the expert policies of the other agents are
used for environment rollouts.

The important changes for moving to the multi-agent setting are as
follows. First, each agent i must have sufficient information for training
its decision tree policy. As shown in Algorithm 2, Lines 2 and 4, each
agent maintains its own data set of training tuples D x a a N= { , , …, _ }i 1 .
When using VIPER with multi-agent actor-critic methods that leverage a
per-agent centralized critic network Qi , we ensure that each agent’s data
set Di contains, at a minimum, the observations and actions for all
agents. The action for each other agent is provided by the expert policy
corresponding to that agent o j i()j j . By giving each agent infor-
mation about all other agents, IVIPER accounts for the influence of other
agents on the environment. The use of a per-agent data set means that
any data set-level operations are performed independently, on a per-
agent basis.

Second, IVIPER accounts for important changes that emerge from
moving from single-agent to multi-agent formalism. Specifically, when
IVIPER samples and relabels trajectories for training each agent’s
decision-tree policy, it must sample from the distribution d induced by
multiple agents acting in the environment. As a result, the distribution in
Algorithm 2, Line 4, becomes d ˆ ,i

m
i

1
, which is induced by agent i’s

Interpretable Multi-Agent Reinforcement Learning ▪ 91

decision-tree policy at the previous iteration ˆi
m 1 and the expert policies

of all other agents i. Additionally, in Line 4, IVIPER relabels only the
action for agent i because the other agents i choose their actions ac-
cording to i. This setup is equivalent to treating all other experts as
part of the environment and using only a decision-tree policy for agent i.

Third, rather than considering only the actions of agent i, IVIPER
incorporates the actions of all agents when resampling the data set
(Algorithm 2, Line 6). If the multi-agent reinforcement learning algo-
rithm uses a centralized critic Q s a a(, , …,)N1 , then it resamples points
according to:

p x a a l x I x a a D((, , …,)) ˜ () [(, ,…,)],N i N i1 1

where

l x V x Q x a a˜ () = () (, ,)| .i i i i i a o j i= ()i j j

Note that IVIPER includes the actions of all other agents to select agent i’s
minimum Q-value from its centralized Q-function. In contrast, when
applied to value-based methods, IVIPER more closely resembles single-
agent VIPER. In Algorithm 2, Line 4, it is sufficient to store only oi and ai ,
where ai is the action chosen by the expert using Qi , in the data set Di

m.
Trajectories must still be sampled according to ˆi

m 1 and the Q-functions
of the other agents Q i. To remove the reliance of the loss on the cen-
tralized critic, IVIPER uses the loss from single-agent VIPER in line 6:

l s V o min Q o a() = () (,).i i i
a A

i i i
i i

These algorithmic changes form the basis of the IVIPER algorithm. A
helpful way to view this algorithm is as a transformation of the multi-
agent learning problem into a single-agent one, in which other agents are
folded into the environment. Since this algorithm is fully decentralized,
agents may be trained in parallel. This approach is well suited for situ-
ations when only an interpretable policy for a single agent in a multi-
agent setting is desired or agents do not need to coordinate with each
other. As a motivating example of this algorithm’s challenges with
coordination, consider the case where two agents must split up to

92 ▪ Explainable Agency in Artificial Intelligence

navigate to two different landmarks. These agents must coordinate to
prevent the agents from navigating to the same landmark. With IVIPER,
each agent is trained independently without consideration for what the
other agent’s resulting decision-tree policy will learn. As a result, the
agents may learn to navigate to the same landmark. This problem of
reliable coordination motivates the MAVIPER algorithm.

MAVIPER
MAVIPER is a novel algorithm for learning coordinated multi-agent
decision tree policies in a centralized manner. For exposition, this section
first describes MAVIPER in a fully cooperative setting, and then explains
how to use MAVIPER for mixed competitive-cooperative settings. At a
high level, MAVIPER jointly grows the trees – one for each agent – by
predicting the behavior of the other agents in the environment using
their anticipated trees. To train each decision tree policy, MAVIPER
employs a novel resampling technique to find states that are critical for
its interactions with other agents. Algorithm 3 depicts the full MAVIPER
algorithm. Specifically, MAVIPER is built upon the following extensions
to IVIPER that aim at addressing the issue of coordination.

Algorithm 3: MAVIPER (Joint Training)

Input: X A P R Q K M(, , ,), , , ,
Output: A decision tree policy profile ˆ = (ˆ , …, ˆ)N1

1: Initialize dataset D and policies ˆi i
0 for agent i = 1 to N

2: for iteration m = 1 to M do

3: Sample K trajectories according to:
D x o o d{(, (), … ()) }m

N N1 1
ˆ , …, ˆm

N
m

1
1 1

4: Aggregate data set D D Dm

5: for each agent i, resample Di according to loss:
D x a p x a l x I x a D i N{(,) ((,)) ˜ () [(,)]}i i i

6: Jointly train decision trees:
TrainJointTrees D D(ˆ , …, ˆ) (, …,)m

N
m

N1 1

7: return Best policies for each agent
ˆ = (ˆ , …, ˆ) {(ˆ , …, ˆ), …, (ˆ ,…, ˆ)}N N

M
N
M

1 1
1 1

1

Interpretable Multi-Agent Reinforcement Learning ▪ 93

function TrainJointTrees

1: Initialize decision tree policies ˆ , …, ˆm
N
m

1

2: while all trees are not at maximum depth

3: Grow one more level for agent i’s tree Build Dˆ (ˆ , …, ˆ ,)i
m m

N
m

i1

4: Move to the next agent i i N(+ 1)%

5: return decision trees ˆ , …, ˆm
N
m

1

First, notice that the IVIPER loss treats the other agents as stationary
experts. This assumption is problematic, as finding a decision tree policy
that is consistent with the training set is NP-hard (Hancock et al. 1996):
there is no guarantee that the learned decision tree policies will be
optimal. As a result, the assumption that the decision tree policies of the
other agents will align with the corresponding experts is unlikely to be
true in practice. It is also worth mentioning that the training set may not
fully represent the expert policies, making it even more challenging to
align the decision tree policies with the experts’ behavior.

To mitigate this issue, MAVIPER alters the resampling probability
p x a a((, , …,))N1 by focusing on the critical states where taking a joint
action can make a difference. Using the insight that agents should care
most about states in which there is a large gap between its worst-case
performance and the expert performance, the loss function for each
agent becomes:

[]l x E Q x o a minQ x a a() = (, (),) (, ,) .i a i i i i
a A

i i ii
i i

The first term in the loss measures the best-case performance of agent i,
measured by the largest Q-value following the expert i . The second
term measures the worst-case performance of agent i, measured by the
smallest Q-value according to Qi . The loss function then becomes the
difference between the best-case and worst-case performance of agent i,
rather than the difference between the average performance (calculated
by V ()i) and the worst-case performance. Furthermore, note that the
expectation is taken over the actions of all other agents.

Second, rather than using the expert policies of all other agents to
perform rollouts and collect new data, MAVIPER uses the decision tree

94 ▪ Explainable Agency in Artificial Intelligence

policies ˆ = (ˆ , …, ˆ)m
N
m

1
1 1 from the last iteration. Consequently, the

distribution in Algorithm 3, Line 3, becomes d ˆ , …, ˆm
N

m
1

1 1
. The goal of

this change is to align more closely with the original DAGGER algo-
rithm, where the idea is to aggregate a data set of inputs that the learned
policy is likely to encounter during execution. Because there is typically
some approximation error when constructing decision tree policies, the
states encountered by following them will likely differ from those en-
countered by following the expert policies.

function Build D(ˆ , …, ˆ ,)m
N
m

i1

1: for each data point do

2: // will agent j’s (projected) final decision tree policy predict its
action correctly?

v I Predict x a j N[(ˆ ,) =]j j
m

j

3: // this data point is useful only if many agents’ final decision-
tree policies correctly predict their actions from it

if v <j
N

j=1 then remove d from data set D D x a\ {(,)}i i

4: Calculate best next feature split for decision tree ˆi
m using Di

5: return decision tree ˆi
m

function Predict(xˆ ,)j
m

1: Use x to traverse until leaf node L x()

2: Train a projected final decision-tree policy
TrainDecisionTree Dˆ‘ (’)1

3: return prediction: predict xˆ‘. ()j

Third, MAVIPER adds a prediction module to increase the joint
accuracy, which means that the predicted actions by most of the
decision-tree policies align with the actions that the corresponding
experts would take. This prediction module is utilized in the Build
function, which is called when training the trees jointly, as detailed in
the TrainJointTrees function. The goal of the prediction module is to
incorporate predictions of the actions that the other decision trees

Interpretable Multi-Agent Reinforcement Learning ▪ 95

might make at each split point during the tree-growing process. The
Predict function shows this process.

The prediction module works as follows. MAVIPER evenly grows the
trees using a breadth-first ordering to avoid biasing toward the result of
any specific tree. Because the true decision tree policies are incomplete at
the time of prediction, MAVIPER instead uses the output of another tree
ˆ J for the prediction. This decision tree is trained with the data set
associated with the node for that prediction. Following the intuition that
the correct prediction of one agent alone may not yield much benefit if
the other agents are incorrect, the data set used for training the agent is
filtered using the following rule. If the proportion of correct predic-
tions for a data point is less than a predefined threshold , it is removed
from the training data set for that node. The Build function shows this
filtering process. MAVIPER then calculates the splitting criteria based
on this modified data set and continues iteratively growing the tree.
These changes comprise the MAVIPER algorithm for the fully coop-
erative setting.

This section now focuses on mixed competitive-cooperative settings,
in which agents in a team share goals and require coordination with each
other but encounter other agents or teams with potentially conflicting
goals. In these settings, MAVIPER follows a similar procedure but
applied on a per-team basis. More specifically, for a team Z , MAVIPER
constrains the Build and Predict functions to make predictions for only
the agents in the same team. Therefore, the loss in Algorithm 3, Line 5,
takes the expectation over the joint actions for agents outside the team
and becomes:

l x E Q x o a Q x a a() = [(, (),) (, ,)].i a i i i Z i i ZZ

This change is sufficient to move to the mixed competitive-cooperative
setting.

There are a few additional implementation details worth mentioning.
To optimize running speed, MAVIPER adopts a caching mechanism for
the decision trees. This caching mechanism enables MAVIPER to avoid
training a new decision tree for each data point being predicted in the
Build function. To speed up the Predict function, MAVIPER initially
gathers all the necessary predictions for a particular tree and then con-
ducts a batched traversal to obtain the predictions. This optimization

96 ▪ Explainable Agency in Artificial Intelligence

technique substantially reduces the need for multiple tree traversals,
which leads to an improvement in efficiency.

These changes comprise the MAVIPER algorithm. Because MAVIPER
explicitly accounts for the anticipated behavior of other agents in both
the predictions and the sampling probability, it should better capture
coordinated behavior.

EXPERIMENTS
This section investigates how well MAVIPER and IVIPER agents perform
in a variety of environments. Because the goal is to learn high-performing
yet interpretable policies, the quality of the trained policies is empirically
evaluated in three multi-agent environments: two mixed competitive-
cooperative environments and one fully cooperative environment. Agents
are evaluated based on the performance of the decision tree policies
because the goal is to deploy these policies in place of the expert ones. The
hypotheses tested by the experiments are:

H1: MAVIPER and IVIPER learn decision-tree policies that achieve
higher individual performance than the baselines.

H2: MAVIPER learns better coordinated decision-tree policies than
IVIPER and the baselines.

H3: MAVIPER learns decision-tree policies that are more robust to
different adversaries.

Since small decision trees are considered interpretable, the maximum
depth is constrained to be at most 6. The expert policies used to guide the
decision-tree training are generated by MADDPG (Lowe et al. 2017). The
Pytorch (Paske et al. 2017) implementation is used for MADDPG:
https://github.com/shariqiqbal2810/maddpg-pytorch. The experiments
include comparisons to two baselines.

Fitted Q-Iteration

This baseline does not explicitly aim to imitate an expert; instead, it
directly learns a Q-function and uses it to choose actions. Fitted Q-
Iteration iteratively approximates the Q-function with a regression deci-
sion tree (Ernst, Geurts, & Wehenkel 2005). To account for continuous
state values, the states are first heuristically discretized with 10 evenly

Interpretable Multi-Agent Reinforcement Learning ▪ 97

https://github.com

spaced bins: (, 1), [1, .75), …, [.5, .75), [.75, 1.), (1,).
Each agent derives its policy by taking the action associated with the
highest estimated Q-value for that input state.

Imitation DT

This baseline is a simple imitation learning algorithm. First, a data set is
collected by running the expert policies for multiple episodes. Using this
data set, each decision tree policy is trained independently. No resam-
pling is performed. The observations for an agent are the features, and
the actions for that agent are the labels.

The hyperparameters and the hyperparameter selection process can be
found in Milani & Zhang et al. 2022. A high-performing MADDPG
expert is trained for each environment, then each decision tree learning
algorithm is run 10 times with different random seeds. All policies are
evaluated after training by running 100 episodes. The algorithms are
evaluated on three multi-agent particle world environments (Lowe et al.
2017), described below. Episodes terminate after T = 25 timesteps.

Physical Deception

In this mixed competitive-cooperative environment, a team of N
defenders protect N targets from one adversary. One of the targets is
the true target. This information is known to the defenders but not
to the adversary. For these experiments, N = 2. During an episode,
the defenders succeed if they split up to simultaneously cover all
targets; the adversary succeeds if it reaches the true target during the
episode. Covering and reaching targets is defined as being -close to a
target for at least one timestep during the episode. The primary
performance metric for this environment is the defenders’ and ad-
versary’s success rate.

Cooperative Navigation

This fully cooperative environment consists of a team of N agents that
must learn to cover all N targets while avoiding collisions with each
other. For these experiments, N = 3. Agents succeed during an episode
if they split up to simultaneously cover all targets without colliding. The
primary performance metric is the summation of the distance of the
closest agent to each target, for all targets. Low values of the metric
indicate that the agents correctly learn to split up.

98 ▪ Explainable Agency in Artificial Intelligence

Predator–Prey

This environment variant involves a team of K slower, cooperating
predators that chase M faster prey. There are L = 2 landmarks impeding
the way. For these experiments, K M= = 2. Different from the original
environment, the observation space of each agent is restricted to mostly
consist of binarized relative positions and velocity (if applicable) of the
landmarks and other agents in the environment. The primary per-
formance metric is the number of collisions between predators and prey.
For prey, lower is better as it means that the predators catch them less
often; in contrast, for predators, higher is better.

INDIVIDUAL PERFORMANCE COMPARED TO EXPERTS
This section investigates whether a single agent can perform similarly
when it adopts its decision-tree policy compared with its expert policy, in
the setting where all other agents use expert policies. Given a decision
tree policy profile ˆ and the expert policy profile , if agent i from team
Z uses its decision tree policy, then the individual performance ratio is
defined as:

[]Individual performance ratio E U
U

U
= =

(ˆ ,)
()

,i
Z i i

Z

i

where U (·)Z is team Z ’s performance given the agents’ policy profile
(since the primary performance metric is at the team level). A per-
formance ratio of 1 means that the decision-tree policies perform as well
as the expert ones. A ratio of above 1 is possible because the comparison
is between the performance, not the similarity, of the decision tree and
expert policies. This set of experiments tests hypothesis H1. Figure 5.2
reports the mean individual performance ratio averaged over all trials
and all agents in the team. MAVIPER and IVIPER defenders outperform
the two baselines for all maximum depths in physical deception; how-
ever, MAVIPER and IVIPER adversaries appear indistinguishable from
each other and from Imitation DT adversaries in physical deception.
MAVIPER outperforms the other algorithms in cooperative navigation
and predator–prey.

First looking at the adversaries, a one-way ANOVA was performed for
each maximum depth to compare the effect of the four different decision
tree training algorithms on the adversary’s individual performance ratio

Interpretable Multi-Agent Reinforcement Learning ▪ 99

(Table 5.1, left side of the three rightmost columns). This test revealed a
statistically significant difference in the individual performance ratio of
the adversary between at least two groups for all maximum depths
(maximum depth of F p2: (3, 36) = 13.5623, = 0.0000; maximum

(a) (b)

(c)

(d) (e)

FIGURE 5.2 Individual performance ratio: relative performance when only one
agent adopts a decision-tree policy. Higher is better. Error bars correspond to the
95% confidence interval. (First published in Milani et al. 2022 by Springer Nature.
Reproduced with permission by Springer Nature.). (a) Individual adversary per-
formance, Physical Deception. (b) Individual defender performance, Physical
Deception. (c) Individual agent performance, Cooperative Navigation. (d) Individual
predator performance, Predator–Prey. (e) Individual prey performance, Predator–Prey.

100 ▪ Explainable Agency in Artificial Intelligence

TABLE 5.1 Tukey’s HSD Test Results Comparing the Average Individual Performance of the Adversary and Defender in the Physical Deception
Environment. The Highest-Performing, Statistically Significant Results for Each Tree Depth (and the Corresponding p-Value) are in Bold. To
Distinguish the Results, the Best-Performing Adversary is Denoted in Underline, and the Best-Performing Defender Is Denoted in Italic (If the Results
Are Statistically Significant). Results Are Presented as: Predator, Prey. The Level Is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1 Mean
Adversary,
Defender

Algorithm 2 Mean
Adversary,
Defender

p-value
Adversary,
Defender

MAVIPER IVIPER 2
4
6

0.5275, 0.8450
0.6494, 0.9112
0.9656, 0.9399

0.4211, 0.5787
0.7191, 0.7843
0.6717, 0.8460

0.3470, 0.0000
0.4415, 0.0000
0.0000, 0.0000

MAVIPER Imitation DT 2
4
6

0.5275, 0.8450
0.6494, 0.9112
0.9656, 0.9399

0.3710, 0.5787
0.7512, 0.7003
0.7761, 0.7833

0.0808, 0.0000
0.1405, 0.0000
0.0117, 0.0000

MAVIPER Fitted Q-Iteration 2
4
6

0.5275, 0.8450
0.6494, 0.9112
0.9656, 0.9399

0.1380, 0.1191
0.1406, 0.1204
0.1390, 0.1940

0.0000, 0.0000
0.0000, 0.0000
0.0000, 0.0000

IVIPER Imitation DT 2
4
6

0.4211, 0.5787
0.7191, 0.7843
0.6717, 0.8460

0.3710, 0.5787
0.7512, 0.7003
0.7761, 0.7833

0.8567, 1.0000
0.8978, 0.0016
0.2850, 0.0119

IVIPER Fitted Q-Iteration 2
4
6

0.4211, 0.5787
0.7191, 0.7843
0.6717, 0.8460

0.1380, 0.1191
0.1406, 0.1204
0.1390, 0.1940

0.0004, 0.0000
0.0000, 0.0000
0.0000, 0.0000

Imitation DT Fitted Q-Iteration 2
4
6

0.3710, 0.5787
0.7512, 0.7003
0.7761, 0.7833

0.1380, 0.1191
0.1406, 0.1204
0.1390, 0.1940

0.0039, 0.0000
0.0000, 0.0000
0.0000, 0.0000

Interpretable M
ulti-A

gent R
einforcem

ent Learning
▪

101

depth of F p4: (3, 36) = 76.9866, = 0.0000; maximum depth of
F p6: (3, 36) = 75.4581, = 0.0000). To determine the groups that con-

tributed to this result, a post-hoc Tukey’s HSD test for multiple com-
parisons with Bonferroni correction was conducted. This test showed
that, for all maximum depths, the following pairs have significant
differences: MAVIPER and Fitted Q-Iteration, IVIPER and Fitted
Q-Iteration, and Imitation DT and Fitted Q-Iteration. For a maximum
depth of 6, only IVIPER and Imitation DT did not exhibit significant
differences. These results mean there is almost no difference between
MAVIPER, IVIPER, and Imitation DT in the case of this adversary, so
the correct strategy may be simple enough to capture with a less-
sophisticated algorithm.

Now looking at the defenders, a one-way ANOVA was similarly per-
formed. It revealed that there was a statistically significant difference in the
individual performance ratio for the defenders between at least two groups
for all depths (maximum depth of F p2: (3, 36) = 76.2633, = 0.0000;
maximum depth of F p4: (3, 36) = 558.7447, = 0.0000; maximum
depth of F p6: (3, 36) = 786.663, = 0.0000). A post-hoc Tukey’s HSD
test for multiple comparisons with Bonferroni correction determined that
MAVIPER defenders significantly outperform all other algorithms. This
test further revealed that IVIPER defenders significantly outperform
Imitation DT (on all depths except for 2) and Fitted Q-Iteration defenders.
Table 5.1 shows the full results of these tests, where the defender per-
formance is recorded on the right side of the three rightmost columns.
Because MAVIPER significantly outperforms all other algorithms when
coordination is needed, these results indicate that it promotes coordina-
tion between agents even in the single-agent training regime.

Figure 5.2c indicates that agents perform similarly on the coopera-
tive navigation environment. These results are not unexpected because
the original MADDPG paper mentions that this environment has a less
stark contrast between success and failure (Lowe et al. 2017). For each
maximum depth, a one-way ANOVA was conducted to compare
the effect of the four different decision-tree training algorithms on the
individual performance ratio for this environment (Table 5.2). This test
revealed that there was a statistically significant difference in the
individual performance ratio between at least two algorithms for all
depths (maximum depth of F p2: (3, 36) = 10.3421, = 0.0000; max-
imum depth of F p4: (3, 36) = 16.3784, = 0.0000; maximum depth of
of F p6: = 41.4938, = 0.0000). A post-hoc Tukey’s HSD test with

102 ▪ Explainable Agency in Artificial Intelligence

Bonferroni correction showed that MAVIPER significantly outperformed
the other algorithms, with the exceptions of: IVIPER and Imitation DT at a
maximum depth of 6, and Fitted Q-Iteration at a maximum depth of 2.
Those two comparisons did not exhibit a statistically significant difference.
Furthermore, IVIPER and Imitation DT did not have statistically signifi-
cant differences for all maximum depths. Indeed, IVIPER only signifi-
cantly outperformed Fitted Q-Iteration when the maximum depth is 6;
their means were indistinguishable otherwise. These results indicate that
MAVIPER tends to yield higher-performing individual agents than the
other algorithms. In contrast, IVIPER is generally indistinguishable from
the baselines.

Figures 5.2d and 5.2e indicate that both MAVIPER predators and prey
generally outperform those trained by the other algorithms. Looking first
at the predators, a one-way ANOVA was again performed. This test
showed a statistically significant difference in mean individual per-
formance ratio between at least two of the algorithms for each maximum
depth (maximum depth of 2: F p(3, 36) = 10.7644, = 0.0000; max-
imum depth of 4: F p(3, 36) = 20.2408, = 0.0000; maximum depth of

TABLE 5.2 Tukey’s HSD Results Comparing the Average Individual Performance for
Cooperative Navigation. The Highest-Performing, Statistically Significant Results for Each
Tree Depth (and the Corresponding p-Value) Are in Bold. The Level is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1
Mean

Algorithm 2
Mean

p-value

MAVIPER IVIPER 2
4
6

0.6830
0.7596
0.7811

0.6470
0.7052
0.7677

0.0378
0.0036
0.7680

MAVIPER Imitation DT 2
4
6

0.6830
0.7596
0.7811

0.6153
0.7139
0.7837

0.0000
0.0177
0.9975

MAVIPER Fitted Q-Iteration 2
4
6

0.6830
0.7596
0.7811

0.6665
0.6574
0.6525

0.5741
0.0000
0.0000

IVIPER Imitation DT 2
4
6

0.6470
0.7052
0.7677

0.6153
0.7139
0.7837

0.0804
0.9318
0.6562

IVIPER Fitted Q-Iteration 2
4
6

0.6470
0.7052
0.7677

0.6665
0.6574
0.6525

0.4359
0.0871
0.0000

Imitation DT Fitted Q-Iteration 2
4
6

0.6153
0.7139
0.7837

0.6665
0.6574
0.6525

0.0016
0.0025
0.0000

Interpretable Multi-Agent Reinforcement Learning ▪ 103

6: F p(3, 36) = 13.0601, = 0.0000). As shown in Table 5.3 (left-hand
side of the rightmost columns), a post-hoc Tukey’s HSD test with
Bonferroni correction revealed MAVIPER-trained predators only sig-
nificantly differed from the IVIPER-trained and Imitation-DT-trained
predators when the maximum depth is 4. Otherwise, their means did not
exhibit significant differences. However, MAVIPER and IVIPER signif-
icantly outperformed Fitted Q- Iteration for all depths. IVIPER only
significantly outperformed Imitation DT with maximum depth 2.

Looking now at the prey, a one-way ANOVA was similarly conducted.
This test revealed a statistically significant difference in the mean indi-
vidual performance ratio between at least two groups for all maximum
depths (maximum depth of 2: F p(3, 36) = 10.2907, = 0.0000; max-
imum depth of 4: F p(3, 36) = 25.1552, = 0.000; maximum depth of 6:
F p(3, 36) = 44.5994, = 0.0000). As shown in Table 5.3 (right-hand side
of the results columns), a post-hoc Tukey’s HSD test with Bonferroni
correction determined that MAVIPER significantly outperforms all other

TABLE 5.3 Tukey’s HSD Results Comparing the Average Individual Performance
for Predators and Prey in the Predator–Prey Environment. The Highest-Performing,
Statistically Significant Results for Each Tree Depth (and the Corresponding p-Value) Are
in Bold. To Further Distinguish the Results, the Best-Performing Predator Is Denoted in
Underline, and the Best-Performing Prey Is Denoted in Italic (if the Results Are
Statistically Significant). Results Are Presented as: Predator, Prey. The Level Is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1 Mean
Predator, Prey

Algorithm 2 Mean
Predator, Prey

p-value
Predator, Prey

MAVIPER IVIPER 2
4
6

0.6013, 1.0261
0.7261, 0.9191
0.7679, 0.9420

0.6265, 0.6828
0.6531, 0.8765
0.7211, 0.8076

0.7441, 0.0006
0.0344, 0.8403
0.6136, 0.0044

MAVIPER Imitation
DT

2
4
6

0.6013, 1.0261
0.7261, 0.9191
0.7679, 0.9420

0.5456, 0.6965
0.6296, 0.5676
0.7010, 0.5748

0.1314, 0.0009
0.0031, 0.0000
0.3111, 0.0000

MAVIPER Fitted
Q-Iteration

2
4
6

0.6013, 1.0261
0.7261, 0.9191
0.7679, 0.9420

0.4976, 0.6404
0.5291, 0.6023
0.5435, 0.6055

0.0010, 0.0001
0.0000, 0.0000
0.0000, 0.0000

IVIPER Imitation
DT

2
4
6

0.6265, 0.6828
0.6531, 0.8765
0.7211, 0.8076

0.5456, 0.6965
0.6296, 0.5676
0.7010, 0.5748

0.0127, 0.9981
0.7945, 0.0000
0.9519, 0.0000

IVIPER Fitted
Q-Iteration

2
4
6

0.6265, 0.6828
0.6531, 0.8765
0.7211, 0.8076

0.4976, 0.6404
0.5291, 0.6023
0.5435, 0.6055

0.0000, 0.9486
0.0001, 0.0000
0.0002, 0.0000

Imitation
DT

Fitted
Q-Iteration

2
4
6

0.5456, 0.6965
0.6296, 0.5676
0.7010, 0.5748

0.4976, 0.6404
0.5291, 0.6023
0.5435, 0.6055

0.2344, 0.8907
0.0020, 0.9055
0.0011, 0.8372

104 ▪ Explainable Agency in Artificial Intelligence

algorithms, except for IVIPER with a maximum depth of 4. In this case,
there is no statistically significant difference between their means. IVIPER
also significantly outperforms Imitation DT and Fitted Q-Iteration, except
when the maximum depth is 2. In this case, there is no statistically sig-
nificant difference between their means. Taken together, these results
indicate that MAVIPER enables the prey agents to better avoid capture
compared to IVIPER and the baselines, and that IVIPER enables the prey
agents to better avoid capture compared to the baselines.

In summary, MAVIPER training tends to lead to higher-performing
individual agents, especially when those agents are part of a team. This
result suggests that MAVIPER-trained agents exhibit improved per-
formance due to better coordination with their team.

JOINT PERFORMANCE COMPARED TO EXPERTS
A crucial aspect of multi-agent environments is agent coordination,
especially when agents are on the same team with shared goals. One
metric for coordination is the performance of the decision-tree policies
when all agents in a team adopt decision-tree policies compared with
their expert policies, while other agents deploy their expert policies.
Specifically, the joint performance ratio is:

[]Joint performance ratio E U
U

U
= =

(ˆ ,)
()

,Z
Z Z Z

Z

Z

where U (ˆ ,)Z Z Z is the utility of team Z when using their decision-tree
policies against the expert policies of the other agents Z . This metric
captures any performance degradation compared to the experts. These
experiments test hypothesis H2.

Figure 5.3 shows the mean joint performance ratio for each team,
averaged over all trials. Compared with Figure 5.2, Figure 5.3 highlights
the performance degradation when moving from individual to joint
performance. This outcome is expected: MADDPG policies can capture
more nuanced behavior, so they are more readily able to compensate for
deficiencies in their “partner” policies. Figure 5.3a shows that MAVIPER
defenders achieve higher joint performance than defenders trained by
IVIPER and the baselines in physical deception, indicating that it better
captures the coordinated behavior necessary for success. IVIPER
defenders also perform better than the baselines. In contrast, Fitted

Interpretable Multi-Agent Reinforcement Learning ▪ 105

Q-Iteration struggles to achieve coordinated behavior, despite obtaining
non-zero success for individual agents. This algorithm likely struggles
due to poor Q-value estimates.

A closer look into the performance of these algorithms revealed that there
was a statistically significant difference in the joint performance ratio
between at least two of the algorithms for each maximum depth (Table 5.4).
This result was determined by a one-way ANOVA conducted for each
maximum depth (maximum depth of 2: F p(3, 36) = 88.8662, = 0.0000;
maximum depth of 4: F p(3, 36) = 83.3715, = 0.0000; maximum depth of
6: F p(3, 36) = 380.76, = 0.0000). A post-hoc Tukey’s HSD test deter-
mined which algorithms are responsible for this difference. Critically,
MAVIPER agents significantly outperformed all other agent types for all
maximum depths. IVIPER agents also significantly outperformed the

(a) (b)

(c) (d)

FIGURE 5.3 Joint performance ratio: relative performance when a team adopts
their decision tree policies and all other agents use an expert policy. Higher is
better. Error bars correspond to the 95% confidence interval. (First published in
Milani et al. 2022 by Springer Nature. Reproduced with permission by Springer
Nature.) (a) Joint defender performance, Physical Deception. (b) Joint agent per-
formance, Cooperative Navigation. (c) Joint predator performance, Predator–Prey.
(d) Joint prey performance, Predator–Prey.

106 ▪ Explainable Agency in Artificial Intelligence

baselines for all maximum depths, except for Imitation DT when the
maximum depth is 4. In this case, there was no statistically significant dif-
ference between the two algorithms. These results indicate that both
MAVIPER and IVIPER achieve better coordinated performance than the
baselines; however, MAVIPER achieves the highest joint performance and,
therefore, produces the best agents for coordination.

The superior performance of MAVIPER in this environment is likely
due to the defender agents correctly splitting their “attention” to induce
the correct behavior of covering both targets. Figure 5.4 investigates this
possibility by showing the normalized average feature importance of the
decision-tree policies of depth 4 for both IVIPER and MAVIPER over 5
(out of 10) randomly selected trials. Each of the MAVIPER defenders
(top) most commonly focuses on the attributes associated with one
specific target: defender 1 focuses on target 2, and defender 2 focuses on
target 1. In contrast, both IVIPER defenders (bottom) mostly focus on
the attributes associated with the goal target. Not only does this overlap
in feature space mean that defenders are unlikely to capture the correct

TABLE 5.4 Tukey’s HSD Results Comparing the Average Joint Performance for the
Defenders in the Physical Deception Environment. The Highest-Performing, Statistically
Significant Results for Each Comparison at Each Tree Depth (and the Corresponding
p-Value) Are in Bold. The Level Is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1
Mean

Algorithm 2
Mean

p-value

MAVIPER IVIPER 2
4
6

0.6150
0.8454
0.9450

0.1879
0.3621
0.6548

0.0000
0.0000
0.0000

MAVIPER Imitation DT 2
4
6

0.6150
0.8454
0.9450

0.0465
0.2237
0.2943

0.0000
0.0000
0.0000

MAVIPER Fitted Q-Iteration 2
4
6

0.6150
0.8454
0.9450

0.0000
0.0000
0.0110

0.0000
0.0000
0.0000

IVIPER Imitation DT 2
4
6

0.1879
0.3621
0.6548

0.0465
0.2237
0.2943

0.0095
0.0773
0.0000

IVIPER Fitted Q-Iteration 2
4
6

0.1879
0.3621
0.6548

0.0000
0.0000
0.0110

0.0004
0.0000
0.0000

Imitation DT Fitted Q-Iteration 2
4
6

0.0465
0.2237
0.2943

0.0000
0.0000
0.0110

0.6884
0.0015
0.0000

Interpretable Multi-Agent Reinforcement Learning ▪ 107

covering behavior, but it also leaves them more vulnerable to an
adversary because it is easier to infer the goal target.

MAVIPER also exhibits this better-coordinated behavior in the coop-
erative navigation environment. Indeed, Figure 5.3b shows that MAVIPER
agents outperform all other algorithms in the cooperative navigation en-
vironment for all maximum depths. A one-way ANOVA for each max-
imum depth was conducted to compare the effect of the four different
decision-tree training algorithms on the joint performance ratio for each
maximum depth. This test revealed that there was a statistically significant
difference in mean joint performance ratio for all maximum depths
(maximum depth of 2: F p(3, 36) = 98.2534, = 0.0000; maximum depth
of 4: F p(3, 36) = 166.533, = 0.0000; maximum depth of 6:
F p(3, 36) = 202.3992, = 0.0000). Table 5.5 shows the results of a post-
hoc Tukey’s HSD test with Bonferroni correction applied to each max-
imum depth. Based on these results, MAVIPER significantly outperformed
all other algorithms. IVIPER significantly outperformed the baselines for
most conditions, with the exceptions of Imitation DT at a maximum
depth of 4 and Fitted Q-Iteration at a maximum depth of 2. In those cases,
the mean joint performance ratios were indistinguishable. Recall that,
compared to physical deception, cooperative navigation introduces an

FIGURE 5.4 Feature importance of the two defenders trained by IVIPER and
MAVIPER in the physical deception environment. Actual features are the rel-
ative positions of that agent and the labeled feature. Darker squares correspond
to higher feature importance. MAVIPER defenders (top) frequently split
importance across the two targets. In contrast, IVIPER defenders (bottom) most
commonly focus on the same target (the goal target). To succeed in this en-
vironment, defenders must split their attention to the two different targets, not
focusing on the goal target at the same time. (First published in Milani et al.
2022 by Springer Nature. Reproduced with permission by Springer Nature.)

108 ▪ Explainable Agency in Artificial Intelligence

additional agent with which the defenders must coordinate (and re-
moves the adversary). The superior performance of MAVIPER agents
indicates that MAVIPER better captures coordinated behavior, even as
the complexity of the problem is increased by introducing another
cooperating agent.

Figures 5.3c and 5.3d depicts the results for both teams in the
predator–prey environment. These results do not offer a straightforward
conclusion. To compare the effect of the choice of the decision-tree
training algorithm on the joint performance ratio of the predators, a one-
way ANOVA test for all maximum depths was conducted. This test
revealed that there was a statistically significant difference in mean
joint performance ratio between at least two groups for all maximum
depths (maximum depth of 2: F p= 48.0960, = 0.0000; maximum
depth of 4: F p= 140.8732, = 0.0000; maximum depth of 6:
F p= 87.5597, = 0.0000). A post-hoc Tukey’s HSD test with Bonferroni
correction, applied for all maximum depths, found that MAVIPER-
trained predator teams significantly outperform the two baselines.

TABLE 5.5 Tukey’s HSD Results Comparing the Average Joint Performance for the
Agents in the Cooperative Navigation Environment. The Highest-Performing, Statistically
Significant Results for Each Comparison at Each Tree Depth (and the Corresponding
p-Value) Are in Bold. The Level Is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1
Mean

Algorithm 2
Mean

p-value

MAVIPER IVIPER 2
4
6

0.4957
0.6948
0.7287

0.3659
0.4400
0.5210

0.0000
0.0000
0.0000

MAVIPER Imitation DT 2
4
6

0.4957
0.6948
0.7287

0.3223
0.4598
0.4598

0.0000
0.0000
0.0000

MAVIPER Fitted Q-Iteration 2
4
6

0.4957
0.6948
0.7287

0.3705
0.3653
0.3657

0.0000
0.0000
0.0000

IVIPER Imitation DT 2
4
6

0.3659
0.4400
0.5210

0.3223
0.4598
0.4598

0.0012
0.5900
0.0016

IVIPER Fitted Q-Iteration 2
4
6

0.3659
0.4400
0.5210

0.3705
0.3653
0.3657

0.9737
0.0002
0.0000

Imitation DT Fitted Q-Iteration 2
4
6

0.3223
0.4598
0.4598

0.3705
0.3653
0.3657

0.0004
0.0000
0.0000

Interpretable Multi-Agent Reinforcement Learning ▪ 109

However, predators trained by MAVIPER only significantly out-
performed those trained by IVIPER when the maximum depth is 4; in all
other settings, the two algorithms do not exhibit a statistically significant
difference between means. IVIPER predators significantly outperform
the baselines, except Imitation DT when the maximum depth is 6. In that
case, the means are indistinguishable.

To compare the effect of the different decision tree training algorithms
on the joint performance ratio of the prey, a one-way ANOVA was con-
ducted for all maximum depths (Table 5.6). This test revealed that there
was indeed a statistically significant difference in the mean joint per-
formance ratio between at least two groups for all maximum depths
(maximum depth of 2: F p= 35.08693, = 0.0000; maximum depth of 4:
F p= 28.3989, = 0.0000; maximum depth of 6: F p= 60.6513, = 0.0000).
A post-hoc Tukey’s HSD test with Bonferroni correction, applied for all
maximum depths, found that MAVIPER-trained prey significantly

TABLE 5.6 Tukey’s HSD Results Comparing the Average Joint Performance for the
Predators and Prey in the Predator–Prey Environment. The Highest-Performing,
Statistically Significant Results for Each Comparison at Each Tree Depth (and the
Corresponding p-Value) Are in Bold. To Further Distinguish the Results, the Best-
Performing Predator is Denoted in Underline, and the Best-Performing Prey Is Denoted in
Italic (if the Results Are Statistically Significant). Results Are Presented as: Predator, Prey.
The Level Is 0.05

Algorithm 1 Algorithm 2 Depth Algorithm 1
Mean

Predator, Prey

Algorithm 2
Mean

Predator, Prey

p-value
Predator, Prey

MAVIPER IVIPER 2
4
6

0.2648, 1.0453
0.5554, 0.9153
0.5834, 0.8464

0.2713, 0.6515
0.3455, 0.7932
0.4906, 0.7750

0.9917, 0.0000
0.0000, 0.2107
0.0520, 0.2896

MAVIPER Imitation DT 2
4
6

0.2648, 1.0453
0.5554, 0.9153
0.5834, 0.8464

0.1566, 0.5904
0.2510, 0.4244
0.4182, 0.3878

0.0002, 0.0000
0.0000, 0.0000
0.0002, 0.0000

MAVIPER Fitted
Q-Iteration

2
4
6

0.2648, 1.0453
0.5554, 0.9153
0.5834, 0.8464

0.0359, 0.5151
0.0536, 0.5115
0.0585, 0.5012

0.0000, 0.0000
0.0000, 0.0000
0.0000, 0.0000

IVIPER Imitation DT 2
4
6

0.2713, 0.6515
0.3455, 0.7932
0.4906, 0.7750

0.1566, 0.5904
0.2510, 0.4244
0.4182, 0.3878

0.0000, 0.7031
0.0029, 0.0000
0.1771, 0.0000

IVIPER Fitted
Q-Iteration

2
4
6

0.2713, 0.6515
0.3455, 0.7932
0.4906, 0.7750

0.0359, 0.5151
0.0536, 0.5115
0.0585, 0.5012

0.0004, 0.0921
0.0000, 0.0003
0.0000, 0.0000

Imitation
DT

Fitted
Q-Iteration

2
4
6

0.1566, 0.5904
0.2510, 0.4244
0.4182, 0.3878

0.0359, 0.5151
0.0536, 0.5115
0.0585, 0.5012

0.0000, 0.5475
0.0000, 0.4963
0.0000, 0.0339

110 ▪ Explainable Agency in Artificial Intelligence

outperformed the two baselines for all maximum depths. However, there
was no statistically significant difference in the mean joint performance
ratio between MAVIPER and IVIPER for maximum depths of 4 and 6.
Indeed, MAVIPER-trained prey only significantly outperformed IVIPER-
trained prey when the maximum depth is 2. IVIPER prey significantly
outperformed the baselines, except for Imitation DT and Fitted Q-
Iteration when the maximum depth is 2. There was no statistically sig-
nificant difference in joint performance ratio in that setting.

Unlike the other environments, there is a less stark difference between
the performance of MAVIPER and IVIPER. The main difference between
the algorithms is when they are compared to the baselines: MAVIPER
predators and prey outperformed all baselines for all maximum depths;
this was not the case for IVIPER, as there were a few instances where its
mean joint performance ratio was statistically indistinguishable from the
mean joint performance ratio of a baseline algorithm.

Taken together, the results on all three of these environments indicate
that IVIPER and MAVIPER better capture the coordinated behavior
necessary for a team to succeed, with MAVIPER significantly out-
performing IVIPER in several environments. For all environments and
all maximum depths, MAVIPER significantly outperforms the baselines
when measuring the mean joint performance ratio. In general, these
results support the hypothesis that MAVIPER-trained agents exhibit
better-coordinated behavior than IVIPER and the baselines.

ROBUSTNESS TO DIFFERENT OPPONENTS
Given that the goal is deploying these policies in real-world scenarios
with potentially many different types of adversaries, this section inves-
tigates the robustness of the decision tree policies. Specifically, this sec-
tion investigates when a team using decision tree policies plays against a
variety of opponents in mixed competitive-cooperative environments.

In this set of experiments, the decision trees are constrained to a max-
imum depth of 4. Given a decision tree policy profile ˆ , a team Z ’s per-
formance against an alternative policy profile ′ used by the opponents is:

Team performance against opponent U= (ˆ ,).Z Z Z

Each of the defender teams is evaluated against a broad set of opponent
policies π′: the policies generated by MAVIPER, IVIPER, Imitation DT,

Interpretable Multi-Agent Reinforcement Learning ▪ 111

Fitted Q-Iteration, and MADDPG. Note that, in contrast to the other
metrics, the scores reported here are the raw success ratios for physical
deception and the number of collisions for predator–prey. These ex-
periments test H3.

Table 5.7 shows the mean team performance averaged over all oppo-
nent policies for both environments. Bolded values correspond to the best-
performing algorithm for each agent type. Only results where the means
do not overlap when accounting for the standard deviation are bolded.

For physical deception, MAVIPER defenders outperform all other
algorithms, with a gap of 0.44 between the team performance of agents
trained by MAVIPER and the performance of agents trained by the
next-best algorithm, IVIPER. This result indicates that MAVIPER
learns coordinated defender policies that perform well against various
adversaries. Also in the physical deception environment, MAVIPER,
IVIPER, and Imitation DT adversaries perform similarly on average,
with a similar standard deviation, which supports the idea that the
adversary’s desired behavior is simple enough to capture with a less-
sophisticated algorithm. For predator–prey, MAVIPER predators out-
perform all other algorithms. Although Imitation DT prey exhibit the
highest mean performance, it is indistinguishable from MAVIPER and
IVIPER.

Tables 5.8 and 5.9 contain the full results for the two environments.
For space reasons, only the averages are reported. Rather than presenting
the full results, the best-performing agent of each type are labeled in
either underline or italic. However, the best-performing agents of each
type are only labeled in underline or italic if the 95% confidence intervals
do not overlap. MADDPG is excluded from this calculation, since it is
expected that MADDPG agents will outperform all other agent types.

TABLE 5.7 Average Robustness Results on Physical Deception and Predator–Prey.
Reported Here Is the Mean Team Performance and Standard Deviation of the Decision
Tree Policies for Each Team, Averaged Across a Variety of Opponent Policies. The Best-
Performing Algorithm for Each Agent Type Is Shown in Bold. First Published in Milani
et al. 2022 by Springer Nature. Reproduced with Permission by Springer Nature

Environment Team MAVIPER IVIPER Imitation DT Fitted
Q-Iteration

Physical
deception

Defender
Adversary

0.77 ± 0.01
0.42 ± 0.03

0.33 ± 0.01
0.41 ± 0.03

0.24 ± 0.03
0.42 ± 0.03

0.00 ± 0.00
0.07 ± 0.01

Predator–prey Predator
Prey

2.51 ± 0.72
1.76 ± 0.80

1.98 ± 0.58
2.16 ± 1.24

1.14 ± 0.28
2.36 ± 1.90

0.26 ± 0.11
1.11 ± 0.82

112 ▪ Explainable Agency in Artificial Intelligence

Table 5.8 shows the results for the physical deception environment.
MAVIPER defenders are more robust than all agents, excluding
MADDPG, to different types of adversaries. This result can be easily seen
by fixing the adversary row and comparing the success ratios of the dif-
ferent defenders in each column. In contrast, MAVIPER, IVIPER, and
Imitation DT adversaries perform similarly. This result can be easily seen
by fixing the defender column and comparing the success ratios of the
different adversaries in each row. For simplicity, only the best-performing
adversaries are noted in bold, since the 95% confidence intervals tend to
overlap for most adversary types. MAVIPER adversaries perform best
against MAVIPER defenders; MAVIPER and IVIPER adversaries perform

TABLE 5.8 Robustness Results of Decision Tree Agents in the Physical Deception
Environment. Results Are Presented as: Adversary Success Ratio, Defender Success Ratio.
Higher Is Better. Excluding MADDPG, the Best-Performing Defender for Each
Adversary Type Is in Italic and the Best-Performing Adversary for Each Defender Type
Is in Underline. First Published in Milani et al. 2022 by Springer Nature. Reproduced
With Permission by Springer Nature

Defender

Adversary MAVIPER IVIPER Imitation DT Fitted Q-Iteration MADDPG

MAVIPER 0.42, 0.76 0.45, 0.33 0.45, 0.23 0.37, 0.01 0.40, 0.93
IVIPER 0.39, 0.78 0.45, 0.32 0.40, 0.23 0.38, 0.00 0.43, 0.92
Imitation DT 0.40, 0.79 0.42, 0.34 0.46, 0.26 0.38, 0.01 0.46, 0.92
Fitted Q-Iteration 0.07, 0.77 0.06, 0.33 0.07, 0.19 0.08, 0.00 0.08, 0.79
MADDPG 0.71, 0.76 0.77, 0.32 0.77, 0.26 0.58, 0.00 0.62, 0.90

TABLE 5.9 Robustness Results of Decision Tree Agents in the Predator–Prey
Environment. Results Are Presented as: Average Number of Collisions per Episode
(Predator), Average Number of Collisions per Episode (Prey). These Values Are the Same,
but They Are Duplicated to Show Which Algorithms Are the Best-Performing Ones for
Both Types of Agents. Higher is Better for the Predator, and Lower is Better for the Prey.
Excluding MADDPG, the Best-Performing Prey for Each Predator Type Is in Italic and the
Best-Performing Predator for Each Prey Type Is in Underline. First Published in Milani
et al. 2022 by Springer Nature. Reproduced With Permission by Springer Nature

Prey

Predator MAVIPER IVIPER Imitation DT Fitted Q-Iteration MADDPG

MAVIPER 2.28, 2.28 3.49, 3.49 2.41, 2.41 3.01, 3.01 1.37, 1.37
IVIPER 1.95, 1.95 2.46, 2.46 2.17, 2.17 2.44, 2.44 0.88, 0.88
Imitation DT 1.32, 1.32 1.17, 1.17 1.18, 1.18 1.40, 1.40 0.61, 0.61
Fitted Q-Iteration 0.46, 0.46 0.30, 0.30 0.24, 0.24 0.18, 0.18 0.14, 0.14
MADDPG 2.78, 2.78 3.36, 3.36 5.82, 5.82 4.98, 4.98 2.54, 2.54

Interpretable Multi-Agent Reinforcement Learning ▪ 113

best against IVIPER defenders; Imitation DT adversaries perform best
against Imitation DT and MADDPG defenders; and MAVIPER, IVIPER,
and Imitation DT adversaries perform best against Fitted Q-Iteration
defenders. This result aligns with the previous performance results, where
MAVIPER, IVIPER, and Imitation DT adversaries performed similarly
against MADDPG agents.

Table 5.9 shows the results for the predator–prey environment.
MAVIPER predators are strictly more robust than all other agents, ex-
cluding MADDPG, to different types of prey. This result can be easily
seen by fixing the prey column and comparing the average number of
collisions per episode in each row. Recall that, for predators, a higher
value is better. Furthermore, MAVIPER prey are generally either the
most robust or the second-most robust to different types of predators.
This result can be seen by fixing the predator row and comparing the
average number of collisions per episode in each column. Recall that, for
the predators, a higher value is better. In this environment, predator
coordination is more critical because predators must work together to
strategically catch the prey. On the other hand, the prey does not require
much coordination. This lack of coordination explains the robustness of
the Imitation DT prey by imitating the actions of the corresponding
single-agent expert.

Taken together, these results indicate that MAVIPER-trained agents
are generally more robust than agents trained with the other decision
tree learning algorithms. These results indicate that MAVIPER-trained
agents may be better suited for deployment in real-world scenarios where
one expects to encounter a variety of attacker types, such as cyberse-
curity. Further work is needed to investigate the robustness of these
policies in more realistic domains.

ABLATION STUDY OF MAVIPER
Given the improved performance of MAVIPER compared to IVIPER, it
is important to understand which changes contribute to these differ-
ences. Recall the differences between MAVIPER and IVIPER. First,
MAVIPER utilizes the predicted behavior of the anticipated decision
trees of the other agents to grow each agent’s tree. In contrast, IVIPER
trains each agent’s decision tree policy without utilizing these predic-
tions. Second, the resampling probability of MAVIPER incorporates the
average Q-values over all actions for the other agents. In contrast,
IVIPER only considers the optimal actions of the other agents.

114 ▪ Explainable Agency in Artificial Intelligence

To investigate the contribution of these changes to the performance of
MAVIPER, this section analyzes an ablation study with a maximum tree
depth of 4 on the physical deception environment. In this setting,
MAVIPER and IVIPER defenders achieve similar individual perform-
ance, but MAVIPER defenders outperform IVIPER defenders when
measuring joint performance. Figure 5.5 shows the mean independent
and joint performance ratios for each defender team, comparing
MAVIPER and IVIPER to two variants of MAVIPER without one of the
two critical changes.

This section first investigates the differences in the individual perform-
ance ratios for the adversaries. A one-way ANOVA was conducted to
determine the effect of the algorithmic changes on the individual per-
formance ratio. This test revealed that there was not a statistically significant
difference between the group means (F p(3, 36) = 0.6314, = 0.5995).
Therefore, all algorithms are effectively equivalent for the adversaries.

The next investigation is into the differences in the individual per-
formance ratios for the defenders. To determine the effect of the
algorithmic changes on the individual performance ratio, a one-way
ANOVA test was conducted. This test revealed that there was a sta-
tistically significant difference between at least two groups
(F p(3, 36) = 5.7287, = 0.0026). A post-hoc Tukey’s HSD test with
Bonferroni correction revealed that the mean value of individual per-
formance ratios was significantly different between MAVIPER and
MAVIPER with IVIPER resampling, referred to as MAVIPER (IVIPER
Resampling) (p = 0.0128), and MAVIPER and IVIPER (p = 0.0025).

FIGURE 5.5 Ablation study for MAVIPER for a maximum depth of 4. MAVIPER
(No prediction) does not utilize the predicted behavior of the other agents’ an-
ticipated decision trees to grow each agent’s tree. MAVIPER (IVIPER Resampling)
uses the same resampling method as IVIPER. (First published in Milani et al. 2022
by Springer Nature. Reproduced with permission by Springer Nature.)

Interpretable Multi-Agent Reinforcement Learning ▪ 115

In both of these cases, MAVIPER has a higher mean. All other pairs
had p-values greater than the chosen , so their differences in means
were not statistically significant. As a result, the most significant
algorithmic change for this metric seems to be the prediction module.

The final investigation is into the differences in the joint performance
ratios for the defender. A one-way ANOVA was conducted to determine
the effect of the algorithmic changes on the joint performance ratio. This
test revealed that there was a statistically significant difference between at
least two groups (F p(3, 36) = 10.6768, = 0.0000). A post-hoc Tukey’s
HSD test with Bonferroni correction revealed that the mean value of
joint performance ratios was significantly different between the following
pairs MAVIPER and IVIPER p(= 0.0000), MAVIPER with no predic-
tion module, referred to as MAVIPER (No Prediction), and IVIPER
(p = 0.0010), and MAVIPER (IVIPER Resampling) and IVIPER
(p = 0.0039). In all cases, the first algorithm in the comparison has a
higher mean. All other pairs had differences in means that were not
statistically significant. This means that both ablated changes contribute
to the improvement over IVIPER for this metric.

RELATED WORK
Most work on interpretable reinforcement learning is in the single-agent
setting (Milani et al. 2022). Some work directly learns decision tree
policies by augmenting the environment to include actions corre-
sponding to splits of a decision tree and recording the outcomes in the
state (Topin et al. 2021). Although it enables training with any function
approximator during training, this transformation renders the learning
problem more complex, especially in multi-agent settings. Other publi-
cations present custom algorithms that directly learn decision tree pol-
icies (McCallum 1997; Uther & Veloso 2000; Ernst et al. 2005), but not
for interpretability. These algorithms cannot use a high-performing
neural network to guide training.

Despite increased interest in interpretable single-agent reinforcement
learning, there are few research efforts in interpretable multi-agent
reinforcement learning. The majority of work uses attention (Iqbal & Sha
2019; Li, Jin, & Wang 2019; Motokawa & Sugawara 2021) to select and
focus on critical factors that impact agents’ decision making. Other work
generates verbal explanations with predefined rules (Wang et al. 2020) or
Shapley values (Heuillet, Couthouis, & Díaz-Rodríguez 2022). The most
similar line of work (Kazhdan, Shams, & Liò 2020) to IVIPER and

116 ▪ Explainable Agency in Artificial Intelligence

MAVIPER constructs argument preference graphs, not decision tree pol-
icies, given manually provided arguments. Since the publication of Milani
et al. (2022), a couple more relevant works have emerged. Grupen et al.
(2022) propose to utilize concept bottlenecks in multi-agent reinforcement
learning to understand emergent behavior. Guo et al. (2022) demonstrates
how explanations in the form of decision tree policies can be used as a
knowledge transfer technique in multi-agent reinforcement learning.

CONCLUSION
This chapter discussed IVIPER and MAVIPER, the first algorithms that
extract interpretable decision tree policies for multi-agent reinforcement
learning. This chapter presented results from evaluating these algorithms
in cooperative and mixed competitive-cooperative environments. The
results demonstrated that IVIPER and MAVIPER achieve near-expert
performance: a single agent trained with these algorithms can recover at
least 75% of expert performance in most environment settings – even
with a small maximum depth – and over 90% in some. Furthermore, the
results empirically validated that MAVIPER effectively captures co-
ordinated behavior by showing that teams of MAVIPER-trained agents
recover more of the expert performance on nearly all environments and
maximum depths compared to the other algorithms. The chapter further
showed that MAVIPER generally produces more robust agents than the
other learning algorithms. Future work should seek to validate the
effectiveness of these policies in assisting people with performing multi-
agent tasks through extensive, task-grounded user studies.

ACKNOWLEDGMENTS
This material is based upon work supported by the Department of
Defense (DoD) through the National Defense Science & Engineering
Graduate (NDSEG) Fellowship Program. This research was sponsored by
the U.S. Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA).
This work was supported in part by NSF grant IIS-2046640 (CAREER).
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect the views of
the funding agencies or government agencies. The U.S. government is
authorized to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

Interpretable Multi-Agent Reinforcement Learning ▪ 117

REFERENCES

Abbeel, P., & Ng, A. (2004). Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the International Conference on Machine Learning.

Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learning
via pol-icy extraction. arXiv preprint arXiv:1805.08328.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C.
others. (2019). Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification
and regression trees. Routledge.

Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In
Proceedings of the International Conference on Knowledge Discovery and
Data Mining.

Chen, Z., Silvestri, F., Tolomei, G., Zhu, H., Wang, J., & Ahn, H. (2021).
ReLACE: Reinforcement Learning Agent for Counterfactual Explanations
of Arbitrary Predictive Models. arXiv preprint arXiv:2110.11960.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6, 503–556.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018).
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Grupen, N., Jaques, N., Kim, B., & Omidshafiei, S. (2022). Concept-based
Understanding of Emergent Multi-Agent Behavior. In Deep Reinforcement
Learning Workshop NeurIPS 2022.

Guo, Y., Campbell, J., Stepputtis, S., Li, R., Hughes, D., Fang, F., & Sycara, K.
(2022). Explainable Action Advising for Multi-Agent Reinforcement
Learning. arXiv preprint arXiv:2211.07882.

Hancock, T., Jiang, T., Li, M., & Tromp, J. (1996). Lower bounds on learning
decision lists and trees. Information and Computation, 126(2), 114–122.

Heuillet, A., Couthouis, F., & Díaz-Rodríguez, N. (2022). Collective explainable
AI: Explaining cooperative strategies and agent contribution in multiagent
reinforcement learning with shapley values. IEEE Computational Intelligence
Magazine, 1(71), 59–71.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Iqbal, S., & Sha, F. (2019). Actor-attention-critic for multi-agent reinforcement
learning. In Proceedings of the International Conference on Machine Learning.

Kazhdan, D., Shams, Z., & Liò, P. (2020). MARLeME: A multi-agent
reinforcement learning model extraction library. In Proceedings of the
International Joint Conference on Neural Networks.

Li, S., Wu, Y., Cui, X., Dong, H., Fang, F., & Russell, S. (2019). Robust multi-
agent rein-forcement learning via minimax deep deterministic policy
gradient. In Proceedings of the AAAI Conference on Artificial Intelligence.

118 ▪ Explainable Agency in Artificial Intelligence

Li, W., Jin, B., & Wang, X. (2019). SparseMAAC: Sparse Attention for Multi-
agent Reinforcement Learning. In Proceedings of the International
Conference on Database Systems for Advanced Applications.

Littman, M. (1994). Markov games as a framework for multi-agent reinforcement
learning. In Machine Learning.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-
agent actor-critic for mixed cooperative-competitive environments. arXiv
preprint arXiv:1706.02275.

Luss, R., Dhurandhar, A., & Liu, M. (2022). Local Explanations for
Reinforcement Learning. arXiv preprint arXiv:2202.03597.

Matignon, L., Laurent, G. J., & Le Fort-Piat, N. (2012). Independent
reinforcement learners in cooperative Markov games: a survey regarding
coordination problems. The Knowledge Engineering Review, 27(1), 1–31.

McCallum, R. (1997). Reinforcement learning with selective perception and hidden
state. PhD Thesis, University of Rochester, Department of Computer
Science.

Meng, Z., Wang, M., Bai, J., Xu, M., Mao, H., & Hu, H. (2020). Interpreting deep
learning-based networking systems. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer
Communication, 154–171.

Milani, S., Topin, N., Veloso, M., & Fang, F. (2022). A Survey of Explainable
Reinforcement Learning. arXiv preprint arXiv:2202.08434.

Milani, S., Zhang, Z., Topin, N., Shi, Z. R., Kamhoua, C., Papalexakis, E. E., &
Fang, F. (2022). MAVIPER: Learning Decision Tree Policies for
Interpretable Multi-Agent Reinforcement Learning. In Proceedings of the
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases.

Motokawa, Y., & Sugawara, T. (2021). MAT-DQN: Toward Interpretable Multi-
Agent Deep Reinforcement Learning for Coordinated Activities. In
International Conference on Artificial Neural Networks, 556–567.

Oliehoek, F., Spaan, M., & Vlassis, N. (2008). Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence
Research, 32.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., & others.
(2017). Automatic differentiation in pytorch. In: NIPS 2017 Workshop
Autodiff.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 11, 81–106.
Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., & Whiteson, S.

(2018). Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of the International Conference on
Machine Learning.

Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics.

Interpretable Multi-Agent Reinforcement Learning ▪ 119

Shapley, L. (1953). Stochastic games. Proceedings of the National Academy of
Sciences, 39, 10.

Son, K., Kim, D., Kang, W., Hostallero, D., & Yi, Y. (2019). Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement
learning. arXiv preprint arXiv:1905.05408.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W., Zambaldi, V., Jaderberg, M.,
& others. (2017). Value-decomposition networks for cooperative multi-
agent reinforcement learning. arXiv preprint arXiv:1706.05296.

Topin, N., Milani, S., Fang, F., & Veloso, M. (2021). Iterative Bounding MDPs:
Learning Interpretable Policies via Non-Interpretable Methods. In
Proceedings of the AAAI Conference on Artificial Intelligence.

Uther, W., & Veloso, M. (2000). The lumberjack algorithm for learning linked
decision forests. In International Symposium on Abstraction, Reformulation,
and Approximation.

Wang, X., Li, H., Liu, R., Zhang, H., Lewis, M., & Sycara, K. (2020). Explanation
of Reinforcement Learning Model in Dynamic Multi-Agent System. arXiv
preprint arXiv:2008.01508.

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., & Wu, Y. (2021). The sur-
prising effectiveness of mappo in cooperative, multi-agent games. arXiv
preprint arXiv:2103.01955.

120 ▪ Explainable Agency in Artificial Intelligence

C H A P T E R 6

Towards the Automatic
Synthesis of
Interpretable
Chess Tactics

Abhijeet Krishnan and Chris Martens
North Carolina State University, Raleigh, NC

INTRODUCTION
Recent advancements in reinforcement learning (RL) have produced
agents capable of competing with and even outperforming the best
human experts at various games like chess (Silver et al. 2018), Go (Silver
et al. 2016), Shogi (Li et al. 2020), Mahjong (Silver et al. 2018), StarCraft
II (Vinyals et al. 2019), and Dota 2 (Berner et al. 2019). These agents do
not simply take advantage of faster reaction and calculation abilities, but
are actually employing new, better strategies that lead to more victories.
Borrowing from Jeanette Wing’s definition of computational thinking
(Wing 2008), these agents have better abstractions than human experts
for the games they are trained to play.

Despite the existence of such agents in various competitive games, we
still see human competition continue to thrive, with these agents leading to
new ways of thinking and a re-evaluation of long-held beliefs about the
game. These discoveries have, so far, involved manual or engine-assisted
analysis of the games played by the agents (Sadler & Regan 2019; Zhou
2018). If the agents could themselves explain their strategies and decision
making to human players, we posit that it would help improve their play.

DOI: 10.1201/9781003355281-6 121

https://doi.org/10.1201/9781003355281-6

Such chess-playing agents (chess engines) are used extensively in game
analysis (Smith 2004; Tukmakov 2020) and tournament preparation
(Andrei 2021). Expert chess players utilize engine move suggestions and
evaluations to analyze new lines to play (PTI 2016). Most current engines
use a neural network model with many thousands of parameters trained
using deep reinforcement learning (DRL) in conjunction with a search
algorithm to produce game moves. Examples include Monte Carlo Tree
Search in AlphaZero (Silver et al. 2016), Predictor+Upper Confidence
Bound tree search in Leela Chess Zero (Pascutto and Linscott 2019), or
alpha-beta pruning in Stockfish 14 (Romstad, Costalba, & Kiiski 2021).
However, this differs from how human chess players employ pattern
recognition to produce moves (de Groot 1946; Connors, Burns, &
Campitelli 2011).

Current research in the newly emerging field of explainable RL
(XRL) attempts to develop methods to help humans understand RL
agent decisions. Multiple techniques like t-SNE (Moore & Stamper
2019), trajectory clustering (Osborn, Samuel, & Mateas 2018), and
heatmaps (Broll et al. 2019) have been applied to visualize agent
behavior in games. Symbolic policies have been investigated as inter-
pretable representations of neural network policies learned via DRL.
They have been learned directly from reward signals (Trivedi et al.
2021; Landajuela et al. 2021), as surrogate models for more complex
policies (Verma et al. 2018) or from input/output pairs (Derner,
Kubalík, & Babuška 2018). However, most research in this area learns
policies for optimal control in continuous environments, with discrete
game environments like chess receiving little attention.

In this chapter, we propose a framework to learn a symbolic sub-
policy model for chess. We describe our sub-policy as being a collection
of first-order logic rules that model chess tactics. We use patterns
learned by an existing inductive logic programming (ILP) system called
PAL (Patterns and Learning) (Morales 1992) to derive these tactics. We
contribute a divergence metric to evaluate our model of a tactic using the
move evaluation capabilities of a chess engine. We present an evaluation
of a set of tactics obtained from PAL against a random baseline using
our metrics. Finally, we propose a computational evaluation of this
approach by augmenting a chess engine with the synthesized tactics. We
conclude with a discussion on the limitations of this approach, along
with future work.

122 ▪ Explainable Agency in Artificial Intelligence

RELATED WORK

Strategy Synthesis

A number of research efforts attempt to learn rule-based agents using
evolutionary approaches to play role-playing games like Neverwinter
Nights (Spronck, Sprinkhuizen-Kuyper, & Postma 2004), board games like
Checkers and Reversi (Benbassat & Sipper 2011), cooperative games like
Hanabi (Canaan et al. 2018), platforms like Mario (de Freitas, de Souza, &
Bernardino 2018), and real-time strategy games like µRTS (Mariño et al.
2021). Partially applicable strategies for puzzle games have been learned
using constraint satisfaction (Butler, Torlak, & Popovic 2017). Our model
for chess tactics is learned using ILP, and incorporates domain knowledge
of the concept of a tactic in order to improve interpretability.

Explainable RL

Attempts to make RL agent policies amenable to human interpretation
have been pursued in the XRL field. Puiutta and Veith (2020) provide a
survey of recent XRL methods. An interpretability technique that has
received some attention is that of training an inherently interpretable
surrogate model that matches the performance of the original agent.
Options for this surrogate model that have been investigated include
decision trees (Bastani, Pu, & Solar-Lezama 2018; Coppens et al. 2019;
Sieusahai and Guzdial 2021) and programmatic policies (Verma et al.
2018; Trivedi et al. 2021). Our proposed sub-policy model is only par-
tially applicable, and attempts to improve interpretability for chess by
incorporating domain knowledge of how chess tactics are structured.

Chess Pattern Learning

Chess has been called the drosophila1 of artificial intelligence (McCarthy
1990). It has been a mainstay of AI research from the invention of the
digital computer (Shannon 1950) to the neural network revolution (Silver
et al. 2018). Given the depth of experimentation with AI techniques for
chess, it is not surprising that the idea of using patterns to guide a com-
puter to play chess is not new. Patterns have been used to suggest moves
and guide playing strategies in middle-game positions (Berliner 1975;
Pitrat 1977; Wilkins 1979) and endgames (Huberman 1968; Bramer 1977;
Bratko 1982). Levinson and Snyder (1991) used weighted patterns in their
Morph system as an evaluation function to guide playing strategy. Recent
work has attempted to directly probe neural network engines to test for the

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 123

presence of human concepts (McGrath et al. 2021). Morales (1992)
developed the PAL system to learn first-order patterns in chess using ILP.
We build upon this work by taking advantage of modern chess engines to
serve as the reference evaluation function to select learned patterns instead
of hand-crafted heuristics.

BACKGROUND

Inductive Logic Programming

Inductive logic programming (ILP) is a form of symbolic machine
learning where the goal is to induce a hypothesis (a set of logical rules)
that generalizes given training examples (Cropper & Dumančić 2020). It
can learn human-readable hypotheses from smaller amounts of data than
neural network models.

An ILP problem is specified by three sets of Horn clauses—B; the
background knowledge, E+, the set of positive examples of the concept;
and E−, the set of negative examples of the concept. The ILP problem is
to induce a hypothesis H that, in combination with the background
knowledge, entails all the positive examples and none of the negative
examples. Formally, this can be written as:

e E H B e H is complete
e E H B e H is consistent

, (i.e. ,)
, (i.e. ,)

+

To make the ILP problem more concrete, we provide a toy example below.
E+ and E− contain positive and negative examples of the target

knight_move relation, respectively. B contains background knowledge (i.e.,
clauses that might be useful in inducing a hypothesis for knight_move).

E knight move d c knight move d e

knight move d b knight move d f
E knight move d d knight move d b

knight move d e knight move d h
B l move d c l move d e l move d b

l move d f

= { _ (4, 6). _ (4, 6).

_ (4, 5). _ (4, 5). }

= { _ (4, 5). _ (4, 6).

_ (4, 1). _ (4, 7). }

= { _ (4, 6). _ (4, 6). _ (4, 5).

_ (4, 5). }

+

124 ▪ Explainable Agency in Artificial Intelligence

From this information, we could induce a hypothesis for knight_move as
knight_move(From,To):− l_move(From,To).

PAL System

The PAL (patterns and learning) system was introduced by Morales
(1992). It attempts to use ILP to synthesize patterns for chess play, which
are expressed using a subset of Horn clause logic. It contributes a predicate
vocabulary for expressing these patterns and chess positions as Horn
clauses. The pattern-learning problem is framed as an ILP problem, for
which a heuristically constrained version of the rlgg (relative least general
generalization) algorithm is used to induce plausible hypotheses. Patterns
learned can be static and not involve any piece movement, or be dynamic
and describe multi-move tactics. We expand upon how the PAL system
formally defines and synthesizes these chess patterns.

Pattern Formalism
A pattern in PAL is formally defined as a non-recursive Horn clause of
the form

D D D F F FHead: , , ···, , , , ···,n m1 2 1 2

where:

• Head is the head of the pattern definition

• The Di are “input” predicates used to describe the position and
represent pieces involved in the pattern

• The Fj are instances of definitions that are either provided as
background knowledge or learned by PAL, and represent the
conditions (relations between pieces and places) to be satisfied by
the pattern.

An example of a checking move pattern, where a move that puts the
opponent king in check is suggested, is reproduced from Morales (1992)
in Figure 6.1. A key predicate is make_move, which determines whether
a pattern is static or dynamic. The contents predicates are used to
describe the position on the board. The remaining predicate definitions
are provided as background knowledge.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 125

Pattern Synthesis
The input to the PAL generalization algorithm is a set of pattern defini-
tions (both predefined and learned) along with a description of a chess
position (as ground unit clauses). The algorithm extends Buntine’s (1988)
method for constructing the rlgg of two clauses to multiple clauses. It uses
the following constraints and heuristics to limit hypothesis size and
increase the algorithm’s generalization steps:

• Disallowing variables in the head or body of a rule that are
not connected to a literal (i.e., not equal to a variable of that
literal)

• Labeling constants occurring in the ground literals of a rule body to
make patterns piece-invariant

• Restricting the legal moves from a position to be only those that
introduce a new predicate name or remove an existing predicate
name

PAL uses an automatic example generator to manually guide the gen-
eralization algorithm towards learning desired concepts. Given an ex-
ample of the target concept, the generator perturbs the example to create
a new example for which a classification label must be provided. To
restrict the example space searched, the automatic example generator
attempts to generate examples which specialize the current hypothesis in
case of a prior positive example, or generalize it in case of a prior neg-
ative example. We refer interested readers to the original thesis for
further details.

FIGURE 6.1 A PAL rule for the can_check pattern. A piece (P1) belonging to
the side S1 can check the opponent’s (S2) King after moving to (X3,Y3).

126 ▪ Explainable Agency in Artificial Intelligence

METHODOLOGY

Chess Tactic Model

We conceptualize our sub-policy model as a chess tactic. Formally, we
define a tactic as a first-order logic rule that can bind to a chess position. A
position is expressed in first-order logic using an appropriate predicate
vocabulary. If a tactic binds to (matches) a particular position, it suggests a
move (or moves) to be played. The moves suggested must be legal in the
given position. This is described in Figure 6.2 as a Prolog pseudo-definition.

A single tactic, or even a set of tactics, does not represent a complete
policy for playing chess. This is because we might encounter a position
for which no tactic matches. In this case, our model cannot make a move.
There might also be positions to which multiple tactics apply, in which
case an arbitration process for selecting a single move among the various
suggestions is not obvious.

Tactic Utility Metrics

We introduce two metrics, coverage and divergence, to measure the utility
of a learned tactic.

Coverage
A tactic t’s coverage for a set of positions P is calculated as:

Coverage
P

P
=t

match

where a position p ∈ Pmatch if there is a binding assignment of the
variables in the rule head of the tactic t to the position p.

Divergence
To measure the quality of moves suggested by a tactic, we extend a metric
previously used to analyze world chess champions (Guid & Bratko 2006;

FIGURE 6.2 A Prolog pseudo-definition for a
tactic. “!” is the Prolog cut operator.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 127

2011; Romero 2019) to multiple moves using discounted cumulative
gain (DCG) (Järvelin & Kekäläinen 2002). A move’s error in a position
p is measured by comparing it to the best move suggested by the engine
in that position. This comparison is done quantitatively by using the
engine’s move evaluation function eval(·,p). In case an engine evaluates
a position to be a ‘Mate in X’ rather than a centipawn score (a com-
monly used metric in computer chess to evaluate a position; defined as
1/100ths of the value of a pawn), we assign an arbitrary large value to
the evaluation.

move p eval move p eval move pError(,) = | (,) (,)|engine

Since a tactic might suggest multiple moves, we propose the use of DCG
as a metric to compare ranked move suggestion lists. Assuming the list of
suggestions output by a tactic to be in ranked order, we obtain a list of
best moves from the engine of similar length as the suggestions, and
compare the two using DCG. Thus, the final divergence metric for a
tactic t over a set of positions P is:

Divergence
P

Error m p
log i

= 1 (,)
(1 +)t

match p P i

M
i

=1 2match

t

where Mt is the ranked list of move suggestions output by a tactic, and mi is
the ith move in Mt. The divergence of a tactic (to the reference engine) is
low and close to 0 when its suggestions are similar in evaluation to the
engine’s best moves, and takes on large values when it differs substantially.

Implementation using PAL

We use the PAL system to synthesize tactics. We select seven patterns
that PAL was shown to learn, and modify them to output a move sug-
gestion. These patterns and their verbal definitions are listed in Table 6.1.
All patterns learned other than pin are one-ply dynamic patterns, which
means they include a single make_move predicate in the rule body
looking ahead one move. We modify these patterns to introduce a
suggestion predicate with the same variables as make_move. For pin,
which is a static pattern as learned by PAL, we convert it into a dynamic
pattern as shown in Figure 6.3 and introduce the suggestion predicate in
the same way.

128 ▪ Explainable Agency in Artificial Intelligence

EVALUATION
We wish to investigate whether the synthesized tactics tend to suggest
good moves to play. We do this by measuring coverage and divergence
for each of our tactics over a set of positions using both a strong and a
weak reference engine. For our strong reference engine, we use Stockfish
14, the winner of the TCEC 2020 Championship (Haworth & Hernandez
2021). For our weak reference engine, we use Maia Chess (McIlroy-
Young et al. 2020), a chess engine trained to produce human-like moves.
We use the maia1 model, which is targeted toward 1100 ELO (a measure
of relative playing strength, and roughly equal to a beginner). We limit
the search depth to one-ply for both Stockfish 14 and Maia 1100 to
resemble our tactics. As a baseline, we use a random tactic which is
applicable to all positions and produces a random legal move in the
position. We limit the number of suggestions from a tactic to 3, and

TABLE 6.1 Patterns Learned by the PAL System That Are Used to Create Tactics

Pattern Definition

can_threat A piece (P1) can threaten another piece (P2) after making a move
to (X3,Y3)

can_fork A piece (P1) can produce a fork to the opponent’s King and
another piece (P3) after making a move to (X4,Y4)

can_check A piece (P1) can check the opponent’s King after moving to
(X3,Y3)

discovered_check A check by piece (P2) can be “discovered” after moving another
piece (P1) to (X4,Y4)

discovered_threat A piece (P1) can threaten an opponent’s piece (P3) after moving
another piece (P2) to (X4,Y4)

skewer A King in check by a piece (P1) “exposes” another piece (P3) when
it is moved out of check to (X4,Y4)

pin A piece (P3) cannot move because it will produce a check on its
own side by piece (P1)

FIGURE 6.3 Modified PAL rule for the pin pattern to convert it into a tactic.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 129

assume the output order of tactic suggestions as the intended ranked
order. For ease of implementation, we manually translated the tactics
from Prolog definitions to Python functions. We use 5,000 games from
the January 2013 archive of standard rated games played on lichess.com
(lichess.org 2021). For each game, we generate positions by iterating
through the move list, making the move, and adding the resulting
position to the evaluation set. In total, we generate 325,830 positions.

RESULTS AND ANALYSIS
We summarize the results of our evaluation in Table 6.2. From the high
coverage values obtained, we conclude that tactics like can_threat and
discovered_threat are too general, whereas tactics like discovered_threat
are too specific. Tactics like can_check, can_fork, and skewer strike a
balance between these extremes.

From the divergence metrics calculated using Maia 1100 (our weak
engine), we see that most of our tactics have lower divergence scores than
our random baseline, indicating that they tend to produce moves that are
evaluated somewhat similarly to a weak engine’s best moves. For
Stockfish 14 (SF14), however, all our tactics have higher divergence
scores than random, indicating that they do not tend to produce moves
similar to a strong engine. Thus, we qualitatively conclude that our
tactics resemble that of a beginner chess player.

PROPOSED EVALUATION
We propose an experiment to investigate whether the identified set of
tactics are useful for a human player to learn in order to generate good
moves. To do this, we will measure the win-rate of a chess engine against

TABLE 6.2 Coverage and DCG for Each Tactic

Tactic Coverage Divergence

SF14 Maia

can_threat 0.96 378.94 9.22
can_check 0.45 549.19 4.02
can_fork 0.32 676.45 4.67
discovered_check ≈0 338.55 18.64
discovered_threat 0.96 375.97 1.19
skewer 0.22 748.4 5.41
pin 0.79 526.45 4.9
random 1 328.09 8.28

130 ▪ Explainable Agency in Artificial Intelligence

a version of itself augmented with these tactics. As a human proxy, we
plan to use Maia Chess, specifically the maia1 model targeted toward
1100 ELO. We will play games between the engines of 30 minutes +
5 seconds time control, following the TCEC League rules (kanchess
2021) and starting from the default start position. As before, we will limit
the evaluation depth of the search tree for the augmented and un-
augmented engines to 1. We measure the divergence scores for our tactics
with a strong reference engine (Stockfish 14). We will modify the action-
selection procedure of Maia Chess to utilize the first suggestion of the
lowest divergence tactic applicable to a given position, instead of the en-
gine’s move choice. This is made explicit in Algorithm 1. Finally, we will
compare the win rates of the augmented engine against the unmodified
version of itself over multiple games. Our hypothesis is that the augmented
engine will have significantly higher win rate, enabling us to conclude that
the set of tactics tend to suggest good moves.

Algorithm 1: Augmented engine move selection

Input: Set of tactics T, position p, chess engine move selection procedure
C.make_move(·)

Output: Legal move in position p
1: move ← C.make_move(p)
2: min_divg ← ∞
3: for t ∈ T do
4: if t matches p and divg(t) < min_divg then
5: move ← t.suggestion
6: min_divg ← divg(t)
7: end if
8: end for
9: return move

CONCLUSION AND FUTURE WORK
We have described a symbolic sub-policy model for chess inspired by the
pattern-action model of chess tactics. We have used patterns learned by
an ILP system to construct these tactics. We have contributed a metric
for measuring the divergence of these tactics to a reference chess-playing
agent. We evaluated a set of tactics learned by a chess pattern learning
system using our metric to find that they resembled a weak engine, but
were not similar to a strong one.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 131

We use patterns learned by PAL to obtain our tactics. However, PAL
uses manual labeling of generated examples to learn specific concepts,
and requires additional effort to convert the learned patterns into tactics
for our model. We aim to investigate the automatic learning of tactics
from a data set of chess positions and move suggestions using ILP as
implemented by modern systems like Popper (Cropper & Morel 2021).
Future work could investigate alternate ILP algorithms (e.g., the δILP
system (Evans & Grefenstette 2018)) that use our divergence metric as a
loss function to optimize tactics.

Our tactic model is loosely inspired by how chess tactics are learned and
practiced. However, our tactics are limited to looking 1-ply in the future
(i.e., they can recognize only the presence of a matching pattern in the
immediately next position). Many chess tactics suggest combinations of
moves, a series of moves where the matching pattern shows up only in a
particular sequence (see Figure 6.4). Extending the tactic model to express
and recognize such combinations will be a useful avenue for future work.
We also wish to investigate the expression of longer-term plans from chess
literature like centre control and pawn structure using tactics.

Our appeal to the interpretability of these tactics rests on similar
claims made regarding the interpretability of rule-based strategies.
Future work will involve rigorously testing these assumptions with user
studies using evidence-based measures of interpretability (Lage et al.
2019; Kliegr, Bahník, & Fürnkranz 2021). Specifically, we wish to
investigate the ease of learning and applying these tactics in real games
played by human players.

NOTE

1. Fruit fly; easily bred and thus extensively used in genetics research.

FIGURE 6.4 An example of the limitations of our
one-ply can_fork tactic. White has no immediate
forking move here, leading to the tactic not
matching. However, if they play 1. Nxb4, then
Black’s best response is 1 … . Rxc7 which allows a
fork with 2. Nd5+ leading to the capture of the
rook.

132 ▪ Explainable Agency in Artificial Intelligence

REFERENCES

Andrei, M. (2021). A supercomputer helped set up the World Chess
Championship game. Accessed: 2021-10-27.

Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learning
via policy extraction. arXiv preprint arXiv:1805.08328.

Benbassat, A., & Sipper, M. (2011). Evolving board-game players with genetic
programming. In Proceedings of the Thirteenth Annual Genetic and
Evolutionary Computation Conference (Conference Companion) (pp. 739
–742). ACM Press.

Berliner, H. J. (1975). A representation and some mechanisms for a problem-solving
chess program (Technical report). Department of Computer Science,
Carnegie-Mellon University.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D.,
Fischer, Q., Hashme, S., Hesse, C. & Józefowicz, R. (2019). Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680.

Bramer, M. A. (1977). Representation of knowledge for chess endgames towards a
self-improving system. [Doctoral Dissertation, Open University (United
Kingdom)].

Bratko, I. (1982). Knowledge-based problem-solving in AL3. Machine Intelligence,
10, 73–100.

Broll, B., Hausknecht, M., Bignell, D., & Swaminathan, A. (2019). Customizing
scripted bots: Sample efficient imitation learning for human-like behavior
in Minecraft. In AAMAS Workshop on Adaptive and Learning Agents.

Buntine, W. (1988). Generalized subsumption and its applications to induction
and redundancy. Artificial Intelligence, 36(2), 149–176.

Butler, E., Torlak, E., & Popovic, Z. (2017). Synthesizing interpretable strategies
for solving puzzle games. In Proceedings of the Twelfth International
Conference on the Foundations of Digital Games (pp. 1–10). Hyannis, MA:
ACM Press.

Canaan, R., Shen, H., Torrado, R., Togelius, J., Nealen, A., & Menzel, S. (2018).
Evolving agents for the Hanabi 2018 CIG competition. In Proceedings of
the IEEE Conference on Computational Intelligence and Games (pp. 1–8).
IEEE Press.

Connors, M. H., Burns, B. D., & Campitelli, G. (2011). Expertise in complex
decision making: the role of search in chess 70 years after de Groot.
Cognitive Science, 35(8), 1567–1579.

Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A., Miller, T., Weber, R., &
Magazzeni, D. (2019). Distilling deep reinforcement learning policies in
soft decision trees. In T. Miller, R. Weber, D. Aha, & D. Magazzeni (Eds.)
Explainable Artificial Intelligence: Papers from the IJCAI Workshop.
[https://drive.google.com/file/d/1ma5wilaj31A0d5KC4I2fYaTC_Lqm_
d9X/view].

Cropper, A. & Dumančić, S. (2020). Inductive logic programming at 30: Aa new
introduction. arXiv preprint arXiv:2008.07912.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 133

https://drive.google.com
https://drive.google.com

Cropper, A. & Morel, R. (2021). Learning programs by learning from failures.
Machine Learning, 110(4), 801–856.

Derner, E., Kubalík, J., & Babuška, R. (2018). Data-driven construction of sym-
bolic process models for reinforcement learning. In Proceedings of the IEEE
International Conference on Robotics and Automation (pp. 5105–5112). IEEE
Press.

de Freitas, J. M., de Souza, F. R., & Bernardino, H. S. (2018). Evolving controllers
for Mario AI using grammar-based genetic programming. In Proceedings
of the Congress on Evolutionary Computation (pp. 1–8). Rio de Janeiro:
IEEE Press.

de Groot, A. D. (1946). Het denken van den schaker: een experimenteel-psychologische
studie. Noord-Hollandsche Uitgevers Maatschappij Amsterdam.

Evans, R. & Grefenstette, E. (2018). Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61, 1–64.

Guid, M. & Bratko, I. (2006). Computer analysis of world chess champions.
ICGA Journal, 29(2), 65–73.

Guid, M. & Bratko, I. (2011). Using heuristic-search based engines for esti-
mating human skill at chess. ICGA Journal, 34(2), 71–81.

Haworth, G. & Hernandez, N. (2021). The 20th Top Chess Engine Championship.
ICGA Journal, (Preprint), 1–12.

Huberman, B. J. (1968). A program to play chess end games (Technical Report
65). Department of Computer Science, Stanford University.

Järvelin, K. & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4), 422–446.

kanchess. 2021. TCEC Leagues Season Rules. Accessed: 2021-10-27.
Kliegr, T., Bahník, Š. & Fürnkranz, J. (2021). A review of possible effects of

cognitive biases on interpretation of rule-based machine learning models.
Artificial Intelligence, 295, 103458.

Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman, S. J., & Doshi-
Velez, F. (2019). Human evaluation of models built for interpretability. In
Proceedings of the Seventh AAAI Conference on Human Computation and
Crowdsourcing (pp. 59–67). Stevenson, WA: AAAI Press.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P., Glatt, R., Mundhenk, N.,
Pettit, J. F., & Faissol, D. (2021). Discovering symbolic policies with deep
reinforcement learning. In Proceedings of the 38th International Conference
on Machine Learning (pp. 5979–5989). PMLR 139.

Levinson, R. & Snyder, R. (1991). Adaptive pattern-oriented chess. In
Proceedings of the Eighth International Workshop on Machine Learning
(pp. 85–89). Evanston, IL: Morgan Kaufmann.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu,
T.-Y., & Hon, H.-W. (2020). Suphx: Mastering mahjong with deep
reinforcement learning. arXiv preprint arXiv:2003.13590.

lichess.org (2021). lichess.org open database. https://database.lichess.org. Accessed:
2021-10-27.

134 ▪ Explainable Agency in Artificial Intelligence

https://database.lichess.org

Mariño, J. R. H., Rubens, O., Moraes, T. C., Oliveira, C. T., & Lelis, L. H. S. (2021).
Programmatic strategies for real-time strategy games. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 381–389). AAAI
Press.

McCarthy, J. (1990). Chess as the drosophila of AI. In T. A. Marsland &
J. Schaeffer (Eds.) Computers, Chess, and Cognition. New York, NY:
Springer.

McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A., Hassabis, D., Kim, B.,
Paquet, U., & Kramnik, V. (2021). Acquisition of chess knowledge in
AlphaZero. arXiv preprint arXiv:2111.09259.

McIlroy-Young, R., Sen, S., Kleinberg, J., & Anderson, A. (2020). Aligning
superhuman AI with human behavior: Chess as a model system. In
Proceedings of the Twenty-Sixth ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (pp. 1677–1687). ACM Press.

Moore, S., & Stamper, J. C. (2019). Exploring expertise through visualizing agent
policies and human strategies in open-ended games. In EDM (Workshops),
30–37.

Morales, E. (1992). First order induction of patterns in Chess. Ph.D. thesis, The
Turing Institute, University of Strathclyde.

Osborn, J. C., Samuel, B., & Mateas, M. 2018. Visualizing the strategic landscape
of arbitrary games. Information Visualization, 17(3), 196–217.

Pascutto, G.-C. & Linscott, G. (2019). Leela Chess Zero (v0.21.0).
Pitrat, J. (1977). A chess combination program which uses plans. Artificial

Intelligence, 8(3), 275–321.
PTI. (2016). World Chess Championship: Role of the ‘seconds’ [Accessed: 2021-

10-27]. [https://www.thehindu.com/sport/other-sports/world-chess-
championship-role-of-the-seconds/article5313784.ece]

Puiutta, E. & Veith, E. M. (2020). Explainable reinforcement learning: A survey.
In Proceedings of the International Cross-Domain Conference for Machine
Learning and Knowledge Extraction (pp. 77–95). Springer.

Romero, O. (2019). Computer analysis of world chess championship players.
ICSEA 2019, 212.

Romstad, T., Costalba, M., & Kiiski, J. (2021). Stockfish 14 [Computer software].
Retrieved from https://stockfishchess.org/blog/2021/stockfish-14/

Sadler, M., & Regan, N. (2019). Game changer: AlphaZero’s groundbreaking
chess strategies and the promise of AI. Alkmaar. The Netherlands: New in
Chess.

Shannon, C. E. (1950). Programming a computer for playing chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
41(314), 256–275.

Sieusahai, A. & Guzdial, M. (2021). Explaining deep reinforcement learning
agents in the Atari domain through a surrogate model. In Proceedings of
the Seventeenth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (pp. 82–90). AAAI Press.

Towards the Automatic Synthesis of Interpretable Chess Tactics ▪ 135

https://www.thehindu.com
https://www.thehindu.com
https://stockfishchess.org

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. & Dieleman,
S. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, & Lillicrap, T. (2018). A general
reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419), 1140–1144.

Smith, R. (2004). Modern chess analysis. Gambit. ISBN 9781904600084.
Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. (2004). Online adaptation of

game opponent AI with dynamic scripting. International Journal of
Intelligent Games and Simulation, 3(1), 45–53.

Trivedi, D., Zhang, J., Sun, S.-H., & Lim, J. J. (2021). Learning to synthesize
programs as interpretable and generalizable policies. Advances in Neural
Information Processing Systems, 34, 25146–25163.

Tukmakov, V. (2020). Modern chess formula: The powerful impact of engines.
Thinkers Publishing. ISBN 9789492510815.

Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. (2018). Programmati-
cally interpretable reinforcement learning. In Proceedings of the Thirty-Fifth
International Conference on Machine Learning (pp. 5045–5054). PMLR 80.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,
Choi, D. H., Powell, R., Ewalds, T., Georgiev, P. & Oh, J. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature,
575(7782), 350–354.

Wilkins, D. E. (1979). Using patterns and plans to solve problems and control
search. Stanford University.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1881), 3717–3725.

Zhou, Y. (2018). Rethinking opening strategy: AlphaGo’s impact on pro play.
CreateSpace, 1(36), 212.

136 ▪ Explainable Agency in Artificial Intelligence

C H A P T E R 7

The Need for Empirical
Evaluation of
Explanation Quality

Nicholas Halliwell1, Fabien Gandon1,
Freddy Lecue1,2, and Serena Villata1

1Inria, Université Côte d’Azur, CNRS, France
2CortAIx, Thales, Montreal, Canada

INTRODUCTION
Deep learning models are used to serve automated decisions in settings
such as banks, insurance, and health care. These models are typically
treated as a black box, where no insight is given as to how they make
decisions. This lack of transparency has hindered adoption of these
models into production. Much research has been devoted to developing
algorithms, or explanation methods, to interpret their predictions.

Indeed, there are many approaches for generating post-hoc explana-
tions. For example, feature importance methods (Lundberg & Lee 2017;
Ribeiro, Singh, & Guestrin 2016; Kim et al. 2018) identify relevant
dimensions and assign a score to rank their importance relative to the
other dimensions. For image data, saliency maps (Simonyan, Vedaldi, &
Zisserman 2014; Springenberg et al. 2015; Bach et al. 2015; Selvaraju et al.
2016; Shrikumar, Greenside, & Kundaje 2017; Shrikumar et al. 2016;
Zeiler & Fergus 2014; Smilkov et al. 2017; Sundararajan, Taly, & Yan
2017; Montavon et al. 2017) identify relevant pixels in the input image.
Counterfactual explanations (Wachter, Mittelstadt, & Russell 2017)
determine the smallest possible perturbation to the given input that will

DOI: 10.1201/9781003355281-7 137

https://doi.org/10.1201/9781003355281-7

change the prediction to a desired target outcome. Lastly, prototype
explanations (Chen et al. 2019; Li et al. 2018; Ming et al. 2019) learn a
continuous vector that represents a “typical” training example, where
explanations are given based on their relative distance to a prototype
vector.

The prototype network architecture from Li et al. (2018) combines
an autoencoder with a prototype layer, where each observation in the
training set is classified based on its distance to a prototype vector.
The encoded input from the autoencoder is used as features for
predictions downstream. The prototype vectors learned by this net-
work are defined as typical observations in the training set and,
because they are learned in the same space as the encoded input, they
can be mapped back into the original input space for visualization
using the decoder.

Explanations are given in the form of a most similar prototype vector.
The specific architecture of this network allows us to further develop and
improve the types of explanations generated post hoc.

This chapter expands the type of explanations generated by the pro-
totype network to identify relevant features in the input space. Due to the
architecture of this network, the latent features learned by the model can
be exploited to identify relevant input space features. We make use of the
network’s encoded input to randomly set latent features to zero, and use
the network’s decoder to determine which input space values changed
the most. Finally, this work allows us to open a general discussion about
generating explanations, identifying when one explanation method is
preferable to another, and the complications that arise when measuring
explanation quality.

PROTOTYPE NETWORK
This section provides necessary background information on the proto-
type network from Li et al. (2018), including the architecture and loss
function.

ARCHITECTURE DETAILS
The prototype network architecture can be visualized in Figure 7.1. It
consists of an autoencoder (the encoder defined as f R R: p q and the
decoder, defined as g R R: q p), a prototype layer p R R: q m, and a
dense (fully connected) layer w R R: m K that feeds into a softmax

138 ▪ Explainable Agency in Artificial Intelligence

layer. The prototype layer takes as input encoded training points,
denoted f x()i , and computes the L2 distance between f x()i and m
prototype vectors denoted p p R, …, m

q
1 . The overall network is

given by h R R: q K . In this prototype network architecture, obser-
vations are classified based on their distance to a prototypical observa-
tion, and the loss function ensures that each prototype vector is similar
to an encoded training point. We denote the data set D x y= {(,)}i i i

n
=1,

where y K{1, …, }i and K being the number of classes.

LOSS FUNCTION
The loss function given by Li et al. (2018) is broken down into the fol-
lowing four parts below:

E h f D
n

y k log h f x(,) = 1 1[=] (() ())
i

n

k

K

i k i
=1 =1

(7.1)

R g f D
n

g f x x(,) = 1 ||()() ||
i

n
i i

=1
2 (7.2)

R p p D
m

min p f x(, …, ,) = 1 || ()||m
j

m
i n j i1 1

=1
[] 2 (7.3)

R p p D
n

min f x p(, …, ,) = 1 || () ||m
i

n
i m i j2 1

=1
[] 2 (7.4)

FIGURE 7.1 Prototype network architecture (Li et al. 2018).

The Need for Empirical Evaluation of Explanation Quality ▪ 139

The complete loss function is given by

L f g h D E h f D R g f D
R p p D R p p D

((, ,),) = (,) + (,)
+ (, …, ,) + (, …, ,)m m

0

1 1 1 2 2 1
(7.5)

where , ,0 1 2 are hyperparameters.

PROPOSED APPROACH
The encoder function f maps a p dimensional vector to a q dimensional
vector where p q> . This encoded input contains relevant information
for classification, as it is used as features downstream, and is using a
lower-dimensional representation of the input data. Identifying relevant
information in the encoded latent space should provide further insight
into how the model is making decisions. For some observation x, we
want an explanation for, we encode the input using the prototype
network’s encoder f . We then make m copies of the encoded input
f x(), and apply m different masks element-wise. Each mask, denoted
mi, is the same dimensions as the encoded input f x(), where each
element of a mask is assigned a 1 with 90% probability and a 0 with 10%
probability. The element-wise product is then averaged across the m
masks, given by:

f x
m

f x mˆ () = 1 ()
i

m
i i

=1
(7.6)

The result f xˆ () is then decoded by the prototype network’s decoder g
for visualization, given by:

g g f xˆ = (ˆ ()) (7.7)

To identify the relevant dimensions in the input space, the input is
mapped through the encoder and then decoded, denoted g f x(ˆ ()). We
then compute the absolute difference between the decoded input and the
decoded masked input given by:

x g g f x= |ˆ (())| (7.8)

140 ▪ Explainable Agency in Artificial Intelligence

where x gives the feature importance scores of x for each dimension.
Here, the absolute difference gives the features in the input space with
the largest change. The code for this chapter is available online.1

EXPERIMENTS

Image Data

With image data, we have the ability to visualize the explanation. We
train a prototype network on the MNIST data set (LeCun et al. 1998)
with three encoding layers, three decoding layers, one prototype layer,
and one fully connected layer. This model learns ten prototype vectors
(one for each class), achieving 99.1% accuracy on the test set.

Figure 7.3 shows saliency maps of the proposed approach for each
image in Figure 7.2. We can see that the proposed approach produces
saliency maps that outline the digit in the original image. We perform
the model parameter randomization and data randomization test
(Adebayo et al. 2018). The model parameter randomization test gener-
ates saliency maps from a model with untrained, random parameters.
The resulting saliency maps should be random noise. The data ran-
domization test trains a model where the training labels have been
randomly shuffled. Like the model parameter randomization test, the
resulting saliency maps should be random noise and the end user should
not be able to determine the object in the image. Figure 7.4 shows

FIGURE 7.2 MNIST images.

FIGURE 7.3 Saliency maps: Proposed approach.

FIGURE 7.4 Saliency maps: Proposed approach-randomly initialized untrained
network.

The Need for Empirical Evaluation of Explanation Quality ▪ 141

saliency maps from an untrained prototype network with randomly
initialized parameters (model parameter randomization test). Figure 7.5
shows saliency maps for a model trained on random labels (data ran-
domization test). From these figures, we can see the proposed approach
passes the model parameter randomization test but fails the data ran-
domization test. In other words, the proposed approach to generating
explanations is not providing insight into what the model has learned.

Tabular Data

We demonstrate our approach on a well-known tabular data set, the
California Housing data set (Pace & Barry, 1997). Here, we are tasked
with determining if houses should be sold above or below the median
price. We train a prototype network on the California Housing data set
with two encoding layers, two decoding layers, one prototype layer, and
one fully connected layer. This model learns two prototype vectors,
achieving 84.2% accuracy on the test set.

Figure 7.6 compares relevant features identified by Lime (Ribeiro,
Singh, & Guestrin 2016) to our proposed approach for selected obser-
vations. For both observations, we can see that the top three dimensions
with the highest attribution scores are the same for both explanation
methods. Although both explanations are similar, they are not exactly
equal. From these examples, which explanation method is actually dis-
playing what the model has learned? In other words, which explanation
method is preferable to the other? These questions are difficult to answer
without ground truth explanations to quantitatively compare against.

FIGURE 7.5 Saliency maps: Proposed approach-network trained on randomly
permuted labels.

Lime features:
Observation 1

Proposed features:
Observation 1

Lime features:
Observation 2

Proposed features:
Observation 2

FIGURE 7.6 Explanations generated by Lime and the proposed approach on
California Housing data set.

142 ▪ Explainable Agency in Artificial Intelligence

DISCUSSION
From the experiments on tabular and image data, we found our approach
produced what looked like faithful explanations on both types of data. After
using the robustness tests from Adebayo et al. (2018) on an image data set,
we were able to determine that this was not the case. For image data, we
have the ability to visually verify any explanation generated in the input
space. With tabular data, we do not have this luxury. Depending on the type
of data used for experimentation, researchers can be misled into thinking
the explanations their model is generating are faithful because they are
similar to a state-of-the-art method. With ground truth explanations, re-
searchers would not have to rely on previous state-of-the-art explanation
methods to determine if their approach is generating faithful explanations.

In general, this is a common problem in the field of XAI. When a new
explanation method is proposed, researchers often show several “good
looking” examples to display to the reader the capability of the proposed
method. Comparisons against a state-of-the-art method typically involve
a small number of cherry-picked examples to demonstrate the ability of
an explanation method. This can be misleading. Indeed, a small number
of selected examples do not truly represent how the explanation method
is performing on the entire test set. As we demonstrated on the tabular
data set, our proposed approach can compete with Lime on “selected”
examples. However, this is not conclusive evidence that this explanation
method is preferable to Lime. In order to accurately determine which
explanation method is preferable, ground truth explanations are needed.
In this chapter, we propose an explanation method for the sole purpose
of demonstrating that the current standard for developing explanation
methods does not rigorously evaluate the quality of explanations pro-
duced. This can lead to explanation methods producing explanations
that do not truly reflect what the model has learned.

Defining ground truth explanations may be more difficult for different
tasks, and different types of data. Additionally, there may be more than
one way to explain a particular observation. Data sets with ground truth
explanations must include all possible ways to explain each observation.
Failing to include all possible ground truth explanations can unfairly
penalize an explanation method for identifying a correct explanation not
included in the ground truths.

There is existing work on qualitative evaluation of explanations.
Poursabzi-Sangdeh et al. (2021) perform a user experiment to determine

The Need for Empirical Evaluation of Explanation Quality ▪ 143

what makes a model interpretable. Jeyakumar et al. (2020) perform a
user experiment to determine what style of explanation is preferred by
users. Adebayo et al. (2020) develop a series of debugging tests, and
include a user experiment to determine if users can identify defective
models. Not much existing research focuses on quantitatively evaluating
all test set explanations for quantitative comparisons across explanation
methods. Relying on users to evaluate each explanation in the test set
does not scale to large data sets, and cannot be performed on certain
types of data (tabular data for example, users shown an explanation
would not know if it is an accurate explanation or not). Additionally,
users without a background in machine learning may not be able to
determine a good explanation. For quantitative evaluations of explana-
tions that scales to large data sets, scoring metrics must be defined that
give an accurate representation of the explanation method’s perform-
ance. Scoring metrics that measure explanation quality can be formally
defined with ground truth explanations. Recently, researchers have
proposed several data sets with ground truth explanations. For example,
this includes the Royalty-20k and Royalty-30k data sets (Halliwell,
Gandon, & Lecue 2021a) and the FrenchRoyalty-200k data set (Halliwell,
Gandon, & Lecue 2021b), which were proposed along with several
scoring metrics to quantitatively evaluate explanations. These data sets
are Knowledge Graphs; they are limited to evaluating explanation
methods of link prediction models on Knowledge Graphs.

CONCLUSION
In this chapter, we proposed a method to expand prototype networks to
identify relevant features in the input space. We compared selected ex-
amples against a state-of-the-art explanation method on tabular data and
verified that the explanations are similar. On image data, however, our
approach passes the model parameter randomization test but fails the
data randomization test. It is common practice in the field of XAI to
compare explanation methods using a few selected examples. This is not
a thorough evaluation of explanation quality.

We discussed the development of explanation methods, identifying
when one explanation method is preferable to another, and the compli-
cations that arise when measuring explanation quality. Much research in
the field of XAI is devoted to developing new explanation methods. This
chapter points out that more work should be devoted to evaluating the

144 ▪ Explainable Agency in Artificial Intelligence

quality of explanation generated. Many of these issues can be solved with
ground truth explanations. We recognize this can be difficult with tabular
data. Research should be devoted to defining ground truth explanations for
all domains in order to quantitatively evaluate explanations.

NOTE

1. https://github.com/halliwelln/prototype-explanations.

REFERENCES

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I. J., Hardt, M., & Kim, B.
(2018). Sanity Checks for Saliency Maps. In S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems 31.

Adebayo, J., Muelly, M., Liccardi, I., & Kim, B. (2020). Debugging Tests for
Model Explanations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, & H. Lin (Eds.), Advances in Neural Information Processing
Systems. Curran Associates, Inc.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Muller, K.-R., & Samek, W.
(2015). On Pixel-Wise Explanations for Non-Linear Classifier Decisions by
Layer-Wise Relevance Propagation. PLOS ONE.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su J. (2019). This Looks Like
That: Deep Learning for Interpretable Image Recognition. In H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, & R.
Garnett (Eds.), Advances in Neural Information Processing Systems 32.

Halliwell, N., Gandon, F., & Lecue, F. (2021a). Linked Data Ground Truth for
Quantitative and Qualitative Evaluation of Explanations for Relational
Graph Convolutional Network Link Prediction on Knowledge Graphs. In
International Conference on Web Intelligence and Intelligent Agent
Technology. Melbourne, Australia.

Halliwell, N., Gandon, F., & Lecue, F. (2021b). User Scored Evaluation of Non-
Unique Explanations for Relational Graph Convolutional Network Link
Prediction on Knowledge Graphs. In International Conference on
Knowledge Capture. Virtual Event, United States.

Jeyakumar, J. V., Noor, J., Cheng, Y., Garcia, L., & Srivastava, M. B. (2020). How
Can I Explain This to You? An Empirical Study of Deep Neural Network
Explanation Methods. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
& H. Lin (Eds.), Advances in Neural Information Processing Systems 33.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler, J., Viégas, F. B., & Sayres,
R. (2018). Interpretability Beyond Feature Attribution: Quantitative
Testing with Concept Activation Vectors (TCAV). In J. G. Dy & A. Krause
(Eds.), Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholm, Sweden, Proceedings of Machine Learning
Research. PMLR.

The Need for Empirical Evaluation of Explanation Quality ▪ 145

https://github.com

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the Institute of Radio
Engineers.

Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep Learning for Case-Based
Reasoning Through Prototypes: A Neural Network That Explains Its
Predictions. In S. A. McIlraith & K. Q. Weinberger (Eds.), Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI Press.

Lundberg, S. M., & Lee, S. (2017). A Unified Approach to Interpreting Model
Predictions. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R.
Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), Advances in Neural
Information Processing Systems 30.

Ming, Y., Xu, P., Qu, H., & Ren, L. (2019). Interpretable and Steerable Sequence
Learning via Prototypes. In A. Teredesai, V. Kumar; Y. Li, R. Rosales, E.
Terzi, & G. Karypis (Eds.), Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
2019. ACM.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Muller, K. (2017).
Explaining nonlinear classification decisions with deep Taylor decompo-
sition. Pattern Recognition Pace, R. K.; and Barry, R. 1997. Sparse spatial
autoregressions. Statistics & Probability Letters, 33, 291.

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W., &
Wallach, H. M. (2021). Manipulating and Measuring Model Interpretability.
In Y. Kitamura, A. Quigley, K. Isbister, T. Igarashi, P. Bjørn, & S. M. Drucker
(Eds.), CHI ’21: CHI Conference on Human Factors in Computing
Systems. ACM.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. In B. Krishnapuram, M. Shah,
A. J. Smola, C. C. Aggarwal, D. Shen, & R. Rastogi (Eds.), Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D.
(2016). Grad-CAM: Why did you say that? Visual Explanations from Deep
Networks via Gradient-based Localization. CoRR, abs/1610.02391.

Shrikumar, A., Greenside, P., Shcherbina, A., & Kundaje A. (2016). Not Just a
Black Box: Learning Important Features Through Propagating Activation
Differences. CoRR abs/1605.01713.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning Important
Features Through Propagating Activation Differences. In (Precup and Teh
2017).

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. In
Y. Bengio & Y. LeCun (Eds.), 2nd International Conference on Learning
Representations, ICLR 2014, Workshop Track Proceedings.

Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., & Wattenberg, M. (2017).
SmoothGrad: removing noise by adding noise. CoRR, abs/1706.03825.

146 ▪ Explainable Agency in Artificial Intelligence

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2015).
Striving for Simplicity: The All Convolutional Net. In Y. Bengio &
Y. LeCun (Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, Workshop Track Proceedings.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep
Networks. In (Precup and Teh 2017).

Wachter, S., Mittelstadt, B. D., & Russell, C. (2017). Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GDPR.
CoRR, abs/1711.00399.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional
Networks. In D. J. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.),
Computer Vision – ECCV 2014 – 13th European Conference, Lecture Notes in
Computer Science. Springer. ISBN 978-3-319-10589-5.

The Need for Empirical Evaluation of Explanation Quality ▪ 147

Index

actor-critic methods, 87–88, 91
agency

explainable, 2, 5, 12, 16–17, 43
justified, 2, 15–17
normative, 2, 12–14, 16

Agent Smith, 77–79
Amatai, Y., 21
Amir, O., 21
An, S., 70
AskJill, 72, 75–83

chess pattern learning, 123, 131
chess tactics, 122–123, 127, 131
cognitive structure, 1
cognitive systems, 44
computational evaluations, 32

data-driven learning, 43–44, 46, 66
decision tree

induction, 51, 88
policy, 28, 30, 88–93, 105–107, 111,

114, 116–117
design knowledge, 70, 76, 78, 82
divergence, 122, 127–132

explainable artificial intelligence, 21, 31,
34, 45, 143–144

explainable planning, 2
explanation, 2–4

associational, 4
by demonstration, 23, 26–29
derivational, 4
generation, 45, 50, 52, 58, 89
global, 24–26
ground truth, 142–145
local, 24

on-demand, 44
preference, 7–8
process, 9–12
quality, 138, 144
by representation, 23
self, 1–5, 7–9, 11, 17, 82
structural, 5–6, 8, 12

explanatory structure, 2–3

Fang, F., 86

Gandon, F., 137
Goel, A., 70
Gregori, E., 70

Halliwell, N., 137

inductive logic programming, 122–125,
131–132

integrated robot systems, 44, 46, 66
intelligent agent, 11
intelligent robot, 2
interactive learning, 47, 50
interactive learning environment, 72,

75, 82
interpretable

machine learning, 21–22
methods, 25
models, 46
policy, 92, 97
representations, 26–28, 32, 122
surrogate model, 123

IVIPER, 89–94, 97, 99, 101–117

Kamhoua, C., 86
knowledge-based reasoning, 43–44, 46

148

Krishnan, A., 121

Langley, P., 1
Lecue, F., 137

Martens, C., 121
MAVIPER, 88–90, 93–97, 99, 101–117
mental simulation, 53
Milani, S., 86

Nandan, V., 70
non-monotonic logical reasoning, 45, 47,

49–50, 53, 66

opaque models, 1

PAL, 122, 125–126, 128–129, 132
Papalexakis, E.E., 86
probabilistic models of uncertainty,

47, 50
prototype network, 138–142, 144

qualitative evaluation, 144–145
question answering, 70–72, 75–77, 79,

82–83

reinforcement learning, 21–23, 121
explainable, 22, 24–26, 34, 36–37,

122–123
global explainable, 22–23, 28, 34–37
interpretable, 116
multi-agent, 87–88, 91–92, 116–117

relational descriptions, 44–48, 50, 52, 54,
57, 65–66

robotics, 43
assistive, 48

Rugaber, S., 70
rule-based

agents, 123
explanations, 23, 26–28, 30, 32
frameworks, 3
query template, 76
strategies, 132

saliency maps, 137, 141–142
self-regulated learning, 72–73
Shi, Z.R., 86
Sridharan, M., 43
step-wise iterative refinement, 46
studies

case, 32
user, 32–33

sub-policy model, 122–123, 127, 131

Topin, N., 86

user guide, 70–73, 75, 77–79, 82, 83

Villata, S., 137
VIPER, 28, 89–92
Virtual Experimentation Research

Assistant (VERA), 72–80, 82–83

Zhang, Z., 86

Index ▪ 149

http://taylorandfrancis.com
http://taylorandfrancis.com

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	Motivation
	Definition of Explainable Agency
	Historical Perspectives
	Chapter Summaries
	Final Remarks
	References

	Editor Biographies
	Contributors
	Chapter 1. From Explainable to Justified Agency
	Introduction
	Aspects of Explanation
	Representing Explanations
	Varieties of Self Explanation
	Structural Explanations
	Preference Explanations
	Process Explanations
	Hypotheses about Explanation Types

	Normative Agency
	Justified Agency
	Concluding Remarks
	Acknowledgments
	Notes
	References

	Chapter 2. A Survey of Global Explanations in Reinforcement Learning
	Introduction
	Scope
	Chapter Structure
	Background: Reinforcement Learning
	Global and Local Explanations
	What Constitutes a Global Explanation?
	Global Explanation Approaches
	Explanation through Interpretable Representation
	Explanation by Demonstration
	Rule-Based Explanations
	Evaluation Methods
	Discussion: Dimensions, Gaps, and Trends
	Conclusion
	Note
	Bibliography

	Chapter 3. Integrated Knowledge-Based Reasoning and Data-Driven Learning for Explainable Agency in Robotics
	Motivation
	Related Work
	Architecture Description
	Knowledge Representation and Reasoning
	Interactive Learning
	Classification Block (CNNs)
	Decision Tree induction

	Explanation Generation
	Interaction Interface
	Mental Simulations
	Program Analyzer
	Disambiguation

	Experimental Results
	Experimental Setup
	Execution Traces
	Empirical Results

	Conclusions
	Acknowledgments
	References

	Chapter 4. Explanation as Question Answering Based on User Guides
	Introduction, Background, and Goals
	VERA, an Interactive Learning Environment
	User Guide in VERA
	AskJill, a Question-Answering Agent
	AskJill's Generation of an Answer to a Question
	Agent Smith: Building AskJill for VERA's User Guide
	Evaluation of AskJill in VERA
	Discussion
	Summary and Conclusions
	Acknowledgments
	References

	Chapter 5. Interpretable Multi-Agent Reinforcement Learning with Decision-Tree Policies
	Markov Games and Multi-Agent Reinforcement Learning Algorithms
	Extracting Decision Tree Policies with Single-Agent VIPER
	IVIPER
	MAVIPER
	Experiments
	Fitted Q-Iteration
	Imitation DT
	Physical Deception
	Cooperative Navigation
	Predator-Prey

	Individual Performance Compared to Experts
	Joint Performance Compared to Experts
	Robustness to Different Opponents
	Ablation Study of MAVIPER
	Related Work
	Conclusion
	Acknowledgments
	References

	Chapter 6. Towards the Automatic Synthesis of Interpretable Chess Tactics
	Introduction
	Related Work
	Strategy Synthesis
	Explainable RL
	Chess Pattern Learning

	Background
	Inductive Logic Programming
	PAL System
	Pattern Formalism
	Pattern Synthesis

	Methodology
	Chess Tactic Model
	Tactic Utility Metrics
	Coverage
	Divergence

	Implementation using PAL

	Evaluation
	Results and Analysis
	Proposed Evaluation
	Conclusion and Future Work
	Note
	References

	Chapter 7. The Need for Empirical Evaluation of Explanation Quality
	Introduction
	Prototype Network
	Architecture Details
	Loss Function
	Proposed Approach
	Experiments
	Image Data
	Tabular Data

	Discussion
	Conclusion
	Note
	References

	Index

