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Preface

Functional materials are an integral part of daily life. As an example, consider the materials
that underpin smartphone technology. The integrated circuitry is made from complex
patterns of semiconductors, metallic conductors, and insulators. Organic light-emitting
diodes convert electrical signals from the processor into a vibrant high-resolution color
display. The display is protected by a screen made from tough but lightweight Gorilla™
glass, which is coated with a transparent conducting oxide to make the screen responsive to
the touch of a finger. Magnetic materials are used in the speakers, a lithium-ion battery
powers the device, specific dielectric materials are used to receive and isolate a call once the
signal reaches a base station, and the list goes on.

This book explores the fascinating world of functional materials from the perspective of
those who are tasked with inventing them, solid state chemists. We therefore adopt the
chemist’s definition of a material as a substance whose structure and properties are con-
trolled at the atomic level to produce a specific function. Returning to our example, a modern
smartphone contains over half of the non-radioactive elements on the periodic table. A few
are used in their elemental form, but in most cases the desired function can only be achieved
by combining elements to form compounds. With the periodic table as a palette, how does
the chemist design and synthesize the mind-boggling variety of functional materials that
future technologies depend upon? That question is the topic this book explores.

The book is written specifically with teaching in mind and is intended primarily for use in
upper-level undergraduate or graduate level courses. While our perspective is that of
a chemist, the book is accessible to physicists and engineers as well. Mathematical details
are given where they add deeper understanding, but the focus is always on relating the
properties of a material to the characteristics of the atoms and molecules from which it is
built.

The first six chapters cover the fundamentals of extended solids: crystal structures, defects,
reactivity, phase diagrams, phase transitions, chemical bonding, and band structure. The
remaining chapters, each of which is organized around a specific property or class of
materials, show how the properties of modern functional materials can be understood
from these fundamental concepts. Recognizing that the field of solid state chemistry is
much more expansive than can be covered in a single course, the later chapters are designed
to be largely independent of each other. This organization provides the instructor freedom to
tailor a course to cover those materials that are most relevant for their students.

Coverage of inorganic and organic materials is interwoven throughout the book to place
the emphasis on properties. To keep the scope at a manageable level, neither synthesis nor

Xvii



xviii

Preface

characterization are covered in detail. Instead, boxes on synthetic methods and character-
ization methods are placed throughout the book to highlight specific examples. In a similar
vein, boxes are used to describe how the properties of nanoscale solids differ from bulk
materials (Nanoscale Concepts), and to highlight important technological applications of
materials (Materials Spotlight). Students learn by practice, and, in this spirit, we have
included dozens of problems at the end of each chapter to allow students to test their
understanding of the concepts covered in the chapter. Instructors can obtain a full set of
worked solutions on request.

We hope that this book will be a valuable source of learning for the next generations of
solid state scientists and engineers and a resource for those who already work in this
fascinating field.

Patrick Woodward
Pavel Karen

John Evans
Thomas Vogt
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1.1

Structures of Crystalline Materials

This book is about functional materials—those that perform a task or a technological
operation. By the end of the book, we’ll see that all useful properties can ultimately be traced
back to structure and dynamics at the atomic level of materials. Understanding structure is
therefore of crucial importance.

In this chapter we’ll investigate the structures of crystalline materials—those in which
atomic arrangements are repeated periodically in three-dimensional (3D) space. Non-
crystalline materials are covered in Chapter 15. In the first section, we will discuss the
symmetry and crystallography concepts that are important for the description of crystalline
substances. A brief introduction to structure databases will follow. In the third section, we’ll
cover the nomenclature and electron counting rules needed to understand the composition of
solids; before learning in the fourth section how structures are built up by packing spheres,
connecting coordination polyhedra, or via networks. In the fifth and last section, we’ll
discuss some structure types encountered later in the book. In addition to the figures and
descriptions given in the chapter, readers might find it useful to draw models of important
structures with the included structural coordinates.

Symmetry

In the first section of this chapter, we’ll develop the language required to describe the
structures of crystalline compounds. We know from everyday life that such materials
frequently display an amazing regularity and symmetry on the macroscopic scale—salt
crystals can grow as “perfect” cubes and many minerals and gemstones display wonderfully
symmetric facets. The origin of this macroscopic symmetry can ultimately be traced back to
the symmetry that’s present at the atomic scale (A or 107'° m). This local symmetry is
replicated millions of times by translational symmetry to produce symmetric macroscopic
objects. It’s perhaps worth stating at the outset that there is nothing “magical” about the
high-symmetry structures materials adopt. As we will see in Chapter 5, local bonding
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interactions have inherent symmetry, and dense packing of such units is favorable
energetically.

Translational Symmetry

To describe a crystal structure, it is useful to introduce the concept of lattice; a spatial pattern
of points of equal and equally oriented surroundings. We then define a motif, which might be
a small group of atoms, a molecule, or a collection of several molecules. If we associate this
motif with each of the lattice points, a crystal structure is built as shown in Figure 1.1. We can
think of this “association” as re-drawing the motif at a constant displacement from each
lattice point. The lattice is an operator of translational symmetry of crystal structures, of their
periodicity. We can see in Figure 1.1 that the translational symmetry defined by the lattice
produces a structure in which the individual atoms in the motif achieve a sensible bonding
environment.

The small spatial segment that fully represents the entire structure upon periodic repetition
is called the unit cell.' We can use the analogy of tiles (2D) or bricks (3D) being stacked side
by side. In 3D, the unit cell is a parallelepiped, a box whose sides are parallelograms. The size
and shape of the unit cell is described with three lattice vectors a, b, ¢ of lengths a, b, ¢, and
angles a, S, y. The angle a is between b and ¢, f between a and ¢, and y between a and b.
Together, a, b, ¢, a, f, y are called lattice parameters or unit-cell parameters.

Positions of atoms inside the unit cell are expressed with relative or fractional coordin-
ates x,y,z in terms of fractions of the lattice vectors that define the unit cell. Fractional
coordinates define the position (or radius) vector r from the unit-cell origin to the atomic
position as r = xa + yb + zc¢. They can always be expressed on a 0 to 1 scale. Because of
translational symmetry, a coordinate of 1.2 is equivalent to 0.2, or a coordinate —0.2 is
equivalent to —0.2 + 1 = 0.8.

lattice point =
. Ounlt cell motif
T association
Lattice + Motif > Crystal structure

Figure 1.1 Association of an atomic motif with a lattice produces a crystal structure.

! The following rules apply for choosing the unit cell: (a) its rotational symmetry is the same as that of the lattice, (b)
the edges and angles are made as similar to each other as possible, (c) the number of right angles is maximized, and (d)
the volume is minimized. Where applicable, the origin coincides with the inversion center of symmetry (Section
1.1.2). In some cases (Section 1.1.4), the cell contains more than one lattice point.
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equidistant planes equidistant planes (110) plane

Figure 1.2 Description by indices of lattice planes and lattice directions with respect to the unit cell. An extra
cell is drawn in order to show cases where planes facing the origin intercept the lattice vector at negative values.

Directions in the lattice are given with a [uvw] notation. When a line is drawn from the
origin, parallel to the desired direction, then u,v,w are simply the relative/fractional coordin-
ates of any point that line goes through, multiplied to give integer values. If it goes through
¥5,1,%, the direction is [121]. Symbols [242] and [484] would represent the same direction.
A set of symmetrically equivalent lattice directions, such as [100], [010], [001], [-100], [0—10],
[00—1] in a cubic lattice, is collectively referred to using angle brackets, (100).

It’s often useful to define a set of parallel equidistant planes in a lattice. These are
represented by an Akl notation. Starting with the plane that contains the origin, an &kl set
of equidistant planes divides the unit-cell vector a into /i sections, b into k sections and ¢ into
[ sections (Figure 1.2). Dividing into 0 sections is possible and means that the set of planes is
parallel with that axis. If the plane that faces the origin crosses a, b, or ¢ at negative values,
the appropriate 4, k, or [ of that set has negative sign (often put above the index, like /). An
(hkl) symbol refers to a plane or to a crystal face (Miller indices). A set of their symmetry-
equivalent orientations is denoted in curly brackets, {/kl}.

Rotational Symmetry

A point group” is a set of symmetry operations that fulfill the mathematical require-
ments of being a group’ and act on an isolated geometrical object. The number of

2 Atleast one point of the object remains unshifted under point-group symmetry operations. Elementary knowledge of
point-group symmetry may be an advantage for the reader; see Further Reading.

3 A group must have a closure (combination of two elements yields an element of the group), fulfill the mathematic
associative law (the result of combination of the elements is independent of the order they are applied), have an
identity (an element that converts other elements into themselves), and have an inversion (every element has an
inverse element; when combined together, they yield the identity element).
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z -1 0 0 x -Xx
1I/y O rena) P=l 0 -1 0 |fy|=|-y
X z

r'(—=x,—y,—z) @ 4 o= R

Figure 1.3 Inversion center (symbol —1 or 1) at the origin operates on an object at the endpoint of
the object’s radius vector r. The comma symbolizes a change in handedness (left- to right-hand
relationship).

~

2
r(x.z)
rr(,xgz) B -1 0 0)(x —-X
=0 -1 0}|y|l=|-»
y
x 0 0 1 z z

Figure 1.4 Operation of the twofold rotation axis (of symbols 2 in text and § in graphics) on an object at
the point r.

symmetry operations defines the order of the group; the higher the order, the higher
the symmetry. The symmetry operations are performed by the elements of point
symmetry; the identity, inversion center, mirror plane, rotation axis, and rotoinver-
sion axis. All objects possess the identity; other symmetry elements may or may not
be present.

Let’s start with the inversion center. Figure 1.3 shows a point x,y,z represented by its radius
vector r and the effect on that point of an inversion center at the origin of the coordinate
system (shown by a small circle). Inversion moves x,y,z to —x,—y,—z. Mathematically, we can
describe this transformation of r to ¥’ with the equation ' = R -r, where R is the matrix of the
point-symmetry element, describing its operation.* Inversion is given the symbol —1, often
typeset as 1.

Symmetry elements that unify a point in lattice space with another one by rotating it in
steps of 1/n (n =1, 2, 3, 4, 6) of the full circle are called n-fold rotation axes. The full-circle
rotation (n = 1) is the identity, a twofold axis (n = 2) rotates by - of the full circle and has
symbol 2, etc. As can be seen in Figure 1.4, twofold rotation around the z axis moves a point
of fractional coordinates x,y,z to —x,—y,z. A rotoinversion axis is a single element, the
operation of which combines rotation and inversion. However, the twofold rotoinversion
axis —2, shown in Figure 1.5, operates like a mirror plane, m, as can be also demonstrated by

4 The three columns in this matrix are the products of the particular symmetry operation on the end-points of the
respective unit-cell vectors (1,0,0), (0,1,0), and (0,0,1). This is conveniently used to set up the matrix.
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Figure 1.5 Rotoinversion axis —2 is identical with mirror m.

multiplying together the matrices representing 2 and —1. Since m = —2, all point-symmetry
elements are in fact elements of rotational symmetry; the rotational axes 1, 2, 3, 4, 6 and the
rotoinversion axes —1, =2, =3, —4, —6. Accordingly, the operation matrix of each of them has
the symbol R.

Crystallographic Point Groups and Crystal Systems

Due to the infinite number of rotation axes, infinitely many point groups are possible for
isolated objects. However, in crystal structures, the translational symmetry of space filling is
only compatible with a small number of rotation axes. Consider that we can tile a plane
perfectly with identical rectangular tiles (twofold axis present), isosceles triangles (threefold),
squares (fourfold), or hexagons (sixfold), but we can’t with pentagons (fivefold) or heptagons
(sevenfold), etc. This argument extends to the 3D space filled by the “bricks” of unit cells
(Figure 1.1). The point groups with symmetry elements 1, 2, 3,4, 6, 1, m (=2), 3, 4, 6, which
are compatible with translational symmetry, are called crystallographic point groups, also
known as crystal classes.

There are 32 crystallographic point groups and they are classified into seven crystal
systems; cubic, tetragonal, hexagonal, trigonal, orthorhombic, monoclinic, and triclinic.
Each crystal system is defined by its minimum point-group symmetry (Table 1.1, see also
Appendix A). If we take the cubic system as an example, the minimum-symmetry point
group has symbol 23. It means that at each lattice point, the twofold axes along the x-, y-, and
z-coordinate-system axes repeat the threefold axis of the symbol along all body diagonals of
the adjacent cells. These threefold axes are easier to visualize and remember as the symmetry
condition for the cubic crystal system. So if the actual crystal structure has four intersecting
threefold axes, it is cubic. If you do not see intersecting threefold axes, the structure cannot be
cubic even if the unit cell has right angles and equal edges.

Bravais Lattices

As noted earlier, a lattice is a collection of points with identical surroundings. Having the
highest rotational symmetry of each crystal system, 14 types of Bravais lattices are possible
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Table 1.1 Sorting 32 crystallographic point groups into seven crystal systems.

Crystal system Minimum symmetry Higher-symmetry point groups
Triclinic 1 1

Monoclinic 2, m 2/m

Orthorhombic 222 mm2, mmm

Tetragonal 4.4 4fm, 422, 4mm, 4 2m, 4lmmm
Hexagonal 6,6 6/m, 622, 6mm, 6m2, 6/mmm
Trigonal 3,3 32, 3m,3m

Cubic 23 m3, 4 3m, 432, m3m

(Figure 1.6), which represent 14 types of translational symmetry in 3D lattice space’ of relative
coordinates (Section 1.1.1). Some unit cells have lattice points only at the corners, and their
lattices are called primitive Bravais lattices, labeled with symbol P. Others have lattice points
located also at the centers of some or all unit-cell faces or at the unit-cell center, and these are
called centered Bravais lattices. The body-centered lattice has symbol 7 (the cell has an
additional lattice point at ‘%a + Y2b + 'ac relative to a P lattice). The face-centered lattices
have symbol F when all unit-cell faces are centered. Symbol 4, B, or C is used when just two
opposite unit-cell sides are centered, along one direction, a, b, or ¢. Thus, C—centering6 adds an
additional lattice point at Y2a + '4b relative to a P lattice. A special type of centering, R, occurs
in the hexagonal lattice, Figure 1.6. This R-centered lattice is equivalent to a P lattice with
a rhombohedral’ unit cell, see Table 1.2. The rhombohedral lattice occurs only in those
structures of the trigonal crystal system that carry the symbol R in their symmetry description.
The remaining trigonal structures are described with a primitive hexagonal cell P. It is often
convenient to express also the R structures on a hexagonal cell (not just the P). Having triple
the volume of the rhombohedral cell, the hexagonal cell contains three rhombohedral lattice
points: 0,0,0 and %4,%,% with %5,%,%, shown in Figure 1.6 labelled as 4R.

Figure 1.7 gives an idea why only certain types of centering are possible for certain crystal
systems. For example, a C-centered tetragonal cell could always be described with a smaller
primitive cell, an F-centered tetragonal with a smaller /-centered cell. Similarly, a monoclinic
B cell becomes a smaller P cell, monoclinic F cell becomes a smaller C cell, and a monoclinic
Icellis equivalent to a C cell via an 4 cell rotated around b. However, there are cases where it
is useful to choose a non-standard Bravais cell; for example in order to illustrate similarity
between two structures.

5 The lattice space defines the orientation and angles of the coordinate-system axes applied to each unit cell of this
space.

© While International Tables for Crystallography use the British-English forms “centre”, “centring”, and “centred”,
the alternative spellings “center”, “centering”, and “centered” prevail in the USA.

7 Terms like trigonal, tetragonal, and hexagonal originate in the rotational symmetry; the term rhombohedral implies

that the Bravais cell is a rhombohedron, hence it refers to the lattice.



1.1 Symmetry 7

a

cP

Figure 1.6 Standard settings of the 14 Bravais lattices. Lower-case letters: ¢ = anorthic/triclinic, m =
monoclinic, o0 = orthorhombic, ¢ = tetragonal, # = hexagonal and ¢ = cubic. Upper-case letters refer
to centering. The primitive rhombohedral lattice is often described on its equivalent 4R cell.
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Table 1.2 Metrics of lattices. Parameters not listed can take

any values.

Lattice Conditions for lattice parameters
Triclinic (anorthic) None*

Monoclinic o=y=90°

Orthorhombic a=p=y=90°

Tetragonal a=b,a=p=y=90°
Rhombohedral a=b=c,a=p=y

Hexagonal a=b,a==90°y=120°
Cubic a=b=c,a=p=y=90°

* For limits on triclinic angles, see ref. [1].

tC=tP

Figure 1.7 Non-standard centering of monoclinic (top) and tetragonal Bravais cells (bottom). Drawing
two cells reveals the true cell of the same crystal system.

Introduction to Space Groups

We’ve seen that there are 32 crystallographic point groups and 14 Bravais lattices. Their
combination gives a total of 230 space groups (we’ll see where this number comes from in
Section 1.1.7). A space group defines both the translational symmetry (type of the Bravais
lattice) and the rotational symmetry (point group) of the structure. Of the 230 space groups, 73
do not involve any symmetry other than that already present in the Bravais lattice and point
group alone; these are called symmorphic space groups. The remaining 157 space groups are non-
symmorphic and possess translations by suitable fractions of lattice vectors, brought about by
screw axes or glide planes. Before we explain these two terms, a note on symmetry operators.

When discussing point groups, it was convenient to introduce the matrix operator R that
acts on a point r of the relative-coordinate vector r such that ¥’ = R - r. Because space groups
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may include the above-mentioned additional fractional translations, this symbolic language
is extended into a Seitz operator, (R | t) = R - r + t, which combines rotations (matrix R) and
the possible translations (vector ). If we consider a symmetry element that involves no
translations, such as the inversion 1, the Seitz symbol is (R | 0) hence (1 | 0). A rotational axis
has a direction [uvw] that must be included. The Seitz symbol (2[001] | 0) then refers to
a twofold rotation around the z axis. A plane has a direction as well—the direction of its
normal vector that is oriented perpendicular to the plane. As an example, the mirror in the xy
plane of Figure 1.5 has the Seitz symbol (/2[001] | 0). The Seitz operators that include the
fractional translations are explained in the subsection below.

Symmetry Elements That Combine Rotation and Translation

The periodicity of crystal structures (their translational symmetry) means that the set of
rotational symmetry elements repeats at each lattice point. This creates additional symmetry
elements in between lattice points and may give rise to two types of symmetry elements that
aren’t present in isolated molecules,® screw axes and glide planes. A screw axis combines
rotation with translation along the axis of rotation. An Ny, screw axis (M < N) rotates
anticlockwise by 360/N degrees while shifting the image by a distance equal to an M/N
fraction of the lattice periodicity along that axis. As an example, the twofold screw axis 2, in
Figure 1.8 rotates by 180° and shifts by 2 of the vector ¢ (the axis is along z). A 65 axis rotates
by increments of 60° and each time shifts by % = 12 of ¢.

Figure 1.9 shows the symmetry operations of axes 6, and 64, illustrating that screw axes
Nwm and Ny-m) produce mirror images of each other. The “tailed hexagon” is the graphic
symbol of the sixfold screw axes.

A glide plane operates as a mirror plus a plane-parallel shift by half a vector length between
two lattice points. When the shift is half of one lattice vector (either a, b, or ¢), the glide is
called an axial glide plane a, or b, or ¢. The operation of the, say, ¢ glide plane is a reflection

r'(—x,—y,zt%) -1 0 0)(x 0 -X
/2

Q.4 r':[2[001]\(00%))r: 0 -1 0f|y|+| 0|=| -»

o2 d(x,yz) 0 0o 1)\z) \y2) (z+1/2

Figure 1.8 The screw axis 2,[001] rotates 180° and shifts by ' of the vector ¢. The graphical symbol of 2;
parallel to the drawing plane is a half-arrow.

& In the point groups used for isolated molecules, all symmetry elements intersect at a point; in space groups this is no
longer true.
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Figure 1.9 Screw axes rotate anticlockwise. Axes 6, and 64 produce mirror images of each other. The 6,
axis rotates by 60° and translates by %s ¢, the 64 axis rotates by 60° and translates by % of the unit-cell
length ¢. Due to translational symmetry, integers are subtracted from fractional coordinates >1, such as
3h=0o0r105=1,

I8

r'(=x, y, z+%) o) -1 00 0 -Xx
@; r'=[m[100]|(00%jjr= 0 10 + 0 |=| ¥

cf2 ~r(x.yz) 0 0 1)\z) \1/2) (z+1)2

e A

Figure 1.10 The glide plane ¢[100] creates a mirror image shifted by ¢/2.

followed by shift along ¢ by half the ¢-length. This is shown in Figure 1.10 with the c-glide
plane oriented in the direction of x.” Note that an equally oriented plane with a translation
along y would be called a b glide. In rare cases (five of the 230 space groups), centering creates
a situation when the two alternative shift directions along a glide plane result in the same
point. The symbol «a, b, or ¢ of such a glide plane is then changed to e (for equivalent or
either), a double glide plane.

When the shift length is half the sum of two lattice vectors (half the vector to the diagonal
lattice point), we have a diagonal glide plane, denoted by the symbol n. An example for a/2 +
b/2 is in Figure 1.11.

When the shift is half of the F- or I-centering vector, we have a diamond glide plane,
symbol d. This shift can be decomposed into components along lattice vectors (a/4) + (b/4)
or (al4) + (c/4) or (b14) + (cl4) for the F-centered orthorhombic and cubic lattices, and into
(al4) + (b/4) +(c/4) for the I-centered tetragonal and cubic lattices.

° As noted above (Section 1.1.5), the direction of a plane is the direction of the plane’s normal.
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Figure 1.11 An orthorhombic diagonal glide #n[001] in the xy plane, with its graphical symbol on top left
(see also Appendix B). It creates a mirror image shifted by /2 and /2. The subsequent operation of the
same diagonal glide then recreates the original point in the next unit cell.

Space-Group Symbols

Shorthand symbols are used to name space groups. These consist of one of the Bravais-lattice
symbols, P, F, I, R, A, B, C, followed by the symbol of the crystallographic point group, in
which screw axes and glide planes can replace ordinary rotation axes and mirror planes when
appropriate, for example Pnma. Non-symmorphic space groups are thus recognizable by the
presence of symbols such as a, b, ¢, e, n, d, 21, 35, 4», etc., which indicate the fractional lattice
translations. For quick understanding, it is helpful to know the orientation of the rotational-
symmetry elements listed in the standard'® space-group symbols (Table 1.3). Consider
I 4/m ¢ m (with individual posts separated for clarity) as an example. The presence of
a fourfold axis, combined with the absence of threefold axes, tells us that this is
a tetragonal space group (the 7 specifies that the Bravais lattice is body-centered). The first
post 4/m means that both the fourfold axis and the mirror m are in the direction of ¢, hence 4
is perpendicular to m. The second post tells us that there are glide planes ¢ in the directions of
both edges of the square face (edges @ and b) of the unit cell. The third post tells us that there
are mirror planes in the direction of the diagonal of this square face.

The triclinic crystal system has a P lattice and is compatible with only two symmetry
elements; identity and inversion (Table 1.1). There are therefore only two triclinic space
groups, those with symbols P1 and P1. As listed in Table 1.1, the monoclinic crystal system
allows three types of rotational symmetry; the 2, m, and 2/m crystallographic point groups.
There are two Bravais lattices (Figure 1.7) available; primitive, P, and base-centered, C. This
results in six symmorphic space groups; P2, Pm, P2/m, C2, Cm, C2/m. Ten non-symmorphic
monoclinic groups would be obtained by replacing 2 with screw axes 2; and m with glide
planes c; P2y, Pc, P21/m, P2/c, P2i/c, C2;, Cc, C21/m, C2/c, C2;/c. However, not all of these
10 space groups are unique. This is because the combination of C-centering and the rotation
axis 2 generates its “own” 2; (Figure 1.12). In the standard setting, they appear parallel to
b at x =Yaand %. For this reason, C2, = C2, C2,/m= C2/m, C2,/c= C2/c, and there are not 16

19 Standard orientations are those with unit-cell axes a, b, ¢ chosen by an agreed set of rules, as listed in the
International Tables for Crystallography, Volume A. Permutations are possible but non-standard.
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Table 1.3 Directions of the three posts in standard space-group symbols. Trigonal directions
refer to hexagonal unit cell.

Crystal system Post 1 Post 2 Post 3
Monoclinic Perpendicular to the plane of the monoclinic angle (standard, || b)
Orthorhombic Edge a Edge b Edge ¢
Tetragonal 44) || e Square edges Square diagonals
Tri 1 33) | ¢ .
Hrelfggjnal 623; ” Z Rhombus edges Rhombus diagonal, longer
Cubic Edges 3(3) in body diagonals Face diagonals
O~z b Oz 2 b
-« —
Otz Otz
21
Oz
><0+2 2 -« —
2,
al Oz Oz a
2 +— —
Otz O+z

Figure 1.12 Operation of a twofold axis 2[010] combined with monoclinic centering C (lattice points are
marked with X) makes a pattern of points related by screw axes 2,[010] at x = ¥ and % (marked with half-
arrow heads).

but only 13 unique monoclinic space groups possible. Similar arguments can be developed
for all crystal systems leading to a total of 230 unique 3D space groups.

Symmetry information for all space groups is given in the International Tables for
Crystallography, Volume A (for more details, see Appendix B of this book). The tables
list, inter alia, the positions of all symmetry elements and how an atom at an initial point x,y,
z is reproduced in the unit cell by the symmetry elements present.

Description of a Crystal Structure

A crystal structure is defined by its space-group symmetry, unit-cell parameters, and by the
coordinates of the atoms in its asymmetric unit. The asymmetric unit contains only the
atomic coordinates in the unit cell that are crystallographically unique, all other atomic
positions are created by the symmetry-element operations. Atoms whose coordinates lie on
symmetry elements are said to be on special positions, those which don’t, are on a general
position (x,y,z, Appendix B). Different positions are often referred to using Wyckoff site
labels. The Wyckoff site is labeled with a number and a letter (e.g. 8a). The number is the
multiplicity of a site; it gives the number of equivalent points (atoms) generated by
the available symmetry operations of that site from any one of them (the “original point”).
The letter labels the sites for a given space group. The highest-symmetry site is listed as ¢ and
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e 0 o NiAs
c L P6;/mmc (#194) hexagonal
® a=b=357,c=510A
® ® B Atom Wyckoffsite x y z
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® ® As 2c Vs % Va
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Figure 1.13 Data needed to describe the crystal structure of nickel arsenide.

the lower-symmetry sites as b, ¢, d... (each with its own set of coordinates for symmetry
equivalent points) in the International Tables for Crystallography, Volume A.

For easy drawing, some figures will show auxiliary information that defines the crystal
structure; its space group, unit-cell parameters, and fractional coordinates of atoms in the
asymmetric unit. For example, in Figure 1.13, a nickel atom is listed in the site 2a at 0 0 0 and
an arsenic atom in 2c¢ at %5 % Y. Application of symmetry operations in a structure-drawing
software (or a look at pages of the space group number 194 in the International Tables,
Volume A) yields an additional Niat 0 0 2 and an additional As at % %5 %, making a total of
two formula units of NiAs per unit cell (Z = 2).

Databases

In this chapter, we’ll introduce just a few of many structure types behind millions of
individual crystal structures. Crystallography information comes in databases. The two
with the longest tradition are the Inorganic Crystal Structure Database (ICSD) at the
Fachinformationszentrum Karlsruhe in Germany and the Cambridge Structural Database
(CSD), curated by the Cambridge Crystallographic Data Center. As of October 2020, the
ICSD contained 232012 entries, the CSD 1094733. In addition, National Institute of
Standards and Technology (NIST) has developed a wider Inorganic Structure database
(NIST ICSD) that combines full structure data (mostly from ICSD) with the unit-cell
identification data set curated there as NIST Crystal Data since 1963.

Databases provide powerful software tools for searching known structures, exploring
similarities between materials, and for “data mining” to identify important chemical
and structural trends. The structural information is exported in a standardized
form of the crystallographic information file (cif) that is used as input for various
crystallographic software packages. Some databases provide calculation of diffraction
patterns, useful to identify materials. While the full databases require a license, there
are several open-access resources online. Try a search on “icsd demo” or “database of
zeolite structures” or “mineralogy database” or the “Crystallography Open Database”.
Useful demo-version utilities for plotting crystal structures from cif files are searchable
as well.
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1.3 Composition

With the essential ideas of symmetry and crystallographic concepts in place, we’ll spend the rest of
this chapter describing principles that rationalize structures as composites of different elements
and entities. Materials adopt what at first appears to be a bewildering variety of different atomic
arrangements in 3D space. However, many of these arrangements can be readily understood by
considering relatively simple structural rules that concern stoichiometry and connectivity patterns
in compounds. For those purposes, it will be convenient to introduce the crystal-chemical formula
[2] that summarizes structural information. These formulas list each crystallographically non-
equivalent atom'" in the structure separately and contain information about its coordination to
other atoms in superscripted square brackets. The coordination numbers in the brackets follow
the same array as the atoms in the formula, and are separated by a comma, while any bonding to
atoms of the same element comes after a semicolon. In addition to the coordination number, the
bond geometry may be indicated by a lower-case letter (I = line, n = not in a line or plane, t =
tetrahedron, o = octahedron, y = pyramid, p = prism, ¢ = cube, co = cuboctahedron, etc.). To
keep the formula as simple as possible, it’s common to include only connectivities of direct
chemical bonds. These simpler formulas will generally be used in this chapter. The nomenclature
is best illustrated with examples, such as those given in Table 1.4.

Table 1.4 Examples of crystal-chemical formulas for compounds; full = full* neighborhood, simpler =
direct neighborhood (bonding).

Full crystal-chemical formula

Formula Simpler crystal-chemical formula Brief description of bonding

Si0, Sift10, 12 Si tetrahedrally coordinated by 40 while
Sit*lo,?! O is coordinated by 2Si

SrTiO; Srl®12¢o:ljl86011 [4.2:] Sr in cuboctahedron of 12 O and Ti in
SyltZeeljléeln, 4.2 octahedron of 60

FeS, Fel6og, 1311 Fe in octahedron of 6S; (S—S)*>~ units
Fel6olg, 1 present

MgAlLO, Mgl!24IA 66000 [(1.3)L] Mg in tetrahedral and Al in octahedral
MgHIALI0, 13 coordination

Y;FesO4» Y, [40861 e, [6.6.600R, [6:4.4t] g 121D Y in a cube of 80; two Fe sites, one
Y5 BFe,0lFe, B0 211 octahedral, one tetrahedral

* Coordination numbers refer to the array of the other atoms in the formula, such as Sr 8-coordinated with Ti and
12-coordinated with a cuboctahedron of O in SrTiOj3. Possible bonds to atoms of the same kind follow after the
semicolon, such as 1 in FeS,.

1" Apart from chemical identity, crystallographically identical atoms have identical environments.
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Coordination, Stoichiometry, and Connectivity

If ionic charges are included, the crystal-chemical formula of a binary compound will
incorporate three important balances: The electroneutrality balance, the connectivity bal-
ance, and the bond-valence balance (Figure 1.14). Let’s assume a binary compound C,,,A,, of
two non-identical elements, each at one unique site; one assigned as a “cation” C of charge
number ¢, the other as an “anion” A of charge number a. The crystal-chemical formula is
cer VA= M where N and M are the coordination numbers of C and A, respectively. The
electroneutrality balance requires that m X ¢ = n X a. The connectivity balance requires
that m X N = n X M because there must be an equal number of CA and AC connections.
Lastly, ¢/N = a/M is the bond-valence balance [3]."”

Understanding these balances allows us to make simple structural predictions from the
chemical formula."® Consider SiO, as an example. We know from inorganic chemistry that
silicon favors tetrahedral coordination, so the connectivity balance 1 X 4 =2 X M gives M =2
for the coordination number of oxygen (Table 1.4).

For compounds having more than two sites, balances analogous to those for the two-site
formula in Figure 1.14 can be set up. As an example, the mineral hausmannite, Mn;0y4 (a
spinel, Section 1.5.1), has Mn*" in tetrahedral and Mn*" in octahedral coordination. There is
one oxygen site. Using this information, we write the formula Mn***IMn**,[%10,*1 with
the coordination numbers around oxygen as unknowns. Two connectivity balances can be
written, 1 X 4 =4 x x for Mn** and 2 X 6 =4 x y for Mn**, and we see that each oxygen is
coordinated by one Mn** and three Mn>*.

For extended structures'® of ternary and higher-component phases, a bond graph is
informative as it shows the connectivity visually, see Figure 1.15. The symbolism of
a bond graph differs from symbolism of formulas used by molecular chemists, so let’s
again illustrate it with the simple case of SiO,. One starts with the crystal-chemical formula
(Table 1.4) and writes down one Si symbol surrounded by two O symbols. Then a line is
drawn for each bonding connection between two atoms. The lines tell us that each oxygen is
coordinated by two silicon atoms and each silicon is coordinated by four oxygens (the two
lines between Si and O thus do not mean a double bond). A quick examination of the bond

= bond valence
C [Nl A ’V’]
charge
mXN nXM connectivity

Figure 1.14 Three balances in the crystal-chemical formula of a two-site compound.

12 Termed “the electrostatic valence principle” in ref. [3]. More on bond valences is in Section 5.4.
13 Such estimates can be useful, see Box 1.1.

14 Crystal structures with bond networks that extend over the entire volume.
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graphs of TiO, and CaF, shows that as the cation coordination number increases from 4 to 6
to 8, the anion coordination number increases from 2 to 3 to 4, consistent with the connect-

ivity balance.

o o1
N = SN
o N Nr No” P20/ \027

© o1
Sio, Tio, CaF, ALO, Pt,0, V,04

Figure 1.15 Examples of bond graphs. In V,0s, five oxygens occupy three crystallographically different

sites of differing coordinations to V.

Box 1.1 Synthetic Methods: Preparation of NasN

Most binary ionic compounds were discovered long ago. A number of these compounds, such
as NaCl and KClI, have played pivotal roles in the development and advancement of civiliza-
tions. In principle, such compounds form easily; one brings the two elements together and
initiates the reaction. It is surprising to find that, despite repeated attempts, at the end of the
twentieth century no one had been able to prepare sodium nitride, Na3N. This changed in 2002
when Fischer and Jansen reported the first successful synthesis [4]. Like many binary com-
pounds, it was prepared from the elements. However, the preparation conditions were hardly
typical. Atomic beams of the two components were generated separately in a microwave
plasma and passed into a vacuum chamber where they condensed onto a sapphire substrate
cooled to 77 K. At such a low temperature, the elements don’t react when deposited onto the
substrate, but upon heating to 200 K they begin to form crystalline NasN.

This compound adopts the cubic ReOj structure (see Table 1.9), with the cation and anion
positions reversed. As might be expected for such an elusive compound, NazN is not very
stable, it decomposes above 360 K.

Why is sodium nitride so difficult to prepare and why is it unstable even after it forms? An
important clue comes from the crystal-chemical formula, Na;?™NI). Despite its large size, sodium
is coordinated by only two nitride ions in a linear geometry. Compare this with stable transition
metal nitrides such as ScN, ZrN, and CrN, where the NaCl-type structure gives a cation coordin-
ation number of six. The reason for the abnormally low cation coordination number in NazN is
a simple but unavoidable topological consequence of the stoichiometry. The C3A stoichiometry
means that if the nitride ion is 6-coordinated (larger coordination numbers are rare for N*7) the
sodium ion can only be 2-coordinated. This simple link between stoichiometry and coordination
number [5] is the fundamental reason why the synthesis of Na;N has proved so difficult. Typical
coordination numbers for Na* range from 6 to 12; the coordination number of two is an extreme
outlier. Let’s also note that the densest-packing principle (Section 1.4.2) supports C3A of only the
smallest cations C occupying voids among the largest anions A, such as Na3As or LizN.
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1.3.2 The Generalized 8—N Rule

Atoms bond in patterns that yield stable electron configurations. For an electronegative sp atom
of N valence electrons, the 8—N rule is valid: Valence electrons short of 8 are obtained in bonds.
Carbon of 4 valence electrons obtains the missing 4 electrons by forming 4 bonds; phosphorus
obtains the missing 3 electrons by forming 3 bonds, etc., as illustrated in Figure 1.16.

In a binary compound, the more electronegative sp element, the one that attracts and holds
electrons more, will maintain the 8—N rule in order to achieve a stable configuration of the
noble gas. Most electropositive sp elements will tend to lose their valence electrons to also
achieve a noble-gas configuration. The ionic approximation is therefore a convenient way of
recognizing the stable configurations in a compound.

Consider our binary solid C,,,A,, (Section 1.3.1) of sp atoms. The valence-electron count per
anion A, VEC4, is calculated from the stoichiometry and from valence-electron numbers ec
and ex:

VECy = (m-ec +n-ea)/n. (1.1)

When VEC, = 8, both atoms achieve the noble-gas configuration as noted above. When VEC, >
8, the excess electrons remain with the cation forming cation—cation bonds or cation-localized
electron pairs. When VEC, < 8, the atom A obtains the missing electrons by forming A—A bonds
so that each A has an octet. The formal expression of this generalized 8—N rule [6, 7] for C,,A,, is:

VEC, =8+ CC- " — 44, (1.2)
n

where the variable CCis the number of electrons per “cation” C that form C—C bonds or are
localized at the cation as lone pairs, and 44 is the number of electrons per “anion” A that
form A—A bonds. The generalized 8—N rule is useful for analysis of structures of nonmetallic
sp phases. Let’s illustrate this using GaSe and SnCl, with VEC, > 8 and CdSb and CaC, with
VECx < 8.

In GaSe, gallium has three valence electrons, selenium six, VECx = 9. The excess electron will
remain with the Ga cation (CC = 1, Equation (1.2) and form single-bonded (Ga-Ga)** pairs. In

Diamond White phosphorus Tellurium lodine

Figure 1.16 Structures of selected p elements drawn to equal scale.
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GaSe SnCl,

Figure 1.17 Examples of structures with VEC, > 8, in which the excess electrons per anion A are localized
at the cation (smaller spheres) as bonds or as lone pairs.

CdSb CaC

Figure 1.18 Examples of structures with VEC, < 8, when “electrons missing to 8” at the anion A are
obtained by sharing in bonds between A atoms.

SnCl,, tin has four valence electrons, chlorine seven, VECA = 9; one electron in excess. Given
two Cl per Sn, two electrons remain at Sn (CC = 2) forming the lone electron pair of Sn*". The
structures of GaSe and SnCl, are shown in Figure 1.17.

In CdSb, the cadmium atom has two valence electrons, antimony five, and VECA = 7.
The missing electron is obtained by sharing between two Sb atoms that form Sb,*” single-
bonded dumbbells (44 = 1) isoelectronic with I, (Figure 1.18, left). In CaC,, calcium has two
valence electrons, carbon four, and VEC, = 5. The three missing electrons are obtained by
sharing in three two-electron bonds (44 = 3), and triple-bonded C,>~ pairs isoelectronic with
N, are present in the crystal structure of CaC, (Figure 1.18, right).

Structural Principles

In this section, we’ll see that the principles of arranging atoms, ions, or molecules vary
according to the type of forces that hold them together. In some structures, the building units
are packed as efficiently as possible, in others directional covalent bonding gives rise to
networks. In yet other structures it is the local chemical bonding environment of a central
atom that dictates everything else about the structure. Appropriate visualization and under-
standing of such structures, as well as rationalizing their physical and chemical properties,
depends on identifying the underlying principles upon which they were built.

1544 orbitals in Cd are sufficiently low in energy that they can be considered part of the core.
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Packing of Spheres

The structures of many materials can be understood by exploring how hard spheres pack. If we
startin 2D, Figure 1.19 shows two symmetric ways of packing circles and their corresponding unit
cells; it’s clear that the packing of Figure 1.19b is more space-efficient. The packing efficiency,
calculated as the area fraction filled by circles, is 0.785 and 0.907 for the two arrangements.

The densest'® 3D packing of spheres is based on stacking 2D layers of the type in Figure
1.19b. A second layer of spheres nestles in the dimples of the first layer and is therefore
laterally shifted relative to it (Figure 1.20). For the third layer, there are two choices for
positioning the spheres. One choice reverses the shift direction so that the spheres in the third
layer lie directly above those in the first; the other choice continues shifting in the same
direction, in which case the third layer does not lie directly above the first layer. When we
view the layers side on (Figure 1.21) the repeat unit is either AB or ABC. The former
arrangement is called hexagonal closest packing (hcp), and the latter cubic closest packing
(ccp). Both sequences fill space equally efficiently (74.0% of space is occupied; 26.0% is voids
between spheres) and would be energetically equivalent for hard spheres. For elements that
adopt these arrangements, such as the solid noble gases and many metals, orbital symmetries
make one or the other arrangement slightly more stable.

Specific combinations of cubic and hexagonal stacking sequences can be stabilized in
some structures; rare-earth metals are typical examples. Figure 1.22 shows how to
analyze the sphere packing occurring in a-La. The first step is to orient the unit cell so
that we have an on-top view of the densely packed layers (against ¢ in hexagonal
structures) and the direction of subsequent shifts is horizontal; as shown in Figure
1.22 bottom. The structure is then rotated 90° so that the normals of the layers point
up. We can then identify the closest-packed sphere layers as being A, B, C, mark the
subsequent shifts as arrows, and assign letter ¢ to a layer that has local cubic environ-
ment and / that has local hexagonal environment according to those shifts. The repeti-
tive sequence of these letters is the basis of the Jagodzinski-Wyckoff notation of stacking
sequences. The Ramsdell symbol gives the number of closest-packed sphere layers per
unit cell of a Bravais lattice and a letter to signify the Bravais lattice (H for hexagonal,
R for rhombohedral, C for cubic). As an example, the Ramsdell symbol for a-La is 4H.

(a) (b) Figure 1.19 Two
high-symmetry pack-
ings of circles. After
Kepler [8].

16" Although these arrangements have long been suggested to be the densest form of packing of equal spheres (J.
Kepler’s conjecture in ref. [8], apparently responding to the English Admiralty task to determine the most efficient
packing of cannonballs on ships), a widely accepted proof was only published in 1998 by Thomas Hales. A panel of
referees was 99% certain the proof was correct.
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Two options for the third layer

‘Shﬂdred/ \ subsequent Iayersr

Figure 1.20 Two choices for placement of the third layer of densely packed spheres. One line of the
subsequent layer shifts is used to analyze a densest packing.

cep hcp

N

Cu Alayer Mg
Fm3m (225) cubic P6,/mmc (194) hexagonal

a=362A x Claver a=321Ac=521A
Atom Wyck. x y z B layer Atom  Wyck. x y z

Cu 4a 00 0 Alayer Mg 2 %% %

Figure 1.21 Cubic (ccp) and hexagonal (hep) closest packing of equal spheres. Edges of 8-unit cells are
drawn for ccp, with body diagonals perpendicular to the layers. The two unit cells are below; face-
centered cubic and primitive hexagonal.
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h
c
Ramsdell symbol: 4H
Jagodzinski-Wyckoff notation: (hc),
h
c
‘ ‘ ‘ ‘ ICSD #102655
A B c A P6,/mmc (194) hexagonal
‘ ‘ ‘ ‘ a=3.770, c = 12.159 A
Atom Wyck. x y =z
y ~_ X La 2a 0 0 O

La 2c Vs % Va

- +

Figure 1.22 How to analyze sphere packing in hexagonal structures (a-La shown).

a-Po

o . a-Fe, bcc
primitive cubic
Pm3m Im3m
a=336A a=287A
Atom Wyck. x y z Atom Wyck. x y z
Po 1a 000 Fe 22 00O

Figure 1.23 Spheres in contact in unit cells of primitive and body-centered cubic structures of metals.

In addition to the densest-packed arrangements, two other simple high-symmetry pack-
ings are found in metals and are shown in Figure 1.23; the primitive cubic arrangement on
the left (adopted by a-Po) and the body-centered cubic (bce) arrangement on the right. Note
that in ccp (Figure 1.21), the spheres are in contact along the face diagonal of the unit cell, in
bee along the body diagonal, and in the primitive cubic packing along the cell edge. The
preferred structures for metallic elements are given in Figure 1.24.

Although the densest packing adopted by most elemental metals suggests non-directional
bonds, this is true only as a first approximation. It has been shown [9] that bonding electrons
may concentrate in certain directions; in aluminum, they prevail in voids formed by every
four mutually touching atoms of the cubic closest packing.
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Figure 1.24 Structure types commonly adopted by metallic elements.
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Box 1.2 Nanoscale Concepts: Structure changes!

At constant temperature and pressure, lattice parameters are constant. Except when the crystal
enters the nano-size range. Then the lattice parameter contracts, depending of course on the
crystal’s shape. The culprit is the surface of the nanocrystal. At a surface, only a portion of the
atoms’ bonding ability is utilized, the remaining bonds are open-ended, so-called “dangling
bonds”. The surface layer is therefore at a substantially higher energy level than the bulk.
A system tends to minimize its energy either by increasing the entropy of itself, or of its
surroundings by the bond-formation heat. The surface area is therefore minimized to keep
the amount of dangling bonds to a minimum. The force to minimize the area is proportional to
the excess energy of the surface over the bulk. If high enough, it will compress the entire crystal.

The interplay of the surface and bulk has consequences even for the crystal structure adopted.
While tungsten metal is bee (like Fe in Figure 1.23), its nanoclusters are ccp, with a face-centered
cubic (fce) unit cell, when they have fewer than 7000 atoms [10]. Why? Whereas the bee packing
of spheres fills ~68% of space, fcc fills ~74%. The space volume per atom is then smaller for fcc by
a factor of 68/74. The same atoms would pack a smaller fcc sphere, of surface smaller than bec by
a factor of about (68/74)* = 0.945; exactly (3/4)-v/2. As the proportion of the surface and of its
higher energy content increases with decreasing size of our originally bce nanoparticle, the
energy that can be released by minimizing the surface eventually exceeds the energy needed to
form the normally less favored but denser fcc tungsten packing in the bulk, hence the transition.

1.4.2 Filling Holes

As suggested in the previous section, voids are left between spheres of the atomic densest
packing. There are two types of voids in hcp and ccp arrangements; tetrahedral holes and
octahedral holes (Figure 1.25). Four spheres surround a tetrahedral hole; three from one layer
touching, one from the next. Six spheres surround an octahedral hole; three from one layer
and three from the next. One octahedral and two tetrahedral holes are present per each sphere.
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Table 1.5 Binary-compound structure types derived by full or fractional filling of octahedral and
tetrahedral holes in planes between closest-packed layers of A.

Filling in total General Structure type Structure type The plane-filling
of holes formula hcp of anions ccp of anions sequence

All octahedral CA NiAs NacCl All full

4 octahedral CA,» Cdl, CdcCl, Empty and full
Y octahedral CA, CaCl, All % full

V4 octahedral CA; Bil; YCl; Empty and % full
43 octahedral CA; RuBr; All ¥ full

% octahedral CrA3 La,O; Empty, full, full *
% octahedral CrA3 Al,O3 All % full

All tetrahedral CA *k Li,O All full

V> tetrahedral CA ZnS wurtzite ZnS sphalerite All % full

All C3A NasAs All full

*Lanthanum fills the octahedral holes in a strongly off-center manner that provides bonding across the empty hole
plane with one of the oxygen atoms, by which La achieves coordination number 7. **Repulsion of cations in the
two face-sharing tetrahedra prevents this type of hole filling.

Figure 1.25 Tetrahedral and octahedral holes between layers of ccp and hep spheres. Note that the label
C of the subsequent ccp shifts is partly obscured.

Structures of many simple compounds can be described in terms of smaller atoms (usually
cations) occupying the octahedral and/or tetrahedral holes in closest-packed arrangements
of larger atoms (usually anions).'” Table 1.5 summarizes several structure types that can be

described in this way. They are discussed in the following paragraphs.

Let’s start a more detailed account by analyzing filling of octahedral holes in densest
packed arrays. The two-step structure-orientation process is shown in Figure 1.26 for the
respective prototypes, NiAs and NaCl. In both, the cation-occupied octahedral holes are

17 The closest-packed spheres (atoms) begin to touch once the radius of the atom in the octahedral holes becomes less
than V2 — 1 = 0.414 of the sphere radius. For tetrahedral holes this occurs when the radius of the smaller atom
becomes less than (v3/y2) — 1 = 0.225 of the closest-packed sphere radius. Hence these radius ratios are the minima
for the given coordination to occur, at least in the hard-sphere approximation.
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Figure 1.26 The hcp and ccp prototypes NiAs (left) and NaCl (right). Identification of octahedral holes
(black) by reorienting the structure from a general view to the top-on view (below) and finally to the side-
on view (above) of the closest-packed layers.

NiAs i — NaCl /,’\
B -ll
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Figure 1.27 Coordination of octahedral holes in NiAs and NaCl structures.

located in the intermediate planes between the closest-packed layers of anion spheres, and
the sphere stacking sequence is immediately recognizable.

In NiAs, the closest-packed As atoms have six nearest Ni neighbors forming a trigonal
prism (Nil®JAsP). In NaCl, both cation and anion arrays have the same arrangement in
space and both are octahedrally coordinated; Nal®!CI!. Either of them can therefore be
considered closest packed, though this description better suits the larger CI™ anion. Figure
1.27 illustrates how the Ni coordination octahedra in NiAs share opposite faces (in addition
to sharing all edges), whereas the octahedra in NaCl do not (only edges are shared). In
strongly ionic compounds, the NaCl-type structure is therefore preferred over NiAs in order
to avoid the added electrostatic repulsion across the shared octahedral face.
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Figure 1.28 Composition CA,; via filling octahedral holes in hep: CdI, (fully filling every second plane of
holes) and CaCl, (half filling every plane).

Composition CA, with “cations” C in half the octahedral holes is achieved in two ways;
either by alternating one empty and one filled plane of octahedral holes, or by half filling each
plane (Table 1.5). Figure 1.28 compares these two arrangements in the hcp array; the
alternately filled arrangement is called the Cdl, structure type'® and the homogeneously half-
filled one is the CaCl, structure type.'” Note that the symmetry of the CaCl, structure is
reduced to orthorhombic by the rectangular pattern of holes.

The alternating empty and filled octahedral planes create a layered structure because the
anions face each other across each empty plane of octahedral holes.”” The polyhedral
representation in Figure 1.29 top shows two types of such isolated layers; a CA, layer that
has all octahedral holes filled and a CAj; layer with two-thirds of the holes filled. Surprisingly,
these two octahedral layers give rise to four structural arrangements. This is because each can
stack in either an hcp or ccp array.

The two-thirds filling of every plane of octahedral holes in hep also occurs in the structure
of corundum, AL°!05*Y, an important refractory material. Figure 1.30 shows this two-
thirds filling and how it subdivides the NiAs-type infinite columns of octahedra into pairs.
The two octahedra share one face and their central AI** cations repel each other due to the
proximity of their ionic charges.

Let’s now focus on filling tetrahedral holes. A complete filling of all the tetrahedral holes in
a ccp array leads to the composition C,A of materials such as Li,O. However, the traditional

18 Perversely, CdI, tends to adopt numerous stacking sequences rather than this simple hep structure.

19 The structure of rutile, TiOs, is related, but with anions distorted such that they no longer lie in perfect layers. TiO, is
then better understood in terms of corner- and edge-sharing octahedra (see Figure 1.45).

20 The layers are held together by weak electrostatic forces of electric dipoles generated by random fluctuation of the
electronic charge in one object, such as the anionic layer, generating a corresponding inverse-charge fluctuation in
the other such object (van der Waals forces, see Section 5.1.3).
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ccp
CdCl, a=3.85, c=17.5 A Cdl, a=4.24, c=6.86 A

anion array hcp

R3m hexagonal setting  P3m1
Cd 33 0 0 O Cd1a 0 0 O
Cl 6c 0 0 0.25 I 2d ¥ % 0.25

ccp anion array hcp
YCl, a=6.92, b=11.9 A Bil; a=7.52, ¢=20.7 A
C2/m ¢=6.44 A, B=111° R3 hexagonal setting

Y 49 0 017 0 Bi 6c0 0 1/6
Cl4i 021 0 0.25 | 18f 0.340.34 0.08
Cl 8 0.23 0.18 0.76

Figure 1.29 Top: Polyhedral representation of a single layer of octahedral holes, fully occupied (left) and
two-thirds occupied (right). Bottom: Structure types formed when these layers are packed such that their

anions form a ccp or hep array.
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Single % filled plane of octahedral holes.
Rotated around each dotted line.

Stacked along c with the lines above each other.
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hole sequence along ¢
full, full, empty, ...

Figure 1.30 Sequence of octahedral-hole filling in hcp oxygens in corundum. The hole plane is two-thirds
filled (left; every third hole is empty). All hole sequences in a straight line along ¢ are full, full, empty (side-
on view on right). The formed AL'O5™ has pairs of octahedra sharing faces, with repulsion of their

central A" jons.
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Figure 1.31 CaF,: Identification of tetrahedral holes (black) in the side-on view of the ccp layer stacking
of Ca atoms (gray large spheres). Notice a tetrahedral hole both above and below each densest-packed Ca
atom, hence CakF,.

wurtzite z B sphalerite A
y X A C
V4 X
B /' B
5 A , A
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Figure 1.32 Identification of tetrahedral-hole planes (black dots) in the side-on view of the hep (left) and
ccp (right) stacking of two ZnS modifications.

prototype structure used is CaF»,”' and has a cation ccp array with the fluoride anions in all
of the tetrahedral holes. Figure 1.31 illustrates its pattern of densest packing and hole filling.

There are no known structures based on an hcp array with all the tetrahedral holes filled.
This can be understood with reference to Figure 1.25 where the face sharing of tetrahedra
would have the cations unreasonably close (closer than the cation—anion distance). The
prototype structures based on filling half of the tetrahedral holes in hcp and ccp are the
wurtzite and sphalerite (zinc blende) polymorphs of ZnS. Identification of their sphere
packing and hole filling is illustrated in Figure 1.32.

Polyhedral coordination of the filled tetrahedral holes in unit cells of the prototype ccp and
hcp structures is compared in Figure 1.33. More about building up structures from polyhe-
dra is given in Section 1.4.4.

Structures of some ordered metal alloys can be described as densest-packed arrays with
filled holes. An example is the family of Heusler alloys that has a variety of important

2l Consequently, Li,O is considered an anti-fluorite type.
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Figure 1.33 Coordination of tetrahedral holes in CaF,, sphalerite, and wurtzite.
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Figure 1.34 Unit cells of the XYZ and X,YZ Heusler alloys.

magnetic and electronic properties. Two closely related types form, XYZ and X,YZ, the
former called half-Heusler alloys. Figure 1.34 shows that both are derived from a ccp of
X atoms in which Y and Z occupy tetrahedral holes in an ordered manner, giving the XYZ
structure. In the structure of X,YZ, the added X fills all octahedral holes.

Network Structures

For many materials, the directional character of the chemical bonding around each atom in
the structure is of prime importance. The most natural way to view such structures is to
consider them as networks. This often helps to reveal the relationships and similarities
among many simple structures. In more complex materials, the field of coordination poly-
mers (Chapter 14) has driven developments in the nomenclature [11, 12], taxonomy [13], and
classification [14] of networks. Here, we’ll consider only the most elementary terms.
Networks with a single type of vertex are uninodal networks; all vertices are N-connected.
An example of a 3-connected uninodal network is graphene (the single sheet of graphite,
Figure 1.35), in which carbon forms three sigma bonds and the fourth valence electron is
delocalized.

Networks with low coordination numbers may be characterized by a vertex symbol [11].
The vertex symbol contains one post for each angle that occurs at the vertex. The post is
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Vertex symbol 6,6,6,

Three angles at the vertex, each angle is part of one 6-membered ring

Figure 1.35 A 3-connected uninodal network of graphene.

VZa e
¢ l/( ‘/f e

3-connected net 3-connected net
Vertex symbol 6,6,6, Vertex symbol 105105105

Figure 1.36 Two 3-connected networks of polysilicide anions in CaSi, (puckered planar) and SrSi, (3D).
One 10-membered ring is highlighted with a dashed line.

a number with a subscript. The number gives the size of the smallest ring that a particular
angle at the vertex is part of. The subscript identifies how many rings are joined at this
particular angle. As an example, the vertex symbol for graphene has three posts because
there are three angles at the vertex. Each angle forms part of only one smallest, 6-membered,
ring so the vertex symbol is 6 1616,.%

Let’s consider the silicide anions in CaSi, and SrSi, as other examples of 3-connected
networks. Using the generalized 8—N rule (Section 1.3.2), both compounds have VECx = 5,
and the three missing electrons are obtained by forming three Si—Si single bonds at each Si. The
net representing the silicide-anion network on the left of Figure 1.36 has the same vertex
symbol 6,6,6; as graphene, but differs in that it is puckered due to accommodation of one
nonbonding electron pair at each Si. The standalone crystal-chemical formula for this anion

22 Following Wells, a symbol (6,3) is sometimes used for this honeycomb of 6-membered rings and 3-connected
vertices. Do not confuse these Wells symbols with the N,M-connected binodal nets!
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Vertex symbol 6,6,6,6,6,6,

C diamond (ICSD #28859) C lonsdaleite (ICSD #27422)
Fd3m (227, origin 1) cubic P6,/mmc (194) hexagonal
a=3.56678 A a=252,¢=412A

Atom Wyck. x y z Atom Wyck. x y z

C 8a 0 0 O C 4f V5 % 0.0625

Figure 1.37 Two 4-connected uninodal nets—cubic and hexagonal diamond.

would be 2 Si~, where the subscript and superscript to the left denote its infinite 2D nature. The
network in SrSi, on the right of Figure 1.36 has vertex symbol 105105105. There are three angles
at the vertex, and each angle is a part of five 10-membered rings in this 3 Si~ 3D network.”

Examples of 4-connected nets are shown in Figure 1.37. Both concern elemental carbon
forming uninodal nets of the vertex symbol 6,6,6,6,6,6,. The symbol has six posts because
there are six angles at each tetrahedral vertex, where each angle is part of two 6-membered
rings. For uninodal networks with higher connectivity, we have already encountered in
Figure 1.23 the primitive cubic structure of polonium, which is a 6-connected network,
and body-centered cubic a-Fe that can be considered as an 8-connected network.

A binodal network has two different types of vertices. When characterized using the
crystal-chemical formula for a binary phase, C;" v ?]AZ_ M two different vertices are seen,
an N-connected vertex C and an M-connected vertex A. We say that a binodal network has
an N, M-connected net. The relationship between uninodal and binodal nets is instructive for
understanding similarities among structures.

One type of network-based similarity is site ordering.”* In its simplest case, identical
vertices of a uninodal network become occupied by two different atoms in an ordered
manner, forming a binodal network. Three examples of this relationship are shown in
Figure 1.38. Site ordering removes the equivalence of sites that were symmetry related,

23 The only 3-connected 3D network that has all three bonds and angles around the vertex equal.
2* One of the homeotypical relationships between two structures defined in ref. [2]. Another such homeotypism is the
formation of distortion variants upon decrease in the space-group symmetry.
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Figure 1.38 Examples of site ordering of uninodal networks (top) to create binodal networks (bottom).

which means that the ordered structure, a superstructure, has a lower point symmetry (e.g.
d3m to 43m; as in diamond to sphalerite in Figure 1.38), or translational symmetry (the unit
cell is multiplied; as in Po to NaClin Figure 1.38), or both. If the site ordering multiplies the
original cell, the new cell is called a supercell.

A second important relationship is network expansion where a linker is placed between
a pair of vertices [11]. For example, we can take the diamond-type net of elemental silicon
and put an oxygen atom mid-way between each node, obtaining the high-temperature
structure of cristobalite, SiO,. This and other examples are shown in Figure 1.39 on the
same set of uninodal nets as in Figure 1.38. The linker does not have to be a single atom; the
primitive cubic 6-connected net expanded with a —C=N- linker is the generic ingredient of
the Prussian-blue-type structures.

A final relationship worth mentioning is vertex decoration—replacing a vertex with
a group of vertices. When this group is a cluster, it is common to describe this as network
augmenting [11]. An example is the relationship between CaTe and CaBg in Figure 1.40.
CaTe itself is an example of a material with the CsCl-type structure, which in turn can be
considered as a site ordering of the a-Fe bcc array of Figure 1.23.

Vertex decoration and network expansion may occur simultaneously. This is a good
approach for visualizing open metal-organic frameworks (MOFs). The example in Figure
1.41 starts with oxygen atoms in a cubic Po-type network, which are “decorated” by zinc to
[Zn4O]6+ and then linked with the terephthalate anion [OZCC6H4C02]2_. This forms a ReOs-
type network of these cations and anions.
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Figure 1.39 Examples of network expansion from uninodal to binodal networks.
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Figure 1.40 Decoration (augmenting) of anion sites in the CsCl-type structure.

In some cases, two interpenetrating nets run throughout a structure without ever crossing
each other. Cu,0 is one such example. In the right-hand side of Figure 1.42, we see two
2,4-connected nets of cristobalite type which never intersect. In each net, Cu' adopts its
preferred coordination number, 2, and oxygen is tetrahedrally coordinated, Cu,2oM,

Polyhedral Structures

In previous sections, we have seen various approaches that help visualize extended struc-
tures. In functional materials, however, the local chemistry is often the key to desired
properties. Coordination polyhedra are an efficient way to illustrate these local bonding
environments, and, often, to visualize the entire structure. We’ll find in Chapter 6 that
focusing on coordination polyhedra is also a convenient start for developing electronic band-
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Figure 1.41 Combined site decoration and network expansion in a ZnsO(0,CC¢H4CO,); MOF.
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Figure 1.42 Two interpenetrated nets (one solid, one dashed) in cuprite, Cu,O.

structure ideas and understanding certain properties. In Section 1.5.4 and in Chapter 14,
we’ll discuss how SiOy tetrahedra are the essential building block of many silicate structures.
Building from the ideas in Section 1.4.3, Table 1.6 contains examples of common coord-
ination polyhedra for the “cation” and “anion” in the C¢" WA~ M compounds of binodal
N, M-connected nets. Many of the structures that were earlier described as based on filling
octahedral or tetrahedral holes are also found in this table.
Given the chemical preference to form a certain coordination polyhedron, can we make

any generalizations how such equal polyhedra connect into networks? Let’s take SiO, as an
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Table 1.6 Common coordinations in some binodal N, M-connected nets.?®

N.M Cation coordination Anion coordination Example

4,2 Tetrahedron Linear (bent) SiO, (in quartz, cristobalite, tridymite)
43 Tetrahedron Triangle SizNy

4,3 Square Triangle P304

4.4 Tetrahedron Tetrahedron ZnS (in zinc blende, wurtzite)

4.4 Square Tetrahedron PtS

4,4 Square Square NbO

6,2 Octahedron Linear ReO;

6,3 Octahedron Triangle TiO; (in rutile, anatase, brookite)
6,4 Octahedron Tetrahedron Al,O3 (in corundum)

6,6 Octahedron Octahedron NaCl

6,6 Octahedron Trigonal prism NiAs

8,4 Cube Tetrahedron CaF,

8,8 Cube Cube CsCl

example and assume tetrahedral coordination of Si. If both oxygens are equivalent, the
coordination number of O will be 2 (see the connectivity-balance argument in Section 1.3.1),
and the composition of this polyhedral network can be conveniently described as SiOy». This
is an example of a Niggli formula, in which every polyhedral vertex is listed by its connectiv-
ity. Accordingly, SiOy, is a silicon dioxide with four 2-connected O vertices of the polyhe-
dron around Si, meaning that each of the four oxygen vertices is shared with another
tetrahedron to form a network of corner-sharing tetrahedra.

When the vertices do not have the same connectivity, the subscript in the Niggli formula is
written as a sum of fractions. Various connectivities can therefore be combined to give the same
composition. SiOy, SiO33+41/1, and SiOpy+10+1/1 all refer to SiO, built of tetrahedra, but of
different connectivities at the vertices.” Yet, looking at known CA, phases, we do not find the
latter two structures. Why? Sharing three or four tetrahedra at a common vertex is not prohibi-
tive; we do find 3-connected tetrahedra in Si;N,4 (Niggli formula SiNg4/3) or 4-connected tetrahe-
drain SiC (Niggli formula SiCyy). Empirically, we can conclude that it is favorable for the oxygen
vertices in SiO, to have the same bonding environments. When an identical environment is not
possible, atoms of the same element usually prefer their environments to be as similar as possible.
This preference was postulated by Linus Pauling [3] as the rule of parsimony: “The number of
essentially different kinds of constituents in a crystal tends to be small.”

While this rule aids estimates of polyhedral connectivity in many compounds, does it
predict the structure type? In general it does not; several possible spatial arrangements

25 Note that geometries may depart slightly from ideal depending on local site symmetry. Examples do not necessarily
represent the only networks that can occur for a given N, M-connected net.

26 Si0y4/» means four 2-connected vertices, SiO3/341/1 three 3-connected and one 1-connected vertex, and SiOxu+1/2+1/1
two 4-connected, one 2-connected, and one 1-connected vertex in the tetrahedron.
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SiO,, cristobalite OCu,, cuprite Hgl,

Figure 1.43 Structures made of 2-connected tetrahedral vertices.

usually exist. We can see this by considering just a few of the structural variants for the
4,2-connected binodal network of CA, materials. Both the quartz and cristobalite structures
contain corner-sharing tetrahedra but have different 3D arrangements. The OCu, structure
(Figure 1.43) is related to cristobalite, but more complex due to the interpenetration of two
networks shown in Figure 1.42. The Hgl, structure also has vertices shared by two tetrahedra
but is layered (Figure 1.43).

Let’s consider next the structural possibilities for CAg octahedra sharing vertices, common
in functional materials. Starting with the highest n/m composition ratio for C,,A,, CA¢ in
octahedral coordination represents an isolated octahedron. CAs can be written as CAy+4/1
where there are two 2-connected and four 1-connected vertices.”” Such structures contain
variously oriented infinite corner-connected octahedral chains. CA4 requires four octahedral
vertices shared (CAy»+2/1), and various clustered chains, layers, or networks are possible, as
illustrated in Figure 1.44. With all six vertices shared, we have formula CA;z (CAg)») and the
octahedral network found in ReOs and ccp perovskites (Section 1.5.3). Other connectivity
patterns are possible if we allow octahedra to share edges instead of just vertices. We've already
encountered this in the Y Cls/Bil; structures of Figure 1.29, which contain octahedra that share
three edges of six vertices shared by two octahedra each, giving again the Niggli formula CAg)».

As the n/m ratio decreases below three, the average anion coordination number must
continue to increase, and shared edges become a necessity. There are several paths to
composition CA,. The octahedra must share at least two edges, and the simplest way to do
this yields the rutile structure of TiO; that contains infinite chains of octahedra sharing two
opposite edges with the two remaining corners linking the chains together (Figure 1.45). The
brookite and anatase polymorphs of TiO, are other possibilities.

In general, edge and face sharing is more frequent for octahedra than for tetrahedra. This
is because shared edges between CA, tetrahedra lead to very short distances between cations.
Face-sharing tetrahedra are not known (we have already encountered the rule that only half

27 Two of six octahedral vertices are shared between two octahedra. Or, stated in the language of coordination
chemistry, there are two bridging and four terminal ligand atoms.
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Figure 1.44 Examples of structures with identical octahedra sharing four vertices.
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Figure 1.45 Edge- and corner-sharing octahedra in TiO, modifications. Two unit cells are drawn for
rutile and anatase.
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Box 1.3 Nanoscale Concepts: Polymorphism of TiO, nanocrystals

As the proportion of the crystal’s surface atoms versus bulk atoms increases towards the
ultimate unity for the absolutely smallest cluster, the proportion of the surface’s higher energy
content also increases. Consider TiO, (Figure 1.45). The surface and bulk energies of its three
modifications are as follows [15]:

TiO, Surface energy (J/m?) Relative bulk energy (kJ/mol)
Anatase 0.4 2.6

Brookite 1.0 0.7

Rutile 22 0

Rutile has the most stable bulk, yet its surface has the highest energy (sharing fewest
octahedral edges in its bulk yields the most dangling bonds at the surface). Below particle
sizes of about 35 nm [16], the increasing surface-energy proportion destabilizes the normally
stable rutile in favor of brookite. Below 11 nm [16], TiO, adopts the anatase structure that
shares all octahedral edges and has the fewest dangling bonds at the surface. In the opposite
direction, this affects the crystallization of TiO», as detailed below.

Since crystals grow from their smallest seed (called the nucleus), TiO» obtained by precipita-
tion from an acidic TiCly solution is anatase (instantaneous formation, smallest crystallites).
This complies with Ostwald’s step rule—the least stable polymorph often crystallizes first [17].
The metastable anatase will turn into the stable rutile only after prolonged aging that allows the
crystallites to join and recrystallize. The size and structure of nanoparticles synthesized from
solutions depends on the extent of this aggregative growth, called Ostwald ripening, in which
the tiniest crystals dissolve and regrow on the surface of larger crystals, ultimately minimizing
the surface-energy proportion of the system.

of tetrahedral holes in an hcp can be filled). In contrast, face-sharing octahedra are found in

NiAs (Figure 1.26), corundum (Figure 1.30), the hexagonal perovskites (Figure 1.54), and

other structures.

At least one coordination polyhedron exists for every coordination number. As the
coordination number increases, several polyhedra become possible; such as the cube, square
antiprism, and dodecadeltahedron for coordination number 8, or cuboctahedron, anti-

cuboctahedron, and icosahedron for 12. However, upon further increase, the number

of

known structural examples quickly decreases. One of the highest coordination numbers
occurs in the SmCos-type structure of superferromagnets. Each Sm in this alloy is sur-
rounded by 18 Co atoms that form a 6-capped hexagonal prism. The six capping Co
atoms are 3-coordinated, and the twelve prismatic Co atoms are 4-coordinated, giving

a Niggli formula SmCog/3+12/4 (Figure 1.46).
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Figure 1.46 Polyhedral representation of the crystal structure of SmCos.

Structures of Selected Materials

The Spinel Structure

The mineral spinel, MgAl,04, gives its name to a structure type in which two metals of
similar atomic sizes are accommodated in tetrahedral and octahedral sites in a ccp array of
anions. A simple formula to remember is [tetrahedron],[octahedron],04. A detailed ana-
lysis reveals that one-eighth of the tetrahedral and a half of the octahedral ccp holes are
occupied in a non-trivial stacking sequence. Table 1.7 illustrates the ubiquity of spinels.
Two limiting types of site occupation occur. The first is MgAl,O4 with each ion at its
respective site, [Mg* AP AP*]l0,, termed a normal spinel. In the inverse spinel, half the
octahedral ions are exchanged with the tetrahedron, as in magnetite [Fe**[*I[Fe** Fe**]l*°l0,,.
Magnetite forms an inverse spinel due to the ligand-field stabilization energy (LFSE) of the
high-spin d°® Fe** being larger at octahedral than at tetrahedral sites, while high-spin d° Fe**
has no LFSE. LFSE of d® Ni** makes [Ga®*[*[Ni**Ga**]l°l0, an inverse spinel, and LFSE
of d* Mn*" stabilizes normal spinel [Mn**[*[Mn**Mn**]*°l0, with no LFSE from
d® Mn**. A spinel of similar ions of no LFSE may show an intersite disorder, such as
[Mn?*,_ Fe** J*[Fe**,_ Mn** ]1®°!0,, depending in general on several size- and bond-
ing-related factors.

The connectivity of the cation coordination polyhedra in the spinel structure is hard to
visualize, but one key feature is the network of edge-sharing octahedra (Figure 1.47, left).
The visualization in Figure 1.47 right is useful for rationalizing the magnetic and electronic
properties of spinels that are discussed in more detail in Chapters 9 and 11.

Table 1.7 Oxidation-state combinations for spinels.

Tetrahedron Octahedron Chemical formula of an example

1 3 4 LiMn,Oy (a = 8.245 A)

2 3 3 ZnFe,04 (a = 8.442 A)

2 4 2 Fe,TiO, (a = 8.521 A)

3 2 3 Fe;04 (a = 8.394 A)

4 2 2 Ni,SiOy (a = 8.045 A)

5 1 2 LiZnNbO, (a = 6.082, ¢ = 8.403 A)
6 1 1 Na,WO, (a = 9.108 A)
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MgAl,0, .
Fd3m (227, origin 1) cubic EF——

At. Wyck.  x y z
Al 16d 5/8 5/8 5/8
Mg 8a 0 0 0
O 32e 0.3840.3840.384

Figure 1.47 Left: Coordination polyhedra of cations within the unit cell of spinel. Right: The unit-cell
content in its simplest representation (the cubes are empty).

The Garnet Structure

The garnet structure type is found in many important magnetic, optical, and magneto-
optical materials. Many solid state lasers use yttrium aluminum garnet (YAG) doped with
~1% Nd as the active laser medium. Garnet is a complex, high-symmetry structure, and the
simplest formula to remember is [cube]s[octahedron],[tetrahedron];0;,. Table 1.8 shows
that a variety of metal atoms can be accommodated at these sites. Intersite disorder is again
common, particularly for garnet minerals like pyrope, Mg3;Al,Sis0O;,, almandine,
Fe3;AlLSi50,,, and others.

The crystal structure of garnet is not easy to visualize. The crystal-chemical formula
together with a polyhedral illustration (Figure 1.48) provides some idea about coordinations
and connectivities. The tetrahedra connect to octahedra by corner sharing, whereas three
tetrahedral and all six octahedral edges are shared with the rather deformed cubes. As in
spinel, all oxygens have a distorted tetrahedral coordination.

Table 1.8 Oxidation states in garnets [cube]s[octahedron],[tetrahedron];04,.

Cube Octahedron Tetrahedron Examples

Ca3Te,Zn30p, a = 10.930 A
Y;Fe,Fe;0p5a=12.376 A
Mg3ALSi;0p 5 a = 11.459 A
Na3Sc, V3010 a = 10913 A

—_— N W N
LW W LW N
[V NS I S
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Figure 1.48 Coordination polyhedra in one-eighth of the garnet unit cell, which corresponds to a single
formula unit.

Perovskite Structures

The mineral perovskite, CaTiOs, lends its name to a vast family of structures where adjoined
MXg» octahedra form 12-coordinated voids that can be filled by larger atoms A so that the
composition becomes AMX3. Perovskites can also be viewed in terms of closest-packed AX3
layers in which M occupy one-quarter of the octahedral holes—those that are formed solely by
X. Although ccp is most common, perovskites with hcp of AX;3 layers are also known. Figure
1.49 illustrates the ccp case on an ideal cubic perovskite where M fits the octahedral holes exactly.

A 2ol |\/|[6°]Xg(4’2)°] Cuboctahedron, symbol co

AMXq

Pm3m (221) cubic

a =4 A (can vary widely)

Atom Wyck. x y z

A 1a 0 0 0
MXeo M b v % u

X 3c 0 2 V2

Figure 1.49 Octahedral network in an ideal cubic perovskite (origin at A is chosen).

The ccp array will be more stable than hep until the increasing size of A prevents the MXg)»
octahedra from linking at corners. On the other hand, much smaller A atoms than this
maximum can be accommodated while keeping the corners linked. This can be evaluated
with the Goldschmidt tolerance factor [18] (Figure 1.50) in terms of the ionic radii of A, M,
and X. In particular, the Shannon radii [19] for 6-coordinated M, 12-coordinated A, and
2-coordinated O are consistent with Goldschmidt’s size considerations: Cubic perovskites, of
ideal ratio of the AX and MX bond lengths AX/(MX42) = 1 as in Figure 1.50, top left, are
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Figure 1.50 Tolerance factor 7 and two ways it can become smaller than unity.

stabilized over the ¢ range ~1.04 to ~0.98 [20] by minor bonding compromises. When ¢ > 1.04,
the hep stacking is often observed. In the 7 range between ~0.99 and ~0.83, perovskites are
stabilized by structural distortions as discussed below.

Figure 1.50 illustrates two scenarios for ¢ < 1: either it is due to M being too large and
expanding the MXg octahedron, or due to A being too small so that A and X are no longer in
contact. The drawing shows that both cases effectively mean that the A atom is smaller than
one that would fit exactly. The structure responds to this size mismatch by a coupled rotation
of the corner-linked M X/, octahedra, which expands them in a fixed frame of constant unit
cell, accommodating the large M and bringing X closer to A. This octahedral tilting can
profoundly influence the magnetic and electronic properties of perovskites.

While symmetry analysis [21, 22] is the most rigorous approach to describe the various
types of tilting, a simple combinatorics of these coupled rotations is the basis for the Glazer
tilt classification [23]. It considers a model of linked octahedra and evaluates all combin-
ations of rotations along the three 4-fold axes of the octahedron in Figure 1.51. In the
network, twisting the central octahedron anticlockwise mechanically requires its in-plane
neighbors to twist clockwise in a cooperative manner. The plane of octahedra below the one
under consideration, however, is free to rotate in either the same or the opposite sense. Let’s
start with the simplest case of no rotation at all. It is given a three-letter symbol a’a’a’
because equal rotations about different axes of the octahedron are symbolized by use of the
same letters. A uniaxial rotation is then denoted with “c” as the last letter (a’a’c* and a% %"~
in Figure 1.51) where superscripts + or — specify whether the octahedra in adjacent layers
rotate in the same direction (+, in phase) or in opposite direction (—, out of phase). For
biaxial rotation of the octahedron, the letter “b” is added with a superscript sign, such as in
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Figure 1.51 Octahedron can rotate about each of its fourfold axes (center). Uniaxial rotations: In-phase
between successive planes (left), out-of-phase (right).

a’b*c* (two unequal rotations in phase), for triaxial rotation all three letters have superscript
signs, such as in a*b'c” (three unequal rotations in phase). Since for equal rotations about
different axes the same letter is used, we may have a’b*b* (two equal rotations in phase) or
a_a b’ (two equal rotations out of phase) ora*a*a™ (three equal rotations in phase). In total,
this combinatorics yields 23 Glazer tilt systems in ref. [23].

Symmetry analysis [21] shows that there are 15 unique Glazer tilts>® (some tilts also do not
form), but three are particularly frequent [24]. One of them is a’a’a® for the cubic perovskite
of Pm3m symmetry. SrTiOj is one of many examples. Another frequent tiltisa a a", which
lowers the symmetry to rhombohedral, R3c¢. This tilt is equivalent to a single rotation of an
octahedron around its threefold axis. Figure 1.52 shows this rotation for LaNiO3 and views
of the structure along all three 4-fold axes of the octahedron. These three projections
illustrate that all three tilts are equal and out of phase. The high symmetry extends to the
coordination polyhedra, fulfilling Pauling’s parsimony rule and providing the most favor-
able ionic bonding of all tilted perovskites. This becomes important as the charge number of
the A cation increases. The effect this tilt has on the A-atom coordination is to bring three of
the twelve X atoms closer to A while moving three others away, hence approaching the
coordination number 9. As the progressing rotation contracts only three of these nine A—X

The most common tiltisa“b~ b~ that lowers the symmetry to orthorhombic Pnma. It again
accommodates the smaller-than-optimal atom A by bringing some of the twelve X neighbors
closer to increase their bond strength more than the rest of them lose it (Section 5.4). An
example in Figure 1.53 is LaFeOs3, where La has eight close O neighbors and the remaining
four at a longer distance. Unlike a a a, this tilt allows A to deviate from the center of its
coordination polyhedron and is therefore prevalent among perovskites with ¢ < 0.97.

28 The reduction from 23 to 15 tilts can be understood by careful consideration of the relationship between symmetry
elements and the magnitude of the tilts imposed by Glazer’s notation. The number of unique tilts drops from 23 to
17 upon realizing that symmetry cannot restrain tilts of a different sense (in-phase versus out-of-phase) to be of the
same magnitude. As an example, a*a"a” has the same symmetry as a*b~b~, and the latter thus covers both cases.
Even if you forced the in-phase tilt to be of equal magnitude to the out-of-phase tilts, there would be no symmetry
element that constrained it to be equal, hence, in a real crystal, it would never be more than approximately equal.
For a full explanation of how symmetry reduces the number of allowed tilt systems, see ref. [21].
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A LaNiO, (ICSD #67717)
R3c (167) trigonal in hexagonal setting
a=>5.4573, c =13.1462 A

Atom Wyck. x y z
La 6a 0 0 0
Ni 6b Vo Yo Ve
0 18e 0.5456 % Y

Figure 1.52 Rotation of Glazer’s tilta a a . The actual physical rotation of eight corner-linked
octahedra as viewed looking down the threefold axis (top right) and as separated into rotations around
the three tilt axes of the octahedron (bottom).

LaFeO; (ICSD # 84941)

Pnma (62) orthorhombic
a=5565, b=7.855, c=5.556 A
Atom Wyck.  x y z
La 4c 0.029 ' -0.006
Fe 4b 0 0 V2
O 4c 0489 ' 0.069
@) 8d 0.281 0.039 0.720

Figure 1.53 Glazer’s tilt a"b™b ™. The octahedron rotates around all three of its axes, in phase around one
axis and out of phase around the remaining two.
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C

C
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C
h BaMnO, (ICSD #24130)

P6s/mmc (194) hexagonal
c a=5.669,¢=9.375A

Atom Wyck. x y z
Ba 2a 0 0 0
h Ba 2c % % Y
Mn af Y% % 0.061
o) 69 A 0 0
c o) 6h 56 2% Y

Figure 1.54 Left: Comparison of ccp perovskite with a polytype of (hc), stacking sequence. Right: The 4H
BaMnOj; phase as an example of the latter.

Perovskites with hep packing of AX; layers are less common, because the ABAB layer
repetition means that the MX¢, octahedra share faces, forming columns. In between these
columns there is a lot of space to accommodate large soft A atoms such as barium. These so-
called hexagonal perovskites are therefore formed when the Goldschmidt tolerance factor
t increases significantly over 1, that is, when the A cation is too large for its site. Initially, ordered
intergrowths of ccp with hep occur. Figure 1.54 gives an example of 4H BaMnOs (¢ = 1.11) that
alternates ccp and hep sequences. A completely hexagonal stacking is found for BaNiOs, with
t of 1.13, the structure of which contains infinite columns of face-sharing octahedra.

The compositional variety of perovskites is extremely rich. Table 1.9 shows examples of
cubic AMX; perovskite-type structures for diverse oxidation-state combinations. At the
bottom of the table, the anti-perovskites even contain a large cation at the X site. Several
perovskites have the A site vacant; ReOs (our cover star) is cubic while the related WO; has
its WOg,» octahedra tilted and distorted.

Silicates

Silicates are multicomponent oxides based on silicon—oxygen frameworks made up of
predominantly corner-sharing tetrahedra. Silicon in these tetrahedra may in part be replaced
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Table 1.9 Oxidation-state combinations for AMX3 perovskites.

A M X Examples (cubic or nearly cubic chosen)
+4 +5 -3 ThTaN; a = 4.02 A
+3 +3 -2 LaAlO;a =3.82 A
+2 +4 -2 SrTiOs a =3.90 A
+1 +5 -2 CslO;a=4.67A
+6 -2 OReOsa=3.73 A
+2 +1 -1 BaLiF; a = 4.00 A, BaLiH; a = 4.02 A
+1 +2 -1 KMgF; a =3.97 A, (CH;NH3)PbBry a = 5.93 A
+3 -1 OScF5 a = 4.00 A
-1 -2 +1 AuORDb; a = 5.50 A, ISAgy a =4.90 A
-3 -3 +2 SbNCas a = 4.85 A, AuNCasa =4.82 A
-4 -2 +2 GeOCasa=4.73 A

by a neighboring element, typically aluminum. Very few silicates contain Si in octahedral
coordination,”” very few feature edge-sharing tetrahedra, and the oxygen vertices are gener-
ally 2-coordinated. Silicates are the most common minerals in the Earth’s crust and represent
about one-third of known inorganic crystal structure types. Although some crystalline
silicates, in particular zeolites, have use as functional materials, silicate materials find
applications predominantly due to their mechanical properties. The oldest examples of
artificial composite materials are silicates such as porcelain, the exquisite properties of
which are caused by a texture of fibrous crystals embedded in a glassy matrix.

It’s impossible to cover the vast array of silicate structures here; instead we’ll focus on simple
ideas and nomenclature in common use. We’ve already seen one way of understanding silicate
structures in Section 1.4.3, where we described how the cristobalite modification of SiO, is
derived via expanding the cubic-diamond network of Si and the how the tridymite modifica-
tion of SiO, is derived from lonsdaleite. Along this line of thinking, replacement of
every second Si in cristobalite with Al and compensation of the thus-formed negative charge
by placing Na™ into the cavities in the tetrahedral network leads to carnegieite NaAlSiOy. In
a similar way, tridymite can be expanded to the structure of nepheline (Figure 1.55). Such
homeotypism occurs also between the quartz modification of SiO, and B-eucryptite, LiAlISiOy,
which is a low-expansion material commonly used as a catalyst support in car exhausts.

The coarsest chemical categorization of silicate anions is based on the network dimensional-
ity. Silicates are classified as oligo- and cyclo- for finite polyanions, catena- for chains, phyllo- for
layered anions, and the general name of tectosilicates is used for 3D networks.”” Examples of
1D and 2D networks are in Figure 1.56. Their chemical compositions can be determined from

2% Common only at high pressure in phases such as MgSiOs.
30 From Greek, “oligos” few, “phyllo” leaf, “tekton” builder; and Latin, “catena” chain.
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A A A . Na A < } <
A/ /;\\/ — A/ TA »MA

SiO, tridymite KNa3Si4AI4O16 nepheline

Figure 1.55 Homeotypism between tridymite and nepheline.

| Y | § 4
‘ L B 4 £ |
‘ L \ %
Si,045 in - “

benitoite

phyllosilicate Si,O42~ in muscovite catena octasilicate SigO,,'?" in tremolite

Figure 1.56 Examples of cyclo silicate, catena silicate, and phyllosilicate anions.

the vertex connectivities with Niggli formulas. As an example, all the anions in the top row of
Figure 1.56 have the same elemental composition. All have silicon coordination tetrahedra with
two terminal and two shared oxygens, (SiO»42)” . It is clear that, for infinite polyanions,
neither the chemical formula nor the chemical name is very informative of the structural
arrangement. A more detailed and informative nomenclature is given in Appendix C.

Zeolites

From the discussion above, it should be clear that the connected tetrahedra in silicates may
form an almost infinite number of shapes. One technologically important subgroup of
tectosilicates is the zeolites. Zeolites contain interconnected cages made of SiOy, and
AlQy,, tetrahedra, with pores in between them where guest ions, atoms, or molecules can
be accommodated. Materials with pores of 2.5-20 A in diameter are referred to as micropor-
ous, those with sizes 20-500 A, mesoporous. Owing to the ease with which non-framework
chemical species can be exchanged on the large inner surface area, zeolite properties can be
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Figure 1.57 Graphical representations of the alumosilicate cages in sodalite.

tuned to fit many technological applications (discussed in Chapter 14). One common zeolite
cage is the sodalite cage, built from 24 tetrahedra as shown in Figure 1.57. The visualization
of the interconnected zeolite cages is greatly simplified by omitting the tetrahedra and
connecting only their central atoms with a straight line (removing O atoms, the inverse of
network expansion).

The connectivity of the cages is accomplished by sharing (Figure 1.57) or by connecting
their equivalent faces. When all square faces of the sodalite cage are shared at the Si atom
with other sodalite cages, the sodalite structure is formed and contains small pores that do
not qualify as micropores. However, when all square faces of sodalite cages are connected via
Si—O-Si bonds, forming a neck between the cages, the so-called zeolite A is obtained. When
four of the eight hexagonal faces of the sodalite cage are connected to other sodalite cages,
zeolite X/Y (faujasite) is formed (Figure 14.2). Owing to important industrial applications,
a zeolite nomenclature [25] has been adopted by the International Union of Pure and
Applied Chemistry (IUPAC).

Zintl Phases

Zintl phases are compounds of two elements one would consider as metals or semimetals
(typically an alkali or alkaline-earth metal and a post-transition metal). Unlike conventional
alloys and intermetallics, Zintl phases have fixed stoichiometry and physical properties that
are atypical for a metal. They are diamagnetic, brittle, and exhibit low electrical conductivity.
Their composition follows the Zintl-Klemm concept of the more electropositive metal
behaving as a cation that provides electrons for the more electronegative metal to form
polyanions in which electrons are shared to complete the octet [26]. The composition can
thus be treated by the generalized 8—N rule of Section 1.3.2. As an example, although we
normally think of thallium as an electropositive metal, it forms a Zintl phase NaTl with the
even more electropositive Na. Because VEC, = 4, four electrons per Tl must be shared,
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Figure 1.58 The Zintl phases NaTl and SrGa, with VEC, = 4 and A4 = 4 form anion networks that are
electronically and structurally related to diamond and graphite.

= ——
* CaSi '
W e M

Figure 1.59 Zintl phases KGe and CaSi with anions isoelectronic to elemental nonmetals.

forming four two-electron T1-T1 bonds at each TI. Indeed, the crystal structure in Figure 1.58
has a polyanion network 3 TI™ analogous to diamond. Similarly, for SrGa, (Figure 1.58),
VECa = 4 and four electrons per Ga are shared—three in single bonds, one via conjugation
as in graphite. The crystal-chemical formula of the anion is 2Ga™.

In KGe, VECA = 5, and three two-electron bonds per Ge are formed (Figure 1.59). In the
crystal structure of KGe, germanium occurs in Ge,*~ cages isoelectronic with molecules of
white phosphorus. Another example is CaSi, where VEC, = 6, suggesting two two-electron
bonds per Si (Figure 1.59). In the crystal structure of CaSi, silicon forms polyanion chains ! Si*~,
isoelectronic with the fibrous modification of elemental sulfur, and similar to the structure of
tellurium shown in Figure 1.16.

1.6 Problems

(Note that some require a structure-drawing program.)

1.1 Write down the (111) set of symmetry-equivalent directions in a cubic lattice.
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By analogy with Table 1.1, determine the number and type of 2D crystal systems via
considering their possible minimum symmetry elements and sketching their Bravais
lattices.

Write down indices for the following sets of equidistant planes:

A

b b

a a

Sketch a set of equidistant 113 planes in a cubic unit cell.

Sketch a set of equidistant 113 planes in a cubic unit cell.

State the Bravais lattice and write down the crystallographic point-group symbol for
a structure of space-group symbol: (a) C2/m, (b) Fmm?2, (c) I4/mmm, (d) P312, (¢) R3m,
(f) P6m2, (g) F23, (h) P2,3, (i) la3d.

Is it possible for a ¢ glide plane to have the direction of: (a) a axis, (b) b axis, (c) ¢ axis? If
not, why is this not allowed?

Write down crystal-chemical formulas for two-site binary compounds CrN, Cr,03, and
CrO, with octahedrally coordinated chromium.

Write down the three balances expressed in the crystal-chemical formulas of the phases
in the previous problem.

Draw the bond graph for the mineral spinel MgAl,Oy4 (Figure 1.47).

Convert the bond graphs in Figure 1.15 into crystal-chemical formulas.

Describe or sketch a structure for layered V,Os that is consistent with the bond-graph
representation in Figure 1.15.

Use the generalized 8—N rule to identify whether anion—anion or cation—cation bonds
are present for the following compounds (assume no cation-localized nonbonding
electron pairs): (a) Na,TI, (b) SrSb,, (c) BaTe,, (d) InSe.

Suggest the anion bonding that might occur in MgB, and MgC,.

Calculate the percentage of available space that’s taken up by touching spheres in
primitive and body-centered cubic arrangements.

Imagine a coordination polyhedron with a cation at the center. Now treat the ions as
hard spheres and reduce the size of the cation until the anions just touch. What is the
radius 7 of the cation for anions of unit radius in the following coordinations: (a) cube,
(b) octahedron, and (c) tetrahedron. Hint: Body diagonal is y3 and face diagonal 2
times the cube edge.

From unit-cell parameters in figures in this chapter, calculate the following shortest
distances: (a) Na—Cl and Na-Na in NaCl, (b) Ni-Ni in NiAs, (¢) Ca-F in CaF,,
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1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

(d) C—Cin diamond, (¢) Ti-Tiin TiO, (rutile), and (f) Ti-O, Sr-O, and O-O in the cubic
perovskite SrTiO; (a = 3.90 A).

With a structure-drawing program, determine the stacking sequence in Tb (data for
plotting, see Section 1.1.8: P6s/mmc, a = 3.068, ¢ = 14.87 A, Tbin2bat00 % and 4f at
Y5 % 0.083). Suggest the Ramsdell symbol and the Jagodzinski-Wyckoff notation.
Determine the stacking sequence of Br in trigonal CdBr, (R3m in hexagonal setting; a =
3.965, ¢=18.70 A, Cd in 3a at 0 0 0, Br in 6¢ at 0 0 0.25).

In the low-temperature form of CrCl;, every second plane of octahedral holes is
occupied. What is the filling fraction of the occupied planes? Check the result by a side-
on view of the closest-packed layers perpendicular to their subsequent shifts (R3 in
hexagonal setting; a =5.94, ¢ =17.3 A,Crin6cat00 %, Clin 18fat?00.0757). What s
the type of densest packing?

La in solid LaBr; has a tricapped trigonal-prismatic coordination. What is the coord-
ination number of Br? Is it possible that the tricapped trigonal prisms share only
corners, or would you expect sharing of edges and/or faces? Check the result by viewing
the structure and constructing polyhedra around La (P6y/m, a =7.971, c=4.522 A. La
in 2c at ¥4 % %, Brin 6/ at 0.3849 0.2988 V4).

Write the Niggli formula and the simple crystal-chemical formula for the CrOj; struc-
ture that contains chains of corner-sharing chromium-centered tetrahedra.

Construct a bond graph or Niggli formula to determine if it is possible for all anions to
be equivalent in a structure of tetrahedrally coordinated cations and stoichiometry of
C,A3? Which alternative Niggli formula complies best with the rule of parsimony?
Using the Niggli formula and the rule of parsimony, determine the stoichiometry that
results from sharing (a) all corners, (b) all edges, and (c) all faces of a cation-centered
cube of anions. Note the structure prototype where you recognize it.

Write the Niggli formula for C3N4 made of identical CNy tetrahedra. How many
different types of nitrogen vertices are there? What is the coordination number of each?
In B-LizN, nitrogen is 11-coordinated. Write down the Niggli formula of the NLi;
polyhedron.

ReO; has a 3D network of octahedrally coordinated rhenium. Determine the
N, M-connectivity for this binodal network

Identify the type of derivative network relationship between: (a) CaO (Fm3m, a =
4.778 A,0in4aat 000, Cain4b at ¥» ¥4 12) and CaO, (l4/mmm, a =3.56 A, ¢ = 5.95 A,
Cain2aat000,Oin4eat000.394), (b) StMoO; (Pm3m, a=3.965A, Srin 1bat ' %
Y5, Mo in la at 0 0 0, O in 3d at ¥ 0 0) and the high-temperature Sr,FeMoOg phase
(Fm3m,a=17.93 A, Srin8cat V4 Y4 Ya, Moin4b at 5 ¥ Y4, Fein 4a at 0 0 0, O in 24e at
0.253 0 0).

Which type of similarity do you see between the Laves phase MgCu, (Fd3m, a =
7.034 A, Mgin 8a at 00 0, Cu in 16d at % % %) and the spinel in Figure 1.47?
Rewrite the chemical formulas in Table 1.7 into simplified crystal-chemical formulas of
spinel.
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1.31 Analyze hole filling in the spinel structure of ccp oxygens. (a) Given the general formula
[tetrahedron];[octahedron],Oy, calculate the total fractions of tetrahedral and octahe-
dral holes filled. (b) Use a structure-drawing program to orient the structure and
identify the type of filled holes between layers of densely packed oxygen atoms. (c)
Determine the sequence and the fraction of each hole filling.

1.32 With a structure-drawing program, determine which of the three most common tilts the
perovskite prototype CaTiO3z (ICSD 62149) adopts.

1.33 Give the Niggli formula for a cyclosilicate anion containing 3 Si.

1.34 What is the formula of the infinite alumosilicate anion in sodalite?

1.35 Use VEC, modified for the stable 18-electron configuration of Kr to justify the
network of Cu tetrahedra in MgCus,.

1.36 Suggest the bonding present in the Zintl phase LiAs.

1.37 Suggest the bonding present in the Zintl phase KIn.

1.38 Suggest the bonding present in the Zintl phase Caln,. Verify your suggestions with the
ICSD and a structure-drawing program.
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Defects and More Complex Structures

We have seen in Chapter 1 that the solid state world is dominated by long-range order and
beauty. Crystalline materials contain highly symmetric arrangements of atoms that are
regularly repeated over millions of unit cells. In this chapter, we will question how realistic
this picture is.

In reality, there are a number of ways in which crystalline materials deviate from perfect
long-range order and contain imperfections or disorder. This can occur via “mistakes” in the
atomic arrangement of a pure material or via the introduction of impurity atoms giving rise to
chemical disorder. These defects can occur locally or extend over lines, planes, or 3D volumes
of materials. Such effects, even when they occur at very low levels, are vitally important to the
chemical and physical properties of materials. They turn low-value minerals into precious
gemstones; soft iron into strong and corrosion-resistant stainless steel; and they control the
semiconducting properties of silicon in the transistors powering modern electronics.

This chapter also introduces a variety of ways in which materials can deviate from having
simple stoichiometric formulae. This can occur either via the presence of defects or chemical
substitutions in a material or can have a variety of more complex structural origins. In later
chapters, we will see how these various effects influence many of the important properties of
functional materials.

Point Defects in Crystalline Elemental Solids

We have seen that the structures of many elements can be described in terms of regular arrays
of spherical atoms. At the local level, this order can be perturbed by three different types of
point defects; vacancies, interstitials, and substitutional disorder. These are shown schemat-
ically in Figure 2.1.

A vacancy occurs when an atom is missing from a site in the structure as shown in Figure
2.1, left. An interstitial defect occurs when an extra atom sits in a site that would not normally
be occupied. An interstitial site can be occupied either by an atom of the same type that
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Figure 2.1 Different types of point defects.

makes up the structure, or by an impurity atom. It is common, for example, for small non-
metallic elements such as C, N, O, and H to occupy a fraction of interstitial positions in the
structures of transition metals. Such materials can be of great technological importance:
C interstitials in iron greatly increase its mechanical strength; and Pd can store around 0.6%
by mass of H interstitials, which is of interest for hydrogen storage (see Box 2.1).

The third common type of defect is substitutional disorder where a foreign atom adopts
a site in the structure of a pure element. At low levels, foreign aliovalent' atoms are
frequently referred to as dopants and can significantly alter chemical (Chapter 3), electronic
(Chapters 6 and 10), and optical (Chapter 7) properties of a material. Doping silicon with
low levels of Al or P, for example, leads to the formation of p- or n-type semiconductors,
respectively. At higher levels of doping, one typically refers to solid-solution or alloy
formation. This process can again be used to tailor a material’s properties. Real materials
exist with any one of these basic types of defects or with various combinations of them.

Intrinsic Point Defects in Compounds

Similar defects to those depicted in Figure 2.1 for elements can occur in ionic compounds,”
though with the additional constraint that one must maintain overall electrical neutrality in
the crystal. If, for example, one simply removed an Na" ion from a compound such as NaCl
to create a defect, the crystal would end up with a negative charge. Defects in ionic
compounds can only occur in ways that avoid such charge build-up. Defects that can
occur in pure compounds are called intrinsic defects.

A Schottky defect is a cation vacancy compensated by an appropriate number of anion
vacancies (Figure 2.2), i.e. it is a missing formula unit. For a binary phase MX, the
number of vacancies on cation and anion sites will be equal; for MX,, two X~ anion
vacancies would be needed for every M?* vacancy. In terms of ionic charges, removing M™*

! Of different valence or oxidation state to the atom it replaces; isovalent means of the same valence.
2 Our discussion in this chapter will largely be in terms of formal ionic charges in materials. This need not, of course,
imply that ionic bonding is actually dominant.
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Box 2.1 Materials Spotlight: Hydrogen-storage materials

Efficient energy production, storage, and use is one of the major challenges facing the modern
world. Both developed and developing economies are heavily reliant on fossil fuels in all areas
of energy use. Fossil fuels are limited in supply and polluting when burnt. One alternative fuel
under consideration for automotive applications is hydrogen, which produces benign H,O.

Safe and efficient storage of H, is a major issue [1, 2]. H, is gaseous at temperatures above
20.3 K and while its heat of combustion per unit mass is high compared to other fuels (H,
120 MJ/kg, gasoline 44.5 MJ/kg) the value per unit volume is low: at standard conditions,
hydrogen gas has AH omp, = 9.6 kJ/L and even as a liquid AHomp = 8.4 MJ/L compared to 31.2
MIJ/L for gasoline. For automotive use, the US Department of Energy state specific targets of
a gravimetric energy density of 7.9 MJ/kg (2.2 kW h), corresponding to 6.6 wt% H,, and
a volumetric energy density of 6.1 MJ/L at the time of writing. In addition, the fuel storage in
a car needs to be reversible (~1000 times) and allow refueling in 3 minutes—significant
challenges!

One possibility is to store H, as a high-pressure gas or as a liquid at 20 K. It costs about 15%
of the energy content to pressurize H, to 700 bar or about 20% to liquefy it (plus around 2%
per day to keep it cold). For these and other technological reasons, high-pressure seems the
more viable storage solution.

Chemical solutions to the H, storage problem can be divided into two main categories—
those that rely on chemisorption and formation of chemical bonds, and those that rely on
physisorption of H,. In the chemisorption case, the stability of the compounds formed means
that a key challenge is to provide materials that decompose to release H, at a low enough
temperature (below approximately 90 °C) to be compatible with, for example, polymer elec-
trolyte membranes in fuel cells. For physisorption, the challenge is the opposite: to provide
systems that still hold H, at room temperature and ambient pressure. The adsorption of H, by
carbon nanotubes, graphene, polymeric materials, and the metal-organic frameworks of
Chapter 14 has received significant attention [3]. Currently, no materials come close to targets
under ambient conditions and any adsorption-based storage systems will rely on liquid-N,
temperatures and the use of several tens of bar pressures.

The alloy LaNis is one potential storage material as the number of H atoms that can be stored
in interstitial sites (forming LaNisHg) per unit volume is around double that of H, liquid at its
boiling point. The reversibility of H, uptake is good, and the H, pressure at room temperature is
around 2 bar. Unfortunately, the mass content of hydrogen is too low at ~1.4 wt%, and La is
expensive. Similar problems face CoNisHy (1.1 wt%) and PdHq ¢ (0.6 wt%). The latter decom-
poses close to room temperature and shows excellent reversibility, but suffers from the high cost
of Pd metal.

The only way to achieve a higher mass content of hydrogen in a storage compound is to focus on
hydrides from the top rows of the periodic table. MgH, is one material of interest and can practically
store around 7.6 wt% H,, though its decomposition temperature is rather high (~330 °C) and
reversibility is poor. Other materials under investigation include complex hydrides such as NaAlH,.
When small amounts of Ti or other metals are included as a catalyst, this material can reversibly
produce H, by two processes:
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Box 2.1 (cont.)
NaAlH, — 5NasAlH + Al + H, (3.7 wt% H,, > 33 °C)
Na;AlHg — 3NaH + Al + %:H, (1.8 wt% H», > 110 °C)

Although NaAIH, could theoretically release 5.5 wt% H, in practice only around 4% can be
stored reversibly. In addition, the kinetics are slow.

An interesting strategy for reducing the decomposition temperature of a hydrogen-storage
material is to either destabilize the hydrogenated form or stabilize the dehydrogenated form. For
example, LiBH, releases ~13.6 wt% H, in an endothermic reaction, LiBH; = LiH + B + 3H, (AH=
67 kJ/mol H,). If one mixes it with MgH,, the mass hydrogen content is reduced to 11.4 % but the
exothermic formation of MgB in the reaction, LiBH4 + “aMgH, — LiH + 2MgB, + 2H,, makes
the total reaction less endothermic (AH = 25 kJ mol/H,), and the release temperature lower.

Other materials under investigation include the lithium amide—imide—nitride system (LiNH,—Li,
NH-Li3N, which stores 10.4 wt% H; and in which nonstoichiometric materials are believed to play
a key role [4]), ammonia borane (BH;NH3, ~14 wt% release from 100-180 °C) and related lithium/
sodium amidoboranes (LiNH,BH3/NaNH,BHj3;, ~11/~7.5 wt% at ~90 °C), though reversibility of
all these systems remains an issue.

Even if the chemical challenges can be met, there are still significant engineering challenges
for practical H,-fueled cars. For example, there is significant heat produced when either the
endothermic chemical processes described above are reversed on refueling, or the heat of
adsorption for cryo-adsorption systems is released. Heavy heat exchangers capable of handling
hundreds of kilowatts would be required for chemical systems capable of acceptable refueling
rates, reducing the gravimetric storage capacity of the system. More information on hydrogen-
storage materials can be found via www.doe.gov.
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Figure 2.2 Schottky and Frenkel defects. Black and white circles represent cations and anions.

from its structural site will perturb the local electroneutrality—the negative charge on
surrounding X~ ions is no longer cancelled by the charge of the cation. The uncompen-

sated 1— charge is therefore formally assigned to the cation vacancy. The anion vacancy

created elsewhere in the crystal at the same time will carry an analogous 1+ charge. These
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ideas are formalized in the Kroger—Vink notation outlined in Section 2.6. In a Schottky
defect, the negative and positive charges will attract each other, which can lead to vacancy
clustering in the structure (see Section 2.9). One might also expect that on creation of
a defect, the surrounding structure may relax or distort. This is indeed the case but may be
difficult to detect using conventional structural characterization techniques (which tend to
probe average structures rather than local structures), particularly at low defect concen-
trations. In Section 2.9, we will see how substantial long-range structural changes can
occur at larger defect concentrations.

A Frenkel defect consists of a vacancy and a corresponding interstitial ion (of the same
charge) to maintain charge balance. Frenkel defects can occur for cations or for anions. Agl
commonly shows cation-Frenkel defects, CaF, anion-Frenkel defects. The number of
Frenkel defects increases with the temperature, and materials with a high concentration of
Frenkel defects can have significant ionic mobility at high temperatures. We’ll see in Chapter
13 that this defect type gives rise to cationic conductivity in Agl and anionic conductivity in
CaF,-type materials.

We’ll mention other types of disorder/defects possible in compounds only briefly. For many
materials, intersite disorder is possible, for example the (Mn**,_ . Fe** )(Fe**|_,»Mn** 1,),0,
spinels we discussed in Section 1.5.1, or disordered alloys such as FePt (see Section 4.4.2). In
Chapter 13, we’ll also encounter ions that are rotationally disordered in the solid state.

The final intrinsic point defect we’ll discuss is a color center. It can be described as electrons
trapped on vacant anion sites by the positive charge of the vacancy. Isolated trapped
electrons are known as F centers. More complex color centers consisting of pairs (M centers)
or triplets (R centers) of electrons or trapped holes are also known. The shape of the
potential holding the electron in an F center is complex but it can give rise to a localized
s-like state as well as a more extended p-like shape. Excitation from one state to the other
frequently leads to light absorption in the visible region giving rise to characteristic colors.
F centers can be generated in a variety of ways including by exposing alkali halides to excess
alkali-metal vapor or by X-ray irradiation. In nature, they give rise to blue forms of calcite
and feldspar as well as green diamonds.

Thermodynamics of Vacancy Formation

What factors determine how many defects will be present in a material? Let’s consider an
ideal crystal in two dimensions, formed by a single type of atom, such as the one drawn in
Figure 2.3. There are N, atomic sites in the entire crystal. We can consider the formation of
a vacancy as the process of moving one atom from its regular site to a new site on the surface
of the crystal. The number of sites becomes Ny + 1. What is the Gibbs energy of creating
n such isolated, non-interacting, vacancies?

The main driving force behind vacancy creation is the increase in configurational entropy:
there are many possible ways to position the vacancy. The configurational entropy
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Figure 2.3 Formation of a vacancy in an ideal crystal.
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Figure 2.4 Gibbs energy of formation of n vacancies in an ideal crystal with Nj sites.

contribution to AG is —kT"In{) per n vacancies formed. In this expression, () is the number of
ways n vacancies can be arranged over the N, + n sites, which is given by Q = (Ng + n)!/(Ny!n!)
and k is the Boltzmann constant.’ Note that —k7*InQ (Figure 2.4) is not a linear function of
the number of vacancies. There is also a smaller vibrational contribution to the entropy,
ASyi,, wWhich arises on vacancy formation. The overall favorable increase in entropy is
counteracted by the positive enthalpy of vacancy formation. The enthalpy term is positive
as the chemical bonds broken on vacancy formation are only partially compensated by the
formation of new bonds at the surface site.

At low vacancy concentrations, the AH and AS,;, terms depend simply on the number of
vacancies n. Since AG = AH — TAS, we can express the total change in Gibbs energy for
formation of n vacancies as AG = n(AH — TAS.y,) — kT"InQ. This expression is plotted as
a function of n in Figure 2.4. The nonlinear nature of the configurational-entropy term
means that the minimum in AG always occurs at a non-zero value of n; that is, a small
equilibrium number of vacancies, n.q, will always be formed. The value of n.q can be
calculated by finding the minimum in AG by differentiation:

|
S CAH — nTASyy — kT DY g Q.1
dn Ny'ln!

3 Boltzmann constant k& = 1.380649x1072 J/K.
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The factorial term can be treated by applying Stirling’s formula, In(x!) = xInx — x for large x,
which on differentiation leads to:

N e
AH — TASy, — kT-In (M> —0 2.2)
Hleq

Note that the term in brackets involving 7.4 is simply the inverse of the fractional concentra-
tion of vacancies formed, x,. Rearrangement shows that the fractional concentration of
vacancies depends solely on temperature and the two parameters, AH and ASy;:

Neq ASip —AH
L= = — 2.3
X No + g exp ( T ) exp < T (2.3)

The form of this equation suggests that the concentration of non-interacting point defects at
equilibrium® follows the mass-action law. We’ll investigate the use of such equilibria in Chapter 3.
We can approximate the absolute number of defects by assuming Ny >> n.q, which gives:

ASyip —AH
Neq = Noexp ( i > exp ( T ) 2.4)

A similar expression would hold for the formation of isolated interstitials. We can see from
this expression that either a low AH or high T will favor the formation of defects.

For Schottky defects in an ionic material, one must consider the number of ways of
arranging both cation and anion vacancies. The configurational entropy term will be
—2kT-In Q. A similar derivation gives the equilibrium number of Schottky defect pairs as:

ASy;i —AH:
Neq,Schottky ~ Noexp < 2kb> exp ( 2kTs) (25)

where AHjg is the formation enthalpy of a Schottky defect pair.

For Frenkel defects, one generates n vacancies on the N, sites and places them on
n interstitial sites out of a possible number of Ny. There will be a configurational entropy
term of the form Ny, !/(No, —n)!n! for both vacancies and interstitials. One can then show that:

1 ASVI _AH
Neq, Frenkel ~ (NONI ) /zexp ( b> €Xp < F) (26)

2k 2kT

Table 2.1 gives molar enthalpies and entropies of defect formation for various compounds
from which the number of defects can be readily estimated.” In Cu metal at 1000 °C, for example,

4 Reaching such equilibrium in solids usually requires high temperatures, it’s easy to “trap” non-equilibrium numbers
of defects on cooling.

5 Note the need to convert between the Boltzmann constant k, with units J/K, and the molar gas constant R, with units
J/(K mol), when using molar quantities; Nak = R.
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Table 2.1 AH; and AS; for defect formation from ref. [5]. Schottky values concern
two vacancies such that the energy per vacancy is similar for all three categories.

Defect type Material AH¢, kJ/mol ASy, J/(K mol)
Vacancies Cu 123 21

Ag 105 12

Au 91 8.3

Al 72 18
Schottky NacCl 235 81

Nal 193 63

KCl1 245 75

KI 244 86
Frenkel AgCl 140-150 45-101

AgBr 109-124 55-101

one would estimate x, as around 10~*. If one considers that a 1 cm® block of Cu contains around
8.5x10* atoms, the total number of defects (~10') is considerable. It’s worth emphasizing that
thermodynamics gives the equilibrium number of defects ignoring kinetics—if a real sample has
been rapidly cooled from high temperatures, the actual defect concentration might be much
higher than the equilibrium value calculated at the temperature of the cooled sample. Defect
concentration calculations are illustrated and expanded in the end-of-chapter problems.

Extrinsic Defects

Defects involving new chemical species are called extrinsic defects. For elemental solids,
we’ve seen that foreign atoms can be substituted® for atoms of the host material to produce
what can be described as doped systems at low levels of incorporation or alloys at higher
levels. This is called substitutional disorder. Substitutional disorder is also common, and
often deliberately targeted, in ionic compounds. As with intrinsic defects, it is important to
consider charge balance. In an ionic oxide MO, one can envisage replacing M** with another
2+ metal to give a solid solution M;_,M’,O (so-called isovalent substitution); a typical
example might be Co;—,Mn,O that is known to form a solid solution for all values of x.
A common and technologically important group of materials based on isovalent cation
substitution are luminescent phosphors that rely on doping optically active rare-earth atoms
such as Nd and Eu into optically inactive hosts such as La,0,S. More examples of this
phenomenon are given in Chapter 7.

® Loose language by soccer commentators means that there’s often confusion about usage of the verb to substitute;
indeed Fowler [Modern English Usage (1964) Oxford] amusingly describes the verb as a “treacherously double edged
sword”! The correct usage is that if we “substitute A for B”, B is removed and A is put in its place. “Beckham is
substituted for Rooney”, means Rooney leaves the pitch. If in doubt use the verb “replace”.
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In an aliovalent substitution, an atom is replaced by one with a different oxidation state. An
example might be the substitution of Ca®* for Zr** in ZrO,. The introduction of a lower-valent
ion means that the substituted site has a formal negative charge that must be compensated (Ca**
has insufficient charge to compensate the negative charge of O*~ ions surrounding the former Zr**
site). In this case, charge balance is predominantly achieved through the introduction of vacancies
on the anion lattice. For every Zr*" that is replaced by Ca®* (charge difference of 2 units),
a corresponding O®~ vacancy is required giving rise to a material with formula Zr,_,Ca,O,_..
If one substituted Y>* for Zr** (charge difference of 1), one oxide-ion vacancy for every two Y**
ions would be required; Zr;—. Y, O>—,». There is a variety of possible charge compensations
involving substitution, vacancies, or interstitials; these are summarized in Table 2.2.

In semiconducting materials such as Si, dopants with either more or fewer valence
electrons can be introduced: a phosphorus atom is able to donate an electron to the
conduction band and is said to be a donor; an aluminum atom accepts electrons from the
valence band (or equivalently adds holes to the valence band) and is said to be an acceptor.
We'll explore the case of Li* acceptor and AI** donor doping in NiO in detail in Chapter 3.

In cases where the elements present have chemically accessible lower or higher oxidation states,
it is possible to achieve charge balance via redox compensation without the introduction of
vacancies. If we take the example of La,CuQ,, which contains Cu in the +2 oxidation state, it
is possible to replace 7.5% of the available La’*" sites with Sr** to produce La; gsSrj 15CuO,4. We
can understand the charge balance in this material in terms of copper changing its oxidation state
from +2 to +2.15 on average. A similar Cu oxidation can also be achieved by incorporating extra
oxygen in interstitial sites of La,CuQy, which produces La,CuQy ;5. Again, we can understand
the charge balance by considering oxidation of Cu from +2 to +2.15 manifested as a mixture of
0.85Cu** and 0.15Cu’" on the Cu site. Both processes convert insulating antiferromagnetic La,
CuQy into a superconductor at low temperatures (see Chapter 12).

The range of different types of cation substitutions, combined with the range of different
ways in which charge can be compensated, leads to the development of remarkably complex
materials from chemically simple starting points. Even for a binary oxide such as NiO, where
oxidation/reduction can lead to a nonstoichiometric formula, there are many possibilities.
On oxidation, one can incorporate excess oxygen or create Ni vacancies; on reduction, create

Table 2.2 Charge compensation mechanisms in cation-doped materials with fixed integer
oxidation states. Symbol [] represents a vacant site.

Dopant charge  Compensated by Host Dopant Substituted material
Higher positive  Cation vacancy NacCl Ca®* Na;_,.Ca,[].Cl
Higher positive ~ Anion addition CaF, Y3t Caj— Y, Foiy
Lower positive  Cation addition SiO, AP* Li,Si;—Al,O;
Lower positive  Anion vacancy Zr0O, Ca** Zr;_Ca, 0, [

Any Double substitution ~ CaAl,Si,Og Na™ (Ca;-,Na,)(Al,-,Si»+,)Og
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Table 2.3 Redox compensations in materials (oxidation states can change).

Redox-active

metal Defect or dopant Examples Importance
Oxidized Cation vacancy Fe,_,O Vacancy clustering
LiCoO,—Li;-,.Co0O, Battery material
Reduced Cation interstitial TiS,—Li, TiS, Battery material
WO;—Na, WO, Electrochromic
Oxidized Anion interstitial La,CuO4—LayCuOys Superconductor
UO,—-UOs4 Structural evolution
Reduced Anion vacancy YBa,Cu;0;,—YBa,Cuz;0-, Superconductor
WO;—-WO;5_, Crystallographic shear
Oxidized Lower-valent cation La,CuO4—La,_, Sr,.CuOy, Superconductor
LaMnOs;—La;_.Ca,MnOjy Magnetoresistance
Reduced Higher-valent cation Nd,CuO4—Nd,_Ce,CuOy Superconductor
CaMnO;—Ca,-,La,MnO; Magnetoresistance
oxygen vacancies or incorporate excess Ni. The ways how to treat these possibilities in
combination are explored quantitatively in Chapter 3.1. Table 2.3 summarizes some of the
possible substitutional mechanisms and gives examples of materials in each category that will
be discussed in later chapters.

Just as for cations, substitutions for anions are possible, and there is a similar range of
charge-compensation mechanisms. Solid solutions based on anion substitution are generally
less common than those based on cation substitution. This is principally because the range of
anions of similar size/charge is smaller than the range of metals. However, in later chapters
we will meet important materials that can be understood in terms of substitution of O*~ for
F~, N*", or $*” jons.

2.5 Solid Solutions and Vegard's Law

At low levels of substitution and for certain element combinations, substitutions will occur
randomly throughout a crystal structure leading to a solid solution. In many cases, the
properties of solid solutions evolve smoothly as one changes the degree of substitution. This
enables fine tuning of important parameters. As an example, the unit-cell parameters and
volume of a material often vary smoothly from that of the host (e.g. AY) towards those of the
substitutent (BY), as the degree of substitution x in A;_,B,Y is increased. Such a material is
said to follow Vegard’s law (Figure 2.5); for the unit-cell parameter a as an example:

a(x) = xagy + (1 — x)aay (2.7)
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Figure 2.5 (a) Unit-cell parameter of the Al,Ga;—,As thin films [6] and (b) pseudo-cubic cell parameter of
CaMn, Ru,;_,0O; [7]. Dotted lines show the Vegard’s-law prediction.

One can then estimate the degree of substitution directly by determining the cell parameters
and rearranging this expression to give x = [a(x) — aay]/(apy — aay).

Control of cell parameters via Vegard’s law can be particularly important when trying to grow
an epitaxial (lattice matching) layer of a material on top of a substrate. For example,
a semiconductor laser emitting between 1.2 and 1.65 um (i.e. within the transparency window
of optic fibers) can be prepared by sandwiching In; -, Ga,P;-,As, between n- and p-type InP. By
adjusting x and y, it’s possible to exactly match the cell parameter of the sandwich layer to that of
InP. In addition, the band gaps of many semiconductors can also show a Vegard’s-law depend-
ence. While maintaining the same cell parameter, different combinations of x and y may have
different band gaps allowing control over the device’s properties. For a system such as this, our
simple form of Vegard’s law must take account of each component present and becomes:

a(x,y) = xy agaas + x(1 —y) agap + (1 —x)y amas + (1 —x)(1 —y) amp (2.8)

If one introduces appropriate cell parameters (agaas = 5.65 A, aGap = 5.45 A, agaas = 6.06 A,
amp = 5.87 A), the relationship between x and y to achieve lattice matching simplifies to:

Y

YT 2210053y

(2.9)

In practice, Vegard’s law is not always followed precisely. For some systems, intermediate
members of a solid solution have smaller unit cells than predicted—a negative deviation from
Vegard’s law. Others have larger unit cells than predicted and show a positive deviation. This
departure is due to the fact that atoms/ions can only be approximately treated as hard
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Table 2.4 Examples of Kroger-Vink notation of point defects.

Symbol  Example Charge number (effective charge)
VN Na™ vacancy in Na,_,Ca,Cl -1
Cay, Ca®" on a Na* site in Na;_,,Ca,Cl +1
F/ F~ interstitial in Ca;-, Y Foy -1
Vo 0% vacancy in Zr;_Ca,O5_ +2

spheres and specific bonding interactions cause small deviations in volume. Even for
Al,Ga;_,As, the high-precision data of Figure 2.5a show a small but significant
positive deviation from Vegard’s law; the departure is such that a Vegard’s-law derived
Al content would be ~3% in error at x = 0.5. The data for CaMn,Ru;-,O3 in Figure
2.5b show a much more marked deviation. The authors have interpreted this as being
due to the presence of Mn>*/Ru’" (as opposed to the expected isovalent Mn**/Ru**
substitution) at intermediate compositions.” Departure from Vegard’s law can therefore
give a useful indication of a change in relevant properties of a material under investigation (see
also the unit-cell parameter discontinuity in Y Ba,CuzO;_, upon entering the superconducting
regime in Chapter 12). Many materials also show a maximum range of solid solution, beyond
which it is impossible to perform further substitution, a solid-solubility limit. Departure from
Vegard’s law can reveal when this limit is reached.

Finally, as we will again see in Chapters 3 and 4, the ease of forming solid solutions is often
temperature-dependent, and, as a material is cooled, a solid solution may separate (phase
segregate) into its component phases. This can lead to islands of one phase surrounded by
a matrix of the second.

Kroger-Vink Notation

When discussing defects in crystals it is often useful to adopt a shorthand notation for the various
types of defects encountered. The most common is the Krdger—Vink notation in which a symbol
of the form A4 - is used. Position 4 is the chemical symbol of the atom concerned or v for vacancy.
Superscript B indicates the effective charge of the defect (remember that a cation vacancy leaves
a local excess of negative charge at the defect site; an anion vacancy an excess of positive charge).
A dot is used for a positively charged defect (i.e. A<) and a prime for a negatively charged defect
(i.e. A¢). Finally, the subscript Cidentifies the site in the crystal on which the defect occurs via the
symbol of the host atom or a symbol  if the site is interstitial.* Typical examples are given in Table
2.4 using materials introduced in Table 2.2.

7 Note that the y-axis scales on Figures 2.5a/b are very different: the overall percentage change in cell parameter is ~0.1% in
(a) and ~3% in (b). In (b) we plot (volume/4) to give a pseudo-cubic-cell parameter related to the simple perovskite cell.

8 One may also use an s for a surface site (it is often convenient to think of the atoms that are missing in, e.g. a Schottky
defect as having migrated to the surface of the crystal).
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Line Defects in Metals

The defects considered up to now have all been randomly distributed, isolated point defects
where the probability of finding a defect at a given point in a structure is largely independent
of whether nearby sites contain a defect. Energetically favorable defect clustering means,
however, that it is common to find aggregated and extended defects in materials. It is this
type of defect, which, for example, gives metals their characteristic properties of malleability
and ductility and allows them to be worked into useful forms. We’ll consider two basic types
of line defects in metals; edge dislocations and screw dislocations.

Edge Dislocations

An edge dislocation can be envisaged as shown in Figure 2.6a illustrating a 2D slice through
a crystal structure. An extra plane of atoms (running perpendicular to the plane of the paper)
has been inserted into the top half of the crystal. This gives rise to a dislocation line (again
perpendicular to the plane of the paper) shown by a star. This defect is similar to the
interstitial defect of Figure 2.1b but extends over a 2D plane of the structure.

The existence of edge dislocations helps explain why metals can be relatively easily
deformed without cracking or failure. If one applies a force perpendicular to the top half
of the crystal of Figure 2.6, then the “extra” plane of atoms can move to alleviate the imposed
stress. This can occur in a series of steps in which a single line of bonds breaks and then
reforms in the crystal such that the dislocation line moves across the crystal by one lattice
spacing at a time. The plane along which the dislocation line moves is called the slip plane
(shown as a dashed line). In each step only a small number of chemical bonds need to be
broken, which helps rationalize the ease with which metals can be deformed. Alternative
models of deformation would require the simultaneous breakage of entire planes of metal—
metal bonds and would be prohibitively costly in terms of energy. The importance of
dislocation motion also helps explain why minor impurities can have a large influence on
the mechanical properties of metals. Impurities can trap dislocations at specific locations in
a sample and prevent their motion. This process is known as pinning.

The description of deformations of materials via the slippage of atomic planes also rationalizes
why ceramic materials are usually harder, more brittle, and more prone to cleavage than metals.
The delocalized, isotropic nature of metallic bonding allows easy slip-plane formation and
slippage as opposed to covalent solids; in an ionic solid slippage of planes by one atomic unit
is unfavorable due to the repulsive interactions between ions of like charge.

Screw Dislocations

The second common type of line defect in metals is a so-called screw dislocation. One can
imagine this as a “spiral staircase” or “corkscrew” arrangement formed by slicing a crystal to
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Figure 2.6 An edge dislocation due to an extra plane of atoms (a). Application of a shear stress moves the
edge dislocation through the crystal (b, c) eventually forming a step on the crystal surface (d). Such
processes occur as metals are worked.

its center and sliding adjacent layers of atoms by one atomic plane as shown schematically in
Figure 2.7. As subsequent atoms attach to the growing crystal surface, they will form a spiral
arrangement as shown in the experimental image of SiC on the right of the figure. This is
aline defect, and the line of the dislocation runs up the center of the spiral. Screw dislocations
can move through a crystal under applied stress in a similar manner to edge dislocations.

In practice, the dislocations in metals may appear more complex than simple edge or screw
dislocations. However, most common dislocations can be described as a combination of
these two basic types.

Planar Defects in Materials

Many defects in materials involve planes of atoms as opposed to the point and line defects
described above. Three categories of planar defects found in technologically important
materials are stacking faults, twins, and antiphase boundaries.

Stacking Faults

Many materials can be described in terms of layers of atoms or groups of atoms that stack
along a certain direction in the structure. These range from metals, which are essentially 3D
in their properties, to materials such as graphite, layered transition-metal sulfides, and
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Figure 2.7 Left: A schematic picture showing the start of a screw dislocation in a crystal. Right: An image
of a screw dislocation in a crystal of SiC; the width of the inner terraces is ~10 um. Image courtesy of
Dietmar Siche.

silicate clays which are far more 2D. Section 1.4.1 describes, for example, how the structure
of many metals is based on either hexagonal or cubic closest packing of spheres that repeat in
the layer-stacking sequence ABABAB and ABCABCABC, respectively. Both fill the same
percentage (74.05%) of available space and are close in energy. In fact, some materials switch
from one sequence to another under different conditions (for example Co from AB to ABC
upon heating above 690 K, or Al from ABC to AB under very high pressures). Such materials
may also be prone to faults in the stacking sequence. Stacking faults also occur easily in
layered materials such as those related to the CdCl, or CdlI, structure types (Figure 1.28). In
some cases, the forces holding together adjacent layers can be so weak or non-specific that
although materials are highly ordered in two dimensions, adjacent layers along the stacking
direction rapidly lose registry. This type of disorder, turbostratic disorder, is commonly
found in graphite, layered clays, and molecular intercalates (Chapter 13).

While stacking faults occur at random in some materials, in others they give rise to ordered
structures. Ordered variants differing by their stacking sequences are referred to as polytypes,
and a schematic example is shown in Figure 2.8. Polytypism (formation of several polytypes)
is commonly observed in the layered halides, structurally related transition-metal dichalco-
genides, SiC, and many other systems. It is a subset of the more general phenomenon of
polymorphism: the existence of more than one structural form of a given material.

Twinning

Crystallographic twinning is an extended defect that is important in areas as diverse as the
mechanical properties of metals, the optical properties of crystals, and the performance of
piezoelectrics and ferroelectrics (Chapter 8). A twinned crystal is defined as an intergrowth of
two or more individual crystals of the same species, in which the different portions are related
by a symmetry operation that doesn’t belong to the point group of the crystal. Each individual
is called a twin component or a twin domain and the symmetry operation relating them a twin
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Figure 2.8 Polytypism of an element. Left: ccp, layer sequence ABC. Right: ABAC.

law. The interface between domains is called a twin boundary or domain boundary, and these
can be several atomic layers thick if there is significant structural rearrangement required
across the boundary. Figure 2.9 contains some examples. Twinning can be detected in
a number of ways. Sometimes it leads to crystals with re-entrant’ angles between faces. In
translucent crystals, it can be seen using cross polarizers in a polarization microscope as
different domains show light extinction at different angles. It is also apparent in single-
crystal diffraction experiments, since each domain will give rise to its own diffraction pattern;
hkl reflections from different domains may or may not overlap in reciprocal space depending
on the twin law. Twinning can be an unwanted complication in these experiments and is one of
the reasons why powder-diffraction methods are often used for structural work.

There are three twin categories; growth twins, deformation (glide) twins, and transformation
twins. Growth twins can arise during the formation of a crystal if it grows from multiple
crystallization nuclei. In Figure 2.9a, we can imagine that two domains have grown from
different nucleation sites at the twin boundary. Deformation twins occur when a shear stress is
applied to a crystal and causes each plane of atoms to move by a fraction of a unit cell relative
to the layer below it. Major changes in the crystal’s macroscopic shape arise from small
individual atomic displacements, and the process can occur very rapidly (Figure 2.9b). This
type of twinning is important in steel-production, mineralogy, and in the superelastic and
shape-memory alloys discussed in Box 2.2.

In functional materials, twinning is most commonly encountered when the shape of the unit cell
has a higher point symmetry than the atomic contents.'” If one imagines producing a crystal by
stacking together such unit cells (like building a wall out of parallelepiped bricks), it is easy to
make a mistake and start placing bricks upside down without disrupting the overall stacking.

° A re-entrant angle in an irregular polyhedron is an angle inside that polyhedron, which is greater than 180°, such as
on the right-hand side of the crystallite shown in Figure 2.9b.
10 Or close to higher symmetry. For example, a monoclinic cell with a = 90.05° approximates an orthorhombic cell.



70

Defects and More Complex Structures

twin boundary

BUCK | BUCK
BUCK | BUCK |nyin
twin
: ick |bounda T
Brick | Brick ry Boundary
Brick | Brick T
Brick | Brick

(@) (b) (c)

Figure 2.9 (a) A twinned crystal where a growth fault leads to domains related by a mirror plane.
(b) A deformation twin where atoms in the top domain of the crystal have been displaced by a shear
stress. (c) A high-temperature square lattice (¢ = b) that distorts into rectangles (a = b) at low temperature will
form a twin-domain structure in which the longer edge (emphasized by an arrow) can be aligned in different
directions, two of which are shown; domains are related by a fourfold rotation of the square lattice.

Figure 2.9a shows a 2D example where the unit cell is a rectangle and thus has two mirror planes
(mm symmetry) while the cell contents (here the word “Brick™) have lower symmetry (here no
symmetry). When a “mistake” is made, a new twin component is formed, related to the first by
one of these mirror planes. This process is only likely to occur if the energy penalty for placing the
unit cell in an alternative orientation is low. One situation where this happens is when a structure
undergoes a phase transition from a high-symmetry to a related low-symmetry form.'" If only
minor structural changes occur, the “lost” symmetry element is likely to act as a twin law giving
rise to a transformation twin.'> A common example is when a material is cubic (¢ = b = ¢) at high
temperature but distorts to a lower symmetry tetragonal (¢ = b < c¢) structure on cooling. In this
process, it is likely that different regions of the crystal will have their longer ¢ unit-cell axis pointed
in different directions in 3D space, giving rise to different domains (a 2D simplification is shown in
Figure 2.9c where the long cell direction is indicated by an arrow). In fact, doing this will lower the
strain across the entire crystal, such that multidomain crystals usually form on cooling.

In a transformation twin, the domains are formally related by a rotational symmetry
element that is present in the high-symmetry phase but absent in the low-symmetry phase.
They are therefore associated with translationengleiche transitions (see Appendix B) in
which the translational symmetry is retained (all lattice points are kept) but a portion of
the rotational symmetry is lost. The number of twin variants (different twin-domain orienta-
tions that will form) can be predicted from the ratio of the number of rotational symmetry
operations'” per lattice point in the two space groups in question. The ratio is called the index

""" There are numerous examples discussed in Chapter 4 and throughout this book.

12 The spatial arrangement of atoms originally related by symmetry is regenerated across the twin boundary when the
symmetry operation becomes a twin law.

These symmetry operations are in a numbered list for each space-group entry under the heading “Symmetry
operations” in the International Tables for Crystallography, Volume A (see Appendix B), one for each point of
the general position. In centered space groups, there is a set associated with each of the centering translations (i.e.
with each lattice point per cell). The number of individual domains can be much higher than the number of variants
obtained from the symmetry-operations ratio per lattice point.

13
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Box 2.2 Materials Spotlight: Shape-memory alloys

Shape-memory alloys are a remarkable family of structural materials that can be mechanically
deformed at low temperature but will regain their original shape on gentle heating. They thus
retain a “memory” of their initial shape. What’s the origin of this memory effect? On cooling,
some materials undergo diffusionless transitions (each atom only moves a small distance
relative to its neighbors) which lead to twinning of the type shown in Figure 2.9b. These are
commonly called martensitic transformations after the well-known example that occurs when
austenite (fcc) transforms irreversibly to lower-symmetry martensite (body-centered tetrag-
onal) during the quenching of steel. Shape-memory alloys undergo reversible martensitic
transitions in which the details of the low-temperature domain structure control the shape of
the crystal. This is shown in the figure below. If a shape-memory alloy is cooled through the
phase transition while restricted to a certain physical shape (step 1 in the figure), a twin
structure with domains of optimal size and arrangement to fit this particular shape will develop.
When this cooled form is mechanically deformed (step 2), the twin-domain boundaries will
move into a new interlocked metastable position. In it, the twin domain that best compensates
the applied stress has grown at the expense of the others, facilitating the deformation. When
that form is heated (step 3) above the temperature of the low- to high-symmetry phase
transition, the domain structure, and hence the mechanically deformed shape, will be lost.
On subsequent cooling (step 4) the original twin structure “stored” in the sample during its
initial manufacture, and hence its shape, is reformed.

1, _2 3 4,
cool deform heat cool

The best-known shape-memory alloy is a 1:1 alloy of Ni and Ti, commonly known as nitinol
(nickel titanium Naval Ordnance Laboratory); other commercial materials are based on Cu-
rich CuZnAl and CuNiAl alloys. NiTi is cubic at high temperature but on cooling undergoes
a phase transition to a structure with a small monoclinic distortion. This martensitic trans-
formation starts at around 60 °C on cooling and 71 °C on warming, but slight changes in
composition allow the transition temperature to be controlled between —50 °C and 100 °C. For
Cu-based systems, transition temperatures from —180 °C to 200 °C can be achieved. Annealing
temperatures of 500-800 °C are typically used to “store” a specific shape in a sample.

Shape-memory alloys have a range of potential applications. Biomedical implants can be
prepared, which are inserted into the body in a compressed, deformed state and unfold as they
warm to body temperature. Shape-memory fittings to join piping together are available
commercially; these are made as tubes, slightly smaller than the pipes, and then deformed at
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Box 2.2 (cont.)

low temperature to fit over the two pipes to be joined. On gentle heating, they regain their
original dimensions thus forming a tight seal. So-called two-way shape-memory alloys that
“remember” the shape of both the low- and high-temperature form can also be prepared. This
is achieved by using defects, which create local stresses in a material, to control the places where
individual twin domains form. Typing “shape memory movie” into a search engine will provide
links to a number of on-line movies that give dramatic illustrations of this effect.

A second property of these alloys—their high pseudoelasticity or superelasticity—is
exploited in eyeglass frames that can withstand distortions without damage. Here, one
operates just above the transformation temperature of the material so that the martensitic
transition occurs on application of stress, allowing significant mechanical distortion.
When the stress is removed, the material reverts to the austenite form and the original

shape is regained.

2.8.3

of the translationengleiche subgroup (Appendix B) of the two groups. For example, if a cubic
material with space group Pm3m (#221) undergoes a phase transition to a tetragonal
structure with space group P4/mmm (#123), the former has 48 symmetry operations (or
general points), the latter 16. We therefore expect 48/16 = 3 variants. This result can also be
obtained straightforwardly by considering the point-group order alone, which again changes
from 48 for m3m (O, in Schonfliess notation) to 16 for 4/mmm (Dap).*

Antiphase Boundaries

A third type of planar fault that can occur in crystals is an antiphase boundary. These are
frequently associated with site ordering in materials. Consider the situation shown in Figure
2.10, which could represent a square array of oxide ions with metal ions of two different
charges (e.g. 1+ and 3+) sitting in the four-coordinate sites. At high temperature, the two
types of metal ions are disordered over their common crystallographic site in the structure.
On cooling, it may become thermodynamically favorable for them to order in, say,
a checkerboard pattern as in the bottom left of Figure 2.10, where cations of low charge
are surrounded by high charge and vice versa. Such an arrangement minimizes electrostatic
repulsions as it maximizes the separation between the 3+ ions.

The second column of Figure 2.10 represents a situation where an antiphase boundary was
formed by two ordered regions meeting out of phase as the crystal cools from its surface. The

4 The point group contains only rotational symmetry operations that leave at least one point unchanged. The order is
the number of operations it contains. We include the Schonflies notation of the point groups (Appendix A) as it’s
familiar to most chemists and most inorganic texts will contain point-group character tables that state the group
order.
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Figure 2.10 Formation of antiphase boundaries. A hypothetical array of oxide anions (small circles)
contains an equimolar mixture of 1+ and 3+ metal cations that are disordered at high temperature (gray
circles) and order (white/black circles) on cooling from two hypothetical seeds at the opposite crystal
surfaces; 50% meet in phase (on the left), 50% out of phase (on the right). The ordered structure here has
a quadrupled unit cell reflecting a loss of translational symmetry.

two components are related by a symmetry element present in the high-symmetry structure
but missing in the low-symmetry structure. In contrast to twinning, antiphase boundaries
form when a subset of translational symmetry elements is lost rather than rotational
elements. Antiphase boundaries are therefore associated with klassengleiche subgroups.'”
Clearly, the domain-boundary structure on the bottom right is energetically unfavorable
with respect to that in the bottom left, but considerable atomic rearrangement would be
required to “heal” the fault. The presence and number of antiphase boundaries will depend
strongly on the thermal history of a sample. Real examples where antiphase boundaries
occur include M-site ordering in double perovskites such as AsMM'Og (AM( sM' 503) that
contain a mixture of differently charged M and M’ ions (e.g. 2+/4+ or 1+/5+) on the
octahedral site. Similar effects are found in metal alloys such as FePt that has a cubic
structure at high temperature, with Fe and Pt disordered over all sites of an fcc lattice, but
orders on cooling to a tetragonal structure with alternate layers of Fe and Pt. Faults occur
when different ordered domains meet such that two layers of Fe or two layers of Pt are
adjacent or the layers grow in different orientations. The ordered material is of interest in
that it has high magnetocrystalline anisotropy making it potentially useful for magnetic data
storage.

15 See Appendix B. Klassengleiche subgroups involve a partial loss of translational symmetry (for example, loss of
some lattice points due to formation of a supercell or a loss of centering.). The point-group symmetry or crystal class
is retained.
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Crystallographic Shear Structures

A final family of planar defects that can give rise to nonstoichiometric formulae and
structures that initially appear remarkably complex are found in the crystallographic shear
structures. They are also frequently referred to as Magnéli phases after A. Magnéli who first
described Mo0yO,6 and W»(Osg. The key to understanding them in terms of extended planar
defects was provided by Wadsley [8]. A good example is provided by the tungsten oxides. We
have seen in Section 1.5.3 that the structure of WOs3, a yellow semiconducting material, can
be described in terms of distorted and tilted corner-sharing WOy octahedra (a distorted
variant of the ReO; structure). When WO3 is heated under reducing atmospheres, or when it
is reacted with additional W in the absence of oxygen, a series of compounds of general
formula WO;_, (e.g. WO, ) can be made. These are typically bright blue in color due to
partial reduction of W(VI) to W(V). Although their compositions can be approximated as
WOs_,, x is not a continuous variable but takes certain discrete values. Careful structural
studies have shown that these materials are members of homologous series with general
formulae such as W,,03,,—; and W,,03,,_»; a material such as WO, ¢ being better formulated as
W,0Oss, the n = 20 member of the second series.

The structural origin of these general formulae can be understood with respect to
Figure 2.11. If one imagines that partial reduction of WOj; initially removes an entire
plane of oxygen atoms, one would generate the structure in the middle of Figure 2.11,
in which W atoms on either side of the missing plane are only five-coordinate. If each
W in the right-hand five-coordinate plane is shifted by half a unit cell parallel to the
two in-plane axes of the original unit-cell edge of pseudo-cubic WOj;, the sixfold
coordination of each W is regained. We see a double chain in Figure 2.11 of octahedra
that share two edges in addition to sharing their remaining three corners. In the
example of Figure 2.11, the octahedra translate solely in the plane of the figure, but
we could also imagine octahedra moving out of the plane to share apical edges instead
of the equatorial ones.

In reality, many different crystallographic shear planes are possible for WO;. Figure 2.12
shows some of them. Figure 2.12b shows the (101) fault plane. This corresponds to a twin
where all oxygens remain coordinated to two octahedral W atoms, and the formula remains
WOs;. As the plane of defects rotates clockwise in Figure 2.12 from (102) to (103) to (001) =
(10e0), the 2D projection shows a line of blocks of four edge-sharing octahedra in part (c),
a line of blocks of six octahedra in part (d) and a continuous zig-zag belt of octahedra sharing
two edges in (e), with a corresponding decrease in the oxygen content as the oxygen connect-
ivity increases. Irregular (102) Wadsley defects have been observed for WO;_, with x = 0.002.
By x = 0.05, these defect planes become ordered, giving a W,,05,,—; family of phases (z = 20 for
x = 0.05) with the integer n decreasing as the defect planes get closer on lowering oxygen
content (increasing x). Ordered structures of this type are known down to n = 12 of W 5,035
(WO, 9, or x =0.08). Beyond x = 0.08, the spacing of (102) defects becomes too close, and (103)
defects are observed instead, leading to W,,05,,—, materials that are well characterized for at
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Figure 2.11 A section of the structure of WOj3 showing a projection of corner-sharing octahedra.
Removal of a plane of oxygen atoms followed by a displacement along the shear plane recreates
octahedral coordination around each W. The pseudo-cubic unit cell of WOj; is shown as
a dark box.

least n = 26-18 (WO,.9> to WO, g9). As might be expected, similar structures are also observed
when a small amount of Nb>* is substituted for W°*.

Figure 2.12f shows an extreme case with regularly spaced defects corresponding to
a formula of M,Os; the ideal'® structure of V,0s. The structure of the mixed-anion com-
pound Nbs;O5F can similarly be described in terms of crystallographic shear planes of the
type shown in Figure 2.12¢ separated by a single plane of fully corner-shared octahedra. If
one allows shear planes in two perpendicular directions, a large family of closely related
structures results. An excellent description of the various possibilities is given in the text by
Hyde and Andersson (see Further Reading).

A similar phenomenon occurs in the rutile TiO; structure leading to a variety of compos-
itions between Ti305 (TiO ¢7) and TiO,. The shear planes are harder to depict as there’s no
convenient projection to draw, but the resulting structures contain infinite 2D slabs of rutile
separated by regions with a portion of face-sharing octahedra. Depending on the shear plane
involved, materials with formula Ti,,0,,, result: TiO, 75 to TiO; gohave 4 <n<9andp = 1;
TiO; g9 to TiO; 93 have 9 <n/p <16 and p > 1; TiO; 95 to TiO; gg have 16 <n <40 and p = 1.
It’s also common (and unsurprising) to find intergrowths of different slabs in electron
microscopy images of samples rapidly cooled from high temperature.

Gross Nonstoichiometry and Defect Ordering

In Section 2.3, we investigated the number of vacancies one might expect to find in a simple ionic
material with fixed oxidation states. For compounds with variable metal oxidation states, defect

16 v,05 is normally described as layers of edge- and corner-sharing VOs5 square pyramids. However, an oxygen from
an adjacent layer makes up the sixth coordination site of the V such that it can be described as a highly distorted
octahedron.
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Figure 2.12 Possible planar defects for an ideal WOs-type structure. (a) The WO5 structure viewed down
the b axis; the unit cell is bold. (b) A twin boundary. (c—e) Crystallographic shear planes with loss of
oxygen from the structure. (f) The idealized structure of V,Os.

levels can be sufficiently high that defect interactions and ordering become important—this can
be remarkably complex. The different TiO, (0 < x < 2) phases that form when Ti is progressively
oxidized give several examples [9].

Ti itself is an hcp metal. On oxidation, O®” ions initially adopt interstitial sites in the
hep structure at random before ordering at higher concentrations. At composition TigO,
oxygen fills one-third of the octahedral holes in half of the hole planes, at Ti;O, two-thirds
of them, and at Ti,O all of them, with anti-CdI,-type ordering adopted. The structure and
composition probably evolve continuously over much of this range, and Vegard’s law is
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followed up to Ti3O. Early literature [10] suggested that, around TiOg ¢7_¢.75, @ structure
related to e-TaN forms but with high O deficiency; this can equally be described as
O interstitials in the ®-Ti structure. This same structure type has more recently been
reported [11] for a TiO composition synthesized in a Bi flux so there is some doubt about
the earlier work. Around x = 1, TiO more commonly forms with an NaCl-type structure
and a significant number of defects. On the O-deficient side (TiOg¢4), up to ~36% of
oxygen sites are vacant; on the O-rich side (TiO; »6), ~23 % of Ti sites and some O sites are
vacant. At the 1:1 composition, ~15 % of both sites are vacant such that we might write
the formula as Tig g50¢.g5. Note that in a case like this, neither elemental analysis nor site
occupancies refined from diffraction data (which merely measure relative scattering from
cation and anion sites) would reveal the presence of defects; density measurements of the
type explored in the end-of-chapter problems are one way of detecting them. At low
temperatures, vacancies in TiO order to give a monoclinic structure, in which a regular
arrangement of one in six cation and anion sites of the NaCl-type structure is empty.
Similarly, Ti4O5 (TiO ») orders at low temperature to a structure in which four out of five
cation sites are occupied, and O sites are essentially fully occupied. At higher oxygen
contents, one reaches Ti,Os (with the corundum structure), Ti;Os (several polymorphs)'’,
Ti4O7, and then the crystallographic shear-plane series Ti,05,-; (with n = 5, 6, ...)
discussed in Section 2.8.4.

Iron monoxide (wiistite) provides an example where nonstoichiometry and clustering of
defects add significant complexity to its ideally NaCl-type structure. In fact, the homogeneity
range of FeO does not include the stoichiometric (or integer-valence; see Chapter 3) phase.
At 1350 °C, Fe;-, O with 0.06 < x < 0.16 can be prepared; at lower temperatures, the range of
x is smaller. These materials are thermodynamically stable above ~570 °C (below this Fe and
Fe;04 are stable) and there has been considerable investigation into the defect structures of
quenched samples. The principal defect present is a vacancy on the regular octahedral Fe**
site (vge'’; V for brevity in this FeO case), which is charge-compensated by a small number of
interstitial Fe** at nearby tetrahedral holes (Fe,”™" or T) like those occupied by Zn in ZnS,
sphalerite, Figure 1.32."® Due to their effective charge, the vi.” and Fe;” defects attract each
other such that locally the Fe'" interstitial is surrounded by four Fe** vacancies—a
V4T cluster (Figure 2.13). What’s more controversial is how these small vacancy clusters
are arranged on a longer length scale to form larger clusters.'’

17 The structural chemistry of TizOs is complex, and several polymorphs (o8, A) exist with different arrangements of
corner-, edge-, or face-sharing TiOg4 octahedra. The y polymorph [S.-H. Hong, S. Asbrink, Acta Crystallogr. Sect.
B 38 (1982), 2570; ICSD 35148] can be viewed as an n = 3 rutile shear structure.

18 We shouldn’t be surprised by this as a similar site is occupied by Fe*" in Fe;0, (an inverse spinel structure, i.e. a ccp
of O*” with Fe*" in one-eighth of the tetrahedral holes and Fe**/Fe>" in half the octahedral holes).

19 1f the clusters order in three dimensions, one would see extra superstructure peaks in diffraction patterns due to the
larger unit cell involved. Such peaks are indeed observed experimentally, though for some compositions
a commensurate superstructure with ag,, = 2.51apo (1 is an integer) is formed while at others the superstructure
is incommensurate (Section 2.11) with ag,, = (2.51-2.73)n-ap.o—so-called P and P’ ordering respectively.
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(a) (b) (c) (d)

Figure 2.13 Tron-vacancy clusters proposed for Fe;_,O: (a) V4T cluster, (b) V9T, (¢) V12T4, and (d) Vi3
T,. White squares represent Fe>* vacancies and gray circles interstitial Fe** sites. The ccp O~ that lie on
the unmarked vertices of each cube are omitted for clarity. Note that each cube here has the size of one
octant of the NaCl unit cell shown in Figure 1.26.

In one of the early studies on the defect structure of FeO [12], Koch and Cohen proposed
the V3T, cluster shown in Figure 2.13. Other clusters have been suggested, including the Vi,
T, cluster, which, when regularly spaced at a distance of 2.5ar.o (i.€. close to experimentally
observed superstructures), would lead to a composition of Feg g7,0O. Yet other workers have
suggested the importance of V(T4 clusters. A single-crystal study [13] investigating both
Bragg diffraction and diffuse scattering on a specific Feg 9430 sample suggests that V3T and
Vi6Ts clusters are important. The experimental data were interpreted in terms of defect
clusters lying on the vertices of a highly distorted cubic lattice with spacing ~2.7ag.o, with
around 50% of these cells containing a defect and 50% being defect-free. The defect and
defect-free regions are not homogeneously distributed through the structure. Interestingly, if
one considers the size of a V3T, cluster and the fact that for charge balance (its charge
number is 14-), neighboring octahedral sites must contain a portion of Fe** ions, close
packing of the overall units would require a cell of ~2.5ap.o. A mixture of larger V¢Ts and
V13T4 would require a cell of around 2.7ag.o. These values are consistent with experimental
observations and explored in the end-of-chapter problems. The precise structural picture of
samples quenched to low temperatures is clearly complex, though it’s clear that, at high
temperature, isolated vacancies and smaller defect clusters become more important.

Incommensurate Structures

A number of materials exist that appear to have full occupancy of atomic sites in the
structure, yet still possess a nonstoichiometric formula. One case occurs in the so-called
incommensurate structures, which can’t easily be described using the simple 3D concept of
one unit cell and space group introduced in Chapter 1. An example is Sn; 17INbS3 ;7; one of
a number of A;;,BX5:, compounds that were long thought to have a simple ABXj;
composition. The origin of the structural complexity in this family is at its heart simple.
The structure of Sn; 17NbS3 17 can be described as alternating layers of NaCl-like SnS and
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Figure 2.14 The intergrowth structure of (SnS); 17NbS,. The right-hand view shows that b cell parameters
of SnS and NbS, segments are identical such that the layers fit together in a simple fashion; the left-hand
view shows that the a cell parameters have no simple relationship.

NDS, (Figure 2.14).?° The relative sizes of the ideal unit cells of the SnS and NbS, portions of
the structure are such that along b the cells fit together but along a they don’t. In addition,
there is no simple integer ratio of the a cell parameters such that, for example, three units of
SnS would match up with two units of NbS,; the two periodicities do not match.”! It’s
therefore not possible to use a simple multiplied unit cell. The situation is rather like tiling
a bathroom with rows of tiles of two different lengths—if one starts in one corner of the room
and works along the wall, the gaps between the two rows of tiles may never perfectly align.
In fact, for Sn; ;;NDbS5 17, the cell parameters of the two portions (as,s = 5.673 A; anps, =
3.321 A) are such that the structure approximately matches up after seven SnS and twelve
NbS, unit cells. The formula of the material can therefore be approximated as (SnS),x;
(NDS,);> (2 x 7 as each SnS cell contains two formula units) or (SnS); ;7;NDbS, (equivalent to
Sn; 17NDbS3 17) and could be approximately described on a supercell with ¢ = 39.8 A. This
description is, however, rather inelegant, and incommensurately modulated structures such as
this are better described using the language of superspace groups and modulation functions
(structures that are incommensurate in 3D can be conveniently described in a superspace of
(3 + n)D with n added modulation periodicities) [14], but this description is beyond the scope
of this text. This approach may also be applied to commensurately modulated structures,
those with periodicities that match a small multiple. The advantage is a low number of
structural variables, as opposed to working with a large supercell of many atoms.

20 The NbS; layers are similar to those found in Cdl,, but with trigonal prismatic rather than octahedral coordination of Nb.

2! In the original publication [Meetsma et al., Acta Crystallogr. Sect. A 45 (1989), 285-291] the SnS portion of the structure
was described witha = 5.673 A, b=5.750 A, ¢ = 11.760 A in space group C2mb with Sn at 00.250.1335 and S at 0.476 0.25
0.0954 and the NbS, portion with @ =3.321 A, h=5.752 A, ¢ = 11.763 A in space group Cm2m with Nbat000and S at 0
0.33350.1328. The sets of b and ¢ cell parameters measured differ by less than the experimental uncertainty.
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Sr
Cu

Figure 2.15 Structure of Srg 73Cu0O,. The « axis runs horizontally in the plane of the paper.

Figure 2.15 shows a related phenomenon in the structure of Sry73CuQ, that has a Sr
periodicity of 3.72 A and Cu periodicity of around 2.73 A along the a direction. The Sr:Cu
ratio is thus 2.73/3.72 = 0.73. The Cu atom is always in a square-planar coordination
environment, whereas the Sr coordination varies as you move along a. Many other materials
display structural modulations. For example, the hexagonal perovskite Sry4/1;C0O5 [15] has
a misfit modulation where voids between face-sharing octahedral columns accommodate an
excess of the relatively small Sr ions compensated by a partial reduction of Co** to Co*"; or
metal alloys such as Zn,,Lig [16] show occupational modulation. Incommensurate structures
have even been found for simple metals such as Ba and Bi under high pressure.

Infinitely Adaptive Structures

We'll finish this chapter with a short discussion of other structures that use simple building
principles to accommodate nonstoichiometric and continually variable formulae. In fact, we’ve
seen examples of this behavior already in the shear structures of Section 2.8.4, where, as the shear
plane or plane spacing changes, a variety of closely related structures with variable composition
evolve. Systems where any small compositional change leads to a structure that is unique, even if
closely related to those of neighboring compositions, are called infinitely adaptive.”> Another
example is the family of Y>" materials of composition Y(O, F), 15 to Y(O, F),5 that can be
formed by the reaction of appropriate quantities of YOF and YF3. Within this composition
range, the excess anions are accommodated in a practically infinite series of very closely related
structures, each fluorite-related (as is YOF itself).

We can understand the structures by considering the fluorite MX, structure (Figure
1.31) in terms of square grids of X, with a checkerboard arrangement of M above and
below the square grid, forming a slab of edge-sharing XMy, tetrahedra (Figure 2.16, left).
Fluorite itself can be built up by alternating this MX slab with square grids of X along
a stacking axis, giving MX + X = M X, overall. In the Y3*0,_,,F11a,, " structures, alternate
square grids of X are replaced by a layer of X anions with a triangular grid, which, for an
ideal situation, is denser by a factor of 2/Y3 = 1.155. The composition of this ideal situation

22 Using the language of Chapter 4, each composition is a single phase. The compositions are so dense that there are
effectively no two-phase regions, just one solid-solution range.

2 The MXs,s composition can be expressed in various ways. The general formula can be expressed as Y, 0, Fy 5, =
YO,-,,F 142, = Y(O1-,,F,,)F14,,,; the final representation emphasizes that anion sites in the square grid are fully occupied.
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anions —»
«—cation
CaF,-structured hexagonal F layer Y504F; = Y5(O,4F)Fg
Y(Oy_pF ) slab (YOqsF14= MX;)5)

Figure 2.16 The structure of YsO4F; (right) can be built up from Y(O, F) layers of the fluorite type
alternating with hexagonal F anion layers with a denser packing than in the square grid. In the Y(O, F)
slab, cation sites below the anion layer are shown in paler gray.

becomes MX + 1.155X = MX; 155. Through small adjustments in the size of the triangular
anion nets, m in YO, _,,,F{42,, can be varied from 0.13 to 0.22 (YOg g7F .26 to YOq 75F 44).
The way in which the square and triangular grids match up in the plane perpendicular to
our imagined stacking direction can lead to large unit cells (analogous to the situation
drawn in the lower part of Figure 2.14). In the m = 0.2 case of YsO4F; shown on the right of
Figure 2.16, six triangles line up with five squares; in m = 0.167 Y¢OsFg, seven triangles line
up with six squares. These ideas are explored in Problem 2.27. In these phases, the Y sites
have local coordination numbers varying between eight (like fluorite) and six, and this type
of behavior is therefore most likely in materials where cations have flexible coordination
environments.

Similar features occur in a range of structures built from different slabs or columns.
Traditionally, the structures have been described using large unit cells, but the continuous
range of structures within a given system means that they are again often better described as
incommensurately modulated structures [17]. While we’ve only touched on a couple of
examples, the complexity and range of structures possible in real materials should be
apparent.

Problems

2.1 Given that Cu adopts a ccp structure with a cubic cell parameter of 3.615 A, confirm that the
equilibrium number of vacancies in a 1 cm® sample at 1000 °Cis around 10". Note the need to
convert between k, in J/K, and R, in J/(K mol), when using molar quantities: Nak = R.
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2.2 Calculate the fractional number of vacancy sites in Cu at (a) 300 K, (b) 800 K, and (¢) its
melting point (1357 K).

2.3 Assuming a unit-cell parameter of 5.62 A, estimate the equilibrium number of Schottky
defects in a 1 mm? grain of NaCl at 300 K and at 700 K.

2.4 Derive the equations given in the text for the number of defects at equilibrium, n.q, for
Schottky and Frenkel defects. You will find the following expressions useful: for large x,

In(x!)~xIn(x) — x, % ((c ~ ln(e — x)) — “In(c—x) — 1, and dix <xln(x)) — In(x) + 1.

2.5 A sample of nonstoichiometric nickel oxide (A) was found to contain 77.70% Ni by mass. (a)
Calculate the empirical formula of A and state the two alternatives for the intrinsic defect that
would on its own give rise to this formula. (b) A has the NaCl-type structure and an
experimental density of 6526 kg/m>. Assuming a cell parameter of 4.180 A, state which of
the two defects is present. (c) State how the cell parameter of A could be determined
experimentally and suggest how it would compare to that of stoichiometric NiO.

2.6 A brown sample of zinc oxide was found to have the hexagonal wurtzite structure with
a=b=3.2495A,c=5.2069 A (a = =90°y=120°). Chemical analysis gave 80.765% Zn
by mass. Density measurements gave 5810 kg/m>. Determine the formula of the material
and state whether it contains oxygen vacancies or interstitial metal atoms.

2.7 Suggest oxidation states for the metal ions in each of the following materials: (a) FeO,
Feq 37,0, Fe304, FeS,; (b) FeTe, FeqTe; (¢c) LaOFeAs, LaOyoF, FeAs; and (d)
YBaFe,Os5, NdBaFe,;Os s, and NdBaCo,0.

2.8 Suggest oxidation states for the metal ions in each of the following materials: (a) TiS,,
Lip 7 TiS,; (b) LaMnOs, Lag gSrg,MnOs, Lag sCay sMnOs; (¢) La,CuOy, Lag gsBag 1s
CuOy, La,CuOy ¢75; and (d) BaPbO3, BaBiO3, Baj (K 4BiO;.

2.9 TiO with a 1:1 ratio of Ti:O was synthesized and found to have a NaCl-related structure
with @ = 4.1831 A and an experimental density of 4927 kg/m?®. Comment on these values.

2.10 The table below gives cell parameters and densities for a range of Ti,O,, materials.
Determine the defects present in each. From a graph of your results, estimate x fora 1:1
stoichiometric sample Ti,O,.

zin TiO, Cell (A) Density (g/cm?)
1.32 4.1608 4713
1.12 4.1755 4.867
0.69 42212 4.992

2.11 NbO has an NaCl-related structure, a cell parameter of 4.21 A and a density of 7.27 g/em®.
Calculate the percentage of vacant sites in the material. Draw a sketch of how the vacancies
can be arranged in an ordered way so as to give square-planar coordination of Nb. What is
the O coordination?
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2.12 GaAs,_,P, has a unit-cell parameter of 5.59 A. Calculate x and estimate the band gap
(E,) of the material, given dgaas = 5.65 A, E; = 1.42 eV; ag.p = 545 A, E, = 2.24 V.

2.13 Using the cell parameters quoted in Section 2.5, confirm the form of Equation (2.9).

2.14 Using the cell-parameter information stated in Section 2.5, calculate the cell parameter
expected for Ing 76Gag 24P 47A80.53. Would this composition be lattice matched to any of
the four possible end members: InP, GaP, InAs, or GaAs?

2.15 State the Kroger—Vink notation for the predominant defects in each of the materials in
Table 2.2.

2.16 Suggest what type of twinning might occur in: (a) an orthorhombic structure with two
cell edges approximately equal; (b) a structure with a monoclinc cell with = 90.1°; (c) an
orthorhombic structure with cell parameters a = 3.92 A,b=1121A,c=7.88A:;and (d)
a structure with a conventional primitive monoclinic unit cell with a = c.

2.17 At high temperatures, BaTiO5 has the cubic perovskite structure. On cooling, it under-
goes a series of phase transitions in which the Ti atom moves away from the center of the
TiOg¢ octahedron, and there are changes in the space group and unit-cell parameters
causing the ferroelectric behavior discussed in Chapter 8. Determine the number of twin-
domain variants (orientations) that could form in the first step when the cubic (a = 4 A,
space group Pm3m) structure undergoes a phase transition to a tetragonal structure with
space group P4mm and cell parametersa =b=c=4 A, o= =y =90°

2.18 At high temperature, CusAu has a disordered fcc structure with space group Fm3m. On
cooling, an ordering transition occurs (similar to that in Figure 4.14) and the low-temperature
structure has space group Pm3m with Au at 0 0 0 (Wyckoffsite 1) and Cu at 2 %2 0 (3¢). (a)
Sketch the low- and high-temperature structures. (b) Is this a translationengleiche or klassen-
gleiche transition? (b) State the number of domain variants in the low-temperature structure
and whether they will be related by twin or antiphase boundaries.

2.19 Like tungsten oxides, molybdenum oxides show a variety of crystallographic shear
structures. The unit cell for one of them is shown here:

The octahedra also share corners with octahedra in identical layers above and below the
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2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

plane of the paper. What is the composition of this compound? What is the oxidation state

of Mo?
A mixture of WO3; and MoO; was heated with a small excess of W and Mo metals
to give a blue single-phase product containing 25.09% O by mass and a 1:1 W:Mo
ratio. Determine the empirical formula of the product and suggest its structure
type.
Assuming the presence of a V,T4 defect cluster of the type shown in Figure 2.13,
it is possible to build an ordered superstructure for Fe;—,O using a 5a¢ X 5a X
10a unit cell. This supercell would contain 16 vacancy clusters. Calculate the
composition.
Assuming that the unit-cell parameter of Fe;_,O is given by Vegard’s law as a = 4.3325 —
0.4103x A, calculate the experimental density for (a) the hypothetical stoichiometric FeO
and (b) an Fe-deficient material with an Fe:O ratio of 1.075.
A sample of Fe,_,O has a measured density of 5491 kg/m> and cell parameter of 4.281 A.
Estimate the composition based on these two observations.
Sketch a V4T cluster for the Fe;_,O structure showing both O and vacant Fe sites.
Indicate the nearest shell of occupied octahedral Fe sites relative to the vacant site. State
how many of these sites must on average be occupied by Fe>* to achieve electroneutrality.
Write down the Kroger—Vink notation of each defect present.
Assume that the defect structure of a crystal of Fe,;_,O can be described in terms
of Vi3T4 clusters arranged such that they have a cubic cell with a = 2.7 X ap.o,
and that on average 50% of these cells contain a defect cluster. Calculate the value
of x.
A layered material with approximate composition PbNbS; was found to have a very
similar X-ray-diffraction pattern to that of Sn; ;7NbS; ;7. Single-crystal studies revealed
that the PbS portion could be described with cell parameters of « = 5.834 A, b = 5.801 A,
¢ =11.90 A and the NbS, part with cell parameters of @ = 3.313 A, b = 5.801 A, ¢ =
2% 11.90 A (ref. [18]). (a) Give a brief description of the likely structure of “PbNbS;”. (b)
State how large the a axis would need to be to describe this structure using a conventional
crystallographic unit cell. (c) From the cell parameters given, calculate the true compos-
ition of “PbNDbS;”. (d) Suggest why the ¢ axis of the NbS,; part of the structure is double
that of the PbS part. (e¢) Suggest a likely structure for a material of composition
Pb; 14NDb,Ss 4.
The structure of Y(O, F),.s materials can be described in terms of a YX slab based on
a square grid of anions alternating with a hexagonal anion grid as shown in Figure 2.16.
(a) Confirm that the composition of a material with ideal anion arrays (all nearest anion—
anion distances equal) would be MX5 ;s5. (b) State whether you’d expect this MX, 55
material to be commensurate or incommensurate. (¢c) Assume that the triangles are
compressed slightly in the b direction such that horizontal rows of anions align after
five squares and six triangles as in Figure 2.16. Calculate the composition of this material.
Repeat your calculation for a system in which anions align after six squares and after
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seven triangles. (d) State the relationship you’d expect between the square and triangular
anion grid in Y;O¢F.

2.13 Further Reading

Defects: F.A. Kroger, “The Chemistry of Imperfect Crystals” (1964) North-Holland; K. Kosuge,

‘

‘Chemistry of Nonstoichiometric Compounds” (1994) Oxford Science Publications; O. Toft

Sorensen, “Nonstoichiometric Oxides” (1982) Materials Science Series, Academic Press; R.J.
D. Tilley, “Principles and Applications of Chemical Defects” (1998) CRC Press.
Twinning: A. Putnis, “Introduction to Mineral Sciences” (1992) Cambridge University Press; U. Miiller
“Symmetry Relationships between Crystal Structures” (2013) Oxford University Press.
Crystallographic shear: B.G. Hyde, S. Andersson, “Inorganic Crystal Structures” (1989) Wiley.
Modulated structures: S. van Smaalen, “Incommensurate Crystallography” (2007) Oxford University
Press.
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3.1

Defect Chemistry and Nonstoichiometry

One key aspect of materials chemistry is the ability to prepare materials with precisely
controlled composition. We’ll see countless times in later chapters that ever minor changes
in chemical composition can hugely influence a material’s properties. Defects of the type
we’ve met in Chapter 2 play a key role in both synthesis and composition control. In the first
sections of this chapter, we’ll investigate how simple ideas of chemical equilibria can give us
qualitative and quantitative insights into defect formation. In the second half of the chapter,
we’ll look at the diffusion of different types of defects, which controls the reactivity of solids
and the properties of some functional materials.

Narrow Nonstoichiometry in Oxides

We learned in Chapter 2 that entropy favors a certain small number of defects in all extended
solids. In a metal oxide, defects such as metal or oxygen vacancies and interstitials give rise to
a narrow range of oxygen nonstoichiometry around the integer oxidation state of the metal.

Point Defects in a Pure Stoichiometric Oxide

Let’s use NiO as an example. Formation of vacancies (Figure 2.4) is one of several possible
ways for intrinsic ionic defects to occur in the NaCl-type structure of NiO. In Equations (2.3)
to (2.6) we saw that the mass-action law applies to defect formation as if it were a chemical
reaction. Using the Kroger—Vink notation (Section 2.6), we can write “chemical” equations
for the formation of all possible intrinsic-defect pairs in stoichiometric (1:1) NiO. Table 3.1
shows there are four such pairs:

The term “nil” denotes the value of 0 obtained after crossing out the regular structure sites on
both sides of the equation. The first four equations describe structural defects already introduced
in Chapter 2. The last equation describes electronic defects. We symbolize them as electrons and
holes, but in a redox-prone oxide such as NiO, the electron ¢’ would behave as Ni* (an aliovalent
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3.1.2

Defect Chemistry and Nonstoichiometry

Table 3.1 Formation equations for the four alternative intrinsic
ionic-defect pairs in NiO and for intrinsic ionization.

Process Reaction

Schottky: nil = vy +vo”

Anti-Schottky: Niy>+ 0p*= Ni;" + 0/’
Cation-Frenkel: Nin* = vy + Nii”*
Anion-Frenkel: 00" =vo" + 0/

Intrinsic ionization: nil = ¢’ + " (2Niy* = Niy/ + Niy;)

defect Niy; in the Kroger—Vink notation), whereas the hole i” would represent the oxidized state
Ni** (Niy;). The last reaction in Table 3.1 is in principle a disproportionation of divalent nickel
into mono- and trivalent defects."

Point Defects upon Oxidation/Reduction of the Stoichiometric Oxide

The possible changes in the numbers of intrinsic defects on oxidation and reduction of the
stoichiometric NiO are in Figure 3.1. When NiO is reduced within its homogeneity range,’
either an O deficit appears at its regular structural sites or an excess of Ni at interstitial
sites, yielding NiO_s or Ni;+s0O, respectively. Upon oxidation, either an O excess or
a Ni deficit may occur as NiO.s or Ni;_sO. These alternative responses are based on
the four possible intrinsic point-defect reactions in Table 3.1. Which of them actually
dominates in a particular material can only be answered by a rather involved experi-
mental study.

One useful rule is that large closest-packed atoms form defects less readily than
smaller atoms located in the holes. In nickel oxide and other 3d monoxides, oxidation
(adding oxygen) creates metal vacancies vy;’ rather than inserting bulky oxygen
interstitials. Likewise, v’’’ forms in Cr,O; and other corundum-type 3d oxides.
Reduction (oxygen removal) may form interstitials such as Zn,” in ZnO. However, if
the size difference is less pronounced, this approximation fails: CdO with the NaCl-
type structure, for example, forms oxygen vacancies upon reduction. While the defect
type follows from the structure, the propensity for a dominant oxidative or reductive
nonstoichiometry depends on the chemistry. A significant nonstoichiometry often
develops towards another stable oxidation state of the metal. For example, FeO

tends to be oxidized towards Fe''l.

Chemically, 2Ni** = Ni* + Ni**. We will see in Chapter 10 that nil = ¢/ + 4’ represents a thermal excitation of an
electron from a valence band to a conduction band, which leaves a hole behind in the valence band. In a redox oxide
such as NiO, the electron becomes trapped as Ni* close to the conduction band, whereas the hole is trapped as Ni**
close to the valence band. In Chapter 7, we’ll see that optical excitation also creates an electron-hole pair.

By “reduction” or “oxidation” in the context of defects, we’ll mean a trace reduction or trace oxidation that creates
nonstoichiometry but does not decompose the phase.
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3.1.3 Equilibrium Equations for Oxidative and Reductive Nonstoichiometry

Just as we did for intrinsic defects in Section 3.1.1, we can write equilibrium equations
for the point-defect changes that occur on oxidation or reduction of an oxide. Let’s
assume O, to be the only gaseous reactant’ in the intrinsic redox reactions of NiO at
high temperature.” For clarity, we’ll proceed via an auxiliary equation of a small amount
of oxygen, 00O, reacting with NiO. As shown in the middle column of Table 3.2,
oxidation forms holes compensated by the intrinsic negative defect vy;” or O;”
(Figure 3.1) in an equation balanced in terms of charges, sites (denoted in subscripts),
and chemical elements. Analogously so for reduction and electrons in Table 3.3. Next,
the auxiliary reactions are simplified into the defect-formation equation on the right of
Table 3.2 and Table 3.3 by crossing out species occurring on both sides, changing to O,,
and removing fractions.

Table 3.2 Two alternative compensations of oxidative nonstoichiometry in NiO.

Auxiliary scheme

Equation for oxidation

vai” NiO + 60 — dvy"' + 200" + 60* + Niy* + 0%
NiO + 60 — 50/’ + 20h" + Nin>* + 00*

Oi 4

O2(g) 2 2vy/ + 40+ 200"

Oag & 20/ + 4

3 An analogous set of equations would have to be set up for every other reacting gas species such as atomic oxygen,

ozone, or nickel vapor.

4 Temperature 7 provides the needed activation energy (for dissociation of O, and diffusion of defects) in the form of

thermal energy kT (k is the Boltzmann constant, 1.380649x107% J/K, see Appendix J).
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Table 3.3 Two alternative compensations of reductive nonstoichiometry in NiO.

Auxiliary scheme Equation for reduction

Ni,'" NiO - 60 — 5Ni[“ - 5NiNix + 28¢’ — 500x + NiNix + OOX 200x + 2NiN[x bua 2Nl’[" +4e' + O2(g)
VO“ NIO - 60 b 5170" + 258’ - 500x + NiNix + OOX 200x ﬁ 21)0" + 46/ + Oz(g)

Defect Equilibria for Schottky-Type Redox Compensation

In this section, we’ll explore the redox defect chemistry and nonstoichiometry of NiO if
Schottky intrinsic-defect pairs (cation and anion vacancies) dominate. We will therefore
need to consider two intrinsic-defect pairs—the Schottky pair vy and vy;” is one, the
other is ¢’ and /". There will be two intrinsic-pair formation reactions and two’ redox-
defect reactions, one for oxidation one for reduction; the equilibria® are summarized in
Table 3.4:

Table 3.4 Schottky-type* redox compensation in NiO.

Process Reaction equation Reaction quotient
Schottky nil 2 vy +vo” Ks =[vni'lvo™]
Ionization nil 2 ¢ + 1’ K =['][h]

Oxidation O 7 2vy/" + 41" + 200" Kox = [vnd TTH T po,”!

Reduction 200" 7 200" + 4e’ + Oy Krea = 0o T1e'T po,

* Reaction quotients (but not the full reaction equations) for anti-Schottky, Frenkel, and anti-Frenkel
intrinsic defect pairs are obtained upon appropriate substitution of defect symbols: Ni;" = v, and O/’ =

"
VNi -

Only three of the four reaction quotients (mass-action terms) are independent, as the
equilibrium constants combine to Ks? - K;* = Ky - Kreq. We have four unknowns (the frac-
tion of holes, electrons, nickel vacancies, and oxygen vacancies per NiO formula of regular

sites), and we need one more equation. This comes from the electroneutrality condition
requiring equal amounts of positive and negative charges:

2l + [¢] =[] + 2[vo”] (3.1)

5 Both involve O, gas. If nickel vapor were present as well, two additional redox equations would follow—one for
oxidation of the vapor by holes into regular nickel sites, Nig, + vy;/" + 2h" = Niy, and one for reduction of Niy/* to
nickel vapor, Niy* +vo™ + 2¢’ = 2Ni(,). One of their two reaction quotients would be independent of all the others,
which allows us to solve one more variable, the Ni vapor pressure.

© The unexpressed fractional concentrations of atoms at their regular sites are set to unity due to the low concentration of
defects.
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The four independent equations can then be chosen and rearranged such that each of them
expresses the fraction of only one type of defect as a function of the partial pressure of
oxygen, po,, having three equilibrium constants as parameters. The equations’ can be solved
either analytically or numerically to give the fractions of defects. Once this is done, the
oxygen nonstoichiometry [vy;'] — [vo™ ] can be evaluated® as a function of Do,

Figure 3.2 shows logarithmic plots of defect fractions versus po, for two limiting cases of
dominating intrinsic-defect pair; ionic (left), electronic (right).” The approximate oxygen
nonstoichiometry is given in the upper plots. High oxygen pressures lead to excess oxygen in
the oxide; low pressures to oxygen deficiency. The defect-concentrations in the lower plots
illustrate what causes this simple composition change—changing fractions of electronic
defects [¢'] and [/1], and of ionic defects [vy;'] and [vo™"]. High [vy;/'] and [4"] emerge upon

2[vy1 + [e]= ] + 2[vy"] |

E\ 002 L 1 1 L L
@ Ve "1~V
g 4 Vni"I-[vo'] excessOT L excessO] /L
%
3 0.00 + - - —= - - -+ - = — =
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I}
c
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8
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Figure 3.2 Oxygen nonstoichiometry (top) and defect fractions per formula (bottom) in NiO with domin-
ant ionic defects (left; Ks = 107%, K, = 107, Ko = 1079) and with dominant electronic defects (right; Kg =
10712, K= 107%, K, = 107%).

2

2KS3/2K0X1/4 + KiKSp02*1/4[v0"]1/2 _ KOXI/ZPOZIM[VO"]S/Z _ 2KOXI/4KSIIZ[VO"]_ =0

_2KSKoxl/4 _ Koxl/zpo,lm[vNi” ]1/2 + Kip()7*1/4[vN’_//]3/2 + 2Knxl/4[VNi”]2 =0

2Koxpo, + KilKoxpo,) 1) = (Koxpo) [T = 2Ks[i7]* = 0

“2KsKi® = Ki(Koxpo) [€'] + (Koxpo) T + 2(Koxpo /K)€'T = 0.

The unit of concentration is the same as in the equilibrium constants.

The maximum error due to this simplification of the precise 6 = ([vy;"'] = [vo D/(1 = [vai'']) in NiOy4s is 1% of the
nonstoichiometry value at the left edge of the graph in Figure 3.2.

PbO is an example of predominant ionic and CuO of predominant electronic defects.

N

%



92

Defect Chemistry and Nonstoichiometry

oxidation in oxygen-rich atmospheres, high [vo™"] and [¢/] upon reduction in oxygen-poor
atmospheres.'’ In between, there are two important points: Zero nonstoichiometry is
associated with the point of integer structure where occupied metal and oxygen sites have
the stoichiometric ratio 1:1 and the intrinsic structural defects compensate each other, [vy,”’]
= [vo ]. The point where the electronic defects compensate each other, [¢’] = [/1], is the point
of integer valence.'' For a pure binary oxide, these two points coincide on the Po, scale.

In several regions of Figure 3.2, the defect fractions have essentially linear variation on the
log-log scale. This occurs in ranges where a pair of mutually compensating defects dominates.
When Schottky vacancies dominate, the electroneutrality condition in Equation (3.1) simpli-
fies to [va;"']1 = [vo"'] = constant. The mass-action equations for oxidation and reduction in the
last two rows in Table 3.4 then show that [/"] is proportional to polz/ “and [¢'] is proportional to
Po, 4 This holds in the central part of the plot in Figure 3.2, left, where the slopes on the
log—log plot are +% and —Y, respectively. In Figure 3.2, right, the central range is dominated
by electronic defects, [¢'] = ["] = constant, and analogous substitution gives [vy;'] proportional
to péi % and [v,"] proportional to po_zl/ 2. In the most oxidized region, holes are compensated
by metal vacancies. The electroneutrality condition is 2[vy;'] = [/#’], and substitution for [/’]
in the mass-action term in the “Oxidation” row of Table 3.4 shows that [vy,''] is proportional
to péf. In the most reduced region, electrons are compensated by oxygen vacancies. The
electroneutrality condition is [e’] = 2[vo"]. Substitution for [¢/] in the mass-action term in the
“Reduction” row of Table 3.4 shows that [v,"] is proportional to po, 6 The existence of linear
regions allows construction of approximate diagrams of defect fractions versus po, using
straight lines with these slopes—Brouwer diagrams [1], Figure 3.3.

ionic defects dominate electronic defects dominate
e’ .
. h ” e’ h*
" [vo™] = [vy"] "
V, = [vp, .
N0 N [e]=1[h"]
Vol Vo
he / \e,
VNi"/ \Vo"
. stoichiometric L . stoichiometric N
reduction oxidation reduction oxidation
range range

Figure 3.3 Brouwer-diagram sketches corresponding to the previous figure.

10 Recall that /" is equivalent to Ni**, ¢’ to Ni*. 1 Or of integer oxidation state.
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3.1.5 Acceptor-Doped Oxides

How do things change when we replace a small portion of Ni*" with a cation of a lower and
fixed oxidation state (such as Li*), which is called acceptor'” doping? All the mass-action
equations from Table 3.4 remain the same. The only difference appears in the electroneu-
trality condition that now includes the additional defect Liy;’:

2w + (€] + [Lind'] =[] + 2[vo™] (3-2)

Expressing defect fractions as functions of po, can be done in the same way as the pure-oxide
case, except that we now have four parameters that control the defect equilibria; the
three equilibrium constants and the fixed fraction of the acceptor defect, [Liy/].

Figure 3.4 shows how the defect concentrations of pure NiO in Figure 3.2 change when
[Lin/] = 0.02. The Li" acceptor moves the point of integer valence, [¢'] = [/'], to lower po,
because Ni** is now more easily oxidized in order to keep the charges balanced. The point of
integer structure, [vy;'] = [vo"], moves towards higher po, because oxygen vacancies are

| 2[vy1 + [€1 + [Liy] = [1] + 2[vy]

E‘ Il 1 1 1 1
g [vni"1=[vo"] Nig gsLi0.020
2000 +F--"-"----——-———— - -+ - - - - - = = -+
ey : al .
2 Ni' ggLio.02(O0.6900.01)
2 i L L
c
2-0.02 - . n
o T T T T T T T T T T
0 1 1 1 1 1 1 1 1 1 1
c -1/6 1/6 -1/6 1/6
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§ 4 | Vni | i
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3] 6 4 ) | valence |
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Figure 3.4 Defect fractions per formula in Li-doped NiO, [Liy;/] = 0.02, for dominant ionic (left) and
electronic (right) defects with equilibrium constants as in Figure 3.2. The square in the chemical formula
in the top left stands for vacancies.

12 In electronics, an acceptor is a neutral atom with fewer valence electrons than the regular atom. In our context, it is
an atom of a fixed oxidation state lower than the matrix atom it replaces.
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more easily formed after LiOy/, has dissolved in NiO and a higher O, pressure is then needed
to fill them. Of the two readily formed defects /" and v, that compensate the Liy; acceptor,
holes " dominate around the point of integer structure and vacancies vy around the point
of integer valence.

As before, some regions of Figure 3.4 have a practically linear dependence on log po,. The
reasons for linearity in the extreme oxidized and reduced regions are the same as for
the undoped oxide. The integer-valence point and the integer-structure point split due to
the doping, and we get approximately linear ranges around both. Because vacancies vy
compensate the acceptor around the point of integer valence, the electroneutrality condition
in Equation (3.2) simplifies there to [Liy/] = 2[vo] = constant. As this also keeps [vy;'']
constant, mass-action equations for oxidation and reduction in the last two rows in Table 3.4
give [i"] proportional to pdi“ and [e'] proportional to po, 4 Holes i compensate the
acceptor around the point of integer structure, hence the electroneutrality condition in
Equation (3.2) simplifies to [Liy;'] = [i'] = constant. Because this also keeps [¢/] constant,
mass-action equations for oxidation and reduction in the last two rows in Table 3.4 give [vo™]
proportional to Po_zl/ 2 and [vy,''] proportional to péﬁz. Brouwer diagrams are explored in the

end-of-chapter problems.

Donor-Doped Oxides

Finally, let’s replace a small portion of Ni*" in NiO with a higher-valent ion of fixed
oxidation state (for example AI**)—donor'® doping. The mass-action equations from Table
3.4 remain the same, but the electroneutrality condition changes to:

2[vni"] + [€] = [Aly"] + [AT] + 2[vo™] (3.3)

Figure 3.5 shows that the defect fractions and oxygen nonstoichiometry as a function of the
partial pressure of oxygen are the inverse of the acceptor case for the same level of doping
[4ly/]. Relative to the pure oxide, it is now easier to reduce Ni** and to create nickel
vacancies. These [¢’] and [vy;” ] compensate [Aly; ].

Solid Solubility of Dopants

In the previous two subsections on doping, we implicitly assumed that the doping level was
always lower than the actual solid solubility of the dopant. In fact, the donor or acceptor
solubility in oxides depends on the temperature and partial pressure of oxygen. Before we
make some qualitative considerations on the effects of these two variables, let’s consider
a simpler case of isovalent substitution.

For isovalent substitutions, the effect of temperature on solubility is straightforward.
A solution has higher entropy than the sum of its pure components, and increasing

13 In our context, a donor has a fixed oxidation state higher than the matrix atom it replaces.
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Figure 3.5 Defect fractions per formula in Al-doped NiO, [4ly;] = 0.02, for dominant ionic (left) and
electronic (right) defects with equilibrium constants as in Figure 3.2.

temperature will increase the entropy term TAS that drives the dissolution, thus increasing
the solubility. We know empirically that chemically similar isostructural crystals of close
enough'* atomic radii mix completely at high temperatures, but calculations [2] do show that
they would eventually demix at low temperatures.

For aliovalent defects, oxidation and reduction make the picture more complex. Let’s
consider first the effect of temperature. In an oxide'”, increased temperature will favor loss of
oxygen (chemical reduction) because the released gas has high entropy. Donor doping makes
reduction easier because we can think of the donor oxide (like AlO3,, dissolved in NiO) as
bringing excess oxygen into the structure. Increased temperature will therefore favor dissol-
ution of the donor also by promoting reduction (not only by increased TAS of mixing). The
situation is different for an acceptor. Since an acceptor introduces an oxygen deficit into
the structure, the further oxygen loss at high temperature will disfavor this dissolution, but
the general entropic driving force of dissolution will still be present. The effect of increasing
temperature on the solid solubility of an acceptor therefore can’t be predicted.

The effect of the partial pressure of oxygen can be estimated from the Le Chatelier
principle'®. Dissolution of a donor oxide brings excess oxygen, thus a tendency for easy

14 Size differences less than 15% typically allow complete solubility at high temperatures.
15 In particular of a redox-active element such as Ni.

16 Equilibrium will adjust to minimize the effects of external changes.
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Table 3.5 Dissolution of Al donor in NiO around the point of integer structure.

Dissolution reaction Mass-action term

ALOs(S) 2 2¢/ + 241y + 200" + 404(g) K = [Aln Te'Tpo,"”

Table 3.6 Dissolution of Al donor in NiO around the point of integer valence.

Dissolution reaction Mass-action term

ALOs(s) 2 vy'' + 241y +300 K = [Aly Tvai"]

loss of O,, and this will be favored at low partial pressures of oxygen. Therefore, low po, will
increase donor solubility, whereas high po, will suppress it. For an acceptor, the opposite
holds. The dissolved acceptor oxide introduces an oxygen deficit, implying a tendency for
easy inclusion of the missing oxygen into the solid; high po, will promote this process and
increase the solid solubility of the acceptor.

The combination of these temperature- and po, effects is unambiguous only for dissol-
ution of the donor oxide—high temperature and low po, will increase the donor’s solid
solubility. To evaluate this quantitatively, we must include the dissolution reaction of the
donor oxide in the set of equilibrium defect-reaction equations. Let’s consider the dissolution
of the trivalent donor Al in the integer structure of NiO. The defect predominantly compen-
sating the donor will be ¢’ (see Figure 3.5 right), and the dissolution reaction will maintain
the 1:1 ratio of the anion and cation sites as shown in Table 3.5.

At equilibrium with excess Al,Os, [4/y;]is the solid-solubility fraction x of the donor, and
we see from the equilibrium equation that [Aly,; ] = [¢’]. Substitution into the mass-action
term in Table 3.5 gives x = st%po;'/", and we observe that the solid solubility of the donor
increases when po, decreases.

Similarly, we can evaluate the donor solubility about the point of integer valence. The
predominant defects compensating the donor will be vy, (see Figure 3.5 left). Table 3.6
above shows that the donor solubility is independent of the partial pressure of oxygen when
the defect that predominantly compensates the donor is a structural point defect.

Cautionary Note on Defect Models in Pure Oxides

A pitfall of defect modeling in “pure” oxides is that they are never truly pure. In any oxide,
there will be impurities influencing the defect equilibria at some level. Furthermore, some
deceptively simple oxides, such as the NaCl-type wiistite of ideal composition FeO, are
grossly nonstoichiometric and exhibit clustering of defects (Section 2.9). Real materials
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Box 3.1 Synthetic Methods: Oxygen-nonstoichiometry control in oxides

A precise and homogeneous (non)stoichiometry is important for many functional oxide
materials. All methods to achieve this start with equilibrium of the oxygen exchange between
the point defects in the solid and the surrounding gas atmosphere. Two processes occur. The
first is the surface reaction where O, splits to, or forms from, two oxide anions and four holes.
This is a redox reaction since the holes represent the oxidized state of the metal. The subsequent
process is a diffusion-driven homogenization, during which the surface-oxygen excess (or
deficit) homogenizes throughout the bulk. The oxygen nonstoichiometry can be controlled
by the following parameters, depending on whether the system is closed or open:

Control parameters Redox reagent System
Po,» T Flowing gas of given po, Open

T Po, buffer Closed
Mass Oxygen getter or source Closed

The open systems use hot flowing reaction atmospheres with defined partial pressures of oxygen.
These can be mixtures of Ar and O, down to po, = 10~ bar; mixtures of Ar, H,, and H,O
(via HyO 2 H, + %40,) below po, = 107" bar; and CO/CO; (via CO, 2 CO + 40,) in the
intermediate range. After isothermal equilibration, samples are quenched to low temperature
because otherwise they would oxidize during the cool-down.

The closed systems are usually set up in sealed ampoules. The po, buffer is a solid redox-couple
mixture that maintains constant po, when it is in excess of the nonstoichiometric sample and not in
contact with it. Like in the previous technique, the constant po, value is fixed by the temperature.
Gibbs phase rule (Chapter 4) states that F = C + 2 — P, where Fis the degree of freedom, C is the
number of components, and P is the number of phases in equilibrium. As long as the buffer, say,
a homogeneous mixture of Niand NiO, contains Ni and NiO - s at equilibrium, the po, above them
remains constant at a given temperature: 2 components + 2 intensive variables (temperature +
pressure) — 3 phases (Ni, NiO, O,) = 1 variable that can be varied independently in the current
phase system without a phase disappearing. The temperature will therefore fix the po,. Almost any
Po, can be achieved by a good choice of the redox couple in equilibrium with O,, from low (Ni-
NiO) to very high po, (Ag,0,-Ag>0 in gold wraps in anvil cells).

The oxygen-getter/oxygen-source technique is similar, but here it is the amount of the added
substance that controls the oxygen taken up or released by the sample. Zirconium metal is
a good getter that completely and rapidly oxidizes into ZrO, but only if relatively high po_ levels
are generated by the sample. When very low po, is needed to reduce the oxide, Mg, Zn, or Fe
can be used. A common oxygen source is Ag;O, which releases all O, above 450 °C.

A versatile modification of the getter/source technique is solid state coulometry, where
specific amounts of oxygen are dosed to or from an enclosed sample electrochemically, via
a window made of cubic stabilized zirconia; an excellent conductor of oxide ions (Chapter 13)
yet a poor electronic conductor. When appropriate electric charge is supplied from a Pt
electrode, the corresponding amount of oxide anions moves through the zirconia window.
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range from nearly ideal oxides with randomly distributed dilute point defects, such as Cu,O,
NiO, ZnO, and Cr,0s3, to quasi-random distributions (CoO), to defect clustering (FeO), to
formation of defect-ordered superstructures (CeO,, PrO,), or infinitely adaptive defect-
ordered structures (e.g. Magnéli phases). Simple clustering, such as dimerization or
donor—vacancy association, is common for impurities (dopants) even in oxides that exhibit
a random distribution of point defects. In general, we must take extreme caution. On the
other hand, the next section shows that some complex oxides can have surprisingly simple
defect equilibria.

Wide Nonstoichiometry in Oxides

Wide nonstoichiometry ranges can occur between two oxidation states of an atom in
two closely related integer structures. An example is the YBa,Cu3;07_5 high-T, super-
conductor (0 < ¢ < 1; Figure 3.6), in which one entire oxygen atom per formula can be
removed. In YBa,>Cu30g, one copper atom has a linear coordination typical of Cu™ and
the other two are Cu®*. In YBa,Cu30-, the linear coordination becomes square planar,
consistent with Cu’*.

This type of nonstoichiometry can also be treated with defect equilibria. We only have to
decide which of the limiting structures (Figure 3.6) contains the integer valence that
corresponds to the intrinsic situation [e¢'] = [h"], where, as Figure 3.2 suggests, properties
related to the concentration of these charge carriers should achieve minimum values.
Electrical conductivity and oxygen diffusivity decrease towards YBa,Cu;Og (as discussed
in ref. [3]), suggesting it is the integer-valence point. The other limit, YBa,Cu;0, is then
defined as the integer-structure point by formally considering YBa,Cu;O;_s as an
acceptor-doped Y;Cu30; with 2Bay’ per formula.

YBa,Cu,O, YBa,Cu,O,
Cu?* Cu?*
Ba2+
Cu* Cus*
Baz*
Cu2+ Cu2+
Y3+

Figure 3.6 Two limiting structures of YBa,Cu3;O07_s.
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The intrinsic ionic defects in the YBa,Cu30; integer structure are of the anion-Frenkel
type; oxygen vacancies and interstitials. We can then set up the redox compensations in
analogy with Table 3.4 and solve the mass-action equations together with the electroneu-
trality condition. The Frenkel-process reaction is Op* = vo™ + O;”, the oxidation reaction
is 150,y = 2h" + O/”, the reduction reaction is Op* = 2¢' 4 vo™ + ¥20,,). A profound sim-
plification can be achieved by subtracting the Frenkel reaction from the oxidation, which
yields the intuitive reaction of vacancy filling and oxidation:

7205() + vo" = 00" +2h (3.4)

Equation (3.4) does not include the ¢’ and O;’ defects important for reduction and oxidation
beyond the YBa,Cu;0¢ and YBa,Cu;0; limits, respectively, but it is reasonably valid for
Y Ba,Cu;07_s within this range. With vacancies counted from the point of integer structure
of the acceptor-doped model, [vp™] = d. With holes counted from the point of integer valence,
[7"]=2(1 — ). The mass-action term for Equation (3.4) is then:

Kvox = po,” "4(1 = 0)*/9 (3.5)
Equation (3.5) has a solution for ¢ as a function of pg:

Kyox 16
5 =1- 80 ( p02 +ﬁ po2 — p02> (36)

which describes the entire nonstoichiometry range well for temperatures below 600 °C. As an
example, Kyox = 55 bar™"? at 500 °C, and 6 = 0.12 (YBa,Cu;Oggs) is calculated. That
matches both experiment [4] and the full defect-model approach within their uncertainties.
Above 600 °C, a progressive deviation from the experimental reality appears for the highest
and lowest values of ¢ calculated by Equation (3.6).

Further implications of the YBa,Cu3;0;_s nonstoichiometry are in the end-of-chapter
problems and in Chapter 12. This example illustrates that in some cases a simple approxi-
mation works for wide nonstoichiometry.

Point Defects and Diffusion

In Section 3.2, we discussed point defects taking part in the reaction of O, with a crystalline
solid. How can oxygen move inside a compact crystal? How long does it take? In fact, the
oxygen speed in YBa,Cus07_ s is amazing; one day at 400 °C in O, is enough to fully oxidize
a pellet of 1 cm in diameter. We can understand this by realizing that point defects are mobile
and disperse homogeneously in a material in order to maximize entropy. This is one of many
examples of a process called diffusion. Solid state diffusion is behind major industrial
processes, such as hardening of steel, fabrication of doped semiconductors, or “filtering”
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oxygen or hydrogen via permeable membranes. It also underpins some important technol-
ogy, such as the transport of Li* in lithium batteries or of O /H™ in fuel cells.
Equations describing diffusion are deceptively simple. Fick’s first law states that

de
J=D (— @> (3.7

when limited to one'” direction, y. It tells us that the flux J (the flow density of the diffusing
particle in the matrix or substrate'®) is directly proportional to the negative gradient of the
concentration ¢ of the particle along the flux direction.'” The minus sign is there because the
flow in positive direction occurs along a gradient of higher to lower concentrations, down
a negative slope, so we have to turn this negative gradient into a positive number. The
proportionality constant D is the diffusivity or diffusion coefficient.”’ The diffusivity D is
characteristic for a particle-matrix pair at a given temperature and pressure; it is not
a constant. When the diffusion concerns changes in chemical composition, D is called the
chemical diffusion coefficient and is denoted as D, formally implying diffusion of a neutral
atom A.

Since time does not appear in Equation (3.7), Fick’s first law is valid for steady-state
diffusion, in which the particle flow into a system equals the flow out. An example is
permeation of CO, (or heat) through a house wall into an open space. The CO, (heat) flux
is constant in the steady state, and its concentration profile across the wall is a straight line of
negative slope.

Non-steady-state diffusion concerns the spread of diffusing particles as a function of time.
The time, 7, is introduced via a continuity consideration—the concentration increase per
time equals the net incoming flux per unit length (the negatively taken negative gradient of
the particle flux). At every instant, d¢/dr in m /s equals —9J/dy in (s~' m~?)/m. Plugging in
J from Equation (3.7) leads to Fick’s second law:

oc 0 oc
—__(p= .
or 0oy < 6y) (3.8)

If D is constant and independent of ¢, it comes before the differential, dc/or = D(0¢/dy?). This
equation states that the change of concentration with time is proportional to the curvature of

17 1t can be changed to three dimensions by adding terms for x and z, and treating D as a tensor if the material is
anisotropic. In our treatment, we will consider diffusion along one direction in an isotropic matrix of a 3D structure,
for which D behaves as a scalar.

'3 In a broad sense, the substrate or matrix is everything except the particle whose diffusion we follow.

19 The flux is the number of atoms [J] = s~ ' m 2, or moles, [/] = mol s™' m ™2, or kilograms, [J] = kg s~ m 2 passing per
unit time through a unit cross-sectional area perpendicular to the flux. The respective concentrations are in m >, or
mol m~3, or kgm™>.

20" A simple consideration for the units of D and, say, the mole flux: Particles that flow at a rate of 1 mol/s
perpendicularly through a 1 m? window under a concentration gradient of 1 (mol/m®/m have diffusivity D =
1 m%/s. Substitute into Equation (3.7).
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the concentration gradient. In a curved gradient, fluxes at any two points are different,
Equation (3.7), and will tend to equalize the concentration. When the diffusion proceeds into
an enclosed space, the curvature of the gradient disappears once the concentration ¢ becomes
equal throughout the bulk. However, if the particle can leave the bulk, a steady state is
eventually obtained.

Let’s conclude by noting that both of Fick’s laws belong to a family of equivalent laws that
include thermal and electrical conduction.”’ In the following sections, we shall consider
transport along a field gradient in a crystal, termed lattice (bulk) diffusion.”” Uncharged
species will move down the chemical-potential slope, whereas charged defects will also move
down an electric-potential slope.

Point-Defect Movements

Vacancies and interstitials are the transport vehicles in crystal structures. Atoms at regular
sites jump into neighboring vacancies, whereas interstitial atoms jump between interstitial
sites (Figure 3.7).> Why do atoms jump?

The free energy of an atom is at a minimum at its regular site. Jumps occur because the
atom’s thermal vibration®* of frequency v (in s~') provides a chance of passing the Gibbs-
energy barrier A*G,, for moving to the neighboring vacant site (see Figure 3.9 later on). The
likelihood that a vibration becomes a successful jump follows the Boltzmann probability
distribution,

P = exp(—A* G /kT) (3.9)

where kT is the thermal energy. If pg is, say, 0.0002, on average there will be a jump into
a new position every 5000 vibrations. Consider the 2D interstitial in Figure 3.7. It will jump
with frequency pgv, but only one-quarter of these jumps will move it forward by the length

2

The thermal-conduction flux is in J s ™' m 2, the electrical-conduction fluxin Cs™' m 2 (where Js ' =Wand Cs™' =

A). The thermal diffusivity in units of J s™' m~! K™! (under gradient of thermal potential in K per length of 1 m) is
normally called thermal conductivity. The electrical diffusivity (under gradient of electric potential in V per length
of 1 m, called electric field) in units C s™' m™! V7! (= S m™!, siemens per meter) is normally called electrical
conductivity. The mass-, thermal- or electrical-conduction flux is generally a vector (in contrast to electric- or
magnetic-induction fluxes treated later in the book, which are scalars, being an integral amount of a vector quantity
over a finite area; a dot product of these two vectors, a scalar).

This is in order to distinguish it from diffusion via extended defects and grain boundaries, which is usually faster
than bulk diffusion. However, for high concentrations of point defects, as in many functional materials, bulk
diffusion may dominate.

There are also other, more complicated, mechanisms of atom movements.

The vibration frequency v is about 101> s™1. In the Debye model of atomic oscillators connected by elastic springs of
chemical bonds in a periodic solid, 7iv = k®p, where /i = h/2r and A is the Planck constant (6.62607015%1073* 1 s), kis
the Boltzmann constant (1.380649%1073* J/K) and ®p, is the Debye temperature of the solid, typically a few
hundreds of kelvins. The k®p term is the maximum energy (highest frequency) of a sound wave propagating in
the solid. @p is proportional to the square root of the “spring constant” (the chemical bond strength).
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Figure 3.7 Self-diffusion of an atom via vacancy (left) or interstitial (gray, right).

a along the chosen direction of the diffusion marked with the arrow. The progression rate (in
s 1) of that jump in 2D iS Fprogression = /4 PBV-

In general, the progression rate of a jump in the direction of the flux is obtained by
multiplying the jump frequency ppv with the probability p,..; that there is a site to jump
to, with the probability pg;, that such a site moves the atom forwards by a certain
distance along the direction of the flux, and with a correlation factor f. (described
below) between the atom that has jumped and the space it left behind:

Fprogression = fe PdicP availPB V (3 10)

All three factors, pavaii, Pair» and f., depend on the crystal structure and the diffusion
mechanism. Let’s consider a body-centered cubic crystal (N,, = 8 nearest neighbors, Figure
1.23) of a metal M with very dilute®” vacancies as the sole defects. Self-diffusion of the atoms
via vacancies will have p,,.ii = 8[vm], which is a probability that a vacancy occurs around
a selected metal atom when the fraction of vacant sites is [vy].”° The atom will then jump into
this vacancy. The probability pg;. that this particular vacancy will move the jumping atom
along the positive direction of the unit-cell edge is %2. This is because 4 of the 8 nearest-
neighbor sites advance the atom along this direction (all by a/2). Thus, pavail Pair = 4[vMm] In
this example. Now, it is relatively unlikely that there will be another vacancy waiting for our
atom to jump further. Why doesn’t it jump straight back into the vacancy it left behind? The
reason is that it needs to overcome the same energy barrier to jump back. While it waits for
this (for a time dictated by the probability), other atoms may fill that vacancy. The probabil-
ity of the NV, — 1 = 7 neighbors not jumping into the vacancy before our atom is just 2. If they
don’t, our atom jumps back, eliminating its 2 jump chances, and the progression rate of the

25 Vacancies may tend to cluster at temperatures close to the melting point of the solid and speed up the diffusion. In
real materials, line and plane defects, as well as grain boundaries, also contribute to diffusion.

26 Do not confuse the Greek lowercase v symbol for the frequency with the typographically similar italicized Latin
lowercase v in the symbol vy for the vacancy.
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original jump is affected by a factor of 1—%; = 0.714. This rough estimate, £, = 1-2/(N,—1), of
the correlation factor in Equation (3.10) agrees reasonably with the actual f. = 0.727
obtained by exact and involved derivation for N, = 8 (see Mehrer in Further Reading).
This approximation works well for N, > 4.

Instead of the metal atom M, let’s consider the vacancy jump. While the atom M jumping
via the vacancy mechanism has p,..i = N, [vm], the vacancy is jumped into by surrounding
M atoms, the availability of which at a selected neighbor site is p,yaii = 1 —[vm] While pg;, and £,
remain the same. Now, what is the jump frequency of this vacancy? If it has N, neighbors, it
will get jumped into N, times more often than by just one atom; hence the jump frequency of
the vacancy is N,pgv instead of pgv for the atom M in Equation (3.10). While rpogression(M) =
JePdirNn[vmlpsv, we find that rppopression(Vm) = fePdirNa(1—[vm])psy. The ratio of these two
jump progression rates is [vp)/(1—[vm]).

In more general terms, the ratio of the atom- and vacancy-progression rates is a consequence
of the jump balance: as 1 vacancy jumps 1000 times, 1000 atoms jump once. We’ll see soon that
Fprogression 18 directly proportional to the diffusion coefficient D, and we anticipate:

Datom o [Vatom]

Dvacancy N 1 - [Vatom]

(3.11)

For low defect fractions, this simplifies t0 Daiom = Dvacancy [Vatom)-

Random Hopping

In the previous section, we realized that atoms in solids jump and move even without an
external driving force. In isotropic solids, the movement has equal probability in all direc-
tions. The eventual probability distribution follows from a 2D thought experiment called
a random walk: If you tag an atom on a plane by placing the coordinate cross at it, and let it
“walk” n steps, it will end up some distance from the origin. Do the same with another atom,
and it will end up somewhere else. If you mark the ends of very many such random walks,
there will be no directional preference, only a radial distribution, in 1D.

number of atoms

/N

g g

I T T T T [
radial displacement 0 radial displacement

Figure 3.8 Radial distribution of atoms after many long random walks from zero.
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The radial distribution is binomial, and becomes normally distributed for an infinite
number of steps. It can be shown that the mean square displacement o> after n jumps
of equal length 1 is equal to the sum of the squares of the individual jump vectors,
6,2 = nA*. Hence after n steps of random walk, the root mean square displacement
from the origin is ¢ = 1+/n. The distribution in Figure 3.8 shows that ¢ is a convenient
measure of the progression of the atoms, only a tiny fraction of which will reach the
maximum distance An in the given time 7 = n/rjymp. Problem 3.20 explores these ideas
further.

Hopping Under a Driving Force

At thermal equilibrium, atoms and defects adopt local minima of the Gibbs energy.
A typical energy profile between two interstitial sites is shown in Figure 3.9. In the
absence of any external force, jumps between the sites will occur at random. If,
however, an external field exerting a force F is applied, the jumps will develop
a preferred direction. Such a field may be due to a chemical-potential or an electric-
potential gradient. In the direction of the force, the Gibbs-energy barrier for migration,
A*Gpy, will be lowered (Figure 3.9, right) by an energy E,,, while it will be increased in
the opposite direction by the same amount. E,, is equivalent to the work done by the
force F along the corresponding path A/2:

En=YIF (3.12)

For a jump from site 1 to site 2, the barrier height becomes (A*Gy,—E.), and the progression
rate 1, of this jump is 1o = Pair Pavail V eXp{(—A* G+ En)/kT} in analogy with Equation
(3.10), or 712 = Fprogression EXP(Em/KT), Where rprogression refers to the progression rate under

Gibbs energy

Figure 3.9 Gibbs-energy profile between two interstitial sites. Left: No external force. Right: Under an
external force, the forward barrier is lower by E,.
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random movement. When the force F is small, the exponential function can be approximated
by a Taylor series with only the linear term®’ retained, exp(Eq/kT) = 14(E/k T). The frequency
of this jump then becomes 715 = rprogressiont | H(Em/kT)}. For jumps in the opposite direction,
the Gibbs-energy barrier is higher by E,;, and accordingly r>; = Fprogressiontl—(Em/kT)}.
Combining these terms gives the net rate rne¢ = 112 = 121 = Fprogression(2Em/k T). Substitution for
E,, from Equation (3.12) yields rnet = Fprogression(A/KT)F. The net flux J (in s 'm™2 ) in a given
direction is obtained by multiplying rne (in s~ ') by the distance 4 (in m) between the two sites
and by the local volume concentration ¢ of the atoms (in m™):
e

J = Fprogression kT F (313)

This result provides two important conclusions: (1) The flux depends on the probability of
the random progression in the given direction modified by the effect of the external force. (2)
The flux is linearly proportional to the external force.”® In the following sections, we’ll
consider two such driving forces—the entropy increase upon homogeneous distribution of
defects and the drift of charged defects in an electric field.

Hopping Under a Concentration Gradient

When defects move in a concentration gradient to homogenize their distribution in a sample,
the associated entropy increase decreases the Gibbs energy of the system. The driving force F;
per atom i migrating in direction y is given by the gradient of the partial molar Gibbs energy
of that atom (gradient of that atom’s chemical potential ;):

_
F=- (3.14)

The negative sign in Equation (3.14) means that the transport proceeds from higher values
of the potential to lower values, i.e. down the (negative) slope of the potential. The chemical
potential per atom i is defined”” as:

;= tto; + KTng, (3.15)

For a dilute ideal solution of the defect i, the activity @; can be replaced with the volume
concentration ¢; of the defects (in m ™). Considering that du/dy = (du/dc;)(de/dy), the
force F; per atom is:

27 fix) = f0) + £(0)x. For x = 0.1 in &, the error is 0.47%, for x = 0.5 the error is 9%.

28 As long as Fis sufficiently small so that the linear term of the Taylor-series approximation is sufficient.

2 See any textbook on physical chemistry.

30 If the concentration is expressed in mol/m?®, the Boltzmann constant k is replaced with the molar gas constant R =
Nak, where N is Avogadro’s number (6.02214076x 10%* mol™! exactly).
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1 i
F[:—-kT<—d—c> (3.16)
Ci dy
Substituting for Fin Equation (3.13) gives:
AZC[ 1 dC,‘ dCi
J = Tprogression e : c_[kT(_ d_y> = Tprogression 2 <_ E) (3.17)

This reproduces the macroscopic Fick’s first law, Equation (3.7), via microscopic atomic
jumps. We see that the diffusivity D; (in m” s~') of the atom (defect) i in an ideal and dilute
solution® in the solid is

D; = Fprogression 2 (3.18)

where 7progression (I s Disthe progression rate at a given site, Equation (3.10), under random
movement, and 2 is the jump length in the direction of the progression (in m).*> This is an
important result and shows that diffusion under an applied force is controlled by the atom’s
self-diffusion coefficient.

Hopping Under an Electric Field

From electrostatics we know that the force F; acting on charge ¢; in an electric field of
intensity E is F; = ¢;E.*> When the charged defect i moves down the gradient of the electric
potential ¥ (in volts),* it experiences the electric-field intensity E = —d V/dy and:

av
- q,.(_ @> (3.19)

Substituting for Fin Equation (3.13) and converting the particle flux J; into the charge flux j;
by multiplying it with the charge (in C) per particle ¢; (hence j; = ¢;J;), we obtain

3

If the solution of the defect in the solid were ideal but not dilute, the backward flux of the solvent (i.e. the solid host
matrix) would have to be included with its own (intrinsic) diffusion coefficient of the participating fluxes. The
combined diffusivity is often called interdiffusivity, denoted as D.

For isotropic cubic structures, the probability pg;, that a vacancy jump moves a selected atom forward along the
direction of the flux, when multiplied by the square of the length 4 of the projection of the jump onto that direction,
equals £%/6, where ¢ is the actual length of the jump. Furthermore, /2/6 equals a*/N,, where a is the unit-cell
parameter and N, is the number of nearest neighbors of the vacancy. These formulae can be conveniently used
instead of pdirlz when D is calculated from the combined Equations (3.10) and (3.18).

The unit of the electric-field intensity is V/m. One V/m is the intensity of an electric field where a point charge of
1 C (C=Ass)experiences a force of IN (N=J/m=Ws/m= VA s/m). 1 N of force per 1 C of charge then equals 1 V/m
electric field.

Note that in this context we use the symbol V for the electric potential. Do not confuse with volume.

33
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Ji=o0i (- d—V) (3.20)
dy
in which o; is the electrical conductivity due to defect i,
P! 3.21
o; = rprogressmnk—T ( 21)

where Fprogression 1S again the progression rate of Equation (3.10) under random
movement.

Electrical conductivity is an intrinsic material property and will be treated in more detail in
Chapter 10. The conductivity o; represents a fraction ¢; of the total electrical conductivity o of
the solid due to defects, and ¢, is termed the transference number of the point defect i. For flux
of elementary charges under constant electric potential (a steady state), Equation (3.20)
adopts the form j = ¢E that we’ll recognize in Chapter 10, Equation (10.2), as one possible
expression of Ohm’s law.

Relationship between Conductivity and Diffusivity

Whether the driving force is electrical or chemical, it produces a flux. The flux J; of the defect
i at a concentration ¢; under the general driving force F;, Equation (3.13), can be expressed
using the experimentally available®> random diffusivity D; from Equation (3.18):

_ Die
kT

Ji (3.22)

It can also be expressed using the experimentally available®® electrical conductivity ;. This
makes use of the Nernst—Einstein relation between o; (in S/m, 1 S=1 A/V) and D; (in m?/s),>’
obtained when Equation (3.21) is expressed with D; of Equation (3.18) for a defect i of charge
¢; (in C = A s) and carrier density ¢; (in™® 1/m?):

35 D, is obtained by tracer-diffusion techniques with isotopes. An isotope is traceable either by mass spectrometry after

sectioning the sample, or by measuring radioactivity along the diffusion path if a radioactive isotope is used. As
noted earlier, for vacancy mechanisms the tracer-diffusion coefficient is smaller than a purely random diffusion
model by the correlation factor f.. For interstitial diffusion of dilute defects, f. = 1.

o0; is obtained by measuring electrical conductivity with electrodes that conduct specifically via the defect i. As an
example, ZrO, (Chapter 13) blocks electronic carriers while allowing oxide anions through.

The D; thus obtained from conductivity (Deonductiviey) Will not necessarily be the same as the tracer-diffusion
coefficient for the same atom/defect. The ratio Diacer/ Deonductivity 18 then evaluated as the Haven ratio and reflects
various movement correlations for the charged defects.

When the amount of charge-carrying defects is expressed in moles, hence the carrier density is in mol/m®, we replace kT
with RT, and the defect’s electric charge ¢; = z,¢ with z;F. Here F'is the Faraday constant (1 mole of elementary charges:
Nae=6.02214076x10% x 1.602176634x107" ~ 96485.3 C) and z; is the defect’s charge number (the integer charge in units
of elementary charge e).

36
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D; o;
= 3.23
kT gic; (-2
Substituting from here for D; in Equation (3.22) yields the flux in terms of o;:
Ji=2%F (3.24)
q;

Returning to the Nernst—FEinstein relation, we can perform one last step that will lead to the
useful concept of mobility that we’ll encounter in Chapters 10 and 13. Mobility, u;, is the
speed of a species i per unit intensity of the field that moves it. It is obtained by multiplying
Equation (3.23) with the charge ¢; in coulombs. Both sides of the equation then have units
of m/s per V/m; the left-hand side u; = D;q;/kT expresses the mobility of the charged defect
via its random diffusivity and the right-hand side u; = 0,/¢;c; via its electrical conductivity.
Finally, we should note that transport of a single type of charged particle is rare. It is
usually accompanied by transport of a compensating counter charge, forming two fluxes
that together appear as a total flux of neutral atoms. This is explored in the following
section.

Ambipolar Diffusion

Transport of charged defects is not limited to situations where an electric field is applied. In
many cases, transport under a concentration gradient proceeds via charged defects. Clearly,
the transport of a charged defect in the absence of an applied electric field must maintain bulk
neutrality. Consider the oxidation of YBa,Cu3;Os by O, as discussed in Section 3.2.
Chemically, a copper cation is oxidized while 20, is reduced to O*~. As O>” migrates into
the center of the sample, the positive cation charges (holes) follow its motion; we thus have an
influx of both negative (O®") and positive species (24°), which together represent the flow of
oxygen as a neutral atom (O). This type of polar transport of nonpolar species is called
ambipolar diffusion.

Equation (3.4) describes oxygen transport in YBa,Cu3zO;_s in terms of defects. At the
surface, O, oxidizes copper (creates /7) and is reduced to O* ions that fill vo™ coming from
the interior. The holes migrate inwards. Because these defects are charged, any non-uniform
distribution not only creates a concentration gradient but also a local electric-potential
gradient. A flux under the combined chemical and electric potentials therefore requires
a formal summation of the two forces F; used separately in Equation (3.14) and Equation
(3.19). The flux of Equation (3.24) then becomes:

o; 0 i oV
Ji=2 (—i— qi—) (3.25)
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As stated above, there are two such fluxes, an outward flux of vy and a charge-compensat-
ing inward flux of /". The charge of one mole of oxygen vacancies is +2F, the charge of one
mole of holes is +1F. The participating mole fluxes are then:

o Oty v o o, .oV
Jp=—2. (——2_2F—)and Jy = = [ — =L - F— 3.26
o A4r? ( oy 6y> He T ( o 6y> (3:20)

Electroneutrality requires the sum of charged fluxes to be zero. The flux of holes must
therefore be twice the flux of oxygen vacancies and run in the opposite direction:

(3.27)

We cannot establish the actual electric potential created inside the solid, so a good way to
proceed is to eliminate the 01/dy terms from Equations (3.26).*” By taking the actual inward
O flux (see above) as the negative of the oxygen vacancy flux, we obtain:

1 1 Oty oy,
Jo=—-Jp=—— . [—2 21K 3.28
0T 4F2L+L<ay &) (329

O'vb' op

The form of this equation suggests that the flux of O behaves as if driven by its own chemical-
potential gradient—a sum of the gradients of the ionic- and electronic-defect fluxes (of vo™
and /', respectively):

o M0y
o oy oy

(3.29)

Note that the combination of the ionic- and electronic-defect conductivities in Equation
(3.28) appears in a mathematical form as if ionic and electronic resistivities*® were summed
and then inverted into the total ambipolar conductivity oo. This can be interpreted as though
the ionic and electronic resistors are connected in series in a circuit.

When the O-flux Equation (3.28) is formally rewritten in terms of du,/dy and oo,

00 Ot
Jo=—|——F2 3.30
o= (- %) (330
it becomes obvious that a diffusion coefficient for the neutral species O (the chemical
diffusion coefficient Do) can also be defined. At this point, we need to remember that
diffusivities are normally expressed via gradients of concentrations ¢ and not of chemical
potentials (Section 3.3.4). Therefore a conversion duq, /0y = (Sug/0co)(dco/dy) is performed

3 For example by expressing the coulombic term 9 /9y from the equation for holes, substituting it into the equation
for vacancies, substituting for the hole flux from Equation (3.27), and rearranging.
40 Resistivity is the inverse of conductivity.



110

Defect Chemistry and Nonstoichiometry

on Equation (3.30). In the result, we identify Dg as the proportionality parameter between
the flux Jo and the concentration gradient —dcq /dy:

oo (Oug

Do=—+ (= 3.31

0T 42 (860) 33D

Having defined the chemical diffusion coefficient Dg, we can return to the individual point defects
and their concentrations. From Equation (3.29), we see that du, = —a,uvg + 20w, and electro-
neutrality dictates that dco = —de,;; = Ocyr /2 (there are two holes per vacancy). This gives:
Do = 50 a”V6+4% (3.32)

0~ 4F 2 acvz; ach- '

For low concentrations of defects, activity depends on concentration via u = gy + RTInc;
hence Ou/dc~RT/c, where c is the equilibrium steady-state concentration in mol m™>.*'
Converting oo back to the defect conductivities, we obtain:

RT 1 1 1
Dyp——.— [ 4 3.33
0= 7 1 < dor: + Ch‘) ( )
0"5 op
What remains is to express the separate diffusion coefficients for the ionic- and electronic-

defect components. This is done by substituting for each of the two defect conductivities
from the Nernst—Einstein relation of Equation (3.23), which after rearrangement gives:

1 1 1
Do = o (3.34)
1 I 1 4CV8 Cp
DV}; . 4cv.. Dh. -y

[

We see that the diffusion coefficient of the chemical element transported depends on the
participating electronic and ionic defects; their individual diffusivities/conductivities, their
charge numbers, and their equilibrium concentrations. The diffusion of the neutral chemical
element is largely controlled by the slower species,*” but the slower flux is somewhat
enhanced by the faster flux. As an example, the enhancement factor for Equation (3.34)
approaches a maximum of Do /Dv;; =1+ (40,,3 Jew) =31 Dyeyr >> Dy 4cy.

4l For concentrations given in number of particles per m>, R is replaced by k, and F by e.

42 Diffusion of neutral O through a purely oxide-ion conductor, such as Ca- or Y-doped zirconia, is limited by the
material’s low electronic conductivity. It speeds up enormously when a metallic conductor is added to transport the
electrons. That can be a Pt powder mixed with the doped-zirconia powder prior to sintering into the device form, or
an external wire connecting porous Pt electrodes applied onto the two opposite surfaces along the diffusion path. In
contrast, diffusion of O through a good electronic conductor, such as YBa,Cu3;07_, is controlled by the oxygen-ion
conductivity of the material.
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Temperature Dependence of Diffusivity

As we have just seen, point defects are the vehicles of mass transport in crystalline solids.
Diffusivity depends on temperature via the energetics of their movement. The energetics may
have two contributions—the cost of making the vehicle and the cost of running it. Both costs
can be expressed in terms of the free-energy change AG (the ability of a system to do work),
and the common approximation is to consider the enthalpy and entropy terms in AG = AH —
TAS to be independent of temperature.

The making costs are the total Gibbs free energy of formation for the defects relevant in
the particular transport. This is derived in Section 2.3, where Equation (2.3) gives the
equilibrium fractional concentration of the defect as a function of the changes in atomic
vibration entropy (ASy;») and enthalpy (A Hr) upon defect formation. The running costs stem
from Equation (3.9), which represents the increasing Boltzmann probability that at higher
temperatures the atom will be more likely to overcome the Gibbs-energy barrier for migra-
tion: A*G,, = A*H,, — TAS,,..

Let’s consider a metal atom M diffusing by a vacancy mechanism in its own cubic structure
where it has N, nearest neighbors. Substituting A*G,, in Equation (3.9) with A*H,,, — TA*Sp,,
considering that p,yai = Ny[vm] in Equation (3.10), expressing [vy] with Equation (2.3),
replacing k with R so that the enthalpy and entropy are per mole, and plugging the result into
Equation (3.18), yields:

Dyt = 22 £ pair Ny v exp(A*Sp /R 4 ASyin /R) - exp(—A*Hy, /RT — AH; /RT) (3.35)

Here Dy has the temperature dependence of the Arrhenius equation, D = Doexp(—Ea/RT),
in which the activation energy E, combines the enthalpy contributions, and the pre-
exponential term D, includes everything else. E, can therefore be obtained from
experimental data by least-squares fitting of the linear slope of InD versus 1/7.

In some cases, the making costs do not apply and only running costs need be considered.
This is the case for the diffusion of foreign or extrinsic interstitial atoms in low concentra-
tions, for example of solid-solution carbon atoms in iron. Here the vehicle is simply the
extrinsic defect itself, p.vai = 1, and the equivalent expression becomes:

Dinterstitial extrinsic = j-zfc Pdir V CXP(AISm/R) . eXp(_Ai]—Im/R T) (336)

Diffusivity and Redox Defect Equilibria

Let’s now consider diffusion in a metal oxide via a metal- or oxygen-vacancy mechanism.
Here, we’ll have to take into account how the vacancy fraction depends on the equilibria we
explored in Section 3.1. The constituent atom i (metal or oxygen) at its regular lattice site will
not migrate unless it has an adjacent vacancy. The probability of this is p,yaii = Nn [vi], and we
modify the previous result (take f. = 1 for simplicity) to
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D; = No[vi|A2pairv exp(A*Su /R) - exp(—A*Hy, /RT) (3.37)

The vehicle production costs not-yet-included concern the vacancy fraction [v;] and follow
from energetics of the point-defect equilibria the vacancy is involved in.

Let’s consider three cases where this [v;] = A(T) function is straightforward. The first is
when the high-temperature vacancy fraction [v;] in the material becomes “frozen” at lower
temperatures when kinetic factors prevent further redox exchange with the reaction atmos-
phere to establish a new equilibrium. The second is when [v,] is independent of temperature
because it is fixed by aliovalent dopants around the point of integer valence (oxygen
vacancies in Figure 3.4 and nickel vacancies in Figure 3.5). The third case is when the
vacancy is the dominant defect and [v;] can be expressed via the temperature dependence
of the equilibrium constant K for the defect-formation reaction in terms of the reaction-
enthalpy and -entropy change as K = exp[(AS/R)—AH/RT].** As an example, when NiO is
oxidized, holes are compensated by nickel vacancies (Figure 3.2). The electroneutrality
condition simplifies to 2[vy,;’] = [A’], and from Table 3.4 we see that [vx;/"] = (po,Kox/16)"°.
Substituting into Equation (3.37) and rearrangement gives the random diffusion coefficient
of Ni in oxidized nonstoichiometric NiO via a vacancy mechanism as

__ (PO oy 92 ) ASox + 6AISm ) _ AHo + 6A1Hm
Dy = ( 1 6) NoA"pairv exp <76 R X\ = o (3.38)

where both the Arrhenius activation enthalpy and the pre-exponential factor have two
components—one from the defect formation and one from the defect mobility. As stated
earlier, v is the (essentially constant) vibration frequency of the atom and pg;, is the probabil-
ity that the jump occurs in the flux direction, advancing the atom by the distance 1. See
Footnote 32 in this chapter for alternative expressions of > py,.

3.3.10 Outline of Non-Steady-State Diffusion

Fick’s second law, Equation (3.8), expanded into three dimensions, has analytical solutions
for time-dependent concentrations of diffusing species across simple shapes such as a plate of
infinite thickness (termed a half-space; diffusion enters from one side only), a plate of finite
thickness (diffusion enters from both sides), a parallelepiped, a cylinder, or a sphere, all
provided D is constant. The principal solutions are in the literature on either particle
diffusion [like Crank or Mehrer in Further Reading] or heat conduction. When D depends
on the concentration ¢, this must be properly included in the treatment.

As an example, we’ll calculate oxygen-content profiles in a half-space of YBa,CuzOyq
exposed to O, at 350 °C (Figure 3.10). In this arrangement, the oxygen flux has one direction.
Assuming that the surface reduction of O, is instantaneous and D is independent of

4 Since AG = —RT InK.
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8, y Figure 3.10 Set-up
~Q, sketch of oxygen dif-
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% fusion into half-space
0,(9) of YBa,Cu;0.

concentration, Equation (3.8) is simplified, and the solution starts by introducing the
dimensionless (half) length,

_ )2
N

as a new variable.” This replaces the two variables (z and y) in Fick’s second law

B & . . . dc  dc 0 & ¢ [ou\*
8_: = D<§§) with one. Given the new variable u, 6_j = é . a—l; and (8—)/§> = a—ui <8_Z> .

u

(3.39)

. ou u Ou
In the latter two expressions, — = — —

1
or 2t an 67y /4Dt
. : . &
This yields the differential equation d—i + 2u
u

are obtained by differentiating u.

d o TP
d—c = 0. Substituting z = dc¢/du simplifies it to
u

dz . . . 1 .
i +2uz = 0. Separation of variables gives —dz= —2udu that is integrated to
u V4

Inz = —u? + const, from which z= C-exp(—u?). Putting back z=dc/du yields

NG

de = C - exp(—u?)du. The integral of exp(—u?)du equals 7~erf(u), expressed with the

Gaussian error function (erf).* Given the boundary limits of erf(0) at the concentration
¢=1atu=0 at any time and erf(e) = 1 when ¢ = 0 at u = « at any time, C = —2//.
Integration of the left-hand side of the differential equation gives ¢ = —erf(u) + K. The initial
condition of ¢ = 1 at u = 0 yields K = 1 and the relative concentration change c¢;:

¢ =1 —erf(u) (3.40)

In Figure 3.11 (left), our solution of Equation (3.40) is illustrated for Do = 7.144x10™ "% m?/s
at 350 °C. The concentration profile is linear close to the interface as erf(u) = u for low u. Even
at u = 0.5, erf(u) is 0.5205, which happens at the distance v/Dr; see Equation (3.39). This
distance is called the penetration depth (Figure 3.11). It is a characteristic value indicating the
extent of penetration of the diffusant. For diffusion solutions based on the erf function, it is
close to the diffusion half length; a length where a 50% concentration change occurs in

4 This is possible only if both initial and boundary conditions are functions of u only.
45 The erf(u) is the integral of the normal probability distribution from its center at 0 to . That distribution is the
limiting large-numbers envelope for the discrete binomial distribution, Figure 3.8.
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Figure 3.11 Left: Profiles of oxygen-content increase in a thick layer of YBa,Cu3Og4 exposed to O, at
350 °C, after 10, 40, 90, etc. hours. Penetration depths v/Dr are marked by dots. Right: Arrhenius-type
temperature dependence of the diffusion coefficient over temperature range 350 to 600 °C.

a given time. Note also that the penetration depth doubles in 2° times that time, triples in 3°
times that time, etc.

Equation (3.40) is derived for a plate of infinite thickness. It can also be used for the initial
stages of diffusion into a finite or thin plate, but only until the concentration starts to change
significantly at half the plate thickness. The D values for temperatures of interest are easily
evaluated from published Arrhenius-type temperature dependencies. The D dependence for
our example is plotted in Figure 3.11 (right) and has an activation energy of 129.2 kJ/mol and
Dy of 4.808x107> m?/s.

Cautionary Note on Diffusion in Real Materials

Caution needs to be applied when investigating diffusion in real oxides and other
binary compounds with high ionicity. In addition to possible computational difficulties,
problems may be encountered either due to the diffusion model or due to the sample.
The model-related problems concern the assumption of single point defects being the
transport vehicles. In many oxides, these are in reality aggregated defect clusters, the
simplest of which are dimers of interstitials or vacancies. Other model-related problems
include disregarding ambipolar diffusion, and, in variable-temperature studies, the fact
that D may depend on some defect concentration that is chemically variable due to
reaction with the measurement atmosphere. There are also the practical difficulties of
arranging the experiment in a manner that correctly approximates the initial and
boundary conditions of the model. Sample perfection and morphology is also of
concern—in single-crystal measurements, line defects can lead to short-circuit diffusion;
in polycrystalline materials, a similar rapid transport can occur at grain boundaries.
Last, but not least, omnipresent aliovalent impurities will increase diffusivity by creat-
ing point defects as vehicles for the mass transport.



3.4 Problems 115

3.4 Problems

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13
3.14

3.15

Write Kroger—Vink symbols for the following fully charged point defects in NiO: metal
vacancy, oxygen vacancy, lithium acceptor, aluminum donor.

Name the following defects in TiO, and write their Kroger—Vink symbols: Al and Nb
dopants at the Ti site; F and N dopants at the O site; oxygen and titanium atoms out of
their regular sites.

State the type of intrinsic defects would you predict in fluorite-type CeO, and UO..
Recast Table 3.4 into one valid for a hypothetical MO oxide with cation-Frenkel
intrinsic defects.

Use chemistry or physics to suggest whether ionic or electronic defects will dominate in
pure ZrO, at high temperatures.

Consider pure PbO with anion-Frenkel compensation and dominant ionic defects.
What are the slopes of the essentially linear dependences in the three limiting regions of
the plot of defect fractions versus po,? Sketch the Brouwer diagram.

In fact, pure PbO may show an anti-Schottky disorder. What differences does this
bring to the results of Problem 3.6?

Consider an idealized pure CuO with anion-Frenkel compensation and dominant
electronic defects. What are the slopes of the essentially linear functions in the
three limiting regions of the plot of defect fractions versus po ? Sketch the
Brouwer diagram.

State the limiting slope of the metal-vacancy fraction versus po, in the oxidative-
nonstoichiometry range for (a) Cu,O and (b) Cr,0;3, both of Schottky intrinsic
defects.

Consider a stoichiometric metal oxide of dominant Schottky defects in equilibrium.
Which of these two defects will increase its fraction upon either an acceptor or donor
doping under the same conditions?

Consider a stoichiometric metal oxide in equilibrium with its dominant electronic
defects. Which of these two defects will increase its fraction upon an acceptor or
donor doping under the same conditions?

Sketch the Brouwer diagram for Li-doped NiO with dominant electronic defects.
Sketch the Brouwer diagram for Al-doped NiO with dominant ionic defects.

Write down the dissolution reaction of ZrO, in Cr,05 and state how the solid solubility
will depend on po,: (a) about the point of integer structure, (b) about the point of
integer valence.

The equilibrium constant in Equation (3.5) for oxidation of the oxygen vacancy in
YBa,Cu307_s at 500 °C is Kyox = 55 bar~”. (a) State the equilibrium composition of
YBa,Cuz05_s at 500 °C in a flow of Ar gas containing 100 ppm O, and in air, both at
1 bar. (b) State the po, at which you would anneal YBa,Cu305-s in order to obtain an
average oxidation state of Cu'’.
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3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

Derive the simplified expression for gross oxygen nonstoichiometry in NdBaFe,Os. s
as a function of po, assuming that Fe®* defines the point of integer valence.

Water flows from a 0.2 cm” hose at 6 kg per minute. State the mass, volume, mole, and
molecule flux of H,O in SI units.

Calculate the mass flux of carbon under steady-state diffusion through a steel plate
separating carbon-rich and carbon-poor gases at 700 °C if subsequent analysis gives
carbon concentrations of 1 kg/m® and 0.5 kg/m? at the respective depths of 0.5 mm and
1 mm below the surface. Assume 10" m%/s as the diffusion coefficient of C in the iron
matrix at this temperature.

An oxygen-permeable YBa,Cu3;0,_s membrane 1 cm thick operates at 700 °C between
pressurized air at 11 bar and pure O, at 1 bar. The steady-state O, gas production is 0.84 mL
at atmospheric pressure and 20 °C (molar volume 24 L/mol) per square meter every second.
Calculate the O, flux, O atom flux, and, finally, Do with Ko, = 4.3 bar™” (to obtain the
O gradient across the membrane) and with molar YBa,Cu;O;_;s volume of 10™* m*/mol.
Consider a random 1D walk of n equal steps of length 1 originating at zero. (a) What is
the probability of deviating by 44 from the origin in 4 steps? (b) Construct a table of
probabilities of reaching points —nk ... + nd for up to n = 4. (c) Calculate the variance
(i.e. the mean squared deviation from the mean) and its root after 4 steps of unit length.
(d) Derive a formula for the variance o, after n steps of length 4 and for its root o,.
Calculate the jump frequency of interstitial carbon in bce iron at 800 °C, assuming
a vibration frequency v = 10" 5! and an activation energy for hopping A*G,, =
62 kJ/mol. On average, every x-th carbon vibration overcomes the jump barrier;
determine x.

Assume that bee iron at 1800 K has a fraction of vacant Fe sites of 0.0001, an Fe atom
vibration frequency v = 10" s™! and an activation energy for hopping A*G,, = 29 kJ/
mol. What is the jump frequency of Fe atoms? On average, how many vibrations are
there between jumps? What is the Fe progression rate at each site?

Calculate the self-diffusion coefficient of Fe in Problem 3.22, given the unit-cell
parameter a = 2.87 A.

Given the diffusivity Dc = 1071 m?/s for interstitial carbon in bec iron at 800 °C of a =
2.87 A, estimate the activation energy A*G,, for hopping of the C atoms (v = 103 s™")
via interstitial sites.

The self-diffusion coefficient in Al (fec; a = 4.05 A) at 600 K is D = 2%107 6 m%/s.
Assuming an atomic vibration frequency v = 4x10'3 s™! and an activation energy for
hopping A*G,, = 58 kJ/mol, calculate the site fraction of Al vacancies.

Verify the statement in this chapter’s Footnote 32 that pdir/lz ={%/6 = &*/N,, in which the
distance «a is the unit-cell edge, £ the actual jump length, A its projection onto the unit-
cell edge direction, and N, is the number of nearest neighbors of the vacancy, for (a)
primitive cubic, (b) bec, and (¢) fec packing of spheres.
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Calculate the self-diffusion coefficient in the primitive cubic a-Po (Figure 1.23; a =
3.36 A) at 500 K via vacancy mechanism, assuming 0.001 vacant sites, v = 1083 571,
A*Gy, = 36 kJ/mol. Estimate the diffusivity of the vacancy.

Calculate the self-diffusion coefficient of a-Po along the direction of the cell edge
(Figure 1.23; @ = 3.36 A) at 500 K via an interstitial mechanism with full availability
of interstitial sites, f, = 1, v = 10'* s7!, and A*G,, = 40 kJ/mol. Verify the result by
orienting the cube to yield three equivalent jumps for positive progression direction and
three for negative progression direction.

A single crystal of fcc iron (¢ = 3.6468 A) having a few ppm of interstitial carbon
is kept at 1000 °C and isolated from its surroundings. Assume D¢ =
2.217x107'"" m?s for the self-diffusion coefficient of interstitial carbon along
a via octahedral holes, site availability p,,.; = 1, correlation factor f. = 1 for
the interstitial, and atomic vibration frequency v = 10'* s™!. (a) State the prob-
ability of a vibration of C becoming a jump. (b) State the total length of the path
a carbon atom travels in one minute. (c) State that atom’s root mean square
displacement from its position a minute earlier. (d) Calculate the hopping activa-
tion Gibbs energy per mole of interstitial carbon defects.

Confirm by dimensional analysis in SI that multiplying Equation (3.23) with the charge
¢q; yields mobility.

A rectangle of calcium-stabilized zirconia Zr( gsCag 1501 g5 (¢ = 5.13 A) is covered with
porous platinum electrodes on its opposite faces, heated to 1100 °C in air, and an
electrical conductivity of 6 S/m is measured. Assuming #(vo ") = 1, calculate the
diffusivity D(vo™) and mobility u(vo™) of the oxygen vacancies in the bulk of the
sample, neglecting kinetics of surface recombination.

Assuming that oxide-ion conductivity of YBa,Cuz0;_sat 500 °Cin airis o(vo™) = 1072 S/m
and the ionic transference number #(vo™") = 107°, what is the total electrical conductivity?
Calculate the enhancement factor Do/D),” for Equation (3.34).

Use Equation (3.34) to generalize the value of the limiting ambipolar enhancement for
Dy of a neutral atom A, the flux of which consists of a flux of a z-charged ionic defect
and a much faster flux of singly charged electronic defects.

Figure 3.2 suggests that oxidative nonstoichiometry of NiO at high temperature is
achieved via formation of nickel vacancies and holes. The following data have been
measured [5, 6] at 1100 °C in O,: coefficient of (tracer) random diffusion for nickel
atoms Dy; = 107"° m?/s, total electrical conductivity o = 65.5 S/m, site fraction 0.0001
of nickel vacancies. Assuming that Ni diffuses with a vacancy mechanism via nickel
sites (never at O site), and given a = 4.20 A for the NaCl-type cell, calculate for each of
the two majority defects: (a) Concentration per m>, (b) diffusivity, (c) ionic electrical
conductivity and ionic transference coefficient in order to determine whether NiO is an
ionic or electronic conductor, (d) mobility.

Set up the equation for the temperature dependence of D¢, in oxidized Cr,O3 where
chromium vacancies dominate.
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3.37 Check that u = (y/2)/v/Dr of Equation (3.39) is dimensionless.

3.38 A steel blade has been nitridized by exposure to flowing NH; at 700 °C for
1 hour. The hardened layer, estimated from the penetration depth +/Dr of the
nitrogen atoms, is 20 pm. In what time would the penetration depth reach 0.1 mm?

3.39 Nitridized steel is hard yet brittle, and this means that the bulk of a steel object must
remain free of nitrogen. Assuming D = 107° cm?s for interstitial diffusion of
nitrogen in steel at 700°C, estimate the minimum thickness of the above steel
blade such that the nitrogen concentration at its center would increase by no more
than 0.005 of the surface change under 1 (alternatively 25) hour(s) of nitridization.
Assume for simplicity that the concentration at the center is twice the concentration
that would be caused by nitridization from one side only (in reality it will be less than
twice due to decreasing gradient after the two fluxes penetrate each other).

3.40 At 700 °C, an YBa,Cu307_s sphere of 2 cm radius is abruptly exposed to 1 bar O, gas.
Assuming Do = 107> cm?/s and diffusion as the rate-controlling process, calculate how
long it will take before 90% of the total oxidation change occurs 1 mm below the
surface. Under these conditions, the sphere center will oxidize by less than 1%, so that
the sphere can be approximated as an infinite half-space.
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Phase Diagrams and Phase Transitions

In this chapter we will consider two separate but related topics; phase diagrams and phase
transitions. Phase diagrams are used throughout materials chemistry to guide the synthesis
of known and new materials. Electronic and magnetic phase diagrams are used to help
summarize the properties of functional materials under different conditions. We’ll see
throughout the later chapters of this book that many functional materials undergo structural
phase transitions that are intimately linked to their properties. The second half of this
chapter will introduce the fundamental concepts needed to understand these.

Phase Diagrams

Phase diagrams provide a graphical summary of the behavior of chemical systems at
equilibrium as a function of external variables. In materials chemistry, these variables are
usually composition, temperature, and pressure, but could also include effects such as
electric or magnetic field. These diagrams are based on the phase rule first proposed by
Gibbs, which states that for a system in equilibrium:

P+F=C+2 A.1)

where P is the number of phases, F the degrees of freedom or variance, and C the number of
components.' We can define the system as being the part of the universe that we’re interested

! The derivation of this rule is relatively straightforward and is covered in many physical chemistry texts. Briefly, to
describe the state of a system consisting of P phases, you need temperature, pressure (two variables), and
(P-C) — P mole fractions for P phases of C components each (—P appears because the sum of mole fractions of
each phase is one, hence one fraction per phase is redundant). There are then a total of 2 + (P-C) — P variables. For
phases at equilibrium, chemical potentials for each component must be equal. This gives C(P — 1) independent
equations (conditions). The number of variables that still remain free to vary is F =2 + (P-C) — P — C(P — 1), which
can be rearranged to the equation given.
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Figure 4.1 Schematic phase diagram of water.

in, anything else is the surroundings. It is easiest to understand the various terms in the phase
rule through examples.

Gibbs defined a phase as a state of matter that is uniform throughout in terms of both its
chemical composition and its physical state. It thus represents a homogeneous part of the
chemical system that is bounded by a surface such that it can, at least in principle, be
separated from other parts of the system. To take the simple example of H,O (Figure 4.1)
ice, water, and steam are individual phases—each is homogeneous and each could poten-
tially be separated from the other; crystals of ice dispersed in liquid water is therefore a two-
phase system.” If we consider a mixture of two metals A and B where A forms a dispersion of
droplets within B, it is a two-phase system. If A and B form a solid solution in which atoms are
homogeneously mixed on an atomic length scale, it is a one-phase system. For a material
such as SiO,, which displays polymorphism and has more than one structural form in the
solid state (e.g. the quartz, tridymite and cristobalite modifications), each form is a different
phase.

We can define the components of a system as the minimum number of independently
variable chemical constituents that we need to define the overall composition. The
H,O phase system, for example, contains a single component because H,O has a fixed
chemical formula. Our two metals A and B would be a two-component system. Al,O3 and
Si0, can also be considered a two-component system if we take Al,O; and SiO, as having
fixed composition (no nonstoichiometry).® This particular two-component system contains
three phases: Al,O3, SiO,, and the compound AlgSi,O; 3 (often expressed as 3A1,05-2Si0, on
phase diagrams).

2 Throughout this chapter, for reasons of pedagogical clarity, single-phase areas in phase diagrams are shaded in gray.
3 With nonstoichiometry considered, Al,O; and SiO, would become part of a three-component system; Si, Al, O.
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The number of degrees of freedom can be formally defined as the number of variables
(pressure, temperature, concentration of components) that need to be specified to fully define
the condition of the system. This can be understood with reference to the phase diagram of
water (a one-component system) in Figure 4.1. If we consider a general point on the phase
diagram, we have a single phase (P = 1) present—Iliquid water for the point labeled ¢, ice at
point e. For a one-component system, C = 1. The phase rule tells us that the number of
degrees of freedom, F, is C — P + 2 = 2. At a point like a, we can thus vary both the
temperature and the pressure of the system independently of each other, meaning both have
to be specified to define the system. We therefore see that on a single-component phase
diagram like this, a single phase exists over an area.® If we cool the system until we reach
point b, which is the freezing point of water at the pressure under consideration, we reach the
phase boundary between water and ice represented by the almost vertical solid line. At this
point, two phases (liquid water and ice) are in equilibrium and will remain so indefinitely.
The phase rule says that =1+ 2 — 2 = 1, and we therefore need to specify only one variable
to define the system. We can change pressure and temperature and retain two phases but we
can’t change them independently without destroying one phase or the other. If we increase 7,
we must decrease p to compensate (i.e. move to point ¢); if we decrease 7, we must increase
p (i.e. move to point d). We can see from the phase rule why, when water freezes to ice at
constant pressure, the temperature of the system remains constant as long as both ice and
water are present and in equilibrium.’

At the so-called triple point, one has three phases (ice, liquid water, and water vapor) in
equilibrium, and F=1-3 + 2 = 0. If one changes either p or T, one phase will disappear, so no
variables have to be specified to define the system. This is an example of an invariant point;
one with no degrees of freedom. A line on the H>O phase diagram thus represents the
presence of two phases, and a point where three lines intersect represents three phases.
The final point to mention on the water phase diagram is the critical point, which occurs at
the critical temperature and critical pressure. Beyond this point, liquid and vapor have the
same density and can’t be distinguished—a supercritical fluid is the only phase present.
A practical consequence is that above the critical temperature, gas can’t be liquefied by
application of pressure alone.

As the focus of this text is on solid state materials, the majority of the chemical systems
that we’ll consider will be condensed systems, i.e. ones in which the vapor pressures of the
substances involved are negligible compared to atmospheric pressure. The pressure can
therefore be considered as constant, and one degree of freedom is removed from the system.
The phase rule for a condensed system becomes:

* Note that this is not the case in a phase diagram with two or more components. In a two-component diagram, a single
solid phase is represented by a line and in a three-component diagram by a point.

> In practice, remaining at equilibrium means using a slow cooling rate. With more rapid cooling, one may not allow
time for crystallites of ice to nucleate and thus obtains a supercooled state. This, however, is not an equilibrium state
of the system.
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P+F=C+1 4.2)

This is the form of the phase rule that will apply for the rest of this chapter.

Two-Component Phase Diagrams

Without Compound Formation

Figure 4.2 shows one of the simplest phase diagrams for a two-component (A and B) or
binary condensed system, a system in which A and B form no compounds A,,B,.
Components A and B form no solid solutions (x is either zero or one in A;_,B,) but are
completely miscible when molten. The y axis represents the temperature of the system and
the x axis the composition. Composition throughout this chapter is expressed in mole
fraction (0 to 1), though mole percents are also in common use.’ The left-hand y axis of
Figure 4.2 then corresponds to pure A, and we can read from this axis that A melts at 7}; the
right-hand axis represents pure B, which melts at 7.

There are four main regions on this phase diagram. At low temperature, as A and B form
no compounds and no solid solution, one has a two-phase region consisting of a mixture of
pure A and pure B solids. When the solid two-phase mixture is heated to temperatures just
above T, one obtains a mixture of either solid A and liquid, or solid B and liquid, depending
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Figure 4.2 (a) The phase diagram for a binary system of A and B that form no compounds and no solid
solution. (b) The same phase diagram but with labels for specific points discussed in the text. Single-phase
areas are shaded, two-phase areas unshaded.

® Mole percents are just mole fractions x100. In some fields (particularly phase diagrams used industrially), the
composition axis may be expressed in weight percent.
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on whether the composition lies to the left or right of composition E. At composition E, the
solid mixture melts directly to form a liquid at point e, called the eutectic point, which
represents the lowest melting temperature in the system. Line c¢d (Figure 4.2b) where the
first liquid appears is called the solidus. At temperatures above those defined by the line aeb
(called the liquidus), one enters a region where the system is fully molten into a single-phase
liquid.

When interpreting such phase diagrams, it is crucial to realize the difference between
a two-phase and a one-phase region. For a one-phase region (shaded), each point on the
diagram represents a certain state of the phase in terms of composition and temperature. For
example, one can form a liquid with any desired composition at any temperature above the
liquidus. For two-phase regions the situation is very different. An arbitrary point in a two-
phase region does not represent an actual state of a phase, but corresponds to the overall
composition of two phases in equilibrium. At point f'in Figure 4.2b (whose composition is
marked as F on the composition axis), one has a two-phase mixture of pure A and pure
B. The relative amount of each phase present can be read directly from the composition axis.
Equivalently (and to prepare ourselves for later diagrams), we can see that the mole fraction
of A present, x,, is given by (distance F to B)/(distance A to B) (i.e. FB/AB) and xp as AF/
AB. Similarly, point j on the diagram contains a mixture of pure B and a liquid. The
composition of the liquid present is given by point k£ on the diagram (i.e. x5 = xg = 0.5).
The solid present is pure B and represented by point /. The relative amounts of liquid of
composition K and pure B present can be determined straightforwardly by the lever rule.
Let’s label the fraction of pure liquid present as x; and the fraction of pure B as xg. The lever
rule’ states that:

xL X kj = xp xjl (4.3)
i.e. the relative amount of B and liquid is given by:
xp/x = ki/jl “4)

Since we know x + xpg = 1, we can eliminate x| from Equation (4.3) to give the mole fraction
of B as:

xp = kif (1 + jk) = kj/kl @.5)

Note again that the amount of B present is proportional to the distance (kj) further from pure B.

Let’s consider what happens when you cool a liquid of a given composition. Firstly, let’s
consider a liquid of composition E (xa = 0.6, xg = 0.4) on our diagram. This liquid has the
special property of transforming directly to two solids on cooling at the eutectic point e. No
region of mixed solid and liquid phases exists. Since three phases (A, B, and liquid) are

7 This can be likened to balancing two masses at different distances from a pivot. At balance, md; = m»d> where n,
and m;, are the two masses and d; and d5 the distances to the pivot.
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present at e, the number of degrees of freedom is zero (F= C+1—P=2+1—-3=0), and this
tells us that the eutectic point e is invariant.®

The behavior of other compositions is more complex. Consider the composition J (x5 =
0.35, xp = 0.65) initially at point g. When the liquid is cooled to 75, one meets the liquidus
curve at point m where an infinitesimally small amount of pure B will form. Solid B will be in
equilibrium with liquid of composition J at this point. On further cooling to 7> we reach
point j. One still has a liquid in equilibrium with pure B, but the composition of the liquid has
changed to K—it has become richer in A. The relative amounts of solid and liquid present are
given by the lever rule as kj/jl as discussed above. Note that although the liquid and solid have
different compositions, the overall composition of the system does not change. As one
continues to cool, the liquid composition follows the line ke until at temperature 7; the
final liquid of composition E crystallizes. Below 7 one forms a solid mixture of A and B of
the original overall composition. The system will follow this pathway if cooled under
equilibrium conditions. If the system is rapidly cooled, it may follow a different pathway,
but the final phases present would be the same.

We can also use Figure 4.2 to understand the effect that solid impurities have on
melting points. A sample of pure B at temperature 75 will be a solid (B doesn’t melt
until the higher temperature 7’s). However, if a small amount of A is added, the solid will
be in equilibrium with a small amount of liquid at point m (composition J, x5 = 0.35, xg =
0.65); i.e. a small portion of B will have dissolved in the liquid. If sufficient A is added so
that the overall composition becomes J, then all of B will dissolve. The impurity A has
lowered the melting point from 7’5 to 73. Since at this point B has just dissolved, we have
a saturated solution of B in A. As we continue to add A at this temperature, we retain
a single-phase liquid until we reach point p on the liquidus. At this point, a small amount
of solid A will form. As more A is added, the amount of solid will increase and liquid
decrease until at point ¢ we have pure solid A present. The point p represents a saturated
solution of A in B. Since ae and eb represent saturated solutions of A and B, respectively,
point e represents a liquid saturated in both solids. The use of one solid to lower the
melting point of another is the reason why salt is spread on roads to prevent ice forma-
tion. It’s also of great practical use in the growth of crystals from a flux at lower
temperatures than would otherwise be required. Fluxes are chosen to be easily separable
from the crystals of interest, for example by dissolution in water in the case of NaCl/KCl
fluxes.

With Compound Formation

Most of the systems we’ll meet in materials chemistry will be more complex than Figure 4.2—
components that undergo reactions in the solid state leading to new materials are far more
interesting and exploitable than those that don’t! Figure 4.3 shows three possible phase

8 Terms univariant and bivariant are used for F = 1 and F = 2.
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diagrams in which A and B can react to form an intermediate phase AB,. This phase occurs
as a vertical solid line on the phase diagram at x5 = %5, xgp = %. Note that for composition
calculations it is often more convenient to express the formula of AB, as A;;3Bys (a
normalized or pseudoatom formula).

Figure 4.3a shows the most straightforward system. Each of the solid phases A, AB,, and
B melts to form a liquid without decomposition (at temperatures 7>, 71, and T;, respectively,
on the diagram); they are said to have a congruent melting point. The phase diagram is then
very similar to that of the simple eutectic system in Figure 4.2. In fact, it can be considered as
two eutectic systems placed side by side. Figure 4.3b shows a situation in which the
compound AB, is only stable up to a temperature 7; above which it decomposes without
melting to solid A and B. Above this temperature, the diagram is again essentially identical to
Figure 4.2. Other systems show the reverse behavior, i.e. compounds are only stable above
a certain temperature. ZrW,Og of Figure 4.8 is one such example (see later).

Figure 4.3c represents a more complex situation in which AB, has an incongruent melting
point, that is, it melts to give a solid and a liquid of different chemical compositions. On
heating AB, to 75, it decomposes to give a liquid of composition corresponding to point
p and pure B; the relative amounts are given by the lever rule. On further heating, B will
gradually dissolve in the melt and the liquid will move in composition from p to r. At point r,
all the solid dissolves/melts and a single liquid phase results. At point p, three phases are in
equilibrium (liquid, AB,, and B), F= C — P+ 1 =0, and p is therefore an invariant point. As
can be seen from Figure 4.3c, the composition of point p lies outside the composition range of
AB, to B. The composition of the liquid phase therefore can’t be expressed in terms of
positive quantities of the solid phases with which it is in equilibrium. Such a point is called
a peritectic point. At a peritectic point there is no minimum in the melting curve as there is at
the eutectic point, only a kink.

Systems in which a compound melts incongruently follow relatively complex pathways on
cooling. Consider a liquid at point s on Figure 4.3c. On cooling, the liquidus is met at ¢z, and
liquid and solid B will be in equilibrium. As cooling continues towards 75, the liquid will
move in composition from 7 to p. At temperatures just below the peritectic point p, the stable
solid phase becomes AB,. To form this solid, a peritectic reaction must occur, in which all the
solid B present must react with the liquid to form solid AB,. A drastic change in the
composition of solids present will therefore occur for a very small temperature change.
The amount of liquid present also changes dramatically at 75. Just above T the lever rule
shows the system will contain largely liquid (x. = 0.86 given by uB/pB) and just below 7’ far
less liquid (~0.36, uAB>/pAB»). On further cooling, the liquid composition follows curve pe,
and, at temperatures below 77, solid A forms along with solid AB,.

From the complexity of this behavior, it should not be surprising that systems containing
phases that melt incongruently frequently show non-equilibrium behavior. If liquid at point
sis cooled rapidly and/or if solid B falls to the bottom of the crucible during cooling such that
it is essentially removed from the system, the peritectic reaction may not have time to occur
completely and one would therefore observe a non-equilibrium mixture of A, AB,, and B at
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Figure 4.3 Two-component phase diagrams containing an intermediate phase AB,: (a) AB, stable to its
melting point. (b) AB, decomposes to solid A and B before melting. (c) AB, decomposes on melting.
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low temperature. It should also be clear that if one wants to grow crystals of composition
AB, from the melt under equilibrium conditions, one should start with a liquid composition
between e and p.

Solid-Solution Formation

We learned in Chapters 2 and 3 that solid solutions are ubiquitous. A schematic phase
diagram for a two-component (C = 2) system that shows complete solid solution in both the
liquid and solid states is shown in Figure 4.4. At high temperature (above the liquidus), one
has a single liquid phase and F = C+ 1 — P = 2; at low temperature (below the solidus), one
has a single solid phase and F = 2. In both regions, either temperature or composition can be
varied without changing the number of phases present. Between these two extremes, one has
a two-phase region in which (since F = 1) the composition of the liquid and solid phases is
fixed by the temperature of the system. Consider what happens when a liquid with compos-
ition and temperature corresponding to point ¢ is cooled under equilibrium conditions. At
point dy, the liquid of composition dy will be in equilibrium with a solid of composition ds, one
richer in B than the starting composition. On cooling to 7%, the liquid will have composition
eq (richer in A) and the solid e (richer in B); the relative amounts of solid and liquid will be
given as ege/ese by the lever rule—approximately equal amounts as drawn. As one cools
further, the liquid becomes progressively richer in A (it follows curve d; f;), and the amount
of liquid relative to solid decreases. Simultaneously, the solid composition changes from d; to
fs- At Ty, one has a single solid phase with the same composition as the original liquid.

The description above again holds only under ideal equilibrium conditions, which would
be very hard to achieve in practice. On more rapid cooling, it is very likely that the B-rich
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Figure 4.4 Phase diagram for a two-component system showing complete solubility in both solid and
liquid states.
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Figure 4.5 Phase diagram for a two-component system in which a limited range of solid solutions is
formed.

crystals formed initially wouldn’t have sufficient time to fully equilibrate with surrounding
liquid. One would then expect crystals whose core is rich in B (compositions as high as d;) and
outer shell rich in A (compositions as A-rich as f;). Such effects are frequently observed in
mineralogy. For many applications, the range of compositions from the core to the outside
of the crystal may give rise to deleterious properties, and extended annealing periods may be
required to homogenize samples.

A full range of solid solutions as shown in Figure 4.4 would only be expected for
components that are chemically very similar, and few phase couples have full thermo-
dynamic miscibility at very low temperatures.” In most systems at equilibrium, one observes
partial solid solution; there is a limit of solubility at a given temperature. Figure 4.5 shows
a typical phase diagram for a two-component system in which no compounds form but there
is solid solution at either end of the composition range. The diagram is directly related to
Figure 4.2a. At the left-hand side of the diagram, we have a region in which A will dissolve
B to form a single-phase solid solution A;_, B, (labeled A). The range of solubility generally
increases with temperature (curve c¢df’) and reaches a maximum at the solidus temperature
T1. A similar region exists at the B-rich side of the diagram (By,). At temperatures below 77,
these regions are separated (the boundary is called the solvus) by a two-phase region
containing a mixture of Ay and By. The composition corresponding to any point on this
diagram can be found using the same rules we’ve used above. Point g, for example, has an
overall composition of x5 = 0.7, xg = 0.3; there will be two phases present, Ay, and Bg. As
drawn, Ay will have composition d (Ag9Bg 1) and By, composition /2 (Ag gsBg.os). The mole
fractions of each of the two phases as given by the lever rule are gh/dh for Ass and dg/dh for By

 Many solid solutions can be quenched from high temperatures and remain stable at low temperatures because of
slow kinetics of demixing.
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Figure 4.6 Phase diagram for a two-component system with limited solid-solution range for A and liquids
rich in A and B immiscible under certain conditions.

(~0.765 Ag.9Bo.1 and ~0.235 Ag 05Bo.os). Note that (0.765 x 0.9) + (0.235 x 0.05) = 0.7 and
(0.765 x 0.1) + (0.235 x 0.95) = 0.3, as expected for the overall composition.

In the two examples described above, the components have been fully miscible when molten
and therefore form a single liquid phase. This is not, however, always the case, and we’re
familiar in everyday life with oil and water forming two-phase liquid systems. Liquid immisci-
bility is also encountered in ceramic phase diagrams. The example in Figure 4.6 shows an
immiscibility dome inside which two liquids exist as separate phases. Point e, for example, will
correspond to a mixture of two liquids of compositions corresponding to fand g. Temperature
T is called the upper consolute temperature. Along the line abd, two liquids (compositions at
a and b) and a solid (pure B) are in equilibrium. Point b is an invariant point (three phases are
present) called a monotectic point. It is similar to the eutectic point, except that one of the
phases that forms is a solid (here pure B) and the other a liquid (composition at a).

When we discussed the formation of compounds in Section 4.2.2, we moved from simple
eutectic phase diagrams such as Figure 4.2 to the more complex diagrams of Figure 4.3. Each
of these diagrams can be readily extended to allow for the formation of solid solutions in the
same manner as described above. For example, the incongruently melting system of
Figure 4.3c becomes Figure 4.7. While they appear complex at first glance, we can use the
same ideas as described above to read such phase diagrams.

A real-world A-B binary system that combines many of the ideas discussed above is shown
in Figure 4.8 for ZrO,—WO3;. The system exhibits two structural forms of ZrO, (monoclinic
and tetragonal structures) over the temperature range depicted, each of which shows a small
range of solid solution. There is a single AB, compound ZrW,Og that is only thermodynam-
ically stable above 1105 °C, melts incongruently, and has a peritectic point at 1257 °C. This
system is discussed further in the end-of-chapter problems.
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Figure 4.7 Phase diagram for a simple binary system with one intermediate phase AB, and a range of
solid solutions for each solid phase.
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Figure 4.8 Partial phase diagram for the ZrO,~WO; system at ambient pressure, after [1].

Three-Component Phase Diagrams

For a three-component or ternary system, we would need five axes (one for each
composition and one each for p and 7') to draw a general phase diagram. In practice,
an equilateral triangle is used to represent the composition of the system, and
temperature is represented by an axis normal to this triangle, forming a prismatic
diagram (Figure 4.9). One such prism is required for each pressure of interest. The
side faces of the prism represent the binary phase diagrams we’ve already discussed.
Due to the complexity of drawing and reading such diagrams, it is far more common
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Figure 4.9 A phase diagram for a three-component eutectic system.

to depict an isothermal section of the prism (Figure 4.10), which represents the phases
present at a specified temperature and pressure. In this chapter, we will only discuss
sub-solidus ternary diagrams and not address crystallization pathways for these
systems.

The reason for using an equilateral triangle for such phase diagrams is that its
geometry provides a natural way of expressing mole fractions xa, xp, Xc of the three
components, which must, by definition, sum to 1. This arises from the fact that if you
take any point in an equilateral triangle and draw lines from it to intercept each edge at
right angles then the sum of the length of these lines is equal to the height of the
triangle (Viviani’s theorem). If, as in Figure 4.10a, we draw such a triangle and call its
height 1 then the distances marked x,, xp, and xc will always sum to 1. One corner of
the triangle represents pure A (the others are B and C), and lines drawn parallel to the
opposite edge moving towards that corner represent increasing mole fractions of
A. This is shown in Figure 4.10a where each of the dashed lines represents
a constant mole fraction of A, with the amount of A increasing as one moves from
edge CB towards corner A. If we consider point d, it lies on the line representing x, =
0.6. If we were to draw lines parallel to the other edges, d would lie on lines corres-
ponding to xg = 0.3 (lines parallel to the AC edge) and xc = 0.1 (lines parallel to AB).

A second way of determining composition is to use the triangle rule, which is the equivalent
of the lever rule we used for binary systems. In Figure 4.10b we draw lines from each corner
of the triangle through d to the opposite edge. The amount of each component is given by:
xa=q/(p+q);xg=s/(r+s)=03;xc =u/(t+u) =0.1.
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Figure 4.10 Isothermal sections for a three-component system; (a) shows how the mole fraction of a phase
increases as one moves towards the corresponding corner, (b) illustrates the triangle rule for determining
composition, (¢) illustrates how composition can be read from a single axis, and (d) shows a line
corresponding to a constant B:C ratio.

A third way of reading compositions, which is often the most useful in practice, is to read
the amount of each component directly from one axis. To do this, we take point d in
Figure 4.10c and draw dashed lines through it parallel to each edge of the triangle and
look where these lines intercept any edge. If we consider edge AB, then the mole fraction of
A is given by fB (as in two-component phase diagrams, the length “furthest” from pure
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A gives its mole fraction), xg as Ae, and xc is the remaining portion of the axis, namely ef.
This method is particularly useful as it also applies to scalene'” triangles. If, in the system of
Figure 4.10c, A and C can react to form an intermediate phase AC, (or A;;3C,;3 when
normalized), then we might want to consider just the subsystem formed by A, B, and AC..
This is represented by the triangle A-B-AC, in Figure 4.10c. We could redraw this subsys-
tem as an equilateral triangle to read off the composition of point d in terms of A, B, and
AC,. However, our original diagram lets us read this information directly. To do this, we can
use edge B-AC, as we already have construction lines (¢ and dg) drawn parallel to the other
two edges, and composition can be read from the interception of these lines with B-AC,. The
mole fraction of AC; is given by Bg/(B-AC,), the mole fraction of B by (7-AC,)/(B-AC,)
and the mole fraction of A by gh/(B-AC,). These can be measured from the diagram as
XA,Cys = 0.15, xg = 0.3, xo = 0.55 (using the normalized formula for AC,). Note that
multiplying each mole fraction with the phase composition gives an overall A:B:C ratio of
0.6:0.3:0.1, as expected.

One can see intuitively from these diagrams that the closer a point lies to a given corner,
the richer the composition is in that component. In fact, for points d and e of Figure 4.10d,
which lie on a straight line Ade, the ratio xg/xc = xg'/xc’, and the dashed line Ae therefore
shows the effect on a system of increasing the amount of A at a fixed B:C ratio. This is true for
any set of compositions that lie on a straight line linking them to a corner.

The sub-solidus phase diagrams in Figure 4.11 are for the relatively simple Al,O3;-TiO,
~ZrO, system and the more complex Y(O)-Ba(O)-Cu(O) system,'' in which the famous
Y Ba,Cus05 superconductor is found. In the second system, the (O) brackets imply that the
oxygen content in some phases on the diagram can be variable (redox behavior of Cu). In
Figure 4.11a, only binary and ternary oxides are formed (all compounds are points on the
edges of the main triangle); in Figure 4.11b quaternary oxides also form. The phases present
for any overall composition can be read in a similar way as for binary phase diagrams.
A point within any single triangle represents a mixture of the three solid phases at its corners
(the amounts of which can be found using the rules above). The edge of any triangle
represents a mixture of the two phases at the corners it links, and a vertex represents
a single phase. Thus under the conditions corresponding to Figure 4.11b, a certain amount
of the YBa,Cu;0- phase12 (labeled 123 for the Y:Ba:Cu ratio) will be formed from starting
compositions anywhere within the triangle enclosed by points labeled CuO, 211, and
BaCuO,. Pure material will only be formed using the correct 1:2:3 Y:Ba:Cu ratio. In practice,
as we discussed for binary phase diagrams, many systems form solid solutions. These would
be represented by an area located around an ideal stoichiometric point.

10" A scalene triangle is a triangle with no equal sides.

" Note that in Figure 4.11a the compositions are in mole fractions of Al,O3, whereas in Figure 4.11b in mole fractions
of YO, 5. AL TiOs (2:1 AL:Ti) therefore lies halfway along the edge joining Al,O5 and TiO, in Figure 4.11a, whereas
Y>Cu,0s5 (1:1 Y:Cu) lies halfway along the edge joining Y(O) and Cu(O) in Figure 4.11b.

12 Though the oxygen content may not be exactly 7; see Chapters 3 and 12.
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Figure 4.11 Tsothermal sub-solidus phase diagrams (neglecting minor solid solubilities) for
(a) TiO,-Al,03-ZrO, below 1580 °C [2] and (b) Y(O)-Ba(O)-Cu(O) at 900 °C in O, [3].

Structural Phase Transitions

In the first half of this chapter, we have explored the phase diagrams of a number of simple
systems. The concept of phase transitions was implicit to this discussion. In Figure 4.1, for
example, as we heat from point e to point a, there is a phase transition from solid ice to liquid
water. Many materials undergo phase transitions in the solid state where their structure
changes. For example, when a-quartz'® is heated, it undergoes a series of phase transitions.
At 573 °C (the transition temperature or critical temperature, 7,), a relatively subtle transition
to B-quartz occurs, in which the connectivity of the SiOy, tetrahedra is unchanged (i.e. no
chemical bonds are broken or formed), but the tilting pattern of tetrahedra changes and the
symmetry increases from trigonal to hexagonal. On further heating, more drastic modifica-
tions occur in which the bonding pattern changes; at 870 °C, a transition to B-tridymite and,
at 1470 °C, to B-cristobalite. The a- to f-quartz transition can be classified as a displacive
phase transition, because no bonds are broken or formed. The higher temperature transi-
tions are classified as reconstructive because they entail a major reorganization of the
structure involving bond breaking and formation.'* The final category of phase transition
we’ll encounter is order—disorder transitions. Order—disorder transitions can be further

13 Polymorphs are often distinguished by Greek letters o, B, v, etc.

4 These different classifications aren’t used uniformly in the literature. For example, we describe a transition as
displacive if atoms only move a short distance, no chemical bonds need to be broken to achieve the conversion, and
there is a group-subgroup relationship (Appendix B) between the two space groups, regardless of whether the
process occurs in an abrupt or continuous fashion. Others choose to restrict the term displacive to continuous phase
transitions.
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subdivided into substitutional disorder (for example atoms ordering on specific lattice sites
such as the FePt example in Section 4.4.2) and orientational disorder where atoms or groups
of atoms change their positions without breaking the fundamental bonding pattern of the
material (such as the phase transitions of Cgy described in Chapter 13). We'll see throughout
the later chapters of this text that structural phase transitions are closely associated with
changes in the physical properties of materials.

Classification of Phase Transitions

The traditional way of classifying phase transitions was suggested by Paul Ehrenfest based
on how chemical potential (which is simply the Gibbs free energy G per mole) changes at the
phase transition. From thermodynamics we know that (dG/dp)7 = V and (0G/0T), = —S.
Since entropy and enthalpy changes at a phase transition are related by AS = AH/T,, it
follows that for a phase transition such as melting or boiling, in which there are abrupt
changes in both volume and entropy/enthalpy, there will be a discontinuity in the first
derivative (or slope) of the free energy with respect to temperature (and pressure). Such
a transition is therefore called a first-order transition. Since constant-pressure heat capacity,
C,, is defined as (0 H/0T),, it will be infinite at the phase transition.

The existence of a significant latent heat (AH) means that first-order transitions display
a hysteresis, a difference in phase-transition temperature on warming and cooling. We can
understand this through a simple thought experiment: if a sample is warmed to 7 and held at
precisely this temperature, the phase transition will not initially occur as there is no tempera-
ture gradient between the surroundings and sample to allow the flow of latent heat. It is only
when the surrounding temperature is raised above 7 that latent heat flows and nuclei of the
new phase begin to form. A first-order solid state transition will therefore lag behind the
temperature change causing it in any real experiment. The sample remains at temperature 7
during the transformation while the heat supplied feeds the higher entropy of the product
(drives the transition). This means that the presence of two phases in coexistence is a criterion
for the first-order phase transition. To obtain any hysteresis intrinsically associated with
a first-order transition, this kinetic factor has to be eliminated by extrapolating temperature-
dependent measurements to the zero rate of temperature change.

A second-order phase transition is one in which there is a discontinuity in the second
derivative of the free energy with respect to temperature or pressure. The volume and the
entropy (and therefore the enthalpy) do not change abruptly at the phase transition, but
quantities such as the volumetric coefficient of thermal expansion or heat capacity do.'” The
dependence on temperature of various thermodynamic quantities for classical first-
and second-order transitions is shown in Figure 4.12.

'S The volumetric coefficient of thermal expansion, ay, as ay = (1/¥)dV/dT = (1/V)8*G/OPOT and C, as
C,/T = (1/T)0H /3T = 8S/0T = —6°G/oT?.
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Figure 4.12 Variation in thermodynamic quantities at first- and second-order Ehrenfest phase transitions.
The vertical dashed line corresponds to the transition temperature.
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It is now more common to categorize phase transitions as discontinuous or continuous with
reference to the behavior of entropy or another order parameter (see below) at T.. At
a discontinuous transition, the order parameter changes abruptly. All discontinuous phase
transitions are first-order in the Ehrenfest classification. During a continuous phase transi-
tion, the order parameter changes in infinitesimally small steps, as in a second-order transi-
tion. These concepts are developed further in the following sections.

Symmetry and Order Parameters

We can define many of the phase transitions we’ll encounter in terms of the changes in
symmetry that occur. Figure 4.13 illustrates the relevance of symmetry using a simple
mechanical model, the Euler strut. If we place increasing weights on top of a flexible plastic
rod, the rod will buckle or bend at some point. When this occurs, the symmetry of the system
is lowered or broken. We can see from the figure that the system could choose to buckle to the
right or the left. Even if the mass was loaded perfectly centrally on the rod, the system would
“choose” one direction or the other—ultimately decided in this ideal scenario by random
thermal displacements of the system. An analogy to the Euler strut example in materials
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Box 4.1 Characterizations: Differential scanning calorimetry (DSC)

Everyone enjoying an iced drink on a hot summer day exploits the fact that latent heat is
needed to melt the ice before the drink’s temperature starts rising. If you plotted the tempera-
ture evolution of a freshly iced cup versus an identical standard second cup where the ice has
just melted, the area between the two time-dependence curves would be proportional to the
latent heat of the ice in the first cup. This is the principle of DSC: a sample and a standard are
warmed at a constant rate, and the temperature of both is “scanned” at regular time intervals,
for example every second.

One patented DSC method adopts a smart twist. It measures the latent heat directly in terms
of the electrical power to supply it. The sample in a tiny aluminum pan, and an equivalent
empty pan for comparison, are each placed in their own tiny thermostat, each having
a miniature hot plate and a temperature sensor; the total of about 1 gram weight. The
electronics is wired up to keep their heating rate constant during the “scan”. The extra power
(J/s) needed for the sample is recorded every second upon heating through the phase transition.
When summed per unit mass of the sample, it gives the latent heat. The apparatus is usually
calibrated using a phase change of a standard of known latent heat and weight. This DSC
method is termed a power-compensation DSC.

sample thermostat reference thermostat

M- | f; F]
—1— Ptresistance thermometer
I I < heater
He He He He

power difference

The advantage of the method is a quick thermal equilibration that gives a fast response
needed for high rates of heating or cooling, as well as sharp peaks that make it possible to
separate closely occurring transitions. In addition to the latent heat of a discontinuous transi-
tion, it is possible to determine the heat capacity of the individual phases upon heating or
cooling beyond the transition peak.

chemistry could be the phase transitions between perovskite tilt systems outlined in
Chapter 1. In the ideal perovskite structure, one has 180° M—O-M bond angles (this ideal
structure would normally be the high-temperature, low-pressure limit), which can bend away
from 180° on cooling, lowering the symmetry of the system.

As a second model of broken symmetry, consider a simple single-headed arrow that can
fluctuate between pointing to the left and pointing to the right. If it switches between these
two orientations very rapidly, it would appear as a double-headed arrow to an observer. If,
however, its rate of switching was gradually reduced, there would come a point when the
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Figure 4.14 Order—
disorder transition in
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observer would see it “frozen” into one of two possible orientations. Once the arrow adopts
one of the two possible orientations, it changes from appearing double-headed to single-
headed and its symmetry is reduced.'® A structure with an atom dynamically disordered over
two closely separated sites at high temperature (for example, an atom in a double-well
potential), which chooses one of the two sites and orders on cooling, is one example of this
type of behavior. Phase transitions in ferroelectric perovskite materials such as BaTiO5 and
PbTiO;, which are discussed in Chapter 8, can also be understood in a similar way. As the
material is cooled from high temperature, Ti moves away from a position on a dynamic
average at the center of the BOg octahedron, freezes in an off-center position, and the
material develops a spontaneous polarization. Again, this is associated with a lowering of
symmetry at the phase transition on cooling.

Symmetry changes leading to phase transitions can also be brought about by atomic
ordering. One important example is found in FePt 1:1 alloys. At high temperatures (above
~1300 °C), FePt has the face-centered cubic structure shown on the left of Figure 4.14, in
which Fe and Pt atoms are randomly distributed over all sites of the structure. On cooling, it
is thermodynamically favorable to order Fe and Pt atoms in layers perpendicular to the
original ¢ axis, and the stable room-temperature structure is tetragonal (this is the so-called
L1, phase). Once again we see that ordering of atoms on cooling lowers the symmetry. This
particular transition is of technological relevance as the ordered material has a high
magnetocrystalline anisotropy, making it possible to produce magnetically hard nanoparti-
cles with a range of potential applications.

In each of these examples it is useful to introduce an order parameter, 7, to describe the
distortion of the structure relative to the high-symmetry case.'’ This is particularly true when
the distortion involves movement of groups of atoms or molecules. In the case of octahedral
tilts in perovskites, the tilt angle can be used to define the order parameter. For B cations
moving off-center in a BOg octahedron, the shift in fractional coordinate of the metal might

16 Note that the point at which the transition is deemed to have occurred might be influenced by the experimental
method used to observe it. For example, if one used a photographic technique, a camera with a high shutter speed
would record the freezing transition before one with a low shutter speed.

17 The symbol Q is also commonly used for order parameter.
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be the order parameter. For the FePt transition, if we define one lattice site on the right of
Figure 4.14 as being the Fe site and the second as being the Pt site, we can define the order
parameter in terms of the fractional occupancy of each site by “right” and “wrong” atoms. In
a perfectly ordered structure, occpyre) (the fractional occupancy of Pt at the Fe site) would be
0, and occpe(re) = 1; in the fully disordered occpyre) = 0ccrerey = 0.5. An order parameter
could therefore be defined as 7 = 2[occperey — 0.5] and would vary from 0 to 1 for
a disordered to fully ordered material on cooling. Finally, entropy change itself is an order
parameter, such as (Siquid = S)(Siiquid — Ssoiia) for H,O freezing.

Many readily measurable macroscopic quantities also show a simple dependence on # and
can be used to monitor a phase transition. For example the distortion of cell parameters as
a perovskite changes from cubic to lower symmetry can be expressed as a spontaneous
strain,'® & = (@ — deup)/deun, and it typically depends on either 5 or 57"’

It’s worth noting that although the examples described above have an order parameter
that could potentially vary continuously (though we’ll see that it needn’t in practice) from the
high- to low-symmetry situation, symmetry itself always changes abruptly—a symmetry
element is either present or absent in the structure. A continuous transition concludes when
the final infinitesimal heating step causes the order to finally disappear, at which point the
new symmetry emerges. For the vast majority of transitions, the high-temperature form has
the higher symmetry.

Introduction to Landau Theory

One of the advantages of introducing the order parameter to describe phase transitions in
solids is that it allows one to use Landau theory’’ to describe their thermodynamics. The
basic assumption used in this approach is that the Gibbs free energy of the phase can be
approximated as a simple power series in terms of the order parameter #:

18 Strain (e, the proportional displacement in shape or volume) is the deformation that occurs when a material is
subjected to a mechanical stress (o, a force per unit area). For small deformations where materials behave in an
elastic manner, the stress tensor of rank 2 (a 3 X 3 matrix; diagonalized in engineering to have six non-zero terms) is
related to the strain tensor of rank 2 by g, = Z c;e; where c;; are elastic stiffness coefficients (originally a tensor of

nine 3 X 3 matrices; in engineering simpliﬁejd to 36 ¢; parameters relating the stress and strain matrices) and
subscripts refer to different directional components. For a uniaxial stress and isotropic body, this simplifies to
Hooke’s law ¢ = E¢ where E is Young’s modulus. See, for example, Elliott [ Physics and Chemistry of Solids (1998),
J. Wiley and Sons] for more detail.

Transitions that keep group-subgroup relationships can be categorized according to how the translational
symmetry of the lattice changes at the transition: if the lattice centering changes or a superlattice is formed, the
transition is called a zone-boundary transition, otherwise it is called a zone-center transition. Here the “zone”
refers to the Brillouin zone introduced in Chapter 6 as the volume in reciprocal space that lies closest to each
reciprocal lattice point; if lattice points are added or diluted, the zone boundaries change. Zone-boundary
transitions (such as the SrTiO? perovskite tilting discussed in Section 4.4.6) generally have & proportional to
and zone-center transitions to 7.

We call this a phenomenological theory as it explains experimental results mathematically without using a rigorous
fundamental physical law.

20
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G(n) = Gy + %Anz + %Bn“ +écn6 +... (4.6)
where G represents the part of the free energy that does not change at the phase transition.
The term G(y) — Gy thus represents the excess free energy compared to one that the
unchanged form would possess if no phase transition occurred. Additional terms can be
introduced to this equation if, for example, the order parameter is coupled to properties such
as strain. Usually G is independent of the sign of # such that only even powers are needed, as
in Equation (4.6), and it’s common to adopt the smallest number of terms required to
describe a system.

Second-Order Transitions

Let’s consider the phase transition shown schematically in Figure 4.15, which involves an
oxygen atom being continuously displaced from an ideal site midway between two metal
atoms—this could represent a tilting transition of octahedra in a perovskite. We can define
an order parameter # in terms of the oxygen displacement from the ideal site. At high
temperatures, the oxygen vibrates around its M—O-M midpoint, maintaining high symmetry
(7 = 0). At low temperature, the oxygen vibrates around a position displaced to the left or to
the right (3 # 0). For this situation, oxygen displacements to the left or right (*#) are
equivalent, justifying the use of even powers of # in Equation (4.6).

Since the linear M—O-M arrangement is stable at high temperature (7 > T,), G(n) at # =0
must be a minimum. The simplest expression that would produce this has to have a term in
Equation (4.6) dependent on > with a positive 4 coefficient. Below the phase-transition
temperature 7T, the linear M—O-M 1is no longer stable, implying that G( = 0) becomes
a local maximum (Figure 4.15). This change requires that 4 changes sign from positive to
negative at the phase transition. The simplest way to express this is to give 4 a temperature
dependence such as:

A(T) = a(T — T) 4.7)

with a positive. This means that A(7) is positive for T > T, and negative for 7' < T.. In order
to produce minima in our free-energy curve at n = 0 below T, it is now necessary to include
a term in the G(y) series with a positive coefficient, such as one depending on 5*. The Gibbs
free-energy expression becomes:

1 1
G(n) = Go —I—Ea(T— T’ —1—18114 (4.8)
We can see from the form of G(5) curves in Figure 4.15 that because 4(7) changes smoothly

with temperature, G(7) also changes smoothly, and the phase transition occurs in a smooth or
continuous fashion. At the transition temperature T, the state of both phases is identical, and
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Figure 4.15 Free-energy curves for a second-order displacive phase transition.

the symmetry of the body at this point must contain the symmetry of both phases—the two
space groups must be related by a group—subgroup relationship (Appendix B). In general, the
high-temperature phase has the higher symmetry, and the low-temperature phase has only
a subset of these symmetry elements. This turns out to be a powerful tool when investigating
the possible symmetries of the low-temperature structures for a variety of phase transitions.
A more detailed discussion of this topic can be found in the literature [4-8].

Equation (4.8) lets us investigate many of the important thermodynamic quantities
associated with the phase transition. At any temperature, the equilibrium value of the
order parameter is given by the minimum of the G(3) curve, i.e. where (dG/dn) = 0 and
(0°G/on?) > 0. Differentiating Equation (4.8) gives:

Z—j =a(T—T)n+ By =0 4.9)

The three solutions to this equation are:
n=0 andn:i\/g(Tc— 7)'/? (4.10)

For T>T,, n = 0 represents the minimum in Gibbs energy, and there are no other real
solutions. For T'< T, this solution ( = 0) is a local maximum in Gibbs energy, and the other
two solutions represent minima.

The way in which 7 varies with temperature can be expressed even more succinctly than

Equation (4.10). If we make const = ++/aT,/B then:
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Figure 4.16 Schematic temperature dependence of the order parameter # in the Landau description of
a second- and first-order transition.

n = const|(T, — T)/T.)} with g =1/2. (4.11)

The parameter f as a general variable is called the critical exponent. Under the Landau
approximation, the full structural order of # = 1 is acquired at 7'= 0 such that const = 1 and
n = [(T. = T)/T,)”. This simple dependence of the order parameter # on temperature
(Figure 4.16, left) is followed by many second-order transitions, at least close to 7.

The transition thermodynamics can be derived as follows. Substitution of the non-zero 7
from Equation (4.10) into Equation (4.8) gives the excess Gibbs energy acquired by the
transition on cooling from 7, to T as:

2
a
AG:G—G():—E(T—TC)Z (4.12)
Since G= H — T'S, we can use S = —dG/d T to derive the excess entropy and enthalpy acquired
by the phase transition on cooling from 7. to 7. The full-transition values can be determined
by setting 7' = 0 into the temperature-based terms for AS and AH below, or by setting n = 1
with T, = Bla into their z-based terms:>!

AS—az(? T.) = L (4.13)

2B ¢ 241 ’

AH = AG + TAS = az(? 7)2+a2 (T-T.) = ! 1 2+1B4 (4.14)
4B ¢ 2B ¢ R el Ty P ’

The derivations are explored in the end-of-chapter problems. Equation (4.14) shows that the
excess enthalpy of the system is a double-well function, and the positive sign of ¢ and B in
Equation (4.13) means that entropy, as a measure of disorder, decreases as the system
distorts (orders) below T..

2l Transition entropies and enthalpies are always reported upon heating, hence would have opposite signs to those
suggested by Equations (4.13) and (4.14).
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The effect of the phase transition on the heat capacity can be found using the relationship
C, = T(dS/dT),. Below T, differentiating Equation (4.13) gives:
OAS 1 oy &°T
AC(T>T,)=0 (4.16)

We see that the heat capacity changes abruptly by a*T,/2B at T.. Since B is positive, and we
are considering the cooling process, heat capacity shows a positive jump at T, on cooling to
the low-temperature phase (see Figure 4.12), consistent with Ehrenfest’s definition of
a second-order transition.

Note from this analysis that once ¢ and B are known, all the thermodynamic quantities
associated with the phase transition can be calculated. The values of @ and B can be obtained
by measuring 7, and one of the excess thermodynamic quantities. The way in which an order-
parameter approach can be used to describe magnetic transitions is explored in the end-of-chapter
problems.

First-Order and Tricritical Transitions

We can apply similar arguments to investigate a discontinuous or first-order transition,
provided we can relate the two structures by an order parameter. Here, the high- and low-
temperature phases coexist in equilibrium at 7. This coexistence requires that equal minima
in G(n) occur for different absolute values of #; one at the order parameter 7 = 0 of the
disordered phase and two at non-zero +7 of the ordered phase.”” The simplest Gibbs free-
energy function that will allow this coexistence has a fourth-order term negative and a sixth-
order term positive:

G(n) = Go+ %a(T — o) — %Bn4 +éC116 (4.17)
where a, B, and C are all positive quantities as written. 7} is a temperature slightly
lower than T, and we will derive their relationship shortly. This function has a single
minimum at high 7, three minima at intermediate temperatures above 7, and two
minima at temperatures below T, as depicted in Figure 4.17. As in the second-order
case, differentiating Equation (4.17) with respect to # will tell us the order parameter
values that give rise to minima in the free energy. Depending on temperature, there are
up to three minima at:

22 Note that in the Landau model, the order parameter # is often used in a somewhat relaxed way as a transition
parameter and allowed to exceed the value of 1.
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Figure 4.17 Free-energy curves in the Landau model of a first-order phase transition.

B+ \/32 —4Ca(T - To)>l/2 (4.18)

=0and y ==+
n and 7 < °C

At high temperatures, we have a single # =0 minimum. On cooling, we first reach
a temperature 7, = Ty + B?l4aC (higher than T, or Tj), where two additional local minima
appear at =0, though they have a higher G than the G at # = 0.>* The phase-transition
temperature 7, is reached on further cooling, and is defined as the temperature where the
three minima in the free-energy curve are all equal to G,.** This can be shown?” to occur at:

To=To+—— (4.19)

and T lies between T} and T. Finally, upon cooling through T, the local # = 0 minimum
disappears and only the two 7 # 0 minima remain.

Figure 4.18 shows the temperature dependence of the free energy of each minimum,
highlighting how the ordered # =0 phase becomes thermodynamically stable below T.. The
temperature dependence of the order parameters for first- and second-order transitions are
compared schematically in Figure 4.16. Unlike Equation (4.10), the form of Equation (4.18)
means that # changes abruptly or discontinuously at a first-order phase transition. The order
parameter jumps from 0 to +(3B/4C)”* on cooling through 7T, and, for those phase transi-
tions that are finished at this point, it can be constrained to # = 1 by setting C = % B. Note that

23Ty is the temperature where the expression within the square root /B2 — 4Ca(T — Tp) in Equation (4.18) equals 0.

24 This is our equilibrium condition of AG = 0 for the phase coexistence at the transition.

2 At T., G= Gyand dG/dT = 0 constrain the Landau coefficients. Performing these two operations on Equation (4.17)
yields two equations that subtract to give 5> = 3B/4C that is substituted into the dG/dT = 0 equation and rearranged
to give Equation (4.19).
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Figure 4.18 Temperature dependence of free energy and order parameter for a first-order transition in the
Landau approximation. Dotted regions T, to 7. and T, to T show the temperature ranges, discussed in
the text, over which local minima are present in G(7).

for the first-order case, the simple jump in 5 at 7. doesn’t imply anything about the pattern of
atomic displacements that takes place at the transition. The transition must occur by the
nucleation and growth of one phase in the other, as discussed above.

Just as we did for the second-order transition, we can derive other thermodynamic quan-
tities by substituting our expression for  of Equation (4.18) back into Equation (4.17) to
express G as a function of 7. By differentiating with respect to 7' (as S = —dG/dT), we obtain
the entropy, and from C, = T(dS/0T), the heat capacity.”® Upon cooling through T, the
entropy change is —3aB/8C (negative, the system becomes more ordered).”’ The phase
coexistence, hence AG = 0 at T,, means that we can use AH = TAS to obtain:

3aBT,
8C

AH(T=T,) = - (4.20)
We see that AH has a finite negative value for cooling through 7...*® Upon heating, this AH is
positive and is the latent heat supplied to the equilibrium system of two phases at the transition.

We’ve seen that a differentiator between first- and second-order transitions is the sign of
the #* contribution to G(;). Using the G(y) expression of Equation (4.6),” a first-order

3

B/4 — aC(T — To))i 3 3
2 . . . L ( aB(T—T)) B
The algebra is tedious but results in G(T)= Gy 302 + ic 24C

a*T

4B /A —aC(T—To)

sy =so -2 (24 B C(T—Ty) |, and C,(T) = Cpo +

BTl R R R

27 Details explored in Problem 4.16.

28 Contrast this to Equation (4.14) that shows that AH = 0 at T'= T, for a second-order phase transition.

2 Note that in Equation (4.17) we reversed the sign of the 4 term to keep all coefficients positive quantities in our main
discussion.
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transition has B < 0 and a second-order, B > 0. The case where B = 0 is called a tricritical

transition, and for these 5 < (T, — T )1/ * with a critical exponent 8 = Y (see Problem 4.13).

What can cause the sign of B to become negative so that a phase transition becomes first-
order rather than second-order? One opportunity arises when the phase transition distorts
the lattice (also termed spontaneous strain). Our free-energy expression should then include
additional terms to account for this.’” As an example, the displacive transition in SrTiOs can
be described by including a quadratic coupling term between strain and order parameter,
and the free-energy function can be approximated as:

1 1 1 1
G(n) = Go —I—Ea(T — To)n* + ZBn4 —5—5/165172 +§cel eg +... (4.21)
where g, is spontaneous strain, ¢ an elastic constant, and A a coupling constant; the final
term in this equation is a Hooke’s-law-like term with elastic energy proportional to the strain
squared. Since the free energy depends on strain, at equilibrium (dG/des) = 0, which implies
that &, = —=A5*/2¢.. On introducing this to Equation (4.21) we find:

B 1 , 1 2N
G(n) = GO—FECZ(T— To)n +Z <B_2Ce|>’7 + ... (4.22)

The effect of strain is then to reduce the coefficient of the #* term. If the coupling is sufficient
to make the overall #* coefficient negative, the transition will be first-order.

Phonons, Soft Modes, and Displacive Transitions

The final concept we will discuss for understanding structural distortions at phase transitions
is that of the soft mode. In any molecule or material, atoms are never at rest but undergo
thermal vibrations. In an isolated molecule, we usually discuss these in terms of normal
modes. In H,O, for example, we can describe the possible vibrations in terms of three normal
modes that approximate to a symmetric and an antisymmetric stretch of O-H bonds and
a bending of the H-O-H bond angle. If we wanted to describe a hypothetical distorted water
molecule with one short and one long O—H bond, one recipe would be to imagine freezing the
asymmetric bond stretch at some point along the normal-mode coordinate describing the
H displacement.

In an extended solid, the interactions between neighboring atoms mean that they don’t
vibrate independently. The motion of one atom influences those around it, producing
displacement waves that travel through the crystal, termed lattice modes. The top panel of
Figure 4.19 shows this schematically for an isolated chain of atoms that show transverse

In general, excess free energy due to strain will contain terms dependent on g7 and eg;” (though higher-order terms can
also be included). For zone-center transitions (see Footnote 19) only the linear coupling term is usually required; for
zone-boundary transitions only the quadratic term. More detail can be found in the text by Salje [E.K.H. Salje, “ Phase
Transitions in Ferroelastic and Co-Elastic Crystals” (1993) Cambridge University Press].
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Figure 4.19 Phonons. Transverse and longitudinal phonons with 2 = 10« in a 1D chain. In the longitu-
dinal case, the wave amplitude represents motion along the chain direction indicated by the small gray
arrows. The lower picture shows how a soft mode with k& = n/a can lead to transition to a structure with
doubled unit cell.

displacements from the chain axis with a travelling wave of 1 = 10a. The peaks and troughs of
this wave move through the crystal at a velocity (the phase velocity) given by ¢ = Av such that
atoms oscillate at frequency v. There are also longitudinal modes, in which the travelling-
wave amplitude describes atomic motion to the right (+ amplitude) or left (—) of the time-
averaged position along the chain direction. Lattice modes can always be described by waves
between A =  (all atoms move in the same direction corresponding to a translation of the
entire crystal) and A = 2a (atoms in adjacent cells vibrate out of phase). In a normal 3D
crystal, we have to consider waves propagating in all directions, and it becomes convenient to
label them in reciprocal space using a wave vector k with magnitude 2n/2.°' The language is
analogous to that developed in Chapter 6 to describe band theory and excellent descriptions
can be found in texts such as those by Kittel, Ziman, or Dove (see Further Reading).*? Each
lattice mode or wave will affect all the atoms, and the amplitude of the motion depends on its
frequency and the temperature. The overall motion of atoms will be a superposition of the
motion caused by each of the waves.

To this point we’ve taken a classical view, but in reality the motion of atoms in solids is
determined by quantum mechanics, and the energy of the vibrations is quantized. In the
same way that wave-particle duality allows us to describe light waves in terms of particles

31" As discussed in Chapter 6, the possible values of k (the lengths of k) range from 0 to *n/a with + and —
corresponding to waves travelling in opposite directions.

2 Fora crystal with n atoms in the unit cell, there are 3n different combinations of motion, each of which has a specific
frequency (dependent on interatomic forces) at each value of k; these are called branches. The dependence of v on
k (labels direction and ) for each branch is called a phonon-dispersion curve and is analogous to a band-structure
diagram. For a 3D monatomic (n = 1) crystal, there will be three branches; one longitudinal and two transverse. At
k = 0 all atoms move in phase and v = 0 for each branch. As k changes, the frequency of the different branches will
change.
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called photons, vibrational waves can be described as particles called phonons. A phonon is
the quantum unit of vibrational energy in a crystal and its energy is given by Av. When
vibrational waves propagate heat or sound energy through a crystal, it is carried by the
motion of phonons. As temperature is increased, the amplitude of atomic vibrations
increases, and this corresponds to an increase in the number of phonons in the crystal.
Slightly confusingly, the common usage is that the lattice modes describing the vibrations of
atoms are also called phonons.

Anharmonic effects® in crystals lead to phonon frequencies varying with temperature. If
a material has a relatively low-frequency phonon (or set of related phonons) whose fre-
quency decreases on cooling, we can envisage a situation where the frequency could fall to
zero. At this point, the structure becomes unstable with respect to a permanent distortion
corresponding to the atomic motion described by the phonon—it becomes soft with respect
to the distortion. The phonon becomes frozen into the structure and a displacive phase
transition occurs to a lower-symmetry structure. The phonon involved is called a soft mode.
The atoms now vibrate around their new equilibrium positions and the frequency starts to
increase again on further cooling.

If we return to our simple example of a H,O molecule, freezing in different normal modes
(bends, stretches) will lead to a different distortion of the molecule with potentially different
point-group symmetries. The same is true of soft modes in extended structures, and there is
an elegant language that lets you explore the different symmetries of the structures that could
form (colloquially called child structures) from a high-symmetry (parent) structure,** depend-
ing on the symmetry properties (decribed using an irreducible representation or irrep) of the
phonon involved. These can be explored through web-based tools such as ISODISTORT
(http://stokes.byu.edu/iso/isodistort.php).

As an example, SrTiOz undergoes a cubic to tetragonal phase transition on cooling through
~110 K due to a soft mode at k = (Y4, Y2, ¥2). The atomic motions that freeze into the structure
below T, are shown schematically in Figure 4.19 and consist of coupled rotations of TiOg
octahedra around ¢, with adjacent octahedra rotated in opposite directions. This is one of the
tilted perovskite structures discussed in Section 1.5.3. Since k is non-zero, the unit cell of the
low-temperature structure is larger. Similarly, the displacive phase transition between a- and
B-quartz can be described by the softening of a ~200 cm™' phonon of B-quartz upon cooling.
This phonon is at k = 0, so the unit-cell size remains unchanged in o-quartz.*> In some cases,
the wavelength of the soft mode doesn’t correspond to an integer number of unit cells of the
parent structure. This is another recipe for formation of an incommensurate structure (dis-
cussed in Section 2.10), where the structure can’t be conveniently described using

3 In the simplest treatment of phonons (the harmonic approximation), it’s assumed that the energy of the system
depends only on the square of the relative displacements of adjacent atoms. The energy is then the same as that of
a set of harmonic oscillators. Higher-order contributions to the energy are called anharmonic terms and are
normally treated as a perturbation to the harmonic approximation.

3 More formally, the highest-symmetry structure is called the aristotype and lower-symmetry structures hettotypes.

35 k=0 means A = o so that all p-quartz cells undergo the same in-phase distortion into o-quartz.
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a conventional 3D crystallographic description. In fact, there is a narrow 1.3 K region just
below T, in quartz where the structure is incommensurately modulated for this reason. At
lower temperatures, the soft-mode wavelength is said to “lock in” to the lattice and the
incommensurate modulation disappears. There is more detail about the intricacies of soft
modes and how this simple model applies in real materials in Further Reading.

Problems

4.1 Give a brief definition of the terms phase (P), component (C), and degrees of freedom (F)
in the condensed matter phase rule P+ F= C + 1.

4.2 Refer to the phase diagram depicted below. (a) State which four phases are stable at 100 °C.
(b) What is the name given to the horizontal line separating region 2 from 1 and 3? (¢c) What
are the approximate melting points of A, AB, and B? (d) What happens if you try and melt
solid AB,? (e) State what phases are present in each of areas 1-9. (f) Do any of the phases
depicted form solid solutions? (g) State the number of phases and degrees of freedom at
points a, w, x, y, and z. (h) Describe what happens when compositions at each of points a to
f are cooled from high temperature. (i) Estimate the relative amounts of solid and liquid
when a composition at point a (xg = 0.065) is cooled to 500 °C, 400 °C, and 300 °C. (j) What
might be observed if composition at point e is cooled rapidly? (k) State the differences
between the peritectic reactions that happen on cooling compositions at points e and f.
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[=)
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o
o

temperature (°C)

200

100 - B

! ! ! !
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4.3 Using the phase diagram of Figure 4.8: (a) State how you would attempt to prepare
a solid polycrystalline sample of ZrW,Og. (b) State how you would attempt to grow
single crystals of ZrW,Os.

4.4 In the system Al,03-BaO, five phases stable above 1300 °C were identified: Al,O3, Al;»
BaO,9, Al,BaO,, Al,Ba3O¢, and BaO. Each was found to melt congruently at 2072 °C,
1900 °C, 1811 °C, 1616 °C, and 1918 °C, respectively. Eutectics form at xg,0 =0.11,0.32,
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0.66, and 0.87 (relative to Al,O3) with melting points of 1875 °C, 1620 °C, 1480 °C, and
1425 °C. Sketch and fully label the phase diagram of this system.

Perovskite chemists searching in the CaO-TiO, system initially found four phases stable
above 1300 °C: CaO, Ca3Ti,07, CaTiOs, and TiO,. CaO, CaTiO;, and TiO, were
reported to melt congruently at 2600 °C, 1970 °C, and 1830 °C and Ca3Ti,O7 to melt
incongruently at 1750 °C. Eutectics were reported at xrio, = 0.29 and 0.76 with melting
points of 1695 °C and 1460 °C. Sketch and fully label a phase diagram for this system.

Use the phase rule to explain how a mixture of Ni and NiO can be used to provide
a controlled low oxygen partial pressure in a closed system.

If the height of the triangle in Figure 4.10a is 1, prove that the distances x, xg, and xc
must sum to 1. Hint: Write an expression for the total area of triangle ABC in terms of
constituent triangles such as ABd.

Plot the following compositions on a triangular composition diagram. Comment on the
compositions of points a, b, and ¢ and of points d, ¢, and e.

Point XA XB Xc
a 0.8 0.1 0.1
b 0.4 0.3 0.3
c 0.2 0.4 0.4
d 0.1 0.7 0.2
e 0.3 0.1 0.6
State the compounds you would expect to form and their relative phase fractions

when oxide mixtures corresponding to points a—f in Figure 4.11 are reacted under
equilibrium conditions.

The following examples of phase transitions are discussed either in this chapter or in
other parts of the book. In each case, would you describe the transition as reconstruct-
ive, displacive, or order—disorder in nature? State whether or not you would expect to be
able to isolate the high-temperature phase at low temperature. (a) The transition from o-
quartz to B-quartz at 573 °C. (b) The transitions from B-quartz to tridymite (870 °C)
then to B-cristobalite at 1470 °C. (c) The transition at 641 °C of the a’b’c*-tilted
NaNbOj; perovskite (P4/mbm) to the cubic (Pm3m) perovskite a’b’c’. (d)

State whether symmetry decreases or increases at the water-to-ice phase transition.
For a ferromagnetic second-order phase transition, assume that the relative magnetiza-
tion M can be used as the order parameter in G(M) = Gy + Y2AM> + VaBM*. Sketch the
temperature dependence of M on 7.

Prove that for a tricritical transition n = [(T, — T)/T¢]
Show that the expressions given in the text for the critical temperature of a first-order
phase transition [Equation (4.19)] and for the abrupt order parameter change of =

1/4_
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+(3B/4C)” at T, are consistent with the definition that the three minima in the Gibbs
energy curve are equal to Gy at T, (Figure 4.17).

4.15 Show that the expression relating 7, and Ty of a first-order phase transition [Equation

(4.19)] and the Gibbs energy expression in Footnote 26 are consistent with the definition
that the three minima in the Gibbs energy curve are equal to Gy at T, (Figure 4.17).

4.16 Show that the entropy and enthalpy changes for a first-order phase transition are given

by AS = -3aB/8C and AH = —-3aBT./8C.

4.17 On cooling the cubic perovskite SrZrOs (space group Pm3m) from high temperature, it

undergoes a phase transition to the tetragonal space group /4/mcm. At the phase transition,
the ¢ cell parameter doubles and « increases by 2. The strain e, is related to the difference in
a and ¢ parameters scaled back to those of the cubic cell. With appropriate normalization,
e = (2/V3) ((c —a)/ acub> where agy, 1s the cell parameter expected for an undistorted
material at that temperature, and is expected to be proportional to 52. The table below
contains unit-cell parameters at various temperatures from ref. [9] that were later
analyzed in ref. [10]. Plot the temperature evolution of the cell parameters. By assuming
a sensible functional form, predict a.,, for each temperature below 1360 K. Comment
on your graph. (b) Comment on a plot of ¢,>> versus 7. (c) From a suitable plot, show
that the data are consistent with the transition being close to tricritical in character and
determine the transition temperature 7.

T(K) a(A) ¢ (A) T (K) deup (A)
1160 4.1394 4.1514 1360 4.1536
1180 4.1405 4.1520 1380 4.1546
1200 4.1416 4.1524 1400 4.1555
1220 4.1428 4.1529 1420 4.1565
1240 4.1441 4.1532 1440 4.1575
1260 4.1455 4.1535 1460 4.1585
1280 4.1469 4.1539 1480 4.1594
1300 4.1485 4.1542 1500 4.1604
1320 4.1500 4.1542

1340 4.1517 4.1537

Further Reading

E.M. Levin, C.R. Robbins, H.F. McMurdie, “Phase Diagrams for Ceramists” (1964) American

Ceramic Society.
H. Okamoto, “Desk Handbook: Phase Diagrams for Binary Alloys” (2000) ASM International.
M.T. Dove, “Introduction to Lattice Dynamics” (1993) Cambridge University Press.

M.T. Dove, “Structure and Dynamics”, Oxford Master Series in Condensed Matter Physics (2003)

Oxford University Press.
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Chemical Bonding

Changes in crystal structure invariably lead to changes in physical and/or chemical proper-
ties. In some cases, these changes can be dramatic, as illustrated by the contrasting properties
of the allotropes of carbon (diamond, graphite, graphene, Cq, etc.); in other cases they are
subtle but nonetheless important. To understand the relationship between structure and
properties, one must first understand chemical bonding.

We begin this chapter with an overview of ionic bonding. From there we move on to the
properties of atomic orbitals (AOs) and their interactions to form covalent bonds through
the framework of molecular orbital theory. In Chapter 6, we then build upon these principles
to describe the formation of bands in extended solids. In this way, covalent and metallic
bonding can be understood through a common approach.

lonic Bonding

Although there are no compounds where the bonding can be described as purely ionic, the
ionic model is a useful approximation for many compounds. We begin our treatment of
bonding with a brief overview of the factors that determine the strength of ionic bonding in
crystalline solids.

Coulombic Potential Energy

The coulombic potential energy, Uc, between two ions of charge numbers z; and z; separated
by a distance d is:
(z1€) - (z2€)

Up =2 277 5.1
¢ dmeod 1)
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first_ nearest second nearest third nearest
neighbors neighbors neighbors
(attractive) (repulsive) (attractive)

Figure 5.1 The NaCl structure and the first, second, and third nearest neighbors to a Cl™ ion. The Cl™ ions
are gray and the Na" ions black.

where ¢ is the elementary charge and & is the electric constant.! To estimate the strength of
ionic bonding in a crystal, we treat the ions as point charges and use Equation (5.1) to capture
all electrostatic interactions in the crystal, both attractive and repulsive.

To illustrate, consider the electrostatic interactions in the NaCl structure shown in Figure
5.1. We begin with the CI™ ion in the center of the unit cell and consider the interaction
between this ion and all other ions in the crystal. The nearest neighbors are the six Na* ions
that lie at the center of the faces of the unit cell, at a distance d from the central C1™ ion. The
potential energy of this interaction is negative (an attraction) and amounts to six times
Equation (5.1) with z; and z, equal to —1 and +1. The second nearest neighbors are 12 CI~
ions that lie at the center of each edge of the cubic unit cell, at a distance of y2d. The potential
energy of this interaction is positive (a repulsion; z; = z, = —1) and is 12/42 times Equation
(5.1). The third nearest neighbors are eight Na* ions that lie at the corners of the unit cell, at
a distance of \3d. This interaction is attractive (z; = —1, z, = +1), and has a magnitude of 8/y3
times Equation (5.1). This process must be repeated for increasingly distant neighbors
leading to an infinite series, of which the first seven terms are as follows:

Ue = (5.2)

25 VA Vs Ve BT

The infinite series expressed in Equation (5.2) does not readily converge because successive
shells tend to alternate between those containing anions and those containing cations.
Convergence to a value near 1.7476 [times Equation (5.1) for the sole Na*Cl™ pair] is
obtained if the shells are chosen in such a way that the net charge of each shell is nearly
neutral [1]. This value, which is the same for all ionic compounds with the NaCl-type
structure, is called the Madelung constant, 4. The net coulombic potential energy per mole
of NaCl (zy, z» of opposite signs) is then:

(z1€) - (z2€) 12 8 6 24 24 12
HE W (6 2 4 = _ = _Z
dreogd

1 Uc is calculated from Coulomb’s law, which describes the electrostatic force between two charges, as the work
required to separate the positive and negative ions from their initial distance d to infinity. Note also that the electric
constant of ~8.8542x107'> C/(V m) is often referred to as the permittivity of free space.
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Table 5.1 Values of the Madelung constant A for selected structure types.

Structure type Coordination A Structure type Coordination A
Cesium chloride Cst¥l cpi8el 1.763 Fluorite Cal¥ p,l4 2.519
Sodium chloride Nal¢el 6ol 1.748 Rutile Til%1 0, 2.408
Wurtzite Zn#1 g4 1.641 Cadmium chloride Cd®1 1, 2.244
Zinc blende Zn#1 g4 1.638 Cadmium iodide Cdloel 1,B30] 2.192
Ue = 228N (5.3)
€= 47'580d ’

Similar derivations can be carried out for other structure types. The Madelung constants for
some structure types are given in Table 5.1, many others can be found in the literature or
calculated using the Ewald method [2]. We see that the Madelung constant increases as the
coordination number increases from four for zinc blende/wurtzite to six for sodium chloride
to eight for cesium chloride. It is smaller for layered structures with direct anion—anion
contacts (Cdl, or CdCl,) than for structures with the same stoichiometry where the cations
are distributed more uniformly (rutile TiO,). The Madelung constant also increases, almost
proportionally, with the number of ions per formula unit.

We can make several generalizations about the factors that optimize electrostatic inter-
actions. The electrostatic attraction holding the ions together increases as the ionic charges
increase (MgO will have a more negative Uc than LiF) and as the cation—anion distance
d decreases (LiF will have a more negative Uc than RbBr), though the latter effect is less
dramatic. As a rule, electrostatic interactions are highest in symmetric structures that allow
for efficient packing of ions and high coordination numbers.

Lattice Energy and the Born—-Mayer Equation

Of the two alternative ways to define lattice energy (U; ), we’ll use the energy of formation of
the ionic crystal at 7= 0 K:

aM’™ (g) +bX* (g) = MuXs(s) (54

This process releases energy of the system into the surroundings, hence U is a negative
number just like the coulombic potential energy Uc introduced in the preceding section.
The lattice energy is an equilibrium of attractive and repulsive interactions. To model it
appropriately, we must therefore consider not only the coulombic attraction Uc, but also the
repulsive potential energy U, (Figure 5.2) that arises when electron clouds on the otherwise
attracting neighboring ions approach each other too closely. That repulsion can be
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approximated by a variety of mathematical functions that rise rapidly as the distance
d between the two ions decreases. A common choice is the two-parameter exponential
function:”

U, = Be~9IP (5.5)

where B is a magnitude constant that includes N4, and p is an empirical constant typically
taken to be 3.45x107'" m (0.345 A). Combining the coulombic potential energy of the cation
and anion charges, Equation (5.3), with the repulsive potential energy arising from inter-
actions between electron clouds on neighboring ions, Equation (5.5), we obtain an expres-
sion for the lattice-formation energy Uy of the ionic compound of charge numbers z; and z,:

2N,
U= (Uc+ Up) = (%A + Bed/p> (5.6)

As shown in Figure 5.2, Equation (5.6) has a minimum at the equilibrium interatomic
distance” d, [3] that is calculated* as d Uy /dd = 0:

dUy, . ZIZZQZNAA Beido/p —0

b — 5.7
dd dneod) p ©.7)

From here, we can solve Equation (5.7) for B and substitute this expression back into
Equation (5.6), giving the Born—-Mayer equation:

2
Z1Zpe NA P
U =——A4|1—= 5.8

L 47t80d0 ( d0> ( )

A generic plot of the coulombic potential energy, the repulsive potential energy, and the
lattice-formation energy of an ionic structure as a function of interatomic distance is shown
in Figure 5.2. For typical interatomic distances, U, is about 10-20% of Uk.

It is also common to represent repulsive interactions with the expression, U, = B/d", where n has a value between 5 and 12
depending upon the electron configuration of the cation and anion. This approach leads to the Born-Landé equation.
This dj can be determined either from crystallographic studies or estimated from ionic radii (dy = rc + ra). lonic radii
are derived from observed interatomic distances in a large database of crystal structures. The most extensive and
widely used set of radii is that determined by Shannon. These radii are listed in two parallel sets, one called crystal
radii (CR) the other ionic radii (IR). Cations have CR that are 0.14 A larger than their IR, while anions have CR that
are smaller than IR by the same amount. The CR set is chosen to approximate ionic sizes determined from minima in
the electron density between a given cation and anion and is thought to more accurately represent the true sizes of
ions, the IR are chosen to have the same radii for the 0> and F~ ions as initially chosen by Linus Pauling. Both sets
give identical estimates of cation—anion distances.

Remember from calculus that the first derivative of a function is equal to zero at either a minimum or a maximum of
that function. In this case, dU; /dd = 0 identifies the minimum (most favorable) energy. The fact that it is a minimum
rather than a maximum can be shown by taking the second derivative.

w

IS
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interatomic distance, d

Figure 5.2 The coulombic (Uc) and repulsive (U,) potential-energy contributions to the lattice-formation
energy.

Experimental versus Calculated Lattice-Formation Energies

How does the lattice-formation energy calculated with the Born—-Mayer equation compare
with experiment? The lattice energy as defined in Equation (5.4) cannot be determined in
a single experiment. Instead, the lattice-formation enthalpy, Hy, is determined from several
measurements using a thermochemical cycle called a Born—Haber cycle. As the enthalpy
change AH in the Born—-Haber cycle is associated with the same reaction as Equation (5.4),
Hy ~ Uy, and we will treat the two as numerically equivalent.’

As an example, the Born-Haber cycle for KCl is shown in Figure 5.3. In the left branch,
energy is supplied to decompose the salt into its constituent elements, atomize molecular
chlorine, and evaporate and ionize potassium. In the right branch, energy is released by
chlorine atoms acquiring an electron and by the formation of solid KCl from the gaseous
ions. The enthalpy of the latter step is the lattice-formation energy we are seeking. For KClI,
the value of Hy is found to be —718 kJ/mol using this approach.

It is interesting to note that while we normally think of the electron transfer from metal to
nonmetal as a spontaneous process, comparison of the two energies on top of Figure 5.3
shows that for potassium and chlorine this process is endothermic. In fact, this energy is

5 For a process at constant pressure, where the gaseous ions behave ideally, the relationship between lattice-formation
enthalpy and energy is given by the equation, AHy = AU + AnRT, where An is the number of moles of gaseous ions
produced (e.g. An = 2 for NaCl, An = 3 for MgF,). At T = 0, the lattice-formation energy and enthalpy are equal,
while for finite temperatures the two values differ only slightly (R7" = 2.5 kJ/mol at 7= 300 K). If one considers the
vibrations of the atoms in the solid and in the gas phase more rigorously, the equations become more complicated.
For more details, the interested reader is directed to an article by H.D.B. Jenkins, J. Chem. Ed. 82 (2005), 950-952.
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K*(g) + Cl (g) + e~

A

Cl(g) + e~ — CI(g)
Heg = =349 kJ/mol
K(g) — K*(9) + e~
IE [K] = +419 kJ/mol

K*(g) + CI” (g)

K (g) +Cl (9)

2 Cly(g) — CI(g)
AH = +122 kJ/mol | K (@) + %2 Cl, ()

K(s) — K(g) 1
AH = +90 kJ/mol f ke +nen@

K*(g) + ClI(g) — KCI(s)
T H, = -718 kJ/mol

KCI(s) — K(s) + % Cl,(q)
~AH = 436 kJ/mol

KCi(s) v

Figure 5.3 The Born-Haber cycle for KClI constructed from enthalpies of sublimation for K, atomization
for Cl,, the ionization energy (/E) of K, and the electron-gain enthalpy (/) of Cl (note H., has the same
magnitude but opposite sign as electron affinity).

endothermic for any combination of elements. The energy released upon forming an
extended ionic solid is the driving force behind the spontaneous and often highly exothermic
reactions that occur between metals and nonmetals.

A comparison of experimental lattice-formation enthalpies (H7) and calculated lattice-
formation energies (UL ) for alkali-metal halides with NaCl-type structure is given in Figure
5.4. Given the simplicity of this model, the agreement is surprisingly good. Although the
lattice-formation energies are underestimated by 3-6%, the functional dependence is well
reproduced in the experimental data.

To obtain more accurate estimates of lattice-formation energy, we must include additional
factors, such as van der Waals forces, polarization of ions in low-symmetry environments,
and zero-point energy. Each of these effects is briefly discussed below.

Van der Waals forces collectively refer to weak attractive forces arising from induced
dipoles in the electron clouds of neighboring atoms and molecules. They are solely respon-
sible for holding atoms together when noble gases solidify, and they are the dominant force
when neutral molecules condense to form molecular solids. They tend to favor close packing,
which explains why the noble gases crystallize with a ccp structure at low temperatures.
London dispersion forces are the most common type of van der Waals forces.® They arise
from random fluctuations of the electron density around an otherwise spherically symmetric

© Other types of van der Waals forces include dipole-induced-dipole forces, and interactions between rotating polar
molecules.
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Figure 5.4 Experimental lattice-formation enthalpies Hy for alkali-metal halides with the NaCl-type
structure are indicated with symbols. The smooth curve shows the lattice-formation energy U as
calculated with the Born—Mayer equation for comparison.

atom. The dipolar electrostatic field that is temporarily created in one atom induces
a transient dipole of opposite polarity in a neighboring atom. The strength of the van der
Waals force increases with increasing atomic number, but in all cases is much weaker than an
ionic bond. It also drops off more rapidly with increasing distance, varying inversely with the
sixth power of the internuclear separation.

Polarization is a distortion of the electronic charge density of an ion in response to the
electric field created by the surrounding ions. The most important type of polarization in
ionic crystals is the polarization of large soft anions by adjacent cations that are smaller and
often more highly charged. Polarization effects, together with van der Waals forces, are often
invoked to help explain the stability of layered structures with direct anion—anion contacts
like CdCl, and CdlI, [4]. Polarization of the electron distribution of the halide ions reduces
the anion—anion repulsions across those ccp or hep hole planes that do not contain cations
(Section 1.4.2) to the point where van der Waals forces are sufficient to stabilize the structure.

The other term that makes a small contribution to the lattice-formation energy is the zero-
point energy of the crystal. The zero-point energy, a quantum-mechanical concept that comes
from the Heisenberg uncertainty principle, is the vibrational energy of the lattice at absolute
zero temperature.

How important are these additional contributions to the lattice-formation energy? As
a rough guide, van der Waals forces make the lattice-formation energy more negative, and
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the magnitude of this contribution ranges from a few tenths of a percent to roughly 5% of the
total. The zero-point energy is generally less than 1.5% of the total and makes the lattice-
formation energy less negative. Because these two corrections are relatively small and
opposite in sign, they tend to cancel each other. In systems where these corrections are
large, the validity of the ionic model comes into question. More sophisticated approaches are
favored when a high degree of accuracy is important.

Atomic Orbitals

The concept of a covalent bond is ubiquitous in chemistry. A variety of approaches spanning
a range of complexities can be used to model covalent bonding. Simple approximations such
as Lewis structures and valence-shell electron-pair repulsion (VSEPR) provide useful esti-
mates of molecular geometry and bonding in many cases. At the other end of the spectrum,
advanced computational methods like density-functional theory can be used to make
increasingly accurate predictions for crystalline solids. It is, however, not always easy to
extract chemical insight from such approaches. Semi-empirical methods, such as extended
Hiickel theory [5], occupy an intermediate ground and afford insight into the links between
local bonding interactions, crystal structures, and physical properties, a useful attribute that
merits their inclusion in this book. Models of covalent bonding are typically based on the
overlap of AOs. Therefore, we begin our treatment with a closer look at electrons and
orbitals.

We start with the simplest possible case, a one-electron atom, and treat its electron as
though it were a standing wave rather than a particle. The quantum-mechanical behavior of
the electron is described by the partial differential equation first proposed by Erwin
Schrédinger” in 1926:

w(r) = Ey(r) (59

m

HW)_[ 2ﬁ V2 +V(r)

where the function w(r) describes the electron as a wave, a wavefunction. The hamiltonian
operator, H, is a sum of two terms. The first term — (ﬁ2 / Zm) V? represents the kinetic energy
of an electron of mass m (the Laplacian V? is the second partial derivative of the wavefunc-
tion), and the second term V(r) represents the electron’s potential energy as a function of its
position vector r from the nucleus. The y(r) determines the energy E of the electron in
Equation (5.9). We will see later how also the size and shape of the electron cloud can be
calculated from y(r). Because each AO has a unique w(r), we will often refer to w(r) as the
orbital wavefunction, but, more precisely, it is the mathematical description of the standing
wave of an electron that occupies a given orbital; an electron wavefunction.

7 This is the non-relativistic, time-independent Schrodinger equation for a single particle moving in an electric field.
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That wavefunction is typically expressed in spherical polar coordinates as the product of
two functions:

Yime = Rue(r)Yem,(0,9) (5.10)

In these coordinates, the radial part of the wavefunction, R, describes the variation of the
electron wave as a function of the distance r from the nucleus (here r is a scalar rather than
a vector). The angular part of the wavefunction, Y, describes the shape of the wavefunction
in terms of # and ¢. Equations for R(r) and Y(#, ¢) can be found in many physical chemistry
textbooks. We won’t go into the detailed mathematics here, but we will qualitatively look at
how the size, shape, and energy of the orbital depends upon the quantum numbers n, £,
and my, that determine the wavefunction.

The principal quantum number, 7, labels the quantized energy and largely determines the
size of the orbital. The allowed values of n, which are independent of the other quantum
numbers, are positive integers: 1, 2, 3, ... The orbital angular-momentum quantum number
(sometimes called the azimuthal quantum number), #, labels the quantized orbital angular
momentum and dictates the shape of the orbital. The allowed values of ¢ are the integers
ranging from 0 to n — 1. The values of ¢ are given specific letter designations: £/ = 0
corresponds to an s orbital, £ = 1 to a p orbital, £ = 2 to a d orbital, and £ = 3 to an
forbital. Orbitals with the same value of n are said to belong to the same shell, and those with
the same values of n and £ are said to belong to the same subshell (2s, 3d, 4p, etc.).

The magnetic quantum number, 171, labels the quantized orientation of the angular momen-
tum and dictates the orientation of the orbital. The allowed values of m, are the integers
between — and £. This restriction limits the number of orbitals for each subshell to one s orbital
(m, = 0), three p orbitals (m, = —1, 0, +1), five d orbitals (m, = =2, —1, 0, +1, +2), and seven
forbitals (m, = -3, -2, —1,0, +1, +2, +3). It is customary to label the orbitals with subscripts
that denote the orientation of the orbital with respect to an arbitrary set of Cartesian axes. The
p orbitals are labeled p,, p,, and p., where the subscripts identify the axis along which the lobes
of the orbital point, and the d orbitals are labeled d.,, d.., d,., d,2-,2, and d.2. A fourth
quantum number, the spin quantum number, m,, labels the quantized values of spin and can
take only two values; +2 and —'2. The spin quantum number does not enter the wavefunction
directly, but through the Pauli exclusion principle® it limits the maximum occupancy of an AO
to two electrons.

The angular part Y of the wavefunction is a constant when ¢ = 0, and thus the s orbitals are
spherically symmetric. This makes them convenient examples to illustrate how the radial
part of the wavefunction changes with increasing n. The wavefunctions for the 1s, 2s, and
3s orbitals are plotted as a function of r on the left-hand side of Figure 5.5. All three
wavefunctions drop off exponentially upon moving away from the nucleus. The
1s wavefunction is positive ( > 0) for all values of r, but the sign of the 25 wavefunction

8 The Pauli exclusion principle states that no two electrons in an atom can exist in the same quantum state and
therefore cannot have identical quantum numbers.
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crosses over from positive to negative ( < 0) upon moving away from the nucleus. The point
(a surface in three dimensions) where y = 0 is called a node. When the node occurs because
the radial part of the wavefunction goes to zero, R(r) = 0, it is called a radial node. For a given
AO, the number of radial nodes is equal to n — ¢ — 1. For example, a 2s orbital has 1 radial
node, 5d orbital has 5 — 2 — 1 = 2 radial nodes.

The sign of wavefunction  is arbitrary and has no physical significance. In contrast,
the square of the wavefunction y?, which is called the probability density and is positive
everywhere, has a physical meaning. If we integrate the probability density y* over the
surface of a sphere of radius r, we get the radial distribution function, 4rtry*(r). This
function gives the probability of finding an electron inside an infinitesimally thin
hollow sphere at distance r from the nucleus. It is plotted for the 1s, 2s, and
3s orbitals on the right-hand side of Figure 5.5. We see that the most probable location
for the Is electron is not at the nucleus, where w(r) reaches a maximum, but on
a sphere 0.5292 A (the Bohr radius) away from the nucleus. Increasing the principal
quantum number 7 increases the number of local maxima in the radial distribution
function and the number of the radial nodes between them. For the ns orbitals plotted
in Figure 5.5 the number of radial nodes is equal to n — 1. The orbital also gets larger
as n increases. In multielectron atoms, the number of radial nodes impacts the attrac-
tion of the electron to the nucleus, and hence the energy of an orbital relative to other
orbitals in the same shell. This has an important impact on the periodic properties and
bonding tendencies of atoms. We will return to this point later.

Orbitals are often depicted by contours called boundary surfaces that enclose a specified
percentage of the electron density of that entire orbital (typically 90-95%, the rest is
outside). For s orbitals, the boundary surface is a sphere whose radius expands with
increasing n. The boundary surfaces of various AOs are shown in Figure 5.6. We see that
the p, d, and f orbitals have two, four, and six lobes, respectively. In each case, the
wavefunction changes sign on going from one lobe of the orbital to its neighboring
lobe.'” The lobes are separated by planes where the angular part of the wavefunction
goes to zero, Y(6, ) = 0. These “angular nodes” are referred to as nodal planes because of
their shape.'' For a given AO, the number of nodal planes is equal to £. For example, the
d orbital shown in Figure 5.6 has two nodal planes (shown with dashed lines).

Nodal planes play an important role in determining the structures of molecules and solids.
Consider the 2p, wavefunction in Figure 5.7. It takes a positive sign (i > 0) for positive x and
a negative sign (y < 0) for negative x, hence the yz plane is a nodal plane. In the boundary-
surface representation, the sign of the wavefunction is represented by shading, with dark
shading used for the lobe where y > 0 and light shading where w < 0.

19 Note that the boundary surfaces represent properties of 2, the sign of which is always positive, whereas the shading
refers to the sign of the underlying wavefunction .

""" For some of the d and f orbitals, the surface where the angular part of the wavefunction goes to zero is a cone rather than
a plane; the d,> orbital being one such example. We use the term nodal plane generically to apply to both planes and cones.
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The size and energy of an orbital depend on the strength of the attraction between the
orbital’s electron(s) and the nucleus. In one-electron atoms, (H, He", Li*>", and other so-
called hydrogenic atoms), the allowed energy levels are given by:

ZzhCRH
E,=-"— (5.11)

n

where Z is the charge of the nucleus, / is Planck’s constant, ¢ is the speed of light, and Ry is
the Rydberg constant. Note that the energy of the orbital only depends upon the nuclear
charge Z and the value of .
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Figure 5.8 An illustration of the penetration the 3s, 3p, and 3d orbitals into the region occupied by the
core electrons (1s, 2s, and 2p orbitals). The inset shows the region very close to the nucleus.

In a multielectron atom, the charge of the nucleus experienced by a given electron is
partially screened by the other electrons. The reduced positive charge felt by the electron is
called the effective nuclear charge, Z*. For electrons in a given orbital, Z* depends in part
upon the penetration of that orbital’s wavefunction into the region close to the nucleus,
a region dominated by the wavefunctions of core orbitals, as shown in Figure 5.8. Notice
how the radial probability function of the 3s orbital has a small peak close to the nucleus,
whereas the first peak for 3p is located further away, and the electron density of
the 3d orbitals is even lower near the nucleus. As a result, the effective nuclear charge
decreases upon moving from 3s to 3p to 3d orbitals, and the orbital energies follow the
sequence 3s < 3p < 3d. This effect is sufficiently large that by the time valence electrons start
populating the 3d orbitals, the 3s and 3p orbitals behave as core orbitals. The same relation-
ship holds for orbitals with n = 4 or 5. The effect is even more dramatic for the f orbitals.

Energies of Atomic Orbitals

To apply bonding principles in a semiquantitative manner, we need to develop a feel for the
properties of AOs. In this subsection and the one that follows, we will examine the periodic
trends in the energies and sizes of AOs.

Table 5.2 shows calculated energies (in electronvolts'?, eV) for the valence orbitals across
most of the periodic table. Not surprisingly, the general periodic trends in orbital energies are
similar to those seen for electronegativity, namely that the valence-orbital energies become
increasingly negative upon moving up and to the right. However, there are disruptions in the

12 An electronvolt is the amount of kinetic energy gained by a single electron accelerating from rest through an electric-
potential difference of one volt. Accounting for the elementary charge of an electron, 1 eV = 1.602176634x1071 J
exactly.
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Table 5.2 Valence-orbital energies (in eV) of the elements, obtained from relativistic Dirac—
Fock calculations [6].*

H He
1s | -13.5 —24.8
Li Be B (o3 N (o] F Ne
2s | -5.3 -8.4 -134 | -19.2 | -26.0 | -33.8 | -42.6 | -52.3
2p -84 | -11.0 | -13.7 | -16.6 | -19.7 | -23.0
Na Mg Al Si P S Cl Ar
3s | -4.9 -6.8 -10.7 | -14.7 | -19.2 | -24.0 | -29.1 | -34.7
3p -5.7 -7.5 -95 | -11.5 | -13.7 | -16.0
K Ca Sc Ti Zn Ga Ge As Se Br Kr
4s | -4.0 -5.3 -5.7 -6.0 -8.1 -11.7 | =154 | -19.2 | -23.3 | -27.6 | —-32.1
4p -5.6 -7.3 -8.9 | -10.6 | -124 | -14.3
3d -9.1 | -10.7 -20.6 | -31.5 | -43.4 | -56.3 | -70.3 | -85.3 | —-101
Rb Sr Y Zr Cd In Sn Sb Te | Xe
5s -4.0 -4.9 -5.4 -5.8 -7.6 -10.7 | -13.8 | -16.9 | -20.2 | -23.7 | -27.3
5p -5.3 -6.7 -8.1 -96 | -11.1 | -12.6
4d -6.3 -7.9 -19.5 | -27.4 | -355 | -44.0 | -53.0 | -62.3 | -72.2
Cs Ba La Hf Hg TI Pb Bi Po At Rn
6s | -3.5 -4.4 -4.9 -6.5 -89 | -121 | -1563 | -185 | -21.9 | -25.3 | -28.9
6p -5.2 -6.7 -8.1 -9.5 -11.0 | -12.5
5d -6.4 -6.5 -16.5 | -23.0 | -29.4 | -35.9 | -42.7 | -49.6 | -56.8

* The effects of spin—orbit splitting on the energies of the p and d orbitals have been averaged.

smooth periodicity that merit further comment. This is particularly true of the vertical trends
in the s-orbital energies of the p-block elements. Firstly, note that upon moving from
the second period (B-Ne) to the third period (Al-Ar), the s-orbital energy becomes less
negative by a significant amount, while upon moving from the third to the fourth period
(Ga-Kr), the s-orbital energy change is smaller, and, in some cases (Ga, Ge), the 4s orbital of
the fourth-period element has a lower energy than the 3s orbital of its third-period neighbor.
This anomaly can be attributed to the incomplete shielding of the 4s orbital when the
d subshell is filled for the first time. A similar discontinuity is seen upon moving from the
fifth period (In—Xe) to the sixth period (TI-Rn), where the unexpectedly deep (i.e. large and
negative) orbital energies of s orbitals of the sixth-period elements originate primarily from
relativistic effects.'?

Another important feature to glean from Table 5.2 is how significantly the angular-
momentum quantum number ¢ influences the orbital energies. The valence s orbitals are

13 When the charge of the nucleus is large enough that the velocity of an electron in its vicinity approaches the speed of
light, relativistic effects increase the electron’s mass. This effect can effectively be neglected for light elements, but it
becomes more significant as the charge of the nucleus increases, and is largest for electrons in s orbitals, because they
have a non-zero probability at the nucleus.
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always much deeper in energy than the p orbitals. This is particularly true for oxygen and
fluorine. We can also see a significant change in the energy of the (n — 1)d orbitals relative to
the ns orbitals upon moving from left to right across a period. At the beginning of the
transition-metal block, the energies of the (n — 1)d and ns orbitals are similar; by the end of
the series, the (n — 1)d orbital energy is considerably more negative than the ns orbital energy.
As we continue into the p block of the periodic table, the energy of (n — 1)d orbitals becomes
so negative that these orbitals effectively act as core orbitals.

Sizes of Atomic Orbitals

The wave nature of electrons makes it impossible to precisely define the size of an orbital. The
boundary surfaces shown in Figure 5.6 are one way to approximate the size of an orbital.
Another approach is to determine the radius at which the radial distribution function reaches
a maximum, .. Values of r., for valence orbitals across the periodic table are given in
Table 5.3. Many of the periodic trends seen for orbital energies also hold for orbital radii.
Upon moving up or right, the size of the valence orbitals decreases.

The relative sizes of the valence orbitals for a given atom also contain important informa-
tion. Notice in Table 5.3 that for each value of the orbital quantum number ¢, the orbitals
belonging to the lowest-energy subshell (1s, 2p, 3d, and 4f) are particularly compact. This has
some significant implications for bonding. For the second-period elements of the p block (B-
Ne), the 2p orbitals are comparable in size to the 2s orbitals, which is not the case for heavier
p-block elements where the p orbitals are substantially larger than the s orbital. As a result,
atoms from the second period form short o bonds with each other, which facilitates forma-
tion of 7 bonds (Section 5.3.4).

Notice that for a given atom the (n — 1)d orbitals are much smaller than the ns and np
orbitals, and as a result they interact to a lesser extent with the surrounding atoms. Their
small size is one reason why the (n — 1)d orbitals are often found to be partially filled in
transition-metal compounds. This leads to several useful properties explored later in the
book, including color (Chapter 7), cooperative magnetism (Chapter 9), and metal-insulator
transitions driven by changes in external conditions (Chapters 10 and 11). The small size of
the (n — 1)d orbitals, with respect to the ns and np orbitals of the same atom, is most
pronounced for 3d electrons because this is the first d shell to fill and thus it experiences
less shielding from the nucleus than electrons populating the 4d and 5d orbitals.

Although the lanthanoids and actinoids are not shown in Table 5.3, we may conclude that
the contracted nature of the 4/ and 5f orbitals is even more dramatic than for the d orbitals.
For example, the valence-orbital values of r,,, for cerium are 2.17 A for 6s, 1.12 A for 5d,
and 0.37 A for 4f. Consequently, the 4/ orbitals have minimal interactions with the orbitals of
surrounding atoms and behave more like core orbitals than valence orbitals. The lack of
interaction between the 4f orbitals and the neighboring atoms is responsible for the sharp
lines seen in optical absorption and emission spectra, which make the lanthanoid ions useful
as luminescence centers (Chapter 7). This also makes magnetic exchange interactions
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Table 5.3 Distances (in A) at which the radial distribution function reaches a maximum value
according to relativistic Dirac—Fock calculations [6].

H He
1s | 0.53 0.30

Li Be B C N o F Ne
2s 1.64 1.09 0.81 0.65 0.54 0.46 0.41 0.36
2p 0.84 0.64 0.52 0.44 0.38 0.34

Na Mg Al Si P S Cl Ar
3s 1.79 1.37 1.11 0.95 0.84 0.75 0.68 0.62
3p 1.42 1.15 0.98 0.85 0.76 0.69

K Ca Sc Ti Zn Ga Ge As Se Br Kr
4s | 2.29 1.83 1.71 1.61 1.18 1.04 0.95 0.87 0.81 0.76 0.72
4p 1.39 1.19 1.06 0.96 0.89 0.82
3d 0.60 0.53 0.30 0.29 0.27 0.25 0.24 0.23 0.22

Rb Sr Y Zr Cd In Sn Sb Te | Xe
5s | 2.45 2.01 1.85 1.74 1.30 1.24 1.09 1.03 0.97 0.92 0.87
5p 1.56 1.37 1.24 1.15 1.07 1.01
4d 0.96 0.85 0.52 0.51 0.47 0.45 0.43 0.41 0.40

Cs Ba La Hf Hg Tl Pb Bi Po At Rn
6s | 2.72 2.27 2.1 1.78 1.22 1.13 1.07 1.01 0.97 0.93 0.89
6p 1.59 1.40 1.28 1.20 1.13 1.07
5d 1.19 0.88 0.61 0.59 0.57 0.54 0.53 0.51 0.49

between lanthanoid ions weak, which explains why cooperative magnetic ordering of such
ions typically occurs far below room temperature if at all (Chapter 9).

Molecular-Orbital Theory

Having reviewed the properties of AOs, we now consider what happens when AOs interact to
form molecular orbitals. The goal of this treatment is to provide the basic qualitative knowledge
needed to interpret and construct simple molecular-orbital (MO) diagrams. The treatment is
largely non-mathematical and does not require prior knowledge of group theory. In Chapter 6,
we will build on this foundation to model the electronic structures of extended solids.

Homonuclear Diatomics: H,* and H,

To illustrate the general principles of covalent bonding, we begin by considering the simplest
possible molecule, H,". To do so we need to describe the behavior of an electron shared by two
nuclei. This is done by defining a wavefunction o that represents a molecular orbital (MO).
MOs are similar to the AOs we’ve already encountered, with the important distinction that they
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can extend over the entire molecule. One of the most common approaches to defining wyo 1s to
treat it as a linear combination of atomic orbitals (LCAO):

YUMo = C1¥ao(1) T C2¥a0(2) (5.12)

where wao(1)and wao2) are AO wavefunctions on atoms 1 and 2, respectively, while ¢; and ¢,
are numerical coefficients. In the Hy case, wao(1) is a 1s orbital on the first hydrogen atom
and wao(2) is a 1s orbital on the second atom. The MO wavefunction must meet three criteria;
it must be finite everywhere, single valued, and y* must have an integral. Since the probabil-
ity of finding an electron when integrated over all space must be unity, the coefficients ¢; and
¢, are chosen so that the MO wavefunction is normalized, which can be expressed mathem-
atically as:

T

|

The MO diagram for HJ is shown in Figure 5.9.'* Each orbital is represented by a horizontal
line and each electron by a vertical arrow. The AOs are shown on the sides of the diagram, and
the MOs are shown in the center of the diagram. The vertical axis is an energy scale. A basic
principle of MO theory is that the number of MOs in a molecule is equal to the number of AOs
that combine to form them. In Hj, there are two MOs: .. which results from constructive
interference of the two H s orbitals (their wavefunctions sum upon overlap); and y—, which
results from destructive interference of these AOs (their wavefunctions subtract upon overlap).
The y+ MO is stabilized with respect to the H 1s orbital energy because constructive interfer-
ence of the two AO wavefunctions increases the electron density between the two positively
charged nuclei, leading to an attraction between the two atoms. This orbital is called a bonding
molecular orbital. Populating this MO stabilizes the molecule with respect to the energy of two
isolated atoms. In the antibonding molecular orbital, y/_, the electron density between the nuclei
is lowered, and populating y_ destabilizes the molecule.

The AO interactions that make up each MO are represented by sketches where shading
gives the sign of the AO wavefunction after it is multiplied by the coefficient that determines
its contribution to the MO, and its relative size represents the magnitude of that coefficient.
When two otherwise identical H 1s AOs have opposite signs (visually represented with
opposite shading) in an MO, we say the two orbitals have the opposite phase. The exact

yy*drdodg = 1 (5.13)

e
S—38

14 The energies and orbital coefficients in this and following figures were calculated using extended Hiickel theory as
implemented in the Caesar 2.0 software suite.

15 In these sketches, the shading refers to the sign of the atomic orbital wavefunction at the periphery of the atom (i.e. beyond
the outermost radial node) where the interaction with orbitals from neighboring atoms is most significant. For an s orbital,
the sign is the same in all directions, while for p, d, and forbitals the sign alternates from lobe to lobe. The choice of that
sign is arbitrary, what matters is the relative sign as we move from orbital lobe to lobe and from atom to atom. This relative
sign includes the sign of any numerical coefficient that multiplies the orbital wavefunction.
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Figure 5.9 Calculated MO diagram for the H," molecule. The size of the circle used to represent each AO
is proportional to its coefficient. Shading indicates the sign the AO wavefunction acquires from its
coefficient in the MO wavefunction; w > 0 is white and y < 0 gray. Arrows represent electrons.

values of the orbital energies and coefficients depend upon the level of theory employed, but
the general features of the MO diagram will be the same regardless of the sophistication of
the theoretical treatment.

The rules for filling MOs with electrons are the same as for AOs. The MOs are filled in
order of increasing energy (Aufbau principle) and each MO can hold two electrons of
opposite spin (Pauli exclusion principle). When MOs are degenerate (i.e. they have the
same energy), the most stable configuration is the one that produces the largest number of
parallel electron spins (Hund’s first rule).

Analytical expressions for the energy and wavefunction for each MO of H," are as follows:

_Hut A W — W1 +w2)
N 1+ 812 ° 2(1 +S12) b
Hy — Hy, 1
E_ - —m—_ee—_— = - 5.14
[ —s, y 50 (1 —v) (5.14)

The wavefunctions and their energies are defined by three parameters: the coulomb integral, H;
the interaction integral, H1,; and the overlap integral, S,. The coulomb integral H; is simply the
energy of the AO in question, in this case the energy of a hydrogen s orbital (—13.5 eV from
Table 5.2). The interaction integral H, is a measure of the interaction energy that results from
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the overlap of AOs. It largely determines the magnitude of the energy splitting between the
bonding and antibonding orbitals. The amount of spatial overlap between orbitals is quantified
by the overlap integral S, whose magnitude depends on the interatomic distance as well as the
size and symmetry of the overlapping orbitals. Numerical values for these variables can be
computed. However, for our purposes, the general features of the MO diagram are more
important than the exact energies of the MOs. The bonding () and antibonding (y—) MO
wavefunctions are plotted along the internuclear axis in Figure 5.10.

If we add another electron to create a neutral H, molecule, the computational complexity
of the problem increases due to repulsive electron—electron interactions that are difficult to

Wy
w-=0.94(w—y,)

nodal plane

wavefunction

®

.= 0.59(w+y,)

wavefunction @

4 3 2 -

1 2 3 4

0
z (A)

Figure 5.10 Bonding-MO y.. (bottom) and antibonding-MO . (top) along the internuclear axis (z) for
an H," molecule. The AO wavefunctions y, and - are shown in gray, and the boundary surfaces of the
MOs are shown in the upper left corner.
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model. We'll return to this point later, but for now we will ignore electron—electron inter-
actions. We can use our simple MO diagram to make some predictions about bonding as
electrons are added to the molecule. H, has two electrons, and this leads to a doubly occupied
bonding orbital y, and an empty antibonding orbital y_ (electron configuration y,%y_°).
This electron count produces a single two-electron bond; the H-H bond order is hence 1.'°

Increasing the number of electrons in the bonding MO favors a high degree of overlap
between the two AOs. For spherically symmetric 1s orbitals, this is achieved by reducing the
H-H distance. The collapse of one atom on top of the other would give maximal orbital
overlap, but the coulombic repulsion between the hydrogen nuclei prevents this from
happening.'” The equilibrium bond distance represents the most favorable balance of
these two competing interactions.

If we move to an H; molecule, the electron count becomes three and the electron
configuration is y,*y_'. We have now partially filled the antibonding MO (y_). This
weakens the bonding (the bond order is now '2), leading to a reduction in the bond
dissociation energy and an increase in the equilibrium bond distance. Intuitively, we would
expect Hj and H; to have bonds of equal strength, but this is not quite correct. Because the
overlap integral S}, is always positive, the energy of the antibonding orbital y_ is destabilized
more than the bonding orbital . is stabilized; see Equation (5.14). This is a general property
of MOs that can have implications. In this case it means that the bond in Hj is somewhat
stronger than the bond in H; .

The Heteronuclear Diatomic Case: HHe

Let’s increase the complexity of the problem by considering the heteronuclear diatomic
molecule, HeH. The MO diagram for HeH is shown in Figure 5.11. We now must take into
account the different energies of the H 1s and He 1s orbitals. This impacts the bonding in
several ways. Firstly, the AO coefficients in each wavefunction, ¢; and ¢,, are no longer
equal. For the bonding MO, the He 1s orbital coefficient (0.89) is larger than the H 1s orbital
coefficient (0.24). The opposite relationship holds for the antibonding MO. In each case, the
AO closer in energy to the MO makes the larger contribution. This is schematically repre-
sented by the relative sizes of the AOs shown in Figure 5.11. The inequality in the coefficients
¢1 and ¢, reflects the fact that the electrons are not equally shared, the electron density is
shifted toward the more electronegative He.

The energy difference between overlapping orbitals not only affects the wavefunction, it also
impacts the MO energies. For the sake of comparison, the same bond distance (1.06 A) was
assumed for the hypothetical HHe molecule in Figure 5.11 as for H," in Figure 5.9, yet the
stabilization of the bonding MO in HHe with respect to the He 1s orbital (0.9 eV, see Figure

16 Bond order is calculated as Y4[(number of ¢~ in bonding MOs) — (number of ¢” in antibonding MOs)].
7 For multielectron atoms, repulsions between core electrons play the primary role in limiting the interatomic
distance.
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Figure 5.11 Calculated MO diagram for the HeH molecule, Shading represents the sign of the AO
wavefunctions when they make up the MOs, y > 0 (white) and y < 0 (gray)

5.11), is less than the corresponding stabilization of the bonding MO in H," (3.1 eV, see Figure
5.9). This illustrates a general feature of MO theory; the stabilization of the bonding MO and
destabilization of the antibonding MO depend upon both the spatial and energetic overlap of
parent AOs (on both S}, and H,)

Although the covalent stabilization of the bonding MO is smaller in the case of HHe, this
does not mean the energy gap between bonding and antibonding orbitals, A = E_ — E,, is
smaller. Extended Hiickel calculations give A values of 10.9 eV for H," and 17.5 eV for HHe.
The energy gap for HHe is larger because the separation between the two MOs contains an
ionic contribution. The ionic contribution, Ej, is the difference in orbital energies of the
H and He 1s orbitals, Ey = Fy — Ege. = —13.5 — (—24.8) = 11.3 eV, while the covalent

contribution accounts for the remaining 6.2 eV of the gap between MOs. In Section 7.5, we

will see that both covalent and ionic contributions must be considered to account for changes
in the band gaps of compound semiconductors

5.3.3 Orbital Overlap and Symmetry

For the spherically symmetric s orbitals, the overlap integral S depends only upon the radial
portion R(r) of the wavefunction and the interatomic distance. With orbitals that are not
spherically symmetric (p, d, and f orbitals), we must also consider the angular geometry. For
example, consider the overlap integral between a p orbital (see Figure 5.7) and an s orbital on
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Figure 5.12 Overlap integral S as a function of the angle 0 between two orbitals.

a neighboring atom shown in Figure 5.12. In this case, S depends not only upon the
interatomic distance, but also upon the angle 8 between the two orbitals. When 6 = 90, the
overlap integral is zero for any value of the interatomic distance because the s orbital
overlaps equally with both lobes of the p orbital. The overlap with the lobe of the same
sign yields constructive interference, while the overlap with the opposite-sign lobe is equal in
magnitude, but destructive. This gives an overlap integral S = 0, and the two orbitals are said
to be orthogonal. Combinations of other orbitals can give rise to different angular depend-
encies, such as the overlap between a d orbital (see Figure 5.6) and an s orbital, shown in
Figure 5.12. In general, when S = 0 we will say that orbital mixing is symmetry forbidden.
Such geometries can often be identified visually.

Combination of ¢ and = Bonding: 0,

The final diatomic molecule that we will consider is O,. We now have five AOs per atom to
consider: 1s, 2s, 2p., 2p,,, 2p.. The 1s orbitals need not be treated explicitly because the large
effective nuclear charge they experience confines their wavefunctions to the region close to
the nucleus, and their overlap with orbitals on the neighboring atom is negligible. As a rule,
we will omit core orbitals when constructing MO diagrams.

The approximate MO diagram for O, is shown in Figure 5.13. The diagram is approximate
because mixing between MOs formed from the 2s and the 2p orbitals is neglected. We will
return to this point shortly. The vertical separation between the 2s and 2p orbitals in the MO
diagram corresponds to the differences in orbital energy previously discussed (see Table 5.2).
The two lowest-energy MOs, o(2s) and o*(2s), are the respective bonding and antibonding



176

Chemical Bonding

energy

>
kel
3
RS

—_—

=
RS
kel
3
<

Figure 5.13 MO diagram for the O, molecule (along z), with s—p mixing neglected.

orbitals that arise from overlap of the O 2s orbitals. They are analogous to the MOs already
discussed for H,. The asterisk as a superscript indicates an antibonding orbital.

The overlap of O 2p orbitals depends on the orientation of each orbital with respect to the
internuclear axis, which is defined to run parallel to the z direction by convention. The O 2p.
orbitals point directly at each other and overlap in a “head-on” fashion forming bonding and
antibonding orbitals, o(2p) and 6*(2p). Here, the bonding MO o(2p) is obtained by subtracting
wavefunctions of the 2p. orbitals on neighboring atoms, a(2p) = ¢,w(2p.)1 — cop(2p.),, where the
coefficients ¢; = ¢, are chosen to normalize the wavefunction. The minus reverses the signs of the
two lobes of the 2p. wavefunction on atom 2 in such a way that the two AOs overlap
constructively between the nuclei. Whenever we encounter orbitals with nodal planes (p, d, and
f orbitals), multiplying by a negative coefficient inverts the sign of the AO wavefunction at all
points in space, which reverses the shading of each lobe. Whether the orbital has a nodal plane(s)
or not, upon multiplying by a negative coefficient we can say that it has the opposite phase of an
otherwise identical orbital whose coefficient is positive. The antibonding MO ¢*(2p) is formed by
adding the two wavefunctions, which leads to destructive interference between the nuclei.

The O 2p, and O 2p, orbitals are aligned perpendicular to the internuclear axis and overlap
in a “side-on” fashion. This overlap produces bonding and antibonding orbitals 7(2p) and
7*(2p)."® Because the overlap of 2p, orbitals is the same as the overlap of 2p,, orbitals, these
orbitals are doubly degenerate (i.e. two MOs with the same energy). The splitting between the o

'8 The number of nodal planes associated with the bonding MO increases from zero for a ¢ MO, to one for a7 MO, to
two for a § MO (an MO formed by side-on overlap of d orbitals).
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Figure 5.14 MOs of the same symmetry mix: o(2p) with a(2s) and o*(2p) with 6*(2s).

(2p) and o*(2p) orbitals is larger than the splitting between the 7(2p) and 7*(2p) because the
head-on overlap of 2p. orbitals is larger than the side-on overlap of 2p. (2p,) orbitals; H,,(c) >
H(r) and Sy2(0) > Sia(m).

How does s—p mixing come into the picture? The 7(2p) and 7*(2p) MOs do not mix with the
MOs formed by the 2s orbitals because for every constructive overlap there is an equivalent
destructive overlap that cancels it out. However, the a(2s) and o(2p) MOs have the same
symmetry and can mix, as can the 6*(2s) and o*(2p) MOs, both interactions are illustrated in
Figure 5.14. The s—p mixing stabilizes the lower-energy MOs with predominant 2s character
and destabilizes the higher-energy MOs with predominant 2p character. Whenever MOs of
the same symmetry mix, the lower-energy MO is stabilized and the higher-energy MO is
destabilized.

A more accurate MO diagram for O,, where s—p mixing has been included, is shown in
Figure 5.15. The effect of mixing is most evident near the middle of the MO diagram where
the energy of the 6%(2s) MO (now labeled 16%) is lowered and that of the ¢(2p) MO (now
labeled 20) is raised. The amount of s—p mixing depends on a number of factors including the
energy separation of the 2s and 2p orbitals and the overlap integral. The s—p mixing is
sufficiently strong that the 26 orbital rises above the 7-bonding MOs of the diatomic
molecules from Li, to N», while for O, and F, it remains just below the 7 MOs.

Symmetry-Adapted Linear Combinations (SALCs)

In the MO diagrams of diatomic molecules, the AOs are placed on the left- and right-
hand sides of the diagram while the molecular orbitals are in the middle. This approach
does not directly translate to larger polyatomic molecules. However, we can retain this
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Figure 5.15 MO diagram for O, without (left) and with (right) s—p mixing.

approach if we divide the molecule into two fragments and build the MO diagram from
them. The most common way to do this is to consider the outer atoms, or ligands, as
one fragment and the central atom as the other fragment. The task of combining the
AOs of the ligands into a new set of orbitals, the ligand-group orbitals, is based on
symmetry. The resulting ligand-group orbitals are called symmetry-adapted linear com-
binations or SALCs for short.

To rigorously construct SALCs requires knowledge of group theory, which is beyond the
scope of our treatment. However, once derived, the interactions between ligand-group
SALCs and the central atom can be visually estimated from simple symmetry considerations,
as demonstrated in Figure 5.16. The ligand SALCs in Figure 5.16 are shown for two, four,
and six hydrogens around a central atom possessing s and p valence orbitals, in linear,
tetrahedral, and octahedral geometry. In the linear geometry, one SALC can have a net
overlap with the s orbital of the central atom, and the other SALC with the p_ orbital. The p,
and p, orbitals on the central atom are orthogonal to both SALCs and therefore cannot mix
to form bonding/antibonding MOs.

Moving from linear to tetrahedral geometry, the number of SALCs follows the
number of ligands. The number of orbitals on the central atom and the number of
SALCs are now equal, and all orbitals on the central atom have a ligand SALC with
the appropriate symmetry for bonding. For an octahedral molecule, there are six
SALCs, which a symmetry analysis divides into three groups. The uppermost SALC
in Figure 5.16 does not have a nodal plane and has the correct symmetry to interact
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Figure 5.16 Symmetries of s and p orbitals on a central atom (left) and ligand SALCs for linear, tetrahedral,
and octahedral arrangements of hydrogen ligands.

with the s orbital of the central atom. The next three SALCs possess a single nodal
plane, and each of them has the correct symmetry to interact with one of the p orbitals
on the central atom. There are no orbitals on the central atom to interact with the
lowest two SALCs. However, as we will see later, when the central atom is a transition
metal, these SALCs have the appropriate symmetry to interact with two of the five
d orbitals on the central atom.

The SALCs shown in Figure 5.16 are relevant for more than just molecules containing
H as a ligand. The symmetries and mixing shown in this figure are representative of o-
bonding interactions between the central atom and ligands in any linear, tetrahedral, or
octahedral molecule containing a main-group central atom. For example, the SALCs shown
in Figure 5.16 are sufficient to describe the bonding in SF4. Armed with knowledge of how
the SALCs mix with orbitals on the central atom, we will now look at the MO diagrams of
some simple polyatomic molecules.

Simple Polyatomic Molecules: BeH, and CH,

The MO diagram for the triatomic molecule BeH, is shown in Figure 5.17. As discussed in
the preceding section, the Be 25 and 2p. orbitals interact with the two ligand SALCs to form
two bonding MOs and two antibonding MOs. Their subscripts “g” and “u” are shorthand
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for gerade and ungerade, respectively,'” and refer to symmetry; for molecules with an
inversion center, the subscript “g” (e.g. o,) is given to MOs that are invariant on inversion,
while the subscript “u” is used for MOs whose wavefunction changes sign on inversion. The
Be 2p, and 2p, orbitals do not have the correct symmetry to overlap with either of the
H 1s SALCs (S = 0). These orbitals remain strictly nonbonding with 100% Be character.
Thus, we see that MOs are not always delocalized, sometimes they are localized on a single
atom.

The MOs closest to the crossover from filled to empty are typically the most important for
reactivity and properties. They are called the highest-energy occupied molecular orbital
(HOMO), and the lowest-energy unoccupied molecular orbital (LUMO), respectively. The
lowest-energy optical excitations correspond to electronic transitions from the HOMO to the
LUMO. Chemical oxidation corresponds to removal of an electron from the HOMO, while
reduction puts an electron into the originally lowest unoccupied molecular orbital, LUMO.
Many chemical reactions involve interactions between the HOMO on one molecule and the
LUMO on another. Collectively, the HOMO and LUMO are referred to as frontier orbitals.
For BeH,, the HOMO is the bonding o, MO formed from the interaction between the Be 2p.
orbital and the appropriate ligand SALC, while the LUMO is the doubly degenerate set of
nonbonding Be 2p orbitals.
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Figure 5.17 MO diagram for BeH,.

19 They originate in group theory. Gerade and ungerade are German for even and odd.
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The MO diagram for CH, is shown in Figure 5.18. The C 2s orbital can overlap with the
SALC where all four hydrogen AOs have the same phase to form bonding (a;) and
antibonding (a;*) MOs. Each of the C 2p orbitals interacts with one of the SALCs that
possess a single nodal plane. These interactions give rise to a triply degenerate set of bonding
(1) and antibonding (1,*) MOs.?” As with BeH,, there is no mixing of the 2s and 2p orbitals
on the central carbon atom. The well-known valence-bond concept of sp* hybridization in
tetrahedral molecules is useful in that it tells us that the s and all three p orbitals on the central
atom are involved in forming ¢ bonds. However, the picture of quadruply degenerate
bonding orbitals that is sometimes inferred from this description is not consistent with the
orbital energies obtained from calculations or seen in photoelectron spectra.

Conjugated 7 Bonding: CgHg

A common feature of many organic functional materials is the presence of a conjugated
s-bonding system. The archetypical example is benzene, C¢Hg, a highly symmetric planar
molecule possessing 30 valence electrons. The in-plane C 2s, 2p,, 2p,, and H ls orbitals

20 We use Mulliken symmetry labels in MO diagrams: Triply degenerate orbitals are labelled 7, doubly degenerate
orbitals e, and singly degenerate orbitals either ¢ or b, depending upon the symmetry versus the principal rotation
axis. A subscript of 1 means the MO is symmetric with respect to a twofold rotation axis perpendicular to the
principal axis, while a 2 means it is asymmetric with respect to this axis. A prime symbol signifies an MO that is
symmetric with respect to a mirror plane perpendicular to the principal rotation axis, a double prime indicates the
MO is asymmetric with respect to such a mirror plane.
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Figure 5.19 The overlap of C 2p. orbitals to form MOs with 7 character in C¢Hg as viewed nearly
perpendicular to the plane of the molecule (the H atoms do not contribute to the 7 bonding and are
omitted). The nodal planes for each MO are marked with dashed lines.

overlap to form 12 occupied o-bonding MOs and 12 unoccupied s-antibonding MOs. The 24
electrons that occupy bonding MOs are responsible for the network of C—C and C-H o
bonds that hold the molecule together. The remaining C 2p. orbitals are oriented perpen-
dicular to the plane of the molecule. These orbitals do not contribute to the ¢ bonding but
they do interact with each other in a 7 fashion to form an additional six MOs. Just as was the
case with the O, molecule, the energies of the MOs with 7 character fall between the ¢ and *
MOs. These 7 orbitals, which play a major role in determining the chemical and physical
properties of benzene, merit a closer look.

The MO diagram for the 7 interactions in benzene is shown in Figure 5.19. As required, six
MOs result from the interaction between six C 2p. orbitals. Not surprisingly, the lowest-
energy MO is the one where all six 2p. orbitals have the same phase so that each carbon has
bonding 7 interactions with its neighbors. It should also be intuitive that the highest-energy
MO is the one where every 2p. orbital wavefunction is out of phase with its nearest neighbors,
leading to antibonding interactions between neighboring carbon atoms. At first glance, the
relative energies of the remaining four MOs may be less obvious. However, we can correlate
the energies of each MO with the number of nodal planes it possesses. The lowest-energy MO
does not have a nodal plane oriented perpendicular to the plane of the molecule.”’ Next come
two degenerate MOs, each with one nodal plane, as indicated by the dotted lines in Figure
5.19. The next set of MOs possesses two nodal planes, and the highest-energy MO has three

2l In this discussion, we ignore the nodal plane that coincides with the plane of the molecule, as all six MOs have this
nodal plane in common.
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nodal planes. The correspondence between the number of nodal planes and the energy should
not be surprising. The presence of a nodal plane between two atoms signals destructive
interference between AO wavefunctions and is characteristic of an antibonding interaction.

A key feature of the MO diagram for benzene is the delocalized nature of the 7 bonding.
Even in large conjugated molecules, the frontier orbitals span the entire molecule (neglecting
the H atoms) as they do in benzene. Consequently, removing (adding) electrons through
oxidation (reduction) introduces charge carriers that can move from one end of the molecule
to the other. As we will see in later chapters, this means that conjugated organic molecules
can exhibit properties where movement (conductivity) of electrons and/or long-range coup-
ling of electron spins (cooperative magnetism) occur.

Transition-Metal Complexes: [CrClg]*>~ and [CoCl,]*"

Many of the functional materials that we will discuss later in the book contain transition
metals. Their optical, electrical, and magnetic properties are often dictated by the energy
levels and occupation of the five d orbitals, whose orientations are shown in Figure 5.20.
Here we focus on the two most common coordination geometries for transition-metal
complexes and compounds, the octahedron and the tetrahedron.

Let’s begin by considering the octahedral anion [CrCl¢]*”. The orbital energies of the
chromium 3d (—13.5 ¢V) and 4s (—6.6 e¢V) orbitals are much better matched to the Cl
3p orbitals (—13.7 eV) than they are to CI 3s orbitals (—29.1 eV). If we neglect the Cl
3s orbitals, there are 18 ligand-group orbitals to consider (six Cl atoms X three 3p orbitals
per CI). Using group theory, these ligand-based orbitals can be divided into seven SALCs:
one singly degenerate SALC with a;, symmetry, one doubly degenerate SALC with e,
symmetry, and five triply degenerate SALCs with 7y, 2, t2y, t1y, and #;, symmetry (Figure
5.21). The ayg, t1y, and e, ligand SALCs are analogous to the SALCs already shown for the
octahedral SHg molecule in Figure 5.16. They can form o-bonding/antibonding MOs with Cr
orbitals of appropriate symmetry; the a;, SALC with Cr 4s, the ¢, SALC with Cr 4p, and the
e SALC with Cr 3d,2_,2 and 3d.2 orbitals.

The final three Cr valence orbitals, 3d,,, 3d,., and 3d,., have the correct symmetry to form
bonding interactions with the f,, Cl SALC. This interaction produces 7-bonding and 7-
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Figure 5.20 The orientations of the d orbitals with respect to a Cartesian coordinate system.
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Figure 5.21 Representative Cl 3p SALCs and corresponding orbitals on the central Cr atom in [CrClg]>~
grouped by symmetry. For clarity only the atoms and orbitals in the xy plane are shown.

antibonding MOs. The remaining Cl SALCs are nonbonding ligand-based MOs.>* Because
the chlorine ligands are more electronegative than the metal, the bonding MOs have more
ligand character and the antibonding MOs have more metal character.

The MO diagram for [CrClg]*~ is shown in Figure 5.22. Its complexity may be a bit
intimidating at first glance. Fortunately, the chemical and physical properties are dictated
largely by the frontier orbitals. The d° configuration of chromium(III) means that the half-
filled #,, (7*) orbitals are the HOMO and the empty e, (6*) orbitals are the LUMO. When the
d orbitals are partially filled, we need therefore only concern ourselves with the #,, (7*) and e,
(o*) sets of MOs. When the d orbitals are empty, as is the case when the transition metal has
a d° configuration, the nonbonding ligand-group 114 set becomes the HOMO.

The splitting of the d orbitals into two groups results from the fact that two of them, the Cr
3d,2_,2 and 3d.2 orbitals, point directly at the ligands, hence their antibonding (¢*) inter-
action with the e, Cl SALC has a greater overlap than the 7* interaction between the
remaining three Cr orbitals, 3d,,, 3d,., 3d,., and the t,, Cl SALC. Because the ¢* overlap
involving the e, orbitals is more destabilizing than the 7* overlap involving the #,, orbitals,
there is a splitting of the antibonding MOs with 3d-orbital parentage into two sets. The
magnitude of the energy separation between the two is referred to as ligand-field splitting, A.
Its value depends on the identity of both the ligands and the transition metal. In many cases,
the value of A is such that electrons can be excited between d orbitals by visible light, and, as
a result, transition-metal compounds are often colored. We will consider colors and bonding
of these materials in more detail in Chapter 7.

The electron counting used to obtain the occupancy of these important frontier orbitals is
generally straightforward for the transition-metal compounds encountered in solid state
chemistry. Most of the ligands we will encounter (chloride, fluoride, oxide, nitride, sulfide,

22 The situation is complicated somewhat by the fact that there are two different sets of triply degenerate SALCs with
t1, symmetry, both of which are allowed by symmetry to interact with the Cr 4p orbitals. However, the #;, SALC
that is shown in the same column as the Cr 4p orbital in Figure 5.21 contributes more prominently because it can
form both ¢ and 7 interactions with each Cr 4p orbital. The #,, and #;, SALCs are strictly nonbonding.
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Figure 5.22 MO diagram for the octahedral anion [CrClg]*~ (CI 3s orbitals neglected). The MOs with 1, o
t1u, and tp, symmetry in the middle of the MO diagram are nonbonding Cl 3p SALCs.

etc.) are closed-shell ions in the ionic limit. Therefore, the ligand-based SALCs will be
completely filled. Any remaining electrons go into the ,, (7*) and e, (¢*) MOs that have
predominantly metal d character. Their number is simply the number of the valence electrons
of the transition metal minus its oxidation state.

The MO diagram for the tetrahedral transition-metal anion CoCl,*” is shown in Figure
5.23. As the number of ligands is reduced from six to four, the number of ligand-group
orbital SALCs is also reduced, from 18 to 12. Using group theory, the ligand-based orbitals
can be grouped into five SALCs; one singly degenerate SALC with a; symmetry, one doubly
degenerate SALC with e symmetry, and three triply degenerate SALCs (one with #;, and two
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Figure 5.23 MO diagram for tetrahedral [CoCly]*~ (Cl 3s orbitals neglected).

with #, symmetry). The Co 3d orbitals split into a triply degenerate #, set (dy,, dx., d,.) and
a doubly degenerate e set (d\2—,2, d.2). The doubly degenerate antibonding e MO lies at lower
energy than the triply degenerate antibonding ¢, MO, which is opposite to what we found for
an octahedron Furthermore, unlike a transition metal in octahedral geometry, neither the 7,
set (dy,, dy., d,.) nor the e set (d,2_,2, d.2) of orbitals (Figure 5.20) is pointing directly at the
ligands. Hence, for a given metal-ligand combination, the ligand-field splitting A is always
smaller for a tetrahedron than it is for an octahedron.”

High- and Low-Spin Configurations

Up to this point, we have neglected the effects of electron—electron interactions. However, to
properly understand the electronic structures and bonding of transition-metal compounds,
these effects cannot be ignored. Being negatively charged, electrons repel each other. Due to
their close proximity, the repulsive interaction is largest when the two electrons occupy the
same orbital. The energy penalty for placing two electrons with antiparallel spins in the same
orbital is called the spin-pairing energy, P

In compounds containing first-row transition-metal ions, the ligand-field splitting energy A is
comparable to the spin-pairing energy P. For many combinations of electron count and

2 For example, when Co?" ions are doped into MgO, their environment is octahedral and Ao = 1.19 ¢V. When Co>*
ions are doped into ZnO, their environment is tetrahedral and A = 0.47 eV. These values fall surprisingly close to
Ater = (4/9)Aocq predicted from simple crystal-field theory discussed in Chapter 7.
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Figure 5.24 Low-spin (left) and high-spin (right) configurations of Co®* in an octahedral environment. Top:
Conventional representation without electron—electron interactions included. Bottom: Representation with
the pairing energy P shown explicitly.

coordination geometry, the electron configuration depends on which energy is larger, A or P.
Consider, for example, two possible electron configurations for a d° Co>* ion in an octahedral
environment (Figure 5.24). These are normally represented with the energy diagrams shown on
the top of Figure 5.24. An alternative representation is shown on the bottom of the figure. There,
we explicitly see that when P > A (right-hand side) a high-spin (HS) configuration is the most
stable configuration, whereas when P < A (left-hand side) a low-spin (LS) configuration is
obtained.

The magnetic, optical, and electrical properties of transition-metal compounds depend
upon the spin state (HS or LS) of the transition-metal ion. For a d° ion in an octahedral
ligand field, the change is particularly dramatic because the HS ion is paramagnetic while the
LS ion is diamagnetic. The strength and length of the metal-ligand bond also depend upon
the spin state, because populating the ¢* e, orbitals weakens the bonding more than
populating the 7* t,, orbitals. Hence, LS Co’" is smaller (0.685 A; six-coordinate CR
value) than a HS Co* ion (0.75 A) [3].

The question of whether the HS or LS state will be more stable depends on the transition-
metal ion, the ligands, and the coordination geometry. Some general guidelines are as follows:

o The 4d and 5d orbitals are larger than the 3d orbitals (Table 5.3). As a result, they
experience greater overlap with the ligand orbitals, leading to a larger A. At the same
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time, the increased size of the 4d and 5d orbitals decreases electron—electron repulsions,
leading to a smaller P. Consequently, second- and third-row transition-metal ions invari-
ably adopt LS configurations.

o Because Ay, 1s small (roughly 4/9 of A,.), the HS configuration is strongly favored for
tetrahedral coordination.

« The value of A also depends on the ligand. The ligands that are most common in solid state
chemistry, O°~, S*~, F~, and CI~, give relatively small A, thereby favoring the HS config-
uration (weak-field ligands). Ligands with very short bonds to the central atom and empty
7* MOs, like CN ™ and CO, tend to produce large A and favor the LS configuration (strong-
field ligands).

 Increasing the metal oxidation state or moving from left to right across the transition-
metal series brings the energy of the metal d orbitals energy closer to the energy of the
ligand orbitals. This increases the covalent mixing, increases A, and favors the LS
configuration.

5.3.10 Jahn-Teller Distortions

There are certain combinations of cation electron configurations and ligand geometries that
are electronically unstable with respect to a distortion which lowers the symmetry of the
molecule (the site symmetry in an extended solid). Jahn-Teller distortions are the most
familiar class of electronically driven distortions. The Jahn—Teller theorem states that an
incompletely filled set of otherwise degenerate MOs will undergo a structural distortion that
removes the degeneracy and lowers the energy of these orbitals.

While there are many electron configurations that meet the conditions of the Jahn—Teller
theorem, the most important examples occur for octahedral coordination of either a d°
(e.g. Cu®™) or a HS d* (e.g. Mn*") ion. These two cases undergo Jahn—Teller distortions
because the doubly degenerate e, set is partially filled. The orbital degeneracy can be
removed either by lengthening the M—O bonds in the z direction and compressing the
bonds in the xy plane or vice versa. The z elongation of the octahedron stabilizes the d.2
orbital (it becomes less antibonding) and destabilizes the d,2_,2 orbital (it becomes more
antibonding) as shown on the right-hand side of Figure 5.25. The xy elongation, shown on
the left-hand side of Figure 5.25, does the opposite.

To a first approximation, both types of distortion lower the energy by an equivalent
amount, yet the distortion that elongates the octahedron along the z axis occurs almost
exclusively. What is the reason for this strong preference? Burdett [7] has shown that the
z-elongated octahedron is favored because its partially or fully occupied 3d.2 orbital is
additionally stabilized over 3d,2_,2 by symmetry-allowed mixing with the empty 4s orbital.
We will see in later chapters how Jahn-Teller distortions play a key role in the crystal
chemistry and physical properties of important classes of materials, such as cuprate super-
conductors (Chapter 12) and magnetoresistive oxides (Chapter 11).
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Figure 5.25 Two possible distortions of an octahedron that remove the degeneracy of unequally occupied
eg orbitals for a HS d*ion: elongation of the bonds along z (right), and elongation of the bonds in the xy
plane (left). In both instances, the remaining bonds contract to maintain the same degree of metal-ligand
bonding.

Second-order Jahn-Teller (SOJT) distortions are a related class of electronically driven
distortions. SOJT distortions alter the symmetry of the molecule (or crystal) so that two or
more MOs that were orthogonal prior to the distortion can interact. The interaction lowers
the energy of one or more filled MOs and raises the energy of one or more empty MOs. The
driving force for a SOJT distortion is inversely proportional to the energy difference between
the two states that are interacting. Consequently, these states are often the HOMO and the
LUMO. Both the conventional Jahn-Teller distortion (sometimes called a first-order Jahn—
Teller distortion) and the second-order Jahn-Teller distortion stabilize the molecule by
lowering its symmetry, but for a SOJT the molecule need not possess degenerate, partially
occupied MOs as the HOMO.

As an example of the second-order Jahn-Teller distortion, consider the NHz molecule. We
know that the atoms in NH; form a trigonal pyramid and not a triangle. Within the VSEPR
framework, the stereochemical influence of the electron lone pair is invoked to explain this,
but we can use MO theory to reach the same conclusion. The MOs for NHj; in both
configurations are shown in Figure 5.26. In planar NH3, the HOMO is a strictly nonbonding
N 2p. orbital (labeled 1a,"). The distortion to nonplanar NHj; enables interaction (mixing)
between the N 2p. orbital and the N 2s—H ¢* MO (labeled 2a;’) that is symmetry forbidden
in the planar geometry. This mixing converts the HOMO from a nonbonding MO to
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Figure 5.26 MO diagrams for planar (left) and nonplanar (right) NH;. The SOJT is driven by the interaction
between the N 2p. nonbonding and N 2s—H ¢* MOs that is symmetry forbidden in the planar geometry but
allowed in the pyramidal geometry. The notation used to assign MO labels is explained in Footnote 20 in this
chapter.

a weakly bonding MO, thereby stabilizing the molecule.”* We can recognize the HOMO as
the lone pair predicted for NH3 in VSEPR theory. In solid state chemistry, SOJT distortions
are often associated either with formation of a stereochemically active electron lone pair or
with ¢ ions in octahedral coordination. We will see in Chapter 8 that SOJT distortions play an
important role in the crystal chemistry of dielectric and nonlinear optical materials.

Bond Valences

The bond-valence concept is based on the idea that an atom has a certain bonding power,
a valence, distributed over the bonds it forms. This concept takes a particularly simple form
in organic chemistry, where each two-electron bond carries a valence of one. It is a powerful
predictive concept to know a priori that in stable organic molecules carbon forms four two-
electron bonds with its neighbors, oxygen forms two bonds, hydrogen forms one bond, etc.

24 SOJT distortions lower the energy of some MOs while raising the energies of others, including some filled MOs,
which can make it difficult to decide whether a particular distortion should lower the overall energy of the molecule.
In most cases, the geometry that achieves the lowest energy for the HOMO also has the lowest total energy.
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We saw in Section 1.3.1 that one can also assign bond valences in inorganic solids, but,
unlike in most organic compounds, they often take non-integer values. For example, the
bond-valence balance (Figure 1.14) gives a valence of % for an Na—Cl bond in NaCl, and
a valence of % for a Ti—O bond in TiO,. Recall that these expectation values are calculated by
dividing the absolute value of the oxidation state of each atom by the atom’s coordination
number. In this section, we expand upon this simple concept by relating valences to experi-
mentally observable quantities, such as bond lengths.

We begin with the valence-sum rule—the valence v; of an atom (here meaning the absolute
value of its oxidation state) is equal to the sum of bond valences v; around it,

Vi = ZV{I‘ (515)
J

where j is the number of bonds formed by atom i, that atom’s coordination number. For
example, the octahedrally coordinated Ti in TiO, has vy = 6 X vri_o = 6 X % =4, oxygen has
V0:3XVTi,O:3X2/3:2.

To relate these values to experimental data, we need to find a quantitative relationship
between bond valence and bond length. While there is more than one function that can be
used to approximate this relationship, the most widely used expression is:

B Rg. — dj
vy = exp| ——p— (5.16)

where v;;and dj; are the valence and length, respectively, of the bond between atoms i and j, Rg.
is the length of a bond with a valence of one (a single, two-electron bond), and B is
a “universal” constant usually taken to be 0.37 A. The values of Rg are determined empiric-
ally from the crystal structures of known compounds. Each cation—anion pair has its own Rg
value (see Appendix D for bonds to oxygen).

Owing to the exponential relationship between bond valence and bond length, the bond
valence increases faster upon bond contraction than it decreases upon bond expansion. For
example, if we start with a bond whose distance dj; = Rg and valence v; = 1.0 and shorten it by
~0.256 A, the valence is doubled (see Figure 5.27). If we lengthen the bond by the same
distance, the valence is halved, but this is a smaller change on an absolute scale.
A consequence of this asymmetry is the distortion theorem—for any ion, lengthening some
of its bonds and shortening others, while keeping the bond-valence sum the same, will always
increase the average bond length. Consequently, the coordination polyhedron about a cation
will have the smallest volume when all anions are equidistant.”’

25 Animportant consequence of the distortion theorem is that a too-small cation placed in a symmetric environment of
anions will move off center to increase the lengths of some bonds and decrease the lengths of others, thus creating
a local dipole moment (Chapter 8).
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Figure 5.27 The variation in the valence of a bond as a function of bond length.

The bond-valence method combines the valence-sum rule in Equation (5.15) with the bond-
length bond-valence relation of Equation (5.16). It works forwards or backwards; either to
evaluate the bond-valence sum at an atom from experimental bond lengths or to predict bond
lengths.

An important application of the former approach is to assess the validity of experimentally
determined crystal structures. To check a structure, the valence of each bond is calculated
from its bond distance using Equation (5.16), and the valence sum is then evaluated for each
crystallographically distinct/inequivalent ion with Equation (5.15). If the bond-valence sum
v; is close to the oxidation state expected for each ion, we can say that the bonding is similar
to that seen in the structures that were used to determine the Rf} values, which implies

a chemically reasonable structure.

Evaluation of the bond-valence sum can also be used to assess atom oxidation states in
compounds. As an example, consider the crystal structure of ilmenite (Figure 5.28) which is an
ordered variant of corundum containing alternating layers of iron- and titanium-centered octa-
hedra sharing faces. Using the notation introduced in Section 1.3, we express the coordinations as
Fel®ITil%l0,2], There are electrostatic repulsions between cations in this structure, which cause
the iron and titanium to shift away from each other, resulting in distorted coordination environ-
ments for both, as shown in Figure 5.28. The assignment of oxidation states is potentially
ambiguous, either Fe** Ti*"O; or Fe**Ti**05. Let’s see if we can use bond-valence sums to
determine the correct values. We begin by assuming Fe>*Ti**O5 and convert the bond distances
Fe-0 (2.078 A, 2.201 A) and Ti-O (1.874 A, 2.089 A) in Figure 5.28 into bond valences:
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Figure 5.28 The crystal structure of ilmenite, FeTiOs.

vrio(1) = exp <ROT._0 ; dTi_O) = exp (71 8150;71'874 =0.853
vriio(2) = exp (R%—O ; dTi“)) = exp(l 8150_3 72 089) 0.477
Vre—0(1) = exp (R(F)e_o ; dre—0 (1 732 372 201) =0.283
Vre_0(2) = exp (R%)NB&) = exp (%) =0.395 (5.17)

Summing up the valences about each ion gives vr; = (3 X 0.853) + (3 X 0.477) = 3.99 and vg, =
(3 x0.283) + (3 X 0.395) = 2.03, confirming our guess about the Ti and Fe valences. We can
also calculate the bond-valence sum for oxygen; vo = 0.853 + 0.477 + 0.283 + 0.395 = 2.008
that is reassuringly close to the ideal value. Note that if we had initially guessed Fe**Ti**Os,
the R0 values used in our calculations would have been slightly different (1.759 A for Fe*™—O
and 1 791 A for Ti**-0), yielding bond-valence sums v; = 3.84 and vg. = 2.17, somewhat
farther from the integer values but still leading to the same conclusion.

We can also work in the opposite direction, using the bond-valence method to predict bond
lengths. Knowing the crystal-chemical formula of the structure in question, we use the valence-
sum rule, Equation (5.15), to convert the oxidation state of an atom into the expected, ideal
values of the bond valences. After rearranging Equation (5.16), we use these ideal valences to
predict the lengths of bonds in much the same way that ionic radii are used:

dij:Rg-—Bll’lV!’/‘ (518)
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Figure 5.29 The cubic
perovskite structure of
SrTiO; showing the
octahedral coordination

of Ti (left) and the
cuboctahedral coordination
of Sr (right).
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Let’s consider the cubic perovskite SrTiOj3 as an illustration of how bond valences can be
used to predict distances. The coordination numbers are Sri!>*°ITil®?l0,*? a5 illustrated by
the bond graph shown in Figure 5.29. We expect that each of the Ti—O bonds will have
a valence of ¥ =5 and each of the Sr—O bonds a valence of %2 = %. Given Rg parameters of
1.815 A and 2.118 A for the Ti**~O and Sr’*~O bonds, the expected bond distances are
calculated to be 1.965 A and 2.781 A, respectively. As discussed in Section 1.5.3, the
undistorted cubic perovskite structure will only be stable if the Sr—O and Ti-O lengths are
appropriately matched. Our distances can be used to calculate the tolerance factor (see
Figure 1.50): t = da_o/(dm_oV2) = 2.781/(1.965%y2) = 1.001. Recalling from Chapter 1 that
for the cubic perovskite structure to be stable the tolerance factor should be close to 1, we see
that the undistorted structure does satisfy the bonding preferences of both Sr** and Ti*".

If we replace Sr>* with the smaller Ca?* and repeat the above calculation, we get a smaller
tolerance factor, ¢ = 0.966, suggesting an octahedral-tilting distortion. At room temperature,
SrTiOj5 is a cubic perovskite and CaTiO; a distorted perovskite (exhibiting a”a b" tilting,
Section 1.5.3), in agreement with the bond-valence predictions.

Comparisons of distances obtained from bond valences with those obtained by
summing ionic radii show that there is a good agreement between the two approaches.
Table 5.4 illustrates this for selected symmetric coordination polyhedra. The agreement
should not come as a surprise, as both methods depend on parameters derived from
similar sets of structures. Both capture the same trends as the cation coordination
number and oxidation-state change. However, the bond-valence approach has advan-
tages. For a given cation—anion pair, only one bond-valence parameter Rg. is needed,
whereas with ionic radii a different value is associated with each coordination number
(both for the cation and the anion). An even more important advantage of the bond-
valence approach is the ability to handle distorted environments as easily as symmetric
environments. One limitation of bond-valence parameters is that they are not generally
tabulated for specific spin states (i.e. HS or LS ions of 3d metals), which do affect bond
lengths (Section 5.3.9).
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Table 5.4 Metal-oxygen bond distances dgy in a polyhedron of coordination
number CN, computed from bond-valence parameters R and compared with
distances djr obtained from ionic radii [3]. The four-coordinate radius of oxygen
has been arbitrarily used for calculating diy for all entries.

R’ (A) CN Vij dgy (A) dir (A)
Ca**-0 1.967 6 A 2.37 2.38
8 Va 2.48 2.50
10 % 2.56 2.61
Mg*-0 1.693 4 Vs 1.95 1.95
6 A 2.10 2.10
8 Va 221 2.25
Zn*"-0 1.704 4 A 1.96 1.98
6 Vs 2.11 2.12
AP*-0O 1.620 4 % 1.73 1.77
6 Vs 1.88 1.915
Fe**-O 1.734 4 Vs 1.99 2.01
6 A 2.14 2.16
Fe**-0 1.759 4 Y% 1.87 1.87
6 Va 2.02 2.025

Problems

5.1

5.2

53

Consider the infinite series for the Madelung constant of the NaCl-type structure. Its
convergence depends on how the successive terms are chosen. As written in Equation
(5.2), each successive shell contains ions of the same type (either cations or anions). (a)
Calculate the sum of this series for two shells, three shells, etc., up to the full seven shells
listed in Equation (5.2). For each successive shell, determine the total number of cations
and anions surrounding the central anion. (b) What can you say about the convergence
of this series after seven terms? (c) Which of these successive sums is closest to the
Madelung constant value of +1.7476? For which sum is the total charge of the cluster
closest to zero? (d) What can be done to achieve a more rapid convergence of this series?
Taking into account both attractive and repulsive interactions, derive an equation
analogous to Equation (5.2) for the CsCl structure (Figure 1.40). Include the first four
terms in the Madelung series. Hint: You may find this easier to do in terms of the cell
edge a, and then convert to the interatomic distance d that is normally used in Madelung
formulas.

CaO adopts the NaCl-type structure with = 4.80 A. (a) Use the Born—Mayer equation
to calculate the lattice-formation energy for CaO. (b) How well does this estimate agree
with the value of —3414 kJ/mol determined from the Born-Haber cycle? (c¢) Calculate
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the size of the repulsive term as a percentage of the attractive term. (d) Given the fact
that SrO has the same structure, would you expect the lattice-formation energy of SrO
to be larger or smaller than CaO?

MgO adopts the NaCl-type structure with « = 4.22 A. (a) Use the Born-Mayer equation to
calculate the lattice-formation energy for MgO. (b) Given this estimate of the lattice energy,
construct a Born—Haber cycle and estimate the second electron gain enthalpy of oxygen,
07 (g) + e~ — O* (g). Sublimation enthalpy of Mg = +147 kJ/mol, bond dissociation energy
of dioxygen = 498 kJ/mol, first ionization energy of Mg = 738 kJ/mol, second ionization
energy of Mg = 1451 kJ/mol, first electron gain enthalpy of oxygen = —141 kJ/mol, enthalpy
of formation of MgO = —602 kJ/mol.

Why are there no examples of fluorides with the Cdl, or CdCl, structures (Figure 1.28)?
With the exception of helium, all noble gases solidify at low temperature. The lack of
ionic or covalent bonding means that atoms are held together by dispersion forces alone.
Given the melting points of the noble gases; Ne =24 K, Ar =84 K, Kr =116 K, Xe =
161 K, what can you say about the strength of the London dispersion forces as the
principal quantum number of the outermost shell increases? What is the explanation for
this trend?

Classify each of the following statements about nodes in orbital wavefunctions as true or
false: (a) s orbitals have no nodes. (b) The orbital wavefunction always changes sign at
anode. (c) The number of nodal planes is determined by the principal quantum number.
What are the values of the principal and orbital angular-momentum quantum numbers
for each of the following orbitals? How many radial nodes and nodal planes does each
orbital possess? (a) 4s orbital, (b) 5d orbital, (c) 4f orbital, (d) 2p orbital.

Use the MO diagram of oxygen to determine the oxygen—oxygen bond order in the
peroxide ion, O3~ Will the O-O distance in peroxide be longer or shorter than in O?
Construct an MO diagram for trigonal-planar BH; by analogy with the MOs for
trigonal-planar NHj3 in Figure 5.26. Use this diagram to determine the degeneracy
and orbital character of the HOMO and the LUMO.

Consider these six-coordinate ionic radii (IR values from ref. [3]; see also Footnote 3 in
this chapter) for divalent, first-row transition-metal ions: (Ti**) = 0.86 A, r(V>*) = 0.79
A, H(Cr*)=0.80 A, r(Mn**) = 0.83 A, r(Fe*") = 0.78 A, r(Co**) =0.745 A, r(Ni**) = 0.69
A. For a fixed oxidation state, the ionic radius normally decreases on moving left to right
across the periodic table due to the increasing effective nuclear charge. Why then does the
radius increase on moving from V>* to Cr** to Mn**?

For which d-electron counts are there distinct HS and LS states of an octahedrally
coordinated transition-metal ion?

In each of the following pairs, one species contains a transition metal in the HS state and
the other in the LS state. Indicate the complex that is most likely to contain the LS ion.
(a) Fel'Cl; and Rul®!Cl;, (b) [Co®(NH;)]*" and [CoCl,]".

NiO adopts the cubic NaCl-type structure while PtO adopts the cooperite structure
shown below. (a) What factor do you think is responsible for the differing crystal-
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chemistry preferences of these two compounds? Hint: Consider the splitting and occu-
pation of the d orbitals for each compound. (b) Which structure type do you think PdO
will adopt? Would it be possible to tell from a magnetic measurement?

Ni
NiO (rock salt) PtO (cooperite)

5.15 Construct an MO diagram for a linear H,O molecule by analogy with BeH, in Figure
5.17. (a) Determine the degeneracy and orbital character of the HOMO and the LUMO.
(b) Identify the orbitals on oxygen that participate in bonding to hydrogen. (c) Now
distort the molecule by bending the H-O-H bond and consider how this impacts the
MO diagram. How does the orbital character of the HOMO(s) change? (d) Which
oxygen orbitals now participate in bonding? (e) Is this distortion an example of a first-
or second-order Jahn-Teller distortion?

5.16 MgF, adopts the rutile structure (Figure 1.45) with a =4.62 A and ¢ = 3.04 A. The bond-
valence parameter Rl({,[yF = 1.581 A. (a) Use the bond-valence method to predict the
length of the Mg—F bonds. (b) Use the Born—Mayer equation to estimate the lattice-
formation energy for MgF,. (c) Comment on the difference between this value and the
value of —2978 kJ/mol obtained from a Born-Haber cycle. Is the agreement between
calculated and experimental values similar to that observed for the alkali-metal halides
discussed in Section 5.1.3? (d) Would you expect the lattice-formation energy of rutile
(Ti0O,) to be lower (more stable) than MgF,?

5.17 The structure of ZrV,0; can be derived from the structure of NaCl by replacing Na*
with Zr** and CI~ with V,0,*™ pyrovanadate groups. The coordination environment of
zirconium is octahedral while the local coordination at vanadium is tetrahedral. One of
the seven oxygen atoms, O(1), does not bond to Zr, while the other six equivalent
oxygens, O(2), bond to both Zr and V. (a) Construct a bond graph (Section 1.3.1) for
ZrV,0;. (b) What are the idealized valences for the V-O(1), V-O(2), and Zr-O(2)
bonds? (c) Given bond-valence parameters Ry, ,=1.928 A and R}, = 1.803 A calculate
the expected V-O(1), V-0O(2), and Zr-O(2) bond distances.

5.18 In LaOF, which has a structure closely related to fluorite, each lanthanum is surrounded
by four oxide and four fluoride ions. Although X-ray-diffraction studies cannot easily
distinguish oxygen from fluorine, two bond distances are seen in the crystal structure:
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2.42 A to one anion and 2.60 A to the other anion. (a) Write the crystal-chemical formula
(Section 1.3) for LaOF. (b) Given the eight-coordinate La>* radius of 1.30 A and the four-
coordinate radii for O°~ and F~ of 1.24 A and 1.17 A, respectively, assign the two
observed distances to La—O and La-F bonds. (c) Determine the ideal valences of the
La—F bonds and the La—O bonds. (d) Use the bond valences from part (c¢) and the bond-
valence parameters R?, =2.02 A and RY, ,=2.17 A to estimate the length of La-F and
La—-O bonds in this structure. Does your assignment of the two bonds based on bond
valences agree with the assignment based on ionic radii in part (b)?

5.19 The bond-valence parameters for Ca-F and Mg-F bonds are R, .= 1.842 A and
ROMg7F= 1.581 A. Calculate the closest Ca—F, Mg-F, and F-F distances in MgF, and
CaF, assuming (a) a fluorite-type structure, (b) a rutile-type structure. (¢c) The four-
coordinate radius of F~ is 1.31 A and the three-coordinate radius is 1.30 A (both IR
values from ref. [3]). A simple-minded analysis based on these radii suggests that F—F
contacts shorter than 2.62 A will be unfavorable in fluorite and shorter than 2.60 A
unfavorable in rutile. How do the F-F distances calculated from the cation—anion
distances in parts (a) and (b) and simple geometric considerations compare with these
limiting distances? (d) The bond-valence parameter for Be-F is RS, = 1.28 A. Based on
this value, do you think BeF, would be stable in the rutile structure?

5.20 MgSiO; is of interest to geologists because it is abundant in the Earth’s mantle.
Silicon is normally tetrahedrally coordinated by oxygen, but, at the high pressures
found in the mantle, silicon becomes octahedrally coordinated and a perovskite
structure is formed. (a) Given bond-valence parameters R&g_o =1.693 A and Rgi70=
1.624 A, calculate the expected Mg—O and Si-O distances for a cubic perovskite. (b) Use
the distances calculated in part (a) to estimate the tolerance factor 7 (Section 1.5.3), and
state whether you would expect MgSiO; to form as a cubic or a distorted perovskite. (c)
Experiments identify MgSiOs as a distorted perovskite. The Si—O distances are 1.78 A
(x2),1.79 A (x2), and 1.80 A (x2). How do those compare to your estimate of the Si-O
distance in part (a)? (d) The Mg—O distances are 2.00 A, 2.06 A (x2), 2.29 A (x2),2.41 A
(x2), 2.85 A, 2.96 A, and 3.11 A (x2). Calculate the bond-valence sum for Mg>" as
a qualitative estimate of whether this is a reasonable coordination environment for
Mg2+.
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Electronic Band Structure

In Chapter 5 we saw how molecular orbital (MO) diagrams can be used to describe the
electronic structures of molecules. In this chapter we turn our attention to extended solids,
whose electronic structures are represented by band-structure diagrams. The optical, elec-
trical, and magnetic properties of a material are directly linked to its band structure. The
chemical reactivity and catalytic properties of a material depend upon the energy levels and
symmetry of electronic states near the Fermi level; even dielectric and mechanical properties
can be traced to chemical bonding interactions that are intimately linked to the electronic
structure. It is therefore essential to develop a working knowledge of the electronic band
structures of solids before we can begin to understand the behavior of many functional
materials.

In Chapter 5, we learned how MOs can be derived from the overlap of atomic orbitals
(AOs) using the linear combination of atomic orbitals (LCAQO) approach. In this chapter,
we will see how the electronic structures of extended crystalline solids can be built up in the
same way. This approach follows directly from MO theory, which makes it particularly
intuitive for chemists. It can be applied to solids with electrons that are localized or delocal-
ized. This is an important advantage because many interesting phenomena arise in materials
with intermediate degrees of electron delocalization.

To make the visualization and mathematics easier, we begin by considering the electronic
structures of 1D systems. The concepts developed in 1D are then extended to describe
electronic structures of 2D and 3D crystals.

The Band Structure of a Hydrogen-Atom Chain

To introduce the concepts associated the electronic structure of an extended solid, we begin
with the simplest structure we can imagine; an infinite 1D chain of hydrogen atoms. The
following sections develop the band structure of this model system.
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Figure 6.1 MO diagrams for H, and several cyclic Hy molecules (N = 6, 10, 14, 50, «). For economy of
space, only the electrons in the highest-energy occupied MOs are shown for Hsy and occupied MOs are
shaded for H... Shading of the MO images indicates the sign individual H 1s wavefunctions acquire in the
LCAO formalism; y > 0 is white and v < 0 gray.

The Electronic Structures of Cyclic Hy Molecules

Before considering an infinite chain, let’s look at the MO diagrams of cyclic all-hydrogen
molecules. Because each atom has an identical environment, such molecules are the most
appropriate finite-sized approximants to an infinite chain. The MO diagrams for H, and cyclic
Hy molecules of 6, 10, 14, and 50 atoms are shown in Figure 6.1 together with a molecule
extrapolated to H., so that its MOs become continuous. These MO diagrams possess several
common features that can be understood from the concepts covered in Chapter 5:

o The number of MOs in the molecule is equal to the number of constituent AOs. For
hydrogen, we have one AO per atom: the 1s orbital.

« The bonding interactions between nearest-neighbor atoms range from the completely
bonding lowest-energy MO to the completely antibonding highest-energy MO.

« As the energies of the MOs increase, the number of nodes increases (see discussion of 2p 7
MOs of C¢Hg in Section 5.3.7).

« As the size of the molecule increases, the MOs become more closely spaced in energy, with
the highest density occurring near the most bonding and most antibonding orbitals.



202

Electronic Band Structure

Translational Symmetry and the Bloch Function

How can we go from molecules with relatively small numbers of atoms to crystals where the
number of atoms becomes practically infinite? In a manner similar to the way molecular chemists
use rotational symmetry to derive the symmetry-adapted linear combinations (SALCs) inan MO
diagram (Section 5.3.5), we will use the translational symmetry (Section 1.1.1) of a crystal to
derive the orbitals that make up the band structure of an extended solid.

To illustrate this, consider a ring of hydrogen atoms H y, where N is very large but still finite. If
N is sufficiently large, we can neglect the curvature of the ring to approximate the translational
symmetry of an infinite linear chain, a periodic 1D “crystal” with a unit cell of length a equal to
the interatomic H-H distance. Just as was the case for the atoms and molecules discussed in
Chapter 5, we will treat each electron in the crystal as a wave, modeled by a wavefunction w(r)
(Section 5.2). The wavefunctions in crystals are conceptually no different from those in atoms or
molecules, so, likewise, the energy, momentum, and probability density of an electron in
a crystal can be calculated from its wavefunction. Our y/(r) is a product of two functions:

w(r) = e"u(r) (6.1)

of distance r from an arbitrary origin.' The u(r) function follows the periodicity of the chain, u(r) =
u(r + na) where n is an integer that labels the hydrogen atoms, and ¢ = cos(kr) + i sin(kr). With
the parameter & (Section 6.1.3) having units of inverse length, the product kr is dimensionless (the
arguments of the cos and sin functions are in radians). The wavefunction w(r) of Equation (6.1) is
called the Bloch function and describes crystal orbitals, the infinite-crystal analogs to MOs.

The u(r) in Equation (6.1) is referred to as a basis set. Throughout most of this book, we use
tight-binding methods where AO wavefunctions are the basis set.” This is the solid state analogue
of MO theory since, in both approaches, each electron wavefunction y/(r) is a linear combination
of atomic orbitals (LCAO). For our linear chain of hydrogen atoms, the basis set is the sum of
N hydrogen 1s wavefunctions (y,), each centered at one of the H nuclei along the chain. For
each value of k, we combine the H 1s orbitals in a different way to get a unique crystal orbital that
can hold two electrons of opposite spin without violating the Pauli exclusion principle (Section
5.2). The manner in which this is done will become clear in Section 6.1.4 where we examine the
crystal-orbital wavefunctions of the infinite H-atom chain more closely. In Section 6.2, we will
see that when the unit cell contains more than one atom, we can use MOs as the basis set.

The tight-binding model provides a great deal of chemical understanding because the basis
set explicitly retains the identities of the atoms that make up the crystal, but the functions
used as the basis set need not be AOs or centered on individual atoms.” In fact, most modern

! We can also express the distance from the origin r = xa, where x is a fractional coordinate, and the interatomic
distance « is the length of the 1D unit cell.

2 Computational implementations of tight-binding theory typically use mathematical functions that approximate AO
wavefunctions, such as Gaussian-type and Slater-type orbitals.

3 The free-electron model takes the rather drastic approach of assuming the periodic electric-field potential created by
the atomic nuclei is uniform throughout the crystal, in which case u(r)=1. This approximation, while
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approaches to calculating the electronic structures of crystals rely upon basis sets other than
AOs.* The details of these methods are beyond the scope of this book, but interested readers
are encouraged to consult Dronskowski’s Computational Chemistry of Solid State Materials,
listed in Further Reading.

The Quantum Number &

Reducing the electronic structure of an entire crystal down to the contents of a single unit cell
greatly simplifies analysis of its electronic structure. This entire simplification is achieved by
introducing the parameter k in the Bloch function, Equation (6.1). Although k can take any
value, we need only concern ourselves with k values within a finite range. To show this, we
return to our Hy ring. If we move a distance Na along the length of the ring, we are back
to where we started, and the wavefunction must repeat. Mathematically, this equates to
the introduction of a boundary condition that constrains the electronic wavefunction
to have the same value at the end of the chain that it has at the beginning:

w(r) = w(r + Na) (6.2)

If we apply this boundary condition to the Bloch function, Equation (6.1), recalling that
u(r) = u(r + na), we obtain:

e¥u(r) = "Ny (r) = ey (1) = [cos(kNa) + i sin(kNa)]e* u(r) (6.3)

This equality only holds if the term in square brackets is unity, which only happens when kNa
equals an integer number # of the “sinusoid” periods 2m:

kNa = n(2m) (6.4)

Thus, we see that for a finite ring H y, the allowed values of k are quantized. In analogy to MO
theory, a finite ring containing N hydrogen atoms will have one crystal orbital for every atom
in the ring (see Figure 6.1), each with a different value of k.” If we let n adopt positive and
negative integer values ranging from %1 to +N/2,° we obtain the following set of values for k:
n(2m) 2n 4n 6n (N/2)2n

=+—, +— — ... .
Na Na’ = Na’ = Na’ Na ©.5)

computationally simple, is of limited utility (and even more limited accuracy) because it effectively removes chemical
bonding from consideration. We will use the free-electron model as an entry point to study the conductivity of simple
metals in Chapter 10.

4 Most AOs possess radial nodes in the core region, and the rapid oscillations of the wavefunction near these nodes
makes calculations with an atomic orbital basis set numerically expensive. Most calculations do not include the core
electrons and use simpler functions to approximate the wavefunctions of valence electrons in the core region.

5 In a finite crystal, the number of k values will be equal to the number of unit cells in the crystal.

® For convenience, we will assume that N is an even number so that N/2 is an integer.
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Figure 6.2 The 1D real- and reciprocal-space lattice. In the latter, the interval that is marked corresponds
to the first Brillouin zone.

As the number of atoms in the chain N goes to infinity, the difference between successive
values of k becomes infinitesimally small, and k& becomes continuous. Interestingly, we see
that the last term in Equation (6.5), which contains the smallest (—n/a) and largest (+n/a)
value of k, does not depend upon the number of atoms in the chain. This is important because
it means that even though k becomes continuous as the chain length goes to infinity, we only
need to consider the values of k that fall in the finite range —n/a < k < +n/a (of width 2n/a).

To further demonstrate the link between translational symmetry and k, we borrow
a concept from X-ray crystallography and transform the real-space lattice into the
reciprocal-space lattice shown in Figure 6.2. We relate the reciprocal-space lattice parameter
a* (with units of inverse length, just like k) to the real-space lattice parameter a through the
relationship a* = 2n/a.” The range of k values needed to generate all possible crystal orbitals
without duplication, —n/a < k < +n/a, can be expressed in reciprocal-space coordinates as
—a*/2 < k < +a*/2. This interval, which is the unit cell in 1D reciprocal space, defines the first
Brillouin zone. Just as knowing the unit cell and its contents in real space defines the crystal
structure of a material, knowing the energies and wavefunctions of the crystal orbitals
throughout the first Brillouin zone defines its electronic structure.

Visualizing Crystal Orbitals

Let’s consider the analogy between MOs and crystal orbitals constructed using the tight-
binding approach (Section 6.1.2) more closely. Recall from Equation (5.12) that the MO
wavefunctions for the H, molecule are of the form

Mo = C1¥ao() T C2¥ao(2) (6.6)

where AO wavefunctions wao1) and wao(2) on atoms 1 and 2 are multiplied by coefficients
¢; and ¢,. For a molecule of N constituent AOs, each MO wavefunction can be written:

w(r) = ﬁ;cj'//AO ) where wao(; are individual AO wavefunctions, and the ¢; coefficients

quantify the contribution of each AO to the MO wavefunction:

7 The relation used in X-ray crystallography would be a* = 1/a (less frequently a* = A/a where 1 is the wavelength of the
incident X-ray radiation). Given the sinusoidal character of the ¢*" term of the Bloch function, it is necessary to set
a* = 2m/a so the electron density |y(r)| retains the translational symmetry of the real-space lattice.
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Using the tight-binding model for our very large Hy ring, we express the crystal-orbital
wavefunctions as:

N
p(r) = N33 "y o0, (r — na) (6.7)
n=1

where waom is a 1s AO wavefunction (y,) on the nth atom, the nucleus of which is located at
r = na, and the N~ ? term acts to normalize the crystal-orbital wavefunction. We can see that the
¢ terms in the crystal orbital play the same role as the ¢; coefficients in an MO. The
contribution of each AO to the crystal-orbital wavefunction is weighted by the magnitude and
sign of this term. To visualize these crystal orbitals y; for a 1D chain of hydrogen atoms,
consider two cases, k = 0:

pp = N2 [0y ) 4 ¥y o) 4 ef By ) @Ry ) 4 KOy (g ]
Wiy = N7/ [eo%s(]) + eol//m(z) + eOWls(S) + eol//ls(4) + eol//m(s) +...] (6.8)
Wiy = N7/ Wisa) + Wis) + Vise) + Vis@w) + Vises) + -+

and k = n/a:

Vi=nja = N2 [l Yis(y t ¢l Yis2) T el3m) Vi) t el Yis(a) T elom)

Vi=nja = N2 [—Wis0) + Vis) = Vis) T Vis) — Yiss) T -+

where v, represents the 1s AO on the nth atom.

These two crystal orbitals, sketched in the manner used in Chapter 5, are shown in
Figure 6.3, where we can see how the phases of the AOs are altered by the value of k. The
two k values chosen, 0 and n/a, have the smallest and largest absolute values of k within the
first Brillouin zone, and correspond to the most bonding and most antibonding crystal
orbitals, respectively. Orbitals with intermediate values of k& will have intermediate energies.

The wavefunctions w(r) for these two crystal orbitals and for k = n/2a are plotted in
Figure 6.4. Notice how the ¢ term imparts a sinusoidal modulation to the wavefunction

k=mnla

Figure 6.3 The most bonding (k = 0) and most antibonding (k = n/a) crystal orbitals for an infinite chain
of hydrogen atoms. The spheres represent individual H 15 orbitals, while dark and light shading indicates

the sign the AO wavefunction acquires from the ¢'*” term; y > 0 is white and y < 0 gray.



206 Electronic Band Structure

=l l-a

k =nl2a

A=4da

N
YRYRY

k=mnla

u(r) elkr w(r)

Figure 6.4 Crystal orbitals derived within the tight-binding approximation at k = 0 (top), n/2a (middle),
and n/a (bottom), for an infinite linear chain of hydrogen atoms. The periodic function u(r) (left), is
composed of the H 1s AO wavefunctions (Figure 5.5) centered at H nuclei at the 1D lattice points (unit-
cell edge a) along the chain. The real parts of the ¢ term (middle), and the full Bloch function (right)
obtained according to Equation (6.1), vary with k.® The imaginary part of the wavefunction is not shown.

that yields its maximum (non-imaginary) value of 1 when kr = 0. It reaches this maximum
value again when kr = 27, and so on for every integer multiple of 2r.” The distance r = A from
one maximum to another is the crystal-orbital wavelength:

8 Since the cos(x) function of a real number x completes its full period from x = 0 to x = 2n, it has a wavelength 1 = 2.
Consequently, cos(2x) has 4 = nt, and cos(x/2) has A = 4n.

° Because only the real part of y(r) is plotted, the function y*(r) that represents the electron density p(r) would appear
to change from cell to cell, but when the imaginary component is also considered this is not the case.
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=2k (6.10)

For a free electron, we can use the de Broglie formula to relate its momentum p and
wavelength A:

p=h/\ (6.11)

If we insert the wavelength of the crystal orbital, 1 = 2n/k, into Equation (6.11), we obtain
a relationship that expresses the momentum of the electron in a crystal in terms of k:

p = hk/2n = hik (6.12)

Because we are dealing with an electron in a crystal rather than a free electron, 7k is termed
the crystal momentum. Crystal momentum is not quite the same thing as momentum in the
classical sense, but, as we will see later, it plays an important role in both the electrical and
optical properties of a material.

Band-Structure Diagrams

Each crystal orbital has a specific energy E and crystal momentum # k. We can represent
the electronic structure of the crystal by plotting the energies of its crystal orbitals as
a function of k to create what is called a band-structure diagram. The band-structure
diagram for our infinite chain of hydrogen atoms is plotted in Figure 6.5. For a chain of
finite length (i.e. a large ring), we can imagine the curve in this figure as a series of closely
spaced points, each representing a different crystal orbital. There will be one crystal orbital
for each hydrogen atom, just as there is one MO per hydrogen in the MO diagrams shown
in Figure 6.1. As the number of atoms in the crystal increases, the MO-energy points
become more closely spaced. For an infinite crystal, the curve in Figure 6.5 is a continuous
function, an infinite set of crystal-orbital points, each with the same u(r) but a different k;
a function that defines a band of allowed energies. When the unit cell contains more than
one atom, the band-structure diagram will have multiple bands, each derived from
a different u(r), as we will see in Section 6.2.

Despite its simplicity, there are several things we can learn from Figure 6.5. Firstly,
the number of bands is equal to the number of AOs in the unit cell. In this case, we
have one atom per unit cell and one AO per atom, which leads to a single band.
Secondly, we see that the crystal orbitals in the band run “uphill” in energy from £ = 0
(bonding) to k = *n/a (antibonding). The energy span between the top and bottom of
a band is the bandwidth, W.'°

In Figure 6.5, the band-structure diagram is plotted for two different H-H distances.
Figure 6.5a corresponds to an interatomic distance of 1.0 A, while Figure 6.5b shows how the

10" As W increases, we also say that the dispersion of the band increases. Wide bands are often called disperse bands.
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Figure 6.5 The band-structure diagram for an infinite chain of H atoms where the interatomic spacing is
(a) 1.0 A or (b) 2.0 A. The crystal-orbital fragments shown on the left correspond to k = 0 and k = + n/a.

band structure changes if the interatomic distance increases to 2.0 A. In the former case, the
hydrogen atoms are close together, resulting in a high degree of orbital overlap.
Consequently, the bonding crystal orbital at k& = 0 is strongly stabilized with respect to an
isolated H atom, while the antibonding crystal orbitals at k = *n/a are highly destabilized,
leading to a very wide band of W =40 eV. The bandwidth is decreased by a factor of 10 when
the interatomic distance becomes 2.0 A. Narrow bands result when there is little change in
the strength of the bonding/antibonding interactions as the value of k£ changes, either due to
poor spatial overlap of orbitals from one real-space unit cell to the next (as is the case for the
weakly bonded H-atom chain) or for reasons of symmetry. Electrons that occupy narrow
bands are typically highly localized, either on a single atom or a group of atoms within the
unit cell. As we will see in Chapter 10, bandwidth is an important parameter in determining
the conductivity of a material.

Another point to be made about the band structure of the infinite H-atom chain
concerns the shape of the band-structure diagram. The band structure from k£ = 0 to
n/a 1s a mirror image of the band structure from k = 0 to —n/a. This follows from the
mathematical properties of the ¢ term in the Bloch function. Because of this sym-
metry, band structures are typically plotted only for positive values of k. We should
also note that the band is not symmetrically distributed about the energy of an isolated
H 1s orbital (E = —13.6 e¢V), and that the band is flatter at the bottom (near k = 0)
than at the top (near k = *n/a). This asymmetry, which is more evident for the chain
where the atomic spacing is 1 A (Figure 6.5), is a consequence of the fact that
antibonding states are destabilized more than bonding states are stabilized, as previ-
ously discussed for the MO diagram of H," (Section 5.3.1).
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6.1.6 Density-of-States (DOS) Plots

A band-structure diagram contains a considerable amount of information; it effectively
contains a MO diagram for each point in k space. In a 3D crystal, particularly one with
a complicated crystal structure, band-structure diagrams can become quite complex. The
additional complexity comes in part because there are more bands (one for each AO in the
unit cell), and in part because there are many more values of k to consider in three dimensions
than in one dimension.

A mechanism for depicting the electronic structure in a simpler form is to convert the
band-structure diagram to a density-of-states (DOS) plot. The DOS plot for the hydrogen
chain with an H-H distance of 2.0 A is shown in Figure 6.6. The vertical axes of the DOS plot
and of the band-structure diagram are identical; they give the energies of the electronic states.
However, the horizontal axis of a DOS plot is different; it represents the density of states,
N(E), which is the number of allowed energy levels per unit volume of the solid in the energy
range E to E + dE, as dE goes to zero.

A peak in the DOS plot indicates a large number of crystal orbitals with similar energies
and is therefore related to the slope of the E versus k& curve. Recall that for a large but
finite chain, the line in Figure 6.6 (left) comprises closely spaced but discrete crystal
orbitals. The range where the band flattens out (in this example near k£ = 0 and n/a) will
have many crystal orbitals with very similar energies, and the DOS will be high. Where the
band is steep (in this example near k = n/2a), there will be fewer crystal orbitals in the same
energy range and the DOS will be lower. We saw a preview of the double-peaked DOS for
the infinite H-atom chain in the MO diagrams for cyclic all-hydrogen molecules (Figure
6.1), where the MOs were more closely spaced near the bottom and top of the energy
range covered by MOs.
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Figure 6.6 The band-structure (left) and density-of-states plot (right) for an infinite H-atom chain of 2.0 A
separation at 7'= 0 K. Eg is the Fermi energy.
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DOS plots provide information about energy levels, filling, and widths of bands in
a manner that can be assimilated without knowledge of Bloch functions or an under-
standing of k space. In fact, for depicting the electronic structure of an extended solid,
the DOS plot is in many ways the closest equivalent to the MO diagrams discussed in
Chapter 5. We will see that it is possible to sketch approximate DOS plots from
knowledge of the structure, electron count, and orbital energies in the same way that
approximate MO diagrams can be constructed from the same data. Nonetheless, we
should not forget that useful information is lost upon transforming a band-structure
diagram into a DOS plot.

In band-structure diagrams, just as in MO diagrams, it is important to know which crystal
orbitals are occupied by electrons and which ones are empty. The energy level that separates
the filled states from the empty states at 7= 0 K is called the Fermi energy, Er, or Fermi level.
In Figure 6.6, we see that the Fermi energy in our infinite hydrogen chain cuts the band in
such a way that half of the crystal orbitals have energies that fall below Er and half above it.
Such a half-filled band is exactly what we would expect because each H atom contributes one
orbital and one electron. Like the orbitals from which they are formed, each band can hold
two electrons (of opposite spin). Metallic conductivity is often observed in materials where
the Fermi level cuts through a band, leaving it partially occupied. We will return later to the
importance of band filling and the Fermi level on the electrical and optical properties of
materials.

The Band Structure of a Chain of H, Molecules

Y ou may have been surprised by the result of the preceding section; that an infinite hydrogen
chain would exhibit metallic conductivity. Although hydrogen is thought to become metallic
at very high pressures, under ambient conditions elemental hydrogen is certainly not metal-
lic. Furthermore, under ambient conditions, a linear chain of hydrogen atoms would not be
stable versus dimerization to form H, molecules. Let’s take a closer look at how this
dimerization impacts the band structure.

For simplicity, we retain a 1D extended structure, but this time the chain will comprise H,
molecules lined up end to end. In the resulting structure, there are now two different H-H
contacts, a short intramolecular distance (d; in Figure 6.7) and a longer intermolecular
distance (5 in Figure 6.7). The new unit cell now holds two hydrogen atoms instead of one,
and we anticipate that the band-structure diagram will contain two bands instead of one.

The periodic function u(r) is more complicated in this case, but otherwise the analysis is
identical to the chain of hydrogen atoms. The basis-set functions to use for u(r) are the MOs
of the H, molecule; a bonding MO ., and an antibonding MO y_ (Figure 5.9). Each MO will
give rise to a separate band. The orbital interactions at the center (kK = 0) and edge (k = n/a) of
the first Brillouin zone are shown in Figure 6.7. We start by considering the band derived
from the bonding MO (y.). At k = 0, the intra- as well as intermolecular interactions are
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Figure 6.7 Crystal orbitals in an infinite chain of H, molecules at £ = 0 and k = n/a.

bonding, hence this is the lowest-energy crystal orbital (shown on the bottom in Figure 6.7).
Upon moving to k = n/a, intermolecular interactions become antibonding, whereas intra-
molecular interactions remain bonding. Consequently, the energy of the bonding band (i)
rises; it runs “uphill” from k£ = 0 to k = n/a.

Next, we consider the band derived from the antibonding MO (w_). When k& = 0, both the
intra- and intermolecular interactions are antibonding, and, as a result, this is the highest-
energy crystal orbital (shown on the top in Figure 6.7). At k = m/a, the intramolecular
interactions are still antibonding, but the intermolecular interactions are now bonding.
Hence, this band runs “downhill” in energy from k = 0 to k = n/a. Because the intramolecular
H-H distance is shorter than the intermolecular H-H distance (d; < d>), the band derived
from the bonding MO (i) will be lower in energy than the band derived from the antibond-
ing MO (y-) throughout the first Brillouin zone (Section 6.1.3).

The calculated band structure of our H, molecular chain is shown in Figure 6.8. As
predicted, the lower band runs uphill in energy and the upper band runs downhill in energy.
Each hydrogen atom has one valence electron so there are two electrons per unit cell, enough
to fill the lower band while leaving the upper band empty. Therefore, the Fermi energy lies in
the energy gap between bands. Materials where the Fermi level does not cut through a band
are semiconductors or insulators, depending on the size of the gap.

In a basic sense, we see that the band-structure diagram of the H, chain could have been
approximated by broadening each of the two H, MOs into a band. This is our first lesson in how
to use the MO diagram of a chemical building unit as the starting point for approximating the
band structure. The width of the bands depends on the interaction between molecules in
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Figure 6.8 MO diagram of an isolated H, molecule (left) together with the band-structure diagram for an
infinite chain of H, molecules (middle) and the corresponding DOS (right). The Fermi energy Ef is
denoted by a dashed line. In the DOS plot, shading indicates filled states. The crystal orbitals pictured are
those at k = 0 and k = n/a.

neighboring unit cells.'' If the intermolecular spacing is decreased, the bands will become wider
and the energy gap between bands smaller. As the intermolecular H-H distance becomes almost
the same as the intramolecular H-H distance, the bonding/antibonding interactions at k = n/a in
the upper and lower bands will be nearly equivalent, and the energy gap between the bands will
become infinitesimally small. When the H-H distances become equal, we revert to a single-atom
unit cell and the metallic band structure of the H-atom chain shown in Figure 6.5."

We now see why a structure possessing alternating long and short H-H distances
would be more stable than one where the H-H distances are equal; the bond length
alternation creates a band gap, thus lowering the energy of the occupied band at the
expense of the empty band (Figure 6.8). The H-atom chain is not the only system to
undergo this type of distortion. Peierls’ theorem states that any 1D structure possessing
a partially filled band will undergo a distortion that leads to bond-length alternations,
splitting the partially filled band to create a gap between filled and empty bands.
Distortions of this type are called Peierls distortions. A classic real-world example is
the Peierls distortion in polyacetylene (Figure 6.9). If all C—C bonds were the same
length, the electrons in the 7 orbitals would be fully delocalized, as shown on the left-

" The band formed from the antibonding MO (y_) is wider (more disperse) than the band formed from the bonding
MO (y4) because antibonding interactions are more destabilizing than bonding interactions are stabilizing.

If we were to artificially use the two-atom unit cell also for the chain where all H-H distances are equal, the real-
space unit cell would be twice that of the true one-atom unit cell, and the length of the first Brillouin zone would be
halved. The band-structure diagram corresponding to this artificial two-atom unit cell can be derived by drawing
a vertical line in the band plot of the H-atom chain (Figure 6.6, left) at k = n/2a and folding the plot over that line so
that the two wings overlap. The resulting band-structure plot shows two bands widely separated at k = 0, but
touching at the folding point (the new k = n/a); the limiting case of the band structure in Figure 6.8. This concept is
called band folding.

12
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Figure 6.9 The Peierls distortion in polyacetylene.

hand side of Figure 6.9. However, when the chain distorts to give alternating long and
short bonds, the 7 electrons localize as shown on the right-hand side, and the total
electronic energy of the system is lowered. We’ll examine the band structure of
polyacetylene in more detail in Section 10.5.1.

Electrical and Optical Properties

The electrical and optical properties of a substance follow directly from its band structure. In
this section, we look at some basic connections between band structure and properties. In
later chapters, we will revisit these topics in detail.

Metals, Semiconductors, and Insulators

Because the H-atom chain and the H, molecular chain have different band structures, the
properties of these hypothetical chains will also be different. The electronic conductivity is
sensitive to the location of the Fermi level. When Ef cuts through a band, as it does for the
H-atom chain, there is almost no energy cost for electrons to move from occupied states just
below Eg to empty states just above Er. As a result, the electrons can move in response to the
application of an external driving force, such as an electric field or a temperature gradient.
This explains why metals readily conduct electricity and heat. In contrast, when the Fermi
energy does not cut through a band, as in the H, chain, a non-negligible amount of energy is
needed to excite the electron from the filled band to the empty band. In this case, the electrical
behavior corresponds to that of a semiconductor or insulator. We will examine these classes
of materials more closely in Chapter 10.

Before going further, we need to develop some nomenclature for discussing semiconduct-
ors. For a semiconductor, the minimum energy difference between the filled band(s) and the
empty band(s) is called the band gap, E,. Although there is not a precise value of E, that
separates semiconductors from insulators, as a rough guideline, materials with £, > 3 eV are
typically considered insulators. When discussing semiconductors/insulators, we will refer to
the filled bands as valence bands and the empty bands as conduction bands. Simple DOS
sketches of a metal, semiconductor, and insulator are shown in Figure 6.10. These block
sketches do not attempt to capture the shape of the various bands as they would be depicted
in an actual DOS plot. Instead, each band (or set of bands) is represented by a rectangle and
shading is used to show their filling. These crude sketches can be a useful tool for quick
approximations of the electronic structure.
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Figure 6.10 Schematic DOS diagrams for a metal (left), a semiconductor (middle), and an insulator
(right). Occupied crystal orbitals are shaded.

The shading used in the DOS plots in Figure 6.10 is, strictly speaking, only valid when the
temperature is equal to absolute zero (7" = 0 K). At finite temperatures, the electron
distribution smears out as some of the electrons are thermally excited from states below Eg
to states above Ef. This effect has important consequences for the conductivity of a material
and will be considered in detail in Chapter 10.

Direct- versus Indirect-Gap Semiconductors

In Figure 6.8, it is easy to see that the energy separation between the upper and lower bands
changes as a function of k. At k = 0 the two bands are separated by ~34 eV, while at k = n/a,
only by ~10 eV. The band gap is defined as the minimum energy separation between the
highest energy state in the valence band and the lowest energy state in the conduction band,
~10 eV in this case. When the valence-band maximum and the conduction-band minimum
occur at the same value of &, as they do in this example, the material is said to be a direct-gap
semiconductor. When these two points fall at different values of k, the material is an indirect-
gap semiconductor. Schematic representations of these two cases are given in Figure 6.11.
To excite an electron from one band to another requires a transfer of energy from the
incoming photon to the electron. If k£ does not change upon moving from one band to another
(i.e. the transition is a vertical line in Figure 6.11), the transition only involves transfer of
energy. If k& changes, however, it is necessary to alter not only the energy but also the
momentum of the electron, Equation (6.12). The mechanism for doing this requires transfer
of momentum between a lattice vibration (a phonon, see Section 4.4.6) and the electron as the
photon is absorbed. Because this is effectively a three-body process, light is absorbed much



6.4

6.4.1

6.4 Representing Band Structures in Higher Dimensions 215

Direct band gap Indirect band gap

conduction
band
conduction
band
> hv _ >
o %‘ - o hv
3 s = N 1
[} [ S E,
valence S
band T
valence
band
k k

Figure 6.11 The lowest-energy valence to conduction band transition in a direct-gap (left) and indirect-
gap (right) semiconductor.

more efficiently in a direct-gap semiconductor than it is in an indirect-gap semiconductor. This
has important consequences for the design of optical devices, as we will see in Chapter 7.

Representing Band Structures in Higher Dimensions

Although there are a few materials whose band structure can be approximated by a 1D model,
most materials need to be treated in two or three dimensions. The 2D case is not just
a conceptual intermediate on the way to the 3D model, it applies to a number of interesting
materials. Surfaces are 2D entities, and their electronic structures are useful constructs for
understanding the chemical processes that occur there, such as heterogeneous catalysis. Many
compounds are made up of covalently bonded layers that are held together by ionic or
dispersion forces. The electronic structures of such materials are largely 2D in character.
Other materials are 2D solids in a strict sense, graphene being the best-known example.

The underlying concepts of band theory don’t change upon increasing the dimensionality, but
the mathematics of the analysis and the representation of the results become more complicated.
We will leave the computational details to computers, but it’s not possible to discuss 2D and 3D
systems without first developing a basic understanding of how they are represented.

Crystal Orbitals in Two Dimensions

Let’s start by recalling that the position of any lattice point in a 2D crystal is given by a real-
space translation vector, T:

T = ua + vb (6.13)
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Figure 6.12 The 2D real-space rectangular lattice (left) and its reciprocal-space lattice (right). The shaded
rectangle represents the first Brillouin zone. Note that if b > a in real space, b* < a* in reciprocal space.

where a and b are the basis vectors of the real-space lattice (Chapter 1.1) while u and v are
integers. The real-space unit cell is defined by u = v = 1. The corresponding reciprocal-space
lattice vector, G, is given by:

G = ha* + kb (6.14)

where a* and b* are the basis vectors of the reciprocal-space lattice, while 4 and k are
integers. In two dimensions, the reciprocal-space lattice vector a* must be perpendicular to
the real-space vector b, and b* must be perpendicular to a. The magnitudes of the reciprocal-
space lattice vectors are defined so that the dot products a-a* = b-b* = 2n.

For a 2D rectangular lattice, the reciprocal-space lattice vectors a* of magnitude 2nt/a and
b* of magnitude 2n/b are shown in Figure 6.12. As in one dimension, the first Brillouin zone
contains the complete range of k values needed to generate all possible crystal orbitals
without duplication. It is the region in reciprocal space that surrounds & = 0 and contains
all k points that are closer to this point than to any other reciprocal-space lattice point. To
determine the boundaries of the first Brillouin zone, we bisect the reciprocal-space lattice
vectors around one of the lattice points by perpendicular lines.

Our next example is the 2D hexagonal lattice shown in Figure 6.13. To construct the first
Brillouin zone, we first draw lines from an arbitrary lattice point chosen as the origin to each
of its six nearest neighbors. The perpendicular bisectors of these lines define a hexagon that
contains all points closer to & = 0 than to any other reciprocal-space lattice point. Unlike
crystallographic unit cells, the first Brillouin zone is not necessarily a parallelogram in two
dimensions (or a parallelepiped in three dimensions), as this example illustrates.'?

13 In crystallography, a locus of points in space closer to a given lattice point than to any other lattice point is called
a Wigner—Seitz cell.
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Figure 6.13 The 2D real-space hexagonal lattice (left) and its reciprocal-space lattice (right). On the right-
hand side, thin lines connect the reciprocal-space lattice point defined as & = 0 with the six neighboring
lattice points, and the shaded hexagon represents the first Brillouin zone.

The real-space hexagonal-lattice vectors @ and b have same lengths (Ja| = |b|) and the angle
between them is 120°. For calculations in Cartesian coordinate space, we can express them in
terms of orthogonal unit-length vectors that are perpendicular (%) and parallel () to b,'* as
a = [(|alV3/2)]x— [|a|/2]y and b = |b| . Using the relationships a* L b and b* L a, one can
show that the angle between reciprocal-space lattice vectors is 60° (Figure 6.13). In terms of
unit vectors in Cartesian coordinate space, the hexagonal reciprocal-space vectors are a* =
[4n/(Ja|y3)]x and b* = [2n/(la\3)]x + [27/|b|]p.

In a 2D crystal, the electron wavefunction, which was y(r) = e
(Section 6.1.2), becomes:

*7(r) in one dimension

w(r) = e*ru(r) (6.15)

where r is the position vector or radius vector r = xa + yb (Section 1.1.1) of any point in the
crystal in fractional coordinates x and y, and u(r) is the lattice-periodic function describing
the electric-field potential felt by an electron in the real-space crystal. Whereas k was a scalar
in 1D space confined to the interval —a*/2 < k < +a*/2, in 2D space k becomes a vector, but its
allowed values are still confined to the first Brillouin-zone interval —a*/2, — b*/2 < k < a*/2,
b*/2. It can be expressed with fractional coordinates =2 < m, n < Y2 as k = ma* + nb* and
is referred to as the wave vector.'> It gives not only the wavelength of the crystal orbital,
A = 2n/|k|, but also the direction in which the ¢*” term modulates the wavefunction.'®
To show the entire electronic structure of a 2D material, we need a 3D plot, two dimen-
sions for k and one for energy. Fortunately, the maxima and minima of many bands are
generally found either at the center of the Brillouin zone or at one of its boundaries.

4 Their lengths are || = [p| = 1 chosen unit-length in real space or 1 chosen unit-length ™! in reciprocal space.

15 The wave vector is perpendicular to the wave fronts. In two dimensions, the wave fronts are parallel lines that run
through points where the crystal-orbital wavefunction takes a constant value.

16 See Figure 6.17 (right) for a visual illustration of how the sign of the AO wavefunction is modulated by different
values of the wave vector k.
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Figure 6.14 The first Brillouin zone and special symmetry points for the 2D square lattice. The magnitudes
of the reciprocal lattice vectors are |a*| = |b*| = 2n/|a].
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Figure 6.15 The first Brillouin zone and special symmetry points for the 2D hexagonal lattice in terms of
the reciprocal-space lattice vectors a* and b* (left), and the orthogonal axes (right).

Therefore, we can get a good sense of the band structure by plotting the energy as a function
of k along lines that run between various high-symmetry points in the Brillouin zone.'” For
a 2D square lattice, these points are given in Figure 6.14.

The high-symmetry points within the first Brillouin zone of a 2D hexagonal lattice are
shown in Figure 6.15. These points are expressed in terms of the reciprocal-space lattice
vectors a* and b* on the left-hand side of the figure and in terms of the orthogonal unit-
length vectors on the right-hand side of the figure.

17 The I point has all point-symmetry elements of the lattice, while the other special points retain some but not all
symmetry elements.
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Figure 6.16 3D Brillouin zones of lattices reciprocal to four selected 3D real-space lattices, with high-
symmetry points identified and orthogonal axes drawn.

Crystal Orbitals in Three Dimensions

In three dimensions, the crystal-orbital wavefunctions are completely analogous to the 2D case,
Equation (6.15), but the radius vector r = xa + yb + zc and wave vector k = ma* + nb* + oc* are
given in three dimensions. The reciprocal-space basis vectors are defined in terms of the real-
space lattice vectors by the following relationships:

a*:%(bxc) b*:zvn(cxa) c*:27n(axb) (6.16)
where V'is the real-space unit-cell volume, V= a-(b X ¢). From the definition of a vector cross
product,'® a* is perpendicular to b and ¢, b* is perpendicular to @ and ¢, and ¢* is perpen-
dicular to a and b. For a cubic lattice with a real-space unit-cell edge a, the reciprocal-space
lattice is also cubic with a cell edge of magnitude a* = 2n/a. Notice that as the real-space unit
cell gets larger, the reciprocal-space cell gets smaller.

We construct the first Brillouin zones of 3D reciprocal-space lattices using the same
approach as in two dimensions, but they are now polyhedra instead of polygons. The first
Brillouin zones for reciprocal-space lattices that correspond to some common 3D real-space
lattices are shown in Figure 6.16, with the high-symmetry points labeled. Those Brillouin
zones derived from primitive real-space lattices have simple shapes expected from the 2D

% The cross product of two vectors (e.g. b X ¢) is a vector perpendicular to the vectors from which it is formed with
a magnitude equal to the area of the parallelogram formed by the original two vectors.
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analogy. For the face-centered cubic (fcc) lattice, one needs to realize, or simply accept,
that its reciprocal-space lattice is body-centered cubic (bcc). The first Brillouin zone is
then constructed just as it is in one or two dimensions, by bisecting lines connecting
neighboring reciprocal lattice points with perpendicular planes that form the faces of
a polyhedron, which in this case is the truncated octahedron shown in the top right of
Figure 6.16.

Band Structures of Two-Dimensional Materials

Let’s begin with a simple hypothetical example: the band structure of a 2D square lattice of
hydrogen atoms (Figure 6.17). Using a tight-binding approach (Section 6.1.2), we take u(r) =
w1,(r), the H 1s AO wavefunction. At the I point, defined as k = O0a* + 0b*, the ¢/*" term is
equal to 1 for any value of r (¢*" = ¢° = 1), as is the coefficient associated with each

H 1s orbital in the 2D Bloch function, Equation (6.15). The resulting crystal-orbital wave-
function is the 2D analog of the 1D wavefunction at k = 0, Equation (6.8). Since the AOs on
neighboring H atoms all have the same phase (their coefficients in Equation (6.15) have the
same sign), they interfere constructively. This condition maximizes the bonding overlap
and therefore corresponds to the lowest-energy point in the first Brillouin zone. At

X (k="' a* + 0 b*), the H 1s orbital wavefunction contribution alternates between positive
ikr

and negative (due to the changing sign of the ™" term) in the real-space x direction, but remains

energy (eV)

r X M r

Figure 6.17 The band structure of a 2D square lattice of hydrogen atoms at a 1 A separation. The crystal
orbitals at T', X, and M (defined in Figure 6.14) are shown on the right in real-space coordinates. The
spheres represent individual H 1s orbitals, while dark and light shading indicates the sign the AO
wavefunction acquires from the " term; y > 0 is white and y < 0 gray.
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constant in the real-space y direction.'” The energy goes up along the I' to X line because
half of the nearest-neighbor H-H interactions change from bonding to antibonding.
Finally, the energy reaches a maximum at the M point (k = Y2 a* + 2 b*) where all nearest-
neighbor interactions are antibonding. Note that the overall bandwidth W is higher in two
dimensions than in one dimension because the number of bonding/antibonding inter-
actions per H atom has increased.

Graphene

Graphite is one of the most familiar layered materials. It contains planar sheets of sp”
hybridized carbon atoms arranged in a 2D honeycomb pattern (or, if you prefer, chicken
wire). In graphite, the layers are stacked in an ordered way to form a 3D structure; however,
when a single layer of carbon atoms from graphite is isolated, the 2D entity is called
graphene. While it is easy to imagine a graphene sheet, it is quite challenging to isolate layers
that are only a single atom thick. It was not until 2004 that researchers found a route to single
graphene layers [1]. The discovery of graphene created tremendous excitement, leading to
a surge in the study of 2D materials.

The structure of graphene is shown in Figure 6.18. There are two atoms in the hexagonal
unit cell. Each carbon has four valence orbitals (2s, 2p., 2p,, 2p.), so we expect a total of eight
bands in the band structure. Our earlier look at the bonding in benzene (Section 5.3.7) is
instructive. Just as in benzene, the 2s, 2p., and 2p, orbitals in graphene overlap to form o
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Figure 6.18 Left: A segment of a graphene sheet with the hexagonal unit-cell rhombus. Right: The band

structure of graphene with o bands in gray and 7 and 7* bands in black. The three empty o * bands located
at higher energy are not shown.

19 Imagine the 2D wave at X like a corrugated roof with peaks and troughs parallel with y.
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bands while the 2p. orbitals overlap to form 7 bands. By analogy with the MO diagram of
benzene, we would expect the 7 band to be the highest-energy valence band and the 7* band
to be the lowest-energy conduction band—the respective solid state equivalents of the
highest occupied MO (HOMO) and lowest unoccupied MO (LUMO). Hence, we expect
the properties of graphene to be dominated by these bands.

The 2D band structure of graphene is shown on the right-hand side of Figure 6.18. We see
that over much of the first Brillouin zone, the ¢ bands are more stable than the 7 and 7*
bands, as expected.”’ To understand the orbital overlap that gives rise to the 7 bands, we
need only consider a single 2p. orbital per atom. Because there are two atoms per unit cell,
there are two bands that originate from the 2p. orbitals; one of them from the 7-bonding MO
and one from the 7-antibonding MO of the two-atom motif (the atom or group of atoms
associated with each lattice point, Figure 1.1).

The interaction (bonding, antibonding, nonbonding) between carbon atoms in neigh-
boring unit cells is dictated by the value of k, as shown in Figure 6.19. At T, ¢*” = 1, hence
all nearest-neighbor interactions in the crystal orbital derived from the 7 MO are bonding,
while in the corresponding 7* MO they are antibonding (Figure 6.19, left). This combin-
ation maximizes the energy separation between the 7 and 7* bands. At M, there are two
bonding and one antibonding nearest-neighbor interactions for the 7 band and vice versa
for the 7* band (Figure 6.19, middle), reducing the energy separation between the two
bands (Figure 6.18).

Figure 6.19 The overlap of 2p. orbitals in the 7 (bottom) and 7* (top) bands of graphene at the " (left),
M (middle), and K (right) points identified in Figure 6.15. The sizes of the orbitals are drawn proportional
to the magnitude of the crystal-orbital coefficients ¢*”. For the crystal orbitals at K, only the real part of
the wavefunction is shown.

20 This condition is not met near I' where the energies of the o> and o3 bands reach a maximum. At I', mixing (i.e. any
bonding or antibonding interaction) between 2s orbitals and 2p,/2p, orbitals is symmetry forbidden (see Section
6.5.2), thus the oy band has pure C 2s character while the o, and g3 bands have pure C 2p./2p, character.
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Inspection of the band structure (Figure 6.18) shows that the filled 7 and empty 7* bands
become degenerate at K. A more detailed analysis reveals that the crystal orbitals for both
bands are nonbonding at K. The Fermi level is located at the energy where these bands touch.
This leads to an unusual electronic structure where the valence bands and conduction bands
touch but do not overlap. Materials that possess such an electronic structure are said to be
semimetals.”’ We will explore the properties of graphene in more detail in Section 10.6.1.

Cu0,? Square Lattice

The CuO,> square lattice (Figure 6.20) is another illustrative and interesting 2D example, as
this layer is present in nearly all high-7 cuprate superconductors. Within each layer, the
copper atoms are surrounded by four oxygen atoms forming squares that share corners, and
each oxygen atom is linearly coordinated by copper; the Niggli formula is CuOy»>~.

We can approximate the DOS plot from the MO diagram of square-planar CuO,®~ shown
on the left-hand side of Figure 6.21. The five highest-energy MOs originate from antibonding
Cu 3d-O 2p interactions. Highest is the antibonding interaction between Cu 3d,2_,2 orbitals
and O 2p orbitals that point directly at each other. The other four antibonding Cu 3d-based
MOs are ~2 eV lower in energy.”” The remaining MOs, located between —14 eV and —16 eV,
are either Cu 34-O 2p bonding MOs or O 2p nonbonding MOs. To facilitate the discussion,
we will group the MOs into three separate energy regions, marked I, II, and IIT in Figure 6.21.

The contribution of each Cu 3d orbital to the total DOS, the so-called partial density of
states (PDOS), is plotted on the right-hand side of Figure 6.21. We can infer from the small

Figure 6.20 A segment of the 2D CuOy,”>~ sheet. The unit cell is shown in black.

2! In astrict sense, a semimetal is a material whose electronic density of states goes to zero at Ey but is non-zero for any
finite energy above or below Ef. This occurs whenever the conduction and valence bands exactly touch, as they do in
graphene. The term semimetal also applies in a more general manner to systems where the valence and conduction
bands overlap by a small amount, generally at different k points. In graphite, interactions between layers cause the 7
and 7* bands to overlap slightly.

22 The MO diagram of square-planar CuO,°~ exhibits d-orbital energy levels similar to those seen for a transition-
metal ion in an elongated octahedral environment (Section 5.3.10).
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Figure 6.21 The MO diagram of a square-planar CuO,°~ unit (left), the total-DOS plot (middle), and
a partial-DOS plot for the infinite CuOy»>~ layer showing the contributions of the individual Cu
3d orbitals (right).

degree of Cu character that region I, between —17.0 eV and —14.3 eV, is dominated by
oxygen 2p orbital contributions. The Cu contributions in the crystal orbitals of the lower and
middle sections of region I have Cu 3d-0 2p bonding character. The electronic states near the
top of this region, where the Cu contribution is minimal, are best described as
O 2p nonbonding states.

The Cu 3d orbitals make the dominant contribution to regions II and III of the DOS plot. The
d-2, d.., d,. and d,, orbitals contribute heavily to region II (—14.2 eV to —13.0 eV). These bands
originate from antibonding Cu 3d-O 2p MOs. As the d.2 orbital has a rather weak overlap with
oxygen in the xy plane, it produces a very flat band, which in turn gives rise to a sharp peak in the
DOS. The d,., d,., and d., orbitals have a 7* interaction with the oxygen 2p orbitals, the strength
of which depends on &. Finally, region III (—12.1 eV to —11.0 eV) originates from the antibond-
ing Cu 3d,2_,2-O 2p o* MO.

The full band structure for the CuOyy>~ layer is shown in Figure 6.22. The number of
bands can be determined by considering the number of AOs in the motif. The O 2p-orbital
contribution is dominant in region I. We see a total of six bands in this region because there
are two oxygen atoms per unit cell, each with three 2p orbitals.”> The Cu 3d-orbital
contribution is dominant in regions II and III. Hence, we see four bands in region II (one
for each of the doubly occupied Cu 3d orbitals d.2, d,., d,., and d.,), and a single half-filled

band associated with the Cu 3d,2_,2 orbital in region III.

2 The square-planar CuO,°” unit contains four oxygen atoms and hence there are 4 x 3 = 12 MOs in region I, whereas
the band structure is for a CuO,”~ sheet which contains two oxygen atoms per unit cell. Hence there 2 X 3 = 6 bands
in region I.
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Once again, we can understand the shape of the bands in Figure 6.22 by considering the
orbital overlap at various points in the Brillouin zone. As this is our first example with more
than one element, let’s take a closer look at how the mixing of copper and oxygen orbitals
varies with changes in k. Consider in Figure 6.23 the band that originates from the anti-
bonding interaction between Cu 3d,, and O 2p orbitals (this band spans —14.2 eV to
—13.0 eV in Figure 6.22). Because this is a 7* band, we choose an antibonding interaction
between the Cu 3d,,, orbital and two O 2p orbitals within the CuO, motif (the orbitals that
contribute to the motif are marked with dashed ovals).

T N Cude,e | N 2
(" band)

Cu d,2 band
Cu d,,,dy,d, | E
N\ [ (# bands)
15 ] ? |
\ / 0 2p bands IIl

energy (eV)

total DOS

Figure 6.22 The electronic band structure (left) and the DOS plot (right) of a CuOy/,* layer.

2 Mixing is symmetry

forbidden

Cu 3d,,and O 2p
remain nonbonding

Cu 3d,, O 2p 7 crystal orbital

Figure 6.23 The mixing (or lack thereof) of the Cu 3d,, and O 2p orbitals at I and M (defined in Figure
6.14). The orbitals associated with a single CuO, motif are enclosed in dashed ovals.
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Once we have chosen the appropriate orbitals for the motif, the u(x,y) basis set is fixed for
all crystal orbitals that belong to this band. The next step is to determine the phases with
which the AOs contribute to the crystal orbital (as dictated by the ¢*®*) term of the Bloch
function) at a few high-symmetry values of k. At I', the phases of the AOs of the motif are
invariant on moving from one unit cell to the next (see Figure 6.23), and we see that the Cu
3d,, and O 2p orbitals have an equal amount of bonding and antibonding overlap (along
both directions). When this happens, orbital mixing (any bonding or antibonding inter-
action) is said to be (translational-) symmetry forbidden, and two nonbonding crystal
orbitals result. One is derived from the O 2p AO (in Figure 6.22, region I, amongst the “O
2p bands”), the other from the Cu 3d,, AO (the minimum-energy crystal orbital of the Cu
3d,,~O 2p 7* band in Figure 6.22).* At M, the phases with which the AOs contribute
to the crystal orbital are such that each O 2p orbital has antibonding interactions
with both Cu neighbors, and the crystal orbital has Cu 3d,,~O 2p 7* character.

Using the same approach, we can draw crystal orbitals for the Cu 3d,2_,2-O 2p ¢* band
(=12.1eV to —11.0 eV) and compare them with the Cu 3d,,~O 2p 7* crystal orbitals at I", M,
and X (Figure 6.24). Although mixing between the Cu 3d,2_,2 and O 2p orbitals is
also symmetry forbidden at I" (not shown in Figure 6.24), this crystal orbital is not strictly

Tr X M
[
X
Cu 3d,2- 2= (@] o
co* band
@
%
X
Cu 3d,,- O
7 band
[@)

Figure 6.24 Orbital interactions for the o* (top) and 7* (bottom) bands at the I' (left), X (middle), and
M (right) points (defined in Figure 6.14).

24 The nonbonding O 2p crystal orbital is lower in energy because an isolated O 2p orbital has a lower energy than an
isolated Cu 3d orbital, see Section 5.2.1.
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Cu 3d,2_,2 nonbonding because the O 2s orbitals we have not discussed up to this point have

the proper symmetry to interact with Cu 3d4,2_,2. This interaction (see upper left panel of
Figure 6.24) is weaker than the Cu 34-O 2p interaction due to the poor energetic overlap of
the Cu 3d (=14 eV) and O 2s orbitals (—34 eV), yet strong enough to affect the width of this
band. Specifically, the ¢* band would become nonbonding at I" (Figure 6.22), lowering its
energy and increasing bandwidth, were it not for this antibonding 3d,2_,2-O 2s interaction.

At X, the interactions of Cu 3d,, and Cu 3d,2_2 orbitals with the O 2p orbitals become
antibonding in the x direction (Figure 6.24, middle), while remaining symmetry forbidden
(nonbonding) in the y direction. At M, the Cu 34-O 2p interactions become antibonding in
both directions (Figure 6.24, right). Because the energy of a band increases as the number of
antibonding interactions increases, these Cu 3d,, 7* and Cu 3d,2_,2 ¢* bands run uphill from
I' to X to M as shown in Figure 6.22.%

Since the optical, magnetic and electrical properties are most sensitive to the bands near the
Fermi level, the filling and width of the Cu 3d,2_,2 band is critical. Given the d ? electron
configuration of Cu®*, it should not come as a surprise that the Fermi level cuts the Cu 3d2_ 2
band in half (Figure 6.22). As discussed in Section 6.3.1, the presence of a partially filled band
should lead to metallic conductivity. However, this picture changes once electron—electron
interactions are considered, as we will learn in Section 10.4. These interactions stabilize an
antiferromagnetic, insulating ground state in compounds containing CuO,2- layers, such as
La,CuQ,. Interestingly, when electrons are added to or taken away from the layers, the
properties can change dramatically, as we will see when we take up the topic of superconduct-

ivity in Chapter 12.

Band Structures of Three-Dimensional Materials

Finally, we are ready to tackle the band structures of 3D materials.”® In this section, we will
consider several materials that build on the principles already established for lower-
dimensional systems, most of which represent important classes of functional materials.

a-Polonium

Perhaps the simplest 3D structure we can imagine is a primitive cubic lattice with a single
atom per unit cell. The only element that crystallizes with this structure is a-Po (Figure 1.23).
The band structure for a-Po is shown in Figure 6.25. There are four bands, one for each of the
valence orbitals of Po; 6s, 6p,, 6p,, and 6p.. The orbital character of the lowest-energy band is
exclusively Po 6s (due in part to relativistic effects mentioned in Section 5.2.1). Its shape,

25 At the M point, the Cu 3d,, 7* band has the highest energy of the four bands that make up region II.

26 In the band-structure diagrams for all 3D materials, the energy scale is arbitrarily set so that the highest filled
electronic state falls at £ = 0, as is the customary practice for density-functional theory used to generate these
diagrams.
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Figure 6.25 The band structure of a-Po, showing the orbital overlap at the ', X, and R points (defined in
Figure 6.16) for the 6s, 6p,, and 6p. bands. The effects of spin—orbit coupling have not been included in
this calculation.

running uphill from I" to X to M to R, is the 3D analogue of the band structure of a 2D square
lattice of hydrogen atoms (Figure 6.17).

The three higher-energy bands originate from Po 6p orbitals. These bands are two-thirds
filled, and they are therefore cut by the Fermi level. The right-hand side of Figure 6.25 shows
the crystal orbitals associated with the 6s, 6p,, and 6p. bands at I', X, and R. At T, all three
6p bands are degenerate; each exhibiting strong s-antibonding interactions with two neighbor-
ing Po atoms and weak 7-bonding interactions with their remaining four nearest neighbors.
The 6p bands are also degenerate at the R point, where the o interactions have become strongly
bonding and the 7 interactions weakly antibonding. At other points in the first Brillouin zone,
the degeneracy of the 6p bands is lifted. For example, the 6p, band reaches a minimum at the
X point where both ¢ and 7 nearest-neighbor interactions are bonding. In contrast, the 6p, and
6p. bands experience strong antibonding nearest-neighbor ¢ interactions at the X point.

Bismuth lies one element to the left of polonium in the periodic table. The 6p orbitals
are now half filled. The structure of Bi is related to the primitive cubic structure of a-Po
(Figure 6.26), but distorted so that each atom makes three short bonds (d; = 3.07 A) and
three long bonds (d» = 3.53 A) to its neighbors. This distortion has a similar origin as the 1D
Peierls distortion illustrated in Figure 6.9. An even more pronounced distortion of this type is
seen in lighter group-15 elements, such as gray arsenic (d; = 2.51 A, d> = 3.15 A).

Diamond

The crystal structure of diamond has eight atoms in the face-centered cubic unit cell
(Figure 1.16 and 1.37), but only two in the equivalent primitive cell (at 0 0 0 and % % Y4 of
the rhombohedron representing the primitive cell) normally used for band-structure
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a.-polonium (cubic) bismuth (rhombohedral)

Figure 6.26 The structure of a-polonium (left) showing eight unit cells compared with an analogous
fragment of the bismuth structure (right). The short and long bonds in bismuth are marked with solid and
dashed lines, respectively.
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Figure 6.27 The band structure of diamond. Right: Crystal orbitals at the " point (only one of the three
degenerate crystal orbitals present at I', and T« is shown).

calculations. Using the smaller primitive cell, eight bands result from overlap of the
2s and 2p valence orbitals on carbon (Figure 6.27). The eight valence electrons (four
per atom) completely fill the lower four bands. Because the interatomic distances are
short (1.545 A), there is a large degree of orbital overlap stabilizing the filled valence
bands, which are bonding, and destabilizing the empty conduction bands, which are
antibonding. The net result is a large band gap, 5.5 eV. Diamond has an indirect band
gap as the valence-band maximum (at I') and the conduction-band minimum (near X)
occur at different values of &.
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Let’s take a closer look at the orbital character of the bands at the I' point. Just as the
2s and 2p orbitals contribute to different MOs in the MO diagram of CHy4 (Section 5.3.6),
the 2s and 2p orbitals in diamond contribute to different bands at the I' point. This lack of
2s and 2p mixing yields just four energies at I': singly degenerate crystal orbitals corresponding
to bonding and antibonding overlap of the 2s orbitals, labeled I'y and I'y« in Figure 6.27, and
triply degenerate crystal orbitals arising from bonding and antibonding overlap of the
2p orbitals, labeled I', and T’ . The large energy separation between the bonding 2s (I'y) and 2p
(') states results in part from the C 2s orbitals being more stable than the C 2p orbitals by
~8 eV (see Table 5.2) and in part from the fact that the 2s orbital overlap is bonding in all
directions at I'. In fact, the 2s orbital overlap at I is so large that the antibonding 2s crystal
orbital (I'g«) is higher in energy than the antibonding 2p crystal orbital (I'»).

Moving away from the I" point, 2s—2p mixing occurs because the non-zero k alters the
phases of the AO contributions to the crystal orbital in a manner that allows the 2s orbitals to
have a non-zero overlap with 2p orbitals on neighboring atoms. Unlike graphene, where the
energy of the 2p.-bonding band reaches a minimum at I', here the energies of all three filled
2p bands are stabilized on moving away from I'. The presence of 2s—2p. mixing throughout
most of the first Brillouin zone in diamond (but not at I') is responsible for the fact that
diamond is an insulator while graphite is a semimetal. We see that alternative crystal
structures can produce dramatically different band structures, leading to materials with
strikingly different properties.

Elemental Semiconductors

Semiconductors play a central role in modern electronic devices, and no semiconductor is more
widely used than silicon. The band structures of silicon and its group-14 neighbor germanium
are shown in Figure 6.28. They are qualitatively similar to diamond, but the energies and widths
of the various bands have changed. The increase in interatomic distance (2.35 A for Si and
2.45 A for Ge) reduces the orbital overlap, which in turn reduces the stabilization of the valence
bands and the destabilization of the conduction bands. Consequently, the band gaps are much
smaller than that of diamond, 1.1 eV for Si and 0.7 eV for Ge. There are also changes in the
relative energies of the antibonding crystal orbitals at I". The decrease in orbital overlap reduces
the splitting between bonding and antibonding states, lowering the energy of I' i« with respect to
Fp*.27 As a result, by the time we reach germanium, I lies below I .

The orbital overlap decreases further upon moving to a-Sn (ds, s, = 2.81 A), where Iy is
only marginally higher in energy than the valence-band maximum I',. Not only does this
further reduce the band gap (£, = 0.1 eV), it reduces the overall stability of the structure. In
fact, tin has two polymorphs; gray tin (a-Sn) is a semiconductor with the diamond structure,
whereas white tin (B-Sn) is a metal with a body-centered tetragonal structure. Moving to the

27 Orbital overlap is the most important factor in elemental semiconductors for dictating the relative energy of
the bands at I" because the difference in the energies of the s and p orbitals is almost constant from C to Sn (see
Table 5.2).
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silicon germanium

Figure 6.28 The band structures of silicon (left) and germanium (right).

sixth period, we come to Pb where this trend is further exacerbated by relativistic effects
(Section 5.2.1) which contract the 6s orbitals and lower their energy with respect to the
6p orbitals. If Pb were to adopt the diamond structure, the antibonding 6s states would be
populated before the bonding 6p states are full, destabilizing the structure. Consequently, Pb
adopts a cubic closest-packed structure in preference to the diamond structure.

Rhenium Trioxide

The 3D analogue of the square CuO,”~ lattice is the cubic ReOs structure (Figure 1.39),
a network of corner-sharing octahedra, with a Niggli formula of ReOg,. ReOj3 is not just
a model case, it is one of the most highly conducting oxides known. Its conductivity of
1.1x107 S/m at room temperature is higher than the conductivity of several elemental metals
(Section 10.1).

The electronic band structure of ReO; is shown in Figure 6.29. Based on the MO diagram of
an octahedrally coordinated transition-metal ion (Section 5.3.8), we expect the Re 54 and
O 2p orbitals to make the dominant contributions to the bands near the Fermi level. The
octahedral coordination geometry means that the Re 54 orbitals are split into a triply degener-
ate tp, set (dy,, d,., d.) that interacts with the O 2p orbitals in a 7 fashion, and a doubly
degenerate e, set (d,>_,?, d.?) that interacts with the O 2p orbitals in a o fashion. All Re 5¢-O
2p bonding and O 2p nonbonding crystal orbitals are fully occupied. One electron occupies the
Re 54-O 2p 7* set of crystal orbitals, as expected given the 54' configuration of Re®*.
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Figure 6.29 The crystal structure, band structure, and DOS of ReOs.

The primitive unit cell of the ReOj structure contains one rhenium atom and three oxygen
atoms. Therefore, we expect (3 X 3) nine bands for the O 2p orbitals and (5 X 1) five bands
for the Re 5d orbitals. We see the nine O 2p-based bands between —12 eV and —4 eV in
Figure 6.29. Six of them run downhill from I', where they are mostly nonbonding O 2p crystal
orbitals, to R where they have a Re 54-O 2p and Re 6s-O 2p bonding character. The
remaining three are confined to a narrow energy window near the top of the valence band
and are largely O 2p nonbonding throughout the first Brillouin zone.

The three bands located between —2.3 eV and +2.6 eV arise from antibonding 7* inter-
actions between the triply degenerate #,, set of Re 54 orbitals and O 2p orbitals. The Fermi
level cuts through these three bands. The fact that the Fermi level cuts through a reasonably
wide band (in this case three bands) is responsible for the high electrical conductivity of ReOs.

The two highest-energy bands in Figure 6.29 are the Re 54-O 2p o* bands, located between
+2.7¢eV and +9.9 eV. The Re 5d e, orbitals make the dominant contribution to these bands.
Because the o interactions lead to a higher degree of spatial overlap than the 7 interactions,
the ¢* bands are wider than the 7* bands, 7.2 €V versus 5.0 eV.

The orbital overlap is shown in Figure 6.30 for three representative bands—a nonbonding
O 2p band, the Re 5d,,~O 2p 7* band, and the Re 54,2_,2-O ¢* band—at I', X, and M. The
picture is very similar to that discussed earlier for the CuO,2- square lattice (Section 6.5.2).
At the I' point, orbital mixing is symmetry forbidden for Re #,, and O 2p orbitals, which
makes this set of bands strictly Re 5d nonbonding. The ¢* set of bands is also (largely) Re
Sdnonbonding at I'. Symmetry allows for Re 54-O 2s ¢* interactions, but they are weak due
to the poor energetic overlap of the O 2s and Re 5d orbitals. At the X point, all three 7* bands
have antibonding interactions with their oxygen neighbors along x, while the interactions in
the other two directions remain nonbonding. This leads to a splitting of the three 7* bands,
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Figure 6.30 The orbital interactions for a nonbonding O 2p band (bottom), a Re-O 7* band (middle), and
a Re-O ¢* band (top) at the T, X, and M points (defined in Figure 6.16).

because the overlap of the Re 5d,. orbitals with the x-direction neighbors is negligible,
whereas the Re 5d,, and 5d,. orbitals have significant Re-O interactions along x.
Consequently, the latter two bands, being antibonding, have a higher energy than the Re
5d,. band at X. For similar reasons, the Re 54,2_,2 band has a higher energy than the Re 5.2
band at X. At the M point, the Re 5d,, and Re 5d,2_ 2 bands are completely antibonding, as
illustrated on the right-hand side of Figure 6.30. Finally, at the R point all five Re 54 bands
are completely antibonding (not shown), with each band reaching its highest energy.

The O 2p (t;,) band depicted in Figure 6.30 is one of the O 2p bands described as
nonbonding in the preceding discussion. In a sense, this description is accurate because the
band lacks any Re 54 character. However, it is not strictly nonbonding if we take O 2p-O
2p interactions into account. If we consider only the nearest-neighbor oxygen interactions,
we see a change from nonbonding at I' to antibonding at M. As a result, the energy of this
band increases by a relatively small amount, 1.2 ¢V, on moving from I" to M.

Perovskites

Just as the band structure of Si is representative of many semiconductors, the electronic
structure of ReO; is representative of an important group of materials, the perovskites
(Figure 1.49). Throughout the book, we will encounter many functional materials with the
perovskite structure. In perovskites such as SrTiOs, the bonding between the larger A-site



234

Electronic Band Structure

cation (Sr**) and oxygen is normally quite ionic, while the more electronegative M-site cation
(Ti**) forms much more covalent bonds with the anion (O?7). It is therefore a reasonable
approximation to assume the A-site cation completely donates its valence electrons to the
MOs"" network. To the extent this approximation is valid, the band structure of a cubic
perovskite is identical to that of ReOs. This approximation is generally quite good for bands
near the Fermi level. The filling of the conduction bands depends on the d-electron count of
the M-site atom, while the position and width of these bands depends on the covalency of the
M-O interaction and, as we will learn, the linearity of the M—O-M bonds.

A generic band-structure diagram for a perovskite is shown in Figure 6.31. The symmetry of
the cubic MOj3 network gives rise to several special features. At the I' point, the crystal orbitals
at the top of the O 2p band are nonbonding while those at the bottom of the conduction band
are nonbonding 1,, metal-based orbitals, as already discussed for ReO;. Therefore, the direct-
gap excitation, labeled CT in Figure 6.31, represents a charge-transfer excitation in the truest
sense; from crystal orbitals with pure oxygen 2p character to crystal orbitals with pure
transition-metal d-orbital character. Another point of interest is the separation between the
7* and o* bands at the R point. All of the M nd-O 2p interactions at this point are completely
antibonding; consequently, the energy separation between 7* and ¢* bands at R is the solid
state equivalent of the ligand-field splitting of an octahedron, A.

To examine periodic trends in bonding, let’s take a quantitative look at how the band
structure evolves as we decrease the electronegativity of the transition metal: ReO; — WO3
— KTaO3; — BaHfOs;. All four compounds have similar band structures, but the exact
energies and filling of the bands vary from one compound to the next. The calculated energies
of E,, A, CT, and several other parameters are given in Table 6.1.
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Figure 6.31 A generic band-structure diagram (left) and a schematic DOS plot (right) for an AMO;
perovskite, where M is a d° transition-metal ion. Values of the marked parameters are given in Table 6.1
for several different perovskites.
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Table 6.1 Key features from band-structure calculations of cubic ReO3, W03, KTaO3, BaHfO3,
and SrTiOs.

ReO; WO; KTaO3 BaHfO; SrTiO;
M-O distance (A) 1.87 1.95 1.99 2.09 1.95
0-0 distance (A) 2.65 2.76 2.81 2.96 2.76
d-electron configuration d' d° d° d° d°
M-O ¢* bandwidth (eV) 7.2 6.4 6.2 5.1 4.1
M-O 7* bandwidth (eV) 5.0 4.3 42 3.5 2.4
A (o*-* at R) (eV) 7.2 6.3 6.1 5.5 3.9
CT(0O2p-Mr*atl) (eV) 2.3 3.4 3.8 5.3 4.1
Calc. band gap, E, eV’ Metal 2.4 3.5 5.0 34
Exp. band gap, E, (eV) Metal 24 3.5 5.5 3.1

TA scissors correction that increases the band gap by 2.1 eV has been applied to all semiconducting compounds
in this table.

On changing from ReOj3 to WO3, a dramatic change arises from the fact that the 7* bands
in WO5 are empty because W' has a d° configuration. This change in band filling makes
WO; a semiconductor, in sharp contrast to the metallic conductivity of ReOs. As a rule,
semiconducting cubic perovskites have indirect band gaps because the valence-band max-
imum always falls on the line between M and R, while the conduction-band minimum always
falls at T'. The measured band gap of WO; is 2.4 eV, which is responsible for its yellow
color.”®

Replacing Re with W has other subtle effects on the electronic structure. Because hexava-
lent tungsten is less electronegative than hexavalent rhenium,”” it takes more energy to excite
an electron from oxygen to the transition metal, hence CT increases from 2.3 eV to 3.4 eV.
The widths of the ¢* and 7* bands decrease because the antibonding interactions at the
R point, which define the maxima of these bands, are not quite as antibonding, due to longer
W-0 distances and the fact that the W 54 and O 2p orbitals have a greater energetic
mismatch. The octahedral ligand-field splitting A decreases for the same reason. As we
continue to decrease the atomic number of the transition metal along WO3 — KTaO3; —
BaHfOs, the d° electron count is maintained but the nuclear charge steadily decreases. This
leads to a decrease in the electronegativity of the transition-metal ion, a decrease in the
covalency of the metal-oxygen bonds, and an increase in the bond length. These changes
increase CT and E, and reduce the ¢* and 7* bandwidths.

28 It should be noted that the structure of WOs5 is not actually cubic. It is distorted by out-of-center displacements of
tungsten atoms and rotations of the octahedra, both of which reduce the bandwidth and increase the band gap. The
tungsten displacements are driven by second-order Jahn-Teller distortions.

2 For a given oxidation state, electronegativities increase and orbital energies become more negative on moving
horizontally from left to right across the periodic table (see Table 5.2).
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Perovskites containing 3d transition metals have narrower ¢* and 7* bands than their
4d and 5d analogues. Consider SrTiO3 and BaHfO;, where both transition metals come from
group 4. Table 6.1 shows that the o* and 7* bands are substantially narrower for SrTiO; than
they are for BaHfOj;. This effect stems from the fact that 3d orbitals are smaller than
5d orbitals (rpax = 0.53 A for Ti 3d versus 0.88 A for Hf 5d, Section 5.2.2). The contracted
nature of the 3d orbitals reduces their overlap with the O 2p orbitals, and, as a result, the
antibonding SrTiOj; crystal orbitals, particularly the o* and 7* crystal orbitals at R, are less
destabilized (have a lower energy) than the corresponding BaHfOj3 crystal orbitals. The
decreased overlap results in the reduced bandwidth for SrTiOs.

Bandwidth in perovskites is an important parameter that can impact the properties,
sometimes in a dramatic fashion. Wider bands not only produce smaller band gaps, they
are more conducive to electron delocalization. We will see the effect of bandwidth on the
electrical conductivity of perovskites in Section 10.4.3. When we encounter such effects, it
will be very useful to remember the mechanisms for tuning the bandwidth in perovskites.
Table 6.2 contains a summary of those mechanisms.

Changing the identity of the element on the M site is not the only way to control the
electronic structure of a perovskite. While the A cation does not usually play a direct role in the
electronic structure near the Fermi level, its size controls the linearity of the M—O-M bonds.
When the A-site cation is too small for the cubic corner-sharing network, octahedral tilting
occurs (Section 1.5.3) leading to bending of the M—O-M bond angles. This introduces some
antibonding character into the 7* bands at I' (remember from Figure 6.30 they were strictly
nonbonding at I in a cubic perovskite) and reduces the antibonding overlap of the 7* bands at
R. The net effect is a reduction in the widths of the 7* bands, which leads to an increase in band
gap. Octahedral tilting has a similar effect on the width of the ¢* band, which can have
important implications for conductivity and magnetism in some perovskites. Overlap consid-
erations predict that the width of the ¢* bands, W,_*, should scale proportionally to cos ¢,
where ¢ is the deviation of the M—O-M bond angle from 180° [2]. As an example, consider
what happens when K™ in KTaOs is replaced by Na*. The smaller Na™ drives an octahedral-
tilting distortion that reduces the Ta—O-Ta bond angle from 180° in KTaO; to 159° (on
average) in NaTaOj3. This increases the band gap from 3.5 eV in KTaO; to 4.1 eV in NaTaOs.

Table 6.2 Factors that impact the width of the m* (W,+) and ¢* (W) bands in
AMOs; perovskites.

Change in structure or composition W and W«
M electronegativity increases Increase
M-O bond distance increases Decrease
M oxidation state increases Increase
3d transition metal substitutes for 4d/5d transition metal Decrease

Octahedral tilting bends M—O-M bond angle Decrease
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6.7 Problems

6.1

6.2

6.3

6.4

6.5

MO diagrams for cyclic Hy molecules are shown in Figure 6.1. The AO phases are
shown for the lowest- and highest-energy MOs but not for the intermediate MOs. (a)
Sketch out the intermediate MOs indicating the phase of each AO for a cyclic Hg
molecule. Determine the number of nodal planes for each of the six MOs. (b) Repeat
part (a) for a cyclic H;o molecule.

MO diagrams for cyclic Hy molecules are shown in Figure 6.1. (a) Sketch out the MOs
and their relative energies for a square Hy molecule. Determine the number of nodal
planes for each MO. (b) This molecule is prone to a first-order Jahn—Teller distortion.
How will the distortion change the shape of the molecule? Redraw the MO diagram
after the distortion has taken place.

Show that the Bloch function given in Equation (6.1) meets the requirement that the
electron density, p(r) = y*(r) = w*(r)y(r), must be periodic according to Equation
(6.2).

The first Brillouin zone of an infinite chain of H atoms has an infinite number of crystal
orbitals, each with a different value of k. (a) State the limiting values of k within the first
Brillouin zone. (b) The figure below shows the real part of the wavefunction for
a crystal orbital w(r) with a specific value of k (the positions of the H atoms are denoted
by the black dots). Determine the value of k for this crystal orbital. (c) Calculate the
momentum of this crystal orbital.

State whether each of the following statements is true or false. (a) As the magnitude of
k increases, the momentum of the electron also increases. (b) As the magnitude of
k increases, the wavelength of the corresponding wavefunction also increases. (c) As the
size of the unit cell increases, the size of the first Brillouin zone also increases.
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6.6

6.7

6.8

Consider an infinite 1D chain of equally spaced fluorine atoms. (a) Sketch the band
structure of this chain. Include all four valence orbitals (2s, 2py, 2p,, 2p.) in the diagram
and indicate the position of the Fermi level (assume the chain propagates in the z direction).
(b) Sketch a DOS plot. (c) Would you expect this chain to be a metallic conductor?
Consider an infinite 1D chain of H, molecules where the molecular axis is oriented
perpendicular to the chain direction, as shown below. (a) How many bands are there in
the band structure? (b) Sketch the crystal orbitals for each band at k = 0 and k = n/a. (c)
Sketch out the band structure of this chain and include the position of the Fermi level. (d)
Sketch a DOS plot. (e) Would you expect this chain to be a metallic conductor? Hint:
Develop your answer using the bonding and antibonding MOs of the H, molecule.

!

Consider the infinite 1D chain formed by placing boron atoms between the H, molecules
from Problem 6.7 to form an infinite chain (shown below) where the B-H distance is
1.27 A while B-B and H-H are both 1.8 A. The calculated band structure for this chain is
shown below. (a) Which of the boron orbitals can mix (form bonding/antibonding crystal
orbitals) with the H, bonding orbital, y, at £ = 0? Which boron orbital can mix with ., at
k = n/a? (b) Which of the boron orbitals can mix with the H, antibonding orbital, y_, at
k = 0? Which boron orbital can mix with w_ at k = n/a? (c) What is the AO character of the
two crystal orbitals that become degenerate at k = n/a? (d) At k = 0, only the lowest-energy
band has both B-H and H-H o-bonding character. What is the AO character of this band
at k = 0? (e) At k = 0, the highest-energy band (£ = +33.8 e¢V) has both B-H and H-H o-
antibonding character. What orbitals contribute to this band at & = (?
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Consider the band structure for an infinite 1D chain of equally spaced titanium and
oxygen atoms shown below, with an overall stoichiometry of TiO. In this calculation,
only the Ti 3d orbitals and the O 2p orbitals have been taken into account. (a) Identify
the orbital making the largest contribution to the band that spans the energy range
from approximately —12 eV to —6 eV. (b) Identify the orbitals that make the largest
contribution to the two flat bands located at roughly —11 eV. (c) Indicate the approxi-
mate location of the Fermi level. (d) Would you expect this chain to be a metal or
a semiconductor?

X'[ —0—Ti—O0— T —O0—Ti—
V4

-5
3
~ 9 4
>
o
=
[
=
[
-13 4
-17
0 k m/a

Consider the electronic structure of a-Po discussed in Section 6.6.1. (a) Sketch the
crystal orbitals for the p, band at I', X, and R. (b) Sketch the crystal orbitals for the p,.,
Py»and p_bands at M. (c) Order the p., p,, and p. bands from lowest to highest energy at
I', X, M, and R.

NbN crystallizes with the NaCl type structure. Sketch out an MO diagram for octa-
hedrally coordinated niobium and use it to sketch a DOS plot for NbN. Indicate the
relative area of the o*, 7*, and N 2p sets of bands, and mark the approximate position
of the Fermi level in your DOS sketch. Would you expect NbN to be a metal or
a semiconductor?

GaAs (E, = 1.4 eV) and ZnSe (E, = 2.6 V) are isoelectronic with Ge (Section 6.6.3).
Their band structures are shown below. Are they direct- or indirect-gap
semiconductors?
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6.14
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Consider LaCrSbs;, whose structure is shown below (left). To a reasonable approximation,
this structure can be described as independent CrSb,”~ layers and Sb~ layers separated by
La** ions [3]. If we neglect subtle distortions, the Sb™ layer can be approximated as a 2D
square lattice of Sb™ ions. There is one atom per unit cell, and the Sb-Sb separation is
3.1 A. The calculated band structure for the idealized Sb™ layer is shown below, on the
right. (a) Show the orbital overlap for the Sb 5s and 5p orbitals at I, X, and
M. Characterize the nearest-neighbor interactions for each band as (¢ or 7) bonding,
antibonding, or nonbonding at each of these k points. (b) Determine the orbital character
of each band, numbered 1-4 in the diagram. (c) LaCrSbs is a metallic conductor. From the
band structure above, would you expect the Sb™ layers to contribute to the conductivity?

CrSb,2~
layer

Sb~ layer

Lad*

z

L

A 2D square lattice of 3 transition-metal atoms 2.3 A apart has the band structure shown
below (the contributions of the 4s and 4p orbitals have been omitted to simplify the
analysis). (a) Considering orbital overlap for each of the five 3d orbitals at I', X, and M,
characterize the nearest-neighbor interactions for each band as (o, 7, or d) bonding,
antibonding, or nonbonding at each of these k points. (b) Use your answers from part (a)
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to associate bands numbered 1-3 in the diagram above with a d.,, d.., or d,.. orbital (due to
similar behavior atT", X, and M, bands 4-5 have contributions from both d,?_,? and d.?). (c)
Which d-electron count will provide the strongest metal-metal bonding: d', d*, or d*?
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6.15 The perovskite LaRhOj3 is a semiconductor. (a) What is the orbital character of the
valence band? (b) What is the orbital character of the conduction band? (c) Will
a hypothetical cubic LaRhO; be a direct- or indirect-gap semiconductor?

6.16 BaZrO; and CaZrO; are perovskites with similar Zr-O distances. While BaZrOs is
cubic, CaZrOs is orthorhombically distorted by octahedral tilting. Which of these two
compounds will have a larger band gap? Explain your reasoning. Hint: The Zr-O-Zr
angle is 180° in BaZrO5 and 146° (on average) in CaZrOs.

Further Reading

J.K. Burdett, “Chemical Bonding in Solids” (1995) Oxford University Press.

P.A. Cox, “The Electronic Structure and Chemistry of Solids” (1987) Oxford University Press.

R. Dronskowski, “Computational Chemistry of Solid State Materials” (2005) Wiley—VCH, Weinheim.

R. Hoffmann, “Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures” (1989)
Wiley, New York.

E. Kaxiras, “Atomic and Electronic Structure of Solids” (2003) Cambridge University Press.

T. Wolfram, S. Ellialtioglu, “Electronic and Optical Properties of d-Band Perovskites” (2006)
Cambridge University Press.
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7.1

Optical Materials

We transition into the second part of the book with an in-depth look at materials used for
their optical properties. In the first half of the chapter, we consider materials that are valued
for the way they absorb light: pigments, dyes, and gemstones. In the second half, we turn our
attention to materials that emit light. Materials such as phosphors and light-emitting diodes
play a key role in devices that we encounter in our daily lives, including fluorescent and solid
state lighting.

Light, Color, and Electronic Excitations

All forms of electromagnetic radiation travel as self-propagating waves, moving through
vacuum at a speed of ¢ = 2.99792458% 10 m/s. The wavelength, 1, and frequency, v, of the
wave are related to its speed through the relationship:

c= (7.1)

Electromagnetic radiation can also be treated as a particle called a photon. The energy of
each photon is determined by its frequency (or wavelength) through Planck’s equation:

E=hv=hc/) (7.2)

where / is the Planck constant of 6.62607015%1073* J s for E in joules of the SI system. The
photon energy can also be expressed in electron volts (eV), which is the amount of potential
energy gained by moving an electron across an electric-potential difference of 1 V (1 eV =
1.602176634x107'° J). Instead of wavelength, a spectroscopy unit called wavenumber can be
used (in units cm™!, the number of wavelengths that fit in one centimeter). A photon
of energy 1 eV represents radiation with a wavenumber of 8065.544 cm™'. As shown in
Figure 7.1, visible light makes up only a small slice of the electromagnetic spectrum.

243
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Figure 7.1 The electromagnetic spectrum (upper), and the visible portion of the spectrum (lower),
showing the regions corresponding to the primary (RGB) and secondary (CMY) colors.

Colors are perceptions of the human eye. We have three different color receptors with
maximum sensitivity at three different wavelengths in the visible spectrum. To understand
colors, it is therefore useful to choose three colors of the rainbow as the primary colors of
light: red, green, and blue (RGB); and then define three (secondary) colors that arise by
mixing neighboring primary colors, as shown in the lower half of Figure 7.1. Mixing blue and
green light yields cyan (C), while red plus green gives yellow (Y). The combination of blue
plus red we see as a magenta (M). We could of course name many more colors than these six.
For example, violet contains more blue light than magenta (i.e. an unequal mixing of blue
and red), and orange is more reddish than yellow. Unlike the other primary and secondary
colors, magenta cannot be represented by a narrow slice of the visible spectrum; it results
from mixing red and blue. Hence, we perceive it as being more reddish than the violet end of
the spectrum.

Now let’s think about the colors that arise when substances absorb light. When
a substance absorbs blue light, both red and green are either transmitted or reflected,
and the substance appears yellow to us (remaining R + G = Y, termed the comple-
mentary color to B). If a substance absorbs red light, we perceive it as having a cyan
color (remaining B + G = C, complementary to R), and one that absorbs green
takes on a magenta color (remaining B + R = M, complementary to G). For example,
a Cu’"(aq) solution absorbs red light which leads to its familiar cyan color.
A substance that absorbs all three RGB primary colors is black, whereas a light source
that mixes the three primary colors creates white light. This is why screens of electronic
devices are based on pixels, each containing sources that can emit RGB colors, while
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printers use the CMYK mixing of dyes. The K stands for blacK, formed by mixing
C + M + Y of highest saturation. Consider the color of a C + M dye. The C dye
absorbs R, while the M dye absorbs G, and the remaining color is B.

At the atomic level, the colors of chemical compounds arise from absorption of a visible
light of certain energy Av that leads to an electronic excitation.' Such absorptions can be
broadly grouped into five categories: (a) d-to-d transitions; (b) charge-transfer transitions; (c)
band-to-band transitions in semiconductors; (d) transitions between molecular orbitals
(MOs), most commonly 7z-to-7* transitions in conjugated organic molecules; (e) f-to-f; and
(f) f-to-d transitions.” In the following sections, we explore examples of the first four causes of
color. Transitions involving f orbitals are explored in Section 7.8 because of their importance
in luminescent materials.

Pigments, Dyes, and Gemstones

A pigment is a colored material that is dispersed in a medium in which it is insoluble.” The
medium might be any number of substances ranging from oil to water to plastic. If a colored
material is soluble in the medium in which it is dispersed it is called a dye.

Pigments are among the oldest functional materials. The prehistoric artist’s palette
was confined largely to red, yellow, brown, and black. The reds, yellows, and browns
came from iron containing minerals such as Fe,O3 (hematite or red ochre) and FeOOH
(goethite or yellow ochre), while manganese oxides and carbon were used for black.
Reliance on colored materials obtained from natural sources continued until the
eighteenth century, when synthetic pigments started to become widely available.
A representative list of pigments, dyes, and gemstones, arranged by color, is given in
Table 7.1. Minerals that are colored when chemically pure, like eskolaite Cr,O5; or
malachite Cu,CO5(OH),, are said to be idiochromatic. Minerals that are colored due to
the presence of dopants, like ruby (ALO5:Cr’*) and spinel (MgAl,O4:Cr*") are said to
be allochromatic. This notation, where the dopant responsible for the color follows
a colon after the formula of the undoped host, will be used throughout this chapter. In
some instances, the site on which substitutional disorder occurs is obvious. For
example, in ruby and spinel the Cr’* substitutes for AI** as Al,_,Cr,O3 and MgAl,_
+Cr, Oy, respectively. In other cases, such as at low doping levels of aliovalent substitu-
tions, the distribution may be more complex or uncertain.

! In most substances, the electron’s absorbed optical energy is subsequently released in several vibrational steps as
thermal energy. Photoluminescent materials are an exception.

2 One category of electronic transition that doesn’t fit neatly into any of these categories are the F centers or color
centers discussed in Chapter 2. The violet color of the mineral fluorite, CaF,, arises from F centers (from Farbe, the
German word for color).

3 Pigments can also be black or white.
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Table 7.1 Representative pigments, dyes, and gemstones.

Name Composition Use Electronic excitation
Blues

Azurite Cus(CO5),(OH), Pigment d-to-d (Cu*")
Cobalt blue CoAlLO, Pigment d-to-d (Co>")
Egyptian blue CaCuSi Oy Pigment d-to-d (Cu**")
Indigo C;5sHoN>O Dye MO (-to-7*)
Phthalocyanine blue Cu(C3,NgH ) Pigment MO (-to-7*)
Prussian blue Fes[Fe(CN)g]5xH,O Pigment MMCT Fe?"—Fe*
Sapphire ALO5Fe** Ti** Gemstone ~ MMCT Fe?"—>Ti**
Ultramarine Nag_,[(S1,Al)1,0,4](S5,Cl);»  Pigment MO (S37)

Greens

Chrome green Cr,0; Pigment d-to-d (Cr**)
Emerald Be;Aly(Si05)s:Crt Gemstone  d-to-d (Cr*")
Phthalocyanine green ~ Cu(C;3,NgCl¢—H,) Pigment MO (z-to-7*)
Malachite Cu,CO5(OH), Pigment d-to-d (Cu*")
Yellows

Bismuth vanadate BiVO, Pigment LMCT O V>t
Cadmium yellow CdS Pigment Band-to-band
Chrome yellow PbCrO, Pigment LMCT 0> —Cr®*
Orpiment As,S3 Pigment Band-to-band

Reds

Alizarin C14Hg04 Dye MO (z-to-7*)
Cadmium red CdS,;_,Se, Pigment Band-to-band
Pyrope Mg;ALSi;0;:Cr¥* Gemstone  d-to-d (Cr*")

Red lead Pbs0, Pigment Band-to-band
Ruby ALO;:Cr** Gemstone  d-to-d (Cr*")

Spinel MgAL,O,:Cr?* Gemstone  d-to-d (Cr**)
Vermillion HgS Pigment Band-to-band

Transitions between d Orbitals (d-to-d Excitations)

Transition-metal compounds make up the largest family of colored substances. In most
cases, their color arises from electronic transitions between different d orbitals on the same
transition-metal ion. In this section, we explore the factors that determine the energy,
number, and intensity of the electronic absorption peaks arising from d-to-d transitions.

Ligand- and Crystal-Field Theory

Understanding how the energetic degeneracy of the d orbitals is removed by the surrounding
ligands is the first step in understanding the optical properties of transition-metal
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compounds. Ligand-field theory relies on MO calculations (Chapter 5) to establish the
d-orbital energies. For example, in the MO diagram of an octahedral complex, the 4.2 and
d2_,2 orbitals form ¢* interactions with the ligands, and hence these orbitals are more
antibonding than the d.,, d,., and d,. orbitals that form 7* interactions with the ligands
(Section 5.3.8). The ¢* and 7* MOs are usually referred to as e, and f,, orbitals,
respectively, after their symmetry labels. The energy separation between these two sets
of orbitals is the ligand-field splitting, A,.., where the subscript “oct” denotes octahedral
coordination.

Crystal-field theory is a heuristic approach that qualitatively predicts splitting of the
d-orbital energies due to electrostatic repulsion from the ligands. For example, in an
octahedral field, the d.2 and d,2_,2 orbitals point directly at the ligands and the electrons in
them experience more repulsion than those in the d,, d,., and d,. orbitals that point between
the ligands and thus lie at a lower energy. Both crystal-field and ligand-field theory predict
the same patterns of d-orbital splitting, which are given for various ligand environments in
Figure 7.2. To make quantitative predictions of orbital energies, ligand-field theory is
needed, but for deducing the gross features of d-orbital splitting in a variety of coordination
environments, the simpler crystal-field approach is useful.

Values of A, for various combinations of transition metal ions and ligands are given in
Table 7.2. Examination of these values reveals several trends. Firstly, we see that, for
a given d-electron count, A, increases as the oxidation state of the metal cation increases,
asillustrated by the complex ions containing transition metals with a d° configuration: ([Cr(H,
0)g** > [V(H,0)sJ*" and [MnFg]* > [CrF¢]’"). This trend results from the trend toward

A
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dy2y2
J— d,2
> d2 deay2
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—_
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- - d
dxy dxz dyz » - 0z
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dzz dxz_yz dZZ dxz dyz
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octahedral tetrahedral square square trigonal
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Figure 7.2 Examples of ligand-field splitting diagrams for various coordination environments. The
dashed line is the energy of the d orbitals in a spherically symmetric environment.
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Table 7.2 Ligand-field splitting, A, for complex ions of various transition
metals.

Metal ion d count [MF¢"™ [M(H>0)q]"*
Ti** d! 2.17eV 2.52¢eV
v3* d? 2.00 eV 221eV
vt d3? Not formed 1.54 eV
cr’t d? 1.87 eV 2.16 eV
Mn** d? 2.70 eV Not Formed
Tc* d3? 3.52eV Not Formed
Re** d? 4.07 eV Not Formed

shorter metal-ligand bonds as the oxidation state of the metal ion increases. The enhanced
overlap raises the energy of the o* orbitals more than 7* orbitals, thereby increasing A,.
Secondly, we see that A, increases as the valence orbitals on the central metal ion go from
3dto 4dto 5d (Mn** — Tc** — Re*"). The larger 4d and 5d orbitals (Section 5.2.2) experience
a stronger overlap with the ligand orbitals, which again leads to greater destabilization of the
o* orbitals than the 7* orbitals. Finally, for a given ion, A, also depends upon the ligand. For
example, the ligand-field splitting increases slightly when fluoride ions are replaced with water
molecules.

Absorption Spectra and Spectroscopic Terms

To explore the connection between electronic structure and absorption spectra, consider the
octahedral complex [Ti(H>0)¢]** containing the ' ion Ti**. The octahedral ligand field splits
the d orbitals into 7*(#,,) and o*(ey) sets separated by 2.52 eV (Table 7.2). With Equation
(7.2), we calculate a wavelength of 492 nm for a photon of energy equal to the separation
between the two sets of orbitals. The UV-visible absorption spectrum of a [Ti(H,0)e]*"
solution shows a broad peak centered at ~490 nm (Figure 7.3). The peak is split by a Jahn—
Teller distortion (Section 5.3.10) of the complex, driven by the 3d' configuration of Ti**,
which lifts the degeneracy of both the e, and #,, orbitals.

The situation becomes more complicated when there are multiple electrons in the
d orbitals of the transition-metal ion. Consider [V(H,0)¢]**, containing the d? ion V>*.
Table 7.2 tells us that A.eq = 2.21 eV, which suggests that 561 nm light should excite
a tzgzego — tzgleg1 transition. As we see in Figure 7.3, there is an absorption peak that
reaches a maximum at ~570 nm, near the expected position, but, somewhat unexpect-
edly, there is another peak at ~390 nm, both arising from d-to-d transitions. The reason
for the increased complexity of the electronic absorption spectrum stems from electron—
electron interactions.
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Figure 7.3 The UV-visible absorption spectrum of aqueous solutions of [Ti(H,O)s’" (black) and
[V(H0)l™ (gray).

To understand the [V(H,0)¢]** spectrum, we must take a step back and consider the
electron—electron interactions in a free V>* jon. Its electron configuration, [Ar] 342, only
gives information on the first two quantum numbers, # and ¢ (Section 5.2). It neither tells us
whether the electrons occupy the same d-orbital or different d-orbitals, nor whether they
have the same or opposite spins. Yet these factors have a bearing on the collective energy of
the electrons. Coupling between the spin and orbital angular momenta of the electrons also
plays a role. To understand absorption spectra of transition-metal ions, we must take these
factors into account.

There are two approaches to incorporate electron—electron interactions and spin—
orbit coupling into the analysis. Within the Russell-Saunders coupling scheme, the spin
and orbital momenta are summed separately and then combined. This approach
assumes electron—electron repulsions are dominant and treats spin—orbit coupling as
a perturbation. Such an approximation is reasonable when the spin—orbit coupling is
relatively weak, which is generally applicable for 3d transition metals like V**. The
Jj—J coupling scheme represents the opposite approach where spin—orbit coupling is first
applied to split the different orbital occupations into states, and then electron—electron
repulsions act as a perturbation on those energy levels. For elements with intermediate
levels of spin—orbit coupling, like the 4d and 5d transition-metal ions and the lanthan-
oids, the coupling is intermediate between these two limiting cases. We will adopt
Russell-Saunders coupling throughout this chapter, but the interested reader can find
further details on j—j coupling in Appendix F.
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Figure 7.4 Two microstates for a free ion with a > configuration.

The different ways electrons can occupy the available atomic orbitals (AOs) are called
microstates of the parent electron configuration. For example, there are ten available
microstates for a free d' ion such as Ti’*. The electron can reside in any one of the five
d orbitals with m, values ranging from 2 to —2, and its spin quantum number m2,; can be either
+'% or —'. Because there is only one electron, and hence no electron—electron repulsions to
consider, all ten microstates have the same energy. Moving to d?, there are now 45 possible
microstates, not all of which lie at the same energy. Two such microstates are illustrated in
Figure 7.4. It can be shown that these 45 microstates separate into five sets of different energy
as discussed below. The label given to each set is called a spectroscopic term or term symbol.

To derive the term symbols for a d? ion, we begin by identifying the values of the total
angular-momentum quantum number L and the total spin quantum number S that can arise
from the orbital and spin angular momenta of the individual electrons. There are two
electrons with spin angular-momentum quantum numbers s; and s, and orbital angular-
momentum quantum numbers ¢; and £,. According to the Clebsch—Gordon series, we find
that S and L can take the following values:

S:S1+S2,S1—|—S2—1,...,|S1—82| (73)
L:€1+€2,€1+52—1,...,|€1—€2| (74)

For a d° ion (t1=2,85 =Y, =2, 5, =), the spin angular-momentum quantum number
S can have values of 1 and 0, while the orbital angular-momentum quantum number L can
have values of 4, 3, 2, 1, and 0. The total orbital angular momentum of a spectroscopic term is
denoted by the uppercase letters given in Table 7.3. The total spin is normally reported as the
value 25 + 1, which is called the multiplicity of the term. The different values of multiplicity
are given the names singlet (S = 0 with 2S5 + 1 = 1), doublet (S = %2 with 25 + 1 = 2), triplet
(S=1with2S+ 1= 3), and so on.

Table 7.3 Term-symbol notation for the total orbital angular-momentum
quantum number L.

L= 0 1 2 3 4 5 6
S P D F G H I
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For a d” ion, the 45 microstates divide into the following five sets: nine microstates make up the
'G (L =4, S=0)term, 21 belong to °F (L =3, § = 1), five to 'D (L =2, § = 0), nine to °P (L = 1,
S=1),and one to 'S (L =0, S = 0).* The electron spins are parallel for the microstates associated
with the triplet terms, °F and P, and antiparallel for the microstates associated with the singlet
terms, 'G, 'D, and 'S. Within the Russell-Saunders scheme, the total angular-momentum quantum
number J can take valuesof J= L+ S, L+ S—1,|L - S|. For the G term, L =4 and S = 0, which
means there is only a single value of J =4, while for the 3Fterm, L=3and S=1 giveJ=4,3,and 2.

Once the allowable values of L and S are known, it’s possible to identify the lowest-energy
term using Hund’s rules. Hund’s first rule tells us to maximize S as this minimizes electron
pairing that costs energy. This rule tells us that the triplet states, °F and *P, should be lower
in energy than the singlet states, 'G, 'D, and 'S. Hund’s second rule is to maximize L. This
rule tells us that the °F state is lower in energy than the °P state. Hund’s third rule states that
for orbitals which are less than half filled, the ground state J is the smallest possible sum of
L and S: |L — SJ; whereas for orbitals more than half filled, it is the largest possible sum:
|L + S]. The basis of this rule is in the spin—orbit coupling itself, and it may be violated when
the coupling is weak. For the °F state, the lowest-energy term has J = |L — S| = 2, and the
term symbol is >5*'L, = °F, (“triplet-F-two”). The ground-state terms for free transition-
metal ions with partially filled d-orbitals as predicted by Hund’s rules are given in Figure 7.5.

The splitting of the five different sets of degenerate microstates for the V>* ion discussed above
is illustrated on a phenomenological (not to scale) energy diagram in Figure 7.6. Note that
Hund’s rules reliably give the ground-state (lowest-energy) term, but among the excited-state
terms the experimentally observed order does not necessarily match the order they predict.

2 1 0 -1 -2 L S J term
TR I I B RN A
I:H:H:l @ 3 1 2 R
T O A P
l:l ¢ 2 2 0
@0 % % s
@ 2 2 4
TS % %
@3 1 4 R
¢ 2 % %o,

Figure 7.5 The ground-state term symbols for free d” ions with n = 1-9. A representative microstate for
each term symbol is shown on the left.

m,

4 The number of microstates in each term is equal to QL + 1)2S + 1).



252

7.3.3

Optical Materials
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Hund’s first Hund’s second Hund’s third
rule rule rule

Figure 7.6 Interactions that split the degeneracy of a free-ion 2 configuration (energies not to scale).

Correlation Diagrams

The relative energies of the spectroscopic terms developed in the preceding section corres-
pond to the free-ion case where all five d orbitals are degenerate. Once ligands are introduced,
the individual d orbitals no longer have the same energy, as discussed in Section 7.3.1.
Consequently, the free-ion spectroscopic terms discussed above are further split by ligand-
field effects, as shown for the octahedral case in Table 7.4. The labels found in the bottom
row describe the effects of both electron—electron correlations and ligand-field splitting.

We are now ready to properly explain the UV-visible spectrum of [Ti(H,O)e]>* (assuming
perfect octahedral symmetry). There is only one spectroscopic term for a d' ion, the ?D term
(Figure 7.5).> Table 7.4 tells us that a free-ion D term splits into two terms, 2T2g and zEg, in
octahedral coordination. These terms correspond to an electron in one of the #,, orbitals or one of
the e, orbitals, respectively. The T,, — E, transition energy depends on the ligand-field splitting
Acet, as shown in the correlation diagram® in Figure 7.7a. The vertical arrow in this figure shows
the electronic transition responsible for the absorption peak at ~490 nm in Figure 7.3.

The situation becomes more complicated for the ¢ configuration with a free-ion ground-state
term of *F. As we will see in the next section, transitions between states with different spin
multiplicities are very weak and to a first approximation can be neglected. Therefore, we will
only consider the terms that have the same spin multiplicity as the ground state. In the d° case,
the only excited-state term that is also a triplet is *P (Figure 7.6). These two states are shown in
Figure 7.7b. Introduction of the octahedral ligand field splits the *F term into terms T, o 3T2g,
and 3A2g, each with a different occupation of the orbitals that are split by the ligand field. The

> We ignore splitting due to spin—orbit coupling for the sake of simplicity.
© Correlation diagrams of this sort are also called Orgel diagrams.



7.3 Transitions between d Orbitals (d-to-d Excitations) 253

Table 7.4 The splitting of spectroscopic terms of a free ion upon the introduction of an
octahedral ligand field.

Free-ion term S P D F G

Terms in octahedral field Alg Tlg ng + Eg Tlg + T2g+A2g Alg + Eg+T1g + ng

(a) d'ion 9.6
2Eg /
>
2
[0
c 2D
(0]
o,
9
tégeg
Aoct
2
(b) d?ion 8,
g
- 3T 14(P) -
3
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O 3F Ty
2 )
2¢%
TF)
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Figure 7.7 Correlation diagram for (a) a " ion and (b) a @2 ion in octahedral coordination as a function
of Ayer. The vertical arrows show the transitions responsible for the absorption peaks in Figure 7.3. The
high-spin d® and d” correlation diagrams are analogous to the d' and d? diagrams, respectively, but with
different values of S.

3T1g term corresponds to a configuration with two electrons in the #,, orbitals; the 3T2g term
corresponds to one electron in the #,, orbitals and one in the e, orbitals; and the 3A2g term
corresponds to two electrons in the e, orbitals. The 3P free-ion term becomes a T o term in an
octahedral environment (electron configuration #,,!e,!) but is not split by the octahedral crystal
field. These features are captured in the correlation diagram shown in Figure 7.7b. More
comprehensive diagrams called Tanabe-Sugano diagrams must be used to understand transi-
tions between states with different spin multiplicities. We neglect such transitions for now but
will return to them in Section 7.8.5 when we consider the luminescence of d° ions like Mn**.
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Returning to the spectrum of [V(H,0)s]*" (Figure 7.3), we can now assign the absorption
peak at ~570 nm to the 3T1g(F) — 3ng(F) transition, while the absorption at 390 nm arises
from the °T, o(F) — T, o(P) transition. Both are marked with vertical arrows in Figure 7.7b.
The 3T1g(F) — 3A2g(F) transition not only requires UV photons of an even higher energy, it
involves simultaneous excitation of two electrons from the #,, to e, orbitals and would
therefore be exceedingly weak. Experimentally, it is not observed.

It is laborious to work out the correlation diagrams for all d-electron counts. Fortunately,
there are several relationships that simplify the analysis. Firstly, for high-spin ions (Section
5.3.9), the correlation diagram for a d”* ion is analogous to a " ion. Thus, the d ¢ configuration
diagram is identical to the ¢ case, and the ¢’ diagram is analogous to d. Secondly, it can be
shown that a ¢ '°" ion has the same correlation diagram as a d" ion except that all energies of
interaction have the opposite sign. Thus, the d° correlation diagram is just the inverse of the '
diagram, and the d® diagram is the inverse of the ¢ diagram, etc.

Applying these two relationships, we find that the d', d*, d°, and d° configurations all
exhibit a single spin-allowed d-to-d transition, whereas the d 2.d3 d’ andd?® configurations
have three spin-allowed d-to-d transitions (though transitions involving promotion of two
electrons between ,, and e, orbitals are generally not observed). The correlation diagrams
for high-spin d> and d* ions are given in Figure 7.8.

There is one feature in the correlation diagram of a d° ion that has not yet been explained.
Because the T 4(F) and T 4(P) terms have the same symmetry, they mix as A, increases, and
their energies bend away from each other. Table 7.5 gives the absorption maxima and corres-
ponding electronic transition for representative [M(H,O)q]"" ions.

Table 7.5 d-to-d transitions for representative [M(H,0)¢]™" ions.

Absorption Transition Transition
Complex ion max (nm) energy (eV) assignment*
d" [Ti(H,0)]*" 492 2.52 ’T,, — ’E
g g
d? [V(H,0)]*" 561 2.21 T — Tag
389 3.19 Tig — *T14(P)
d? [Cr(H,0)¢** 575 2.16 :Azg - :ng
407 3.05 A Tio(F
265 4.69 4AZ : 4T1§P;
d* [Mn(H,0)¢*" 476 2.60 Eg — “Tag
d® [Fe(H,0)¢** 962 1.29 T,y — °E,
g g
d’ [Co(H,0)]*" 1230 1.00 T — *Tog
515 2.40 *Tiy — *Ti(P)
d® [Ni(H,0)¢** 1180 1.05 iAzg - szg
725 1.71 Az — T1o(F)
395 3.14 PAsg — T 14(P)
d° [Cu(H,0)]** 794 1.56 By — *Taq

* Assuming octahedral coordination. Jahn—Teller distortions are neglected.
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Figure 7.8 Correlation diagram for (a) a d > ion and (b) a high-spin 4 * ion in an octahedral environment.
The d® and d° correlation diagrams are analogous to the d> and d* diagrams, respectively, but with

different values of S.

Correlation diagrams for tetrahedral coordination can be generated by using the
diagram for an octahedrally coordinated d” ion for a tetrahedrally coordinated o'°™"
ion. Consequently, the d' octahedral diagram is equivalent to the d° tetrahedral
diagram and vice versa. The d? octahedral diagram is equivalent to the d® tetrahedral
diagram and so on.

Selection Rules and Absorption Intensity

The intensity of an optical absorption is an important factor for applications. The strength
with which an electronic transition absorbs light is expressed by its molar extinction coeffi-
cient, £max [in L/(mol cm)],” composed of the absorption maximum A, (dimensionless), the
concentration ¢ of the solution (in mol/dm® = mol/L), and the path length of the light,
[ (in cm), according to Beer’s law:

7 The molar extinction coefficient is also referred to as molar absorptivity and molar attenuation coefficient, which is
the term preferred by IUPAC. Reduced to base SI units, L/(mol cm) is equivalent to m*/mol.
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Table 7.6 Typical molar absorption coefficients, £y.y for localized transitions
in transition-metal complexes.

Transition &max, L/(mol cm)
Spin-forbidden <1
Laporte-forbidden, d-to-d centrosymmetric complex 1-20
Laporte-allowed, d-to-d non-centrosymmetric complex 10-1000
Symmetry-allowed charge transfer 1000-50000
A
Emax = max (75)
cl

We can estimate the strength of an electronic transition by considering the following
selection rules. The spin selection rule states that transitions between states of different
spin, S, are forbidden. The basis of this rule lies in the fact that the incident radiation
cannot change the relative orientations of the spins of an electron. Spin—orbit coupling
can relax the spin selection rule, but nonetheless spin-forbidden transitions (AS = 0) are
always much weaker than spin-allowed transitions (AS = 0). This explains the very
weak absorptions and pale colors of complexes and compounds containing high-spin
d? ions.®

The Laporte selection rule states that in a centrosymmetric environment the only allowed
transitions are those between states that have a different parity with respect to the inversion
operation.’ Practically speaking, this means that transitions s — s, p — p, d — d, and f — fare
forbidden for ions in a centrosymmetric environment, whereas s — p, p — d, and d —
[ transitions are allowed. Although MLg octahedral complexes are centrosymmetric, weak
d-to-d transitions are observed because vibrations temporarily remove the inversion center
and relax the Laporte selection rule. However, these d-to-d transitions are much weaker than
fully allowed transitions such as charge-transfer excitations. Approximate values of molar
extinction coefficients for several types of transitions are given in Table 7.6. Revisiting
Table 7.1, we see that few pigments derive their color from d-to-d transitions because these
are relatively inefficient at absorbing light. The few exceptions have transition-metal ions in
non-centrosymmetric environments, like tetrahedral and trigonal-bipyramidal geometries,
where d-to-d transitions do not violate the Laporte selection rule. For gemstones, it is
generally desirable that some light pass through the crystal, hence the light absorption
need not be so efficient and d-to-d transitions are often the source of color.

# You may be wondering how Fe,Oj5 (red ochre) and FeOOH (yellow ochre) could be used as pigments given the d>
configuration of Fe**. It is because the color comes from charge-transfer transitions (Section 7.4.1) rather than from
d-to-d transitions.

 More precisely, transitions between states with a gerade (German for even), g, and an ungerade (German for odd), u,
label are permitted, but g — g and u — u transitions are forbidden.
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Box 7.1 Materials Spotlight: Blue pigments through the ages

The evolution of blue pigments provides an interesting illustration of the intersection
between art, commerce, and science. Until the eighteenth century, ultramarine was the
most highly prized blue pigment. During the Renaissance, it is estimated to have been five
times more expensive than gold, which limited its use to artists with wealthy patrons.
Michelangelo famously used large quantities of ultramarine in his depiction of the Last
Judgment on the altar wall of the Sistine Chapel. Natural ultramarine is obtained by
grinding the semi-precious stone, lapis lazuli, of which the dominant component is the
mineral lazurite, an aluminosilicate with the sodalite structure (Section 1.5.5). The name
ultramarine means “beyond the sea” because the pigment was imported to Europe from
mines in what is now Afghanistan. Pure sodalite, which is colorless, has the composition
NayAl3Si301,Cl. In lazurite, the Cl™ ions, which sit near the center of the sodalite cages
(see Figure 1.57), are partially replaced by S;~, analogous to the ozonide anion O3,
together with smaller concentrations of S,” and S, . Electronic transitions between MOs
belonging to S;~ give rise to the blue color, while contributions from S,” and S; can
shift the color towards yellow or red, respectively [1, 2]. The high cost of ultramarine
made alternative blue pigments, such as the copper-containing mineral azurite, popular
during the Renaissance.

In the early years of the eighteenth century, Prussian blue, FeyFe(CN)g]3-xH,O, was
discovered in Berlin. It can be found in paintings from the Prussian court that date back
to 1710. An Fe’*— Fe’" charge-transfer excitation gives rise to the intense blue color
(Section 7.4.2). Given the scarcity and cost of ultramarine, Prussian blue quickly gained
popularity, becoming the first widely used synthetic pigment. A century later, manufac-
ture of cobalt blue, CoAl,O4, was initiated. Cobalt blue is a normal spinel (Section 1.5.1)
that gets its blue color from d-to-d transitions associated with tetrahedrally coordinated
Co’*. Cobalt blue and other synthetic pigments were instrumental to artists from the
impressionist era, such as van Gogh, Monet, and Renoir. In modern times, copper
pthalocyanine, Cu(C;;NgHi4), has become the dominant blue pigment. Interestingly,
the blue color comes largely from z-to-7* transitions associated with the pthalocyanine
ring rather than from Cu®* d-to-d transitions.

In 2009, researchers at Oregon State University discovered a new blue pigment with
composition YIn;_ . Mn,O;, where the blue color comes from d-to-d transitions of
isolated Mn®* in a trigonal-bipyramidal coordination [3]. The spectra of CoAl,O, and
YInggMng,03 (shown in Figure B7.1.1) are similar in the visible range, resulting in
a vibrant blue color due to absorbed R + G (note the figure shows reflectance spectra,
the opposite of absorbance). In YIn;_,Mn,O3, the trigonal-bipyramidal coordination
splits the Mn>* d orbitals into a 2 + 2 + 1 pattern. The visible absorption peak is due to
a transition from the half-filled and doubly degenerate d,,/d,2_,2 orbitals into the empty
d.2 orbital. In CoAl,Qy, visible light is absorbed by a ‘A, & 4T1(P) transition on the
tetrahedrally coordinated Co®*. Crucially, the transition metal in both materials sits on
a site that lacks inversion symmetry, so the transitions are Laporte allowed.
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Box 7.1 (cont.)
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Figure B7.1.1 The reflectance spectra for YIngsMnj,0; and CoAl,O4 and the d-orbital energies and occu-
pancies for the Mn®" ion in a trigonal-bipyramidal coordination. The absorption (where the reflectance is
minimal) between 500 and 700 nm in YIng sMn,O; arises from an electronic transition from the d.,/d*_,>
orbitals into the empty d.? orbital. Data taken from [4].

In both materials, there are also d-to-d transitions that fall outside the visible range. In cobalt
blue there is a broad *A, — *T,(F) transition centered in the infrared (IR) near 1350 nm, while in
Y1Ing sMng ,05 the d../d,. to d.? transition lies in the near UV. While the strong IR absorbance
of CoAl,Oy4 has little impact on the color, it does lead to absorption of IR light, which can
produce unwanted heating. The reduced IR absorbance in YInggMng 05 is advantageous for
use on roofs and other exterior architectural applications. Unfortunately, the high cost of
indium makes YIn;_,.Mn O pigments costlier than conventional blue pigments.

7.4 Charge-Transfer Excitations

In a charge-transfer excitation an electron is transferred from an MO whose wavefunction is
predominantly associated with a given atom (or group of like atoms) to an MO whose
wavefunction is largely associated with a different atom (or group of like atoms). Transitions
where an electron is excited from a ligand-based MO to a metal-based MO are called ligand-
to-metal charge transfer (LM CT) transitions, while a metal-to-ligand charge transfer (MLCT)
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is in the opposite direction. A metal-to-metal charge transfer (MMCT) refers to the transfer
of an electron from one metal center to a different metal center. Charge-transfer transitions
are fully allowed, with molar extinction coefficients several orders of magnitude larger than
d-to-d transitions (Table 7.6), an attribute that is ideal for a pigment because bold colors can
be realized with relatively small amounts of pigment.

In this section, we take a closer look at LMCT and MMCT transitions. MLCT transitions
that fall in the visible region of the spectrum generally require ligands with low-lying
unoccupied 7* orbitals, such as bipyridine or phenanthroline. These transitions are rare
among pigments and unknown for gemstones, and thus will not be considered here.

Ligand-to-Metal Charge Transfer
A variety of pigments rely on LMCT transitions for their color. Perhaps the best-known
examples are salts of the chromate ion, CrO,*~, such as PbCrO, (chrome yellow). The MO
diagram for a tetrahedral CrO4*~ anion is shown together with the UV-visible absorption
spectrum of its aqueous solution in Figure 7.9. A single absorption peak is centered at
375 nm. Even though it reaches a maximum in the UV, it tails into the visible region,
absorbing the short-wavelength blue light. The remaining green and red light are transmitted
producing the yellow color of chromate (G + R =Y).
The highest occupied molecular orbital (HOMO)-to-lowest unoccupied molecular
orbital (LUMO) transition from the triply degenerate #; set of orbitals to the doubly
2]
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Figure 7.9 A portion of the MO diagram for tetrahedral CrO4>~ (left) along with the UV-visible spectrum
of a dilute (0.001 M) aqueous solution of Na,CrOy (right).
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Table 7.7 Calculated values of the LMCT gap between the #; nonbonding 0 2p HOMO and the
eantibonding LUMO for a series of tetrahedral MO,™ species where M is a d° transition-metal ion [6].

L —e Hh—e 1 —e L —e
Group 5 (eV) Group 6 (eV) Group 7 (eV) Group 8 (eV)
A 4.5 CrO,*~ 3.3 MnO,~ 22
MoO,*~ 5.3 TcO,4 4.3 RuOy 3.1
WO, >~ 6.2 ReO,~ 53 0s0, 4.0

7.4.2

degenerate e set of orbitals is responsible for the 375 nm absorption peak. Recall from
our previous discussion of the MO diagram of a tetrahedrally coordinated transition-metal
ion (Section 5.3.8), that the unoccupied e orbitals are antibonding MOs with significant
Cr 3d,>_,? and 3d.? orbital character, whereas the #, orbitals are nonbonding O 2p orbitals. To
a first approximation, the transition is a transfer of an electron from oxygen to chromium (the
peak at 270 nm is a combination of transitions from lower-lying occupied O 2p ¢, MOs into the
LUMO and transitions from the 7, HOMO into the unoccupied Cr-based ¢, orbitals [5]).

The energy of the LMCT transition for a 3d tetrahedral MO,4"™ anion decreases with increas-
ing oxidation number of the transition metal, which lowers the e set of orbitals towards the
nonbonding oxygen MOs, reducing the LMCT gap (Table 7.7). The CrO,>~ and RuO4>~ ions
absorb blue and are thus yellow (G + R =Y), whereas MnO, absorbs strongly in the green
range and the remaining B + R = M gives a magenta color. The other MO,4"™ anions that contain
4d and 5d metals are colorless because their LMCT transitions fall well into the UV.

The underlying causes of these periodic trends can be understood as follows. The increase in
oxidation state of the central atom, V(V) — Cr(VI) — Mn(VII), increases the effective nuclear
charge felt by the valence electrons, lowering the energy of the metal-based ¢ and ¢, orbitals,
thereby reducing the HOMO-LUMO gap. The second trend is an increase in the LMCT energy
on moving down a group (CrO,*>~ — MoO,*~ — WO,*"). This trend is due to the increase in the
relative sizes of the d orbitals, 3, < r4; < rs;(Section 5.2.3), increasing the overlap of the d orbitals
with the orbitals of the ligands and raising the energy of the antibonding e and #, MOs. Another
contributing factor is the upward shift in the energies of the d orbitals that occurs on moving
down a group (Section 5.2.1). It is useful to remember these trends in d-orbital energies and
metal-ligand mixing as we explore various properties of transition-metal compounds.

Metal-to-Metal Charge Transfer

Blue sapphires and rubies are doped forms of the mineral corundum, Al,O3 (Figure 1.30).
Whereas d-to-d transitions on Cr’* dopants are responsible for the red color of a ruby, iron
and titanium dopants are responsible for the blue color of a sapphire. Corundum doped with
small amounts of titanium is colorless, whereas similar amounts of iron lead to a pale-yellow
color. When both are present, the result is the magnificent deep-blue color of a sapphire. In
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Figure 7.10 A localized view of the MMCT transitions in sapphire, ALO4:Ti*" Fe?" (left), and Prussian
blue, (Fe*)4[(Fe*")(CN)els-xH,0 (x = 14) (right).

sapphires, co-doping by equal amounts of Ti*" and Fe?" maintains charge balance. When they
occupy adjacent six-coordinate sites in the corundum structure (Figure 7.10), it is possible for
the absorbed photon to excite an Fe** + Ti** — Fe** + Ti** MMCT transition.

Because of the differences in molar extinction coefficients, doping levels in sapphires and
rubies are different. At least 1% chromium must be present in corundum before the deep-
ruby-red color appears, whereas the blue color of a sapphire is observed with titanium and
iron concentrations as low as 0.01%. In fact, complete substitution leads to the mineral
ilmenite, FeTiO5 (Figure 5.28), where the charge transfer band is so intense that it absorbs
across the visible spectrum giving FeTiOj its black color.

Prussian blue is another blue compound whose color originates from an MMCT excita-
tion. It is readily prepared by combining aqueous solutions of Fe** and ferrocyanide through
the following reaction:

4[Fe(H,0),)*" + 3[Fe(CN),]* — Fey[Fe(CN),],-xH,0 (7.6)

Prussian blue contains linear Fe**~C=N-Fe*" linkages (see Figure 7.10) that make up
an infinite 3D cubic network. The carbon end of the cyanide group coordinates to a low-
spin d® Fe?* center, while the nitrogen end coordinates to a high-spin d° Fe** center. An
intense Fe?* — Fe** MMCT band centered near 705 nm absorbs visible light with / > 500 nm.
The reflected/transmitted blue and violet light gives the distinctive color of Prussian blue.

Compound Semiconductors

Thus far, our discussions have been limited to electronic transitions that can be described
using a localized picture of bonding. Color can also be realized in systems with delocalized
bond networks, such as semiconductors. Historically, many red, orange, and yellow inor-
ganic pigments have been semiconductors with band gaps that selectively absorb a portion of
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the visible spectrum. Examples include orpiment (As,S3), cadmium yellow (CdS), and
vermillion (HgS). To understand the color in these compounds, we need to take a closer
look at the relationships between color, band gap, and composition.

Optical Absorbance, Band Gap, and Color

As discussed in Section 6.3, in semiconductors a band gap (E,) separates the occupied valence
bands from the empty conduction bands. Semiconductors cannot absorb photons with ener-
gies less than E,, but the presence of continuous bands means that they absorb photons more
energetic than E, over a broad range of wavelengths. Consequently, longer-wavelength light
(hv < Ey) is either transmitted or reflected, while shorter-wavelength light (4v > E,) is absorbed.

The fact that semiconductors absorb light with photon energies exceeding E, limits their
colors (Figure 7.11). The most energetic visible photons have wavelengths of ~400 nm and
energies of 3.1 eV. Semiconductors that have band gaps larger than ~3.1 eV, like ZnS, do not
absorb visible light and are white in color. As the band gap decreases, B is absorbed, and the
reflected G + R = Y. A vibrant yellow is realized in CdS, where E, = 2.4 ¢V. Further
reduction of the band gap gradually leads to the absorption of green in addition to blue, and
the reflected light changes first to orange and then to red (when both B and G are absorbed
equally), as exemplified by HgS with a band gap of 2.0 eV. Further decrease in the band gap
darkens the red color until it becomes black for E, < 1.7 ¢V, and all visible light is absorbed.

By forming solid solutions, it is possible to precisely control the band gap and tune the color.
This strategy has been effectively pursued to make an entire family of pigments amongst solid

wavelength (nm)
350 400 500 600 700
1 1 1 1 1

uv blue green red IR
ZnS (white)
E,=3.6eV
CdS (yellow)
E,=24eV

absorbance (arbitrary units)

~
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E,=1.T7eV

4.0 3.5 3.0 2.5 2.0 1.5
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Figure 7.11 Simulated absorbance profiles of four different semiconductors. The curves are offset along
the y axis for clarity. The vertical gray lines bracket the range of the visible portion of the spectrum.
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solutions formed between CdS (E, = 2.42 eV) and CdSe (E, = 1.73 eV). The colors of these
pigments range from yellow over orange to red and finally black. Although cadmium-based
pigments have many desirable characteristics, their use has declined due to concerns surround-
ing the toxicity of cadmium. This has spurred efforts to find non-toxic inorganic red, orange,
and yellow pigments to replace the lead and cadmium compounds. Candidates that have been
proposed include the orange Cag sLagsTaO; sN; 5 [7] and the red Ce,S; [8].

The abruptness of the upturn in absorbance once /v > E, depends in large part on whether
a semiconductor has a direct or an indirect band gap (Section 6.3.2). The absorption coefficient,
a, for a direct band-gap semiconductor is proportional to (hv — Eg)” 2, whereas for an indirect
band-gap semiconductor a is proportional to (fv — Eg)z. Because v — E, < 1 near the band gap,
its square root rises sharply upon increasing /v, and a direct band-gap semiconductor has a much
sharper absorption edge than a comparable indirect band-gap semiconductor.

Electronegativity, Orbital Overlap, and Band Gap

While silicon remains the dominant material for electronic applications, elemental semicon-
ductors have significant limitations when it comes to optical and optoelectronic applications.
In addition to covering a limited range of band-gap energies, silicon and germanium both
possess indirect band gaps. Therefore, it is important to understand how the electronic band
structures of compound semiconductors differ from those of elemental semiconductors that
were previously discussed in Section 6.6.3.

The sphalerite-type (zinc blende) structure (Figure 1.32) of GaAs is an ordered variant of
the diamond network of Ge (Figure 1.37). The band structure of GaAs (Figure 7.12) has
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Figure 7.12 The band structure of GaAs (left) together with the partial density-of-states (PDOS) plot
showing the individual contributions of Ga and As.
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much in common with that of Ge (Figure 6.28), but there are also differences important
for applications. GaAs has a larger band gap (1.4 eV versus 0.7 eV), and the conduction-
band minimum is located at the I" point. This means GaAs is a direct-gap semiconductor,
unlike Ge.

The increase in band gap comes from the difference in electronegativity between Ga and
As, which introduces ionic character into the bonding. This can be seen in the PDOS plot
shown on the right-hand side of Figure 7.12. The more electronegative arsenic makes a larger
contribution to the valence bands, while gallium makes a larger contribution to the conduc-
tion bands. If we further increase the electronegativity difference by going to ZnSe, the band
gap increases to 2.6 eV.

The band gaps of several semiconductors are shown in Table 7.8. As we move down the
periodic table (e.g. AIP — GaAs — InSb), the interatomic distance increases and the band
gap decreases. This effect arises from decreased orbital overlap, which makes the valence
bands less bonding and the conduction bands less antibonding. When we increase the
horizontal spacing of the two main-group elements (e.g. Ge — GaAs — ZnSe), the bond
distance remains reasonably constant, but the bond becomes more ionic, and, because the
more electronegative element makes a larger contribution to the valence band, its energy is
lowered. The opposite occurs for the conduction band, and the band gap increases. This type
of manipulation, sometimes referred to as band-gap engineering, plays an important role in
designing materials for many electrical and optical devices, including light-emitting diodes
(Section 7.9.1).

Table 7.8 Bond distances and optical band gaps, both direct (d) and indirect (i), for some sp®
semiconductors.

Elemental semiconductors I11-V Semiconductors II-VI Semiconductors
Bond Band gap Bond Band gap Bond Band gap
distance (A) (eV) distance (A) (eV) distance (A) (eV)

AP 237 2.43 (i)
Si 2.35 1.11 () AlAs 245 2.16 (i)
AlISb  2.66 1.52 (i)
GaP  2.36 2.26 (i) ZnS 2.34 3.6 (d)
Ge 244 0.67 (i) GaAs 2.45 1.43 (d) ZnSe 2.45 2.58 (d)
GaSb 2.64 0.72 (d) ZnTe 2.64 2.25(d)
InP 2.54 1.35(d) Cds* 2.52 2.42 (d)
snt 281 ~0.0 InAs 2.62 0.36 (d) CdSe* 2.63 1.73 (d)
InSb  2.80 0.18 (d) CdTe 2.81 1.50 (d)

*Adopts the wurtzite structure, the bond distance given here is an average. TThis refers to the a-Sn allotrope (also
called gray tin) that is isostructural with diamond and whose band gap is very small. Most sources describe o-Sn as a zero
band-gap semiconductor (a semimetal) [9].
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Conjugated Organic Molecules

While many organic substances are colorless, those containing a conjugated network of
77 bonds are an important exception. The z-to-7* transitions responsible for absorption of
visible light are allowed, and their molar absorption coefficients are high. Another attractive
feature is the ability to tune the energy of the 7z-to-7* transitions by changing the functional
groups on the periphery of the molecule. As we move through the book, we will see that
conjugated organic molecules make a disproportionately large contribution to the field of
functional organic materials.

Two historically important organic molecules used in dyes and pigments are shown in
Figure 7.13. Alizarin is the molecule that gives a red color to the dye extracted from the root
of a madder plant. This dye was widely used for centuries and is responsible for the color of
the “redcoats” worn by British soldiers until the early twentieth century. The color of this dye
can be captured in a pigment called madder lake by grinding it with an insoluble inorganic
substance, such as alumina. Indigo is another molecular substance from plants that has long
been used as a dye. It is most closely associated with the color of blue jeans. Today,
synthetically manufactured alizarin and indigo dyes have largely replaced dyes extracted
from plants.

Among the simplest conjugated aromatic molecules are the acenes, which are linearly
fused benzene rings. Benzene and the first four acenes are shown in Figure 7.14. The
electronic structure and MOs associated with the delocalized 7 network in benzene was
described in Section 5.3.7. Consider the six benzene n/7* MOs in Figure 5.19. As the
energies of the MOs increase, there is an increase in the number of nodal planes and
a progressive shift from nearest-neighbor interactions that are bonding to those that
are antibonding. In benzene and many other conjugated organic molecules, the MOs
with net bonding character are filled, while those with net antibonding character are
empty.

We can extend the same principles to the larger acenes. As with benzene, each
carbon atom contributes one 2p orbital to the 7 network, consequently, the number
of 7 MOs is equal to the number of carbon atoms. The number of nodal planes in the

OH

OH \
N
Coy o<
(6]
O H
alizarin, C,4,HgO, (red) indigo, C45HgN,O (blue)

Figure 7.13 The molecular structures of alizarin and indigo.
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Figure 7.14 The HOMO-LUMO gaps, A, for benzene and the first four acenes.

HOMO increases from two in benzene (see Figure 5.19), to three in naphthalene, four
in anthracene, five in tetracene, and so on.'” Although benzene is colorless with a large
HOMO-LUMO gap (A = 4.69 eV), the gap decreases as the size of the 7 network
increases. When we reach tetracene, the lowest-energy n-to-7* transition has shifted
into the visible range, absorbing much of the blue and some green light, leading to an
orange color. The HOMO-LUMO gap shifts even further into the visible in pentacene,
leading to a dark-red coloration. This trend continues as the size of the 7 network
increases, until we reach the infinite network found in graphene where the band gap
goes to zero (Section 6.5.1). While the acenes are not used as pigments or dyes, they
form an important class of organic conductors.

The planar porphyrin macrocycle (Figure 7.15, left) is the chromophore responsible
for the color of important biological molecules such as chlorophyll. Of the related
phthalocyanines (Figure 7.15, right), copper phthalocyanine-based pigments make up
the largest class of commercial organic pigments. They are non-toxic, inexpensive,
strongly absorbing, thermally stable up to 300 °C, and do not fade appreciably after
extended exposure to light. Although we often associate the color blue with Cu®" salts,
here it is the 7z-to-7* transitions of the phthalocyanine rather than Cu d-to-d transitions
that are largely responsible for the color, as demonstrated by the fact that zinc and
magnesium phthalocyanine are also blue.

19 Here we include the nodal plane that lies in the plane of the molecule.
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metal porphyrin phthalocyanine blue, Cu(C3,NgH )

Figure 7.15 A generic metal porphyrin molecule (left) and the copper phthalocyanine molecule (right).

Luminescence

Luminescence describes processes in which materials called phosphors'' are used to convert
various forms of energy into electromagnetic radiation, typically in the UV, visible, and IR
regions of the spectrum. Luminescent materials appear in a wide range of applications
including lighting, display technology, medical imaging, and radiation detection. The most
familiar form of luminescence is photoluminescence, where electrons are excited by absorp-
tion of light that is subsequently reemitted at a different wavelength. Other forms of
luminescence exist, depending on the source of energy used to excite electrons.
Electroluminescence is the direct conversion of electrical energy into light. This type of
luminescence, which is the basis for light-emitting diodes, is discussed in Section 7.9.
Cathodoluminescence occurs when a phosphor is exposed to a beam of electrons accelerated
by an electric field. Mechanical energy can also act as the input that leads to luminescence.
Examples include: triboluminescence, where fracturing materials leads to the emission of
light; piezoluminescence, which is triggered by the deformation of matter; and sonolumines-
cence, where ultrasonic waves are converted to light. Luminescence can originate from
chemical (chemiluminescence) or biochemical (bioluminescence) reactions when the products
formed are in electronically excited states.'> Thermoluminescence occurs when heat activates
electrons trapped in excited states, allowing them to relax in a radiative manner to the ground
state. Thermal stimulation of luminescence is a more accurate description of this process, since
the initial excitation and trapping of electrons is caused by interaction with either visible or
UV light (afterglow phosphors) or high-energy photons like X-rays and/or y-rays (storage
phosphors).

" Phosphor is Greek for “light bearer”. The element phosphorus shares the same root because white phosphorus is
chemiluminescent when slowly oxidized.

12 One of nature’s best-known examples of bioluminescence is the firefly (Photinus pyralis), which emits 560 nm light
through an enzyme-catalyzed oxidation of luciferin to oxyluciferin.
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Photoluminescence

We begin our treatment of photoluminescence with the definitions of some commonly
encountered terms. In most instances, the absorbed photons have a higher energy than
those emitted, and the overall process is called down-conversion photoluminescence. In
some phosphors, multiple photons of light are absorbed and a higher-energy photon emitted
through a process called up-conversion photoluminescence. The quantum efficiency of
a phosphor is defined as the ratio of the number of emitted photons to the number of
absorbed photons. If the electronic transition that leads to emission is a spin-allowed
transition (AS = 0), the process is called fluorescence. If it is a spin-forbidden transition
(typically AS = 1), it is called phosphorescence. The decay times'* associated with fluorescence
range from 10~'" s to 107® s, while phosphorescence has much slower decay times that range
from 10~ s to 1072 s. Persistent phosphors, such as SrAl,O, doped with Eu?" and Dy*", emit
light for hundreds of seconds after the excitation source is turned off, but this does not
involve spin-forbidden transitions. Instead, this afterglow is the result of photoionization,
where incoming photons ionize a site (typically a cation) in the lattice, and the ionized
electron is trapped by anion vacancies from which it later escapes via thermal stimulation
(i.e. thermoluminescence). Nevertheless, this process is sometimes described in the literature
as phosphorescence.

The different electronic transitions that accompany luminescence can be summarized in
a Jablonski diagram (Figure 7.16). Following absorption of a photon, an electron is pro-
moted from the singlet ground state to a singlet excited state. Non-radiative internal conver-
sions or relaxations into the lowest-energy singlet excited state occur at rates faster than 10
per second. The next step is often emission of fluorescent photons as the electron returns to
the ground state at rates of 10'! to 10® per second. An alternative pathway is non-radiative
intersystem crossing (ISC) from an excited singlet state to a triplet state. From here, phos-
phorescence back to the singlet ground state will occur at rates of 10° to 10 per second, five
to six orders of magnitude slower than fluorescence. Yet another pathway, not shown in
Figure 7.16, is a non-radiative return to the ground state, an undesirable process that
competes with luminescence.

Components of a Phosphor

In the most general sense, a phosphor consists of three components: sensitizers, which are
sites where incoming photons are absorbed; activators, which are sites where photolumines-
cence occurs through radiative relaxation of electrons; and a host, in which both sensitizers
and activators are embedded, as illustrated in Figure 7.17. In some phosphors, the sensitizer
and the activator are the same ion; when this is not the case, an efficient mechanism for

13 The decay time is the time for a steady-state luminescence intensity to decay to 1/e ~ 36.8% of its original value.
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Figure 7.16 A Jablonski diagram illustrating the electronic transitions that can occur in a phosphor after
absorption of a photon.
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Figure 7.17 The components of a phosphor.

energy transfer from the sensitizer to the activator is needed. Phosphors where the host acts
as sensitizer and activator are called self-activating phosphors.

The host is important for a variety of reasons. It determines the local coordination
environment of the sensitizer and the activator, which play an important role in determining
the wavelengths of the absorbed and emitted light. The energy and nature of the vibrations in
the host impact the probability that excited-state electrons will return to the ground state
radiatively. Finally, the host must possess a band gap large enough to allow the incident light
to reach the sensitizers and the emitted light to escape the phosphor.
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Radiative Return to the Ground State

The energy difference between absorbed and emitted photons with frequencies vey. and vep,
respectively, is referred to as the Stokes shift:

Estokes = Eexec — Eem = hvexc - hvem (77)

In down-conversion phosphors, the absorbed photon has a higher energy than the emitted
photon, and the Stokes shift is positive. In most cases, the energy difference is converted to
thermal energy via lattice vibrations. Coupling between electronic and vibrational energy,
which we will hereafter refer to as vibronic coupling or electron—phonon coupling, is an integral
part of the process and must be included in any treatment of luminescence.

Parabolic potential-energy curves are used to describe the ground and excited electronic
states in the configurational coordinate model shown in Figure 7.18. In this depiction, Q is
a configurational coordinate used to describe a specific vibrational mode of the luminescent
center. In an approximate sense, we can think of Q as representing a bond distance between the
activator and the ligands that surround it. The horizontal lines or “rungs” represent vibrational
states. They are quantized and span a range of values on the horizontal axis due to the dynamic
expansion and contraction of the bonds associated with the relevant vibrational mode.

The coordinates Q, and Q. represent the equilibrium metal-ligand distances in the ground
and excited state, respectively. Absorption of a photon excites an electron into a higher-lying

ground excited
state state

>
>
o
c
o
=4
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n= N /
0N
Q, Q.

Figure 7.18 Configurational coordinate diagram where Q, and Q. represent the equilibrium bond
distance of the ground and excited states, respectively. The accessible absorption and emission transitions
are shown with vertical arrows, bold arrows signify the most intense transitions.



7.8 Photoluminescence 271

electronic state that will, in general, have more antibonding character than the ground state,
leading to a weakening of the chemical bond. Consequently, the equilibrium bond length of
the excited state will be larger than in the ground state (Q. > Q,). As we will see, the resultant
shift in equilibrium bond distance, AQ = Q. — Q,, is closely coupled to many important
characteristics of the luminescence.

If we assume the vibrational motion to be harmonic,'* the energies of the allowed
vibrational states are those of a quantum harmonic oscillator:

1
E, - (n + 5) o (7.8)
where n = 0, 1, 2, 3, ..., and o is the angular frequency of the oscillator."” At room

temperature (and below), the lowest-energy vibrational state is typically the most highly
populated state and is centered at O, (the center of the n = 0 rung). Therefore, most electronic
excitations originate from this position. The wavefunctions for the excited vibrational states
tend to peak at values of Q that are close to where the rung meets the parabola, not unlike the
way a pendulum spends more time at the turning points than it does at the bottom of'its arc.

According to the Franck—Condon principle, electronic excitations occur on timescales much
faster than vibrations. Optical transitions are therefore depicted as vertical lines in Figure 7.18,
representing no change in bond length upon absorption or emission of a photon. The bold
vertical arrow labeled E.. corresponds to the optical excitation that has the maximum
intensity. It goes from the center of the » = 0 rung on the ground-state parabola, where the
ground-state wavefunction has maximum probability, to a point where the n’ = 2 vibrational-
state wavefunction has a high probability (i.e. near the intersection of the »’' = 2 rung and the
excited-state parabola). This transition will be more intense than transitions to other excited
vibrational states, because their wavefunctions reach their highest probabilities at more distant
values of Q. Although the n = 0 to n’ = 2 transition has maximum intensity, less-intense
transitions to other states, shown with gray vertical arrows in Figure 7.18, can also occur.

Once in the excited state, the electron rapidly relaxes to the ground vibrational state
(n' = 0) via electron—phonon coupling. From this state, it can return to the ground electronic
state through emission of a photon, following the same principles that govern absorption.
The vertical arrow labeled E.,, corresponds to the optical emission that has the maximum
intensity. Following emission of a photon, the electron returns to the original ground state
through further coupling to lattice vibrations. Thus, we see that electron—phonon coupling in
both the excited- and ground-state parabolas is the origin of the Stokes shift.

The magnitude of AQ in Figure 7.18 gives a measure of the changes in chemical bonding
that accompany promotion of an electron into an excited state. This change is captured by

% The harmonic approximation requires that the restoring force, F, is proportional to displacement, AQ; F= —kpAQ,
where kis a force constant, resulting in a parabolic potential-energy curve, E = Yak AQ?.

15 The angular frequency of a simple two-body harmonic oscillator is defined as = (kp/u,)"?
constant and g, = (m;m,)/(m; + m,) is the reduced mass of the oscillator.

where k- is the force
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the dimensionless Huang—Rhys parameter, S, which is proportional to (AQ). Under weak
electron—phonon coupling (say, S < 1), the shift AQ of equilibrium bond distances between
the ground and excited states is small. That is the case for electronic transitions between
4f orbitals, because the 4f orbitals have minimal interactions with the ligands and therefore
little impact on the bond distances. In the AQ = 0 limit, the ground-state vibrational
wavefunctions for both parabolas have maxima at the same value of Q. In this limit, the
absorption and emission spectra will consist of single lines called zero-phonon lines, and the
Stokes shift will be zero. For small, yet non-zero AQ, a small Stokes shift and narrow
absorption/emission lines occur. Large AQ indicates strong electron—phonon coupling
(S > 5). This happens when the excited electronic state has very different bonding character
than the ground electronic state. Activators from the p block of the periodic table (e.g. Pb>*,
Bi**) or oxyanions (e.g. VO,*~, WO,>") often fall in the strong-coupling regime. Because of
the large AQ, the ground vibrational state of the lower parabola (n = 0) has substantial
overlap with several excited vibrational states on the upper parabola, leading to a broad
absorption band. For similar reasons, the emission bands will also be broad. Large AQ also
leads to considerable vibrational relaxation following both absorption and emission, which
makes for a large Stokes shift.

Not surprisingly, absorption and emission spectra change with temperature due to
changes in the thermal population of different vibrational levels on both parabolas.
Whereas at very low temperatures the fine structure of absorption and emission spectra
can be resolved, broadening occurs at higher temperatures, which can result in unresolved
absorption and emission bands.

Thermal Quenching

We now consider undesirable non-radiative processes that offer the excited electron alterna-
tive paths to the ground state. One of the most important is thermal quenching, which refers
to the process of electrons returning to the ground state by dissipating energy through lattice
vibrations. Consider the configurational coordinate diagrams in Figure 7.19, which depict
small and large AQ. The energy difference between the ground vibrational level in the excited
state and the energy where the two parabolas cross is denoted as AE. When AQ is large, the
two parabolas cross at a relatively low energy and AE is small. In this case, vibrational levels
close to the crossing point will have non-negligible populations at modest temperatures,'®
allowing electrons to cross over from the excited-state parabola to the ground-state parabola
where they can return to the ground state non-radiatively through coupling with lattice
vibrations. When AQ is small, however, the curves cross at much higher energies, and the
vibrational states that lie at or above the crossing point only acquire non-negligible

16 The population of vibrational states is given by a Boltzmann distribution, where the probability of being in an

excited state whose energy is £ above the ground state is proportional to e #*7, where the thermal energy is given by

kT, with k = 1.380649%1073 J/K. For a temperature of 300 K, k7 = 0.0258 eV.
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Figure 7.19 Configurational coordinate diagrams for small (left) and large (right) AQ. The parameter
AE represents the energy between the ground vibrational state of the excited electronic state and the
energy where the parabolas cross.

populations at high temperatures. In such cases, thermal quenching at room temperature or
below tends to be minimal.

Even in cases where AQ = 0, thermal quenching can still occur if the energy difference
between ground- and excited-state parabolas is small. In such cases, the electron can return
directly to the ground-state parabola through a process called multi-phonon emission, where
the lost electronic energy generates several high-energy phonons in the surrounding lattice.
As a rule of thumb, multi-phonon emission becomes significant when the energy of the
highest-energy phonon mode, E = hvy,,, exceeds roughly 20% of the electronic energy
difference between the ground vibrational states of the two parabolas. This is a common
non-radiative decay pathway for many rare-earth ions,

The thermal-quenching temperature, 7' », is the temperature at which a phosphor loses 50% of
its emission intensity with respect to an arbitrarily defined base temperature. High values of 77/,
are desirable, and in many industrially relevant phosphors it is greater than 100 °C (for base
temperature = room temperature). Phosphors with high 773/, usually have stiff hosts to limit
expansion of bond distances in the excited state and keep AQ small. If the lattice softens,
AQ increases and AE decreases, making non-radiative return to the ground state more probable.

To illustrate the importance of the “stiff” host on thermal-quenching behavior, consider
the ordered double perovskites, Ba,M(W,_,U,)Og, with M = Mg>*, Ca**, Sr**, and Ba**.
The UOg, entity acts as both sensitizer and activator. An O 2p — U 64 LMCT transition is
responsible for light absorption, and AQ is large since the uranium-centered octahedra will
expand and distort when the excited-state antibonding orbitals are populated. This expan-
sion will compress the M—O bonds of the coordination octahedra that alternate with the
UOg)» octahedra. As the size of the M?* cation increases, the M—O bonds lengthen and
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become softer, and this leads to an increase in AQ that is estimated to be 2% for M = Ca’",
6% for Sr**, and 9% for Ba>", with respect to the AQ of Ba,Mg(W;_,U,)Og. This softening
leads to a decrease in T, values (referenced to a base temperature of 4 K) from 350 K in
Ba,Mg(W,_,U,)Oq to 310 K (M = Ca*), 240 K (Sr**), and 180 K (Ba**) [10].

Lanthanoid Activators

Lanthanoid ions are an important class of activators and can be divided into two categories.
When the optical transitions are between different 4f states, the absorption and emission
lines are very narrow, as expected in the weak coupling limit, and these activators are called
line emitters. When they involve 4/-to-5d transitions, the excited-state 54 wavefunctions have
substantial ligand character, leading to an increase in AQ that broadens the excitation and
emission transitions into bands. Lanthanoid activators of this type are called band emitters.
The absorption and emission energies of line emitters are relatively insensitive to their
surroundings, while those of band emitters can be altered by modifying the chemical
surroundings of the activator ion.

We start with line emitters. The lanthanoid elements have a strong preference for the 3+
oxidation state with a [Xe]df™ electron configuration (Table 7.9), but some can also take
either a 2+ or a 4+ oxidation state, particularly when it leads to an empty (Ce*"), half filled
(Eu*", Tb*"), or completely filled (Yb*") 4f subshell. To understand the energy levels of partially

Table 7.9 Ground-state electron configurations of lanthanoid ions.

Electron Ground-state Electron Ground-state

Z Element Ton configuration  term Ion configuration term
57 Lanthanum La** [Xe]4f° 'S,

58 Cerium ce** [Xep/! 2Ey) Ce*t [Xepls® 1S,
59 Praseodymium pr** [Xel4f? SH, Pr*t [Xelds! 2Ey)
60 Neodymium Nd** [Xe4f? Top

61 Promethium* Pm** [Xe]df* 3,

62 Samarium Sm>* [Xe4f> “Hy/, Sm*"  [Xelf® F,
63 Europium Eu** [Xe]df® "Fy Eut  [Xeldf’ 83
64 Gadolinium Gd** [Xel4f” 83,

65 Terbium Tb** [Xe]4f® "F To*  [Xeldf”’ 83,
66 Dysprosium Dy** [Xel4f? °H, s

67 Holmium Ho™* [Xedf'© g

68 Erbium Er** [Xep/!! Ty

69 Thulium Tm** [Xep/ 2 H,

70 Ytterbium Yb3* [Xeldf 3 2Eop Yb*r [XeJdf 4 1S,
71 Lutetium Lu®* [Xeldf 4 1S,

*Promethium does not occur naturally. It is radioactive and its longest-lived isotope, '**Pm, has a half-life of 17.7 years.
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filled 4f orbitals, we need to return to the microstates described by term symbols first introduced
in Section 7.3.2. The orbital angular-momentum quantum numbers L can vary from 0 to 6, while
the spin angular-momentum quantum numbers can vary from 0 to 7/,. The possible number of
microstates is large and can be calculated with the expression 14!/[n,!(14—n,)!], with n,being the
number of f-electrons present. Using this expression, we find 3432, 364, and 14 possible micro-
states for the Gd** (f7), Nd** (1), and Ce** (") ions, respectively.

The interactions that split the 4flevels are spin—spin, spin—orbit, and orbit—orbit coupling,
which are considerably stronger for the lanthanoids than for the 3d transition-metal ions.
Conversely, the crystal-field splitting is much smaller than it is for the 3d ions due to the
limited radial extension of the 4f orbitals. We therefore concentrate on the effects of
interelectron coupling, and only afterwards allow energies to be shifted by crystal-/ligand-
field perturbations. The close similarity of the optical spectra of free lanthanoid ions and
those in compounds supports the validity of this approach.

In the 1960s, Dicke and co-workers analyzed optical spectra for Ln** ions in LaCl; single
crystals and determined energy levels of the various terms, producing what have come to be
called Dieke diagrams. The term symbols used in these diagrams are derived using
the Russell-Saunders coupling scheme (Section 7.3.2). It is now generally accepted that
the coupling is intermediate between the two limiting cases of Russell-Saunders and
J—j coupling, and high-level calculations are needed to determine the relative order of the
terms [11]. Nonetheless, the Russell-Saunders coupling scheme provides a reasonable
approximation of the multielectron energy levels. For example, the ground state of any
lanthanoid ion can be correctly predicted using Hund’s rules.

As an example, consider the excitation and emission spectra of Eu**. The electronic ground-
state configuration of Eu’" is [XeJ4/®. Applying Hund’s rules (Section 7.3.2), we determine that
the ground state has S = 3 and L = 3, which combine into a ’F term. The possible J values for
the ’F term are the integers between L + S =6 and |L — S| = 0, and Hund’s third rule tells us that
the energy increases as J increases, as shown in Figure 7.20. An £ ion has 3003 microstates that
can be grouped into 295 distinct >**' L, terms, which makes determining the excited-state
energies challenging. Fortunately, the photoluminescence of Eu** activators can be understood
from a relatively small subset of the total number of excited states. The relevant transitions are
shown on the left-hand side of Figure 7.20. Optical excitation is largely through spin-forbidden
transitions from the "F,, ground state into various low-lying quintuplet states (S = 2), as well as
LMCT transitions from the surrounding anions to empty Eu 5d orbitals, which are typically
excited by photons with wavelengths in the 200-300 nm range. The excited-state electrons
rapidly relax to the lowest-energy quintuplet state *Dy, then undergo phosphorescence to return
to one of the ’F, states. Because the spin—orbit coupling is relatively strong, the energies of the
various 'F; states are well resolved. The energies of the D, — ’F, transitions in Eu®*
phosphors are relatively insensitive to their local environment. However, you can see a series
of closely spaced sharp lines associated with each °D, — 'F transition caused by subtle crystal-
field splitting effects (Figure 7.20).
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Figure 7.20 The term scheme and separation of energy levels for a free Eu*" ion (left), and the emission
spectrum of Y,O5:Eu**, a commercial red phosphor used in fluorescent lights (right). Data are taken from
ref [12].

The color of Eu" emission can vary from orange to red, depending upon the host. This
happens because the intensities of the different *Dy — F, transitions are highly sensitive to
the local symmetry of the Eu®* ion. When Eu®" is located on a site with inversion symmetry,
optical transitions other than those where AJ = 0, 1 violate the parity selection rule'” and
are very weak. Only the Dy — "F; (with AJ = 1) at A = 592 nm does not violate the
parity selection rule, hence the emitted light takes on a reddish-orange color. In hosts
where the Eu" sits on a site without inversion symmetry, such as Y,0;:Eu’", crystal-field
components mix states of opposite parity into the 4/” configurational levels and the Dy — 'F,
(~614 nm) emission gains significant intensity (see Figure 7.20).'® This results in a deeper-red
emission, which is generally a desirable attribute in commercial phosphors. This example
shows that even though the energies of individual f~to-f'transitions are only weakly perturbed
by the environment of the activator ion, their relative intensities can be greatly influenced by
the local structure imposed by the host.

17 The J = 0 — J = 0 transition is also forbidden by the parity selection rule even though AJ = 0.

18 fto-f transitions that don’t violate the parity selection rule, like Dy — "F,, are referred to as magnetic-dipole
transitions. Those that do violate this rule, like Dy — F,, are called forced electric-dipole transitions. Y,O3 of
space group Ia3, has two different cation sites: 85 of site symmetry —3 and 244 of site symmetry 2. Forced electric-
dipole transitions with significant intensity are only seen for the latter.
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Now to band emitters. The energies of the empty 5d orbitals are sensitive to changes in the
chemical environment of the activator ion, because the 54 orbitals form antibonding orbitals
with anions of the host. The presence of antibonding character in the excited state results in
an expansion of the metal-ligand bond lengths with respect to the ground state. The increase
in AQ leads to a variable Stokes shift, higher rates of thermal quenching, broadening of the
absorption and emission bands, and the ability to tune excitation and emission spectra
through the appropriate choice of host. The two most important lanthanoid band emitters
are Ce** and Eu®*, which feature [Xeld/' « [Xe]4/°5d" and [Xeldf” — [Xe]4f°5d" transi-
tions, respectively. These transitions are fully allowed and give rise to strong absorption and
emission bands, which can in turn lead to highly efficient phosphors. Here we concentrate on
Ce’* because the 4/ electron configuration simplifies the analysis.

The 41" ground-state term of Ce*" is split by spin—orbit coupling into two levels, *Fs, and
2F5), separated by 0.25 eV. The energy separation between the 4f" ground state and the
empty 5d orbitals is ~6.3 eV for a free Ce*" ion. This energy separation can be significantly
reduced when the Ce®* ion is embedded in phosphor hosts, through two effects—a centroid
shift and crystal/ligand-field splitting of the 5d orbitals—as illustrated schematically in
Figure 7.21. Given the importance of these two effects in designing new phosphors, we
examine each separately.

The centroid shift is the downward shift in the average energy of all five 5d orbitals relative
to a free Ce>* ion. The decreased 5d-to-4f separation is attributed to a reduction in electron—
electron repulsions due to delocalization (spreading out) of the excited-state 54 Ce>* orbital
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Figure 7.21 Schematic energy-level diagram for Ce**, showing the combined effects of the centroid shift
and crystal/ligand-field splitting in lowering the energy of 4/-to-5d transition.
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Table 7.10 The centroid shift for Ce>* doped into various inorganic hosts grouped
according to anions that surround Ce®* in the host. Data taken from ref. [13].

Centroid shift (eV)

Compound type Number Minimum Maximum Median
Fluorides 25 0.54 0.91 0.70
Chlorides 17 1.61 1.89 1.84
Bromides 9 1.92 2.21 2.11
Todides 4 2.36 2.84 2.67
Oxides (polar covalent)* 75 0.88 1.99 1.30
Oxides (ionic)T 3 1.97 2.59 2.27
Sulfides 4 2.61 2.98 2.80
Selenides 2 3.00 3.21 3.11

*Oxides where the “anionic” portion of the host contains a p-block element that forms
polar-covalent bonds to oxygen, such as P, B, Si, or Al. TOxide hosts with low-
electronegativity cations (CaO, La,03, LaLuO3) comparable to ce*™.

wavefunctions onto the ligand orbitals through its interaction with them."” For Ce®*, the
magnitude of the centroid shift ranges from approximately 0.5 to 3.2 eV, depending on its
neighboring atoms. Dorenbos [13] has examined the centroid shift for Ce®>* doped into more
than 130 different inorganic hosts, and his results are summarized in Table 7.10. Various
factors come into play, including the anion polarizability, the coordination number, and the
bond distances. Of these, the anion polarizability (softness of its electron cloud) is one of the
most important factors. While there is a range of centroid shifts for hosts containing each
type of anion, Table 7.10 shows a clear increase in the centroid shift as anion polarizability
increases (hence electronegativity decreases): F~ < CI” < Br~ <1~ and O*~ < §°~ < Se”".
Notice in Table 7.10 that ionic oxides differ from hosts where oxygen forms polar covalent
bonds to p-block elements, as found in phosphates, borates, silicates, and aluminates. Among
these, the centroid shift varies over a wide range. The spread occurs because the electron density
on oxygen is shifted toward the p-block element. This increasingly covalent bonding engagement
of oxygen reduces its polarizability towards the Ce**. Accordingly, the centroid shift decreases as
the weighted average electronegativity of non-oxygen atoms in the undoped host, y,,, increases:

JUZi
Xay = zz::nZ (7.9)

where z; and y; are the charge and electronegativity of the non-oxygen atoms 7, and »; is their
stoichiometric quotient in the empirical formula of the host [13].

19 The origins of the centroid shift are similar to those of the nephelauxetic (cloud expanding) effect used to understand
the optical spectra of transition-metal complexes. For more details see C.K. Jorgensen, “Modern Aspects of Ligand
Field Theory” (1971) North-Holland.
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Consider the behavior of Ce** doped into YPO,4 and YAIO; hosts. In YPOy, the weighted
average Allred—Rochow electronegativity of the non-oxygen atoms is ya.y = (3xy + Syp)/8 =
1.70, and the centroid shiftis 1.19 eV. For YAIOs3, yay = Bxy + 3xa1)/6 = 1.29 and the centroid
shift is 1.60 eV. The highly covalent P-O bonds of the phosphate groups in YPO, reduce the
polarizability of the oxygen atoms towards Ce", leading to a smaller centroid shift.

Ligand-field splitting of the 5d orbitals is the second factor that affects the energies of the
4f-to-5d transitions. The magnitude of the ligand-field splitting depends primarily upon the
coordination geometry (Figure 7.2) and bond distances. Hosts with larger anions tend to have
longer bond distances and thus smaller ligand-field splitting.”” The effects of coordination are
illustrated by the differences between a Ce** ion in an octahedron and a cuboctahedron. Both
share the same symmetry (m3m), and the 54 orbitals split into the familiar trg (dyy, d,-, d.-) and
ey (d.?, d,>_,?) sets in both environments. Within the assumptions of crystal-field theory (Section
7.3.1), the t,—¢, splitting in a cuboctahedron is only 50% of its value in an octahedron, A., =
0.5A,. A larger splitting increases the energy spread of the 5d orbitals (Figure 7.21), thereby
reducing the energy separation between the 4f orbitals and the lowest-energy 5d orbital(s).
Hence, all other things being equal, an octahedrally coordinated activator will absorb and emit
light at longer wavelengths than the same activator in a host where its environment is
a cuboctahedron. Empirically, it has been shown [14] that crystal-field splitting for eight-
coordinate cube and dodecahedron coordinations is ~80-90% that of an octahedron. For a
nine-coordinate tricapped trigonal prism it is much smaller, 40-50% of that seen in an octahe-
dron, similar to the cuboctahedron.

Non-Lanthanoid Activators

In this section, we survey three additional classes of activators: (a) ions of p-block elements
with (n — 1)d"’ns” configurations, (b) oxoanions of transition metals with a ¢° configuration,
and (c) transition-metal ions with partially filled 3d orbitals. We begin with the optical
transitions of (n — 1)d'%ns® activators like Sn**, Sb>*, Pb**, and Bi**. The ns” ground state
is represented by a singlet 'S, term, and the ns'np' excited state can be divided into a singlet !
P, state and three triplet states that are further split by spin—orbit coupling: *Ps, °P;, and *P,,
(see Figure 7.22). Excitation can occur either through spin-allowed 'S, — 'P; transitions
followed by intersystem crossing into the *P; state, or directly from the ground state into the
lower-lying *P; state. The 'S, — P, transitions are spin-forbidden, but the selection rule is
relaxed by spin—orbit coupling. The spin—orbit coupling is high for ions from the fifth period
(e.g. Sn**, Sb>*) and even larger for those from the sixth period (e.g. Pb**, Bi**). The 'Sy — °*
P, transition is the strongest of the three possible IS, — 3P, transitions, because the 'Sy — P,
and 'S, — P, transitions are forbidden by the parity selection rule. This can be seen in the

20" As the size of the anion increases, so does its polarizability. Hence, the anions that give the largest centroid shifts
tend to give smallest crystal-field splitting.
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Figure 7.22 The energy-level diagram for a (n—1)d'ss? ion (left). The excitation and emission spectra of
Ba,Mg(BO;),:Bi*" (right). Data taken from ref. [15].

excitation spectrum of Ba,Mg(BOs),:Bi** in Figure 7.22. Phosphorescence involving a *P; — 'S,
transition dominates the emission spectrum.”’

Because the ns'np' excited-state electron configuration is both more antibonding than the
ns* ground-state configuration and prone to Jahn-Teller distortions (Section 5.3.10), ions like
Bi**, Pb>", and Sn>* can experience a large reorganization of their coordination environment
in the excited state. When this occurs, a large AQ, large Stokes shift and broad emission bands
are expected. If we start from a symmetric environment like an octahedron, the coordination
environment of the ns'np' excited state can undergo a symmetric expansion, a tetragonal
distortion (first-order Jahn-Teller distortion), and/or a trigonal distortion (second-order
Jahn-Teller distortion) [16]. The tetragonal distortion leads to ligand-field splitting of the
3P, excited state that can result in splitting of the excitation and emission bands.

The extent of the structural reorganization in the excited state, and hence the size of the
Stokes shift, is highly dependent on the structure of the host. When an activator ion is
placed on a site that is compressed with respect to its preferred environment, reorganiza-
tion of the excited state is suppressed, minimizing AQ and leading to a small Stokes shift.
Conversely, if it is placed on a large site, relaxation of the coordination sphere of the
activator ion in the excited state can be extensive, resulting in a large Stokes shift. Stokes
shifts for Bi** activators vary from 0.1 eV in Cs,NaYClg:Bi**, where Bi** substitutes for
the smaller octahedrally coordinated Y3*, to 2.5 eV in Bi,Ge;09, where Bi** has a strong

2! The 3Py — 'S, tends to make little contribution to absorption or emission spectra. However, for 65> activators at
very low temperatures, the 3Py — 'S, emission can be observed in some cases.
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trigonal distortion in the ground state with three short Bi—O bonds (2.14 A) on one side and
three long Bi-O bonds (2.74 A) bonds on the other side of the octahedron. In the latter
case, Bi*" is thought to adopt a much more symmetric environment in the excited state, and
the large AQ leads to a large Stokes shift [17].

Oxoanions of d° metals, such as WO,>~ and WO, are further examples of broad-band
emitters with large and highly tunable Stokes shifts. CaWOQ, is a paradigmatic scintillator
material that was used for many decades as an X-ray phosphor. Its luminescence is due to
LMCT transitions on the WO,4>~ groups, analogous to those discussed for CrO,>~ in Section
7.4.1. Because this excitation promotes electrons from nonbonding O 2p orbitals into
5d orbitals with significant antibonding character, tungstates exhibit large AQ and Stokes
shifts that range from 1.2 eV to 2.5 eV. Increasing the coordination number of the central
metal decreases the energy of the LMCT transition. This is illustrated by a comparison
between CaWOy,, where the onset of absorption (the band gap) is ~4.8 ¢V, and SroMgWOg,
where the onset of absorption for the WO, octahedron is ~3.6 ¢V. Oxoanions of other d°
transition metals (e.g. VO,*~, MoO,”") can also luminesce. The energies of the excitation
and emission bands follow the trends found in Table 7.7.

Transition-metal ions with partially filled d orbitals are the final class of activator
that we will consider. Perhaps the best-known example of transition-metal ion lumines-
cence is ruby, where Cr’* is doped into Al,O5.”> Ruby possesses two sharp, closely
spaced emission lines near 700 nm. The transition responsible for Cr** emission is spin-
forbidden phosphorescence from a °E excited state to the *A, ground state. Because
this transition is spin-forbidden, the correlation diagrams of Section 7.3.3 are inad-
equate. Instead, we must turn to the so-called Tanabe-Sugano diagrams used to
understand both spin-allowed and spin-forbidden transitions. The Tanabe-Sugano
diagram for an octahedrally coordinated d* ion is shown in Figure 7.23. Because
both the excited state (°E) and ground state (*A,) have a tzg3eg0 configuration, the
energy spacing between them has little dependence on the ligand-field splitting, leading
to sharp emission lines and small AQ. However, to get the sharp, red emission seen in
ruby, it’s critical that the ligand-field splitting A, is large enough for the energy of the
’E level to be lower than that of the *“T, state whose energy separation from the ground
state increases linearly with A,. To meet this criterion, hosts with large A, are needed.

Energy Transfer

So far, we have considered two pathways for excited-state electrons to return to the ground
state: radiatively via emission of a photon or non-radiatively through coupling with lattice
vibrations. A third possibility is energy transfer, where the excited-state electron returns to
the ground state and transfers its energy to a nearby acceptor ion, where an electron is

22 Stimulated emission in ruby was the basis for the first laser, developed in 1960.
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Figure 7.23 A simplified Tanabe-Sugano diagram for an octahedrally coordinated o> cation. The spin-
forbidden °E — *A, transition gives rise to luminescence with activators such as Cr’* and Mn**. The
ground-state *A, energy is plotted as the x axis.

promoted into an excited state in order to maintain conservation of energy. We can describe
this process with the equation:

D'+A—D+A" (7.10)

where the ion that is originally in the excited state is called the donor (D), the ion that receives
the energy transfer is called the acceptor (A), and an asterisk is used to denote an excited
electronic state. Energy transfer underpins the action of sensitizers.

Energy transfer generally occurs by one of two different mechanisms. The first is Forster
resonant-energy transfer (FRET), which is based on electromagnetic multipole interactions,
predominantly dipole—dipole interactions. In FRET, the electromagnetic field associated
with D* interacts with A, leading to a transfer of energy but not electrons between the two
sites. The efficiency of FRET scales with ¢ ~° for dipole—dipole interactions, where d is the
distance between donor and acceptor. The range over which FRET is operative generally
doesn’t exceed 25 nm.”* To be efficient, the optical transitions should be allowed electric-

23 The strong distance dependence of FRET led to the development of FRET spectroscopy, which allows conform-
ational changes of biomolecules to be followed.
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Figure 7.24 FRET and Dexter electron-transfer mechanisms.

dipole transitions, and the emission spectrum of D" should have significant overlap with the
absorption spectrum of A

An alternative is Dexter electron transfer where an excited-state electron is transferred
from donor to acceptor while a ground-state electron is transferred in the opposite direction,
as shown in the lower half of Figure 7.24. This mechanism does not require overlap between
emission and absorption spectra of donor and acceptor, nor does it depend on the selection
rules for either transition. It does, however, require a significant overlap of the molecular
orbitals on the two sites, which limits its operability to distances < 1 nm.

The dominant type of energy transfer depends on the nature of the donor and acceptor
sites. FRET from a broad-band emitter to a line absorber (e.g. Ce*™ — Tb>") is highly
inefficient and energy transfer between these species must rely upon the Dexter mechanism,
limiting transfer to near neighbors in the host. The opposite combination, energy transfer
from a line emitter to a band absorber, can occur with reasonable efficiency over longer
distances via FRET.

Sensitizers

Several otherwise useful activators do not effectively absorb light at practical wavelengths,
and therefore can only be used in combination with an appropriate sensitizer. This is
particularly true for activators that rely upon spin-forbidden transitions to absorb light,
like Tb>" and Mn**.

Tb>" is an efficient emitter of green light, but it only absorbs strongly at excitation
wavelengths smaller than 230 nm, where the 4/® — 4f754" transition can be excited (the

24 Though FRET is a non-radiative process that occurs through electric fields, conceptually one can think of the donor
emitting a virtual photon that is instantly absorbed by the acceptor.
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lower-energy f-to-f transitions are spin-forbidden). In most fluorescent lamps, a low-pressure
Hg-plasma discharge of dominant 254 nm emission acts as the excitation source. These
photons are not sufficiently energetic to excite Tb*>" activators, but they can effectively excite
the 4! — 54" transition of Ce*" ions in an appropriate host, which can then efficiently
transfer their energy to Tb*>" activators. Nearly all commercial green-emitting fluorescent-
lamp phosphors (LaPO4:Ce**, Tb>"; CeMgAl;,019:Tb>"; GdAMgBs0;,:Ce**, Tb*") rely on
absorption by Ce** sensitizers and emission from Tb*" activators. The spin-forbidden nature
of the electronic transitions of Tb>" means that effective energy transfer only occurs when the
sensitizer and activator sites are in close proximity, where the Dexter electron-transfer
mechanism is operative (< 1 nm).

Concentration Quenching and Cross Relaxation

Energy transfer can also occur between ions of the same type over longer distances, particu-
larly for line emitters whose absorption and emission lines have near-perfect spectral
overlap. Multiple transfers are common and can lead to energy migration over significant
distances” in the host crystal, until an impurity or defect is encountered where non-radiative
return to the ground state can occur (so-called killer sites). This type of quenching is called
concentration quenching. It does not occur at low activator concentrations, where energy
transfer is inhibited by the large distances between luminescent centers, but can become
significant at higher concentrations. Phosphors that contain Eu’*, Tb>*, and Gd*" acti-
vators often show maximum photoluminescence when these ions are present as substitu-
tional dopants in low concentrations. Levels of substitution beyond a few atomic percent
lead to a decrease in photoluminescence due to concentration quenching.

In phosphors where the activator has a large Stokes shift, there is minimal overlap between
the absorption and emission spectra, limiting energy transfer and the effects of concentration
quenching. This explains why self-activating phosphors like CaWO, and BiyGe;01,, where
the activator ion is present as a stoichiometric component of the host, nearly always contain
activators that exhibit a large Esiokes.

If the donor only transfers part of its energy, relaxing to a lower energy state but not all the
way to the ground state, the energy-transfer process is called cross-relaxation. This process
can quench certain emission lines while leaving others intact. In the case of Tb>* pairs, the
energy difference between “Ds and °D, excited states approximately matches the energy
difference between the ’F ground state and the higher-lying 'F, state. At concentrations
above 5%, cross-relaxation quenches emission from the *Dj level in favor of emission from
the D, level (see Figure 7.25). The Tb*" ion that is excited into the ’F, excited state via cross-
relaxation can return to the 'Fq ground state non-radiatively through internal conversion.
Cross-relaxation is why blue emissions that originate from *D; — 'F, transitions are
suppressed and green emissions from D, — ’F, transitions are enhanced in phosphors

%5 In some instances, the number of energy transfers can exceed 10000 before decay.
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Figure 7.25 Cross-relaxation of Tb®>* through an energy transfer from ion 1, the donor, to ion 2, the
acceptor. Following the energy transfer, ion 1 emits a green photon while ion 2 undergoes non-radiative
relaxation to the ground state.

containing higher Tb** concentrations. Cross-relaxation is also responsible for quenching
blue emissions of Eu*" and the visible emissions of Sm** and Dy>" at concentrations as low
as ~1%.

Up-Conversion Photoluminescence

Up-conversion photoluminescence occurs when the energies of absorbed photons are lower
than those of the subsequently emitted photons.”® The most common up-conversion phos-
phors convert near-IR radiation to visible light. A typical up-conversion process is repre-
sented schematically in Figure 7.26 for Y,O5:Er’",Yb’*. The process begins with the
absorption of a near-IR photon (A = 980 nm) at Yb>*, via the spin- and parity-allowed
F,, — Fs, transition. The Yb>" then transfers its energy to Er*t triggering a Tisp— T
transition. Absorption of a second near-IR photon at Er** further promotes the electron into
the *F), level, from which non-radiative relaxation to the Hyy/, *Ss/, or “Fop levels can
occur. The final step is radiative return of the Er’* ion to the ground state, leading to
emission of 662 nm (*Fo» — *I,5/) red light and/or green light with wavelengths of 525 nm
(2H11/2 —>4115/2) and 550 nm (453/2 - 4I15/2)-

Yb*" is the most widely used sensitizer in up-conversion phosphors because the *F;, —
%F s, transition has a high absorption cross-section, and there are no accessible higher-energy
excited states that permit up-conversion at the Yb>" site. Blue emission can be obtained if
Yb** is paired with a Tm** activator instead of Er**. The best host materials have minimal

26 Because Eoxe < Eom up-conversion photoluminescence can be described as an anti-Stokes process.
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Figure 7.26 The five-step process of up-conversion photoluminescence in Y,05:Yb>* Er®*.

electron—phonon coupling (Section 7.8.2) to reduce thermal relaxation and achieve long-
lived excited states. Only then can the excited state persist long enough to allow a second
photon to be absorbed before relaxing to the ground state. For example, NaYF, is a good
up-conversion host, in part because it possesses phonon modes whose energies are much
smaller than the energy separation of the F, and °Fs), states on Yb*>".?’ In hosts with
higher-energy phonons, non-radiative decay of the Yb** ?Fs, excited state competes with
absorption of a second photon.

Because up-conversion materials rely on a multiple-photon absorption process rarely
found in nature, they are attractive as security markers to protect financial and government
documents. Up-conversion photoluminescence is also being explored for applications in

7 The dominant phonon mode in NaYF, has an energy of 0.044 eV (~350 cm™') which is ~29 times smaller than the
1.26 eV separation of the 2F7/2 and 2F5/2 states.
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lasers, next-generation lighting, near-IR photon detectors, nanometer-sized biological
labels, and night-vision goggles.

Electroluminescence

Electroluminescence is the direct conversion of electrical energy into optical energy. The basis of
electroluminescence is the radiative recombination of electrons and holes, driven by an electric
field. Although electroluminescence can take various forms, here we limit our discussion to
inorganic light-emitting diodes (LEDs) where electron—hole recombination occurs at the inter-
face between p- and n-type semiconductors, and organic light-emitting diodes (OLEDs) where
recombination is driven by injecting current into films of organic semiconductors.

Inorganic Light-Emitting Diodes (LEDs)

The electrical properties of semiconductors are highly sensitive to the presence of impurities,
particularly aliovalent substitutional impurities (Section 2.4). This topic is covered in detail in
Chapter 10, but to understand the operation of LEDs a few basic concepts are touched upon
here. If the substitutional impurity has more valence electrons than the atom for which it
substitutes, the “extra” electrons are donated to the conduction band, and the semiconductor
is said to be doped n-type. If the substitutional impurity has fewer electrons than the atom it
replaces, it accepts electrons from the valence band, and the semiconductor is said to be doped
p-type. The missing electron in the valence band carries a positive charge and is called a hole.

If p- and n-type semiconductors are joined together, the region where they meet is called
a p—n junction. We'll discuss the fabrication, physics, and operation of p—n junctions in
Section 10.3.5. For now, we only need to know that when an appropriate voltage is applied to
a p—n junction, electrons and holes are driven to the interface and can recombine radiatively
to generate light. The host semiconductor is typically the same on either side of the junction,
and the energy of the emitted photons is determined by the band gap of the semiconductor.
To favor radiative recombination, direct band-gap semiconductors are preferred for use in
LEDs, though lower-efficiency LEDs can be made from indirect band-gap materials.

The first practical LEDs were made in the early 1960s from GaAs, which possesses
a direct band gap of 1.43 eV, and therefore emits in the near-IR. LEDs made from pure
GaAs are still used today as IR sources in fiber-optic communications. Another
semiconductor used in LEDs is GaP, which has an indirect band gap of 2.26 eV (see
Table 7.8) and emits green light. By forming GaAs,_ P, solid solutions, it is possible to
make LEDs that emit photons with energies intermediate between the two end members.
Compositions close to GaAsg ¢Pg 4 are used in red LEDs, while orange and yellow LEDs
can be made from compositions with higher GaP content. Unfortunately, the band gap
becomes indirect and the efficiency goes down sharply when x > 0.45. The emission of
GaAs LEDs can also be shifted to shorter wavelengths by forming solid solutions with
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AlAs, a semiconductor with almost the same lattice parameter but an indirect band gap
of 2.16 eV. The crossover from direct to indirect band gap occurs in the Ga;_,Al As
system for compositions with x > 0.4. By alloying InP (E, = 1.35 eV, direct), AIP (E, =
2.43 eV, indirect), and GaP it is possible to make (Ga;-,Al,);-,In,P LEDs that emit
colors from green to the near-IR. In part because of the absence of arsenic, these have
become the preferred semiconductors for yellow, orange, and red LEDs.

Fabricating blue, violet, and UV LEDs challenged researchers for many decades. Solid
solutions between ZnS (E, = 3.6 eV) and ZnSe (E, = 2.58 eV) were investigated, but the
high concentration of defects and difficulties in obtaining high-quality p—n junctions
limited progress. In the late 1980s, Cree introduced a commercial blue LED based on
silicon carbide, but the device efficiency was so low that it never gained popularity. In the
1990s, Ga;_,In,N emerged as the material of choice for blue LEDs. Its wavelength can be
tuned from 370 nm (pure GaN) to 470 nm by increasing the indium content. Longer-
wavelength emission can be realized, but the efficiency drops as the indium content
increases. This is due to compositional segregation upon cooling, caused by the limited
solubility of InN in GaN. In Section 7.10.2, we will see that blue LEDs play a key role in modern
solid state lighting. While green LEDs can be made in either the Ga, - In,N or (Ga,-,Al,),-,In,P
systems, a high-efficiency green LED remains elusive. This challenge is sometimes referred to as
the “green gap”.

Box 7.2 Synthetic Methods: Synthesis and p-doping of GaN

GaN has the hexagonal wurtzite structure and a direct band gap of 3.4 eV. The first demon-
stration of a GaN LED was in 1972, but the device had an efficiency too low for practical
applications. Two major hurdles prevented further progress. Firstly, the lack of a good lattice-
matched substrate led to high defect densities in the films from which LEDs are made.
Secondly, while n-type samples can be made by replacing some gallium with silicon, it proved
difficult to reproducibly prepare p-type GaN.

In the mid 1980s, Akasaki and Amano used metalorganic vapor-phase epitaxy (MOVPE) to
grow GaN films on sapphire substrates with lower defect concentrations than achieved previ-
ously [18]. Earlier attempts to use sapphire substrates had not produced high-quality films due
to the 16% lattice mismatch with GaN. Their breakthrough was the deposition of a 30 nm
buffer layer of polycrystalline AIN onto the sapphire substrate at 500 °C, followed by an
annealing step at 1000 °C. This approach promotes the growth of small crystallites with
preferred orientation upon which the GaN can subsequently nucleate and grow. While the
GaN in close proximity to the AIN layer has a high concentration of dislocations, after a few
microns the defect concentration is low enough for use in LED applications. Later, Nakamura
[19] simplified the process by covering the sapphire at 600 °C with a 20 nm buffer layer of nearly
amorphous GaN, before subsequently depositing a highly crystalline GaN film. Without this
intermediate buffer layer, hexagonal columns of GaN grow that produce a rough surface and
result in poor electrical properties.
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Box 7.2 (cont.)

In the late 1980s, Akasaki and Amano observed that Zn-doped GaN emitted more blue light
when the device was placed inside a scanning tunneling microscope. Subsequently, it was
shown that the p-type behavior of Mg-doped GaN was significantly enhanced when the device
was irradiated with low-energy electrons. Nakamura and coworkers [20] showed that these
effects were caused by formation of hydride complexes (originating from trimethyl gallium and
ammonia used in the epitaxial growth), which passivated the acceptor sites and limited the
formation of holes. By irradiating with an electron beam, the unwanted hydrogen is expelled
from the sample, activating the acceptors and improving device performance. Annealing at
temperatures above 700 °C has a similar effect.

Building on these advances, Nakamura and co-workers produced a blue LED with
a quantum efficiency of 2.7% from a Ga;_,In,N/Ga;_, Al N heterostructure in 1994. This
demonstration revolutionized the compact-disc industry and triggered a massive surge in
research and development activity. Quantum efficiencies have steadily increased over the
intervening years and now exceed 80% in state-of-the-art GaN-based LEDs. In 2014,
Amano, Akasaki, and Nakamura shared the Nobel Prize in Physics for their work.

7.9.2 Organic Light-Emitting Diodes (OLEDs)

OLEDs convert electrical energy to light through electron-hole recombination. While the
overall process has many similarities with the inorganic LEDs just discussed, OLEDs offer
distinct advantages. They can be very thin, and the methods of deposition (spin coating, vacuum
deposition) are simpler, cheaper, and less energy-intensive than the methods used to deposit
films of inorganic semiconductors. They can be made in almost any shape and deposited on
flexible materials. Initially, OLED device performance was limited by the poor electrical
conductivity of organic materials. However, the emergence of highly conductive polymers
such as poly(/N-vinylcarbazole) and poly(p-phenylene vinylene) reignited activities in this field.
OLEDs now find widespread use in mobile phones, digital cameras, and flat-panel displays,
where they compete with liquid-crystal displays (LCDs). Compared with LCDs, OLEDs are
thinner, lighter, brighter, produce truer colors, refresh much faster, and consume less power.
A typical OLED is made up of several semiconducting organic materials, sandwiched
between two electrodes, one of which must be transparent. A schematic of a relatively simple
OLED made of three organic layers is shown in Figure 7.27. The organic semiconducting
materials are invariably 7-conjugated systems, either small organic molecules or conducting
polymers (Section 10.5). When a voltage is applied, electrons are removed at the anode, which
is equivalent to injecting holes into the HOMO of the hole-transport layer. At the same time,
electrons are injected from the cathode into the LUMO of the electron-transport layer. To
facilitate charge injection, the Fermi level of the anode should have a reasonably good
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Figure 7.27 A schematic of an OLED with three organic layers: a hole-transport layer, electron-transport
layer, and emissive layer.

energetic alignment with the HOMO of the hole-transport layer. This can be achieved by using
a transparent conductor, such as In,_,Sn,O; (ITO), deposited onto a glass substrate that
offers mechanical support and protects the active layers of the OLED from the environment.
Similarly, the Fermi level of the cathode should be sufficiently high in energy that it lies close to
the LUMO of the electron-transport layer. This necessitates using active metals like Ca, Ba, or
alloys like Mg;_,Ag,, which must again be encapsulated due to their moisture sensitivity.

After charge injection, holes and electrons move in opposite directions under the external
electrical field, hopping from molecule to molecule. Holes from the hole-transport layer
migrate to the emissive layer where they encounter electrons that have migrated from the
electron-transport layer. When they meet, the electrostatic attraction between the two
oppositely charged particles leads to the formation of a bound electron—hole pair called an
exciton. The exciton is a neutral quasi-particle that can radiatively decay through electron—
hole recombination. The color of the emitted photon is determined by the HOMO-LUMO
gap of the emissive layer minus the exciton binding energy, the attractive potential energy
that holds the electron and hole together. Exciton binding energies in organic semiconduct-
ors are typically on the order of 0.3-0.5 eV.**

When an electron and hole meet, they may possess the same or the opposite spin, leading
to the formation of both singlet (S = 0) and triplet (S = 1) excitons. Radiative decay from the
triplet state (i.e. phosphorescence) is spin-forbidden, so triplet excitons decay predominantly
through non-radiative pathways. Quantum-mechanical momentum conservation tells us
that only 25% of all excitons are singlets. This means only one in four excitons decays
radiatively, which limits OLED efficiencies. To circumvent this limitation, neutral organo-
metallic complexes containing heavy metals like Ir or Pt can be incorporated into the

28 Excitons can also form in inorganic materials, but the binding energies are an order of magnitude smaller than in
organic materials.
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emissive layer [21]. The presence of a heavy metal leads to strong spin—orbit coupling, which
facilitates intersystem crossing and radiative decay of triplet excitons. The triplet state of the
organometallic molecule is chosen to lie at a lower energy than that of the semiconducting
emissive layer, so that triplet excitons migrate to the organometallic molecules. The incorp-
oration of molecules containing heavy metals dramatically increases the brightness of
OLEDs, facilitating their commercialization. In addition to boosting efficiency, the wave-
length of photons emitted via triplet-exciton phosphorescence will in general differ from the
photon emitted by singlet-exciton fluorescence, because phosphorescence is governed by the
HOMO-LUMO gap of the organometallic complex, while fluorescence is predominantly
governed by HOMO-LUMO gap of the host organic layer. The flexibility to engineer
materials that emit at multiple wavelengths can be useful for applications.

Materials for Lighting

It’s hard to conceive modern life without abundant, inexpensive electric lighting, but until
the late nineteenth century cities and homes were still largely illuminated by flame. In the
twentieth century, incandescent lighting became ubiquitous, but this revolutionary technol-
ogy has since largely been replaced by more energy efficient methods of producing white
light. Fluorescent lights are still widely used, but they are increasingly being displaced by
high-efficiency blue LEDs coupled with down-conversion phosphors to produce white light.

Before discussing the phosphors used in both fluorescent and solid state LED lighting, we
must understand the metrics used to evaluate intensity and color. The amount of visible light
emitted by a light source is called the luminous flux. It is measured in lumens (Im) and is
defined as the product of 1 candela (cd) times the solid angle in steradians (sr). A candela is
roughly equivalent to the light given off by a single candle. More precisely, the candela is the
luminous intensity per unit solid angle weighted by a luminosity function that models the
sensitivity of the human eye.”” Luminous efficacy is the ratio of luminous intensity out to
electrical power consumed and is measured in units of lumens per watt (W). A typical 100 W
incandescent light bulb gives off 15-17 Im/W. By comparison, fluorescent lights produce
50-100 Im/W, and phosphor-converted LEDs can achieve a luminous efficacy of 200 Im/W.

Although hot objects like the filament of an incandescent bulb give off a broad spectrum of
light that spans the visible range, it is possible to mimic white light by mixing discrete colors.
Mixing blue and yellow light, leads to a “cold” white light, while mixing red, blue, and green
can produce a more natural white light, as described in Section 7.1. The color of a white light
source is an important parameter and there are various metrics for quantifying color, two of
which are touched upon below.

Color temperature is defined by comparing the output of a light source with the light
emitted by a black-body radiator, which changes as the temperature increases in the

% The human eye is most sensitive to green light with a wavelength of 555 nm. A monochromatic source that emits
555 nm light with a radiant intensity of 1/683 W has a luminous intensity of 1 cd.
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sequence: red, orange, yellowish-white, white, and ultimately bluish-white. Light sources
with color temperatures >5000 K give off bluish-white light and are described as cool,
whereas those with color temperatures ranging from 2500 to 3500 K are described as
warm.”” The color-rendering index (CRI) is an alternative metric. The CRI is a measure of
the ability of a light source to reproduce the colors of various objects faithfully in comparison
with an ideal natural light source. The CR1 is calculated by comparing the reflection spectra
of test colors to the spectra obtained when the same colors are irradiated with a source that
simulates sunlight. The CRI for a true black-body radiator, like an incandescent lamp,
would be 100. At the other extreme, a white object irradiated with a monochromatic light
source, such as a laser, can only reflect a single color (the color of the source) and has a CRI
of 0. In general, a CRI in the 70s would be considered acceptable for interior lighting
applications; a score in the 80s, good; and a CRI in the 90s, excellent.

Fluorescent-Lamp Phosphors

Fluorescent lights rely upon phosphors to convert the UV light from a mercury discharge lamp
to white light. The mercury atoms in the discharge emit about 85% of their radiation at 254 nm,
and 12% at 185 nm, so fluorescent-lamp phosphors should absorb efficiently at these wave-
lengths. Discovery of the halo-apatite phosphor Cas(PO,)s(F,Cl):Sb>*,Mn** in 1949 was
a major turning point for the lighting industry. The Sb*>* ions have strong absorption peaks
at 255 nm ('Sy — *P,) and 205 nm ('Sy — 'P;). The Sb*" ions emit a broad band centered in the
blue region of the spectrum near 480 nm via a *P; — 'S transition (Section 7.8.5). They also
function as a sensitizer for the Mn>* ions, which are not able to efficiently absorb light from the
plasma discharge because all electronic transitions in this high-spin @° ion are spin-forbidden.
Following energy transfer from Sb>*, the Mn>" activators emit a broad band of orange light
near 580 nm via a *Gs;, — S5, transition. The blue emission originating from Sb>* and the
orange emission of Mn>* combine to create a “whitish” light. Increasing the Mn>* concentra-
tion suppresses the blue emission and enhances the orange emission. Increasing the chloride
content shifts the Mn>* emission band to shorter wavelengths. In this way, color temperatures
ranging from 2700 to 6500 K can be obtained. Unfortunately, there is a trade-off between
optimizing the luminous efficacy and the CRI. If the brightness is high (efficacy ~80 Im/W) the
CRI is on the order of 60. It is possible to increase the CRI to 90 through appropriate
compositional tuning, but luminous efficacy drops to ~50 Im/W [16].

By combining phosphors that emit in narrow wavelength intervals in the red, green, and
blue regions of the spectrum it is possible to achieve high luminous efficacy (~100 Im/W) and
good color rendering (CRI = 80). This type of fluorescent light, known as a tricolor lamp,
might include the following phosphors: BaMgAl,,O;7:Eu®* that emits in the blue, near
450 nm; (Ce;_Gd,)MgBsO,o:Tb** or LaPO,:Ce**,Tb’* that emit in the green, near
540 nm; and Y,O5:Eu®* that emits in the red, near 610 nm. All three phosphors have

39 Tt’s somewhat paradoxical that “cool” light has a higher color temperature than “warm” light.
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individual quantum efficiencies near 90%. To achieve even better color rendering, needed in
museums and store displays, alternative phosphors are chosen that shift the emission
maximum of the blue phosphor to longer wavelengths.

7.10.2 Phosphor-Converted LEDs for White Light

Phosphor-converted LEDs are being pursued as the light source of the future, due to their
combination of high luminous efficacy and long lifetime. In the most common configuration,
a Ga;_,Al,N LED acts as a source of blue light and is combined with phosphors that absorb
a fraction of that blue light, then emit the longer-wavelength photons needed for white light.
Phosphors for this application should: (a) possess high quantum efficiencies on the order of
90-95%, (b) have excitation maxima that are well matched to the light provided by the LED
(emission maxima typically fall between 370 and 470 nm), (c) emit light at wavelengths that
provide an optimal CRI, and (d) show minimal loss of efficiency at operating temperatures.
To be commercially viable, they should also be non-toxic, inexpensive, and possess excellent
thermal, chemical, and photochemical stabilities. Both the temperature and photochemical
stability requirements for an LED phosphor are more stringent than those for a fluorescent-
lamp phosphor, because the excitation densities of LED-based lighting systems (~30 W/cm?)
are about three times higher than those in fluorescent lights.

The simplest white LEDs combine blue light with a wavelength of ~450 nm from
a Ga,_,In,N LED and yellow light from a phosphor where Ce** is doped into an appropri-
ate host, usually Y3Al50;, (YAG). The Y3AlsO 12:Ce*t phosphor has broad absorption and
emission bands that peak near 460 nm and 560 nm, respectively (Figure 7.28). By turning to
hosts that are complex solid solutions, such as (Y;-,Gd)(Al;-,Ga,)sO, »:Ce**, the emission
maximum can be tuned between 510 nm and 580 nm, thereby adjusting color temperature
between 3000 K and 8000 K. The CRI of this type of phosphor-converted LED ranges from
just below 75 to slightly above 80.
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Figure 7.28 A schematic of a phosphor-converted white LED (left). The excitation and emission spectra
of a Y3Als0,,:Ce** phosphor superimposed on the emission from a blue Ga;—,In,N LED (right).
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Trichromatic LEDs provide superior CRIs (>90) by combining green and red phosphors
with the blue light emitted by the Ga,_,In, N LED. The phosphors developed for fluorescent
lamps are unsuitable for white LEDs because their excitation bands are not well matched to
the output of the blue LED. Instead, researchers have largely concentrated on phosphors
containing the band emitter Eu®*, particularly for the red phosphor. The [Xe]df°5d " — [Xe]
4f7 transition of Eu®* usually emits blue or green light when Eu?" is incorporated into an
oxide, but in sulfide, nitride, and oxynitride hosts the Eu?* experiences a larger centroid shift,
sinking the barycenter of the d-orbital set, and shifting the absorption and emission maxima
to longer wavelengths (Figure 7.21).

Binary sulfides with the rock-salt structure like SrS:Eu*" and CaS:Eu®* emit in the red
with maxima of 610 nm and 660 nm, respectively. The emission spectrum can be tuned by
forming solid solutions or turning to more complex sulfides. Unfortunately, sulfides are
prone to corrosion in the presence of minute traces of water, necessitating encapsulation.
They also tend to suffer from strong thermal-quenching effects, as illustrated by the green
phosphor SrGa,S4:Eu®* where the quantum efficiency drops from 75-80% at room tempera-
ture to 50% at 170 °C [22]. Nitridosilicates, like S1,SisNg:Eu?* (emission maximum 630 nm)
and nitridoaluminates, like SrLiAl;N,:Eu®" (emission maximum 650 nm), offer much better
stability and excellent photoluminescent properties. Further improvements in luminous
efficacy can be made by reducing the spectral overlap between the excitation band of the
red phosphor and the emission band of the green/yellow phosphor, as well as limiting
spillover of the red emission into the near-IR where the human eye cannot detect it [23, 24].

Problems

7.1 What is the wavelength (in nm), frequency (in s~'), and color of a photon with an
energy of 3.60x107"" J? What is its energy in eV?

7.2 What color would a material be if it absorbed (a) red light, (b) blue and green light, (c)
yellow light, (d) green light, (e) green and yellow light?

7.3 Classify each of the following pigments or gemstones as idiochromatic or allochromatic:
(a) cobalt blue, CoALOy,, (b) emerald, Be;Al,(SiO5)s:Cr", (c) yellow ochre, FeOOH.

7.4 Use crystal-field theory to qualitatively predict the energy splitting of the d orbitals for
a transition-metal ion linearly coordinated along the z axis.

7.5 Predict which of the following pairs will have larger ligand-field splitting (Aye): (a)
[Fe(H20)6"" or [Co(H20)e]"™", (b) [Co(H20)el"* or [Rh(H20)e]™".

7.6 A carbon atom has a 15*25*2p” electron configuration. The various ways of filling the
2p orbitals lead to 15 microstates that can be grouped into three terms: 'D, *P, and
'S. (a) Determine the value of L and S for each term and the number of microstates
associated with each term. (b) What are the allowed values of the total angular
momentum quantum number J for each term? (¢c) What is the energy order predicted
by Hund’s rules for the various ***VL, terms?
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7.7 The UV-visible spectrum of the octahedral complex [Ni(NH2CH2CH2NH2)3]2+ is
shown below. (a) Given that ethylenediamine ligand, NH,CH,CH,NH,, is a neutral
bidentate ligand (both nitrogen atoms coordinate to the metal), determine the electron
configuration of the nickel ion. (b) Use a correlation diagram to assign each of the three
d-to-d transitions labeled as 1, 2, and 3 below. (¢c) What color would you predict for
a solution of this complex ion from the spectrum below? (d) Compare these transitions
to those observed for [Ni(H,O)¢]** (Table 7.5) and determine which complex ion has
a larger Ay

molar extinction coefficient, €
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7.8 Which of the two correlation diagrams shown below would be appropriate for tetrahe-
dral [CoCl,*"? For the applicable correlation diagram, what are the correct term
symbols for the lines labeled W, X, Y, and Z?

(@) z (b) .
/ _ v
3 o
= 2
[0} o
X X
w W
Dyt AW

7.9 For which of the following ions is the d-to-d transition spin-forbidden, Laporte-
forbidden, both or neither: (a) tetrahedral Co**, (b) square-planar Cu**, (c) octahedral
Mn?* (high spin), (d) trigonal-bipyramidal Mn**?
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Tetrathiomolybdate MoS,>~ is tetrahedral and features a strong f; — ¢ LMCT
absorption at 470 nm. (a) What color would you predict for (NH4)>Mo0S4? (b)
What is the energy in eV of the LMCT transition and how does it compare with
Mo0O4>"? Why does the LMCT energy shift in the way that it does? (c) The
compound Li;NbS;2TMEDA (TMEDA = tetramethylenediamine) features iso-
lated NbS,>~ tetrahedra. Do you expect the lowest-energy LMCT absorption peak
of NbS4*~ to occur at shorter or longer wavelengths than MoS,>~? Explain your
reasoning.

Which semiconductors in Table 7.8 will have colors other than white or black? For each
compound in your list predict the approximate color.

The red pigment vermillion (HgS) is a semiconductor with a band gap of 2.0 eV. It was
replaced in the late nineteenth and early twentieth century by CdS,_,Se, pigments that
are less toxic and more stable. Assuming the band gap follows a linear Vegard’s law-
type relationship, what composition of CdS;_,Se, will have a band gap of 2.00 eV,
roughly the equivalent of HgS? See Table 7.8 for the band gaps of CdS and CdSe.
How do fluorescence and phosphorescence differ from each other in theory and
experiment?

The Pr’* ion has 91 microstates that can be grouped into six terms before spin—orbit
coupling is included: 'D,%F,'G,?H, P, S. (a) What is the electron configuration of Pr’*?
(b) What are the values of L and S for each of the six terms? (b) Use Hund’s first two rules
to arrange these six terms in order of increasing energy. (c) Determine the allowed values
of the total angular-momentum quantum number J for each of the six terms, and give the
lowest-energy *>*VL; term for each.

For each of the following phosphors, identify the type of electronic transition respon-
sible for luminescence and predict whether it will show weak, moderate, or strong
electron—phonon coupling: (a) YVOy, (b) Y,05:Eu®", (¢ SrGa,S4:Eu’*, (d) Y;Als0 5
Nd**, (e) BisGe;015».

As the difference AQ between the equilibrium bond distances of the ground and excited
states increases, would you expect the following phosphor characteristics to increase,
decrease, or be unaffected: (a) Stokes shift, (b) energy transfer between luminescent
centers of the same type, (c) thermal-quenching temperature, (d) Huang-Rhys param-
eter, (e) width of the emission line(s)?

The luminescence of AWQ, scheelites (A = Ba, Sr, Ca) shows large variations in thermal-
quenching behavior. The photoluminescence of CaWO, only drops by a few percent
when heated from 90 K to 270 K, while that of StWO, decreases by ~90% over the same
temperature interval. The luminescence of BaWQ, is completely quenched by 90 K. How
do you rationalize the observed increase in thermal quenching as the size of the alkaline-
earth ion increases?

Orange, red, and near-IR LEDs are often made from GaAs;_,P, solid solutions. For
compositions with x < 0.45, a direct band gap is observed, while for larger x the band
gap is indirect. Assuming a linear Vegard’s law relationship between the end members
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GaAs (E, = 1.43 e¢V) and GaP (E, = 2.25 eV), determine the shortest wavelength
emitted from a composition with a direct band gap. What color of light would such an
LED emit?

The phosphor BaMgAl,,O,7:Eu**,Mn*", whose excitation and emission spectra are
shown below, is of interest as a combined blue and green phosphor in plasma-display
panels. The Eu®* ions absorb at 336 nm and emit in the blue with a maximum of
450 nm. There is also energy transfer from Eu®* to Mn?>* that leads to the green
emission at 512 nm. (a) What are the electronic transitions responsible for emission
on Eu®* and Mn”*? (b) What is the Stokes shift for Eu>*? (c) What is the most likely
mechanism of energy transfer from Eu®* to Mn?>", Forster (FRET) or Dexter?
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7.20 CeMgAl;;0,9:Tb>" is a green phosphor used in tricolor fluorescent lights. Ce** ions

7.21

in the host absorb photons from the Hg-plasma discharge with an excitation max-
imum near 270 nm and emit via a [XeJ4/°5d" — [Xe]4f " transition with a Stokes shift
of 0.9 eV. The Tb*>" dopant emits via f-to-f transitions from a *D, excited state to
various 'F levels (see Figure 7.25), with a maximum near 540 nm. (a) At what
wavelength will the emission maximum of the Ce*" ion fall? (b) Which lanthanoid
ion is responsible for the green light? Why is the other lanthanoid ion needed? (c)
What mechanism is responsible for energy transfer between Ce’" and Tb>*?
When Ce** ions substitute for La** in a LaCl; host, the lowest-energy peak in the
photoluminescence excitation spectrum falls at 281 nm, whereas a similar substi-
tution in the double-perovskite host Cs,NaLaClg shifts the lowest-energy peak in
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the excitation spectrum to 342 nm. The La** ion in LaCl; sits in a nine-coordinate
tricapped trigonal-prismatic site, while in Cs,NaLaClg the La** ion is octahedrally
coordinated. (a) Would you predict a larger, smaller, or similar centroid shift in
Cs;NaLaClg? (b) How will differences in the coordination environment shift the
lowest-energy Ce* excitation peak in Cs,NaLaClg? (c) Is the observed shift in the
Ce* excitation spectrum due to the centroid shift, the change in coordination, or
both?

In thiogallate phosphor, SrGa,S,:Eu®>*, Eu®" substitutes for Sr** and is sur-
rounded by a square antiprism of eight sulfide ions. The lowest-energy 57 —
41%5d" excitation is centered at ~480 nm, and the relatively narrow (full width at
half maximum =~ 50 nm at 300 K) 4/°5d" — 4f7 emission at 540 nm, which makes
this phosphor a potentially useful green emitter in phosphor-converted tricolor
LEDs. (a) What is the magnitude of the Stokes shift in eV? (b) The binary rock-
salt sulfide SrS:Eu”*, with octahedrally coordinated Sr** sites, emits in the red
with a maximum at ~620 nm. What factor(s) is responsible for the longer-
wavelength emission in SrS:Eu”*?

SrS, CaS, and SrSe all crystallize with the cubic rock-salt structure. The emission for
SrS:Eu®* reaches a maximum near 620 nm. By comparison, the emission maximum for
CaS:Eu’" is ~660 nm. (a) What factor(s) is responsible for the red shift of the CaS:Eu**
emission with respect to SrS:Eu®*? (b) The emission maximum for SrSe:Eu®* is
~570 nm; what factor(s) is responsible for the blue shift of its emission with respect to
SrS:Eu”"?
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8.1

Dielectrics and Nonlinear Optical Materials

Materials can be broadly classified as either conductors or insulators. Conductors can
further be divided into electronic and ionic conductors, which are covered in Chapters 10
and 13, respectively. Insulating materials, which are also referred to as dielectric materials,
are the subject of this chapter. Dielectric materials find widespread application in electronics.
In some cases, the role of the dielectric is simply to insulate active circuit components from
each other. In other instances, the dielectric plays an active role as a capacitor, antenna, or
filter. In the latter case, the response of the material to external electric fields is of critical
importance.

Nonlinear optical (NLO) materials are a subset of the broader class of dielectric
materials. When electromagnetic radiation passes through a NLO material new frequen-
cies of radiation are generated. A familiar example is found in green laser pointers, where
an NLO crystal is used to convert infrared (IR) light into green light. As we will see
NLO effects are only observed in materials that meet specific symmetry criteria. In the
later sections of this chapter we’ll look at the characteristics of several important NLO
materials.

Dielectric Properties

When an electric field of intensity! E is applied to a dielectric material, an electrical
polarization develops in response to the applied field. In the following sections, we explore
this response, starting with a macroscopic description followed by a closer look at the
microscopic origins of the dielectric response.

' An electric field is a vector field, but when homogeneous or when speaking of a local value of unambiguous
direction, only the magnitude of its intensity, E, is sufficient. The unit of E or E is volts per meter. I V/m exerts
a force of 1 N onto a point charge of 1 C.
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Dielectric Permittivity and Susceptibility

A parallel-plate capacitor consists of two conducting plates, each with an area, A4, separated
by a distance, d, as shown in Figure 8.1. In a vacuum, its cap::lcitance2 is Cy:

A
Co = & b (8.1)
where ¢ is the electric constant.’ The quantity of charge, 0, that can be stored* is a product
of the capacitance and voltage drop across the dielectric, V' = Ed:

o=Ccv (8.2)
For a parallel-plate capacitor in a vacuum, the stored charge, Qy, is given by:

4
0y = CoV = (22 Ed = eodE (8.3)
d

If we place a dielectric material between the plates while maintaining the voltage drop V,
the amount of stored charge will increase ¢, times, from Q, to Q, due to the polarization of
the material.” The polarization results in a separation of positive and negative charges, by
which the dielectric material acquires an internal field that opposes the applied field E. More
charge is then needed to compensate this dielectric polarization while maintaining the

(a) Stored charge = Q, (b) Stored charge = Q

Figure 8.1 A parallel-plate capacitor with (a) a vacuum (b) a dielectric material.

2 Its Sl unit is one farad, 1 F =1 C/1 V; it is the charge (in coulombs) a capacitor will accept for the potential across it to
change by 1 V.

3 The electric constant is a fundamental constant whose value (to five significant figures) is 8.8542x 10712 F/m. It is also
referred to as the vacuum permittivity or the permittivity of free space.

* The stored charge is the charge at one of the plates, typically the + charge is considered.

5 Alternatively, we could also keep the charge constant in our thought experiment. Then the voltage and E would
decrease due to the presence of the dielectric material.
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Table 8.1 Relative permittivity ¢, for a variety of materials at room

temperature.

Substance &r Substance &
Air 1.0006 SnO, 13
Teflon 2 710, 22
C (diamond) 6 TiO, 94
Si 12 Perovskite dielectrics

NaF 5 BaSnO; 18
MgO 10 BaZrO; 43
SiO, 4 CaTiO; 165
CaF, 7 SrTiO; 330
Pbl, 21 KTaO; 242
H20 80 Ba3ZnTa209 30

original voltage of the circuit. Consequently, the capacitance will increase ¢, times, from C,
to C. The factor ¢, is termed the relative dielectric permittivity®:

& =C/Cy (8.4)

Relative dielectric permittivities of substances vary across a wide range, as shown in Table
8.1, but most insulating solids have &, < 30. The reasons for the high permittivity values of
water and certain metal oxides, such as the titanates, will become clear later in the chapter. In
Section 8.4, we will discuss a special class of dielectric materials called ferroelectrics whose
relative dielectric permittivity can be in the tens of thousands.

Upon subtracting 1 from the factor & (i.e. subtracting the contribution of the
vacuum from the total capacitance), we obtain a dimensionless value that quantifies
the ability of a dielectric material to become polarized in an external field, its electric
susceptibility, y.:

fe=—1 8.5

Polarization and the Clausius—Mossotti Equation

The capacitance of our parallel-plate capacitor increases when a material occupies the space
between the plates, because the electric field creates dipoles within the material that oppose
the applied field. Thus, polarization is the material property of interest to us. Quantitatively
we define bulk polarization, P, of a dielectric substance with the following equation (magni-
tudes-only for simplicity):

® Terms relative dielectric permittivity and dielectric constant are used interchangeably.
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P =gy E (8.6)

where the polarization P is expressed in units’ of F/m. Substituting for y. from Equation
(8.5), we obtain:

P = ¢geoE — yF (8.7)

In this expression, we then define the electric displacement,® which describes the electric
field inside the dielectric, as D = gepFE. We see that D has two components; the electric
displacement in a vacuum and the polarization of the material:

D=eE+P (8.8)

Because (as noted above) D, E, and P are all vectors, the polarization of a crystal in an
electric field is anisotropic.

Let’s consider polarization from induced local dipole moments within the dielectric. The
bulk polarization P [C/m?] can be obtained by summing up the individual induced dipole
moments, p [C m], over the N atoms, ions, or molecules that occupy a cubic meter. For the
sake of simplicity, we will speak of polarization of neutral atoms (e.g. Si) for the remainder of
this section, but the expressions that are derived here are equally valid for ionic and
molecular solids.

The size of the local induced dipole moment p is proportional to the local electric field,
Ejc, experienced by the atom, with polarizability, «, of that atom acting as the proportional-
ity constant:

p = ok 8.9)

The bulk polarization P (the induced dipole moment per m?) of a crystal containing N atoms
per cubic meter is then:

P = NaEie (8.10)

Unfortunately, Ej.. differs from the applied external field £ because the induced dipole
moments of neighboring atoms alter the field strength within the dielectric, hence Ej.
depends on the atom’s location in the crystal. Equation (8.10) is therefore of limited utility
as we cannot directly measure E,.. Fortunately, it is possible to derive a relationship between
the local and external fields:

7 Because susceptibility is dimensionless, the polarization P has units of C/m? since &, [F/m] X E [V/m] X y. = P [F V/m?)]
and 1 F=1 C/V. Pisalso called the polarization density, because it represents an electric dipole moment per cubic meter
[C m/m?].

8 Electric displacement is also referred to as electric-flux density or electric induction (the latter in analogy with
magnetic induction, see Chapter 9) and is generally a vector.
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—_—

Eioe = (gr + 2)E (81 1)

3
Substituting Equation (8.11) into Equation (8.10), we obtain an expression for P, which we
can equate to polarization as expressed in Equation (8.7). After simplifying this expression,
we obtain the Clausius—Mossotti equation, which relates the atomic polarizability «,
a microscopic quantity, to the dielectric permittivity ¢,, a macroscopic quantity:

3

v <8f — 1) [SI: @in Cm?/V, & in C/(V m), N in m ] (8.12)

&+ 2

Because an average Ej,. was assumed, Equation (8.12) is strictly speaking only valid for crystal
structures of certain symmetry that makes them isotropic with respect to the dielectric-constant
tensor. An involved evaluation shows that only cubic crystals meet this criterion, but in practice
it works well for other crystal systems if the structure is not too anisotropic.

It is often convenient to work in CGS (centimeter—gram-second) units where ¢, = 1 and
hence a has units of volume. Because ¢, = 1 + 4my, in the CGSes (electrostatic) system, the
Clausius—Mossotti equation takes on a somewhat different form:

3 g —1 3 o3
a—4nVa<8r+2)[CGSes.alnA,VamA] (8.13)

where V, is the volume per atom or formula unit, determined by dividing the unit-cell volume
by the number of the formula units it contains. For example, the sphalerite form of ZnS
(F43m,a=5.32A, Z =4, Figure 1.33) hasa V, = (5.32 A)*/4 = 37.6 A>.

Microscopic Mechanisms of Polarizability

Polarizability is a key parameter for understanding dielectric permittivity of materials
because it directly relates to properties of the atoms that make up the solid. In an ideal
dielectric with no electronic or ionic conductivity,’ there are three microscopic polarization
mechanisms that can contribute to the dielectric response of a material: the electronic
polarizability, o.; the ionic polarizability, o;; and the dipolar polarizability, 4. These mechan-
isms are illustrated in Figure 8.2.

The electronic polarizability a., which is present in all substances, arises from polarization
of the negatively charged electron cloud surrounding the nucleus. The ionic polarizability o;
arises from field-induced displacements of cations and anions in opposite directions. In ionic
solids, including most technologically important dielectric materials, ionic polarizability is
the principal source of polarization. The dipolar polarizability aq4 arises from reorientations

? In ionic conductors, very high polarizability can occur due to migration of ions. This type of polarization is called
space-charge polarizability.
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Figure 8.2 Three microscopic polarizability mechanisms. The change from left to right shows the
polarization in response to an applied electric field.

of polar molecules in response to the applied field. It is normally only relevant in molecular
substances containing polar molecules, such as H,O and HCI. The a4 contribution tends to
be very temperature-dependent because the reorientations tend to freeze out at low temper-
atures. For most technologically important dielectric materials, the dipolar polarizability is
not relevant.

The magnitude of these three contributions typically follows the order a. < a; < aq. The
relative magnitude of these polarizabilities is reflected in the relative permittivity values given
in Table 8.1. In covalent network solids like diamond and silicon, «. is the only source of
polarization and &, is fairly small. The &, values for “ionic” materials, where ¢; plays an
important role, vary over a wide range. Large values are often seen in compounds containing
transition metals with a d° electron configuration. We will explore the reasons for this
behavior in Section 8.6. The high permittivity of water stems from its being the only
substance in Table 8.1 where a4 contributes.

Frequency Dependence of the Dielectric Response

Polarization involves reorganization of charge. Electronic polarization depends on deform-
ation of electron density, ionic polarization depends on displacements of ions, and dipolar
polarization involves reorientations of molecules. All three mechanisms can respond to
a static electric field, but when subjected to an alternating field of increasing frequency, v,
a limit is eventually reached where the field direction changes faster than the charged entity
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can follow. When this occurs, a given polarization mechanism no longer contributes to the
dielectric permittivity. For dipolar polarization this occurs when v > 10° Hz (GHz or
microwave frequencies), for ionic polarization when v > 10'* Hz (THz or IR frequencies),
and for electronic polarization when v > 10'7 Hz (X-rays). This response is illustrated in
Figure 8.3, where ¢, is plotted as a function of v for a material where at low frequencies all
three polarization mechanisms contribute. '

For most useful dielectrics, aqg = 0, and the relative permittivity at low frequencies is
determined by ¢; and a.. The sum of these two contributions can be determined by measuring
the static dielectric constant, denoted & (v — 0) or &g, via capacitance measurements
described in Section 8.1.1. To separate the contributions of ¢; and a., one then measures
the response of the dielectric to visible light where ¢; is frozen out. The high-frequency or
optical dielectric constant, ¢, is related to the refractive index n (see Section 8.7), through

the relationship:
Eopt = n’ (8.14)

For a covalent material like diamond, &5, and &, are very similar (gga¢ = 5.68, g5 = 5.66),
which tells us that o; is essentially zero. For ionic materials like NaCl (g5ia¢ = 5.90, eop = 2.34)
and LiCl (gga = 11.95, &4 = 2.78), the ionic and electronic contributions are of comparable
magnitude. For compounds of unusually high permittivities, like TiO> (g5at = 94, €opt = 7),
the ionic contribution is dominant for reasons that will be discussed in Section 8.6.

a, + a;+ aq

Estat

sopt

10° 10° 10° 10° 10" 10"
v (Hz)

Figure 8.3 Diclectric permittivity ¢, as a function of the frequency v of an alternating applied field for
a hypothetical dielectric material where all three polarization mechanisms contribute at low frequencies.

10 If a material exhibits ionic conductivity, the space-charge polarizability relaxes out when v > 10° Hz.
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Dielectric Loss

An ideal capacitor stores energy without loss or dissipation of energy. In theory, a dielectric
material can act as an ideal capacitor, but, in practice, some energy is always lost. Resistive
heating due to non-zero conductivity in the dielectric material is one obvious source of loss.
However, losses can also occur in an alternating electric field even in the absence of
conductivity.

When an alternating field is applied, the capacitor electrodes alternate between positive
and negative charges, and the polarization within the capacitor’s dielectric tries to follow
suit. Some energy is required to drive the movement needed to redistribute charge in the
dielectric: molecular reorientations for dipolar polarization, or lattice vibrations (phonons)
for ionic polarization. This energy eventually converts to heat and is therefore called dielec-
tric loss. In a simplified approach, the dielectric permittivity in an alternating field is
a complex number, &.*:

e =¢ +i’ (8.15)

where ¢’ and ¢” are the real and imaginary parts of the dielectric permittivity, respectively.
The real part is a measure of the polarization that is in phase with the external field (i.e. it
keeps up with the field), while the imaginary part corresponds to polarization that is out of
phase with the field (i.e. it lags behind the field). The real component represents the energy
that is stored while the imaginary component is a measure of dielectric loss.

Quantitatively, the dielectric loss is defined as tan 6 = ¢”/¢’. The parameter ¢ is a measure of
the phase difference between the instantaneous current, i, and the instantaneous voltage, v.
The phase of the alternating current leads that of the voltage'' by an angle of 90°—6. When
0 = 0, the phase of the current is 90° ahead of the phase of the voltage, so that i X v =0 and
there are no losses. When ¢ = 0, a component of the current has the same phase as the voltage,
and energy dissipates as heat.

If we assume a so-called Debye model, which consists of an ideal non-interacting system of
dipoles,'” the real and imaginary parts of the dielectric permittivity can be approximated by
the following equations:

6 = popy + 2 Cont (8.16)
1 + (w1)
n (8stat - gopt) wt

1+ (w7)’ @17

" In a capacitor, the current precedes the voltage; current must flow into a capacitor to establish the voltage drop.

12 The Debye model most accurately approximates dipolar polarization. For ionic and electronic polarization,
a harmonic-oscillator model is a better approximation, but leads to a slightly more complicated expression.
Qualitatively, both models give a similar dependence on frequency.
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Estat |

g
S
Fe—

10° 1(')11 1(')13 1015 4p0 1(')11 10'13 1015
v (Hz) v (H2)

Figure 8.4 The frequency dependence of ¢ and &” for a material where only ionic and electronic
polarization contribute (aq = 0).

where &4, and &, represent the static and optical dielectric constants, the angular fre-
quency, @ = 2nv, is calculated from the frequency v of the alternating electric field and from
the characteristic relaxation time 7 of the polarization. Typical values of 7 are on the order of
~10~"" s for dipolar polarizability and ~10~'* s for ionic polarizability. The behaviors of &’
and &" as a function of frequency are plotted in Figure 8.4.

The imaginary part of the dielectric permittivity ¢” and the dielectric loss, tan § = (¢”/¢"), reach
a maximum when the frequency of the alternating external field matches the resonant frequency
of the material, wz = 1. For such frequencies, vibrational modes are excited, and the absorbed
energy is dissipated as heat. At frequencies sufficiently low that wr < 1, each of the polarization
mechanisms saturates before the field reverses; Equation (8.16) reduces to &’ = &4, and Equation
(8.17) to &” = 0. At frequencies high enough to make wr > 1, the above equations reduce to
&' = gopr and &” = 0. Losses do not occur in the low-frequency limit because there is no coupling
between the applied field and lattice vibrations, while in the high-frequency limit the lattice
vibrations cannot respond to the rapidly oscillating electric field.

Dielectric Polarizabilities and the Additivity Rule

From a materials-design perspective, it would be attractive to predict the dielectric permittivity
from composition and structure. This is possible when the Clausius—Mossotti equation (8.13) is
rearranged to give ¢, as a function of the polarizability « and volume per polarized atom V:

_ Va+2a(4n/3)

Y, a(4n/3) (8.18)
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The polarizability of a compound A,B,C; ... can be approximated by summing the polariz-
abilities of its constituent “ions” a(A), a(B), a(C), .. .:

a(4:B,C.. ..) = xa(A) + ya(B) +za(C) + . .. (8.19)

This relationship is called the additivity rule. Working from Equations (8.18) and (8.19),
Shannon [1] refined values of « for individual ions to reproduce the measured values of ¢, for
129 oxides and 25 fluorides. Selected o values are given in Table 8.2, in the CGSes units A* to
go with Equation (8.13).

Intuitively, we might expect that polarizability would increase as the radius of the ion increases
and its charge decreases. Atoms with outer electrons that are well screened from the nucleus will
be the most polarizable. For the most part, the trends in polarizability follow our expectations by
increasing down a group and decreasing across a period. There are two important exceptions,
each associated with a specific electron configuration. Firstly, ions with an s* lone-pair configur-
ation (TI", Pb>*, Sb>*, Bi**, Se**, and Te*") have larger polarizabilities than expected. Secondly,
the polarizabilities of transition-metal “ions” do not continue to decrease when the oxidation
state climbs above +3. Both effects result from mixing of empty cation orbitals with occupied
anion orbitals and will be examined more closely in Section 8.6.

To illustrate how the ionic polarizabilities and the additivity rule can be used to estimate the
dielectric permittivity of a compound, consider the cubic garnet (Section 1.5.2), Y3Al504,, with
a=12.01 A. There are eight formula units per unit cell (Z = 8), so the volume per formula unit
is (12.01 A)*/8 = 216.4 A>. Tonic polarizabilities from Table 8.2 and Equation (8.19) give the

Table 8.2 Dielectric polarizabilities « (in A%) for selected ions from ref. [1].

Li* | Be* B* o | F
1.20 | 0.19 0.05 201 | 1.62
Na® | Mg® AP | si* | P

1.80 | 1.32 0.79 | 0.87 | 0.27

K+ Ca2+ Sc3+ Ti4+ V5+ Zn2+ Ga3+ Ge4+ As5+

3.83 | 3.16 | 2.81 | 2.93 | 2.92 2.04 | 1.50 | 1.63 | 1.72
Rb+ Sr2+ Y3+ Zr4+ Nb5+ Cd2+ In3+ Sn4+ Sb3+ Te4+
529 | 424 | 3.81 | 3.25 | 3.97 340 | 2.62 | 2.83 | 4.27 | 5.23
Cs" | Ba™ | La’" | Hf' | Ta™ Hg™ | TI' | Pb** | Bi"
743 | 6.40 | 6.07 | -~ | 473 — | 728 | 658 | 6.12

Ce4+ Pl'3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ H03+ Er3+ Tm3+ Yb3+ Lu3+
3941532501 | --- 474|453 |437|4.25|4.07|3.97|3.81|3.82|3.58]3.64
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polarizability estimate per formula unit: a(Y3Als015) = 3a(Y>") + Sa(AI*") + 12a(0%")
= 3(3.81 A% + 5(0.79 A% + 12(2.01 A% = 39.5 A®. Plugging a = 39.5 A® and V, =
216.4 A® back into Equation (8.18) yields & = 10.7, in good agreement with the
measured value of 10.6.

It is important to note that this approach is only valid for “normal” dielectric materials.
Deviations between the calculated and observed values may be attributed to ferroelectricity
(Section 8.4), piezoelectricity (Section 8.5), conductivity (ionic or electronic), the presence of
rattling ions, compressed ions, and dipolar impurities (such as H,O).

The polarizabilities in Table 8.2 account for both ionic and electronic contributions to
polarization. Shannon and Fischer [2] developed a set of polarizabilities that contain only the
electronic contribution by substituting &, for &, in Equation (8.18). These values are of use for
estimating refractive indices, simulating spectra, and various approaches to modeling extended
solids. For more details on the relationship between electronic polarizabilities and refractive
index, see Section 15.4. As one would expect, the electronic polarizabilities are smaller than the
dielectric polarizabilities, because the ionic polarization no longer contributes.

Box 8.1 Materials Spotlight: Microwave dielectrics

Many technologies, including cellular phones, use electromagnetic radiation with wavelengths in
the microwave region (frequencies in the GHz range) to transmit information. Several key
components in a microwave communication network, such as antennas, transmitters, and filters,
are built from dielectric ceramics. One such component is the microwave resonator used in a cell-
phone base station, which links the radio signals that cellular phones send and receive with the
network switching subsystem. The resonator is typically a hollow ceramic cylinder, called a puck.
The dimensions of the puck (on the order of centimeters) are chosen so that it can sustain a standing
wave within its body when exposed to microwaves of a specific resonant frequency. This allows it to
transmit microwaves that fall within a narrow frequency range and filter out other frequencies.

ceramic pucks used in
microwave resonators

'Y

relative transmitted power (dB)

frequency
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Box 8.1 (cont.)

A dielectric material useful for this application should meet three key requirements. Firstly,
because the size of the resonator is proportional to 1/\e,, a high dielectric permittivity is desirable
because it allows for a reduction in the size of the resonator. In practice, the optimal range is
20 < g <50. Secondly, the selectivity of the resonator increases as the dielectric loss decreases.
The selectivity is defined by a parameter called the quality factor, O, which is approximately
equal to 1/(tan o). If the transmitted power is plotted as a function of the microwave
frequency, a peak is observed at the resonant frequency, as shown above. The quality factor
is equal to the resonant frequency, vy, divided by the width of the peak, Av,, as measured at
a transmitted power 3 dB below the peak. Higher Q reduces the crosstalk within the specified
frequency range. The value of Q is dependent on the resonant frequency of the puck v,, but
the product Q X v, should in theory be constant and is often used as a figure of merit for
comparing different materials. For use in cell-phone base stations, Q X v, should be equal to
or larger than 4x10* Thirdly, the resonant frequency should be nearly independent of
temperature. The temperature dependence is given by the temperature coefficient of resonant
frequency, 7, which quantifies the change in the resonant frequency Av, with a change in
temperature A7T. It is typically expressed in units of ppm/K, (10°Avy/vo)/AT. For use as
a microwave resonator, z¢ should be smaller than +3 ppm/K.

Most ceramics have ¢, too small for microwave resonators. Ferroelectrics are not suitable
because their losses are much too high, which drives down Q. Incipient ferroelectrics like
SrTiO; are not suitable because their permittivity changes too much with temperature. The
best microwave resonators are insulating materials with relatively high, temperature-stable,
permittivities and very low losses. Many of the best microwave dielectrics come from the
perovskite family as seen in the table below. Note the z; values for all materials listed below
are nearly zero [3].

Material &r 0 X vy (GHz) Structure
Bas;MgTa,0y 24 2.5%10° 2:1 ordered perovskite
Ba3ZnTa,0y 29 1.5% 10 2:1 ordered perovskite
Ba3(Co;-Zn,)Nb,Oy 34 9.0 x 10* 2:1 ordered perovskite
(Sr1—cLa)(Ti;_,Al)O; 39 6.0 x 10* Simple perovskite
(Ca,-,Nd,)(Ti;-,Al,)O; 45 4.8 x 10* Simple perovskite

These perovskites contain a mixture of d° cations (Ta>*, Nb>*, Ti**) and non d° cations
(Mg?*, Zn**, Co®*, AI’*) on the octahedral sites. The large ¢, is due to the presence of d°
cations, while dilution with non d° cations prevents phase transitions into a ferroelectric state
and reduces 7. The perovskites can be divided into two categories, those with a 2:1 ordering of
octahedral cations, and those that are solid solutions of high-¢, materials (SrTiO; or CaTiO3)
and low-¢, materials (LaAlO3 or NdAIO3).
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Crystallographic Symmetry and Dielectric Properties

All dielectric materials are polarized by their interaction with an external electromag-
netic field, but certain properties we encounter later in this chapter can only arise in
crystals with specific types of symmetry. In this section, we briefly explore the sym-
metry restrictions on pyroelectricity, ferroelectricity, piezoelectricity, and second-
harmonic generation.

Crystals are classified as either centrosymmetric if they possess an inversion center, or non-
centrosymmetric if they do not. Of the 32 crystallographic point groups (Section 1.1.3), 21
are non-centrosymmetric (Table 8.3). Piezoelectricity and second-harmonic generation are
permitted in all non-centrosymmetric crystals, except cubic crystals with 432 point-group
symmetry, which includes space groups with primitive cubic (P432, P4,32, P4,32, P4532),
body-centered cubic (7432, 14,32), and face-centered cubic (F432, F4,32) Bravais lattices,
illustrating that it is the point-group symmetry, not the Bravais lattice, that dictates which of
the above dielectric phenomena are permitted.

Materials that form crystals with a macroscopic electric dipole moment are called polar
materials.'> Such a crystal is said to be spontaneously polarized, because the non-zero
electrical polarization forms spontaneously, even in the absence of an external electric
field. To be polar, a material must not only lack an inversion center, it must also possess
a polar axis. A rotational axis 1, 2, 3, 4, or 6 is polar if its positive and negative ends are
not equivalent, hence the axis must not be perpendicular to a twofold axis or a mirror

Table 8.3 Non-centrosymmetric point-group symmetries sorted according to whether they
allow piezoelectricity (20 piezoelectric crystal classes), both piezoelectricity and
pyroelectricity (10 polar crystal classes), or neither.

Piezoelectric crystal classes

Crystal system Polar crystal classes Neither
Triclinic 1 - -
Monoclinic 2, m - -
Orthorhombic mm?2 222 -
Trigonal 3m, 3 32 -
Tetragonal 4mm, 4 422, 42m, 4 -
Hexagonal 6mm, 6 622, 62m, 6 -
Cubic - 23,43m 432

13 Somewhat confusingly, in the crystallographic literature the terms polar material and polar crystal class are used to
describe any material that crystallizes in a non-centrosymmetric space group. Throughout this book, we use the
more restrictive condition that a crystal must contain a polar axis to be considered a polar material.
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plane.'* This narrows the list to 10 polar crystal classes given in Table 8.3."> Pyroelectricity
and ferroelectricity are only permitted in polar crystals.

Pyroelectricity and Ferroelectricity

In all polar materials, the magnitude of the bulk polarization changes with temperature;
a property referred to as pyroelectricity. Ferroelectrics are a special class of polar materials
where the permanent electric dipole moment of a crystal can be reversed through application
of an external electric field. In ferroelectric materials there is a temperature called the Curie
temperature, 7, above which thermally induced vibrations of the ions lead to a loss of spontan-
eous polarization'®, and hence a loss of ferroelectricity. Above T, a ferroelectric material enters
a paraelectric state. Ferroelectric materials are used in capacitors due to their (often) large
dielectric permittivity. Because the direction of the electrical polarization switches permanently
after application of an electrical field, they also find use in data storage (ferroelectric random-
access memory).

Although the term pyroelectric is general, it is often used in a narrower sense to describe those
polar materials that are not ferroelectric. Compounds with the wurtzite structure (P6smc of
crystal class 6mm, Figure 1.33), such as GaN, provide one such example. Alternating cation and
anion layers stack perpendicularly to the ¢ axis in the wurtzite structure, creating a net dipole
moment parallel to the ¢ axis. One would have to reverse the layer-stacking sequence from Ga-—
N-Ga-N-... to N-Ga-N-Ga- . .. to switch the polarity of the crystal. The energy barrier to
this reorganization of the crystal is too large to be overcome with an external electric field, hence
GaN is a pyroelectric but not a ferroelectric. Gallium nitride and other pyroelectric materials
find application as IR (heat) sensors.

Ferroelectricity in BaTiO3

To understand the origins of ferroelectricity, we take a closer look at the archetypal
perovskite ferroelectric, BaTiO;. We first relate the dielectric properties of BaTiOj to
changes in its average crystal structure that occur at the Curie temperature, a model that
provides a good entry point for understanding structure—property relationships in ferroelec-
trics. Subsequently, we investigate the phase transitions of BaTiO3; and see how the local
structure may differ from the average crystal structure.

Above T¢ =400 K, BaTiO; has the cubic perovskite structure (Section 1.5.3). On cooling

below T, the symmetry lowers from cubic (space group Fm3m) to tetragonal (P4mm). This

14 Neumann’s principle states that the physical property of a crystal must have at least the symmetry of the crystal’s
point group. The polarization arrow does not have a twofold axis or m perpendicular to it.

15 The oft-used term “unique axis” can be misleading because one may not realize which axis is meant and that it includes
the onefold axes in crystal classes 1 and m = Im]1 (the extended Hermann—Maugin symbol; see Appendix B).

16" A crystal that has a net electric dipole moment is said to be spontaneously polarized, because the non-zero electrical
polarization persists in the absence of an external electric field.
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Figure 8.5 The average structure of BaTiO; above (left) and below (right) 7. The four equatorial Ti-O
bond lengths remain ~2.00 A in the tetragonal structure.

distortion of the average structure involves a displacement of the titanium ions along the
tetragonal fourfold axes, accompanied by a shift of the oxide ions in the opposite direction,
resulting in the formation of one short and one long Ti—O bond per octahedron, as shown in
Figure 8.5. These cooperative ionic displacements cause the crystal to develop a net polar-
ization, whereby the crystal face the titanium ions approach develops a positive charge and
the opposite face a negative charge.

‘While this simple picture captures the microscopic origins that lead to the formation of local
dipole moments in BaTiOs, the macroscopic properties are strongly impacted by the formation
of domains. To understand what domains are and how they affect the macroscopic properties of
a ferroelectric crystal, we need to investigate the crystal over a much larger length scale.

The high-temperature cubic structure possesses fourfold axes running parallel to each of the
three Cartesian directions. Consequently, each titanium atom has six equivalent directions (see
Figure 8.6) along which it can displace and still attain the tetragonal symmetry of the average
structure below T¢. Over the length scale of hundreds or thousands of unit cells, the average
titanium displacements are likely to be in the same direction, but, when viewed over a larger
length scale, the crystal actually consists of individual domains, each with one of the six different
polarization directions. Domains in ferroelectric materials typically have dimensions on the
micron length scale, with domain walls a few unit cells thick. The formation of ferroelectric
domains helps to minimize the electrostatic and elastic energy of the crystal.'” If the displace-
ments in neighboring domains are in opposite directions, the boundary is said to be a 180°

17 Spontaneous polarization within a crystal leads to the formation of a surface charge that creates a depolarizing field
oriented oppositely to the bulk polarization. The electrostatic energy associated with the depolarizing field may be
minimized if the ferroelectric splits into domains with oppositely oriented polarization. Domain formation also
helps to offset strains that arise due to changes in shape of the crystal that occur as it is cooled through the
paraelectric—ferroelectric phase transition.
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Figure 8.6 Six possible average polarization directions at the cubic-to-tetragonal phase transition in bulk
BaTiO; (left), and a cross-section of a typical domain structure with these polarization directions
represented by arrows (right).

domain wall. If the displacements are at right angles to each other, the boundary is a 90° domain
wall. Both types of domains are illustrated schematically in Figure 8.6.

The polarization of a ferroelectric crystal as a function of the applied electric field is illustrated
in Figure 8.7. This curve is called a hysteresis loop, because the polarization that occurs on
increasing the field is not reproduced on subsequently decreasing the field. Due to the formation
of oppositely polarized domains, the bulk polarization P of a ferroelectric crystal that has never
been exposed to an electric field will be nearly zero. As the applied field increases (pathway 1 — 2
in Figure 8.7), the polarization increases until it reaches the saturation polarization, Pg,uation
(point 2 in Figure 8.7). This corresponds to the state where all domains are oriented parallel to
the applied field. The saturation polarization of a good ferroelectric typically ranges from
0.1-1 C/m* Upon removing the applied field, the polarization decreases, but does not go to
zero. The value of the polarization that remains is called the remanent polarization, P, .nent
(point 3 in Figure 8.7). If a field is now applied in the opposite direction, the polarization
continues to decrease until it reaches zero. The magnitude of this field is the (negative) coercive
field, —F.oercive (point 4 in Figure 8.7). Upon increasing this reverse field, the polarization
saturates at — Pg,uuration (Under the switching field, point 5). From there, the polarization follows
the hysteresis loop marked with a solid line in a counterclockwise direction for further changes in
applied field. We will see in Chapter 9 that ferromagnets behave similarly, with magnetic dipole
moments taking the place of electric dipoles.

The relative permittivity of a BaTiOj; single crystal is plotted as a function of temperature
in Figure 8.8. The peak at T = 400 K separates the paraelectric cubic phase from the
tetragonal ferroelectric phase. Such a peak at T is a characteristic of ferroelectric materials.
The peak near 270 K is associated with a transition to an orthorhombic structure, while the
peak near 180 K corresponds to a transition to a rhombohedral structure. The tetragonal,
orthorhombic, and rhombohedral forms are all ferroelectric.
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Figure 8.7 Hysteresis loop for a ferroelectric material and schematic evolution of a vertical domain pair
(for simplicity) at several points on the loop. The domain structure at point 7 is identical to point 4, but
with an oppositely polarized external field.

10000

8000

6000

4000

2000

rhombohedral
orthorhombic

tetragonal

cubic

Figure 8.8 The dielectric permittivity ¢, of a single crystal of BaTiOs, measured parallel to the a and ¢ axes
at a non-zero electric field, as a function of temperature. Data taken from reference [4].

Naively, one might expect ¢, to be quite small in the cubic structure because there are no
permanent local dipole moments, yet for temperatures just above 7¢ the relative permit-
tivity is higher than it is at most temperatures below 7. The reason for this behavior is
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that the ionic displacements, and the local dipoles that accompany them, do not vanish
above T¢; they become dynamic. In the paraelectric state, lattice vibrations have sufficient
energy to move the titanium ions back and forth from one side of the octahedron to
another. While on average each titanium ion appears to sit at the center of its octahedron,
at any given instant in time it is almost certainly shifted away from the center of its
octahedron. These thermally induced vibrations make it impossible to build up
a spontaneous permanent polarization of the crystal along a specific direction.
Nonetheless, there is still a large response to an applied electric field, giving rise to the high
& seen above Tc in Figure 8.8. The fact that ¢ reaches a maximum can be largely
attributed to weakening of the domain structure as the temperature approaches 7 from
below. As we have already learned, the formation of domains tends to reduce the net
polarization of the crystal, so it should not be surprising to find that ¢, increases as the
domain structure disappears.

The tetragonal, orthorhombic, and rhombohedral forms of BaTiO; exhibit average
displacements of Ti towards the corner, edge, and face of the octahedra, respectively, as
shown in the lower half of Figure 8.9, each slightly distorting the original cubic cell. Every
time the symmetry changes, the domain structure also changes, and this explains the
permittivity maximum at each phase transition (Figure 8.8). Interestingly, probes of local
structure, such as pair distribution function (PDF) analysis and X-ray absorption fine
structure (EXAFS), reveal that the local structure deviates from the average crystallographic
structure. In all four modifications of BaTiO3, local displacements of titanium toward a face

local
structure

average
structure

(a) Tetragonal (b) Orthorhombic (c) Rhombohedral

Figure 8.9 The Ti-displacement disorder in BaTiOj3 (top), and the resulting average structure (bottom).
The small spheres shown in the upper half of the figure represent disordered Ti positions along the body
diagonals of the high-temperature cubic unit cell. They are slightly exaggerated for illustrative purposes.
The degree of disorder gradually decreases as the symmetry changes from (a) tetragonal, to (b) ortho-
rhombic, to (c) rhombohedral. The darkly shaded bonds are the shortest average Ti—O distances. See ref.
[5] for more details.
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of its coordination octahedron are observed, giving three short and three long Ti—O bonds
[5]. In other words, the local structure around each Ti looks very much like the low-
temperature rhombohedral structure shown in Figure 8.9¢, even at temperatures where the
average structure is tetragonal, orthorhombic, or cubic.

Antiferroelectricity

Not all compounds that have local dipole moments exhibit a spontaneous polarization.
Antiferroelectric materials possess local dipoles, but their arrangement is such that for every
dipole there is an adjacent dipole that is oriented in the opposite direction (antiparallel).
Because the dipoles cancel, the antiferroelectric state is nonpolar and does not exhibit
a hysteresis loop. Nevertheless, the local dipoles still become dynamic above a certain
temperature, called the antiferroelectric Curie temperature, where the material crosses
over to a paraelectric state.

Subtle changes in bonding can trigger a crossover between ferroelectric and antiferro-
electric behavior. For example, the ferroelectric perovskites PbTiO3 (T¢c = 763 K) and
KNbO; (Tc = 707 K) are closely related to antiferroelectric PbZrO; (T¢ = 606 K) and
NaNbO; (T =911 K). In these materials, changes in the perovskite tolerance factor (Section
1.5.3) modify the long-range coupling of the local distortions sufficiently to alter the
competition between competing ferroelectric and antiferroelectric ground states. The ferro-
electric KH,PO, (T = 123 K) and antiferroelectric (NH4)H,PO, (T = 148 K) are another
such pair; in this instance differences in hydrogen bonding are responsible for their different
dielectric properties.

Despite the cancellation of dipoles, antiferroelectrics can exhibit high dielectric permittiv-
ity, especially near the Curie temperature. For example, the relative permittivity of PbZrOs is
~3000 just a few degrees below its Curie temperature. Because the bonding interactions that
differentiate ferroelectrics from antiferroelectrics can be subtle, it is sometimes possible to
drive a reversible transition from the antiferroelectric state to a ferroelectric state with an
applied field, as shown in Figure 8.10. At low fields, the response is linear, but at higher fields
a hysteresis loop is observed, as in PbZrOs.

ferroelectric paraelectric antiferroelectric

Figure 8.10 Polarization as a function of electric field for a ferroelectric, a paraelectric, and an antiferro-
electric material that reversibly transforms to a ferroelectric state when a sufficiently large field is applied.
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Box 8.2 Nanoscale Concepts: Relaxor ferroelectrics

Relaxor ferroelectrics, often referred to simply as relaxors, are frustrated ferroelectrics, typically via
substitution-induced structural disorder. Many relaxors are perovskites with the generic formula
AM’'{_M")O; where some degree of disorder exists among the octahedral-site metals, M’ and
M. In such compounds it is common that a lone-pair cation, often Pb>*, resides on the A-site and
a high-valent d° transition metal occupies the M" site. Importantly, both are prone to off-center
displacements that create local dipole moments, as discussed in Section 8.6.

The properties of relaxors and normal ferroelectrics are similar, but the cooperative phase
transitions that lead to the formation of large, spontaneously polarized domains are suppressed
in relaxors. Like normal ferroelectrics, the dielectric permittivity of a relaxor goes through
a maximum as a function of temperature. Unlike normal ferroelectrics where the permittivity
peaks sharply near 7¢ and shows little frequency dependence, relaxors exhibit a broad and
frequency-dependent ¢, peak, as shown below for one of the most important relaxors, Pb(Mg; 3
Nb,/3)O5 (at alternating-current frequencies of 1072, 10°, 10%, 10* and 10° Hz) [6]. The lack of
an abrupt change in crystal structure upon cooling through the permittivity maximum is
another feature of relaxors that distinguishes them from normal ferroelectrics. Instead, the
polar distortions are confined to nanoscale islands called polar nanoregions (PNRs). Whereas in
normal ferroelectrics such regions would grow and coalesce upon cooling into the ferroelectric
state, in relaxor ferroelectrics the sizes of the PNRs change with temperature yet remain
separated from each other by a nonpolar matrix. Although relaxors do not undergo coopera-
tive phase transitions, above the Burns temperature the PNRs disappear, and the relaxor enters
a paraelectric state. The Burns temperature of Pb(Mg;,;3Nb,/3)O5 is ~630 K.

25000 A

20000 -

15000 -

10000 A

5000 A

150 200 250 300 350 400
T (K)

Each PNR possesses a large dipole moment that does not strongly couple to other PNRs.




Box 8.2 (cont.)

The presence of large, uncoupled, dipole moments can produce very large dielectric
permittivities, as high as 20000 to 35000 in some relaxors. This makes them attractive for
applications in multilayer capacitors. The large permittivities also lead to large electrostric-
tion effects (changes in volume in response to an applied electric field). Furthermore, the
absence of a conventional domain structure allows for a fast electrostrictive response to
applied fields that makes relaxors ideal for micropositioners in optical devices, low-
frequency transducers in sonar systems, and high-frequency transducers in biomedical
devices.
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8.5

Piezoelectricity

When a suitably oriented mechanical stress is applied to a polar crystal, charges will develop
on opposite faces of the crystal. This phenomenon is known as the piezoelectric effect. When
a suitably oriented electric field is applied to a polar crystal, it will change the dimensions of
the crystal, a phenomenon known as the converse piezoelectric effect. Both effects are
illustrated schematically in Figure 8.11.

The piezoelectric effect originates from distortions of coordination polyhedra that create
or modify local dipoles. In polar materials like tetragonal BaTiO3, compression along certain
directions amplifies the polarization while in other directions compression diminishes the
polarization, as shown in Figure 8.12. Application of an external stress can also induce a net
polarization in a nonpolar crystal if its point group belongs to one of the piezoelectric crystal
classes listed in Table 8.3. To see how a nonpolar entity with no inversion center can develop
a dipole moment, consider the nonpolar trigonal-planar coordination polyhedron. As illus-
trated in Figure 8.12c, the appropriate external stresses can deform the equilateral triangle in
a manner that creates a local dipole.

Given the geometric considerations discussed in the preceding paragraph, it should not
come as a surprise that many piezoelectrics are either ferroelectric materials (all ferroelectrics
are piezoelectric, but the converse is not true) or structures containing nonpolar building
units that lack an inversion center, like trigonal planes or tetrahedra. The applications of
piezoelectrics are numerous and amongst the most important of the materials encountered in
this chapter. One of the oldest is in sonar, where piezoelectric transducers convert pressure
changes associated with sound waves into electrical signals. Piezoelectrics are also used to
generate and detect ultrasonic pulses used in medical imaging technologies like ultrasound.
Because electrical charges build up when a pressure is applied to a piezoelectric crystal, they
can be used to create sparks that ignite flammable gases. On the other hand, the converse
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Figure 8.11 The piezoelectric effect where compressive stress leads to polarization of the crystal (top), and
the converse piezoelectric effect where an applied electric field changes the shape of the crystal (bottom).
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Figure 8.12 Piezoelectric materials: changes in local polarization in response to stress. (a) A compression
in the ab plane of tetragonal BaTiO5 amplifies the local polarization, (b) a compression along ¢ diminishes
it. (c) External stress induces local polarization (fractional charges d) in a trigonal-planar polyhedron.

piezoelectric effect is used in devices to reproducibly control minute movements by applying
a voltage, for example to position the tip of an atomic force microscope.
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Figure 8.13 The PbZr,-,Ti,O; phase diagram.

While tetrahedral-network solids find use in some applications, such as quartz oscillators for
clocks, ferroelectric perovskite oxides dominate the commercial market for piezoelectrics. The
most widely used piezoelectrics are based on the Pb(Zr,_,Ti, )O3 (PZT) system, the phase
diagram of which is shown in Figure 8.13. Pure PbZrO; becomes antiferroelectric below 506 K.
Its structure is distorted from cubic to orthorhombic symmetry by antiparallel displacements of
Pb and rotations of the zirconium-centered octahedra (a’b™b~ tilting, Section 1.5.3). Upon
introducing a small fraction of Ti at the Zr site, the paraelectric cubic state transforms'® to
a ferroelectric state upon cooling [7]. This phase, labeled rhombohedral T in Figure 8.13,
possesses a slight rhombohedral distortion of the cubic cell and space-group symmetry R3m.
In this structure, Pb>" as well as (Ti/Zr)*" displace along one of the eight (111) directions of
the parent cubic cell. A second rhombohedral phase, labeled rhombohedral II in Figure 8.13,
appears at low temperatures. This phase of R3¢ symmetry features a a a~ octahedral tilting, in
addition to the polar displacements of cations that were already present in the high-
temperature R3m phase. For Ti-rich (x > 0.5) compositions, Pb(Zr;_,Ti,)Oj is isostructural
with the average structure of tetragonal BaTiO; (Figure 8.5) [8]."

Near the PbZr, sTiy 503 composition, the ferroelectric solid solution changes sym-
metry from rhombohedral on the Zr-rich side to tetragonal on the Ti-rich side. The solid
line separating these two regions in Figure 8.13 is called the morphotropic phase

'8 This transformation is sluggish and can have a large thermal hysteresis.

9 The Pb** displacements in PbTiO; influence the Ti*" displacements in such a way that both the local and average
structure of tetragonal PbTiO3 can be described by displacements along one of the equivalent (001) directions,
unlike BaTiO; where the local displacements are along (111).
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boundary (MPB). An abrupt structural change upon changing the composition of
a solid solution is the defining characteristic of an MPB. For solid-solution compos-
itions close to the MPB, a polarization rotation occurs where the polar vector
defining each domain is easily reoriented by an electric field, leading to a very strong
piezoelectric response.

The structure of Pb(Zr;_,Ti,)O3; becomes quite complicated near the MPB, with
some details still being debated. In the late 1990s, the 0.48 < x < 0.50 region, which
had previously been thought to be a two-phase mixture of rhombohedral and
tetragonal phases, was shown to be more accurately described as a monoclinic
phase [9]. A more recent study provides evidence to suggest there may be two
different phases with monoclinic symmetry in the MPB region [10]. Upon increasing
the Zr content, the average structure becomes rhombohedral, but vestiges of the
monoclinic structure can still be found in the local structure. The subtle energetic
differences between competing phases gives rise to a complex fine-scale domain
structure that is at least partially responsible for the exceptional piezoelectric proper-
ties of PZT.

In recent years, environmental concerns over the detrimental impacts of lead have
motivated a search for Pb-free piezoelectrics. Perovskites such as (K;-,Na,)NbOs,
Ba(Zr,-,Ti,)O3, and (Ba;-,Ca,)TiO;, have emerged as possible replacement candi-
dates. Nevertheless, piezoelectrics with properties that match those of PZT remain
elusive.

Local Bonding Considerations in Non-Centrosymmetric Materials

As a general rule, non-centrosymmetric structures are more likely to form when their
coordination polyhedra lack an inversion center. Apart from polyhedra that are inherently
non-centrosymmetric (triangles, tetrahedra), polyhedra that would otherwise possess an
inversion center can become non-centrosymmetric by distorting. For example, when an
octahedrally coordinated cation undergoes a second-order Jahn-Teller (SOJT) distortion
as in the ferroelectric phases of BaTiOs.

Halasyamani and Poeppelmeier [11] surveyed the ICSD and found ~580 oxides that
adopt non-centrosymmetric crystal structures. Among these, two-thirds belonged to
polar crystal classes, while the remaining third were nonpolar. Roughly 75% of all
entries contain one or more of the following coordination environments: (a) a d°
cation that undergoes an SOJT distortion (e.g. Ti*", Nb>"), (b) a p-block cation with
an s°p° electron configuration that undergoes an SOJT distortion leading to
a stereochemically active lone-pair distortion (e.g. Pb**, Sb*"), or (c) a tetrahedrally
coordinated cation. In the following section, we take a closer look at the bonding that
drives SOJT distortions.
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Second-Order Jahn—Teller Distortions with d° Cations

SOJT distortions were introduced in Section 5.3.10. In extended solids, the most common
SOJT distortions are those involving a transition-metal cation with a d° configuration and
those involving a main-group cation with an s°p° configuration. We consider d° cations in
this section and s?p° cations in the next.

The molecular-orbital (MO) diagram for an octahedrally coordinated transition-metal
atom was considered in detail in Section 5.3.8. When the transition metal has a d° configur-
ation, the empty triply degenerate set of MOs with #,, symmetry is the LUMO (lowest
unoccupied molecular orbital), while the HOMO (highest occupied molecular orbital) has
nonbonding anion character (see Figures 5.21 and 5.22). SOJT distortions are characterized
by a shift of the cation out of the center of the octahedron that lowers the symmetry, enabling
the unoccupied 7, orbitals to mix with filled anion states, as described below. A thorough
treatment of SOJT distortions involving ¢ cations in both molecular and extended solids
can be found in the literature [12].

Because perovskite oxides account for a large fraction of ferroelectric materials, let’s
take a closer look at the bonding that drives SOJT distortions in these materials. Their
electronic band structure was covered in detail in Sections 6.6.4 and 6.6.5. For a cubic
perovskite with a d° cation on the octahedral site (e.g. SrTiO5 or KTaOs3), the conduction-
band minimum occurs at the I' point (see Figure 6.31). At I, the orbital character of six
out of the nine valence bands becomes strictly oxygen 2p nonbonding, while the three
lowest-energy conduction bands are strictly metal d nonbonding orbitals (d,, d,., d..) as
illustrated in Figure 6.30. The key point is that mixing (overlap) of the metal d orbitals and
the oxygen 2p orbitals to form 7z-bonding and -antibonding states is symmetry-forbidden
at the I' point.

Now consider how the band structure changes in response to a SOJT distortion. The
essential features of this analysis are captured by considering the 7 interactions and
the displacements of the M cation within the xy plane towards the edge of the octahedron.
The crystal orbitals at I" representing the empty d,, band and one of the filled O 2p bands
with #;, symmetry are shown in the upper half of Figure 8.14. These are representative of the
crystal orbitals from conduction and valence bands, respectively, separated by the charge
transfer gap CT in Figure 6.31.

If we lower the symmetry by moving the M cations along [110], the symmetry
constraints are relaxed, and mixing (overlap) between the two formerly nonbonding
crystal orbitals is allowed. Because each oxygen ion now makes one short and one
long bond to the neighboring metal atoms, the bonding and antibonding contributions
do not cancel out. This introduces 7-bonding interactions that stabilize the occupied
nonbonding O 2p states (see lower middle panel of Figure 8.14), while 7*-antibonding
interactions destabilize the empty metal d states (see lower right panel of Figure 8.14).
The amount of mixing increases as the energy gap (prior to the distortion) between the
O 2p (tiy) and M nd (t,,) crystal orbitals decreases. Because the destabilization of
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Figure 8.14 Top: Metal-oxygen interactions within an MO, plane of a perovskite (left), and crystal
orbitals at " for the valence-band maximum (middle) and conduction-band minimum (right). Bottom:
Changes that occur when the octahedral cation displaces within the plane toward an edge of the
octahedron.

the conduction-band states is larger than the stabilization of the valence-band states, the
SOJT distortion quickly becomes unfavorable as the d orbitals are populated. This is
seen in the crystal chemistry of MOz compositions with ReOs topologies. SOJT distor-
tions lead to large cation displacements in the d° oxides WO5 and p-MoOs, whereas the
d! oxide ReO; is cubic.

A survey of AMOj; perovskites shows that not all compounds that contain a d° cation
undergo SOJT distortions. SOJT distortions are observed for KNbO;, NaNbO;, and
BaTiO;, but not for KTaOs3, NaTaOj3, SrTiO;, CaTiO3, AZrOsz, or AHfO;5 (A is Ba, Sr,
Ca). This can be understood by realizing that the driving force for the SOJT distortion
increases as the energy separation between the metal nd orbitals and the nonbonding oxygen
2p states decreases.”’ This energy separation reaches a minimum at the I' point (Section
6.6.5). SOJT distortions are therefore seen in KNbO3, where the narrow charge-transfer gap
facilitates mixing of M nd and O 2p orbitals on distortion, but not in BaZrO; where the gap is
larger. SOJT distortions occur in ferroelectric KNbOj3 and antiferroelectric NaNbO;, but
not in KTaO3; and NaTaO; for the same reason. Using a variety of approaches, several
different studies have reached similar conclusions regarding the tendency for various d°
“cations” to undergo SOJT distortions [13, 14, 15, 16]: Hf*" < Zr** < Ta>" < Ti*" < Nb°* <

20 In Figure 6.31, the HOMO-LUMO gap at I' is labeled a charge-transfer excitation: the smallest direct band gap in
a cubic perovskite that allows electromagnetic radiation to excite electrons from nonbonding anion crystal orbitals
to empty d orbitals of the central metal atom.
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WO < V>* < Mo®". Notice the similarity of elements that are diagonal neighbors on the
periodic table (e.g. Ti**, Nb>*", Wo").

The charge-transfer gaps of most A>*TiO; and A*TaO; perovskites make them nearly
ferroelectric; close to the border between ferroelectric and paraelectric behavior (except
BaTiO; and PbTiOs, which are ferroelectric). Although SrTiO3; and KTaOj3 are cubic and
therefore nonpolar at room temperature, they have dielectric permittivities much higher than
predicted by the Clausius—Mossotti equation (330 and 242 respectively, see Table 8.1). These
permittivities increase further with decreasing temperature as though approaching
a transition into a ferroelectric state, but the transition is never realized. Consequently,
these phases are referred to as incipient ferroelectrics. The close proximity of the ferroelectric
state means that only a small perturbation is needed to stabilize ferroelectricity. In the case of
SrTiOs, ferroelectricity can be realized by stretching the lattice, which occurs when Sr** ions
are replaced with the larger Ba®* ions to form BaTiOs.”' In a similar vein, the dielectric
properties of thin epitaxial SrTiOj; films are very sensitive to stresses that result from lattice
mismatch with the underlying substrate. For example, the dielectric permittivity of SrTiO3
films grown on DyScOs; substrates, which impose a 1% in-plane tensile strain, is increased
nearly 20 times compared with bulk SrTiO; [17]. It has even been shown that isotopic
substitution of %0 for '°O can stabilize ferroelectricity in SrTiO5 below 23 K [18].

Second-Order Jahn-Teller Distortions with s?p° Cations

Cations that have an s*p° configuration are also prone to distortions. These distortions are
called lone-pair distortions, or more accurately, stereochemically active lone-pair distor-
tions, because their presence is normally inferred from the distortion of the ligands sur-
rounding the s°p° central atom. To understand the driving forces behind these distortions, we
again turn to MO theory to show that “lone-pair distortions” are just another type of SOJT
distortion as discussed previously in Section 5.3.10.

Consider a main-group cation located on a site with m3m (0O,) symmetry. This includes
three important coordination environments found in extended solids: the octahedron, the
cube, and the cuboctahedron. Once again, the perovskite structure provides us with good
examples, as both the smaller six-coordinated cation in the octahedron and the larger 12-
coordinated cation in the cuboctahedron have m3m site symmetry.

Figure 8.15 shows two perovskites where an s°p° cation drives a SOJT distortion: CsGeCl,
and BiFeOs;. The distortion is driven by Ge>* on the six-coordinate site in the former, and by
Bi*" on the 12-coordinate site in the latter. In both, the lone-pair cation displaces along

2l According to the distortion theorem (Section 5.4), off-center shifts of an atom within its coordination polyhedron
increase the atom’s bond-valence sum. In those AMOj3 perovskites where the coordination octahedron defined by
AO; packing becomes too large (tolerance factor > 1), the M of d ° configuration and high oxidation state becomes
underbonded. The SOJT distortion leads to an increase in the M-atom bond-valence sum, because bonds that
shorten gain more bond valence than bonds that lengthen lose.
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Figure 8.15 The crystal structures of the rhombohedrally distorted perovskites CsGeCls (left) and
BiFeO; (right). Only the shortest Ge—Cl and Bi~O bonds are shown.

a threefold axis, lowering the site symmetry to 3m and the crystal symmetry to
rhombohedral.

Consider the MO diagram for an isolated GeClg*~ octahedron (Figure 8.16). Because the
Ge—Cl 7 overlap is minimal, we can concentrate on the interactions between the six Cl™ o
donors and the 4s and 4p valence orbitals of germanium. In a perfect octahedron, these
orbitals are orthogonal and do not mix. The HOMO is the strongly antibonding interaction
between the Ge 4s orbital and the ligand symmetry-adapted linear combination (SALC) with
ai, symmetry. The LUMO is the triply degenerate 7y, set of orbitals formed from antibond-
ing Ge 4p—Cl interactions. The relatively small HOMO-LUMO gap provides the necessary
driving force for an SOJT distortion.

Figure 8.17 shows the changes to the frontier orbitals (HOMO and LUMO) that result
from a shift of Ge** along the along threefold axis toward the face of the coordination
octahedron, as seen in CsGeCls. In the distorted octahedron with 3m point-group symmetry,
the Ge 4s and 4p. orbitals both have a; symmetry and can mix with each other, lowering the
energy of the HOMO. In this way, the electron density of the spherically symmetric a;,
orbital of the undistorted octahedron is redistributed to a lobe located on the “more open
side” of the Ge ion, forming the stereochemically active electron lone pair. At the same time,
the energy of the Ge 4p.—Cl 6* MO is raised by the s—p interaction, but, because this orbital is
not occupied, there is no energy penalty for this destabilization. Similar symmetry arguments
can be made for Bi** that sits on the 12-coordinate site in BiFeOs.

In oxides where the metal M comes from the fourth period, the M 45—O 2p interaction is
very strong. Consequently, the M 4s—O 2p o* level is so antibonding that it is difficult to
stabilize the 45°4p° configuration in any geometry. Hence, Ga™ and Ge** are rarely observed
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Figure 8.16 The MO diagram for an isolated GeClg*~ octahedron. Only the valence-shell Ge 4s and
4p orbitals, and the CI o-donor orbitals, are considered.
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Figure 8.17 HOMO and LUMO of an s%p° cation in a regular octahedral coordination (left) and their
response when the s°p° cation shifts toward a face of the octahedron (right) as in CsGeCls.

in oxides and fluorides. In contrast, many oxides of Sn**, Sb>*, and Te** exist because the
M 55-O 2p interaction that gives rise to the 2a;, 6* MO is not as strongly antibonding.
However, the interaction is still strong enough that a pronounced stereochemically active
electron lone-pair distortion is common. While such distortions produce local dipole
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moments, the energy required to invert the orientation of the stereochemically active lone
pair is often quite large. Hence, many oxides containing Sn>*, Sb>*, and Te*" are pyroelectric
but few are ferroelectric.

Moving to the sixth period, the spatial and energetic overlap between metal 6s and
O 2p orbitals is significantly diminished, due to the contraction of the 6s orbital driven by
relativistic effects (Section 5.2.2). Consequently, sixth-period cations like TI", Pb**, and Bi**
show a wide variety of coordination environments. In some compounds (e.g. PbWOy,
BiVO,) the lone pair is not stereochemically active and a symmetric coordination environ-
ment results. In those cases, long cation—oxygen bonds minimize the M 65—-O 2p overlap and
the 657 electron pair remains essentially the nonbonding, non-stereochemical, inert pair of
the isolated atom, having its original spherical symmetry. In other compounds, like PbTiO3
and PbZrOs, the SOJT distortion is active [19]. The occurrence of the SOJT distortion and
the accompanying stereochemical activity depends on the details of the cation—anion inter-
action. Brown [20] has shown that the local environment of TI" can vary from completely
symmetric to highly distorted when in the presence of anions that require strong, short,
bonds with TI*. When a SOJT distortion of a sixth-period cation does occur, the direction of
the displacement can often be inverted by an applied field, hence these cations, particularly
Pb”*, are often found in ferroelectrics.

Nonlinear Optical Materials

When electromagnetic radiation travels through a dielectric material, the electric-field
component of the radiation induces an oscillating polarization of the charged species in
the material. This slows the wave’s velocity as it passes through the material, as though the
oscillating charges emit their own electromagnetic wave at the same frequency as
the propagating electromagnetic radiation, but with a phase delay. The ratio between the
speed of light, ¢, in a vacuum and its velocity, v, inside the material is defined as its refractive
index, n = ¢/v.”> For ultraviolet (UV), visible, and near-IR radiation, only electron clouds can
respond to the high-frequency electric field of the propagating light wave.

The phenomenon whereby light is slowed as it passes through a material is a linear optical
effect. Much weaker nonlinear optical (NLO) effects can occur, where the propagating
electromagnetic wave and the light emitted by the material have a different frequency.
Because NLO effects are weak, they are only observable with intense light sources such as
lasers. A full treatment of NLO effects and applications is beyond the scope of this text.
Instead, we will concentrate on what is arguably the most important NLO effect, second-
harmonic generation (SHG).

SHG is a process where two photons with frequency v combine to produce a new
photon with twice the frequency, 2v. Using relationships introduced in Section 7.1, it

22 Be careful not to confuse the italic v for velocity with the Greek letter v for frequency.
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Green laser pointer

808 nm 1064 nm 1064 nm, 532 nm
light light 532 nm light
_— _— —_— _—
Diode laser Nd-doped KTiOPO, (KTP) IR filter
YVO, crystal SHG crystal

Frequency-tripled UV laser

1064 nm 1064 nm, 1064 nm, 532 nm,
light 532 nm 355 nm
—_— _— _—
Nd-doped LiB;05 (LBO) LiB;05 (LBO)
Y;Als04, (YAG) SHG crystal sum frequency
laser mixing crystal

Figure 8.18 The main optical components of a green laser pointer (top) and a laser that uses two NLO
crystals to generate UV light (bottom).

can be shown that the new photon has twice the energy and half the wavelength of
the incoming photons. Perhaps the most familiar example is the green laser pointer
(Figure 8.18), which uses a (Y;-.Nd,)VO, laser crystal to emit IR radiation with
a wavelength, 2 = 1062 nm, that is subsequently halved to 532 nm by a KTiOPO,
SHG crystal.” SHG crystals are used in many types of lasers to convert IR light to
visible and/or UV light.

Nonlinear Susceptibility and Phase Matching

When polarization was introduced in Section 8.1.2, nonlinear effects were neglected. We can
expand Equation (8.6) to take nonlinear effects into account:

P=2g (XQ)E DB OB+ ) (8.20)

2 One drawback of this green laser pointer design is the low SHG efficiency associated with the low power levels
employed in a laser pointer. Hundreds of milliwatts of IR light are required for generating the standardized 1 mW of
green light. Accordingly, battery life is relatively short and filters must be used to take out the IR light that poses
a serious safety hazard to the eye.

Z
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where Xé” is the linear electric susceptibility and the higher-order terms ){éz) , ;(S) , ...are the

nonlinear electric susceptibilities of the second, third, and higher orders, respectively.
Because each successive term in Equation (8.20) is much smaller than the preceding one,
we neglect terms past the second-order Xéz). The even terms (Xéz), XE:‘) , ...) are zero for
centrosymmetric crystals, so only non-centrosymmetric crystals are capable of SHG activity,
as discussed in Section 8.3. Although frequency tripling is allowed in centrosymmetric
crystals, the effect is generally so small that it is not of practical importance. Instead,
frequency tripling is usually achieved by combining frequency doubled light with the primary
beam in a second crystal, where sum frequency generation occurs, as schematically illus-
trated in Figure 8.18.

Each of the susceptibility terms in Equation (8.20) is a tensor, a proportionality constant
between properties described by a matrix or a vector. The second-order electric susceptibility

)(g) has 27 individual y; terms. For practical purposes, these are often converted into the so-

called NLO coefficients, d;. For applications, it is desirable that the NLO coefficients be
relatively large, but, as we will see, this is not the only important materials consideration.
NLO coefficients are often reported relative to potassium dihydrogen phosphate, KH,PO,
(KDP), whose d3>; = 0.44 pm/V is the standard coefficient against which other NLO
materials are measured.”*

The refractive index of a material is not a constant; it depends on both the frequency of the
electromagnetic radiation and the temperature of the material. The frequency dependence is
important for SHG because in general the fundamental beam of frequency v and the second-
harmonic beam of frequency 2v travel at different speeds, which leads to destructive inter-
ference that can dramatically reduce SHG efficiency. Fortunately, it is possible to match the
refractive indices of the fundamental and second-harmonic beam in birefringent crystals
through a technique known as phase matching.

To understand phase matching, one must first be familiar with the optical properties of
birefringent crystals. In such crystals, the refractive index is not isotropic, it varies with the
direction and polarization of the light beam in the crystal. In a birefringent crystal that is
uniaxial,” the component of light that is polarized in the direction of the unique axis is called
the ordinary beam, while the component polarized orthogonal to the unique axis is called the
extraordinary beam. The ordinary beam will experience the same refractive index (n,)
regardless of its direction of propagation, whereas the extraordinary beam will experience
a refractive index that depends upon the direction it travels through the crystal (n.). In every

2% The electric field and the polarization response of a crystal are both vectors, and the tensor describing the
relationship between the two is a second rank tensor with nine coefficients. Because the SHG process v + v — 2v
involves three photons, 27 d;; terms are needed for a general description of second-order NLO effects. When the
susceptibilities are independent of frequency, the number of coefficients can be reduced from 27 to 18 terms. For
SHG effects, it’s common to use a condensed notation because the j and k terms can be permuted, for example, d36 =
dsp1 = d31>. For more details, see R. Boyd in Further Reading.

Crystals with a unique axis of symmetry, namely those that belong to the trigonal, tetragonal, or hexagonal crystal
systems.

25
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Figure 8.19 Cross-sectional cuts of the optical indicatrix showing the refractive indices of the fundamen-
tal (left) and second-harmonic (right) beams in a birefringent crystal. The vertical and horizontal axes
represent propagation parallel and orthogonal to the optic axis, respectively. The circle of the refractive
index of the ordinary beam, n,, is solid, the ellipse of the extraordinary beam, #., is dashed. The middle
panel shows the critical angle, 0, of the propagation direction for which the phase matching occurs.

birefringent crystal, there is at least one direction where n, = n., and that direction is defined
as the optic axis. In uniaxial crystals, the optic axis is parallel with the unique crystallo-
graphic axis, whereas biaxial crystals have two optic axes. Double refraction, a process
whereby an electromagnetic wave is split into two rays that take slightly different paths
because of differences in the refractive indices of the ordinary and extraordinary beams, is
a familiar property of birefringent crystals.”

The variation of the refractive index as a function of the light-beam direction in a crystal is
represented by an ellipsoid, called an optical indicatrix. The shape of the ellipsoid is such that
its radius along any given direction is directly proportional to the refractive index in that
direction. Because the refractive index of the ordinary beam is isotropic, its optical indicatrix
is a sphere. When the beam direction is parallel with the optic axis, the ordinary and
extraordinary beams have the same refractive index, as shown on the left- and right-hand
sides of Figure 8.19.

The most common method of phase matching, critical phase matching, relies on the optical
properties of birefringent crystals. The incoming fundamental beam with frequency v is
polarized in a plane parallel to the optic axis of the SHG crystal; it acts as an ordinary beam
with an index of refraction that is independent of the direction it travels through the crystal.
When the second-harmonic beam is generated, its polarization is perpendicular to the
fundamental beam and thus it travels through the crystal as an extraordinary beam.
Hence, the refractive index of the second-harmonic beam can be tuned by changing the
orientation of the propagating beam with respect to the optic axis of the crystal. There is
a critical angle, 8, where n,(v) = no(2v), and critical phase matching occurs, as illustrated in

26 The calcite form of CaCOs is one of the most familiar examples of a birefringent crystal. The only orientation when
it does not split light into two beams is when the light travels parallel to the optic axis.
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the center panel of Figure 8.19. One downside of critical phase matching is that the strength
of the SHG signal is highly sensitive to misalignment of the beam from 6.

If the angle at which phase matching occurs corresponds to one of the principal axes of the
birefringent crystal, for example the « axis of a tetragonal crystal, the SHG efficiency becomes
less sensitive to small deviations from the critical angle. The odds that this random coinci-
dence will occur can be improved by changing the temperature of the crystal, because the
refractive index of the extraordinary beam n. is typically more sensitive to changes in
temperature than that of the ordinary beam n,. Hence the angle # at which phase matching
occurs can sometimes be tuned by temperature to align with one of the principle axes of the
crystal. This method is called noncritical phase matching. The advantage of this approach is
decreased sensitivity to small misalignments of the crystal, but it requires precise control of
the temperature of the SHG crystal.

A third approach, called quasi-phase matching, is used in materials where the two
former approaches to phase matching are not practical. The idea is to allow a degree of
phase mismatch between the fundamental and second-harmonic beams (due to different
refractive indices experienced by the two beams), but before the phase mismatch and
destructive interference become too large, a specially engineered domain structure of the
crystal inverts the two beams. Every few microns, there is a 180° ferroelectric domain
wall that changes the refractive indices in such a way that the relative speeds of
the second-harmonic and fundamental beams are inverted. As the fundamental beam is
alternatively going faster and slower than the second-harmonic beam, the two never get
very far out of phase; hence phase matching.

Important SHG Materials

While symmetry restrictions narrow the scope of possible SHG materials, there are still
thousands of non-centrosymmetric materials from which to choose. What other criteria can
be used to select and/or design SHG materials? Becker [21] has proposed seven criteria for
selecting good SHG materials: (1) relatively large nonlinear optical coefficients, (2) moderate
birefringence, (3) wide transparency range, (4) wide phase-matching range, (5) high light-
induced damage threshold (hereafter referred to simply as damage threshold), (6) good
chemical and mechanical stability, and (7) ease of crystal growth.

Some of the most important inorganic SHG materials are listed in Table 8.4. They can
be divided into four different families: (a) KH,PO, (KDP) and related compounds, (b)
KTiOPO4 (KTP) and related compounds, (c) niobates and tantalates, and (d) borates.
KDP was the first commercial SHG material, but it has largely been supplanted as new
materials have been discovered and commercialized. KTP and related materials are
attractive because of the ease with which very large, high-quality crystals can be
grown. The large NLO coefficients of the niobates and tantalates make them attractive
with low-power laser sources, but applications are limited by low damage thresholds and



Table 8.4 Properties of commercially important SHG materials.

KH PO, KTiOPO 4
(KDP) (KTP) LiBOs BiB O, B-BaB 04 LiNbO 5
Space group 142d Pna2, Pna2, 2 R3c R3c
Point group 42m mm2 mm2 2 3m 3m
Melting point 526 K 1445 K 1107 K 999 K 1368 K 1526 K
Refractive indices* n,= 1494 n,=1.738 n,=1.566 n,=1917 no,=1.655 ne,=2232
n.=1.460 n,=1.745 n,=1.590 n,=1.757 ne.=1.542 ne=2.156
n.=1.830 n.=1.606 n;=1.784
Transparency range 200-1500 350-3500 160-2600 290-2500 190-3500 420-5200
(nm)
Effective NLO 1.0 8.4 2.7 ~9 5.3 40
coefficient
Damage threshold 0.25 1.0 9 ** 5 0.3
(GW/em ¥
Comments Crystals can be High NLO Highest Higher NLO Broad High NLO
grown from coefficient, damage coefficients transmission coefficients,
solution, inexpensive threshold than most and phase used in
hygroscopic compared to among borates matching electro-optic
borates commercial ranges, high applications
materials damage
threshold

*As measured at 1064 nm and room temperature. For uniaxial rhombohedral and tetragonal crystals, the refractive index of the ordinary beam, 7 ,
and the extraordinary beam, 1, are given. For biaxial orthorhombic and monoclinic crystals, three refractive indices are needed.” The effective
NLO coefficients are versus the d 321 = d 35 NLO coefficient of KDP} The damage thresholds are for a 10 ns pulse of 1064 nm radiation. **The

damage threshold for BiB {O 4is reported to be similar to LiB{O s
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lack of transparency in the UV. The borates are versatile SHG materials due to their
broad transparency range, high damage threshold, and ease of phase matching. The
structures and properties of the key members of each family are discussed in more detail
in the subsequent sections.

KH,PO,

Potassium dihydrogen phosphate, KH,PO,4 (KDP), crystals were among the first to produce
useful levels of frequency-doubled light. KDP is tetragonal, and its anionic network, linked
by hydrogen bonds along ¢, is shown in Figure 8.20. Since two of four oxygens of the
phosphate anion form covalent bonds to hydrogen, their bonds to P become single bonds,
and the phosphorus atom shifts toward the remaining two oxygens to compensate for this
loss of bonding. This shift generates a net dipole moment parallel to the ¢ axis (see Figure
8.20). The most attractive aspect of KDP as an NLO material is the possibility to obtain
large, high-quality crystals. However, KDP has several limitations, including a relatively
small NLO susceptibility, a low damage threshold, and hygroscopicity.

KTiOPO,

KTiOPO4 (KTP) has several advantages over KDP. Not only does KTP have an NLO
coefficient eight times larger than KDP, it has a higher damage threshold, and is not
hygroscopic. Good crystals of KTP can be grown either hydrothermally or from a flux.

z=0
O
c
Iy z=Y P— I
= 7a
z=" H
polar H,PO,~
b

L..

Figure 8.20 The structure of KH,PO, viewed against the ¢ axis. Covalent O-H bonds are solid, hydrogen
bonds are dashed. K* omitted for clarity. An individual H,PO,4~ anion is shown rotated on the right. The
white arrow indicates the shift of the phosphorus parallel to c.

Z
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TiOg

PO,

K
a spiraling chain of
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Figure 8.21 The structure of KTiOPO,. A closer view of one of the spiraling corner-connected TiOg4+2/
chains is shown on the right. The short Ti-O bonds (d < 1.75 A) are drawn to indicate the displacements of Ti.

These factors make KTP one of the most popular SHG materials, particularly for low- and
medium-power lasers.

While KH,PO,4 and KTiOPOy4 are both phosphates, the structural origins of the non-
centrosymmetry are not the same. In KTiOPO,, the non-centrosymmetry arises from SOJT
distortions of Ti ions with a d° configuration, which yield larger NLO coefficients than in
KDP. The structure of KTiOPO, can be described as spiraling chains of corner-shared Ti-
centered octahedra held together by phosphate groups. The K™ ions sit in the channels within
this framework. Four of six oxygens around each titanium come from the tetrahedral
phosphate groups, while the other two oxygens connect the octahedra into the spiral chains
seen in Figure 8.21.

A closer look at the bonding within the octahedron shows that the bonds are not
symmetric. Titanium forms four intermediate-length bonds (1.95-2.05 A) with oxy-
gens of the surrounding phosphate groups. It completes its octahedron by forming
one short bond (1.71-1.74 A) and one long bond (2.10-2.15 A) to the bridging
oxygens that are not bonded to phosphorus. The net effect is a long-short ... Ti—
O-Ti—O- ... bond alternation along the spiraling chain (Figure 8.21), creating a polar
axis along the chain direction. Other members of the KTP family include KTiOAsO,
(KTA), RbTiOPO,4 (RTP), and RbTiOAsO, (RTA). By replacing phosphate with
arsenate, NLO coefficients increase. More importantly, the long-wavelength transpar-
ency increases from 3500 nm to 5000 nm.
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Niobates and Tantalates

Niobates and tantalates are widely used in optical communication networks as waveguides
and electro-optic modulators. Hence, the optical properties and methods for growing high-
quality crystals have been extensively studied. KNbO; is a perovskite ferroelectric with
structures and phase transitions analogous to BaTiOs. It has large NLO coefficients, which
makes it attractive for low-power lasers. Between 263 K and 498 K, KNbOj; adopts an
orthorhombically distorted perovskite structure with Amm?2 space-group symmetry. To attain
phase matching, periodic poling of the ferroelectric domains is necessary (quasi-phase match-
ing, see Section 8.8). Phase transitions into either the rhombohedral structure (7" < 263 K) or
the tetragonal structure (7" > 498 K) limit the range over which the crystal can operate. If the
temperature drifts outside of these limits, the periodically poled domain structure is lost.

LiNDbOj; is the most important and widely used material in this family. Like KNbOs, it has
large NLO coefficients and relies on quasi-phase matching. However, the phase transitions
that complicate growth and use of KNbOj; crystals are not an issue because LINbO3 has no
phase transitions below its Curie temperature (7c = 1483 K). While the robust polar state in
LiNbO; prevents the switching that would be required for ferroelectric applications, this
aspect of its crystal chemistry is an advantage for NLO applications. LiNbOs is also used as
a pyroelectric and a piezoelectric.

The structure of LiNbOj; (Figure 8.22), and the isostructural LiTaOs, can be described as an
ordered variant of the corundum structure (Figure 1.30). In Al,O3 and other oxides with the
corundum structure, electrostatic repulsions lead to a displacement of the cations away from the
shared octahedral face. In LiNbOj, the cations are ordered so that each pair of face-sharing
octahedra contains one lithium and one niobium. This destroys the inversion center in the

T\ w

Li

/

face-sharing pair of Li- and
Nb-centered octahedra

Figure 8.22 Left: The unit cell of LINbO; with Nb-centered octahedra shaded. Right: A closer view at the
bonding within each pair of face-sharing octahedra.

Z
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structure, lowering the space-group symmetry from R3¢ to R3c. Just like in corundum, the
central atoms (Li* and Nb>*) repel each other leading to highly distorted trigonal-antiprismatic
environments. The Nb-O distances are 1.88 A (x3) and 2.13 A (x3), while the Li-O distances
are 2.05 A (x3) and 2.27 A (x3). Although Li and Nb move in opposite directions, the niobium
ion carries a higher charge so that the distortion creates a local dipole moment. Because all
niobium atoms shift in the same direction, a net dipole moment develops parallel to the ¢ axis.”’
While the niobates and tantalates have the largest NLO coefficients among commercial
inorganic materials, their properties are not well suited for many applications. Their low
damage threshold rules them out for high-power lasers. Because they have very limited
transparency in the UV (the absorption edge for LiNbOj; is 400 nm), they cannot be used if
the SHG light is in the UV. Finally, the need to engineer the domain structure to achieve
quasi-phase matching adds a level of complexity to the crystal-preparation process.

Organic and Polymer NLO Materials

The NLO materials discussed thus far depend on displacements of ions to form local dipole

moments that are responsible for the NLO response. Another approach to NLO materials

design is to employ molecular fragments that have

Q N(CH,), highly polarizable bond networks. Molecules that

Q / exhibit conjugated 7 bonding tend to show high

polarizability, particularly those with an electron-

donating group on one end and an electron acceptor

on the other. A prototypical example is 4-(N,

N-dimethylamino)-4’-nitrostilbene (Figure 8.23),

where two benzene rings, connected by an ethylene group (stilbene), make up the conjugated

7 system; the dimethylamino group, -N(CH3),, acts as the donor, and the nitro group, —-INO,,
on the opposite end of the molecule acts as the acceptor [22].

In such molecules, the electromagnetic field of the propagating light wave can induce
significant reorganization of the delocalized 7-bonding electron density. The effective
NLO coefficients of the best molecular species can be orders of magnitude larger than
the classic inorganic NLO materials, but several practical considerations have limited
their use. Firstly, it is difficult to control the crystallization to obtain a non-
centrosymmetric crystal. This is especially true for conjugated polymers that have
attracted interest for NLO applications. Secondly, the optical quality of organic crystals
tends to be poor and the damage threshold low. Finally, conjugated organic molecules
tend to absorb strongly in the near-UV and visible regions of the spectrum.

Figure 8.23 The structure of 4-(N,
N-dimethylamino)-4'-nitrostilbene.

%7 The LiNbO5 and ilmenite (FeTiOs) structures are closely related ordered variants of the corundum structure, with
one important difference. In LiNbO3, the Li-Nb pairs all point in the same direction (e.g. Li up and Nb down),
which produces a polar structure, while in ilmenite the orientation of the Fe-Ti pairs alternates, leading to
a centrosymmetric structure.
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Borates

Conjugated organic molecules are not the only species that possess delocalized 7 bonds.
Trigonal-planar polyatomic anions like NO;~, CO5>", and BOs*~ all have polarizable
delocalized 7-bonding MOs. Of these non-centrosymmetric building blocks, borates are by
far the most important for NLO applications. About 36% of borates crystallize in non-
centrosymmetric space groups, as compared to ~15% of all inorganic solids [23]. Another
attractive feature of the borates is a large HOMO-LUMO gap that makes them transparent
to near-UV light.

Two important borates are -BaB,0,4 and LiB;0Os. These materials were developed in the
1980s, and they have subsequently become among the most important NLO materials. The
appeal of the borates stems from three factors: (a) damage thresholds are much higher than
KTP or LiNbO3;, (b) many borates are transparent to wavelengths that extend below 200 nm,
and (c) relative ease of phase matching.

The NLO coefficients and birefringence of borate crystals largely depend on the
concentration and orientation of trigonal-planar BO; groups, containing sp°-
hybridized boron. The structure of f-BaB,O, is shown in Figure 8.24. A key feature
is the presence of planar B;O¢’~ anions oriented perpendicular to the polar threefold
axis. This structural arrangement leads to large NLO coefficients. Furthermore, the
coplanar orientation results in high birefringence, a useful trait for critical phase
matching.

In LiB;3Os, triangles and tetrahedra of borate anions link together to form a complex
3D network. There are two important changes with respect to -BaB,0,. Firstly, only

B304> group

Ba

a

Figure 8.24 The structure of f-BaB,O,. The planar B;Og ™ anion is shown on the right.
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Bi
b a

Figure 8.25 The structure of BiB;O4 showing the chains of corner-connected BO, tetrahedra and BO;
triangles.

two-thirds of the boron atoms are in a trigonal-planar coordination environment.
Secondly, the coplanar alignment of these triangles is lost. Consequently, LiB;Os has
both smaller NLO coefficients and a smaller birefringence than p-BaB,0,. Its advantage
is a higher damage threshold, among the highest for commercial SHG materials. Phase
matching with LiB;Os crystals is often achieved via noncritical phase matching (“tem-
perature tuning”).

An attractive design strategy is to combine the polarizability of the borate anions with the
high nonlinearities that come with SOJT distortions of cations. Unfortunately, compounds
that contain borate anions with cations prone to SOJT distortions are relatively rare, and in
those that do exist, the orientations of the cations and anions are not well aligned. An
exception is BiB;Og (Figure 8.25) where Bi** with a pronounced stereochemically active lone
pair is present. Calculations of the NLO coefficients show that both the borate anions and the
Bi** cations make important contributions to the NLO response, which is much higher than
LiB;0s, even though both compounds contain similar concentrations of tetrahedral and
trigonal-planar boron.

There are many other borate materials that have been investigated for SHG applications.
CsLiBgO is a congruently melting structural derivative of LiB3Os, which makes crystal
growth easier. Sr,Be;B,0; and KBe,BOsF, are transparent down to 150-160 nm and thus
are well suited for applications involving short-wavelength UV light. The isostructural
compounds YCay(BO3);0 and GdCay(BO3);0 can be doped with luminescent rare-earth
ions (e.g. Nd**) to use in self-frequency-doubling lasers, where the same material is used for
lasing and nonlinear frequency conversion. This results in compact devices capable of
producing UV, blue, and green light.
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Box 8.3 Synthetic Methods: Crystal growth for NLO applications

For practical applications, high-quality single crystals of nonlinear optical materials are
a necessity. The preferred method of growth depends on the solubility and melting
characteristics of the material in question. The most familiar method of crystal growth
is from aqueous solution. Large KH,PO, crystals are grown by this technique.
Crystallization involves two steps, nucleation and growth. To obtain large single crys-
tals one needs to avoid multiple nucleation sites. Therefore, a seed crystal is used to
introduce a single nucleation site. The next step is to gently oversaturate the solution
either through evaporation of the solvent or gradual cooling. The seed crystal is slowly
rotated to encourage uniformity in the growth. If the material is sparingly soluble, it
may be possible to increase its solubility using hydrothermal conditions. This is the case
for KTiOPO,, where seed crystals and the source material, often polycrystalline
KTiOPO4 in the presence of mineralizers like KH,PO, and KNOj, are placed in
a hydrothermal autoclave [24]. Once the desired high temperature and high pressure
have been reached, a temperature gradient is used to grow the seeds at the cooler end
into large crystals.

Many commercial SHG materials are not water-soluble, which means that other methods of
growth must be employed. The best strategy depends on the melting characteristics of the
material. Congruently melting compounds (Section 4.2.2) are often grown by the Czochralski
method: A seed crystal is placed in contact with the surface of the melt whose temperature is
kept slightly above the melting point. The seed is then slowly pulled out of the melt, setting up
a temperature gradient that causes the melt to crystallize on the tip of the seed crystal. The seed
is usually rotated as it is pulled out to maintain uniformity of the temperature and composition
of the melt.

Surprisingly, many commercially important SHG materials do not melt congruently.
Incongruently melting compounds decompose upon melting, forming a solid and a melt
of differing compositions. Their crystal growth requires knowledge of the phase diagram to
properly select the composition of the starting mixture such that the melt formed will be in
equilibrium with the composition of the desired crystal. Another possibility is a “flux”
method. A flux is an additive, typically a low-melting salt, whose molten state acts as
a solvent. Growth of NLO crystals from a flux generally involves top-seeded solution
growth, where a rotating seed crystal is slowly pulled out of the flux, similar to the
Czochralski method. B-BaB,O, is often grown from NaF fluxes. KTiOPO,4 can be grown
from fluxes such as K4P,0; and K¢P4O13. LiB;O5 and LiNbO; are grown by “self fluxing”,
that is by using an excess of one of the reagents, B,O; and Li,O, respectively. The
disadvantage of a flux is that it can introduce undesired impurities and/or lead to
nonstoichiometry.
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8.10 Problems

8.1
8.2

8.3
8.4

8.5

8.6
8.7

8.8

8.9

(a)

Derive the Clausius—Mossotti equation for the CGSes system of units.

Use the Clausius—Mossotti expression in Equation (8.13) and Table 8.2 to estimate
permittivities of SnO, (rutile-type, P4,/mnm, Z = 2, a = 4.74 A, c=3.19 A), TiO,
(rutile-type, a = 4.59 A, ¢=2.96 A)and ZrO, (baddeleyite-type, P2,/c, Z = 4, unit-cell
volume = 141 A). Does the Clausius—Mossotti equation give a reasonably accurate
estimate for each compound when compared to the experimental values of & given in
Table 8.1? If not, what is the origin of the discrepancy?

Why does the polarizability of the lanthanoid ions decrease as the atomic number increases?
Lanthanoid zirconates Ln,Zr,O; (Ln = La, Pr, Nd, Sm, Eu) adopt the cubic pyrochlore
structure (Fd3m, Z = 8), with cubic unit-cell edge « = 10.80 A (La), 10.69 A (Pr), 10.67 A
(Nd), 10.59 A (Sm), 10.55 A (Eu). Use this information, Equation (8.13) and Table 8.2 to
estimate the dielectric permittivity of these phases. Does the Clausius—-Mossotti equation
predict that the dielectric constant will increase or decrease as the radius of the rare-earth ion
decreases?

Use the Clausius—Mossotti expression to estimate the dielectric permittivities of the
cubic perovskites BaZrOs (a = 4.19 A), KTaOs (a = 3.99 A), and SrTiO; (a = 3.90 A).
Compare your estimates to the observed values in Table 8.1. How does the divergence
between calculated and observed values correlate with the tendency for the octahedral
cations to undergo SOJT distortions? What does this tell you about compositions for
which the Clausius—-Mossotti equation can reliably be used?

Identify three characteristics of a relaxor ferroelectric that distinguish it from a normal
ferroelectric.

Why don’t first-order Jahn-Teller distortions, such as those seen with six-coordinate Cu**
or Mn*", typically lead to polar materials?

In each of the following pairs, identify the cation that is more likely to undergo an SOJT
distortion. Briefly explain your reasoning. (a) Ti*" or V**, (b) Mn** or Ta”", (c) Mo®" or
Zr*, (d) Sn** or Te**.

In a simple cubic perovskite like SrTiOs, all oxygens are equivalent. Each makes two
bonds to Ti** and four to Sr**, as shown in a bond graph below.

o

o

71N\
M7

o

Draw a comparable bond graph for a 1:1 ordered perovskite Ba,ScTaOg that obeys
Pauling’s rule of parsimony (Section 1.4.4). (b) Use the bond graph to estimate the Ba-O,
Sc-0, and Ta—O bond valences. (¢c) Draw a comparable bond graph for the 1:2 ordered
perovskite Ba;ZnTa,Og and determine the minimum number of chemical environments
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needed for oxygen is this structure. For each such type of oxygen, determine the number
of bonds it makes to each cation. (d) What are the bond valences for Ba-O, Zn-O, and
Ta—-O? What are the bond-valence sums for each type of oxygen? (e) Based on your
answers to parts (b) and (d), do the oxygen bond valences suggest a bonding instability
that might trigger an SOJT distortion of the Ta’* ions? Explain your reasoning.

8.10 Isit possible for a cubic material structure to be (a) non-centrosymmetric, (b) piezoelectric,
(c) pyroelectric?

8.11 The resonant frequency of a microwave resonator can be approximated by the relationship:

C

o= dcavitygr
where ¢ is the speed of light and d.ayiy and e, are the diameter and permittivity of the
dielectric puck, respectively. (a) What diameter would give a resonant frequency, v, of
850 MHz for a puck made of Baz(Co;-,Zn,)Nb,Og (¢, = 34)? (b) How would the
diameter change for a resonator made from (Ca,- . Nd,)(Ti;-,Al,)O3 (&, = 45)?

8.12 The perovskite BilnOjz can be prepared using high-pressure synthesis. At room tempera-
ture, it has Pna2, space-group symmetry, with an SHG signal 120-140 times that of a-
quartz. Upon heating, no phase transitions occur until it decomposes into In,Oz and Biss
InO; at 873 K. Based on this information, what can you say about the potential of BilnOs
for application as (a) a pyroelectric, (b) a ferroelectric, (c) a piezoelectric? (d) How would you
expect the dielectric constant to change upon heating?

8.13 BiAIlO; and BiGaOj; can be prepared by high-pressure synthesis. The space group of BiAlO;
is R3¢ while that of BiGaOs; is Pcca. Based on the symmetry alone, what can you say about
the possibility for (a) ferroelectric, and (b) piezoelectric behavior in these two phases?

8.14 PbO adopts the tetragonal litharge structure that can be described as a distorted variant
of the CsCl structure:

SOJT

distortion
E——

b
a b
a

CsCl structure litharge structure

The SOJT distortion driven by Pb>* leads to a large displacement of the cation toward
a square face of the original cubic coordination environment and a corresponding
elongation of the ¢ axis of the unit cell. (a) The bond-valence parameters for Pb>*—O
bonds are R°=2.11 A and B=0.37 A. Use Equation (5.18) (dj = R?j — Blnvy) to
estimate the Pb—O bond length in the hypothetical cubic CsCl-type structure of PbO. Z.
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Use this distance to calculate the unit-cell edge and volume. (b) The actual structure of
PbO has space group P4/nmm and Z = 2, with a = 3.974 A, ¢ = 5.022 A. Calculate the
unit-cell volume per formula unit and compare with your prediction for PbO with the
CsCl structure. What volume expansion (in %) is thus needed to make room for
the stereochemically active electron lone pair? (c) If we take Pb** and O~ to be equal in
size (eight-coordinate radii are 1.43 Aand 1.28 A, respectively, for Pb>* and O*7), how
does the “volume” of a lone pair compare with the “volume” of an oxide ion?

The black modification of SnO is isostructural with PbO litharge of the previous
problem. (a) The bond-valence parameters for Sn**~O are R’ = 1.98 A and B=0.37 A.
Use Equation (5.18) (dj; = Rg — Blnvy) to predict the Sn—O bond length in the hypo-
thetical CsCl-type SnO. Use this distance to calculate the unit-cell edge and volume. (b)
The crystal structure of SnO has space group P4/nmm and Z = 2, with a = 3.803 A, ¢ =
4.838 A. Calculate the unit-cell volume per formula unit and compare with your
prediction of the volume for “cubic” SnO with the CsCl structure. What percent
expansion is needed to make room for the stereochemically active electron lone pair?
We can approximate the Sn** coordination in the hypothetical CsCl-type SnO of the
previous problem by an SnHg®~ cube. The point-group symmetry for a cube is m3m (Oy,).
In SnH;®", the Sn 55 and 5p orbitals have aygand 11, symmetry, respectively. The hydride
ligands form two triply degenerate SALCs with 7, and 1,, symmetry, as well as two singly
degenerate SALCs with a;, and a,, symmetry. Use this information to construct an
approximate MO diagram for a cubic SnHg®™ molecule. What is the degeneracy, bonding
character, and symmetry of the HOMO and LUMQO?

The structure of NH4H,POy, is closely related to KH,PO,. A projection of the NH,H,PO,
structure (comparable to KH,PO, in Figure 8.20) is shown below. The lightly shaded
phosphate tetrahedra are at z = '3, the darker ones at z = 0. The hydrogen atoms are
represented by black spheres. Based on the pattern of O—H bonds in this figure, predict the
displacements of the phosphorus atoms. Would you expect NH4H,PO,4 to be an SHG
material like KDP?

z=%

> x z=1%
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8.18

8.19

8.20

In 2005, two new polymorphs of BiB;Og (B- and y-BiB3;Og) were synthesized using boric
acid as a flux [25]. All three polymorphs adopt closely related monoclinic structures.
While a-BiB3Og has C2 space-group symmetry, - and y-BiB3Og both crystallize with the
P2,/n space group. Would you expect - and y-BiB;O¢ to show NLO properties compar-
able to a-BiB5Og¢?

Determine the crystal system and point-group symmetry from the space-group symbol for
each of the following borates. In each case determine the point group and state whether the
symmetry permits SHG activity. (a) /42d for CsLiB¢O,, (b) la3d for SryLi(BO3)s,
(c) Ama?2 for CayNa(BOs)s, (d) P2,2,2, for CsBs0s, (¢) P2,/n for BaLiBOs;, (f) C2 for
CsBe,BOsF-.

For borates with similar orientation of the BOj groups, the NLO coefficients should
roughly scale with the coplanar character and density of the BO3 groups. The following
borates have highly coplanar anions: -BaB,Oy4 (R3¢, unit-cell volume 1731 A3, z= 18),
Sr,Be,(BO5),0 (P6¢2, unit-cell volume 290.8 A3 Z = 2), KBe,BOsF (R32, unit-cell
volume 318.0 A3, Z = 3). (a) Calculate the concentration of BO; groups per unit volume
for each compound. (b) The largest NLO coefficients for each compound are the d», =
2.3 pm/V for B-BaB,Oy, di; = 1.52 pm/V for Sr,Be,(BO3),0O and d;; = 0.8 pm/V for
KBe,BOsF. Do the NLO coefficients scale with the concentration of BO3 groups? (c)
CsBe,BOsF, (C2, unit-cell volume 243 A3, Z = 2) also has nearly coplanar BO; groups.
How would you expect its NLO coefficients to compare with the other three compounds?
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9 Magnetic Materials

9.1 Magnetic Materials and Their Applications

While most people are familiar with the concept of a magnet, many do not realize the
ubiquity of magnetic materials in our everyday lives. Every electric motor contains a ferro-
or ferrimagnet. So does every headphone, loudspeaker, and power-supply transformer.
Magnetic card strips contain ferrimagnetic y-Fe,O3. The old technology of tape recording
used y-Fe,O5 or ferromagnetic CrO,. Hard disks in computers have recording platters
coated with ferromagnetic alloys patterned on a nanometer scale.

The fundamental origin of magnetism can be traced back to the movement of an electrical
charge. This can be the flow of current in an electrical circuit or, as in the solids we’ll discuss,
due to the quantum-mechanical properties of electrons in atoms. In this chapter we first
introduce some of the key physical concepts of magnetism and define some of the quantities
involved. We will discuss how to understand concepts such as diamagnetism and paramagnet-
ism of isolated atoms and their assemblies. We will then move on to study the origins of
cooperative phenomena such as antiferromagnetism, ferromagnetism, and ferrimagnetism and
how these can be controlled and exploited in functional materials. It is perhaps worth noting at
the outset that magnetism is an area where we’ll encounter unfamiliar units and where it’s often
more convenient to work in non-standard units, the so-called CGSem units, than the standard
SI system. We'll generally adopt SI but will choose to list the alternative CGSem units
in situations where they’re most commonly encountered in the literature.

9.2 Physics of Magnetism

9.2.1 Bar Magnets and Atomic Magnets

Most people are familiar with the everyday properties of bar magnets from childhood toys
and school science experiments. We know that they send magnetic field as though emanating
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/‘\ in units of A

Figure 9.1 Magnetic field generated by a bar magnet and by an electric solenoid in a 2D rendering.

from one end, through the surrounding space, and back at the opposite end, forming
a magnetic loop. When suspended, the bar aligns itself with the magnetic field of the
Earth. By convention, the end that points towards the Earth’s magnetic pole in the north
is called the magnet’s north pole, N, and the other end the south pole, S. The N and S poles of
two bar magnets would attract each other until they unite in a longer bar of just two poles.
Accordingly, no division of a bar magnet isolates the poles. However small, a magnet always
behaves as an N, S magnetic dipole.

Amazingly, the same magnetic field can be generated by sending a direct electric current
through a solenoid (Figure 9.1). This not only facilitates the physical description of magnets
via moving electrical charges, but also suggests that magnetism has atomic origins, being
caused by the movement of charges in atoms.

Let’s extract a single current loop from the solenoid in Figure 9.1. The magnetic field
lines around such a circular loop are drawn in Figure 9.2. The product of the loop area
A and the loop current / has the magnitude u of a vector u, called the magnetic dipole
moment:'

p=1I4 ©.1)

This defines the SI unit” of the magnetic dipole moment as A m?.
Let’s now consider, on Figure 9.3, just one electron orbiting with velocity v at radius r.” As
a rotating particle, it has an angular momentum that is a vector,” as shown in Figure 9.3. As

All magnetic moments are magnetic dipole moments, and we typically omit the word “dipole”. For convenience, we
often choose to deal only with the magnitude of this vector, as will be done for most of this chapter, and omit the
“magnitude” by speaking of its absolute value as a “magnetic moment”.

The unit A m? is equivalent to joule per tesla, J/T = kg m*s (kg s> A™"), in which the joule is the unit of work or
energy and (as you’ll see shortly) the tesla is the unit of magnetic induction.

Be careful not to confuse the italic v for velocity with the Greek letter v for frequency.

The direction of the angular-momentum vector follows the right-hand rule of fingers indicating the circular motion
of the particle.

oW
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Figure 9.2 Left: Electric current generates a magnetic field with a specific orientation. Right:
Magnetic-moment vector x# due to electric current I in a circular loop of area 4 whose vector
is not drawn but is parallel with u (as it follows the thumb of the right hand with fingers along
the current direction). The current direction is by definition the opposite of the movement of the
electrons.

angular momentum €,= r x (m.v) of magnitude £,= rm_v
charge O=-¢

! .
’ velocity v
[ mass m,
area A =m?

electric current 7 = Q/t
magnetic moment u = I4 of magnitude u = I4 time per orbit 7= 2mr/v

Figure 9.3 Electron as an orbiting and charged particle has an angular momentum and gives rise to
a magnetic moment.

a rotating charge, it produces magnetic moment. The current / is the flow of the electron’s
charge per time 7 = 2nr/v to complete one circuit,

(== 9.2)
T 2nr

where e is the elementary charge, 1.602176634x107"° C (Appendix J). Accordingly, the
current direction is the opposite of the electron’s direction, turning the area vector 4 as
well as the magnetic moment downwards in Figure 9.3, in agreement with the right-hand rule
in the caption of Figure 9.2. We see that the magnetic-moment vector has the opposite
direction of the angular-momentum vector. From now on, however, let’s consider only
magnitudes. The magnitude of the magnetic moment is:
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pu=IA=—m’=— 9.3)

To express the velocity v, we turn to angular momentum. From classical mechanics we know
that the magnitude of angular momentum of the rotating electron would be given by mi.vr,
where m. is the mass of the electron. However, we also know that this value is quantized’ and
restricted to mh. Equating these two expressions for the momentum, we obtain for v:

y = meh (9.4)

mer
The magnitude of the magnetic moment is then found by substituting into Equation (9.3):

_em¢hr _ eh B
C 2mer 2me e = He ©->

U

Here we have introduced the Bohr magneton ug = efi/2m, as a convenient unit for the very
small atomic magnetic moment, ug = 9.27401X% 10724 A m?.

Magnetic Intensity, Induction, Energy, Susceptibility, and Permeability

Let’s consider the solenoid in Figure 9.1 and imagine that it is much longer than its diameter.
The intensity of the magnetic field, HS generated in the center of such a solenoid, along its
axis, is one ampere per meter (A/m) when the product of the current (in A) and of the density
of turns (in m™") along the solenoid length is unity.” As noted earlier, we use the moving
electrical charge to define the magnetic field. The Earth’s magnetic field at sea level is in tens
of A/m and a refrigerator magnet might be ~10° A/m. Remember that H is actually a vector,
and so are B and M, introduced below.®

When a medium is immersed into a magnetic field, it is penetrated by it. The density of the
magnetic force lines in the medium is called the magnetic induction, B.” The magnetic induction is
defined as the force that a homogeneous magnetic field exerts on a unit length of a straight wire
carrying unity current (Appendix E). The unit of B, one N/(A m) = J/((A m?), is named the

It is quantized with the orbital magnetic quantum number, m, (Chapter 5). For our rotating electron, the quantiza-
tion follows already from the condition of having an integer number m, of wavelengths 1 = i/m.v around the orbit
when the electron is taken as a standing wave.

Also called magnetic-field strength. When used to magnetize objects, it is termed magnetizing field. The electric
analogy of H is the electric-field intensity E introduced in Section 8.1.

A current of 0.001 A in a solenoid of 1000 turns per meter of its length will generate H = 1 A/m.

We choose to deal only with the magnitude because magnetic measurements are typically performed on powder
samples of isometric shape, where magnetic susceptibility (see next page) is measured as a scalar. In a single crystal, it
would generally be a tensor, a correlation scheme between two vectors.

Bis therefore also called magnetic-flux density, but physicists often prefer just magnetic field. The electric analogy of
B is the electric-flux density D (the electric displacement introduced in Section 8.1.2).

o

© 2
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tesla (T). The relationship between the field intensity A and the induction Bj in a vacuum
(absence of any medium, hence the zero) is:

By = :uOH7 (96)

where ug (4nx 1077 N/A?) is the magnetic constant.'” Inside any other medium, the induction
B will be the sum of the contribution from the external field (¢oH) and from the medium itself

(uoM):
B = pty(H + M) 0.7

where M is the magnetization of the medium, its magnetic moment per unit volume
(A m*m>® = A/m)."" The dependence of M on H characterizes a material’s magnetic
properties at a given temperature. The magnetization M is the key quantity because it
represents a material-specific response to an external magnetic field.

Materials that are less penetrable for a magnetic field than a vacuum have M < 0 and are
said to be diamagnetic, while others, such as paramagnetic materials, concentrate the mag-
netic field in their volume.'> As shown in Figure 9.4, in an uneven magnetic field (under
a gradient), paramagnets will move towards regions of highest magnetic intensity (be
attracted), whereas diamagnets will move away (be repelled).

Magnetization M is conveniently described relative to the field intensity H that caused it—
by volume (magnetic) susceptibility, y,; the susceptibility per unit volume of the material,

diamagnet —C— dia $ A m

. para J
paramagnet V@ NE s
N

Figure 9.4 A paramagnet is attracted into the magnetic field, diamagnet is repelled; the paramagnet will
appear to weigh more in the experiment sketched.

19" Also known as the permeability of free space (or vacuum permeability), it is defined in SI units via the force of
2x1077 N exerted by a current of 1 A flowing in two 1-m-long and 1-m-distant parallel wires in absolute vacuum.
The Laplace-Biot—Savart law then gives 1. Do not confuse x, with the symbol x for the magnetic moment and up
for Bohr magneton. The electric analogy of uy is the electric constant g, introduced in Section 8.1.1.

The electric polarization P (Section 8.1.2) is not analogous to this magnetization M; it is analogous to the rarely used
term magnetic polarization, J = uyM, so that B = uoH + J corresponds to Equation (8.8) for electric displacement.
The use of M and not J in this book follows from the definition of the magnetic moment x via electric current in
a loop, as opposed to the alternative definition via the mechanical force moment of the magnetic pole of a magnet.
The pole’s exact coordinate is not well defined for an atom, whereas electric charges are separate and can be
approximated as points.

12" As do the cooperative antiferromagnetic, ferromagnetic, and ferrimagnetic materials we’ll meet later.
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=57 ©.8)
which is dimensionless in the SI system. Susceptibility is an important parameter of
a magnetic material. It’s often convenient to divide y, with the mass density (in kg/m?) to
obtain the mass susceptibility, y,, (in m*kg). Multiplying y,, with the molar mass (in kg/
mol)"? yields the molar susceptibility, yo (in m*/mol).
If we substitute Equation (9.8) for y, back into Equation (9.7), we obtain

B = uoH(1 +1,) 9.9)

from which we see that diamagnetic materials (for which induction B is less than in
a vacuum) have negative y,, and paramagnetic materials have positive y,. Typical
values of ymo at room temperature might range from —16x107'° m*/mol for a diamag-
netic compound like H,O to a few 1000x10~'® m*/mol for a paramagnetic transition-
metal compound.

Figure 9.5 summarizes the relationships of B, H, and M. It shows that the volume
susceptibility arises from introduction of dimensionless variables when Equation (9.7) for
magnetization in a medium is divided by Equation (9.6) for magnetization in a vacuum.
The second dimensionless variable thus obtained is the relative magnetic permeability, .,
defined as u, = Bl(ugH) = y, + 1. The value of u, tells us how many times the magnetic
induction is increased by the given material as opposed to a vacuum.'* Materials with a high
induction in their interior have permeability much larger than 1; vacuum has u, = 1.

Volume magnetization M (in A m2/m?3)
sum of atomic moment contributions per unit volume

e — ——
% Dimensionless ratio
‘—/_\——_

~ Mo H
m
= Mol
=1+ xv
- — - - relative dimensionless
applied magnetic field intensity H (in A m~") permeability susceptibility

magnetic induction B (in teslas, T =kg A™! s72)
permeability of free space p,= 41107 kg m s2 A2

Figure 9.5 Dimensionless magnetic susceptibility in ST units.
13 Or y, with the molar volume in m*/mol.

14 Just like the relative dielectric permittivity &, in Section 8.1.1 told us how many times the stored electric charge in
a capacitor increased upon inserting a material into it instead of a vacuum.

Z
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Up to now, we assumed that the moment of the immersed magnetic body is aligned with
the external field. If it is not, the magnet will experience a torque to align it. It will have
a potential energy, an ability to do work. The potential energy of a magnetic moment cross
aligned in a homogeneous external field is a dot product of the vectors of the moment x and
of the magnetic induction B. It’s a projection of # on B times |B|, a scalar. When the
magnetized object is aligned within the applied field, we can consider it to be at the bottom
of an energy well of depth uB.

Unit Systems in Magnetism

We’ve mentioned in the introduction that there’s an alternative set of units to SI units
in magnetism. For various reasons, this centimeter—gram-second -electromagnetic
(CGSem) system of units is still sometimes used when working with magnetism. In
this system, the uo terms disappear from the equations given above. The variety of
units can be very confusing when one starts working in this area. Figure 9.5 is recast
into CGSem units in Figure 9.6.

The conversions are not purely decimal, because the two systems build on different
system of units and their relations. For example, the law in Appendix E about the
force F acting on a unit segment / of a unit-current-carrying wire in a field of unit
magnetic induction B is dimensionally correct in CGSem only when the unit of current
is 10 A. The CGSem unit for the magnetic moment caused by a loop of electric
current, the “electromagnetic moment unit” (emu) is then realized by 10 A cm?
whereas the SI unit is 1 A m?. Therefore, 1 emu = 107* A m”. As a unit of magnetic
moment, the emu also equals erg/G in analogy to J/T = A m? in SI. The conversions
are summarized in Table 9.1.

Volume magnetization M (in emu/cm?3)
sum of atomic moment contributions per unit volume

—
% Dimensionless ratio
‘/\—_
B=H+4tM B
in G in emu/cm? —|=1+4mn-
. B,

pe=1 + dmy,

— / J
relative dimensionless
applied magnetic field intensity H (in oersteds, Oe) permeability susceptibility

magnetic induction B (in gauss, G)
conversion to SI: 10 Oe =1000/4t A/m;1 G = 1074 T

Figure 9.6 Dimensionless magnetic susceptibility in CGSem units.
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Table 9.1 CGSem-SI conversions for quantities in Figure 9.5 and Figure 9.6.

Quantity ST units CGSem units
H Field intensity 1000/47n A/m =1 Oe
B Induction 107 T =1 G
M Volume magnetization 1000 A/m =1 emu/cm’
My, Mass magnetization 1 A m%/kg = emu/g
Ay Volume susceptibility 4n dimensionless =1 emu/(cm?® Oe)
Am Mass susceptibility 4nx1073 m’/kg =1 emu/(g Oe)
Xmol Molar susceptibility 4nx107° m>/mol = emu/(mol Oe)
i Magnetic moment 107 Am’ =1 emu

Types of Magnetic Materials

When we come to look at collective properties of magnetic moments and the technologically
important properties they impart, we’ll categorize magnetic materials into six basic types.
The magnetic behaviors of the five most important are summarized in a cartoon form in
Figure 9.7, together with dependences of key quantities on field and temperature.
Diamagnetic materials repel a magnetic field (Figure 9.4) and thus have a negative suscepti-
bility y (a vacuum has y = 0). Their relative permeability is less than one. Paramagnetic
materials contain unpaired electrons, have magnetic dipoles, concentrate a magnetic field
and thus have a positive y. The defining property of paramagnets is that their magnetic atoms
or ions act independently of each other. In weak magnetic fields, plots of M versus H are
linear for diamagnets/paramagnets; having negative/positive slopes, respectively, because
the gradient of M versus H gives .

We will discuss four types of cooperative magnetic phenomena that can occur when
paramagnetic materials are cooled through a critical ordering temperature. In an anti-
ferromagnet, magnetic moments of equal magnitude align in an antiparallel fashion
below the Néel temperature, 7, and compensate each other. In a ferromagnet, they
align in a parallel fashion below the Curie temperature, 7, and sum with each other.
In a ferrimagnet, two or more unequal magnetic moments align antiparallel below T¢
without exact compensation, giving a non-zero overall magnetic moment resembling
a ferromagnet. Ferro- and ferrimagnets concentrate a magnetic field to a much greater
extent than the other clases of materials. The M versus H plots for these materials
show a much larger magnetization at lower fields, they are nonlinear (y depends on H)
and saturate at lower fields (M becomes independent of H). Finally, like ferroelectric
materials that we encountered in Chapter 8, they show hysteresis, such that when the
field is removed they retain a portion of their magnetization. This is what allows them
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Figure 9.7 Types of magnetic materials and their typical dependences of M versus H and of y and y !
versus 7.

to be made into permanent magnets. A final category of magnetic materials is the spin
glass that contains moments that are “frozen” in a disordered arrangement
(Section 9.11)."°

Atomic Origins of Magnetism

Electron Movements Contributing to Magnetism and Their Quantization

The movement of an electron in an atom can be imagined in terms of the electron orbit
around the nucleus (hence having its orbital angular momentum'®) and of the electron spin
around its own axis (hence having its spin angular momentum). Both contribute to magnet-
ism. In Section 9.2.2 we saw how the orbiting electron’s angular momentum yields
a magnetic moment. The spin angular momentum does not lend itself to a macroscopic
interpretation of a “spinning electron”, this is a quantum-mechanical effect. When both
orbit- and spin-magnetic moments are present, they will combine into a total moment, the

15 Having read “spin glass” and “frozen”, one might rename a paramagnet as a “spin fluid” of spin orientations. In
ferro-, ferri-, and antiferromagnets, the ordered spin orientations would be a “spin crystal”.

16 For electrons in atoms, the term orbital angular momentum was adopted because electrons occur in orbitals. As the
momentum originates from the motion of an electron orbiting the nucleus, the term is not meant to imply that this
electron is confined to a single orbital.

Z
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Table 9.2 Angular momenta in one-electron atom: Quantization, vector lengths, and
projections onto the quantization axis z.

Quantum number (QN) Permitted values Magnitude
Orbital angular momentum QN: /¢ 0,1,2,...s,p,d,...) [|=h/C(L+1)
(Orbital) magnetic QN: m, +, 2l —-1),...,0 l.=h-my
Spin (angular momentum) QN: s Va Is|=R/s(s + 1)
Spin-magnetic QN: m1; % s.=h - my
Combined angular momentum QN: j (¢ # 0 only) /£ lJI=h\j(G+ 1)
Combined magnetic QN: m; i, x(G—1),.... 1% jo=h-m

angular momentum behind which will also be quantized, as the pure orbital or spin angular
momenta are.

Let’s review the quantization in a one-electron atom. From Chapter 5 we know that the
identity of an electron in an atom is given by four quantum numbers; n, £, m,, and m,.'7 Of
these, £, m,, and m, relate to an electron’s rotational movements. They are a minimum subset
of the in-total six quantum numbers defined in Table 9.2: two for orbit, two for spin, and two
for their total. Of these six, Z, s, j quantize the respective angular-momentum vectors ¢
(orbital), s (spin), and j (orbital and spin combined), and m,, m,, m; quantize the behavior
in magnetic field; they represent the respective projections ., s., j. of the allowed orientations
of those three vectors onto the axis of quantization, which is the axis of the external magnetic
field. For each angular-momentum quantum number ¢, or s, or j, there are 2 X (£ or s orj) + 1
such possible orientations. Each orientation has a different z-projection magnetic moment,
i, and the electron’s potential energy is therefore split into a multiplet when the external
magnetic field is applied—Zeeman effect (also termed Zeeman splitting).

The magnitudes u (see also Footnote 1 in this chapter) of the absolute and z-projection
magnetic moments are calculated from the Magnitude expressions for angular momenta in
Table 9.2 and

Magnitude
1= gy 9.10)

where g; (i = ¢ or s or j) is one of three different g factors: For orbital moment, g, = 1
classically. For spin, g, = 2.002319 for a single'® electron, known as the electron-spin g factor
(in many-electron systems denoted g.). For combinations of spin and orbit, the g; factor must
be calculated as shown in Section 9.4.2. The energy split of the multiplet under a magnetic
field applied along z is by Uy, ; (for i = ¢ or s or j, see Figure 9.10) calculated from the

17 For example, the value of ¢ tells us what type of orbital the electron occupies (s, p, d, or f) . . .
% For some atoms, the exact value varies slightly with environment.
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s=% |m. Crsyj=% | m

|s|=\/ (s+1):§

7
: 15
Ui =+ '(j+1):g

Figure 9.8 Single electron’s spin angular momenta (left top) combined with orbital angular momenta (left
bottom) yield two choices for the total angular momentum j (right), quantized in units of 4. The sizes of
the two spheres on the right correspond roughly to superposition of the spin cones over the orbital
angular momentum vectors at left bottom (precisely in the classical limit of {—eo).

magnitudes of z-projection moments, u., onto the field axis (Table 9.2) and mirrored by £
values of my, my, or m; (Table 9.2) around the initial energy taken as zero:

Uni=B-u, =B giugm; (9.11)

Only m, and m; follow directly from the electron’s identity in the atom. The 7;is obtained by spin—
orbit coupling. The one-electron angular momentum j is a vector sum of the orbital and spin
angular momenta, j = £ + s, which are quantized. As shown in Figure 9.8, top left, the spin
angular-momentum vector can lie anywhere on the surface of a cone around the field direction
and has two possible orientations (m, = +'2, —'2). Its components along the field direction are
+V5h and —Y2h (Table 9.2). This spin angular momentum is brought into the picture of the orbital
angular momentum shown for a p electron (¢ = 1) in Figure 9.8, bottom left, where the angular-
momentum vector quantizes in an external magnetic field into three cones with respective
projections —17, 0, +1/4 onto the field direction. Since the spin (vector) has two possible orienta-
tions (m, = "2, —'/2), two spheres containing the m-quantized cones are obtained, a smaller one for
j={—" (Figure 9.8, bottom right) and a larger one for j = ¢ + /2 (Figure 9.8, top right). The two
Jj states differ in energy. The difference is a measure of the spin—orbit coupling strength, which is
proportional to Z* and hence increases rapidly with the atomic number Z.

Atomic Magnetic Moments

When looking at the magnetic properties of a material, we’ll typically be interested in
the most stable or ground state of its magnetic atoms. The Russell-Saunders coupling
under Hund’s rules (Section 7.3.2) yields correct ground-state magnetic moments for
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most free atoms of transition metals and the lanthanoids. The j—j coupling scheme
(Appendix F) is needed for the actinoids. Figure 9.9 shows a useful summation scheme
for the Russell-Saunders coupling under Hund’s rules. The ground state for the Fe**
example in Figure 9.9 is **'L, = "D, (“quintuplet-D-four”) because S = 2, L = 2
(hence D; Table 7.3), and J = 4 as the orbital shell is more than half filled. The S in the
ground-state term 25*'L; equals the largest value of the total Mg that can be obtained
by summing my, and the L equals the largest M; that can be obtained by summing m,.

In Figure 9.10, the ground state for our Fe?* ion is illustrated on an energy
diagram. The many-electron state °D is a quintuplet; the spin—orbit coupling produces
28 + 1 = 5 states of J between |[L — S| = 0 and |[L + S| = 4. In an applied magnetic

Electrons: T 1 1 1 1 l
First, maximum S m, | || V||| Y| Y| Y| %

S

Second, maximum L |m, | 2 | 1 | 0 [-1]|-2] 2|1 |0 |-1]|-2

Third Hund rule J= [L—S] |L+S]

Figure 9.9 Hund’s rules in a summation scheme to determine the ground state of a fiee atom or ion with
d-valence electrons via Russell-Saunders coupling, illustrated on Fe** having >*'L, = °D,.

| J=|L-8]=0 M,=0
E 1 — ]
- -1
2 — 42
— -2
L=2,S=2

— 3 ==

_3 - Um,J

7 4g,ug B

39,15 B

+4 2g,ug B

J=|L+S|=4 — gJ“Bg

— -4 _EngBg

spin—qrbit magnetic field -3gj p: B

coupling N ~T49uke B

Figure 9.10 Energy diagram for °D sub-states of an isolated Fe** under spin-orbit coupling and
a magnetic field. For the ground state J = 4, magnetic potential energies U, ; are listed to illustrate the
meaning of the split in magnetic field.
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Mg = +2 mS
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-2 ~29;Ms B

magnetic field B

Figure 9.11 Energy diagram for isolated Fe?* under spin-only approximation.

field, each of these states splits in energy into a multiplet of M values from —J to +J,
differing by 1."

Note that the free-ion scheme will not necessarily be valid in a compound of a magnetic
atom. We know from Chapter 7 that the ligand field splits the degeneracy of d-electron levels.
It is then a question of the mutual symmetry and occupation of the remaining degenerate
orbitals whether or not there is a contribution from the orbital angular momentum. If not, as
is the case of some 3d ions in compounds, we say that the orbital moment is quenched, and
the “spin-only” splitting of the ground state in the applied field is much simpler (Figure 9.11).
As felectrons are much less sensitive to ligand-field effects, a scheme (see Figure 9.13 later)
analogous to Figure 9.9 applies to the magnetic ground state of both free and bonded
lanthanoid ions (except for Sm>* and Eu®"). This is discussed in more detail in Section 9.4.3.

Magnetic moments are measured at non-zero fields and non-zero temperatures. The
measured value then depends on how the states exemplified in Figure 9.10 are populated.
This is controlled by the relative size of the thermal energy kT versus both the spin—orbit
J-splitting energy and the M j-splitting energy that increases with increasing applied field B,
Equation (9.11). Two simple cases emerge, depending on the field and temperature:

1. Invery strong fields of tens of teslas at very low temperatures of a few kelvins, a saturation
moment, u,, is achieved for paramagnetic materials. It corresponds to the z-projection
value of the magnetic moment as calculated with Equation (9.10) and the appropriate
z-projection Magnitude listed in Table 9.2, in which m,, m,, m; are replaced by M, M,
M. In magnetically ordered materials, i, is obtained via neutron diffraction.

2. In weak fields at high temperatures, an effective moment, y.¢, is measured. It corresponds
to the absolute magnetic moment, the value of which is calculated with Equation (9.10)
and the appropriate Magnitude listed in Table 9.2, in which Z, s, j are replaced by L, S, J.

Four cases of these two types of moment are discussed in more detail in the following.

19 1¢’s worth stating that for a full electron shell, L, S, and J must all be zero, so the total angular momentum will be
zero and there will be no magnetic moment; the atom will be diamagnetic. This also means that we only need to
consider valence electrons when calculating magnetic moments.
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The weak-field limit for spin-only moment. In the weak-field limit, the magnetic Mg split is
weak, kT is much larger than its splitting energy, and all levels of the S multiplet in Figure
9.11 are equally occupied. The absolute value of the moment in Table 9.2 is applicable, not its
projection onto the z axis, and the spin-only effective moment . is:

err = Zettn/S(S + 1) 9.12)

Since g. = 2 and S = Y2 n,, where n, is the number of unpaired electrons, the approximate
value of u.g in Bohr magnetons is given by +/n, (1, + 2).

The strong-field limit for spin-only moment. Under large B, the difference in the Mg sub-
state energies is large, and, at low temperatures, only the lowest M is occupied (for example
the Mg = =2 level in Figure 9.11). The saturated magnetic moment of the magnetized
substance is then calculated from the z-component magnitude in Table 9.2:

Hsar = GellpS 9.13)

Setting g. = 2 makes i, in Bohr magnetons equal to the number of unpaired electrons.

The weak-field limit for spin—orbit coupling. Let’s consider the case where k7 'is less than the
J splitting (spin—orbit) but larger than the M splitting (magnetic). This means that the lowest
J multiplet is rather evenly populated, as exemplified by rare-earth ions at ambient temper-
atures. The grand total angular momentum J produces the magnetic moment. Because J is
composed of spin and orbital contributions, vector summation needs to be applied.

Figure 9.12 shows the summation graphically. Because of the “doubled” contribution
from S (g. = 2), the instantaneous moment is not aligned with the angular momentum J, but

|
.
N
~

Slcos(IS) + [L|cos(IL)]

PN Mo = 73 [e.

Figure 9.12 Vector addition of the orbital and spin angular momenta (in black), and of their contribu-
tions towards the magnetic moment (in gray), valid in the weak-field case described in text. The effective
magnetic moment, i, is proportional to the sum of projections of g.§ and L onto J. For visual clarity of
the summation, the angular and magnetic moments are drawn parallel to each other instead of
antiparallel.



9.4.3

9.4 Atomic Origins of Magnetism 363

rapidly sweeps a cone around it (Larmor precession), so that only the projection onto J over
time should be considered. The contributions towards the effective magnetic moment giqgr
from the two angular momenta will also be projections: |L|cos(JL) and g.| S |cos(JS). The two
angles can be expressed from the cosine law, which says that |L|> = | J|*+| S”=2|J|| S [cos(JS)
and that |S|> = |JP+|LP-2|J||L|cos(JL) (Figure 9.12). The magnitudes of the angular
momentum vectors (S|, |L|, and | J|) are then expressed in terms of quantum numbers.
Hence, for J,

Her = &1 - VI + 1), (9.14)
where:
 JUA) L+ )+SES+1)  JI ) FLL+1) =SS+ 1) 9.15)
b1 =& 2 +1) 2 +1) ‘
For g. approximated as 2, this simplifies into the Landé factor:
JJ+1)=LL+1)+SES+1
frange = 1+ L FV LD HSEHD) ) ©.16)

2J(J+1)

The strong-field limit for spin—orbit coupling. Under large B at low temperatures, only the
lowest M is occupied, and the saturated magnetic moment of the magnetized substance is
then calculated as u,, = gsusJ from the z-component magnitude in Table 9.2 but using g; of
Equation (9.15).

Magnetic Moments for 3d lons in Compounds

Values of ug for 3d transition-metal ions are given in Table 9.3. The spin-only values are
much closer to those observed experimentally than to those calculated using the total angular
momentum. The reason for this is the well-known ligand-field effect, also discussed in
Section 5.3.8 and Section 7.3.1. As an example, a d' Ti** free ion has a 10-fold degenerate
’D ground state (the electron can be spin up or spin down in any one of five d orbitals, the
multiplicity 25 + 1 = 2, Figure 7.5). In an octahedral ligand field, the degeneracy is lifted,
resulting in ta, (dy,, d., d,.) and e, (d.2, d,2_,2) orbital sets.”” The e, orbitals are ~2.5 eV
above the f,, and will not be populated under normal conditions, so the Ti** electron is in 7,
One therefore has a sixfold degenerate ground state. Whether the orbital angular momentum
contributes or is quenched then depends on the symmetry of these degenerate orbitals. We
can understand this by returning to our picture of the orbit angular momentum resulting

20 The ground-state term under a ligand field is found in correlation diagrams, dealt with in Section 7.3.3. In short, for
d" in an octahedral field, the terms can be A g, Asg, Eg, T, o1 Toy, in a tetrahedral field the subscript g falls off. In
a weak octahedral/tetrahedral field (= high-spin case), free-ion terms D (d 1, d° d* d 6) split to E + T, the F terms
(d?,d®, d? d")ysplitto As+ T, + T», the S term (4 °) is not split but renamed A;. Note that the subscripts are not J as
in the magnetic-field-induced R-S term, but relate to symmetry.



Table 9.3 Electronic configurations, free-ion terms, configurations, and ground terms for high-spin magnetic moments in Bohr
magnetons for selected 3d transition-metal salts featuring an octahedral ligand field. Note that different ground terms arise for
low-spin cases. Experimental data taken from Nicholls [1].

HS Meff Meff M eff M eff

ground Orbital calculated* calculated expt expt
d  Freeion HS config. term contribution? gn/J(J+1) g«/SES+1) 80K 300 K Example
31 2Dap 2 *To Yes 1.55 1.73 1.4 1.8 CsVClg
3d *F, 13 T, Yes 1.63 2.83 2.7 2.7 (NH )V(SO ) 512H 0
3d % Fsyp 13 A No 0.77 3.88 3.8 3.8 KCr(SO ) 512H 0
34 ° D, 13y > E, No 0.00 4.90 4.8 4.8 CrSO 46H 0
3d °Ssp 1530 Ca CA, No 5.92 5.92 5.9 5.9 K Mn(SO ) s6H 0
35Dy, 13y Co > To, Yes 6.70 4.90 5.4 5.5 (NH ) Fe(SO ) s6H O
3d * Fop 15 @ A Yes 6.63 3.88 4.6 5.1 (NH ) £0(SO 9 s6H 0
3§ 3 Fy, 15y & P Ao No 5.59 2.83 3.3 33 (NH ) Ni(SO » 76H 0O
3d 2 Dsp 156, > E, No 3.55 1.73 1.9 1.9 (NH » Lu(SO 9 s6H 0

* Notice that, due to Hund’s third rule, spin—orbit coupling makes the experimental moment smaller than the spin-only moment when d orbitals
are less than half filled and bigger when more than half filled.
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from the circular motion of a charged particle around an axis (Figure 9.3). The orbital
angular momentum occurs when an electron has rwo orbitals available at about the same
energy level, that are rotationally equivalent around the axis of the electron’s conceived
circular motion. Around z, such symmetry-related orbitals would be d.. and d,... Hence, in
our example of Ti** in an octahedral ligand field, an orbital contribution to the magnetic
moment is possible. In a > configuration of octahedral Cr**, on the other hand, the angular
momenta of the d,,, d,., and d,.. sphere cancel.

Symmetry being the key, the rule is such that a T ground term”' allows the orbital
angular-momentum contribution (Table 9.3). The overall picture is unfortunately more
complex still in that spin—orbit coupling leads to a further splitting of the ,, orbitals of
Ti** even before applying the external magnetic field. The energy separation is of the
order of kT, leading to the population, hence magnetic moment, changing with tem-
perature. For d' Ti** in an octahedral ligand field, calculations®” of thermally induced

populations of the microstates predict that u.g would vary from 0 to v/5 ug as the
temperature changes from 0 to « K. The experimental values are far less extreme and
somewhat fortuitously end up being close to spin-only predictions at room tempera-
ture. The less extreme temperature dependence of such moments is partly due to
covalency (electrons shared with ligands) and partly because the true local environment
of d" Ti** will not be a regular octahedron but will undergo Jahn-Teller splitting
(Section 5.3.10) into levels where the moment would be temperature-independent.
Similar arguments hold for the other T ground states, such as those for d 2 d° and
d’ in an octahedral field. Compounds of these ions therefore show moments that depart
from spin-only values due to spin—orbit coupling, and have contributions from ther-
mally excited states that bring a change with temperature.

Things are more straightforward for ions with ground terms A,, and E, that allow
no orbital contribution. In an octahedral field, such d?, d*, d®, and d° ions are found
experimentally to have u.p values close to spin-only predictions, and temperature
effects due to thermally excited states® are weak. For d°, spin-only u. values are
observed.”*

A peculiarity occurs for the octahedral d°/d® ions (A, terms), called zero-field splitting.
Even before magnetic field splits the spins states (into an array from — Mg to + M, see Figure
9.11), the ligand field splits them a little, yet differently; according to their absolute value,
into larger and smaller |Mg|. This leads to a paramagnetic anisotropy; the split-state

21 Adopted in an octahedral field for tzgl, tzgz, t2g4eg2, and tzgSegz; tetrahedral field €°t,', €%,2, €*t,, and e*t,>.

22 According to Kotani theory.

23 Minor deviations from spin-only values arise due to mixing with higher-energy T terms of the same multiplicity as
the ground term. These are always present for d */d ® Aszand d 4d° E, terms and can lead to u.r values lower (fora d
shell less than half filled) or higher (for a d shell more than half filled) than expected. In other words, an admixture of
excited states introduces some degree of spin—orbit coupling.

24 There are no higher T terms of the same multiplicity to induce even minor deviations.
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occupancies slightly change with the direction of the magnetic field and so do the suscepti-
bilities if measured on a single crystal. A weak anisotropy is also caused in the octahedral d*
and d° ions (E, terms) by Jahn-Teller distortion.

Magnetic Moments for 4flons in Compounds

For the lanthanoids, the situation is much simpler than above (see Table 9.4). The Russell-
Saunders scheme can still be applied, and the contracted nature of the 4f orbitals means that
ligand-field effects are far less important. Hund’s third rule (Section 9.4.2) is obeyed, and the
agreement between u.(calc) using J and uep(expt) is very good in most cases. For Sm** and
Eu**, however, the experimental values are much higher than expected for the ground state.
This is because there are low-energy excited states partially occupied due to thermal energy,
and the moment rapidly falls on cooling.

As an example of the calculation, the Nd** (/°) Russell-Saunders ***'L; term is “Io)
where S =3 yields 2S + 1 =4, L = 6 yields the I (Table 7.3), and J = |[L—S]is 6 — 3, = 9/4.
Equation (9.16) then gives gy anqe = 0.727, with which Equation (9.14) yields gerr = 3.61 up.

Note on Magnetic Moments of 4d and 5d Metals in Compounds

When comparing the 3d and 4f1ons just discussed, we see that relatively simple formulas can
be applied to estimate magnetic moments for most of them (except Sm** and Eu’*).
Estimates became rather complex for 4d and 5d metals since their larger spin—orbit coupling
(o< Z% is comparable to ligand-field effects, and the situation is intermediate between the
relatively clear-cut 3d and 4f cases.

Table 9.4 Calculated u.f in Bohr magnetons for rare-earth ions.

Ion " R-S term Uegr(calc) Hegr(€Xpt)
Ce’* 41! 2Fy) 2.53 24

Pr* 4f> H, 3.58 3.5

Nd** 4f3 Top 3.61 35

Pm’* 4af “ 5I4 2.68 not available
Sm>* 4f° Hs), 0.84 1.5

Eu* 47 F, 0.00 3.4

Gd** 4f7 835/ 7.95 8.0

Tb** 478 Fe 9.73 9.5

Dy3+ 4f9 6H15/2 10.65 10.6
Ho™ 4710 g 10.61 10.4
Er’* 4" 152 9.58 9.5
Tm’* 412 3H, 7.56 7.3

Yb3* 4" 2Fop 4.54 4.5
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Electrons: Tt
First, maximum S m. | Bl % | %|%| %] %|-%|-%|-%|-%|-%|-%]|-%
$]

S

Second, maximum L{m, | 3 |2 | 1|0 |-1|-2|-3[3 |2 |1]0]|-1|-2|-3

Third Hund rule J= [L-S] |L+S]

Figure 9.13 Hund’s rules summation to determine the ground state of a 4f atom or ion via Russell-
Saunders coupling, illustrated on Nd** of 25*' L, = #1,),.

Diamagnetism

In addition to the orbital and spin contributions to the magnetic moment of an atom with an
unpaired electron, there is a diamagnetic contribution. Diamagnetism is caused by the
change in the motion of all electrons in an applied field, and that includes the paired electrons
that we did not have to consider so far. We can imagine this effect as occurring due to
induced currents. Lenz’s law of induction states that the “magnetic field of an induced loop
current is oriented against the applied field”. Diamagnetism will therefore make y negative by
expelling the field from the material. In a field with a gradient, the diamagnet will be driven
out to regions of weaker field. This is the origin of the famous levitating-frog experiment that
abounds on the internet. Diamagnetism occurs in all materials, though its effect is eclipsed by
the positive susceptibility arising from any unpaired electrons.”” Of the elements with no
unpaired electrons, Bi is the strongest diamagnet”® (it has the largest number of electrons and
J = 0) with y, = —166x107°. In all metals, an additional weak diamagnetic effect due to
delocalized electrons occurs, termed Landau diamagnetism.>’ Normal diamagnetism is not
a desperately interesting phenomenon; however, in superconductors (Chapter 12) the inner
currents ideally expel all the magnetic field, and one has a perfect diamagnet of y, = —1. Such
an extreme diamagnetic susceptibility of a superconductor is able to levitate trains.

Paramagnetism

Paramagnetism is a situation when atomic magnetic moments in the given substance are
randomly oriented. Thermal agitation disorders their orientations, whereas an applied
magnetic field tends to align them. A paramagnetic material will concentrate the magnetic

25 Nevertheless it’s important to correct for diamagnetic contributions when measuring and interpreting properties of
paramagnetic substances. Such diamagnetic corrections are often made from tabulated values of Pascal’s constants
as mentioned in Appendix I.

26 A compass with a Bi needle points east-west; true to the prefix “dia” meaning across.

27 Also conjugation electrons of a graphite plane (graphene) cause a strong anisotropic diamagnetism with y =
—400%107 for the field perpendicular to the plane. Similarly for aromatic conjugated molecules.
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field in its volume (y is positive) and be attracted to regions of high field. Typical values of y
are 1072 to 10>, Paramagnets can be split into two categories according to the localized or
delocalized nature of the contributing electrons, which in turn determines how susceptibility
depends on temperature. Substances with localized electrons are classified as Curie or Curie—
Weiss paramagnets, while those with delocalized unpaired electrons are called Pauli
paramagnets.

Curie and Curie-Weiss Paramagnetism

Substances that contain non-interacting paramagnetic moments have a susceptibility that
varies inversely with temperature and obeys the Curie law,

X=7 9.17)
where C is the Curie constant. This hyperbolic temperature dependence arises from the
competition between the increasingly stronger thermal agitation of the independent moments
and the tendency of the applied field to align them (Figure 9.14). Examples of Curie para-
magnets include compounds with well-separated transition-metal ions, such as the Tutton’s
salt (NH4)>Mn(SOy), 6H,0 and the iron/chromium alums NH4;M(SO4),-12H,O (M = Cr, Fe),
rare-earth compounds where the magnetism arises from localized f electrons, and O,(g). The
Curie law is valid unless the applied field is very strong (>1 T) and the temperature very low
(<20 K). Deviations from the Curie law can be checked visually by plotting the reciprocal
susceptibility versus temperature, which provides a straight line, y ' = C ~' T, when the Curie
law is obeyed (Figure 9.14).

¥ Curie paramagnet

@ WY& x=CIT
® @@«
S ISETANLY 0 T (K)
& @Y @

magnetic moments
randomly oriented

and dynamic X—l =C-l.T

0 T (K)
0

Figure 9.14 Curie paramagnet and Curie law: Temperature dependence of the magnetic susceptibility y
(top), and linearization via its inverse (bottom).
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Materials that exhibit interactions between individual magnetic moments will
only behave as paramagnets above the temperature at which the thermal energy
overcomes those interactions and effectively randomizes the moments. That is above
Tc for ferromagnets and above Ty for antiferromagnets. The Curie-Weiss law is then
valid,

(9.18)

where 6 is the Weiss constant. Figure 9.15 shows y and y~! versus absolute temperature of
these two types of Curie-Weiss paramagnets. As magnetization in general aligns magnetic
moments in one direction, a negative Weiss constant means a negative propensity to the
alignment, as in antiferromagnets, whereas a positive § means a positive propensity to align
the moments, as in ferromagnets. The ferromagnetic order becomes thermally randomized
when a positive = T¢ is reached upon warming, at which point it starts to resemble a Curie
paramagnet at 0 K. Since an antiferromagnet’s § ~ —Ty, the antiferromagnet is as weak
amagnet at 0 K as a Curie paramagnet would be at a temperature 7. It should be noted that
when |6] and the ordering temperature are very different, it indicates some type of frustration
working against the order (Section 9.11).

The derivation of the Curie law is in principle quantum mechanical because susceptibility
depends on thermally induced populations of the levels that are split from M in an applied
magnetic field (Figure 9.10). For Curie paramagnets at temperatures larger than ~20 K, in

2 1.An i 2.Aferromagnet
Sy, antiferromagnet | | taken above its
%% taken above its i | ordering
/@o; ordering temperature T¢
/7019 temperature Ty
0/2/
%, :
........ x=CIT-0)
o L L
0 Ty T T (K)
~1
A ¥ =C(T-0)
0\03\ ........
QO &
o\a\ec} .........
At
H(amiferromagnet) O H(ferromagnet) T (K)

Figure 9.15 Comparison of the two opposite Curie-Weiss paramagnets: A ferromagnet at high temperat-
ures and antiferromagnet at lower temperatures. Their temperature dependence of the magnetic suscepti-
bility y is on top, and its linearization on the bottom shows the difference in their Weiss constants 6.
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fields that are not exceptionally strong, the quantum-mechanical result derived in
Appendix H is well approximated by the Curie law,

Herr Ho
v=N T 9.19)
where N is the number of magnetic atoms per which the susceptibility is expressed”® and geer
is the effective magnetic moment (in A m?) from which S or J is calculated, leading to the
number of unpaired electrons per magnetic atom. As an example, for a spin-only moment,
Equation (9.12) is introduced into Equation (9.19) for uee. With N replacing N, ymer per
mole of magnetic atoms is obtained:

- Nageugug S

Amol = 3%T (S + 1) =6.3003x107°

S8+ m> mol ™! (9.20)
T
Note that since y is proportional to uer” in Equation (9.19), in a compound of two magnetic
atoms their u.g values aren’t additive. Susceptibility y and therefore ﬂeffz values are. For
example, consider the perovskite-related LaSrMnMoOQOg. It contains two atoms with
unpaired electrons. High-spin Mn”" has five unpaired electrons hence S = 2.5, from which
a spin-only uerr = 5.916 up is calculated with Equation (9.12). The other magnetic atom is d'
Mo’" of a spin-only ue = 1.732 ug calculated from S = %. The average moment per magnetic

atom is ppp = V0.5 x 5.916% +0.5 x 1.7322 = 4.36 ug. It compares well with the average
moment of 4.33 up obtained [2] by least-squares fitting with Equation (9.19) of the experi-
mental y versus 1/7 data for LaSrMnMoOg.

As noted earlier, when an extremely strong field is applied to a paramagnet at low
temperatures, the atomic moments saturate at the value ug,, Equation (9.13), and their
sum per unit volume saturates at Mg,,. This is described by the Brillouin function for the
relative magnetization M, = M/Mg,, versus B/T, derived in Appendix H,

_L 1 el —Leom(L _ gHsB
Mr—J{<J+2)coth[<J+2>é} Zcoth<2§>} = T (9.21)

in which ¢£is a ratio of the energy separation of the M levels and the thermal energy. As an
example, the Brillouin function for a spin-only case (J/ = S, g, = 2) is plotted in Figure 9.16 for
several values of S at temperatures of 1 K and 300 K. For curiosity it may be noted that for
S larger than ~10, the curve at 1 K would become indistinguishable from the Langevin
function (Appendix G) derived without quantization as if the levels were continuous.
Figure 9.16 also illustrates that at 300 K the relative magnetization is very small even at
very strong fields and follows a linear function of B.

B IfNis per unit volume, the dimensionless volume susceptibility y, is obtained, if per mol, y,o; is obtained, etc.
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0.0 T T 1 1 77 T T T T

0 1 2 3 2 3 4 5
B(T) B(T)

Figure 9.16 Relative magnetization M, = M/ My, versus an applied field B at 1 K and 300 K, calculated
with the Brillouin function for a spin-only case and several values of S.

Pauli Paramagnetism

Curie-Weiss paramagnetism is applicable to substances where the unpaired electrons are
localized. When this is not the case, the temperature-independent Pauli paramagnetism can be
observed. It occurs when the electrons can be reasonably well described as a gas of non-
interacting particles. This picture is only appropriate in metallic conductors where the
valence electrons are highly delocalized, such as in alkali-metals and Mg, Ca, Sr, Ba, and
Al Other metallic elements are either diamagnetic, like Cu and Bi, or have more complicated
magnetism due to interactions between electrons.

We can understand the origins of Pauli paramagnetism through the schematic density-of-
states (DOS) picture in Figure 9.17, where we draw separate bands for electrons with
moments”’ up (1) and down (). In the absence of a magnetic field, the energy of electrons
in each of these sub-bands will be identical and there will be the same number of 1 electrons
as | . In the presence of a magnetic field, the energy of the spin moments parallel to it will sink
by upB, the energy of the single-electron moment, and the energy of those that are antiparal-
lel will increase by the same amount.

The Pauli paramagnetic moment for the electron-gas model is small, but still three times
larger than the opposite Landau diamagnetic moment of those electrons. It is much smaller,
though, than the moment of Curie paramagnets.’’ In many transition metals, an enhanced
Pauli paramagnetism occurs, which varies slightly with temperature. It is associated with

% The spin magnetic moment is opposite to the spin angular momentum (Figure 9.3).

30 The reason is as follows: Starting with Equation (9.19) for susceptibility under Curie law, for a free electron gas, one
calculates a volume susceptibility with an Ny of the conducting electrons per unit volume, replaces the thermal
energy k7T with the much higher Fermi energy EF (a different statistics also applies—one of Fermi-Dirac, not that of
Boltzman), and the factor !4 with %. The high Ef is also the reason why Pauli paramagnetism is temperature
independent; the k7 energy is very small compared to Ef.
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Figure 9.17 A schematic DOS plot (on the left, with Fermi level Ef) can be separated into sub-bands of
spin-up and spin-down moments (center). The magnetic field B will change the relative energies and
populations of these sub-bands (right).

weak interaction between magnetic moments of the conducting electrons, and this slightly
favors their parallel arrangement. More or less enhanced Pauli paramagnetism also occurs in
many metallic compounds as an alternative to an outright ferromagnetism, for example in
RUOZ.

Antiferromagnetism

Antiferromagnetic materials obey the Curie-—Weiss law, Equation (9.18), at high temperature
where they behave as paramagnets with a negative value of . On cooling through the Néel
temperature, Ty, their magnetic moments align in an antiparallel fashion. Because of this
interaction among the moments, the effect of an external field is smaller on an antiferro-
magnet than a paramagnet, and its susceptibility, while positive, is smaller than in the
paramagnetic state close to T. Plots of y and y ' versus temperature are shown in
Figure 9.18.

Antiferromagnetic materials also show a significant anisotropy below 7. The suscepti-
bility when the external field is parallel to the moments (y;) is considerably smaller than when
the field is perpendicular to them (y,), Figure 9.18.°" A powdered sample will show
a weighted average 3y + %y, of those two lines. We can understand this anisotropy by
considering how the thermal agitation of the spins will be affected when the field is applied
either parallel or perpendicular to the antiferromagnetic alignment. Let’s start at 0 K, assume
no thermal agitation and hence a fixed direction of the opposing moments. If a weak external
magnetic field is applied along these moments, it cannot change the already saturated and
compensating moments, and y is zero. Above 0 K, thermal agitation decreases the magnet-
ization in both sets of opposing moments equally in zero field. When an external field is
applied, it strengthens the set of moments parallel to it (by decreasing the amplitude of their
thermal agitation) and weakens the set of antiparallel moments (by increasing the amplitude
of their thermal agitation). This means that y; increases with increasing 7. If the weak
external field is applied at 0 K across the antiferomagnetic moments, it tilts both sets of

31 Ferromagnets also possess anisotropy of magnetization, but its manifestation is hidden by ferromagnetic domain
formation.
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Figure 9.18 Susceptibility of an antiferromagnet as a function of temperature.

moments somewhat into its direction, producing a non-zero y, . On increasing temperature,
the external field influences the increasing thermal amplitudes of both sets equally and the
total tilting is not affected. The magnitude of y, remains constant up to 7. The behavior
shown in Figure 9.18 is valid for a weak external field. In the presence of a very strong
external field, stronger than the antiferromagnetic interactions, the behavior is different. In
the perpendicular direction, the tilt increases until all moments are aligned with the field,
whereas in the parallel direction, the opposing moments at some point will flip to yield
a ferromagnetic state.

There are numerous ways in which magnetic moments can be arranged to give an
antiferromagnetic pattern, even for simple structure types [3]. Figure 9.19 shows the possible
ordering patterns for a primitive cubic arrangement of magnetic atoms.™ It’s worth noting
that ordering of antiferromagnetic moments leads to a magnetic unit cell that is larger than
the chemical unit cell. This is probed by neutron diffraction as explained in Box 9.1.

In addition to simple spin arrangements of the type shown in Figure 9.19, more complex
possibilities exist. In some materials, spin alignments follow a helical arrangement as one
moves through the structure, like the steps of a spiral staircase. The pitch of the helix may be
such that the spin arrangement repeats after a few unit cells (e.g. with steps at a 120° angle, the
spin would repeat after three chemical unit cells) or it may be that there is no simple registry
such that the magnetic structure is incommensurate (Section 2.10) with the chemical structure.

32 We'll for example see in Chapter 11 that CaMnOs adopts type G while LaMnOs the type A arrangement, and an
important group of materials is obtained when these two form a solid solution.
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Figure 9.19 Types of antiferromagnetic order on a P cubic lattice of magnetic atoms. One of many
possible moment directions is drawn; more generally, a + and — would replace the arrows. The chemical
cell is in a thick dotted line. The magnetic unit cell is drawn for the G type in bold as an example.

Superexchange Interactions

Antiferromagnetic ordering turns out to be very common in insulating transition-metal oxides
and fluorides. For example, monoxides of Mn to Ni order antiferromagnetically below the
Néel temperatures given in Table 9.5. The moments of metal atoms alternate their up/down
orientation in all three directions. The magnetic information leading to this order is transmit-
ted by the nonmagnetic linking atoms in a process called superexchange [4, 5, 6].

The chemically most intuitive description of superexchange in oxides and fluorides is the
partial covalent model. We’ll assume initially a d-metal M cation (Lewis acid) and a p® anion
L (“ligands” O*” or F~, Lewis bases) in an M—L-M bonding segment. We’ve seen in Chapter 5
that e, orbitals on M have the correct symmetry for strong o overlap™ with a p orbital on L. If
we consider the straight 180° interaction d°~L-d* of Figure 9.20 (top) we can therefore
envisage a partial transfer of one of the ligand p electrons to an e, orbital on the metal on
the left (a polar covalent bond). Hund’s first rule suggests that the M 7, electrons will have the
same spin as that shared with L, here 1. Coming to the M on the right, the same p orbital of

33 For ¢ bond overlap, the overlapping portion must not change sign when coordinate axes of any of the two involved
orbitals are rotated around the line connecting the two atoms. Such ¢ overlaps are p. with d.2, and d,2_ 2 with either
P« or p,. Such 7 overlaps along x are p,, with d,,,, and p. with d,... Along y, they are p, with d,,, and p. with d,.. Along
z, they are p, with d,., and p, with d,.. Orthogonal, non-overlapping, orbitals are p with either d.. or d,, along x, p,,
with either d,, or d,. along y, and p. with either d,. or d,. along z.
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Table 9.5 Antiferromagnetic NaCl-type oxides and KMF; perovskites of M = Mn-Ni.

Phase Tx (K) dmvi o (A) Phase T (K) dyir (A)
MnO 122 2.22 KMnF, 88 2.09
FeO 198 2.14 KFeF; 115 2.06
CoO 293 2.13 KCoF; 135 2.04
NiO 523 2.09 KNiF; 275 2.01
'L
Trre e
B N_
\~\‘\\) L l:~~ b
T M * the )
L i

T4y “+++ k

L—-d®

Figure 9.20 Superexchange M—L-M 180° coupling with e, orbitals of M. L is a p®anion, M is a d” cation
in a weak A-splitting octahedral L field. The corresponding spin-up and spin-down levels are separated by
the spin-pairing energy P. Electron-spin sharing (partially filled arrows on L) corresponds to partial
presence of the L p electron at the cation owing to partial covalency of the M—L bond.

L shares its | electron, making the unpaired t,, electrons | on that M. There is thus an overall
antiferromagnetic coupling of magnetic moments on the two metal sites, M(7)(1)L({)({)M.
Overlap arguments suggest that a decrease in the bond angle from 180° will reduce the strength
of this antiferromagnetic superexchange.

A similar situation occurs for a high-spin d°-L-d> superexchange (Figure 9.20, middle)
though now the Pauli exclusion principle dictates that the spin on M is opposite to that on L,
which leads to M(])(1)L(])(1)M that is again antiferromagnetic. For a d°-L-d° case,
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Figure 9.21 The right-angle superexchange of d* cations M in a weak octahedral field of p® anions L. The

two orthogonal p orbitals on L are drawn one in black and one in gray.

a combination of these arguments predicts ferromagnetic coupling, M(1)(1)L(])(1)M, as shown
in Figure 9.20 (bottom).

These simple ideas explain at least in part why 7 increases along the MO and KMF;
series in Table 9.5. From M = Mn to Co, the metal electronegativity increases, causing
covalency to increase, and this in turn increases the exchange interaction. The same argu-
ment explains why higher oxidation states tend to have higher Ty (FeO, 198 K; versus
a-Fe,03, 953 K) and why Ty is generally higher for oxides than for fluorides.

When one has a 90° M—L-M angle, a slightly different argument holds. For our d°~L-d" case,
we can again consider the partial transfer of an L 1 electron towards the metal ion on the left
(Figure 9.21). However, a different p orbital is overlapping with M on the right. We can therefore
use Hund’s rule to state that the spins of the emerging holes on L will be parallel such that an L 1
electron in this other p orbital is again used, making the overall coupling ferromagnetic. It should

be noted that the 90° superexchange is typically weaker than the 180° one.

Box 9.1 Characterizations: Neutron diffraction of magnetic materials

X-ray diffraction is one of the most powerful probes of crystal structure. When a crystal is
illuminated with X-rays of wavelength similar to interatomic separations, interference of X-rays
scattered from the electron clouds of atoms leads to radiation being diffracted in certain directions.
The direction of the diffracted radiation carries information on the size and shape of the unit cell of
the material (via Bragg’s law stating that the radiation wavelength A = 2d),, sinf, where 6 is the
glancing angle between the beam and the atomic plane /k/). Intensities of the diffracted radiation
peaks carry information on where atoms lie within that cell. Neutrons can also be produced (either at
reactor or spallation sources) with wavelengths comparable to interatomic distances. Neutrons are
scattered by atomic nuclei giving rise to diffraction patterns sensitive to isotopes. Since neutrons are
fermions, they have half-integer spin and will also be scattered by the spin the atom may have due to
its unpaired electrons (paired electrons not contributing). In contrast, diffraction of X-rays as
bosons of zero spin is generally insensitive to magnetic moment. For parallel spins of all identical
atoms (inside a domain), the diffracted Bragg peak will be a simple sum of the contribution from the
so-called “nuclear” and “magnetic” scattering. This is shown in the bottom row of the figure below,
where the filled peaks represent nuclear scattering and the open peaks, overall scattering. In the case
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Box 9.1 (cont.)

of anti-parallel magnetic moments, neutrons will “see” two different types of atoms, the spin-ups
and spin-downs. Diffraction from magnetic unit cells that are multiples of the “chemical cell” (also
known as the “nuclear cell”) will produce additional peaks solely due to spin ordering. These
“magnetic” peaks are marked below by the black /k/ indices for three of the antiferromagnetic
ordering types shown in Figure 9.19 (while the nuclear peaks have gray indices referring to the unit
cell drawn). This contribution to the diffraction pattern from magnetic scattering means that
neutron diffraction can be used to determine magnetic structures of ordered moments.
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9.9 Ferromagnetism

Ferromagnetism is the magnetic behavior of parallel orientations of atomic magnetic
moments (Figure 9.14). Ferromagnets order their moments below a critical temperature
called the Curie temperature, 7. The total atomic magnetic moment exhibited by such
materials is called spontaneous magnetization.

From this description we might expect that all ferromagnetic materials, such as all pieces of
iron, would have a permanent magnetization below 7 and attract each other—which we know
isn’t the case. The reason for this discrepancy lies in the domain structure of ferromagnets. If all
atomic moments in a material point in the same direction, it behaves like the bar magnet of
Figure 9.1 and needs to send a powerful magnetic field through its neighboring space. This costs
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Figure 9.22 The reason why ferromagnetic materials adopt domain structure is to avoid sending the field
into the poorly magnetizable neighborhood.

M M
M saturation m M saturation W
B
M remanent
_Hcoercive intrinsic Mremanent
coercive intrinsic
W H H
Hcoercive intrinsic q
hard ferromagnet soft ferromagnet

Figure 9.23 Hysteresis loops for hard and soft ferromagnets.

energy (called the magnetostatic energy). This energy can be reduced by forming a structure of
closed magnetic loops inside the magnet, as shown in Figure 9.22, which essentially avoids
sending the field outside the body of the magnet. Some details of domain formation have been
dealt with in Chapter 8. In short, it represents a compromise between (a) the magnetostatic
energy, (b) the magnetocrystalline energy that arises because it is normally more favorable to
align spins in some crystallographic directions (the easy axes) than others, and (c) the magne-
tostrictive energy of strain caused by magnetostriction, the contraction along that favorable
direction of magnetization where the spins attract themselves. Boundaries between domains are
called Bloch walls. For Fe at room temperature, these might be around 650 A thick.

From this description, one may again wonder why the domain-structured ferromagnets can
become magnetic at all. The domain structure of a material may not be very strong; it only needs
to be more stable than the alternative of sending the field through the material’s surroundings.
An external magnetic field can therefore reorient domains and change their size. Favorable
domains with easy axes of magnetization close to the field direction will therefore grow at the
expense of less favorable ones, and then eventually reorient closer to the field direction as the
magnetic saturation is approached. Such changes in domain structure are behind the character-
istic M versus H hysteresis loops of ferromagnetic materials shown in Figure 9.23.

From the origin at zero for zero H, the magnetization M follows the light curve of
Figure 9.23. Saturation is easy and achieved at fields far lower than for an isolated paramag-
netic moment. High magnetization occurs already at a low field. Although there is an
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energetic cost associated with moving domain walls past dislocations or defects in a material,
the external field is able to overcome this energy. When the external field is removed, the new
domain structure in the material may become partially locked by defects and dislocations
rearranged by magnetostriction. On reducing the field to zero, the material then retains
remanent’” magnetization, M emanent.—- This type of domain realignment is the experiment
one performs when “stroking” a needle with a permanent magnet to magnetize it. Permanent
magnets are manufactured commercially by cooling a glowing hot material in a strong
permanent field that keeps the forming domains aligned. A high M cpmanen: 18 Obtained
when the field is removed from the cold product.

Figure 9.23 shows that it then takes an opposite field, the negatively taken intrinsic*
coercive field, H;[7], to fully demagnetize the ferromagnet so that M = 0. Ferromagnets with
easily movable domains have a low H and are called soft magnets. Ferromagnets with
a large H,; are called hard ferromagnets and have important applications as permanent
magnets in motors. For data storage, a high coercive field is not desirable because even
higher fields are then needed to rewrite the information. On the other hand, high remanent
magnetization is essential. The hysteresis loop for a data-storage material should therefore
approach the form of a narrow and tall rectangle. In contrast, good permanent magnets have
hysteresis loops that are both tall and wide. One useful way of representing magnetic
measurements on such magnets is to plot B versus H. The maximum energy product,
(BH)max (in units of T A/m = J/m?), can then be defined, as shown in Figure 9.24, via the
point on the demagnetization line where the product of B and H is a maximum.

The temperature dependence of the magnetization of a ferromagnet is shown in
Figure 9.25. Below T, it resembles the curve for the order—disorder transition®’ of second
order (Figure 4.16). Above T¢, the magnetization becomes so low that it would not be seen
on the given scale of M, and the plot in Figure 9.25 is continued with reciprocal
susceptibility*® instead, following the Curie-Weiss law of Equation (9.18).

Let’s take first the 7> T side of the plot in Figure 9.25, where the originally ferromagnetic
material is thermally disordered into a paramagnet and obeys the Curie-Weiss law. Weiss, in
his phenomenological description of ferromagnetism, assumed that the ferromagnetic align-

ment of atomic moments is transmitted by an internal field, H, between these moments,>’
the strength of which is proportional to the sample magnetization:
Hy =M (9.22)

An older version of “remnant”. Now used only in this physics meaning. It is best not to confuse the two.

The demagnetizing field (the field lines external to the sample in Figure 9.22) is much weaker than an external field
and can’t move domain walls past all defects.

The intrinsic coercive field H; (also called intrinsic coercivity) zeroes the magnetization M, whereas the coercive
field, H. (coercivity), zeroes the magnetic induction B, B = uo(M + H).

This approach to describing M(7) is illustrated in Problem 4.12.

Because ! = H/M, Equation (9.8), it is as though M ! were plotted for unity field.

Weiss called this field a molecular field. The field is constant throughout the material; it represents a mean-field
approximation of the quantum-mechanical exchange interactions between the atomic moments.
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Figure 9.24 Maximum energy product for an idealized ferromagnet in SI units. See Footnote 36 of this
chapter for the coercive-field symbols.
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Figure 9.25 Magnetization M of a ferromagnet as a function of temperature. Paramagnetic reciprocal
susceptibility is plotted after M drops to very low values at 7. Note that only when the applied field H —
0 will M fall sharply to zero at Tc.

with 1 being called the internal-field constant. The total field that magnetizes the moments is
Hyoa1 = H+ Hyy. Let’s recollect that the Curie law is derived on the assumption that magnetic
moments do not interact with each other. How would the law change when the magnetiza-
tion is almost entirely due to the field these very moments produce? Using H,, in Equation
(9.8), we write for the inherent total paramagnetic volume susceptibility under Curie law:

M M C
» =—=—=— 9.23
ZXinherent Htotal H+ M T ( )
Then we take the latter identity, and express the measured susceptibility y = M/H,
M C
x (9.24)

“H T-Cl
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which has the same form as the Curie—Weiss law in Equation (9.18), only CA replaces the
temperature 6 = T above which a ferromagnetic material magnetizes like a paramagnet. The
expression Tc = CA means that T¢ is a measure of the strength parameter A of the field that
causes the moments to align parallel; it is a measure of the exchange field.

Let’s now turn to the 7' < T¢ side of the plot in Figure 9.25 and consider the temperature
dependence of the ferromagnetic magnetization. The descending curve originates in the
Brillouin function for the relative magnetization M,, Equation (9.21), of paramagnets. In
order to apply it to a ferromagnet, B is replaced with poH a1, Where Hyoa = H + Hyy, as
above. However, Hy is a function of M, Equation (9.22), hence of M|, and it turns out that
these two functions for M(T) of a ferromagnet (Appendix H) can only be solved numeric-
ally. The solution yields the simple curve in Figure 9.25.

We haven’t yet addressed the materials-chemistry question of what makes a good ferro-
magnet; that is, what are the forces that cause magnetic moments to align? Before discussing
this, it’s useful to separate ferromagnets into three different categories. One way of doing this
is via schematic DOS plots of the type we used in Figure 9.17, where we split the DOS to show
the two sub-bands for the majority/minority spins with magnetic moments parallel/antipar-
allel to the field. These are often called spin-polarized bands. This viewpoint allows us to split
materials into categories of ferromagnetic metals (with DOS non-zero at Ex for both majority
and minority spins), ferromagnetic half-metals (with the majority spin only at Ey, a gap
occurs for minority spins), and the rare case of ferromagnetic insulators (with no spin at Ef).
as shown in Figure 9.26.

Ferromagnetic Insulators and Half-Metals

Ferromagnetic insulators (semiconductors) are rare. Examples are weak ferromagnets of low
Tc such as EuO (T¢ = 69 K) and EuS (16 K) of rock-salt structure, a PbCl,-type EuH,
(18 K), EuLiH; cubic perovskite (37 K), or the transparent K,NiF,-type salt Rb,CrCly
(52 K). The nonmetallic ferromagnet La,Mn'YNi""Og (7' = 280 K [8]) arises from the high-
spin d>~L-d® superexchange combination (Section 9.8). An obtuse-angle superexchange
leads to weak ferromagnetism in highly tilted perovskites YTiO3 (7¢ = 30 K) and SeCuO;

v OV

H1 H1 H1

ferromagnetic ferromagnetic ferromagnetic
metal half-metal insulator
Fe CrO, EuO

Figure 9.26 Types of ferromagnets according to schematic spin-polarized bands.
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(26 K) or in the CdCr,Sey spinel (130 K). These materials are insulating or semiconducting
above Tc (EuO is yellow) but their conductivity increases below T by many orders of
magnitude. The reason is the easy hopping of electrons between sites of the same spin.

Half-metals, as illustrated in Figure 9.26 (center), are solids that for one spin orientation
have a gap, whereas the other orientation is gapless, like in a metal. Half-metals are
conductors of spin-polarized electrons. The spin orientation also means that all half-
metals are magnetically ordered. A typical half-metal is CrO,, with 7c = 392 K and an
integer spin-only ferromagnetic moment of 2.0 ug per Cr at 0 K. This saturation moment
corresponds to complete polarization of the two nonbonding #,, electrons present in stoi-
chiometric CrO,, as required by the half-metal definition. More about this in Chapter 11.

There are several origins of ferromagnetism in nonmetallic materials. One is the ferromagnetic
superexchange detailed in Section 9.8. Another is an absence of antiferromagnetic super-
exchange; a weak ferromagnetism (of low 7) may then appear due to direct interaction of
the two not-so-distant magnetic atoms along the array M—L-M. Another factor contributing
to ferromagnetism (at least locally) is double exchange in valence-mixed compounds (Chapter
11), where an electron is present simultaneously at two or more neighboring sites of an element.
This requires a parallel orientation of spins at the sites involved. The term double exchange was
chosen [9] for cases where the imagined hopping happens over an L atom in between the two
sites. A typical example is magnetite, Fe3O4 (see also Section 9.10), in which minority-spin 75!
electrons of octahedrally coordinated Fe** hop into the same yet empty orbital of Fe** at an
equivalent octahedral site. Another example is La,/3Sr;,3MnO3, where the e,! electron of Mn?*
hops to Mn**. With close enough energies, even orbitals of two different metals may give rise
to double exchange and ferromagnetism. An example is sharing of the 7,,! Fe?* electron with
the d configuration of Mo®" in the half-metallic ferromagnet Sro,FeMoOg of the perovskite-
related structure [10]. Because electron hopping is involved in stabilizing ferromagnetic inter-
actions, double-exchange ferromagnets are close to being metallic.

Ferromagnetic Metals

Ferromagnetism well above room temperature is displayed by three elements: Fe, Co, and Ni
with Tc = 1043 K, 1388 K, and 627 K, respectively. Their magnetic coupling is due to
conduction electrons, and the phenomenon is called itinerant ferromagnetism. The origin of
the parallel coupling of magnetic moments is the quantum-mechanical exchange interaction
that is also behind the Hund’s first rule (maximum spin multiplicity). We can rationalize why
Fe, Co, and Ni display spontaneous magnetization, whereas Cu and Zn don’t by using a simple
band-structure argument similar to that used to explain Pauli paramagnetism. In the absence
of exchange interactions, the 7 and | spin levels are at equal energies and therefore equally
populated. In the presence of an exchange, one sub-band is stabilized relative to the other, and
hence filled with more electrons. Overall, this means that the gain in exchange energy must be
balanced against the energy cost to move electrons from levels just below Ef in the thus-
emerging minority-spin band to the top of the thus-emerging majority-spin band. The question
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Cu: 4s13d10 above T Ni: 3410 below T
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N(E) N(E)

Figure 9.27 Comparison of a spin-polarized DOS plot at non-zero 7 for diamagnetic Cu (idealized Cu-
atom configuration 4s'34'°) with one for ferromagnetic Ni (idealized Ni-atom configuration 3d'°),
showing the effect of the exchange interaction below 7.

of whether a metal will be magnetic depends in large part on this balance. When the number of
states N(Ef) at the Fermi level is high, the electrons move to states that are only marginally
higher in energy, and the cost is low. This is the case for Co, Fe, and Ni, where the Fermi level
cuts through the d bands. When N(Ef) is small, the electrons transferred to majority-spin
bands are forced to occupy states that are significantly more antibonding, and the cost is high.
This is the case for metals like Cu, where the Fermi level cuts through the s band. By way of
example, a schematic DOS plot is shown in Figure 9.27.

For Cu, EF lies in the broad 4s band of 1 electron per atom, where the DOS is low (Figure
9.27, left). The energy cost of flipping that electron and putting it onto the other sub-band is
too large to be offset by any exchange energy, and Cu therefore doesn’t show ferromagnet-
ism. For Ni, one has a total of 10 valence electrons. Of these, around 9.4 reside in the d band
and 0.6 in the s band. The exchange splitting is such that the majority-spin band is completely
filled”” and the 0.6 holes lie entirely in the minority band. The saturation magnetization per
Ni atom is therefore 0.6 ug. This simple band-structure picture helps rationalize why
magnetic moments recorded experimentally don’t suggest an integer number of electrons
contributing to the moment. Similar arguments hold for Co and Fe, which have fewer
valence electrons than Ni, increasing the excess of spin-polarized electrons and increasing
M, The picture is very similar to that used to explain Pauli paramagnetism, but the origin
of the energy splitting of sub-bands is the internal exchange energy rather than an external
magnetic field. An element that sits on the fence is Pd. It has N(E) nearly high enough for
spontaneous magnetization, and this leads to high magnetization in applied fields (an
enhanced Pauli paramagnetism). Importantly, since high N(Ef) is associated with narrow
bands, a decrease in dimensionality leads to ferromagnetism in Pd films and nanoparticles.

Our simple picture of itinerant ferromagnetism of elements ends around Fe. Mn adopts
a different crystal structure, has broad d bands of low N(EF) that increases the cost of moving

40" Chemists may appreciate that with 9.4 d electrons a sub-band forms with full &> configuration.
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between the 1 and | spin levels such that Mn is not ferromagnetic. Ferromagnetism of
conduction electrons requires a high density of states at the Fermi level combined with strong
ferromagnetic exchange interactions favored by densest packing, and occurs for electron
counts that allow one spin-polarized sub-band to become fully populated at the expense of
the other sub-band (Figure 9.27). That also occurs in some intermetallic compounds when
their average valence-electron count per atom (VEC) approaches 10. An example is the
Laves phase ZrZn, of VEC = 9.33 and T = 28 K.

Superferromagnets

A combination of d-shell and f-shell magnetism in superferromagnets SmCos and Nd,Fe4B has
produced the strongest permanent magnets so far, i.e. those with the highest maximum-energy
products (BH)n.x. Since their discovery in the 1960s, these materials have replaced
other permanent magnets in most applications. Table 9.6 shows that their coercivities exceed
those of traditional magnets. The strength of superferromagnets may be illustrated by the fact
that a cube-shaped magnet of 1 inch edge cannot be pulled straight from an iron plate by hand;
a task comparable to lifting a mass of 50 kg. The best ceramic magnet, BaFe;,0,9, of the same
size would behave like a 3 kg mass.

What are the origins of such exceptional properties? For SmCos they can be traced back to
the magnetic structure shown in Figure 9.28. The high remanence is because the Co moment
is high, 1.8 up at 4 K. The Sm moment of 0.38 uy is parallel but decreases to about zero at
room temperature, while the ordered Co moments persist up to the very high T of these
magnets.*! One can think of the Sm “stuffing” atom as causing just a slight reduction in 7

Table 9.6 Magnetic properties of some anonymized commercial polycrystalline hard
magnets: Bemanent (feManence), H, (coercivity), energy product (BH)max, and Tc.

Composition Bremanent (T) H, (kA/m) (BH)max (kJ/m*)  Tc (K)
~SmCos 1.05 730 200 1100
~Nd,Fe4B 1.23 900 280 550
A17Ni15C035CU4Ti5F634 1.05 62 70 1150
BaFelelg 0.40 190 9 742

41" The moment magnitudes can be accounted for by considering spin—orbit coupling and localized moments. For Sm>*
(4f65s2p6), the calculated saturated moment u, = g (Table 9.3) is 0 up, based on S = 3 and L = 3 from the Russell-
Saunders scheme in Figure 9.13 and J = |L — S|. However, J approaching zero partially uncouples L and S and
brings a second-order Zeeman effect (see Orchard in Further Reading) contribution to the magnetic moment, and
the moment becomes non-zero (even at low temperatures). Treating SmCos as a Zintl phase (Section 1.5.6), one can
speculate that formation of Sm>* provides two electrons to five Co. The average saturation moment for the thus
formed 3d&°* cobaltide configuration in this compound is g; = 1.80 up, calculated with S = 0.3 and L = 1.2,
interpolated via the Russell-Saunders scheme of Figure 9.9.
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Co Sm

Figure 9.28 Magnetic structure of SmCos at room temperature.

relative to the 1388 K of hexagonal close-packed Co. The key role of Sm is in the extremely
high magnetocrystalline anisotropy it induces. It triggers a combination of crystal-field
effects and spin—orbit coupling that makes magnetization very easy in one direction and
very difficult in others (high coercivity). When such magnets are manufactured commer-
cially, intentional phase admixtures and careful processing are used to orient grains, control
grain boundary effects, and help pin magnetic domains.

Ferrimagnetism

In Section 9.8 we’ve described how superexchange gives rise to antiferromagnetic coupling in
insulating materials. In Section 9.9 we learned that ferromagnetic insulators are extremely
rare. How then do we produce an insulating material with ferromagnet-like properties? One
solution is to use a ferrimagnet (Figure 9.29) where antiferromagnetic coupling of opposing
moments of unequal magnitude (e.g. due to two different metals being involved) leads to
a net overall magnetization. While bulk properties are similar to a ferromagnet, the atomic-
scale interactions are more complex. A ferrimagnet of two magnetic atoms may have up to
three types of couplings, one dominant antiferromagnetic and two ferromagnetic.** This
takes away the simplicity of the Weiss approach, which would have to incorporate three
Weiss fields between two moments of unequal magnitude, producing an asymptotic
approach to Curie-Weiss behavior at high temperatures. The behavior below T¢ is also
more complicated, as each of the two relative saturation moments will follow their own
temperature dependence.*’ Experimentally, a linear Curie-Weiss plot is obtained in the high-
temperature extrapolation, having negative 6 indicative of the antiferromagnetic coupling.

42 The white-gray antiferromagnetic interaction and the white-white or gray-gray ferromagnetic interactions of
Figure 9.29 (left) cartoon.
43 At some point, the two moments may even cancel; the point is termed the compensation temperature.
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Figure 9.29 Magnetization M of a ferrimagnet as a function of temperature 7. Reciprocal susceptibility is
plotted after magnetization becomes very low above Tc.

On cooling towards T, there is a marked increase in y, followed by an onset of spontaneous
magnetization at 7.

Ferrimagnetism is common among spinel-type materials; indeed the ferrimagnetic spinel
Fe;04 (lodestone = leading stone) with a 7 of 860 K was the technological solution the
ancient Chinese either employed directly in compasses or used to magnetize needles. The Fes
O, spinel (Section 1.5.1) has antiferromagnetic coupling between the tetrahedral and octa-
hedral sites, [Fe*(])]"'[Fe* Fe**(1)]°?'0,. Since magnetic moments of Fe** at both sites
cancel, the saturation moment is solely due to the 4 unpaired electrons of high-spin ¢ Fe**,
hence 4g.("2) = 4 ug. The ability of the spinel structure to accommodate various elements
yields a variety of magnetic properties as well as the ability to control the saturation moment
via substitutions.

Another group of important ferrimagnetic materials has the garnet-type structure
(Section 1.5.2). Its simplest representation is [cube]s[octahedron],[tetrahedron];Oy,.
Let’s choose Gd;FesO;, as one example of many. Its “magnetic” crystal-chemical
formula can be summarized as [Gd**()]P[Fe** (N)LFe* ()50, Two of
the d° tetrahedral Fe*™ moments are cancelled by the d° (both are S = %) octahedral
Fe’™ such that the overall saturation moment is given by 3|u(Gd**)| — |u(Fe*™)|.
Garnets can be prepared as large single crystals that are stable, colored, translucent
insulators with a bulk ferromagnetic-like behavior. This unique combination of prop-
erties is utilized in magneto-optical devices: disk memories, converters of magnetic field
into optical images, and sensors of movement or rotation. Garnets are also used in
optoelectronics and microwave technology as semi-permeable transmission media called
Faraday rotators.**

4 The Faraday effect is a usually tiny rotation of the plane of polarized light upon transmission through a transparent
magnet, the angle of which is proportional to the magnetic-field component in the direction of the light beam. The
angle achievable in garnets is rather high, around 45°. An analogous effect occurring upon reflection from surfaces
of magnetized crystals is called the Kerr magneto-optical effect.
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9.11 Frustrated Systems and Spin Glasses

In earlier sections, we’ve looked at exchange interactions that lead to ferro- or antiferromag-
netic ordering. In some situations, it may not be possible to simultaneously satisfy the
energetic requirements for all components in the system. This is called frustration and can
lead to a variety of energetically equivalent ground states being present. One of the best-
known magnetic examples of this occurs on the so-called kagome lattice made up of corner-
sharing triangles.*> With antiferromagnetic coupling between moments on two corners of
the triangle, there is an immediate problem when placing a moment on the third corner
(Figure 9.30). Although the kagome frustration has been treated theoretically in consider-
able detail, only a few real examples exist. One is the hydronium jarosite, (H;O)Fe3(SOy)»
(OH)g [11]. A similar frustration occurs for tetrahedral networks. The tetrahedral frustration
is often referred to as “spin ice” by topological analogy with the disordered arrangement of
protons in hydrogen bonds of H,O(s) described by Pauling [12]. In general, the amount of
frustration is often quantified by the ratio of the Weiss temperature ¢ obtained from the
Curie-Weiss high-temperature behavior and the freezing/ordering temperature such as 7,
(freezing to a glass of spins, see below) or Ty (antiferromagnetic ordering). The
|0/ Ttreezing/ordering] Will be large for a frustrated material (spin-ice freezing) and close to 1
for a perfect antiferromagnet (spin ordering).

A second way to achieve frustration is via random site occupation in alloys. In metallic
alloys containing a few percent of a magnetic dopant such as Fe in Au, Mnin Cu, or Erin 'Y,
exchange via the host electrons leads to random interactions between the magnetic
dopants.*® Similar effects occur in inherently disordered alloys such as amorphous GdAl.

A spin glass is a material formed by cooling the multi-degenerate spin-frustrated ground
state through a “freezing” transition®’ into a glass-like, fixed, residual spin disorder. The

O— @
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Figure 9.30 Magnetic frustration. While it’s possible to have all nearest-neighbor antiferromagnetic
interactions satisfied on a square, this is not possible for a triangle. Materials based on the kagome lattice
(a segment is shown on right) then show spin-glass behavior.

4 Kago-me = “basket-eye” in Japanese, a light basket of bamboo strains woven such that large hexagonal openings,
“eyes”, and small triangles emerge.

46 Below a certain temperature, further cooling begins to decrease the conductivity of the alloy—against what is
common for metals—as the increasing strength of the coupling condenses more conducting electrons around the
magnetic impurity (the Kondo effect).

47 The term “freezing” is used in analogy with water-ice freezing upon intrinsic disorder of H-atom orientations
around O-atom nodes of the tetrahedral network.
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Figure 9.31 Right: Equilibrium magnetic susceptibility of a spin glass upon cooling through the spin-glass
temperature 7, with or without an external field. Left: Their isothermal relaxations as a function of time ¢
after the external field was switched off or on, respectively.

temperature dependence of the susceptibility of a typical spin glass is shown in Figure 9.31
(right). At high temperature, the material is paramagnetic and follows the Curie-Weiss law.**
On cooling through T, the spins interlock into one of many possible ground states of the
different frustrated combinations. Below Ty, the susceptibility depends on the field under which
the material was cooled. The larger the field in which the material is cooled, the higher the
interlocked magnetization. The high-field-cooled susceptibility of the spin glass remains high as
a function of temperature. The zero-field-cooled susceptibility is low and decreases with
temperature as local antiferromagnetic interactions are less agitated. The conversion between
these two extreme interlocked results (the former created in zero field, the latter in a high field)
takes a long time (Figure 9.31). The relaxation times also depend on whether or not equilib-
rium has actually been reached upon the field- and no-field cooling below T,. Magnetic
properties of a spin glass therefore depend strongly on its thermal history and are reminiscent
of physical properties of high-viscosity plastics or other amorphous materials (Chapter 15).
Spin glasses are characterized by a sharp peak in ac susceptibility measurements close to 7.

Magnetoelectric Multiferroics

A magnetoelectric medium that becomes magnetized in an electric field, £, and electrically
polarized in magnetic field, H, is a largely unfulfilled idea that dates back to Pierre Curie at
the end of the nineteenth century. In particular, ferroelectric ferromagnets® are of interest
[13]. Potential applications include data-storage devices, magnetic or electric modulation of

48 The paramagnetic state may or may not transform directly into the spin glass. If an intermediate ferromagnetic state
is formed upon cooling, the final spin glass at the lowest temperature is called reentrant spin glass, in reference to the
re-emerging magnetic disorder.

49 This is the most prominent pair of the so-called multiferroics, materials that combine two types of field-induced,
ferroic, alignment (of magnetic dipole moments due to a magnetic field, of electric dipole moments due to an electric
field, of strains by a stress field) thus achieving coveted cross-coupling phenomena when one field tunes the
alignment pertinent to the other field.
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transducers, multifunctional sensors, and actuators. Yet making this happen in a single
chemical compound needs careful control of symmetry [14, 15] and is challenging compos-
itionally. Most ferromagnets have unpaired d electrons and are good electrical conductors
(we have already noted the rarity of insulating ferromagnets), while ferroelectrics need to be
insulators with non-centrosymmetric structures and are typically associated with the d°
configuration (Chapter 8). One possible solution is to mix " and &° ions in one network,
but this dilutes the ferroelectric and ferromagnetic subsets and weakens both the ferroelectric
coupling and magnetic superexchange. Loss of ferroelectricity ensues, with the dilute mag-
netic arrangement having a low ordering temperature, if any at all.

Another path is to introduce transition metals into the pyro- or ferroelectric salts of some
sp anions (typically non-centrosymmetric borates or phosphates). However, only weak
magnetic interactions are achieved, for example in ferroelectric, weakly ferromagnetic, and
ferroelastic boracites (M3;B,;013X; M = transition metal, X = halogen).

The opposite approach is to stuff potentially ferromagnetic networks with cations that
have a stereochemically active lone pair, such as Pb>", Bi**, Sn**, or Sb>*. Indeed, BiFeO; is
a ferroelectric antiferromagnet with a weak ferromagnetic moment due to canting of spins.
A more robust ferromagnetism has been obtained by replacing La** in La,MnNiOg with the
lone-pair cation Bi** to form Bi,MnNiOg [16]. This leads to simultaneous ferroelectricity
and ferromagnetism below 140 K. A problem of this approach is that the ferromagnetism, or
its coupling with ferroelectricity, still is weak. How does one achieve the desired high
magnetoelectric coupling between properties?

A window of opportunity appears in geometrically frustrated networks where the bonding
compromise creates off-center positions for atoms in their coordination polyhedra. As an
example, in hexagonal YMnOjs (not a perovskite), off-center Y* cause ferroelectric polar-
ization that combines with a frustrated magnetic order of Mn** that is easily reoriented [17].

A related way of smuggling ferroelectricity into a magnetic material is to remove the
centrosymmetry of suitable valence-mixed magnetically ordered networks by ordering them
into integer valences. The loss of inversion symmetry that may occur upon such charge
ordering then gives rise to a weak ferroelectricity. The ferrimagnetic spinel magnetite, Fe;Oy,
is reported to be ferroelectric below the Verwey transition at 125 K (see Chapter 11). An
analogous symmetry-breaking transition in the NdBaFe,O5 perovskite (Pmmm — P21ma)
removes inversion centers in this antiferromagnet [18]. A similar case occurs in LuFe,Oy4 [19].
However, a common problem with electrical polarization in these phases is their relatively
high electrical conductivity, which is undesirable for ferroelectric applications.

Molecular and Organic Magnets

The magnetic materials discussed so far were solid oxides or metals of high specific weight,
which have to be manufactured by high-temperature processing. The possibility of creating
molecular magnets that could be synthesized in solution and readily processed to a useful
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form is attractive. Unfortunately, only a small number of sp molecules have unpaired
electrons; examples include NO and O, (in its ground state). Liquid oxygen is very strongly
attracted to magnetic fields, but as a liquid it cannot acquire any permanently oriented
moment on its own. Solid O, is antiferromagnetic. Ozonides, such as [N(CH3)4]" [Os]”
(stable up to 70 °C in the dark), contain one unpaired spin per anion, but their magnetic
properties have not been studied. Superoxides (with an O, anion) also carry an unpaired
electron.

Other verified cases of sp magnetism involve free-radical species, such as NO,.
Unfortunately, molecules with unpaired electrons have a propensity for dimerizing and
thus losing their magnetism. Some organic free radicals are more stable, such as triphenyl-
methyl (C¢Hs);C" and its high-spin polymer, but have not been shown to be ferromagnetic
[20]. The first organic ferromagnet was reported [21] in the orthorhombic B-modification of
para-nitrophenyl nitronyl nitroxide (p-NPNN) where the unpaired electron is carried by
a conjugated moiety (Figure 9.32), but the T of 0.6 K is very low.

Some success in terms of bulk ferromagnetism has been achieved with transition-metal-
containing molecules [22]. As an example, decamethylferrocene Fe''[Cs(CH3)s],, diamag-
netic due to low-spin iron, is oxidized by the electron acceptor tetracyanoethylene (TCNE,
Figure 9.33) into [Fe'"(Cs(CH3)s),]" and [TCNE] ™. Here, the d° Fe of the cation carries one

H,C /.O
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H,C~ T/ NO
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\
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Figure 9.32 The first ferromagnetic radical, p-NPNN.

X Qo0
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Mn4+

NC CN
NC CN O O
reactants to form MnTPP Mn,,0,44 cluster of coordination
[Fe"(C5(CH,);),I* [TCNE] octahedra in the acetate molecule

Figure 9.33 Molecular structures: Fe''(C5(CH;)s), and TCNE (left), MnTPP (middle), Mn;,Oug cluster
of the “acetate-molecule” magnet described in text (right).
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unpaired electron, and the crystal becomes ferromagnetic below 7 = 4.8 K [23]. It is also an
electrical insulator, and its ferromagnetism occurs despite no direct covalent bonding
between the metal and TCNE. Higher T¢ values do occur with covalent interactions. For
example, [MnTPP]" [TCNE]" (MnTPP is a Mn*" complex of tetraphenylporphyrin;
Figure 9.33) has T¢c = 16 K and a structure of planar cations having their Mn centers
covalently linked by nitrogens of TCNE into 1D chains, hence it is not a simple isolated
“molecule”.

There is considerable interest in single-molecule magnets (SMMs) containing one or
several metal centers with a fixed magnetization direction due to anisotropy within
a molecule, the environment of which also shields them from forming intermolecular
couplings. One way to achieve the anisotropy is a significant negative zero-field split-
ting (this occurs for the As,-term d*1d®; Table 9.3) such that the largest Mg values
become lowest in energy, and S is as large as possible. Another way is through Jahn-—
Teller distortion of d* or d° ions (Section 9.4.3). An example is the Mn,Og4g cluster of
Mn** and Mn** coordination octahedra inside the Mn;,0,,(CH;COO),(H,0)4 “acet-
ate molecule” (Figure 9.33, right), in which 90° O-Mn-O superexchange coupling of
the 8 Mn>* ions is ferromagnetic, as is the coupling of 4 Mn*" in the Mn,O, central
cube. Their antiparallel orientation gives an § = 82 — 4:3/2 = 10 ground-state
ferrimagnet.

SMMs with a single metal center would be one more step towards the ultimately smallest
unit to store binary data written by an external magnetic field. The task is not trivial, as the
examples above suggest that these SMMs would keep their memory only at very low
temperatures. One of the most interesting candidates has therefore been based on Dy**
with magnetism of its five unpaired electrons augmented by an orbital-momentum contribu-
tion (see Table 9.4). When Dy** is complexed with the large tris(terz-butyl)cyclopentadienyl
ligands that, together with bulky [B(C¢Fs)4] anions, prevent intermolecular coupling, the
molecule shows magnetic hysteresis up to 60 K [24]. The magical border of the liquid-N,
temperature was crossed with hexakis(isopropyl)cyclopentadienyl ligands with magnetic
hysteresis up to 80 K [25].

9.14 Problems

9.1 Are penguins found at the south pole of the Earth’s magnetic field?

9.2 What is the orbital angular momentum for an s electron and why?

9.3 Convert the Earth’s magnetic field of 0.7 Oe to SI units.

9.4 What is the volume magnetization M and what is its SI unit?

9.5 Which 3d electron configurations (high- and low-spin where applicable) yield in octa-
hedral ligand field an orbital magnetic moment that is quenched or zero? State the
reason in each case.
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9.6

9.7

9.8

9.9

9.10

9.1

9.12

9.13

9.14

9.15
9.16

9.17

State whether or not you would expect an orbital contribution to the magnetic
moment of Ni'! in octahedral or tetrahedral coordination. Calculate the spin-only
moment flegr.

Determine the spin—orbit coupling ground-state terms >5*'L, for isolated Mn**, Mn>",
and Mn”". Calculate uerrin Bohr magnetons, with and without an orbital contribution.
Show that, when the orbital momentum is quenched, Equation (9.14) simplifies to the
spin-only model.

Calculate effective and saturated spin-only magnetic moments (in ug) per Cr in
NH4Cr(SOy4),-12H,0.

Calculate effective and saturated Russell-Saunders total moments (in ug) per high-spin
Fe in NH4Fe(SO4),'12H,0.

For NH4Fe(SO4),-12H,0: (a) Calculate the molar susceptibility at 298 K. (b) Given
that the cubic unit cell has ¢ = 1.243 nm and contains four formula units, convert the
molar susceptibility to dimensionless y,. (¢) Calculate the relative permeability.
Estimate the spin-only dimensionless susceptibility of O, as an ideal gas at 273.15 K
and 100 kPa.

Superconductors expel a magnetic field from their bulk. In liquid N,, 102.5 mg of
a YBa,Cu30¢. powder of apparent density 3000 kg/m® was placed into the center of
a miniature induction coil (a pick-up coil), and the induced voltage dropped by 450 mV.
At 26 °C, a 38.4 mg standard increased the (empty-coil) voltage by 5.73 V. Assuming
a linear voltage response to susceptibility, calculate the fraction of the magnetic field
expelled from the inside of the superconductor, given that the standard was a Curie—
Weiss paramagnet with Cp, = 9.164x10™* m* K/kg and # = =24 K. Hints: The expelled
field corresponds to the dimensionless (volume) diamagnetic susceptibility of the
superconductor. Because the samples were weighed, mass susceptibility must be calcu-
lated first.

Calculate the effective and saturated, spin-only, g. = 2, paramagnetic moments per
high-spin Mn in Lay 