

Ultimate Excel

with

Power Query

and

ChatGPT

Master MS Excel's Dynamic Lookup

Functions,

Generative Al, and Power Query to

Navigate

Data, Solve Complex Tasks and

Optimize

Productivity

Crispo Mwangi (MVP)

www.orangeava.com

http://www.orangeava.com/

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot

guarantee the accuracy of this information. The use of general descriptive

names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names

are exempt from the relevant protective laws and regulations and therefore free

for general use.

Excel®, Microsoft®, Power BI® and other such products/services are trademarks

of the Microsoft Corporation, Inc.

First published: December 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96782-61-0

www.orangeava.com

http://www.orangeava.com/

Dedicated To

All Excel and Data Analysis Lovers!

Whether you are a Beginner or an Expert

About the Author

Crispo Mwangi is a globally recognized Microsoft Most

Valuable Professional (MVP) in Excel, a distinguished

Microsoft Certified Trainer, and an Excel Expert accredited

by Microsoft Office. With an illustrious career spanning over

a decade, Crispo is not just an expert in Excel but a true

trailblazer in the world of technology and data

management.

Renowned for his exceptional leadership in the technology

community, Crispo is more than just an expert; he is a

mentor, guiding individuals worldwide with unparalleled

expertise and passion. His commitment to knowledge

sharing is unparalleled, evident through his high-quality

blogs and comprehensive training programs, which have

empowered countless individuals to harness the full

potential of Excel.

Beyond his technical prowess, Crispo embodies the spirit of

community, always willing to extend a helping hand and

provide objective feedback. His ability to unravel

complexities and simplify intricate Excel functions has made

him a trusted resource for professionals and enthusiasts

alike.

About the Technical Reviewers

Vijay A. Verma, an expert in Excel, Power BI, SQL, Python,

R, Data Analytics, VBA, and Dashboard, provides support on

the Microsoft and Power BI Community for Excel and Power

BI. He is widely recognized as Excel BI, running the highly

popular and critically acclaimed Excel and Power Query

Challenges on LinkedIn. As a moderator on the MS Answers

Excel forum and a Super User on the Power BI Forum, he is

sought after for his expertise in addressing Excel and Power

BI issues by the community. Moreover, he is the author of

the popular free-of-cost ebook - Excel Formula Bible.

Additionally, he manages a blog - Excel BI Analytics – aimed

at benefiting the Excel, Power BI, and Analytics community.

LinkedIn profile: https://www.linkedin.com/in/excelbi/

https://www.linkedin.com/in/excelbi/

Shubhi Aggarwal, an accomplished Data Analyst and

Microsoft Certified Trainer, excels in the intricate language

of data and analytics tools, including Microsoft Excel,

PowerPoint, Word, Microsoft Power BI, and Tableau,

transforming raw data into meaningful insights. With an

intimate understanding of the Extract, Transform, Load (ETL)

cycle, she brings a meticulous approach to data analysis,

extracting actionable intelligence and decoding complex

datasets. Her international experience enriches her

analytical toolkit, positioning her as an asset in a data-

driven world without boundaries. In her world, every dataset

is a canvas for insights. Whether unraveling Excel

spreadsheets, crafting compelling stories through

PowerPoint presentations, or creating visually stunning

dashboards using Power BI and Tableau, she transforms

data into powerful narratives.

Shubhi Aggarwal isn't just an analyst; she is a storyteller in

the language of data, crafting narratives that empower

organizations to make informed decisions.

https://www.linkedin.com/in/shubhi-aggarwal-182a3918/

https://www.linkedin.com/in/shubhi-aggarwal-182a3918/

Acknowledgements

First and foremost, I extend my deepest gratitude to the

readers – your curiosity and enthusiasm for Excel and data

management inspire me every day. Your continuous support

fuels my passion for exploring the limitless possibilities

within the realm of Excel.

To my dedicated team of editors, researchers, and

illustrators, your meticulous attention to detail and

unwavering commitment have transformed ideas into

meticulously crafted manuscripts. Your expertise and

dedication have been invaluable, and I am fortunate to have

had the opportunity to collaborate with each one of you.

I extend my thanks to my mentors and colleagues whose

guidance and insights have been instrumental in shaping

my understanding of data management. Your wisdom has

been a guiding light throughout my journey, and I am

deeply appreciative of your generosity in sharing your

knowledge.

Special appreciation goes to my family and friends for their

unwavering support and encouragement. Your belief in my

work has been a driving force, and I cherish the moments of

inspiration and camaraderie we have shared.

Lastly, I express my heartfelt thanks to the entire

community of data enthusiasts, Excel aficionados, and

analytics professionals. Your passion for the subject matter

ignites a collective spirit of exploration and learning, and I

am honored to be a part of this vibrant community.

This book stands as a testament to the collaborative efforts

of many, and I am profoundly grateful to each and every

one of you. Together, we continue to push the boundaries of

knowledge and redefine the landscape of data management

and analytics in Excel.

Preface

In the ever-evolving landscape of data management and

analytics, mastering Excel's lookup functions is not just a

skill but a cornerstone of efficient data handling. "Ultimate

Excel with Power Query and ChatGPT" is more than just a

book; it’s a guide crafted for data enthusiasts, Excel

aficionados, and anyone aiming to harness the full potential

of Excel’s lookup capabilities.

This book embarks on a transformative journey through

Excel's lookup functionalities, navigating from the traditional

methods to the trailblazing techniques that define the

current era of data management. Each chapter unfolds a

new dimension, debunking myths, unraveling complexities,

introducing nested functions, and providing hands-on

solutions to real-world data lookup dilemmas.

By the end of each chapter, you will not only master the

focused lookup function but also learn many other nested

functions, expanding your knowledge of Excel.

This book is divided into nine chapters. They will cover a

range from Excel basics and basic lookup functions to the

advanced use of AI in Excel. The details are listed below.

Chapter 1: The chapter will introduce the basics of Excel.

You will learn why you need to develop Excel skills and the

general steps to follow to master these skills. We will

explore the world of Excel formulas and functions, including

nesting or combining functions. Additionally, we will cover

the basics of Excel cell referencing and using Excel tables.

Chapter 2: The chapter will introduce the most used

Lookup function in Excel — VLOOKUP. It will highlight its

challenges and provide a workaround to those challenges by

showing how nesting other functions can help overcome

VLOOKUP default settings.

Chapter 3: The chapter will introduce a combo of functions

that Excel users have come to regard as one lookup function

— INDEX and MATCH. We will explore how the individual

functions work and how their combination is the second

most widely used method for looking up data. After that, we

will investigate situations where this combo is better than

the VLOOKUP function.

Chapter 4: The LOOKUP function is as old as Excel itself. It

has been there since 1985. Unlike its successor, VLOOKUP,

the LOOKUP function has one unique feature — it can handle

arrays. This chapter will investigate its usefulness 35 years

later, particularly in areas where it is a better choice.

Chapter 5: Apart from what Excel classifies as lookup

functions, there are different ways of looking up data in

Excel. This chapter investigates the different ways and

functions that one can use to look up data. We will learn

some rarely discussed methods, such as the use of Excel

intersection, advanced filters, database functions, and the

use of pivot tables.

Chapter 6: Released in 2019, XLOOKUP was the most

hyped release of any function. It was termed as the most

powerful lookup function in Excel. The chapter will

investigate scenarios where XLOOKUP could be the

preferred lookup function.

Chapter 7: Although it did not receive as much publicity as

XLOOKUP, the FILTER function compensates for all the

shortcomings in the previous lookup functions. This chapter

will explore areas where FILTER is the ultimate lookup

function. We will also look at its shortcomings and how to

work around them.

Chapter 8: Power Query has been hailed as the ultimate

extract, load, and transform add-in for Excel, but it can also

be used to look up data. This chapter will explore how Power

Query can be used to create solutions for novice users who

are afraid of tinkering with the functions.

Chapter 9: This chapter will discuss how to incorporate

artificial intelligence (AI) into solving lookup problems in

Excel. We will explore topics such as what is ChatGPT and

how can we get the best out of it. By the end of this

chapter, you will be able to understand the nuances of

prompting and leveraging ChatGPT for accurate and tailored

responses.

Downloading the code

bundles and colored images

Please follow the link to download the

Code Bundles of the book:

https://github.com/ava-orange-

education/Ultimate-Excel-with-

Power-Query-and-ChatGPT

The code bundles and images of the book are also hosted

on

https://rebrand.ly/zlukuby

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education

Pvt Ltd and follow best practices to ensure the accuracy of

our content to provide an indulging reading experience to

our subscribers. Our readers are our mirrors, and we use

their inputs to reflect and improve upon human errors, if

any, that may have occurred during the publishing

processes involved. To let us maintain the quality and help

us reach out to any readers who might be having difficulties

due to any unforeseen errors, please write to us at :

errata@orangeava.com

https://github.com/ava-orange-education/Ultimate-Excel-with-Power-Query-and-ChatGPT
https://rebrand.ly/zlukuby
mailto:errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

ARE YOU INTERESTED IN

AUTHORING WITH US?

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

from tech experts and help them build learning and

development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Excel Environment

Introduction

Structure

Reasons for Learning Excel

How to Master Excel

STEP 1: Love Mistakes

STEP 2: Master the Basics

STEP 3: Progressive Overload

STEP 4: Learn to Break your Problem into Small Pieces

STEP 5: Teach

STEP 6: Participate in Excel Forums

STEP 7: Daily Intentional Learning

Introducing Excel formulas and functions

Nesting functions: When one is not enough

Resolving Complexity in Nesting Function

Nesting Function Rules

Introducing Excel Cell Referencing

Types of Cell References

Introducing Excel Tables

Importance of having lookup skills

Classification of Lookup Functions

Conclusion

Question

2. VLOOKUP Is Dead: Or is it?

Introduction

Structure

VLOOKUP exact and approximate match

VLOOKUP approximate match

Breaking VLOOKUP myths

Myth 1: VLOOKUP cannot do a left lookup

Myth 2: VLOOKUP cannot return multiple columns in a

lookup

Myth 3: VLOOKUP cannot use multiple criteria in a

lookup

Myth 4: VLOOKUP cannot handle the insertion and

deletion of olumns in the lookup range

Myth 5: VLOOKUP cannot do a two-way lookup

Myth 6: VLOOKUP cannot do a partial match lookup

Myth 7: VLOOKUP cannot do a case-sensitive partial

match lookup

Myth 8: VLOOKUP cannot do a case-sensitive lookup

Myth 9: VLOOKUP cannot return multiple results

Myth 10: VLOOKUP cannot lookup from last to first

Myth 11: VLOOKUP cannot lookup the top or bottom N

values

Myth 12: VLOOKUP cannot do a reverse lookup

Myth 13: VLOOKUP cannot do a horizontal lookup

Myth 14: VLOOKUP cannot return multiple non-

contiguous columns

Myth 15: VLOOKUP cannot lookup multiple non-

contiguous arrays

Conclusion

Points to remember

3. INDEX and MATCH

Introduction

Structure

INDEX, MATCH, and the two-way lookup

Three-way lookup

Reverse-lookup single result

Reverse-lookup multiple results

Multiple criteria lookup

Returning multiple columns

Horizontal lookup

Lookup non-contiguous array

Lookup using wildcards

Lookup based on text length

Lookup items in a list

Lookup unique value

Lookup bottom n values

Conclusion

Points to remember

4. LOOKUP

Introduction

Structure

Lookup the Last Match Using a Criterion

Lookup the Last Blank Cell

Lookup the Last Negative Number or Text

Lookup Approximate Match in an Array

Lookup Most Repeated Item

Conclusion

Points to remember

Multiple choice questions

Answers

5. Other LOOKUP Methods and Functions

Introduction

Structure

Using the advanced filter to lookup items in/not in a list

Using Excel Intersection Operator to do a two-way lookup

Using Database functions to lookup numeric data

Using SUMIFS, SUMPRODUCT, AGGREGATE, and MAX

functions to lookup numeric data

Looking up images

Looking up cell addresses

Using Pivot Table to lookup unique items in a list

Conclusion

Points to remember

6. XLOOKUP

Introduction

Structure

Exact match default

Easily returns multiple adjacent and non-adjacent

columns

Easily lookup data to the left or right

Easily accommodates column insertion/deletion

Easily looks up data vertically or horizontally

Easily lookup data from the bottom up

Easily integrates wildcards in the lookup

Returns a cell reference

Returns values in case of No Match

Easily do a three-way lookup

Easily returns non-adjacent columns

Returns the last/first non-empty cell

Easily lookup non-contiguous array

Easily returns duplicate lookup values

Conclusion

Points to remember

Multiple choice questions

Answers

7. FILTER: The Ultimate Lookup Function

Introduction

Structure

Return multiple columns and rows

Return multiple non-adjacent columns and rows

Easily use multiple criteria lookups using AND/OR

Easily lookup all X and not Y items

Easily lookup top or bottom n items

Easily lookup X or Y and not both

Looking up data using wildcards

Looking up weekday or weekend data

Looking up data that excludes holidays and weekends

Looking up ODD/EVEN numbers

Looking up items repeated N times

Looking up items based on time

Looking up data based on week number, month, and

year

Lookup common/uncommon items in two lists

Return end-of-the-month date items only

Conclusion

Points to remember

Quiz

Answers

8. Power Query: One-Stop Solution

Introduction

Structure

Installing the Power Query add-in for Excel 2010 and

Excel 2013

Exact Lookup

Return multiple results and multiple columns

Approximate Lookup

Lookup using table joins

Looking up the top or bottom n items

Lookup using the List function

Looking up Weekday versus Weekend data

Looking up date that excludes holidays

Looking up items repeated N times

Return end-of-month date items only

Fuzzy Lookup

Conclusion

Points to remember

Multiple choice questions

Answers

9. ChatGPT: Using ChatGPT to solve lookup issues

Introduction

Structure

Setting up ChatGPT for optimal results

Mastering the perfect ChatGPT prompt

Increasing Accuracy of ChatGPT Prompts

Tips and tricks to advanced ChatGPT usage

Beyond ChatGPT

Conclusion

Points to remember

Multiple choice questions

Answers

Index

CHAPTER 1

Excel Environment

Introduction

This chapter will introduce us to the basics of Excel. You will learn

why you need to develop Excel skills and the general steps to

follow to master these skills.

We will explore the world of Excel formulas and functions,

including nesting or combining functions. We will also cover the

basics of Excel cell referencing and using Excel tables.

Since the book is about the 101 ways to look up anything in

Excel, we will dive into the world of Excel lookup skills and why

they are a door to mastering Excel. Finally, we will dig into the

different classifications of the lookup functions.

Structure

In this chapter, we will discuss the following topics:

Why you should learn Excel?

How to Master Excel

Introducing Excel formulas and functions

Nesting functions: When one is not enough

Introducing Excel Cell referencing: full column/row, range

reference, named reference, absolute, relative, and mixed

references

Introducing Excel tables

Importance of having lookup skills

Classification of lookup functions:

Old-Version: Legacy array functions

Dynamic Array Functions

Power Query

Reasons for Learning Excel

Excel is one of the most powerful spreadsheet tools used by

millions of people worldwide to analyze, manage, and visualize

data. It is extensively used in different industries, such as

finance, engineering, logistics, medicine, mining, and operations.

Surveys conducted by two global research consultants

(Spiceworks in 2018 and Censuswide in 2019) reveal that over

69% of professionals use Excel regularly, with 57% using it at

least once a day. Additionally, 59% of companies with over 500

employees use Excel for data analysis.

Therefore, you are likely to use Excel if your work involves data

manipulation or analysis, irrespective of your industry.

At a personal level, Excel is beneficial for organizing information:

it is easy to organize and store data in a structured format,

create, retrieve, and simply update information. This makes it

helpful in maintaining personal budget keeping, tracking

personal items, and even creating daily to-do lists.

Developing your Excel abilities is one of the ways to advance

your career in today’s data-driven business environment. It

enhances your productivity by improving your efficiency and

effectiveness at tasks that call for data management, analysis,

and reporting. A productive worker is a sure-fire candidate for job

promotions.

In conclusion, Excel’s ubiquity and versatility make acquiring and

advancing Excel-related skills necessary for any professional.

How to Master Excel

Having used and trained others on Excel for over a decade, we

have identified six steps to accelerate acquiring and advancing

Excel skills.

These are the steps that have been followed and taught to

others, resulting in impressive results.

STEP 1: Love Mistakes

Learning from mistakes is one of the most underrated steps in

acquiring any skill.

Learning from mistakes contributes far more than one can

acquire from reading theories and practicing without making

mistakes. Mistakes provide valuable feedback that helps you

refine your technique and improve your performance.

Therefore, a love of mistakes frees you from the decapitating

fear of failure and helps you build resilience and persistence.

With the ability to love and learn from our mistakes, we can

achieve our goal of acquiring and improving any skill in our

chosen field. That is why this is the first step towards mastering

Excel skills.

STEP 2: Master the Basics

Mastering the basics is one of the most belittled steps in

acquiring any skill, as it seems boring and repetitive. Yet, the

basics form the foundation for more advanced techniques. With a

strong understanding of the fundamentals, it becomes easier to

progress and improve in any given area.

Other hindrances to mastering the basics include eagerness to

achieve quick results and placing greater value on advanced

skills, believing they are more impressive or essential.

For example, a user wants to start using the nested INDEX and

MATCH functions without first understanding the basics of

nesting functions and using the individual functions.

In this book, we will devote time to building this foundation as it

helps build complex functions.

STEP 3: Progressive Overload

Acquiring and advancing a skill is like building muscles. You need

to challenge yourself through progressive overload.

Mastering the basics is essential but sticking to the basics is

detrimental to mastering Excel and any other skill.

Mastering requires consistent practice, increasing the difficulty

gradually, tracking progress, and seeking feedback and guidance

from experts and colleagues.

To promote continued growth and improvement, the concepts

taught in the book will move from basic to complex.

STEP 4: Learn to Break your Problem

into Small Pieces

How do you eat an elephant? The answer is “One Bite at a Time”.

In other words, when faced with a big, complex task, it can seem

impossible to tackle it all at once. However, if you break it down

into smaller, more manageable pieces, you can approach it one

step at a time until you eventually achieve your goal.

For example, how easily can you memorize the number

“12110081644936251694”?

The hint is to break it down into small pieces and observe the

pattern. (See the answer at the end of the chapter).

Complex tasks in Excel require some formulas with over five

nested functions. Understanding a nested function is easy if you

know how each function contributes to the formula.

Metaphorically speaking, this is the art of seeing single trees in a

forest.

STEP 5: Teach

Teaching is one of the scariest things for a novice, yet this is an

essential step in advancing any skill. Fear of failure and lack of

confidence stop the beginner from reaping the benefits of

teaching.

When you teach someone else, you must organize your thoughts

and articulate the information clearly and concisely.

Explaining a concept to another person requires you to fully

understand the material yourself and anticipate questions and

potential misunderstandings that your student may have. By

doing this, you can identify gaps in your knowledge and fill in

those gaps, thereby improving your understanding.

The statement “When you teach, you learn twice” is a common

proverb suggesting that teaching others can be a powerful way

to reinforce and deepen your understanding of a topic.

To advance your Excel skills, you need to be comfortable

teaching others the little you have learned so that it can stick.

STEP 6: Participate in Excel Forums

Online connections have made the world a village. You can

access world-class experts, discussions, and training from

anywhere.

Joining and participating in Excel forums is vital for two reasons

as follows:

1. It gives you access to online students where you can

practice your teaching. As discussed in the previous section,

teaching is essential to mastering Excel.

2. It provides an excellent opportunity for passive and

unintentional learning. In these forums, you will encounter

many lessons, tips, and tricks you would never have thought

of.

Some recommended forums are Excel Microsoft Answers, Excel

Microsoft Tech Community, Excel Stack Overflow, and Reddit

Excel.

STEP 7: Daily Intentional Learning

Intentional learning differs from spontaneous learning in that

purposeful learning is a conscious effort to acquire knowledge for

a specific purpose.

For example, every chapter in this book covers a different

method of looking up data in Excel. You will engage in intentional

learning if you set a specific period daily to study each chapter.

It involves setting clear goals, actively seeking information, and

engaging in deliberate practice to improve one’s abilities. This

requires the willingness to invest time and effort in the learning

process.

Daily intentional learning improves the learner’s confidence in

teaching others, leading to deeper understanding. The user enter

the productivity circle of learning to teach and teaching to learn:

Figure 1.1: Productivity circle

This is not an attempt to downplay the benefits of incidental

learning (learning something unintentionally while engaged in

some other activity) or accidental learning (learning something

by chance). Benefits can be gained from these as well, but the

intentional learning benefits outweigh all other forms of learning.

Introducing Excel formulas and functions

Excel formulas and functions are the core of Excel. You must

learn formulas and functions to fully utilize Excel and improve

productivity.

In Excel, a formula combines operations used for calculations,

data manipulation, or generating results from data on a

worksheet. It may contain cell references, arithmetic operators,

numbers, or functions.

For example, in Figure 1.2, how do you get the total payments

per invoice using a formula?

Figure 1.2: Using a formula in Excel

The formula used in the figure contains the arithmetic operators

(=, +) and cell references (C3, D3, E3, F3, G3). We will discuss

more cell references later in the chapter.

On the other hand, a function is a pre-defined set of instructions

or formulas already built-in and can be used to perform various

operations on data.

For example, in Figure 1.3, how do you get the total payments

per invoice using a function?

Figure 1.3: Using a Sum function in Excel

The function used in Figure 1.3 contains the arithmetic operators

(=), cell range references (C3:G3), and an inbuilt function name

(SUM).

NOTE

Both the formula and the function should start with an equal sign

(=).

Some users start with a plus sign (+), and others go overboard

by starting with both equal and plus sign (= +)

We can also have a complex formula, which will be a combination

of operations and functions.

Excel has over 500 functions, but you only need to learn some to

be productive. This number keeps growing with the introduction

of the LAMBDA function, which gives users the power to create

their own functions.

These functions are classified as mathematical, statistical,

financial, logical, text, date and time, lookup and reference,

engineering, and more. This book focuses on the lookup and

reference group and how they relate to the other groups.

The following are the most common features of all functions:

Composition: All Excel functions have a standard structure

that determines how they are entered into a cell, that is,

always starting with an equal sign, followed by the function

name, and then one or more or no arguments in

parentheses, separated by commas.

For example, the IF function has three arguments, which

Excel IntelliSense will outline, while the TODAY function has

zero arguments:

=IF(Logical_Test, Value_if_True, Value_if_False)

=Today()

Arguments: Arguments are the values or cell references

the function uses to perform a specific calculation. Each

function has a different number and type of arguments

required to work correctly. Any argument inside the square

brackets means it is optional and thus can be skipped, and

the function still works well.

Results: Every Excel function returns a result based on the

input arguments and the functional classification. For

example, all functions classified as text functions will always

result in text data type results.

Compatible: Excel functions work well together, allowing

you to utilize the result of one function as the input for

another function. This is called nesting functions, which will

be covered later in the chapter. Nesting capability permits

you to design intricate calculations and formulas.

Built-in: All Excel functions are built-in, meaning they are

part of the Excel software and do not need to be installed

separately. However, functions are only available in different

versions of Excel. For example, you can only access dynamic

array formulas in Office 365.

Accessibility: Excel functions are easily accessible through

the Formula bar (Figure 1.4) and the Function Wizard:

Figure 1.4: Accessing function through the formula bar

Or, by typing the function directly into a cell (Figure 1.5):

Figure 1.5: Accessing function by typing directly into a cell

Nesting functions: When one is not

enough

Nesting functions in Excel are the ultimate skill for performing

complex calculations and manipulating data. By using multiple

functions in combination, you can perform tasks that would be

difficult or impossible to do with just one function alone.

So, what does it mean to nest a function?

To nest a function in Excel is to use the result of one function as

an input for another function. You can do this as often as possible

to create complex formulas that perform multiple calculations.

For example, in Figure 1.6, how do we mark only invoices due in

January with an amount greater than or equal to 50,000 as a

priority?

What you will realize is that there is no single function in Excel

that will help you solve the preceding task. This calls for a nested

formula, as shown here:

=IF(

AND(MONTH(I3)=1, J3>=50000),

“YES”,”NO”)

How does this function work?

First, you need to realize that the IF function on its own can only

handle a single logical test. Since our task has two analytical

tests, you need to nest the AND function inside the IF function.

Secondly, you will realize that the first logical test requires a

month comparison, yet your data contains dates. Therefore, you

must convert the dates to months by nesting the MONTH function

inside the AND function.

In summary, here is how the three functions work together,

starting from the innermost function:

MONTH function returns the moth part of a date. These results

are used in the first logical test of the AND function to check if

the month is January (1).

AND function evaluates the two logical tests (check if the

month is January and the amount is greater than or equal to

50,000) and returns a TRUE/FALSE result used by the IF

function to determine whether the priority is YES/NO.

Figure 1.6: Nesting function

Resolving Complexity in Nesting

Function

Let’s learn how to solve complexity in nesting function:

Use brackets color codes to ensure that all nested function

arguments are within brackets. The outermost function’s

brackets are always black; for the nested functions, the

opening and closing brackets are the same color.

Another option is to ensure that every time you write a

function, it is followed by opening and closing brackets

before you key in the arguments.

Utilize Excel’s function IntelliSense to show which function

and what argument you are working on.

Use named ranges and tables’ structured references to

make your functions more readable.

Always use the F9 shortcut to evaluate the results of each

function.

Nesting Function Rules

Here are some rules to follow in nesting functions:

An equal sign should not precede all nested functions. Only

the outermost function should be preceded by an equal sign.

All nested functions MUST return the same data type as the

argument it replaces in the function. Using our preceding

example, the AND function must return a Boolean data type

since this is what the logical test argument in the IF function

requires.

All nested functions must follow Excel’s order of operation:

PEDMAS (Parentheses, Exponents, Multiplication, Division,

Addition, Subtraction)

Nested functions get evaluated from the innermost to the

outermost function.

Introducing Excel Cell Referencing

Each cell in Excel is identified by a unique combination of a

column letter and a row number called “cell address”.

For example, the cell located in the first column and the first row

is called “A1”, and the cell located in the second column and the

third row is called “B3”.

When you create a formula in Excel, you can either hardcode the

data (for example, SUM(10, 12)) or refer to data stored in cells by

their cell addresses (for example, SUM(A1, A2)). This is called a cell

reference.

Cell references are an essential concept in Excel, and

understanding how to use them effectively can help you

manipulate and analyze data with greater efficiency and

accuracy.

Types of Cell References

The following types of cell references are observed in Excel:

Full Row/Full Column reference: If you want to select all

1,048,576 rows in column A, then use a full-column

reference (A:A). Otherwise, if you want to select all the data

in 16,384 columns in row one, use the full row reference

(1:1).

We highly discourage the use of full-row and full-column

references for two reasons:

There could be an invalid value far in the column/row

beyond your view, affecting your analysis.

It can cause slow spreadsheet calculation because Excel

has to check all 1,048,576 rows or 16,384 columns.

Cells Range reference: It refers to a block of cells on a

worksheet with a starting and ending cell address, unlike a

full column/row reference. It can be a block in the same

column (for example, A1:A26), a block in the same column

(for example, A1:K1), or a combination of rows and columns

(for example, A1:F26).

This allows you to perform calculations, formatting, or other

operations on multiple cells at once, instead of having to do

them individually.

For example, in Figure 1.7, the sum per invoice (=SUM(C3:G3),

a cell range in a row), sum per date (=SUM(C3:C7), a cell range

in a column), and overall totals (=SUM(C3:G7), cell ranges in

both columns and rows).

Figure 1.7: Cell Range Reference

Named Range reference: This is a way to refer to a range

of cells in a spreadsheet by a name instead of using the

traditional cell reference discussed here. To create a named

range in Excel, perform the following steps:

Select the range of cells you want to name, then go to

the “Formulas” tab and click on “Define Name”.

Alternatively, you can use the keyboard shortcut Alt +

M + M + D.

In the new name pop-up window, give your range a

name and define its scope (do you want to access it in

the whole workbook or just the worksheet it is created).

Once created, these named ranges can be used in formulas

and functions just like you use a cell reference. For example,

if you have named a range Invoice100 created from cell range

C3:G3, you could refer to it in a formula like this:

=SUM(Invoice100)

This formula works like the =SUM(C3:G3) discussed earlier.

Using named ranges can make your formulas and functions

easier to read and understand.

Here are some rules to consider while creating named

ranges:

The name should be descriptive, without spaces or

special characters, and not start with a number.

Avoid relative cell references and use absolute cell

references for your named range. The difference

between relative and absolute references is discussed in

the next section.

Finally, keep your names as short, simple as possible,

and consistent across your workbook.

Relative, Absolute, and Mixed Cell references: All cell

references default to relative reference, that is, they change

their location relative to the position of the formula when

copied or moved to a new cell.

For example, if you have a formula in cell C1, references of

cell range A1:B1, and copy the formula to cell D1, the

reference will change to B1:C1.

On the other hand, absolute references always point to the

same cell or range, regardless of where the formula is

copied or moved. To tell if it is an absolute reference, check

if there is a dollar sign ($) before the column letter and row

number.

For example, if you want to make a cell range A1:B1

absolute, the easiest way is to highlight the range and press

F4, which changes to A1: B1. When the formula is copied

or moved, the reference will remain A1: B1.

Mixed references have a combination of relative and

absolute components, with either the row or column

reference being absolute while the other is relative.

For example, if you have a formula that references cell

A1:A10 and you want the column to be absolute but the row

to be relative, you would use $A1:$A10. When the formula is

copied or moved, it will always reference column A, but the

row reference will change according to the position of the

formula.

Otherwise, if you want the columns to be relative and rows

absolute, use A$1: B$1. When the formula is copied or

moved, it will always reference row 1, but the column

reference will change according to the position of the

formula.

Introducing Excel Tables

Assume you want to carry ten bulky items; what will be easier?

Putting them in a container or trying to arrange them on your

hands? Of course, putting them in a container is the easiest

method.

Excel tables are just containers that help you easily organize,

analyze, and present data concisely, saving you time by

automating specific tasks. In addition, it allows for quick sorting

and filtering of data, which can help you find patterns or trends

in your data.

Furthermore, Excel tables also allow you to use structured

references in formulas, making your formulas more readable and

easier to maintain. For example, instead of referencing cells by

their cell addresses, you can use a formula like =SUM

(tblSales[Amount]), that is, total all data in a column called Amount

in a table called Sales.

Figure 1.8: Use structured references in formulas

Perform the following steps to Create Tables:

Ensure there is no blank row or column in between your

data.

Select All using the shortcut Ctrl + A.

Go to the Home tab, select Format as a Table, or use the

shortcut Ctrl + T. A pop-up window will appear (see Figure

1.9) showing the data range formatted as a table. If the first

row in your data range contains the heading, tick the My

table has headers checkbox. Otherwise, Excel will create an

extra row for headers on top of your range.

Figure 1.9: Creating a table in Excel

Click anywhere on the table, go to the Table Design tab, and

assign a descriptive name to your table. By default, Excel

gives a generic table (see Figure 1.10):

Figure 1.10: Renaming your table

To convert the table back to a range, go to the Table Design

tab and click convert to the range:

Figure 1.11: Converting a table to a range

Now, let’s see the reasons for using Tables:

They are essential source data for pivot tables and charts

since they dynamically expand.

They can be quickly and easily formatted.

You can easily select the entire table, column, or row with

just one click. To select the entire table, hover over the top

left corner and click (see Figure 1.12).

Figure 1.12: Selecting the entire table

To select only the column range with data, hover over the

column header and click once (see Figure 1.13).

Figure 1.13: Selecting the entire Column

Hover over the table’s left edges for the row range and click

(see Figure 1.14).

Figure 1.14: Selecting the entire Row

Excel tables use structured referencing, making creating

complex formulas easier. Structured referencing uses table

column names and functions to simplify formulas, saving

time and reducing errors.

Importance of having lookup skills

This book aims to build the user’s lookup skills as a way of

setting them on the path of mastering Excel.

So, why are lookup functions so important to any Excel

user?

Here are the 11 top reasons:

Fast, efficient, and effective data retrieval: Excel

lookup functions can speed up finding and retrieving specific

data from an extensive dataset, across worksheets or

workbooks, thus reducing manual data search and retrieval

time.

Increases the overall data analysis accuracy: By using

these functions, you can also reduce errors that may arise

during manual data searches and ensure that you access

the correct data accurately.

Enhances better data analysis and reporting: Lookup

functions help you compare and analyze data from different

sources and consolidate them into a single report with

minimal errors.

Improved decision-making: Accurate and timely

information is critical for making informed decisions. Also,

having a big picture from consolidated data is critical to

better decision-making. Lookup functions are essential in

data consolidation, time-saving, and accurate data retrieval.

Increased productivity: With lookup functions, you can

work faster and more accurately, leading to increased

productivity and better performance.

Flexible and easy to learn: Excel lookup functions are

relatively easy to learn, and once you understand them, you

can use used in a variety of ways, making them flexible and

adaptable to different situations.

Error reduction: Lookup functions help to reduce the risk of

errors in your data analysis by providing accurate and

reliable results.

Enhanced data visualization: Lookup functions allow you

to create dynamic reports and charts that update

automatically as new data is added, enhancing the

visualization and presentation of data.

Better data organization: By automating data retrieval

and organization, lookup functions can help keep data more

organized and easier to manage.

Allows for more complex calculations: With lookup

functions, users can perform more complex calculations that

would otherwise be time-consuming or impossible to do

manually.

Increases Excel proficiency: Different lookup methods

integrate many functions in Excel functions. Learning these

methods can improve your overall Excel proficiency and

make you more efficient and effective in using Excel.

Classification of Lookup Functions

Excel functions can be broadly divided into three categories as

follows:

Dynamic array functions (automatically spill their results into

adjacent cells)

Legacy array functions (require the use of keyboard

shortcuts Ctrl + Shift + Enter to enter them if they are

required to spill results to adjacent cells)

M function (functions used in Power Query to perform data

transformations)

In this book, we will learn lookup skills using a variety of methods

from all three categories.

We will start by learning legacy array functions, starting with the

most popular VLOOKUP, followed by a popular combination of INDEX

and MATCH, and then the oldest lookup function, LOOKUP. Finally, we

will learn unique ways of retrieving data using Database

functions, Aggregate functions, Math functions, and some Text

functions.

Later, we will jump into time-saving and dynamic array functions,

starting with the most popular XLOOKUP and then the handy FILTER

function. In the process, we will learn how to nest other dynamic

functions like VSTACK, HSTACK, and SEQUENCE to create efficient lookup

formulas.

Finally, we will explore looking up data using Power Query table

joins, list functions, grouping, and how to create dynamic criteria

in Power Query.

Conclusion

Excel skills are essential to any professional whose line of duty

includes any form of data manipulation. Furthermore, these skills

can be used to manage personal data, such as budgets, track

daily habits, and make to-do lists.

Among all the Excel skills to learn, learning lookup skills can have

an instant impact on your productivity and data analysis

accuracy.

In the next chapter, we will delve deep into one of the most

popular Excel functions: VLOOKUP.

Question

Did you find the trick to memorizing this number

“12110081644936251694”?

Solution:

Break it down into these groups →121 | 100 | 81 | 64 | 49 | 36 |

25 | 16 | 9 | 4

Can you see a pattern yet?

These are the square of numbers from 11 to 2. That is how

simple an issue becomes if you break it down into small pieces.

CHAPTER 2

VLOOKUP Is Dead: Or is it?

Introduction

This chapter will introduce us to the most popular Excel

lookup function — VLOOKUP. We will learn its basic structure and

inherent weaknesses, as well as how we can nest it with other

functions to overcome its weaknesses.

In addition, since the book is about Mastering Excel, we will

dig into the different Excel functions.

Structure

In this chapter, we will discuss the following topics:

VLOOKUP exact and approximate match

Breaking VLOOKUP myths

Myth 1: VLOOKUP cannot do a left lookup

Myth 2: VLOOKUP cannot return multiple columns in a

lookup

Myth 3: VLOOKUP cannot do a multiple criteria lookup

Myth 4: VLOOKUP cannot handle inserting and deleting

columns in the lookup range

Myth 5: VLOOKUP cannot do a two-way lookup

Myth 6: VLOOKUP cannot do a partial match lookup

Myth 7: VLOOKUP cannot do a case-sensitive partial

match lookup

Myth 8: VLOOKUP cannot do a case-sensitive lookup

Myth 9: VLOOKUP cannot return multiple results

Myth 10: VLOOKUP cannot lookup from last to first

Myth 11: VLOOKUP cannot lookup the top or bottom N

values

Myth 12: VLOOKUP cannot do a reverse lookup

Myth 13: VLOOKUP cannot do a horizontal lookup

Myth 14: VLOOKUP cannot return multiple non-

contiguous columns

Myth 15: VLOOKUP cannot lookup multiple non-

contiguous arrays

VLOOKUP exact and approximate

match

As we learned in the previous chapter, mastering the basics is

the initial step to mastering any skill. So, here is what you

need to know about VLOOKUP.

VLOOKUP allows you to search for a specific value in the leftmost

column (that is, lookup value) in a table (that is, table array)

and then return a value from a specified column on the right

(that is, column index number) in the same row as the lookup

value. You can specify whether you want an approximate or

exact match (that is, range lookup).

By default, VLOOKUP will do an approximate match.

Syntax:

=VLOOKUP(lookup value, table array, column index number, [range

lookup])

Point to note:

The lookup value must be in the first column of the

table. In Figure 2.1, since the invoice number is the

lookup value, all invoices are stored in the first column of

our table.

There are only two essential columns in our table — the

one storing the lookup value and the one storing the

value to return. In Figure 2.1, our formula would still have

worked even if we did not have the third column.

Since we want an exact match for our lookup value, we

select FALSE as the lookup range. You can replace FALSE

with zero 0, as follows:

=VLOOKUP(F3, tblSales, 2, 0)

Note: Excel stores Boolean values as integers, with a value of

0 representing FALSE and any other value representing TRUE.

When you enter TRUE or FALSE in a cell, Excel automatically

converts them to their equivalent integer.

Figure 2.1: Basic VLOOKUP exact match

VLOOKUP approximate match

By default, the VLOOKUP function is set to return an approximate

match. On the brighter side, when working with a large

numerical and sorted dataset, and you can tolerate some

errors, VLOOKUP is very fast.

However, most searches require an exact match. In addition,

an approximate search will return the wrong results if the

following requirements are not met:

Data table must be sorted in ascending order by the

lookup value.

Data table should only have unique values in the lookup

values columns.

Data table lookup range should be in the same data type

as the lookup value.

Nonetheless, an approximate match is beneficial when

grouping data (for example, when assigning grades to

students; Figure 2.2).

Figure 2.2: VLOOKUP approximate match data grouping

Approximate Match is also applicable when searching for a

value within a range (for example, when giving a discount

based on sales range; Figure 2.3):

Figure 2.3: VLOOKUP approximate match value from a range

Note: When using VLOOKUP for an approximate range, you

can skip the last range lookup argument, and the formula will

still be ok.

Any argument between square brackets means it is optional.

=VLOOKUP(lookup value, table array, column index number, [range

lookup])

Tip: VLOOKUP approximate match is a good alternative to the

nested IF function since it calculates faster.

For example, to get the same results, as shown in Figure 2.2,

you can either use the following nested IF function or

VLOOKUP:

=IF(J3>=M7, N7, IF(J3>=M6,N6,IF(J3>=M5,N5,IF(J3>=M4,N4,$N3))))

=VLOOKUP(J3, tblGrades,2)

Because of the aforementioned limitation, there are many

myths about what VLOOKUP can or cannot do.

In the next section, we explore the full potential of the VLOOKUP

function when nested with other functions.

Breaking VLOOKUP myths

Myths are stories that people from a particular culture have

been telling for a long time. These stories usually majorly

involve teaching why things are the way they are based on

history. These are sometimes half-truths or pure lies.

A lot of teachings regarding how VLOOKUP functions are

shrouded by half-truths and sometimes pure lies, giving the

VLOOKUP function a bad name.

In this section, we will learn the full truth about VLOOKUP by

busting the existing myths one by one.

Myth 1: VLOOKUP cannot do a left

lookup

In Figure 2.4, the lookup value (sales date) is not in the first

column of the table; instead, we have the return value

(customer) there.

In such a situation, the default VLOOKUP function will not work.

You must nest the IF function, as shown in the following figure:

Figure 2.4: VLOOKUP left lookup

The trick is creating a custom table array using the IF

function.

The IF function returns a two-column table with the Sales Date

being the first column and the Customers as the second

Column.

This column rearrangement tricks VLOOKUP into looking to the

Left while assuming it is looking to the right.

Myth 2: VLOOKUP cannot return

multiple columns in a lookup

In Figure 2.5, you must return the Sales Date and Amount

given for a specific customer.

By default, you can only return one value at a time, as the

column_index argument in VLOOKUP only accepts a single value.

However, you can wrap more than one column_index value in

curly braces and return multiple columns.

If you do not have Office 365 subscription, perform the

following steps:

Highlight the cells to return the multiple values.

Go to the formula bar and key in the following formula.

Click Ctrl + Shift + Enter to return the following values:

Figure 2.5: VLOOKUP returns multiple columns

Myth 3: VLOOKUP cannot use multiple

criteria in a lookup

If your data has duplicates, as shown in Figure 2.6, the VLOOKUP

function will return the first value that meets a criterion.

For example, if you looked up the sales amount for customer

“Carl Jackson”, the VLOOKUP function will return 45,000 since

this is the first occurrence.

What if you want to look up the sales amount for customer

“Carl Jackson” for “1/14/2010”?

By default, VLOOKUP cannot look up multiple values. You can

modify it as follows:

Combine the multiple values using an ampersand. Using

our preceding example, our lookup value now will be Carl

Jackson1/14/2010.

Create a custom two-column table array using the IF

function. The first column should contain a combination of

two columns that contain the lookup values, that is,

tblSales[Customer]&tblSales[Sales Date] in that order,

similar to the lookup value combo. The second column

should contain the lookup value.

With the combo lookup value and custom table array,

write your VLOOKUP as shown in Figure 2.6. Remember

that this is an array function; therefore, click Ctrl + Shift

+Enter if you do not have an Office 365.

=VLOOKUP(T19&U19,

IF({1,0}, tblSalesT[Customer]&tblSalesT[Sales Date],

tblSalesT[Amount]), 2, 0)

Figure 2.6: VLOOKUP multiple criteria

Myth 4: VLOOKUP cannot handle the

insertion and deletion of columns in

the lookup range

So far, we have been hard coding the column index number in

the function, that is, the number of the column that contains

the return value.

This poses a problem when you insert or delete a column

before this column, as it breaks the VLOOKUP function.

Therefore, for VLOOKUP to handle insertion and deletion, we

need to make the column index number dynamic using the

MATCH Function, as shown in Figure 2.7:

=VLOOKUP(E3,tblSale,

MATCH(F2,tblSale[#Headers],0),

FALSE)

Note: The MATCH function looks up a value in a range and

returns its relative position.

=MATCH(F2,tblSale[#Headers],0)=2

In our case, the MATCH function looks for the text Amount stored

in cell F2 among the sales table headers and will always

return its position, making it dynamic.

Figure 2.7: VLOOKUP handle insertion and deletion

Myth 5: VLOOKUP cannot do a two-way

lookup

Hard coding the column index number in the VLOOKUP function

makes it almost impossible to do a two-way lookup.

However, if we nest the MATCH function, as we have learned

from the previous section, the VLOOKUP function can easily do a

two-way lookup (see Figure 2.8).

Our Task is to look up sales for a specific customer (Joshua)

from the Customers List and for a specific region (Western).

Since the customers’ list is stored in the first column of our

SalesRegion table, the lookup value will be the specific

customer in cell G38. As for the regions, we shall use the MATCH

function to return the relative column index for the specific

region.

=VLOOKUP(G38,SalesRegion,

MATCH(G40, SalesRegion[#Headers],0),0)

Note: The MATCH function always returns the first TRUE

match.

And since we cannot have duplicates in table headers, the

MATCH function will always return the correct column number.

Figure 2.8: VLOOKUP two-way Lookup

Myth 6: VLOOKUP cannot do a partial

match lookup

VLOOKUP has only an Approximate and Exact Match but can

also do a partial match.

A partial match is possible if you combine the lookup value

with a wildcard, as shown in Figure 2.9.

Note: Wildcards are special characters representing one or

multiple characters in a text string. The most common

wildcards are the asterisk (*) and a question mark (?).

Asterisk (*): This wildcard represents one or more

characters in a text string. For example, “P*” will find any

word that starts with the letter P, *P will find any word

that ends with the letter P, and *P* will find any word that

contains the letter P.

Question mark (?): The question mark wildcard represents

a single character in a text string. For example, the

search term H??t will find any four-letter word that starts

with “H”, ends with “t”, and has two characters in

between, such as “Heat” or “Host”.

You can combine the asterisk and the question marks to

define your search. For example, ???T* will search for any

string where T is the fourth character but ends with any

number of characters, such as Masts, Coating, Soothing,

and so on. Another example is *T??? This will search for

any string where T is the fourth last character but starts

with any number of characters, such as Beating,

Characters, Assisting.

=VLOOKUP(“*” & E54 & “*”, tblinvoices, 2, 0)

In the following example (Figure 2.9), we look up the amount

for an invoice containing the letter P. We know this because

we have put an asterisk before and after our criterion stored

in cell E54.

Therefore, *P* means there could be many characters before

and after the letter “P”.

Please note that the formula returns the first TRUE value. Later

in the chapter, we will learn how to return multiple values in

case of duplicates.

Figure 2.9: VLOOKUP Partial Match

Suppose you want to look up values for an invoice whose fifth

character is the letter “P”?

In such a scenario, we shall use the question mark (?) as the

wildcard character to represent any single character.

=VLOOKUP(“????”&E57&”*”, tblinvoices, 2, 0)

As shown in Figure 2.10, Invoice number “220-PU-009” is the

first invoice, where the letter “P” is the fifth character. We

know this is the correct invoice because we put four question

marks before our criterion (P) stored in cell E57.

Remember, since the invoice does not end with the letter “P”,

we must insert an asterisk after the criterion to represent any

number of characters after it.

Figure 2.10: VLOOKUP Partial Match single characters

Note: Since the VLOOKUP function is not case-sensitive, the

preceding examples will search for the letter “P” irrespective

of whether it is uppercase or lowercase.

Myth 7: VLOOKUP cannot do a case-

sensitive partial match lookup

Excel has two popular case-sensitive functions: FIND and EXACT.

Since VLOOKUP is not case-sensitive, we must nest one of the

preceding functions when doing a case-sensitive partial match

lookup.

As Figure 2.11 exemplifies, we need to look up an invoice that

contains the lowercase letter “p”.

=VLOOKUP(TRUE, IF({1,0},

ISNUMBER(FIND(K54,tblpay[Invoice’#])),

tblpay[Amount]),2,0)

Here is how the preceding function works:

FIND(K54, tblpay[Invoice’#]) returns an array of numbers

and errors. Numbers representing the position of

lowercase “p” in the invoice number and errors for any

invoice missing a lowercase “p.”

ISNUMBER(FIND(K54,tblpay[Invoice’#])) converts this array of

numbers and errors into a TRUE/FALSE array. TRUE for any

number and FALSE for the errors.

Create a custom two-column table array using the IF

function. The first column contains this array of TRUE/FALSE

(lookup values column), and the second contains the

Invoices amount (return values column).

Since our lookup values are TRUE/FALSE values, the VLOOKUP

function should look up a TRUE value and return the first

TRUE value.

Since this is an array function, click Ctrl + Shift + Enter

if you do not have an Office 365 subscription.

Figure 2.11: VLOOKUP Partial Case-Sensitive Match

Myth 8: VLOOKUP cannot do a case-

sensitive lookup

As we have learned from the previous section, the FIND

function will help the VLOOKUP function to do a partial case-

sensitive lookup.

We must use the EXACT function to do an entire case-sensitive

lookup (see Figure 2.12):

=VLOOKUP(TRUE,

IF({1,0},

EXACT(Q54,Payment[Product]),

Payment[Amount]),2,0)

Here is how the preceding function operates:

EXACT(Q54, Payment[Product]) returns an array of TRUE and

FALSE. TRUE represents the product, which is precisely equal

to the proper case Furniture else FALSE.

Create a custom two-column table array using the IF

function. The first column contains this array of TRUE/FALSE

(lookup values column), and the second contains the

Invoices amount (return values column).

Since our lookup values are TRUE/FALSE values, the VLOOKUP

function should look up a TRUE value and return the first

TRUE value.

Since this is an array function, click Ctrl + Shift + Enter

if you do not have an Office 365 subscription.

Figure 2.12: VLOOKUP Full Case-Sensitive Match

Note: Since VLOOKUP is not case-sensitive, without the use of

the EXACT function as shown earlier, it would have returned the

amount for the first instance where the product is furniture,

that is, 45,000.

Myth 9: VLOOKUP cannot return

multiple results

By default, VLOOKUP returns the first TRUE value. So, if you have

duplicate items and want to return all TRUE values, you must

nest the SMALL and IF functions as shown in Figure 2.13:

=VLOOKUP(

SMALL(IF(F70=tbl[Customer],

ROW(tbl[Customer])), ROW(A1)),

IF({1,0},ROW(tbl[Customer]),tbl[Amount]),

2,0)

Here is how the preceding function works:

IF(F70=tbl[Customer], ROW(tbl[Customer]) checks for our

criterion customer “Carl Jackson” among the customers’

list, and IF true, it returns the row number where the

customer is found. Since we have duplicate customers,

this function will return multiple row numbers.

We need to iterate over this row numbers list and return

one at a time as the lookup value for VLOOKUP. We use the

SMALL function for this task, which returns the row

numbers from the smallest to the largest. Note that

ROW(A1) evaluates to 1, and as you drag the function down,

it increases until the complete list is iterated:

SMALL(IF(F70=tbl[Customer],ROW(tbl[Customer])), ROW(A1))

Create a custom two-column table array using the IF

function. The first column contains Customers’ row

numbers (lookup values column), and the second contains

the Invoices amount (return values column).

VLOOKUP function uses each row number returned by the

SMALL function and returns the corresponding amount.

Please note that after all amounts have been returned,

the VLOOKUP function returns the #NUM error.

Since this is an array function, click Ctrl + Shift + Enter

if you do not have an Office 365 subscription.

Figure 2.13: VLOOKUP Multiple Results

Myth 10: VLOOKUP cannot lookup from

last to first

By default, VLOOKUP looks up values from top to bottom and

returns the first TRUE value.

To search from the last to the first, we nest the LARGE function

in VLOOKUP.

Using the example from the previous chapter, all we need to

do to search from last to first is to replace the SMALL function

with the LARGE function, as shown in Figure 2.14:

Figure 2.14: VLOOKUP Multiple Results

Here is how the preceding function works:

IF(F70=tbl[Customer], ROW(tbl[Customer]) checks for our

criterion customer “Carl Jackson” among the customers’

list, and IF true, it returns the row number where the

customer is found. Since we have duplicate customers,

this function will return multiple row numbers

We need to iterate over this row numbers list and return

one at a time as the lookup value for VLOOKUP. We use the

LARGE function for this task, which returns the row

numbers from the largest to the smallest. Note that

ROW(A1) evaluates to 1, and as you drag the function down,

it increases until the complete list is iterated.

Create a custom two-column table array using the IF

function. The first column contains Customers’ row

numbers (lookup values column), and the second contains

the Invoices amount (return values column).

VLOOKUP function uses each row number returned by the

LARGE function and returns the corresponding amount.

Please note that after all amounts have been returned,

the VLOOKUP function returns the #NUM error.

Since this is an array function, click Ctrl + Shift + Enter

if you do not have an Office 365 subscription.

Myth 11: VLOOKUP cannot lookup the

top or bottom N values

By nesting the SMALL or LARGE function, VLOOKUP can quickly

return the top or bottom N amounts in an unsorted list (see

Figure 2.15):

Figure 2.15: VLOOKUP top three sales amount

=VLOOKUP(

SMALL(IF(TopSale[Amt]>=LARGE(TopSale[Amt],3),ROW(TopSale[Amt])),

ROW(A1)),

IF({1,0},ROW(TopSale[Amt]),TopSale[Amt]),2,0)

Here is how the preceding function performs:

TopSale[Amt]>=LARGE(TopSale[Amt],3) checks if the sales

amount is greater or equal to the third largest sales

amount and returns an array of TRUE/FALSE.

The IF function returns a list of row numbers for all sales

amounts that are larger or equal to the third-largest sales

amount.

We need to iterate over this row numbers list and return

one at a time as the lookup value for VLOOKUP. For this task,

we use the SMALL function, which returns the row numbers

from the smallest to the largest. Note that ROW(A1)

evaluates to 1, and as you drag the function down, it

increases until the complete list is iterated.

SMALL(IF(TopSale[Amt]>=LARGE(TopSale[Amt],3),ROW(TopSale[Amt])),

ROW(A1))

Create a custom two-column table array using the IF

function. The first column contains Amounts’ row

numbers (lookup values column), and the second contains

the Invoices amount (return values column).

VLOOKUP function uses each row number returned by the

SMALL function and returns the corresponding amount.

Please note that after all amounts have been returned,

the VLOOKUP function returns the #NUM error.

Since this is an array function, click Ctrl + Shift + Enter if

you do not have an Office 365 subscription.

Myth 12: VLOOKUP cannot do a

reverse lookup

In Excel, a reverse lookup is a way to look up a value in a

table based on a known result. This is the reverse of the two-

way lookup discussed in the previous section (see Myth 5).

For example, as shown in Figure 2.16, you are looking for a

Doctor and a Corresponding session given to the patient.

Figure 2.16: VLOOKUP reverse lookup

=VLOOKUP(

MAX(IF(Clients=F86,ROW(Clients))),

CHOOSE({1,2,3},

ROW(Clients),

Doctors&”-Morning”,

Doctors&”-Afternoon”),

MAX(IF(Clients=F86, COLUMN(Clients)-COLUMN(Doctors)+1)),0)

Before we start learning how the formula works, let us learn

about the named ranges that we have used:

Clients = C86:D95

Doctors = B86:B95

Now, the preceding function performs in the following way:

IF(Clients=F86, ROW(Clients)) checks if the client in cell F86

is in the array of clients in the named range. Assuming no

duplicates, the IF function returns the row number of the

client; otherwise, it returns FALSE values (see Figure

2.17):

Figure 2.17: Return Client Row

MAX(IF(Clients=F86, ROW(Clients))): the MAX function

ignores the FALSE values and returns the row number. This

becomes the lookup value for the VLOOKUP function.

CHOOSE({1,2,3}, ROW(Clients), Doctors&”-Morning”, Doctors&”-

Afternoon”): the CHOOSE creates a table array for VLOOKUP

function with clients row numbers as lookup values

column and the two-column array combining the doctors

with the sessions as return values columns.

Figure 2.18: VLOOKUP Custom Table Array

MAX(IF(Clients=F86, COLUMN(Clients)-COLUMN(Doctors)+1))

checks if the client in cell F86 is in the array of clients in

the named range and returns the column number of the

client; otherwise, it returns FALSE values. Please note that

we must adjust the column counts by deducting the

doctor’s column and adding 1.

Using the preceding inputs, the VLOOKUP function can do

reverse lookup.

Myth 13: VLOOKUP cannot do a

horizontal lookup

In Excel, many horizontal lookups are left for the HLOOKUP

function, but this should not be the case anymore, as the

VLOOKUP function can also do a horizontal lookup, as shown in

Figure 2.19.

In the following example, you are supposed to look up the

representative who quoted the least per item.

Figure 2.19: VLOOKUP horizontal lookup

=VLOOKUP(

MIN(C101:E101),

TRANSPOSE(IF({1;0},C101:E101,Reps)),

2,0)

This function works as follows:

MIN(C101:E101) returns the minimum amount per item. This

becomes the lookup value for the VLOOKUP function.

IF({1;0}, C101:E101, Reps) returns a two-row table array,

where the first row contains the quoted prices and the

second row contains the representatives (see Figure

2.20):

Figure 2.20: Two-row table array

Since VLOOKUP only looks up data vertically, we need to

transpose the two-row table to a two-column table using

the TRANSPOSE function (see Figure 2.21):

Figure 2.21: Two-column table array

Using the Minimum quoted price as the Lookup value and

the transposed table as the Table array, the VLOOKUP

function quickly returns the representative with the least

quotation.

Myth 14: VLOOKUP cannot return

multiple non-contiguous columns

In the previous section, Myth 2, we discussed returning

multiple contiguous columns. Now, let us discuss further how

to return multiple non-contiguous columns.

In our example (Figure 2.22), we must return the Amount and

the Region column data:

Figure 2.22: VLOOKUP non-contiguous columns

=VLOOKUP(G113, tblTransact,{4,2},0)

The only trick we must remember is to put the required

column numbers in curly braces. Also, if you do not have an

Office 365 subscription, first highlight the column, go to the

formula bar, write the above formula, and finally, click Ctrl +

Shift +Enter.

If you want the returned values row-wise, the only trick to

remember is to have a semi-colon (;) instead of a comma (,)

as a separator between your column numbers (see Figure

2.23):

Figure 2.23: VLOOKUP non-contiguous columns row-wise

Myth 15: VLOOKUP cannot lookup

multiple non-contiguous arrays

Dynamically looking up non-contiguous tables requires more

functions nesting, as shown in Figure 2.24:

=VLOOKUP([@Amount],

CHOOSE(MATCH([@Product],{“Chairs”,”Laptops”},0),

Chairs_Discount, Laptops_Discount), 2, TRUE)

This function works as follows:

MATCH([@Product],{“Chairs”, “Laptops”},0) dynamically

returns the position of the product in the lookup array,

that is, Chairs = 1, Laptops =2.

CHOOSE(MATCH([@Product],{“Chairs”, “Laptops”},0),

Chairs_Discount, Laptops_Discount)): the CHOOSE function

uses the position returned by the MATCH function to

determine the lookup table array, that is, 1= Chairs

Discount, 2= Laptops Discount.

VLOOKUP function then checks the sales amount in the

selected discount table amount, and it returns the

approximate discount.

Figure 2.24: VLOOKUP non-contiguous lookup tables

Conclusion

In this chapter, we have learned to look beyond the common

knowledge about VLOOKUP and seek to unleash its full potential.

We discovered that by creating a custom table array using the

IF function, there is no need to rearrange our columns to make

VLOOKUP lookup to the left. Furthermore, we can return more

than one column by having the required return columns in

curly braces.

Also, you do not need to struggle with the HLOOKUP function to

do a horizontal lookup; instead, you can simply Transpose

your data.

When combined with the MATCH function, VLOOKUP performs all

tasks equal to the combination of INDEX + MATCH.

In the next chapter, we will investigate why many Excel users

prefer the combination of the INDEX and MATCH functions

over VLOOKUP and MATCH.

Points to remember

Every Excel function has its limits, but most of them can

be adjusted by nesting another function. This is why we

pointed out the need for every Excel user to hone their

function nesting skills in the first chapter.

Using the IF function to create a custom table array for

the VLOOKUP function makes it more flexible and able to

look to the left. However, the IF function is limited to

returning only a two-column table. If we need more

columns, we use the CHOOSE function.

VLOOKUP function defaults to an approximate search. This is

one of its biggest weaknesses, and it’s important for any

user to be aware of it.

Finally, never accept a function’s weakness without

challenging it first.

CHAPTER 3

INDEX and MATCH

Introduction

This chapter will introduce what is regarded as the VLOOKUP

function replacement — INDEX and MATCH. These nested

functions are so popular in such a way that some users think

of them as individual functions. We shall first analyze these

two functions individually and later see why they are such a

powerful combination.

In addition, since the book is about Mastering Excel, we will

learn how to combine them with other functions to solve

complex lookup issues.

Structure

In this chapter, we will discuss the following topics:

INDEX, MATCH, and the two-way lookup

Three-way lookup

Reverse-lookup single result

Reverse-lookup multiple results

Multiple criteria lookup

Returning multiple columns

Horizontal lookup

Lookup non-contiguous array

Lookup using wildcards

Lookup based on text length

Lookup items in a list

Lookup unique values

INDEX, MATCH, and the two-way

lookup

A two-way lookup is used to find a specific value by

matching two criteria. It’s commonly used when you have a

data table and need to retrieve a value at the intersection of

a row and column.

The INDEX function returns the data at the intersection of a

given row and column. Therefore, the function requires an

array of data, an optional row number (if it is a single-row

array), and an optional column number (if it is a

single-column array).

We will start by looking up a multiple-row and multiple-

column array, as shown in Figure 3.1. We are trying to

answer the question, “What amount did customer Gupta buy

from the Western region?”:

Figure 3.1: INDEX multiple rows and columns lookup

=INDEX(RegionSales,10,3)

Note: If your data is in a table (this is the date in range

A2:D13), the row count starts after the header.

This is why in Figure 3.1, Gupta is in row 10, not 11.

Instead of selecting the whole table, we can select the

column or row you want.

For example, in Figure 3.2, since we know we want Western

region sales, we can select the entire column and provide

only the row number containing our customer:

=INDEX(RegionSales[Western],10)

Note: If your data is in a single column, you only need to

provide the row number.

You can input 1 as the column number, but it is unnecessary

since you have selected only one column — Western Region

data.

For example, you can re-write the preceding function as

follows:

=INDEX(RegionSales[Western],10,1)

Figure 3.2: INDEX single-column lookup

Alternatively, you can select the entire row that contains

customer “Gupta” and only provide the column number, as

shown in Figure 3.3:

=INDEX(A11:D11, 3)

Figure 3.3: INDEX single-row lookup

Note: If your data is in a single row, you need only provide

the column number.

You can input 1 as the row number, but it is unnecessary.

For example, you can re-write the preceding function as

follows:

=INDEX(A11:D11,1,3)

Now that we have learned how the INDEX function works, let

us revise the MATCH function.

As we learned in Chapter 2, “VLOOKUP IS DEAD: Or is it”, the

MATCH function returns the relative position of an item in an

array. For example, in Figure 3.2, we can dynamically get the

row number instead of hardcoding it. We achieve this using

the MATCH function, as shown in Figure 3.4:

Figure 3.4: MATCH function gets the row number

Note: The MATCH function returns row 10, yet from the figure,

we can see that the customer is in row 11.

As we noted earlier, this is because the MATCH function

returns the relative position of the value within the lookup

array. Since the header data is not within the lookup array,

the MATCH function has ignored it.

Knowing the MATCH function can automate the hardcoding of

the row number in the INDEX function, let us substitute the

row number with it (see Figure 3.5):

=INDEX(RegionSales[Western],

MATCH(F3,RegionSales[Customer],0))

This is the optimal way of writing a simple INDEX and MATCH

combo:

Select only the column/row you require.

Use the MATCH function to get the criterion row/column

instead of hardcoding it.

Figure 3.5: INDEX and MATCH function

We are not limited to selecting single-column or single-row

arrays. We can select a complete table and nest two MATCH

functions to make our solution dynamic (see Figure 3.6):

=INDEX(RegionSales,

MATCH(F3,RegionSales[Customer],0),

MATCH(G3,RegionSales[#Headers],0))

Figure 3.6: Dynamic two-way lookup

Three-way lookup

A three-way lookup formula allows you to get data from a

table using three criteria (see Figure 3.7):

=INDEX(RegionSales,

MATCH(G18&H18,RegionSales[Product]&RegionSales[Customer],0),

MATCH(G20,RegionSales[#Headers],0))

Figure 3.7: Dynamic three-way lookup

The preceding function performs as follows:

G18&H18 returns a single combined criterion, that is,

“ChairsRuby.”

RegionSales[Product]&RegionSales[Customer] joins the two

columns and return a one-way array of products and

customers that we can use to look up the combo

criterion (see Figure 3.8):

Tip: When creating a one-way array, follow the same order

as when creating the combo criteria.

In our example, the combo criterion is a join between Product

and Customer (ChairsRuby); this is the reason we have followed

the same order when creating the single array.

MATCH(G18&H18,

RegionSales[Product]&RegionSales[Customer],0) returns the

row number in the custom one-way array that contains

the combo criterion.

MATCH(G20, RegionSales[#Headers],0)) returns the column

number in the table headers that contain the month

criterion.

Remember that this is an array function since we are

doing the criteria and columns joining. Therefore, if you

do not have an Office 365 subscription, remember to

click Ctrl + Shift + Enter when you complete writing it.

Figure 3.8: One-way array

Reverse-lookup single result

A reverse lookup is the opposite of the two-way lookup

function discussed earlier. You start with data in an

intersection and return the row and column headers.

For example, in Figure 3.10, we know the exam, but we must

look up the tutor and the hall:

=INDEX(Tutors&”-”&Halls,

SUM((Exams=E33)*ROW(Exams))-ROW(Halls),

SUM((Exams=E33)*COLUMN(Exams))-COLUMN(Tutors))

Here is how the preceding function works:

Tutors&”-”&Halls returns a custom table containing the

combination of every tutor and the hall.

(Exams=E33)*ROW(Exams) checks if our criteria exam is in the

list of exams and returns an array of TRUE / FALSE, which,

when multiplied by the exam rows, returns 0 where

FALSE and the row number where TRUE (see Figure

3.9).

We SUM the array to get a single row number from the

preceding step. Since INDEX starts counting row numbers

from the header, we then deduct the row of the header:

SUM((Exams=E33) * ROW(Exams)) - ROW(Halls)

Similar steps to the ones mentioned earlier are repeated

to get the column number: SUM((Exams=E33) *

COLUMN(Exams))- COLUMN(Tutors))

Remember that this is an array function since we create

the custom tutors and sessions table. Therefore, if you

do not have an Office 365 subscription, remember to

click Ctrl + Shift + Enter when you complete writing it.

Figure 3.9: Exam row number

Tip: Always deduct Row or Column headers in your count if

you have yet to include them in the table array.

Figure 3.10: Reverse lookup

Reverse-lookup multiple results

Now, let us learn how to return multiple items if you have

duplicates in your data.

Using the example in the previous section, assume patient

Jack Dan had two appointments. Figure 3.12 shows how to

return the two appointments:

=INDEX(Doctor&” “&session,

MATCH(TRUE,

INDEX(Patients,, LARGE(IF(Patients=G47,COLUMN(Patients)-

COLUMN(Doctor)),ROW(A1)))=G47,0),

LARGE((Patients=G47)*COLUMN(Patients)-

COLUMN(Doctor),ROW(A1)))

This function works as follows:

Doctor&” “&session returns a custom table containing the

combination of every doctor and the session.

IF(Patients=G47, COLUMN(Patients)-COLUMN(Doctor)) checks

if our criteria patient is in the list of patients and returns

the column numbers where this is TRUE, else FALSE (see

Figure 3.11):

Figure 3.11: Check columns

LARGE(IF(Patients=G47,COLUMN(Patients)-

COLUMN(Doctor)),ROW(A1)) returns the largest column

number, that is, 2. We use ROW(A1), which returns 1, and

the number increments as we scroll our formula down.

INDEX(Patients,,LARGE(IF(Patients=G47,COLUMN(Patients)-

COLUMN(Doctor)),ROW(A1))) use the INDEX function to filter

the data per column (see Figure 3.12):

Figure 3.12: Filter one column at a time

MATCH(TRUE, INDEX(Patients,, LARGE(IF(Patients=G47,

COLUMN(Patients)-COLUMN(Doctor)), ROW(A1)))=G47,0),

checks if the patient is in the filtered column and returns

an array of TRUE/FALSE. The MATCH function returns the

relative position of the only TRUE value, which forms our

row number for the INDEX function.

Now that we have the row number, the last part is to get

the column number using the LARGE:

LARGE(IF(Patients=G47,COLUMN(Patients)-COLUMN(Doctor)),

ROW(A1))

Fill the formula downward to return all the appointments.

Remember that this is an array function since we create

the custom doctors and sessions table. Therefore, if you

do not have an Office 365 subscription, remember to

click Ctrl + Shift + Enter when you complete writing it.

Figure 3.13: Reverse-lookup multiple items

Note: When all appointments have been returned, the

INDEX function starts to return the #NUM error.

Multiple criteria lookup

As we learned in the previous section on three-way lookup,

the trick to doing a multiple criteria lookup is joining the

criteria into one using the ampersand (&) (see Figure 3.14):

=INDEX(tblSalesT20[Amount],

MATCH(E60&F60,tblSalesT20[Customer]&tblSalesT20[Sales Date],0))

Figure 3.14: Multiple criteria lookup

The preceding function performs as follows:

E60&F60 returns a single combo criterion for the customer

and dates “Carl Jackson40192.”

tblSalesT20[Customer]&tblSalesT20[Sales Date] returns a

single combo array for the customer and dates (see

Figure 3.15):

Figure 3.15: Combo array

MATCH(E60&F60,tblSalesT20[Customer]&tblSalesT20[Sales

Date],0)) The MATCH function returns the row number of

the combo criterion in the combo array.

Remember that this is an array function since we create

the custom combo array. Therefore, if you do not have

an Office 365 subscription, remember to click Ctrl +

Shift + Enter when you complete writing it.

Returning multiple columns

By default, the INDEX and MATCH combo returns a single

column. If we want multiple columns, we must modify the

MATCH function, as shown in Figure 3.16:

=INDEX(RegionSale21,

MATCH(F75,RegionSale21[Customer],0),

MATCH(G74:H74,RegionSale21[#Headers],0))

Figure 3.16: Multiple columns

The only trick is finding the relative positions of the multiple

columns using the MATCH function,

MATCH(G74:H74,RegionSale21[#Headers],0)), by highlighting the

two criteria (G74:H74), the MATCH function returns an array of

columns ({2,3}), which forces the INDEX function to return

both columns.

This is also an array function; therefore, if you do not have

an Office 365 subscription, remember to click Ctrl + Shift +

Enter when you complete writing it.

Horizontal lookup

Unlike the VLOOKUP function, the INDEX function is not limited

to a vertical lookup. The return array can be stored in any

direction if you provide the correct column or row number

(see Figure 3.17):

=INDEX(Suppliers,,

MATCH(MIN(B91:D91),B91:D91,0))

Figure 3.17: Horizontal lookup

The only trick here is using the MIN function to return the

lowest quoted price per item. This price becomes our lookup

value for the MATCH function. The MATCH function then returns

the relative position of this minimum price.

Note: Since the suppliers are in a single-row array, we can

skip the row number, as shown in the preceding formula.

Lookup non-contiguous array

As shown in Figure 3.18, the INDEX function has two syntax

options:

Array Option, which expects single or multiple

contiguous arrays of data.

Reference Option, which expects references to cells or a

range of non-contiguous cells. Here are some important

points to note on non-contiguous ranges:

Ranges must be enclosed in parentheses and

separated by commas.

Ranges must be on the same worksheet; otherwise,

the function will result in a #VALUE error.

Ranges can be of different lengths but must contain

the referenced row or column number. An out-of-

range reference will result in a #REF error.

Ranges are selected in the [area_num] argument of

the INDEX function.

Figure 3.18: INDEX reference option

The example given in Figure 3.19 shows different discounts

for chairs and laptops. We can use the following function to

look up the different tables:

=INDEX((Chairs_Disc[Disc],Laptops_Disc[Disc]),

MATCH([@Amount],

CHOOSE(IF([@Product]=”Chairs”,1,2),Chairs_Disc[Amt],Laptops_Dis

c[Amt]),1),,

IF([@Product]=”Chairs”,1,2))

Figure 3.19: INDEX non-contiguous array

The preceding function works as follows:

(Chairs_Disc[Disc], Laptops_Disc[Disc]) returns the two

non-contiguous discount columns for Chairs and

Laptops.

IF([@Product]=”Chairs”,1,2), returns a 1 if the

product on the table is chairs; otherwise, it returns 2.

This is the index that the CHOOSE function will determine

to select the amount column in either the Chairs or

Laptops table.

MATCH([@Amount],CHOOSE(IF([@Product]=”Chairs”,1,2),Chairs_D

isc[Amt],Laptops_Disc[Amt]),1) MATCH function returns the

approximate relative position of the amount in the

discount table amount column.

Since we are selecting single-column arrays, we can

ignore the column index argument and jump to the area

number argument.

IF([@Product]=”Chairs”,1,2), return a 1 if the

product on the table is chairs; otherwise, it returns 2.

This determines which of the two non-contiguous

discount columns for Chairs and Laptops will be

selected.

Lookup using wildcards

As learned in the last chapter, specifically in the VLOOKUP

partial lookup section, the INDEX-MATCH combo can also use the

two popular wildcard characters (? *).

For example, in Figure 3.20, we want to look up the amount

for an invoice containing the letter “P”:

Figure 3.20: INDEX using an asterisk wildcard character

=INDEX(tblinvoicez[Amount],

MATCH(“*”&G117&”*”,tblinvoicez[Invoice ‘#],0))

Here are some points to remember while using Wildcard

characters:

Asterisk (*): The asterisk wildcard represents zero or

more characters in a text string.

Question mark (?): The question mark wildcard

represents a single character in a text string.

You can combine the asterisk and the question marks to

define your search further.

Here is how the preceding function works:

“*”&G117&”*” returns *P*, which means there could be

many characters before and after the letter P.

MATCH function returns the first invoice’s relative row

position whose invoice number contains the letter P.

INDEX function returns the invoice amount in the same

row number.

Suppose you want to look up values for an invoice number

whose fifth character is the letter “P”?

In such a scenario, we shall use the question mark (?) as the

wildcard character to represent any single character (see

Figure 3.21):

Figure 3.21: INDEX using mixed wildcard characters

=INDEX(tblinvoicez[Amount],

MATCH(“????”&J117&”*”,tblinvoicez[Invoice ‘#],0))

Here is how the preceding function works:

“????”&J117&”*” returns ????P*, which means any four

characters could be before the letter “P”. Therefore, “P”

is the fifth character, but there are multiple characters

after it.

MATCH function returns the first invoice’s relative row

position where an invoice number’s fifth character is the

letter “P”.

INDEX function returns the invoice amount in the same

row number.

Lookup based on text length

In Figure 3.22, we assume all invoice back-orders can be

identified by the length of the invoice number (that is, 8

characters):

Figure 3.22: Lookup text based on Length

To look up these back-ordered invoices, we use the following

formula:

=INDEX(Invoices[Amount],

MATCH(G132,LEN(Invoices[Invoice ‘#]),0))

Here is how the preceding function works:

LEN(Invoices[Invoice ‘#]), the LEN function returns an

array of invoice number lengths. This becomes the

lookup array argument for the MATCH function.

MATCH function returns the first invoice’s relative row

position, whose length is 8 characters.

INDEX function returns the invoice amount in the same

row number.

Assuming you had multiple back-ordered invoices, as shown

in Figure 3.23. Let us learn how to return the last match with

the help of the MAX function:

=INDEX(Invoices[Amount],

MAX(

(LEN(Invoices[Invoice ‘#])=G132)*ROW(Invoices[Invoice ‘#])

-ROW(Invoices[#Headers])

))

Figure 3.23: Lookup the last match

Here is how the preceding function works:

LEN(Invoices[Invoice ‘#]) LEN function returns an array of

invoice number lengths.

LEN(Invoices[Invoice ‘#])=G132 checks which invoice

length is equal to 8 and returns an array of TRUE/FALSE

Get the row numbers by multiplying the TRUE/FALSE

array with row numbers: (LEN(Invoices[Invoice

‘#])=G132)*ROW(Invoices[Invoice ‘#])

Adjust the row numbers count by deducting the header

row.

To get the last low, use the MAX function.

INDEX function returns the invoice amount in the last

matching row number returned by the MAX function.

Lookup items in a list

Looking up items in a list is relatively easy when you

understand the COUNTIF function.

In Figure 3.24, we want to look up the first customer who

bought from us using any of the currencies in the list in cell

G:

Figure 3.24: Lookup item in a list

=INDEX(Sales_Currency[Customer],

MATCH(1,COUNTIF(List, Sales_Currency[Currency]),0))

Here is how the preceding function works:

COUNTIF(List, Sales_Currency[Currency]) COUNTIF function

returns an array of 1/0, where 1 is the count of the

currency if it is found in the list, else 0. This becomes the

lookup array argument for the MATCH function.

MATCH function returns the first invoice’s relative row

position whose count is 1.

INDEX function returns the customer in the same row

number.

If we want to return all the items and not just the first match,

we must modify our formula, as shown in Figure 3.25:

=INDEX(

Sales_Currency[Customer],

LARGE(

COUNTIF(List, Sales_Currency[Currency])

*ROW(Sales_Currency[Currency])-ROW(Sales_Currency[#Headers]),

ROW(A1))

)

Here is how the preceding function works:

COUNTIF(List, Sales_Currency[Currency])

*ROW(Sales_Currency[Currency]) COUNTIF function returns an

array of 1/0, where 1 is the count of the currency if it is

found in the list, else 0. Multiply this array with row

numbers to return a list of row numbers that contain the

items in the list. Remember to adjust the row numbers

to start the count after the headers by deducting the

header row number.

We need to iterate over this row numbers list and return

one at a time as the row argument for the INDEX function.

We use the LARGE function for this task, which returns

the row numbers from the largest to the smallest. Note

ROW(A1) evaluates to 1, and as you drag the function

down, it increases until the full list is iterated.

INDEX function uses each row number returned by the

LARGE function and returns the corresponding customer.

Please note that the INDEX function returns the #VALUE

error after all customers have been returned.

Figure 3.25: Lookup multiple items in a list

If we do not want the formula to return the error, we could

nest it in the IFERRROR function, as shown in the following

syntax. The IFERROR function now returns blanks instead of

errors:

=IFERROR(

INDEX(Sales_Currency[Customer],

LARGE(

COUNTIF(List,Sales_Currency[Currency])

*ROW(Sales_Currency[Currency])

-ROW(Sales_Currency[#Headers]),ROW(A1))),

“”)

Lookup unique value

Mastering the COUNTIF function is a big step in enhancing our

lookup skills. For example, if you want to look up a unique

value in Excel, you must utilize the COUNTIF function, as

shown in Figure 3.26:

=INDEX(Sales[Customer],

MATCH(TRUE, COUNTIF(Sales[Currency],Sales[Currency])=1,0))

Here is how this function works:

COUNTIF(Sales[Currency],Sales[Currency]) COUNTIF function

returns an array of counts for each currency in the

column. Since we are looking for the unique values, we

check which count is equal to 1 ►

COUNTIF(Sales[Currency],Sales[Currency])=1. This

comparison returns an array of TRUE/FALSE, where

TRUE=UNIQUE and FALSE=DUPLICATES.

MATCH functions return the relative row position of the first

TRUE value in the preceding array.

INDEX function returns the customer in the same row

number.

Figure 3.26: Lookup unique items

Lookup bottom n values

Looking up the bottom values is relatively easy if we first

understand the IF and SMALL functions. For example, in Figure

3.27, we look up the three customers with the least sales:

Figure 3.27: Lookup bottom items

=INDEX(BottomSale[Customer],

SMALL(

IF((BottomSale[Amt]<=SMALL(BottomSale[Amt],3)),

(BottomSale[Amt]

<=SMALL(BottomSale[Amt],3))*ROW(BottomSale[Amt])-

ROW(BottomSale[#Headers]),

“”),ROW(A1)))

Here is how the preceding function works:

SMALL(BottomSale[Amt],3) the SMALL function returns the

third smallest amount — 28,600. The next step is to

check which amount is less or equal to this third

smallest amount ► (BottomSale[Amt]

<=SMALL(BottomSale[Amt],3)).This comparison returns an

array of TRUE/FALSE.

BottomSale[Amt]

<=SMALL(BottomSale[Amt],3))*ROW(BottomSale[Amt])])-

ROW(BottomSale[#Headers]) To get an array of row numbers,

we multiply the TRUE/FALSE array with the amounts’ row

numbers. Remember to adjust the row numbers to start

the count after the headers by deducting the header row

number.

The next step is to replace the negative values in the

preceding array with blanks using the IF function:

IF((BottomSale[Amt]<=SMALL(BottomSale[Amt],3)),

(BottomSale[Amt]

<=SMALL(BottomSale[Amt],3))*ROW(BottomSale[Amt])-

ROW(BottomSale[#Headers]), “”)

We need to iterate over this row numbers list and return

one at a time as the row argument for the INDEX

function. For this task, we use the SMALL function, which

returns the row numbers from the smallest to the

largest. Note ROW(A1) evaluates to 1, and as you drag the

function down, it increases until the full list is iterated.

INDEX function uses each row number returned by the

SMALL function and returns the corresponding customer.

Please note that the INDEX function returns the “#NUM”

error after all customers have been returned.

As we learned in the previous section, if you do not want the

INDEX function to return an error, nest it in the IFERROR

function, as follows:

=IFERROR(

INDEX(BottomSale[Customer],

SMALL(

IF((BottomSale[Amt]<=SMALL(BottomSale[Amt],3)),

(BottomSale[Amt]<=SMALL(BottomSale[Amt],3))

*ROW(BottomSale[Amt])-ROW(BottomSale[#Headers]),

“”),ROW(A1))),

“”)

Conclusion

This chapter offers a better lookup method for VLOOKUP —

INDEX/MATCH combination.

There are three primary reasons why this combination is the

better option: (i) It allows us to select not only a two-column

table but also a single column/row array; (ii) The ability to

select a single column/row array makes it flexible to look up

not only to the left or right but also vertically or horizontally;

(iii) Since it does not default to an approximate match, this

combination is less prone to errors.

For those without an Office365 subscription, this combination

of INDEX/MATCH is the most efficient lookup method.

In the next chapter, we will investigate why some Excel

users still use one of the oldest legacy lookup functions —

LOOKUP and HLOOKUP.

Points to remember

Similar to the VLOOKUP function, the INDEX/MATCH

combination returns the first match single value by

default. If we want multiple values to nest, we can use

the SMALL/LARGE functions.

Unlike the VLOOKUP function, the INDEX/MATCH function row

count is based on the array selected, not the default row

number returned by the ROW function. Therefore, you

must adjust the row count if your data does not start

from the topmost row.

CHAPTER 4

LOOKUP

Introduction

In this chapter, we will discuss the LOOKUP function, which has

been in Excel since its earliest version. The LOOKUP function’s

longevity and continued presence in Excel prove its value and

widespread adoption as a fundamental tool for data retrieval and

spreadsheet analysis.

You can use the LOOKUP function in both the Vector form and Array

form.

In the Vector form, you search for an item in one column/row and

return an item from the same position in another column/row.

The syntax is as follows:

=LOOKUP (lookup_value, lookup_vector, [result_vector])

Where:

lookup_value: The value you want to find.

lookup_vector: The single column/row containing the values to

be searched (Note: It should be sorted in ascending order).

result_vector: The single column/row containing the values to

be returned.

Note

Vector form is most appropriate If you want to specify a

column/row containing the values you want to search.

If the lookup value is not found, the LOOKUP function matches

the next biggest value smaller than the lookup value.

If the lookup value is not found and is smaller than the

smallest value in the lookup range, the LOOKUP function will

return the #N/A error value.

Lookup_vector and result_vector range must be of the same

size.

In the Array form, we search for an item in the first column/row

of a table array (rows and columns) and return values in the

same position as the last column/row of a table array.

The syntax is as follows:

=LOOKUP (lookup_value, array)

Where:

lookup_value: The value you want to find.

Array: Columns/rows containing the values to be searched.

Note:

Values in the first Row/Column must be sorted in ascending

order.

The determination of whether the search will be horizontal

or vertical depends on the number of rows vs. columns. If

the array has more rows than columns, then LOOKUP searches

the first column; otherwise, it searches the first row.

If the lookup value is not found and is smaller than the

smallest value in the lookup range, the LOOKUP function will

return the #N/A error value.

If the lookup value is not found, the LOOKUP function matches

the next biggest value smaller than the lookup value.

Structure

In this chapter, we will discuss the five cases where we should

use the LOOKUP function:

Lookup the last match using a criterion

Lookup the last empty cell

Lookup the last negative number or text

Lookup approximate match in an array

Lookup the most repeated item

Lookup the Last Match Using a Criterion

One everyday use of the LOOKUP function is retrieving the last

matching value. In this example, we shall use the Vector form.

We are trying to find the last subject offered by Ms Abby in Figure

4.1:

Figure 4.1: Lookup the last match in the column

=LOOKUP(2,1/(Lecturers=F3), Subjects)

Here is how the preceding function works:

2 represents a big value that we are sure will not be found in

the lookup vector.

Lecturers=F3 returns an array of TRUE/FALSE, where TRUE

represents the criteria being met, that is, lecturer = Ms

Abby; otherwise, it returns FALSE (see Figure 4.2):

Figure 4.2: Check if the criterion is met

1/(Lecturers=F3) convert the TRUE/FALSE into numeric

equivalent by dividing 1 by each value (see Figure 4.3):

Figure 4.3: Convert the TRUE/FALSE into numeric equivalent

Note: There are four ways to convert boolean values to the

numeric equivalent:

By adding Zero: (Lecturers=F3)+0

By multiplying with One: (Lecturers=F3)*1

Using the double Unary method: --(Lecturers=F3)

By dividing with One: 1/(Lecturers=F3)

We should opt for the last method because it is the only

method that does not include a zero in the results; including

a zero in the lookup vector may disrupt the ascending order

and cause the function to return unexpected results or an

error.

Since 2 is not found, and the largest value in lookup_vector

is 1, the LOOKUP function matches the last 1 in the array

and returns values in the same position in the result vector.

We are not limited to using a single criterion. For example, in

Figure 4.4, we want to know the last date on which the customer

Luke bought the chairs:

Figure 4.4: Lookup the last match using multiple criteria

=LOOKUP(2,

1/((tbl_Sales[Customer]=H16)*(tbl_Sales[Product]=H18)),

tbl_Sales[Date])

Here is how the preceding function works:

2 represents a big value that we are sure will not be found in

the lookup vector.

(tbl_Sales[Customer]=H16)*(tbl_Sales[Product]=H18) returns an

array of 1/0, where 1 represents the row’s position where

the customer is Luke and the product is chairs.

1/((tbl_Sales[Customer]=H16)*(tbl_Sales[Product]=H18)) We

divide the preceding array with 1 to exclude all zeros.

Including a zero in the lookup vector may disrupt the

ascending order and cause the function to return

unexpected results or an error.

Since 2 is not found, and the largest value in lookup_vector

is 1, the LOOKUP function matches the last 1 in the array and

returns values in the same position in the result vector.

Lookup the Last Blank Cell

Lookup, the last blank in an array, is similar to the preceding

example, with the only difference being the logical tests. Similar

to the preceding example, we will use the vector form of the

LOOKUP function to do a horizontal lookup.

In Figure 4.5, we look up the last month a customer made the

payment, that is, the last non-blank month:

Figure 4.5: Lookup the last non-blank

=LOOKUP(2, 1/(D33:H33<>””), D32:H32)

Here is how this function works:

2 represents a big value that we are sure will not be found in

the lookup vector.

D33:H33<>”” returns an array of TRUE/FALSE, where TRUE

represents non-blank cells in the row.

1/(D33:H33<>””) We divide the preceding array with 1 to

convert the Boolean array to its numeric equivalent as well

as to exclude all zeros. Including a zero in the lookup vector

may disrupt the ascending order and cause the function to

return unexpected results or an error.

Since 2 is not found, and the largest value in lookup_vector

is 1, the LOOKUP function matches the last 1 in the array

and returns values in the same position in the result vector,

that is, D32:H32.

Lookup the Last Negative Number or

Text

The vector form of the LOOKUP function is the most robust function

to look up any last value in an array. The only trick we need to

learn is creating complex logical tests for the lookup vector.

For example, in Figure 4.6, we want to look up the last date we

had a negative temperature:

Figure 4.6: Lookup the last negative number

=LOOKUP(2,1/(tblHarvest[Temp0]<0),tblHarvest[Date])

This formula works in the same way as the others in the

preceding examples, except for the logical test. In this example,

tblHarvest[Temp0]<0 returns an array of TRUE/FALSE, where TRUE

represents all values that are less than zero.

To look up the last text, as shown in Figure 4.7, use the ISTEXT

function to return an array of TRUE/FALSE values, where TRUE

represents the text functions.

Every other aspect of the function is the same as the ones

explained earlier.

=LOOKUP(2,1/ISTEXT(D59:D74),D59:D74)

Figure 4.7: Lookup the last text

Lookup Approximate Match in an Array

In all our previous examples, we have used the vector form of

the LOOKUP function. Now, let us learn how to use an array form to

look up an approximate match in an array.

For example, in Figure 4.8, we are looking up the discount

percentage from the Discounts table using an approximate

Match.

Figure 4.8: Lookup approximate match in an array

=LOOKUP(D78, Discounts)

Here is how this function works:

Sales Values stored in column D are used as the lookup

value.

The LOOKUP function uses the first column of the discount

table as the lookup array and returns the approximate

values in the same position of the last column.

Remember that the values in the first column of the table

array must be sorted in ascending order.

Lookup Most Repeated Item

This is another example of using the LOOKUP function’s array form.

In Figure 4.9, we are looking for the most frequent customer:

Figure 4.9: Lookup most repeated item

=LOOKUP(MODE(MATCH(Customer[Name],Customer[Name],0)),

CHOOSE({1,2},MATCH(Customer[Name],Customer[Name],0),Customer[Name])

)

Here is how the preceding function works:

MATCH(Customer[Name], Customer[Name],0) The MATCH function

returns an array equal to the customers’ number, where

every item in this array represents the first position at which

a customer name appears in the data (see Figure 4.10).

Figure 4.10: Customers’ position

MODE(MATCH(Customer[Name], Customer[Name],0) the MODE function

returns the most repeated item in the array.

We then create a two-column table array using the CHOOSE

function, whereColumn 1 is the customers’ position, while

Column 2 is the customers’ name (see Figure 4.11).

Figure 4.11: Two-column table array

The LOOKUP function uses the first column of the two-column

table as the lookup array and returns the customer name in

the second column in the same position as the last match

value.

Conclusion

In this chapter, we learned that the LOOKUP function is the best

when looking up the last match. Whether we are using the Vector

or Array form, the LOOKUP function can be used to look up data

vertically or horizontally, provided that the lookup array data is

sorted in ascending order.

Due to its limitations, it is only recommended for approximate

matches and looking up the last match.

In the next chapter, we will investigate other functions that can

be used to look up data, although they are not classified as

lookup functions.

Points to remember

Excel LOOKUP functionality is limited and thus not

recommended for day-to-day use. As an alternative,

consider using the VLOOKUP or INDEX/MATCH function.

The LOOKUP function has no option for an exact match; all of

its uses default to an approximate match.

Multiple choice questions

1. What is the result of the following formula:

=LOOKUP(0, {1,2,3,4,5}, {“A”,“B”,“C”,“D”,“E”})?

a. A

b. B

c. C

d. D

e. E

f. #N/A

2. What is the result of the following formula:

=LOOKUP(“Z”, {“A”,“B”,“C”,“D”,“E”}, {1,2,3,4,5})?

a. 1

b. 2

c. 3

d. 4

e. 5

f. #N/A

3. What is the result of the following formula:

=LOOKUP(5, {1,2,3,4,6}, {“A”,“B”,“C”,“D”,“E”})?

a. A

b. B

c. C

d. D

e. E

f. #N/A

4. What is the difference between the Vector form and the

Array form of the LOOKUP function?

a. The Vector form searches for an item in one column/row

and returns an item from the same position in another

column/row, while the Array form searches for an item

in the first column/row of a table array and returns

values in the same position as the last column/row of a

table array.

b. The Vector form searches for an item in the first

column/row of a table array and returns values in the

same position as the last column/row of a table array,

while the Array form searches for an item in one

column/row and returns an item from the same position

in another column/row.

c. The Vector form searches for an exact match, while the

Array form searches for an approximate match.

d. The Vector form searches for an approximate match,

while the Array form searches for an exact match.

Answers

1. f

2. e

3. d

4. a

CHAPTER 5

Other LOOKUP Methods and

Functions

Introduction

In this chapter, we will discuss alternative methods and functions

that can be used to look up data.

Many Excel users do not look beyond the lookup functions when

faced with a lookup problem. This limits their alternatives and

chances to learn how other functions work.

Depending on the size of our data or the complexity of the task,

certain alternative methods may be more efficient or faster than

the known lookup function.

Let us now explore the different approaches that can help us

identify the most efficient solution for our situation.

Structure

In this chapter, we will discuss the six unique alternatives and

functions to look up data:

Using the advanced filter to look up items in/not in a list

Using Excel Intersection operator to do a two-way lookup

Using Database functions to lookup numeric data

Using SUMIFS, SUMPRODUCT, AGGREGATE, and MAX/MAXIFS to lookup

numeric data

Looking up images

Looking up cell addresses of an item

Using a Pivot Table to lookup unique items in a list

Using the advanced filter to lookup

items in/not in a list

Many Excel users must work on the advanced filter options in

their everyday lookup tasks. Unlike the standard filter, where you

only see the filter criteria when you hover a mouse over it,

advanced filter options are visible to all.

Figure 5.1 shows the use of the advanced filter to lookup all chair

purchases:

Figure 5.1: Lookup items in a table using an advanced filter

Here are the steps to follow:

1. Click anywhere on the table containing all the data.

2. Go to the data tab and click the Advanced Filter options.

3. On the Advanced Filter Pop-up Screen (see Figure 5.2):

a. Click the Copy to another location.

b. The list range will pick automatically if you are using a

table and have followed the preceding steps.

c. Select a criteria range — both the header and the cell

containing the criteria should be selected. Since the

advanced filter reads from the Criteria range: to the List

range:, the headers should be identical.

d. In the Copy to field, select a single cell from which to

copy the filtered table.

e. Finally, click OK.

Figure 5.2: Advanced filter options for selecting items in a list

To look up items not in the table, change the criteria to include

the “not equal to” operator (<>) and follow the preceding steps.

Figure 5.3: Lookup items NOT in a list using an advanced Filter

If we want to look up unique values, Advanced Filter has this

option as well. As shown in Figure 5.4, suppose we want to know

the unique crops that we plant:

Figure 5.4: Lookup items UNIQUE items in a list using an advanced Filter

Note: With Unique records filtering, we skip the criteria range

and click the Unique record-only option instead.

All the other steps, as discussed above, apply.

Using Excel Intersection Operator to do

a two-way lookup

The Excel intersection operator is one of the least known but

ideal ways of solving a two-way lookup problem, that is, finding

the intersecting value(s) of two named ranges.

We only need to remember that using a space character

between two named ranges becomes the Intersect operator.

In Figure 5.5, the Intersect operator is used to return the sales in

the western region made by customer Joshua:

Figure 5.5: Two-way lookup using Excel Intersection Operation

Here are the steps to follow:

1. Click anywhere on the table containing all the data.

2. Go to the Formula tab, and under the Define Names, click Create

from Selection.

3. The Create Names from Selection pop-up will appear, as shown

in Figure 5.6. Select Create names from values in the top

row and left columns.

Figure 5.6: Creating names to be used in the Intersection

4. Once the names have been created, you can use the

Intersect operator. Type the Row header (Joshua) and the

Column header (Western) separated by the intersection

operator, which is a space, as shown in Figure 5.7:

Figure 5.7: Using the Intersection operation

Intersection operations are not limited to a single criterion

operation; we can use it for multiple criteria, as shown in Figure

5.8. We want to know the total amount bought by Joshua in the

western and southern regions:

=SUM(Joshua Western:Southern)

Figure 5.8: Intersection operation two-way lookup using multiple criteria

How the formula works:

We will follow the same preceding steps to create the named

ranges. However, for this solution, we will select two regions

separated by a full colon.

This returns the amounts for the two regions, as shown in Figure

5.9.

Finally, sum up the amounts to get the totals.

Figure 5.9: Multiple criteria results

We can also look up the total values for non-adjacent columns,

as shown in Figure 5.10.

In this example, we want to know the total values for Joshua in

the Eastern or Southern region.

The only trick to remember here is to use the plus sign (+) as an

alternative to the OR logic.

=Joshua Eastern + Joshua Southern

Figure 5.10: Multiple OR criteria results

Note: Intersection operators work with both cell range

references and named ranges.

All you need to remember is to include a space between these

ranges.

Using Database functions to lookup

numeric data

Database functions have existed since Excel 2007, yet many

users do not know their power and potential to look up numeric

data.

Database functions perform specific calculations on a specified

field (a Column) whose records meet specified criteria.

The syntax is as follows:

= DSUM(Database, Field, Criteria)

Where:

1. Database must be a range of data where every row is

considered a record, and every column a field with the top

row containing identifiers for the fields.

2. Field is the column that contains the data to look up.

3. Criteria is a range or set of conditions that determine

records to look up. It must include a column header, and the

criterion must correspond to a field name in the database.

For example, in Figure 5.11, we want to look up the amount of

pens sold in March:

Figure 5.11: Multiple OR criteria results

=DSUM (B65:E78, G66, G67:G68)

Where:

1. Database: All the data range, including the headers

►B65:E78.

2. Field: Header for the column that contains the lookup data►

Mar stored in cell G66.

3. Criteria: A range that contains a column header and a field

value that acts as the criterion. See Figure 5.12 for more

information.

Figure 5.12: Arguments in database function

Database functions are not limited to simple criteria, as shown in

the preceding example; you can create complex ones, as shown

in Figure 5.13:

Figure 5.13: Complex criteria in database function

=DSUM(tbl_Orders[#All],”Qty”,F81:I82)

The formula returns orders with a date greater than 1st June and

less than 30th June for product Chair, and with a quantity greater

than 20.

Here is how the formula works:

1. Database: All the data in the table called tbl_Orders.

2. Field: The column whose header is Qty.

3. Criteria: All the information contained in cell range

F81:182.

Note: The Criteria area MUST NOT include any Blank rows or

Columns.

Using SUMIFS, SUMPRODUCT,

AGGREGATE, and MAX functions to

lookup numeric data

One of the least known facts is that match and trigonometry

functions can be better than the lookup function when looking up

single numeric values.

For example, in Figure 5.14, we want to return the payment

amount for invoice “224-VV-004”:

Figure 5.14: Using SUMIFS function to lookup numeric data

=SUMIFS(Payments[Amt],Payments[Invoice],G100)

The SUMIFS function calculates the sum of values that meet

multiple criteria. It allows you to specify multiple conditions and

sum up only the values that satisfy them.

Syntax:

=SUMIFS (sum_range, criteria_range1, criteria1, [criteria_range2,

criteria2], ...)

Where:

1. sum range ► the values to be aggregated.

2. criteria range ► the values to apply conditions.

3. criteria ► the condition to be met.

4. In our preceding example, we check which invoice number

stored in the pay is equal to:

5. Payments[Amt] is the sum range. It represents the column Amt

in the Payments table. We want to return values from this

range based on the given conditions.

6. Payments[Invoice] is the first criteria range. It represents the

column Invoice in the Payments table. We want to check this

range of cells against a specific condition.

7. G100 is the criteria. It is a specific value or reference against

which the cells in the Invoice column will be evaluated.

The function returns the corresponding payment amount since

only one invoice number meets the criteria.

Note: If multiple Invoice numbers had met the condition, the

function would have returned the total payment amount.

An alternative to the SUMIFS function is the SUMPRODUCT function

(see Figure 5.15):

Figure 5.15: Using the SUMPRODUCT function to lookup numeric data

=SUMPRODUCT(Payments[Amt],(Payments[Invoice]=G100)*1)

The SUMPRODUCT function is versatile and allows you to multiply

corresponding elements in multiple arrays and sum up the

products.

It is advantageous when you need to perform calculations on

arrays or when you want to apply criteria to multiple ranges

simultaneously.

Syntax:

=SUMPRODUCT(array1, array2, ...)

In the preceding example:

1. Payments[Amt] is the first array. It represents the column Amt in

the Payments table. We want to multiply and sum up this array

of values.

2. For the second array, we first compare each cell in the

Invoice column of the Payments table to the value in cell G100

and return an array of True and False values

(Payments[Invoice]=G100). Multiplying this array by 1 converts

True values to 1 and False values to 0

((Payments[Invoice]=G100)*1).

3. Finally, the SUMPRODUCT function multiplies the corresponding

values in the Amt column and the array of 1s and 0s, then

sums up the products. The sum calculation will include only

the values in the Amt column for the rows where the Invoice

column matches G100 (see Figure 5.16).

Note: Performing a mathematical operation on a Boolean value

converts them to their numeric equivalent of 1/0.

Therefore, we could convert the preceding True/False values by

adding a zero.

(Payments [Invoice]=G100)+0.

Figure 5.16: SUMPRODUCT arrays multiplication

Finally, let us look at the AGGREGATE function and how we can use it

to look up numeric values, as shown in Figure 5.17:

Figure 5.17: Using the AGGREGATE function to lookup numeric data

Unlike the other SUMPRODUCT and SUMIFS functions, the AGGREGATE

function performs a wide range of calculations on a dataset.

It allows you to apply 19 functions (see Table 5.1) with seven

options to ignore errors, hidden values, and subtotals, and apply

specific conditions to include or exclude data.

1. AVERAGE 5. MIN 9. SUM 13. MODE.SNGL 17.

QUARTILE.INC

2. COUNT 6. PRODUCT 10.VAR.S 14. LARGE 18.

PERCENTILE.EXC

3. COUNTA 7. STDEV.S 11.VAR.P 15. SMALL 19.

QUARTILE.EXC

4. MAX 8. STDEV.P 12. MEDIAN 16.

PERCENTILE.INC

Table 5.1: Functions to apply in AGGREGATE

Syntax:

=AGGREGATE(function_num, options, array, [k])

Refer to the formula used in Figure 5.16.

=AGGREGATE(14,3,Payments[Amt]*(Payments[Invoice]=G100)*1,1)

Here is how the preceding function works:

1. 14 ►This argument specifies the LARGE function that returns

the kth largest value in our data range.

2. 3 ►This argument specifies that the function will ignore error

values in the data range.

3. For the array, we first compare each cell in the Invoice

column of the Payments table to the value in cell G100 and

return an array of True and False values

(Payments[Invoice]=G100). Multiplying this array by 1

converts True values to 1 and False values to 0

((Payments[Invoice]=G100)*1). Then, multiply the

corresponding values in the Amt column and the array of 1s

and 0s.

4. Finally, the function returns the largest value in the

preceding final array.

Note: Like the SUMPRODUCT function, AGGREGATE can natively manage

many array operations without using Ctrl + Shift + Enter.

Closely related to the preceding functions are the MAX and MAXIFS

functions.

In Figure 5.17, we use the MAX function to lookup the numeric

function.

=MAX(Payments[Amt]* (Payments[Invoice]=G100))

Here is how the preceding function works:

1. We first compare each cell in the Invoice column of the

Payments table to the value in cell G100 and return an array of

True and False values (Payments[Invoice]=G100).

2. Then, we multiply the corresponding values in the Amt

column and the array of TRUEs and FALSEs. This will return an

amount value for all TRUEs and zeros for all FALSEs.

3. The MAX function returns the largest value in the preceding

array.

Figure 5.18: Using the MAX function to lookup numeric data

The MAX function may be hard to understand and explain. The

alternative is the MAXIFS function, as shown in Figure 5.19:

=MAXIFS(Payments[Amt], Payments[Invoice],G100)

Figure 5.19: Using the MAXIFS function to lookup numeric data

Syntax:

=MAXIFS(max_range, criteria_range1, criteria1, criteria_range2,

criteria2,…)

In the preceding example, Amount values are our max range while

the criteria range is the invoice numbers, and our criteria is the

value stored in cell G100.

Note: For complex criteria lookup, consider using MAXIFS over the

MAX function.

Looking up images

Lookup capability in Excel is more comprehensive than just text

and numbers. We will learn how to look up images, as shown in

Figure 5.20:

Figure 5.20: Looking up images

Perform the following steps:

1. Create a list of products and an adjacent blank column for

logo images.

2. Copy a logo image for each product and paste it on the

blank cell adjacent to each product name. Resize it to fit.

3. To lock the image to the cell, right-click and select Format

Picture. Go to the Format Picture pane, select Size &

Properties, and select Move and size with cells in the

Properties section (see Figure 5.21):

Figure 5.21: Locking images to cells

4. The next steps involve creating a linked image:

a. Select and copy any cell that has the image. Ensure you

copy the cell and not the image.

b. Right-click on another cell where you want to store the

lookup image.

c. Select Paste Special and paste it as a Linked image (see

Figure 5.22).

d. The logo in your selected cell will be pasted into that

new cell.

Figure 5.22: Pasting as Linked Picture

5. The next step is to create a named range. This will ensure

that the copied logo dynamically changes based on the

product name.

a. Go to the Formula tab and select define name.

b. In the new name dialogue form, write ► in the Name

Field: Logos, and in the refers to: =INDEX(E116:E120,

MATCH(G116,D116:D120,0)) (see Figure 5.22).

c. Where E116:E120 ► Column containing the logo

images, G116 ► the cell containing the product whose

logo image you want to look up, and D116:D120 ►

Column containing product names.

Figure 5.23: Creating name range

6. Finally, select the linked image we created in the previous

step and replace its reference with the dynamic reference

from the created name range (see Figure 5.24):

Figure 5.24: Changing the image reference to created name range

Note: The defined name should only return a cell reference, so

we use the INDEX/MATCH functions. Other functions like VLOOKUP will

not work since they do not return references.

Looking up cell addresses

In this section, we will learn how to look up cell addresses using

the ADDRESS function.

In general, the ADDRESS function will return the cell address given

a row number and a column number.

Note that the returned cell address is a text string, not an actual

reference. Also, the addresses returned are either relative,

mixed, or absolute based on the selected address type.

As shown in Figure 5.25, we want to know the last cell address

for the crop “Traka”.

Figure 5.25: Looking up the last cell address with a criterion

=ADDRESS(

MAX((C125:C136=F125)*ROW(C125:C136)),

COLUMN(C125:C136))

Here is how the preceding function works:

1. C125:C136=F125 returns an array of TRUE and FALSE, where TRUE is

the position where the crop meets the criterion; otherwise,

FALSE.

2. (C125:C136=F125)*ROW(C125:C136), Multiply the corresponding

Row numbers and the array of TRUEs and FALSEs. This will

return Row numbers for all TRUEs and zeros for all FALSEs.

3. MAX function returns the largest row number from the

preceding array.

4. COLUMN(C125:C136) returns the column number for all the

crops.

5. The ADDRESS function returns the absolute cell reference given

the row and column numbers.

Note: By default, the ADDRESS function returns an absolute cell

reference. If you want to return a mixed or relative address,

select the options as shown in Figure 5.26.

Figure 5.26: Returning relative or mixed references in the ADDRESS function

Using Pivot Table to lookup unique items

in a list

A pivot table allows you to summarize and analyze large

amounts of data quickly and easily. It helps you make sense of

your data by organizing it meaningfully.

It can also be used to look up unique items in a list as shown in

Figure 5.27:

Figure 5.27: Looking up Unique Items Using a Pivot Table

Here are the steps to follow:

1. Convert your range into a table, click anywhere on your

Excel table, go to Table Design tab, and click Summarize with

PivotTable (see Figure 5.28):

Figure 5.28: Creating a Pivot Table

2. On the pop-up window, click the existing worksheet, then

under location, select a cell to place the Pivot Table (see

Figure 5.29):

Figure 5.29: Select where to place the pivot table

3. Tick the Crop field among the pivotable fields or drop the

field in the rows area. This populates a list of unique fields

(see Figure 5.30):

Figure 5.30: Select the Pivot table fields

Conclusion

In this chapter, we learned that Excel offers multiple ways to look

up data. By learning different approaches, you gain flexibility in

choosing the best method.

Some of these alternative methods are more efficient or faster

than the known lookup functions, depending on the size of your

data set or the complexity of the task. For example, the DSUM

function can accommodate more complex criteria and calculates

faster than the VLOOKUP function on numeric data.

In summary, learning alternative ways of looking up data in Excel

provides you with a broader skill set, increased efficiency,

adaptability, and problem-solving capabilities.

In the next chapter, we will start learning dynamic array lookup

functions.

Points to remember

Learning alternative ways of solving problems in Excel

enhances your problem-solving skills. It encourages you to

think critically, consider different approaches, and explore

creative solutions. These skills are transferable and valuable

beyond Excel, benefiting you in other areas of work or life.

Excel is widely used across various industries and

professions. Expanding your knowledge of alternative

techniques makes you better equipped to handle diverse

problems and adapt to evolving requirements or limitations.

CHAPTER 6

XLOOKUP

Introduction

In this chapter, we will introduce the first dynamic array lookup

function — XLOOKUP.

When introduced in 2019, it was hailed as the “Functions Killer”,

“Ultimate Lookup Function”, “Single Most Important function”,

and so on. It was supposed to replace the LOOKUP, VLOOKUP, HLOOKUP,

and INDEX/MATCH combo.

Let us now explore areas where we can use this function and

what advantages it has over the others.

Structure

In this chapter, we will discuss the 15 reasons why XLOOKUP is a far

better option than the previously discussed functions:

Defaults to exact match

Easily return multiple adjacent and non-adjacent columns

Easily lookup to the left or right

Easily accommodates column insertion/deletion

Easily lookup vertically or horizontally

Easily lookup from the bottom up

Easily integrates wildcards in the lookup

Returns a cell reference

Returns values in case of “No Match”

Easily two-way or three-way lookup

Returns non-adjacent columns

Returns the last empty or non-empty cell

Lookup non-contiguous array

Easily returns duplicate lookup values

Exact match default

The following is the basic XLOOKUP syntax:

=XLOOKUP(lookup_value, lookup_array, return_array, [match_mode],

[search_mode])

Where:

lookup_value: We want to search for this value in the

lookup_array. It can be a cell reference or a constant value.

lookup_array: This is the range or array where we search the

above value. It can be a single column or row or a two-

dimensional range.

return_array: This is the range or array from which we want

to retrieve the result. It can be a single column or row or a

two-dimensional range.

match_mode (optional): This parameter determines how the

function matches the lookup_value with the values in the

lookup_array. It can be specified as 0 (exact match), -1 (exact

or next smaller), 1 (exact or next larger), or 2 (wild character

match). If omitted, XLOOKUP will default to an exact match.

search_mode (optional): This parameter determines the search

behavior of the function, that is, 1 (first to last), -1 (last to

first), or 2 (binary search). If omitted, XLOOKUP will default to 1

(first to last).

This default to an exact match makes XLOOKUP less prone to errors

present when using the VLOOKUP function.

Also, unlike the complicated VLOOKUP function syntax, where you

will be required to count columns, the XLOOKUP function

parameters are self-explanatory — easy to read and understand.

For example, in Figure 6.1, we are looking up the amount sold on

15th January:

Figure 6.1: XLOOKUP exact match default

=XLOOKUP(H3,SalesTable[[Date]],SalesTable[Amount])

With XLOOKUP, all we need is three arguments: Lookup Value (H3),

Lookup Array (Dates), and Return Array (Amounts). Furthermore,

unlike VLOOKUP, data does not need to be sorted.

The result must be corrected with VLOOKUP, as shown in Figure 6.2,

since the lookup array is not sorted, and we have skipped the

match mode.

Figure 6.2: VLOOKUP approximate match default

=VLOOKUP(H3,SalesTable[[Date]:[Amount]],2)

Easily returns multiple adjacent and

non-adjacent columns

XLOOKUP belongs to the new Dynamic array formulas in Excel,

allowing one to return multiple results to a range of cells. This

range is known as Spill Range, which can be multiple

rows/columns or a table.

Dynamic array functions are designed to accommodate their

output by automatically populating adjacent cells with results.

This spill behavior allows the functions to return multiple values

or an array of values rather than a single result.

The size of the spill range depends on the number of values

returned by the function.

If we use a legacy array function like VLOOKUP, we must manually

select adjacent cells and use the Ctrl + Shift + Enter to commit

it. This is the only way it can populate adjacent cells.

As shown in Figure 6.3, we are looking up the sales date and

amount for customer “Luke Daly.”

=XLOOKUP(H3, SalesTable[Customer], SalesTable[[Date]:[Amount]])

The only trick with returning multiple columns is ensuring that

you select them as a return array. In the preceding example, we

have selected both the date and amount columns: SalesTable[[

Date]:[Amount]]

Figure 6.3: XLOOKUP returns multiple adjacent columns

To return multiple non-adjacent columns, we need to use the

CHOOSECOLS functions in the return array argument to return

the selected columns (see Figure 6.4):

Figure 6.4: XLOOKUP returns multiple non-adjacent columns

=XLOOKUP(I3,SalesTable[Customer],CHOOSECOLS(SalesTable[[Date]:

[Amount]],1,3))

In this example, we select three columns: date, item, and

amount. Using CHOOSECOLS(SalesTable[[Date]:[Amount]],1,3), the

choose column returns only the first and third columns.

The only thing to remember is that we can use the CHOOSECOLS

function to return selected non-adjacent columns in one array.

Easily lookup data to the left or right

Unlike the VLOOKUP function, the XLOOKUP function easily looks

up data from the left.

In Figure 6.5, we are looking for the date of the sale for the

customer Luke.

Figure 6.5: XLOOKUP lookup to the left

=XLOOKUP(I3,SalesTable[Customer],SalesTable[Date])

Even though the dates are stored on the left side of the customer

data, XLOOKUP still uses its simple three arguments, unlike VLOOKUP,

which requires nesting of the IF function (see Figure 6.6):

=VLOOKUP(I3, IF({1,0},SalesTable[Customer],SalesTable[Date]), 2, 0)

With VLOOKUP, you must create a custom table array using the IF

function, as we saw in the previous chapter.

Figure 6.6: VLOOKUP lookup to the left

Easily accommodates column

insertion/deletion

Unlike the VLOOKUP function, XLOOKUP can handle the insertion

and deletion of columns in a table.

For example, Figure 6.7 shows the two functions’ results before

inserting a new column.

Figure 6.7: VLOOKUP and XLOOKUP functions before column insertion

When you insert a column in the table, VLOOKUP returns the wrong

values, but XLOOKUP can dynamically handle the insertion (see

Figure 6.8):

Figure 6.8: VLOOKUP and XLOOKUP functions after column insertion

Note: The VLOOKUP cannot handle the insertion because we have

a hard-coded lookup column, that is, column 4.

As we learned in Chapter 2, VLOOKUP IS DEAD: Or is it? You can

overcome this by nesting the MATCH function in VLOOKUP as follows:

=VLOOKUP(J3, SalesTable,MATCH(K2,SalesTable[#Headers],0),0)

When you delete a column, the VLOOKUP function returns an error,

but XLOOKUP can dynamically handle the deletion. Refer to Figure

6.9 after we have deleted the items column.

The VLOOKUP function returns an error because it cannot find the

return column, that is, column 4.

Figure 6.9: VLOOKUP and XLOOKUP functions after column deletion

Easily looks up data vertically or

horizontally

With the XLOOKUP function, we no longer need the HLOOKUP or

modified VLOOKUP function to lookup data horizontally.

In Figure 6.10, we look up the supplier with the lowest quoted

price:

Figure 6.10: VLOOKUP and XLOOKUP function after column deletion

=VLOOKUP(MIN(E67:G67),TRANSPOSE(IF({1;0},E67:G67,Reps)), 2,0)

=XLOOKUP(MIN(E67:G67),E67:G67,E66:G66)

As we can see from the preceding functions, XLOOKUP is easy to

write and explain.

Here is how the XLOOKUP function works:

MIN(E67:G67): the MIN function returns the smallest quoted

price per item. This becomes our lookup value.

E67:G67: This is our lookup array, that is, all the price ranges.

This is where we will find the position of the lowest price.

E66:G66: This is our return array, that is, all the suppliers.

We will return the supplier whose position corresponds to

the lowest price.

Easily lookup data from the bottom up

By default, the XLOOKUP and VLOOKUP functions lookup data

from top to bottom and return the first TRUE value.

In Figure 6.11, we look up the last date customer “Clay

Rozendal” bought from us:

Figure 6.11: XLOOKUP function lookup from bottom to top

=XLOOKUP(H3,SalesTable[Customer],SalesTable[Date],,,-1)

The only trick here is to specify the correct search mode in

XLOOKUP, that is, -1.

This search mode parameter determines the search behavior of

the function, that is, 1 (first to last), -1 (last to first), or 2 (binary

search). If omitted, XLOOKUP will default to 1 (first to last).

We need to use the following function to get the same results

using VLOOKUP. As shown in Figure 6.12, the VLOOKUP function is

complicated and hard to understand:

=VLOOKUP(

MAX((SalesTable[Customer]=H3)*ROW(SalesTable[Customer])),

IF({1,0},

(SalesTable[Customer]=H3)*ROW(SalesTable[Customer]),SalesTable[Date

]),

2,0)

Figure 6.12: VLOOKUP function lookup from bottom to top

Refer to Chapter 2, VLOOKUP Is Dead: Or is it? for an explanation

of how the preceding VLOOKUP function works.

Easily integrates wildcards in the lookup

Using the asterisk (*) or the question mark (?) wildcard

characters creates a versatile and simpler lookup value.

For example, in Figure 6.13, we look up the date for a cost code

that contains the letter “P”.

Figure 6.13: XLOOKUP using the asterisk Wildcards

=XLOOKUP(I3,SalesTable[Cost Code],SalesTable[Date],,2)

The only trick here is remembering to use 2 as the match mode.

The match mode parameter determines how the function

matches the lookup_value with the values in the lookup_array. It

can be specified as 0 (exact match), -1 (exact or next smaller), 1

(exact or next larger), or 2 (wild character match). If omitted,

XLOOKUP will default to an exact match.

Note: The Asterisk (*) wildcard represents one or more

characters in a text string. For example, P* will find any word that

starts with the letter P, *P will find any word that ends with the

letter P, and *P* will find any word with the letter P.

Also, remember XLOOKUP function returns the first TRUE value.

We are not limited to using only the asterisk wildcard, but we can

combine both, as shown in Figure 6.14. In this example, we look

up the date for a cost code whose fifth character is a “P”.

As discussed, a question mark (?) wildcard represents a single

character in a text string. Therefore, a lookup value “????P*” will

find any text string whose fifth character is the letter “P”

followed by indefinite characters.

Figure 6.14: XLOOKUP using the question mark and asterisk Wildcards

Returns a cell reference

One of the least known features of the XLOOKUP function is that it

returns a cell reference, not just values.

Though the cell reference is unseen, unlike the returned value, it

can still be used, as shown in Figure 6.15:

Figure 6.15: XLOOKUP returning cell reference

=SUM(XLOOKUP(I95,Customers,XLOOKUP(J95,Regions,Data)):

XLOOKUP(I95,Customers,XLOOKUP(K95,Regions,Data)))

Here is how the formula works:

Step 1: Create named ranges for the sections to use in the

formulas. Select every region, as shown in Figure 6.16, go to

the Name box, and give it a name.

Figure 6.16: Creating Named Ranges

Step 2: Write the nested XLOOKUP functions:

The nested XLOOKUP function,

XLOOKUP(J95,Regions,Data), returns the region data.

This forms the return array of the main XLOOKUP function.

Using the nested XLOOKUP function results as the return

array, lookup the position of the customer:

XLOOKUP(I95,Customers,XLOOKUP(J95,Regions,Data))

To force the XLOOKUP functions to return the cell

references, use the range operator (:) between the

XLOOKUP returning the Eastern Region and the one

returning the Western region (see Figure 6.17):

XLOOKUP(I95,Customers,XLOOKUP(J95,Regions,Data)):

XLOOKUP(I95,Customers,XLOOKUP(K95,Regions,Data))

Figure 6.17: XLOOKUP returns cell Ranges

Step 3: Finally, sum up the above-returned range:

=SUM(

XLOOKUP(I95,Customers,XLOOKUP(J95,Regions,Data)):

XLOOKUP(I95,Customers,XLOOKUP(K95,Regions,Data))

)

Note: The XLOOKUP cannot return multiple rows/column

references; it is limited to a single-cell reference. For multiple

rows/columns references, use multiple XLOOKUP separated by a

range operator (:)

Returns values in case of No Match

Unlike other lookup functions, which return an error if a match is

not found, XLOOKUP has an inbuilt “if no match” found

argument.

For example, in Figure 6.19, we are only supposed to get a

discount for discounted items while returning zero for the rest.

Figure 6.18: XLOOKUP if_not_ found argument

We must use the if_not_found argument to capture the zero for

non-discounted items, as shown in Figure 6.18:

Figure 6.19: XLOOKUP Return a value if Match is not found

Easily do a three-way lookup

Unlike the VLOOKUP function, a nested XLOOKUP function easily

does a three-way lookup, as shown in Figure 6.20:

Figure 6.20: XLOOKUP three-way lookup

=XLOOKUP(J126&K126,SaleReps&Products,

XLOOKUP(L126, Months, Amount))

Here is how the function works:

Step 1: Create named ranges for the sections to use in the

formulas. Select every region as highlighted in Figure 6.20.

To create a named range, Highlight the data, go to the Name

box, and give it a Name. Finally, press Enter.

Step 2: Write the nested XLOOKUP functions:

The nested XLOOKUP function, XLOOKUP(L126, Months,

Amount), returns the criterion Month data. This forms the

return array of the main XLOOKUP function.

As for the main XLOOKUP function, first, create a

concatenated criterion — J126&K126. This returns a

combination of the sales rep and product criteria. Then

create combined Sales reps and Product columns, as

shown in Figure 6.21:

Figure 6.21: XLOOKUP concatenated columns as lookup array

Step 3: Finally, get the position of the combined criteria in

the combined columns. Then return the amount in the same

position.

Note: The order in which you concatenate the criteria should be

the same order for the columns.

For example, if, in the preceding scenario, we created a

SalesRep&Product combo criterion, then we must create a

SalesRep&Product combo Lookup array. Any other order will not

work.

Easily returns non-adjacent columns

Using the preceding example, let us now use the XLOOKUP

function to return the January and March Amounts, as shown in

Figure 6.22:

Figure 6.22: XLOOKUP return non-adjacent column values

=XLOOKUP(J126&K126, SaleReps&Products, IF({1,0},Jan,Mar))

Here is how the function works:

Step 1: Create named ranges for the sections to use in the

formulas. Select every region as highlighted in Figure 6.22.

To create a named range, Highlight the data, go to the Name

box, and give it a Name. Finally, press Enter.

Step 2: Use the IF function to return non-adjacent columns,

as shown in Figure 6.23. This is the only trick you need to

remember.

Step 3: Create a concatenated criterion — J126&K126. This

returns a combination of the sales rep and product criteria.

Then create a combined lookup array of Sales reps and

Product columns.

Step 4: Finally, get the position of the combined criteria in

the combined lookup array columns. Then return the

amounts, from the non-adjacent columns, in the same

position.

Note: The alternative to the IF function is the CHOOSE function as

follows:

=XLOOKUP(J126&K126, SaleReps&Products, CHOOSE({1,2},Jan,Mar))

Figure 6.23: IF return non-adjacent columns

The alternative way is to use the Filter function to return non-

adjacent columns as shown in Figure 6.24:

Figure 6.24: FILTER function returns non-adjacent columns

=XLOOKUP(J126&K126, SaleReps&Products,FILTER(Amounts,{1,0,1}))

The only trick to learn here is to learn how to use the include

parameter to get non-adjacent rows (for more information,

please refer to the FILTER function in the next chapter).

The “include” part of a filter function typically refers to the

condition that specifies which elements from a given list or array

should be included in the filtered result. If a condition is TRUE (1),

then it is included; otherwise, it is not included.

Returns the last/first non-empty cell

Other than the LOOKUP function, a better alternative to getting the

last/first non-empty cell is the XLOOKUP function, as shown in

Figure 6.25:

Figure 6.25: XLOOKUP last/first non-empty cells

To get the First payment:

=XLOOKUP(FALSE,ISBLANK(E158:I158),E157:I157)

To get the Last payment:

=XLOOKUP(FALSE,ISBLANK(E158:I158),E157:I157,,-1)

Here is how the function works.

Step 1: Check if the cells are blank using the ISBLANK

function. This returns an array of TRUE/FALSE values, as

shown in Figure 6.26:

Figure 6.26: ISBLANK array of TRUE/FALSE

Step 2: To get the first Payment, search for the first FALSE

value in the array:

=XLOOKUP(FALSE,ISBLANK(E158:I158),E157:I157)

Step 3: To get the last Payment, we specify -1 as the

search_mode. The XLOOKUP function will match the last

FALSE value to the first FALSE value in the range:

=XLOOKUP(FALSE,ISBLANK(E158:I158),E157:I157,,-1)

Easily lookup non-contiguous array

A nested XLOOKUP function also easily gets values from the non-

contiguous array, as shown in Figure 6.27:

Figure 6.27: XLOOKUP non-contiguous array

=XLOOKUP(TRUE,[@Product]=”Chairs”,

XLOOKUP([@Amount], DiscountChairs[Amt], DiscountChairs[Disc],,-1),

XLOOKUP([@Amount], DiscountLaptops[Amt],

DiscountLaptops[Disc],,-1))

Here is how the function works.

Step 1: Check if the product is “Chairs”. This returns a

TRUE/FALSE value.

Step 2: Since we use “TRUE” as the lookup value, the first

nested XLOOKUP is executed if the preceding comparison is

TRUE. It gets the discount percentage from the chairs’

discount table using an approximate match (we specify -1 as

the match_mode for an approximate match lookup).

XLOOKUP([@Amount], DiscountChairs[Amt],

DiscountChairs[Disc],,-1),

Step 3: If the value is FALSE, we execute the XLOOKUP that is in

the “if_not_found” argument of the XLOOKUP. This XLOOKUP

gets a discount percentage from the laptops’ discount table.

Note: this is also an approximate match lookup.

XLOOKUP([@Amount], DiscountLaptops[Amt],

DiscountLaptops[Disc],,-1)

Easily returns duplicate lookup values

While, by default, the XLOOKUP function does not return multiple

match values if the lookup_array contains duplicate values, it

returns the first TRUE value.

However, you can achieve this if you nest the LARGE function, as

shown in Figure 6.28:

Figure 6.28: XLOOKUP returns duplicate lookup values.

=XLOOKUP(

LARGE((Vendors=J183)*ROW(Vendors),ROW(A1)),

ROW(Vendors),January,””)

Here is how the function works.

(Vendors=J183) checks which Vendor is equal to “Emily” and

returns an array of TRUE/FALSE.

(Vendors=J183)*ROW(Vendors) multiply the above array of

TRUE/FALSE with the row numbers. This returns an array of

row numbers for vendor Emily; otherwise, it returns zero

(see Figure 6.29):

Figure 6.29: Row numbers for criterion vendor

We need to iterate over these row numbers lists and return

one at a time as the lookup value for XLOOKUP. We use the

LARGE function for this task, which returns the row numbers

from the Largest to the Smallest. Note ROW(A1) evaluates to

1, and as you drag the function down, it increases until the

complete list is iterated.

LARGE((Vendors=J183)*ROW(Vendors),ROW(A1)),

XLOOKUP returns the January Amount for every row number.

Conclusion

In this chapter, we explored the power of the new XLOOKUP

dynamic function and observed how easily it makes looking up

values.

One of the unique features that sets XLOOKUP apart from other

functions is its search mode from last to first, unlike functions

that search from top to bottom.

Unlike other functions that return errors if the lookup value is not

found and we need to nest them in the IFERROR function, this is

not the case with XLOOKUP, since it has an If_not_found argument

where we can return a value or a function.

In the next chapter, we will learn of a better lookup function that

can return multiple values if the lookup_array contains duplicate

values — FILTER Function.

Points to remember

XLOOKUP function returns both value and cell reference.

XLOOKUP is generally faster than traditional lookup functions

like VLOOKUP or HLOOKUP, especially when dealing with large

data sets. For values sorted in ascending order, specify 2 to

enable binary search_mode and -2 for values sorted in

descending order.

Multiple choice questions

1. In an XLOOKUP function, what is the lookup_value?

a. The value to be searched for in the lookup range

b. The range of values to search within

c. The range of values to return

d. The criteria used to filter the results

2. What happens if the default XLOOKUP function does not find a

match for the lookup_value in the lookup range?

a. It returns an error

b. It returns the closest matching value

c. It returns a specified default value

d. It returns the average of the lookup range

3. Which of the following is NOT a valid argument in the

XLOOKUP function?

a. “lookup_value”

b. “return_array”

c. “criteria_range”

d. “not_found”

4. What is the purpose of the “if_not_found” argument in the

XLOOKUP function?

a. To specify the value to return if a match is found

b. To specify the value to return if no match is found

c. To specify the range to search for a match

d. To specify the data type of the result

5. Which Excel version introduced the XLOOKUP function?

a. Excel 2007

b. Excel 2010

c. Excel 2016

d. Office 365 Excel

6. What is the formula structure of the XLOOKUP function?

a. =XLOOKUP(lookup_value, lookup_array, return_array)

b. =XLOOKUP(lookup_array, lookup_value, return_array)

c. =XLOOKUP(return_array, lookup_value, lookup_array)

d. =XLOOKUP(return_array, lookup_array, lookup_value)

Answers

1. a

2. a

3. c

4. b

5. d

6. a

CHAPTER 7

FILTER: The Ultimate Lookup

Function

Introduction

This chapter will discuss one of the ultimate lookup functions—

the Filter function. Unlike the XLOOKUP function, the FILTER function

easily returns an array of all matches, not just the first match.

This flexibility to return a subset of data, and not just a single

entry, makes the FILTER one of the best functions in creating

dynamic reports. Let us now explore the different scenarios

where we can use the FILTER function to analyze data in more

customized ways without the need for complex formulas.

Structure

This chapter will discuss the following 15 scenarios where the

FILTER function is best suited:

Return multiple columns and rows

Return non-adjacent columns

Easily use multiple criteria lookup using AND/OR

Easily lookup all X and not Y items

Easily lookup top or bottom n items

Easily lookup X or Y and not both

Looking up data using wildcards

Looking up weekday vs. weekend data

Looking up data that excludes holidays

Looking up ODD/EVEN numbers

Looking up items repeated N times

Looking up items based on time

Looking up data based on week number, month, year

Looking up common/uncommon values in two lists

Return end-of-month date items only

Return multiple columns and rows

The FILTER function has one of the simplest and easiest-to-

understand syntaxes—only three parameters.

=FILTER(array, include, [if_empty])

array is the range/array of data you want to look up. This

can be a table or single columns/rows.

include is an array of TRUE/FALSE, where TRUE represents the

values to return else FALSE.

NB: If the filtered array is in columns, the include MUST be

the same length as this array. And if the array is in rows, the

include MUST be the same width as this array.

[if_empty]- [optional] Value to return when no results are

returned.

For example, in Figure 7.1, we want to look up all the

contributions and corresponding dates for staff “Carl Jackson”.

Figure 7.1: Returning Multiple Rows and Columns

=FILTER(tblContribution[[Date]:[Amount]],tblContribution[Staff]=F3)

Here is how the preceding function works:

Select the Columns to filter as our array. Here we are

selecting adjacent columns; in the next example, we shall

learn how to select non-adjacent columns→

tblContribution[[Date]:[Amount]]

Check all instances where our criterion (Carl Jackson)

appears in the staff list→ tblContribution[Staff]=F3. This

returns a Boolean array (refer to Figure 7.2), determining

what values to include in the filter.

Figure 7.2: Creating the include parameter

Note: Since the FILTER function spills the results

vertically/horizontally or both depending on your filtered array,

ensure you have enough empty cells otherwise, you will get a

#SPILL! Error (refer to Figure 7.3).

Figure 7.3: Obstructing text creating a spill error

Return multiple non-adjacent columns

and rows

As shown in Figure 7.4, we have adjusted the data in the

previous example to include items donated.

In this example, we want to return all donated items and

amounts.

Figure 7.4: Returning non-adjacent Columns

=FILTER(CHOOSECOLS(tblContribution,2,4),tblContribution[Staff]=G3)

Here is how the preceding function works:

To select the non-adjacent columns to filter, we shall use the

CHOOSECOLS function. This function requires a table name and

required column numbers → CHOOSECOLS(tblContribution,2,4)

Note

If you do not want to hardcode the columns in the CHOOSECOLS

function, you can use the XMATCH function (refer to Figure

7.5).

Check all instances where our criterion (Carl Jackson)

appears in the staff list→ tblContribution[Staff]=F3. This

returns a Boolean array, determining what values to include

in the filter.

Figure 7.5: CHOOSECOLS function dynamically returns non-adjacent columns

Another alternative to return non-adjacent columns is the use of

nested FILTER functions as follows:

=FILTER(

FILTER(tblContribution,tblContribution[Staff]=G3),

{0,1,0,1})

Here is how the preceding function works:

FILTER(tblContribution,tblContribution[Staff]=G3) This nested

FILTER function returns all the columns where the staff is

equal to Carl Jackson who is stored in cell G3.

To get only the 2nd and 4th columns we use another FILTER

function and specify these columns in the include

parameter. As we have learned in the introduction section,

the included parameter is an array of TRUE (1) /FALSE (0),

where TRUE represents the values to return else FALSE.

Therefore, {0,1,0,1} will only return the second and fourth

columns.

The third alternative to returning non-adjacent columns is

nesting the CHOOSE function. Just like the CHOOSECOL function, you

can not only return non-adjacent columns but also rearrange

them. Using the below formula, we can return the amount

column first and then the date column.

=FILTER(

CHOOSE({1,2},tblContribution[Amount],tblContribution[Date]),tblCont

ribution[Staff]=G51)

Easily use multiple criteria lookups using

AND/OR

We are not limited to a single criterion, as shown in the

preceding examples. We can use the FILTER function with

multiple criteria and different logics (AND/OR).

For example, in Figure 7.6, we want to look up all donors whose

donations were in ZAR, USD, or CHF.

=FILTER(Donors, COUNTIF(List, Currency))

Here is how the preceding function works:

Select the donor’s named range (Donors) as our filter array.

Use the COUNTIF function to count the number of times our

list of currency criteria occurs in our database list of

currencies. This returns an array of 1/0, as follows, where

1=TRUE, 0= FALSE.

{0 0 0 0 0 1 0 1 0 0 0 1}

The Filter function returns all the donors corresponding to

the 1 values.

Figure 7.6: FILTER function Multiple Criteria OR logic using COUNTIF function

The alternative to using the COUNTIF function is using the plus sign

(+) to represent the OR logic, as shown in Figure 7.7.

Figure 7.7: FILTER function Multiple Criteria OR logic using Plus sign (+)

In Figure 7.8, we want to know when and what amount staff Carl

Jackson contributed to books.

Figure 7.8: FILTER function Multiple Criteria AND logic

=FILTER(D3:E14,(B3:B14=G3)*(C3:C14=H3))

Here is how the preceding function works:

Select the filter array (D3:E14).

Check if the staff equals Carl Jackson (B3:B14=G3) and the

items equals Books (C3:C14=H3). These return a Boolean

array (TRUE/FALSE).

Since the FILTER function does not accept the nesting of the

AND function, we use the asterisk (*) to represent the AND

logic. When you multiply the preceding two Boolean arrays,

we only get a value of 1 where all criteria are met. See

Figure 7.9.

Figure 7.9: Using the asterisk (*) to represent the AND logic

Easily lookup all X and not Y items

In this section, we will learn how to use the NOT comparative

operator (<>) in the FILTER function.

As shown in Figure 7.10, we want to look up all students who

scored a grade of A but not in the English subject.

Figure 7.10: Filtering data using the NOT comparative operator (<>)

=FILTER(C49:C61,(F49:F61=”A”)=(D49:D61<>”English”))

Here is how the preceding function works:

Select the Students filter array (C49:C61).

Check if the grade is equal to A (F49:F61=”A”) and if the

subject is NOT equal to English (D49:D61<>English). These

return a Boolean array—TRUE (where both checks are true)

and FALSE (where one/both tests are false)

The alternative uses the greater-than-comparative operator, as

shown in Figure 7.11.

Figure 7.11: Filtering data using the Greater than (>) comparative operator

=FILTER(C49:C61,(F49:F61=”A”)>(D49:D61=”English”))

The only trick to learn here is that Excel treats the FALSE value

as zero (0) and one (1) as TRUE; then, only in the instances

where 1>0 will the result be TRUE. See Figure 7.12.

Figure 7.12: Comparing Boolean values

Easily lookup top or bottom n items

Unlike the previously learned Lookup functions, the FILTER

function easily returns the top or bottom items, as shown in

Figure 7.13.

Figure 7.13: Filtering the Top or Bottom items

To Filter the top 3

=FILTER(Donors, Donations>=LARGE(Donations,3))

To Filter the bottom 3

=FILTER(Donors, Donations<=SMALL(Donations,3))

Here is how the preceding function works:

Select the donors’ named range filter array.

Use the LARGE function to return the third largest value (

LARGE(Donations,3)) Or the SMALL function to return the third

smallest value (SMALL(Donations,3)).

To filter the top items, check the donation amounts that are

greater or equal to the third largest

(Donations>=LARGE(Donations,3)). To filter the bottom items,

check the donation amounts that are lesser or equal to the

3rd smallest (Donations<=SMALL(Donations,3)). These return a

Boolean array—TRUE (where both checks are true) and

FALSE (where one/both tests are false).

The Filter Function returns all the donors corresponding to

the TRUE values.

Easily lookup X or Y and not both

This is not a frequent lookup problem, but it is worth knowing

how to solve it.

We need to look up all students who scored Grade A or took

English, but not both. See Figure 7.14.

Figure 7.14: Filtering all X or Y but not Both

=FILTER(C82:C94,(F82:F94=”A”)-(D82:D94=”English”))

The only trick to learn is using the minus sign (-) as a comparison

operator.

Here is how the comparison works.

If one comparison is TRUE (1) and the other is FALSE (0), then the

comparison would be 1-0=1. Thus, Overall will be TRUE. When

comparing two FALSE conditions 0-0=0, thus overall FALSE. When

comparing two TRUE conditions, 1-1=0, this also would be an

overall FALSE. See Figure 7.15.

Figure 7.15: Minus Sign (-) comparison operator

Note

In Excel, FALSE equals 0 value, and any other value equals

TRUE.

This is why in Figure 7.15, the value of −1 is equal to TRUE.

Looking up data using wildcards

Unfortunately, the two wildcard characters (*?) do not work with

the FILTER function.

However, there is a walkaround using a combination of SEARCH

and ISNUMBER functions, as shown in Figure 7.16.

The task is to filter all producers whose product contains the

word “Milk”.

Figure 7.16: Filtering data using wildcards

=FILTER(Producers, ISNUMBER(SEARCH(“Milk”, Product)))

Here is how the preceding function works:

The search function returns a number if the product name

contains the word “milk”, else it returns an error

(SEARCH(“Milk”, Product)).

ISNUMBER function returns an array of TRUE/FALSE which will be

used as the include criteria in the FILTER function. ISNUMBER

returns TRUE if the returned value by the SEARCH function is a

number; else, it returns FALSE.

Looking up weekday or weekend data

Analyzing transactions based on the weekday or weekend is

required, especially for sales analysts.

This can be easily done using a combination of the FILTER

function and the WEEKDAY function, as shown in Figure 7.17.

To Filter Weekday sold items:

=FILTER(tblSportSale[Item],WEEKDAY(tblSportSale[Date],2)<6)

To Filter Weekend sold items:

=FILTER(tblSportSale[Item],WEEKDAY(tblSportSale[Date],2)>=6)

Here is how the preceding formula works.

Given the date of the sale, the WEEKDAY function (

WEEKDAY(tblSportSale[Date],2)) returns a number between 1

and 7 representing the day of the week. Monday(1) to

Sunday(7)

For the Weekdays dates, these are dates with a day number

less than 6, while Weekend dates have a day number

greater or equal to 6

Figure 7.17: Filtering Weekday or Weekend data

Looking up data that excludes holidays

and weekends

In the previous example, we saw how to look up either weekday

or weekend-sold items.

Assuming we have holidays, how do we look up items sold on

workdays only? As shown in Figure 7.18, you can exclude

Holidays and Weekends by using the po function.

=FILTER(SportSales[Item],WORKDAY(SportSales[Date]-1,1,Holidays)=Spo

rtSales[Date])

Here is how the preceding function works:

WORKDAY(SportSales[Date]-1, 1, Holidays) will subtract one day

from the Sales date to get the initial date, then add one

working day to find the next working day after that initial

date, while excluding any dates specified in the “Holidays”

list. If the Sales date is not a holiday or a weekend, the

WORKDAY function will return the same date; otherwise, it

will return the next working day.

Compare the returned working days with the Sales dates,

WORKDAY(SportSales[Date]-1,1,Holidays)=SportSales[Date]. This

comparison returns TRUE if the dates are the same otherwise,

FALSE.

The FILTER function returns only items corresponding to the TRUE

values from the preceding array.

Figure 7.18: Filtering working days data only

Looking up ODD/EVEN numbers

Let us assume that you are an auditor and want to extract only

Even numbered invoices, as shown in Figure 7.19.

Here is the formula you can use for this task.

=FILTER(B147:B158,ISEVEN(0+B147:B158))

Here is how the preceding function works:

ISEVEN(0+B147:B158) ISEVEN function returns an array of

TRUE/FALSE. TRUE for all even numbered invoices else, FALSE.

Note

To force the ISEVEN function to evaluate the entire range as

an array, you must add a zero in your referenced range else

the function will return a #VALUE error.

The FILTER function returns only Invoices that correspond to

the TRUE values of the array returned earlier.

To filter the ODD numbered invoices, change the formula as

follows:

=FILTER(B147:B158,ISODD(0+B147:B158))

Figure 7.19: Filtering Even values only

Looking up items repeated N times

Using the previous data on contributions, let us see how to filter

all staff who have donated more than two times, as shown in

Figure 7.20:

Figure 7.20: Filtering Items Repeated n times

=UNIQUE(FILTER(Staff, COUNTIF(Staff, Staff)>2))

Here is how the preceding function works:

COUNTIF(Staff, Staff) COUNTIF function returns an array of

the number of times a staff is repeated in the list. Refer to

Figure 7.21.

Figure 7.21: COUNTIF function showing repeats per item

Next, we check which items have been repeated more than

two times COUNTIF(Staff, Staff)>2. This returns an array of

TRUE/FALSE.

The FILTER function only includes staff corresponding to the

TRUE value, as shown in Figure 7.22.

Figure 7.22: Filtered duplicate values

To eliminate duplicate values, we use the UNIQUE function

UNIQUE(FILTER(Staff, COUNTIF(Staff, Staff)>2))

Looking up items based on time

Most of the attendance data is collected in DateTime format, as

shown in Figure 7.23. Yet we are required to look up that data

using the time portion of the DateTime only.

When faced with such a problem, the only thing to remember is

that the time value is always stored as a fraction of 24 hours

while the Date is stored as a serial number.

Therefore, time will be the value after the decimal in a DateTime

serial number.

Figure 7.23: Filtered based on time

=FILTER(tblStudents,MOD(tblStudents[[Arrival]],1)>G164)

Here is how the preceding function works:

MOD(tblStudents[[Arrival]],1) When used with a divisor of 1,

the MOD function always returns the fractional part of a

number.

MOD(tblStudents[[Arrival]],1)>G164 This condition checks

whether the calculated fractional part of the Arrival time (MOD

result) is greater than the value in cell G164. This is

essentially checking if the minutes’ portion of the arrival

time is greater than the value in G164.

The FILTER function is used to retrieve rows from the

tblStudents table based on a certain condition. In this case, it

filters the rows where the calculated fractional part of the

Arrival time is greater than the value in cell G164.

Looking up data based on week number,

month, and year

In the previous section, we learned how to filter data based on a

weekday or weekend. In this section, we shall learn how to look

up data based on Week number, Month, and Year.

In Figure 7.24, we are looking up all items sold in Week 3.

Figure 7.24: Filtered based on a Week number

=FILTER(SportSales[Item],WEEKNUM(SportSales[Date]+0)=3)

Note:

The WEEKNUM function does not accept a range of data. It

returns the #VALUE error. We, however, can force it by adding

a zero (SportSales[Date]+0) to the range.

The WEEKNUM function returns an array of week numbers

(Refer to Figure 7.25).

When we compare the calculated week numbers (from the

preceding step) to the value, we return an array of TRUE and

FALSE.

The FILTER function is used to filter the rows where the

values from the preceding step are TRUE.

Figure 7.25: WEEKNUM returning an array of Week numbers

To filter specific months’ data, use the month function as shown

in Figure 7.26.

Figure 7.26: Filtered based on a Month

=FILTER(SportSales[Item],MONTH(SportSales[Date])=6)

The only thing to note here is that the MONTH function returns an

array of month numbers. Everything else is as explained in the

WEEKNUM function.

Finally, Figure 7.27 shows how to filter data using years values.

Figure 7.27: Filtered based on a Year

=FILTER(SportSales[Item],YEAR(SportSales[Date])=2022)

The only thing to note here is that the YEAR function returns an

array of year numbers. Everything else is as explained in the

preceding functions.

Lookup common/uncommon items in two

lists

Comparing values in a list is a common activity in Excel. For

example, in Figure 7.28, we look up common and new customers

between two lists.

To get new (uncommon) customers

=FILTER(Current_Customers,

COUNTIF(LastYear_Customers,Current_Customers)=0)

To get old(common) customers

=FILTER(Current_Customers,

COUNTIF(LastYear_Customers,Current_Customers)=0)

The only trick with the function is the use of the COUNTIF function

to count how many times items in the new list are repeated on

the old list.

►COUNTIF(LastYear_Customers, Current_Customers) count the number

of customers who appeared both in the LastYear_Customers

range and the Current_Customers range. It returns an array of 1

and 0. Where 1= common in both and 0=uncommon.

Figure 7.28: Filtered common/uncommon items between lists

Return end-of-the-month date items only

When you want to return what was sold on the last date of any

month, as shown in Figure 7.29, you must use the EOMONTH

function.

Figure 7.29: Filtered items sold on the last day of the month

=FILTER(Sport_Sales[Item],

EOMONTH(Sport_Sales[Date]+0,0)=Sport_Sales[Date])

Note:

EOMONTH function does not accept a range of data. It returns

the #VALUE error. We, however, can force it by adding a zero

(SportSales[Date]+0) to the range.

The EOMONTH function returns an array of the last day of a

month given a date (refer to Figure 7.30).

Figure 7.30: EOMONTH return an array of the last date in months

When we compare the calculated end-of-month dates (from

the preceding step) to the sales dates, we return an array of

TRUE and FALSE.

The FILTER function is used to filter the rows where the

values from the preceding step are TRUE.

Conclusion

In this chapter, we learned one of the easiest-to-understand and

use lookup functions in Excel—the FILTER function. It is mostly

recommended when you want to return multiple values.

The FILTER function stands as a powerful tool within the Excel

arsenal, providing users with a dynamic and efficient means of

extracting specific data subsets from extensive datasets.

Through this chapter, we have explored the intricacies of the

FILTER function, delving into its syntax, parameters, and real-

world applications.

By harnessing the capabilities of the FILTER function, Excel users

can streamline their data analysis processes, enhancing both

accuracy and efficiency. This function empowers users to

effortlessly retrieve relevant information based on complex

criteria, enabling informed decision-making, and facilitating

comprehensive insights into their data.

In the next chapter, we shall learn about Power Query.

Points to remember

The FILTER function works seamlessly with other Excel

dynamic arrays functions like SORT, UNIQUE, and TRANSPOSE,

allowing you to create complex data manipulation

workflows.

The FILTER function is non-volatile. Unlike some other

functions that recalculate every time you make a change,

the FILTER function recalculates only when the underlying

data or criteria change, improving overall worksheet

performance.

The FILTER function does not accommodate the AND/OR

functions. So, in case of multiple criteria use an asterisk (*)

to invoke the AND operation and a Plus sign (+) to invoke an

OR operation.

The FILTER function can handle various data types, including

numbers, text, dates, and more, making it suitable for a

wide range of data analysis tasks.

Quiz

1. Which parameter of the FILTER function is used to display a

custom message or value when no matching results are

found?

a. array

b. criteria

c. [if_empty]

d. [include]

2. Which of the following is NOT a benefit of using the FILTER

function over traditional filtering techniques?

a. Dynamic array spill

b. Compatibility with other dynamic array functions

c. Volatile recalculations

d. Simplified multiple criteria handling

3. What Excel error is returned by the FILTER function if no

matching results are found based on the criteria?

a. #REF!

b. #VALUE!

c. #CALC!

d. #NUM!

4. What Excel function can be used to re-order the results

Column of the FILTER function?

a. SORT

b. SUM

c. VLOOKUP

d. CHOOSE

5. Which of the following formulas uses the FILTER function to

extract rows from a table where the “Region” column is equal

to “East”?

a. =FILTER(Table1, “Region”, “East”)

b. =FILTER(Table1, “Region”=”East”)

c. =FILTER(Table1, Table1[Region]=”East”)

d. =FILTER(Table1, “East”, “Region”)

Answers

1. [if_empty]

2. Volatile recalculations

3. #CALC!

4. CHOOSE

5. =FILTER(Table1, Table1[Region]=”East”)

CHAPTER 8

Power Query: One-Stop

Solution

Introduction

This chapter will discuss one of the game-changing tools in Excel

that promises to revolutionize the way we handle data retrieval

and transformation — Power Query.

Often hailed as the one-stop solution for data lookup, Power

Query empowers users to seamlessly connect, reshape, and

cleanse data from various sources, transforming raw information

into valuable insights with remarkable efficiency and ease.

Like the FILTER function, Power Query has the flexibility to return

a subset of data, not just a single entry, which is important for

creating dynamic reports.

In Excel 2010 and Excel 2013 versions, the Power Query feature

is not integrated by default. You need to download and install the

Power Query add-in, which can be found on the add-in on the

Microsoft Download Center. Once installed, you’ll find the Power

Query option in the Power Query tab on the Excel ribbon.

Structure

In this chapter, we will discuss the 15 scenarios where we can

Power Query:

Installing the Power Query add-in for Excel 2010 and Excel

2013

Exact Lookup

Return multiple results and Multiple columns.

Approximate Lookup

Lookup using table joins.

Looking up the top or bottom n items

Lookup using the List function.

Looking up Weekday vs. Weekend data

Looking up Data that excludes Holidays.

Looking up Items repeated N times.

Return end of Month date items Only

Fuzzy Lookup

Installing the Power Query add-in for

Excel 2010 and Excel 2013

Here’s a guide on how to do it:

For Excel 2010:

Download the Power Query Add-in:

Go to the Microsoft Download Center.

Search for “Power Query for Excel 2010” and download

the appropriate version (32-bit or 64-bit) based on your

Excel version and system architecture.

Install the Add-in:

Run the downloaded installer.

Follow the on-screen instructions to install the Power

Query add-in. Make sure Excel is closed during this

process.

After installation, open Excel 2010.

Enable the Add-in:

Click File tab in Excel.

Select Options.

In the Excel Options dialog box, click Add-Ins on the left

sidebar.

In the Manage box at the bottom, select COM Add-ins

and click Go.

Check the Microsoft Office Power Query for the Excel

option.

Click OK to enable the add-in.

For Excel 2013:

Power Query is already integrated, but you might need to enable

it.

Here is how to enable Power Query:

Click File tab in Excel.

Select Options.

In the Excel Options dialog box, click Add-Ins on the left

sidebar.

In the Manage box at the bottom, select COM Add-ins and

click Go.

Check the Microsoft Office Power Query option.

Click OK to enable Power Query.

With Power Query enabled, you can access it from the Data

tab in the Ribbon. You’ll see options like Get & Transform and

Get Data there.

The first step in using Power Query is importing data into its

editor. There are two ways of importing data as follows:

If your data is in the Excel workbook, go to the “Data” tab

and select “From Table/Range” if your data is in a structured

table.

If your data is in a different workbook or different format

(CSV, text file, database, web source, and more), go to the

“Data” tab, select “Get Data,” and choose the appropriate

source.

Note:

If you’re connecting to a different data source, a Navigator

window will appear. Navigate to the specific file or database,

select the table or query you want, and click Load or Transform

Data to open the Power Query Editor.

Exact Lookup

To use Power Query to do an exact lookup, we need to have both

the criteria and lookup data in tables.

For example, in Figure 8.1, we want to get the date for any

debtor in cell E2:

Figure 8.1: Power Query exact match lookup

Here are the steps to follow:

1. Convert the cells containing the criterion to a table. Name

the table criteria as shown in Figure 8.2:

Figure 8.2: Create a Criterion table

2. Convert the data to look up into a table as well and name it

tblDebtors, as shown in Figure 8.3:

Figure 8.3: Create a Lookup data table

3. Load the criterion table to Power Query first. To do this, click

anywhere on the table ► Go to the Data tab ► Click From

Table/Range (see Figure 8.4):

Figure 8.4: Loading the Criterion Table to Power Query Editor

4. Go to the Power Query Editor and load out the criteria table as

a connection only, as shown in Figure 8.5:

Figure 8.5: Loading Out the Criterion Table as a connection only

5. Follow the same procedure as outlined in Step 3 to load the

data table in Power Query. By now, you should see the

Criteria and Lookup Table in Power Query Editor, as shown in

Figure 8.6:

Figure 8.6: Criteria and Lookup Table in Power Query Editor

6. Go to the Debtors’ table and filter with the first debtor, as

shown in Figure 8.7:

Figure 8.7: Apply Filter on the Lookup table

7. Convert the criterion table into a value by right-clicking the

Value and Drilling down, as shown in Figure 8.8:

Figure 8.8: Convert the Criteria table to a Value

8. Replace the Filtered value in Step 6 above with the criteria

value, as shown in Figure 8.9:

Figure 8.9: Replace Filtered Value with Criterion Value

9. Since we want to return the date value, we should select

and remove other columns, as shown in Figure 8.10:

Figure 8.10: Replace Filtered Value with Criterion Value

10. Close and load the retrieved date (see Figure 8.11):

Figure 8.11: Load out the returned data

11. The final step is to load out the filtered Customer/debtor’s

date not as a connection but to an existing worksheet (see

Figure 8.12):

Figure 8.12: Load data to an existing worksheet

Note:

To look up another customer/debtor’s date, just replace the

name. Then, go to the Data tab. In the queries and

connection group, click Refresh All.

Power Query stores and remembers all the steps, so there’s

no need to repeat them when the criteria change.

Return multiple results and multiple

columns

Now, let us assume that we have multiple transactions for the

debtors, and we want to return all transactions and multiple

columns, as shown in Figure 8.13:

Figure 8.13: Power Query returns Multiple items and multiple Columns

Here are the steps to follow:

You will follow the same steps as outlined earlier, except for a

small change in Step 9.

In Step 9, where we were removing unwanted columns, this time,

we will only remove the debtor’s column, as shown in Figure

8.14:

Figure 8.14: Allowing multiple columns to be returned

Steps 10 and 11 in the previous section remains unchanged.

Approximate Lookup

Unlike in Excel, Power Query does not have a VLOOKUP or

XLOOKUP function that can do an approximate lookup.

In this section, we will learn the steps to use to lookup grades

using an approximate lookup, as shown in Figure 8.15. Please

note your grades table needs to be sorted in ascending order:

Figure 8.15: Power Query Approximate Match

Here are the steps to follow:

1. Load the grades table (tblGrade) as a connection only and

then load the exams table (tblExams). Then, follow Steps 3–5

outlined in the preceding section (see Figure 8.16):

Figure 8.16: Name the tables and load them to Power Query

2. Click exams table, go to the Combine tab, and append

queries as new (see Figure 8.17):

Figure 8.17: Appending Queries in Power Query

3. Append the exams table (tblExams) and grade tables

(tblGrade) (see Figure 8.18):

Figure 8.18: Appending two tables

4. On the appended query, go to the Add Column tab and add an

Index Column. We will use this to sort the data later (see

Figure 8.19):

Figure 8.19: Adding an Index Column to Appended Query

5. Sort the marks in ascending order (see Figure 8.20):

Figure 8.20: Sort the marks in Ascending order

6. Click Grade Column, go to the Transform tab, then in the Fill

options, and click Down (see Figure 8.21):

Figure 8.21: Fill down the grades

7. Go to the Students Column and Filter out the null values.

Just untick the null values.

8. Go to the Index column and sort it in ascending order.

9. Highlight the Grades table, then go to the Home tab, under

the Remove columns options, and click Remove other

columns.

10. Click appended query, go to the Home tab, and then under the

Close and Load options, click Close & Load To (see Figure

8.22):

Figure 8.22: Load the grades from the Approximate Lookup

11. Load the grades as a table next to the exams table (see

Figure 8.23):

Figure 8.23: Load the grades next to the exams table

Lookup using table joins

In Power Query, one of the most important things to learn is the

different forms of table joins. In this example, we are going to

use only two joins:

Inner Join: Only the rows with matching values in both

tables are included in the result.

Left Anti-join: Only rows from the left (or first) table are

included in the result.

In the following example, see Figure 8.24, we want to look up

from the tblCars, the customers whose cars were serviced

(tblServiced) (happy customers) and those with un-serviced cars

(unhappy customers):

Figure 8.24: Looking up data using table joins

Here are the steps to follow:

1. Load the Cars table (tblCars) and Serviced tables

(tblServiced) as a connection only. Follow Steps 3–5 in the

Exact Lookup section previously mentioned.

2. Click Cars table and go to the Home tab. Under the Combine

group, select Merge queries, and then select Merge Queries as

New (see Figure 8.25):

Figure 8.25: Merging Queries

3. In the Merge pop-up Table, Select tblServiced from the

second dropdown menu. Then select the Car Serviced column

from the tblCars and the Serviced Cars column from the

tblServiced table. Finally, from the Join kind, select Inner Join.

This will only result in happy customers’ data (see Figure

8.26):

Figure 8.26: Inner Join table merge

4. Rename the query to HappyCustomers, select the customer

column, and click remove other columns (see Figure 8.27):

Figure 8.27: Renaming queries

5. Repeat the preceding Steps 1–3 to create a new merged

query. This time instead of selecting an inner join, select a

Left Anti-join. This will only result in unhappy customers’

data whose cars were not serviced (see Figure 8.28):

Figure 8.28: Left Anti-Join table merge

6. Rename the query to UnhappyCustomers, select the customer

column, and click Remove other columns.

7. Lastly, load the two new queries as tables to an existing

worksheet.

Looking up the top or bottom n items

To look up the top/bottom n items dynamically, we will use

almost the same steps as those used in the Exact lookup section

with a slight change.

For example, Figure 8.29 shows how to look up the top five

creditors:

Figure 8.29: Lookup top five creditors

Here are the steps to follow:

1. Load the Top 5 table (tblTop) as a connection only, and then

load the creditors table (tblCreditors). Follow Steps 3–5 in

the Exact Lookup section previously mentioned.

2. Convert the tblTop table into a value by right-clicking the

value and then drilling down. Refer to Step 7 in the Exact

Lookup section previously mentioned.

3. Click creditors table, go to the Home tab, and under the Keep

Rows options, select Keep Top Rows. In the pop-up window,

type 5 under the number of rows (see Figure 8.30):

Figure 8.30: Keep the top five rows

4. Go to the View tab and click Advanced Editor (see Figure 8.31).

The reason for this step is to replace the hardcoded five

rows with our criteria in the tblTop table:

Figure 8.31: Invoke the Advanced Editor

5. Replace the hardcoded 5 with our dynamic criteria in the

“tblTop” table (see Figure 8.32):

Figure 8.32: Replace hardcoded criteria with dynamic one

6. Load the filtered creditors as a table in the existing

worksheet.

7. To test if the dynamic Filter is working, change the top 5–7

and refresh the query.

Note: To lookup the bottom n items, follow the same steps as

mentioned previously, but in step 3, select “Keep the bottom

rows”

Lookup using the List function

There are over 45 list-related functions in Power Query. Let us

learn how to use a few to look up data.

We are going to look up the Grades and tutor tables, as shown in

Figure 8.33:

Figure 8.33: Approximate and Exact functions using List function

Here are the steps to follow:

1. Load all the three tables as a connection only.

2. Select the Class table (tblClass), go to the Add Column tab, and

click Custom Column (see Figure 8.34):

Figure 8.34: Create a Custom Column

3. Rename your column Tutor and write the function, as shown

in Figure 8.35:

Figure 8.35: Exact Lookup using List.PositionOf function

tblTutor[Tutor]

{ List.PositionOf(tblTutor[Subject],[Subject]) }

Here is how the function works:

tblTutor[Tutor] ► returns a list of all the tutors in the lookup

tblTutor table. In Power Query, you can access the columns

of a table using the square bracket notation ([ColumnName]).

After retrieving the column, we need to use the position

index operator, that is, the curly braces ({}) to return the

row number where the subject in the tblclass matches the

subject in tblTutor

List.PositionOf(tblTutor[Subject],[Subject]) ► To dynamically

return the row per subject, we use the function

List.PositionOf. This function is used to find the position of

the current value ([Subject]) within the list of values in the

Subject column (tblTutor[Subject]) of the table. It returns the

position (index) of the value within the list.

This expression works like the INDEX and MATCH combo

function we learned in Chapter 3, Index and Match. We are

looking up the column first from the tblTutor and then the

row where the subject in the tblclass matches the subject in

the tblTutor

Now, let us see how to do an approximate match by looking up

the grades.

Here are the steps to follow:

1. Create another custom column and rename it grades.

2. Write the following functions as shown in Figure 8.36:

List.Last(

Table.SelectRows(Grades,(IT)=> IT[Marks]<=[Marks])[Grade])

Figure 8.36: Approximate Lookup using Table.SelectRows and List.Last

Here is how the function works:

Table.SelectRows(Grades, (IT)=> IT[Marks]<=[Marks]) ► This

function filters the rows of the “Grades” table based on a

condition. The second argument, (IT) => IT[Marks] <= [Marks],

is an inline function (also called a lambda function) that

specifies the filtering condition.

Here’s what’s happening:

(IT) is the custom variable to represent the Internal

table “Grades”, which we shall be filtering inside the

“tblClass” table.

IT[Marks] refers to the value in the “Marks” column of

the internal table.

[Marks] refers to the value of the marks in the “tblClass”

per row.

So, the filtering condition checks whether the values in the

“Marks” column of the “Grades” table (IT[Marks]) are less than or

equal to the value of the “Marks” in “tblClass” and returns a

table of those Marks and corresponding Grades.

Table.SelectRows(Grades,(IT)=> IT[Marks]<=[Marks])[Grade]►

Since we are only interested in the grades, we use the field

column operator ([]) to get a grades list.

Finally, we look up the last grade in the list using the

List.Last function.

Looking up Weekday versus Weekend

data

To look up weekend or weekday data in Power Query, we use the

Date.DayOfWeek function.

For example, using data shown in Figure 8.37, let us see how to

look up whom we gave credit on the weekends and weekdays.

Figure 8.37: Lookup the Weekday and Weekend data

Here are the steps to follow:

1. Load the table to Power Query.

2. To look up Weekday data, go to the View tab, click Advanced

Editor, and write the following function:

let

Source = Excel.CurrentWorkbook(){[Name=”tblCreditors”]}

[Content],

#”Filtered Rows” =

Table.SelectRows(

Source, each Date.DayOfWeek([Date])>=1 and

Date.DayOfWeek([Date])<6

)

in

#”Filtered Rows”

Here is how the function works:

The let clause is used to define a set of named steps, each

of which represents a specific transformation or calculation.

Source = Excel.CurrentWorkbook(){[Name=”tblCreditors”]}

[Content] ► assigns the contents of a table named

“tblCreditors” from the current Excel workbook to the

variable “Source.”

Define a new “Filtered Rows” step using the Table.SelectRows

function to filter the rows of the “Source” table based on a

specific condition involving the day of the week.

Date.DayOfWeek([Date]) > 1 and Date.DayOfWeek([Date]) < 6

checks if the day of the week of the “Date” column is

greater or equal to 1 (Monday) and less than 6 (Friday). This

effectively filters out rows corresponding to weekends

(Saturday and Sunday).

in #”Filtered Rows”► The in keyword indicates the output of

the script. This line specifies the result of the script, which is

the table generated by the “Filtered Rows” step.

Note

Date.DayOfWeek function returns a number (from 0 to 6)

indicating the day of the week of the provided Date.

It treats Sunday as the first day of the week.

Therefore, to look up only weekend data, replace the

previously provided Table.SelectRows function with the

following function, which returns only the day of the week of

the Date equal to 0 or 1, that is (Sunday and Saturday):

Table.SelectRows(Source, each Date.DayOfWeek([Date])=0 or

Date.DayOfWeek([Date])=6)

Looking up date that excludes holidays

Assuming we have the following harvest data and holiday dates,

as shown in Figure 8.38. Let us learn how to look up harvested

data excluding holidays.

Figure 8.38: Lookup dates excluding holidays

Here are the steps to follow:

1. Load the two tables as a connection only.

2. Go to Queries and Connections, right-click the harvested

table, and click Merge (see Figure 8.39):

Figure 8.39: Merging Queries

3. On the Merge pop-up window, select the Holidays table in

the second drop-down menu. Then, select the Date column

in the harvested table and holidays. Finally, select the Left

Anti-join to exclude the holidays from the harvested table

(see Figure 8.40):

Figure 8.40: Merging Queries

4. Finally, delete the holidays column and load out the data.

Looking up items repeated N times

Using the data shown in Figure 8.41, let us learn how to lookup

the items repeated two times from the Sports Sale table.

Please note that we want a solution where we can replace the 2

with any number, and Power Query will look up the items.

Figure 8.41: Lookup items repeated 2 times

Here are the steps to follow:

1. Load the two tables as a connection only.

2. Convert the RepeatN table to a value ► Right-click the value

and drill down (see Figure 8.42):

Figure 8.42: Convert table to value

3. Go to the SportSales table and select the Items column. Then,

go to the Transfo+rm tab and click GroupBy. Under the

Operation, select CountRows and click OK (see Figure 8.43):

Figure 8.43: Group By Items

4. Go to the new count column and filter by 1 (see Figure

8.44):

Figure 8.44: Filter by any Count

5. Replace the hardcoded filter criteria with our RepeatN value.

Go to the View tab and click Advanced Editor. Delete the

hardcoded filter (1) and type RepeatN (see Figure 8.45):

Figure 8.45: Filter by any Count

6. Delete the Count column and load the data (see Figure 8.46):

Figure 8.46: Delete the count column and load the data

Return end-of-month date items only

In the previous chapter on the FILTER function, we learned how to

look up transactions occurring at any end of the month. Now, let

us see how we can implement the same using Power Query.

Using the data shown in Figure 8.47, return only the creditors

paid at any end of the month:

Figure 8.47: Lookup End of the Month transactions

Here are the steps to follow:

1. Load the creditors’ table in Power Query.

2. Go to the View tab and click Advanced Editor.

3. Write the function as shown in Figure 8.48:

Figure 8.48: M Code for Selecting End of the Month items

Here is how the function works:

The let clause i s used to define a set of named steps,

each of which represents a specific transformation or

calculation.

Source = Excel.CurrentWorkbook(){[Name=”Creditors”]}

[Content] ► assigns the contents of a table named

“Creditors” from the current Excel workbook to the

variable “Source”.

Define a new “Filtered Rows” step using the

Table.SelectRows function to filter the rows of the

“Source” table based on a specific condition.

Date.Day([Paid Date]) returns the day part of the “Paid

Date” column, while Date.DaysInMonth([Paid Date]) returns

a number from 28 to 31 indicating the number of days

in the month.

Date.Day([Paid Date]) = Date.DaysInMonth([Paid Date])

check if the day of the paid date is equal to the total

number of days in that month. If they are equal, the

expression will return TRUE, indicating that the payment

date falls on the last day of the month.

Table.SelectRows function only returns rows where the

preceding condition is TRUE.

4. Load out the filtered table to an existing worksheet.

Fuzzy Lookup

Performing a fuzzy match in Power Query is easier and far more

intuitive than using functions.

Fuzzy matching refers to the technique of comparing non-

identical text strings based on their similarity. Instead of exact

matches, fuzzy matching evaluates the resemblance between

strings, allowing for the identification of similar or closely related

terms within datasets.

For example, how do we lookup the staff in tblDirty using the

Lookup Company column in the tblClean, as shown in Figure 8.49:

Figure 8.49: Fuzzy Lookup

Here are the steps to follow:

1. Load the two tables as a connection only.

2. Click tblDirty and click Merge.

3. Select the tblClean, and then select the columns to Match, as

shown in Figure 8.50.

4. Click Use Fuzzy Matching to perform the merge and expand the

fuzzy matching options. These allow you to fine-tune the

matching process. A lower similarity threshold lowers the

strictness of the fuzzy matching algorithm.

Figure 8.50: Left Outer Fuzzy Lookup

5. Expand the Merged table (see Figure 8.51) and select the

lookup column only.

Figure 8.51: Expand the Merged table

6. Delete the Dirty column and load out the table.

Conclusion

In this chapter, we learned how to solve different lookup

problems using a powerful data transformation and preparation

tool — Power Query. It is mainly recommended when handling

large data sets.

One of the setbacks is that creating Power Query queries and

connections may take more time upfront than using simple Excel

formulas. As we have learned, it involves many steps.

Another setback is that, unlike the formulas that recalculate in

real-time and provide instant results as you edit the spreadsheet,

Power Query requires you to refresh your queries in case your

data changes. You can set the queries to refresh after a specific

time, but it would be a waste of resources if you have complex

queries.

In the next Chapter, we are going to learn how we can leverage

the use of AI in Mastering Excel.

Points to remember

If you’re working with a relatively small dataset and need to

perform simple lookups, Excel formulas are usually faster to

set up and use. However, as the dataset size and complexity

increase or when extensive data transformation is required,

Power Query becomes a more efficient and scalable option.

While there are many steps involved, Power Query provides

a visual, user-friendly interface that allows users to interact

with data transformation. The steps are more intuitive than

complex formulas.

You can create reusable Power Query queries that can be

applied to different datasets or shared across teams,

ensuring consistency in data preparation and lookup

processes.

Multiple choice questions

1. What is the primary purpose of Power Query?

a. Data Visualization

b. Data Transformation and Preparation

c. Statistical Analysis

d. Data Backup and Recovery

2. Which of the following is NOT a step you can perform in

Power Query?

a. Filtering rows

b. Creating pivot tables

c. Merging tables

d. Removing duplicates

3. Which tab in Excel allows you to access Power Query?

a. Data

b. Insert

c. Format

d. Home

4. Which operation in Power Query allows you to combine data

from multiple tables based on a common column?

a. Merge

b. Concatenate

c. Append

d. Group By

5. Which of the following is a valid data source for Power

Query?

a. Only Excel files

b. Only CSV files

c. Excel files, CSV files, Databases, Web sources, and more

d. Only Word documents

6. What does the term “Fuzzy Matching” mean in Power Query?

a. Matching identical strings

b. Matching non-identical text based on similarity

c. Matching case-sensitive text

d. Matching numerical values

Answers

1. b

2. b

3. a

4. a

5. c

6. b

CHAPTER 9

ChatGPT: Using ChatGPT to solve

lookup issues

Introduction

In this chapter, we will discuss how we can incorporate artificial

intelligence (AI) into solving lookup problems in Excel.

Before we learn about external artificial intelligence, we want to

acknowledge some of the inbuilt AI features like Flash Fill (which uses

pattern recognition), Column by Example Option in Power Query

(also uses pattern recognition and writes a reusable M Code

function), Analyze Data Option (creates charts and analysis),

Recommended Charts (shows an array of charts you can create from

data), and Recommended Pivot Tables (shows an array of pivot table

analysis you can create from your data).

ChatGPT represents a cutting-edge development in language

generation pioneered by OpenAI. It falls under the GPT (Generative

Pre-trained Transformer) family of models. Utilizing a transformer

architecture, GPT models can comprehend and generate text

resembling human language, drawing upon the input they are

provided with.

The most critical skill when using ChatGPT is prompting. A prompt is

a text you provide to start a chat or ask for a specific response from

the model. When you interact with ChatGPT, you start the

conversation with a prompt — a question, a statement, or any text

conveying your intent.

The quality and specificity of your prompt often influence the

usefulness and relevance of the responses you receive from ChatGPT.

Providing clear and detailed prompts can result in more accurate and

helpful answers.

Structure

In this chapter, we will discuss the following five ways to make better

use of ChatGPT:

Setting up ChatGPT for optimal results

Mastering the Perfect ChatGPT Prompt

Increasing Accuracy of ChatGPT Prompts

Tips and tricks to advanced ChatGPT usage

Beyond ChatGPT

Setting up ChatGPT for optimal results

The first step in getting the best out of ChatGPT is creating custom

instructions, which helps avoid repeating preferences in every

prompt.

Here are the steps to follow:

1. To access your custom instruction setting, click on your profile

and then custom instructions, as shown in Figure 9.1:

Figure 9.1: Accessing Custom Instructions

2. Tell ChatGPT something about yourself. This helps ChatGPT to

give responses more relevant to your work/goals/interests. For

example, see my example in Figure 9.2:

Figure 9.2: Provide ChatGPT with a context of who you are

3. The next step is to tell ChatGPT how you would like it to

respond. Would the responses be formal/casual, long/short,

neutral/opinionated? For example, see my example in Figure

9.3:

Figure 9.3: Provide ChatGPT with instructions on how you would like your responses

to be

4. Save and close, and now you can start prompting. But before

then, let us learn how to create the instructions.

Note:

ChatGPT is known for proving the wrong responses from time to

time. As a novice in the field, you may not notice these

immediately, but you can reduce the chances of wrong

responses by asking it to include the confidence levels and

source URL.

Verify the response by cross-referencing it with reliable sources

(URL).

See Figure 9.4 on configuring the confidence level and URL setting in

ChatGPT.

Figure 9.4: Ask for confidence level and factual URLs

Mastering the perfect ChatGPT prompt

As we have learned in the introduction, the quality and specificity of

your prompt determine the usefulness and relevance of the

response.

Let us now learn the four building blocks that make up a good

prompt, that is, Task, Context, Exemplar, and Persona.

1. Task

It is mandatory to have a task in your prompt. This is indicated

by starting your prompt with an action verb.

For example, “Generate a list of Excel inbuilt lookup functions

that can use multiple criteria to get data.”

The preceding prompt will list all lookup functions and an

example syntax on how you can use it to do a multiple criteria

lookup.

The only problem with the preceding prompt is that it will give

only functions in Excel and not Power Query because that is the

context we have given it. So, what is the context?

2. Context

ChatGPT can give an infinite amount of information, which may

not be what you are looking for. Therefore, you need to limit the

endless possibilities.

One way that ChatGPT limits the possibilities is by looking at the

custom instructions we set up in the previous section.

Additionally, you need to indicate the Environment as a linting

factor.

For example, if you need Power Query Lookup functions, then

the prompt would be: “Generate a list of Power Query lookup

functions that can use multiple criteria to get data.”

The environment can be narrowed to a specific function. For

example, “Generate a list of ways the FILTER function in Excel

can use multiple criteria to get data.”

Another way of fine-tuning your context is to tell ChatGPT the

user’s background. For example, “Write the easiest way for a

novice to get data using multiple criteria in Power Query”. By

indicating the user is a novice, ChatGPT will limit the responses

given.

3. Exemplar

These are nothing more than examples in which ChatGPT can

learn more about the required response. Including examples in

your prompt significantly leads to more accurate results.

For example, if you want the formula to include the plus sign (+)

instead of the OR function (as we learned the FILTER function in

Chapter 7, FILTER: The Ultimate Lookup Function), then the

prompt would be “Write a multiple criteria INDEX/MATCH function

using the plus sign instead of the OR function.”

4. Persona

This is who you want the AI to be when executing a task. Think

of a famous person whose work is available online and can be

easily accessed by ChatGPT. Personas provide ChatGPT with the

writing style, domain, and expertise level required when

responding to a prompt.

For example, in Excel, the persona can be a famous Microsoft

MVP (most valuable professional).

Here is an example of a prompt including personas:

Write a Power Query approximate lookup function. Write it as

the famous Excel Expert Bill Jellen, aka “Mr. Excel”, or Mike

Girvin, aka “Excel is Fun”.

As shown in Figure 9.5, ChatGPT will ensure that the response is

relevant and consistent with the writing styles of the persona(s)

provided.

Figure 9.5: Provide ChatGPT with Persona

Note

It is mandatory to have a task in your prompt.

It is important to include a relevant context and exemplar.

It is good to have a persona.

Increasing Accuracy of ChatGPT Prompts

As we have learned in the previous section on setting up ChatGPT,

accuracy is not guaranteed, and this tends to frustrate novices who

are unable to troubleshoot the responses.

Other than requesting for confidence level and URL in the responses,

let us investigate four more ways to increase accuracy:

1. Self-Critic

Ask ChatGPT to critique itself and optimize its response for

accuracy.

For example, in the previous section of Mastering prompt, we

asked for an approximate Lookup M code using Bill Jellen or Mike

Girvin’s style. Assuming we are new to M Code, we want

ChatGPT to help us troubleshoot the code before we use it.

Here is a follow-up self-critic question we can ask, as shown in

Figure 9.6:

Figure 9.6: Ask follow-up self-critic questions

2. Crisp and Concise

Forcing the ChatGPT to revise the response and limit it to

specific steps or words can help increase its response accuracy.

While still working on the M Code function for approximate

Lookup, we can further ask about the steps reduced to three, as

shown in Figure 9.7:

Figure 9.7: Limit the steps or words of the response

Note: The more constraint you give ChatGPT, generally the

more creative the response will be. Try to add a constraint every

time and test your functions to see which one will be optimized

for speed and accuracy.

3. Ask ChatGPT to self-prompt

One of the ways to get the best out of ChatGPT is by allowing it

to self-prompt. This ensures it optimizes its prompts and leads

to richer responses.

For example, how can ChatGPT assist you in mastering the

lookup functionality in Excel? (see Figure 9.8):

Figure 9.8: Self-prompting in ChatGPT

Note: Whether you are a student or a trainer, the above self-

prompting and follow-up questions can help you create

productive strategies for mastering any concept in Excel.

4. Understand ChatGPT Limitations

Knowing the current weaknesses and their walk-around will

drastically increase your accuracy of responses.

Here is a list of limitations:

Understand that the accessible version of ChatGPT’s knowledge

is based on its training data up until the last update in

September 2021. It might not have access to real-time data or

recent events.

While ChatGPT has been trained on diverse topics, it might not

be as specialized as an expert in a specific field. Its responses

should be verified with domain-specific sources for accuracy.

ChatGPT suffers from “AI Hallucination”, that is, the tendency to

generate answers that sound correct but are factually wrong or

biased.

The free version is limited to text only. It can’t view, interpret, or

analyze images, charts, or non-textual data.

Tips and tricks to advanced ChatGPT usage

As we have learned so far in this chapter — Prompting is the ultimate

skill you need to develop to maximize the use of ChatGPT.

Here are some of the helpful ways to advance your skills:

1. Set a period per day to learn prompting. Start from this free

website: https://learnprompting.org/docs/intro

2. Start applying prompts frequently. This can be done by

identifying a frequent manual task and then creating and

optimizing a prompt to automate it. For example, if you are

required to consolidate data from multiple worksheets daily,

create a prompt that will generate an M code for you that will

automate this.

3. Create a database of valuable prompts you have created or

found online. Organize the prompts by the problems they will

help resolve instead of functions for easy access and use. For

example, store prompts under the header “How to return

multiple items in a lookup” instead of “INDEX/MATCH prompts.”

4. Set a daily reading period where ChatGPT is solving real-world

cases. See the example in the following link:

https://blog.enterprisedna.co/chat-gpt-for-excel-a-beginners-

guide-with-examples/

5. Join a Newsletter to be kept up to date with the latest

developments in AI. The Big Brains Newsletter is a

recommended option. For more information, please visit the

following link:

https://www.bigbraindaily.com/

Beyond ChatGPT

Apart from ChatGPT, a few AI tools and why they are better

alternatives are worth mentioning, as follows:

1. Bing Chat (https://www.bing.com/search?

q=Bing+AI&showconv=1)

Unlike the free version of ChatGPT 3.5, the accessible version of

Bing Chat provides a way to upload a screenshot of your data

and ask AI to analyze it.

https://learnprompting.org/docs/intro
https://blog.enterprisedna.co/chat-gpt-for-excel-a-beginners-guide-with-examples/
https://www.bigbraindaily.com/
https://www.bing.com/search?q=Bing+AI&showconv=1

With the uploaded image, you can point to the AI your data cell

references and where you want to return the results.

Figure 9.9: Uploading Screenshot of Data in Bing

2. AI Excel Bot (https://aiexcelbot.com/?anchor=features)

This is a freemium service with an addon in your Excel

workbook.

3. Formula Bot (https://formulabot.com/)

The advantage is that it has an addon and can upload the

workbook for quicker analysis. Its current limitation is that it can

only execute Python Code and not Excel functions.

4. Install AI addon to Excel.

For our case, we will install the AI-aided Formula Editor. Here are

the steps:

Go to the Insert tab and click Get Add-ins.

Search for the AI-aided Formula Editor and click Add.

Figure 9.10: Adding AI-aided formula editor

https://aiexcelbot.com/?anchor=features
https://formulabot.com/

Sign in using your Gmail, and you are ready to start using

it.

You can upgrade to a premium subscription or use the

limited free version to generate a formula or explain a

formula.

Conclusion

In this chapter, we explored the integration of artificial intelligence,

specifically ChatGPT, to tackle lookup challenges in Excel.

Understanding the nuances of prompting and leveraging ChatGPT

effectively is pivotal for accurate and tailored responses.

The chapter introduced us to ChatGPT’s capabilities, emphasizing the

importance of crafting precise prompts to yield accurate responses.

Noteworthy mentions of built-in AI features like Flash Fill and Power

Query options provided a contextual backdrop for our exploration.

Your journey with ChatGPT doesn’t end here; it’s only the beginning.

Readers are invited to share their experiences or pose questions in

Excel forums. Let this be a two-way conversation. Ask the experts to

share how they have applied ChatGPT to Excel tasks and what

challenges they faced. Their insights can enrich your learning and

that of others in the community. Ask questions, share your

successes, and let’s learn from each other.

Lastly, readers are encouraged to embark on their learning odyssey.

They can explore reputable online resources, join forums, or

participate in tutorial sessions. The world of ChatGPT and Excel is

vibrant and constantly evolving. By seeking knowledge beyond these

pages, you empower yourself to navigate the ever-changing

landscape of AI-driven data solutions.

Points to remember

Clear and Specific Prompts: Craft precise prompts with

specific instructions, using action verbs and detailing the

desired outcome. Clarity in your queries ensures accurate and

relevant responses from ChatGPT.

Provide Context: Clearly define the context of your Excel

analysis, specifying the type of data and the scope of your task.

Contextual information helps ChatGPT tailor its responses to

your specific data needs.

Engage in Dialogue: Treat ChatGPT as a collaborative partner.

Ask follow-up questions and seek clarification if the initial

response is not exact. Iterative conversations guide ChatGPT

toward the precise solution you’re looking for.

Verify and Learn: Always verify ChatGPT’s responses by cross-

referencing with reliable sources and conducting additional

analyses in Excel. Human oversight is crucial for accuracy. Treat

ChatGPT’s suggestions as a starting point for your own

exploration and learning.

Multiple choice questions

1. What is the significance of clear and specific prompts when

using ChatGPT in Excel tasks?

a. Clear prompts enhance ChatGPT’s vocabulary

b. Specific prompts ensure accurate and relevant responses

c. Clear prompts are essential for ChatGPT to function offline

d. Specific prompts are only necessary for complex Excel

tasks

2. Why is providing context crucial when interacting with ChatGPT

for Excel analyses?

a. Context enhances ChatGPT’s general knowledge

b. Contextual information helps ChatGPT tailor responses to

specific data needs

c. Providing context increases ChatGPT’s processing speed

d. Context is irrelevant when using ChatGPT for Excel tasks

3. How should you approach ChatGPT’s responses if they are not

precisely what you need?

a. Ignore the response and rephrase the same question

b. Treat ChatGPT’s responses as definitive answers

c. Engage in a dialogue, ask follow-up questions, and seek

clarifications

d. Discontinue the conversation and start a new one

4. What role does human oversight play in the interaction with

ChatGPT for data analysis in Excel?

a. Human oversight is unnecessary; ChatGPT is always

accurate

b. Human oversight ensures ChatGPT’s ethical behavior

c. Human oversight is indispensable for verifying ChatGPT’s

responses and ensuring accuracy

d. Human oversight only applies to beginners, not

experienced users

5. Which of the following best describes the relationship between

ChatGPT and the user in Excel tasks?

a. ChatGPT is a standalone solution, requiring no user input

b. ChatGPT’s responses should be accepted without

verification

c. ChatGPT and the user engage in a collaborative

partnership, with the user providing clear prompts and

oversight

d. ChatGPT can handle Excel tasks independently; user input

is optional

Answers

1. b

2. b

3. c

4. c

5. c

Index

A

absolute cell reference 13, 14

advanced ChatGPT usage

skills 202, 203

advanced filter items

avoiding, in list 88, 89

using, in list 87, 88

AGGREGATE function

using, to lookup numeric data 98, 99

working 99

AI addon

installing, to Excel 203, 204

AI Excel Bot

about 203

reference link 203

AI tools

about 203

AI addon, installing to Excel 203, 204

AI Excel Bot 203

Bing Chat 203

Formula Bot 203

AND function 10

approximate lookup 169-174

approximate match lookup

in array 80

working 81

array

approximate match lookup 80

B

Bing Chat

about 203

reference link 203

bottom n values lookup

about 69, 71

working 70, 71

C

cell addresses lookup

about 105

working 105, 106

cell reference

returning 122, 123

cells range reference 12

ChatGPT for optimal results

setting up 196, 197

ChatGPT prompt

context 198

exemplar 199

mastering 198

persona 199

task 198

ChatGPT prompt accuracy

about 200

crisp and concise 200, 201

limitations 201, 202

self-critic 200

self-prompt 201

column deletion 117

column insertion 116, 117

D

database functions

using, to lookup numeric data 93-95

data from bottom up lookup 118-120

data horizontally lookup 118

data to left lookup 115

data to right lookup 115

data vertically lookup 118

duplicate lookup values

returning 131

working 131, 132

E

exact lookup

about 162

implementing 163-168

exact match default 111, 112

Excel

advanced skills 2-6

learning 2

used, for installing AI addon 203, 204

Excel cell referencing

about 11

types 12

Excel formulas 6, 7

Excel functions

about 6, 7

accessibility 8

arguments 8

built-in 8

compatible 8

composition 7

results 8

Excel intersection operator

using, for two-way lookup 89-92

Excel tables

about 14

creating 15, 16

usage 16, 17, 18

F

FILTER function

AND/OR logics, using 140-142

bottom n item lookup 144, 145

common item list lookup 155

data lookup, with wildcard 146, 147

end-of-the-month date item, returning 156, 157

holiday data lookup, excluding 148, 149

month data lookup 153-155

multiple columns and rows, returning 136, 137

multiple criteria lookup, using 140-142

multiple non-adjacent columns and rows, returning 138, 139

odd/even numbers lookup 149

repeated n items lookup 150, 151

time value lookup 152

top n item lookup 144, 145

uncommon item list lookup 155

week data lookup 153-155

weekday data lookup 147, 148

weekend data lookup 147, 148

weekend data lookup, excluding 148, 149

X item lookup 142-146

year data lookup 153-155

Y item lookup 142-146

Formula Bot

about 203

reference link 203

full column reference 12

full row reference 12

Fuzzy lookup 190-192

H

horizontal lookup 60

I

images look up 101-104

INDEX lookup 48-50

inner join 174

L

last blank cell lookup

about 77

working 78

last/first non-empty cell

returning 129

last match lookup

with criterion 74-76

working 77

last negative number lookup 78, 79

last negative text lookup 78, 79

left anti-join 174

list function lookup

using 179, 180

working 180-182

list item lookup

about 66

unique value lookup 68, 69

working 66-68

lookup functions

classification 19

need for 18, 19

M

MATCH lookup 50, 51

MAX function

using, to lookup numeric data 99, 101

working 100

mixed cell reference 13, 14

MONTH function 10

multiple adjacent columns

returning 113

multiple columns

returning 59

multiple criteria lookup 57-59

multiple non-adjacent columns

returning 114

N

named range reference 13

nesting functions

about 9

complexity, resolving 10, 11

rules 11

working 10

no match values

returning 124

non-adjacent columns

returning 126, 128

working 127

non-contiguous array lookup

about 60, 61, 130

working 62, 130

numeric data lookup

with AGGREGATE function 98, 99

with MAX function 101

with SUMIFS function 95, 96

with SUMPRODUCT function 97, 98

P

pivot table

using, to lookup unique item list 106-108

Power Query

date without holiday lookup 184, 185

end-of-month date item, returning 188-190

multiple columns, returning 168, 169

multiple results, returning 168, 169

repeated n item lookup 185-188

weekday data lookup 182, 183

weekend data lookup 182, 183

Power Query add-in

installing, for Excel 2010 161

installing, for Excel 2013 162

R

relative cell reference 13, 14

repeated item lookup

about 81

working 81-83

reverse-lookup multiple results

about 55

working 55-57

reverse-lookup single result

about 53, 55

working 54

S

Spill Range 113

SUMIFS function

using, to lookup numeric data 95, 96

SUMPRODUCT function

using, to lookup numeric data 97, 98

T

table joins lookup

inner join 174

left anti-join 174

using 174-176

text length lookup

about 64, 65

working 65

three-way lookup

about 52, 53, 124

working 125, 126

top/bottom n item lookup 177-179

two-way lookup 48

types, Excel cell referencing

absolute cell reference 13, 14

cells range reference 12

full column reference 12

full row reference 12

mixed cell reference 13, 14

named range reference 13

relative cell reference 13, 14

U

unique item list lookup

with pivot table 106-108

unique value lookup

about 68, 69

working 69

V

VLOOKUP

about 22

approximate match 23, 24

VLOOKUP myths

about 25

case-sensitive lookup, avoiding 33, 34

case-sensitive partial match lookup, avoiding 32, 33

columns deletion lookup, avoiding 28

columns insertion lookup, avoiding 28

horizontal lookup, avoiding 41-43

last to first search lookup, avoiding 36, 37

left lookup, avoiding 25

multiple criteria lookup, avoiding 26, 27

multiple non-contiguous arrays lookup, avoiding 44, 45

partial match lookup, avoiding 30-32

return multiple columns lookup, avoiding 26

return multiple non-contiguous columns lookup, avoiding 43, 44

return multiple results lookup, avoiding 34, 35

reverse lookup, avoiding 39-41

top or bottom N values lookup, avoiding 37-39

two-way lookup, avoiding 29

W

wildcard lookup

integrating 120, 121

wildcards lookup

characters 63

using 62

working 63, 64

X

XLOOKUP function

working 118

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Excel Environment
	Introduction
	Structure
	Reasons for Learning Excel
	How to Master Excel
	STEP 1: Love Mistakes
	STEP 2: Master the Basics
	STEP 3: Progressive Overload
	STEP 4: Learn to Break your Problem into Small Pieces
	STEP 5: Teach
	STEP 6: Participate in Excel Forums
	STEP 7: Daily Intentional Learning

	Introducing Excel formulas and functions
	Nesting functions: When one is not enough
	Resolving Complexity in Nesting Function
	Nesting Function Rules

	Introducing Excel Cell Referencing
	Types of Cell References

	Introducing Excel Tables
	Importance of having lookup skills
	Classification of Lookup Functions
	Conclusion
	Question

	2. VLOOKUP Is Dead: Or is it?
	Introduction
	Structure
	VLOOKUP exact and approximate match
	VLOOKUP approximate match
	Breaking VLOOKUP myths
	Myth 1: VLOOKUP cannot do a left lookup
	Myth 2: VLOOKUP cannot return multiple columns in a lookup
	Myth 3: VLOOKUP cannot use multiple criteria in a lookup
	Myth 4: VLOOKUP cannot handle the insertion and deletion of olumns in the lookup range
	Myth 5: VLOOKUP cannot do a two-way lookup
	Myth 6: VLOOKUP cannot do a partial match lookup
	Myth 7: VLOOKUP cannot do a case-sensitive partial match lookup
	Myth 8: VLOOKUP cannot do a case-sensitive lookup
	Myth 9: VLOOKUP cannot return multiple results
	Myth 10: VLOOKUP cannot lookup from last to first
	Myth 11: VLOOKUP cannot lookup the top or bottom N values
	Myth 12: VLOOKUP cannot do a reverse lookup
	Myth 13: VLOOKUP cannot do a horizontal lookup
	Myth 14: VLOOKUP cannot return multiple non-contiguous columns
	Myth 15: VLOOKUP cannot lookup multiple non-contiguous arrays

	Conclusion
	Points to remember

	3. INDEX and MATCH
	Introduction
	Structure
	INDEX, MATCH, and the two-way lookup
	Three-way lookup
	Reverse-lookup single result
	Reverse-lookup multiple results
	Multiple criteria lookup
	Returning multiple columns
	Horizontal lookup
	Lookup non-contiguous array
	Lookup using wildcards
	Lookup based on text length
	Lookup items in a list
	Lookup unique value

	Lookup bottom n values
	Conclusion
	Points to remember

	4. LOOKUP
	Introduction
	Structure
	Lookup the Last Match Using a Criterion
	Lookup the Last Blank Cell
	Lookup the Last Negative Number or Text
	Lookup Approximate Match in an Array
	Lookup Most Repeated Item
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	5. Other LOOKUP Methods and Functions
	Introduction
	Structure
	Using the advanced filter to lookup items in/not in a list
	Using Excel Intersection Operator to do a two-way lookup
	Using Database functions to lookup numeric data
	Using SUMIFS, SUMPRODUCT, AGGREGATE, and MAX functions to lookup numeric data
	Looking up images
	Looking up cell addresses
	Using Pivot Table to lookup unique items in a list
	Conclusion
	Points to remember

	6. XLOOKUP
	Introduction
	Structure
	Exact match default
	Easily returns multiple adjacent and non-adjacent columns
	Easily lookup data to the left or right
	Easily accommodates column insertion/deletion
	Easily looks up data vertically or horizontally
	Easily lookup data from the bottom up
	Easily integrates wildcards in the lookup
	Returns a cell reference
	Returns values in case of No Match
	Easily do a three-way lookup
	Easily returns non-adjacent columns
	Returns the last/first non-empty cell
	Easily lookup non-contiguous array
	Easily returns duplicate lookup values
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	7. FILTER: The Ultimate Lookup Function
	Introduction
	Structure
	Return multiple columns and rows
	Return multiple non-adjacent columns and rows
	Easily use multiple criteria lookups using AND/OR
	Easily lookup all X and not Y items
	Easily lookup top or bottom n items
	Easily lookup X or Y and not both
	Looking up data using wildcards
	Looking up weekday or weekend data
	Looking up data that excludes holidays and weekends
	Looking up ODD/EVEN numbers
	Looking up items repeated N times
	Looking up items based on time
	Looking up data based on week number, month, and year
	Lookup common/uncommon items in two lists
	Return end-of-the-month date items only
	Conclusion
	Points to remember
	Quiz
	Answers

	8. Power Query: One-Stop Solution
	Introduction
	Structure
	Installing the Power Query add-in for Excel 2010 and Excel 2013
	Exact Lookup
	Return multiple results and multiple columns
	Approximate Lookup
	Lookup using table joins
	Looking up the top or bottom n items
	Lookup using the List function
	Looking up Weekday versus Weekend data
	Looking up date that excludes holidays
	Looking up items repeated N times
	Return end-of-month date items only
	Fuzzy Lookup
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	9. ChatGPT: Using ChatGPT to solve lookup issues
	Introduction
	Structure
	Setting up ChatGPT for optimal results
	Mastering the perfect ChatGPT prompt
	Increasing Accuracy of ChatGPT Prompts
	Tips and tricks to advanced ChatGPT usage
	Beyond ChatGPT
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Index

