


Seth James Nielson

Discovering Cybersecurity

A Technical Introduction for the

Absolute Beginner



Seth James Nielson
Austin, TX, USA

ISBN 978-1-4842-9559-5 e-ISBN 978-1-4842-9560-1
https://doi.org/10.1007/978-1-4842-9560-1

© Seth James Nielson 2023

This work is subject to copyright. All rights are solely and
exclusively licensed by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter
developed.

The use of general descriptive names, registered names,
trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that
such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to
assume that the advice and information in this book are
believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral

https://doi.org/10.1007/978-1-4842-9560-1


with regard to jurisdictional claims in published maps and
institutional affiliations.

Distributed to the book trade worldwide by Springer
Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax
(201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www. springeronline. com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation. For
information on translations, please e-mail
booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail
bookpermissions@springernature.com.This Apress imprint
is published by the registered company APress Media, LLC,
part of Springer Nature.
The registered company address is: 1 New York Plaza, New
York, NY 10004, U.S.A.

http://www.springeronline.com/


Introduction

For most of its history, cybersecurity has largely been the
domain of technical professionals. Professionals with this
kind of background typically had technical certifications or
college degrees. It was assumed that if you were talking
about things like access controls, you also understood, to
some degree or another, how passwords were stored and
secured.

In recent years, however, there has been a growing
demand for professionals with limited technical training to
also be involved in cybersecurity. Executives and other
leaders need to understand the ever-increasing threats
cyberspace poses to their organizations. A demand for
improved policy across private and public sectors is
creating a need for policy makers that know how
cybersecurity technologies work and what they can do.
Legal teams and compliance teams are often challenged
with cybersecurity responsibilities without necessarily
having deep technical backgrounds.

Thus, cybersecurity is no longer just the purview of the
engineers, researchers, and scientists that are specialists in
that field. It is not even limited to persons with technical
backgrounds. To the contrary, there are an ever-increasing
number of nontechnical professionals that need more in-
depth understanding of how cybersecurity works.

There have been many approaches to teaching
cybersecurity to those without a technical background. It
has been my experience, however, that these approaches
have largely left out most of the technical details of the
subject. The reason is typically a belief that nontechnical
professionals do not need to know these details, or cannot

understand them, or both.
I do not accept this view. For several years, I have had

the privilege of teaching graduate students in law, policy,



and business about exactly this. My classes have pushed
nontechnical students to learn technical concepts. It has
certainly been challenging, but the students have done
extremely well every year and have, by large majorities, felt
that the class was exceptionally beneficial. This book
follows the curriculum of the class and teaches the
concepts that are covered therein.

This book, as the title states, is intended for the absolute
beginner. It assumes no technical training of any kind. At
the same time, it is a technical book. It gets as deeply into
the selected topics as it can, and it will most likely be a
challenging read for the beginner. Challenging, but doable.

The book covers enough technical material that it is also
useful for those that are not absolute beginners. For those
with technical degrees but not cybersecurity training, this
book can provide a gentle introduction to the topic.

With all of that said, let me be clear that this book is not
perfect. Finding the best way to explain a technical concept
to beginners is extremely challenging. During the time that
I have been teaching these materials, I have extensively
revised the explanations and approach every semester.
Each semester, student feedback guided what stayed and
what changed. As the materials have stabilized, I felt that
the material could be captured in a book form. But even
then, there was some extremely good feedback from my
most recent semester’s students about how to teach the
cryptography chapters that could not make it into this
edition of the book. I have also had early reviewers
correctly suggest that in the next edition I should
incorporate the NIST Cybersecurity Framework in much
greater detail.

If you find topics or areas of the book that you struggle
with, I would appreciate the feedback. It will be useful for
improving my teaching materials now and perhaps a
second edition in the future.



In terms of organization, the first chapter is generally a
very easy read and does not have a significant amount of
technical content. After that, the chapters get more
challenging and more technical, especially the
cryptography chapters in the middle of the book. To help
with some of the core concepts of computing that are used
in these chapters, I have provided appendixes at the end
that provide a short overview. If you are one of the readers
that is an “absolute beginner,” you might find it useful to
read the appendixes at the end of the book first.

Above all, I hope that you can really enjoy discovering
cybersecurity. There is a certain irony to the fact that
cybersecurity is deadly serious but can also be fun and
enjoyable to be a part of. What you are about to read is
important, but it is also exciting. At least, I think it is and I
hope I can share some of that with you.
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1. The Psychology of

Cybersecurity

Seth James Nielson1  
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Chapter Quick Start Guide

This chapter is focused on the technology of the human
brain and how that technology interfaces with other
devices and operations associated with cybersecurity.
Much of the human-made technology in this area does
not interface with humans very well at all. The systems
and methods used to protect humans need to accept and
account for human errors and manipulation.

Key Concepts

1.
Cybersecurity is largely a battle of wits where the
best thinker wins.

 
2.

There will never be a “perfect” defensive technology
that attackers cannot think around.

 
3.

Security professionals and average users alike have
natural limitations related to error and manipulation

that attackers exploit.

 

4. Four sources of human error: mental automation,
complex rules, meta-ignorance, wrong model

t bb
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stubbornness.
5.

Four sources of human manipulation: action bias,
emotional fallback, deference to authority, visual-

emotional responses.

 

6.
Six suggestions for psychologically aware design:
affordances, irrational modes, rational centering,
error robustness, failure robustness, manageable

decisions.

 

Common Pitfalls and Misunderstandings

1.
“Smart” humans cannot be manipulated and are
always rational; only stupid or weak people are
vulnerable.

 
2.

Cybersecurity technology does not need to account
for irrational humans; mistakes they make are their
own problem.

 
3.

Training, or otherwise explaining things to people,
will or should “fix” all sources of error and
manipulation.

 

Useful Vocabulary

Bias: A built-in and necessary part of the human mind
that leans toward certain default preferences,
especially in the absence of information
Social Engineering: Obtaining unauthorized
information or services through misrepresentations
and manipulations of people
Affordances: A configuration or design that induces a
specific human behavior, including desirable behaviors



This is, in fact, a book about technology. You might,
therefore, be forgiven for thinking a chapter about
psychology is from the wrong book. Be assured, dear
reader, that you are in the right place. This chapter is
about the technology of cybersecurity like all the others.
The technology of this chapter is the human brain.

It is essential to begin our investigation into the
technologies that (nominally) protect the cybersecurity
world with a discussion about the brain. Too often, people,
both professional and lay users, hope to find technologies
that can replace rather than enhance human thinking.

Years ago, I was wrapping up a routine dental cleaning.
While chatting with the dental hygienist during checkout
and payment, the hygienist found out that I worked in
computer security. “Oh,” she said with some energy, “I am
really worried about protecting myself online. What
program should I install to protect myself?”

Then, as now, the answer to such a question is that
there is no such technology. As will be discussed in later
chapters, “security” without any additional context is a
meaningless word and requires some thinking to even
clearly state what needs to be protected and how.
Nevertheless, even with better-defined objectives,
“security” cannot generally be achieved with technology
alone. Good security requires a thoughtful human brain to
be engaged somewhere.

The real question is not whether computers think but
whether people do.

— B. F. Skinner



The hygienist was very disappointed. She had been
hoping that no thinking would need to be involved—that
some technology could be used that would permit her to
escape engaging her brain. Why? Is it laziness? Not for
most users and certainly not for my excellent and
hardworking hygienist. The problem, at least in part, is the
ever-increasing complexity of modern society.

The hygienist knows dental hygiene. From personal
experience, I can attest to her proficiency and
professionalism in her chosen field. If she is like many
modern individuals, she also has to worry about social
commitments, political issues, children’s education, home
maintenance, car maintenance, diet, exercise, preventative
medical care, and a host of other matters unrelated to her
primary expertise. For the vast majority of these matters,
most modern persons rely overwhelmingly on other experts
to help them manage their lives. Public education, auto
mechanics, home repair professionals, doctors, and others
are often expected to really know and manage these facets
of modern life with generally minimal involvement from the
non-expert. For example, the auto mechanic generally
suggests bringing in your vehicle for service every 15,000
miles rather than trying to make the owner of the vehicle
more capable in the field of automobile maintenance.

Because we cannot possibly have expertise in all areas
of our modern life, we all have to outsource our “thinking”
to other people and/or automation at some level or another.

Most people, even most highly technical people, would
prefer to do the same with computer security. Most people
are looking for solutions that don’t require them to think
about it, keep current in the ever-changing landscape, or
spend time and energy solving crises. Surely, one might
ask, such off-loading must be possible? Can we not have
security mechanics the same way we have auto mechanics?
Can we not have security “doctors” that prescribe a



medication and tell us to come back for a check-up in six
months?

The answer must be yes because most of the users that

are not security professionals cannot be mentally and

psychologically ready to face their cyberspace adversaries.
I want to emphasize that the issue under discussion is

thinking, not knowledge or even education. As I will discuss
in this chapter, the human mind is actually configured not

to think under a wide variety of conditions. Our
evolutionary makeup has created a brain that shuts down

higher-level thinking for many reasons. Each of these
conditions can either create poor responses to
cybersecurity incidents or leave people vulnerable to active
manipulation by attackers.

Some of these psychological issues cannot be overcome
with training of any amount. Others can only be overcome
with professional-level training. If professional-level
security training and thinking for the average user are
necessary to be secure, our current system is doomed for
obvious reasons of scope and scale. It is also worth noting
that our interconnected world also means that when even a
small number of individuals are vulnerable to attack,
everyone’s risks increase.

Accordingly, cybersecurity must eventually become
more automatic and transparent for the average person.
But it cannot be just a stand-alone tool that can run in a
“fire-and-forget” mode. It can never be “take two of these
and call me in the morning.” The best cybersecurity
solutions available now and in the future require
technologies that push the thinking to professionals and
experts and technologies that enhance, encourage, and
enable the professionals and experts to think effectively.
There will have to be effective thinking happening

somewhere.



It is crucial to understand the intrinsic, inescapable
difference between computer security and all the other life
problems off-loaded onto other experts and automation.
This difference is literally a “game changer.” It seems
obvious to everyone, and yet very few individuals really
focus on how this one fundamental truth about
cybersecurity must be the foundation upon which we shape
the entire approach and solution.

The difference is that in cybersecurity, highly motivated

human beings, who are literally connected to potential
victims at effectively instantaneous speeds, are actively
strategizing to subvert our data and systems. They are not
random mutations of cells that occur with predictable
frequencies. They are not parts breaking down in a
machine with expected failure rates. They are not static
obstacles that can be sidestepped. They are adversaries:
“one[s] that contend[] with, oppose[], or resist[]” [180].
They have goals and objectives and will stop at nothing to
achieve them.

There are cancer1 survivor t-shirts that say things like
“my body tried to kill me,” but imagine how much worse
cancer would be if it strategized. If cancer could
understand cancer treatments and consciously modify its
behavior to circumvent such treatments, the danger would
be astronomically greater. It would no longer make sense
to describe cancer outcomes statistically. A treatment that
was 90% effective today could be irrelevant tomorrow if
cancer could plan new attacks.

As an alternative mental exercise, imagine if cancer
were self-aware and concerned with its own survival. Many
cybersecurity attackers engage in cyber warfare for
personal survival. This is literally how they make enough
money to eat. In their minds, failure is not an option. They
will break into systems and steal something or they will



starve. How long could any cancer patient last if cancer
was motivated?

Our cybersecurity adversaries will always need to be
defeated by human minds.2 Technology can only enhance,
but not replace, thinking when dealing with a thinking

adversary.
The warfare-like nature of cybersecurity means that the

winner is the best thinker (or strategist if you prefer). No
static defense will last indefinitely against the carefully
planned attacks of a motivated, intelligent adversary.
Herodotus, an ancient Greek historian, tells us that the city
of Babylon had walls that could not be breached and
supplies to withstand any siege. However, the Euphrates
river ran through Babylon and the highly motivated Cyrus,
“drain[ed] the Euphrates into the artificial lake…and
invad[ed] the city through the riverbed…” [190].

Fixed fortifications are a monument to the stupidity of
man

—US General George Patton

Ideally, cybersecurity would permit many people to be
protected by a relatively small number of active, motivated,
and thinking brains. A science fiction–based video game
from the early 2000s included a military leader that was
dealing with aliens that delivered devastating psychic
attacks directly into her people’s minds. In response, she
proposed:

Against such abominations, we organize our defenses
on the principle that one strong and able mind can
shield the many.

—From Sid Meier’s Alpha Centauri video game



This quote, although fictional, perfectly captures how
cybersecurity can, and eventually must, be. And, as already
stated, the professionals must also be secured against the
various sources of errors and manipulations to which all of
humankind is vulnerable.

In this chapter, I will discuss two major psychological-
driven issues: error and manipulation. Because all humans
invariably struggle to deal with both categories, the final
section investigates how cybersecurity defenses must be
built with these limitations in mind, as opposed to many of
our current technologies that fail to do so.

The Human Brain As Security

Technology

In this book, I will review many technologies and
technology families. The analysis reviews each technology
across the following characteristics:

Forces behind design and development
Intended purposes
Feature set
Strengths
Weaknesses
Contextual requirements
Deployment in practice (intentional or not)
Lessons learned and future directions
The human brain, as a cybersecurity technology,

benefits from a similar analysis. Our working models for
the brain are based, at least in part, on our current
understanding of the evolution of our species. According to
these theories, much of the behavior humans exhibit in our
modern, technologically advanced society are rooted in our
desire for survival in primitive ages. Even terrible and
reprehensible behaviors and beliefs, such as racism and



tribalism, may have roots in defensive mechanisms. Primal
recognition of groups that look and think alike represent an
unsophisticated version of “friend-or-foe” recognition
[234].

What kind of “security” issues plagued our early
ancestors? We can guess that their threats included wild
animals that were faster, stronger, and more heavily armed
than humans (at least more heavily armed than humans
without tools). They certainly included other groups of
humans anxious to control limited natural resources of
food, water, and other materials.

The intellectual tools such as reasoning, planning, and
strategizing available to prehistoric humanity could not
enable them to survive all of the threats they faced. If a
predator appeared unexpectedly, there was no time to
think. There had to be automated or semi-automated
reactions. Higher-level brain functions, such as planning,
strategy, and reasoning, were best suited to long-term
planning. These capabilities were extremely powerful and
have led to humanity’s dominance as a life form on earth.
Nevertheless, high-level thinking, for all of its power, could
not eliminate the need for low-level, immediate-term
survival responses.

There are other evolutionary reasons why brains
retained low-level responses that are not based on logic or
reasoning. For example, human reasoning is sometimes
unable to reach a confident conclusion when critical
information is missing. Perhaps, in many cases, it was
better to do something rather than nothing, and low-level
responses did the job. Or perhaps there were advantages to
cohesive social groups over individuality. It is conceivable
that not thinking, and simply following a leader, worked out
better for primitive humans over having every individual
think for themselves.



Of course, we do not want to be guilty of just examining
human behavior and making up an evolutionary story that
seems to fit [234]. Researchers in the field attempt to
model evolutionary influences with testable hypotheses.
Obviously, a deep exploration into this research is not
going to fit into this book, nor am I a sufficient expert to
opine deeply on the topic.

Nevertheless, what is clear is that human brains do not
operate as logically and rationally as we tend to imagine
they do. Rather, a significant portion of the human
experience is low level and irrational. These brain systems
appear to have been shaped as a product of human
evolution.

This, however, introduces a very serious problem. As we
will discuss repeatedly throughout this book, security
technologies generally have a context in which they are
effective. It is very rare for a system to provide useful
security outside of the context for which it was designed.
However, to the extent that evolutionary forces “designed”
(or shaped) our brain as a security technology, most of

those forces no longer exist.
The average human has very little to fear, for example,

from wild animals. Certainly, being eaten alive is not the
leading cause of death or even in the top 100.3 In fact, we
have so little to fear from being chased down and devoured
that some of our leading causes of death are from sitting
around with minimal physical activity [219]. Even living in
the concrete jungles of urban environments is different
from the habitations human brains “grew up” in.

Moreover, new threats have been emerging in recent
human history that our brains were not designed to deal
with and for which evolution does not have time to respond
to.4

Story Time: Negativity Bias and Time Horizons



It is well understood that the human brain has a
“negativity bias”—we put more emotional and cognitive
emphasis on negative events and circumstances than
positive or neutral ones. This bias is well adapted to
survival in the settings where our species evolved (the
vigilant and attentive humans who feared each sudden
movement behind a nearby bush survived longer than
the overly optimistic and curious humans who tried to
befriend the crouching lion waiting to make a meal of
them). But in the modern world, threats to our existence,
livelihood, and life satisfaction take on vastly different
forms, and our brains often misinterpret the dangers
[127].

This is especially true when the delay is long between
detecting a threat and realizing its consequences, a
phenomenon known as “delay discounting” [211]. We
understand well the benefits of healthy eating and
exercise, but some of the most dire consequences of
neglecting these habits are so far removed from us,
temporally, that we don’t intuitively associate our actions
with the outcomes when it’s time to make those small,
incremental decisions.

Cybersecurity threats are often of this character:
consequences far in the future, of uncertain magnitude,
and possessing only tenuous intuitive connection to our
daily business actions. For the sake of the humans on the
front lines, whose job is ostensibly not anticipating such
worst-case scenarios, it’s crucial that we design our
processes and systems to expect the aspects of human
psychology that might otherwise undermine our
collective efforts.

In summary, in terms of being a security technology to
keep us safe, human brains have some weaknesses
inherent in their “design.” At least some of their operations



were designed for security problems that no longer exist
and cannot be “redesigned” quickly enough to deal with the
explosion of new threats, such as those found in
cyberspace.

Correctly Understanding Human

Cognition

In my experience, most people in general, and too many
computer security professionals specifically, think of
humans as if they are logical. This is always a problem for
cybersecurity systems for two reasons.

First, the security “system” relies on human input and
decision making. Systems can be more automated or less
automated, they can have many interaction points or few,
but no system is completely independent of humans and
completely autonomous in its decision making. In other
words, the effectiveness of any cybersecurity system

depends at least in part on humans making correct, or

“good,” decisions. If a deployed system does not work
because one or more humans made “bad” decisions, the
designers often respond by blaming the human or humans
that made the “mistake.” From some designers’ point of
view, the humans are not part of the system, and failures
happen in the technology [165]. Even designers that view
humans as part of the system see the human failure as an
indication that the errant human needs to be “fixed.” This
often takes the form of “the user just needs to be educated”
solutions. More training. Better documentation. While
these are not necessarily bad ideas, they often do not
address human psychological limitations.

Second, and even worse, the cyber criminals do

understand human psychology. Either consciously or
instinctively, many of the attacks in cyberspace directly
target humans using psychological tricks, maneuvers, and



ruses. Given that there are conscious, thinking adversaries
launching attacks using effective psychological methods,
cybersecurity professionals should not assume “normal”
thinking on the part of the defenders. Defensive
technologies must be designed to operate effectively when
the humans in the system are being assaulted with
sophisticated, “anti-thinking” tactics. Sometimes, these
kinds of solutions need to push decision making away from
average users that are not equipped to do the thinking of
cybersecurity. Other times, solutions need to assist the
professionals effectively apply their training and thinking to
the problem at hand.

I will get deeper into how security technology should be
designed in the next section. First, I will walk through a
sampling of some well-known psychology issues that
present cybersecurity challenges.

The Psychology of Human Error

Some cybersecurity failures are the result of an error on
the part of a human. These errors can range from giving
access to an unauthorized individual to not updating
vulnerable software on a server. Because there is an
identifiable mistake, the assessment of what went wrong
often stops with the individual or individuals that actually
committed the error. But understanding why humans make
errors can lead to better designs. In this section, I will
discuss four common sources of human error: mental

automation, complex rules, meta-ignorance, and wrong

model stubbornness. Obviously, this is not a comprehensive
list but should provide a helpful introduction. Some of this
content is based in part on Ross Anderson’s discussion of
Cognitive Psychology [40, Chapter 3].

After discussing each of these sources of error, I
introduce a few mechanisms by which attackers exploit
errors.



Mental Automation

One very common reason for human error is when the
brain goes into automatic mode. When someone first begins
to learn a skill, there is a lot of conscious thinking. The
initial learning process involves close attention to detail,
critical analysis, and discovery. After a relatively short
period of repetition, however, these high-level thinking
processes diminish in the execution of the skill. Automation
replaces conscious thought for even relatively complex
tasks. An example of this is driving. It involves a
combination of tasks such as route planning, spatial
organization, risk analysis, and processing signals from
signs and other drivers. And those tasks do not even
include the mechanical components of controlling the gas,
brake, and steering wheel. Yet, despite the complexity,
most drivers do many of these elements automatically.

In some cases, they may do them more automatically
than they intended and find themselves driving to the
wrong location. Their automatic processing takes over, and
they travel the route they take most often or most closely
associated with an initial thought process. The execution of
an incorrect automated task (usually a higher repetition
task) over another is called “capture” error or sometimes
“slip and capture” error [195].

This type of error illustrates the danger in assuming that
the human in the loop is thinking. If you think about all of
the things that you do in a given day, you might be
surprised to see how many of them you did not think about.
Systems that assume conscious thought or that require
conscious thought may be vulnerable to exploitation of
these kinds of errors.

Complex Rules

Other errors happen even when thinking is engaged. A
second source of error stems from the challenges of



decision making when many competing rules may or may
not apply. Human decision making is guided by rules, but
rarely does one rule override all others. Using the example
of driving a car again, consider the many rules that go into
choosing the car’s speed. Obviously, the posted speed limit
must typically be followed for a non-emergency vehicle. But
weather factors are also rules that must be considered. Or
when visiting a new location for the first time, a driver may
consider slowing down somewhat in order to take the
correct turn or stop at the right address. At the same time,
if the road carries a lot of high speed traffic, going too
slowly might be a safety hazard. Balancing all of these rules
requires making reasonable decisions about which rule is
the most important under the current circumstances.

There are many situations in computer security where
figuring out which rule applies to a given situation is not
immediately obvious. The user may make an incorrect
choice and not realize it because they are consciously
following rules. They just happen to be the wrong rules for
the current scenario. They might be the correct rules at
other times or even most times.

But I hasten to emphasize that the biggest problem with
complex rules is not that the rules are not known. You
could provide a user with a codex of all the rules and that
would not address the underlying problem. The primary
issue with complex rules is that the user will generally

think they are doing the right thing because they are

following some rule. In other words, because of the
complexity of the rule set, it is easy for the user to pick a
rule to follow and believe they are doing the right thing
because they are following a rule. When confronted with
the erroneous behavior, the person will generally protest
that they were justified in what they did and even cite the
very rule that they chose to follow. The psychology lesson is
that the complexity of rules can actually impede a user



from doing the right thing because doing the wrong thing is
now justified and supported by a misapplied or
misunderstood rule. The user persists in the erroneous
behavior because they were “doing everything they were
supposed to.”

Accordingly, it is crucial for designers to be aware that
“good” decisions or rules can become bad when
misapplied. It should not be assumed that users will always
be able to tell the difference, especially when there are
many rules and lesser-used rules.

Meta-ignorance

The third source of error is simply not understanding the
problem and either not being aware of this lack of

understanding or feeling pressured to act anyway. In other
words, the problem is not ignorance. It is an inability to
understand how to respond to ignorance. In other words,
this is a form of meta-ignorance.

The critical psychological insight for this particular class
of error is how easy it is to think that a problem is under
control when it is not. This class of error generally covers
the problems that occur when people should get help from
experts or better trained individuals but do not. These
kinds of errors are common when things can appear to be
working correctly and perhaps are working correctly under

normal circumstances. In cybersecurity, for example, it is
often difficult to know that the security is not working
correctly before an adversary attacks. And the attack
scenario is the abnormal one. Up until that moment,
everything seems fine. Because of this, users may not reach
out to get guidance from better trained persons because
nothing appears to be wrong. Or, in other situations, users
may be aware that the situation is not ideal but choose not
to consult with experts because of pressures of time,
budget, or politics.



In my classes, lectures, or books, I often emphasize the
importance of knowing when to get help from subject
matter experts (SMEs). One very difficult area where this
applies is cryptography, which is the subject of Chapters 5
and 6. I often tell students to remember YANAC: You Are

Not A Cryptographer. Most decisions about cryptography
require an SME. I will discuss some of the reasons why
cryptography is so easy to get wrong in the aforementioned
chapters. But even beyond that particular subject, many
cybersecurity technologies require cybersecurity expertise
to fully understand the context of the problem they solve,
the trade-offs of one configuration over another, and
pitfalls associated with their deployment. An important
lesson for the non-expert user is to know when experts are
needed.

Nevertheless, relying on users having this kind of
understanding, or pretending that there are no pressures
against this kind of behavior, is not ideal. It is certainly not
facing reality.

In teaching about this concept to my students, a large
portion of any given class will focus on the term
“ignorance” and immediately assume that this is solved
with “training.” This response, however, ignores that
different kinds of ignorance require different solutions. A
paper entitled “The Five Orders of Ignorance” by Phillip G.
Armour identified that dealing with “known unknowns” was
different from dealing with “unknown unknowns.” The next
level up was an even higher order of ignorance in which
there was no process for exploring or uncovering or
discovering unknown unknowns [44]. Armour was writing
from a software engineering context, but the ideas apply to
computer security as well. Meta-ignorance cannot
generally be solved with training because that is generally
only suited for dealing with known unknowns. Meta-
ignorance requires developing a security process within the



individuals in an organization that enable them to figure
out what kind of security circumstance they are in, know
when and where to go to get help, and incentivize these
activities.

Story Time: Pay No Attention to the Man Behind

the Curtain

An example can illustrate how a cybersecurity incident
can be made worse by failing to investigate warning
signs or actively instructing users to ignore them.

In March of 2023, 3CX’s softphone application
software was compromised by a supply chain attack, in
which a software vendor is compromised to subsequently
push malicious updates to a large number of
organizations [86, 123, 261, 276]. Users first reported
seeing SentinelOne (antivirus software) flagging it as
malware on March 22 on the 3CX forum, but lack of
acknowledgment and communication from the vendor
caused confusion about how to handle it and whether it
was even a threat at all. Some people on the forum
claimed to have been advised to whitelist the
compromised software [80], others reported being
banned for reporting issues [254], and others claimed
that 3CX was attempting to shift the blame for the
incident to the SentinelOne antivirus software [254].
CrowdStrike performed an analysis that confirmed the
malware and provided information on the likely threat
actors behind the attack [86]. Eventually, on March 30,
3CX finally admitted that their software was indeed
infected with malware and provided some guidance on
how to address it [79].

Wrong Model Stubbornness

Wrapping up, the fourth and final source of error I discuss
in this brief survey is what I call wrong model



stubbornness. For obvious reasons, humans are incapable
of perceiving their environment completely or unfiltered.
Our inability to observe things completely is manifested in
many ways. We cannot see behind us, we cannot see
through opaque materials (e.g., around corners), and we
see less detail as distance increases. Even with all scientific
advancement, there is much that is not known about the
human mind, the deep ocean, and subatomic particles. We
are also limited by time: even if every question could be
answered and every part of the universe explored, nobody
would have time to do it all.

We also cannot experience our environment unfiltered.
Our minds are not designed, and indeed it may be
impossible, to comprehend our environment particle by
particle. Even if it were possible, our only knowledge of our
environment, our reality if you will, is determined through
five very limited senses. The data is both too much and not
enough at the same time.

The human mind solves these limitations through the
use of models. We model everything. Physically, particles
that we can perceive are abstracted into materials, and
materials are abstracted into objects. Take a very simple
concept like “a window.” What is it? Can you define it
concretely? Whatever definition you have forming in your
head as you read this, I can almost guarantee there is an
exception. Because a window is a concept; a model. And we
match the model to the environment in ways that make
sense to us. The architect Christopher Alexander described
these models in buildings as patterns, and his work became
the basis for describing certain models in computer
programming called software design patterns.

These kinds of models enable us to quickly abstract our
environment. We can think in terms of “office” instead of
desk, chairs, computer, papers, folders, and books. We can
think of “car” instead of four wheels, five seats, engine,



mirrors, windshield, etc. We can think of “book” instead of
hard cover, 300 pieces of paper, and symbols printed in the
form of words.

We even model people. We have friend or enemy

models, spouse or partner models, and teacher or student

models. We have models for politics, religion, profession,
recreation, and sports. Literally everything we think is a
model of some form or another.

Because we cannot know everything, we rely on models
to predict the future and decide courses of action. If you
have modeled one person as a coworker and another as a
spouse, you can predict that the coworker will not have a
negative emotional response to you leaving for a different
company, but you might predict that the spouse will have a
very negative reaction to you leaving the marriage. Models
can be wrong of course. The coworker may have expected
some loyalty that you did not include in your model. And
you may not have modeled that your spouse was also
interested in leaving the relationship. But we all have to
model nonetheless. There simply is no other alternative.

Wrong model error occurs when we apply the wrong
model to the data that we have available. Specifically, this
term does not include errors associated with a model being
incomplete or inaccurate, but is meant to identify the
errors of applying the wrong model altogether. A wrong
model error would be applying the coworker model to a
spouse or vice versa. Typically, a wrong model is selected
either because some initial, more limited information
available suggested it or because the correct model is
simply not known at all. Selecting the wrong model can
cause subsequent information to be misunderstood,
miscontextualized, or ignored. It will almost always result
in incorrect responses and decision making.

You may have experienced wrong model error when you
try to discuss problems or concerns with others. Have you



ever been talking to someone about a problem and had
them suggest solutions or ask questions that seem
completely unrelated? Quite often, you have selected one
model, and the other person you are talking to has selected
another. When the models are different, the words said are
almost always interpreted incorrectly, and very little
communication is taking place.5

But as problematic as wrong model error is, it is also
normal and expected. After all, we have to create models
based on the best information that we have. Applying the
wrong model because it seems to fit the data is good
thinking even if it is wrong. Given that we do not have
perfect information, applying a wrong model is inevitable.

However, good thinking also means abandoning the

wrong model when new evidence or information becomes

available that invalidates it. Unfortunately, for whatever
reasons, human minds seem particularly unwilling to give
up a model once we have adopted it. Sticking to the wrong
model in this form often involves ignoring or discounting
information that does not fit with the existing construction
while simultaneously accepting uncritically any and all
information that conforms with it. I have termed this
problem wrong model stubbornness.

Wrong model stubbornness has shown up in some high-
profile criminal investigations and prosecutions. In a 2005
paper by Susan Bandes, a scholar on the role of emotion in
the legal system, she discusses several cases in which
prosecutors became convinced of their theory of the case,
refusing to concede they were wrong even after strong
evidence emerged to refute them. She writes:

The recurring theme of these cautionary tales–and
the dynamic on which this article will focus–is the
prosecutor’s tendency to develop a fierce loyalty to a
particular version of events; the guilt of a particular



suspect or group of suspects. This loyalty is so deep it
abides even when the version of events is thoroughly
discredited, or the suspect exculpated. It results in a
refusal to consider alternative theories or suspects
during the initial investigation, or to accept the
defendant’s exoneration as evidence of wrongful
conviction.

Bandes uses the term “theory,” and I will more or less
equate that with model. One reason I prefer model is
because investigators are often attempting to fit the
current case to other types or classes of cases experienced
in the past. One such model is what I will generically call
an insider model. Whenever there is an abduction, for
example, the police look closely at the family to figure out if
one of them, the insider, did it. If police, prosecutors, or
others in the justice system become convinced that a model
(such as “insider”) applies, it appears that they can
experience wrong model stubbornness. As already
discussed, it can lead to the ignoring of data that does not
fit the model and overemphasis on data that does.

The same thing can happen when a cybersecurity
professional is investigating intrusions and security
incidents within their organization. A professional has
experience, which is a good thing. But if the professional
attempts to force a new situation or scenario to fit with
previous experience, they may experience wrong model

stubbornness. To reiterate, it is good thinking to apply old
models to new problems even if it is the wrong model.
However, the professional must also be ready to abandon
the model when the evidence is sufficiently against it.

The lesson for the cybersecurity technologists is
understanding how models impact the user’s ability to
understand, process, and use the information given to
them. Just because information is available, it does not



mean that the human is interpreting it correctly and, in
fact, may be ignoring or discounting it because of a model
that they are struggling to give up. The designer should not
necessarily assume that the humans in the system have
adopted the correct model even when the information is
sufficient to do so.

Errors and Cybersecurity

To reiterate, errors by humans can be and are exploited by
attackers to bypass defenses, steal information, or
compromise systems. The cyber criminals analyze systems
for error-inducing components and then search for ways to
use potential errors to their advantage. Errors might be
induced directly or abused opportunistically.

Direct manipulation usually involves sending some kind
of input to the system such as an email, phone call, or other
system access that causes someone within the system to
have to react to the input. The input is chosen to
specifically stimulate the error-precipitating characteristics
of the system and push, if at all possible, the victim user to
a wrong decision of the attacker’s choosing. A very simple
example is an attacker redirecting a user’s browser from
the real website to a fake one. It used to be common for
browsers to simply warn the user that something looked
wrong. But these warnings were common even for
legitimate websites, and users often just clicked “OK” and
went to the fake website anyway. This was an automated
behavior learned during normal operations. Users were so
accustomed to having to “click through” these errors that
they rarely even read the error. Modern browsers have
improved security by making many of these warnings hard
blocks; you simply cannot visit the page with the invalid
credentials. But this kind of error is still possible under
certain circumstances.



On the other hand, because the users of a poorly
designed system are often making mistakes even without
malicious input, attackers can also look for already-
vulnerable systems. Many systems ship, for example, with
default passwords that are supposed to be changed before
real deployment. This is sometimes not understood by
nonspecialists and overlooked. Attackers can easily find
such systems and subvert them. In 2016, a massive number
of IoT devices, such as cameras, were taken over on a
global scale creating what is called a botnet (subverted
machines are often called “bots” because they are
controlled by the attacker and do their commands). This
botnet was so large it could take down websites by just
sending traffic from the millions of devices it controlled to a
single target. The website would be unable to process the
unending requests from the millions of devices rendering it
unusable [41].

The Psychology of Manipulation

Beyond erroneous behavior, the human mind is also
manipulatable by others. As with the preceding section on
psychological sources of error, in this section I will survey
some of the limitations of the human mind that enable
manipulation. As before, this is not a comprehensive list
but is meant as an introduction to the problem.

For each of the issues discussed in this section, the
common theme is the reduction of critical thought in
exchange for some kind of automatic or reactive response.
From the attacker’s perspective, these kinds of behaviors
are desirable because such responses are predictable!
Attackers want predictable because they can plan for and
exploit predictable behavior. On the other hand, people
that exercise critical thinking and methodical evaluation
often evade the manipulation.



So, the problem of manipulation in many cases reduces
down to triggering an automatic or reactive response.
Unfortunately for the victims, the human mind is designed
to act without thinking (critically) in many circumstances.
As I discussed in the overview of the brain, these features
of the mind were driven by evolution. They were most likely
an advantage for primitive humanity. In many cases, they
are probably still necessary today.

Action Bias

The first limitation to discuss is perhaps the most direct
embodiment of not thinking. Called either action bias or
bias toward action, humans in crisis situations have an
impulse to act even if they lack the information necessary
to make a good decision. Drawing again from the earlier
background, early humans needed to run from a predator
whether or not they had a good plan for it. It may not be a
perfect solution, but it was better than no solution.

Even in modern humans, a bias toward action is
sometimes, maybe even often, a valuable bias. Early
actions, even without very much information, can help to
discover and generate additional data. Sometimes,
imperfect actions are a necessary step at getting to better
choices and outcomes. Because it is impossible to think
through every single decision, biases, such as a bias toward
action, are essential for basic function.

Before proceeding, I also need to talk through the word
bias. Bias in modern usage has an extremely negative
connotation because it is associated with socially
unacceptable biases such as racial bias, gender bias, and
other group biases. However, the word bias refers to
preferences that are preconceived, automatic, or otherwise
not based on a rational basis. A bias toward action,
therefore, is a preference to act rather than to not act,
without any particular reason for doing so. Or, in other



words, without strong reasons to act or strong reasons not
to act, a bias toward action leads a human to act. Everyone
has these kinds of biases to some extent or another, and no
negative judgment is meant by referring to humans as
“biased.”

In a computer security context, however, attackers will
use humanity’s biases against them, even if under “normal”
circumstances they would be generally helpful. It does not
matter if a bias leads people to make the right decision
99% of the time. If the attacker can figure out how to
reliably trigger the bias for the 1% of the time it is
problematic, they will use it.

In the case of action bias, the problem is that if an
attacker can suggest a course of action to a victim,
especially with some sense of urgency, the victim will often
act unless they specifically know they should not. This bias
is frustratingly easy to exploit and shows up in attacks like
phishing. I will dig into this topic in more detail in Chapter
10.

Emotional Fallback

The next limitation of human psychology that is useful to
manipulative attackers is what I generically call emotional

fallback. The basic idea here is, what does a human do to
make decisions when they cannot make the decisions
rationally? In the previous section, we discussed that
humans tend to act even when they do not have enough
information to believe action is necessary. However,
emotional fallback can drive human thinking when they
know they need to act but do not have sufficient
information. If someone knows they must make a decision
but they do not have enough information or experience,
how do they choose their course of action? The answer
appears to be that they rely on emotional responses. For
example, have you ever been in a debate with someone and



experienced feelings of anger when they brought up new
information that you hadn’t heard before? Many people
experience this, and, when it happens, disagreements that
are constructive and respectful turn combative very
quickly. What seems to be happening is that when logic
runs out, emotion takes over.

One of the harsh truths of emotional fallback is that
educating users may have limited value. Ross Anderson
explains the problem this way: “If the emotional is
programmed to take over whenever the rational runs out,
then engaging in a war of technical instruction and
counter-instruction with cyber attackers is unsound, as
they’ll be better at it” [40, Chapter 3]. The problem is this.
There will always be something the average user does not
know that an attacker does. Unless the user had expertise
on par with the bad guys, they will have some kind of
information shortfall somewhere. Whatever education or
instruction is provided to the user, the attacker will simply
find a new place of ignorance to which they push the user.
Wherever that place is, the user will switch to emotional
processing, and the attacker will be able to manipulate.

Attackers also increase their odds of success by using
emotional weaponry when triggering the victim. Pretexting
is the practice of calling up a target and making requests,
often for information, that are not authorized. Private
investigators (PI) will sometimes attempt to obtain
confidential medical information about a target by calling a
medical records office and pretending to be a doctor
providing emergency care to the target [40, Chapter 3]. In
this scenario, one can imagine all of the various emotional
statements the PI could make:
1.

This man is dying on my table! Get me his chart!  
2. Fine, then you be the one to explain to this woman’s

children why they no longer have a mother.  



3.
I hope you are ready for the wrongful death lawsuit! I
cannot wait to testify against you.

 
The key idea here is not that these statements make any

sense. Rationally, the person in the records office on the
phone with the attacker should know that these statements
are false. But if the pretexter manages to trigger an
emotional response, the logical side may simply not
function.

Pretexting is just one type of social engineering. This
broader term describes any techniques for stealing
information, planting false information, and obtaining
unauthorized resources from convincing people that you
are somebody you are not. The term is better than just
calling it “manipulation” because the techniques can be
both complex and sophisticated.

Using either calls (pretexting) or emails, social
engineering is often about an attacker convincing the
victim to trust them just a little bit. Once a small amount of
trust is achieved, it can be leveraged. In many cases, the
emotional manipulation is not the life-or-death, urgent
approach I described for medical records. Instead, it is
often calm, reassuring, and even jocular. One emotional
weakness that can be exploited is that humans tend to trust
people they perceive as being like themselves. If the
attacker can trigger an emotional response from the victim
that causes them to identify the attacker as “part of the
group,” they are more likely to provide information [165].

So, for example, a social engineer may call up an
administrative assistant and engage in small talk. Not only
does the small talk put the assistant at ease, but it
introduces opportunities to convince them that they are
already bonded in some kind of community. Gossip is a
great way to do this. The attacker may have information
about an incident at the office from a news story or from



some other employee. Using this information to gossip, the
attacker establishes themselves as belonging. You can
imagine conversation like this one:

So, I heard what happened to Bob and Sally…I know,
right? What were they thinking!…I’m sure it was a
mess!…You said that to them?…That is hilarious!…

This kind of banter pushes the target into the emotional
fallback. The target feels no need to ask for authorization
(which is the rational decision) because the target already
believes they know to whom they are talking (which is the
emotional decision). Of course, if the attacker asked for
something big, it might raise too many red flags, even with
the emotional connection established. Often, the attacker
asks for something small, perhaps just additional office
information. They might try to get the name of another
assistant, or the name of a computer in the building, or
“unimportant” information such as the schedule for the
soda delivery vendor.

Once the attacker gets information, they will typically
call or email someone else and use the information they
gained to be even more convincing. The more details they
know about the internals of the organization’s operations,
the better they can pass themselves for appearing to
belong when they talk to someone. Eventually, they get to
the person they really want to talk to and go after what
they really want. It might be a password (or a password
reset), sensitive information, or even confidential company
design data. Kevin Mitnick was a famous hacker that was
arrested for computer crimes. He now consults as a
legitimate security researcher and tells people about the
tricks he used when he was the bad guy. In one incident in
1992, he stole source code from Motorola’s top-of-the-line
cellphone through social engineering techniques that
began simply with getting Motorola’s main number. He



slowly built a rapport with each individual, using
information from the previous encounter to make himself
seem legitimate [227]. This would be equivalent to
someone today phoning up Apple and stealing all the
design plans to the iPhone.

Deference to Authority

The third psychological limitation discussed here is
deferring to perceived authority. Humans will often subvert
critical thinking and rational analysis if told to do some by
someone perceived to be in authority. As with the other
“limitations,” there are probably some very good
evolutionary reasons for this. This one, however, has been
one of the most dangerous in human history. It has been
pointed out that if one compares the private, individual
violence committed throughout history to the violence
committed under the direction of organized groups (such
as nation states), the pain, death, and destruction from
crimes like murder pale in comparison to forced relocation,
war, and genocide. Oddly, murder is rejected by most
societies as horrific, while destructions under orders of
authority are seen as noble and honorable [271].

In cybersecurity, attackers attempt to exploit the
appearance of authority at just about any level including
corporate, academic, or governmental. I have received
many calls from the “IRS” telling me that I have serious
issues and I need to speak with an agent to discuss my
case. The weird thing is that even though I know these are
scams, I can still feel an urge to accept it. This partially
stems from dealing with the complexities of running a small
business and constantly worrying about doing the taxes
correctly. My emotional response to getting one of these
scam IRS calls is to worry about whether or not I did the
taxes correctly. But it is enough that I can feel the urge to
talk to the agent and make sure I am not in trouble. If this



sounds irrational, then I am making my point. Emotional
responses are not rational, and we all have them. This is
one of the reasons cybersecurity is hard.

Story Time: Phishing and Impersonation

In March of 2016, a phishing scam affected Seagate
Technology. The scammers were able to trick an
employee at Seagate using a phishing email requesting
the information which the employee believed was a
legitimate internal company request. Using this, the
scammers were able to obtain the W-2 information for
thousands of employees, for use in filing fraudulent tax
returns [155]. This incident shows how it is possible to
trick people into believing a phishing email even if they
have gone through training.

Scammers also play on emotional responses by
claiming fraudulent authority in order to steal sensitive
personal or financial information. A 2020 IRS advisory
warned about scams related to Covid-19, describing
schemes about fake charities, economic impact payment
theft, fraudulent treatments, fraudulent investment
opportunities, and so on [141]. In another example,
during the Australian bushfires of 2019–2020, there was
an increase in scammer activity such as fake charity
scams, impersonating government entities, and relief
scams [102].

Visual Emotional Responses

The last limitation I will discuss is the emotional response
we feel to visual images. Neuroscientists have identified a
strange case of a man with some brain damage after a
traffic accident. This man recovered but experienced
Capgras syndrome, the delusion that people are impostors.
In particular, the man was convinced that his parents were
impostors. He said they looked like his parents, but they



were not his parents. This delusion was purely visual. He
had no trouble accepting them as his parents when he
talked to them on the phone. He was also eventually able to
say he “intellectually” accepted his parents as not being
impostors he had not done so emotionally [133].

The neuroscientists studying this individual have
hypothesized that humans have two pathways through the
brain for visual recognition. One is cognitive and is
basically pattern matching, and the other is for our
emotional response to the visual pattern. The takeaway
lesson is that humans respond emotionally to visual images.
So much so that if the emotional connection is severed or
damaged, it can lead to a “split” representation in the
mind. Interestingly, although the delusion of the brain-
damaged man was primarily about his parents, he also
occasionally split other things including countries on a
map.

This kind of emotional connection to what we see might
go somewhat to explaining to why fake emails are so
effective. When a human sees an email that purports to be
from their bank and it includes all of the graphics and
symbols associated with it, it very likely is generating an
emotional response of acceptance.

Story Time: Feelings Despite Knowledge

In a personal example, I ask my students every semester
to create fake emails (phishing emails) for a competition.
One semester, a student created a fake email purporting
to be from one of my then employees in my consulting
company. The email was very well done, including the
employee’s picture in the signature block and also
including the company logo exactly in the right place. I
knew the email was fake when I opened it, but I still had
an emotional response to it anyway. For the briefest
time, I was convinced it was real.



It should be noted that the effectiveness of visual forgeries
also highlights our weakness in detecting such forgeries.
This may also have an explanation in our evolutionary
development, as the ability to quickly and perfectly
replicate visuals, symbols, and pictures has only existed for
less than a century. These simply were not threats during
the thousands of years during which our ability to detect
deception was developing.

Psychology-Aware Design

Considerations

Security professionals must not fall into the trap of simply
being dismissive of and condescending toward the cyber
victims that have experienced cybersecurity failures for
psychology reasons like those described in the previous
sections. Unfortunately, I have known some professionals
that seem to think that only an unintelligent or weak-willed
human being would fall for a social engineering, fake
emails, and the like. Arrogant attitudes like these fail to
recognize that everyone is, in fact, human! All of us are
vulnerable to psychological manipulation because all of us
are dealing with the same inherent limitations. While it is
true that with education and training we can learn to
mitigate psychological limitations, they cannot be
eliminated completely. We owe it to our fellow humans to
be understanding of this reality.

Not only are condescending attitudes not very
charitable, they are unhelpful at best. At worst, they are
failures on the part of the security professional and
designers of cybersecurity technologies to create
technologies that realistically match the limitations of
humanity. By way of analogy, imagine if automobile
manufacturers instead of installing seat belts simply
demanded that drivers did not get into accidents. After all,



the vehicle is perfectly safe if you do not get into an
accident.

Figure 1-1  A closed gate. It does not look difficult to climb over. What is its
purpose? This figure was used with permission from Pacific Stair Corporation:
www. pacificstair. com

To illustrate what our cybersecurity technology needs to
do, there is a very good example in the physical world of a
safety device that does take into account human
psychology. If you walk into a stairwell on the ground floor
in many commercial multistory buildings, you can find a
special kind of gate up against the wall (Figure 1-1).

These gates are so unobtrusive that many people are not
even aware of them. In my many years of teaching, very
few students have known of their existence or their
purpose. These gates are fire safety devices. What do they
do? Do they block off areas that are burning? Do they
prevent people from running back in to get possessions? Do
they protect sensitive firefighting controls and equipment?
No.

http://www.pacificstair.com/


Moreover, these simple gates generally do not even lock.
They can usually be pulled open if you wanted to. Even if
they were not locked, they can be very easily climbed over.
These gates seem to be very weak from a “security”
perspective.

The actual purpose of these gates is to prevent
hysterical, panicking humans from running from high floors
into the basement. In a situation that someone perceives as
being immediately life threatening, the typical response is
to stop thinking and and start reacting. Unless the
individual has rigorous training for dealing with the life-or-
death situation, the mind will shut down debate, thinking,
reasoning, and planning. The lower-level instincts activate
what we often call fight or flight. In the case of fire, flight is
the only option, and the human on a higher-level floor will
start running. Running down. The low-level brain
processing apparently does not have a plan beyond running
down. People, in this kind of panic mode, will run down the
stairs and not stop until they cannot run down any further.
They can run right past the ground floor level where the
exit to the outside is visible from the stairwell. Obviously,
this is a bad decision, to the extent a panicking human is
making decisions at all.

What is the solution? Training? Should we try to train
every human that will ever walk into a multistory building?
Should we hand them a manual that explains to them how
to react in a fire? Hopefully, it should be obvious that these
are not “solutions.” Human psychology simply does not
support them.

But the automatic fire gate is an amazingly simple and
amazingly effective solution. The gates are normally up
against the wall, but when triggered (e.g., by a fire alarm)
they swing shut “blocking” access to the basement. The
word blocking is in quotes because, as I explained, it is
fairly simple to circumvent them. However, when a human



is on a panic-induced run down the stairs, the gate will
generally direct them out of the stairwell and out to safety.

The gate does not need to lock. It does not need to be
insurmountable. It simply needs to interrupt and redirect a
human survival instinct. It assumes the human is acting
irrationally. It assumes that the human is not thinking. It
works with this reality rather than fighting against it.

Unfortunately, cybersecurity technology has not yet
caught up to this kind of psychological accommodation. It is
not yet common for a security device, program, or tool to
take into consideration the reality of human thinking
effectively. In fairness, cybersecurity is much, much harder
for the very reason I introduced at the beginning of the
chapter: the bad guys are conscious, strategizing humans.
A fire, as dangerous as it is, follows rules and laws. It can
be predicted and modeled.

Still, the fire gate to the basement is a good model for
what we want and need. We must accept that humans are
human. Our technology needs to be designed with those
limitations in mind. The following design principles and
concepts are useful in creating such systems.

Design Principles

Affordances  First, it is important to recognize just how
much a design can influence human behavior and thinking.
Wrong model error, discussed earlier, is related to the
concept of affordances proposed by James Gibson, although
from the positive direction. An affordance can be
configured or designed to induce certain behaviors. If, for
example, we build stairs into a building, people will likely
use them. At the same time, affordances will impact the
way the user perceives the system. Ross Anderson suggests
that, “we design [systems] to train and condition our users’
choices…” [40, Chapter 3]. In other words, systems can be
designed to help users model the system correctly.



Irrational Modes  Second, like the fire gate,
cybersecurity systems need to have irrational modes that
assume users are behaving irrationally. Modern face
recognition can recognize emotion. It would not be
unreasonable to have a system try to identify when humans
are under duress and respond accordingly. Even if the
system were not automated, there should be a trigger that
flips into panic mode or the equivalent. This is a significant
challenge. How, exactly, do we flip a switch before
someone responds to a fake email? Even if the system is
put into panic mode, how should it behave? What is the
right “gating” behavior to a phishing email? Although we
may not have good answers for this question yet, it does
not mean we should stop asking it.

Rational Centering  Third, systems need to have
rational centering means for bringing users out of
emotional responses and back into rational thinking. There
is some psychology research that suggests the anterior

cingulate cortex (ACC) of the brain has components for
both cognitive (logical) thinking and emotional responses.
According to the reciprocal suppression model when the
cognitive part of the ACC picks up, the emotional activity
diminishes and vice versa [67]. This is consistent with
observed human behavior. Humans that get whipped up
into an emotional frenzy have trouble thinking rationally.
On the flip side, humans experiencing an emotional
overload can tone down the intensity of the feelings with
walking through times tables or other rational exercises.
Well-designed systems that can take into account human
irrationality should also help to push them back into the
thinking realm.

Error Robustness  Fourth, systems must be designed
with error robustness and assume that humans will make



mistakes. Of course, this means that the system should be
designed to minimize mistakes, but it should also be able to
tolerate a human making an error. There are many ways to
achieve this. The principle of least privilege teaches that a
user should have the minimum amount of power in the
system that is necessary for them to do their job.
Minimizing what a user can do also minimizes the impact a
mistake can have. A similar idea is the concept of
separating duties and concerns. If more critical operations
require two or more users, all of them must make mistakes
for the operation to be exploited. It may also be necessary
to design the system with layers of protection, sometimes
called defense in depth. If done correctly, a single failure in
the system will not compromise the overall security.
Ideally, the failure is detected so that it can be corrected
before additional failures collectively cause a compromise.

Failure Robustness  Fifth, systems must be designed
with failure robustness. Even with all of the other good
design principles in place, the attackers will win
sometimes. Computer security is combat, and sometimes
the other side is going to be better, and sometimes the
defenders are going to be worse. If the defenders are not
prepared for losses, they will respond with bias and
emotion rather than critical and effective thinking. Having
effective systems for failure detection, and well-trained
plans for recovery, is essential.

Manageable Decisions  Sixth, and finally, security
systems must be designed with manageable decisions.
Keeping decisions manageable probably means pushing
decision making to experts. This also means that managed
services (security run by specialized security companies)
are likely to be the future. As hammered repeatedly in this
chapter, most users will not be capable of doing the



security thinking required nor ready for the psychology of
decision making in a security context. Or, put another way,
it is hardly a fair fight to force the average user to be better
at security than the average attacker. However, it is not
enough to simply centralize. Centralized services have also
been guilty of not thinking, and that makes things just as
bad if not worse. The managed services must be able to
think on behalf of the clients and not just run on autopilot.

As I have mentioned several times in this chapter, training

will almost never be the right solution to any of the

problems discussed. Generally speaking, the problems
addressed in this chapter cannot be addressed with
training or can only be addressed with professional levels
of training. For example, automation is simply how our
minds work and operate. It cannot be trained out of us. On
the other hand, as mentioned in the section on emotional

fallback, this happens when someone reaches the end of
their knowledge or training. The attacker will almost

always know more than the average user, which means that

the average user will almost always be at risk of emotional

fallback.

Interestingly, training always seems to be the fallback
solution. In teaching my course to students, at least half the
class will always bring up training if asked about these
psychology issues on an exam. It seems to be part of human
nature to believe that if we just explain something to
someone enough, they will then act in a logical manner
consistent with what has been taught. Accepting that
humans will act irrationally really appears to be difficult for
most students. However, accepting that reality is essential
for developing effective cybersecurity systems.

Summary



Humans are part of cybersecurity systems. Until we
develop true artificial intelligence, if we can and should,
there will always be humans involved. Accordingly, humans
must be understood just like any other piece of technology
used in the system. It is important to understand how the
human mind developed, what it can do well, and what its
limitations are.

One way in which humans are different than the rest of
the technology in a system is that the humans are unlikely
to change much. We design new technologies with new
features and new architectures all the time. This is not
possible, of course, for our brains. What this means is that
to make a system more effective, it is largely the other
technologies that have to change to match the brain, not
the other way around.

The psychology of error and the psychology of
manipulation are two areas that need to be of interest to
cybersecurity professionals. This chapter covered four
sources of errors: mental automation, complex rules, meta-

ignorance, and wrong model stubbornness. It also covered
four sources of manipulation: action bias, emotional

fallback, deference to authority, and visual-emotional

responses.
Creating technology that effectively complements the

human brain is still very challenging, and it is not done very
well yet. I covered six different ideas that can be useful in
developing psychology-aware cybersecurity technology.
These included affordances, irrational modes, rational

centering, error robustness, failure robustness, and
manageable decisions.

In my opinion, creating psychology-aware systems is the
greatest challenge for computer security technology in the
foreseeable future. As you will see in the other chapters of
this book, there are technology problems unrelated to
human thinking that are sources of security vulnerabilities,



but many, if not most, are human driven. It would be a
wonderful new dawn for the security of cyberspace if the
technology issues were the only ones, or the primary ones,
that had to be dealt with.

Further Reading

This chapter touched on just a few topics of psychology
related to computer security. Several portions were
inspired by and based in part on Ross Anderson’s chapter
on Psychology in his book Security Engineering [40,
Chapter 3]. For an overview of human error issues, Ahmed
et al. have an excellent summary in “Human Errors in
Information Security” [34]. I only lightly touched on action
bias, but The Decision Lab has a good article about it [157].
More recently, Josiah Dykstra and Douglas Hough
presented at Black Hat about how action bias causes
cybersecurity problems [99].

For exploring issues of deception and social
engineering, Kevin Mitnick’s book is an excellent starting
point [186]. Perhaps surprisingly (or perhaps not),
deception is emerging as a defense which I touch on a little
in Chapter 8. However, there is an excellent chapter on
“Psychology of Cyberdeception” in Rowe and Rrushi’s book
on the deceptive techniques that can be used against
attackers entitled Introduction to Cyberdeception [225,
Chapter 2].

Finally, although not directly related to security, if you
are interested in more about how scientists study the brain
(and the mind to the extent they are different), I
recommend looking into the field of cognitive neuroscience.
The study cited in the chapter by Ramachandran and his
colleagues is an example of work in this field. You might
find Ramachandran’s TED talk to be worthwhile [212].
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Footnotes
I recognize that cancer is lethal and claims millions of lives every single year.

None of the comparison to cancer is meant to minimize the suffering or loss
experienced by anyone that has been impacted by its terrible destruction. In
fact, I explicitly chose cancer as the comparison subject precisely because it is
so damaging and destructive. Cancer is destructive without being conscious,
self-aware, or intelligent. The comparison here is to help the reader understand
just how much more terrifying the disease would be if it were and to illustrate
just how dangerous our cybersecurity adversaries are.

 
Unless, of course, we really do develop some kind of independent artificial

intelligence…but that might come with its own problems.

 
Being killed by animals is still a relatively large risk, but this includes, for

example, mosquitoes. But prehistoric humans could not run away from them
either. On the other hand, the data shows that approximately 100 people were
killed by lions in 2017 [219].

 
Although the discussion thus far has referred to evolution in the biological

sense, the slowness of “evolution” also includes the evolution of society.
Biological evolution moves so slowly that no significant changes to the human
brain can be expected for thousands of years. The evolution of social
interactions moves faster as societies learn, experiment, and adapt to enable

https://doi.org/10.1080/10463280340000036
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better cooperation and also to protect themselves from threats. However, the
speed of human technological progress has been moving so rapidly that even
social evolution cannot keep up.

 
One of the real challenges with healthy, respectful discourse in politics,

religion, and other sensitive subjects is an inability to figure out “the other
side’s” modeling. If you find there are a large number of people that seem to
take a point of view you just cannot understand, it may be worth exploring the
models that you and they are using. Working to understand and explain your
model, and figure out theirs, can lead to better mutual understanding and an
improvement in working with others.
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Chapter Quick Start Guide

In this chapter, you will learn about how parties
(typically human parties) can be identified to a computer
system. This process is called authentication. For
identifying a human party, there are three common
approaches: something you know (like a password),
something you have (like your phone), or something you

are (like a fingerprint). Although it is popular to talk
about passwords as “weak” and other mechanisms like
biometrics as “strong,” every approach has pros and
cons, strengths and weaknesses.

Key Concepts

1.
In cybersecurity, identity is typically just a unique
sequence of characters assigned to a party.

 
2.

Authentication by something you know requires the
secret be known by the proper party and only the
proper party.

 

3. Authentication by something you have requires a
unique token be held by the proper party and only

the proper party; many something-you-have
approaches can only simulate a unique token.
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approaches can only simulate a unique token.
4.

Authentication by something you are has a wide
range of requirements including statistics
requirements, privacy requirements, false
positive/false negative requirements, and others.

 

5.
Multifactor authentication, when done properly,
combines two or more of the authentication
approaches.

 

Common Pitfalls and Misunderstandings

1.
It is challenging to create passwords that are both
memorable to the authorized party and hard to guess
by unauthorized parties.

 
2.

Many of the practical approaches for something-you-
have authentication can only simulate a unique
device.

 

3.
Many organizations that deploy biometrics operate
with overconfidence creating a culture that is
vulnerable to attack.

 
4.

All authentication approaches can break down if
edge cases, such as password resets, are not
carefully designed and controlled.

 

Useful Vocabulary

Principal: Any entity that is unique within the context
of the system
Hashing Function: A function that produces a small,
unpredictable mathematical code for any amount of
data



Hash: The output of a hashing function that can be
thought of as a kind of “fingerprint” for the data that
was hashed
Brute Force: Any approach to cracking cybersecurity
systems that entails trying all possible combinations
Entropy: A measure of the unpredictability of a key or
password, or the amount of unique information
contained in it, as a proxy for how difficult it will be for
an attacker to guess it
False Positive: Incorrectly confirming invalid data is
valid
False Negative: Incorrectly rejecting valid data as
invalid

With a few notable exceptions, authentication is an
essential component in almost all computer security
systems. Authentication is part of the larger problem of
identity management. Identity management relates to
“storage, processing, disclosure and disposal of users’
identities, their profiles and related sensitive information”
[55]. There is no one definition of identity management, but
over the decades, there have been a range of approaches to
the broad concept that have been variously described as
Authentication, Authorization, and Accounting (AAA) [182];
Authentication, Authorization, and Audit [166];1 Identity

and Access Management (IAM) [260]; or Identity,

Credential, and Access Management (ICAM) [251]. These
are not synonyms or even necessarily alternatives. Rather,
they illustrate how authentication is almost always part of a
larger combination of access technologies. In this book, I
primarily focus on just authentication and authorization.
This chapter covers some of the foundational ideas behind
authentication. Authentication is defined by the National



Institute of Standards and Technology (NIST) as, “Verifying
the identity of a user, process, or device, often as a
prerequisite to allowing access to resources in an
information system” [223, 257]. In other words,
authentication is how a system “knows” who it is dealing
with. This is in contrast to authorization which deals with
deciding whether this person (identified through
authentication) should be granted access. We will discuss
this more in the next chapter.

Hundreds of millions of people are being authenticated
every day. Many of them are being authenticated
repeatedly throughout the day. It is not uncommon for a
person living in the developed world to authenticate before
accessing their bank on the Internet, when they use their
work computers during the day, and in order to play a
movie or video game in the evening. Add to this the
repeated uses of a personal device, such as a phone, and
authentication is almost constant throughout the day.

Despite its ubiquity, authentication can be quite
problematic. Because it is used everywhere, it is
incorporated into almost all modern computers and
computer systems. Nevertheless, it is often misconfigured,
mismanaged, or not appropriate for the context in which it
operates. Even when the technology is correctly used, more
fundamental problems drive problems that cannot be
solved with technology alone.

The goal of this chapter is to provide you with a starting
point for understanding core concepts that shape all
authentication technologies, proper deployment in correct
contexts, and inherent limitations that cannot be eliminated
(despite vendor claims) and must be dealt with by the
users.

Foundations of Authentication



A good starting point for learning about authentication is
“identity.” Since the goal of authentication is to verify
identity, it is essential to understand what identity is.

It is also important to understand what it is not. Identity
in terms of authentication technology is not necessarily the
same as identity as it is used in common parlance (at least
in the English language). The word, as defined in the
dictionary, means “the condition of being oneself or itself,
and not another,” or “condition or character as to who a
person or what a thing is; the qualities, beliefs, etc., that
distinguish or identify a person or thing” [181]. Even in
terms of cybersecurity, the average user probably
associates identity with crimes like “identity theft,” wherein
a person’s identity within society is taken or used by
someone else.

In contrast, identity in authentication does not
necessarily have anything to do with who or what a person
(or thing) is. It may not be related to their real name or real
self. It may not even be related to their nature as a person

at all. In fact, an identity may not be representative of
anything in the physical world at all.

What is an identity then? Usually, it is just a sequence of
symbols, such as letters and numbers. In computer terms,
this is called a “string” (originally, “a string of characters”).
So, for example, an identity might be a username, an email
address, a URL, or a phone number. These strings may, in
fact, be related to some real-world counterpart, but from
the perspective of the authentication system, it is just a
unique sequence of symbols.

What is important about an identity is whether or not a
party may claim it. Consider, for example, your username
on a computer you use. There was some process by which
you received permission to use that name. It may have been
assigned to you, or you may have registered it, but you had



that identity associated with you. Nobody else, even if they
know your identity, should be permitted to claim it.

An identity can be claimed by a flesh-and-blood human,
of course. But an identity can also be claimed by an
organization, a group of people, someone acting in a
particular role, a computer, a program, a system, and so
forth. The term principal is used to describe any entity that
is unique within the context of the system. Principals may
claim an identity. Clearly, there should be a unique identity
for a unique principal within a given system.

With that said, the three approaches discussed herein
are widely used for humans to identify themselves to a
system. While passwords can be used by machines to
identify themselves, tokens and biometrics really cannot.
Moreover, there are other approaches for machines to
identify themselves that are discussed in other chapters.
For the purposes of this chapter, you may assume that a
principal refers to a human principal. For this reason, when
speaking informally, I will sometimes use the term “user”
as a generic synonym for principal.

Accordingly, the general approach to authentication
follows a very basic formula:

The principal requesting authentication claims to have or
control an identity string.
The system performing authentication demands proofs of
the claim.
The principal requesting authentication provides the
demanded proofs.
Figure 2-1 shows a generic illustration of this process.
In practice, the types of proofs used to validate an

identity claim fall into one of three categories:
Something you know
Something you have
Something you are



Authentication succeeds when the principal with the
valid identity claim is correctly validated and when any
other principals (which may include attackers) with an
invalid claim are not validated. A false positive occurs when
an invalid claim is accepted, and a false negative occurs
when a valid claim is rejected. For example, if you try to
access your phone using your fingerprint scanner and it
cannot recognize you, that is a false negative. If your friend
is able to access your phone using their fingerprint, that is
a false positive.

Authentication also fails when the wrong party gets a
hold of proofs used for validating identity. The proofs
provided to prove identity are called credentials, and
certain types of credentials can be stolen. Protecting a
principal’s credentials often requires a certain amount of
correct use on the part of the authentication system and
the principal seeking authentication.

Figure 2-1  A general depiction of authentication. This process is not that
different from physical-world authentication. When you arrive at a hotel, for
example, you tell them your name. They ask to see your ID which you present
as your credential. Sometimes, you need to have more than one form of ID
(credential)



As you will learn throughout this book, security
components, such as authentication, do not exist in a
vacuum. Authentication, for example, will generally be part
of a system and must be integrated into the system
correctly. One simple example is that authentication
controls must be present on all the different entrances into
the system. It is not good to require identification at one
gate, while another gate is left completely open. This
concept is sometimes captured as the principle of Complete

Mediation.

Something You Know

Authentication using “something you know” requires that
the principal seeking authentication prove to the
authenticating system that they know a secret. The most
common form of this authentication approach is passwords.

Passwords have been used for centuries and long before
computers were around. A popular story from the Arabian

Nights2 is “Ali Baba and the Forty Thieves”3. Ali Baba
overhears thieves entering their secret treasure room with
the magic words “Open Sesame.” After they leave, Ali Baba
is able to enter the room using the same password.
Authentication, in this case, failed. Ali Baba was able to
enter an unauthorized location using a stolen password.4
Stolen passwords are a good segue into the three
requirements necessary for passwords to be an effective
authentication technology.

Password Requirement 1: Exclusive Knowledge.  The
password must be known only by the party with the valid
identity claim. The password is meant to prove that the
knowledgeable party, and only the knowledgeable party,
has claim on the identity. As soon as the password is known
by multiple parties, it is no longer a viable authentication



mechanism. In an ideal world, passwords should not be
shared with coworkers, close friends, or even domestic
partners. There may be circumstances where there is no
other choice but to share, but this should be the exception,
and not the rule, and it should only be for relatively low
security systems. Passwords should also not be shared
because your friend or coworker “promises to keep it
secret.” This is well illustrated in the story of Ali Baba; as
soon as “Open Sesame” was known by Ali Baba, it was no
longer an effective way of authenticating the leader of the
thieves.

Three can keep a secret, if two of them are dead.

— Benjamin Franklin [110]

Password Requirement 2: Unguessable.  The
password cannot be “easily” guessed by humans or
computers. This requirement is one of the most
misunderstood by the average user and the biggest
problem for password-based systems. According to a 2017
report by Verizon, more than 80% of all cybersecurity
breaches were due to stolen or weak passwords [275].
Although they did not break it down further, weak
passwords (i.e., passwords that can be guessed) are
undoubtedly a significant portion.

Password Requirement 3: Unforgettable.  The
password must not be forgotten by the principal seeking
authentication. Forgetting the password obviously results
in being unable to authenticate. The “solutions” commonly
used, such as writing the password down or using a
password reset, introduce significant security issues that I
will detail later in this chapter. As a fun illustration of the



importance of an unforgettable password, in the movie
version Arabian Nights that I like so much, Ali’s brother
Kasim goes back to the cave. To help him remember the
password, Ali has given him sesame biscuits. But he loses
the biscuits after getting into the cave; he forgets the
password and can no longer get out. Unfortunately for
Kasim, he is trapped there until the bandits find (and kill)
him.

Passwords are widely used partially because of how easy
they are to set up. No special infrastructure is required. A
user thinks up a password and that is all there is to it.
Something-you-have and something-you-are authentication
always requires more and more expensive configuration
and setup. Passwords are also intuitive for users and
require almost no training to use, even if used incorrectly.

But this easy deployment is probably the only reason it
is still used. Passwords are a terrible form of security in
almost every way. Every security expert and a pretty good
number of non-experts hate passwords. Some of the many
password problems will be detailed in the following
subsections.

Password Verification and Storage

For a user to authenticate using a password, the system
performing the authentication must know the user’s
password. This is a security risk that should not be
overlooked. Although it is generally necessary,5 the risks
must be understood and managed.

Typically, a user has some form of a registration phase.
A typical design for the registration process is depicted in
Figure 2-2. During this phase, the user submits their
password along with whatever identity they have chosen or
been assigned. The password is received at the
authentication system where it is processed and stored
along with the identity string. For security reasons, the



password should not be stored “raw.” Instead, a special
derivative of the password, called a “hash,” is stored.6

Figure 2-2  Password registration starts with a user submitting an identity
(e.g., username) and a password. The system that receives the data generates a
random value called “a salt” and generates a hash of the password and salt.
The identity, salt, and hash of the password are stored in a database. The
important point is that the password itself is not stored



Figure 2-3  Storing a username with the raw password, as shown on the left,
is not good security. If an attacker breaks into the server and steals the
password database, they immediately have all of the usernames and passwords.
On the other hand, if passwords are hashed, as shown on the right, they have
what looks like completely random data. These password hashes can still be
“cracked,” but it can take time and, for good passwords, it will probably take
too long to be of much use to the intruder

You will learn much more about hashes in Chapter 5.
For the purposes of this section, you only need to know that
a hash is a “one-way function.” The hash function takes the
password as an input and spits out what appears to be a
random sequence of data. It is not random, of course. The
same password input to a hash function always results in
the same output every time. But the output itself looks
random and has nothing of the original password in it. It is
effectively impossible to examine the hash output and know
what the original password was that generated it. This is
why it is called a “one-way function.” It is easy to take the
password and get the hash, but it is difficult to take the
hash and figure out the password.

Because the authentication system stores the hash of the
password, rather than the password itself, the user has
some protection should an attacker break into the
authentication system and try to steal the password, as
illustrated in Figure 2-3. The would-be Ali Babas of
cyberspace will only find the hash of “Open Sesame”7

stored in the system, making it harder for them to steal.
Additionally, the password is hashed with randomly

generated data called a salt. The salt is not secret and is
stored in the database with the username. By mixing in this
random data, the hash output will always be unique. This is
important for two reasons. First, if two users accidentally
(or on purpose) chose the same password, the hashes
would be the same for each user. If an attacker broke into
the system and stole the password file, they could instantly
determine that the two users share the same password.



Now, social engineering attacks like those described in
Chapter 1 can be used against either target to steal the
password of both.

Figure 2-4  In this example, passwords are not hashed using random salts. An
attacker can easily crack common passwords, such as dictionary words, by
taking a dictionary and hashing each word ahead of time. This creates a
dictionary of hashes to words that can be easily consulted to crack the
password

A more important reason for using salts is to try and
protect users with weak passwords. Remember that the
hash of a password is always the same for a given hash
algorithm. If salts were not used, attackers could just have
entire dictionaries of hashed words. Every word would be
prehashed. If the user’s password is “password” (still
commonly used!), the hash stored in the database would be
immediately found in the prehashed dictionary, as
illustrated in Figure 2-4. On the other hand, Figure 2-5
shows how storing the hash of a password mixed with a salt
is unique for each user.

Once the user has registered, they can authenticate by a
similar process as shown in Figure 2-6. The user submits
the claimed identity (i.e., username) and the password. As



during registration, this data is transmitted to the
authentication system. When it arrives, the authentication
system looks up the username in the database and extracts
the stored password hash and salt. Remember: The
password itself is not stored, only the hash of the password.
To authenticate the user, the transmitted password is
hashed (with the salt), and this value is compared to the
hash stored in the database.

Attackers can try to steal passwords by compromising
the system at any location. For example, if the attacker has
compromised the user’s machine with evil software
(“malware”), they may be able to capture the password as
it is being typed. “Keyloggers” are a type of malware that
record every key pressed on the keyboard and then
exfiltrate this information to the attacker. Malware will be
discussed in greater detail in Chapter 7.

Figure 2-5  The hash of a password might look completely random, but it is
not. The hash of “password” is always the same for a given hashing function. If
multiple users all decided to use the same (bad) password, their hashes would
all be the same. If an attacker stole the password file, they would immediately
know that the users have the same password, which is a problem all by itself.
But worse, it permits the precomputed hash dictionaries like the one depicted



in Figure 2-4. In this example, however, the three users, even though they
choose the same bad password, all have different hashes because a different
random value (salt) was mixed in with each one. Not only does the attacker not
instantly know the passwords are the same but each password must be cracked
separately using the individual random salt

Figure 2-6  When a user logs in to a system, they transmit their identity (e.g.,
username) and password, just like they did during the registration phase. But
when the username and password are received, the server takes the identity
and loads the original salt and hash out of the database. To verify that the user
entered the right password, the transmitted password is hashed with the salt to
produce a new hash. The new hash is compared to the stored hash from the
database. If they are the same, the user entered the correct password

Passwords that are transmitted over the Internet can be
intercepted en route unless they are transmitted over a
secure channel. Much of the data sent to websites is
transmitted using the HyperText Transfer Protocol (HTTP).
HTTP can be used in an unprotected form and a secure
form, the latter of which is identified by HTTPS.
Fortunately, most websites have been switching over to
HTTPS and do not even provide an unprotected version.
Nevertheless, some websites still use the unprotected
HTTP, and no sensitive data should be submitted to such



sites. Other mechanisms for securing data transmissions
include Virtual Private Networks (VPNs). I will discuss
these issues in greater detail in Chapters 8 and 9. To
illustrate, again I suggest watching Arabian Nights. Ali
Baba is shown overhearing the password while hiding
behind a rock. Stealing the password is easily achieved by
simply being in the right place and listening in. The same
thing can be done on modern networks. But, fortunately in
the modern world, the password is transmitted through the
computer networks over an encrypted channel. Attackers
that are listening in cannot tell anything about the data,
and, in fact, it will look random. It would be equivalent to
Ali Baba overhearing static.

Finally, the attacker can be the authentication system

itself! I hinted at this earlier when I mentioned the security
issues of sharing a password with an authentication system
in the first place. All of the security described so far
presumes that the authentication system is honest. If the
authentication system is malicious, there is nothing to stop
it from revealing the user’s password to other parties.
Many users choose the same password for many of the
websites and systems that they use. A malicious
authentication system could use whatever username and
password were submitted to itself and try those same
credentials on another system, such as a bank. In the
United States, three banks hold about 30% of all deposits.
Suppose that just 100 Americans register with an evil
website. Statistically, about one in three of these users will
have an account with one of these three banks. The evil
website can take each user’s username and password and
test it out on each one of them. There is a good chance
that, for at least a few of the users, they will have reused
the same password. The username might also be the same,
can be guessed, or otherwise determined. This attack
becomes even easier if the user is willing to give the evil



website credit card info, because it reveals at least one
bank with whom the user has an account.

Story Time: Three Times Is a Conspiracy

Vox writer Sara Morrison discusses how her financial life
was upended when she was hacked at Grubhub first,
then banks and credit cards later. In total, hackers got
away with $13,000 before she realized how serious the
problem had become. Although she is not absolutely
certain of it, she believes the reason she suffered
breaches going over many months across multiple
accounts was because she had been using the same
password for most of them. This is very likely. Learning
from her mistakes, she installed a password manager
and created a new password for every account [187]. It
would be a good idea to follow her example.

For this reason, passwords should not be reused between
different systems. Most users find it difficult, if not
impossible, to remember a different password for every
system. One solution to this problem is to use a password
manager. Because password managers also solve other
problems addressed later in the chapter, I will defer
discussing them in detail for now.

Speaking of other problems, attackers can also attempt
to “crack” a password hash. This is the topic of the next
section.

Cracking Stored Passwords

Even if passwords are not stored in their raw form, weak
passwords can still be cracked. Let us assume that an
attacker has penetrated a website and stolen its password
database. Inside the database, the attacker finds the
usernames and the password hashes. Given that hashes are



one-way functions, the attacker should not be able to figure
out the original passwords, right?

Not exactly. The attacker can guess. The attacker can
hash any given guess and see if it matches what is in the
stolen database as illustrated in Figure 2-7.

As I discussed earlier, passwords should not be easily
guessable by either humans or computers. The type of
guessing that each can do is different and based on
different strengths. Humans’ guessing is good at using
semantic information. Humans can figure out the names of
family members, friends, pets, important dates, sports
teams, colleges, high school, and so forth. Users creating
passwords based on this information seem to assume that
“bad guys” will not be able to find out personal information
even if friends, family, and perhaps even coworkers know
all of these details. These assumptions are all wrong as
friends, family, and coworkers can be the attackers. More
importantly, personal details are extremely easy to find
even for a stranger. Personal information should not be
used as a password.



Figure 2-7  An attacker cracks passwords by guessing a possible password,
mixing it with the random salt, and hashing the guess and the salt together. If
the output of the hash matches the value in the password database, the
attacker has found a correct password

Humans are also good at guessing phrases that a user
might like such as “to be or not to be!” Not only are these
phrases easily guessed but so are derivatives such as using
the first letter of each word (e.g., “tbontb”) or replacing a
letter or word with a number (e.g., “2b0ntb!”). Computers
can guess these too, but the difference here is that a
human can guess phrases based on their knowledge of the
victim’s preferences.

Computer-based guessing on the other hand is based on
huge amounts of trial and error. This is what a computer is
good at. Computers do not get tired or bored, do not need
to stop for food or rest, and can operate in extremely
methodical ways. Humans without training in computer
security often have poor intuition as to just how capable
computers can be at trying millions of combinations.

Two of the most common ways that computers guess
passwords is brute-force and dictionary based.

Brute-force guessing involves trying every single
combination of every single symbol that could be in the
password. This is hard for humans (perhaps impossible in
any reasonable time) but easy for computers. I talked about
why salting the password was so important in the previous
section. Were it not for salting, attackers would only have
to precompute all possible dictionary words once. By using
a salt, the attacker must try hashing each word in the
dictionary with the random salt mixed in. And the attacker
must do this for every user as every user has a unique salt.
This is the starting point for our discussion.

Even still, making a lot of guesses, even for each
individual user, is straightforward for a computer. A very
simple program can systematically try hashing every
possible combination of letters, numbers, and special



characters in every possible length. It can start, for
example, with all combinations of one-letter passwords,
then advance to two-letter passwords, and so forth. The
only limitation is time. No matter how fast computers get,
there will always be a limit to how many guesses can be
tried in “reasonable” time. Passwords should be long
enough that a computer cannot try all possible
combinations of that length without running out of time.

It is probably intuitive that with more symbols there can
be more passwords. But to make it more clear, let us walk
through some calculations.

Suppose that a user only uses lowercase letters from the
English alphabet in their password. How many possible
one-letter passwords are there? Twenty-six because there
are twenty-six lowercase letters in the English alphabet. If
a user’s password was just one letter, it would take, at
most, twenty-six guesses to figure it out. The attacker
would hash each one of the twenty-six lowercase English
letters and see if the hash of the letter matched the hash in
the database.

As a side note, the output of a hash is always a fixed size
no matter how big the input is. A twenty-character
password and a one-character password have the same
size hash for the same hash function. It is impossible for
the attacker to look at the hash and know (or even guess)
how big the original password is.

Now imagine that the user’s password is two lowercase
letters. How many possible passwords are there now?
There are still 26 possibilities for the first letter, but for
each first letter, there are 26 possibilities for the second
letter. That is, if the first letter is “a,” then there are 26
possible passwords that can be chosen as there are 26
possible choices for the second letter. If the first letter is



“b,” there are another 26 possible passwords. And so on.
What this means is that there are 26 times 26 possible
passwords for a two-letter password. That is 676
passwords.

Thinking it through, you can see that for an all
lowercase password using the English alphabet, the
number of possible passwords is  where n is the number
of letters in the password. The following table illustrates
how the number of passwords increases with length:

This illustration shows why the length of a password is
so important. For every one character added to a password,
even just a lowercase letter, the attacker has to try 26

times more guesses.
You might have already figured out why it is so

important to use more than just lowercase letters. Look



how everything changes with lowercase and uppercase
letters. Again, using the English alphabet, there are now 52
possible symbols for each spot in the password. The math
now looks like this:

By using both uppercase and lowercase numbers, the
user has increased the number of guesses the attacker has
to make significantly. For a ten-length password, the
number of guesses increases from 141,167,095,653,376 to
144,555,105,949,057,024. That’s an increase from a 15-
digit number of guesses to an 18-digit number of guesses.
It is 1024 times bigger.

To complete the series, let us look at what happens
when we include all ten digits (0 through 9) and symbols
such as !, (, and .. For simplicity, we will just use 16
symbols, even though there are more, so that combined



with the digits we have added another 26 symbols to our
possible passwords:

How many guesses are needed to make things difficult
for a computer to brute-force in reasonable time? It
depends on the hashing algorithm. There are more than
one, and some take longer than others. The hash that takes
the least amount of time that is still in widespread use is
called MD5. Modern hardware for a single machine can
compute more than 20 million MD5 hashes per second!
That sounds like a lot, right?

Even at 40 million MD5 hashes per second, it takes a
long time once passwords get around ten symbols long.
Even with just uppercase and lowercase passwords (no
numbers or special characters), there are
144,555,105,949,057,024 possible passwords of length ten.



Dividing that number by 40 million per second is
3,613,877,648 seconds to complete all the guessing. That
works out to about 120 years!

Of course, attackers can speed up the process by using
multiple machines. Two machines would cut the time in
half, four machines in a quarter, and so forth. Still, it is
important to see how increasing the length by one can
make such a big difference. Passwords less than size eight
are almost always worthless. Ten is a better starting point.

The other widely used approach to guessing passwords
is to use a dictionary. Many users choose passwords based
on dictionary words. It might have been difficult for Ali
Baba to guess that the password was “Open Sesame,” but
modern computers do not have this limitation. A computer
can iterate through a dictionary of words, hashing each one
and looking for a match. Users often think they are making
their password stronger by using a misspelling, replacing
letters with numbers or other symbols, or throwing in some
numbers at the end.

Unfortunately for the users that rely on such tricks, the
reality is that computers can figure these substitutions and
minor additions with relative ease. Suppose that the user is
creating a password out of his head (i.e., the user is not
consulting an actual dictionary). Americans have a
vocabulary of between 20,000 and 35,000 words. When
picking a password, a user will almost certainly pick from a
much smaller list of relatively familiar words. Nevertheless,
even if they could pick any random word from their mental
dictionary, it would not be difficult for a computer to try out
35,000 words.

Computers can also apply rules to a word to create
variations. A computer can have a set of rules for replacing
letters with numbers and other common substitutions.
Some password crackers use a set of rules called the “Best
of 64,” which are 64 of the most common changes people
make to their passwords. If each word is transformed into



64 variants, the number of words to test only increases
from 35,000 to 2,240,000. That is still significantly less
than an eight-character password of even just lowercase
letters. There are not enough transformations that a human
can do in their head that will significantly challenge the
capacities of a computer.

The exception, however, is a combination of random
words. Even if the user is picking from a significantly
smaller list of words, perhaps just 2000 words total, a
combination of random words quickly becomes impossible
for a computer to do quickly.

To figure out the number of guesses a computer would
have to do for this type of password, you need to calculate
combinations of words instead of combinations of symbols.
So, instead of starting with one-symbol passwords of which
there are 26 (or 52, or 78) possibilities, you start with a
single dictionary word of which we assume there are 2000
possibilities. A two-word password will have 2000 times
2000 possibilities, or 4,000,000. The following table shows
the growth in possibilities:

When creating a multiple-word password, four words
should be the minimum.

Whether a computer is doing brute-force attacks,
dictionary attacks, or a combination, each guess requires
performing a hash operation. The attacker can be slowed
down significantly by using hash algorithms that are very
slow. MD5, as we have seen, is one of the fastest and
modern computers can do tens of thousands of MD5 hashes



in a second. Authentication systems should use slower
algorithms like SHA-256 or, even better, an algorithm
designed to be slow such as PBKDF2. Computers can run
the latter algorithm at about 100,000–200,000 per second.
This can delay the attacker by a factor of 100 or more. So if
it would have taken 7 days to crack the same set of
passwords hashed using PBKDF2. Figure 2-8 includes the
increased effort required for cracking passwords hashed by
different hashing algorithms in 2002.

Figure 2-8  This table, by Colin Percival, shows the approximate dollar cost to
break passwords of different sizes with different password hashing functions in
2002. I have not been able to find a more recent comparison, so these numbers
are definitely out of date. However, it is a useful comparison of the relative

speed of the different hashing algorithms. Remember in this case that slower

and more expensive is better for the defender

Story Time: Legacy Systems Strike Back

I was once asked to evaluate the security of a
compromised password file. That is, attackers had
broken into a cloud system (an interesting story in and of
itself) and stolen the file of password hashes for a web
application. I was asked to evaluate the password file
and see how easily it would be compromised.

Unfortunately, the file was nearly instantly crackable.
The password hashes were created with MD5 and were



not even salted. Just using a very basic cracking tool, I
cracked most of the passwords in about two minutes.

I was also asked to review the source code for the
password system and figure out how this had happened
because it was supposed to be using a better hashing
algorithm. What I found was that the MD5 was a legacy
password hash from more than a decade previous. The
system was “upgraded” to use the better hash with
salting. However, the upgrade had been designed to
support both hashes during a transition period.
Remember, the system does not have the unhashed
password, so there is no way to just convert the MD5
hashes into the newer hashes. The transition code
worked by having people log in to the system, confirming
the password is correct by checking against MD5, and
then storing it in the newer format. Clearly, at some
point, the MD5 values were supposed to be stripped out.
But somewhere along the way, it was forgotten about.
Either they kept putting it off until they forgot about it or
a developer left the company or some other event
distracted engineering from removing the vestigial data.

Unfortunately for the company, this meant that when
the attackers stole the file, the data was protected with a
really strong door and a really weak door. Effectively,
this meant that the data was easily compromised.

Putting it all together, a good password of random letters
might look like this:

 >^KdDW+(x.

Or, alternatively, a good password might be four random
words:

 WhatJuggleChinRed



Note that the words must be random. “Mary had a little
lamb” is not very secure, because it consists of common
words that are readily associated together. Characters can
be inserted into the middle to increase the password’s
strength:

 WhatJuggle8;1ChinRed

The main point here is that passwords with higher
entropy are more secure. That is, the more surprising,
unique, or difficult-to-guess the content, the harder it will
be for an attacker to crack the password. Passwords with
low entropy are more vulnerable to common attacks than
passwords with high entropy. Password rules are all
attempts at getting humans to create sufficiently complex
passwords while working with the limitations of our
psychology.

On that note, one of the arguments for using a password
made from multiple words rather than from random
symbols is that it is supposed to be easier for the user to
remember.

The problem with this belief is that it is not supported by
research [85]. In addition, even if a single password is
more memorable, a user should have a different password
for every system. Users might have hundreds of systems
they use and would need to remember hundreds of
passwords. This is not feasible for most users.

The best recommendation for password security is to
use a password manager. A password manager is a
program or service that stores all of a user’s passwords in
an encrypted container. Only a master password decrypts
the passwords. Plug-ins can be used to enable passwords to
be entered automatically at websites from the decrypted
storage. Most provide tools for automatically generating
new passwords and managing password rotation.8



In general, passwords should not be written down
outside of a secure application such as a password
manager. But correct use of a password manager helps
users to meet password security requirement numbers 2
and 3.

Figure 2-9  An example password meter from the 2013 time frame. More
recent password meters typically provide some feedback on what is wrong with
the password

Figure 2-10  Researchers at CMU developed a password meter with password
advice based on quantifiable research [269]

Earlier in this section, I hinted that technology can also
help users to choose a good password (or ensure that the
password manager generated a good password). During
the registration phase when a user is choosing a password,
authentication systems can analyze the user’s proposed



password and alert them if it is weak. This technology is
commonly called a “password meter.” Figure 2-9 shows an
example password meter from 2013.

Password meters should not be confused with systems
that enforce certain rules on a password. For example, you
may have had to create a password for a system that
required the password to have at least one uppercase
letter, at least one number, and at least one special
character. Unfortunately, many users simply add these to
the end of a bad password:

 Password123$

A good password meter can recognize this kind of bad
password and communicate to the user what is weak about
it. More importantly, a good password meter can help the
user to make a better password choice with specific
suggestions [269]. Figure 2-10 shows an example.

Dr. Cranor’s work is important because it is based on
empirical research. One of the problems in security is
designers sometimes create a system based on what they
believe is the problem or what they believe is the solution.
The best security technologies, and the best uses of
technologies, are based on scientific study.

For example, many voices in the cybersecurity world
have promoted the regular changing of passwords.
“Passwords should be like underwear,” the saying goes,
that is, they should be changed regularly [130]. But this
assertion was based on educated guesses and reasoning
based on assumptions. Dr. Cranor assembled empirical
evidence that determined there was no advantage to
regular password changes. If a user is using a password
poorly, such as weak passwords, reused passwords, or
writing them down in insecure places, password changes
are unlikely to help. If a user is using a strong password,
with a different password for each system, then password



changing does not add any benefits. Not only do frequent
password changes not add security but they can actually
make it worse as users subjected to such requirements are
more likely to store their passwords insecurely or to use
weaker but easier-to-remember passwords [85].

Password Reset Challenges

Password resets are almost certainly a necessity in some
form or another. Users will forget passwords. I, myself, use
a password manager and have still managed to not enter a
new password when I created it or entered it incorrectly.
When I went to look for it, it was not there and I obviously
could not remember it. Lost passwords will always happen.

Regardless of how necessary they are, password resets
are very, very dangerous for many reasons. The biggest
risk, of course, is an attacker triggering the password reset
to let themselves into the system!

The starting point to understanding the risk of password
resets is to see them as an alternative version of the
password itself. You do not just have a password that lets
you into the system, you have a password and a password
reset that let you into the system. The attacker is happy to
attack either one. It is all the same to them.

The sad truth is that password resets are often not as
well defended or protected as the password itself. Take, for
example, security questions. What is your mother’s maiden
name? That question is protecting your account? Even
questions that might appear to be more safe, such as the
name of your first pet, are not any better. How many of
your friends and family know that information? If you are
young enough, it might be available on social media. Your
parents may have posted about it.

My recommendation is to never answer security
questions with real answers. I recommend using real
passwords that are stored in a password manager, just like



any other password. I have seen this advice repeated in
security trainings I have attended. I find it amusing that we
have to be advised by security not to use widely deployed
security features, but that is a good representation of the
overall state of cybersecurity today.

Other password reset solutions are also problematic. IT
help desks that provide password resets often rely on even
weaker security questions over the phone. They often ask
for billing zip code or other account information that can be
easily obtained from a statement or bill. Some companies
are finally requiring a PIN for phone verification, basically
introducing a verbal password. The problem is that users
often choose very weak security pins (such as their social
security number, phone number, or anniversary date), or
they forget them and the company has to fall back to much
weaker security measures.

There is not yet a good solution to this problem. For the
time being, companies have to rely on fraud detection
algorithms, and users have to monitor their accounts for
unusual activity. Most systems will email the user if the
password is reset, but there are a number of ways
attackers can deal with that. The easiest way around is to
simply get the password reset at night while the user
sleeps. They can do all the mischief they want for a good
number of hours before the user will even be awake.

Story Time: Destroying Someone to Steal a

Twitter Handle

In 2012, Mat Honan, a writer for Wired, had his digital
life destroyed. Attackers managed to take over and
destroy data in his Gmail account, his personal MacBook,
and other accounts. The worst part? He lost images
forever of his child’s first year. That entire part of his life
and the child’s life gone. Forever.



The attackers also took over his Twitter account and
used it to distribute offensive messages. Why did they do
this, you might ask? Was it because he was a writer for a
tech magazine? Nope. The attackers just wanted his
three-letter Twitter handle. Memories, emails, and digital
life gone. For a Twitter handle.

How did the attackers get in? At least partially
through password resets. You can read the entire tragic
story in an article he wrote about it [136]. This is a risk
we all run on the Internet today. It is true that companies
have improved some aspects of this security a little, but
it remains a significant problem.

Another defensive solution employed by a few institutions
(such as some banks) is to require the user to receive a
code on their mobile device that they repeat back to the
service professional they are speaking with. This approach
is probably the best technology currently available but is
not yet widely deployed.

For the time being, password resets are an Achilles heel
for systems that rely on something-you-know
authentication.

Something You Have

Although passwords are by far the most common
authentication technology, authentication using “something
you have” has grown in popularity. Much of this has to do
with the ubiquity of mobile phones.

Before explaining the modern design of a something-
you-have authentication system, I will start by describing
how something-you-have has been used since long before
computers. That is, people have authenticated themselves
for centuries based on holding some kind of physical proof
of identity. A fictional, but illustrative, example is found in



the movie Annie. In this story, Annie is an orphan living in a
US orphanage during the Great Depression of the 1930s. At
this time period, it was not uncommon for parents to leave
their children at orphanages if they could not feed or care
for them. Many hoped to return and be reunited with their
children once they had found work. Annie, about eight
years old, still believed her parents were alive and would
come back for her someday. She had been in the orphanage
since being a small child, however, and had little idea of
what they looked like.

Unfortunately for Annie, her parents had already died.
When it looked like Annie was to be adopted by a rich
patron, Oliver Warbucks, a conspiracy was formed to pose
as her parents in order to swindle money out of said patron.
The fraudsters included the head of the orphanage who had
in her possession a number of personal items of both
Annie’s and the parents. The faux parents showed up at the
Warbucks house with a number of “proofs” of their identity:
forged identities and Annie’s birth certificate.

More personally, they had in their possession (taken
from the orphanage) half of a locket. Annie wore the other
half and hoped that, one day, her parents would come
bringing the other half of the locket as proof of their
identity. When these fraudulent people arrived bearing the
matching other half, it was seen as positive proof that they
were Annie’s real parents.9 The locket was seen as a
stronger evidence of identity in some ways even than the
forged government identities. Because the locket had been
broken, it had created an item so unique as to be almost
impossible to forge, especially while Annie was in
possession of the other half.

But the unforgeable (in practice) nature of the locket did
not prevent it from being stolen. Herein is another example
of a failed authentication and an excellent introduction to
the security requirements for authentication using



something you have. The “something” in “something you
have” is often called a token, and I will use that term
hereafter.

Token Requirement 1: Exclusive Possession.  The
token is only in the possession of a principal with a valid
identity claim. Annie’s story of the stolen locket is fictional
but real. That is, stolen tokens are a very real and very
serious problem. For many people, their mobile phone is
used as a token. A report from 2013 from Lookout noted
that 3.1 million Americans had been victims of phone theft.
On a daily basis, that is a staggering rate of 8493. The
same report concluded that 44% of the victims had left
their phones behind in a public place. One should find
these statistics sobering in light of how many
authentication purposes they are used for.

Token Requirement 2: Unforgeable.  The token cannot
be easily forged or duplicated. This is another very serious
problem. Annie’s locket was valuable for identification
because of how unique it was. Almost all tokens are mass
manufactured devices that are individualized with numbers
and codes that should be unique. But if those codes can be
stolen and copied into another device, both devices will act
in exactly the same way. Authentication using this device is
broken.

Token Requirement 3: Secure Protocol.  There exists a
secure protocol for proving possession of the token. Not
only must the principal with the valid identity claim have

the token, they must be able to prove they have the token
in a secure way. Technically, this is a requirement for
passwords as well, but in practice, it can be a bit more
difficult for tokens. Passwords are more conducive to
transmission, and they are more easily changed.



Before the advent of mobile phones and devices, tokens
were often fobs that could be fitted on key chains. These
devices still see some use and work on similar principles
used in mobile phones, so they make an excellent
illustration of how these kinds of systems work in practice.

The fob pictured in Figure 2-11 is a product of the RSA
corporation called SecurID. These devices work by having
secret data, known as a seed, embedded within the fob. The
fob is designed to be tamper-resistant such that extracting
the seed from the fob is not feasible.

Figure 2-11  An RSA SecurID Token. It displays a code on the screen that is
unique to the device and changes on a regular interval. Image downloaded
from Wikimedia Commons (commons. wikimedia. com) and licensed under
Creative Commons Attribution-Share Alike 1.0 Generic license (https:// 
creativecommons. org/ licenses/ by-sa/ 1. 0/ deed. en)

When the fob is purchased, however, the seed is
provided to the purchaser in a data form. The seed must be
uploaded to an authentication server. The other
requirement is that the fob and the server have
synchronized clocks.

http://commons.wikimedia.com/
https://creativecommons.org/licenses/by-sa/1.0/deed.en


Once running, the fob will display a number that
changes at fixed intervals such as 30 seconds. When
authenticating, the user transmits the number displayed on
the screen to the authentication server. The authentication
server can verify that the number is correct to verify that
the principal is in possession of the fob. Each fob generates
a unique sequence of numbers based on the internal seed,
so no two fobs can predictably generate the same number
at any given point in time.

How does the authentication server know that the
number transmitted for authentication is correct? The
server and the fob both share the secret seed. This is why
the seed must be uploaded to the server. The seed is used
to generate the sequence of numbers. So long as both the
authentication server and the fobs have the same secret
seed, they can both generate identical numbers.

The numbers change based on a time interval because
the time interval itself is used to calculate the number
displayed on the fob’s screen. The process is somewhat
similar to hashing with a salt. If we take the seed as input
and the time interval as a salt, the hash output will be
unique for each seed. The actual process is more
complicated, and the output has to be scaled down to a
smaller number, but the idea is similar.

So, assuming that
1.

The user’s fob and the authentication server share a
secret seed.

 
2.

No other parties know the seed and no other fobs have
it.

 
3.

The user’s fob and the authentication server have
synchronized clocks.

 



Then when the user transmits the number displayed by
the fob to the authentication server, the authentication
server can use the seed and time interval to compute an
identical number. If all the preceding assumptions are true,
this constitutes a proof that the principal requesting
authentication is in possession of the fob. The vast majority
of something-you-have authentication systems work on
similar principles, including Google Authenticator, Duo,
and others. Figure 2-12 illustrates these concepts as a
generic process.

There are some potential problems with this approach.
First, it is hard to argue that this is really something-you-
have authentication when, in fact, authentication comes
down to possession of the seed. The seed is, more or less, a
password. Anybody with the seed can generate the
appropriate numbers for the fob. In fact, software
programs for RSA SecurID exist. These so-called soft

tokens do exactly the same thing only with the seed
programmed into memory rather than imprinted into the
hardware fob.

The counterargument is that the user does not need to
know the secret; the user only needs to be in possession of
the fob. The problem with this argument is that the seed
has to be transmitted to the authentication server. An
intrusion that compromises this server could steal all
registered seeds. All the fobs that authenticate with the
server are now worthless as tokens. As soon as the secret is
disclosed, the fobs cannot function.



Figure 2-12  In a something-you-have authentication, the registration process
typically involves issuing a token from an issuer. In the case of a fob based on a
seed, the seed will be recorded in a database when the token is issued. During
authentication, the output of the token is compared with values computed at
the server

Soft tokens are even more easily broken into. They do
not have the tamper resistance of the hardware fobs.

Story Time: RSA Data Breach

As a matter of fact, this risk is not just hypothetical. In
2011, RSA was hacked and a trove of SecurID seeds
were exfiltrated. This enabled hackers to clone any
SecurID token built with one of the stolen seeds
(effectively creating false “soft tokens”), breaking the
two-factor authentication users, organizations, and
governments relied on [117].

Codes from these kinds of tokens can also be stolen using
network interception or social engineering. A combination
of both network interception and social engineering could



be a fake website that convinces a user to “reuse” their
token for signing in. When the user signs in at the fake
website, they submit the number from their token. The evil
website now signs in as the user to the website for which
the token was actually registered.

Nevertheless, this type of something-you-have
authentication is much better than certain other
alternatives. For example, sending a confirmation number
by email is a much worse choice. In actuality, an email
account is protected by a password. Even more than the
fob, an email account is really just a form of something you
know [114].

SMS messages used to be popular for something-you-
have authentication. The idea was that an SMS code is sent
only to the unique device, and anyone in possession of the
code must be in possession of the unique device. The
problem with the SMS messages was manifold. Some users
have their SMS messages transmitted to their email.
Possession of the code may have nothing to do with
possession of the device.

Another problem with SMS codes is that there were
many social engineering scams that extracted them. An
attacker might try to sign in as a user, triggering an SMS
code. The attacker calls the user claiming to be a
technician and asking for the SMS code. This was harder to
do with fobs because the timeouts were so much shorter
(e.g., 30 seconds). By the time someone called you, it was
just about time for the fob to display a new number.

For these and other reasons, SMS messages are
discouraged for something-you-have authentication.

There is another kind of authentication that does not
really fit in either something-you-have or something-you-
know. In this kind of authentication, an entity, often a
computer program, proves its identity by proving
ownership of a digital certificate issued by a third party.
There is no token. Ownership of the certificate is proved



through asymmetric cryptography. This technology will be
discussed at length in Chapters 6 and 9. I mention it here
for completeness.

Something You Are

The final authentication proof commonly used in
contemporary systems is something you are. This generally
refers to authentication of a human through some unique
characteristic or trait they possess. I have refrained from
using the word human in reference to the previous
authentication mechanisms because they can also be used
for programs, machines, and even groups. Something you
are is almost always for identifying specific and individual
humans. The identification of, and verification of, these
traits is generally called biometrics.

Having already given examples of the previous two
approaches to authentication using examples from movies
and literature, I think it makes sense to do the same thing
within this section as well. This example comes from the
story of Cinderella.10 In this fairy tale, the young and
abused girl of the same name is enabled by her fairy
godmother to attend a ball. The prince of the kingdom falls
in love with her during the dance, but she flees from him at
midnight when the spell is wearing off. Somehow, the glass
slippers she was wearing do not disappear when all of her
other magically created clothing fades away. In her haste
to escape, she leaves one of the glass slippers behind.

Determined to know the identity of the mystery woman,
the prince has the glass slipper fitted to each unmarried
lady in the kingdom. When the slipper is to be fitted to
Cinderella, the stepmother interferes and causes the
slipper to be shattered in an “accident.” Fortunately,
Cinderella produces the other glass slipper that, of course,
fits her perfectly.



I like this illustration of a biometric (a 3D footprint?)
because it includes hints at many of the requirements
necessary to make biometrics work as an authentication
technology.

Biometric Requirement 1: Unique Characteristic.

The biometric characteristic is effectively unique. What is
“effectively” unique depends a great deal upon context, and
I will discuss this in some detail later in this section. But it
is crucial that no two people have identical characteristics.
In the story of Cinderella, her feet were magically unique,
and the glass slipper fit on nobody else.

Biometric Requirement 2: Measurable

Characteristic.  Not only must the characteristic be
(effectively) unique but it must be possible to measure it.
This requirement must be understood in light of the first
requirement as well. It must be measurable with sufficient
resolution to distinguish between two people. This is
typically the harder problem. Many biometric
characteristics are unique by nature, but detecting the
distinct features is more challenging. If you have watched
the Disney animated Cinderella, you may recall that the
Wicked Stepmother tried to thwart Cinderella by tripping
the man carrying the glass slipper, causing it to shatter
into pieces. Effectively, she tried to make Cinderella’s
magically biometric feet unmeasurable by destroying what
she thought was the only “scanner” that could measure
them. The necessary quality of the measurement also varies
depending on whether the biometric is used for verification
or identification. Verification is a simpler check to see if the
test characteristic is registered and outputs a yes or no
(see Figure 2-13). On the other hand, identification involves
comparing the test characteristic against a database and
must output which stored identity it is most likely to match
(see Figure 2-14).



Biometric Requirement 3: Unforgeable

Characteristic.  The characteristic cannot be forged,
replicated, or otherwise duplicated. Biometrics and tokens
are similar in this regard. In fact, a biometric is a biological
“token.” However, biometrics are more fragile to the extent
that they cannot be replaced. If someone steals the seed of
an RSA SecurID, the fob can be discarded and a new one
purchased for relatively little money. However, if someone
is able to steal a fingerprint, there is little that can be done
to replace it.

Biometric Requirement 4: Stable Characteristic.  The
characteristic will not change too much over time or
otherwise be “lost.” Biometrics can and do change. How
much change depends greatly on both the characteristic
and lifestyle. For example, manual laborers tend to have
weaker fingerprint matching [40, Chapter 17]. And, of
course, accidents can cause the characteristic to be
destroyed through amputation, scarring, or other
transformations. It would have been a very sad day for
Cinderella if when she needed to try on the glass slipper
she found that her feet had swollen. After all, her Wicked
Stepmother was having her do a lot of physical labor that
might cause bruising and swelling. It is a good thing that
her magical feet were always the same size and would
always fit the slippers!



Figure 2-13  For a biometric verification, there is a specific biometric
template that the detected characteristic is compared to

Figure 2-14  Unlike biometric verification, biometric identification must
search for the best matching template that will match the detected
characteristic



Biometric Requirement 5: No Revocation.  The
characteristic will never need to be revoked. I alluded to in
Requirement 3. Generally, users cannot change their
biometrics. If a biometric is duplicated, stolen, or otherwise
compromised, there is no way to issue a new biometric to
the victim.

Biometric Requirement 6: Secure Protocol.  There
exists a secure protocol for proving possession of the
biometric. Not only must the principal with the valid
identity claim have the biometric, they must be able to
prove they have the token in a secure way. This
requirement is similar to Token Requirement 3. To repeat,
this is technically also a requirement for passwords. But
the nature of biometrics makes it more difficult in practice.
As just discussed in Biometric Requirement 5, it is a really
bad thing for biometric data to be lost or stolen.
Replacement is simply not an option. So the protocol for
transmitting biometric data is far more sensitive and
brittle.

The use of biometrics has exploded with the use of mobile
phones and devices with fingerprint readers and face
scanners. These biometric readers not only grant access to
the device but apps on the device can rely on those readers
as well. Banking applications, password managers, and
other critical programs make use of these tools in order to
eliminate the need for the user to enter a password.
Entering passwords is always slow, but it becomes almost
barbaric for some phone keyboards.

But ubiquity does not equal good security, and it is
important to understand the limitation of the technology. At
the beginning of the chapter, I introduced the idea of false
positives and false negatives. Typically, these terms only
apply to something-you-are authentication. Nevertheless, I
introduced them as a more general issue with all types of



authentication on purpose. Although unusual, false
positives and false negatives can happen with passwords or
tokens. But it is so rare as to be vanishingly small and
rarely discussed. This is one of their strengths. It is almost
never the case that a user entering a correct password will
be told it is wrong and almost never the case that a user
entering the wrong password will be told it is correct.

Biometrics, on the other hand, experience this problem
by nature. This is a crucial reason why they are not a
panacea for authentication problems nor a straightforward
replacement for passwords (which are universally
despised). Biometric errors, both false positives and false
negatives, will limit their usefulness. They are so intrinsic
to these systems that it is the subject of significant
research, comparative analysis, and deployment
recommendations.

In the biometric world, false positives (accepting the
wrong biometric for a given identity) are also called false

accepts and the rate of these errors the false accept rate or
FAR. False negatives (rejecting the correct biometric for a
given identity) are also called false rejects and the rate of
these errors the false reject rate or FRR.

The problem with false accepts are relatively
straightforward to understand. If an unauthorized person
gains access to the system, the security is completely
bypassed. But perhaps unintuitively, false rejects can be
viewed in some systems as the bigger problem. Why?
Because in a number of common scenarios, a system with
occasional successful intrusions is actually less of a
problem than a system that cannot function because
authorized people cannot gain access. For example, in the
UK, banks have as a target a 1% false accept rate but a
much lower .01% rate of false rejects [40, Chapter 17]. On
the other hand, high-security systems require that the FAR
is the prioritized metric. NIST, for example, in their



document on Biometric Specifications for Personal Identity
Verification, explicitly specifies that FRR “does not
represent a direct security objective” [120].

The nature of biometric systems means that decreasing
false positives will often increase false negatives and vice
versa. The reason for this is because the system is trying to
compare a contemporary measurement of the
characteristic to a database of previously recorded
characteristics. Because no measurement is perfect, the
stored version and the current one will not match exactly.
So the system has to decide which imperfect match is the
“best.” To reduce the risk of false positive, the system will
typically be tuned to accept far more minimal differences.
But at the same time, this typically results in more false
negatives because the current measurement, even though
it is the correct biometric, seems too different from the
stored version.

The receiver operating characteristic is a system’s
trade-off between false positives and false negatives.
Operators have to adjust this characteristic until the
system operates within acceptable error levels for their
organization. If the system is tuned such that the error
rates are equal, the system is said to have an equal error

rate. As stated earlier, this is rarely the right setting for a
system, and quite often the system is configured to ensure
that authorized users almost always get in (decreased false
negatives).

One of the other big problems with biometrics is
understanding the nature of statistics and how this impacts
results. Because the biometric system basically has to
compare measurements against each other, the number of
possible measurements significantly impacts the results.

To put it more concretely, consider your mobile phone or
device. It probably has a fingerprint reader. It probably is
storing only your fingerprint. How many other people is it



likely to compare your fingerprint to? There might be more
than seven billion people on the planet, but the vast
majority of them will never come in physical contact with
your fingerprint reader. Your phone’s reader only needs to
distinguish between you and maybe a few dozen people—a
few hundred at most. If the chance of a false positive is 1 in
10,000, there is a very low chance that any of those few
dozen or few hundred people will gain access.

But what if the fingerprint reader is going to be used in
a national database for accessing social security benefits in
the United States? Now there are hundreds of millions of
people on file and hundreds of millions of people trying to
gain access. If the false positive rate is 1 in 10,000, there
are going to be thousands of people gaining access to the
wrong accounts.

Unfortunately, biometrics are often seen as far more
effective and unerring than they are. This is also a
significant problem in security culture. If the mechanism is
seen as infallible, the policies, procedures, and operations
of the organization are not equipped to deal with the
system when it inevitably fails [17, 40]. If using biometrics
causes people to stop thinking (“I don’t have to worry
about anything because I use biometrics!”), the individual
and the organization they belong to will inevitably get
hacked.

One other problem with biometrics worth mentioning is
the possibility of social exclusion. There are many groups of
people that have harder-to-detect characteristics. In some
circumstances, this may include certain subsets of manual
laborers, the elderly, the disabled, and other people that
are already facing disadvantages. Other biometric systems
have been measurably shown to have racial biases or other
socially unacceptable operations. Given the sensitive
nature of physical features in the modern world,



contemporary technologies must be designed and deployed
with these issues in mind [17, 40].

Multifactor Authentication

Although something you know, something you have, and
something you are have been presented as “equals,” it
should be clear that only passwords are in wide use as a
primary form of authentication. There are exceptions, of
course. For example, biometrics in the form of a fingerprint
or face scanner have become one of the most common ways
to unlock a personal mobile device.

Tokens and biometrics are used for secondary

authentication. Using a secondary authentication
mechanism is called multifactor authentication or MFA.
The idea is that if a user requires two factors to be
successfully authenticated, then it will be harder for an
attacker to compromise both authentication methods. The
attacker might be able to steal a password, but not the
password and the token. Or, the attacker might steal the
user’s phone for authenticating with something you have,
but will not know their password. In the story of Cinderella,
as told by Disney’s animated classic, the Wicked
Stepmother succeeds in destroying the first glass slipper.
Fortunately for Cinderella, she had the other slipper,
providing a two-factor authentication of both something
you have and something you are.

This is a specific example of the more general computer
security design principle of defense in depth. This principle
posits that an attacker should generally not be able to
obtain an unauthorized objective preferably at all, but at
least in part, when a single defensive mechanism is
compromised. This principle is widely emphasized in
modern computer security deployment [121]. Accordingly,
most security experts believe that multifactor
authentication is generally preferable.



However, when deploying MFA, it is important to think
carefully about the goals of the system and the security
context. In almost all circumstances, it is expected that two

different factors will be used for MFA. It is generally not a
good idea to use two passwords. As I discussed in the
section on something you have, I do not consider codes
sent via email to count and should be considered another
form of password protection.

But beyond just using two different factors, it is
important to understand the context in which they will be
used. For example, if a user needed a password and a
hardware fob to use an ATM, it might not produce the
desired result. Although it would protect against skimmers
and over-the-shoulder spying, it might also encourage
armed robberies.

It is also important to think through remediation
channels. If a user has to have a token, what options do
they have to gain access if they lose their phone? Imagine if
a user trying to call and lock their account after a robbery
was unable to do so because the service professional would
not authenticate them. When deploying a system, it is
necessary to plan for failures. They will happen. Attackers
will take advantage of a system that cannot fail safely and
gracefully. It is, however, important to remember that MFA
is not infallible just like the other technologies we
discussed; I have included some reference for further
reading about MFA flaws.

Summary

Authentication is the starting point for many security
technologies and systems. Many security goals assume that
different principals can be identified. The next chapter
dives into assigning permissions to a principal once their
identity has been verified.



In reading about the three primary mechanisms for
authentication (i.e., something you know, have, or are), you
may have noticed that there is no perfect solution. In fact,
passwords are considered to be one of the worst solutions
but are yet the most widely deployed. Despite constant
announcements that “the password is dead,” there simply
has not been a universal replacement for it. In evaluating
authentication technologies, a good starting point is to
figure out which one or ones of these approaches it uses
and then start to analyze how well it deals with these
weaknesses. No vendor will be able to eliminate
fundamental and inherent limitations, but the mitigations,
trade-off selections, and failure handling components will
define how well it will support your security goals and
provide a mechanism for comparison to other vendors’
offerings.

This chapter also spent a little bit of time talking about
passwords because they are so common. In the first place,
it is important to understand how passwords are stored.
This is useful not only for understanding solutions being
offered to you and your organization but also for how
attackers crack passwords. This, in turn, will help you to
understand and propose wise password policies for yourself
and others. It is probably best to get a password manager
for storing your passwords, of which there should be one
per website. Most password managers can help you
generate random passwords for maximum strength.

Further Reading

The name of the research group at CMU that does
password research is CyLab Usable Privacy and Security
Laboratory (CUPS). They have a wide range of research
and reading materials. Many of these are articles, such as
blog posts, that are understandable even to those with
nontechnical backgrounds. You can find their password



home page at http:// cups. cs. cmu. edu/ passwords. html. I
highly recommend following this group because their
conclusions are based on empirical research.

Within the scope of this book, I do not go into more
details of how these systems are attacked, especially in
MFA contexts. While MFA is seen as the very best way to
protect systems and accounts, it can, of course, be
defeated. A recently published book, Hacking Multifactor

Authentication, by Roger Grimes digs into the author’s
tests of 150 different real systems and all the ways they can
be exploited. This would be a good reference on how things
go wrong, but it is also a practical book with specific
recommendations for purchasing and deploying an MFA
solution [119].
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Footnotes
I have seen this written as AAA and AA&A.

 
More correctly, the work is entitled One Thousand and One Nights.

 
This story was added to the collection by a French translator in the 18th

century. For an excellent modern rendition, I suggest Hallmark’s movie
Arabian Nights from the year 2000.

 
This primitive form of password had no identity to claim. Possession of the

secret word was claim on a group identity. The password and the identity claim
were one and the same.

 
Zero-Knowledge Password Proofs (ZKPP) do not require the authentication

system to know the password. However, these are not commonly used at
present.

 
There are other ways to store passwords safely, but hashes are the typical

approach.

 
The SHA-256 hash of “Open Sesame” is 0x7cb8 9be2 6325 3e21 9666 1f30

3926 cfb1 bc66 2a60 7220 486a 6926 6dff b737 af02.

 
Picking the right password management depends on many factors. Please

consider consulting with a security professional to determine the best one for



9

10

your situation.

 
As a security expert, I find Warbucks’s lack of investigation and background

checks frustrating, fictional though it may be.

 
There are many versions of Cinderella told in many cultures and in many

languages. The retelling I make here is from the animated Disney classic.
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Chapter Quick Start Guide

Building on top of authentication concepts from last
chapter, this chapter presents how authenticated users
are given permissions within a system. This is also known
as authorization. Authorization is also a great starting
point for learning about security policy models. These
models are conceptual structures that provide a
framework for understanding how to think about the
security of a system. One of the earliest models is known
as Bell-LaPadula (BLP). BLP, and a similar model named
Biba, provides some good groundwork for authorization
and security models. More modern policies tend to fall
into a policy family, such as Domain and Type
Enforcement (DTE), role-based access controls (RBAC),
and attribute-based access controls (ABAC). In most
computer systems, authorization policies are
implemented using access controls that determine the
appropriate permissions for an authenticated user and a
given computing resource.

Key Concepts

1.
Authorization 

https://doi.org/10.1007/978-1-4842-9560-1_3


Common Pitfalls and Misunderstandings

1.
Your concept of policy may not be the same as what
is in this chapter; review carefully.

 
2.

There is a temptation to jump to security
mechanisms (e.g., a firewall) instead of starting with
policy.

 
3.

Policies are often weak at the “edges,” which are
exceptional cases, rare events, or elements that
simply are not defined.

 
4.

Policies should generally not be created from scratch
but be built or repurposed from existing policies.

 
5.

Keeping an authorization policy operationally secure
is complicated by many factors including complexity
and data rot.

 

Useful Vocabulary

Access Controls: Technologies that enforce or
support authorization (permissions) for users
BLP: Bell-LaPadula authorization model
Biba: Biba authorization model
DTE: Domain and Type Enforcement models (note the
plural)
RBAC: Role-based access controls
ARBAC: Administrative role-based access controls
ABAC: Attribute-based access controls
MAC: Mandatory access controls1

DAC: Discretionary access controls
TCB: Trusted computing base; the part of the system
that must work for security to be guaranteed



In the previous chapter, you learned about authentication:
how principals that use a system are identified. But once a
principal is authenticated, the system still has to decide
what they are allowed to do. This is sometimes described as
the principal’s permissions. Authentication almost always
has to happen first because the principal’s permissions are
almost always determined by their identity. Permissions are
managed by access controls, and many technical references
will refer to these concepts as access control rather than
authorization. I will continue to use the term
“authorization” throughout to describe the more general
concept of determining a user’s permissions and the term
“access controls” to describe the technical components that
provide the authorization service and manage a principal’s
permissions in a given system.

Please note that in the last chapter I discussed the
authentication of primarily human principals. In this
chapter, principals may refer to human or nonhuman
participants. Many of the authorization approaches are still
directed to humans or programs that operate as their
avatars in the computer system. Some, however, do not and
in many cases the system works the same regardless.
However, if necessary to distinguish between human and
nonhuman, I will do so.

In what might sound like another repeat from the
previous chapter, authorization technologies are
ubiquitous. They are also problematic and are often the
source of many security issues. These problems stem from
both inherent technological limitations as well as human
errors in configuration, management, and deployment.

In this chapter, I will first introduce the concept of a
security policy and why they are so important (and often
misunderstood). The next section introduces you to a
number of authorization security policies to illustrate the



power of conceptual modeling as well as inherent
challenges in authorization that decades of modeling have
illuminated. Finally, the chapter concludes with an
overview of different types of access control mechanisms
that can enforce authorization security policies.

Computer Security Policies

What is a security policy? For the purposes of this book, I
will use Ross Anderson’s definition of security policy from
his book Security Engineering [40]. Anderson helpfully
describes what a security policy is not despite corporate
and political uses to the contrary: a policy is not vague
platitudes.

Anderson gives the following bad examples of “policy”
[40, Chapter 9]:
1.

This policy is approved by management.  
2.

All staff shall obey this security policy.  
3.

Data shall be available only to those with a “need-to-
know.”

 
4.

All breaches of this policy shall be reported at once to
security.

 
You may have seen such a policy in your professional

experience. You may have authored such a policy. These
are not the type of policies I am referring to.

Anderson more technically calls these security policies
security policy models. He defines a security policy model
as “a succinct statement of the protection properties that a
system must have.” And specifically, by succinct, he
clarifies that such a document is typically “a page or less.”
The purpose is to have the “protection goals of the system



[agreed upon]...” [40, Chapter 9]. One of Anderson’s
examples for a security goal or property is “all transactions
over $1,000,000 must be authorized by two managers” [40,
Chapter 1].

Another way of thinking about security policy is it helps
to provide a concrete definition of what security means for
a given system. A security policy defines when the system
is in a secure state or an insecure state in a concrete way
[60, Chapter 4]. So, using Anderson’s example in the
previous paragraph, if all transactions over $1,000,000
have been authorized by two managers, the system is in a
secure state according to that policy. On the other hand, if
not all transactions over $1,000,000 have been authorized
by two managers, the system is not in a secure state
according to that policy.

Because security policy is focused on the goals of the
system, it is not an implementation document. It does not
describe how the goals are to be achieved. The
enforcement of the policy is the job of specific technologies,
operations, and procedures deployed for securing the
system. Anderson calls this concept the mechanism. A real-
world deployed system should have a security target that
provides a more comprehensive description of the
protection mechanisms that the system has implemented.
The security target ties security policy goals to concrete
enforcement controls.

Often, when working on securing a system, the
stakeholders will jump directly to the mechanism. Some
new technology will be taking the world by storm, and the
powers that be in an organization will be certain that this
new technology will “make them more secure by an order
of magnitude.”2 However, if the correct security policies
(e.g., security goals) are not used or if they are not
understood, the mechanism will typically not secure the



right things or will not secure them in the right way [40,
Chapter 1].

Policy is important to get right as much as possible
before moving on to enforcing it with mechanism. Given
that we will define our security for a system by the policies
we specify, it is critical that we pick the right policies. And
it is harder than you might think.

A security policy can target just about any property of a
system. In this chapter, you will see a number of policies
that are primarily authorization policies. Most of these
policies have been in use for decades and have generated a
wealth of knowledge and wisdom for security professionals.
In studying these policies, you will learn both about
authorization concepts as well as more about security
policies in general.

A Survey of Authorization Policies

One of the challenges in coming up with an authorization
policy is dealing with all of the different permissions that
may need to be assigned. Computer systems and devices
are constantly gaining new features and new functionality.
Devices are also working together with other devices
(including the cloud) at an ever-increasing rate. Increasing
functionality and increasing device collaboration drive an
exploding number of permissions that have to be assigned
and managed.

In cybersecurity, complexity is often a source of system
vulnerabilities. Complexity increases the risks of errors,
inaccuracies, and misuse, all of which are vectors for
attackers to gain unauthorized access to systems. It is bad
enough when a vulnerability exists anywhere in a system,
but it is especially problematic if the vulnerability is part of
the security component of the system. You will learn about
the basics of a common weakness called a buffer overflow



in Chapter 7. These vulnerabilities are found everywhere in
computer systems, and attackers use them to get into
systems far too often. But as bad as they are, there are
mitigations including additional layers of security that can
be wrapped around the system. A vulnerability in a security
system, however, is far more severe. In some cases, this
kind of vulnerability means that the system security may be
completely bypassable, or it may even be effectively
disabled. Worse, there may not be any obvious indication
that the security system is in such a state.

The complexity issues are exacerbated by the care that
must be exercised in the process. The assignment of
permissions should be carefully thought out along proven
guidelines. The security principle of least privilege, for
example, teaches that every authorized user should have
only the minimum amount of permission necessary to do
their job. Following this principle reduces the amount of
damage one person can cause if they go rogue (choosing to
act against the interests of the organization) or if their
account is compromised. However, this principle also leads
to breaking up large permit-everything permissions into
smaller, more granular permissions. Correctly allocating
the right permissions, and only the right permissions, to
every user of the system can be difficult. Worse,
maintenance is even more of a nightmare because the
system is not static. Users can be promoted, change
departments, or leave the company. New systems introduce
new permissions, and, in some cases, old permissions might
be obsolete but not removed.

Many data breaches have been directly caused, or at
least exacerbated, because of users having inappropriate
permissions [78]. Former employees, angry at termination,
have used access that should have been disabled to steal
from or harm the organization. Parties without a need-to-
know have used access that never should have been



granted to look up personal information on employees or
clients. Computer systems with misconfigured permissions
(remember! they have permissions too!) have enabled high-
sensitivity data to “leak” into lower sensitivity
environments including publicly available web pages!

Story Time: Blame the Customers

As more and more data moves to the cloud,
misconfiguration is a growing problem. Microsoft offers
a framework called Power Apps that enable
organizations to quickly develop “professional” web
applications. Users of this framework include state and
city government agencies, banks, and airlines. However,
in 2021, the security group UpGuard found that many
web applications that use Power Apps were incorrectly
configured, and sensitive data could be easily extracted
from them.

It turns out that Microsoft configured the databases in
Power Apps to be publicly accessible by default with an
expectation that the customer would configure the
appropriate security. Many customers had not
configured them at all, and the security researchers were
able to extract sensitive data such as social security
numbers, Covid contact tracing, and email addresses.
Microsoft has since modified the framework to block all
access by default and require users to explicitly allow
access [280]. This also highlights another important
principle of secure design: fail-safe defaults, which
means that systems should be configured to be secure by
default; in this case, it means to block access by default.

Authorization models deal with the complexity challenge by
attempting to reduce the granularity. Rather than try to
deal with every user and every permission individually, the
model creates larger groupings that users and permissions



are assigned to. The models then reason about how these
groups interact with each other in a simpler manner.

The bad news is that reality is not simple, and these
policy models break down at the edges. A breakdown at an
“edge” is not necessarily any better than a breakdown in
the middle. Security is not usually measured on a linear
scale where securing twice as many entrypoints means the
system is twice as secure. Usually, if there is any security
hole, the attackers will find it. Security holes show up most
often at a “boundary” or “edge” of some sort, and attackers
have an amazingly good historical track record of searching
boundaries and finding the holes there.

In the following sections, I will walk through the good,
the bad, and the ugly for a number of authorization
policies. Let’s find out what they do, where they are good,
and where they break down.

Bell-LaPadula

Our first stop on our tour of authorization policies is the
Bell-LaPadula model, often abbreviated as BLP. BLP was
first proposed in 1973 by Dave Bell and Len LaPadula [52].
BLP is a policy designed to support government and
military systems that require multilevel security. In
multilevel secure (MLS) systems, a given computing
resource (data, system, program, etc.) is given a security
label. The resource is called an object, and the labels
represent an ordering of sensitivity. For example, the labels
might be “Unclassified,” “Confidential,” “Secret,” “Top
Secret,” and so forth. Labels could also be numbers. Labels
for objects are also called “classifications.” Not only are
objects in the system given labels but so are subjects

(actors) within the system. You might think of users as
actors, but users are represented within the system by the
programs they run. Under most circumstances, when a
program is started by a specific user it includes the identity



and permissions of the user that started it. From an
authorization perspective, a program running on a system
is an incarnation of the user that spawned (launched) it.3
The labels attached to subjects are also called “clearances.”
Because it may be confusing, let me repeat a key point.
When a program is running that was launched by a user, it
is running with the user’s identity. If two users launched
the same program on the same computer, each would be
separately identified by the initiating user. Different access
controls could be applied to each running version of the
program. Thus, the user, and not the program, is the
subject. It is possible to have programs that are launched
automatically and not tied to a specific human user. Access
controls apply to these as well and are an example of
authorization applied to nonhuman principals. However, for
the discussion of BLP, it is easiest to think of the subjects
as humans.

To summarize, in MLS systems, both the subjects and
the objects have a label. The authorization policy defines
what a subject with a given label may do with objects of a
given label. For example, can a user with a label of
“Secret” read a file with a label marked “Top Secret”? In
government contexts, the answer is “no.” Information is
supposed to be controlled so that nobody can access, or
ideally even be aware of, information at a higher security
level.

The BLP policy was designed to protect government
MLS systems by enforcing the flow of information
downward from higher sensitivity to lower. To do this, BLP
included three protection properties:
1. The Simple Security Property: A subject can only

read data from objects with the same security level or
lower. That is, they cannot read data that requires
higher security than they are authorized to access. This
is often called no-read-up (NRU).

 



2.
The *-Property: A subject can only write data to
objects with the same security level or higher. That is,
they cannot write data to a lower security level, as this
might cause information known from a higher security
level to leak. This is often called no-write-down (NWD).

 

3.
Discretionary Security: A subject can only read data
from objects if an access control matrix grants them
permission to do so.

 

The no-read-up and no-write-down properties, illustrated
in Figure 3-1, are the key ideas from BLP (I will get back to
the discretionary security property later). No-read-up is
probably intuitive to you. After all, if you are assigned the
label “Secret,” you probably should not be reading from
documents marked “Top Secret.” But no-write-down is less
obvious. If you have the label “Secret,” why can you not
create a document marked “Confidential”?

The answer is that BLP was designed to prevent
information leaks. BLP assumes that a user’s account can
be compromised, that the user can make mistakes, or that
the user can become the attacker! The no-write-down
property prevents more sensitive information from leaking
downward by either accident or malice.



Figure 3-1  Bell-LaPadula model for information confidentiality. A principal
can read objects at or below its clearance level, but it can only write objects at
or above its clearance level

Story Time: Unintentional Longevity

The *-property, which is pronounced the “star property,”
got its name by accident. According to Bell:

A condition to prevent deleterious flows was easily
formulated, but a descriptive name was elusive.
When I first raised the idea, I scribbled the heading
“*-property” on the blackboard over a figure much
like figure 2. After a burst of energetic discussion, I
pointed out that if we didn’t change the name right
then, we’d be stuck with it forever. Nothing came
to us and we continued our discussion. “*-property”
it remained. [51]

If you are not working for the government or a government
contractor, you might be tempted to ignore BLP. After all,
what good does BLP do in contexts without top secret data?
You have to remember that BLP was created in the 1970s



when government and military computer systems were
largely the only space in which security was really being
taken seriously. This was going to be the birthplace of
authorization policies.

But it was the birthplace. As I continue your tour of
policies throughout the rest of the chapter, including
policies found in commercial systems, you will see the
evolution and development of authorization ideas that all
started with BLP and the lessons learned from it.
Understanding BLP, the problems it was trying to solve,
and its strengths and weaknesses will better enable you to
understand authorization policies in place today.

One lesson to take away from BLP is the concept of
mandatory access controls (MAC). A mandatory access
control is any access control that is defined and enforced
based on a security policy. MAC stands in contrast to
discretionary access controls (DAC) wherein a user can
decide at their discretion what the access controls on an
object should be. In many commercial systems, a user can
take a file they have created or have access to and give
access to other users within the system. Cloud systems
allow the owners of a file to give access to other users in
order to share data. You are most likely using DAC on your
personal computer. All of these are examples of
discretionary access controls. The user determines who
does and does not have access.

MAC systems enforce a security policy on access
controls regardless of the user’s wishes. The no-read-up
property and the no-write-down property are considered
mandatory controls. The system will enforce these rules at
all times.

BLP does include a discretionary security property as
well. This permits a subject with appropriate permissions
(and of sufficient security label) to restrict access to the
data even to other subjects with what would be permitted



access under NRU or NWD policies. Often called “need-to-
know” access, the idea is that even if you could access the
data from a clearance perspective, maybe you should not.
Nevertheless, these controls are discretionary. What
subjects can and cannot see is based on this property and is
determined at the discretion of the users of the system.

From Anderson’s perspective, the BLP policies are
neither mandatory nor discretionary. They are policies, the
goals of the system. The enforcement is mechanism.
Anderson describes the systems that implement BLP
policies as mandatory.4 Other sources describe BLP as
having two mandatory policies and one discretionary
policy. I prefer Anderson’s formulation. Conceptually, there
are just the policies (protection goals). The entire system
should follow the policy; how it is enforced is up to the
implementation. I will follow this approach for the
remainder of the book.

Most of the other authorization policies I will discuss in
this chapter require mandatory access controls to
effectively implement the policy. Understanding BLP is a
good way to get started in understanding what MAC is and
why it is necessary.

BLP as a policy has some powerful characteristics. Most
importantly, perhaps, is that BLP’s model is relatively
simple and easy to understand and yet has significant
security strength. At the policy level, there is much that can
be reasoned about in terms of the protections provided.
Another useful characteristic is that the properties are
amenable to implementation, and it is relatively easy to
figure out if the implementations are correct.

On the other hand, the BLP policy has some interesting
limitations. The policy does not specify how to deal with a
number of crucial issues. It does not, for example, deal with
how data should be allowed to move from a higher
classification to a lower one. In other words, the BLP policy



does not explain how to declassify information or how to
produce a redacted version.

To be clear, Bell and LaPadula did describe a system
that dealt with these issues. But they did so by largely
pushing the problems to the implementation. For example,
in the BLP formulation, they describe “trusted subjects”
that are not subject to the NWD property. In fact, in their
formal description, the NWD property was stated to only
apply to untrusted subjects. What makes a subject trusted?
There were no formal requirements. They are simply
described as not violating security policies.

Another way of thinking about “trusted” is that it refers
to any part of the system that will result in a security
failure if it is broken. These are the parts of the system that
enforce security everywhere else or are otherwise required
for the security to work. They are called “trusted” not
because they can be trusted but because they must be
trusted.

Because every system must have some trusted
components, the term trusted computing base (or TCB)
refers to the collection of all of such components, including,
potentially, people such as trusted subjects.5 In a security
system, an analysis of the TCB is always necessary
because, again, if it breaks, so does the system’s security.
One desirable property of a TCB is that it should be as

small as possible. The smaller the TCB, the better. Every
piece of technology above a certain complexity has
unknown bugs (computer errors), which means that there
is always a hidden way that a system’s security can fail in
almost every system currently running on the planet. A
good portion of the battle between security experts and
attackers is to see which side finds the problem first. In any
event, the smaller the TCB, the fewer the bugs.6

Categorizing a subject as “trusted” in order for BLP to
function adds risk to the system. In the first place, all of the



reasoning about the security properties of BLP are thrown
out the window for these subjects. Second, it increases the
size of the TCB. Third, and finally, because there are no
hard requirements for the trusted subjects, there is a
danger for system designers to take anything that is hard
or difficult about BLP and simply have a trusted subject
perform the necessary operations outside the policy.

BLP also does not say how, for example, subjects or
objects are created or how they are assigned their initial
labels, nor does it discuss how these labels might be
changed. Again, the practical BLP system that Bell and
LaPadula introduced contains this functionality. But the
concepts are not in the policy and cannot be evaluated from
that level.

This was partially addressed by adding the tranquility

property to BLP. Strong tranquility requires that labels on
either subjects or objects do not change during normal
system operation. Labels may only be set or changed
outside of normal operations, such as having the system
shut down and only accessible by a security officer or team.
Although changing the labels is still outside the model, risk
is reduced by only allowing such changes in a special, low-
risk mode.

Alternatively, weak tranquility requires that labels are
not changed in a way that violates some specified security
policy. For example, a common policy for controlling weak
tranquility is to permit a subject to start out at the lowest
security level even if they have higher clearance.
Remember that in BLP, the subject is the running program,
not the actual user themselves. So the program starts out
at the lowest level; if it needs to read higher data and the
subject’s ultimate clearance permits it, the program’s label
is adjusted accordingly. Notice that at any given point in
time, a subject cannot write down higher data than it can



read. BLP is not violated and the weak tranquility property
is enforced according to this policy.

BLP has another problem: when it works too well! I say
this with only a little sarcasm. In a BLP system, data is
meant to move one way from low to high. Subjects that
write high cannot even see the data they created and lose
any control over it. So, when BLP is “working,” it can result
in a system where data is compartmentalized and difficult
to access or use. This reinforces the need for controlled
reclassification and declassification that, to repeat, is not
part of the BLP model.

Despite all of these difficulties, BLP was still a very good
policy for authorization and continues to be used today in
government circles. It was also analyzed, criticized, and
debated ever since its formulation, and this, in turn, led to
the creation of other models.

Biba

One such model, the Biba model, named after its creator
Ken Biba, is our next sample policy [59]. This policy inverts

the properties of BLP and requires both no-write-up and no-
read-down! The two key properties of Biba7 are written as
1.

The Simple Integrity Property: A subject can only
read data from objects with the same security level or
higher.

 
2.

The * Integrity Property: A subject can only write
data to objects with the same security level or lower.

 



Figure 3-2  Biba model for information integrity. A principal can write objects
at or below its trust level, but it can only read objects at or above its trust level

The limitations of these two properties, visualized in
Figure 3-2, may seem strange. After all, why would you
allow someone to read at a higher classification than their
clearance?

The reason is that Biba is concerned with integrity and
not confidentiality. For any given system, it is crucial to
understand what needs to be protected and how. Ross
Anderson explains that, “many systems fail because their
designers protect the wrong things, or protect the right
things but in the wrong way” [40, Chapter 1], emphasis
added. Even though BLP has some excellent properties,
they would be the wrong properties if those properties do
not match the requirements of given system.

While there are many security properties that a system
might want, three very common ones are confidentiality,

integrity, availability, also known as the CIA triad.
Confidentiality generally refers to keeping secrets secret.
More accurately, confidentiality means that data can only



be read or accessed by authorized parties. Integrity, on the
other hand, refers to keeping data protected from malicious
changes. It means that data can only be written, or
changed, or deleted, by authorized parties. Finally,
availability means that authorized parties cannot be kept
from accessing or modifying data for which they are
authorized to do so [124].

BLP is concerned with confidentiality—keeping data
secret. It is concerned about what can be read. Even the
no-write-down policy is not about writing per se, it is about
making sure data from a higher level will not be read at a
lower level.

Biba is not concerned with keeping data secret. The
model is focused on ensuring that data cannot be modified
by unauthorized parties, that is, integrity. The higher the
classification of the data, the more protected it needs to be
from edits.

The Biba policy, first proposed in 1975, found its way
decades later into the Windows 7 operating system.
Starting with this version of Windows, files are marked
with a label from the set: Low, Medium, or High (also
called System). Any files fundamental to the operations of
the operating system are marked High. All other objects
are marked Medium. The Internet browser is marked with
a Low label. Anything downloaded by the browser is also
marked Low. Windows 7 only implemented the no-write-up
policy of Biba, but, in theory, this should prevent a
downloaded virus or trojan from modifying any important
files on the computer [40, Chapter 9].

The problem with Biba in Windows, however, is that
there are just too many exceptions. Users download
programs that need to operate like “normal” programs (and
have at least the Medium label). Windows enabled this by
permitting users to grant exceptions, but this just trains
users to “click through.” Even if they did try to read and



understand the warnings, this simply adds the burden of
understanding which downloaded programs are and are not
threats. It also eliminates the mandatory access controls
and replaces them with discretionary.

You may have noticed that this is not unlike the
problems in BLP. That system has to deal with exceptions
too and does so with a mix of techniques that are outside
the model, such as trusted subjects. This is a common
problem for authorization policy. There almost always
needs to be an exception to the policy. But exceptions,
however necessary, are holes in the policy that become the
common targets for the attackers. Many policies live or die
not by their normal use but by how well they handle and
protect exceptional or boundary conditions.

Domain and Type Enforcement

In the third stop on our tour, we get into more modern
policies. Although, as you will see, this section is actually
about a category of policies, rather than any single policy
itself. This class of policy is called Domain and Type

Enforcement, or DTE.8 This model framework generalized
classifications into a more powerful system that could
support more advanced security operations [47]. Instead of
relying on a linear up-down classification scheme, objects
are assigned a type. Similarly, subjects (which, as with
BLP, are running programs) are assigned a domain. An
internal table of domain-type and domain-domain mappings
defines what permissions are permitted to each domain for
each other domain or type.

For example, in terms of domain-to-domain permissions,
DTE policies can express that a program running in one
domain is permitted to start, stop, or communicate with
another program, either in the same domain or in another.
On the domain-to-type side, permissions include read,
write, and execute permissions.9 Domain-to-domain



privileges are specified within the Domain Interaction
Table (DIT), and domain-to-type privileges are specified
within the Domain Definition Table (DDT).

You should note that although each subject has a
domain and each object has a type, there need not be very
many different domains or types within the system. Each
domain or type represents a class, not an individual. This
overwhelmingly simplifies how many access controls must
be specified. On a system with just 20 runnable programs
and 100 files, there could be up to 2000 (  )
permissions to specify, as each runnable program would
need permissions specified for each individual file. But if in
the same scenario there were only three domains and ten
types, there would be at most only 30 (  ) permissions
to specify.

Moreover, DTE simplified things further by permitting
implicit typing. DTE took advantage of file hierarchies to
enable this. You may already be aware that you can
organize your files on your PC or smartphone into folders
and subfolders. But many of today’s nontechnical
professionals are not aware that all of the files on their
devices are organized into a hierarchy of folders (another
word for folder is directories). Every file has a path from
some root folder down to whatever subfolder immediately
contains the file. DTE used this organization and assigned
type permissions to directories (folders). Permissions
assigned to a directory were propagated down to all
subdirectories and files within it. However, the permissions
could be overridden within subdirectories.

Using this kind of typing, DTE did not require specifying
types for every single file. It only required specifying types
on folders and letting the files within adopt that type.

In terms of the security capabilities provided, DTE can
create policies that are more powerful than BLP. In fact,
BLP could be expressed using DTE with proper



configuration of domains and types. DTE can express
confidentiality policies and integrity policies and also
enable far more complicated concepts such as assured

pipelines. This refers to when multiple programs interact
with each other (e.g., when you download a file on your
browser and then it launches another program to view it).
DTE enabled limiting running programs within a pipeline to
only communicate with the previous program in the
pipeline and the next. This could inhibit a rogue program
from trying to send data to an unauthorized party during
the transformation of data.

DTE as a framework can be implemented in an
operating system as a mandatory access control
component. Any DTE policy can then be implemented on
the system through configuration of the domains, types,
and associated permissions. This means that a system using
DTE for enforcement can switch policies to anything DTE-
compatible without having to modify the operating system
or programs running on the system.

You might be surprised to find out that you might be
using DTE personally. The first prototypes to implement
DTE were modified UNIX operating systems. Subsequently,
a variant of the Linux operating system called SELinux
(Security-Enhanced Linux) was designed and built to
support (a minor variation of) the DTE policy. When
Android was created for smartphones, it was based off of
(and still uses a core of) SELinux. So if you have an Android
phone, you are using a system with a DTE (or DTE-like)
policy.

A Sample DTE Policy

Consider the following example DTE policy taken from a
computer security textbook [60, Chapter 4]. Please note
that I have rewritten the policy in a more narrative form so



as to not require understanding of operating systems,
programming, and other technical details.

This example policy restricts any user of the system
from modifying the core programs of the operating system
unless they have administrative access. This can be
expressed in DTE with four domains (which categorize
subjects):

User Domain: For ordinary users
Admin Domain: For administrative users
Login Domain: For the login program (this program
requires special controls)
System Domain: For programs and services running in
the background by the operating system
The policy also requires five object types (for

categorizing files on the system):
Executable Files: For program files that can be run
Readable Files: For readable files
Writable Files: For writable files
DTE Files: For files used by the DTE enforcement
mechanism
Generic Files: For files created by user processes (any
permissions)
For this simplified example, files are in exactly one of

these types. A file with the type Writable Files might still be
read from. The type is just a label.

The policy now requires rules. The System Domain has
the following rules. Note the reference to an init program.
Unix and Linux use a program called init to initialize the
system and get it running.
1.

The init program starts in the System Domain.  
2. Subjects in the System Domain can create, read, write,

or search any object with the Writable Files type.  



3.
Subjects in the System Domain can read, search, and
execute any object with the Executable Files type.

 
4.

Subjects in the System Domain can read and search
any object with the Generic Files, Readable Files, or
DTE Files type.

 
5.

When the login program is launched (i.e., from the init
program), it will transition to the Login Domain.

 
One of the key ideas here is the third rule that permits

programs running in the System Domain to read, search,
and execute files with the Executable Files type. Do you see
what permission is not granted? Create or write!
Remember that attackers sometimes break into computers
by exploiting bugs or errors in computer programs.
Sometimes, they can fully take over the program and make
it do whatever they want. But notice that even if this
happens to a program running in the System Domain, the
attacker cannot modify files that are programs and can be
run. Attackers would not be able to install (create) a Trojan
horse file at the system level, nor would they be able to
modify system programs (such as the login or init
program).

The Login Domain also has some interesting rules. This
domain is used exclusively by the login program. The
reason for creating a special domain is because the login
program serves as a kind of switching station. When a user
logs in to the system, the computer starts some kind of
initial program on their behalf. In Windows and MacOS,
this is typically the user’s desktop. If you log in as a
different user, you have a different desktop. This is a
running program, and it runs with the user’s permissions
and identity. In Unix and Linux (applicable for this
example), the user usually starts out in a shell program.



Any programs launched from the Desktop program or shell
program will also run with the user’s identity and
permissions.

The login program is configured to start the appropriate
program for a user once they successfully log in. It also
launches the user’s initial program with the user’s identity
and permissions. In the DTE context, however, this also
means switching domains. If the user is an administrator,
this needs to be the Administrative Domain; otherwise, it
needs to be the User Domain. So, for this policy, the Login
Domain has the following rules:
1.

Only the login program runs in the Login Domain.  
2.

Subjects in the Login Domain can create, read, write,
or search objects of the Writable Files type.

 
3.

Subjects in the Login Domain can read and search
objects of the Readable Files, Generic Files, or DTE
Files type.

 
4.

Subjects in the Login Domain can change the User ID
(so the user’s initial program starts under their identity
instead of the login program’s identity).

 
5.

Subjects in the Login Domain can execute programs in
the Administrative Domain or User Domain.

 
An important part of these rules for the Login Domain is

that the Login Domain cannot execute any programs within
its own domain! Its entire purpose is to switch to another
domain, and the rules of the domain enforce this limitation.

In the interest of simplicity, I will not walk through all of
the rules for the other domains in detail. Subjects in the
Administrative Domain do have permission to modify the
system’s executable files. An administrative user, therefore,
can install new programs, upgrade the system, and apply



patches. Subjects in the User Domain can execute system
programs but cannot write to them. They are also limited to
creating objects of the Writable Files type or the Generic
Files type (they should not be able to create system
programs).

This example policy illustrates the power and
granularity of DTE. The trade-off is that the power and
expressiveness comes at the cost of complexity. The beauty
of BLP was the simplicity. It is easy to reason about and
simple to understand. On the other hand, DTE is so
expressive that it can be difficult to develop and manage
DTE policies. DTE does provide a policy specification
language called domain-type enforcement language or
DTEL. Policy authors can use DTEL to implement policies
such as the example policy I laid out in this section.

Unfortunately, DTEL only makes it easier to write the
policy rules. It does nothing to reduce the actual
complexity. SELinux’s DTE-like default policy specification
is thousands of lines of text. The low-level nature of DTE
rules and the sheer size of a policy specification make it
very difficult to intuitively understand whether or not the
DTE specification matches the conceptual policy. Returning
to the earlier DTE example, the Anderson-style conceptual
policy is simply “system programs may only be modified by
an administrative user.” To put that one-line statement into
a DTE specification required dozens of low-level rules. To
try and solve this problem, researchers have worked on
tools that try to analyze the DTE expressions [232].
Nevertheless, this is a significant challenge.

One final note. This type of policy does clearly deal with
nonhuman authorization. In fact, the system domain is
meant for programs that are running with system privileges
rather than the authorization of a human user. It includes a
program called init that is meant as a system startup
operation that would make little sense to carry permissions



associated with a specific user. With that said, because
human users are so ubiquitous in authorization, these kinds
of domains are often associated with a pseudo user (e.g.,
the “system” user). In fact, it is generally possible to log in
to these accounts to perform system maintenance.
Nevertheless, the permissions are more associated with the
system itself than a specific user.

RBAC and ABAC

The last stop on our authorization model tour covers two
other model frameworks called role-based access control or
RBAC and attribute-based access control or ABAC. Like
DTE, these are not any specific policy but, rather, create a
framework for creating policies of a certain type. RBAC and
ABAC differ from DTE and the other policies on our tour in
that they are meant to be updated regularly. Although they
have much in common, I will discuss each one individually.

RBAC  RBAC was first proposed in 1992 [105]. RBAC
defines rules based on roles rather than user identity. A
user may have many roles but will only access resources
under one role at a time. For example, an employee might
have a functional role for their normal job, a role as a
trainee (for ongoing professional training requirements), a
personal HR role for seeing paystubs and managing
elections, and perhaps even a social role for company-
sponsored activities and online events. In an RBAC policy,
each role has permissions assigned to it, and the user signs
in with a specific role to access resources. Imagine if the
user is performing their usual job function and is signed in
with that role. It is payday and the user wishes to view
their paystub. The user would log out under their functional
role and sign in using the personal HR role. RBAC can also
be configured with a multirole hierarchy wherein some
permissions are based on the relationships between
different roles as depicted in Figure 3-3.



Figure 3-3  An RBAC multirole hierarchy wherein, for example, each member
has access to all the objects at their own role and below them in the hierarchy.
For example, in this case, the Doctor role has access to the transactions
defined by the Intern and Healer roles. Included figure from “Role-Based
Access Controls” [105]

Notably, there is a variant of RBAC known as
administrative role-based access control or ARBAC [228].
ARBAC is the meta-level controls for RBAC in that it
specifies how an administrator may change RBAC controls.
As I said, RBAC is meant to change regularly. A person’s
role may change, or the need of a role to access a resource
may change. ARBAC defines the authorization of these
changes.10



There are a number of advantages to the RBAC
approach. First of all, it helps create protective silos around
the different ways someone uses cyberspace. If a user’s
access for a given role is isolated from other functions, a
security breach in one silo does not necessarily
compromise the other. This also helps to separate risk.
There might be a higher risk of compromise in a scenario
such as a company activity (such as a networked gaming
activity). Less secure computers will be in use, and less
attention will be paid to security issues. RBAC helps to
prevent higher risk activities associated with a role from
increasing the risk of the other silos as well. Again, the
principle of least privilege discussed near the beginning of
the chapter is crucial.

Story Time: Super-Admin Surveillance

In March of 2021, attackers managed to infiltrate Verkada,
a company that provides on-site security cameras. Even
though the cameras are on-site, the video feeds are
uploaded to Verkada. The expectation was that under most
circumstances, only the customer should be able to view
their own video feeds through cloud access. The attackers,
however, compromised what are known as super-admin

accounts. These accounts had complete access to all
videos.

This is already bad. Verkada has stated that these
accounts enable their technicians to assist with support
requests from customers. However, generic super-admin
accounts that can view all video, rather than a per-
customer admin account, or some other kind of controlled
access, are an unneeded vulnerability and risk.

But it gets worse. Not only did such accounts exist, but
they were reportedly widely available within the company.
According to the reports, at least 100 employees, including
interns, had access to these super-admin accounts.
Apparently, Verkada employees themselves were raising



internal concerns about the sloppy access controls. In a
previous scandal, Verkada male employees used Verkada’s
own internal cameras to take unauthorized pictures of
some of their female coworkers [244].

The obvious moral to this story is that RBAC must
actually be enforced. But a slightly more subtle point is that
internal vulnerabilities often become external

vulnerabilities. Attackers are effective at finding the weak
points that organizations create for themselves.

Another advantage of RBAC is the ability to manage
permissions as a user changes roles within an organization.
If RBAC is used correctly, a user’s role will be changed as
part of the change of assignment or position. This means
that previous authorizations that should no longer be
enabled will be automatically turned off, and new
permissions automatically provisioned.

It also makes creating an RBAC policy more manageable
because the policy can be expressed in terms of
organizational roles instead of specific users, technical
classes (such as computer administrator), or other
groupings. Thus, all permissions associated with a role can
be modeled and understood independently of which
individual people hold those roles. It also permits modeling
of the interaction of roles within the organization. For
example, the concept of separating duties and concerns,
discussed earlier in Chapter 1, can be implemented and
analyzed in an RBAC model. It is easy to verify that
permissions that need to be partitioned are split across two
roles.

An example [266] of a simple RBAC policy is
Software Engineering Role: Has access to GCP, AWS,
and GitHub
Marketing Role: Has access to HubSpot, Google
Analytics, Facebook Ads, and Google Ads
Finance Role: Has access to Xero and ADP



Human Resources Role: Has access to Lever and
BambooHR

ABAC  RBAC is still extremely common and widely used.
However, a more general form of the concept, called
attribute-based access controls (ABAC), is generally seen
as more effective. ABAC permits access controls to be
conditioned on any combination of attributes including role,
location, project, and so forth as depicted in Figure 3-4. In
December 2011, ABAC was recommended as the preferred
access control mechanism for a security road map
developed by a US government advisor group [74].

NIST defines ABAC11 as follows:

An access control method where subject requests to
perform operations on objects are granted or denied
based on assigned attributes of the subject, assigned
attributes of the object, environment conditions, and
a set of policies that are specified in terms of those
attributes and conditions



Figure 3-4  The different factors that are considered in the ABAC security
configuration when a user requests access to a resource. Included figure from
“Guide to Attribute Based Access Control (ABAC) Definition and
Considerations” [74]

It is worth noting how much ABAC sounds like DTE.
Subjects have attributes and objects have attributes. A
unique set of subject attributes is more or less a domain,
and a unique set of object attributes is more or less a type.
ABAC is valued for its expressiveness. Here is an example
of an ABAC policy for a financial environment [65]:



A manager can view a transaction in their branch.
No one can approve a transaction above their approval
limit.
Here is another example that is described as an

authorization example [65]:
A manager can view any record.
An employee can view a record in their own department.
An employee can edit a record they own, if it is in draft
mode.
A manager can publish a record if the record is in final
mode and it belongs to an employee below that manager.
Despite the expressiveness, or perhaps because of it,

ABAC, like DTE, can be difficult to reason about. For
example, it is difficult to evaluate how well a given ABAC
policy is enforced by a particular mechanism because of the
inherent complexity of the policy.

Common RBAC and ABAC Problems

RBAC and ABAC policies are very reasonable in an ideal
world, but they sometimes break down in the real world.
For example, an employee at a company will often take on a
new role without completely being severed from the old
one. That is, after an employee takes on a new assignment,
it is overwhelmingly common that someone within the
company will continue to ask them for help in their old role
for some time afterward. Because of this, the employee, the
people that ask for the employee’s help, and IT are all
hesitant to disable the old role. Instead of replacing the
employee’s old role, a new one is simply added. This is
called role creep, and it can undo most of the advantages of
RBAC (silos, modeling, etc.) while adding overhead and
complexity that is hard to untangle.

The more general problem for RBAC and ABAC is the
disconnect between the model and reality. The term data



rot is used to describe data that is or becomes obsolete, out
of sync, incorrect, or otherwise problematic. Rot is used to
describe this problem because the incorrectness of data
increases over time. Data stored in a system is static, but
the real-life elements associated with the data change
regularly. The disconnect between data and reality can be
described as a data quality problem and can have
significant impacts on the effectiveness of an organization
in achieving its objectives [176].

Data quality is also critical for computer security in
general and authorization in particular. The quality of an
organization’s data with respect to the people, systems,
data, roles, and permissions in it determines to what extent
the modeling relied upon in establishing system security is
relevant or applicable.

In concluding this survey of authentication policies, let
us note how important it is to understand and rely on
models that have already been developed. In some cases of
completely new technology, a new security policy must be
created from scratch. However, most of the time, existing
security policies can be used, adapted, or combined. In
looking over these policies, you should be able to recognize
all of the experimentation and research that has gone into
them. If you create a new policy, it will take some time
before you will have the feedback, evaluation, and wisdom

to really understand the effectiveness of the policy
conceptually and when implemented. Using policies that
have already been beaten up and, even if bloodied, have
stood the test of time is a better starting point.

Access Control Technologies

Once a policy or model is chosen, it must be enforced by a
mechanism. Even DTE, which is often described as an
enforcement mechanism, is still relatively high level.



Lower-level technologies enforce the actual access to a file
or other resources. Access controls can be implemented at
many levels, including the operating system, programs, or
ancillary programs such as databases. These ancillary
programs are sometimes called middleware, as they do not
get used directly but provide support to other programs.
Access controls are also increasingly network based for
dealing with cloud storage and processing. The following
concepts may appear in any of these levels, but for
simplicity I will describe them from an operating system
perspective.

Most computer systems can group concrete resource
permissions into one of four categories: create, read,
update, and delete. This common set of permissions is often
referred to by the mnemonic CRUD. Some technology
systems explicitly use CRUD to describe the permissions
that can be assigned. Most of these are data storage
systems such as databases.

Although other systems use different permissions, most
of them can be categorized as a create, read, update, or
delete permission, or a combination of two or more of
these. For example, most operating systems have
permissions that include read, write, and an explicit
permission for execute that permits a user to run a
program. Conceptually, however, program execution is a
combination of read permissions on the file and update
permissions on the processor. Running a program means
copying (i.e., reading) a file out of memory and having the
processor execute each instruction. It may be helpful to
refer to Appendix B for more details.

In short, CRUD, while an explicit set of permissions for
some data systems, is also a good conceptual model for
most if not all other permissions that can be assigned.

For example, consider a cyber-physical system. A cyber-
physical system includes physically manipulable



components and includes examples such as robotic
assembly line arms controlled by computer software.
Imagine such a system in which only authorized technicians
are allowed to manipulate the robotic arms manually. What
category of permission does “move robot arm” fall into?
Most likely, this is an example of an update permission. The
movement of the robotic arm is just a side effect of changes
to the state of the controlling program.

The term “state” in this context refers to an idealized,
conceptual description of the internals of the program at a
given point in time during its operation. The description is
exhaustive. To reiterate, this is during operation. The state
of the program can and does change constantly. Inputs to
the program change internal data and, consequently, move
the program into a new state. Inputs can be from other
computers, physical sensors, or even humans. For example,
many programs change state over time based on inputs
based on a computer’s clock.

Cyber-physical systems, like any other program, have
states. The only difference is that for these systems some
changes in state trigger a physical effect. However, from a
permission perspective, the operator of the system was
granted permission to change the state of the controlling
program or its data, and the physical operation was the
consequence of that update of data.

From this discussion, you may have also noticed that you
can have CRUD permissions for many operations within the
same system. A system can have CRUD permissions on user
accounts, files, device access, and so forth. Administrative
users have permissions to create, read, update, and delete
user accounts. And a new user created by the
administrative user will have create, read, update, and
delete permissions on some subset of files within the
system. A user can also grant permissions to various apps
on a phone to access the device’s camera.



Access Control Lists

In all of these systems, there must be some way of
assigning, storing, and changing the permissions granted
to an authenticated user. The most common method is an
access control list or ACL (pronounced “ackle”). An ACL is
permission data for any specific resource, whether that is a
file, a program, a system, or so forth. The ACL lists all of
the users that have access to the resource and which
permissions are granted.

A real-world analogy might be a bouncer at a club with a
list of permitted patrons. In this example, the club is the
resource, the list is the ACL, and the potential patrons are
the users. The bouncer’s list can include various access
levels. Some patrons might be a VIP and have access to
areas off-limits to the standard patron. Other people might
be performers coming to play live music and have special
access to use the club’s sound system. These different
levels of access are analogous to the permissions for each
of the users in the ACL.

Computer system ACLs are often stored with the
resource itself. Permissions could be kept in a big table,
like a spreadsheet, where each row is a username and each
column is a file. The permissions would be stored in the cell
found at the intersection of a username row and file
column, as shown in Figure 3-5. The problem, however, is
that the table could get enormous. If there are N users and
M files, there would have to be NxM entries in the table.
This kind of format is called an access control matrix
(ACM). On personal computers, that might be manageable,
but it is too large for systems with multiple users. An ACL
reduces the complexity by basically splitting out a column
with each user’s permissions for just that resource and
storing it with the resource itself.

The nature of ACL permissions depends on the model or
model family they are designed to support. The ACLs of



many personal computer systems are discretionary and not
mandatory. In these systems, the creator of a resource is
usually the initial owner, but ownership can be changed or
assigned to other principals. The owner has all possible
permissions but can also permit other users to have
permissions to the resource. It is also common that an
administrative user is not bound by the ACLs. Not only are
they not restricted by them but they can also change them
regardless of the owner’s preferences.

Figure 3-5  An access control matrix has all permissions for every user and for
every resource. This matrix shows a Unix/Linux-style rwx permissions (read,
write, execute). The ACL is a column of the matrix and has all of the users
authorized for a given resource

On the other hand, in systems with mandatory access
control support, permissions cannot be changed by the
administrator at will. Instead, a policy installed into the
system determines who can change what. As I described
earlier in this chapter, DTE expresses its policy
enforcement rules with what basically is another access
control list for the domains. Internally, the operating
system uses the DTE access controls to manage all of the
runtime access controls. The difference between the two



sets of controls is that the DTE controls are defined and
installed before the system starts. Once the system is
running, all other access controls and changes to access
controls are governed by the DTE policy.

ACLs can also support groups. Discretionary systems,
such as Unix and Linux, do not assign permissions per user
(beyond the owner). Instead, permissions are divided into
permissions for the owner, permissions for a defined group,
and permissions for anyone on the system (sometimes
called “world” permissions). The user can create groups
with arbitrary membership, and this allows the user to
assign (the same) permissions to any set of other users.

Linux will often display permissions like this:

 rwxrwxrwx

Each letter refers to a permission. The “r” refers to read,
“w” to write, and “x” to execute. The first three letters are
the permissions granted to the owner, the second three are
the permissions granted to the group, and the last three
are the permissions granted to the world. Thus, the
preceding example set of permissions grants all three
permissions to all three sets of users. The following set of
permissions, however, grants read and write to the owner,
read to the group, and no permissions to the world:

 rw-r-----

Most often, these permissions are associated with files
and directories, which are Linux’s equivalent to folders.
However, Linux keeps a special set of files that represent
hardware resources, such as a camera. Permissions set on
these special files can be used to restrict access to the
hardware.

Standard Linux does not have support for the grouping
in RBAC, and especially in ABAC, as this requires more



complicated machinery to be built into the ACL. For ABAC,
the ACL would also require a policy evaluation at runtime.

ACLs are very intuitive and easy to implement. This is
part of the reason they are so widely used. On the other
hand, they have some limitations. One important use that
ACLs do not handle is delegation. Delegation is when an
original user with a permission wishes to permit a proxy
user to use that permission on the original user’s behalf.
Delegation is used, for example, when someone has an
assistant. The original user may want the assistant to help
manage their calendar. But with an ACL, the only solution
is to add the assistant to the list as well. This can be a
problem because in a centrally managed system (such as a
corporate system), the original user may not have
permission to add the assistant to the ACL. Additionally,
many traditional ACL systems do not track if one user’s
permissions are really on behalf of another.

Some cloud-based email and calendar systems, such as
Google’s, do permit delegating access using ACLs. But the
delegation is limited by the nature of ACLs.

Capabilities

An alternative to ACLs is capabilities. A capability is some
kind of data that permits the holder of the data to access an
associated, protected resource. A capability is sometimes
modeled as a row in the theoretical access control matrix of
a system, whereas the ACL is like a column holding all of
the users that are permitted to access a given resource.
The column-like nature was previously illustrated in Figure
3-5. Figure 3-6 shows the alternative row-based concept of
capabilities.

However it is modeled, it is conceptually permissions
that the user gets to hold onto themselves. There are some
potential dangers to a capability that must be managed.
First, capabilities should not be forgeable. I will discuss



cryptography more in Chapters 5 and 6, but cryptography
(mathematical codes) can be used to create data that
cannot be altered (undetectably) and for whom the author
is provable. Using this kind of cryptography, the operating
system can create a capability when the user logs in. The
capability is protected so that it cannot be altered and
provably came from the operating system access controls.
An attacker cannot create such a capability themselves.

Another problem is that of copying. A user should not,
without permission, be able to copy their legitimate
capability to someone else for use. This is also solvable by
having the correct user of the capability named in the
capability itself. If an attacker steals the capability or tricks
the user into releasing it, it will do them no good (unless
they can also steal the user’s identity). If the attacker tries
to use the capability, the system will recognize it was not
issued to them. The attacker cannot change the username
identified in the capability because of the cryptography
protections mentioned.

Figure 3-6  This figure shows the same matrix as Figure 3-5. However,
instead of an ACL (column), a row is broken out. This represents a capability



that can be issued to the user and indicates all resources to which they have
access

One area where capabilities are sometimes seen as
weaker than access controls is revocation of permissions. If
a user should be stripped of their access to a resource
(perhaps because they changed jobs or left the company), it
is easy to change the data in an ACL. But if that user was
issued a capability, how does one force them to voluntarily
relinquish it? This problem can be solved with a resource

proxy. It is not necessary to give a user direct access to the
resource. Instead, a proxy resource is created and
capabilities are issued for the proxy. When a user presents
the capability, they access the proxy that subsequently
forwards the requests and responses to the real resource.
When access needs to be revoked, the proxy is deleted or
disabled, a new proxy is created, and new capabilities are
issued to the still-authorized users.

Another alternative is for capabilities to be temporary. A
user can be given a capability that is only valid for a period
of time and must be renewed thereafter. The time
information can be written into the capability itself and
must be valid to access the resource.

As explained earlier, uncontrolled copying is not
allowed. However, capabilities can be easily delegated if
delegation is allowed for the capability. A user can create a
specialized copy of the capability that adds information
about whom the capability is being delegated to and for
how long, as shown in Figure 3-7. Although the
cryptography prevents the original from being modified,
the user can create their own additional data that can be
attached to the original. When the delegated user arrives
with the delegated capability, the resource can identify
whether or not the capability can be delegated and whether
it was delegated from an authorized party to the delegated
user.



Figure 3-7  A capability can be stamped with the name of the authorized
recipient. In this illustration, the original capability is issued to Alice, and only
Alice may legitimately use it. Alice’s capability is signed by the Operating
System proving that the Operating System gave out this credential. Alice can
delegate her capability by wrapping it in a new credential that she generates.
She cannot change any of the original or it would break the signature. But she
can add an outer layer that indicates she is delegating the original and have it
signed in her name. When Bob presents the delegated capability, the resource
will verify that Bob is presenting the capability, then verify that Bob was
delegated the capability by Alice, and that Alice was issued the capability by
the Operating System

As with ACLs, capabilities can be used to support DAC
or MAC systems.

Access Control Implementation Issues

Not all access control technologies are focused on
permissions assigned to users and the programs that run in
their names. Especially in mandatory access control
systems, it is sometimes important to protect applications
from each other independent of the user that controls
them.

The Android operating system, using the SELinux base,
is capable of isolating the applications (apps) that run on
the device. Apps, for the most part, cannot see the files of
any other apps. This prevents an app, especially a malicious
app, from interfering with, stealing data from, or



corrupting any other app. The only mechanism for
interaction is through a few trusted system services and
mediated requests. This kind of isolation is even stronger
than using access control lists or capabilities; it simply
disallows everything except carefully monitored request
handling.

Modern Windows operating systems also provide a
complex set of access controls that include elements of
ACLs and capabilities, as well as discretionary and
mandatory access controls. A good overview of these
features can be found in Anderson’s Security Engineering

book [40, Chapter 9]. But the key point is that modern
systems combine many of the technologies discussed in this
chapter into their operations.

Complete Mediation and Reference Monitors

Regardless of the conceptual approach (e.g., ACL vs.
capabilities) or the implementation, access controls
generally need to follow the principle of complete

mediation and use an effective reference monitor.
The principle of complete mediation states that “all

accesses to objects be checked to ensure they are allowed”
[60, Chapter 14]. The reason the word mediation is used is
because there is typically some kind of manager component
that is responsible for enforcing the access controls. This
manager could be, for example, the operating system on a
host. But the point is that all access should have to go
through the manager and that every access is checked.

Whatever form the manager takes, from the security
perspective, it is a reference monitor. Or, stated
affirmatively, the reference monitor “is an access control
concept... that mediates all accesses to objects by subjects”
[60, Chapter 20]. In other words, the reference monitor
provides the complete mediation. Obviously, much of the



security of the system depends on the effectiveness of the
reference monitor.

Access Control and Psychology

Speaking of Android, smartphones are a wonderful example
of how access controls can be great in theory but
completely fail when the psychology is poorly aligned. In
addition to protecting apps from each other, Android, like
most smartphones, also attempts to protect you and your
phone from your apps. For privacy reasons, apps do not
have permissions to phone resources such as the camera,
microphone, contact list, and calling functions without
explicit permissions from the user.

The problem with these kinds of access controls is that
they stand between the users and a reward. Imagine a user
that has a smartphone. The user hears about a new app
(perhaps a popular game) or realizes they need some kind
of utility. Either way, they head to the app store and search
for the app. Once they find it, perhaps they even read some
reviews. The user decides they want the app. They click the
download button. Success! The app is on their phone! They
try to open the app.

Everything stops. The app will not open. Apparently, the
app will not run unless the user gives the app permissions
to use something on the phone. Android asks the user if
they should allow it.

What do you think the user will do? Will the user
carefully consider the risks of giving the app access? Will
they rationally evaluate whether or not an app of this type
needs those permissions? Or do you think the user will
install the app without thinking much about it?

If you answered the latter, you are probably correct for
the majority of users. There are many reasons for this. The
first and most important is that the user was looking
forward to their reward: using the app. They had thought



about it, sought for it, and obtained it. Then, at the last
minute, when they were about to enjoy the fruits of their
(admittedly minimal) efforts, they found themselves
blocked by a choice. The urge for the reward is a
significant factor in the user’s behavior.

The other issue is a lack of understanding of the security
risks. So what if the app can access the user’s contact list?
What is the danger really? The warning messages do not
instruct the user in the risks and assume that the user
already understands them. It assumes rationality when
there is no evidence of rationality or even the information
necessary for rationality (rational decisions require
sufficient information). Users are also somewhat
conditioned to believe that app stores largely hand out
secure apps. The companies behind the app stores are
always touting how secure they are as a company. The
users get a sense of security when they get something from
the official store, and that also overrides their thoughts of
risk management.

Asking users to make these kinds of decisions is always
fraught with peril. In many ways, it punts on the very
difficult problem of deciding what is and is not secure to
the least qualified. It absolves the owners of the app store
of responsibility. The incentives at play are terrible from a
security perspective. The companies hosting the app stores
take a cut of every app sold (or a percentage of the
advertising from free apps). Yet, they bear little to no
responsibility or liability for the bad things the apps do.

Side Channels

Before wrapping up this chapter, I will discuss a little bit
about authorization leaks. An authorization leak occurs any
time correctly enforcing a model’s properties still results in
an operation that though technically legal is semantically
equivalent to an unauthorized access. The most common



authorization leak is an information leak wherein an
attacker is able to obtain unauthorized information through
legitimate channels.

One method for an information leak is to use a side

channel. A side channel is any system output that is either
unintentional (it was not intended to be an output) or is an
intentional output but unintentionally includes extra
information. This has been demonstrated in BLP. For
example, a user is supposed to be able to write, but not
read, to a folder of a higher classification than their
clearance. Not reading includes not knowing the names of
files within the folder. But if the user tries to insert or
create a file of a given name into the folder and a file of
that name already exists in the folder, the system may give
them an error. This leaks to the user that a file of a given
name already exists. The side channel in this example is the
error reporting of the folder. All of the BLP requirements
were followed but information leaked from high to low.

Side channels are notoriously difficult to identify. Side
channels have included, for example, the heat emanating
from a computer, the blinking lights of a network router,
and even the time it takes to compute information. Passive

side channels are side channels that only require
observation. Active side channels require attacker input,
usually in the form of a disruption that causes the
unintentional release of information.

Summary

Security engineering depends on the use of good policies
that guide and control the deployment of mechanisms to
enforce them. Nevertheless, as illustrated in this chapter,
models often have rough edges and use cases for which
they have weaknesses. They can also have deployment
challenges, especially for exception handling.



This is one reason why developing a new policy from
scratch should be avoided when possible. The policies in
this section, from BLP to ABAC, have been around for
years. They have been implemented, tested, evaluated,
refined, and revised. Their implementations have been
analyzed and experience gained from real deployments.
When evaluating a vendor’s technology, they can be good
starting points for understanding what problems it will and
will not solve. Even if the product implements an entirely
new model, it can be beneficial to compare it to the others.

This chapter also discussed some of the basics of low-
level access controls. Specifically, ACLs and capabilities
are two alternatives for granting a principal or subject
access to a resource. Other mechanisms like isolation are
helpful.

Authorization continues to be a difficult problem.
Developing or choosing the correct model is hard,
implementing (and verifying the implementation of) a
model is hard, and keeping the authorization data in sync
with reality is hard. Getting the psychology and incentives
of an authorization system is also difficult as illustrated by
the deceptively easy and commonly used approach of
letting users choose to grant permissions to apps. This
method pushes the most difficult decisions to the least
prepared.

Even if somehow we got all of these hard things correct,
attackers might still be able to extract useful information
from a previously unknown side channel.

It is important to keep all of these limitations in mind
when evaluating an authorization technology from a
vendor. Vendor marketing will always focus, at best, on the
product’s strongest features. More often, it will make
irrelevant or unhelpful statements or promises. Knowing
the real problems inherent to all authorization technology
will help you ask the right questions and make better



decisions about how well the technology will help your
organization.

Further Reading

If you feel like reading a long mathematical proof, you can
always read the original Bell-LaPadula paper cited in this
chapter. The authors do not write their model in much of a
narrative format. Instead, they attempt to establish a proof
about what a secure system is and that the BLP system is
so. Bell wrote a paper in 2005 looking back over the
development of BLP that describes a bit more about the
process and why they did what they did [51].

As always, Ross Anderson’s Security Engineering is a
great read. Chapter 6 in the third edition is all about access
controls and goes into the mechanisms used by operating
systems, software, databases, and other components. He
also covers some technical attacks, such as buffer overflow
attacks, that I will touch on in Chapter 7. But his treatment
in the context of access control is good for understanding
how the attackers get around these defenses [40, Chapter
6]. Matt Bishop’s book Computer Security: Art and Science

(second edition) is excellent, but I only recommend it for
readers with a technical background. If you do dive in,
Chapter 2 covers an overview of the conceptual access
control matrix, and Chapter 16 dives into ACLs,
capabilities, and a few concepts not covered here [60].

Most readers will find topics around RBAC and ABAC to
be the most immediately practical. Every semester, I have
my students do a Google search for “problems with RBAC”
as a way of seeing a range of responses from the field. This
is an informal method, of course, but it is very real. For
more details on RBAC, I recommend the work of Ravi
Sandhu. In particular, [230, Section 1] gives an
approachable overview of the history of RBAC and some of



its limitations. Various RBAC implementations have been
proposed over the years, and various attempts have been
made at standardizing them [104, 229]. For greater
technical detail, especially around design and
implementation details, you can refer to [49] and [134]. For
another intense (and more recent) study, NIST researchers
published a book in 2017 entitled Attribute Based Access

Control [138].
I especially recommend reading Danette McGilvray’s

book about improving data quality in an organization. I will
be citing from this book in other chapters, but
authorization is a good place to emphasize it. I cannot
stress this enough: you cannot secure your organization if
your information quality is poor. If you do not know
accurate and timely information, you cannot correctly
handle roles, permissions, or any other authorization task
correctly. Nor should you assume that if you do not know it
the attackers will not as well. You have to understand that
you and the attacker have inverse relationships in terms of
normal vs. abnormal conditions. You will almost always
know more than the attacker about your systems’ normal

operations. The attacker will almost always know more
than you about your systems’ abnormal operations.
Increasing your data quality reduces the abnormal
operations in your organization, giving the attacker fewer
places to work and giving you more places where you are
better informed. Read the book and make your security
team read the book [176].
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Footnotes
Note: This acronym will mean different things in different chapters, so pay

close attention to context.

 
I am adapting this statement from the Therac-25 incident, a case of software

accidental failure. The Therac-25 was a cancer-treating, radiation therapy
machine that, because of software bugs, inadvertently killed a number of
people and injured others. As reports of accidents came into the company, they
would make a fix to something they thought was the problem and in at least
one case then claim it “produced a five order of magnitude increase in safety”
[161]. I have heard similar expressions from vendors selling or senior
management buying various security products. In almost every case,
statements such as these are meaningless marketing at best and extreme
incompetence at worst.

 
Unfortunately, these terms are sometimes used a little differently across the

security world. Some sources refer to users only as the people themselves,
principals only as the account of the user, and subjects only as the programs
launched by users. The original BLP formulation explicitly stated that subjects
are processes (running programs) but also said that they were “surrogates” for
users [52]. NIST uses subject to refer generally to all three, and I will do the
same for convenience [121].

 
Anderson only discusses the NRU and NWD properties. But he describes the

systems that enforced these two properties as being mandatory access
controls.

 
Sometimes, TCB is used to refer specifically to just a given set of hardware

or software that provide certain trusted operations within a computer system.
For example, TCB systems are used to enforce phones booting from only
software authorized by the manufacturer. When talking about a conceptual
policy, as I am in this chapter, TCB needs to include all the components that
must be trusted for the policy, including people.

 
One exception is technology mathematically proven to be correct. Some

hardware and some software can be proven to have no bugs of certain types.
There are many limitations, however, including that proofs become impossible
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beyond certain sizes of systems and corresponding complexity. There is
interest, despite these limitations, in using formally proven systems precisely
for TCB components. Because proofs generally require relatively small systems,
this is yet another reason for having small TCBs.

 
In Biba’s original formulation, Biba identified additional requirements not

considered here. However, these two properties are the key ideas commonly
identified for Biba’s model. Also, the names “Simple Integrity Property” and “*
Integrity Property” were not used in Biba’s original paper, and I do not know
who introduced them or when. But they were in use as early as 1981, just a few
years after Biba’s initial publication [159].

 
Anderson describes “type enforcement,” which preceded DTE, as a model

(singular) and implies that DTE is also a model [40, Chapter 9]. However, both
the original paper and other sources refer to DTE policies (plural). Given that
DTE really does not express any security properties by itself, I have chosen to
describe it as a model framework. The original paper describes it as a
mechanism, but the authors were also presenting an actual implementation of
the conceptual system. The choice of the term model framework is my own.

 
There are two permissions related to running a program. One is whether or

not one domain is allowed to start a process in some other domain (including
its own domain), and the second is whether or not it is permitted to start
programs of a particular type.

 
There are a wide range of definitions for RBAC. There are a wide range of

research papers that discuss variations of RBAC creating what is called the
“RBAC Family” [228]. RBAC has been described as an alternative to both MAC
and DAC [49] or even as “solving the described problems” of MAC [54]. Other
authors, however, state that RBAC is a form of MAC [48,132]. Notably, the
same author, John Barkley, is the author of one citation that says it is an
alternative and one citation that says it is a variant. Another author, not willing
to call RBAC a MAC, described it as “nondiscretionary” [104]. Of course, within
the broader IT world, it is often used without a formal definition at all and
simply refers to any policy that associated roles with permissions. For the
purposes of my discussion in this section, I am using this less formal definition
while noting that the pros and cons I discuss are more or less applicable to the
more formal models.

 



11 There are many variants and definitions of ABAC as well. However, the
NIST definition is sufficient for the purposes of this chapter.
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Chapter Quick Start Guide

This chapter introduces the concept of cryptography, or
mathematical codes used to protect data. It can be a
tough concept. To help make this concept more
comprehensible, this chapter covers some of the goals
and requirements for cryptography. It then uses some
historical examples to illustrate a subset of these
principles. People have been using secret codes since
before computers. These examples can be easier to
understand but can also effectively introduce some
concepts like key size, block size, brute force, block

ciphers, stream ciphers, and cryptanalysis.

Key Concepts

1.
Cryptography is the mathematics of data protection.  

2.
A key is data that enables a cryptographic operation
(e.g., encryption); without the key, the operation
cannot be performed.

 
3.

Cryptographic systems are designed to be secure so
long as secret keys are kept secret; the attacker may
know anything else about the system.

 

S i h i ll d b i
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4. Symmetric cryptography is so called because inverse

operations use the same key, for example, encrypting
and decrypting with the same key.

 
5.

Block ciphers are symmetric cryptographic
algorithms that work on chunks of data called
“blocks.”

 
6.

Stream ciphers are symmetric cryptographic
algorithms that work on data one bit at a time.

 
7.

Asymmetric cryptography uses key pairs where a
private key performs one operation (e.g., encrypting)
and a public key performs the inverse (e.g.,
decrypting).

 

8.
Encryption can be used to provide data
confidentiality by making the data unreadable
(without the appropriate key to decrypt).

 

Common Pitfalls and Misunderstandings

1.
The security of a cryptographic system should only
require that the key be secret.

 
Useful Vocabulary

Confidentiality: Data can only be read by authorized
parties.
Data Integrity: Data can only be modified by
authorized parties.
Entity Authentication: The publisher (e.g.,
transmitter or creator) of the data can be confirmed.
Hashing: A technique that takes any data (e.g., a
document) as an input and spits out a small piece of
data that serves as a fingerprint of the original.



The previous two chapters on authentication and
authorization are foundational to computer security
technologies. Generally speaking, security requires
identifying principals and determining what they are
allowed to do. But these controls would be worthless
without mechanisms for enforcement. If someone is not
allowed to read a file, what prevents them from being able
to do so? This chapter and the next collectively introduce
cryptography, a technology that enables certain kinds of
protections for data, even if the data falls into the wrong
hands.

Cryptography.  You might have heard of this. You might
not. But cryptography is, in my opinion, one of the most
amazing developments of humankind ever. Such
assessments are certainly objective; but for me, what we are
about to learn in this chapter surpasses the marvel of world
wonders such as the Pyramids, Stonehenge, or the Hanging
Gardens. Some of the things cryptography can do literally
seem like magic.

It is not magic, of course. It is mathematics. Given that this
book is meant for an audience that is not necessarily trained
with a technical background, you might be one of the many
people that dislikes mathematics. You may have had an
intense, negative emotional reaction when you saw the
word. If you are one of these people, please take a big deep
breath. Everything will be fine.

So what is it? At a basic level, cryptography is
mathematics used to protect information such as computer
data. You have already learned a little about authentication
and authorization. Cryptography is one of the means by
which information can be protected so that only
authenticated and authorized parties can access it. It can
also be used to help in the authentication and authorization



processes themselves. Cryptography is not the only way of
protecting information, but it is one of the most widely used.
Much of the modern Internet infrastructure depends upon
cryptography to function securely.

But the math behind cryptography can be
counterintuitive and very opaque. Fortunately, there are
historical examples that predate computers that are a little
easier to study and analyze. Despite their differences from
modern cryptography, they can do a good job of teaching
some core concepts.

In this chapter, I will start with some historical examples
that introduce the intuition behind some aspects of
cryptography. After that, I will provide some background on
what modern cryptography aims to achieve and some
prerequisite components. This will prepare you for the next
chapter that gets into modern cryptography in more detail.

Introducing Cryptography Through

Historical Examples

In this section, I will be using historical examples to teach
you about encryption. As I emphasize later, there is more to
cryptography than just encryption. However, if you can
understand historical encryption, it will help orient you for
everything else.

Encryption is the process of encoding a message such
that the message is (or is supposed to be) unreadable.
Decryption is the process of decoding the message into a
readable or understandable form. Some piece of data,
known as the key, is used to encrypt. Without an
appropriate key, it is (or is supposed to be) impossible to
decrypt the encrypted message.

In modern cryptography, symmetric cryptography uses
the same key to encrypt and decrypt, while asymmetric

cryptography uses different keys to perform each function.



All of the historical examples that follow are symmetric.
Because the same key is used for encryption and decryption,
these historical examples require that both the sender and
receiver of a message must share the same key. The
security objective is that, assuming only authorized parties
have the key, unauthorized parties will not be able to
decode the message and read/understand it.

The process by which data is encoded or decoded is
called an algorithm. A computer algorithm is a specific
series of steps that, when followed, produce an expected
output. So, an encryption algorithm is the series of steps
that transform the original message into an encrypted
message. The decryption algorithm is the series of steps
that transform the encrypted message back into the original
message. Encryption algorithms generally require the
original message and the symmetric key as inputs, and
decryption algorithms generally require the encrypted
message and the symmetric key as inputs.

In cryptographic terminology, the original message is
often called the plaintext, and the encrypted data is called
the ciphertext. The decryption function should transform
the ciphertext back to plaintext, but sometimes, for clarity,
it is called the recovered plaintext. The encryption and
corresponding decryption algorithm are, together, a cipher.

The Caesar Cipher

The use of ciphers to protect information from being read
(confidentiality) goes back a very long way in history. Julius
Caesar used a very simple cipher that has become known as
the Caesar Cipher. In the Caesar Cipher, each letter of the
alphabet is mapped to another letter of the alphabet using a
simple shift mapping as shown in the following:

A B C D E F G H I J K L M
D E F G H I J K L M N O P
N O P Q R S T U V W X Y Z



Q R S T U V W X Y Z A B C

In this cipher, A maps to D, B maps to E, and so forth.1
To encipher or encrypt a message, each letter of the
plaintext was replaced with the corresponding letter in the
table:

 HELLO WORLD

 KHOOR ZRUOG

In this listing, “HELLO WORLD” is the plaintext and
“KHOOR ZRUOG” is the ciphertext. To decrypt, the process
is reversed. Each letter of the ciphertext is found in the
bottom row and substituted with the corresponding letter in
the upper row. So far, so good.

But the eagle-eyed reader might already be wondering,
“where is the key in all of this?” After all, I told you that
encryption and decryption algorithms required a key. How
come we did not use a key here?

We did use a key, I just did not call it that. To illustrate,
consider that Augustus Caesar changed his letter
substitution mapping as follows:

A B C D E F G H I J K L M

C D E F G H I J K L M N O
N O P Q R S T U V W X Y Z
P Q R S T U V W X Y Z A B

What, exactly, did he do? Did the algorithm change? No!
The algorithm is the same. What changed is the mapping of
letters such that A maps to C instead of to D. All other
changes are driven by this change. We could say that
Augustus changed the key of this algorithm from “D” to “C”
[40, Chapter 5].

This very simple cipher introduces us to a very important
characteristic of a given cipher: the key space. The key



space refers to the number of keys that can be used in the
given algorithm. In the Caesar Cipher, using the modern
English alphabet, there are either 25 or 26 keys depending
on whether or not you want to consider A mapped to A to be
a legitimate key.

Having only 25 usable keys is a very big problem for a
cipher. How long would it take an adversary to try all
possible keys? Even without a computer, it would not take
an adversary very long at all to try all possible 25 keys. The
adversary could even precompute the tables for all 25 keys
and try all possible combinations in just a few minutes.

This leads to the first requirement for an effective cipher.
The key space must be sufficiently large to make it
impractical to try all possible combinations of keys. In
Chapter 2, you learned about brute force for breaking
password hashes. In that case, an adversary can try all
possible passwords to try and find a matching hash. The
same approach can be used by attackers to break a cipher.
They can use brute force to try all possible keys to see if it
decrypts the information into the plaintext. Without a
sufficiently large key space, brute force will destroy the
confidentiality of the data.

Security experts are often asked if it is a viable strategy
to try and keep the algorithm secret. After all, if the
adversary does not know the algorithm, how can they even
try a key in the first place? From experience, it is well
known that algorithms can be reverse engineered and far
more easily than intuition might lead you to believe. This
observation led to what is now known as Kerckhoffs’s
principle:

The system must not require secrecy and can be
stolen by the enemy without causing trouble. [36]

The alternative, the idea that the system can be secure
through secrecy, is often called security through obscurity



[36] or security by obscurity [39]. Security through
obscurity is generally seen as harmful in the security
community, and especially in cryptographic contexts [66,
Chapter 1].2 Kerckhoff’s principle is specifically about
cryptography systems and keys, but the concept is so
broadly applicable in security that it has its own name: the
principle of open design. This principle states that the
security of a mechanism should not depend on the secrecy
of its design or implementation [60].

Story Time: Navajo Code Talkers—Security by

Obscurity?

When teaching my classes, I am occasionally asked by a
student whether or not Navajo Code Talkers are a good
example of security by obscurity being successful. If you
are unfamiliar with the Navajo Code Talkers, they were a
group of Native Americans of the Navajo tribe that served
as special signalmen in the US Marine Corps in World
War II. Because Navajo was an oral language (there was
no written version at the time), a proposal was made for
using native Navajo speakers as code operators for radio
transmissions.

Notably, the Code Talkers did not just speak normally
in their native language. They created a code where
different terms were assigned to certain objects. For
example, dive bombers were identified as “ginitsoh”
meaning “sparrow hawk” because “the sparrow hawk is
like [the dive bomber]—it charges downward at a very
fast pace.” They also created words to represent each
letter of the alphabet in case there was a need to spell
things out [30].

In terms of the strength of this code, there are a few
things to keep in mind. First, this was an oral code only. It
could not be used for anything written. The Enigma
machine, on the other hand, could be used for teletext
transmissions. But this also meant that the Allies could



collect a larger number of samples with few transcription
errors for cryptanalysis.

Second, we have no detailed information about how
the Japanese approached cracking the Navajo military
code [30]. Without knowing what progress they did and
did not make, and whether or not it was a priority, it is
difficult to know how resilient the code was. For example,
they were cracking other US codes as well as the codes of
the other major nations. How many resources they were
allocating to cracking this radio code is unclear.

Third, there was a code underneath the language.
When a message was sent in Navajo, the receiver,
although a native speaker of Navajo, did not always know
what the message meant until the English equivalent of
the words were looked up in a code book. How much
security was there in the Navajo language and how much
security was there in the code book?

In terms of what we know about the Navajo code, it is
certainly breakable. The fact that it was never broken

does not mean unbreakable. For example, the fact that
each letter of the English language was assigned one or
more words means that it is relatively trivial to crack the
code if the analyst has a single sample of the plaintext
and ciphertext regardless of whether or not the analyst
speaks Navajo.

At least one linguistic scholar has stated that the
security of the code talking can be traced to difficulty that
the Japanese radio operators had in producing consistent
transcriptions of what came over the radio [139]. A
system that depends on the enemy hearing phonetic
sequences poorly will not survive a skilled and motivated
cryptanalysis team.

In summary, while Navajo Code Talkers were
undoubtedly valuable to the US military action in World
War II, the approach of an unknown language is not a
model for modern cryptographic systems.



So, we must assume that the attacker knows that a message
was enciphered using the Caesar Cipher. If the attacker
knows that, how difficult will it be for them to break the
message? Given that the Caesar Cipher has only 25 keys, we
have to throw it out. It is too easy to break with brute force
on the small key space.

Generalized Monoalphabetic Substitution

The Caesar Cipher is known as a monoalphabetic

substitution cipher. That means that each letter of plaintext
is substituted for exactly one letter of ciphertext. But
because of the way the shift cipher is configured, there are
very few keys and, consequently, very few configurations of
character substitutions. But does that have to be the case?
Could we have a monoalphabetic substitution cipher that
has a sufficiently large key space?

What about a completely random mapping of letters
instead of doing Caesar’s shift? For example, consider the
following:

A B C D E F G H I J K L M

X N B Y A M L S V P R K W
N O P Q R S T U V W X Y Z
Z C G I U D T F O H J Q E

This mapping creates what is sometimes called a
permutation cipher. This is because the letters are
permuted or reordered. Each permutation is a key in this
cipher.3 How many possible keys are there?

To figure this out, suppose we started with the letter A
on the top row. How many possible mappings are there to
other letters? Assuming we will not permit A to map to A,
there are 25 mappings for the letter A. But what about for
the next letter, B? How many possible choices are there for



this substitution? The answer is 24 because we already used
one for A, and it cannot be used for B as well. Moving down
the line, C will have 23 possible substitutions, D will have
22, and so on. This means that there will be

 possible permutations. If you remember
this kind of thing from your elementary or junior high school
days, this is called factorial. How big is 25 factorial?

15,511,210,043,330,985,984,000,000

That is a pretty big key space. It is not as big as the key
spaces used today, but it is bigger than key spaces used up
until about the year 2000. So this must be a much stronger
cipher than the Caesar Cipher?

In actuality, no. It is harder to break using brute force on
the key space, but it is trivial to break using cryptanalysis.
Cryptanalysis is the set of techniques used to break codes
without keys, usually by looking for patterns or other
artifacts that reveal information within the encoded
message.

Breaking a monoalphabetic substitution cipher is easy
because so much of the original message patterns are
visible in the ciphertext.

Look at the following enciphered message:

 SAKKC HCUKY

This message is encoded using the same permutation
listed previously, so you can easily decode it. But even if you
did not know the permutation (i.e., the key), you could
probably start to make some very good guesses.

First of all, there is a “KK” in the ciphertext. Because this
is a monoalphabetic substitution cipher, you know that the
K is mapping to the same letter both times. That means that
the plaintext word had two of the same letter. If you know
that the original message is in English, you can quickly



search a dictionary for words that have two letters in the
middle. You can also do tricks like substituting in common
letters. E, for example, is the most common letter in the
English language. Other features and characteristics of the
language bleed through from the plaintext to the ciphertext.
These kinds of artifacts make breaking such messages
pretty easy to do.

Increasing the Block Size: The Playfair Cipher

The problem of the monoalphabetic cipher is that its block

size is too small. By block size, I mean the number of
symbols that are encrypted at a time. The block size of a
monoalphabetic cipher is one character. And as already
discussed, this is far too easy to cryptanalyze.

For this reason, the makers of secret codes advanced to
using digraphs or encryption using two letters at a time. In
other words, the block size was increased from one to two.
A good example of this is the Playfair cipher.

To set up a Playfair cipher, you need a word-based key.
For our example, we will use SECURITY. Next, create a five-
by-five grid; put the letters of the key into the grid from left
to right and top to bottom, as shown in the following:

Note that no letters in this grid can be repeated.
SECURITY only uses each letter once. If a code word is
chosen with duplicate letters, the duplicate letters are
dropped. For example, the code word HELLO would only
put in the letters HELO.

Once the code word is in place, add the other letters of
the alphabet in order. Skip any letters already in the table



from the code word. Also, because there are 26 letters but
only 25 squares, one letter of the alphabet has to be
dropped. By convention, the J letter is dropped. Our
example grid looks like this:

S E C U R

I T Y A B
D F G H K
L M N O P
Q V W X Z

Now that our table is set up, we can begin to encipher
messages. The algorithm is as follows:
1.

If the length of the message to be enciphered is not
divisible by two, add an X to the end.

 
2.

Break the message up into pairs of letters.  
3.

If a pair of letters is in the same row of the table,
replace with the next two letters to the right (wrap if
necessary).

 
4.

If a pair of letters is in the same column of the table,
replace with the next two letters down (wrap if
necessary).

 

5.
If a pair of letters is not in the same row or column, the
pair forms a box; replace the letters with the two letters
of the opposite corners of the box, with each letter
replaced with the corner in the same row.

 

Following this algorithm, and using our table, encrypt
the message “ATTACK AT TEN O’CLOCK.” To prevent an
enemy from easily guessing whole words, first remove the



spaces and punctuation. Our message to encrypt is
“ATTACKATTENOCLOCK”.

Following the algorithm, the first step is to see if we need
an extra letter. Our message is 17 long, which is not
divisible by two. So we add a Z to the end.

Next, the message is broken up into letter pairs:

 ATTACKATTENOCLOCKX

 AT TA CK AT TE NO CL OC KX

Following our rules for enciphering each pair of letters:
1.

AT - BY (same row)  
2.

TA - YB (same row)  
3.

CK - RG (box corners)  
4.

AT - BY (same row)  
5.

TE - FT (same column) 
6.

NO - OP (same row)  
7.

CL - SN (box corners)  
8.

OC - NU (box corners) 
9.

KX - HZ (box corners)  
Thus, the ciphertext of our message reads:

 BYYBRGBYFTOPSNNUHZ

To decrypt this message, the process is followed in
reverse.



There are several key observations from this cipher.
First, what is the key space? The answer to this question is
different in theory than in practice. In theory, the key space
is very large. It is still 25 factorial! Although passwords are
used for convenience, what is really being done here is a
permutation of 25 letters of the alphabet! Any permutation
could be used so long as there was a relatively easy way of
transmitting the permutation to recipients. No code word is
actually needed.

In practice, however, code words are used, and this
reduces the key space to probably around 2000 words or so.
In any event, it would be trivial for a modern computer to
try several thousand code words very quickly. But the use of
a code word to fill in a complete permutation is very similar
to a concept used today called key expansion. Sometimes, a
key needs to be a particular length. There are various ways
of taking a key and expanding it to an almost arbitrary size.
In fact, one of the most common encryption algorithms used
today, AES (Advanced Encryption Standard), uses key
expansion in its internal algorithms.

Another interesting feature of Playfair is the use of the
letter Z if the original message is not a multiple of two in
length. In modern terminology, we would describe this extra
letter as padding. Modern cryptography often has to work
on chunks of data of a given size. If the data cannot be
divided up into chunks of exactly that size, it often has to be
padded.

Story Time: Insulted by Padding

During October 1944, the largest naval battle of World
War II was fought in the Leyte Gulf of the Philippines. The
battle was actually spread out over four separate
engagements of naval forces. One of these engagements,
the Battle of Samar, involved a weak and unprepared
American naval force under attack from a superior
Japanese force. Task Force 34, the larger and more



powerful American force, had been successfully drawn
away by a decoy fleet that used carriers (high value
targets) as bait. Task Force 34 was under the command of
the extremely aggressive Admiral William “Bull” Halsey
Jr.

When the weaker fleet came under attack at Samar,
coded messages were transmitted by radio asking for the
position of Halsey’s ships. The message sent out by
Halsey’s senior officer, Admiral Nimitz, was, “Where Is
Task Force 34?” The message was encrypted using the
standard codes of the time. However, US operators were
concerned about the beginning and ending of messages
because they often used the same words (such as “Dear”
for a beginning word or “Yours” near the end). To keep
Japanese code breakers from deciphering the messages,
padding of nonsense words were to be used at the
beginning and the ending before encipherment.
Obviously, the padding was also to be removed after
decryption.

However, when Admiral Nimitz sent his message, the
radio operator made some errors. First, he thought there
was an extra emphasis on “Where” and added in a
“Repeat” into the message, making it sound more
emphatic. Second, and worse, instead of using nonsense
words for the padding, as was the protocol, he used the
words, “The World Wonders.” When the message was
received on Halsey’s ship, the operator did not recognize
these words as padding and left them in.

Thus, when Halsey got Nimitz’s message, it read,
“Where Is, Repeat, Where Is Task Force 34. The World
Wonders.” Halsey assumed this was a sarcastic rebuke
from Nimitz and was so angry he literally threw a tantrum
of such proportions an aide had to grab him and tell him
to pull himself together [150], [267, Chapter 28].



Both the monoalphabetic ciphers discussed in this chapter
and Playfair are block ciphers. Each one takes a chunk of
plaintext of a specific size (one and two characters,
respectively) and applies the algorithm to the chunk. The
same key is used on each transformation.

The size of the block is very important. Playfair is much
harder to crack than any monoalphabetic cipher because
there are so many more variations in the ciphertext that
help to obscure features of the plaintext. In the previous
example text, “ATTACK AT TEN OCLOCK,” the letter C
shows up twice in the plaintext. But because the letters are
enciphered in pairs, the letter C is substituted with S in the
CL pair and with U in the OC pair. This means one cannot
simply assume the most common letter in the ciphertext is a
common letter in the plaintext because there is not a one-to-
one mapping for each letter.

At the same time, the Playfair block size of two letters is
not large enough by modern standards, and it is still subject
to cryptanalysis. For example, in the plaintext “ATTACK AT
TEN OCLOCK,” you can see that the first four letters of the
plaintext are ATTA. Because this is the same letter pair
twice (but reversed), they map to the same letters in the
row. Thus, the first four letters of the ciphertext are BYYB.
An analyst trying to decode the message would know that
the plaintext message has some form of palindrome at the
beginning, and this would narrow the candidates for the
plaintext considerably.

Still, Playfair leads us to our second requirement for a
good block cipher: the block size must be sufficiently large.

Introducing Stream Ciphers: The Vigenere

Cipher

Not all ciphers are block ciphers, however. Another form of
symmetric cryptography is a stream cipher. In this section, I
will introduce a stream cipher developed in the 1500s that



was not generally breakable until 1863! This cipher is the
Vigenere cipher.

As I explained, a stream cipher does not work in blocks.
It works one symbol at a time but not as a block. This should
not be confused with the Caesar Cipher or any other
monoalphabetic cipher. A monoalphabetic cipher is a block
cipher because it encodes one block at a time. Each block
(of one character) is processed the same way and with the
same key. In the Caesar Cipher, for example, once the key is
set, each block (of one character) always encodes to the

same output. That is, for a given 1 of the 25 possible shifts,
the letter “A” will always be enciphered to the same output
and so will every other letter in the alphabet. You can tell if
something is a block cipher if, for a given key, the same
plaintext block always corresponds to the same ciphertext
block.

The Vigenere stream cipher, being a stream cipher, also
deals with one letter at a time but wherein the
encipherment of any given letter depends on where that

letter is encountered in the stream.
To illustrate, I will walk through an example. The

Vigenere cipher, like the Playfair cipher, requires a code
word. For a given plaintext, the code word is repeated as
many times as is necessary to make the sequence as long as
the plaintext. If we use our Playfair cipher example of
ATTACKATTENOCLOCK and the password SECURITY, it
would look like this:

 ATTACKATTENOCLOCK

 SECURITYSECURITYS

The last copy of SECURITY is cut off once the necessary
length is reached.

The encoding of each letter is performed by what is more
or less a Caesar Cipher. However, the key for each Caesar
Cipher shift is taken from the code word at that point in the



stream. In the preceding example, each letter in the plain
text is enciphered using the letter of the code word
underneath it as the key. So the first character, “A,” would
be enciphered using the Caesar Cipher with the key or shift
of “S.” Of course, in the Caesar Cipher, “A” is the first
letter, so with a shift of “S,” “A” maps to “S.”

The second letter of the plaintext is “T,” but “T” is
substituted using a Caesar Cipher with a shift of “E”
(instead of a shift of “S”). We can write this out as we did
before:

A B C D E F G H I J K L M

E F G H I J K L M N O P Q
N O P Q R S T U V W X Y Z
R S T U V W X Y Z A B C D

Following this table, you can see that the “T” maps to an
“X.” So our first two ciphertext letters are “SX.”

Writing out the Caesar Cipher for each letter becomes
cumbersome. Instead, it is easier to just treat the key letter
as a numerical shift. For example, “S” is the 19th letter of
the alphabet, so we shift “A” 18 times. “A” is the first letter
of the alphabet, so it is in position 1. Adding 18 to 1 gives us
19. So “A” maps to the 19th letter of the alphabet, or “S.”

On the other hand, “E” is the 5th letter of the alphabet,
which is a four-position shift from “A.” Shifting “T” four
positions is “X.” For any letters that go past Z, the shift
merely wraps around to the beginning.

The full encoding of the plaintext with the password is

 SXVUTSTRLIPITTHAC

The Vigenere cipher was so good that it gained a
reputation for being unbreakable. One reason the cipher
was strong was because letter frequency analysis is almost
impossible. But there are other ways of breaking the cipher.



The biggest weakness of the cipher is the repeating nature
of the code word. All that is necessary to break the code is
to know how long the key is. With no other information, it is
still trivial to break because it reduces the problem to
breaking the easy Caesar Cipher. The code word
SECURITY, for example, is eight letters long. That means
that every 8th letter (1st, 9th, 17th, etc.) is all the same
Caesar Cipher key. For short messages like ATTACK AT
TEN OCLOCK, that probably is not very helpful. But for a
much longer message, the cryptanalysis is relatively simple.

Even if the length of the code word is not known, there
are not many possible options. An analyst could try lengths
between three and ten without too much trouble.

How Strong Is an Encryption Algorithm

One important lesson from the previous historical examples
is that the strength of a cryptographic system is often
measured by how much ciphertext you have to have before
patterns start to emerge. Vigenere is certainly by
cryptanalysis, but to do so requires significantly more
ciphertext than for the Playfair cipher. And the Playfair
cipher requires more ciphertext to be broken than the
Caesar cipher.

Story Time: Playfair at the Movies

The Playfair cipher made an appearance in the movie
National Treasure 2. In the opening scene, set in 1865, a
man in a Washington D.C. tavern is approached by some
shady gentlemen and asked to decode a message. The
man informs them that it is encoded with a Playfair cipher
that is uncrackable without the key. He is shown a
phrase, from which he deduces the key and begins to
decode it. Just as he is finishing, he gets word that
President Lincoln has been shot and realizes that the
people asking for the decoding are connected to it. As he
burns the message, he is shot and soon dies.



Later, in modern times, a descendant must crack the
code again for various plot reasons. He and his friends,
including a computer whiz, are seen manually putting in
random code words to try and decode the message. After
some time struggling, they find out the phrase from which
the keyword is drawn and decrypt the message.

The film is interesting for accurately showing how the
Playfair 5x5 decoding box is set up and how a message is
encrypted and decrypted. So far, so good.

But almost everything else is as inaccurate as one
might expect from a movie that depicts the US
Declaration of Independence having a treasure map on
the back. Right at the beginning, the protagonist’s
ancestor had the code word almost immediately. He
should have been able to decode the message in a few
minutes. But instead, the movie depicts it happening
during the time it takes an accomplice to leave the tavern,
get to the stage, assassinate Lincoln, and for word to have
spread through the city. That is at least 30 minutes. The
movie even implies that there is some code “breaking”
going on instead of just straightforward decryption.

The other funny inaccuracy is the idea of manually
putting in random words as the key to see if it is the right
one. A real computer whiz would have simply downloaded
a dictionary file and had the decryption program
automatically try for one right after another. The keyword
would have been found pretty quickly.

Although our modern cryptographic systems are so
advanced beyond these classical systems that any
comparison is almost useless, some of these algorithms have
recommendations on a maximum amount of data that should
be encrypted with a key before the key should be discarded
and a new one used.



Foundations

Now that you have seen a bit about secret codes and
encryption in history, it is time to lay the foundation for
modern cryptography.

According to the Handbook of Applied Cryptography:

Cryptography is the study of mathematical techniques
related to aspects of information security such as
confidentiality, data integrity, entity authentication,
and data origin authentication. [179]

There is a lot to unpack from this definition. First, what
is information?

Information—Binary Data

By way of explanation, “information” is axiomatic. That is,
the word is not more formally defined. Information is
presumed to be any kind of information but, for practical
purposes, can be expressed as a number. In the world of
computers, all data is numbers. A digital video? Numbers. A
video game? Numbers. A spreadsheet? Numbers. Just as
importantly, any data, no matter how big, can be expressed
as a single number, but the bigger the data, the bigger the
number.

A more thorough explanation of how computers use
numbers is discussed in Appendix B. Briefly, however, the
key thing to understand is that all data stored, transmitted,
or operated on in a computer is represented as numbers (or
a number). And, within the computer, the numbers are
represented as binary numbers, meaning they use only ones
and zeros to represent the numbers.

Here are the numbers zero through nine written in
binary form:

 0      0



 1      1

 2     10

 3     11

 4    100

 5    101

 6    110

 7    111

 8   1000

 9   1001

Appendix A explains how binary numbers work in more
detail. But as long as you are willing to believe that every
number can be represented with ones and zeros, you know
enough to move forward.

Because all data in a computer is just binary data (i.e., a
binary number), the cryptographic math works the same on
video data as it does on documents, and the same on PDFs
as it does on email messages. Basically, cryptography is just
mathematical operations on numbers, and every piece of
data is a number. Some of the examples in this chapter will
visualize actual binary data to illustrate how the
cryptography works.

As explained in the appendix, because binary is so long
and cumbersome it is often written in hexadecimal as a kind
of shorthand. So, unless it is absolutely necessary
otherwise, all binary numbers will be written in this
hexadecimal short form. So, for example, here is a sequence
of binary numbers and the corresponding hexadecimal:

 101 1100 1010 0011 0111

 5   c    a    3    7

Because “10” can be “10” in binary, “10” in hexadecimal,
or “10” in decimal (our normal numbering system), I will
either tell you explicitly what type of numbers I am showing
you or I will use prefixes. The prefix for binary is “0b” (e.g.,



0b1001), and the prefix for hexadecimal is “0x” (e.g.,
0x5ca37).

It is not particularly important that you can convert back
and forth between binary and hexadecimal or that you
understand why computers use binary in the first place. All
that you need to know is
1.

All data (video, audio, documents, email, web pages,
etc.) is just numbers.

 
2.

Computers store and process all numbers as binary
numbers (ones and zeros).

 
3.

Cryptography math works on numbers.  
4.

Hexadecimal numbers are a shorthand way of writing
binary numbers.

 
Because data in computers is stored and transmitted as

ones and zeros (binary numbers), sizes are expressed in
terms of ones and zeros. A single one or zero is called a bit.
Or, in other words, a single bit of storage in a computer can
hold either a one or a zero.

For various historical reasons, bits are grouped by 8s.
Eight bits is called a byte. Kilobytes hold approximately
1000 bytes (exactly 1024 bytes), megabytes hold
approximately 1,000,000 bytes (exactly  bytes),
and gigabytes hold approximately 1,000,000,000 bytes
(exactly  bytes).

One more metric may help think about these sizes. For
most western alphabets, a single character (meaning, a
single letter, number, punctuation, or other symbols) can be
represented by a single byte. So, the word “hello” could be
stored in five bytes of data. The sentence “This is a test!”
could be stored in 15 bytes (don’t forget bytes for the
spaces and the exclamation point!). So, a kilobyte could
store about 1000 characters, and a megabyte could store



about 1,000,0000. If you look at the size of a document that
can be formatted, like a Microsoft Word document, you will
notice that the size of the file is quite a bit larger than the
number of letters and symbols in the document. That is
because the file also has to store significant data about
fonts, styles, formatting, and so forth. Still, this hopefully
helps you think about the approximate size of something
when working with bytes.

Information Security Goals

Returning to the definition of cryptography, the Handbook
of Applied Cryptography states that the common goals of
information security are confidentiality, data integrity,
entity authentication, and data origin authentication.
Conveniently, these four goals are not only very common
but very instructive. Discussing these goals will help you
understand what we need cryptography for.

The first goal is confidentiality. Confidentiality is about
making sure information is only readable by authorized
parties. Sometimes, this is also called secrecy. This term
can be a little confusing because some people use “secret”
to mean something not talked about or something that is
unknown. In information security, the data is still
transmitted, and its existence is not necessarily hidden. But
confidentiality means that the unauthorized parties cannot
understand the data. Usually, this means that data is
transformed such that the data is rendered meaningless to
anyone without authorization.

The second goal is data integrity. In information security,
data integrity means that data cannot be undetectably

altered. In other words, there is some authorized form of
the data. If the data has integrity, parties will be able to
determine if the data has been changed in an unauthorized
way, such as forgery.

The third and fourth goals are presented together. Entity

authentication involves knowing an authorized identity of a



party, as discussed in Chapter 2. In that chapter, we talked
about a number of methods for identification, but primarily
human authentication. In this chapter, you will see that
mathematical codes can be used to identify nonhuman

parties to each other. Data origin authentication, on the
other hand, is about proving the source or publisher of data.
That is, identifying the party that either created or
transmitted the data. Data origin authentication includes
data integrity because if the data is modified, so is the party
that created it.

To help illustrate these concepts, imagine a prisoner
communicating with an accomplice outside of the prison.4
These two would like to plan to break the prisoner out of
prison. But the prisoner and the accomplice know that the
prison staff will be opening and reading all letters sent
between them. How can they have information security on
their communications?

First, the prisoner and the accomplice would like the
prison staff to not know about their breakout plans. They
need a way to send letters that, even if opened and read,
will reveal nothing (correct) about their plans. In other
words, the prisoner and the accomplice want confidentiality

on their communications even though they know they will
be intercepted.

But the prisoner and the accomplice realize they need
something else. Maybe the prison guards already have
suspicions about a jailbreak. Maybe the prisoner is being
carefully watched. Maybe the prison would like to identify
an accomplice to arrest and imprison them too. What if the
prison sent fake letters to induce them to reveal
themselves? What if the prison sent a letter telling the
accomplice to show up on a certain date and a certain time
in order to arrest them?

The prisoner and the accomplice need to be able to
identify themselves to each other. They need to be able to



prove that they really are the prisoner or the accomplice,
respectively. This is entity authentication.

Even with entity authentication, the prison could still
alter letters. For their information security purposes, the
prisoner and the accomplice must also have a way to tell
that all the data they receive comes from the other. Any
alterations, including additions and deletions, must be
detectable. If these two can come up with such a solution, it
is an example of data origin authentication and inherently
includes data integrity.

In cyberspace, we have some of the same problems as
the prisoner and the accomplice. Our data communications,
by the very nature of how computer systems work, are

being handled by parties we cannot trust. Data between
your computer’s browser and your bank, for example, are
being handled by a number of intermediate systems that are
used in transmitting the data back and forth between the
two. But these intermediate parties should not be trusted
with your bank data. Unprotected data intercepted by these
intermediates can be read and, in many cases, altered or
forged. Fortunately, cryptography can be used to provide
the necessary information security properties to secure
these communications so that even when an intermediate is
handling the data, they cannot abuse it.

Cryptography is largely based on operations that involve
some kind of key. A key is data that controls a cryptographic
operation in some way or another. Generally speaking,
without the correct key, an operation cannot be performed
correctly. Keys are typically security-critical data.

As briefly mentioned earlier in the chapter, there are two
major forms of cryptography in use today. One form is
called symmetric key cryptography (or just symmetric

cryptography), and the other is called asymmetric key

cryptography (or just asymmetric cryptography). Symmetric
cryptography is built around operations that use a single



key. Asymmetric cryptography is built around operations
that use two keys: a public key and a private key. Common
algorithms and uses will be discussed in the next chapter.

However, there are two core concepts that need to be
understood first: XOR and hashing.

XOR

Working with the ones and zeros of binary data opens up an
interesting form of mathematics called Boolean Algebra. A
boolean is a true or false value, and the comparison to a one
or a zero should be intuitive. Boolean Algebra is the
mathematics around true and false.

For example, Boolean Algebra has AND, OR, and NOT
operations. AND and OR operations have two boolean inputs
each and one output. In the case of AND, both inputs must
be true in order to get a true output (true AND true is true).
In the case of OR, either input must be true in order to get a
true output (true OR false is true). NOT takes a single input
and inverts it (NOT false is true). This is easily applied to
binary numbers. The following table is called a truth table,
and it depicts the inputs and outputs of the AND operation:

Input 1 Input 2 Output

0 0 0
0 1 0
1 0 0
1 1 1

On the other hand, the truth table for OR looks like this:

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1



Input 1 Input 2 Output

1 1 1

Hopefully, the concepts of AND and OR are clear. In the
AND operation, both input 1 AND input 2 must be 1 in order
for the output to be 1. In the OR operation, either input 1
OR input 2 must be 1 in order for the output to be 1.

But beyond AND, OR, and NOT is another operation
called Exclusive Or or XOR. Exclusive Or only produces true
values when either but not both inputs are true. The truth
table for XOR is as follows:

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

Again, notice that if either input is true, the output is
true. But if both inputs are true, the output is false.

XOR is one of the most magical mathematical operations
ever devised. It may not look like much when you are
working with one bit at a time, but the true power is
revealed when working with sequences of bits. When using
XOR on two sequences of bits, each pair of bits is combined
separately as shown in the following:

  11011011

10110001
  01101010

Starting with the rightmost bits, we have a 1 and 1, so
the output bit is 0. Moving one bit to the left, we have 1 and
0, so the output bit is 1. The next bits are 0 and 0, so an
output bit of 0. And so on.



Here is where the magic starts to come in. XOR is its own

inverse. Watch what happens when we take the output from
the previous problem and XOR it with the first input:

  11011011

01101010
  10110001

The output is 10110001! This was the second input in the
first problem! In short, if you start with some binary number
A and XOR it with B, you can recover A by XORing the
output with B again. Mathematically, it looks like this:

 .
More intuitively, it is literally like a magic show. XOR

made a number disappear and then reappear! You can take
any number and “hide” it by XORing it with another
number. Then you can make the number come back by
XORing it with the same number again!

XOR will be used in a number of very powerful
cryptography operations in later sections. This crucial
ability to completely change data and then change it back to
its original form is a critical part of many algorithms.

Hashing

One of the most crucial concepts for understanding many
other cryptography operations is hashing. Hash functions
are designed to produce fingerprints on computer data.

You had a very brief introduction to hashing in Chapter
2. All I explained in that part of the book is that hash
functions are “one-way” functions. They take input data, like
passwords, and spit out what looks like random data. If you
recall, for security reasons websites typically store the hash
of a password instead of the password itself. Now you will
dig a little deeper into what hashing really is and what it
means.



First, when we say “function,” what do we mean? In this
context, a function is just like the ones you learned about in
your junior high and high school algebra classes. A function
takes an input and produces an output.

 f(x) = y

If, again, you never liked math, do not let the terminology
confuse or frustrate you. A simpler explanation is that a
function is a transformation. These transformations are
given names. Names can be specific, but letters like f and g
are often used as generic names for these transformations.
Inputs are expressed in between the parentheses that follow
the function name:

 function_name(input) = output

Functions transform input data into output data according
to some kind of mapping including mathematical formulas.
For example, imagine a function that adds one to any input.
This function transforms data in a very simple way:

 f(x) = x + 1

 f(0) = 1

 f(10) = 11

 f(25) = 26

 f(-13) = -12

The function f in the preceding example transforms 0 into 1,
10 into 11, 25 into 26, and –13 into –12.

One requirement for a function is that for any given input
there is exactly one output. In other words, any given
function must transform 0 into the same output every time.
However, it is perfectly fine for a function to transform two
inputs to the same output. Imagine if our function f output 1
if the number was even (divisible by 2) and 0 if the number
was odd:



 f(1) = 0 (odd)

 f(2) = 1 (even)

 f(3) = 0 (odd)

 f(4) = 1 (even)

In this example, the function only ever has two outputs. An
infinite number of inputs will transform to 1, and an infinite
number of inputs will transform to 0. But any given input
will only ever transform to 1 or 0, but not both.

Turning back to a hash function, a hash function, like any
other function, transforms input data to output data. As
discussed at the beginning of the chapter, all computer data
is a number. Even a huge video file is just a really, really,
really big number. Hash functions take an input of any size
and transform it into an output of a relatively small size.
This is sometimes called a digest function.

To better explain this, we will use computer sizes to talk
about how big or small the numbers are. Remember, all
computer data is a number, and all numbers are stored in a
computer as binary data measured in bits or bytes. So,
when I say that a hash function takes an input of any size
and transforms it into a relatively small output, what kind of
sizes am I talking about?

Any size means any size. The input to a hash function can
be as large as the computer can hold. Video files can be
hundreds, or even thousands, of gigabytes. All of that can be
the input to a hash function. To be clear, however, the input
to a hash function does not have to be large. What is
important is that there are no limits (beyond the computer’s
capacity to store the data).

The output size of a hash function is fixed. That means
for a specific hash function, the output is always the same
number of bits. On the low end, some hash functions
produce outputs that are 128 bits (16 bytes). On the larger
end, hash functions spit out hashes that are 512 bits (64
bytes). In this case, these are very small sizes as far as



computer data goes. As explained earlier in the chapter, 64
bytes can hold at most 64 characters (letters, numbers, and
punctuation).

Why would anyone want to transform data, potentially
very large data like video files, into just 16 to 64 bytes of
output? What good can possibly come from that?

As stated at the beginning of the section, hashing is
designed to produce fingerprints for data. Just like physical
fingerprints, a fingerprint of data does not have to be large
so long as it is sufficiently effective at identifying the data.
As long as the 16 to 64 bytes of hash data can identify
gigabytes of video data, it serves its purpose.

The actual formulas behind hashing functions are
complicated, and I will not attempt to describe them.
Instead, it is more important that you understand what they
do at a qualitative level. One way of thinking conceptually
about hash functions is to imagine that they assign a
random number of the appropriate size to every possible
input. Once assigned, the same input generates the same
random number every single time.

Imagine a magically perfect hashing function we will call
h. This magical function will do exactly what I just
described. The first time it hashes an input, it will magically
assign a random input of exactly 64 bytes (512 bits). If it
ever hashes the same input again, it will magically produce
the same output.

Continuing this example, suppose we have three inputs.
The first is the data of an office spreadsheet, the second is a
music file, and the third is an entire folder of documents
related to the design of a top secret design of a new
technology (compressed into a single archive file). If we
hash each one, we will get three outputs, each one of
exactly 64 bytes. Written in our pseudomath notation:

 h(spreadsheet) = hash1

 h(music_file) = hash2



 h(design_docs) = hash3

Because our function is magical, it picked perfectly random
numbers of 64 bytes for each one.

How would each hash work like a fingerprint? If each
number is picked at random, the odds that the magic
function picked the same hash number for each two inputs
are very small. Without explaining why, the odds are one in

 . That’s two raised to the 256 power, or multiplying two
by itself 256 times. The actual number is

! That number is 78 digits in length! In other words, the
odds of two inputs producing the same output, while
technically possible, are impossible in practice. Thus, each
hash becomes a kind of fingerprint for the input data
because it is impossible in practice that any other data will
have the same hash output.

Also, recall that our magical function will output the
same hash if we do use the same input in the future.
Pretend that somehow each of these pieces of data was
altered. Somebody updated the spreadsheet, the audio file
was corrupted by a virus, and an industrial saboteur
changed the design of the new technology to make it not
work.

 h(updated_spreadsheet) = hash4

 h(corrupted_music_file) = hash5

 h(altered_design_docs) = hash6

If we have access to the original hash outputs (e.g., hash1,
hash2, hash3), then we can quickly determine that the data
has been changed, because when we recompute the hash,
the output will be different.

If a hacker wanted to alter the data undetectably, they
would need to be able to create altered data that produced
the same hash output. As I explained, this is theoretically



possible because there are an infinite number of inputs and
only as many outputs as fit in 64 bytes. Could an attacker
figure out some way to come up with changes to the data
that produce the same hash?

The hacker could try to take a hash value and work
backward. Imagine that the hacker wants to change the
spreadsheet. The hash for this data is hash1. The hacker
could try to find another spreadsheet that produced hash1
as well. How hard would that be?

Really, really hard. In hashing terminology, the hash is
called an image, and any input that hashes to a specific
hash is called a preimage. For our magical hashing function,
the image is assigned randomly. So the hacker cannot
predict in any way what preimages produce the hash1
image. The only option is to hash random inputs
(preimages) and hope that they happen to hash to the right
hash output (image). For our hash function with output of
32 bytes (or 256 bits), the hacker would have to try
approximately  different inputs before finding a
matching hash output. I will not even bother writing out this
huge number: it is 155 digits long. That is how many
spreadsheets the attacker would have to try before they are
likely to find one that produces the same hash output. Even
with fast computers, that is considered very unlikely.

Of course, real hash functions are not magic. The outputs
of these functions are not perfectly random but are based
on complicated formulas. But the formulas are designed to
have the same or very similar properties as the pretend and
magical function we were imagining. For one, the output
should be unpredictable. The true hash algorithm should
produce an output that is more or less indistinguishable
from the magical random assignment of our imagined
function. Even the slightest change in the input should
completely change the output such that there is no
correlation between the input and the output hash.



Here are some of the other features the hash function
needs to have:

Compression: No matter the input size, the output size
(in bits) should be fixed.
Preimage Resistance: Given a hash output (image), it is
impractical to find a matching preimage (e.g., because it
would require trying  different preimages to find a
matching 64-byte hash).
Collision Resistance: It is impractical to find any two
inputs that hash to the same output (e.g., because it
would require trying  different input pairs to find two
that produce the same 64-byte hash).

Because real hash functions are based on formulas, and not
magic, it sometimes turns out that very smart (and/or very
determined) people discover that there are flaws in the
formulas. These flaws weaken these properties and make
the hash function more predictable than it is supposed to
be. That is, a “good” hash function should be more or less
indistinguishable from the magic hash function described
earlier. If someone figures out how to more easily find
collisions and/or preimages than completely random
guessing, the hash function is considered to be broken.
Typically, a broken hash function is obsoleted and replaced
with a newer, (hopefully) more secure alternative.

In the world of hashing, some of the common algorithms
that are used or have been used are

MD5: 16-byte (128-bit) output. Broken and obsolete.
SHA1: 20-byte (160-bit) output. Broken and obsolete.
SHA-256: 32-byte (256-bit) output. Still used.
SHA-512: 64-byte (512-bit) output. Still used.
RIPEMD: 16-byte (128-bit) output. Broken and obsolete.
RIPEMD-160: 20-byte (160-bit) output. Still used.

Just because I have listed an algorithm as broken and
obsolete does not mean it is never used. Sometimes, the use



of a hash is not security critical, and an obsolete hash does
the job just fine. Or perhaps the system is, itself, out of date,
and it is using older technology. Or, it may be that it is
something that needs to be replaced, but it will take time
before the switchover can be made for any number of
logistical reasons.

But the most important thing to understand is that
hashing algorithms are crucial and ubiquitous components.
They are used by themselves for many purposes. But as you
will see in the subsequent sections, hashes are also used for
various symmetric key and asymmetric key operations.

Summary

In this chapter, you were introduced to historical
approaches to encryption as well as some of the goals and
prerequisites for modern cryptography.

Historical encryption can be very helpful for getting an
intuition around concepts used in symmetric cryptography.
These include
1.

Key Space: This is how many possible keys there are
for an algorithm. If there are too few (like in the Caesar
Cipher with just 25 keys), an attacker can easily break a
message using brute force.

 

2.
Block Size: For block ciphers, the block size must be
large enough. The Playfair cipher is harder to
cryptanalyze than the Caesar Cipher because it works
on blocks of two characters instead of one.

 

3.
Stream Ciphers: Do not encrypt a block at a time.
Instead, they process each symbol in the stream
separately, using its place in the stream as part of the
encipherment process.

 

4. Key Expansion: A key can be expanded to fit certain
size requirements In Playfair there needs to be 25



size requirements. In Playfair, there needs to be 25
letters of key material. But Playfair’s algorithm includes

a mechanism to expand a code word of any size to the
required 25 letters.

 

5.

Padding: Sometimes, encryption algorithms require the
plaintext to be of a certain size. Playfair, for example,
requires an even number of characters. When the
plaintext is not long enough, padding characters can be
added to make up the difference. These must be
removable after the decryption process.

 

6.
Cipher Strength: One measurement for the strength of
a cipher is how much ciphertext must be generated
before patterns or other weaknesses emerge.

 

Although modern cryptography is almost unrecognizably
different from these historical examples, understanding
these examples will make these concepts easier in the next
chapter.

Modern cryptography is interested in more than just
confidentiality, one of the common goals of encryption.
Some of the other relevant goals are data integrity, entity

authentication, and data origin authentication.
Finally, to be prepared for the next chapter, you learned

about XOR and some of its “magical” properties.
Specifically, XOR is able to “hide” information in random or
pseudorandom data. Moreover, because XOR is its own
inverse, information hidden inside random or pseudorandom
data can be easily reextracted.

You also learned about hashing algorithms, which
produce short codes calculated on arbitrary data. These
short codes act like fingerprints for the input data.



Further Reading

For a much deeper dive into the technical aspects of
cryptography, including the security goals, theoretical
background, and extensive mathematical analysis, I
recommend the Handbook of Applied Cryptography, which
is freely available online [179].

If you are interested in the history of cryptography,
Kahn’s book The Codebreakers [147] always comes highly
recommended. You can also find books about intelligence
and code breaking that focus on specific time periods in
history. For example, the book Most Secret and

Confidential: Intelligence in the Age of Nelson [168] looks at
all the different means by which Great Britain, and
especially its Navy, acquired intelligence during the
Napoleonic years. The operational issues, such as the use of
fast frigates to spy on a port, the interception of diplomatic
mail (which did involve some code breaking), and even
semaphore reading, provide insight into much information
there is to gather, the various means of obtaining it, and the
difficulty in putting it altogether.

World War II is a really amazing time period for
cryptography and cryptanalysis. Fortunately for the Allies,
there was effective code breaking of the Axis codes in both
the Pacific and European theaters. Many of the books about
the Battle of Midway discuss to some degree or another the
US naval code breakers that deciphered the Japanese codes
that enabled them to predict the time, location, and
configuration of the Japanese flee at Midway [204, 258]. On
the European side, one of the most important stories is that
of Alan Turing, who was instrumental in breaking the
German enigma machines [242, 281].
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Footnotes
Obviously, the Roman alphabet was not exactly the same, but hopefully the

idea is clear.

 
While security through obscurity is largely viewed as harmful, there is still a

debate about it [143].

 
Although not shown here, there is a way of converting each permutation into a

number so that it is easy to identify the key beyond just writing out the entire
permutation.

 
I am not endorsing clandestine communications between violent criminals. If

this example causes you any moral consternation, you may consider the prisoner
to be a political prisoner that protested against an ideology of your choice.
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Chapter Quick Start Guide

This chapter provides an overview of modern symmetric

encryption and asymmetric encryption.

Key Concepts

1.
Symmetric cryptography uses the same key for the
inverse of an operation.

 
2.

Asymmetric cryptography uses a public and private
key pair.

 
3.

Encryption is often used to provide data
confidentiality.

 
4.

Message Authentication Codes (MACs) are usually
created by symmetric algorithms for data integrity.

 
5.

Signatures are usually created by asymmetric
algorithms for data integrity and entity
authentication.

 
6. “Proving” the identity of a party (i.e., for entity

authentication) typically requires having some kind

https://doi.org/10.1007/978-1-4842-9560-1_5


of axiomatic starting point.  
Common Pitfalls and Misunderstandings

1.
You Are Not A Cryptographer (YANAC); never try to
create your own cryptographic algorithms or
systems.

 
2.

Confidentiality does not imply data integrity;
unreadable data can be meaningfully altered!

 
3.

Authenticated Encryption with Additional Data, or
AEAD, combines confidentiality and integrity.

 
4.

Private keys should not be used after disclosure.  
Useful Vocabulary

MAC: Message Authentication Code1

OTP: One-time pad
AES: Advanced Encryption Standard
IV: Initialization vector
nonce: Number used once
ECB: Electronic Code Book
CBC: Cipher Block Chaining
CTR: Counter mode
AEAD: Authenticated Encryption with Additional Data
GCM: Galois Counter Mode
ChaCha20: A newer symmetric stream cipher that is
an alternative to AES-CTR
ChaCha20-Poly1305: An AEAD version of ChaCha20

In the previous chapter, I introduced a few basic concepts
about cryptography. This was meant to help prepare you



for a discussion of modern cryptographic technologies. In
this chapter, I will walk you through some of the core
cryptographic techniques used to protect information
throughout cyberspace. Although I will dig into the
mathematics a very little bit, I will primarily describe what
it does rather than how it works. And I will also use some
overly simplistic examples and analogies to help explain
terms and concepts. By the end of the chapter, you will be
able to understand what cryptography is capable of doing
when done right, some of the configuration necessary to do
it right, and why it is difficult to do it right.

As a side note, most of these techniques do not work, or
do not work well, in isolation. In the next chapter, I will
discuss operational cryptographic technologies that
combine multiple cryptographic techniques, computer
networking operations, and other components into a
cohesive security system.

Symmetric Cryptography

As explained in the previous chapter, symmetric
cryptography is so named because a single key is used
symmetrically. Most cryptographic operations come in
pairs. The two sets of operations discussed in this section
are encryption/decryption and Message Authentication
Code (MAC) generation/verification. All four of these
operations require the use of a key. In symmetric
cryptography, the same key is used for both operations in a

pair.
In this section, I will walk through how these algorithms

work and what is necessary for them to be secure. After all,
just because we have protected information does not mean
that an adversary will not try to unprotect the information.
A lot of our discussion will be focused around how the
cryptography can be broken if not done correctly.



Modern Block Ciphers

Modern block ciphers work differently than the classical
ciphers just discussed because instead of working on letter
symbols, they operate on bits (zeros and ones). There is no
significant theoretical difference. If you were paying close
attention, you might have picked up on the fact that the
letters in the examples were being used like a number. The
Caesar Cipher, and especially the Vigenere Cipher, added

letters together. However, bits allow us to more universally
represent all possible data. Using bits, we are not bound to
a single alphabet and can encrypt a video as easily as an
email message.

A “good” cipher should have at least the following
qualities:
1.

Large block size  
2.

Large key space  
3.

“Avalanche” property 
Large block size and key space should be somewhat
familiar given our study of the historical examples. In
modern block ciphers, it is expected that block size will be
at least 128 bits. Key sizes are generally no smaller than
128 bits as well, but for various reasons, 256 bits will
become the minimum size in the not too distant future.

The Avalanche property does not really show up in our
historical examples because our block size of one or two
letters is generally too small to see it. But the basic concept
is that any change, no matter how small, should completely
change the output. By “completely,” I mean that
approximately 50% of the output bits should flip if the input
changes, even if the change in the input is only one bit.



This property is important because if less than 50% of
the bits are changing for certain inputs, this may allow
cryptanalysis to make predictions about inputs and outputs.
This would, of course, weaken or break the code. There are
other cryptanalysis approaches that “good” ciphers should
be resistant to, but those are outside the scope of this book.
Suffice it to say that a lot of work goes into making these
block ciphers resistant to any kind of analysis.

Like our Playfair and Caesar Cipher examples from the
last chapter, modern block ciphers have the same size
inputs as outputs. That is, the block size specifies the
number of bits that are used as inputs and the number of
bits that are output from the function. Because the input
and output are the same size, the block cipher can be
described as a permutation function. I used the word
“permutation” before to describe reordering the alphabet.
Here, it refers to reordering bits.

Suppose our block size is 128 bits. Any input will be one
of the possible combinations of 128 ones and/or zeros.
There are only so many possible combinations (  to be
precise). The output will also be one of the possible
combinations of 128 ones and/or zeros. Our block cipher is
said to provide a permutation by taking one of the possible

 sequences as an input and spitting out another one of
the possible  sequences as an output.

This permutation is keyed. That is, the block cipher
takes some kind of key as an input, and the key determines
the permutation. If keys are also 128 bits, then our key
space is  possible keys.

In the section on hashing, I described a magical hash
function h that worked “perfectly.” That is, it created a
perfect hash function with perfectly random outputs. Here,
I will describe a pretend, magical block cipher function b
that works similarly. As with hashing, there is no perfect
function in reality, and there is no magic either. But this



pretend magic block cipher function will help to define
what imperfect, real-world functions try to approximate.

For our pretend, magical function  , the
function will take a key and a plaintext as inputs and spit
out a permutation as the ciphertext. For this example, the
key, plaintext, and ciphertext are all 128 bits:

 b_encrypt(key, plaintext) = ciphertext

This magical function  can tell if it has ever seen
the key and plaintext pair before. If not, it (magically)
assigns a perfectly random permutation (a completely
random selection of 128 bits) as the output. If it has seen it
before, it just outputs the same value that it did previously.

The  function also has an inverse function
called  . This function, also using magic, takes a
key and ciphertext as input and provides the correct
plaintext:

 b_decrypt(key, ciphertext) = plaintext

In other words, this function can (using magic) find the key
and plaintext pair given to the  function that
produced the ciphertext. Using this magical knowledge, it
can produce the plaintext as an output.

The magic of the random assignment is important. If the
assignment of the ciphertext permutation to the plaintext
was truly random, there is no cryptanalysis that can reveal
any information about the permutation. A completely and
perfectly random assignment of a plaintext block to a
ciphertext block cannot be scrutinized for patterns or clues
because random choices have no patterns or clues.

Unfortunately, we do not have any magic that can do
this kind of perfectly random assignment. However, we
have mathematical functions that can work so well that it is
difficult to tell the difference between them and the



magical random functions just described. Cryptographers
and mathematicians call these functions pseudorandom

functions. But do not let the pseudo part of the name fool
you. That is not meant to be an insult or some kind of
negative modifier. The functions are not truly random, so
they must be, by definition, pseudorandom. But there are
pseudorandom functions that are so good that when used
properly it is impossible to tell if the output is from a
pseudorandom function or a truly random function. Modern
block ciphers are expected to have this kind of output
(specifically, block ciphers are a subset of pseudorandom
functions called pseudorandom permutations because their
output is always a permutation of the input, as discussed
earlier).

That is not to say that weaknesses are never found.
Sometimes, after a lot of study and analysis, a block cipher
is shown to be “broken,” meaning there are ways of finding
patterns or artifacts. Or, in other words, the block cipher is
demonstrated to not operate like the magic random
function. If the failure is significant, then the function is
obsoleted and retired.

One example block cipher is the Data Encryption
Standard (DES) that was introduced in 1975. This cipher is
obsoleted for many reasons. Its key space is too small (56
bits), and its block size is also too small (64 bits). But it
turns out that the function itself is flawed. Between 1993
and 2001, researchers demonstrate that with enough
known pairs of plaintext and ciphertext, the key could be
discovered with high probability. By a pair, I mean the
plaintext and its associated ciphertext for a given DES key.
With a large number of these pairs, between  and 
pairs, the key can be recovered with about an 80–85%
success rate [145, 152, 175].

To be clear, this attack, although demonstrable, is
unlikely to occur in actual practice. It is difficult to imagine



an instance where an attacker has between
 and  plaintext-

ciphertext pairs. Nevertheless, DES is considered
extremely unsafe. Even if the current attacks may not be
the most practical in person, their existence is seen as
foreshadowing practical attacks in the future.

This is also a good time to talk about the different ways
of “attacking” a cipher. In the preceding example, the
attacker has to have a sufficient number of plaintext-
ciphertext pairs. This is called a chosen plaintext attack.
That is, the attacker chooses a plaintext and gets to see the
output (for a given key). Why would an attacker ever get to
see this? The whole point is to keep the attacker from
seeing the plaintext, right?

It all depends on your threat model. An account holder
communicating with their bank could know the data being
sent to their bank and then tap their own line to see the
encrypted data. Or, an attacker may have a way of tricking
someone into encrypting a message on their behalf and
observing the output.

The flip side of a chosen plaintext attack is the chosen

ciphertext attack. As you might already be guessing, this
means that the attacker can submit ciphertext samples to
the system and observe the decrypted data. Chosen

plaintext/ciphertext permits submitting either plaintext or
ciphertext to the system and observe the output.

A different style of attack is a related key attack. In this
model, an attacker varies the key slightly each time and
monitors the output for patterns [66, Chapter 12].

Someone that wants to attack or break a cipher uses
attacks such as these to see if they can get the real-world
cipher to reveal in what ways it might not live up to the
theoretical ideal set by the pretend, but magical, block
cipher discussed earlier. For example, the preceding DES
attack, even if relatively impractical, shows that DES is



weaker than the magic cipher described by  and
 . Remember,  uses magic to assign

everything perfectly randomly. For the magic cipher, it
does not matter if an attacker has  or  plaintext-
ciphertext pairs. Everything is assigned randomly so no
amount of data observed reveals anything about any other
permutations. The “attack” on DES, from a certain point of
view, quantifies how not perfect (or not magical, if you
prefer) the pseudorandom function is.

Even if you have not followed all of the math in this
chapter, you should try to understand the concepts of how
attackers work. Real attackers have been able to get
specific plaintexts encrypted for their analysis (chosen
plaintext), and real attackers have been able to get specific
ciphertexts decrypted for their analysis (chosen
ciphertext). When you are thinking about threats to a
system that relies on cryptography, you should generally
assume the attackers have these kinds of capabilities.

Advanced Encryption Standard

The most commonly used block cipher today is called AES
or Advanced Encryption Standard. That is not the original
name. There was a competition to replace DES with a
newer algorithm, and many different block ciphers were
submitted. The algorithm created by Joan Daemen and
Vincent Rijmen, known as Rijndael (pronounced “rain-
dahl,” this word is a combination of the last names of the
authors), was the winner of the competition and is now
known as AES.2

AES has a block size of 128 but can have variable key
sizes of 128, 192, and 256. AES has been heavily
scrutinized over the last 20 years, and a couple of minor
vulnerabilities have been found. For example, the very best
key recovery attacks reduce the brute-force attack from
trying all possible  combinations for a 128-bit key to 



. Not only would that still take a billion years on any
hardware we expect to have in the foreseeable future, the
technique also required storing approximately  bits of
data, or more than 38 trillion terabytes of data. That is
more storage than the entire earth is using right now [278].
In other words, this attack is not even remotely practical.

Modes of Operation

In summary, AES is a strong cipher. So all we need to do to
secure data is encrypt with AES, right?

In Figure 5-1 is a simple image I created. In Figure 5-2
is the same image encrypted using AES. Does that look like
very good encryption to you?

What went wrong? Why did AES do such a bad job of
encrypting the data?

The answer goes back to block size and properties like
Avalanche. Remember that the AES block cipher is just 128
bits. The image is many times bigger than that. To encrypt
it, the image is broken up into 128-bit chunks just like
messages for Playfair were broken into two-character
chunks. AES encrypts each 128-bit chunk one at a time.

But what happens if the same chunk is encrypted twice?
AES is a function. The same plaintext encrypted by AES
with the same key always produces the same output. If
there are patterns between the 128-bit chunks, those

patterns will show up in the output. In other words, this is
an image, not text, which means that the letters are not
being encrypted, only the pixels that our minds interpret as
letters. Each letter is made up of a number of 128-bit
chunks. The patterns between the 128-bit chunks cannot be
concealed by AES because AES only encrypts 128 bits at a
time. If the encryption takes a chunk of all black or all
white pixels in an input block, then the output block is
always going to be the same, which means that large white
or black regions may repeat patterns. The Avalanche



property only applies within the 128-bit input. But a change
in one block does not propagate to any subsequent block.

Figure 5-1  An image with the text “Top Secret.” Encrypting it should make it
unreadable, right?

Figure 5-2  This image was encrypted using ECB mode. This message is not
very confidential

AES, if we used it this way in practice, would be pretty
much worthless. In practice, however, we use “modes of
operations” that solve these problems. The naive approach
used in this example, that of encrypting each chunk
independently, is called Electronic Code Book mode, or



ECB mode. ECB should never be used except for testing
purposes.

Story Time: Zoom Loves ECB

No matter how basic a cryptographic error is, it seems
like you can always find somebody that did it. ECB is well
known for being unsuitable for anything except testing.
This is basic cryptography. Just about every student in a
cryptography class will have seen an image like Figure 5-
2. Every cryptographer knows ECB leaves artifacts in the
ciphertext that expose details of the plaintext.

And yet, Zoom was using ECB for “protecting” their
video call communications in 2020. Admittedly,
streaming video is both processor and bandwidth
intensive. Still, there are existing techniques that are
meant to be used with streaming data. Why Zoom chose
to use ECB instead of the better approaches is a mystery.
When confronted by security researchers from Citizen
Lab, a research group within the University of Toronto,
the CEO of Zoom admitted to the problems and promised
to resolve them quickly [97].

An interesting question that will never be answered
(without a whistle blower, a forensic investigation, or
legal discovery) is why did Zoom choose to use
something that is well known to be a bad idea? One
possibility is that they did not have any cryptographic
expertise in their engineering organization. That seems
unlikely to me, but maybe they deprioritized security to
such an extent they created an engineering organization
that did not know better. Another possibility is that they
had someone with the necessary skill, who warned them
this would happen, and they did it anyway. The year was
2020, the Covid quarantine was taking off, and Zoom
stocks were on the rise. Maybe they just were rushing.



Whatever the reason, Zoom also broke one of the
other cardinal rules of cryptography: don’t roll your own
[172]. This is an expression about not creating your own
cryptographic algorithms or systems. Instead, use well-
tested, thoroughly evaluated systems for which there is
high assurance. Just as YANAC, even professionals
should not develop a system with sufficient time to have
the system reviewed by other experts, evaluated,
explored, and researched. The goal is always to know
about weaknesses first, before attackers find out about
it.

We need a better mode of operation than ECB to eliminate
the structures between blocks. We need something that ties
all the blocks together so that changes in one block impact
the encryption of subsequent blocks. The Avalanche
property should apply to the whole of the data being
encrypted, not just 128 bits at a time. In fact, the goal is to
encrypt the entire data as a whole, not break it into a
bunch of separate, individual encryptions of 128-bit chunks.

One way of doing this is known as Cipher Block
Chaining mode or CBC mode. Please note, the rest of this
section on CBC is going to get a little technical. The goal is
to learn a little bit about how cryptography depends on
some very picky, very subtle elements to be “correct.” The
main lessons to take out of the next paragraphs are

While ECB encrypts in independent separate blocks
(which is not secure as seen in Figure 5-2), CBC encrypts
all of the data like a single input producing a completely
pattern-free output as seen in Figure 5-4.
CBC requires an initialization vector, or IV, as an input.
The IV can be public; unlike the key, it does not have to
be kept secret.
The IV, although public, does have to be unpredictable to
the attacker.



A different IV needs to be used with each encryption,
especially if the same key is used.
Using different IVs enables output ciphertext of AES-CBC
mode to be unique, even if the same inputs are used with
the same keys.

If the following explanations about how CBC works are
overwhelming, these points are what is most important.

CBC mode is designed to enable the block cipher (e.g.,
AES) to operate on large data as if it were all being
encrypted at once. Recall that AES is a block cipher that is
designed to encrypt a 128-bit chunk at a time. CBC extends
it so that it is effectively encrypting any size of data
together. CBC works by chaining together the various
blocks of data. The chaining process works by XORing the
ciphertext output of one block into the plaintext input of
the next block. Figure 5-3 depicts how this encryption
mode works.

Ignore the part of the figure that says IV for now. I will
explain it in a moment. Instead, notice that each block is
still being encrypted one at a time. However, the second
block has the ciphertext of the first block XORed with it
before being encrypted. Recall from earlier in the chapter
that XOR can enable a piece of data to “disappear” or be
hidden within another number. Also, remember that the
output of AES is unpredictable without knowing the key
and the plaintext. So the first output block C1 cannot be
predicted by an attacker. That means the attacker also
cannot predict what number gets created when the second
plaintext block, P2, is XORed with C1. This unpredictable
block is then fed into AES again producing C2, which is
also unpredictable.



Figure 5-3  Visual depictions of CBC encryption

Figure 5-4  This image was encrypted using CBC mode. Much better!

More importantly, if the first block changes in any way,
even a single bit, the ciphertext output for that block (i.e.,
C1) will also change. Because that output is XORed into the
input of the next block, if C1 changes, the input to the
second block changes too! That means that the change to
the first block, even if the change is a single bit, will also



completely change the output of the second block! And the
output of that is fed into the input of the next block, and so
on and so forth. This means that a change to any input
block will change the output of that block and any
subsequent blocks!3

Cipher Block Chaining mode effectively eliminates all
structure within data. Encrypting the image with this
approach produces what appears to be static, as shown in
Figure 5-4.

Now that the chaining part is explained, it is time to
discuss the IV. The IV shown in Figure 5-3 is short for
initialization vector. The IV is just random data that is
mixed in with the very first block. Unlike the key, it does
not have to be secret. The IV is used to make sure that the
same message does not encrypt to the same output twice.
Specifically, a different IV must be used for every
encrypted message under the same key. By mixing in this
random data, even if it is publicly known, it ensures that
the data encrypted by the first block is not predictable. And
this means that the ciphertext of the first AES block is also
unpredictable, even if the message is a repeat from before.

Think what would happen if AES-CBC mode were used
to encrypt two messages with the same key and IV. The
outputs, even using the chaining of CBC, would be the
same. Remember, AES with the same key always encrypts
the same input to the same output. That does not change
for CBC mode. Using a different IV, however, a bit of
randomness is mixed in with each encryption operation,
making the input, and therefore the output, unique.

For these reasons, the same key and IV should never be

reused on two different plaintexts. I usually recommend
that the same key never be reused just to be safe. But if the
same key and IV pair is reused, duplicate plaintext would
be recognizable as duplicates. Worse, however, reusing the
same key and IV pair actually leaks information, and the



information leaks can enable attackers to completely
compromise the security. In fact, even though the IV does
not need to be a secret, it must be unpredictable. If an
attacker can predict the IV, then CBC-mode encryption can
be compromised.

Just to be absolutely clear, when cryptographers talk
about “two different plaintexts,” it has nothing to do with
the contents of the message. It has to do with whether or
not the algorithm has to “start over.” In the case of CBC,
for example, any data being encrypted in the same “chain”
is all part of one message no matter how the sender and
receiver choose to split it up.

So, for example, someone sending secret messages
might consider “attack at dawn!” and “cancel the attack” to
be two different plaintexts. However, if they were sent as
part of the same cipher block chain, then, from the
perspective of CBC, they are just one plaintext. However, if
a video file is split into two pieces and each one is
encrypted separately, starting over each time from the first
block of the CBC chain, then it is two plaintexts from the
perspective of CBC even though the data is all part of one
file.

Does this sound like a lot of very small, subtle rules upon
which all of the security of the system depends? It does and
that is why cryptography is very dangerous to play around
with. You should be sensitive to the fact that cryptography
can break down in many unexpected and (for a
noncryptographer) unintuitive ways. I will return to this
more at the end of the chapter in the discussion about You
Are Not A Cryptographer (YANAC). For now, CBC has
helped introduce just how cryptography works but also how
it can not work if done incorrectly.

CBC is not the only mode of operation for block ciphers
like AES. Although there are many others, I will not review
them here. I will talk about a mode called counter mode in



the next section on stream ciphers. And I will discuss some
other modes of operation called Authenticated Encryption

with Additional Data (AEAD) or alternatively combined

modes of operation. AEAD algorithms perform both
encryption and produce Message Authentication Code
(MAC) at the same time. Because we have not talked about
MACs yet, I will wait to discuss those until later.

It is worth noting, however, that these combined modes
are almost universally considered better. For this, and
other reasons, some modes like CBC are becoming
outdated. They are still used, however, and they are very
instructive about why these kinds of modes are needed and
what types of problems they solve. So it is worthwhile to
understand the principles behind CBC even as it becomes
obsoleted.

Modern Stream Ciphers

As stated earlier in the chapter, symmetric encryption is
typically broken down into block ciphers and stream
ciphers. To repeat, block ciphers divide things up into
chunks (i.e., “blocks”) of size n and then substitute the n bit
plaintext for a specific n bit ciphertext (based on a chosen
key). On the other hand, stream ciphers encrypt one
symbol at a time where, for most modern ciphers, a symbol
is a single bit (a one or a zero). Unlike a block cipher which
always encrypts the same input to the same output (for a
given key), a stream cipher almost always changes how it
encrypts as it goes along. That is, how it encrypts a given
symbol may depend on what it has encrypted before or how
many symbols it has encrypted4 [179]. You saw this in the
Vigenere cipher where the encryption of a given symbol
was determined by its index in the plaintext and the
corresponding index in the repeating key.

As with most technologies in this book, it is impossible
to cover stream ciphers comprehensively. However, the



following tour will introduce you to both the core concepts
as well as some commonly used stream ciphers.

One-Time Pad

The first stream cipher on our tour is called the one-time

pad or OTP. OTP is an amazing way of encrypting things,
and it is one of the ideas I had in mind when I said that
cryptography was like magic. And unlike some of the long
ins and outs I went through for block ciphers, it is
(conceptually) simple to describe and understand.

How simple? Basically, OTP has two steps:
1.

Create a random key that is the same size as the data
to be encrypted (i.e., the plaintext).

 
2.

XOR the random key and the data together.  
That is it. That is the whole algorithm. No special modes of
operation, no complicated block sizes. (It does use XOR,
however; if you need to, go back to the earlier section in
the chapter on XOR and review.)

But how good is it? Really good. It is one of the only
algorithms known to be information-theoretically secure.
This means that the encrypted message provides no

information about the plaintext. An attacker could study the
ciphertext forever, and there would be no possible way to
crack it. In fact, OTP cannot even be attacked with brute
force. The attacker can try to decrypt the ciphertext with
every possible encryption key and still not know the correct
plaintext [60, Appendix C], [66, Chapter 11], [40, Chapter
5].

Certain types of readers are probably waiting for the but

that must surely be coming. After all, why waste half a
chapter talking about AES and block ciphers if OTP is this
good? What is the catch?



I already told you the catch. Take a moment and reread
the two steps of the algorithm. As you look at those two
steps, does anything strike you? What is the hard part of
this?

The first challenge of this algorithm is in how the key is
created. The word “random” is emphasized on purpose. For
OTP to work, the key must be random for each message. In
other words, for every single message meant to be
encrypted by OTP, there must be a unique and randomly
generated key for that message. In fact, if the same key is
used more than once, the security completely breaks down.

Still, I already told you that CBC mode for block ciphers
required a unique key and IV for each unique plaintext. So
this is not that much different.

The real problem is that OTP requires the key to be the

same size as the plaintext. Think about that for just a
minute. Maybe this is no big deal if you are sending
plaintext like “attack at dawn!” but what about a 25GB
video file? To encrypt the video file with OTP, you would
have to have a 25GB key! Even if it is possible to generate
that much random data,5 how will it be transmitted to the
receiver? How will it be secured and protected?

Except for very high-security data (e.g., high-level
diplomatic and security traffic), OTP is almost never used
in practice [40, Chapter 5]. The key management problem
is just not reasonable for most systems.

Nevertheless, OTP is a good starting point because in
some ways it represents the ideal function, kind of like the
pretend “magic” hash and encryption functions from the
previous sections. OTP is ideal that the other stream
ciphers try to emulate. If you can understand how OTP
works and the basics behind why it works, the other (more
practical) stream ciphers will be easier to grasp.

Fortunately, understanding the basics of OTP mostly
requires understanding XOR. Recall that XOR has some



really neat properties. Using XOR, data can be “hidden”
inside other data and then easily recovered using the same
operation.

In an OTP context, suppose we have our plaintext P and
a key K, where both of them are the same size (i.e., have
the same number of bits). We can produce a ciphertext C
by XORing these two sequences together. And, we can
recover the plaintext from the ciphertext by XORing the
ciphertext with the same key. In other words

Again, do not let the math notation turn you off to this
amazing concept. We can “hide” the plaintext P within C by
mixing it with K using XOR. All of the data of P is within C,
but it is hidden. But P can be recovered from C by XORing
with K again. Thus, using this simple operation, data can be
concealed and recovered quickly and easily.

If it helps, one way to think about XOR is that it is a bit
flipping function. There are only two possibilities for each
bit of plaintext input: zero or one. There are also only two
possibilities for each bit of key: zero or one. Think of the
bits of plaintext input as the starting information and of the
bits of the key as transformation instructions that can
transform the input into output. If the key bit is a zero, no
transformation takes place. If you refer back to the truth
table earlier in the chapter, you will see that any bit that is
XORed with 0 remains the same (  and  ).
On the other hand, if the key bit is one, the input bit is
flipped. That is, any bit XORed with a 1 is inverted (

 and  ).
Because the length of the key and the length of the

plaintext are the same, the OTP key is a transformation
instruction for each input bit. Thus, each input bit will
either remain the same (i.e., if the corresponding key bit is



0) or it will be flipped (i.e., if the corresponding key bit is
1). The reason XORing with the same key restores the
original output is because when the ciphertext is XORed
with the same key, each bit will either still remain the same
(i.e., it was not flipped when the plaintext was XORed, and
it is not flipped when the ciphertext is XORed again) or it
will flip back (i.e., it was flipped when the plaintext was
XORed, and it is flipped back when the ciphertext is XORed
again).

You might be wondering how this can possibly “hide” or
encrypt the plaintext. After all, only some of the bits are
flipping. Some of them are staying the same. In fact, if by
some random chance the entire key was zeros, the plaintext
would not change at all! Maybe that does not seem like
very good encryption.

The reason OTP works is because one of the interesting
properties of XOR is that you can get any output you want

for an input. Because the key can be thought of as
transformation instructions, there exists some set of
instructions that can transform an input into a given output
so long as the input, output, and key are all of the same
length. If an original plaintext message is “attack at dawn”
and this message has been encrypted with OTP and a key,
there is a different key (of the same length) that would
“decrypt” the message to “attack at noon” or “attack not
now” or “go out to eat!” (note, all three messages are 14
characters; do not forget to include spaces and
punctuation). So, if the key is truly chosen at random, it
would not matter even if the key ended up being all zeros
and the ciphertext was the same as the plaintext. The
adversary would still not know if that was the right
plaintext because every plaintext of the same length is

equally possible.6 This is also why brute force does not
work against OTP. Not only is the key space far too large
for messages of even small size, but even if the attacker



somehow managed to find the right key, they would have
no way of knowing.

Figure 5-5  An image with the text “Top Secret.” This figure is identical to
Figure 5-1

Figure 5-6  An image created with random data. Because there are no
patterns or structure, it looks like static

To help illustrate this more visually, consider the image
in Figure 5-5, which you have seen before. And now, look at
the image in Figure 5-6.



This image is a visual representation of random data.
Importantly, the size of the random data is exactly the size
of the top secret image. What will happen if we XOR7 these
two images?

The output looks random too! This is the “magic trick” of
XOR at work. The first image XORed with the random data
completely “hides” the first image within the randomness
as you can see in Figure 5-7. This is the basic concept of
the one-time pad.

Figure 5-7  An image created from the XOR of Figures 5-5 and 5-6

But it is important to understand that the key absolutely

must be random. If the key has any predictability, the
attacker can use that to try (and will often succeed in)
breaking the encryption.

There are a couple of other rules. As I stated before, the
OTP key must never be reused. For one thing, unlike the
block ciphers I talked about, if the attacker has the
plaintext and the ciphertext of an OTP encryption, they
immediately have the key. Just like you can combine the
ciphertext and the key with XOR to recover the plaintext,



you can combine the ciphertext and the plaintext to recover

the key! So if a key were ever reused, an attacker in
possession of a plaintext and ciphertext would recover the
key and be able to use it to decrypt the second message as
well.

Even if the attacker does not have a plaintext and
ciphertext pair, if a key is reused there is a very weird
thing that can happen when you XOR the two ciphertexts

together. What follows is a bit complicated.
To see what happens, here is the math of XORing two

OTP ciphertexts together that were encrypted with the
same key:

Let’s walk through what just happened. There is a first
plaintext message called P1 and a second plaintext
message called P2. Each one was encrypted with an OTP
using the same key K. The ciphertexts (C1 and C2) are
simply each plaintext message XORed with the key K. That
part, at least, should make sense.

Next, the two ciphertexts are XORed together.
Mathematically, this is the same as the first plaintext
XORed with the key, XORed with the second plaintext
XORed with the key. Hopefully, that substitution should
also make sense.

To understand the next steps, you need to know that
XOR as a mathematical operation can be moved around like
addition (it has the commutative and associative
properties). So the K values are regrouped together, and
the two plaintext values are regrouped together.



The last thing that happens is the  is removed.
Why? Because any number XORed with itself is all zeros. To
see how this happens, remember that if a bit is XORed with
0, it remains the same, and if it is XORed with 1, it is
inverted. So, if a number is XORed with itself, all of the 0
bits are XORed with 0 (thus staying 0), and all of the 1 bits
are XORed with 1 (thus getting flipped to 0).

And because any number XORed with 0 is itself, the XOR
of K with itself can be removed. All that is left is  .

You might be wondering what the big deal is with
 . The attacker got neither plaintext. They only got

the XOR of them. Does that not mean that the two
plaintexts are mixed together? Are they not hidden within
the XOR of the two?

The problem is that plaintexts are almost never random.
Remember, if there is predictability in the key of an OTP
operation, it can often be broken. By taking two ciphertexts
(encrypted with the same OTP key) and XORing them
together, you have replaced two plaintexts hidden in
completely random data to two plaintexts “hidden” in
predictable data. Attackers can use the predictability of
plaintext data to find out information about one or both,
sometimes completely deciphering the data altogether. This
is not a theoretical exercise. Apparently during the Cold
War, the Soviet Union reused key data for their OTP
encryption, and American counterintelligence was able to
decipher messages because of this mistake [40, Chapter 5].

There is one other very important “problem” with one-
time pad encryption. OTP is great for confidentiality, but it
provides no data integrity. What this means is that even if
attackers cannot read the data, it does not mean they
cannot change the data. I describe this as a problem in
quotes because OTP does not try to provide data integrity.
This is not a failing in any way of OTP, but it does mean
that real messages protected with OTP would need



additional protection mechanisms such as Message
Authentication Codes, such as those described later in the
chapter.

You might be surprised to learn that attackers can
change messages they cannot read. To see how this works,
remember that if an attacker knows both the ciphertext and
the plaintext they can recover the OTP key. To repeat, the
XOR of the ciphertext and the plaintext yields the key just
like the XOR of the ciphertext and the key yields the
plaintext. But if the attacker can guess or predict the
plaintext, the result is the same. If an attacker can
intercept an OTP-encrypted message and guess the
plaintext, they can extract the key by XORing the
ciphertext and plaintext together. They can then take the
key and use it to OTP-encrypt a completely different
message that they transmit in its place. The recipient will
be none the wiser.

As an example, suppose that an attacker has somehow
compromised the network between two banks and can
intercept and alter any message that flows from one to the
other. Assume that the two banks are using OTP encryption
to protect their communications.



Figure 5-8  An MITM attacker is able to recover the OTP key by knowing the
plaintext and ciphertext

The attacker finds some company that uses the first
bank as its institution, and the attacker has an account at
the second bank. Next, the attacker executes some kind of
transaction with the victim company such that the company
instructs the first bank to transmit 1000 dollars from the
company’s account at the first bank to the attacker’s
account at the second bank.

Assume that the attacker knows the format of the
messages. For this example, pretend it is just a simple
English phrase “transfer 1000 dollars to account XXX.”
When the victim company executes the transaction, the
first bank encrypts this message and sends it over the
network to the second bank.

But the attacker intercepts it. The attacker cannot read
it, but they still know what the plaintext message is. By
XORing the ciphertext and the plaintext, they are able to
obtain the OTP key. Now the attacker creates a new
message that reads “transfer 9999 dollars to account XXX”



(notice that this message is the same length). They XOR the
new message and the OTP key together and send it to the
second bank. The new message decrypts just fine, and the
second bank has no idea that it is forged. This hypothetical
example is depicted in Figure 5-8.

The lesson to learn from this is that encryption is often
used primarily, if not entirely, about confidentiality. In
other words, encryption is primarily used to prevent an
unauthorized party from reading or understanding the
encrypted data. On the other hand, it generally does not

provide data integrity, which prevents an unauthorized
party from altering the data.

To deal with this problem, encryption must typically be
combined with other techniques, such as Message
Authentication Codes (MACs). Or, as I alluded to with block
ciphers, this problem is also solved with AEAD algorithms
that implement a “combined” mode of operation that
performs both encryption and generates a MAC at the same
time. Both of these topics are discussed later in the
chapter.

AES Counter Mode

AES was covered in the section on block ciphers, and yet
here it is in the section on stream ciphers too. Using a very
neat trick (yes, this one feels like magic to me too), it is
possible to convert a block cipher into a stream cipher. This
trick is called counter mode (another mode of operation,
just as CBC was a block cipher mode of operation).8

Before diving into AES counter mode (often abbreviated
AES-CTR), I will point out that there are various types or
categories of stream cipher. AES-CTR is an example of a
binary additive stream cipher. This kind of cipher works in
a way that is analogous to the one-time pad. There are two
steps:
1. Generate a key stream that is the same size as the data



to be encrypted (i.e., the plaintext).  
2.

XOR the key stream and the data together.  
Notice that the only difference between this type of cipher
and the one-time pad is the use of a key stream instead of a
key. In AES-CTR mode, and in many stream ciphers, the
key stream is generated from an initial key and is a form of
key expansion. Recall that in the Playfair cipher, the key
material needed to be 25 characters to fill the five-by-five
grid, but a code word could be expanded to fill it. Similarly,
a relatively small key of 32 bytes can be expanded to an
almost unlimited size.9

The main difference between any particular binary
additive stream ciphers is how the key stream is generated.
AES-CTR generates its key stream by, in fact, counting. A
high-level description of the entire algorithm is
1.

Choose a random key (128, 196, or 256 bits).  
2.

Choose a random starting number (128 bits) called the
nonce.

 
3.

Encrypt the nonce with AES using the key.  
4.

Add one to the nonce and encrypt that number with
AES using the key.

 
5.

Repeat this process until the desired amount of key
stream is reached.

 
The word nonce, by the way, is a shortened version of
“number used once.” The starting number of the counter is
like the IV for CBC mode. It can be public, but it must be
random and used only once.



Notice that AES is not encrypting the plaintext. This is a
stream cipher where encrypting the plaintext is done by
XORing the plaintext with the key stream. AES is being
used here to only generate the key stream. And it does that
by encrypting n (the nonce),  ,  , and so forth until
there is enough key stream to XOR with the plaintext. In
fact, in AES-CTR mode, as in OTP, the AES decrypt
operation is never used because the decryption of the
plaintext is performed by XORing the ciphertext with the
key stream.

Counter mode relies on the intersection of a couple of
properties. First, because of how XOR works, when the
attacker cannot split out the plaintext or key stream from
the ciphertext so long as the attacker does not know (or
cannot guess) either one of them. So, assuming the
attacker does not know the plaintext already, they cannot
extract the plaintext without knowing the key stream. The
security of AES-CTR depends on the attacker not being
able to know or guess the key stream.

The attacker, however, cannot know or guess the key
stream so long as the key is random (not predictable) and
so long as the key-nonce pair is not reused. The counter is
not a secret. The fact that the attacker knows the counter
numbers does not give them any clues about the key
stream. Without the key, the attacker cannot know or
predict what the ciphertext output of any encryption is.
Therefore, the attacker cannot predict the key stream even
if they know the counter numbers used to generate it.

By using a key stream instead of a key, AES-CTR mode
is far more practical for real-world cryptography. A 32-byte
key is far easier to transmit, store, and protect. The trade-
off is that the key stream will not be truly random like the
OTP key. Although it will be very cryptographically strong
and resistant to analysis, it will have patterns that could be



vulnerable. In practice, however, ciphers like AES-CTR are
not compromised through this kind of analysis.

Another possible weakness is the brute-force analysis of
the key. Unlike OTP, stream ciphers like AES-CTR can have
their key uncovered by the attacker through brute force.
But while this is theoretically possible, it is impossible in
practice for a completely random key. It would require the
same kind of billions of years described for breaking AES
keys in the section on block ciphers.

So while AES-CTR mode and other ciphers like it are
theoretically weaker than OTP, they are not weaker in
practice. That could always change. For example, a
researcher could uncover a vulnerability in AES tomorrow
that would completely break it. Such a thing is not possible
for OTP.

Where stream ciphers like AES-CTR break down is often
in the very same ways that OTP breaks down, for example,
reusing keys, not using really random keys, or using AES-
CTR without some kind of data integrity protection.

ChaCha20

Another binary additive stream cipher is called ChaCha20

by Daniel J. Bernstein. Unlike AES counter mode,
ChaCha20 is not a block cipher adapted to be a stream
cipher. It was designed to be a stream cipher from the
start. I will not dive into the technical fundamentals of the
algorithm here. Instead, I will discuss some of its features
and properties that stand in contrast to AES and other
algorithms. This will be a useful illustration of different
motivations for choosing one cipher over another.

By way of background, Bernstein first created a very
similar algorithm called Salsa20 in 2005 (first published in
2007). Conceptually, Bernstein created a hash function that
hashes a key, a nonce, and a counter into an output block.
To generate an additional block, the counter is incremented



by one and a new hash generated. The key stream is
generated by producing as many output blocks as
necessary to have as many bits as the plaintext [57].

Story Time: Bernstein Fights to Decriminalize

Cryptography

Depending on your age and your exposure to technology,
you may be surprised to know that in the early 1990s,
the United States considered encryption to be a weapon.
The US government categorized encryption as a
“munition,” which impacted the ability of individuals in
the United States from exporting cryptographic ideas or
source code above a certain strength. If you were a
researcher and wanted to publish a paper about
cryptography, under certain circumstances you would
have to register as an arms dealer. This happened to a
young mathematical genius named Daniel J. Bernstein,
the same Daniel J. Bernstein who went on to create the
ChaCha20 cipher.

Represented by the Electronic Frontier Foundation
(EFF), Bernstein challenged the US government in court
in 1995. The legal team successfully defended Bernstein
and won concessions from the court that the
cryptographic ideas he was formulating and proposing
were forms of speech, protected by the Bill of Rights in
the US Constitution.

One of the judges in the case wrote:

This court can find no meaningful difference
between computer language, particularly high-level
languages as defined above, and German or
French….Like music and mathematical equations,
computer language is just that, language, and it
communicates information either to a computer or
to those who can read it…



According to the EFF, this case helped to establish in law
the principle that communicating to someone through
writing a program is still communication. In other words,
it is speech and entitled to all the legal protections
afforded speech [89].

I emphasized that each block is generated by a hash
function to draw attention to this fundamental difference
between Salsa20 and AES-CTR. AES-CTR is based on the
AES cipher that is invertible, while Salsa20 uses a one-way
function that is not. Hopefully, it will be obvious by this
point in the discussion that for counter mode, being able to
invert is not necessary and, in fact, not used by AES-CTR.
Recall that the AES-CTR mode does not encrypt and
decrypt plaintext directly; rather, AES is used in just one

direction to encrypt the counter in order to produce the key
stream. In counter mode, AES’s decryption operation is
vestigial.

Because Salsa20 was designed to be a stream cipher
from the beginning, there is no need for the block
generation algorithm to be invertible.

Figure 5-9  The initial configuration of the Salsa20 block



By default, the Salsa20 algorithm requires a 256-bit key
and a 64-bit nonce. The counter is also 64 bits. An
additional 128 bits of fixed data is also used to bring the
total number of bits in the block to 512. In some ways, the
construction of the block might seem reminiscent of
creating the Playfair five-by-five block. As illustrated in
Figure 5-9, the key, nonce, counter, and constant data are
split up and spread throughout the 4-by-128-bit block. Once
configured, the Salsa20 algorithm does a repeated series of
mixing operations on the columns and rows. The mixing
operations combine the various column and row values
with each other in a way that causes input bits to influence
a wide range of output bits. These mixing operations are
organized into rounds, and the “20” in Salsa20 refers to
having 20 rounds. By the end of the mixing, the output is
unrecognizable from the input and appears to random data.

It should be noted that the 512-bit output is just the first
in a potentially long sequence of key stream. The very next
block will be generated with an input that is exactly the
same except that one or two bits will have flipped as part of
incrementing the counter value. The hashing component of
Salsa20 has, however, the Avalanche property, and
changing just one bit of input results in a completely
different output.

You may have also noticed from Figure 5-9 that the
constant values that are inserted into the diagonal of the
input block is human-readable text. In fact, combined
together, these values spell out “expand 32-byte k”. This is
an example of what some cryptographers call the “nothing
up my sleeve” principle. The constant value fed into the
input is not supposed to matter. It is just supposed to be
some arbitrary bit of data to expand things out to the full
512 bits. But how do you know if you can trust the creator
of an algorithm to not have inserted some weird
vulnerability?



In security, a secret or hidden way of cracking open
some protection system is often called a “back door.”
Typically, they are inserted or created by an authority
figure or the creator such that there is an alternative way
into the system. While some governments have more or less
demanded that all computer security systems have a back
door, this has, so far, been resisted by the security
community. Because of these kinds of intentional attempts
to build weaknesses into systems, many cryptographers
and security engineers are suspicious of hard-coded
numbers or configuration values that have no explanation.
Values like “expand 32-byte k” are very unlikely to be any
kind of special mathematical value and prove that there is
“nothing up my sleeve.”

Figure 5-10  The initial configuration of the ChaCha20 block

A few years after creating Salsa20, Bernstein introduced
some variations to create the ChaCha20 algorithm. This
algorithm has a very similar setup and operation with a few
changes. For example, the initial configuration of the 512-
bit block is shown in Figure 5-10. As you can see, some



elements are moved around, and a few others have been
slightly altered.

In addition to these changes to the input, the mixing
operations were also modified to improve certain
cryptographic features beyond the scope of this book. One
change you probably noticed that is not important is the
change to the counter. In Figure 5-9, there were 64 bits of
nonce and 64 bits of counter. In Figure 5-10, there are 96
bits of nonce and 32 bits of counter. In Bernstein’s original
paper, there was no difference. ChaCha20 also had 64 bits
of nonce and 64 bits of counter. The version shown in this
figure is how ChaCha20 is specified in the open standard
known as RFC 7539. This standard acknowledges the minor
change and did so to conform with other similar ciphers
[194]. This change does reduce the maximum amount of
key stream that can be produced. It is possible to use the
64-bit counter if a longer key stream is needed.

To summarize the differences with AES-CTR so far,
ChaCha20 (and its predecessor, Salsa20) is used
exclusively for stream ciphers. Whereas AES’s block
operation is invertible (encrypt and decrypt), ChaCha20’s
operation is more like a hash (one way only). Also,
ChaCha20 was explicitly designed to be transparent with
no secret or hidden values.

There are a few other important differences. ChaCha20
(and Salsa20) uses very basic and simple computer
operations. This makes ChaCha20 very fast. While
ChaCha20 cannot go faster than AES for certain modern
processors with built-in AES support, it is much faster than
AES on computers without AES speedups. This is important
for low power and IoT devices. The nature of ChaCha20’s
design also makes it less vulnerable to certain classes of
attacks called timing attacks. These kinds of attacks figure
out how to break ciphers by measuring how long it takes to



do something. ChaCha20 is more resistant to this than AES
[192].

Finally, some people want ChaCha20 available if for no
other reason than having another option to AES. This is
basically following the old proverb to not have all your eggs
in one basket. If the world’s communications systems only
used AES (and for a while, that really was the only option
for a lot of Internet traffic other than older less secure
algorithms), then if a vulnerability is discovered in AES the
result will be that everything is broken and there are no
options to switch to. By having ChaCha20 as a standard
that is widely deployed if something bad happens to AES,
there is something else to use as an alternative.

Message Authentication Codes and Combined

Modes of Operation

Finally, before moving on to asymmetric cryptography, it is
time to talk about Message Authentication Codes or MACs.
As alluded to several times in this chapter, encryption is
designed for confidentiality, not data integrity. Now,
however, MACs can help with data integrity by enabling
data origin authentication.

As a concept, a Message Authentication Code is
somewhat similar to a hash and, as we will see, can be
implemented using hashing. Like a hash, the Message
Authentication Code is usually a fixed-size cryptographic
code that is a kind of fingerprint on some designated data.
The MAC makes it possible to tell if the data has been
changed. If it has, the MAC will not be verified.

What makes a MAC different from a hash is that it must
be keyed. Hashes require no keys. And the output of a hash
for a given input is always the same. This makes it
impossible for the raw hash to be a MAC because an
attacker that can change the data can also change the hash
to match.



On the other hand, a MAC involves a secret key known
only to the authorized parties. A correct MAC can only be
generated (or verified) with possession of the secret key.
So, if an attacker intercepts and alters the data, they are
unable to generate a matching MAC because they are
missing the key required to do so. Thus, when an
authorized recipient receives the data and the MAC, they
can use their copy of the secret key to verify that the MAC
matches the data. A valid result tells them two things:
1.

The MAC was generated by an authorized party
(assuming only authorized parties have the key).

 
2.

The data protected by the MAC has not been altered.  
Together, these two properties provide the data origin
authentication. If the validity check fails, either the author
is not legitimate or someone else has altered the data.

In case the comparison to the hash function is not clear,
here is how a MAC is generated. The author or sender of
some data inputs both the data and the secret key into a
MAC function. This produces a MAC code. The data and the
MAC code are sent together (or must otherwise be made
available to the recipient together). Once the recipient has
both the data and the MAC code, the recipient inserts the
data, the MAC, and the secret key into a verification
function. This function will return a true or false value
depending on whether or not the MAC code can be verified
for the data.

There are a number of different ways of generating a
MAC code. As mentioned, there is a Hash-Based Message
Authentication Code conveniently called HMAC. HMAC
combines a hashing algorithm with a key. The intuition
behind this is pretty simple. Imagine if someone wanted to
send the message “attack at dawn” and wants to ensure
that it cannot be altered. Let us also imagine that the



sender and the recipient share a secret key in the form of a
human-readable four-word password: “JawColdFilmZilch”.

To send an overly simplified hash-based password, the
sender could simply prepend the password to the message:
“JawColdFilmZilchattack at dawn”. The hash of this
message would serve as a rudimentary MAC. This MAC
code would be sent with the data to the recipient.

When the recipient received the data (“attack at dawn”)
and the corresponding MAC, they would generate their
own hash on the data prepended with the password:
“JawColdFilmZilchattack at dawn”. The two hashes would
match, and the recipient would have some assurance that
the message came from an authorized party and had not
been altered.

Had the message been intercepted, an attacker could
have altered the message (e.g., “throw down your arms and
hail your new overlords!”), but without the password it
would be impossible to generate the correct MAC.

Please note, however, that this is the overly simplified
version. HMAC is actually a more complicated algorithm
that involves two hashes, some padding, and some XOR
operations. But conceptually, it is still hashing data mixed
in with a key. To be clear, the overly simplified version in
the preceding example is not secure and should not be used
as a real MAC. Its sole purpose is to help provide a little bit
of intuition about how HMAC works.

Perhaps it also bears pointing out that in HMAC, the key
does not have to be a human-readable password. That was
also just for simplicity and convenience in the example.
HMAC can be used on any kind of arbitrary data (videos,
pictures, documents, text, etc.), and the keys are generally
just random binary data or binary data derived from a
password.

I included HMAC in the section on symmetric ciphers
because the process is symmetric. The same key generates



the MAC as is used to verify it. At the same time, however,
ciphers that can perform encryption can also be used for
creating MACs. Recall the CBC mode described earlier for
AES encryption. Each of the blocks of data was fed into the
next block of data to influence its encrypted output. The
CBC-MAC algorithm uses CBC on the data but throws away
everything except the last block. By convention, the IV is
set to all zeros. In contrast to encryption, when the same
message should not encrypt to the same output every time,
a MAC should be the same for the same message with the
same key. Fixing the IV to zero is perfectly fine for this
MAC algorithm even though it would be a terrible idea for
encryption.

One word of warning: If CBC is used for both encryption
and the MAC, different keys must be used for each one.

Speaking of which, I have talked about using MAC for
integrity and encryption for confidentiality. What if you
need both? In the preceding example with the transmitted
message “attack at dawn,” there was no encryption
applied. Even if an attacker could not change the message,
it might not be optimal to have them read it either.

Of course, one can apply both encryption and MAC to
the data. But which should be done first? One approach is
MAC-Then-Encrypt. In this version, the MAC is applied to
the plaintext, and then both the plaintext and the MAC are
encrypted together. Alternatively, there is also Encrypt-
Then-MAC. To take this approach, the MAC is again
computed over the ciphertext, but the MAC itself is not
encrypted. It is sent (unencrypted) along with the
ciphertext.

Is one better than the other? As it happens, it is strongly
recommended by most cryptographers to use Encrypt-
Then-MAC. The general reason for this is the attackers
should not be able to undetectably alter the ciphertext, not
just the plaintext. This can be unintuitive because the end



goal is protecting the plaintext. But it turns out that bad
things happen when the attackers can undetectably change
the ciphertext without us being able to detect it. The
Encrypt-Then-MAC approach should protect the ciphertext
against modification.

If all the various rules for MAC seem complicated and
really easy to do wrong, you are correct. One of the real
challenges of cryptography is that there are so many ways
to do it wrong. When it is wrong, it is not always obvious.
While this challenge will probably never be fully eliminated,
one approach to solving the problem is to develop
algorithms and techniques that are harder to do wrong and
easier to get right.

One such approach are modes of operation called
“combined” modes of operations. A combined mode of
operation is a mode for symmetric ciphers (either block or
stream) that natively include a MAC generation as part of
the operation. The more technical term for these modes is
AEAD (Authenticated Encryption with Additional Data). To
reiterate, these new modes of operation provide both

confidentiality and authenticity for the plaintext. AEAD can
also provide authenticity over data that does not need to be
encrypted (“additional data”). This is more important than
it might sound. There are many times when certain public
pieces of information need to be tied together with the
encrypted data as well. Both the encrypted data and the
associated unencrypted data must be protected and
protected together.

Basically, AEAD converts an encryption operation from a
two-input, one-output function into a three-input, two-
output function. Normally, the encryption function is simply

 encrypt(key, plaintext) = ciphertext

With AEAD, it becomes



 encrypt(key, plaintext, additional_data) = ciphertext, tag

To repeat, the encrypt function does not encrypt the
additional data. The additional data is not included in the
ciphertext. But the tag value is computed as a MAC on both
the ciphertext and the additional data. For various reasons,
AEAD functions use the term “tag” instead of MAC, but it is
more or less equivalent.

The decrypt function is similarly changed, whereas the
original decryption function looks like this:

 decrypt(key, ciphertext) = plaintext

With AEAD, it becomes

 

decrypt(key, ciphertext, additional_data, tag) = plaintext, validity

These function definitions are conceptual, of course. For
example, some implementations may not produce any

plaintext until the tag is verified. After all, the ciphertext
need not be decrypted first because the tag is computed on
the ciphertext, not the plaintext. But in many practical
applications, this is impossible. Often, the ciphertext will be
received by a recipient in parts, and it is considered
inefficient to not start decrypting while awaiting the
remaining ciphertext. In this case, the tag cannot yet be
verified because the verification can only be performed
when all of the ciphertext has been received.

In any event, the concept is the same. The plaintext is
not to be trusted until the tag is verified.

Some of the common AEAD ciphers in use today are
AES-GCM, AES-CCM, and ChaCha20-Poly1305. AES-GCM
and AES-CCM both use AES counter mode internally for
the generation of the ciphertext. AES-GCM uses Galois
Message Authentication Code (GMAC) to generate the tag.



AES-CCM, on the other hand, uses the CBC-MAC algorithm
described in the previous section. As you can probably
guess, ChaCha20-Poly1305 uses ChaCha20 to perform the
encryption. The MAC algorithm known as Poly1305 was
also created by Daniel J. Bernstein. Even though all three of
these algorithms can be described as two individual
components for the encryption and the tagging, the
combined mode of operation describes how the two are to
be performed together so as to be integrated.

As a final note, AEAD algorithms are relatively newer.
Nevertheless, AEAD is already used in many systems and
generally recommended for new systems going forward
[115].

Asymmetric Cryptography

Switching gears, the rest of this chapter focuses on
asymmetric cryptography. This technology is one of the
most important advances in cryptographic security ever
made. It is used in many applications, not the least of which
is the security protocols used by almost every major
website on the Internet today. Another name this
technology goes by is “public key cryptography.”

Asymmetric cryptography is about systems that involve
two keys. All of our examples in symmetric cryptography
involve just one key for both sides of an operation:
encryption/decryption and MAC generation/verification.
But in the operations that follow, there is always a public
key that can be given to everyone and a private key that
should never be disclosed to anyone. This is very powerful.

Consider, for example, the MAC operations from the
previous section. A recipient can validate a MAC with the
shared key. But this key can also be used to generate

MACs. If the recipient is untrustworthy, the recipient could
generate fake messages and create MACs for them. It



would be impossible to tell which party created the fake
messages because both of them have the key. This also
prevents the sender from being able to authenticate a
message to a wide group of participants.

On the other hand, asymmetric operations mean that a
public key can be widely distributed without any risk to the
private key. This enables some really neat operations.
Three of the most common asymmetric operations are
encryption, signatures, and key agreement. Notably, not
every asymmetric algorithm can perform every asymmetric
operation (e.g., not every asymmetric algorithm can do
both encryption and signatures).

This book is not meant to catalog all possible algorithms
and all possible operations. Instead, you will learn about
some common approaches to asymmetric encryption,
signatures, and key agreement as an introduction to the
technology.

Asymmetric Encryption

Unlike symmetric ciphers, where there are many
algorithms that perform encryption, most asymmetric
algorithms do not. In fact, asymmetric encryption is not
widely used and becoming less common as time goes on.
One widely used asymmetric algorithm that does do
encryption is RSA.

RSA, named for its three authors Rivest, Shamir, and
Adleman, is one of the earliest asymmetric algorithms.
Although it is aging and many systems are moving to newer
algorithms, it is still very widely used. Perhaps more
importantly for the purposes of this section, it provides
some easy-to-understand operations.

Even still, RSA encryption is not used for what is called
“bulk” encryption. Bulk encryption is the encryption of
arbitrarily large amounts of data such as a large file or
network communication traffic. RSA cannot do this because



RSA’s encryption operation can only encrypt relatively
small messages. And while a mode of operation like CBC
could, in theory, make it possible to encrypt larger amounts
of data, RSA is just too slow to be used for that purpose.
RSA encryption is slow. Really, really slow.

Instead, RSA encryption is primarily used for two
purposes: authenticated transport of secrets and digital
signatures. There are other ways of doing digital
signatures, so I will cover how RSA uses encryption for
digital signatures in the next section. For now, I will talk
about how asymmetric encryption allows two parties to
share a secret without having a shared key.

The first concept to understand is that the public key
and private key of RSA both can encrypt data. What is
important is that data encrypted by one can only be

decrypted by the other. Data encrypted by the public key
can only be decrypted by the private key and vice versa. In
the section on digital signatures, RSA will use encryption
with the private key.

For sharing secrets, however, data is encrypted with the
public key. Remember that a public key can be shared with
everyone. If someone with the public key encrypts some
data, only the party with the private key can decrypt it.
Assuming that only one party is in possession of the private
key, then only that one party can decrypt it.

The purpose of this kind of algorithm is a kind of “secure
drop box.” If you have ever dropped off books at a library,
this is basically the same operation. You can drop the books
into the slot at the library, but you (nor anyone other than
the library staff) do not have access to it afterward.
Similarly, anyone with the public key can encrypt a
message with the public key, but thereafter only the party
with the private key can retrieve the data. So, if you
generated an RSA public and private key, you could give
the public key to the whole world (e.g., publish it on your



website), and anyone in the world could send you a
message that only you could decrypt (i.e., using your
private key).

Story Time: Better Late Than Never

It turns out that Rivest, Shamir, and Adleman were not
the first to come up with the mathematics behind what
we now know as RSA. A British team did it first. Their
names were Clifford Cocks, James Ellis, and Malcolm
Williamson. They figured out their formulation of the
problem in the early 1970s.

Unfortunately for these three individuals, they worked
for the British Government Communications
Headquarters (GCHQ). In the worst of all possible
worlds, the GCHQ not only could not find a use for their
ideas but also classified it, preventing them from
publishing about it. Their work was not declassified until
1997.

Despite the delay in recognition, in October of 2010,
the IEEE (Institute of Electrical and Electronics
Engineers) presented its 100th milestone award to the
three Britons (James Ellis had already passed away, but
his widow was able to attend on his behalf). Although
somewhat late, it was cathartic for pioneers in
technology to be recognized for their ideas that are
ubiquitous now. Even though they were not able to
publish about it at the time, they appear to be the first
people to have figured out the math that every one of us
depends on every single day for protected Internet
communications [209].

As stated, however, RSA can only encrypt small messages
and is very, very slow. It would be more or less impossible
to exchange data of any real size. So what good is it?



Conveniently, a symmetric algorithm is very fast for bulk
encryption, and a symmetric key is a very small amount of
data. The most common way RSA encryption of this form is
used is for an initiator to transmit a symmetric key to the
private key owner and then switch over to symmetric
encryption and MACs as well. This is sometimes called
hybrid cryptography [66, Chapter 2].

To walk through this in a little more detail, I will name
our fictitious parties “Alice” and “Bob.” This is commonly
done in cryptography to talk about “party A” and “party B.”

The power of asymmetric cryptography is that Alice and
Bob can start to communicate over a secured channel
without ever having shared a key together in the past. In all
of the symmetric examples in the first part of this chapter,
it was just assumed that somehow the sender and recipient
of messages shared a key. But how did they get that key in
the first place? Did they meet in person? How was the key
transmitted to them securely? Did they make sure they got
the right key? Did they get the key from an authorized
individual? All of those issues were ignored.

Now, armed with asymmetric cryptography, Alice and
Bob are going to do what is called “key transport.” For this
example, which is also visualized in Figure 5-11 I will
assume that Alice is the party with the private and public
key pair. Alice has published her public key to all the world
through some means. Bob wants to communicate with Alice
even though they have never met and never previously
shared a key.

Bob starts by generating a new symmetric key. As
described in the previous sections of the chapter,
symmetric keys are usually just random data. This is
relatively easy and fast to generate. Because Bob is
generating this key on the fly, and it will only be used for
this particular communication with Alice, it is often called a
“session key” and an “ephemeral key.” It is a session key



because it is only for this session, and it is an ephemeral
key because it was created “out of thin air” and will be
discarded after use.

After generating this symmetric key (say for AES
encryption), Bob takes Alice’s public key and encrypts the
symmetric key. Bob sends this encrypted message to Alice
along with some other data such as an introduction and
configuration information. Once Alice receives the
encrypted message, she (and only she) can decrypt it with
the private key. This decrypts the session key. Now, both
Alice and Bob have the same shared key.

Alice and Bob now begin to exchange messages
encrypted and MACed using the symmetric key (it is often
the case that different keys are needed for encryption and
MAC, but there are algorithms for expanding a single key
into multiple keys for exactly this purpose). Because the
messages have MACs, both sides know that only the parties
with the symmetric key could be sending the messages.
Bob knows that only Alice could have decrypted the
message with the symmetric key, so only Alice could be
sending messages MACed with this key. Thus, Bob is
assured he is speaking with Alice and that the
communications from Alice have not been tampered with.

For her part, Alice does not know Bob’s identity. But she
does know that the communications are all tied to the same
party. If Alice is actually a website (remember, Alice and
Bob are really just placeholders for party A and party B),
Bob might be signing up with a username and a password.
Bob, in this case, is establishing his identity. But he wants
to be sure of the website before he does so.



Figure 5-11  Key transport between Alice and Bob using asymmetric
cryptography

Alice can also verify Bob’s identity if Bob has his own
private and public key pair. Alice can transmit her own
messages to Bob encrypted by Bob’s public key. Data can
either be combined such that the key shared between them
was equally created by both of them, or data could even be
split into two channels (i.e., a channel from Bob to Alice
and another channel from Alice to Bob). There are many
ways these systems can be constructed.

With that said, the standard warnings always apply.
What is described here is a simplification for instruction
purposes. In practice, there are a number of ways this can
go wrong, and practical systems, which are the subject of
the next chapter, have had to go through a lot of trial and
error to get things right. Always remember to get a
cryptography subject-matter expert if you are in an
environment where cryptography is needed.

Two additional comments before moving on. First, unlike
symmetric keys, RSA keys are not just random bits. They
are mathematical numbers that have certain properties



that enable the RSA operations to work. RSA keys are also
much larger than symmetric keys. The very smallest size is
1024 bits, and these are considered obsolete and insecure.
The minimum size for RSA keys now is 2048 bits. RSA keys
are also slow to generate. Usually, this is not a problem
because RSA keys are meant to be used long term. They
are not ephemeral keys and are intended to be used and
reused. This will become important in the section on key
agreement.

The other comment is that our example just assumes
that Bob gets the correct public key for Alice. This is harder
than it sounds. How does Bob know he got the right one?
What if an attacker manages to get Bob a different public
key and convince him that it is Alice’s? I will address this
subject in a later chapter, but the preview is that this is
why a “public key infrastructure” (PKI) is necessary.

Digital Signatures

RSA encryption can also be used for digital signatures.
There are other methods for performing a signature, but I
will start with RSA to follow up on the previous section.

In introducing RSA, I pointed out that it is possible to
encrypt with the private key and decrypt with the public
key. Recall that for key transport, Bob encrypted the
session key using Alice’s public key. This version of things
goes the other way around.

A good question to ask yourself here is why would
anyone want to encrypt with the private key? After all,
everyone (potentially) has the public key, so anyone can
decrypt it. That is true. If this were encryption for the
purpose of confidentiality, it would be a terrible system.

But this encryption is not used for confidentiality. It is
used for data origin authentication. The goal is to prove
authorship and that data remains unchanged. In other
words, the encrypted data is intended to be decrypted by



everyone else to prove to them the source and correctness
of the data. This is the concept of a digital signature.

Using the beloved Alice and Bob duo again, I will walk
through a digital signature example that is also illustrated
in Figure 5-12. This example will start with Alice holding
the private key. As before, she has also published her
public key to the whole world. Bob, for example, is in
possession of the public key and knows (believes?) it
belongs to Alice.

Alice would like to publish data and prove to the world
that she is the author and that the data she wrote has not
been altered. To create an RSA signature, Alice starts by
hashing the data she has authored. Next, Alice encrypts the
hash of her data with the RSA private key. The RSA-
encrypted hash of her data is the RSA digital signature.

Alice now publishes to the world the data she has
authored along with the digital signature. Bob, for example,
can take the data and validate it. For this example, I will
assume it is unencrypted. To verify the published data, Bob
takes the data and hashes it himself. The hashing algorithm
must be known, of course, but anyone can generate an
unkeyed hash. Now Bob uses Alice’s public key to decrypt
the encrypted hash. Bob compares the decrypted hash with
the hash he generated himself. If they are identical, the
signature is validated, and Bob is assured that Alice is the
author and that the data has not been modified.

Alice must be the author because only Alice has the
private key. Therefore, only Alice could have encrypted the
hash of the data. The data must not have been altered
because Bob generated his own hash and found it to be
identical to the decrypted hash. An attacker could not have
generated a fake signature because it would have required
the private key.

RSA signatures were the most common way of signing
data for a relatively long time (in computer years, anyway)



that some sources began to describe all digital signatures
as an “encrypted hash.” This is not true because, as stated,
most asymmetric algorithms do not even have an
encryption operation. For example, algorithms like Digital
Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA) do not have encryption
algorithms.

Figure 5-12  Alice’s digital signature proves that Alice authored the document

Like all asymmetric algorithms, both DSA and ECDSA
have private and public key pairs. Like RSA, these are not
random numbers but special mathematical pairs. For both
algorithms, the signature is a pair of numbers
unimaginatively labeled r and s. The s value is calculated
from the data to be signed and the private key. The
verification algorithm involves a mathematical algorithm
applied to the data, the s and r values, and the public key.
If the output of this function is equal to r, the signature is
verified. The mathematics are too complicated for any real



treatment, but I emphasize the r and s values simply to
illustrate how the outputs are different than RSA.

It is worth pointing out, however, that both RSA and
ECDSA also use the hash of the data rather than the data
itself. Pretty much all signature schemes will use hashing
or something like it in order to limit the asymmetric
calculations on the data. It is much easier to do these
mathematical operations on 64 bytes of data rather than
gigabytes of data.

Key Agreement

Our final asymmetric operation to discuss in this chapter is
called key agreement. Key agreement, like the key
transport discussed earlier, is a way of enabling two parties
to establish a shared secret (i.e., a shared symmetric
key).10 But whereas key transport actually involves
encrypting a secret and transmitting it for decryption, key
agreement enables the two parties to simultaneously create

the same key at the same time without transmitting any
part of it! Like I said, cryptography is like magic!

There are two algorithms widely used for key
agreement: Diffie-Hellman (DH) and Elliptic Curve Diffie-
Hellman (ECDH). Both algorithms work along similar lines.
For the rest of the chapter, I will just refer to DH unless I
need to identify ECDH specifically.

The basic idea is this. Alice and Bob would like to
generate a symmetric key that they will use for bulk
transport. To do this, Alice and Bob first agree on some
mathematical parameters for this operation. This
information can be public, and there are no issues
exchanging this information in the open. From these
parameters, they both generate a DH public and private
key pair. In particular, the public key is derived from the
private key in combination with the public parameters.



Next, Alice and Bob exchange their DH public keys. At
this point, Alice combines her private key with Bob’s public
key. At the same time, Bob combines his private key with
Alice’s public key. Because of some cool math properties of
the calculations, Alice and Bob both compute the same
number from these two different operations. Or, in other
words, Alice’s private key mixed with Bob’s public key
results in the same number as Bob’s private key mixed with
Alice’s public key. So they get the same secret number
(that can then be used to create a symmetric key), while an
attacker is unable to generate it. Remember, the only thing
exchanged in the open are some public parameters and the
public keys! Without at least one of the private keys, an
attacker gets nothing.

A nonmathematical explanation in A. J. Han Vinck’s
course “Introduction to Public Key Cryptography” [277] is
depicted in Figure 5-13. In this figure, the “private key” is a
secret paint color. Alice and Bob each have their own
secret color. The public parameters are represented by a
public paint color. Alice and Bob can mix their secret colors
with the public color to create a new color for each of them.
This new color is their respective public keys.

Alice and Bob can now exchange the public key. Because
it is their secret color mixed with the public color, an
attacker cannot get their original, secret color (this
example presumes that it is difficult, if not impossible, to
extract the original color from the mixed paints). But when
Alice and Bob receive the other side’s public key, they now
have all three colors. Alice has her secret color, plus Bob’s
color mixed with the public color (  ). Bob, on
the other hand, has his secret color plus Alice’s secret color
mixed with the public color (  ). Both Alice and
Bob can now produce the exact same color (  ).
But an attacker, who has only ever seen the public colors

 and  , cannot correctly get the combined color.



Figure 5-14 shows the more realistic Diffie-Hellman key
agreement.



Figure 5-13  Intuition behind Diffie-Hellman



There are multiple reasons why Diffie-Hellman is
preferred to RSA key transport. For one thing, in DH, both
sides contribute to the key, whereas in RSA key transport,
the key is completely generated by one side. This can be
fixed for RSA using various mechanisms, but all of these
fixes add to the time and complexity of the algorithm.

The much bigger reason is the DH can be done with
ephemeral keys, just like the session keys it creates.
Instead of using the same DH key pair over and over, Alice
and Bob can generate new DH keys for every single key
exchange. This is very valuable because it enables forward

secrecy. The concept of forward secrecy, also called perfect

forward secrecy, is that even if an attacker breaks one

session, they should not be able to break all sessions. Or,
alternatively, if there is a breakdown in security for a single
key, it should, at most, result in the loss of confidentiality
for a single session.

Figure 5-14  Alice and Bob creating a session key using Diffie-Hellman.
Remember that each public key is the participant’s private key combined with
the public parameters. The private key cannot be extracted from this



combination, but it can be combined with the recipient’s private key. Both Alice
and Bob combine all three of the same values to produce the same session key

Remember that RSA keys are meant to be long-term
keys. RSA key transport will use the same public key to
encrypt, and the same private key to decrypt, potentially
many session keys. If an attacker were to record these
transmissions, if the RSA private key was ever
compromised at any point in the future, the attacker could
decrypt every recorded session key and all of the data
subsequently encrypted by those session keys. This kind of
scenario is not unrealistic. Imagine if Alice stores her
private key on her computer and then after five years sells
it (or recycles it) and buys a new one. A determined
attacker could acquire the discarded computer and
potentially retrieve the private key. A government looking
to build a case against a whistle blower, or persecute a
target with blackmail, could record traffic for years while
waiting for an opportune time to buy, steal, or otherwise
obtain the computer with the public key necessary to
decrypt all of the encrypted traffic.

On the other hand, when DH Ephemeral11 is used, a new

DH key pair is used for each key agreement and then

discarded. There is no long-term key to compromise. Even
if a single DHE private key is compromised, the attacker
gets, at most, a single session key. No additional sessions
can be broken from this single compromise.

The downside to Diffie-Hellman Ephemeral is that it is
impossible (in practice) to use the public key to identify the
other side of the exchange. If it were a long-term key, then
Alice or Bob could use various methods to establish the
identity of the other and associate that identity with the
long-term key. But because a new key pair is generated for
every single key exchange, it is no longer possible to do so.
What this means in practice is that Alice and Bob can
create a key “out of thin air” using DHE, but either one



cannot be certain they have created that key with the

other. An attacker could have substituted their public key
instead, and there would be no way to tell.

To fix this problem, DHE keys are usually signed by a
long-term key such as an ECDSA, DSA, or RSA signature.
In other words, Alice and Bob are actually using two

asymmetric key pairs for a key exchange operation. The
first key pair is long term and used to authenticate the data
origin. The second key pair is an ephemeral DH key that is
generated on the spot for a one-time use for generating just
one session key. Alice and Bob each sign their respective
DH public keys with their respective long-term private keys
(e.g., an RSA, DSA, or ECDSA private key). When they each
transmit the DH public key to the other, they can verify the
signature on the DH public key to be sure that it came from
the correct party.

In theory, it would be possible to do an RSA ephemeral
key transport. In this version, there would be a long-term
RSA key that is used for signing and an ephemeral RSA key
that is only used once to transport a single key. After
transmitting this single key, the ephemeral RSA key pair
would be discarded. Forward secrecy would be maintained,
and the compromise of a single RSA key reveals, at most,
the data from a single transmission.

The problem is, however, that RSA keys take a long time
to generate, whereas DH keys can be generated very
quickly. When I say “a long time,” I mean a long time to a
computer. RSA keys can be generated within seconds. But
seconds is too long for a computer that needs to create
hundreds of connections in a second for downloading a web
page. This RSA ephemeral mode (which does not really
exist and which I have just completely made up to teach the
point) would mean that some websites (which may require
hundreds of keys) could take many minutes to load.



The point of this exercise is to point out how there are
many factors that determine what asymmetric algorithm
should be used. Of course, the algorithm must be able to
support the operation at a theoretical level, but it also must
be appropriate to the relevant problem in practice.

You should also be figuring out from these examples and
explanations how it requires a combination of techniques to
obtain desired results. For Alice and Bob to communicate in
the most recent example, they needed one asymmetric
algorithm and keys to sign data, proving that the data
originated with the correct party, another asymmetric key
pair for DH or ECDH to generate a symmetric session key,
and the symmetric algorithms to communicate once the key
was established. The symmetric algorithms must support
both confidentiality and data integrity such as an AEAD
algorithm or a traditional encryption algorithm combined
with a MAC.

That is a lot of moving parts. Moreover, I still have not
addressed the issue of how Bob knows that Alice’s public
key is really hers. That requires more machinery that will
be discussed later in the next chapter.

A Word About Quantum Cryptography

There is some bad news about asymmetric cryptography. It
is estimated that all of the current algorithms including
RSA, DSA, ECDSA, DH, and ECDH will be obsoleted in the
next 20 years or so. On the horizon is a new type of
computing called “quantum computing.”

There is neither the time nor space in this book for a
discussion of a technology that is not yet practical. Instead,
this brief section is a placeholder for things to come. You
should be aware that at some point in the relatively near
future, there will be computers that can break these
algorithms.

This is a problem primarily for asymmetric algorithms. It
is possible that quantum computing will impact symmetric



cryptography as well, but even if it does, the impact will
only affect key sizes. The possible concern is a quantum
algorithm called Grover’s algorithm that will theoretically
reduce the difficulty of using brute force to find a
symmetric key. In the worst case, an AES 128-bit key will
be weakened to the equivalent of a 64-bit key, which is not
considered sufficiently strong. A 256-bit key, in the worst
case, will have the same strength as a 128-bit key does
now. For this reason, moving toward AES-256 is
recommended by some [17].

However, NIST’s post-quantum recommendations, at the
time of this writing, do not require an increase and note
that it is highly likely that quantum computing will have
much impact on AES. In an FAQ, they note a number of
expected limitations and, as a result, that “…it is quite
likely that Grover’s [quantum] algorithm will provide little
or no advantage in attacking AES, and AES 128 will remain
secure for decades to come” [193].

On the other hand, the asymmetric algorithms discussed
in this chapter all rely on certain types of mathematical
problems that are “hard” to solve. Without defining what
“hard” means, it is enough to simply say that it is
impractical to invert the mathematical operations
necessary to undo the security of these asymmetric
algorithms. That will all change with quantum computing
because all of the current types of “hard” problems are
“easy” with quantum computing. That cannot be fixed with
bigger key sizes; the underlying mathematics simply will
not work anymore.

The good news is that there are other types of hard
mathematical problems that are known to be hard even for
quantum computing. Algorithms based on these ideas are
called quantum resistant. Research teams from all over the
world are working, right now, to find effective and efficient
quantum-resistant algorithms. The various algorithms, their



variations, and competing implementations are tested and
vetted in public, peer-reviewed forums. In a future much
closer than quantum computing, these algorithms will be in
place and fully operational. It is believed by most that when
quantum computing comes around, the world will have
already migrated to quantum-resistant cryptography.

This does mean, however, that at some point soon-ish,
much of the information about asymmetric cryptography in
this chapter will be obsoleted to some degree or another.
Because the new quantum-resistant algorithms are not yet
finalized and in production, however, I really cannot begin
to discuss them. So the information in this chapter is the
best I can give you for the time being. But you might need
to pay attention to the topic and keep your eyes open.
There will likely be a lot of changes in the coming years.

Summary

In this chapter, you learned about the cryptography that is
commonly used to protect data whether stored on a
computer or being transmitted over the Internet. Most
cryptography tries to solve the problems of confidentiality,
data integrity, identity authentication, and data origin

authentication. The examples in this chapter dealt with
everything except identity authentication. That problem
will be addressed in the next chapter.

The cryptographic technologies in this chapter are
sometimes called primitives. A cryptographic primitive is
like a basic building block that can be reused in many
different operations. The other topic of the next chapter is
how these primitives can be put together into practical
systems.

The primitives covered included three basic divisions:
unkeyed primitives, symmetric cryptography, and
asymmetric cryptography. Hashing is an unkeyed primitive



and is used for generating “fingerprint” codes for arbitrary
data. Symmetric cryptography uses algorithms with a
single shared key used by all participants to encrypt and
decrypt data and to create and verify Message
Authentication Codes (MACs) on data. Finally, asymmetric
algorithms use key pairs to perform various operations. The
key pair includes a private key that should not be shared
with anyone and a public key that can be shared with
everyone. Using public key cryptography, it is possible to
encrypt small messages, create digital signatures, and have
two parties generate a symmetric session key “out of thin
air.”

Asymmetric cryptography is often used in combination
with symmetric cryptography. The asymmetric algorithms
are typically used to establish an initial origin of the data
and establish a shared secret in the form of a one-time use,
symmetric session key. Using this session key, the parties
can transmit bulk data between one another using
symmetric algorithms for both confidentiality and data
integrity.

In addition to this high-level overview, you also learned
about some of the basic parameters and configurations of
the various algorithms. This includes learning about key
space (the total number of keys that can be used in an
algorithm) and block size for block ciphers. You learned
about the need for unique key-IV pairs for symmetric
algorithms. And you learned about basic rules of the road
for stream ciphers.

The one-time pad (OTP) is a stream cipher that
combines the plaintext with a random key that must be the
same size as the plaintext. This makes the one-time pad
impractical for most applications, but it is also what makes
it information-theoretically secure. This means that there is
no information an attacker can get about the plaintext from
the ciphertext, and it is also impossible to attack with brute
force.



Nevertheless, OTP is not some silver bullet for perfect
security of data. You learned about various rules that have
to be observed, such as not reusing the OTP key. You also
learned that stream ciphers, including OTP, cannot provide
data integrity. Instead, ciphers have to be combined with
something like a Message Authentication Code or MAC.
MACs conceptually are like keyed hashes. They provide
fingerprints of data that can only be generated and verified
using a key. Newer modern modes of operation, such as
AES-GCM and AES-CCM, simultaneously produce a
ciphertext and a tag (which is like a MAC).

Because OTP is not practical for most applications, other
types of stream ciphers are more common such as binary
additive stream ciphers. These stream ciphers are kind of
like OTP impostors. Instead of having a key of the same size
as the plaintext, they use algorithms to turn relatively small
keys into comparatively much larger key streams. AES in
counter mode (AES-CTR) generates the key stream by
encrypting a successive counter. Each encryption of a
counter value generates an additional 128 bits (16 bytes) of
key stream. On the other hand, the Salsa20 and ChaCha20
algorithms perform more of a hashing-like function on a
counter to produce key stream in chunks of 512 bits (64
bytes).

Salsa20 and ChaCha20 were also used to illustrate other
considerations in symmetric cryptography, such as
performance (with and without hardware acceleration) and
matters of transparency in the cryptography design
process.

In the study of the asymmetric algorithms, similar issues
emerged. For example, RSA keys are slow to generate,
while DH keys are fast. This makes DH more suitable for
“ephemeral” operations that are done once, and then the
keys can be discarded. This is crucial for the creation and
sharing of session keys, for example, because ephemeral
operations are required to maintain “forward secrecy.”



Forward secrecy is a kind of protection wherein the
compromise of a single key results in the compromise of at
most one session.

You also learned that digital signatures can be created
using a variety of techniques. RSA, for example, encrypts
the hash of the data. ECDSA and DSA, on the other hand,
produces output pairs such that a specific one of the two
values when operated on with both the data and the public
key should equal the other value in the pair. One of the
important lessons is that there are many mechanisms for
achieving the same effective result (i.e., a digital
signature).

Finally, I briefly introduced you to the concept of
quantum computing, a nascent computing technology that
will eventually obsolete the asymmetric algorithms
described in this section and require larger key sizes for
the symmetric algorithms. Fortunately, new algorithms are
already on the horizon that are quantum resistant. Most of
the cryptography community believe these algorithms will
be operational and well tested by the time quantum
computers are ready to break the old asymmetric
algorithms.

Further Reading

This chapter does not even begin to scratch the surface of
cryptography at any kind of technical level. It is meant to
give the nontechnical reader an introduction to the kinds of
problems, solutions, and problems with the solutions that
are in contemporary core cryptography technology.

For a much deeper dive into the technical aspects of
cryptography, I recommend the Handbook of Applied
Cryptography, which is freely available online [179].

Probably one of the best sources of up-to-date
information is blogs from security/cryptography
researchers like Matt Green. He focuses more on practical



deployment and usage issues. He also talks about where
things go wrong and where cryptography systems have
been “cracked,” including his own work finding
vulnerabilities in systems [116].

Another interesting source is Applied Cryptography by
Bruce Schneier. Even though this book was written a long
time ago (in computer years) and some of the content is
obsolete, there is still a lot of useful guidance and design
principles [66]. Bruce Schneier also maintains a blog that
covers all kinds of security issues including cryptography
[235].

Finally, I would like to give a personal plug for Crypto
Done Right (CDR), which is a not-for-profit project that I
am personally involved with. At the time of this writing,
CDR is just barely getting off the ground, having originally
started as a project at Johns Hopkins University based on a
grant from Cisco. Unfortunately, the project went through
upheaval when I left the university, coinciding with the
ravages of the Covid-19 pandemic. But we are getting
restarted. The stated goal of CDR is to provide a place for
noncryptographers to get the best cryptography advice for
dealing with their practical projects. Whether software
developers without cryptography experience, IT workers
that need to deploy servers, or managers that need to
figure out what a news story about crypto being “broken”
means, the CDR project is meant to put practical and useful
information into your hands [2].
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Footnotes
Note: This acronym will mean different things in different chapters, so pay

close attention to context.

 
Actually, Rijndael is a family of algorithms and had a range of configurations.

Only a subset are certified as AES.

 
Note, however, it does not work in the reverse direction. A change made to

the last block only changes the last block.

 
Although, in practice, block ciphers must do the same thing. As you saw in

the previous section, if each block is encrypted exactly the same, patterns
emerge. Modes of operation like Cipher Block Chaining mode carry over the
output from one block’s encryption into the input of the next. In short, how the
cipher encrypts the block is changed or influenced by the previous block’s
encryption. For this reason, CBC mode may be considered a form of stream
cipher even though it is not usually referred to as such.

 
Some machines cannot generate that much random data quickly.

https://doi.org/10.17487/RFC7539
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Even though this is true from a purely theoretical perspective, an attacker

may have some contextual knowledge that would permit them to recognize the
“correct” plaintext. In practice, however, for a message of even a relatively
short length, the odds of getting a zero key (key of all zeros) are very unlikely.
For the short 14-character message I used as an example, the odds of getting
the zero key are  .

 
In order to make the image displayable, the header portion of the BMP file is

not modified. But all of the data that comprises the visible image is XORed.

 
There are other modes of operation that produce a stream cipher, but

counter mode is the most common and probably the easiest to understand.

 
Although AES-CTR mode and other modes like it do have limits on how large

the key stream can safely get, these details are outside the scope of the book.

 
Sometimes, the term key exchange is used as a synonym for key agreement.

However, I am going to follow the Handbook of Applied Cryptography’s
nomenclature. Key establishment is getting the parties to share a key. Key

transport and key agreement are two forms of key establishment. The term key

exchange can refer to various algorithms including the Diffie-Hellman
algorithm discussed in this section, but it is not a synonym.

 
Diffie-Hellman Ephemeral is abbreviated DHE. However, it is such a

common mode for DH that even when it is not expressly stated, or even when
the DH abbreviation is used, it may very well be DHE. You may need to ask for
clarification if it is not clear from context. This is also true for ECDHE.
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Chapter Quick Start Guide

Using the building blocks from the previous chapter, this
chapter puts them together in two example systems. One
of these, Transport Layer Security (TLS), is used to
secure Internet communications. One key consideration
for the design of a cryptographic system is protection
against a man-in-the-middle, a model wherein the
attacker can intercept, and potentially modify or
generate, messages.

Key Concepts

1.
Data at rest and data in motion are examples of the
states of data (analogous to states of matter).

 
2.

Man-in-the-middle is an attack model where the
attacker can get in between communications and
impersonate either side to the other.

 
3.

Transport Layer Security, or TLS, provides an end-
to-end encrypted channel; TLS is used to secure
HTTPS.

 

A Public key infrastructure is used to provide a basis

https://doi.org/10.1007/978-1-4842-9560-1_6


4. A Public key infrastructure is used to provide a basis
for being able to trust a certificate by chaining it to

already-trusted entities.
 

5.
Certificate transparency is a relatively new
technology designed to prevent compromise of roots
of trust in PKI.

 
6.

Key management is one of the most challenging
problems in cryptography; keys have a life cycle
including phases such as creation, distribution,
management, archival, and deletion.

 

Common Pitfalls and Misunderstandings

1.
Reminder from the last chapter, YANAC (You Are
Not A Cryptographer); please do not try to put
together your own cryptographic system.

 
2.

Keeping the private key secure is of utmost
importance. Remember, as long as the key is secure,
anything else about the system can be known
(encryption algorithms, key exchange protocols,
even the encrypted data itself), and the system is
still secure.

 

Useful Vocabulary

TLS: Transport Layer Security; provides
confidentiality, authenticity, and integrity on an
Internet connection
Certificate Authority: A trusted party responsible for
signing certificates used to prove identity
Secure Authenticated Channel: A communication
channel that provides both confidentiality and
authenticity



DH: Diffie-Hellman; an algorithm for negotiating a
session key between two parties using public and
private keys
IV: Initialization vector; a public piece of data used to
randomize inputs to AES modes like CBC
MAC: Message Authentication Code1

In Chapters 4 and 5, I introduced a number of building
blocks of cryptography. These building blocks are often
called cryptographic primitives. These primitives included

Hashing functions
Symmetric key encryption and decryption
Symmetric key Message Authentication Codes (MACs)
Asymmetric key signatures
Asymmetric key methods for key exchange
These primitives are generally not useful by themselves

but have to be combined into a functional cryptographic
system. Different types of systems have different purposes
and can be used in different environments. But generally, a
cryptographic system will provide some combination of
data protections, authentication functions, and
authorization functions.

Cryptographic systems are designed to protect data in
various states. For example, a cryptographic system might
be designed to protect data in storage. Another system
might be designed to protect the data traveling across the
Internet. Other systems might be appropriate for
specialized applications that deal with both stored and
transmitted data. In every case, however, the cryptographic
system has to prevent attackers from violating the expected
data permissions, defeating the authentication, and/or
obtaining unauthorized access.

In particular, the data protections enforced by a given
system are often one or more of the security goals



discussed in Chapter 4: confidentiality, data integrity,
entity authentication, and message origin authentication.
For example, a cryptographic system that is tasked with
ensuring confidentiality must enable the authorized parties
to read the data while at the same time preventing
unauthorized parties from doing so.

In this chapter, I review a cryptographic system
designed for protecting data at rest in the form of a file
encryption system. I also review the ubiquitous TLS
(Transport Layer Security) protocol that is used to provide
the security for HTTPS connections on the Internet. This is
an example of protecting data in motion. The purpose is not
just to introduce the technologies; it is also to illustrate
some of the common solutions and pitfalls present in these
kinds of systems. If you can understand these issues, you
will be better positioned to understand any cryptographic
system.

On that note, there are four other cryptographic systems
discussed in this book in other chapters. In Chapter 7, I
discuss how ransomware uses a cryptographic system as a
means to attack users, rather than as a means for users to
defend themselves. In Chapter 9, I review the OAuth
protocol, which is used to provide Single Sign-On (SSO)
capabilities on the Web. And finally, in Chapter 10, I
discuss two cryptographic systems used for protecting
email communications. Again, however, use this chapter to
learn about important concepts applicable to any of these
systems.

The rest of this chapter is organized as follows. First, I
introduce a very simplified and basic model of a
generalized attacker by discussing the concept of a man-in-

the-middle (MITM). Next, I will introduce how different
cryptographic primitives are commonly used in a
cryptographic system and how these thwart attackers.
After that, I introduce the first example system: TLS, which



is used by HTTPS and is, therefore, a key component to
much of the security of the Internet. Within this discussion
is an overview of the public key infrastructure that is used
to make TLS work. The last section of the chapter presents
a summary of the IEEE 1619.1 storage encryption
protocol.2

The Attacker: Man-in-the-Middle

Before diving into this section, I acknowledge that the term
“man-in-the-middle” is not considered inclusive. There are
a number of alternatives being considered such as “person-
in-the-middle.” While there is no standardized form yet
accepted, I will continue to use “man-in-the-middle” while
acknowledging that women, nonbinary people, and others
may be just as thieving, scheming, and deceptive as men.

One of the common objectives for an attacker is to get in
between two communicating parties. If an attacker can get
in between Alice and the bank, the attacker can read any
messages, modify any messages, and even insert
completely new messages. This kind of attacker, one that is
in between communicating parties and can read and alter
messages, is a man-in-the-middle (MITM).

How would an attacker ever get “in the middle”? One
way is to intercept communications.

The Internet’s default communications protocols do not
have any security guarantees. For example, they do not
provide any confidentiality. None of these protocols do any
kind of encryption. Internet packets, when transmitted, are
handled by a series of intermediaries such as devices
known as routers and proxies. If an attacker controlled one
of these devices, perhaps by being an insider or through an
attack on the device, they could easily read any data
transmitted between parties communicating over the
Internet.



At least as bad, if not worse, is the fact that default
Internet protocols do not provide authenticity. If an
attacker took control of a communication node, they could
intercept any communications passing through those
nodes. Instead of letting them pass on to the real
destination, they could respond themselves and pretend to
be the real destination.

One way this happens in practice is attackers that take
advantage of a public WiFi, such as the WiFi available at a
cafe, airport, library, or so forth. Suppose you sat down to
use the Internet at such a location. You decide to browse
over to your bank to check your balance. The packets that
you transmit over WiFi are visible to other individuals using
the same WiFi. So, even if they did nothing else, without
some cryptographic system to encrypt your data, the
attacker could simply observe all of your traffic, read your
balance, and otherwise spy on your actions. But worse, the
attacker could pretend to be the bank and respond to your
laptop as if they were the bank. So long as their packets
got to you before the real ones, your laptop would accept
them without question. Now the attacker could lie to you
about your balance or, worse, alter any payments or other
transactions you might make.

What about data in storage? If you are just encrypting
the data on your hard drive, can there even be an attacker
in the middle? If your hard drive were stolen (e.g., your
laptop was stolen at an airport), any of the people that
access your drive become MITM attackers. If there were no
cryptographic protections, they could certainly read your
data. But they could also alter the data and then “return”
your laptop. In the case of storage, you might be both
parties, and a thief would be an attacker in the middle
between you and your later self.

Cryptographic systems have to be designed to deal with
more specific threat models than this, but this general
description of an attacker that can read, write, and modify



messages is a good starting point for why cryptographic
systems are needed and why we use the components we do
to create them.

Putting Together a Cryptographic

System

Suppose that a person sits down to their computer and
wants to connect to their online banking service. As I did in
Chapter 5, I will call this person Alice. Perhaps Alice would
like to check her balance or maybe pay a bill. How should
the data (i.e., Alice’s balance) be protected?

Two common issues are protecting Alice’s balance while
that data is at rest and protecting Alice’s balance while the
data is in motion. Based on the concept that matter has
states (e.g., solid, liquid, and gas), data is described as
having states. The two most commonly dealt with are data

at rest, such as data stored on a disk, and data in motion,
such as data being transmitted from one computer to
another.3 Protecting data in these different forms, or
states, has some similarities but also some important
differences.

The goals, of course, are generally the same. I already
referenced confidentiality, data integrity, entity
authentication, and message origin authentication in the
introduction. For simplicity, however, I am going to reduce
these four goals to three slightly more generic properties:

Confidentiality
Authenticity
Integrity
Confidentiality remains the same in both lists. For the

purposes of our cryptographic systems, confidentiality
means that only authorized parties can read the data.



Integrity is more or less the same as “data integrity” and
is the flip side of confidentiality. For the purposes of our
cryptographic systems, integrity means that only
authorized parties can write (or modify) the data.

Authenticity is a combination of entity authentication
and origin authentication. Within a cryptographic system,
this property means that the publisher of the data (e.g., the
author or sender) is verifiable. This includes entity
authentication because the publisher’s identity is verified.
It also includes origin authentication because the message
is verified as coming from the identified publisher.

It should also be noted that authenticity must include
integrity. If the data has been altered, then authenticity
would no longer verify (because the data publisher cannot
be verified). However, integrity can be had without
authenticity. In certain cryptographic systems, two
communicating parties do not verify each other’s identity
but do ensure that the data transmitted between them is
not altered. For this and other reasons, I have simplified
the terms to focus integrity on the modification of the data
itself and authenticity to refer to knowing the source.

Also, it is important to understand what is meant by
read and write in this context. When I say that only
authorized parties can read the data, I mean understand

the data. An unauthorized party might be able to get the
encrypted data, but so long as they cannot decrypt the
data, they cannot “read” it from a security perspective.
Similarly, cryptographic systems often protect data against
unauthorized modification by using verification codes.
Message Authentication Codes and signatures, both of
which were discussed in Chapter 5, attach a code to the
data being protected. When I say that these kinds of codes
ensure that only authorized parties can write the data, I
mean that any unauthorized write can be detected. That is,
an attacker may, in fact, change the data, but the



verification code would prove that the changes were
unauthorized.

How do these various goals help Alice and her balance?
Confidentiality is probably the most obvious. Only
authorized employees of the bank and Alice should ever be
able to read Alice’s balance. Most people can understand
wanting to keep that information private. This
confidentiality should apply whether the data is sitting on
the bank’s server or whether it is in transit across the
Internet.

Integrity is equally important. Clearly, nobody should be
able to alter Alice’s balance, either on disk or on its way to
Alice’s browser. Given that much of our currency and
financial data is simply data recorded electronically, data
integrity prevents Alice’s money from being stolen or
inflated.

The authenticity property is the one most commonly
overlooked by those unfamiliar with cryptography. This
property is most easily understood from the perspective of
data in motion between Alice and the bank. How does Alice
know that she is actually communicating with the bank?
When communicating over the Internet, messages are
passed along a chain of intermediate devices. What has
prevented one of these devices, either because of a
malicious operator or intrusion from an attacker, from
pretending to be Alice’s bank? Authenticity ensures that
Alice can verify that she is, in fact, speaking to the real
bank and not an impostor.

Cryptographic systems also deal with authentication
concepts, such as those discussed in Chapter 2. For
example, data stored on disk is often protected with a
password that is converted into a key for the encryption
algorithm. I discuss this in more detail later in the chapter.
The two examples in this chapter do not do much with
authorization, though. As you will see, you either get access



or you do not. But the other cryptographic systems
described in later sections will deal with more fine-grained
permissions and a more clear authorization model.

Putting the Pieces Together

Now that I have walked through some of the goals of a
cryptographic system, it is time to look at how
cryptographic primitives can be put together to enforce or
enable those goals. In order to do this, it is necessary to
break down our security goals into more concrete tasks.

Confidentiality Components

Let’s start with confidentiality. Both of the example systems
in this chapter provide confidentiality. One system provides
confidentiality at rest, and one provides confidentiality in
motion. In both cases, symmetric encryption will be used to
provide the encryption of the data. Why symmetric
encryption and not asymmetric encryption? As discussed in
Chapter 5, symmetric encryption is designed to work on
any amount of data and is fast, while asymmetric
encryption is designed for small messages and is very slow.
Symmetric is almost always the right choice for what is
called “bulk” encryption.

Of course, encryption is not useful unless the data can
also be decrypted. Based on what you learned in Chapter 5,
can you see what is required for authorized parties to be
able to both encrypt and decrypt? In general, both the
encrypting party and the decrypting party will need to
agree on the following:
1.

The encryption algorithm, such as AES or ChaCha20  
2.

The algorithm parameters, such as CBC or CTR mode 
3.

The mode parameters, such as IV or nonce  



4. The key  
Of these, the key presents an interesting challenge

because it must be kept secret between the two parties.
This is a nontrivial challenge.

The obvious challenge is how do both parties share the
key? Especially for data in motion, the parties may be
separated by geographic distance. For data at rest, the two
parties may be the same party (i.e., the same person that
encrypted the data is now decrypting the data), but that
person is separated from themselves in time. How is the
key kept or maintained by the person over time? The key
must be kept secret, so it generally cannot be transmitted
unencrypted or stored insecurely. What good would it do to
encrypt data on disk and store the key to decrypt the data
on the same disk?

But there are less obvious challenges. For example, in
the cases where the key is shared between two parties,
how long should the key be shared between them? One
thing that is hopefully obvious is that the same key cannot
be shared across multiple pairs. If Alice and Bob share a
key, and Alice and Charlie share the same key, Charlie has
access to all of Alice and Bob’s secrets.

For this and many other reasons, it is common in data-
in-motion communications to use a session key, or a key
that is only used for a specific communication period (the
“session”).

Data at rest generally does not have the same kind of
sessions as data in motion does. But it must also use
multiple keys. In some cases, using a different key for each
encrypted chunk (such as a fixed-size chunk of a file) is
recommended by the system. In all cases, risks increase as
more ciphertexts are created by the same key.4 Thus, keys
have a key life cycle that includes creation, distribution,



storage, archival, and destruction. All of this must be
managed by the cryptographic system.

Moreover, there must be a way for the parties in the
system (e.g., Alice and Bob) to synchronize their keys. For
symmetric key cryptography, they must share the same
keys. If Alice destroys a key and creates a new one, Bob
must mirror the process in order to continue being able to
read Alice’s encrypted data.

Cryptographic systems tend to solve these problems
with two operations. First, Alice and Bob (or whatever
parties are involved) will have a means for exchanging a
master key with each other. As you learned in Chapter 5,
algorithms like Diffie-Hellman and RSA encryption enable
these kinds of exchanges. Second, Alice and Bob will use a
protocol that will enable the creation of all other keys.
Different approaches to this will be discussed in each
example cryptographic system.

As alluded to earlier in this section, it is also necessary
for Alice and Bob to agree on IV or nonce parameters and
modes of operation. Although this is somewhat less
complicated because it does not have to be secret, there
are still a number of issues that must be addressed. For
example, IVs should generally not be predictable even
though they can be public information once created. In
other cases, data exchanged must not be modifiable by
attackers for various reasons. And that leads us to our next
set of requirements.

Integrity Components

Integrity requirements take on many different forms, but
two general categories are the integrity requirements that
are required for ensuring there have been no unauthorized
modifications to protected data and the integrity
requirements for establishing authenticity. I will handle the
latter in the next section.



For protecting bulk data, MACs (Message
Authentication Codes) are a common solution. A MAC is
typically kept with the protected (possibly encrypted) data,
either in transmissions or in storage. Either way, the MAC
must be checked before determining that the data is valid.
For example, a chunk of encrypted data may be transported
over the Internet. A MAC generated for the encrypted data
is sent with it. Suppose that an attacker intercepts either,
or both. If the attacker makes any attempt to alter either
one, the cryptographic system at the receiving end can
verify the MAC as the first step. If the MAC fails, there is
no need to proceed with the decryption process.

MACs, as discussed in Chapter 5, require a key. Most
MACs are symmetric key based, so all involved parties
must share the same key to be able to generate or verify
the data. All of the same key life cycle issues discussed in
the previous section apply here as well. However, the
solutions can be, and usually are, combined. That is,
whatever process is used to generate additional keys for
confidentiality can also be used to generate keys for
integrity. Thus, Alice and Bob can exchange a single master
key and then derive a nearly limitless number of keys for
confidentiality and a nearly unlimited number of keys for
integrity.

In modern best practices, however, this entire set of
requirements for integrity is completely integrated into the
requirements for confidentiality by the use of Authenticated
Encryption with Additional Data (AEAD). As discussed in
Chapter 5, these algorithms perform both encryption and
message authentication (integrity checking) with a single
key as part of a single operation. For many reasons, this is
the preferred approach whenever possible.

Authenticity Components

Many cryptographic systems require some kind of
assurance that Alice is indeed talking to Bob or that Bob is



indeed talking to Alice. Asymmetric cryptography is often
used for these operations.

What makes asymmetric cryptography so effective for
proving identity is the ability to assign one private key to a
single party. In symmetric cryptography, the parties have
to share a key. The same shared key can never be used to
prove identity between more than two people. Suppose
Alice, Bob, and Charlie all share a key. If a message arrives
claiming to be from Alice with a MAC attached to it, Bob
cannot be sure if Alice sent it. After all, Charlie could have
forged it and pretended to be Alice. The only solution to
this would be for Alice to have a uniquely shared key with
every party she wishes to prove her identity to. That is a
significant key management challenge. Even if such a
system were constructed, Bob could still forge messages
from Alice to himself.5

But with asymmetric cryptography, Alice can have a
private key that no other party in the world has ever had
access to. Alice can issue her public key far and wide.
Using her private key, Alice can sign messages and
distribute them. Anyone with Alice’s public key can verify
that Alice published the message because nobody else has
(or should have!) the private key necessary to generate the
signature.

Signatures, like MACs, are typically sent with the
message they sign. The recipient receives the data and the
signature, verifies the signature for the data with the public
key, and knows both that the message is unaltered and who
the publisher was. Notice that this ensures that the
message has integrity as hinted at in the previous section.
The message must be unaltered because if the message
was altered, the signature would not verify.

Authenticity components are often combined with other
components, such as the key exchange required for
confidentiality and integrity of the bulk data. For example,



even if Alice and Bob are using Diffie-Hellman to create a
shared symmetric key between them, they need to know
that they are, in fact, performing the Diffie- Hellman
operation with each other. For example, let us bring back
our MITM attacker from earlier in the chapter. If Alice
begins a Diffie-Hellman exchange with Bob, what prevents
an MITM attacker from intercepting this message and
responding to it themselves? Alice would have no idea that
the messages coming back were from the attacker instead
of Bob. Alice would still derive a shared key using DH, but
the key would be shared with the MITM attacker instead of
Bob! Figure 6-1 illustrates this attack.

Figure 6-1  Diffie-Hellman exchange subverted by an invisible MITM

However, using signatures, Alice and Bob can validate
that the data they are receiving for the DH operation is
from the other. If the signatures on the DH data do not
match, they will reject the operation. If the signatures do
match, they can be assured that the DH exchange is taking
place with the correct party. Once assured of the identity of
their partner, they can complete DH to produce a master



key and subsequently derive all of the necessary additional
keys. The protected DH exchange is shown in Figure 6-2.

Securing Web Communications:

HTTPS and TLS

Our first cryptographic system that puts together these
concepts is a system that secures data in motion.
Specifically, it protects network communications, including
communications over the worldwide Internet, from an
MITM attacker. I will continue with the example of Alice
and her bank. In this specific example, Alice is
communicating with her bank over the Internet (e.g., online
banking).

To be protected, Alice needs a security protocol that
solves at least three problems. In order to be safe from
MITM attackers, Alice requires that even if her packets, or
the bank’s packets, are intercepted, the attacker cannot
read the data. Also, if these packets are intercepted, the
MITM attacker should not be able to modify them
(undetectably). And finally, the attacker should not be ble
to generate their own packets and then lie about them,
pretending that they are from the bank.



Figure 6-2  Diffie-Hellman protected from MITM attacks by signing the DH
public key. The DH public key must, itself, be signed by another private key
(not shown)

As explained earlier in this chapter, the original, default
protocols of the Internet do not provide any of these
capabilities or protections. However, the TLS protocol,
which is layered on top of existing Internet capabilities,
does.

The TLS Protocol

This section does require understanding computer
networks a little bit. If you are unfamiliar with how
computer networks operate, you should review Appendix C.
It would be helpful to understand “protocol,” “protocol
stack,” and the “OSI model.” Understanding the concepts
behind TCP/IP would also be helpful.

The goal of the TLS protocol, which stands for
“Transport Layer Security,” is to provide confidentiality,
authenticity, and message integrity for both ends of a
connection on the Internet. This is also called end-to-end

encryption, meaning that there are no decryptions along
the path between the communicating parties. Another



common term for describing this kind of connection with
both confidentiality and authenticity between two parties is
a secure authenticated channel or SAC.

In terms of the network stack, TLS operates above the
TCP layer (layer 4) and below the application layer (layer
7). The exact identification of what layer of the OSI model
TLS fits into is debated. Nevertheless, TLS operates like a
transport layer from the perspective of applications.

This is the case with HTTPS. HTTPS is the secure
version of HTTP, but it is, in fact, just HTTP (a layer-7
protocol) using TLS for transport instead of TCP. Most
browsers used to always show the HTTP or HTTPS protocol
in the URL bar. However, it is now more common to just
show the URL and a lock icon if HTTPs is used. Still, if you
click to edit the URL, many times the HTTPS will still be
displayed. Figures 6-3 and 6-4 show the website example. 
com over an insecure HTTP connection and a secure HTTP
connection, respectively.

Figure 6-3  The URL bar for Google Chrome when navigating to http:// 
example. com. This is the insecure version of the website, and Chrome shows
the padlock in its unlocked state

http://www.example.com/
http://example.com/


Figure 6-4  The URL bar for Google Chrome when navigating to https:// 
example. com. This is the secure version of the website. All data is sent over a
TLS secure authenticated connection. Chrome shows the padlock in its
unlocked state. The URL bar has been clicked for editing causing Chrome to
show the https

By way of background, TLS was originally named the
“Secure Socket Layer” (SSL) protocol and was created by
Netscape in the mid-1990s. Netscape was an early Internet
company that developed one of the first web browsers
called Netscape Navigator. SSL Version 2 was the first
public release of the protocol, followed by version 3 shortly
thereafter. Subsequently, it received a few changes and
became an open standard renamed TLS 1.0.6 The updated
versions since that time have been released to update
cryptography and alleviate problems with the
cryptographic protocol. Version 1.2 has been around for a
number of years and is still considered current. Version 1.3
was also released more recently, but is not currently being
described as a replacement to 1.2 (both versions are
considered current).

https://example.com/


Figure 6-5  An example TLS data packet. The encrypted section includes the
data as well as the Message Authentication Code

The TLS protocol implements a cryptographic system
with the components I described earlier in this chapter. It
makes use of the following primitives:

Asymmetric cryptography for digital signatures (e.g.,
RSA signatures)
Asymmetric cryptography for key agreements (e.g.,
Diffie-Hellman)
Symmetric encryption (e.g., AES)
Message Authentication Codes (e.g., HMAC)
Modes of operation (e.g., CTR, GCM)
As illustrated by this list of concepts, there is a lot of

cryptography that goes into making TLS work. To help walk
through how it works, I am actually going to start in the
middle and work backward toward the beginning. The
middle of TLS is when regular data transfer is happening.
When secure messages are being sent over a protected TLS
channel, the data is usually encrypted with a symmetric key
algorithm to provide confidentiality and protected with a
Message Authentication Code to prove authenticity and
message integrity.

TLS Data Transfer

Data transferred in TLS is protected by wrapping data
chunks (called “fragments”) in TLS packets that are



protected with encryption and message authentication.
Figure 6-5 illustrates one example of a TLS data packet.

On the sending side of the TLS process for this kind of
data packet, the plaintext data is first protected with a
MAC code.7 Then, the plaintext, MAC code, and padding
are appended together. The combined data (plaintext,
MAC, and padding) are then encrypted with AES and a
randomly generated IV. A TLS header and the IV are
prepended to create the full TLS packet. Once constructed,
the TLS packet is sent over the network.

Figure 6-6  A transmission and reception of TLS data for an appropriate
configuration. On the sending side, the data first has a MAC generated for it,
and then the data and the MAC are encrypted. When the TLS packet is
received, the data and MAC are decrypted. If the MAC verifies, the data is
accepted as authentic

Once the TLS packet arrives, the TLS receiver first
decrypts the packet, making use of the IV to do so. The
decrypted data includes plaintext, MAC, and padding. The
padding is stripped off, and the MAC code is verified. If the
MAC verifies correctly, the data is accepted as correct and



passed on to the application process expecting it. This
process, on both the sending and the receiving side, is
illustrated in Figure 6-6.

Please note that TLS is extremely configurable
(especially in version 1.2). This is just one example of how a
data packet can be formed. In this example, the data is
protected by encryption and a MAC. The MAC is actually
included in the encrypted segment. The receiving TLS
system must first decrypt the segment, then use the MAC
to determine if the contents have been altered. It is
sometimes helpful to think of the encrypted segment as an
“envelope.” Decrypting the section is like unpacking data
out of the envelope. So when this segment is decrypted, the
plaintext data and MAC are extracted. The padding is just
data inserted to make the total length a multiple of 16, as
some modes of AES (e.g., CBC mode) only work on
multiples of 16 bytes.

This example is useful, however, to illustrate
confidentiality, authenticity, and message integrity. For
example, suppose that an attacker that has managed to get
between the sender and receiver attempts to read the data.
Because the attacker does not have the required symmetric

AES key, it is impossible to decrypt the record fragment. So
this TLS data packet has preserved confidentiality.

Second, the MAC is used to ensure that the data came
from the authorized source. Remember that there are ways
to change an encrypted message that cannot be read. But if
the attacker was somehow able to change the data inside
the encrypted envelope, the MAC code should8 fail
verification on the receiving side, and the receiver will
know that the data has been altered. The attacker cannot
generate a fake MAC code because the attacker does not
have the key.

A verified MAC proves both authenticity and integrity.
Only the party with the shared key for MAC generation



could have generated the MAC. Any changes by an
unauthorized party should result in a MAC verification
failure. The man-in-the-middle is thwarted by the security
on the data packet.

But wait! We said that the attacker could not read the
data, or forge the data, because the attacker did not have
keys. Where did the TLS sender and receiver get their keys
from? As I said, I started in the middle. The middle is where
both sender and receiver have symmetric keys that enable
them to send data packets. If they have valid keys, the data
packets have the required security properties.

This is where the working backward part comes in.
Before the data transfer part of TLS began, both sides
needed to establish keys. These keys are ephemeral keys
that will only be used for a single session (data sent over
TCP until the connection is closed). The question to answer
is, where do these session keys come from?

The TLS Handshake

The TLS protocol begins with an initialization process
called the TLS handshake. It is an exchange of data
between the TLS endpoints in order to do two very
important things. First, the TLS handshake must
authenticate identity.9 The second goal is to mutually
derive the ephemeral session keys.

The handshake is also where the various TLS versions
are most different from one another. For the purposes of
illustration, I will review the TLS 1.2 handshake. TLS 1.3
simplifies the handshake and speeds it up considerably. So
if you can wrap your head around how 1.2 works, 1.3 will
be much easier.

In the TLS 1.2 handshake, the client starts out by
sending what is called a Client Hello message. The Client
Hello message communicates to the server that the client
wishes to start a TLS session. It also passes along



configuration information necessary for setup. Note that
this message is not encrypted. It cannot be encrypted yet
because neither side has any keys of the other.

Once the server receives the client’s hello message, it
responds with a Server Hello message with configuration
information. But the server sends several more messages
right after. The first is a Certificate message, which
includes the server’s certificate. I will explain certificates in
detail in the next section. For now, just know that a
certificate contains a public key and data about the public
key such as whose public key it is. The server distributes its
public key to the client in the certificate so that the client
can use the public key to validate anything signed by the
server’s private key.

But if you stop to think about it, this is really
problematic. It is somewhat like when a shopper at a retail
store uses their credit card, and the store clerk notices the
credit card is not signed. The clerk sometimes asks
shoppers (this has happened to me) to sign the card in
front of them and then compares the signature on the card

to the signature on the receipt. The clerk literally saw the
shopper sign both the card and the receipt in front of them.
Why would they be different?

Similarly, the client got a public key from the server and
then uses it to verify signatures from the server. Of course,
they are going to match. The server can hand out any
public key it wants, so it is not difficult to hand out a public
key that will match.

To make this really work, the client has to have some
assurance that the public key it receives is actually the true

public key of the server. In the previous example of Alice,
she (or rather, her browser) needs to know that the public
key in the certificate in the TLS message is truly the public
key belonging to her bank.



In the next section, when I discuss certificates, I will
explain in detail how they are verified and authenticated.
For now, accept on faith that the certificate is verified, and
Alice’s browser trusts that the certificate it received
actually belongs to Alice’s bank.

In addition to the certificate, the server also transmits a
Diffie-Hellman message. As explained in Chapter 5, DH is
used for creating a new shared key “out of thin air”
between two parties. The server transmits its part of the
DH exchange in a message called a Server Key Exchange

message. This message is signed by the server’s private key

to ensure that the DH parameters cannot be altered by a
man-in-the-middle attacker. This information will be
verified by the client. (Note: TLS can be configured to use
RSA key transport instead of Diffie-Hellman, but I will use
the DH configuration for this example.)

Finally, the server sends a conclusory message called a
Server Hello Done message. The server has, therefore, sent
four messages together: Server Hello, Certificate, Server
Key Exchange, Server Hello Done.

Once the client (e.g., Alice’s browser) receives all four of
these messages, it knows that it is talking to the true server
(as will be explained in the next section), and it has the
server’s DH data. The client uses the public key in the
certificate to validate the server’s DH data and make sure
it was not sabotaged or altered by an unauthorized party.
Once the DH information from the server is validated, the
client now generates its own DH data and combines both to
derive a session key.

The client is now ready to send its own data back to the
server. First, it sends its own DH data to the server in a
Client Key Exchange message. The client knows that the
server will use this message to generate the same session
key. The client knows that it and the server can now
exchange encrypted messages. It sends a special message



called a Change Cipher Spec, which tells the server it is
now switching to encrypted messages, and sends an
encrypted Finished message.

Figure 6-7  The first half of the TLS handshake between Alice’s browser and
the bank’s web server

The server receives the client’s key exchange data,
change cipher spec, and finished messages. It uses the key
exchange data to derive the same session key, which it then
uses to decrypt and verify the finished message. If all of
this data verifies, the server knows that it and the client
share a key. It will send its own Change Cipher Spec

message followed by an encrypted Finished message.
To make this more clear, I will walk through the

handshake using Alice and the bank web server as an
example. As shown in Figure 6-7, the bank’s server starts
out with a certificate and a corresponding private key.
Remember, certificates contain public keys! The private
key is the inverse of the public key, which is why it is



written  . What is signed with the private key is verified
with the public key in the certificate.

Alice’s browser begins the handshake by sending the
Client Hello. The server responds with the four messages:
Server Hello, Certificate, Server Key Exchange, and Server
Hello Done. As shown in the figure, Alice’s browser
receives the bank’s certificate from the Certificate message
and authenticates it. I will detail the authentication process
in the next section. For now, just assume that the
certificate authenticates correctly.

Once the certificate is authenticated, Alice’s browser
knows (or has confidence that) the certificate is from the
bank’s web server, and the public key in the certificate is
the authentic public key for transactions with that server.
The public key could be RSA, DSA, or ECDSA. For this
example, I will say it is an RSA public key.

Alice’s browser also receives the bank’s Diffie-Hellman
share in the Server Key Exchange message. Although the
more correct term and the term used in Chapter 5 is Diffie-
Hellman public key, the term “key share” is often used
instead, possibly to avoid confusion with the RSA public key
in the certificate. Either way, it is the server’s contribution
to the Diffie-Hellman exchange. Refer back to Chapter 5 if
you need to review how DH works.



Figure 6-8  The second half of the TLS handshake between Alice’s browser
and the bank’s web server. The browser and the server now share a session key
they can use to exchange encrypted information

But Alice needs to be sure that this DH key share is
really from the bank web server. What if a man-in-the-
middle intercepted the real DH key share and sent a fake

one in its place? Fortunately for Alice and her browser, the
server signed the DH key share using its private key.
Alice’s browser uses the public key from the certificate to
validate the signature on the DH key share.

So what does Alice’s browser know now? It knows that it
has an authentic certificate for the bank’s web server. And
it knows that the DH key share was signed by the private
key associated with the public key in that authentic
certificate. Assuming the private key has not been
compromised, and assuming the authentication of the
certificate was correct, the DH key share received must be
from the bank’s web server. It cannot be a forgery or
modified by an unauthorized party.

Moving on to Figure 6-8, the next phase of TLS begins.
Armed with the information gained in Figure 6-7, Alice’s



browser trusts the DH key share. The browser now uses its
own key share (which it generated at some point during
this exchange) and combines the two key shares together
according to the Diffie-Hellman algorithm. This produces
the session key I have labeled S. Alice’s browser transmits
the client key share in the Client Key Exchange message
and then sends a Change Cipher Spec message. The
Change Cipher Spec message informs the server that the
next message will be encrypted.

Alice’s browser generates a Finished message for itself
and encrypts it using the session key S. This encrypted
Finished message is transmitted to the server.

For the server’s part, it receives the client key share in
the Client Key Exchange message and accepts it without
authentication. Using this DH key exchange, and its own
key exchange that it sent earlier, it will derive the same
session key S. What does the server know now? It knows it
is sharing a session key with someone. Unlike the client,
the server has done no validation yet. The server moves
forward anyway. After the alerting Change Cipher Spec
message, the server receives the client’s encrypted
Finished message. It is able to decrypt and validate this
message using session key S.

Why does Alice’s bank not authenticate Alice? Once the
TLS exchange is finished, the bank still will not know that
Alice is Alice. Only Alice knows (through her browser) that
she is talking to the bank. The reason for this is because
most servers have their own way of authenticating the
client. For example, Alice will authenticate herself to the
bank using a username and password and perhaps two-
factor authentication. So the bank will authenticate Alice
without using any authentication mechanism in TLS.

But Alice needs to trust the bank before she goes
putting her secret password into their system, and she
needs to have an encrypted channel before she sends her



password over the Internet. TLS’s one-sided authentication
enables a bootstrapping process whereby the bank is
trusted and a secure channel is set up first. Once this is
completed, the client and the server can find additional
ways of authenticating the client over the secure channel.

By the end of the handshake, Alice’s browser and the
bank’s web server have the keys needed to exchange the
secure messages described in the previous section. I have
simplified the description of the handshake to just talk
about a session key S, but in reality, Alice’s browser and
the bank’s web server use a process called key expansion

to turn a single secret into multiple keys where one key can
be used for encryption and another key can be used for the
MACs. So you can think of S as a set of keys rather than a
single key, and this set of keys is used to secure data
exchange for confidentiality, authenticity, and message
integrity.

All of this security, however, depends on the
authentication of the certificate. If the certificate is not
authentic, then the public key is not authentic. And if the
public key is not authentic, the signature on the DH share
from the server is not verifiable. And if the DH share is not
verifiable, then the session key (or set of session keys)
derived from the DH key exchange is not verifiable. And if
those keys are not verifiable, then none of the other data
can be trusted. In the next section, I will walk through how
browsers authenticate the certificate in a TLS handshake.

Before moving on, one quick caution. This walk-through
was meant to teach principles, not a thorough technical
description of TLS. I have simplified some steps and, as
previously stated, used a single configuration. It is more
important to use this example to understand the concepts
of building trust and sharing keys and not as a
comprehensive guide to the protocol.



Certificate Authentication and PKI

What is a certificate? A certificate, like anything else stored
in a computer, is just data. It generally includes a public
key, the metadata related to ownership of the key, and a
signature over all of the contents by a known “issuer.” The
metadata includes information such as the identity of the
owner, the identity of the issuer, an expiration date, a serial
number, and so forth. The concept is to bind the metadata,
especially for identity, to the public key. The identity can be
a name, an email address, a URL, or any other agreed-upon
identifier.

There are various formats that can be used for
certificates, but the X.509 certificate is one of the most
common type of certificate used by websites. X.509’s
format is a collection of key/value pairs. The keys can be
hierarchical. This means that a key can have subkeys. Here
is the list of all keys, in their hierarchy:
1. Certificate

(a)
Version Number  

(b)
Serial Number  

(c)
Signature Algorithm ID  

(d)
Issuer Name  

(e)
Validity period
i.

Not Before 
ii.

Not After  

 

(f)
Subject name  
Subject Public Key Info

 



(g) Subject Public Key Info
i.

Public Key Algorithm 
ii.

Subject Public Key  
 

(h)
Issuer Unique Identifier (optional)  

(i)
Subject Unique Identifier (optional) 

(j)
Extensions (optional)  

2.
Certificate Signature Algorithm  

3.
Certificate Signature  
The primary purpose of a certificate is to tie a party’s

identity to a public key. The party associated with the
public key is called the Subject. But how did the subject
and the public key become associated together? The Issuer

is another party that issues the certificate and asserts that
the public key belongs to the Subject. The entire certificate
is protected by a digital signature that is attached at the
end of the certificate. The signature is created by the
Issuer to prove the Issuer’s approval. The X.509 fields that
identify the subject, the public key, and the issuer are the
most critical, but the other fields provide contextual
information necessary to understand and interpret the
data. For the purposes of this chapter, however, there are
only two other fields that need to be discussed.

The first of these two fields is the validity period. This
field is used to determine when a certificate should be
considered valid. While the “Not Before” field is important
and must be checked, in practice the “Not After” period
usually gets the most attention. The certificate is



considered invalid after the date identified by the “Not
After” field, enforcing a lifespan on the public key
contained therein. Certificates that are a higher risk of
theft or compromise (i.e., the private key associated with
the certificate is stolen) should have a shorter duration.

The other field I will draw your attention to is the serial
number. This is a unique number (per issuer) that identifies
the certificate uniquely. This serial number is useful for
something called “revocation,” which is a process for
invalidating a certificate after compromise (i.e., of the
private key).

Returning to the more crucial fields, “Issuer Name” and
“Subject Name” describe the identities claimed by the
issuer and the subject, respectively. These fields have a
structure and subcomponents. Called the “Distinguished
Name,” these two identity fields typically have the
following subfields:
1.

CN: CommonName  
2.

OU: OrganizationalUnit  
3.

O: Organization  
4.

L: Locality  
5.

S: StateOrProvinceName 
6.

C: CountryName  
So, for example, a “Subject Name” or an “Issuer Name”

might look like this:

 CN=Charlie, OU=Espionage, O=EA, L=Room 110, S=HQ, C=EA



Not all of these subfields have to be filled in, but CN
(Common Name) is generally required and the most
important. And this is a good place to start talking about
how browsers validate certificates.

When Alice’s browser, for example, receives the bank’s
certificate, the first check that it needs to make is that the
certificate matches the URL of the website. The way that a
certificate is used to prove that a website is the real
website is currently done by proving that the website has a
right to claim the URL that identifies it. So, if Alice had to
type in “www. examplebank. com” to get to her bank’s
online site, the server must have a certificate for “www. 
examplebank. com”. The browser performs this part of the
validation by checking that the Common Name of the
Subject Name is precisely the expected URL: “www. 
examplebank. com”. There are a few variations of this
process as some certificates put the URL in a different field
called the “Subject Alternative Name,” and some
certificates can use wildcards like “*.examplebank.com” for
any website that ends with “examplebank.com” (e.g.,
“www. examplebank. com,” “mortgages.examplebank.com,”
etc.). But checking the subject’s common name for an exact
match is one of the more common configurations.

If the subject’s name does not match the URL in the
browser, the certificate is invalidated, and the browser will
not show the web page. Usually, the browser indicates
some kind of error like the one shown in Figure 6-9.

Additionally, the browser then checks that the current
date is within the validity period (i.e., later than the “not
before” date and earlier than the “not after” date). It will
also check that the serial number is not on any revocation

lists, which are published lists of revoked certificates. If
either of these two checks fail, the browser will report an
error. See Figures 6-10 and 6-11.

http://www.examplebank.com/
http://www.examplebank.com/
http://www.examplebank.com/
http://www.examplebank.com/


Figure 6-9  Example error message from a browser when the domain name of
the certificate does not match the URL

Figure 6-10  Example error message from a browser when the current date is
not within the validity period



All of these checks, so far, are simply to make sure that
the certificate is internally consistent. At the risk of being
too repetitive, anyone, however, can create a certificate.
Anyone can create a certificate with a subject common
name of “www. examplebank. com,” the right validity period,
and a random serial number not likely to be on a revocation
list. How does the browser determine that the certificate it
just received over the network is the true certificate?

Figure 6-11  Example error message from a browser when the certificate has
been revoked

The solution is to have what is known as a trusted third

party. The concept of a trusted third party is to have an
already trusted party prove the identity of some other
party. The trusted party will, in the example of Alice’s bank,
prove to Alice’s browser that the certificate is valid.

Imagine backing up in time to when Alice’s bank first set
up the web server. The bank wanted to be able to set up
secure TLS communications for its customers. As you have
seen, it would need to be able to prove that it was the real

http://www.examplebank.com/


bank, and not some fake bank set up by thieves and ne’er-
do-wells. It needed to prove that it was the real bank
authorized to use the URL “www. examplebank. com.”

So, Alice’s bank set about finding an organization known
as a Certificate Authority, or CA. A CA is a trusted party for
proving the authenticity of certificates. Two of the largest
CAs are IdenTrust and DigiCert. After flipping a coin
(because it really does not matter which one is used),
Alice’s bank chose DigiCert. Alice’s bank next generated a
private and public key pair. Keeping the private key

protected and safe, Alice’s bank sent the public key to
DigiCert in what is called a Certificate Signing Request, or
CSR. A CSR is just like a certificate, but without the
signature, issuer, or serial number.

When DigiCert gets the CSR from Alice’s bank, they will
do some kind of investigation to ensure that Alice’s bank is
who they say they are. Depending on a number of factors,
they may need to meet with a representative in person, see
authorization that the individual actually sending the
request is authorized to speak on the bank’s behalf, and so
forth. Once satisfied that they are creating a certificate for
the real bank, DigiCert adds their own identity as the
Issuer to the certificate, inserts a unique serial number,
and then signs the certificate request with their own
private key.

To repeat, Alice’s bank never sent the private key.

Private keys should never be shared. EVER. There have
been stories in the news where CAs or other certificate
vendors have asked for and received private keys instead of
just the public key. At least one of these stories resulted in
the compromise of the private keys of the customers.

Story Time: Never Share Your Private Key. No

Really

http://www.examplebank.com/


In 2018, a fascinating story emerged regarding Trustico,
a reseller of TLS certificates. Originally, Trustico’s
certificates were all based on a Certificate Authority (CA)
provided by Symantec. Symantec certificates were the
root of trust, but Trustico managed the customer
certificate creation (signed by Symantec root
certificates). Trustico wanted to revoke the old Symantec
certificates and reissue all certificates under a different
CA named Comodo. For security reasons, Symantec was
about to lose its status as a CA because of security issues
and had transferred that business to a different entity
called DigiCert.

Trustico reached out to DigiCert, now in charge of the
old Symantec PKI, and asked for mass revocation.
DigiCert refused, arguing that only the actual certificate
holder, not the intermediary that created it, could
request revocation. DigiCert stated that they would only
revoke the certificates in cases where the certificates
were known to be compromised.

Accordingly, Trustico followed up this exchange by
sending all their customers’ private keys in an

email to DigiCert. By sending these private keys over
an insecure channel (email), they effectively caused a
mass compromise to force DigiCert to revoke the
certificates. But this was equivalent to blowing up a
building to have cause to fire the contracted security.
Essentially, when they sent out the private keys of these
companies, they were putting each and every one of their
customers, some of whom were high security operations,
in incredible risk.

More importantly, why did they have their customers’

private keys? Only the customer should have their
private key. The private key is not needed to create the
certificate, and having a copy stored with Trustico
increased the risk of compromise. In the end, it enabled



Trustico themselves to purposefully expose them in order
to get their way in a business deal. It was noted that the
private keys were not even password protected.

Moral of the story: Only the certificate’s subject
should have access to the private key.

Also note that Alice’s bank has a certificate signed with
DigiCert’s private key, not with the bank’s private key. The
bank’s private key will be used for things like signing the
DH key share, and the public key in the certificate will be
used to validate those signatures. But the signature on the
certificate is generated with DigiCert’s private key. It must
be validated with DigiCert’s public key.

How would a browser even have DigiCert’s public key?
Operating systems are shipped with the certificates of

the widely used CAs already stored inside them. Some
browsers, such as Firefox, have their own store, while other
browsers, such as Chrome for Windows, just use the
certificates provided by the OS. These CA certificates are
sometimes called root certificates because they are the
“ground truth” for the authentication.

So, when Alice’s browser receives the certificate from
the bank, it identifies the Issuer as DigiCert from the Issuer
field. Then, it looks in its store (either its own personal
store or the operating system’s store) for root certificates.
If it has DigiCert’s certificate, it extracts it and uses the
public key in it to validate the signature on the bank
certificate. If the signature matches, the certificate is
presumed to be authentic.

So, in summary, Alice’s browser would walk through the
following steps for authenticating the browser:

The subject’s common name (or subject alternative
name) matches the URL.
The current date is within the validity period.
The serial number is not on any revocation list.



The Issuer’s name is found in the browser’s or OS’s root
CA store.
The Issuer’s public key (loaded from the CA store)
validates the signature on the certificate.
As with many examples in this book, this example is a

little simplified. Real authentication sometimes involves a
chain of authorities. The certificate is not issued by a root
authority, but by an intermediate authority. The
intermediate authority is a CA that may not be in the
browser’s store. But the intermediate authority is signed by
a higher authority. The chain continues until it reaches a
root authority. Each link in the chain must be issued and
signed by the next, and the ultimate root authority must be
in the browser’s list of trusted root CAs.

It is worth noting that all of the root CAs in a browser or
OS’s store are equals. Every CA can validate every
certificate. This has some interesting security implications.
From a purely idealistic design perspective, this is
suboptimal. This means that any CA compromise can result
in the generation of forged certificates for any website.

This is not theoretical. CAs are compromised
unfortunately often. One of the biggest compromises was
the intrusion into a company called DigiNotar in 2011. An
apparently Iranian hacker infiltrated the DigiNotar servers
and generated fake certificates for Google and other such
organizations. The intrusion was serious. It appears that
the Iranian government may have been involved and used
these certificates to spy on Iranians trying to use these
websites.

Remember! If the certificates cannot be trusted, then
any information received over the “secure” TLS channel
can be intercepted, changed, and modified by man-in-the-
middle attacks. By compromising a root CA, the hacker
(potentially at the behest of the government), enabled man-
in-the-middle attacks for any website on the Internet.



Hopefully, this is clearly describing the scope and gravity of
the problem.

As bad as the DigiNotar hack was, it could have been
much worse. Google had special, nonstandard checks in
their own browser (Chrome) when connecting to Google
websites. Google knows which certificates should be used
for Google, and Chrome in 2011 would not accept fake
Google certificates no matter who they were from. This is
an example of a defensive measure called certificate

pinning, which I will describe in just a moment. As soon as
Google became aware there were fake certificates floating
about, they were able to analyze them and determine they
were issued by DigiNotar. This all happened relatively
shortly after the hack, and it resulted in revocation of the
DigiNotar root certificates. The process was not clean or
easy, and it took some time to fully resolve, but it brought
an end to the compromised certificates much faster than
might have otherwise happened.

Because CAs are so vulnerable, and the damage from
them can be so extensive, a number of additional
mechanisms have been proposed to secure them. I already
mentioned pinning. Pinning comes in a couple of different
forms. A certificate can be pinned through a trusted
distribution system. Chrome, for example, comes with
Google certificates pinned within it. If you trusted Chrome
at the time it was downloaded, the pinned Google
certificates should mean that connections to Google are
always authentic (or blocked). Other examples of this kind
of pinning are when apps for phones or mobile devices are
distributed through an app store. Some mobile apps have
pinned certificates for their “home base” company servers.
So long as the app store was trustworthy at the time of the
download, the pinned certificates make it difficult to forge
certificates for those particular servers.



There have also been more general certificate pinning
solutions proposed. However, those approaches have
generally been found lacking and are not widely used or
supported.

Instead, the concept of certificate transparency (CT) has
gained more interest and traction. The basic idea is in some
ways similar to blockchain and distributed ledgers.
Whenever a certificate is issued, it is also submitted to a
public log. The public log is hosted by a third party,
perhaps even the CA that issued the certificate, but it is
verifiable so that the third party does not have to be
trusted.

The purpose of the log is transparency: CAs are thus
essentially audited for the certificates they produce. The
goal is to have all issued certificates publicly available for
inspection in a cryptographically verifiable way.10 Browsers
are now beginning to support being configured to not
accept any certificate that is not found in such a log.

What do we get from using CT logs? It’s deceptively
simple but surprisingly helpful. Suppose that an attacker
attempts to create a fake certificate to Alice’s bank’s web
server. If browsers will not accept the cert unless it is
published, the attacker will have to submit it to one of the
public logs. If that happens, Alice’s bank can immediately
detect that a forged certificate has been generated. While
this does require that the bank monitor the logs, it is easy
to deploy an automated system that checks to see if any
new certificates have been issued that shouldn’t have been.
The bank knows (or should know) which certs it has
legitimately issued and can flag ones that aren’t.

Even if the attacker is so clever as to somehow interfere
with the bank’s auditing system and does manage to get
away with some subterfuge, once the attack is detected,
the public logs will enable a thorough investigation of the
problem and an accurate assessment of the damage. It is



terrifying that in the DigiNotar hack, investigators were
unable to even fully identify all the certificates that had
been generated! To this day, nobody knows exactly how
many certificates the attacker created. That is one reason
why DigiNotar had to completely shut down. It was
impossible to identify all of the certificates that needed to
be revoked.

CT is still relatively new, just having reached version 2.0
at the time of this writing. But it is growing in support and
seen as a valuable solution to an otherwise thorny problem.

Securing Storage: IEEE Standard

1619.1

There are a number of different technologies that provide
storage encryption functionality. Both Windows and MacOS
offer full-disk encryption as a built-in option. There are
various third-party systems, including TrueCrypt and
VeraCrypt. Each has different emphases and focuses on
different benefits.

However, my goal in this section is to discuss the
cryptographic system. For that, I chose to use the standard
created by IEEE numbered 1619.1 [15]. I chose this
standard because I felt it was generic and illustrated a lot
of key ideas about cryptographic systems. Most other
storage encryption technologies will do something like this
although each may take a slightly different approach. For
example, the 1619.1 standard ensures the integrity of the
data, while VeraCrypt explicitly does not [273].

Managing the encryption and decryption of data at rest
introduces a number of interesting challenges. Unlike data
being transmitted, data at rest may be modified. This
introduces performance problems as well as security
concerns.



With respect to performance, the crucial question is how
much data must be reencrypted when a change is made.
This depends on many parameters. But suppose we
performed a naive storage encryption system that
encrypted whole files with AES-GCM mode using a single
key and nonce. Any change to the file, no matter how small,
would require a complete reencryption of the entire file.
Such operations would be hardly scalable for a large file
subject to frequent updates.

Security concerns can also happen when encrypted data
is being mutated. As discussed in Chapter 5, a key and IV
pair (or key and nonce pair) should never be “reused.” But
what does “reused” even mean? It means literally any use
on different data, but it may not be obvious to everyone
that changed data is different data. So, suppose a system
used the same key and IV to encrypt a file and then encrypt
changes to the file. That would constitute reusing the same
key and IV pair. This could potentially leak data or possibly
break the security of the system altogether.

Another interesting question is whether or not the MITM
attacker is just an eavesdropper or can alter data. That is,
if a laptop is stolen, chances are very low that the attacker
will send it back in order to trick the laptop’s owner into
accepting fake data. In that case, integrity is much less
important than confidentiality (and this is why VeraCrypt
just does confidentiality).

On the other hand, if data is stored in an environment
where it may pass through various hands before being
accessed again, integrity is much more important.

The IEEE 1619.1 standard is entitled IEEE Standard for

Authenticated Encryption with Length Expansion for

Storage Devices. This standard specifies an approach to
encrypting storage data combining both confidentiality and
integrity. In fact, one particular scenario was tape drives,
which are usually used for backup and storage. As you can



imagine, a tape could be intercepted and the data altered,
so integrity is important.

The words “Length Expansion” are also important with
respect to the encryption of data at rest. This standard is
explicit that it is only useful in environments where the
encrypted length can be greater than the plaintext length.
If you think about it, storage devices have to be careful
with encryption that takes up more space. The 1619.1
specification explicitly requires that the protected data be
allowed to take up more space than the original. This is not
because of the encryption algorithm per se, as all of the
encryption algorithms used produce the same size
ciphertext as the plaintext. However, there is additional
space required for metadata and the authentication data
used for providing integrity.

In the following sections, I will walk through the
cryptographic operations of the 1619.1 standard. As with
my explanation for TLS, I will start in the middle with the
actual encryption of data and then work backward.

Bulk Encryption of Storage Data

The 1619.1 standard performs bulk encryption on storage
data chunks called “host records.” The standard does not
require that the host record be any specific type or amount
of storage data, but it suggests that it could be a fixed-size
chunk of a file. However, the encryption component can be
implemented to define an upper bound for the size of the
host record. A host record can be split into one or more
“plaintext records” that are subsequently encrypted to
produce “ciphertext records” which are part of “encrypted
records.” Figure 6-12 illustrates these relationships.

The encryption algorithms supported by the 1619.1
standard include
1.

AES-GCM  



2. AES-CCM  
3.

AES-CBC with HMAC 
4.

AES-XTS with HMAC  
You should recognize both AES-GCM and AES-CBC from

Chapter 5. As a reminder, AES-GCM is AEAD and has its
own built-in MAC. AES-CCM is another AEAD algorithm.
On the other hand, AES-CBC and AES-XTS are not AEAD
and HMAC is added.

The support for multiple algorithms is similar to what
TLS does, although in TLS this is complicated by requiring
a client and server to mutually agree on an implementation
that they both support. When performing the encryption of
data in storage, this is less of an issue. Accordingly, an
implementation can be designed to support one or more
algorithms based on how well the algorithms support the
particular operational context. For example, the XTS mode
of operation is supposed to be particularly high
performance for storage encryption. A vendor may decide
to use that algorithm because of software or hardware
support already available in the target systems. Another
reason for enabling multiple modes of operation is that if a
vulnerability is discovered in a particular mode, the
product remains useful using another mode (although all
the data would have to be reencrypted).

The 1619.1 standard, as mentioned previously, requires
that the target system permit the output encrypted records
to be longer than the plaintext. One reason for this is that
the encrypted records may include additional unencrypted
data called “additional authenticated data” (AAD). Within
this standard, AAD is more or less like the “additional data”
in Authenticated Encryption with Additional Data. Because
only two of the supported algorithms are AEAD, it identifies



this data explicitly. The 1619.1 standard uses the AAD,
which only needs to be authenticated but not encrypted, for
metadata such as information about the original host
record and where this particular chunk fits into it.

When a plaintext record is encrypted, the inputs to the
algorithm are
1.

A secret cipher key  
2.

An initialization vector (IV)  
3.

Length of the IV or nonce  
4.

Plaintext record  
5.

Length of the plaintext record  
6.

Additional authenticated data (AAD) 
7.

Length of the AAD  
The outputs of the algorithm are

1.
A ciphertext record  

2.
A Message Authentication Code (MAC)  

3.
Optionally, the IV or enough information to reconstruct
the IV

 
4.

Optionally, the AAD or enough information to
reconstruct the AAD

 
The standard specifies that the ciphertext record must

be the same size as the plaintext record. The encrypted
record contains the ciphertext record and MAC. It also



contains the IV and AAD or enough information to
reconstruct them. This option is made available because
sometimes an IV or additional metadata (i.e., in the AAD)
can be determined partially from context. There is no
reason to store information that can be reconstructed
during the decryption process.

Figure 6-12  In the IEEE 1619.1 protocol, data is extracted from the host as
host records. Each host record can be split into multiple plaintext records.
Each of these is encrypted into same-size ciphertext records. Metadata is
combined with the ciphertext record to become encryption records

Notably, the standard explicitly forbids the
cryptographic key or any of the plaintext from being
written to the storage medium. However, the key may be
stored if it is, itself, encrypted by another key. A key used
to encrypt a key is unimaginatively called a Key Encrypting

Key or KEK. This will be discussed in greater detail in the
next section.

In another notable requirement, the standard requires
that the system associate a key with precisely one

cryptographic mode, meaning one of the four supported
modes of operation like AES-GCM. That is, the same key



can be used with multiple encipherments using the same
mode, but must never be used for multiple encipherments
using multiple modes (e.g., one encipherment using AES-
GCM and one using AES-CCM). This requirement prevents
data leakage that sometimes happens when a key gets used
in different algorithms. Sometimes, information can be
exposed from the key being used in two different ways.

As also explained in Chapter 5, the same key and IV pair
can never be used for encrypting two different inputs. An
entire section of the standard is dedicated to preventing a
key-IV pair from being used twice, which it calls an IV
collision. One of the approaches is simply to use a
completely random IV each time, wherein the IV is
generated by a sufficiently secure random number
generator. As a completely random number, the odds of
being used twice with the same key are vanishingly small.

Another option pointed out by the specification is to use
a different, random key for every encryption operation.
This would typically require extra storage space because
the key would have to be stored (encrypted by the KEK)
with every encrypted record. On the other hand, a
completely random IV would also have to be stored with
every record but would not need to be encrypted.

The standard describes other approaches to these kinds
of collisions as well, and the list is not exhaustive. Vendors
are free to pick a solution that works for their particular
needs, but they do need to make sure they get it right.
Repeated use of key-IV pairs is a quick way to a
compromise.

Story Time: That’s... Not Good

Basic cryptography mistakes such as reusing keys and
IVs are super basic. Every student in an intro to
cryptography class learns this. It is probably in the top



ten most commonly discussed requirements for
symmetric cryptography. Maybe even one of the top five.

But that does not prevent mistakes, even from really
bright people. In 2022, it was revealed that Samsung’s
implementation of TrustZone, which is the part of the
phone that is supposed to be the most secure and
impenetrable, had a major flaw. Matt Green, the well-
known cryptographer, referred to it as “embarrassing”
[270].

The flaw was, in fact, using a key repeatedly while
permitting IV reuse. Security researchers demonstrated
that the system could be attacked in practice. In the
overview of their findings, they said:

We present an IV reuse attack on AESGCM that
allows an attacker to extract hardware-protected
key material, and a downgrade attack that makes
even the latest Samsung devices vulnerable to the
IV reuse attack. We demonstrate working key
extraction attacks on the latest devices. We also
show the implications of our attacks on two higher-
level cryptographic protocols between the
TrustZone and a remote server: we demonstrate a
working FIDO2 WebAuthn login bypass and a
compromise of Google’s Secure Key Import. [240]

According to reports, this affected more than 100
million phones [270]. Yikes.

So how does something like this happen? Apparently,
the system permitted application-level code outside of
TrustZone to pick the IV. This meant that TrustZone was
using a single key, then allowing applications, which are
not trusted to pick IVs [270].

The decryption operation is, of course, reversed. The
ciphertext record is decrypted and the MAC checked. The



AAD data may be needed to figure out details of putting
together the decrypted data back into the original host
record expected by the host system. From the perspective
of the host system, host records go in, host records come
out.

Key Life Cycle Management

Much like TLS, the actual encryption and decryption
process is not too complicated. Yes, certain rules must be
followed like a unique key-IV pair, but at the end of the day,
data gets encrypted and data gets decrypted. The hard part
is getting the keys. In TLS, there is an entire process of
having both client and server agree on a master key and
having both be able to derive all of the necessary
component keys. Diffie-Hellman is a common approach,
supported by PKI, to ensure the authenticity of the key
agreement.

For the 1619.1 standard, there is no client and server.
However, although the person encrypting the stored data
and the person decrypting the stored data may be the same
person and in the same location, the two operations are
separated by time. Where has the key been stored during
this period? Who has had access to it? If the key has been
lost, the data is completely unrecoverable!

Also like TLS, the 1619.1 standard has to deal with
multiple keys. It may be desirable, as mentioned in the
previous section, to use a different key for every
encryption. There could be millions of keys at any given
time. It is also true that no one key should be used to
encrypt more than a certain amount of data. The reasons
for this are beyond the scope of this book, but suffice it to
say that after the same key has been used to encrypt more
than a certain amount of data, there are risks to data
leakage and exposure. For example, AES-GCM limits a key
to being used more than 4,294,967,296 times when paired



with completely random IVs. That number may sound like a
lot, but imagine if the 1619.1 standard were being used to
encrypt data in an on-the-fly encryption system where files
were encrypted and decrypted as they were being used.
Every operation would result in a new encryption and that
could happen thousands of times a day.

Unlike TLS, the 1619.1 standard does not fully specify
how all key management works and instead defers details
to implementations. However, it does define two
components that work together with respect to keys: the
cryptographic unit and the key manager. The cryptographic
unit is the component that performs the encryption of the
plaintext records as discussed in the previous section. The
key manager is tasked with managing the life cycle of keys
used by the cryptographic unit, where life cycle includes
generation, archiving, and destruction.

Recall that the cryptographic unit requires a cipher key
for the encryption of a given record. The standard indicates
two11 different ways that it can obtain a key for this
operation. First, it can generate a random key internally
(without the key manager) using a sufficiently secure
random number generator. Alternatively, it can receive a
key from the key manager and ensure that this key is
paired with a unique IV.

If it generates its own key for encrypting a record, the
key must be preserved. The standard requires that the
cryptographic unit encrypt this cipher key using a KEK. It
can then either store the wrapped (encrypted) key with the
encrypted data in the storage medium, or it can send the
wrapped (encrypted) key to the key manager for storage. In
the latter case, it would also have to pass along enough
metadata that the key can be looked up and retrieved when
decryption is needed. It is worth noting that the KEK is also
meant to come from the key manager, so even when



generating a cipher key the cryptographic unit relies on the
key manager for storing them.

On the other hand, if the cryptographic unit receives the
key from the key manager, it is expected that it will not
store the key on the storage medium. Instead, it should
receive the key from the key manager again when
performing the decrypt operation.

The standard does not describe any specific
expectations for the key manager or how it should manage
the key life cycle. While this might seem like punting the
hard problems to some other component, it is not
unreasonable. There are a wide range of key managers and
key management techniques. Some use hardware, such as
hardware security modules (HSMs), while others use a
straightforward software module.

Because the standard does not address the construction
of or requirements for the key manager, it also punts on the
other major problem: the master key. It identifies that keys
may be generated by the cryptographic unit, but the KEKs
that protect them (i.e., for storage until subsequent
decryption) come from the key manager. And where does
the key manager get those? That is left up to the
implementation of the key manager and could include any
of the authentication techniques discussed in Chapter 2.

The 1619.1 standard does take a dim view of deriving
keys from passwords. This is an approach taken by a
number of different storage encryption systems such as
VeraCrypt [274]. This concept is that a key can be derived
from a password through a process kind of like a hash. That
is, the password can be converted using a one-way
(irreversible) function into the proper number of bits for a
symmetric key. This could be used in a 1619.1 key
manager, for example, to create a KEK (or a master key for
a series of KEKs). Thus, the security of the data stored on
disk would all be tied to the password. The cryptographic
unit could generate its own keys for each record, then store



these on disk wrapped using the KEK key derived from the
password. To decrypt, the user would put in the same
password, regenerate the same KEKs, and decrypt the keys
stored on the storage medium to decrypt the encrypted
records. This process is visualized in Figure 6-13.

But, I repeat, the 1619.1 standard does not look on this
kind of solution with approval. According to the standard, it
is “relatively easy for an attacker to launch an off-line
dictionary attack” [15]. While that may be true, this
problem is, of course, solved by using a sufficiently
challenging password.

But whether a password is used or some other
authentication, there is an increasing risk of the data being
permanently unrecoverable as time goes on. The password
can be lost or forgotten, but a rarely used system (e.g.,
tape backup) that relies on biometrics might find that,
when needed, the employees with the biometric access are
no longer with the company. As always, keys are the most
crucial part of a cryptographic system but also the most
fragile.

Summary

Designing a successful cryptographic system depends on
properly combining many different components to achieve
the goals of the system.

The guarantees we want from a cryptographic system
usually center around keeping our data away from prying
eyes of those who shouldn’t read it (confidentiality),
knowing that our data hasn’t been modified after the
sender encrypted it (integrity), and trusting that the party
we’re communicating with is who we expect (authenticity).
We need to know that our communications have not been
intercepted (i.e., if an attacker reads them, they only see
encrypted data and can’t learn the plaintext) or modified
(i.e., if an attacker attempts to modify the data, we can



recognize the tampering and deem it invalid). And we need
to know that we can trust our counterparty—both that they
are who they claim to be and that they are who we expect
them to be.

This book surveys many cryptographic systems (e.g.,
ransomware in Chapter 7, OAuth in Chapter 9, and email
security in Chapter 10), and this chapter serves as both an
introduction and a point of reference for you later when we
get to them. Here, we discussed two example designs for
data-in-motion (HTTP and TLS for secure web
communication) and data-at-rest (IEEE 1619.1 for
encrypted data storage) cryptographic systems.

When Alice and her bank began their secure web
communication session, they needed to negotiate shared
keys to encrypt the contents of their communications,
which is the central focus of the TLS handshake. Since the
process occurs over the open Internet, the bank needs a
way of publicly proving its identity. To do this, Alice can
rely on the certificate supplied by the bank. Alice can verify
that the certificate is legitimate through the public key
infrastructure, a chain of trust starting from a Certificate
Authority and proceeding down to the certificate from her
bank’s website. Once the encryption keys are properly
created, both parties can rely on the protocol to provide
confidentiality and integrity.



Figure 6-13  A basic approach to file encryption using a password. The
password is derived into a master key that serves as a Key Encrypting Key
(KEK). Each file or chunk is encrypted with a generated key, and each
generated key is encrypted by the KEK. The encrypted file and the encrypted
key are stored on disk

For file storage, the two parties may be the same entity,
separated by time, and we want to ensure that any data
stored has the properties of confidentiality, integrity, and
authenticity. We need to know that the data has remained
secret, even if an attacker obtained the stored data. We
need to know that the data has not been modified since we
stored it. And we need to know that the person storing the
data and the person retrieving the data are authorized to
do so (e.g., through properly storing and protecting the
encryption keys, perhaps with a key manager).

When these components are properly combined, we get
cryptographic systems that are robust to man-in-the-middle
attacks and provide the assurances we need to safely and
securely store and transmit data.



Further Reading

The TLS standard is defined by the Internet Engineering
Task Force (IETF) in documents called Request for
Comments (RFCs). You can read the core TLS 1.2
specification in RFC 5246 [216] and the TLS 1.3
specification in RFC 8446 [215]. If nothing else, each one
of these two RFCs has a security overview of the protocol.
You can also go back in time to the mid-1990s and read one
of the first specifications for the original SSL protocol
[101].

Anderson’s book Security Engineering dedicates several
chapters that might be helpful to the reader. Chapter 4
discusses protocols at a conceptual level and some of the
basic concepts behind a number of actual systems as well
[40, Chapter 4]. One famous crypto system not covered in
this book is called Kerberos, and this chapter of Anderson
covers it. Chapter 20 goes into many systems including
Signal (and similar competitors such as WhatsApp), The
Onion Router (TOR), blockchain, and more [40, Chapter
20].

Another reference cited often in this book is Bishop’s
textbook. Chapter 12 includes a number of example
protocols including TLS. It gets into some aspects of TLS
that I did not cover, such as the extension for a heartbeat
that led to the so-called HeartBleed vulnerability. Bishop
also covered design principles extensively and explicitly
[60, Chapter 12].

TLS 1.2 is discussed in significant detail by Stallings’
book on cryptography. Written in 2013, it predates 1.3
[250].

With the change to cloud computing, plus other
technologies such as containers (e.g., Kubernetes), there is
also a lot of discussion around securing machine-to-
machine connections. Many references about cloud



security will discuss using TLS, and even mutual TLS
(where both sides confirm the identity of the other), within
these contexts [95, 217, 272].

TLS emerged in the mid-1990s. TLS, as discussed in this
chapter, relies on Certificate Authorities for its PKI. But
before TLS, there were other proposed PKI designs. Many
of these centered around the concept of an online

repository of public keys. A computer would contact the
online repository to get the key for any party it wanted to
talk to. The repository’s public key would be published
everywhere, such as newspapers, books, magazines,
advertisements, etc., so that it would be difficult to steal.
Davies’s introduction to network security (written in the
1980s) is built around this concept [91].
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Footnotes
Note: This acronym will mean different things in different chapters, so pay

close attention to context.

 
The full specifications of the 1619.1 standard are only available by purchase

from IEEE. I will not be providing the specifications but, instead, will talk about
certain principles found in their approach to storage encryption.

 
A third state of data is data in use, but data in this form, and the protections

thereof, are outside the scope of this book.

 
Recall from Chapter 5 that as more ciphertext is created, there are more

opportunities for finding patterns. Although modern ciphers are exceptionally
strong and can produce a lot of ciphertext before they become at risk, they
have limits.
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6

7

8

9

10

11

There are reasons Bob may wish to do this. It has to do with a concept of
repudiation for which there is not the space to get into here.

 
Old habits die hard. Many times, the term “SSL” is still used, even when

talking about TLS. Certificates, for example, are still often referred to as SSL
certificates even if they are only used for TLS.

 
The MAC also protects certain TLS data in the header, but this is a little

more complicated and not discussed here.

 
Actually, there are some weaknesses with this approach of encrypting the

MAC. This method is called MAC-Then-Encrypt because the MAC is generated
first over the plaintext and then encrypted with the plaintext. Cryptographers
figured out later that it is generally better to encrypt the plaintext and then
create an unencrypted MAC over the ciphertext. This approach, called Encrypt-

Then-MAC, ensures that the attacker cannot be messing around even with the
ciphertext.

 
In common practice, only the server’s identity is verified, though there are

increasing use cases for “mutual TLS” (MTLS), where the client verifies the
server, and the server also verifies the client.

 
The name of one of the original projects behind this was called “Sunshine”

and was started after the DigiNotar hack.

 
It actually specifies three different methods. However, two of them are

similar and are differentiated only in scope. For simplicity, I have reduced the
three options to two.
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7. Host Security Technology
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Chapter Quick Start Guide

Digging into a more concrete topic, this chapter covers
both attacks and defenses on host computer systems.
The first half of the chapter focuses on building a robust
system using isolation and access control through
operating system design, hardware enforcement and
software enforcement. The second half of the chapter
digs into attacks on these systems through exploitation
of design flaws and/or malicious software.

Key Concepts

1.
A program is a set of instructions for computer
hardware.

 
2.

An operating system (OS) is a program that controls
all other programs’ access to the hardware.

 
3.

The OS isolates programs from the hardware and
each other.

 
4.

Many modern systems have software and hardware
that enforce security on the OS.

 
5. Software defects like buffer overflow can enable an

attacker to take over the program

https://doi.org/10.1007/978-1-4842-9560-1_7


attacker to take over the program.  
6.

Attackers also create malicious software like viruses,
trojans, ransomware, and so forth.

 
7.

There will never be perfect malware
detection/prevention.

 
8.

Anti-malware approaches include identify and

neutralize, mitigate, and recover and respond.
 

Common Pitfalls and Misunderstandings

1.
Buffer overflow and related issues can be hard to
understand if you did not read the control flow
sections carefully.

 
2.

The term “virus” used to mean a specific kind of
malware but now is often used to mean any kind of
malware.

 

Useful Vocabulary

Trusted Execution Environment: A processing mode
enabled by hardware that allows loading certain
sensitive information (e.g., cryptographic keys) or
running sensitive operations
Buffer Overflow: Writing data past the end of a
specified section of memory, which may overwrite
other data and enable an attacker to gain access to the
system
Return-Oriented Programming: An attack technique
of constructing malicious programs out of segments of
an existing program, similar to constructing a ransom
note out of magazine clippings
Virus: Malicious software that attaches itself to
legitimate programs in order to cause damage or



propagate
Worm: Malicious software, usually self-contained, that
seeks to propagate across a network
Trojan horse: Malicious software that masquerades as
legitimate or desirable software
Rootkit: Malicious software that installs itself into a
user’s system and attempts to gain elevated system
privileges
Ransomware: Malicious software that encrypts data
with an attacker’s key and demands a ransom in
exchange for decrypting the data
Botnet: A network of compromised computers that can
be remotely controlled by an attacker in order to stage
large-scale attacks, such as distributed denial of
service (DDOS)

Although the topics covered in the previous chapters are
technologies in their own right, they are primarily
components that can be put together in larger or more
specialized systems. In this chapter, I will introduce
technologies designed to protect host systems. Many of
these technologies depend, at least in part, on these more
foundational technologies.

The term “host” is a generic name for any kind of
individual system. Other synonyms for host, or system,
include “node,” “endpoint,” or even “device.” No matter the
term, the idea is basically some kind of independent
processing and operations. It would include the desktop
computers someone might use at home or the office, IoT
devices, or large server machines. For a large part of
computer history, these were almost always some kind of
physical system, but in modern systems, it is as likely as not
that a “device” is virtual, that is, a pretend computer that is
simulated on a real (physical) machine.



One reason for the various terms (host, node, etc.) is
because these systems are used in so many different
contexts and configurations. Node, for example, is a term
more commonly used where each component is more or
less equal to all the others either in function, behavior,
capacity, or some other relevant metric. On the other hand,
endpoint almost always refers to a final destination of data
or function such as a user’s personal computing device. It
differentiates the endpoint system from all the other
systems that provide services to, enable, or otherwise assist
it.

Although there may be subtle differences between these
various terms, and there may be circumstances where
distinctions matter, for the purposes of this chapter, I will
assume that they are all equivalent. And, for simplicity, I
will use the term “host” throughout. It may be helpful to
review some of the basics of a computer’s major
components and how they work together in Appendix B.

Host security technology is focused on protecting
individual computing systems from subversion. Common
security goals include confidentiality, integrity, and
availability. I first introduced these terms in Chapter 3
about authorization technologies. Those technologies are
focused on the proper assignment and management of
permissions related to these goals. In this chapter, the
technology is designed to enforce the permissions (or lack
thereof) assigned to parties accessing the systems. These
technologies are sometimes called controls. For example,
NIST refers to both security controls and privacy controls

this way:

Security controls are the safeguards or
countermeasures employed within a system or an
organization to protect the confidentiality, integrity,
and availability of the system and its information and



to manage information security risk. Privacy controls
are the administrative, technical, and physical
safeguards employed within a system or an
organization to manage privacy risks and to ensure
compliance with applicable privacy requirements.
[121]

For simplicity, I will simply refer to “controls” and not
distinguish them as to whether they are security or privacy
focused.

Of the many ways they try to achieve their nefarious
goals, attackers look for ways to bypass, disable, or abuse
security controls in order to obtain unauthorized
permissions. Unfortunately, they are successful far too
often. Because of this, host security controls are layered so
that a failure in one control is mitigated in whole or in part.

Host Security Fundamentals

Effective computer security is almost always based on a
foundational design concept or principle that has
demonstrated wide application and solid security outcomes.
For example, in Chapter 2 I introduced the design principle
of defense in depth. Or, in Chapter 3, you learned about
least privilege in security design. Chapter 4 discussed the

principle of open design. Learning security design
principles is crucial to understanding security technologies
and being able to evaluate their effectiveness.

One of the most important design concepts for host
security is isolation. As applied to hosts, isolation generally
refers to ensuring that every resource is separated and
protected from all other resources with all accesses
mediated.1 The term resource includes, of course, things
like files, hardware, printers, cameras, WiFi, and video
devices. But it also includes running computer programs. In



fact, because computer programs are active resources that
change system state, access other resources, make
decisions, and act on behalf of system users, many isolation
concepts and mechanisms are directed specifically to
running programs. Because I will be talking about running
programs throughout this chapter, I will use the term
process to describe the running instructions with its
associated state as opposed to the program in some kind of
stored and inert form. A big part of host security comes
from isolating processes from each other and from other
resources on the system.

Most people without technical computer training know
operating systems, such as Windows and MacOS, as user

interfaces. Operating systems have an outward
appearance, a look and feel that is the most visible (and
most marketed) part of the system. However important and
useful all of these features are, they are not actually the
core of the operating system (OS), nor are they the most
important. Beyond “looking pretty,” operating systems
provide crucial management of system resources, including
processes, to enable stability and performance. One key
function of the OS is to isolate processes from each other
and from any direct access to system resources.

Operating Systems and Isolation

The technical details of how a computer CPU runs a
program discussed in Appendix B are important to
understanding how an operating system isolates a program
and why this matters. Again, a review of that appendix may
be useful to you before starting this section. What is
described in that appendix is how a process would work if it
was running “raw” on the CPU with no intermediary
operating system. But if processes could have direct access
to the CPU and the RAM, it would cause problems with
performance and stability.



The first major problem is that a CPU can only execute
instructions from one process at a time. Computers appear

to run multiple processes at the same time by doing time

slicing. The concept is to execute instructions from one
process for a slice of time, then switch and execute
instructions from another process in the next slice of time.
There is no way to do time slicing without some kind of
controlling mechanism. And that is where the operating
system comes in.

An operating system is a special kind of computer
program that manages the overall operations of the entire
computer including the CPU and the memory. No process
can get started without the operating system’s permission,
and the execution of the process’s instructions is managed
by the operating system. The operating system, for
example, controls the time slicing that permits multiple
processes to execute (what appears to the user to be)
simultaneously.

The operating system forces a process to only run for
the time slice. The process cannot prevent the OS from
interrupting it. This is primarily good for performance, but
it also has computer security properties. As discussed at
the beginning of the chapter, one of the goals for host
security is availability. This means that resources should be
available to authorized parties. Unauthorized parties
should not be able to deny the authorized parties access to
their resources.

By isolating the processor from the running process,
there is no way for a process controlled by an attacker to
take over the processor. Imagine, for example, if an
attacker started a program that did nothing useful but ran

forever. If there were no operating system to forcibly
interrupt the process, no other process could run until the
computer was reset and restarted. An attacker could make



a computer completely unusable by simply starting a
program that would never exit.

To be able to enforce these kinds of controls, software
and hardware use privilege levels. There can be multiple
levels, and some common models use four levels. But for
the purposes of this chapter, I will only focus on two levels
and will refer to them as privileged and unprivileged.
Processors, for example, have certain hardware and
operations that can only be used in a privileged mode. The
privileged hardware includes special, privileged registers
(as a reminder, review Appendix B for an explanation of
registers). The privileged registers hold configuration data
that is very sensitive to system operation and security. The
privileged instructions configure or enable security-
sensitive operations including controls related to isolating
processes.

When the operating system starts after the computer is
turned on, it starts in privileged mode and configures these
security settings. Once the sensitive parts of the
processor/system are configured, the operating system can
enable normal programs to start in unprivileged mode.
Once the program is running in unprivileged mode, it is
unable to change the security settings.

In fact, some operations that many people would
consider “basic” require privileged operations. One
example is file access. A process in unprivileged mode
cannot directly access hardware including storage drives.
Because it cannot access the storage hardware, it cannot
read from or write to files. This is true for all the usual
programs that run on a computer such as a word processor
like Microsoft Word. So how does Microsoft Word open
files if it is running in an unprivileged mode?

Unprivileged programs can ask the operating system to
perform privileged operations on its behalf. With file
access, for example, Microsoft Word, unable to access the



files directly, can ask the operating system to access the
file on its behalf. The operating system can decide whether
the process has permission to access the file or not. The
operating system can exercise any number of checks or
filters to ensure that the file access is safe for the system to
permit. These requests to the operating system are called
system calls.

This illustrates another form of isolation: hardware

isolation. By isolating the hardware, including file storage,
from running processes, the operating system can enforce
access controls. Even if malicious programs start running,
there is a limit to the amount of damage they can do. As
bad as it is that an evil program could delete all of a user’s
files, it would be even worse if they could delete system
files. Or, if the evil program could change operating system
files, the attacker could take over the entire operating
system, with all of the privileged controls that come with it.

Operating systems also provide process isolation.
Processes are not allowed to interfere with, or even spy on,
each other. One of the ways an OS enforces this is using
address virtualization. Every process that is running has to
have its instructions in RAM. If multiple processes are
running at the same time, they are all using RAM at the
same time. If a process could load or store data to any
place in memory, it could read another process’s data or
even change it. Remember that the instructions are also in
memory, so an evil process could change another process’s
instructions or use a branch to jump to a completely
different set of instructions (in other words, the evil
program could reprogram a process to do anything).

With address virtualization, a process does not see the
“real” address layout of memory. Instead, the operating
system lies to the computer program and only shows it the
memory allocated to it, and with fake addresses. The fake
addresses are called virtual addresses. From every



process’s perspective, its (virtual) memory starts at
address 0. Every process “sees” their allocated (virtual)
memory as starting at 0 and going to some maximum value
that represents the end of its allocated space. When a
process reads or writes to memory, it uses the fake (virtual)
address, and the operating system translates the virtual
address to the real address in memory. It is impossible for
a process to interact with the memory of other processes
because it cannot even have an address for it. If the
process tries to use a virtual address that is out of range,
the operating system will report an error.

The use of a virtual address space and mediated access
to hardware for every process means that if an attacker
manages to start an “evil” unprivileged process, or if they
are able to corrupt a “good” unprivileged process as will be
discussed later in the chapter, the attacker’s access to the
system is unprivileged and isolated. Most of the time, this
means the attacker has limited access to files, hardware,
and other resources. And, above all, the attacker does not
have access to the security controls of the processor and
operating system. This assumes, of course, that the
attacker was only able to compromise an unprivileged
process. Things are much, much worse if the attacker
manages to get privileged access, which I will talk about a
little later.

It is worth noting that, although I have walked through
these isolation approaches from a security perspective,
many of these protections were developed at least partially
because of errors. Computer programs always have bugs
(flaws or mistakes) that do something unexpected. They
can accidentally corrupt memory or unintentionally change
things. By isolating programs, errors have a limited impact.
But there is a relationship between accidental errors and
malicious actions. And regularly the solutions are similar or
identical.



Story Time: Spectre and Meltdown

It is harder than you might think to maintain isolation. In
one of the most shocking findings in cybersecurity,
researchers disclosed in 2018 that through side-channel

information (see Chapter 3), it was possible to read
information from anywhere in all of the computer’s
memory. In other words, all of the isolation provided by
the operating system, at least for read access, was
completely bypassed. This would mean that one running
program could read all of the data out of memory about
another running program including secrets, keys, and
any other sensitive data. The attack impacted most
modern processors regardless of the operating system or
programs running. Because no software is responsible
for the vulnerability, no software patch would fix it. This
attack, called meltdown, was so serious because it
affected so many computers with no immediately easy
fixes [163].

At the same time meltdown was disclosed, the same
researchers also disclosed spectre. Both attacks had
some similarities and they were related to each other
(they are often talked about together as well), but they
are different attacks. Spectre, unlike meltdown, is
focused on reading its own memory space, but
information it would not normally have access to
nonetheless. A good example of this is code executing in
a sandbox, like JavaScript, which is discussed later in
this chapter. Normally, JavaScript cannot read data
outside of its sandbox; spectre can enable these scripts
to bypass these limitations and read outside of the
sandbox [153].

Although I cannot get into the somewhat complicated
technical details here, these two attacks “broke” the
security of the processor through inferring information
(i.e., side channel) from very deep, common, and nearly



ubiquitous processor operations. This is a terrifying
warning about how difficult it is to really enforce
isolation and how a low-level attack on the hardware is
very difficult to block.

Most, if not all, contemporary operating systems provide
this basic level of process isolation and this technique does
a fairly good job of security the system against errors.
However, the effectiveness of the process isolation for
actual security threats and for enforcing security policies
varies widely by both operating system and hardware. This
broad range of security strength at the lower level has
given rise to an entire ecosystem of security products that
aim to increase the “hardness” of a given system or
otherwise add additional process and resource isolation.
Because of this, host system security is usually a “stack” of
technologies that start with the operating system and then
are built up from there in layers.

Enforcing Access Controls

Process isolation, as discussed earlier, brings together
many concepts from previous chapters. A user that
accesses a system must first authenticate themselves to the
system using the approaches described in Chapter 2. Once
authenticated, users interact with the system through
processes (running programs) that operate on their behalf.
In other words, when a process started by a user requests
access to a resource from the operating system, it often
carries the user’s identity with it. Sometimes, for security
reasons, it will use a separate identity, but even these
special identities are usually tied to the user in some way
or form.

Thus, as described in the previous section, when the
process attempts to access a resource, such as a file, it is
isolated from it and cannot access it directly. Instead, it



must ask the operating system to mediate that access. The
operating system examines the access request to determine
if it is authorized. If the requested resource is protected by
an ACL, the operating system will determine if the process
is authorized to perform the operation on the resource.
Again, the process is carrying the identity of the user (or a
related identity); the operating system will check if that
identity is on the ACL and, if so, what operations are
permitted to it.

On the other hand, if the resource is protected by
capabilities, the process would provide that capability to
the operating system. The OS provides access upon
validating the capability.

Both DAC and MAC permission technologies depend on,
to some degree or another, the operating system to
perform these access checks. For example, as discussed in
Chapter 3, SELinux (Security-Enhanced Linux) supports
mandatory access controls (MAC) on top of the usual
discretionary access controls (DAC). The SELinux
operating system checks both MAC and DAC permissions
when a process makes a system call (a request for a
privileged operation). When the system call is made, the OS
first checks the basic DAC permissions first. This includes
the basic read, write, and execute permissions that Linux
ACLs support. If the DAC permissions do not grant access,
no further checks are initiated. However, if the DAC
permissions do permit access, then the MAC permissions
are checked next.

However, in computer systems, there are other
components besides the operating systems that enforce
ACLs. Some computer programs are not meant to be run
independently but, rather, are intended to provide services
to other programs. These service-oriented programs are
sometimes called middleware. Middleware includes
software such as SQL databases. Middleware runs



separately as its own process; when other processes want
to use it, they have to access the middleware through
communications enabled by the operating systems.

It is common for middleware, like databases, to have
their own internal ACLs. When a running process connects
to the database process, it may be required to transmit an
identity and a password (or other authentication means) to
the database. The database will authenticate the identity
internally, using its own authentication mechanism, and
then use ACLs to determine authorizations within the
database.

Browsers are another example of middleware. You may
not think of them as middleware because they appear to be
their own program. But in actuality, browsers are
middleware that run programs from the Internet. Every
website is, more or less, a computer program you run on
your computer through the browser.

I will talk about browsers and browser security in
Chapter 9. However, Google’s Chrome browser has a
security design worth mentioning here. As will be discussed
in greater detail later, the Internet is a very dangerous
place from a cybersecurity perspective, and every website a
user visits carries a certain amount of risk. Similar to
concepts of process isolation, Google attempts to limit the
amount of damage an attacker can do to your browser by
running each tab as a separate process. Although I
described a process as a running program, that is a
simplified explanation. In the case of Google’s Chrome
browser, which a user perceives as a single program, each
and every tab runs as if it were a separate program. The
operating system isolates each tab from each other with its
own virtual memory access, its own time slicing, and all of
the other isolation described earlier.

To understand the value of this, an attacker learned of a
browser vulnerability. The attacker then creates a website



that is designed to exploit this vulnerability. When a user
visits this website with their browser, the attacker is able
to compromise and take over the browser. This is an
example of a drive-by download—an attack that works
simply by visiting a malicious website.

If the user’s browser is all in a single process for all
tabs, the attacker could potentially see and/or alter all
other browsing sessions in all the other tabs. If the user has
a tab open at the same time to their bank’s website, the
attacker would most likely be able to intercept, steal, or
change any of that data.

On the other hand, with Chrome’s approach of one-tab-
per-process, when a user visits the attacker’s website, the
attacker will most likely corrupt just a single tab. It is
running in its own process and is subject to all of the
isolation enforcement provided by the operating system.
Although the attacker can still do a significant amount of
damage with just one tab, this architecture helps to reduce
it.

Unfortunately, this kind of security comes with a cost.
Because each tab is its own process, it uses up a significant
amount of memory. Other browsers can typically use less
memory because some of the data is shared.

Story Time: Spook.js—More Good News Than Bad

The world of computer vulnerabilities often has to
approach everything from a “worst-possible scenario”
point of view. Even if an attack seems unlikely, the fact
that even an unlikely attack exists is problematic. After
all, what is unlikely can change. Moreover, an attack may
be statistically unlikely but be catastrophic if it occurs. A
risk is often calculated as the product of likelihood and
impact, so if the impact is significant enough, the risk is
significant even if the likelihood is low.



With all of that said, the Spook.js attack, although
potentially scary and dangerous, actually shows that
Google’s defenses, added after the reveal of Spectre, are
quite effective. This attack demonstrates that in some
edge cases, a Spectre-based attack can still steal
sensitive information. But the upside is that Google’s
defenses defeat Spectre for almost any kind of practical
situation.

The basic idea is this: Spectre attacks enable evil code
to find any information in memory for its own process
(i.e., within the same running program). When
JavaScript, which is used to provide dynamic
functionality for websites, is “running,” it is actually just
part of the existing web browser program. The web
browser program runs the script program within a
special part of itself called an interpreter. But from the
perspective of the operating system, it is all running
within the same process. Attacks using Spectre can
enable the JavaScript to read data outside of the
interpreter.

However, Google strictly isolates each website into its
own process. This strict isolation means that generally

there is no Spectre-style attack wherein attack code from
one website could read data from another website. What
Spook.js showed is that under certain combination of
conditions, it was still possible to leak out some data.
This attack is not irrelevant nor insignificant, but the
conditions required are not likely. On the other hand, if
strict process isolation were not used and all websites
were being handled in the same running program, it
would be relatively easy for data theft to happen [31].

The good news is, Google’s design decision means
that practical attacks have generally been defeated,
while some very unlikely and impractical attacks can still
happen [221].



In addition to the access controls enforced by the operating
system and middleware, some programs have their own
access controls. A very common example of this is the
controls put on documents by PDF readers and word
processing systems. In many cases, these systems do not
use ACLs internally but rather have the protection of the
file tied to cryptography. A file can be encrypted with the
AES algorithm discussed in Chapter 5. Although AES keys
were described in that chapter as random bits (1s and 0s),
it is possible to derive an AES key from a password. Thus,
the user selects a password to protect the file, the
password is converted into a key, and the file is encrypted
using the derived key. Now, the file cannot be recovered
without the password, and no ACLs are required.

There are limitations, however, to encrypting a
document. It basically reduces the permissions model to all
or nothing. If the file is decrypted, all operations are
possible. If the file is encrypted, no operations are possible.
In Chapter 10, I will talk about how Microsoft uses the
cloud to provide more fine-grained access controls on email
and documents. But with reference to host security, the
subject of this chapter, the key idea discussed in this
section is that security controls are often a combination of
security controls built into a hardware security component,
the operating system, middleware software, and
applications (Figure 7-1).



Figure 7-1  Some examples of access controls that may be enforced across the
various layers of a system

Stronger Hardware-Based Isolation

Although most processors support some level of privileged
operation used by the operating system to protect itself,
there are limits to the security of the standard approaches.
For example, one significant issue is that whatever
program starts first (i.e., the operating system) will be in
control of privileged operations. There is no easy way to
verify that an authorized operating system is running and
that an authorized operating system has not been altered.

Another problem is that even if the operating system is
authorized and correct, it has no mechanisms for
protecting data that the operating system should not have
access to. Copyright owners, for example, would like to
ensure that the material on which they hold copyrights can
be protected even if rendered on a user’s personal device.
This means that there must be some mechanism for
ensuring that the data copying must be controlled by a
security policy that cannot be changed or ignored by the
operating system.



One solution to this problem is to create additional
security hardware that can perform computing outside of
the influence of the normal operating system. One example
of this is TrustZone, a security extension that is available
for certain Arm processors. These processors often find
themselves in mobile devices, like phones. The TrustZone
security extensions define a “two-world” model: the normal
world and the secure world. A standard operating system
runs in the normal world, while a separate operating
system, usually a smaller and security-focused OS, runs in
the secure world.

Similar to the privileged operations for normal
processors, the secure world operations of the TrustZone
security extension are controlled by special registers that
track which mode of operation the processor is operating
in. Certain hardware, processor registers, cryptographic
modules, and entire swaths of RAM are only available when
operating in secure mode. This means that some
information and data, including cryptographic keys, can be
loaded into the processor during some initialization phase
(e.g., at manufacturing), and that data will remain
inaccessible in normal world mode. The normal operating
system will not be able to have direct access to it. The
secure world is said to offer a trusted execution

environment or TEE.

Story Time: No More Blu-rays for Your PC

The vast majority of consumers do not watch Blu-ray
discs on their PCs. But those that do will not be able to
do so on newer computers. Back in 2016, Intel
introduced Software Guard Extensions (SGX) into their
processors to provide Intel-based computers with what is
called an enclave. Similar to some of the trusted
execution environments for Android, SGX was supposed
to create an area of the computer that even the



operating system (and the computer owner) would not
have access to. The movie industry, always concerned
about illegal copying, permitted Blu-ray discs to play on
PCs only if they were equipped with Intel’s SGX system.
The goal was to keep the PC from stealing Blu-ray keys
and decrypted data.

Sadly, SGX has had many issues and has been
compromised over and over. Many reasons have been
attributed to the failures of these components, including
complexity, lack of third-party audits, and side-channel
leaks that enable attacks similar to Spectre (it’s back...).
So, in January of 2022, Intel has confirmed that they will
no longer be building SGX into any of their PC-type chips
(although it will still be included in chips for the server
market). Without SGX, Blu-ray discs will not play on any
of these newer chips, and there appears to be no plans to
change these restrictions. While it is true that most
people will not notice, as dedicated Blu-ray players will
not be affected, if you happen to be an HTPC (Home
Theater PC) enthusiast, you will have to stick with old
hardware and maybe even Windows 10 [25, 263].

Similar to a system call, when the normal mode OS needs
some kind of service from the secure world, it has a means
to request certain operations. The secure world, for
example, can perform cryptographic operations without
revealing any keys and only after validating that such
operations are permitted.

This can be useful to phone manufacturers that want
only authorized operating systems installed on their
handsets. The TrustZone components of the hardware can
be configured with cryptographic keys that are used to
verify the signature on an operating system installation
(called a boot image). When the phone starts up (boots),
the TrustZone components can verify that any boot image



installed is signed by the authorized distributor. This means
that any modifications to the operating system will be
rejected, as will any operating system images created by an
unauthorized third party.

Stronger Software-Based Isolation

On the opposite end of hardware-based isolation, software-
based isolation can also be much stronger than the
traditional approaches described in the previous sections.
Both Android and iOS operating systems for mobile devices
lock down processes much more tightly. Both OSs describe
these locked down environments as sandboxes. Sandboxes
and virtualization are approaches used to increase
isolation.

Defining these two terms is difficult because they are
used to mean different things in different circumstances
and because they have significant overlap. However, a
reasonably safe definition of a sandbox is: a restricted
software execution environment for processes that reduces
their capacity to cause the system harm. Virtualization, on
the other hand, is software that simulates some other
computer component. The simulated component can be
software, hardware, or both. However, the more specific
term virtual machine almost always refers to the simulation
of the computer hardware (at least the CPU but sometimes
other components such as memory and storage).

The reason the use of these two terms can be confusing
is because some of the most commonly used sandboxing
technologies use virtualization. And, conversely, one of the
most common motivations for using virtualization (such as
a full virtual machine) is to provide a sandboxed
environment.

While there are many sandboxing technologies, some of
the most widely used are those found in mobile devices.
The key idea behind both the Android and iOS sandboxes is



that each application that runs on the mobile device is
locked into its own isolated environment. Unlike standard
computer operating systems, both Android and iOS lock
applications into only seeing their own files. Much like how
a standard OS provides a virtual address space that isolates
a process from other process memory, both Android and
iOS provide a virtual storage space that isolates a device
application from all other device applications. This is
depicted in Figure 7-2.

Mobile phone sandboxes also typically isolate the
running programs (processes) from each other. For
example, as explained in Chapter 3, Android uses SELinux
policies to lock down what each process is allowed to
access. Apps are also limited in which system calls they can
make to the Android operating system [23].

Most major device resources are also locked down from
the application. This means that applications must request
permission for using the camera, the microphone, or even
the contact list on a phone. By default, apps are denied
permissions to any system resource and must have the
permission explicitly granted by the operator. Sandboxing
and virtualization are approaches that work by increasing
software isolation in software. The basic idea behind both
approaches is to add another layer of separation between
software and the rest of the system.



Figure 7-2  Android apps are allowed to access files that belong to them, but
not files that belong to other apps

Another widely used sandbox is found in the web
browser. Most websites use a type of computer program
called JavaScript. When a browser visits a website, it
downloads the JavaScript built into the web page and
executes it. But because programs from the Internet should
not be trusted too much, the browser executes the
JavaScript in a protected environment that prevents the
JavaScript program from accessing computer resources.
For example, JavaScript running in a browser is not
allowed to save or load files.

Unlike computer programs that execute directly on the
processor, as described earlier in the chapter, JavaScript
programs are interpreted. This means that JavaScript
instructions are not CPU instructions. Instead, JavaScript
instructions are written in a form that is human readable,
even if one has to be a programmer to really understand
them. And instead of running the JavaScript program on
the processor, it is run by the browser itself. That is, the



browser interprets the JavaScript program and performs
the operation. Because the browser is interpreting the
JavaScript, it can limit what the program is allowed to do.

Note, however, that because the browser is interpreting
the JavaScript, the JavaScript program is running in the
same process as the browser interpreter. This is why
Chrome’s one-tab-per-process helps to create stronger
isolation.

Most browsers can also be equipped with a security
policy that it can enforce on JavaScript beyond the
standard sandbox limitations. The use of a security policy
to customize the restrictions of the environment is a
common feature in sandboxing technology. Just like the
operating system can mediate access to system resources
for general processes, the sandbox mediates access to
those same resources but at a higher layer of the system
that is more appropriate for fine-grained customization. A
customizable security policy enables the sandbox to make
more careful determinations regarding which accesses
should be allowed within a narrower context.

Sandbox technology is never perfect, however, and there
have been some instructive failures. Java, for example, is
another programming language that was designed to run in
a sandbox. Note that Java and JavaScript are not related
technologies despite their unfortunately similar naming.
But both languages were designed for sandbox execution.

In the case of Java, however, the sandbox is created
from the Java Virtual Machine (JVM). Java instructions do
not run on a computer’s real processor but run, instead, on
the simulated processor of the JVM. All system accesses,
such as access to files or other system resources, are
checked against this security policy while the program is
running. Whereas an ACL or a capability enables or denies
an operation once, the JVM can check every access as it
happens.



While Java technology in general has been successful,
Java promoted a special security policy as the Java Sandbox
for running Java programs on Internet websites. These Java
programs are called applets. While I would classify the
entire JVM as a sandbox, because it checks every access
against a security policy, the Java Sandbox was a specific
subset of policies intended for Internet security.

Said another way, all Java programs run using the Java
Virtual Machine. And all Java program access to system
resources was mediated by a security policy. This, by itself,
fits the definition of a sandbox. But Java specifically called
the policy created for applets running in a browser the Java
Sandbox.

In practice, the Java Sandbox (i.e., the policies for
applets) was unsuccessful. There always ended up being
too many ways to get around the limitations of the sandbox
and there always ended up being too many dangerous
bugs. Because of the constant security problems, by 2013
computer security organizations were recommending
removing Java altogether from browsers or only permitting
“signed” applets from a trusted source [11, 198]. Most
contemporary Internet websites do not use applets at all.

Virtualization, on the other hand, is about simulating
hardware or software components. In this chapter, you
have learned about address virtualization, for example.
Operating systems do not let processes see the real
memory address space. Instead, it provides the running
process with a virtualized address space that confines them
to their own allocated memory.

And, as just discussed, the Java Sandbox is implemented
in the Java Virtual Machine (JVM). The JVM simulates a
processor for the Java program. This enables the JVM to
intercept all of the system calls meant for the real
processor in order to determine if they are authorized.



More extreme examples of virtualization include
containers and virtual machines (VMs). A VM simulates an
entire computer. It simulates a processor, storage drive,
RAM, and other hardware peripherals. The simulation is so
complete that it is possible to install operating systems on
the VM and run it as if it were a real computer. When
running a virtual machine, it is common to call the
computer running the virtual machine as the “host” and the
virtual machine the “guest.” The host has its own operating
system (the host OS), and the virtual machine has its own
separate operating system (guest OS).

There are many advantages to VMs. Medium-to-large
companies can use virtual machines in the cloud (e.g.,
using Azure or Amazon), instead of buying hundreds or
thousands of machines. VMs permit scalability and ease of
maintenance.

But for security reasons, VMs are also very powerful.
VMs can be used to create a strong sandbox. Programs can
be run within the virtual machine, and if they cause any
damage, the virtual machine can just be turned off, and a
new “clean” version can be turned on in its place. There
are many security systems that test untrusted software in a
VM before letting it be used in any “real” systems. VMs can
also be used for isolating different types of servers and
programs from each other. That way, if one server is
compromised by an attacker, there is much less chance
that the attacker will be able to compromise the other.

Many modern processors now offer support for virtual
machines that have security implications. Although a
virtual machine is simulated, it is generally too slow to fully
simulate a processor. Instead, many virtual machine
technologies run as much of the guest OS and guest
applications as possible directly on the processor. Often,
the virtual machine technology needs to only intercept and
modify requests like system calls and a few other types of
operations. To better support this, many processors now



support more modes than just privileged and unprivileged.
These processors offer a hypervisor mode, a privileged
mode, and an unprivileged mode. A hypervisor is a special
host operating system that is designed just for operating
virtual machines. By having the host OS and the guest OS
use different security modes at the hardware level, the
processor can help to isolate the guest OS from the real
system, even though it is running on the real processor.

Containers are a lighter-weight form of virtualization
that does not fully simulate an entire system. A full
explanation of the differences between containers and
virtual machines is not provided here. In terms of security,
containers can provide some of the same isolation as virtual
machines, but it is not as complete. Generally, it is easier
for an attacker to “escape” a container (into the real host
OS) than to escape from a full virtual machine.

Software Vulnerabilities

Having studied a little about how computers protect
themselves and isolate processes from resources, I will now
turn your attention to some of the tricks attackers play to
get out of isolation. One of the biggest thorns in the side of
computers for decades is control flow hijacking attacks,
such as buffer overflow attacks. A buffer overflow attack is
not the only example of a vulnerability, but it is one of the
most significant. And it does a good job of illustrating the
challenges to securing a computer system.

To understand how these attacks work, you first have to
go back to how a process runs on a processor. Remember
from earlier in this chapter that a program is a sequence of
instructions. Branching instructions allow the processor to
jump around in the set of instructions based on inputs. This
allows the program to be interactive and dynamic as



otherwise it would just execute the same instructions every
time, one after the other.

There is a special kind of branching instruction used
extensively in computer programs called call. Computer
programs have to be broken down into what are,
essentially, mini programs. Programs are too complicated
to not subdivide. The call instruction tells the processor to
jump to another set of instructions to perform some
subtask and then return back to where the call happened
when the subtask is complete.

For example, imagine a weather app on your phone or
other mobile device. The app reports temperatures in both
Fahrenheit and Celsius. Internally, all of the data is in
Celsius, and it computes the Fahrenheit from this using the
commonly known formula:  . Although fairly
simple to express in mathematical notation, this operation
requires a number of instructions to the processor. There is
at least one division operation, one multiplication
operation, and one addition. Moreover, because of the
limited number of registers, there may need to be copying
of intermediate values to memory and then back into
registers for the next operation. It would be inefficient to
write these instructions over and over again throughout the
program. Instead, it can be written once as a subroutine.

A subroutine is a chunk of functionality or set of
instructions within a larger computer program. In the
example I am using here, the subroutine provides the
instructions that can take a number representing a Celsius
temperature as an input and produce an output number
that represents the corresponding Fahrenheit temperature.
Another common name for a subroutine is a function.

Conceptually, a subroutine or function is almost like its
own mini program within a program. It becomes a building
block that can be used over and over, reducing duplication
and making it easier to fix errors. For example, imagine



that the author of a program had been given the wrong
formula for this calculation:  . If a program was
written to repeat these instructions everywhere they were
needed, the programmer would have to fix the formula all
throughout the program. On the other hand, if the formula
were written once within a subroutine that was used
repeatedly, the programmer would only have to fix it once!

Using subroutines, every time a calculation is needed,
the processor will jump to this one set of instructions to
execute them. But once the subroutine is finished, the
processor needs to jump back to wherever it was before.
But how does the processor know where to jump back to?
The call to the subroutine may have happened in hundreds
or even thousands of places in the process’s instructions.
The only solution is to record this information in memory.
Once the subroutine is finished, the processor can look up
the “return address” and jump back to where it had been.
This process is illustrated in Figure 7-3.



Figure 7-3  This figure depicts a simplified view of a subroutine call and the
subsequent return. Instructions are stored in sequential memory. A call

triggers a jump to some other location in memory and stores where it came
from. The return triggers a jump back to where it left off

NOTE:

The representation of memory and subroutine calls and
returns in Figure 7-3, and others in this chapter, is
abstracted and simplified. The key details illustrated in
these figures are that each instruction has an address
and that addresses are sequential in memory.

In a real system, instructions typically take more than
one byte, and the addresses increase by the size of the
instruction (i.e., the address increases by 4 after a 4-byte
instruction). Also, the instructions listed here are not
true machine-level instructions but are more
understandable operations that help explain the example.

Another important simplification is how data is stored.
In Figure 7-3, for example, I describe the data as being
stored with names like C and F. In a real computer
system, there are no names like this, and data is stored
in registers or on the stack.

A full and detailed explanation of how low-level
computer architecture works cannot be covered in this
book. For the very technically minded, additional reading
is suggested at the end of the chapter that can fill in
these gaps.

Calling subroutines is complicated by the fact that a
subroutine can call another subroutine. This is sometimes
called a call stack, and it necessitates storing the return
addresses of each call in memory. That is, if there is a first
call to subroutine A from address 1, that address must be
stored in memory. Then, if in executing the instructions of
subroutine A there is a call to subroutine B from address 2,
that second address must also be stored in memory. This



process can repeat indefinitely (until the computer runs out
of resources), but to finish the example, suppose that in
executing subroutine B there is a call to subroutine C from
address 3. This address must also be stored. Figure 7-4
illustrates a simple call stack.

Figure 7-4  This figure depicts a simplified view of a chain of subroutine calls.
Each call jumps to some other location in memory and stores the return
location

When subroutine C finishes, it needs to return to where
it was called. The processor looks up in memory and sees
that C was called from address 3 and returns to that
location. This instruction was part of subroutine B which
now is able to complete its own operations. Once finished,
subroutine B needs to jump back to wherever it was called.
The processor looks up in memory and sees that this
location is address 2. The processor jumps back to address
2, which was part of subroutine A. The instructions of
subroutine A finish executing and then need to return. The
processor looks up in memory and sees that the stored



address is address 1 and it jumps back there, which is
where this entire call stack started. Figure 7-5 illustrates
these return operations.

The details of these operations can be a little bit
complicated. The return addresses are not the only pieces
of information stored in memory. There is, in fact, a not
insignificant amount of contextual data that must be stored
for each call. It is also the case that when subroutines are
doing their operations they typically have to use memory to
store intermediate and other values necessary for their
subtask. All of that data has to be preserved even if the
processor has to jump to some other subroutine in the
middle of it.

Figure 7-5  Returns in a call chain reverse each call. Each subroutine’s return
goes back to the location of the subroutine that made the call



Figure 7-6  When data is pushed/added onto a stack, it is pushed at the top

To manage all of this, the data is organized into what is
called a stack. A stack is a concept for storage based on a
“last-in-first-out” (LIFO) principle. The name comes from a
visualization where one piece of data is placed on top of
another and then removed in reverse order as shown in
Figures 7-6 and 7-7.

When a process executes, one part of the memory is set
up to serve as a stack. Data is added onto the stack and
then removed in reverse order. This permits the call stack
example to work as outlined. Address 1 is added first, then
address 2, then address 3. But when data is removed, or
“popped,” from the stack, address 3 comes off first, then
address 2, and then address 1.



Figure 7-7  When data is popped/removed from a stack, it is popped from the
top

To be clear, all of this manipulation of memory is
conceptual. Pushing data onto the stack is not, somehow,
creating new memory spaces, nor is popping data off of the
stack destroying data. Rather, there is a memory address
that is considered the “top” of the stack. Memory addresses
after that are simply unused or ignored. When data is
added, the top of the stack moves, and new addresses are
put into use. When data is popped off, the top of the stack
is reduced, and the addresses of the popped data go back
to being unused (or available). In computer systems, the
stack is depicted as growing from higher memory
addresses to lower ones, giving it the appearance of
growing down instead of up as shown in Figure 7-8.

As hinted out earlier, not only is the return address
stored on the stack, but so is all of the scratch pad memory

for holding intermediate values. This data is also stored on
the stack along with the return address values. So, when
subroutine A is executing, it uses space on the stack for its
intermediate values. When it calls subroutine B, the stack is



extended creating space for B to have its own intermediate
values. In Figure 7-9, a main function2 calls the Celsius to

Fahrenheit function that I used as an example earlier. As
shown in the figure, the Celsius to Fahrenheit function
needs to use the stack to store the correct return location
in main, but it also needs to store local data for calculating
the Fahrenheit number.3

Figure 7-8  An abstract depiction of a stack in a process’s memory. In
memory, the stack grows downward, meaning that new data items are added at
a lower address value. The stack holds a call frame for each call made while
executing instructions



Figure 7-9  An abstract depiction of a stack in a process’s memory. In
memory, the stack grows downwards, meaning that new data items are added
at a lower address value. The stack holds a call frame for each call made while
executing instructions

NOTE:

Memory is not physically divided between processor
instructions and stack, as could be inferred from Figure
7-9. Memory is just one big long sequence of addresses.
To manage a computer program, designers and
programmers conceptually divide up the memory into
different functions and different mental models. Pay
attention, for example, to how I have organized these two
memory models differently. In figures showing the
memory addresses for instructions, like Figures 7-3, 7-4,
and 7-5, I have chosen to start the instructions with low
addresses at the top. I did this for my own mental model
because I wanted the program instructions to flow from
top to bottom in the figure (Figures 7-6 and 7-7).



However, as explained in this chapter and illustrated in
Figure 7-8, the stack addresses start with high addresses
at the top. In the actual memory, of course, there is no
real top or bottom. But in order to reason about memory
and use it effectively, we have to create mental models
that are used to manage all the different things that
memory is used for: instructions, data, intermediate
calculations, and so forth.

Unfortunately, this organization of data is vulnerable to the
buffer overflow attacks mentioned at the beginning of the
section. The intermediate values of a subroutine include
“buffers” allocated for holding user input. A buffer is just a
contiguous space in memory used for holding data.
Suppose, for example, a subroutine was used to get a user’s
login name and password. It would need a buffer to hold
the login name and another buffer to hold the password.
These buffers have to be set aside in memory, and one of
the places they can be put is inside the scratch data on the
stack. Buffers on the stack are of a fixed size. They cannot
be resized.

In Figure 7-10, a buffer has been set aside to hold up to
80 bytes, which can store 80 western characters.4 This
buffer is used by a subroutine for reading in a password
from a user and checking to see if it is correct. Figure 7-11
shows an example where the user’s password is
“password.” This takes up 8 of the 80-character storage
space. Note that the data is inserted at the bottom of the
buffer and flows up to the top.

If the program is well written, it should check that the
data going into the buffer will not be bigger than the
allocated size of the buffer. Sadly, there are many
programs that are not well written and do no bounds
checking. In these cases, if an attacker puts in more data
than is allocated, the data will still be inserted into memory



and will overflow the buffer. In Figure 7-12, the user put in
100 As as their password, which is bigger than the
allocated buffer.

The problem is that when the buffer overflows, data
outside the buffer is overwritten. And what else is stored on
the stack? The return address for the call operation. Many
times when there is a buffer overflow, the attacker can
figure out how to overwrite the return address with a
specific value. Then, once the call completes, and the
processor goes to jump back to where it came from, it
jumps, instead, to an address that the attacker put there.
The attacker will then attempt to use this to take control of
the process. This whole technique is sometimes called
smashing the stack.

Figure 7-10  A stack frame for a password checking program. It has a buffer
of 80 bytes for storing the password



Figure 7-11  The same stack frame as in Figure 7-10 but after storing the
password “password”



Figure 7-12  The same stack frame as in Figure 7-10 but after the user
entered 100 As as the password. The buffer can only hold 80 characters and
the data spills over, overwriting the return address that was stored. When the
return is called, the old address has been wiped out and replaced

One of the early ways that attackers could take over the
process is they inserted their own instructions into the
overflow data itself. Even if the input is supposed to be a
login, remember that all data is just numbers. The attacker
can put in arbitrary data that does not make much sense as
a login name but becomes instructions when handled by
the processor. So, the attacker inserted instructions and
enough padding (useless data) to overflow the buffer and
rewrite the return address. The rewritten address pointed
back to the beginning of the buffer itself. The processor
would jump to the very place where the attacker had just
inserted data and start processing it as instructions. An
illustration of this classic style of buffer overflow is
depicted in Figure 7-13.



This problem is possible because both instructions and
data are in the same memory. The instructions and data are
both just numbers, so it is impossible to tell if something
should have been an instruction or is just a piece of data.

Modern systems are not so easily crackable though.
Memory is internally broken down into subunits called
pages. Each memory page can be marked with permissions
including read, write, and execute. Modern systems do not
permit a page to be marked both writable and executable.
The input from the attacker must go to a writable page, but
once on a writable page, it cannot be executed. So, even if
the attacker convinces the processor to jump to the buffer,
execution will stop. The program will crash, but the
attacker will not get control.

Figure 7-13  The same stack frame as in Figure 7-10 but with only the stack
frame itself shown. This time, a malicious attacker inserted an overflow on
purpose where the overwritten return address jumps into the buffer rather
than back to the normal instructions. The stack is written with low addresses at
the bottom, so the evil instructions are illustrated moving up the page



To get around these defenses, attackers use other
approaches that include jumping to existing functions that
are already executable. Almost every computer program,
no matter how small or simple, will incorporate other
standard code. For systems like MacOS, Linux, and other
similar systems, there is a standard library of functions
called libc (pronounced “Lib C” and refers to the “C
standard library”). On Windows systems, there are
equivalent libraries. The reason for having these standard
libraries is because there are basic operations that almost
every program needs as well as interfaces for interacting
with the operating system.

One example of such an interface function is the ability
to launch other programs. It is not unusual for running
programs to need to launch and interact with other running
programs. Because only the operating system can perform
the actual launch operations, programs need to have an
interface to signal the OS to do so. Because this is part of
the standard library, almost every program will have this
code available to it in memory. Attackers that overflow a
buffer can overwrite the return address of their current
subroutine to jump to the start of one of these program
launching functions. The attacker then uses the function to
launch certain types of programs called shells that provide
the attacker with general control of the machine. From a
shell process, the attacker can examine files, launch
additional processes, transfer data off the machine, and so
forth. This kind of attack is called the return-to-libc attack
because libc is so commonly exploited [162].

More modern systems use a defensive technique called
Address Space Layout Randomization (ASLR). ASLR
randomizes the location of all the libraries in a running
process. By randomizing the location of a library of
functions, attackers cannot figure out where to jump to
when they attack a machine. They may still be able to



overflow the buffer, but they do not know the address of
libc or its functions, so they cannot get the processor to
jump to them. Again, the overflow may crash the machine,
but at least the attacker did not gain control of the system.

There are weaknesses to some forms of ASLR, and there
are a number of ways attackers can still get around them.
One advanced attack method is called Return-Oriented

Programming or ROP. ROP has been compared to when
kidnappers send messages with letters cut out from
different magazines. In ROP, attackers overwrite the return
address to jump to the last instruction or two of some other
function. Because it is at the end of the function, the
subroutine will return and the processor will try to jump
somewhere else. The ROP attacker has overwritten the
stack such that when it returns from one function, it will
jump to the next place in memory that the attacker wants it
to go.

To help make this understandable, remember that each
time a subroutine finishes, marked by a return instruction,
the processor will look to the stack to see where it should
go next. Because of the way buffers overflow, the ROP
attacker can put a whole series of return addresses on the
stack. The first address jumps to an instruction or two
followed by a return. When that return happens, the
processor goes back to the stack where it encounters the
next address the attacker put there. Again, the processor
jumps out and runs an instruction or two before returning.

This enables the attacker to basically create an entirely

new program made up of bits and pieces of other

programs. Each specific chunk of a function (again, usually
one or two instructions followed by a return) is called a
gadget. By stringing gadgets together, the attacker can
program attack code to perform various operations.
Usually, the goal of the attack code is to find a way to
launch a shell just like in a standard return-to-libc attack.



Figure 7-14 illustrates chaining together gadgets in order
to construct their own program.

The ASLR defense discussed previously is supposed to
prevent ROP. ASLR, if complete and thorough, can make
ROP much harder. However, gadgets within libc are all
relative to the start of libc, even if libc itself is randomized.
If the starting address of libc can be found, ROP can be
used effectively. The address of libc can sometimes be
found through other vulnerabilities defeating the value of
the ASLR.

Another problem with ROP is that in many large
programs the code is built up from components. It is
sometimes the case that some components are randomized
and some are not. ROP attacks can be launched at the part
of the program that is not randomized, and those gadgets
can be used to find the randomized addresses of the other
components within the system.



Figure 7-14  The stack contains various addresses to gadgets. When the
program goes to these addresses, it executes a few instructions and then
returns to the next gadget on the stack

Another place where ROP is still very successful is on
IoT systems. Many IoT systems have limited ASLR [142].
And others may have ASLR, but the ASLR is not effective.
This can happen when, for example, the address space is
too small and there are too few possible address options for
a library to be randomized to. For example, if a library can
only be randomized to a few thousand locations, it is fairly
simple for a ROP attack to brute-force search for where it
is. The ROP attack can easily be launched a thousand times
in an automated fashion.

Although ASLR and other modern defenses are helpful,
it has not stopped control-flow hijacking attacks.

This should help illustrate, however, why isolation of
software is so important. If an attacker takes control of an
unprivileged process, they can still only execute
unprivileged operations. Or, with even stronger isolation
systems like those found in iOS or Android, they should be
confined largely to their own sandbox and unable to
interact with or interfere with other processes.

Malware Classifications, Impact, and

Scope

Of course, just like users interact with computers using
software, so do the attackers. When attack software is
running a user’s own machine, it is called malware.
Malware is defined by NIST to be

Software or firmware intended to perform an
unauthorized process that will have adverse impacts
on the confidentiality, integrity, or availability of a
system [121].



There are a number of ways of classifying malware.
Before about 2010 or so, malware was primarily described
by how it spread. More recently, however, many of the
malware infesting cyberspace is characterized by what it
does to the user or for the attacker. Nevertheless, the early
forms of malware still exist, and those categories still are in
use. It is also true that many of these malware types do not
have “bright line” distinctions. Many of malware can be
classified with multiple labels.

Viruses

Probably the most “classic” of the malware classifications is
a virus. For the better part of a decade or so, viruses
practically defined malware. Viruses made such an impact
on security that even today the term “virus” is often used to
refer to malware in general, even if it does not meet the
classic definition. And many security products that defend
against malware still call themselves “antivirus” (AV)
products.

The term “virus” and the basic description of a computer
virus were described by the security researcher Fred
Cohen in the 1980s. Cohen discussed the idea of a piece of
software that inserts itself into other software, much like a
biological virus inserts itself into normal cells [76]. Cohen’s
security research demonstrates a relatively rare success in
accurately predicting future computer security problems as
computer viruses hardly existed at the time of his analysis.
Sadly, many of the biggest computer security challenges
are not anticipated and come as a nasty surprise. It is
remarkable that Cohen was able to do so with viruses.

In more detail, the classic computer virus was not a
program that could be run by itself. Rather, it was a set of
instructions meant to be inserted into the instructions of
other programs. In an overly simplistic description, imagine
a program as a set of instructions as described in this



chapter. Evil instructions (i.e., the virus code) could be
inserted at the end of the program. Then, the first
instruction (or an early instruction) could be replaced with
a jump command. Remember that branching instructions
can be conditional or unconditional. A jump is an
unconditional branch that immediately jumps to a new
address of a different instruction. So, by replacing the first
line of the program with a jump, the program skips the
normal code and can jump to the end where the virus code
is instead. Once the virus code has finished executing, it
can call a jump instruction back to the beginning of the
program. If necessary, the first line (which was replaced
with the jump instruction) can be appended to the end of
the virus code so that it executes before jumping back to
the rest of the real program’s instructions.

The reason for this jump to the end and then jump back
approach is because insertion into existing data is actually
really difficult for a computer. If the virus wanted to just
insert itself at the beginning, it would have to copy all of
the existing program further into memory to open up
space. It is much easier to replace an early instruction with
a jump, copy the virus at the end, and copy the replaced
instruction after the virus code followed by a jump back to
the beginning as shown in Figure 7-15.

Because the virus code executed first and then returned
to normal operations, a user might not even be aware
something went wrong. After all, the normal program
would behave as it should once the virus code was finished.
A user would only notice the virus when it made itself
known in some way or form.



Figure 7-15  When a virus infects a program, it may modify it to have
malicious instructions near the beginning and the end

The execution of the virus code itself would typically do
two things. First, it would spread itself to any other
programs it could find on the computer. Second, it would
perform whatever mischief it was designed to do.

Early viruses primarily targeted the DOS operating
system that was commonly used in the late 1980s and early
1990s. DOS was a very primitive operating system and did
not even have privileged vs. unprivileged operations.
Malware could easily take control of the entire system. At
the same time, in this early, pre-Internet age, it was very
rare to have software running that was not explicitly
started by the user. Part of the way viruses worked was to
copy itself into as many programs as possible so that any
program the user ran would execute the virus. Although
the Internet was not available, viruses could spread by
shared disks and, for those relatively few people that had
them, through modems, devices that connected to networks
over the phone line.

Another interesting fact about early viruses is that they
did little to no damage. Most of them were not all that
destructive. For example, there was a virus known as the 8



Tunes virus. This virus would play one of seven random
German folk tunes every seven minutes. Annoying to be
sure, but relatively benign. There were destructive viruses
as well, but it is amazing how many of the viruses of the
early 1990s appeared to be practical jokes and attention
stunts for the authors [75].

As computer systems evolved, so did the viruses. In
1995, the first macro virus appeared in the field, called the
“Concept” virus [191]. The term “macro” refers to a kind of
script that can be inserted into office documents, especially
Excel spreadsheets. This was a big deal because, up until
this time, antivirus software only had to examine program
files (also called “executable files” or just “executables”).
But now, with the introduction of the Concept virus,
antivirus software had to begin examining documents as
well.

Concept was another example of a virus that did no
additional harm. Its only operation was to spread itself
around. A common way it spread was via email, which was
just becoming common in offices and other professional
environments. When a user received a document with this
kind of virus in it, they would commonly just launch the
document directly from their email. The macro would
execute automatically when the document was loaded and
would corrupt other office files. When the user emailed a
document to someone else, the virus would infect a new
host.

Throughout the late 1990s and early 2000s, viruses have
proliferated in both number and form. With that said, the
classic virus, and by classic I mean malware that inserts
itself into other programs or data and attempts to replicate
when run, has become less and less common. But because
“virus” was the term that defined malware (and “antivirus”
the term that defined anti-malware) for more than a
decade, the term is sometimes used to refer to any malware



generally. For example, the security company Fortinet
defines a virus to be a “malicious software, or malware,
that spreads between computers and causes damage to
data and software” [27].

In my own security investigations and research, I have
seen little of this early form of malware. The reasons are
probably because it simply is not needed anymore. As I
suggested earlier, viruses made more sense when there
was a need to spread it as far and as wide as possible
within a user’s own files. This was necessary to ensure it
would be both spread and launched. Now, however,
attackers have so many more effective delivery
mechanisms that the passive execution and infection is
simply archaic.

I stress, however, that the term “virus” is still widely
used. It is just used to describe malware that classically
was not virus-like behavior. Many of the other malware
types discussed in the following sections are often
described as “viruses” in various sources. For the purposes
of this chapter, however, I will use the term virus to refer
to the classic meaning.

Worms

A worm is another classification of malware that has some
similarities with a virus. For example, a worm seeks to
propagate and replicate across as many computers as
possible. The difference is that, instead of attaching to files
and waiting for passive activation, a worm is typically self-
contained and actively attempts to spread.

Worms often rely on vulnerabilities, such as the buffer
overflow attacks described in Section “Software
Vulnerabilities”. The name “worm” was chosen because
these bits of bad software seemed to tunnel through the
Internet and in between systems. Once a vulnerability is
found, it is not difficult for a piece of malware to spread



itself far and wide using the vulnerability as a way to get
past defenses and isolation techniques. Apparently, the
concept of a computer worm is first discussed in the 1975
science fiction book, The Shockwave Rider, by John
Brunner [247].

One of the earliest worms happened in 1988 before most
American families had personal computers and before
there was a World Wide Web. Nevertheless, the impact was
sufficiently significant that it garnered media attention. The
publicity was also increased by the family relationships of
the worm’s author: Robert Morris.

Figure 7-16  Sun Microsystems 3/80 workstation

The Morris worm, as it came to be called, was embodied
in a computer program that was specifically designed to
replicate on machines common for the time period. In
1989, only 15% of American households had a personal
computer [154], and the vast majority of those machines



were not hooked up to any kind of network at all, let alone
the Internet. Although the World Wide Web did not yet
exist, the Internet did. It connected the networks of
researchers at universities as well as certain industrial and
military organizations. The types of machines common to
these systems, and targeted by the Morris worm, were Sun
Microsystems Sun-3 systems and VAX computers (Figures
7-16 and 7-17).

Figure 7-17  Digital Equipment Corporation VAX 11/780 minicomputer and
terminals (Source: Bernd Gross, CC-BY-SA-4.0, https:// commons. wikimedia. 
org/ wiki/ File: VAX_ 11-780_ und_ Nachentwicklung_ K_ 1840_ TSD. JPG)

The types of machines in use at the time ran an
operating system somewhat like Unix called BSD.5 This
1980s vintage OS had no graphical interface. Users
interacted with the system using text-based commands.
Nevertheless, it was their connectivity to the Internet that
made them targets for a worm designed to spread.

https://commons.wikimedia.org/wiki/File:VAX_11-780_und_Nachentwicklung_K_1840_TSD.JPG


An infection of the Morris worm worked in stages and
consisted of two different programs. The first program was
a bootstrapping program, also called the vector program.
The second program was the main program of the Morris
worm that attempted to replicate itself. The vector program
was designed to prepare the victim machine for infection
and to contact an already infected machine to download
and install the main program. In other words, the vector
program’s job was to get the main program installed and
operational on the infected host.

The Morris worm inserted the vector program into
victim machines using three techniques. Using the first
method, the Morris worm exploited a buffer overflow attack
in a system called finger. The finger program was an early
form of online presence management. A finger server ran
on many of the computers connected to the network. A user
on one machine could connect to the finger server on the
second machine to ask who was logged in on the second
machine. But the Morris worm could overflow a buffer in
the finger server and subvert the program. Once
compromised, the finger program would give the Morris
worm access to a remote shell. This is basically a remote
text entry system for entering commands into the
compromised system. The Morris worm would use this
remote shell to send over the code for the vector program
and get it operational.

A second means for getting the vector program installed
was a bug in the sendmail program, used with email. In an
era before webmail, transmitting and routing email was of
critical importance. The sendmail program, however, had a
little known feature that would permit a remote party to
put the sendmail program into a debugging (or testing)
mode and transmit commands. The commands could be
exploited to install the vector program.



The third and final approach for compromising a remote
host did not rely on a bug at all. Instead, it relied on
attempting to crack passwords. Like with modern password
lists, passwords on the BSD machines were stored in what
was effectively a hashed format. The Morris worm could
look up a username and a password from a compromised
machine and try to crack the password with smart guesses
(such as the username as the password), guesses from an
internal dictionary of 432 words, and guesses from a
dictionary file that already existed on the compromised
machine (i.e., a dictionary intended for legitimate users of
the machine). Cracking passwords on a machine that is
already infected may seem odd, but then, as now, users
reused passwords across systems. If the Morris worm could
crack a password on the infected machine, it would then try
to connect remotely to other machines using the same
username and password combination. Machines of this era
had files identifying which remote machines were
commonly connected to, and the Morris worm could try the
cracked passwords with a username on the remote
machines to see if the user had an account there with the
same credentials. If the username and password worked,
the Morris worm could transfer the vector program
directly.

Once the vector program was installed using any of
these three methods, it connected back to the machine that
installed it. Using a network connection, it downloaded and
installed the main program. The victim machine was now
fully infected. The Morris worm would now use this new
machine to find new victim machines and replicate further.

Like many malware of the era, the Morris worm was not
designed to actually do damage on purpose. Unfortunately
for the Internet of 1988, the Morris worm had a problem of
its own. As you can probably imagine, the design of the
Morris worm lended itself to a lot of reinfection. If machine



A infects machine B, B can infect A. If A infects B and B
infects C, C may have its own connection to A and infect it.
This problem is illustrated in Figure 7-18.

The problem with reinfection is that it results in two

copies of the Morris worm running on the same machine.
And, if then infected again, three copies of the Morris worm
would be running at the same time. The author of the
Morris worm understood the problem because the worm
was programmed to check if the system was already
infected. If so, the duplicate worm was supposed to quit.
However, Morris wrote the code so that one out of every
seven times it would ignore the result. It has been
theorized that this was a defensive measure to prevent
system administrators from easily killing the worm by
simply faking an infection.

Whatever the reason, the number of Morris processes
multiplied on each machine causing a denial-of-service

attack. Effectively, this brought much of the Internet of
1988 to a halt. According to the FBI:

The worm did not damage or destroy files, but it still
packed a punch. Vital military and university
functions slowed to a crawl. Emails were delayed for
days. The network community labored to figure out
how the worm worked and how to remove it. Some
institutions wiped their systems; others disconnected
their computers from the network for as long as a
week. The exact damages were difficult to quantify,
but estimates started at $100,000 and soared into the
millions [103].

The effect of the Morris worm was sufficient to warrant
media attention. Front page news and TV news anchors
discussed the event and the impact. The media buzz about
the worm was only heightened when the author, Robert
Morris, was identified. Morris, it turns out, was the son of



the chief scientist for a computer security arm of the
National Security Agency of the United States. The New

York Times had a front page story on November 5, 1988,
three days after the Morris worm was released, with the
headline: “Author of Computer ‘Virus’ Is Son Of N.S.A.
Expert on Data Security” [174].

The Morris worm was effective for its time. But worms
became able to spread even faster once more computers
were connected to the Internet and Internet
communication became more commonplace. Unlike the
Morris worm which depended on some relatively technical
attack systems, the new worms could spread using some
fairly simple social engineering to spread by email. The “I
Love You” worm, which appeared in the year 2000, was one
of these. The virus was contained within a Visual Basic
script attachment called “LOVE-LETTER-FOR-YOU.txt.vbs”.
The “vbs” extension is an indicator that this is a Visual
Basic script. Then, as now however, Windows often hides
the extension, so all users would see in their email was
“LOVE-LETTER-FOR-YOU.txt”. Thinking it was only a text
file, many users assumed it was benign (text files generally
cannot be malicious). Once the user double-clicked on the
attachment, it would start executing the VBS script. Once
running, the script would scan Outlook for contacts in the
address book and automatically mail copies of itself to
everyone in the list.



Figure 7-18  Sample reinfection: (1) A gets infected through the network. (2)
A infects B. (3) B infects C. (4) C reinfects A, which now has two copies of the
worm

This type of worm is called a mass mailer. It spread
across the world very rapidly. It was released into the wild
on May 4, 2000. In five hours, it spread worldwide. Like the
Morris worm, there was no way to prevent reinfection, so
inboxes were getting slammed with thousands of copies of
the message. Government bodies, like the United



Kingdom’s House of Commons, had to turn off their email
servers because they had become useless. So did technical
companies, like Microsoft [118].

This denial-of-service attack on inboxes affected almost
everyone, as anyone with a Windows machine and Outlook
(and in an infected connection’s contact list) was a target.
But for those that did not click on the attachment, the limit
of the damage was relatively small. They would only lose
email and perhaps Internet access for a short time.

But for those individuals that did click on the
attachment, the result was devastating. The worm deleted
files including image files, program files, and other
common file types. Many people had no backups of any
kind. These individuals suddenly found their personal data
destroyed forever with no hope of recovery.

Sadly, the I Love You worm was not the end either. In
2004, a new mass mailer emerged called the MyDoom
worm. MyDoom was released on January 26, 2004, and like
the I Love You virus, it appeared as an email message with
an attachment. The initial version has subject lines such as
“Error,” “Mail Delivery System,” “Test,” or “Mail
Transaction Failed.”

In this time period, getting emails like these was
common, and it was not unusual to investigate them. In
fact, the message itself is relatively uninteresting, but it
was often enough to get users to look and see an attached
message. The icon for the attachment was the same as a
text document even though it was a program. Once
launched, the worm would attempt to spread through a lot
of different methods. It would attempt to harvest email
addresses from more than just the contact list too. MyDoom
checked web-related documents in the browser’s cache as
well as the hard drive generally. It was also willing to try
some random email names with the same domain.

Interestingly, it also avoided certain domains and email
address names that suggested more technical users. In



other words, it was specifically targeting less savvy users
that would be more likely to click on the attachment.
Clearly, a lot of thought was put into the infection
mechanism.

The results of this planning and thought clearly worked.
In the first 24 hours, 1.2 million MyDoom emails were
transmitted. At the time, 1.2 million emails represented
almost 10% of email traffic. The result of this deluge was so
extreme that Internet traffic slowed, resulting in a
noticeable reduction in loading speed for websites [259].

Amazingly, MyDoom emails are still being sent, at least
as of 2019. In that year, researchers from Unit 42
(associated with Palo Alto Networks) estimated that 1% of
all malicious traffic was still MyDoom [201].

In the interest of space, I have left out a lot of additional
details about MyDoom including its ability to create a bot
network. I will discuss bot networks separately later. But
the point is, MyDoom was a terror in 2004, and the echos
of it can still be felt today.

Worm tactics continue to be used by malware today.
Some ransomware, for example, have worm-like
capabilities. I’ll cover those in a separate section as well.
But in conclusion, attackers still figure out ways to slice
and dice through security, often employing social
engineering and vulnerabilities to spread their malware
through networks.

Trojan Horses

One of the earliest classifications of malware was the
Trojan horse. A Trojan horse is malware that masquerades
as something benign or desirable. In other words, it looks
like a normal computer program, but when it runs, it does
some undesirable operations. The Trojan horse
classification is possibly the least specific label that can be



applied and one that can be applied to many other
malware, as will be seen throughout this section.

However, it is useful to understand the various
principles of psychology discussed in Chapter 1. Very often,
a Trojan horse malware is made to look enticing to the user
or otherwise motivating them to action. Trojan malware has
been hidden inside files purporting to be pornography,
video game components, music and video files (usually
downloaded illegally), and other files that tend to get a lot
of downloads [62]. More modern examples of a Trojan
horse are apps sold through iOS or Android stores that
appear to be legitimate apps but perform undesirable
behavior once installed [202].

The concept of a Trojan horse has been a concern for
computer security professionals from a very early date. As
discussed in Chapter 3, the Bell-LaPadula model (BLP)
assumes that Trojan horses might be running in the system.
The reason for the “no-write-down” policy was, at least in
part, to prevent unknown but evil software from exfiltrating
data to a lower level of sensitivity [40, Chapter 9].

In a consumer operating system, Trojan horse software
should be limited in the damage it can do by the OS. For
example, a Trojan horse that is executed normally should
be running unprivileged. However, clever Trojan horse
software can try to run as administrator. Even if it has to
ask for permission, the typical user may not understand the
danger of providing administrative permissions. If a Trojan
horse can run as an administrator, it can do significantly
more damage. Of course, even an “unprivileged” trojan can
do massive damage to the user’s data by deleting or
modifying it. But if it can run as administrator, it can work
to circumvent all security controls and hide itself from
security software and other defenses using the privileged
powers of the OS.



Because of the potential damage that Trojan horse
malware can do to a system, some systems attempt to
employ additional isolation techniques. Versions of
Windows since Vista attempt to protect system integrity
using a model similar to Biba (see Chapter 3). Programs
downloaded over the Internet are considered lowest
security level and, in accordance with the no-write-up
policy, may not modify any data of a higher security level,
such as the user’s data and, of course, the operating
system’s files.

More recent versions of Windows with adequate
hardware support enable some partial virtualization by
default. Instead of creating a completely separate virtual
machine, the late versions of Windows 10 and all versions
of Windows 11 have options to partially virtualize the
operating system. This approach is called “Virtualization-
Based Security” or VBS, and when VBS is enabled, various
additional security options can be enabled. But the basic
idea is that certain core features of the OS run at a lower
level, and the other parts of the OS, including third-party
code called device drivers, run at a higher level. This
permits additional isolation and security checks to prevent
Trojan horses that get administrative privileges from being
able to alter these core parts of the system [183–185].

Rootkits

A rootkit is a slightly different classifier for malware than
virus or trojan because, unlike those two terms, it does not
describe how it spreads. Instead, the term “rootkit” refers
more about where or how it is installed in a user’s system.
The word root, as used here, refers to “root access.” Root is
a concept on Unix and Linux machines. It is comparable to
administrator on Windows machines. Rootkits are so called
because they aim to get root or root-like privileges. This
makes them exceptionally dangerous.



Recall that the whole point of an operating system is to
make everything else run unprivileged. If an unprivileged
program has an error or, worse, is malicious, the damage is
confined to at most the data of the compromised user.
Other users and the system should remain more or less
intact. Additionally, malicious software should be
detectable and removable by security tools.

A rootkit undoes all of this security by being effectively
inserted into the operating system itself. Actually, some
rootkits aim to go even lower than the operating system by
infecting the startup code (called boot code) or even low-
level firmware that is installed in hardware components.
But for the brief overview of this chapter, I will simply talk
about OS-level malware. The other types of rootkit are
based on similar ideas and have similar impacts.

To illustrate the problem of rootkits, I am going to use
two different examples that are strikingly different than the
other examples I have used so far. Both of the rootkit
examples I walk through were created by legitimate

companies for presumably nondestructive and
nonmalicious reasons.

The first example happened in the 2005 era. At the time,
music services like iTunes were in their infancy, and
compact discs (CDs) were one of the primary means by
which consumers purchased and consumed music.
Concerned about the prospect of rampant consumer
copying and distributing of music tracks, Sony BMG
decided to equip their audio CDs with one of two copy
protection systems. One was called XCP (Extended Copy
Protection), and the other was called MediaMax CD-3. Both
were extremely problematic.

In terms of rootkits, however, XCP (“Extended Copy
Protection”) fit the bill. When a user inserted an audio disk
with XCP into a Windows machine, it would pop up an End-
User License Agreement (EULA) that users had to accept



or the system would eject their disk. Thus, to play music
legally purchased, users had to accept a license with Sony
BMG. But the EULA did not describe all of the things XCP
would do to a user’s system or apparently any of the XCP
software at all.

First and foremost, the XCP software was installed in
such a way that it actually modified the operating system.
The modifications permitted it to hide (cloak) itself. This
meant normal ways of seeing that the XCP software were
disabled. This included hiding files, registry keys, and the
running processes themselves.

Second, the XCP software included some kind of “phone
home” component that would transmit information to XCP-
related servers.

The XCP software initially had no uninstaller, and the
only way to get rid of it was to do some very deep and
manual tweaking to Windows. Moreover, if parts of the
software were uninstalled, the computer could no longer
play CDs at all.

In addition to all the other problems of rootkits, they by
nature create their own security holes and vulnerabilities.
It was demonstrated that the XCP software could, itself, be
attacked by malware that would piggyback on it. And
generally, the XCP software’s bugs just made the system
wasteful and prone to errors [226].

In summary, rootkits are bad whether or not they are
installed by a legitimate company. After a public outcry
(and lawsuits), Sony recalled all of the problematic CDs
and paid out settlement fees. They also released an
uninstaller.6

You would think that companies would learn from these
kinds of bad decisions. But the second example of a rootkit
is somewhat similar. In 2016, it was revealed that video
game company Capcom had bundled a rootkit with their
game Street Fighter V. As with Sony, the justification for



the rootkit was to prevent cheating. The rootkit basically
disables privileged protections of the OS so the

unprivileged game can snoop for cheating. Although not as
intrusive as the Sony rootkit, the Capcom rootkit opened
the door for the same kind of problems where other
malware might attack the OS through Capcom’s own
system.

Fortunately, the Capcom rootkit was retired fairly
quickly after discovery. While that is a positive
development, it was interesting to see a news article state,
“A lesson quickly learned” [282]. It would have been
learned more quickly if they had learned from Sony’s
mistakes.

Ransomware

Over the last 15 years or so, the classifications of malware
have shifted more from how they spread (e.g., virus, worm)
to what they do. One of the strongest examples of this is
ransomware. Ransomware is malware that locks up data or
other system resources and demands money in exchange
for the data’s release. Ransomware is what the malware
does, but it could spread like a virus, a worm, a Trojan
horse, or other means.

The first recorded case of ransomware goes back a long
time. Released in 1989 by one Joseph Popp, the
ransomware was spread by disk. In fact, Popp literally
handed out the disks at participants at the World Health
Organization’s AIDS conference. And, not coincidentally,
the name of his ransomware was called “AIDS”
(alternatively, Cyborg). The disks claimed to have
information about AIDS. But when inserted into a
computer, a message would pop up stating that the
computer had AIDS. Files were locked and users were
instructed how to mail money to an address in Panama to
obtain their release.



Fortunately, Popp’s malware was poorly written. It used
symmetric cryptography to lock the files, and, as you
learned in Chapter 5, the same symmetric key for
encryption is used for decryption. Because the symmetric
key was still stored on the computer, it was easy to decrypt
[196].

Although ransomware has popped up in one form or
another since Popp, it really began to accelerate after
2010. At least one reason why is Bitcoin. Ransomware
largely needs to combine three elements:
1.

An effective delivery mechanism  
2.

Relatively fast public-key and symmetric key
cryptography

 
3.

A form of payment that is as untraceable and as
unstoppable as possible

 
As demonstrated in this chapter, there has never been a

shortage of mechanisms for spreading malware. That
component has always been with cyberspace.

The cryptography necessary for good ransomware
attacks has also existed for a while. However, the increases
in speed as well as the increased understanding of how to
use cryptography in the 2000s moved this requirement
along. I will walk through a common cryptographic
approach shortly.

But the third requirement was the hardest. There are so
many ways to trace credit card transactions, money wires,
and so forth. There are also numerous ways to block or
cancel these kinds of transactions. But as Bitcoin became
more mainstream, cyber criminals quickly discovered its
value as a currency for ransom payments [156]. If Bitcoin
did not lead directly to the explosion in ransomware, it is a
very (un)fortunate coincidence.



As alluded to in Chapter 6, ransomware attackers have
evolved their own cryptographic system [84, 173], and it is
fascinating. Here is how a popular version called hybrid

cryptography ransomware works. Refer to Chapter 5 if you
need to review the details of any of the cryptography terms
here.

To get started, presume that the ransomware authors, or
at least those receiving payment, are operating some
server R. At server R, they generate an RSA public and
private key pair. For the purposes of this example, I will
call these two keys server_RSA_public and
server_RSA_private. The server_RSA_public key will be
embedded in the ransomware software that attempts to
infect victim machines.

When a victim machine is compromised by the
ransomware, the ransomware will generate a new RSA
pair. I will call this pair victim_RSA_public and
victim_RSA_private. Remember that RSA public keys can
encrypt (relatively small amounts of) data. The ransomware
will use RSA to encrypt the victim_RSA_private key with
the server_RSA_public key. Importantly, only the
server_RSA_public key is on the victim’s system ever.
Anything encrypted by this key can only be decrypted by
the criminals back at server R.



Figure 7-19  Ransomware encryption using hybrid cryptography. This variant
locks each file with an AES key. Each AES key is locked by a local public key.
The corresponding private key, which could unlock it, is encrypted with a
server public key. The server private key is never on the victim computer

The ransomware next generates an AES key for each file

to be encrypted. The key is used to encrypt its associated
file using an AES algorithm such as AES-CBC. Once
encrypted, the ransomware will encrypt the AES key using
victim_RSA_public. So, in order to recover the encrypted
file, a user would have to get the AES key. But to do that,
they would have to be able to decrypt the AES key with the
victim_RSA_private key. But that key requires
server_RSA_private key, which is not on the victim’s
system. This configuration is depicted in Figure 7-19.

Once all of the files are encrypted, the victim is notified.
If they choose to pay the ransom (and the criminals actually
release the encrypted data), the ransomware on the
victim’s machine transmits the encrypted AES keys to the
server along with the encrypted victim_RSA_private key to
the server R. Here, the private key is decrypted, the AES
keys are decrypted, and AES keys are sent back to the



victim machine. The AES keys are then used to decrypt all
of the locked data.

Notice that this cryptography approach solves a lot of
problems:
1.

Neither the victim machine nor the server R has to be
connected to the Internet at the same time.

 
2.

Files are encrypted quickly with symmetric key
encryption.

 
3.

Keys are per file permitting a few free decryptions to
prove it can be done.

 
4.

Keys are also per system so that revealing one does not
reveal all data on all machines.

 
Ransomware has proven to be a massive threat. Some

ransomware has developed worm-like capabilities [46].
Ransomware in 2020 had over 50% of its infections come
from unsecured remote access to Windows (lock down your
remote access!), but about 25% still came through email
phishing [238]. Ransomware has attacked hospitals,
businesses, public school districts, universities, and
governments [128].

Bot Networks

The last type of malware I will talk about in detail is a
botnet, which is short for a “bot network.” The concept of a
bot is a computer that has been turned into a robot for the
malicious attacker. These computers have sometimes been
called “zombies” as well.

As with ransomware, a botnet is more of an end result. A
botnet could be created through any means. The example I
will use here is a worm called Mirai. The Mirai worm took
advantage of the vast number of IoT (Internet of Things)
devices becoming connected to the Internet. In the 2010s,



there was an explosion of connecting devices like cameras
and other IoT devices to the Internet. Unfortunately, most
of these devices were practically thrown onto the Internet
with very little thought about the computer security
considerations. For example, many devices had default
passwords left in place that could be used to easily subvert
the device. And that is exactly what Mirai used to acquire
its bots.

The main idea behind a botnet is that there is a
Command and Control (C2) server that operates
somewhere on the Internet. When a device becomes
compromised, it connects to the C2 server and reports in.
Once this happens, the compromised machine no longer
needs to work on automatic. Rather, it can receive
instructions from the C2 server, and its operations can be
coordinated with the other computers in the botnet. The C2
also provides logistical support such as patches and
upgrades to the botnet software itself. A victim bot machine
will try to find other computers to compromise and turn
into bots like itself. When these machines are subverted,
they will also contact the C2 and join the network.

Mirai would scan the Internet for vulnerable IoT devices,
get in using the default credentials, and then would block
other malware from gaining access or eject malware that
was already there! These IoT devices were so vulnerable
that malware was fighting over which one would be in
control of it. But for what purpose?

One of the primary uses of a botnet is a distributed

denial-of-service (DDOS) attack. A DDOS attack usually
involves sending a large amount of data, usually from a
large number of computers, to a single source such as a
web or game server. When the victim system receives all of
the traffic, it overwhelms it and the server becomes unable
to serve legitimate traffic. This can take a website offline,
or it can cause various kinds of issues for the game running



on the server. In the case of Mirai, the first targets were
Minecraft game servers. Minecraft servers are very
popular, and website owners can make tens, and even
hundreds, of thousands of dollars from subscribers. Some
Minecraft server owners paid the controllers of the Mirai
botnet to DDOS competitors to drive their players out and
over to (presumably) their own servers [88].

This is an important point. The people that wanted to do
the DDOS were not the people in control of the Mirai
network. Rather, the people in control of the Mirai network
offered their services for money to others. Sometimes
called DDOS-as-a-service, it means that malicious parties
do not need to have their own botnets or even be
particularly savvy. They simply need a target and money.

Scanning for IoT devices, Mirai was able to put together
one of the largest botnets ever seen. According to sources,
“the end result was a mammoth botnet of 200,000–300,000
enslaved devices capable of generating up to 1.1 terabits
per second in junk traffic” [88]. If you do not have a lot of
tech experience, you might be having trouble grasping just
how big 1.1 terabits per second is. It is big. Really big. And
sending that amount of data can take down even the most
well-provisioned servers.

In fact, one such website attacked by the Mirai botnet
was the blog of cybersecurity researcher and investigator
Brian Krebs. His site, “Krebs on Security,” was even
protected by a company that offered DDOS protection
services. The total traffic sent at Krebs’s blog was too much
even for them, and the system did go down for a time. It
should be noted that Krebs got his revenge. Through his
extensive research, he was basically able to identify two of
the authors of Mirai’s source code. This led to the arrest
and conviction of Josiah White and Paras Jha, who pleaded
guilty to the charges7 [88].



Malware-Specific Defenses

This chapter has focused so far on concepts of isolation
used by host systems for defense and a survey of the
malware that tries to bypass them. But there are specific
anti-malware strategies that are also widely used and are
sometimes better known than isolation because they are
more visible.

I prefer to group these strategies into three categories
based on when in the malware’s life cycle they begin:

Identify and neutralize strategies attempt to defeat
malware before the malware is either active or actively
attacking the system.
Mitigation strategies are designed to reduce the effects
or duration of attacks that are in progress.
Recover and respond strategies engage after the attack
is over with goals to undo damage caused by the attack
and/or prevent future attacks.
Please note that these terms are not industry terms.

They are my own formulations.

Identify and Neutralize Strategies

In order to stop malware from being able to attack and
damage the system, the malware must first be identified.
That may sound like a simple task. In fact, it is
overwhelmingly challenging. There are even theoretical
proofs that show it is impossible to identify all possible
malware.

Another way of saying identification is classification. The
malware classification problem is, given a program, or set

of instructions, can the classifier determine if it is malicious

or benign? Over the three plus decades of commercial anti-
malware research and industrial development, there have
been a wide range of classifiers created. They tend to fall



into one of two categories: classifiers based on static
analysis and classifiers based on dynamic analysis.

Static Analysis

Static analysis classifiers are designed to analyze malware
that is not running. That is, a static classifier analyzes the
instructions being classified without running them. This
category of classifier includes classic antivirus software
based on signatures of known malware. It also includes
systems that attempt to predict what the instructions will
do when running based on heuristics. A heuristic is any
kind of rule, measurement, estimate, or other shortcuts to a
longer or more complicated operation. Actually running the
instructions on a processor with real user input is the only
way to know exactly what a given program will do.
Heuristic rules attempt to make “good guesses” about what
a program will do based on telltale signs or indicators in
the instructions.

Since the beginning of anti-malware technology,
signatures have been the predominant method for
protecting systems. The first approaches were quite
unsophisticated. This included publishing actual binary
sequences of known malware in printed publications. For
example, Virus Bulletin began publication in 1989 and is
still an active anti-malware organization. When they first
started publishing, the World Wide Web did not exist. Their
primary publication was printed. The PDFs of these
publications are still available at their website, and you can
still see where they used to publish the early virus
signatures.

For example, the “8 Tunes” virus I mentioned earlier in
this chapter can be seen identified in the January 1991
Virus Bulletin.

 33F6 B9DA 03F3 A550 BB23 0353 CB8E D0BC



This is hexadecimal, of course, and represents the
binary bits that appear in a file infected with the 8 Tunes
virus. As I explained about these viruses, they cannot
execute on their own and are not separate stand-alone
programs. Rather, they are instructions inserted into
existing programs. So armed with these kinds of
signatures, computer administrators could scan their files
for these sequences. If they found them, they knew they
had an infection. This was a very manual process, and often
it was a manual process to remove the virus and repair
damaged files. Repairing basically means removing the
virus instructions from a file to restore it to its original
form. Or, sometimes, it was best just to reinstall the
program.

Antivirus software evolved to automate this process.
Early antivirus products, such as McAfee VirusScan, could
automatically look for these signatures and, in many cases,
repair the damage. By the mid-1990s, there were many
antivirus (AV) software programs attempting to combat the
thousands of viruses floating around. Despite a general lack
of Internet access, viruses spread via disks and over
modem connections. The AV programs collected large
libraries of samples to identify and remove viruses.

The virus authors got smarter too. To eliminate easy
signature matching by identifying a well-known sequence
of bytes, virus authors started to create polymorphic

viruses. A polymorphic virus involved a couple of
components. First, the main virus was “encrypted,”
although encrypted does not mean the strong
cryptographic encryption described in Chapter 5. It was
just strong enough to make the data unrecognizable. And it
was encrypted differently with every infection of every file.
This means that the virus could not be found with simple
scans because the bytes would be different in every file.



The polymorphic virus also needed a decryptor that
would decrypt the virus and run it. The decryptor also
needed to be unrecognizable and different in each
infection, or virus scanners would just scan for the
decryptor. So included in the encrypted virus was a
mutation engine. The mutation engine, once decrypted,
would mutate the decryptor. Mutate is not encryption. It
simply reorganizes the instructions, or adds unnecessary
instructions, in a way that does not change the
functionality. This is similar to shopping at the store. It
does not matter if you go down aisle 1, 2, or 3 first, you will
end up with the same items in your cart. Similarly, the
instructions for the decryptor could be rewritten in many
ways, and the mutation engine could produce a more or
less custom decryptor. Armed with a custom decryptor and
a new key, the new file could be corrupted with a different
decryptor and a different ciphertext virus (Figure 7-20).

In order to capture polymorphic viruses, antivirus tools
had to resort to simulating the execution of part of the
code. Viruses had to insert their jump near the beginning of
the program to ensure they took control of the software
before any branching started. This meant that if the AV
started to execute instructions, or simulate the execution of
instructions, it was likely to encounter virus instructions
very quickly. By executing instructions, it could (relatively)
quickly execute the decryption instructions. The very
presence of a decryptor usually meant an infected file, but
the AV would scan the decrypted data to determine which
virus was installed. That was necessary for proper cleaning.

The simulated execution of instructions required the use
of an emulator for the processor. In other words, the
antivirus created a small sandbox by virtualizing the
processor. Within the sandbox, the AV could execute the
instructions without risking any harm to the system. Even
though this is partially executing the file, which I described



earlier as dynamic analysis, this is still primarily a static
technology. The simulated execution was only meant to get
past decryption so that normal signature scanners could
make a definitive determination of the infection.

In fact, at least some signature scanners created
signature definitions that were more like small computer
programs. Rather than a sequence of bytes, the signature
would have instructions like “check byte 10, if 0 jump
forward 30.” The signature could also have decryptor
instructions built in. But even though the signature is
dynamic, this is still static analysis on software that is not
yet running.

Figure 7-20  Polymorphic virus infection process. Source: Based on [72,
Figure 1]

Signature scanners had two major problems. First, these
scanners could not detect any new viruses. Until a virus
had been analyzed and a signature extracted, the defense
could do nothing. The second major problem was just
keeping up with the large library of signatures that must be
maintained. Although in contemporary systems memory is



less of an issue, in the mid-1990s there was quite a bit of
concern about antivirus software with large libraries. Not
only did they chew up memory but it also made scanning
slower because every file scanned had to be compared
against every signature.

This led the more widespread adoption of a different
scanning technique called heuristic rules. As described
earlier, a heuristic rule is a “good guess” based on telltale
signs. A paper written by Dmitry Gryaznov in 1995
explained a bit about the problems with signature scanners
and how heuristic scanners were supposed to solve the
problem:

At the beginning of 1994 the number of known MS-
DOS viruses was estimated at around 3,000. One year
later, in January 1995, the number of viruses was
estimated at about 6,000. By the time this paper is
being written (July 1995), the number of the known
viruses has exceeded 7,000. Several anti-virus
experts expect the number of viruses to reach 10,000
by the end of the year 1995. This big number of
viruses, which keeps growing fast, is known as glut
problem and it does cause problems to anti-virus
software, especially to scanners. Today scanners are
the most often used kind of anti-virus software. Fast
growing number of viruses means that scanners
should be updated frequently enough to cover new
viruses. Also, as the number of viruses grows, so does
the size of scanner or its database. And in some
implementations the scanning speed suffers [122].

Gryaznov explains further, “Today more and more anti-
virus software developers are looking towards heuristic
analysis as at least a partial solution to the glut problem.”
And he provides an explanation of what heuristics are: “In
the anti-virus area, heuristics are a set of rules which



should be applied to a program to decide whether the
program is likely to contain a virus or not” [122].

In this paper, Gryaznov walked through a couple of
simple heuristics that help to explain the idea:
1.

The program immediately passes control close to the
end of itself;

 
2.

it modifies some bytes at the beginning of its copy in
memory;

 
3.

then it starts looking for executable files on a disk;  
4.

when found, a file is opened;  
5.

some data are read from the file;  
6.

some data are written to the end of the file.  
After explaining the basic concept of viruses, these rules

should make sense. The first rule is about the instruction to
jump to the end. The second rule might not make sense at
first because these viruses do things a little different from
what I described. Instead of including the overwritten
statement at the end for execution, it is actually written
back into place at the beginning of the file in memory only

so that when the virus jumps back to the beginning, the
program appears to be completely unaltered.

The other rules are what the virus does to spread. It
looks for executable files, opens them, and writes data to
the end.

Gryaznov explained that a new virus could be analyzed
according to these steps. If it was found to have
instructions that perform these kinds of steps, it has a very
good chance of being a virus, even if it has never been seen
before [122].



Heuristics were touted as an effective solution to
unknown viruses and the overwhelming number of virus
definitions. Unfortunately, they did not live up to their
promise. There are some fundamental reasons for this.

First, heuristics are, in fact, guesses. And sometimes
they guess wrong. Similar to the problems associated with
biometrics discussed in Chapter 2, a false positive is when
the heuristic falsely guesses something benign is a virus. A
false negative is when the heuristic falsely guesses that a
virus is benign. Both are problematic but in many ways the
false positives are worse. False positives force the user,
most of whom are not virus experts, to decide if the alarm
is real or fake. The user is unlikely to know the answer
especially for difficult situations. Because the user has to
clear the alarm, the false positives actually train the user to
not trust the heuristics. It soon becomes automated for the
user to clear the alarm without paying much attention.

The second problem with heuristics is that virus authors
become aware of the heuristics and simply change the flow
of the virus. A virus is not required to follow Gryaznov’s six
steps. There are other ways of achieving the same results,
so as soon as a virus author knows that the AV products are
using those rules as heuristics, they start using something
else instead.

It turns out that malware classification is simply a hard
problem. There are even theoretical proofs about this. The
Halting Problem, for example, is a famous computer
science proof. This proof shows that it is impossible to
create a classifier that can tell if any given program with a
particular input will get stuck and run forever or if it will
halt (finish). A classifier can be written that can tell if some

programs will halt, but the classifier cannot tell if every
possible program will halt. This result was later extended
to show that classifiers cannot categorize every possible
program for any nontrivial characteristic. And whether or



not a program is a virus is a nontrivial characteristic. What
this means is it is impossible to write a classifier that can
tell if, for every possible program, the tested program is a
virus or not. There will never be a perfect antivirus [76].

This, however, is a theoretical result. So even though
Gryaznov knew that heuristics could not possibly catch
100% of viruses, he expressed his belief that they could
deal with 99% of the viruses, and then signatures could be
used for the remaining 1% [122]. It turned out Gryaznov
was wrong.

The problem with Gryaznov’s reasoning is that he was
treating computer viruses as if they were a random rather
than an engineered process. If viruses were random,
perhaps heuristics could catch 99%. But they are
engineered by humans. And the virus authors appear to be
very motivated. The virus author does not throw up their
hands and say, “well too bad for me, someone came up with
heuristics. I guess I am finished.”

Truly, the very fact that the heuristics catch 99% of a
current generation of malware simply gives the virus
author a road map into what the form of the next virus
should be. When the virus author sits down to write a new
virus, will they write one like the 99% getting caught by
heuristics or will they write it like the 1% that is not?
Clearly, they will change to the form the heuristics miss,
and the next generation of viruses will largely bypass the
heuristic scanning. I have illustrated this process in Figure
7-21.

These examples so far have focused on older malware no
longer in wide use. What about modern malware? Today,
our defenses still use signatures and heuristics to defeat
the trojans, worms, and other malware that still infests the
Internet. These days, however, most malware is self-
contained and runs on its own. For this reason, many
signatures are now just hashes of the malicious data. And



these signatures can be collected into cloud databases. For
example, VirusTotal is an online service with a massive
catalog of collected malware and hashes on them. Users
can even submit files to VirusTotal for analysis. VirusTotal
reports back to the user if their submitted file matches the
hash of any malware in its database.

An example of modern heuristics is found in dealing with
ransomware. Many of the modern anti-malware systems
monitor for unusual encryption activity that is often
associated with ransomware. This fairly narrow heuristic
checking appears to work fairly well in practice.

Dynamic Analysis

Dynamic analysis is different from static analysis in that it
actually runs the software, or part of the software, to
determine if it is malicious. However, the dynamic analysis
discussed here is still part of the identify and neutralize
strategies rather than the mitigation strategies. How can
you run malware and not have it do bad things?

Figure 7-21  No matter how well defenses detect the malware in a given time
frame (e.g., a month), it will not detect malware as well in the next time frame.



If the detection mechanism detects 99%, in the next time period, the malware
authors will be creating their malware to be like the 1% that was not detected

The answer is to use some form of virtualization. Using a
safe virtual environment, the potential malware can be
executed or simulated and the results analyzed. The goal is
to classify the software as benign or malicious based on the
behavior.

The level of virtualization depends on the nature of the
simulation. As described in the antivirus signature
scanning, even antivirus in the 1990s had to simulate the
execution of a virus in order to decrypt the virus payload.
The antivirus program actually simulated a processor
completely with memory and other processor components.
It would read the instructions just like a real processor
would and simulate the effects in its emulated processor
environment. But the goal was not to classify. The goal was
to decrypt for scanning.

Emulation can be done to actually detect behavior. This
kind of emulation, for example, monitors any types of
activities that can be suspicious. What counts as suspicious
depends on the vendor and the security policy they adopt.
But it often includes things like unusual data storage (or
deletions!), changes to system settings, and network
connections to certain undesirable locations. The emulator
does not necessarily simulate the actual hard drives,
settings, or network interfaces. Instead, it simply monitors
for those types of operations being attempted. This kind of
simulation is not meant to be completely real. It is usually
an attempt to see some of the kinds of operations that
program will attempt.

You may wonder about user input. After all, what makes
a program a program is the branching in the instructions
based on inputs and conditions. In some of the emulation
programs I have examined personally, they attempt to
execute all branches, but only for a relatively short period



of time. Branches that look “interesting” can be followed
for a longer period of time.

Some systems, however, want more realism than this.
These systems opt for the actual use of virtual machines
with full operating systems. These systems can insert a
suspected piece of malware into the virtual machine and
“detonate” it (run it). Usually, it is limited to run for a
period of time (like a minute), and it will not receive any
user inputs. But in many cases, this is enough to see if the
software does something “harmful,” like delete files or do
other nasty things. And because everything is in a fully
isolated virtual machine, the malware is not able to escape
into any real systems. The virtual machine is reset to its
state before the detonation, and it is ready to test
something else.

Obviously, most users do not have virtual machines
launching on their system to check for malware. Usually,
full virtual machines are used on some kind of centralized
system, and the results are stored for distribution. Many
anti-malware vendors will use these kinds of systems in
their labs. It can be automated so that as samples are
received from customers, they are automatically deployed
to a VM for detonation. The results are processed and can
be distributed to customers worldwide.

There are, however, some firewalls that can do this. I
will discuss products like these more in the next chapter.

Story Time: A Third Form of Defense—Human

Vigilance

Sometimes, an alert and security-conscious human spots
suspicious attacks when no other defenses (dynamic,
static, or otherwise) would have done so.

For example, in 2016, a human rights activist by the
name of Ahmed Mansoor was targeted with a social
engineering attack. He received a text message with a



link that would supposedly provide secret information
about torture happening in the United Arab Emirates.
Fortunately for Mansoor, he was very wise and did not
click the link. Instead, he sent it for analysis to the
Citizen Lab group at the University of Toronto. They
recognized it as coming from the NSO Group, a company
that sells “lawful intercept” software (i.e., government-
sanctioned spyware) to governments.

What Citizen Lab found is that the link was configured
to deploy zero-day exploits that would have sliced
through any security and installed the malicious
software, now known as Pegasus. It is unlikely that any
static or dynamic analysis would have caught it. Static
analysis could not have caught it because it was
unknown at the time. Dynamic analysis probably would
not have caught it because it is exploiting a vulnerability
in the iOS operating system directly. In any event, none
of the defenses on the iPhone at the time would have
stopped this attack from taking over Mansoor’s phone.
Only his human thinking, correctly applied, prevented
the infection [20, 50, 171].

Mitigation Strategies

Unlike the systems described in the previous section,
mitigation strategies typically are designed to kick in after
the system is already under attack. At the very least, the
malware is already running on the potential victim system.
These technologies try to inhibit the malware from doing
damage.

In the early days of malware, behavior blockers were
examples of this kind of strategy. A behavior blocker was
installed on a system, and it would prevent all kinds of
supposedly unwanted behavior. The behavior blocker would
run in the background and detect when file access or
operating system changes were requested. Any of these



unwanted behaviors would bring up a warning to the user
and, optionally, ask the user if it should be allowed. An
example behavior blocker was the Flushot program.

Behavior blockers had a number of limitations and
problems. In the first place, the malware was already
running. Behavior blockers could not identify the malware
nor remove it. All they could do was block some of its
unwanted effects.

Another problem with early behavior blockers is that
their alerts were false positives too often. Like heuristics,
behavior blockers trained users to ignore them. Exceptions
could be made permanent, but this also required more
expertise than the average user has in the area of malware.

Still, the concept has persisted. McAfee (recently
acquired and merged into Trellix), for example, offered a
Host Intrusion Prevention System (HIPS) [45]. HIPS
evolved into what is now known as McAfee Endpoint
Security. This system offers access control rules for hosts
including blocking writing to certain critical directories. It
can also block certain types of web requests and operating
system interactions. Endpoint security is a defensive
system to prevent damage if something bad does get
through other defenses [28].

Recover and Respond Strategies

Unfortunately, sometimes malware gets in and does
damage. Some technologies are focused on recovery and
response. One of the most immediate needs for this type of
operation is simply detection that an attack occurred at all.
Not every attack is like the I Love You worm that deleted
most of a user’s files. Some attacks are data exfiltration,
with no visible destruction at all. Other attackers are
stealthy on purpose because they are stepping stones to
later attacks.



Early technologies for this included “integrity checkers.”
Integrity checking tools would take a checksum (which is
like a hash) of every file on the system. At regular intervals,
the files would be checked to see if they had been altered.
The problem, of course, is that many files should be
regularly altered. Documents are not static. And even
operating system files change during normal system
operation. Patching was nonexistent in the 1990s when
integrity checkers appeared, but nowadays sensitive
system files are updated regularly. How is an integrity
checker to tell the difference between authorized and
unauthorized changes?

Modern integrity checkers are far more nuanced and
can be configured in accordance with policy. Kaspersky
Endpoint Security includes, for example, a file integrity
monitoring in various forms. This tool makes use of
operating system features to monitor changes to the files in
real time. Changes are not automatically blocked or flagged
necessarily. Rather, each change is an event sent to the
security center. Policy at the security center determines
whether or not a single event, or a series of events,
warrants a response. Nevertheless, Kaspersky’s product
can compute file checksums for storage and later
comparison.

Assuming that an attack is known, some systems have a
built-in recovery system. These systems work in parallel
with an automated backup service. If an attack is detected,
the data that is damaged or destroyed can be recovered
automatically from backup. Obviously, this approach is easy
for a user to do themselves manually from their own
backup, but the integration with the security system
enables seamless cooperation. This type of technology can
be used to mitigate ransomware attacks. Acronis is a
security company with products that mitigate ransomware.
Their ransomware protection can be configured to restore



a compromised file from a wide range of locations including
internal disk, external disk, remote server, or cloud storage
[29].

More advanced systems for modern host security
incorporates the ability to detect attacks as they are
happening, or after they happen, and respond to prevent
the attack from happening again in the future. Security of
this form is sometimes called Endpoint Detection and
Response, or EDR. EDR is defined by Gartner as

The Endpoint Detection and Response Solutions
(EDR) market is defined as solutions that record and
store endpoint-system-level behaviors, use various
data analytics techniques to detect suspicious system
behavior, provide contextual information, block
malicious activity, and provide remediation
suggestions to restore affected systems [112].

EDR is stated by the same source to have four required
functionalities:
1.

Detect security incidents  
2.

Contain the incident at the endpoint 
3.

Investigate security incidents  
4.

Provide remediation guidance [112] 
If you are wondering why the terminology has switched

so strongly to “endpoint” rather than host, it is a matter of
perspective. “Host” is a term that makes more sense to the
user interacting with it. “Endpoint” is more appropriate for
organizational security professionals that are trying to
protect a network of resources. From their more
centralized vantage point, hosts are endpoints in the



network of data. EDR is still largely for commercial, rather
than personal, computing.

Summary

Host systems are designed to protect themselves against
accidents and malice largely by using isolation. By isolating
running programs from each other, it is possible to enforce
access controls and contain bad things from spreading
through the whole system. Initially, operating systems
(OSs) were the fundamental enforcer of isolation and
access control. In recent years, many devices (especially
mobile phones) have been increasing enforcement by
specially secured areas, such as TrustZone’s Trusted
Execution Environment. On the flip side, there are security
controls above the operating system, such as middleware
security controls and enforcement mechanisms within
applications. A good example of application security
isolation is the per-process protections in a modern web
browser that isolate each tab from another.

Attacks on host systems are often based on either
exploiting errors in the legitimate programs or getting
malicious software to run and execute on the system
through various means.

One of the most well-known and notorious errors that
can make a program exploitable to an attacker is a buffer
overflow. A buffer overflow happens when input data is
larger than space allocated on the stack to hold it. As the
data overflows, it overwrites return addresses that control
the code that will be executed by the processor. In this
way, an attacker can redirect the processor to code of their
choosing in order to subvert the program and the system. If
defensive measures prevent an attacker from just
uploading their own instructions directly, they can use
techniques like return-to-libc or Return-Oriented



Programming (ROP) to achieve their results. Techniques
like Address Space Layout Randomization (ASLR) make
these kinds of attacks much harder.

On the other hand, attackers can also take over
machines by just getting their evil code inserted directly
onto the host. In the past, viruses attached evil code to
legitimate code so that running one would run the other.
While viruses of that type are less common now, systems
are always at risk from worms, rootkits, ransomware, and
other malicious software. There are three basic approaches
to protecting systems: identify and neutralized, mitigate,
and recover and respond. Identifying and neutralizing
malware (i.e., before the malware does any damage) is
preferred. Two approaches for this type of protection
include static analysis, such as signature checking, and
dynamic analysis, like testing the malicious software in a
virtual machine.

Further Reading

As always, I recommend Anderson’s Security Engineering

book. For the topics discussed in this chapter, I recommend
Anderson’s chapter on Access Controls [40, Chapter 6],
Tamper Resistance [40, Chapter 18], and Side Channels
[40, Chapter 19]. In the Tamper Resistance chapter,
Anderson goes through a number of examples of how to
“hack a cryptoprocessor.” In these sections, Anderson is
talking about hacking hardware security modules, which
are often used as external devices for secure storage of
cryptographic keys and similar operations. However, many
of the concepts here could be applied to cracking a trusted
execution environment. Anderson’s chapter on Side
Channels includes information about Spectre and
Meltdown as well as other examples.



Bishop’s Computer Security includes an entire chapter
called “Confinement Problem” [60, Chapter 18]. This
chapter includes a section on the Isolation problem as well
as several sections on covert channels, which include side
channels. The book also includes a chapter on Malware
that goes into much more technical detail and formalism
[60, Chapter 23].

One of the earliest papers on security in operating
systems is “Multics Security Evaluation: Vulnerability
Analysis” by Paul A. Karger and Roger R. Schell. Originally
written in 1974, it was reprinted in a conference in 2002
[149]. This analysis from the 1970s introduced key and
fundamental concepts such as a reference monitor, security
levels (“rings”), hardware isolation, controls on memory
segments, and many more. This is a great starting point for
these concepts.

For those interested in modern trusted execution
environments, Arm publishes a number of technical
specifications related to the operation of TrustZone [42, 43,
288]. Other documentation can be found on Arm’s website.
Moreover, there are many research papers that discuss
TrustZone’s security [206]. There are also various attacks
against TrustZone [70].

Another interesting concept is that of provable

correctness. Formal proofs can be constructed on software
to prove that it has no buffer overflows or other types of
vulnerabilities. These proofs are very difficult to construct
on large software, but seL4 is a type of operating system
that has certain provable properties [151]. Interestingly,
even though the software can be proven correct under
certain circumstances, that does not protect it from
hardware errors like Spectre and Meltdown [13].

Buffer overflow vulnerabilities have been around for a
long time. A commonly cited paper is “Smashing the Stack
for Fun and Profit” from 1996 [35]. It is still used as a



starting-point paper when teaching computer science
students about these kinds of attacks. Many papers have
been written since promoting various protections or
showing methods for bypassing defenses [82, 83, 90, 160,
220, 239]. Thomas Dullien wrote a paper showing that
attackers’ interactions with software are effectively a new
program (their interactions create a series of state
transitions, and those transitions are more or less a new
computer program). Their goal is to get the software into a
“weird” state, meaning a state that was not anticipated or
tested by the authors [98].

Many of these papers are somewhat academic. On the
more practical side, various books have been written for
learning how to prevent or exploit vulnerabilities. A good
survey of programming “sins” that lead to exploitable
vulnerabilities is in 24 Deadly Sins of Software Security

[137]. On the flip side, Exploiting Software shows the
reader how to find and exploit the vulnerabilities in
someone else’s software [135]. NIST has a special
publication on the Secure Software Development
Framework, a framework for developing code with minimal
vulnerabilities and vulnerability robustness. This document
describes various practices and approaches that support
these goals [246]. NIST also has a special publication on
patching strategies. Once a vulnerability is found, it is
essential that it be removed (i.e., via patch) as soon as is
feasible [245].

It is also worthwhile to read about how NIST
incorporates host security controls into the overall security
picture. NIST provides a special publication entitled
“Security and Privacy Controls for Information Systems and
Organizations,” also known as SP 800-53. This document
“provides a catalog of security and privacy controls for
information systems and organizations to protect
organizational operations and assets, individuals, other



organizations, and the Nation from a diverse set of threats
and risks, including hostile attacks, human errors, natural
disasters, structural failures, foreign intelligence entities,
and privacy risks.” This catalog is broken down into 20
families of controls that are intended to be comprehensive,
including everything from Access Control to Physical and

Environmental Protection. Although there is no specific
family of controls for host security, both the System and

Services Acquisition controls and theSystem and

Communication Protection controls include requirements
applicable to hosts based on the isolation and mediation
principles discussed in this chapter. Other families of
controls, such as Assessment, Authorization, and

Monitoring, Incident Response, Maintenance, and System

and Information Integrity, include requirements that
address malicious code identification, mitigation, and
recovery [121]. It should be noted that NIST also produces
another special publication called “Protecting Controlled
Unclassified Information in Nonfederal Systems and
Organizations,” or SP 800-171. This document contains a
subset of the requirements of SP 800-53 and is often used
for compliance purposes in American commercial entities
that do not have access to classified government
information [224]. However, because the controls are taken
from SP 800-53, it is useful to refer back to that document
for context and explanations even when SP 800-171 is used
as the compliance target.

I did not discuss in this chapter the people that spend
their time reverse engineering malware, which is often
necessary to figure out what damage they have caused,
how they work, and how to prevent them, but it can be a
very difficult process unless you are deep in the art. A book
like Practical Malware Analysis will show you how to
analyze data down at the level of binary instructions to
figure out what the attacker did [243].



From July 1989 to June 2014, Virus Bulletin published
monthly in a magazine style. The publication was originally
hard copy before switching to online-only in 2006. The
Virus Bulletin archives at www. virusbulletin. com/ 
virusbulletin/ archive have all of these publications,
including PDFs of the hardcopy magazines. These archives
are a fascinating view into the early days of viruses and
antivirus technologies.

Ransomware is probably one of the most destructive
malware types at this time. NIST offers a comprehensive
guide for enterprises to deal with the threat. The guide
references other NIST documents but includes everything
from risk assessment to containment in the event of a
compromise [69].
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As I explained earlier, in a real system there are no names like C or F.

Instead, the data would be stored in the stack by address, as the stack is just a
set of memory addresses. I also mention in passing that this kind of data might
not be stored on the stack at all but could be stored in registers instead.

 
Actually, text like this almost always includes a special invisible character at

the end called the null terminating character. This is used to mark the end of
the string in the buffer. This means that this buffer can actually only hold 79
characters.

 
Coincidentally, BSD is also related to modern versions of the MacOS system.

 
However, the first uninstaller they released was also problematic and,

according to some accounts, made things worse [126]!

 
The lesson is, do not mess with Brian Krebs.
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Chapter Quick Start Guide

Building on the previous chapter, I will now examine
attacks and defenses for networks and how they have
evolved over time as network architectures and attack
vectors have evolved. Because this chapter is about
classical network security, I will focus on perimeter

defenses built around firewalls, proxies, and other
similar devices. Intrusion detection, including defensive
deception, provides a second layer of security by
identifying intruders if they get past the outer walls. I
also discuss how attackers bypass network security
systems.

Key Concepts

1.
In classical (perimeter) network security, traffic
entering a network from outside has higher risk than
traffic originating inside a network.

 
2.

Network traffic can be analyzed, filtered, and shaped
as part of security policy enforcement.

 
3. Firewalls and proxies provide perimeter

f t IDS d IPS d t t th t th t t
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enforcement; IDS and IPS detect threats that get

past them.
 

4.
Defensive deception is designed to fool the

adversary, waste time, track movements, and
prevent misuse of real resources.

 

Common Pitfalls and Misunderstandings

1.
Many of these concepts were created in the context
of trusted networks within organizations, so they
may not be implemented the same way in modern
networks.

 

2.
Throwing a firewall on a network will make the
network “secure.”

 
Useful Vocabulary

Firewall: Network device that controls, monitors, or
restricts traffic between two network partitions
LAN: Local Area Network. A defined network, perhaps
within the premises of an organization, that allows
interactions between more-or-less trusted machines
performing similar functions
WAN: Wide Area Network. A network outside a LAN
that allows interconnections between other unrelated
networks
DNS: Domain name system. A system for translating
human-readable domain names (e.g., google.com) to
the IP addresses necessary for network communication
VPN: Virtual Private Network. A bridge between two
remote networks (e.g., “site-to-site VPN”) or between a
machine and a remote network (e.g., “remote access
VPN”)



IDS: Intrusion Detection System. A system for
detecting the presence of threats or anomalies on a
network or host
IPS: Intrusion Prevention System. A system for
preventing threats from infiltrating a network or
machine
DMZ: Demilitarized zone. A network segment
containing high-risk systems, such as public-facing
servers, which helps isolate intrusions from other more
sensitive network segments
APT: Advanced persistent threat. A type of attacker
known for stealthy, patient, and sophisticated
operations to infiltrate even well-defended networks
DLP: Data loss prevention. A system that blocks
sensitive data from being exfiltrated

In this chapter, I will cover what I call “classical” network
security. For at least two decades, and perhaps closer to
three, network security has been defined largely by
perimeter security. This security model presumed a
relatively static computer network that exists in a primarily
small geographic area. Hopefully, it will be obvious why
this model for network security needs changes. The modern
computing world is all about cloud computing, services
spread across many networks, and increased remote access
(e.g., from more people working from home).

Nevertheless, the classical network security models are
still in use in many environments, and IT security
professionals will spend a significant amount of time
worrying about these systems in their organizations.1
Moreover, the principles behind these models, as well as
the lessons learned from developing them, are
foundational. Understanding the past is key to
understanding the present.



A good starting point is the security issues we have
inherited from relying on technology designed in a
presecurity era.

Legacy Networking Security

Implications

The core concepts, protocols, and technologies of the
modern Internet were developed in the 1970s and 1980s
(for a review of these concepts, please refer to Appendix
C). It is phenomenal that in an era when a mobile phone is
obsoleted in a few years, the underlying network
technologies have managed to last for so long.

Unfortunately, however, it also means that the majority
of our Internet was envisioned and designed before there
were so many of our modern security issues. It was
designed to work on an open network between a relatively
small number of nodes operated by largely trustworthy
parties. This means that very little computer security
considerations were incorporated into this architecture.
Much of the security we have in computer networks now
has been added on in an attempt to make an insecure
system secure.

Of course, as discussed at length in previous chapters,
security does not exist as an intrinsic virtue. Rather,
security is about defining some kind of policy and enforcing
it. Identifying the policy is essential for even discussing
what network security should be.

In the early 1990s, some people felt that there was no
need for network security at all. From their point of view,
the network is not a protected resource. Hosts are the
protected resource, and as long as hosts are adequately
protected (e.g., using the principles and technologies
discussed in Chapter 7), network security is unnecessary.
In fact, to the extent that trying to secure a network led to



a lax security policy on hosts, or a false sense of security
for an organization that did not take host security seriously,
“network security” could actually lead to a decrease in
overall security posture [53].2

But with time and experience, it became clear that
network security was important for many reasons.

First, computers on a network work together, and a
compromise in one almost always leads to a compromise in
another. This means that if you have ten machines and nine
are “secure” (whatever that means) and one of them is
insecure, it is probably true that all ten are insecure. By
having some defenses in place before an attacker ever gets
to a host (and maybe cannot even reach a host), the attack

surface is reduced. Attack surface refers to how many
different components of a system an attacker can try to
compromise. Minimizing the attack surface is a principle of
good security design. If an attacker can only attack one
node on a network of ten nodes, then security can be
emphasized and prioritized for the attackable node.

Second, networks enable distributed systems that are
not confined to a single host. Without network security, it is
difficult to enforce security policies on the cooperative
operations.

Third, network security enables some specialization and
centralization of security. It has been proven empirically
that complexity leads to vulnerabilities, and vulnerabilities
lead to security incidents. One of the real challenges of a
general-purpose computer is that it is general purpose. All
of the infinite possibilities offered by such a machine can
potentially be turned against the system by an attacker.
Network security enables the use of devices specifically
tailored to security. These devices have reduced
complexity3 and can be designed to be very resilient to
attacks.



Fourth, network security provides additional options for
defense in depth, which has been discussed previously.
Recall that ideally the failure of a single security
mechanism should not result in a compromise. Network
security is not meant to replace host security but add
another layer of protection on top of it.

Fifth and finally, network security can provide early
warning, mitigation, and forensic information. Even if an
attacker tries to break into a system and is unsuccessful in
doing so, system operations generally should be aware that
such an attack was attempted. Attempting to bypass a
network tripwire is an earlier alert than a host detection.
Networks can track and log a significant amount of
information that enables operators to figure out what
happened if an attack was successful and even to mitigate
damage in an attack happening in real time.

So what are common goals or policies for classical
network security? Obviously, precise goals vary by
organization, but there are a few general policy guidelines
that tend to be common such as
1.

Minimize the attack surface by protecting the servers  
2.

Identify and block inbound and outbound threats  
3.

Partition network space based on trust, policy, and/or
risk

 
4.

Detect and report on unsuccessful attacks  
Servers and Port Scans

In terms of defending a system from a network intruder
(e.g., an intruder that is connecting remotely over the
Internet), servers are generally the most common way an
attacker gains access to the system. Servers are designed



to accept incoming network connections and respond to
them. Although almost all servers will have access controls,
an attacker can try to bypass them through any number of
means. In fact, all of the issues discussed previously in
Chapter 7 apply. An attacker, for example, may try to
compromise a remote machine using a buffer overflow
attack. In order to prevent an attacker from even trying
such an attack, a lot of network security goes into
preventing attackers from even accessing unauthorized
systems. Effectively, network security attempts to
introduce additional, network-based access controls.

Another important point about servers is that they are

processes (running programs), not machines! Most
consumers would not think of their personal computers as
“a server,” but many programs that run on a consumer’s
laptop can launch server processes. These can include
certain video games, music apps, and even operating
system services when in certain modes. Remote access
systems for Windows and MacOS often require the system
to operate a server. This means that any computer on a

network can be a potential server.
What makes a process a server is if it is listening on a

port. As discussed in Appendix C, a server has to reserve a

TCP or UDP port. Ports are used to divide up network
traffic to the different running programs, similar to a
mailbox in an office. The IP address gets network traffic to
the host, but the TCP port gets the correct network data to
the right program. Servers reserve a port and then “listen”
on that port, meaning that if traffic arrives with that port
number, they will respond to it. When attacking a
computer, attackers want to find these server ports.

In order to find these listening ports, attackers often
perform what is called a port scan. There are only 65,536
port numbers on a machine total. It is a fairly quick process
to send TCP packets to a machine at each port number. If



there is no server listening for that port number, nothing
will happen. But if there is a server, it will send back a
response. The attacker does not need, at this stage, to even
process the response. The goal was to perform
reconnaissance and determine if there was a server
running on that port at all. Network security should,
ideally, prevent this from happening. But if somehow an
attacker does learn of a nonpublic server’s existence,
network security should also prevent access.

In the remainder of this chapter, I will walk through
some of the classical network security technologies used to
protect network servers and systems. As you will see, much
of this security is about controlling and protecting access to
servers and their ports.

Firewalls

One of the primary components for classical network
security is the firewall. A firewall is any network device
that sits between two network partitions and applies
security policies to the traffic that travels between the two.
The security policies, at a minimum, must decide if traffic is
allowed to pass through the firewall from one network to
the other or if it should be blocked. Firewalls developed out
of gateway routers, and even today gateways are the most
common location of a firewall.

It was somewhat natural for gateway nodes to take on
defensive capabilities. Although somewhat overly
simplistic, networks are typically thought of as divided
between local LAN and remote WAN networks, or “inside”
and “outside.” Typically, a LAN can only connect to the
Internet through a gateway. A gateway may be as simple as
a modem provided to the user by the local
telecommunications company or a powerful and expensive
system engineered to provide vast amounts of data with



speed and resiliency. But no matter whatever other
features it has, the gateway is the “choke point” for data
going out and coming in (Figure 8-1).

Recall that the gateway router serves a primary purpose
of knowing how to route packets out of the network from
local, inside nodes, or how to route packets into the
network from outside, remote nodes. It is called a
“gateway” router because all the devices on the local
network must send their data through the gateway to reach
other networks.

For this reason, gateways emerged as a natural
defensive position in the world of network security. Not
only are they choke points, but they also were seen as a
natural boundary in trust and security policy. The gateway
separates “us” and “them,” and traffic that might be
entirely acceptable for “them” may not be the least bit
appropriate for “us.”

Figure 8-1  A gateway device connects the LAN to the Internet. No data gets
into or out of the network without going through it

Story Time: The Great Firewall of China



Unfortunately, firewalls are not just used for defensive
purposes. The Chinese government put strict digital
controls on information going in and out of the country
over the Internet. The government operates digital
border controls that have, collectively, been referred to
as the Great Firewall of China. This filtering system is
used to block Chinese citizens from accessing certain
websites and from posting certain content.

Although the systems used to control information in
and out were put in place in 2003, they have accelerated
under the leadership of Xi Jinping, who came to power in
2012. Under Xi, China has been willing to “cut off their
nose to spite their own face.” For example, the
government was so concerned about blocking VPNs,
which can bypass firewall inspections, that the
government simply blocked VPNs. This move was made
despite the fact that banks and businesses relied on
VPNs for security connections.

Of course, a firewall can only control and limit
connections. It has only a limited ability to detect
“unacceptable” content using, for example, keywords
(e.g., keywords related to Tiananmen Square). So, the
filtering performed by the firewall is strengthened by an
army of online censors and monitoring agents estimated
in 2013 to number approximately two million people

[100, 111, 286].

In the days before cloud computing, the vast majority of an
organization’s computing resources would be run by them.
In modern terminology, all, or most, of their equipment was
“on premise” (or “on prem” for short). An organization’s
servers, databases, and computing resources were
organized into one or more LANs, each administered by the
organization’s IT department or functional equivalent. Web
servers, email servers, and other resources were often



controlled and configured internally, especially for large
organizations.

Because LANs were created, controlled, and
administered by an organization, a LAN represented a
“cyber space” on the Internet for the organization itself—a
kind of virtual territory that mirrored the organization’s
geographic territory. Although this description is somewhat
of an oversimplification, and some organizations did
outsource resources or rely on third parties, there were
many organizations that operated in this manner, and much
of computer security was built up around this conceptual
architecture.

Before gateways evolved into firewalls, they included
some very primitive security configuration. Technical
documents in 1987 discuss having gateways do filtration on
IP addresses that were “misbehaving” [64]. After the
effects of the Morris worm, there was an acceleration to
build in more explicitly security technology.

What emerged in the next few years were firewalls, and
amazingly advanced firewalls all things considered. In fact,
the core firewall technology still used today is not all that
different conceptually from firewalls from 1994. One core
concept from the early 1990s was packet filtration, which
filters packets based on characteristics of each packet.
Another core concept was that of a stateful packet filter

which evaluates packets based on previously seen packets
as well. Yet another important development was the
application layer gateway (ALG).

Generally, modern firewalls use all of these concepts in
one form or another, although the ALG has more or less
merged into an advanced form of stateful firewall
inspection. Modern firewalls can perform application-layer
processing as part of a stateful packet tracking and
analysis.



In the next sections, I will walk through some basics of
both concepts historically and in modern systems.

Per-Packet Filtration

The most basic concept of a packet filter is to decide to
allow or block the packet based on the metadata in the
headers at layers 3 (IP) and 4 (TCP or UDP). Recall that
layer 3 includes the source and destination IP addresses
and layer 4 includes ports.

As mentioned in the preceding section, before the
advent of firewalls, gateways could be configured to block
incoming IP packets based on their source IP address. The
idea was that if a machine outside the network was
“misbehaving,” it could be identified by its IP address and
blocked from sending data into the local network.

IP addresses can be filtered for both inbound and
outbound traffic. For traffic coming into the network, IP
addresses associated with bad hosts and bad networks can
be blocked. Although IP addresses are not perfectly
associated with a geographic area, there is a reasonably
good connection between an IP address and where it
originates in the world. Some firewalls, from the 1990s
until today, can attempt to block a geographic area of the
world (e.g., eastern Europe or China) by this kind of
geographic matching. It is very easy for an attacker to
bypass this kind of check, however, using a VPN as I will
discuss later in the chapter.

Filtering IP addresses can be used for one other very
important purpose. Typically, an organization will have a
very small number of machines that should be accessible
from outside the LAN. For example, before the migration of
most resources to the cloud, many organizations had their
own on-prem web server machines. These machines should

be accessible from outside the organization. But most
machines should not. As I explained in the “Legacy



Networking Security Implications” section, just about any
machine can have a server process running on it. But the
vast majority of those machines were not meant to be
accessible to the outside world. Using IP filtering, all
inbound traffic from outside the firewall can be blocked to
any machine that is not meant to provide an outside-facing
server.

Outbound traffic can also be blocked. IP addresses can
be associated with entertainment (which, at some
organizations, is not an approved use of company
resources) or illegal activities, such as copying music or
movies, or even dangerous websites that a user might have
been tricked into visiting. So long as the IP address can be
associated with a malicious actor, it can be blocked. This
type of filtering also has limitations. Generally, filtering on
IP addresses alone can be too broad and not sufficiently
granular.

As firewall technologies emerged, they were designed to
expand on this basic filtration of IP addresses and also
filter on ports. Packet filtering firewalls served as enhanced
security gateways. As a gateway, all traffic from “outside”
had to pass through the firewall to reach the “inside,” just
like any other gateway. But the firewall would examine the
packet and extract the source and destination IP address
from the IP header and then the source and destination
port information from the TCL header (encapsulated within
the IP header).

The firewall could then filter on both IP address and port
information. This enabled much better management of, and
finer-grained policies for, inbound and outbound traffic.
Because servers are associated with an address and a port,
it is much easier to configure firewall rules using both
pieces of information. The packet filter can also do some
limited packet-type processing but not from layer 7. In
other words, by looking at layer-4 data, the firewall can tell



whether or not the layer-4 protocol is UDP or TCP.4 But a
packet filter cannot use layer-4 information to determine
the application (layer-7) data, such as whether or not the
packet is web traffic or email traffic. I will return to layer-7
processing in a moment. For now, it is sufficient to say that
packet filtering firewalls can examine five pieces of data:
source IP, destination IP, source port, destination port, and
the layer-4 type. The layer-4 type is referred to in firewall
documentation as “protocol,” but that could be confusing in
this book. For clarity, I will focus on the first four pieces of
information (addresses and ports) with the understanding
that a firewall can have different rules for TCP packets and
UDP packets. Most of our discussion will revolve around
TCP packets anyway.

Using this data extracted from a packet, firewalls can
apply a set of rules to the packet. When a packet arrives,
the five pieces of metadata are extracted and compared to
each rule one at a time and in order. If a given rule applies,
the packet is either permitted to pass or is dropped and no
other rules are checked. If a rule does not apply, the
extracted metadata is compared to the next rule in the list.
Firewalls are almost always configured with what is known
as a default deny rule. This means that if a packet is
compared to all rules and none of them match, the packet
is denied by default. This is an example of a fail-safe rule. If
the system fails (i.e., if there should have been a rule for
the packet but the firewall is misconfigured or not
completely configured), it will fail safely by blocking
incoming data.

Using a firewall’s more granular filtration, servers can
be more carefully protected. Recall that ports 80 and 443
are used by web servers for unencrypted and encrypted
traffic, respectively. By filtering on both IP address and
port, firewalls could restrict inbound web traffic to not only
a single machine but to the specific ports of the machine.



This means that if another server were accidentally (or
maliciously!) launched on the web server, it would not be
reachable from outside the LAN.

This is a crucial concept. Because a server is a process,
there can be many servers running on a single server
machine. Generally, this is not good security practice. If
two servers are running on the same server machine, a
compromise in one leads to a compromise of both. Said
another way, if an attacker can break into the machine
through a bug or vulnerability in one server, they will most
likely be able to compromise the other. For machines that
are expected to be public-facing, and bear the brunt of
attacks, the goal is to have as few vulnerabilities as
possible and limit damage as much as possible.

By using packet filtering rules to block data coming from
the outside to the web server, it is possible to enforce the
limitation that only one server is accessible to outsiders. If
an administrator accidentally runs a program that is or
launches a server, the rogue server will not be available to
outsiders.

Example: Only Web Access for Web Servers

To visualize this, imagine a person at home wishes to check
the news at cnn.com. The user opens their browser and
types cnn.com into the URL bar and hits enter. This
initiates the network protocol stack operations described
earlier in this chapter. A packet is constructed with the web
data as the application data. The most common protocol for
web communications is called the HyperText Transfer

Protocol, or HTTP. I will discuss HTTP and web traffic in
greater detail in Chapter 9. For now, all you need to know
is that HTTP data is layer-7 application data that is used by
web browsers to communicate with Internet servers in
order to, for example, view web pages.



When the HTTP data is sent by the browser, the HTTP
data is encapsulated by TCP, which is encapsulated by IP,
which is encapsulated by the MAC packet. This packet is
transmitted through the Internet until it reaches the LAN
on which the cnn.com web server resides. Before the
packet reaches the server, it passes through a firewall that
serves as the LAN’s gateway. Remember, there is no way
into the LAN except through a gateway, and the gateway is
the firewall.

Imagine that CNN’s firewall has a policy that explicitly
permits web traffic to the IP address of the server machine
hosting the web server so long as the port is 80 or 443. The
incoming packet from the user’s browser has a destination
IP address of the web server and a destination TCP port of
either 80 or 443 depending on whether the traffic is
encrypted or not. When the packet arrives, the source and
destination IP addresses and the source and destination
ports are examined. The firewall begins comparing this
data to the firewall rules. When it reaches the rule that
permits incoming traffic with a destination IP address of
the web server and a destination port of 80 or 443, the
packet is accepted. An illustration of the firewall accepting
a packet destined to port 443 is shown in Figure 8-2.

The packet, once permitted, moves into the LAN
normally and is transmitted to the web server. The CNN
web server responds with the data for the CNN web page
in various HTTP response packets. These packets start
their return journey and must also go through the firewall
where they will be examined themselves.



Figure 8-2  The firewall accepts the incoming packet because the destination
IP and the destination port match a firewall rule with the action “allow.” The
source IP and source port are not checked for this particular rule

On the other hand, imagine an attacker launching a port
scan against CNN’s web server. Remember that there is no
real data in a port scan. There is just a TCP packet that
tries to establish a connection to see if there is a running
server on a port. So the attacker creates a series of TCP
packets starting at port 05 and continuing up to 65535.
Each packet is transmitted to CNN.com.

As with the packet from the user’s browser, each of
these packets of the port scan is intercepted at the gateway
firewall and inspected. Extracting the source IP,
destination IP, source port, and destination port, the
firewall examined the packet against each of the rules.
There is no matching rule for any of these TCP packets
except the ones for ports 80 and 443. All other packets of
the scan are dropped as there is no rule to permit their
entry into the system as illustrated in Figure 8-3.

Stateful Packet Filtration



What I have just described is basic packet filtering. Basic
packet filtering is really important and still widely used.
However, firewalls got a little smarter and developed a new
scanning that is considered to be stateful. The idea of a
stateful firewall is that it could keep track of which packets
had been sent before to know whether or not a given
packet made sense in context. For example, it might be fine
for a web server to send a response but not if there was no

preceding request! If a web server was transmitting data
outbound with no matching incoming data, that was
generally a sign that an attacker had compromised the
machine and was now exfiltrating data. Using stateful
rules, firewalls can indicate that servers should only be
responding to data and not initiating connections.

Figure 8-3  The firewall blocks the incoming packet if the data in the IP and
TCP headers do not match any rule. When no rule matches, the default “deny”
(or block) rule is applied

Although stateful firewalls could be useful on many
kinds of packets, they were exceptionally helpful on TCP
packets. As explained earlier, TCP creates state in the form
of a session. What I did not explain at the time was that



TCP communications actually have to start with a special
set of control packets from TCP called a handshake. Both
client and server have to exchange setup information in
this handshake before any other application data (e.g., the
HTTP data of this chapter’s example) can be transmitted.
Stateful firewalls can keep track of these kinds of
exchanges to make sure that data is not being sent without
a preceding handshake and that there is not a huge influx
of handshake packets.

SYN Flood Attacks

Although the details of the TCP handshake are not
described here, it is sufficient to know that the first packet
sent by a client trying to open a TCP connection is called a
SYN packet (pronounced “sin”). What is unfortunate is that
attackers can use them to overload a system’s resources
and make it unusable by overloading the victim system with
a SYN flood. This is an example of a DOS attack, or denial-
of-service attack.

A SYN flood attack works by taking advantage of the
fact that TCP creates sessions and that resources have to
be allocated for those sessions. A server has to be able to
differentiate between different incoming connections, even
if they are from the same machine. Suppose, for example,
that you had two browsers open to cnn.com. Perhaps one
page has the sports news open and one page has world
news. Both of the corresponding HTTP requests are going
to come from the same IP address. How can cnn.com keep
track of which data goes back to which request?

It turns out that network nodes keep track of source IP,
destination IP, source port, and destination port for the
TCP protocol in a manner that is somewhat similar to a
firewall. But whereas a firewall uses it for inspection and
policy, the TCP protocol just uses it to keep track of TCP
connections. As explained earlier in the chapter, a TCP



server has to reserve a specific port as a rendezvous point
for clients. But each client program (e.g., browser, video
game, etc.) when making the outbound connection to the
server is assigned by the client device a random, unused

TCP port for the connection’s source port. This means that
the server can differentiate between an incoming packet
with a given source IP address and source port 54321 and
an incoming packet with the same IP address but a
different source port 43215. Using this information, the
client and server associate packets for the same source and
destination information together in a logical connection. By
logical, I mean there is nothing physical about this so-called
“connection.” Rather, the two computers associate the
related packets together and call it a connection. This
logical connection only exists until a TCP operation
terminates, or closes, the association. For the server, a new
connection begins to be tracked when the SYN packet,
which is the first packet of the session, arrives. Technically,
the connection is “half-open” because TCP requires a
response from the client to a separate SYN sent by the
server in order to finalize the connection. The attacker will
not respond and instead leave the connection half-open.
Because of this, SYN flood attacks are sometimes called
half-open attacks.

The problem is an attacker can transmit thousands of
SYN packets, each with a different source port. The
attacker has no interest in actually creating the true TCP
connection or sending any data. Its sole purpose is simply
to get the server to create those sessions, chewing up
allocated resources. Note that the attack does not eliminate
a port number that another legitimate client can use. The
legitimate client has its own IP address, and if the attacker
uses port 12345, it does not prevent the legitimate client,
with a separate IP address, from also using port 12345. So
a SYN flood does not “use up” port numbers.



But a server has a maximum number of connections it
can have simultaneously open at one time. The SYN flood
simply tries to exhaust this number. A SYN flood is also
easy for attackers to use because it does not require the
attacker to process any response from the server. This
means that the attacker can use a spoofed IP address.
Nothing forces an IP packet to use the real IP address
except that if a computer used a fake IP address, the
computer would never receive the responses. But with a
SYN flood, the attacker does not want the responses and
can use fake IP addresses without any negative
consequences (to the attacker). An attacker can flood the
server with SYN packets from potentially many (fake) IP
addresses.

Stateful firewalls can deal with this problem at least in
part. First, the firewall can refuse to have more than a
relatively small number of half-open connections at a time
from the same IP address. Even if the attacker is using a
large number of fake IP addresses, the firewall can also
rate-limit the number of SYN packets received at one time
from any source.

There are other examples of unexpected or unusual
packets that can be transmitted by an attacker. Stateful
firewalls can usually recognize and block such packets.

DDOS and Amplification Attacks

Unfortunately, modern DOS attacks are usually far more
powerful and harder to block. The Mirai attack discussed in
Chapter 7, for example, is not restricted to SYN attacks.
Because Mirai has taken control of thousands of devices,
the attacker has enough power to launch attacks that do
full TCP handshakes and send real data. The challenge of
this kind of attack is that the firewall has no way of
recognizing the bad data from good data. Note that when a
DOS attack is distributed across a wide range of source



computers, it is called a distributed denial-of-service attack,
or DDOS (pronounced dee-doss).

Another example of a DDOS attack is the DNS
amplification DDOS attacker. As discussed in Appendix C,
DNS is (legitimately) used to convert a domain name like
google.com into an IP address. Network programs need the
IP address in order to be able to make the connection. The
domain name provides no routing information.

However, DNS can also be abused by attackers. In a
DNS amplification attack, an attacker requests DNS
records from many DNS resolvers simultaneously but
spoofs the sender’s address. In other words, they send
many DNS requests to many DNS servers. Each server
(ignorant that other DNS servers have also been queried)
dutifully responds with the requested records. But the
attacker has lied about who the request came from. This
means that when the DNS record is returned back as a
result, this data is sent to the spoofed address.

By way of analogy, suppose that you wanted to flood a
person’s physical mailbox. You could write letters to 10,000
companies asking for a catalog of their products. But
instead of putting your name and address on the envelope,
you put the victim’s name and address. Now 10,000
companies send their catalogs to the victim’s mailbox at
more or less the same time.

Similarly, if the attacker sent DNS requests with the
victim’s IP address, then all of the DNS results will be sent
to the victim’s system or network. If the victim’s systems
cannot handle this load, they will go offline and the
attacker will have achieved their goal of denying service.

But what about the attacker? Is it not a problem that
they have to send out all the DNS requests? In the analogy,
you had to write 10,000 letters to flood your victim’s
mailbox. But note that the catalog sent back from the
vendor is bigger than the letter. If each request is 1 printed



page, and each catalog is, on average, 50 pages, you were
able to write 10,000 pages to fill your victim’s mailbox with
500,000 pages.

In security, we sometimes refer to this as an asymmetry.
The attack relies, in part, on the amount of data in a DNS
request to be significantly smaller than the data in the DNS
response.

One way to make an even more dangerous DDOS attack
is to combine the DNS amplification attack with a botnet.
In this approach, the attacker sends commands to the bots
to launch a DNS amplification attack against a target
victim. When the bots receive this command, they send out
spoofed DNS requests which are then going to send traffic
to the victim’s system or network. This type of attack is
visualized in Figure 8-4. To extend our letter-writing
analogy, if you turned a million people into zombies that
would follow your every command, you could have each one
of them simultaneously write the 10,000 letters to the
10,000 companies requesting catalogs (but with the return
address of the victim).



Figure 8-4  The attacker controls a botnet and sends commands to the bots to
launch a DNS amplification DDOS attack against a target.

Application-Level Gateways

As I explained in the previous section, packet filtering
firewalls in their original form do not process layer-7
information. That means any application data is completely
ignored. Layers 3 and 4 are the primary sources of
information for filtering.

The reason for this limitation is that layer-7 data is not
guaranteed to be in a single packet! I mentioned briefly
that network communications have maximum sizes on
packets. If a packet is too big, it must be broken up into
smaller packets. A small HTTP request will fit in a single
request, but even a moderately sized response will not.
How can a packet filter block a message on the application
layer data when the application layer data is not all
contained within a packet?



Application-level gateways (ALGs) were the original
solution to this problem and emerged more or less at the
same time as packet filtering. Some even considered
application layer gateways to be a competing rather than
complementary technology. At the very least, these
gateways, also called “application layer gateways” or just
“application gateways,” were described as being an
“opposite” to packet filtering. Whereas packet filtering was
a general problem for which rules could be written to solve
more specific problems, an application gateway was a
specialized solution to a specific problem.

An application-level gateway is a service running on a
device that serves as an intermediary for a specific network
application. That means for a network with a web server,
there would be an ALG for just that server. If the network
had its own email server, a separate ALG would be needed
for the email server. The purpose of each ALG is to
monitor, at an application level, the traffic going into and
out of the system.

ALGs can be run on the firewall itself, but they can also
be run on other machines in the LAN. The network is
configured so that no data can reach the real server
directly. Instead, all data is passed through the ALG in both
directions. When data reaches the ALG, the application
data is fully decapsulated from TCP and reconstructed
according to application-specific rules. The reconstructed
data can be analyzed and screened for security policy
compliance before being retransmitted on the network to
the real server.

Some ALGs were intended to be completely transparent
to both client and server. But for some interactive
applications, an interactive ALG was required [213]. Either
way, the key feature was application-level analysis. Web
traffic, for example, can be monitored for unusual URLs or
unusual requests.



Conceptually, a network could be completely locked
down with no permitted traffic in or out except through
ALGs. Although there would have to be an ALG for each
application that was meant to traverse the boundary, one
approach is to not permit much network traffic to pass.

In practice, an ALG-only approach is not viable as there
are just too many services that need to be configured and
used, even in the 1990s. But ALGs and packet filtering
networks could often be used together in complementary
ways.

For example, FTP is a service that is almost completely
unused today but was common in the 1990s. FTP servers
could host data, often for retrieval, but also for uploading
to storage. Prior to services like Dropbox and Google Drive,
FTP servers were a common way of exchanging and
distributing data.

FTP, however, was an unusual protocol in that it used
two different TCP connections. One connection was used
for control messages, and the other connection was used
for the actual transmission of data. The data transfer port
number, however, was not fixed. It was chosen during the
communications and could be picked at random. In these
cases, it was impossible to have a firewall preemptively
have the data transfer port open because the firewall had
no idea which port would be put into use.

Some vendors began to produce firewalls that could be
paired with an FTP ALG. The FTP ALG would monitor the
communications on the control channel. When a new port
was opened for the data communications, the ALG would
instruct the firewall to open that port in real time. The data
transmission would begin without interruption. Once
finished, the ALG would instruct the firewall to close the
port. This is sometimes known as a pinhole port.

Even though FTP is hardly used anymore, the concept is
an easy illustration of how application processing and



packet filtering can be used together.

Layer-7 Firewalls

ALGs provided effective application screening. But as the
1990s and early 2000s went on, it became clear that
consumers wanted integrated solutions. There was also a
recognition that multiple applications might need similar
scanning, and the separation into application-specific
processing was not always ideal.

Layer-7 firewalls typically combine general-purpose
application filtering as well as the usual packet filtering of
a stateful firewall. In order to do this, L7 firewalls usually
have built-in buffering capabilities in order to combine TCP
packets and reassemble the application data.

Although the true L7 firewalls emerged in the 2000s,
there was an interesting predecessor product released
earlier. Check Point, which still produces firewalls and
security products, released version 3 of their FireWall-1
product in October 1996. Version 3 introduced the
“Content Vectoring Protocol” (or CVP), designed to allow
the firewall to interact with any compliant third-party
scanning technology. Check Point and other security
companies collaborated to make it possible to integrate the
third-party technology as a plug-in. In particular, Check
Point FireWall-1 enabled an antivirus to be run on data
coming through the firewall without waiting for the data to
be scanned at the host.

The CVP protocol worked by first doing the normal
stateful firewall inspection. If the packets were permitted,
the firewall would do enough application scanning to figure
out if it was one of an approved set of protocols, such as
HTTP and email. If so, the data would be routed to another
system that operated the virus scanning or other security
scanning software. The scanner would report back to the
firewall using the CVP protocol about the result.



Modern L7 firewalls are far more advanced. And with
the growth in firewall hardware capabilities, many products
do not need to use an external system at all. The firewall
can handle all of the L7 processing.

One company with extensive work in L7 firewall
processing is Palo Alto Networks. Palo Alto released their
“Next-Generation Firewall” in 2007. Their firewall included
what they call “App-ID.” App-ID is designed to identify the
application data being sent over a port by examining the
data itself.

Stateful firewalls, as discussed already, use the
destination port as a “good guess” as to what application is
running. If it is port 80, it is probably a web server, for
example. But there are two big problems with the mapping
of port numbers to application data.

First, nobody forces a port to host a certain application.
That is convention only. If an attacker has penetrated the
network by compromising some server (e.g., using a buffer
overflow vulnerability), they will often want to set up their
own communications for transferring data off the network
or receiving updated commands. In order to not have the
data blocked, the attacker will typically look for some kind
of setup that does not violate firewall rules. This can either
be done by setting up a server on an allowed port or by
enabling outbound connections to a Command and Control
server operated by the attacker. Either way, the attacker
often has to use ports that are already permitted.

Second, some widely used protocols are capable of
tunneling. Tunneling is when one protocol is encapsulated
in another. You already saw this in the network stack. IP is
tunneled inside a MAC protocol. The TCP protocol is
tunneled inside an IP protocol, and an application message
like HTTP is tunneled inside of TCP. But application
protocols can tunnel other application protocols as well.
HTTP, for example, can be used as a generic tunnel,



enabling a protocol that might otherwise be blocked to be
transmitted over the “legal” port 80 channel.

App-ID, and technologies like it, does not rely on ports to
determine the application. They use decoding systems to
identify the application from the data itself. On whatever
port the scanning is required, the data is analyzed until the
firewall has figured out what it is. If the application is
known to provide tunneling (e.g., HTTP), it can be
decapsulated and rescanned. Using this kind of L7
processing, specific applications can be permitted or
blocked regardless of what port number is being used.

In the subsequent year, Palo Alto Networks introduced
Content-ID as well. Content-ID enables functionality like
that of an ALG directly within the firewall processing.
Malware signatures can be scanned within the content for
multiple protocols without needing to defer to another
machine. This is more fast and efficient, as well as less of a
burden for IT administrators.

Attackers always find new ways to get around security
though. One of the most ingenious techniques they have
adopted is to use DNS traffic to exfiltrate data. In this
scenario, an attacker has already compromised a machine
on the network but needs to find a way to get the data out
without raising alarms at the firewall or by being blocked
by its rules. Fortunately for the attacker (and unfortunately
for everyone else), the DNS protocol is almost never
blocked because of how crucial it is. And even though DNS
messages are small, it is not uncommon for there to be a lot
of DNS traffic. An attacker can subvert a system to
transmit the data over a DNS communications channel
without even triggering App-ID. After all, the data is DNS
data. It just happens to be carrying exfiltrated data in it
and headed to a server that is designed to extract the
exfiltrated data from DNS. This is an example of a covert

channel. It can be caught, but it usually takes some extra



effort to configure a system to detect and block this kind of
problem.

There is one other interesting problem about DNS that
is worth highlighting for the principles that it teaches. If a
firewall detects a problem, it should be logged. And,
depending on the configuration of the firewall, an alert
should be generated to a system administrator. This is
useful on outbound communications as well because if an
attacker has infected a host, the administrator wants to
know as soon as possible which host is compromised so it
can be cleaned. So, if the firewall knows that some IP
address is “evil” and it sees a host trying to make outbound
connections to that IP address, it can alert the
administrator to do some deeper digging and investigation.

But sometimes network cooperation means that the
firewall cannot detect the origin of some malicious
operation. Take, for example, if an attacker is trying to
exfiltrate data to a malicious domain:
“pwned.badguysrus.tech.” If the attacker tries to send data
to this domain, the first thing that happens is an attempt to
resolve the domain name using DNS. For most networks,
however, there is a DNS server within the LAN. If the
server does not have the IP address, it makes the recursive
call to a DNS server outside the LAN.

The firewall can detect the LAN DNS server making the
recursive call. And if “pwned.badguysrus.tech” has been
flagged as a malicious site, it can block the recursive call so
that the LAN DNS cannot resolve it either. The attacker,
unless they have another way of resolving the domain, will
not be able to exfiltrate data.

It is very good that they will not exfiltrate data. The
firewall did its primary job. But in terms of finding out
which host sent the request, the firewall cannot help. The
DNS request did not come from the infected host. It came

from the internal DNS server in response to a query from



the infected host. The firewall does not have the necessary
information to help an administrator track down the
problem.

One solution is to have the DNS server log every request
and then synchronize log files from the firewall and the
DNS server. But this is complicated and error prone. Some
firewalls now offer an alternative solution: a DNS sinkhole.
Using this technology, the firewall does not block the
recursive call of the LAN DNS server, but lies about the

answer instead. That is, the firewall answers the LAN DNS
as if it (the firewall) were the queried DNS server. The
firewall responds with an IP address for the malicious
domain that will go through the firewall but then go
nowhere. This is where the name “sinkhole” comes from.
The data just disappears into the void, and any exfiltrated
data is lost to the attacker.

But what this solution provides is a means of getting the
malicious host to expose itself. When the LAN DNS
responds to the DNS query for pwned.badguysrus.tech with
the sinkhole address, the infected client will start sending
data to the sinkhole address through the firewall, enabling
the firewall to detect the compromised host directly in its
own logs.

As advanced as firewalls are (and they continue to
advance), the nature of the Internet, cloud, and mobile
computing has radically shifted the playing field. LAN- and
perimeter-based security are rapidly being obsoleted by
transition to mobile users and cloud services.

Network Address Translation

One of the reasons for the need to shift from IPv4 to IPv6 is
that IPv4 has a limited number of IP addresses. Recall that
the addresses in IPv4 are 4 numbers, each of which is
between 0 and 255. If you do some math, you will see that
there are a maximum of 4,294,967,296 addresses possible.



That may sound like a lot, but there are already more
devices hooked up to the Internet than that! It is impossible
for each one to get a unique address!

This has actually been a problem for a while. One of the
ways that networks have gotten around this limitation is by
assigning private or nonroutable IP addresses on local
networks. These addresses are not required to be unique.
They can be reused over and over again (on different
networks, not on the same network). Then, in order to
make them able to connect to the Internet, their addresses
are intercepted, usually at the firewall or gateway, and
modified—in other words, when the IP packets are changed
and modified en route! The local address that should only
be used on the LAN is replaced with the firewall’s public IP
address. The firewall is tasked with keeping track of the
incoming packet’s address and port information and the
rewritten packet’s address and port information. When it
receives a return packet on the same channel, it rewrites it
back to the original sender’s address and forwards it there.

To walk through this, let’s reuse the browser connecting
to CNN once again. One IP range that is nonroutable and
commonly used is 192.168.xxx.yyy. Any IP address with this
192.168 prefix is not meant to be routed across the
Internet and can be reused on different LANs around the
world. Your own laptop has most likely used a 192.168
address on one network or another. So, for our example, I
will use 192.168.1.100 for our browser’s IP address. Every
device on the LAN must have a 192.168.xxx.yyy address
including the firewall. I will assign it the address of
192.168.1.1.

But the firewall has two addresses because it is
connected to two networks. And its address on the other
network is a public IP address that is unique worldwide.
Let’s pretend that its public address is 142.251.32.228.



When the user of the browser sends a message to
cnn.com, the browser sends the HTTP request through the
network stack where it picks up its TCP and IP headers.
When it gets the IP header, it will have a source IP address
of 192.168.1.100, its local IP address. It will also have a
random source port, which for this example will be 54321.
The destination IP will be 151.101.65.67, which is one of
cnn.com’s IP addresses at the time of this writing. The
destination port will be 443, which is the port for encrypted
web traffic. Once created, the packet travels on the LAN
until it reaches the firewall at 192.168.1.1.

When the firewall receives the packet, it examines it like
any gateway does to see if it is meant to be routed and
forwarded. As the destination is 151.101.65.67, the firewall
knows it needs to send it outbound. But it also knows that
the IP address of 192.168.1.100 cannot leave the LAN. It is
a nonroutable IP address. So, instead, the firewall performs
Network Address Translation or NAT. It rewrites the IP
source address and changes it from 192.168.1.100 to
142.251.32.228, the firewall’s public IP address. The
source port needs to not be in use, so the port may need to
be modified as well. For this example, I will have the
firewall change the port from 54321 to 43215.

Internally, the firewall keeps track of the incoming and
outgoing address data. The incoming data is 192.168.1.100,
54321, 151.101.65.67, 443. The outgoing data is
142.251.32.228, 43215, 151.101.65.67, 443. These two sets
of numbers are linked together. When CNN’s web server
receives the data, it will have the translated IP and port
numbers. When it sends the response, it sends it to this
public address and port of the firewall.

When the firewall gets the return packet, it will have a
source IP and source port of 151.101.65.67, 443, which is
the address and port of the web server. The destination IP
and port will be 142.251.32.228, 43215. The firewall will



look up these four numbers in its table and see that it is
linked to the incoming data of 192.168.1.100, 54321,
151.101.65.67, 443. It rewrites the packet’s destination
from 142.251.32.228, 43215 to 192.168.1.100, 54321 and
puts the packet out on the LAN.

The packet now finds its way to the browser, which
subsequently displays the website contained in the packet.

NAT was not originally designed as a security feature,
and I considered putting this section of the chapter under
the networking fundamentals. But NAT and nonroutable
addresses are so valuable to computer security that I
decided to include the concepts here. The reason is most

computers on a LAN cannot be reached from outside the

LAN. In our example, the browser with the address of
192.168.1.100 is unreachable for an attacker trying to send
data from the outside of the network. This security feature
is so important, even though IPv6 has enough addresses for
every device that could ever be put on the planet, it also
includes nonroutable IPv6 addresses in order to permit the
same kind of security.

Putting It All Together

Having discussed firewall operations in pieces, I will now
illustrate how all of these pieces are put together in a
single firewall system. For this example, I will use
information about the operation of a Palo Alto Networks
(PAN) firewall. PAN publishes documentation about the
operation of their systems that gives a very good insight
into their firewalls’ operations. One of my favorite
documents is “Day in the Life of a Packet” [21]. An image
from PAN documentation is provided in Figure 8-5.

There are only a couple of key parts of this image that I
will discuss and draw your attention to. The flow of this
chart is from top to bottom. At the very top, a packet
arrives for inspection at the PAN firewall. In the step



Packet Ingress Process, the system extracts L2, L3, and
L4 data. That refers to layer 2 (MAC data), layer 3 (IP
data), and layer 4 (TCP data). This firewall does layer-7
processing, but it must do that later in the process as I will
explain in a moment.

For this example, let us assume that this firewall is
processing a TCP session between a system outside the
firewall and inside the firewall. A TCP communication
session starts with a handshake. Once the handshake is
complete, the real data is transferred. So let’s start with
the very first packet.

When the firewall receives the very first packet of the
TCP session, there is no existing session between the inside
and the outside computer. Because this is the first packet
of the session, the firewall has no preexisting data about it.
The packet processing tries to start the fast path, as shown
in the diagram, but there is no existing session and the
lookup fails. So it will now switch over to the FW Session
Setup/Slowpath.



Figure 8-5  The flow of how an incoming packet is processed by a firewall



The key step to notice in the Slowpath is the Firewall

Security Policy Lookup. Notice that it says it compares
addresses and port information. Address information can
come from layer 2 (MAC addresses) or layer 3 (IP
addresses). Port information comes from layer 4 (TCP port
information). The firewall must have at least one rule that
could permit this combination of addresses and ports. Note
that these rules could be stateless or stateful, and both
types of operations are useful and important. For example,
on the stateless side, the firewall may simply want to block
an IP address or TCP port all the time. This operation
requires no state. On the other hand, the firewall may want
to block TCP packets that are not associated with a TCP
connection; this operation requires stateful inspection.

In this example, the first TCP packet is a setup packet
(e.g., a SYN packet) and has no application data at all.
Because there is no application data to check, application
data–based filtration cannot be performed yet. The only
data available at this point is address, port information, and
other data that is layer 4 and below. At this stage in the
Slowpath, processing the first packet, the PAN firewall
simply makes sure that there is an “allow” rule that
matches this layer-4-and-below data. If so, not only does
the firewall allow this first packet to go on its way, it also
creates session information in the firewall for this
communication stream. Generally speaking, the layer-4-
and-below data will be the same for all other packets of this
communication.

Now, suppose that, after the handshake is complete, the
firewall receives the data packets for this same TCP
session. These packets, when they hit the Fastpath check,
will match the existing session created when the first
packet hit the Slowpath. Look back at the Fastpath in
Figure ??. Notice that if a session exists, there is no

additional check against the security policy. The firewall



knows that if there is a session it means that the policy is
already permitted (so far). That is why this is called the
“Fastpath.” By only checking the policy rules on the first
packet of a session, packets do not need to be checked
against the firewall rules again. This means all of the
subsequent packets of the session can go through the
firewall much faster.

Once the PAN firewall is receiving data packets, it can
also perform the layer-7 (application data) processing. It is
important to realize that unlike the processing performed
on the first packet of the session in the Slowpath, layer-7
processing is not packet processing or filtration.
Application data is not confined to a single packet. Thus,
the PAN firewall extracts the layer-7 data and stores it for
layer-7 processing. One key step is identifying the App-ID
through the Application Identification process. If the
App-ID is already known, as shown in the step Session

App identified in the Fastpath, then the firewall checks if
content inspection is enabled for this App-ID. If so, it will
go on to the Content Inspection phase. Rules prohibiting
certain kinds of applications or certain kinds of content will
cause the session to be closed and subsequent
communication halted.

I have not talked much about egress. There is no
filtering function in this stage; it is for VPN processing,
routing, and other transmission-related issues. I have also
ignored a lot of steps in the ingress phase. Most of these
are not particularly important for this discussion.

One issue that is worth pointing out is decapsulation.
Sometimes, traffic can be wrapped up in other traffic. That
is, one traffic stream can be hidden in another. This can
disguise traffic from an application identification process,
for example. The PAN firewall has a process for pulling the
inner data out (decapsulation) so that it will be correctly
processed.



Proxies

Another type of common network device is the proxy. A
proxy is so named because it makes requests on behalf of
other computers. For example, a web proxy would handle
all of the web requests for its clients. One reason for using
a proxy is caching. Each time a URL is requested through
the proxy, the proxy can keep a cached copy of the data on
its local storage. If at a later point there is another request
for the same URL from within the network, the proxy can
serve its own copy much faster, speeding up access to
popular data. As explained in an early 1994 paper:

Caching of documents has been introduced, giving
noticeable speed-ups in retrieve times... The basic
idea in caching is simple: store the retrieved
document into a local file for further use so it won’t
be necessary to connect to the remote server the next
time that document is requested... [167]

Proxies can also be used for security purposes, serving a
very similar purpose to firewalls. If all of the outbound
traffic is funneled through one or more proxies, the proxies
can scan the outbound traffic as well as the responses and
apply security policies. Because gateways also see
outbound traffic, firewalls can perform similar functions,
and many firewalls can be configured to also provide
proxying. Exactly how to configure a system in terms of
firewalls, proxies, and other devices depends on individual
circumstances and preferences [71].

One of the more commonly known types of proxies is a
forward proxy. A forward proxy is more or less a proxy for
clients. When a client needs to access a certain server or
resource, it contacts the proxy. The proxy makes the
request to the server on the client’s behalf. Sometimes,
proxies have to be explicitly configured, and this is usually



the case for optional proxies that are chosen at the user’s
discretion. For example, some browsers allow the user to
specify the proxies to be used for surfing the Web as shown
in Figure 8-6. Others rely on the operating system’s proxy
configuration, as illustrated in Figure 8-7.

But even a manually configured proxy can be made
mandatory through firewall rules. If a firewall blocks all
outbound web traffic except from a web proxy, the user will
have no choice but to configure their browser to use the
proxy.

More commonly, however, organizations use routing
rules and other networking architecture tricks to perform
transparent proxying. A transparent proxy is generally
unnoticed by either the client or the server. By definition, a
transparent proxy is not manually configured by the user
because that would mean it was not transparent.

The purpose of proxies is most often to provide
outbound controls on data. One of the biggest concerns in
business environments today is data being accidentally or
carelessly sent outside of authorized boundaries. DLP
systems, or data loss prevention systems, are used to scan
data as it exits the security boundary for data that should
not be transmitted. A proxy that performs DLP scanning
can proxy web traffic, email traffic, or other data
transmission applications. The DLP scans the content for
data recognizable as PII, company information, or other
data that should not be released.



Figure 8-6  Proxy configuration for the Firefox browser. This browser permits
a proxy configuration different from the operating system

Forward proxies can also be used to enforce malware
scanning and other security screenings. Another purpose is
authorization. Many universities have access to online
journal and conference proceedings. People outside of the
organization have to pay for access for these tools. But
universities can provide their staff with a portal through
the university to the online resources. This portal is
essentially a proxy.

The inverse of a forward proxy is a reverse proxy. As you
might have guessed, a reverse proxy is for servers. A
reverse proxy works by listening for connections. When a
new connection is received, the reverse proxy makes a
connection to the real server and mediates the
communications.



Reverse proxies provide servers with a number of
valuable security features. For one thing, the reverse proxy
can perform load balancing. This means that there can be
more than one real server that can answer the requests.
The reverse proxy can choose from any of these real
servers based on whichever one has the least load. While
not a purely security property, this enables systems to
survive DDOS attacks more easily.

Another purpose for the reverse proxy is security
screenings (just like for forward proxies). Requests can be
screened for suspicious requests or malicious uploads.
Additional access controls can also be enforced at the
reverse proxy. These kinds of security capabilities could be
built into the real server directly, but reverse proxies
enable modularity, configurability, and focused security
management.



Figure 8-7  Browsers like Google’s Chrome browser for Windows do not have
their own proxy configuration. They rely on the operating system proxy
configuration

Virtual Private Networks

Firewalls, as discussed earlier, are a defensive filtration
technique. There are other systems that enable protected
access, like a VPN. The term VPN, or Virtual Private
Network, has in recent years become a more widely used
term. Unfortunately, much of that use is incorrect or, at the
very least, misunderstood. A Virtual Private Network is
where two remote networks are bridged using a secure
connection.



One common configuration for a VPN is to join an
organization’s remote networks together into a single
network. Branch offices can be linked to the home office
using VPN connections to create a seamless LAN. This is
sometimes called the “site-to-site VPN.”

Another common configuration for a VPN is to have a
single machine connect to a remote LAN and join it as if it
were attached to it directly. This is sometimes called the
“remote access VPN.”

Both configurations do the same kind of bridging
between networks. The only difference is the scale and how
much configuration is required. A site-to-site VPN can
require more configuration to ensure that both sites (e.g.,
the main office and the branch office) can work together in
either direction. Additional configuration may be needed if
there are services that should only work on one side of the
network.

VPNs work by creating an encrypted tunnel between the
two networks. All the data going over the public Internet is
confidential and authenticated. When it is received and
decapsulated, it is put onto the network as if it had been
generated locally. There are also requirements for
compatible addressing and ensuring that broadcasts are
propagated on both sides of the VPN connection.

There are multiple technologies for creating VPNs at
different layers of the network. One technology is called
ipsec, which stands for IP security protocol. This protocol
works down at layer 3 and creates special IP packets that
encapsulate encrypted IP packets. Thus, packets coming off
one network (e.g., the branch office’s network) are
encrypted from layer 3 and up. This kind of VPN requires
either preshared keys for securing the connection or some
kind of certificate-based system.

Alternatively, the tunnel can be created at the
application layer. These systems typically use TLS to create



a tunnel between systems. The advantage to this kind of
connection is that TLS is an already commonly configured
technology, and there is usually less configuration and
setup. Moreover, because TLS operates at a higher layer, it
can take advantage of things like NAT. Recall that NAT
rewrites IP source addresses. This causes problems for
ipsec without more complicated protocols. TLS VPNs, on
the other hand, have no trouble at all with NAT. TLS VPNs,
like standard TLS, typically just need a certificate for a
server side and a shared password for authenticating the
client. This kind of operation is very fascinating from an
OSI model perspective. A layer-3 connection (IP protocol) is
bridged using a layer-7 protocol!

There is another kind of VPN service that is used for
large corporations with substantial service contracts from
ISPs. For very large ISPs, their own set of backend systems
is almost their own private Internet. Instead of the
customers provisioning their own VPN with their own
equipment, the ISP, providing service for both the main
office and all of the branches, can configure “provider-
provisioned VPNs” on what are called “provider-edge”
equipment. These VPNs are used to keep one customer’s
data separate from another and also advanced features like
the customer’s different networks discovering each other
automatically.

In recent years, most consumers associate VPNs with
services promising some amount of network security and
anonymity when surfing the Internet. These services work
by hosting VPN servers on the Internet and providing
connection software to their subscribers. When the
subscriber activates the VPN connection software, their
computer is bridged to the VPN’s network. Normally, when
someone browses the Web, their web requests first go to
the ISP before being routed toward their ultimate
destination. When a VPN subscriber connects to their VPN,



most or all of their network traffic is encrypted and sent to
the VPN first and then sent from the VPN to the final
destinations.

This has two supposed benefits. First, the ISP cannot
monitor the websites the subscriber is visiting because all
of the web traffic goes in an encrypted tunnel to the VPN.
The ISP can see that the subscriber is using a VPN but
cannot see what traffic is passing through to the VPN. The
second benefit claimed by these services is that the website
being visited does not know the subscriber’s true IP
address. Thus, the subscriber maintains some anonymity
from both their ISP and from the websites they visit.

However, these advantages are limited. Although the
ISP does not know the subscriber’s traffic, the VPN service

does. Whether or not this is better depends on the VPN.
For example, if the VPN service is located within the same
territorial jurisdiction as the ISP, it is most likely bound to
the same legal requirements for productions of information
by law enforcement. If the VPN service is in a remote
jurisdiction, the subscriber would have little recourse if the
VPN service went rogue and began selling their data or
spying on their network usage. Similarly, it is not clear
whether it is better for VPNs to know all of the subscriber’s
traffic rather than the individual websites that they visit.

There is, however, a very strong reason to use VPNs:
public WiFi or other public networks. When in an airport,
hotel, or other location with public network access, using a
VPN is an extremely good practice for security. When
connected to a public network, the device is sharing that
network with any other number of unknown individuals,
some of whom might be malicious. Modern HTTPS will
generally prevent these malicious actors from, for example,
being able to snoop through someone’s online bank access.
But there are different kinds of attacks they might try to
break these protections. Moreover, they can try to attack



your device’s open network ports as well. Using a VPN
locks a device from being accessed by anyone else on the
public network and ensures that all data is correctly
encrypted and delivered to the right place.

Intrusion Detection and Prevention

In addition to systems that attempt to block threats from
entering the network, additional security technologies can
be used to detect threats that are currently active in the
network. These same technologies are also useful for
forensic analysis for attacks that are over, but require
remediation and recovery. These systems are generically
called Intrusion Detection Systems, or IDS. IDS is typically
broken down into Host IDS (HIDS) and Network IDS
(NIDS). Given the topic of this chapter, this section focuses
on NIDS specifically.

Interestingly, IDS systems have not changed much at
the theoretical level since their inception in the 1990s.
Some interesting changes have occurred in the past few
years through the use of cloud technology and a deeper
integration with other tools. I will return to that topic at the
end of the section.

The standard IDS system is largely an alarm system,
designed to alert human operators the (possible) presence
of a threat. These systems operate in a kind of data pipeline
to reach conclusions about the presence of a threat.

In the first phase, data is simply gathered. IDSs are
known for collecting, or at least analyzing, a significant
amount of data. IDS data can be collected directly from raw
packets collected on the network or more processed data
from other “sensors” in the system. Processed data might
include, for example, log files. Sensors can also be placed
on hosts. This does not make it a HIDS system if these
sensors are used to create events that are transmitted to a



central processing system for understanding network data.
Host sensors are useful for processing decrypted network
data as otherwise the network sensors cannot understand
the encrypted portions.

In the second phase, the data has to go through another
level of processing to extract the characteristics of the data
that matter to the IDS. Characteristics used as inputs to an
analysis engine are often called “features.” Feature
selection is important. Leaving out critical features reduces
the accuracy and effectiveness of the IDS analysis engine.
But having too many features that are not necessary
reduces performance sometimes to the point of making the
system nonfunctional. Some examples of features from
networking data might be source IP, packet type, and data
length. Like with firewalls, IDS can use stateful analysis to
better contextualize the received data.

Once feature extraction is complete, the third phase
begins. This phase runs the IDS analysis engine on the
features to produce a result.

Finally, in phase four, the result triggers one or more
reactions.

There are different kinds of IDS analyses that can be
done for phase three. Most of them fall into one of two
categories: signatures and heuristics. These, of course, are
two of the broad categories for malware analysis, and it is
not coincidental. Much like malware analysis is a
classification problem, so is network behavior. Much of the
same limitations, strengths, and weaknesses apply here.

IDS signatures, like malware signatures, can only work
based on past experience with known attacks. Instead of
scanning a file for matching bytes, an IDS signature,
sometimes called an Indicator of Compromise or IOC,
monitors network events for a known bad pattern. On raw
packets, for example, there are various signatures for
combinations of patterns that indicate an attack or threat.



A port scan by itself may only be mildly concerning, but a
port scan followed by packets sent to specific, relatively
unused ports may be far more indicative of an intrusion. It
should be noted that these signatures involve a lot more
guessing than malware signatures.

Heuristics, on the other hand, try to look for anomalies

in the events digested by the analysis engine. This
approach typically begins by identifying baseline event
capture that represents the system in a “good” state. This
capture may take several weeks to get a thorough
collection of events from which to establish the baseline.
Once the baseline is established, the goal of the analysis
system is to detect deviations from the standard behavior.

Regardless of the approach taken, the analysis engine
will spit out some kind of decision. From there, the IDS will
decide on a course of action. Most often, this involves
alerting a human operator.

Alternatively, the system can attempt to take proactive
action. For example, if a network connection is believed to
be malicious, it is possible to terminate it and block
reconnections. One way this can be done is if the IDS
interfaces with the firewall and can add new rules. When
an IDS can proactively protect the network, it is sometimes
called an IPS, or Intrusion Prevention System.

There are many problems with IDS and IPS systems.
IPSs especially are so problematic that they are almost
never used. The biggest problem with IDS (and why IPS is
generally not viable) is there are just too many false
alarms. In the case of IDS, this means that the human
operators are getting too many alerts. But in the case of
IPS, it may mean interruption of important services that
just happen to trigger the signature or heuristic detection.

Story Time: A Deadly IPS in Cyberpunk



The Shadowrun role-playing game (RPG) is set in a
future time period and involves both advanced
technology and magic, science fiction and fantasy. The
Internet of the future is called the Matrix (this world was
crafted and created before the Matrix movies arrived on
the scene, so the RPG did not steal the idea from them!).
Deckers (or hackers) plug their computers directly into
their brains and enter the Matrix as a VR experience.
Supposedly, they interact with the Internet at the speed
of thought, so they can customize their hacking faster
than a human could without the neural connection.

The problem for the deckers is the Black Intrusion
Countermeasures (IC or “Ice”). Black IC is a
countermeasure that recognizes “foreign” elements, such
as the decker, and will literally try to kill them. In this
mythology, if the Black IC can take over the decker’s
computer, it can cause a biofeedback loop that can blow
out the decker’s brains or cause their heart to stop.

The book Shadowplay is a novelization set in this
world. In the prologue, it describes one decker seeing
another getting killed by IC. It describes it this way:

A decker entombed in ice. One of those sights you
hope never to see...

He was dying, I knew that. In the real world, it
would have been over in an instant. In the matrix
the ice picks up the decker’s icon, then dumps its
signal into his cyberdeck. The deck’s filters
overload, pouring the signal through the datajack,
straight into the decker’s brain. And then... who
knows? Convulsions, the kind strong enough to
break his bones. Or his blood pressure spikes to
high one of the vessels in his brain blows out. Or
maybe his heart stops, just like that. Biofeedback,
it kills you as quick and as sure as a bullet in the
head. [107]



Of course, as an RPG, this is a fun setup for amazing
adventures in a virtual reality version of the Internet. In
real life, such a thing would never, ever work if for no
other reason than false positives. IPSs are often seen as
too problematic for dropping valid connections that look

bad to the detection algorithm. Can you imagine if
workers, or maybe a customer, or the CEO got killed
because the Black IC made a mistake? Nobody, not even
in a dystopian corporatist world, would be willing to even
use these kinds of systems.

But I like the name Black Ice much better than IPS. I
wonder if I could start a trend?

Unlike malware signatures, IDS signatures still tend to
involve some amount of guessing and heuristics as well,
which is why IDS signatures produce false positives. Unlike
malware signatures that match software to software, IDS
signatures attempt to identify misuse. Misuse detection is
inherently more prone to false alarms because it has to
capture intent.

Anomaly detection is even worse. This kind of analysis
has been tried repeatedly since the 1990s, but there is no
really good way to capture “normalcy.” Anomaly detection
requires an accurate baseline in order to determine
anomalous behavior. But if you think about human
behavior, exceptional behavior is often the rule. A user
might regularly work during business hours, but may
occasionally work 16-hour days (or longer) during a crunch
time on a project. That kind of behavior is exactly like the
kind of behavior an anomaly detector should catch because
that might be an indication of an attack too. But most of the
time, it is not an attacker, and that just means a lot of false
alarms.

Because of the problems with alerts, many times the real
value of the IDS is actually after the attack is over. IDS



systems tend to store a certain amount of data that permit
forensic analysis of what happened when it is determined
that something went wrong. Once the human operators
know they are looking for something, IDS event data and
analysis can be very useful in tracking down what
happened.

Defensive Deception

Deception is not just for the enemy. I briefly alluded to this
in the summary for Chapter 1. Defensive deception, which
is deception designed to confuse, mislead, and/or disrupt

malicious actors, has sometimes been classified as a part of
IDS/IPS technologies [73, Chapter 15], [233], [60, Chapter
27], [40, Chapter 21]. On the other hand, some authors
argue that it should be a distinct “third line of defense.”
These authors argue that defensive deception systems
“could then lie, cheat, and mislead such anomalous users to
prevent them from achieving attack goals, even when they
have obtained access and fooled the intrusion-detection
system” [225, Chapter 1]. Both models have merit. It is true
that many defensive deception systems have intrusion
detection and identification as a goal. However,
cyberdeception is different from most other forms of
IDS/IPS. And, as pointed out in the preceding quotation, it
has additional goals such as making any actions of the
attacker within the system benign. It is certainly worth
studying deception as a separate topic from, or at least a
subtopic of, intrusion detection and prevention. In this
section, I will give a short history of defensive deception as
well as a survey of some of the state of the art.6

One of the best early examples of cyberdeception comes
from Cliff Stoll’s book The Cuckoo’s Egg [253]. This book
autobiographically describes Stoll’s experience related to
his discovery and tracking of a group of German hackers in
the 1980s. These infiltrators were breaking into American



computer systems including Stoll’s computers at Lawrence
Berkeley National Laboratory as well as military systems.
Stoll, who was working as a computer systems
administrator at the time, stumbled upon the intrusion
while investigating a 75-cent discrepancy in accounting
records.

Stoll ran into many challenges while attempting to solve
the mystery. At the time, when computer crime was so
nascent, there was little support from law enforcement.
Stoll had to invent solutions as he went in his quest to
uncover the identities of the cyber-invaders. In fact, he
often felt like he had little support from everyone. One
exception was his girlfriend Martha.

According to Stoll’s account, Martha was the source for
one of the most clever ideas in the book.7 Stoll tells the
story that while discussing the problem of not getting
government help to find the intruder’s identity, Martha
proposed setting their own trap using deceptive data. And
she did so, using a fake foreign accent to sound like a spy
revealing her dastardly plan:

“Boris? Darlink, I hev a plan...”
“Yes, Natasha?”
“Ees time for ze secret plan 35B.”
“Brilliant, Natasha! Zat will vork perfectly! Ah,

darlink... vhat is secret plan 35B?”
“Vell, you see, zee spy from Hannover seeks ze

secret information, yes?” Martha said. “We give him
just vhat he wants–secret military spy secrets. Lot of
zem. Oodles of secrets.”

“Tell me, Natasha dahlink, zees secrets, vhere
shall ve get them from? Ve don’t know any military
secrets.”

“Ve make zem up, Boris!”8



Stoll and Martha set to work operationalizing Martha’s
idea. In order to track the intruder effectively, they needed
the intruder to be connected for a sufficient amount of
time. Stoll calculated that to have him in the system for two
hours they would need to have about 150,000 words (based
off of the download speeds available at the time). How
could they possibly come up with that many documents?
They would want him connected for multiple two-hour
periods, so they would need multiple batches of 150,000
word document sets.

Martha had that figured out too. She explained that it
would be easy to take a bunch of nonconfidential
government documents and do a very small amount of
modification to make them look top secret. Stoll apparently
received many nonconfidential government directives from
the department of energy. Up until this time, they had just
been worthless (as many government documents and
directives are). Stoll proposed that they would convert
these worthless, bureaucratic mumbo-jumbo documents
into deceptive documents that looked like “state secret.”

Again, Martha had a key insight about the deception. If
the deceptive documents looked too high value (e.g., “TOP
SECRET” and “ULTRA CLASSIFIED”), the hacker might
get suspicious. She proposed that the documents be just
“forbidden” enough to keep the intruder interested, but
“low-key” so as to not make him cut and run.

At this point in the narrative, Stoll interjects that
another friend was present, Claudia, and she proposed yet
another good idea.9 She suggested creating a fake form
letter to submit for more information. Government
programs often solicit engagement for various programs;
an invitation to get more information would not be unusual
from the perspective of the intruder. However, for Stoll and
his compatriots, it might be a means of getting the intruder
to identify themselves, complete with return address!



Stoll did contribute one very important idea of his own
to this plot: a fake user. The hacker was breaking into
different people’s accounts. There would need to be an
account for them to break into and find this data. Stoll
proposed creating a fake secretary that was supposedly
handling a lot of paperwork. This would also make it easy
to have some repetitive documents (reducing the need to
generate unique content) because the secretary would have
a lot of different drafts of the same document. Stoll also
developed a fake mailing list by taking the names of real
people in his lab and changing their prefix from “Mr.” to
“Lieutenant” and the like. A few references to the
“Pentagon” were thrown in for good measure.

This story, entertaining all by itself, sets an amazing
amount of groundwork for modern defensive deception.
Here are some of the key ideas generated by Stoll, Martha,
and Claudia:
1.

Decoys are fake components of the system and can
include data, systems, (fake) people, and so forth.

 
2.

Bait are decoys meant to attract attackers.  
3.

Templates, perhaps drawn from real data, can be used
to generate bait and decoys.

 
4.

Psychology is essential both in terms of knowing what
will attract and what will repel an adversary.

 
5.

Active traps can induce an attacker to reveal
information about themselves.

 
In the 1990s, vendors began to produce products that

built on these concepts. Some of the terminology evolved,
primarily with the introduction of the term honeypot.
Unfortunately, the term honeypot does not have a



universally accepted, formal definition. In 2003,
researchers compiled a nonexhaustive list [207]:10

A honeypot is a security resource whose value lies in
being probed, attacked, or compromised.
A honeypot is a resource which pretends to be a real
target. A honeypot is expected to be attacked or
compromised. The main goals are the distraction of an
attacker and the gain of information about an attack and
the attacker.
An Internet-attached server that acts as a decoy, luring in
potential hackers in order to study their activities and
monitor how they are able to break into a system.
Honeypots are designed to mimic systems that an
intruder would like to break into but limit the intruder
from having access to an entire network. If a honeypot is
successful, the intruder will have no idea that they are
being tricked and monitored.
Within the realm of computer security, a honeypot is a
computer system designed to capture all traffic and
activity directed to the system. While honeypots can be
set up to perform simple network services in conjunction
with capturing network traffic, most are designed strictly
as a “lure” for would-be attackers. Honeypots differ from
regular network systems in that considerably greater
emphasis is placed on logging all activity to the site,
either by the honeypot itself or through the use of a
network/packet sniffer. A honeypot is designed to look
like something an intruder can attack to gain access to a
given system.
The term is thrown about imprecisely in various sources.

Many sources identify a honeypot as being very specifically
a computer system [178], [73, Chapter 15] or even
specifically a server [60, Chapter 27]. Associating the term
with a machine is so common that there are different
classifications for honeypot systems such as whether or not



they have “low” or “high” interactions [169]. For example,
a system that just receives connections and logs what
happens might be called a “low interaction” honeypot. A
system that simulates a full computer, complete with fake
users, documents, and programs, would definitely be a
“high interaction” honeypot.

I personally prefer the first definition in the preceding
list. It comes from Lance Spitzner who wrote a series of
papers about honeypots in the early 2000s. According to
Spitzner, a honeypot is a “security resource,” meaning that
it can be data, systems, people, or any other “resource.”
Spitzner explains, “... in the definition... we do not state a
honeypot has to be a computer, merely that its a resource
that you want the bad guys to interact with.” Spitzner also
explicitly defines honeytoken to be a subtype of honeypot
that is not a machine. He describes a honeytoken as “a
honeypot which is not a computer... [and] can be any type
of digital entity... [such as] a credit card number, Excel
spreadsheet, PowerPoint presentation, a database entry, or
even a bogus login” [249].

Please note, however, there is an ever-so-slight
difference, conceptually, at least, between a honeytoken
and fake data. The honeytoken is the resource the

adversary is meant to attack. Generally, the term
honeytoken is meant to refer to data that the defenders
specifically want to use against the attacker. From Stoll’s
example tracking the German hacker, the invitation to
write for more information was definitely a honeytoken. It
was fake data from top to bottom. McRae and Vaughn
explain that, “The key to using honeytokens is to give the
token unique identifiable elements to guarantee that the
only access to that token would be by unauthorized parties.
If the token could be viewed in normal interaction with a
system, the token’s tracking ability is compromised” [177].



Another example of a honeytoken is a fake email

address. In a 2005 research paper, researchers introduced
HoneySpam, a system designed to quickly and
automatically identify and block spammers. One component
of the system was fake email addresses, where by fake I
mean that they were not used by any real users. Instead,
these email addresses were designed to lure spammers into
sending spam to them for automatic identification [38].

In addition to honeypots and honeytokens, there is one
other related term: honeynets. According to Spitzner,
honeynets are “entire networks of computers to be
attacked” [248]. Spitzner goes on to describe some of the
advantages of the honeynet:
1.

Organizations can insert any application or device
normally used on the network.

 
2.

All traffic can be observed without being observed in
return (like a “one-way mirror”).

 
3.

Infinitely customizable.  
Notably, a honeynet does not have to be a set of real

machines. In 2004, Niels Provos, then at Google, presented
the idea of a virtual honeypot that could be connected to a
network [210].

Research within the past ten years or so includes decoys
for identifying proprietary software theft [203], deceptive
web applications [189], and honeypots for IoT devices
[164].

In terms of deployed systems, one early example is
ManTrap, which was purchased by Symantec and renamed
Symantec Decoy Server. The initial system was developed
in the early 2000s. By 2005 (post acquisition), it had a long
list of features including automatic simulated email



generation, host and network honeypot components, and
automated responsive capabilities [256].

Another example of an early deployed technology is Fred
Cohen’s Deception Toolkit (DTK). This toolkit was meant to
be a very generic system that could be programmed to
emulate any network service. The goal was that a remote
adversary would connect to the toolkit-built service and
interact with it. The level of interaction available depended
on the programming. The toolkit itself provided little to no
programming but, instead, provided a library to enable
easy (or easier) programming [77].

More recently, companies like Attivo Networks are
actively deploying enterprise-scale deception to clients and
customers. The concepts are the same but the
virtualization, bait, and realism have all increased [14].

Deception is a very powerful tool for one very simple
reason: no legitimate users should be using the

decoy/honeypot.

Unlike other intrusion detection measures there are
no false positives with a honeypot. All IDS systems
produce false positives to varying degrees. This is
because there is always a chance that valid traffic
will match the characteristics the IDS uses to detect
attacks. This is not the case with a honeypot. Any
communication with a honeypot is suspect. This is
because the honeypot is not used for any purpose
other than detecting attacks. There is no valid traffic
to produce false positives. [131]

While this quotation is a little bit optimistic (it may be
possible for a legitimate user to stumble into a honeypot),
the point is correct. Technologies like honeypots are never,
or almost never, used by legitimate users. Therefore, any

use of a honeypot is probably malicious.



Network Architectures

In addition to all of the technologies discussed in this
chapter, one of the other important elements of classical
network defense is the architecture of the network itself.

One of the most important design elements for classical
networks was segmentation. Rather than creating a single
LAN for an entire organization, computer systems,
resources, and servers that were interrelated would be put
on a network segment. The segment behaved like its own
LAN and would often have its own firewall, even for
communications within the company.

The basic idea here is that two different groups, such as
the marketing department and the research and
development team, should not be sharing the same network
resources directly. Communication is allowed, of course,
but it needs to be mediated (e.g., by a firewall) and a policy
enforced on the communications between them.

Segmentation also permits the partitioning of the
network into different security levels. The most sensitive
resources might need extra security hardening. This may
include very limited access, limited services, and limited
data transmissions. Those kinds of rules may only apply to
a very small number of hosts. In such circumstances, it
makes sense to isolate the machines into their own
protected subnet.

Even IDS systems work better in segments. By reducing
the number of machines and systems on a given network,
the IDS deals with a much smaller number of events and a
proportionally smaller number of alerts.

One very special kind of segment is called a
demilitarized zone or DMZ. A DMZ is a segment meant
exclusively for high-risk systems, such as those that have a
public Internet presence. In the “old days,” this would
include companies’ web servers, email servers, and other
public systems. Typically, the DMZ segment would be



placed next to an “edge” firewall, or a firewall connected
directly to the Internet (as opposed to an internal firewall
for internal segments). The DMZ would also have
connections into the rest of the LAN (or some segments of
the LAN), but there would be a separate firewall separating
the DMZ from the rest of the company network. The insight
that led to the DMZ was that the public-facing systems
were the most likely to be compromised, and there should
be a security screen between these high-risk systems and
all of the others (Figure 8-8).

Figure 8-8  Demilitarized zone is placed between the internal network of the
organization and the external network which may be the Internet. The DMZ
holds public-facing services such as the web server hosting the website, the
mail server for emails, the DNS server, etc

If you have been paying attention, you may have noticed
that there is a lot of complexity in a company’s network
systems. Remember, until just a few years ago, there was
no real cloud offerings for most of these services, and
companies largely had all of these systems on-prem. How is
it possible to manage all of the segments, firewalls, DMZs,
IDSs, and other security technologies coherently?



On a network organizational level, it was important to
centralize the day-to-day security operations. This led to
the development of the SOC, or Security Operations
Center. The SOC is usually in a central location and
includes a dedicated security team that is focused
exclusively on keeping the network safe. This typically
includes monitoring events in real time, investigating
potential incidents, and keeping the system up to date. The
SOC tracks host and network security, patch management,
signature updates for IDS and anti-malware, and
configuration of systems.

The other major innovation was the development of a
super IDS known as a Security Information and Event

Management (SIEM, pronounced “seam”). The SIEM is
designed to be a centralized component collecting data
from all sources. In many cases, the primary inputs to a
SIEM are log files. SIEMs can be configured to collect log
files from hosts, IDSs, firewalls, and just about any other
system on the network. Like an IDS, it is designed to
extract features, run analyses, and report potential
problems. Many security vendors have started to provide
more advanced sensor systems called Endpoint Detection

and Response (EDR) for hosts and Network Detection and

Response (NDR) for networks. These systems have their
own operations, but their log files are often usable as
inputs into SIEMs as well.

Generally, SIEMs are very expensive, very complex
systems that attempt to alleviate some of the burdens on
human operators by organizing alerts by severity and
priority. These systems are designed to engage human
operators interactively, assisting them in their investigation
of network events and intrusions.

Emerging in 2018, there is a new approach to system
security that appears to be taking over some of the
responsibilities of SIEMs. These systems, called Extended



Detection and Response (XDR), have a lot of overlap with
SIEMs, but were built from a different design philosophy
and have slightly different profiles. Like SIEMs, they gather
data from a wide variety of sources, including EDR and
NDR, and like SIEMs, they are designed to assist human
operators conduct investigations into potential incidents.

One of the major differences is that SIEM technology
was derived from older technology that processed log files
more for compliance than for security. This has influenced
SIEM development since inception. On the other hand, XDR
was designed from the get-go for threat detection and
incident response. Because of this, XDR is optimized for
these operations. XDR is also more capable of working with
sources beyond log files.

Another major difference is that XDR is typically a cloud-
based offering, whereas SIEMs are usually on-prem.

Both SIEMs and XDR also offer “playbooks,” which are
prepackaged responses to detected threats or incidents.
These playbooks, though automated, generally interface
with a human. The issues associated with automated
responses are still just too great. This is sometimes called
“human-in-the-loop.” These systems can also integrate with
centralized servers that update all of the organization’s
firewalls with new rules based on the outcome of the
investigations.

For example, Palo Alto Networks offers playbooks as
part of the “Cortex XDR by Palo Alto Networks Pack.” One
of these playbooks is called “Cortex XDR incident handling
v3.” The description of this playbook is

This playbook is triggered by fetching a Palo Alto
Networks Cortex XDR incident. The playbook syncs
and updates new XDR alerts that construct the
incident and triggers a sub-playbook to handle each
alert by type. Then, the playbook performs
enrichment on the incident’s indicators and hunts for



related IOCs. Based on the severity, it lets the analyst
decide whether to continue to the remediation stage
or close the investigation as a false positive. After the
remediation, if there are no new alerts, the playbook
stops the alert sync and closes the XDR incident and
investigation. For performing the bidirectional sync,
the playbook uses the incoming and outgoing
mirroring feature added in XSOAR version 6.0.0.
After the Calculate Severity - Generic v2 sub-
playbook’s run, Cortex XSOAR will be treated as the
single source of truth for the severity field, and it will
sync only from Cortex XSOAR to XDR, so manual
changes for the severity field in XDR will not update
in the XSOAR incident. [1]

This playbook, as described earlier, is designed to semi-
automate processing a cybersecurity incident. The
playbook has some steps which are automated, such as
trigger a subplaybook for each alert type. But it also has
steps that integrate with the security operator: asking the
analyst whether to continue or if there is a false positive
identification. By capturing very common operations as a
playbook, it is easier to handle these kinds of investigations
across a large organization with a lot of nodes.

Infiltration, Exfiltration, and

Advanced Persistent Threats

Although I have identified a few types of attacks in this
chapter (e.g., DDOS), you might be wondering, how does

an attacker get through all of this security? How do they
get past the firewall, bypass segmentation and DMZ, avoid
triggering the IPS/IDS, and then extract whatever data
they’re looking for? I wish the answer was “they don’t.”



Sadly, attackers do bypass defenses and do steal data on a
far-too-regular basis.

In this section, I will identify how attackers get into a
system (infiltration) and how they get data out of a system
(exfiltration). Some attackers have been described as an
advanced persistent threat (APT). Although the term has
fallen out of use a little, I am going to use some of the old
APT definitions and frameworks to talk about all kinds of
intrusion. APTs were characterized by stringing together
various attacks in order to achieve a final object. In talking
about how they assemble these pieces, you will also get an
idea of pieces that can be used by themselves.

An APT is characterized by characteristics such as
stealthy, patient, and sophisticated. Stealth is important
because the attacker may not get into the system on the
network that they want even after they “break in.” For
example, as discussed in this chapter, security-conscious
organizations will divide their networks into segments and
enforce security policy (e.g., using a firewall) when moving
between segments. Even if an attacker breached the DMZ,
for example, that does not mean they have access to any of
the internal systems. In fact, that is the point of having a
DMZ.

But what if the attacker got in and did little other than
observe? By not loudly rattling every door handle to see
which rooms are unlocked, they are less likely to set off IPS
and IDS detection. With a foothold into the system, just
passive observing may reveal signs or clues of a vulnerable
system beyond the DMZ internal firewall that is exploitable.
Thus, APTs generally are willing to wait and be patient.

For the APT to get into a particular system, they may
need to use rather sophisticated attacks. Perhaps they
might even use a zero-day exploit. A zero-day exploit is one
that is either unknown or so newly known that there are no
patches or defenses available for it yet. In other words, it is



an unmitigated vulnerability that is likely open and
exploitable by the attacker to get unauthorized access.
Attackers like this are either sophisticated or they are
renting sophistication. By that I mean that in the modern,
cloud-based Internet, sophisticated attackers often rent out
services or software including DDOS-as-a-service and
Ransomware-as-a-service [148, 188]. But one way or
another, APTs typically use sophisticated techniques.

Although APTs attack each target uniquely based on
both the posture of the defender and the personality of the
attacker(s), there are some common characteristics of
these kinds of operations. APT operations are typically
described as having conceptual stages that capture these
characteristics. Different vendors and researchers have
proposed different formulations, but the following five-
stage version, slightly modified from a survey of APT-
related topics [37], is representative:
1.

Reconnaissance  
2.

Establish foothold  
3.

Lateral movement  
4.

Exfiltration or other malice 
5.

Clean up and finalize  
Although some of these stages clearly have a

dependency on another, the sequence is not a linear one.
For example, reconnaissance occurs throughout the entire
operation. Moreover, as discussed already, these
techniques are used by non-APTs as well. Each one is worth
discussing as an individual technique.

Reconnaissance



Military planners and strategists have long known that
reconnaissance is crucial to combat operations. Sun Tzu
stated:

Armies remain locked in a standoff for years to fight
for victory on a single day, yet [generals] begrudge
bestowing ranks and emoluments of one hundred
pieces of gold [for spies] and therefore do no know
the enemy’s situation. This is the ultimate
inhumanity. [268]

The invading attackers in cyberspace have developed
and practiced reconnaissance and become very good at it.
Reconnaissance is essential to the APT invader at all
stages. The first use of reconnaissance is before the
intruder has infiltrated any part of the system. During this
stage, the attacker may be looking for just about any kind
of information including nontechnical information about the
company. Business information, executives, offices,
policies, products, rumors, and gossips are all helpful.
Information like this may be useful in constructing a social
engineering attack (see Chapter 1), guessing usernames
and/or emails, or just in improving planning for what to do
once passed the defenses.

After getting a first foothold in the system (discussed in
the next section), reconnaissance will be necessary for
looking around for offensive purposes (finding new targets
within the system) and defensive purposes (protecting their
foothold from detection or ejection). This will continue
throughout the entire lifetime of the attack.

When (and if!) the attacker decides to exit the system,
reconnaissance will continue especially if the attacker
believes that they have been discovered to some degree or
another. The attacker will want to observe the actions of
the defenders as they try to find out what is going on in
order to know how much time they have left, what the
defenders have learned, and if they are hopefully (from the



attacker’s point of view) missing some of the attacker’s
entrypoints.

One big question for an attacker is what services are
running on a computer and what are the characteristics of
that service? As you learned in Chapter 7, attackers bypass
defenses using vulnerabilities, and defenders must patch
known vulnerabilities as soon as possible. Attackers want
to know if a system is running vulnerable software or
software with a vulnerable configuration. Accordingly, a big
focus for attackers is to identify all network accessible
services on every possible host system. And, they want to
know as much about those services as possible. There are
often dozens, if not hundreds, of services running across
the collective hosts of an organization. Each host may have
a slightly different configuration leading to thousands of
distinct targets. The attacker often needs just one to be
weak in order to bypass security controls to one degree or
another.

For the defenders trying to patch and reinforce their
systems, they often rely on large databases of known
vulnerabilities. For example, the MITRE corporation
created the Common Vulnerabilities and Exposures (CVE)
program in 1999 [170]. The concept is that when somebody
finds a vulnerability in software, it is reported to the CVE
organization. Once verified, it will be issued a unique
number. The CVE contains information on exactly what
software is vulnerable and under what conditions. It also
includes remediation information such as configuration
changes or even patch data.

To illustrate, CVE-2021-44228, also known informally as
Log4Shell, identifies a vulnerability that was (and
unfortunately is) common in many systems on the Internet.
It identifies some very serious issues with a library known
as Apache Log4j2. This library is used in many Internet
servers. According to the CVE, attackers that could control



log messages could potentially insert and execute their own
malicious code on systems with services such as LDAP,
which is used for authentication, authorization, and access
controls. The CVE also indicates that the vulnerable
versions are 2.0-beta9 through 2.15.0. Version 2.16.0 and
later have the dangerous functionality completely removed
(and are, therefore, safe). The CVE includes a wide range
of links to other resources describing the vulnerability in
more detail, additional instructions for remediation, and so
forth [19].

CVEs like this one are a great resource for defenders to
be able to check their software and see if vulnerabilities
have been reported and to repair them. Moreover, CVE-
compatible products can help with automating the process.
Compatible tools can automatically scan an organization’s
network, detect software with known vulnerabilities, and
assist in the patching or remediation process. The good
news is that defenders can find out what is wrong on their
network.

The bad news is attackers can find out what is wrong on

the defender’s network. The attackers have access to all of
the CVE data too. So, when an attacker goes to scan a
network, if the attacker can identify if a system is running
Apache Log4j2 that is running version 2.15.0, they can
know what kinds of attacks to launch against it.

Often, attackers would like to know what services are
running on other systems besides the one they have access
to. To find out what is running on another computer, they
need to interrogate it. Basically, they want to ask all the
other systems on the network, “what programs are you
running?” They may not be able to figure out all of them,
but there is a fairly simple way to figure out most, if not all,
of the programs running that are servers (i.e., provide
services over the network). A port scan, discussed earlier in



the chapter, will do a good job of identifying which ports
have a server listening on them.

Identifying a service running on a port is a good first
start, but, as stated earlier, attackers would like to know
what service is running on the port and, if possible, what

version and configuration is in use. Just sending correctly
formatted data to the TCP port is used to determine if there
is any kind of server at all. But once it is known that a
server is present, the attacker may launch various probes
to that port to try and fingerprint the server. Many server
programs, even if they cannot be completely accessed (e.g.,
require a login or other authentication data), can reveal
quite a bit about themselves. Some server programs even
helpfully identify which version they are running.

Story Time: Realistic Hacking in a Movie!

Most “hacking” in movies is hilariously bad. From viruses
that scream in pain when they are being deleted to
“fighting” with viruses in an elaborate video game,
movies are not known for their technical accuracy in the
cybersecurity realm.

One notable exception is The Matrix Reloaded. During
the movie, the character known as Trinity, played by
Carrie-Anne Moss, uses nmap to scan a network for
vulnerable software. The nmap utility is real and is really
used to scan ports. In the movie, nmap shows the
fictional hacker that SSH is running on the computer
with the address 10.2.2.2. SSH is a secure access
terminal that allows a remote connection to a computer
over a text interface.

Although in the next bit, the movie depicts Trinity
using a made-up program called sshnuke, it begins
“[a]ttempting to exploit SSHv1 CRC32.” This is a
reference to a real vulnerability discovered in 2001 in
SSH. This vulnerability can enable an attacker to bypass



the security login and get access to the remote machine
without knowing a valid password. Much of what follows
is also made-up, but it is still fun to see a more realistic
portrayal of hacking in a movie [208]!

In addition to port scanning and fingerprinting, attackers
may also passively listen for network traffic. Many system
LANs have broadcast traffic, which means that an attacker
can hear the data being sent between other machines. Even
if broadcast traffic is not available, they can scan the traffic
being sent to the machine they control. This can give them
information about the other systems on the network and
how they interact with the compromised host.

The attacker can also explore information available on
the compromised machine itself. This may include log files,
data files, and configuration files. If the system is running a
web server secured by TLS, as discussed in Chapter 6, it
must have access to a private key somewhere. The attacker
may try to find and steal it. Or, the system may be storing
passwords poorly. For example, some systems will be
configured with a connection to an SQL database and may
include a hard-coded password in a file. The exact amount
of damage that an attacker can do to a system depends on
their access level on that system.

And, of course, in addition to all of these “high-tech”
mechanisms, the attacker can use social engineering
attacks to request information. This is another common and
effective form of reconnaissance.

It is also worth noting that one of the other purposes for
reconnaissance is to find the target data. For example, an
intruder might know that a hospital has the records of VIPs
stored somewhere, but no idea where that is.
Reconnaissance may help to reveal likely systems or
networks that will have the desirable data.



Establish Foothold

Every intrusion has to start somewhere. In very many
cases, an attacker can initially get access to a lower-
priority system more easily than they could to the system
they really want to exploit. For example, an attacker might
get access to a company web server. This is not uncommon
because often web servers are some of the only company
systems that are directly accessible on the open Internet
(i.e., the attacker can directly connect to it without having
to go through email or some indirect route). The attacker
will use their reconnaissance data about the visible server
to find an attack. The ideal goal is to get some kind of
remote shell access. This kind of access is general and
allows them to launch programs, explore the system, or
otherwise manipulate it. In other words, they do not
compromise a web server to attack the website (probably).
Instead, they want general access and general control to
the machine in order to create a base of operations. They
may achieve this using one of the vulnerabilities discussed
in the previous section.

Of course, using a DMZ or other isolation techniques,
defenders can try to shield the rest of their network from a
compromised web server. But the attacker, if they are
simply holding their position, may remain undetected for
some time while they continue to conduct reconnaissance.
Alternatively, the attacker, using phishing, may try to get a
foothold on a user’s computer already inside the
organization’s network. Although phishing is often
associated with stealing information or money, it can be
used to invade a network completely bypassing firewalls
and DMZs (because email goes directly to people within the
organization).

Even if the DMZ is bypassed, the attacker will want to
expand to other systems, but this is the topic of the next
section. More relevant to this section, the attackers will



also want to improve their foothold on the compromised
machine(s). For example, if the attacker compromised a
properly configured web server, the compromise should not
have given them administrator access. The attackers will
almost certainly search for mechanisms to elevate their
access to administrator. This will sometimes involve looking
for other vulnerabilities on the system that permit privilege

escalation. Or, it may involve compromising an
administrator password through social engineering, brute-
force password cracking, or testing for default passwords.

The attacker also will look to create new avenues for
getting onto the system in case the current vulnerability is
discovered and fixed or so that phishing is not required.
This might involve installing new software that creates
additional access methods (sometimes called a backdoor).
The backdoor could be inserted as just a stand-alone
program, or it could be created through the insertion of
vulnerable software. If the machine already has remote
access, the attacker could simply create new user accounts.

Another important part of the foothold is to make sure
they will remain undetected. If the attacker gets
administrative access, one of their objectives will be to
delete any of their footprints and ensure their invisibility by
corrupting the logging process. They may try to disable
logging altogether or, in order to be less obvious, simply
edit the log files to remove anything about their activities.
For example, most systems log when there is an invalid
password attempt. If the attacker manages to get
administrator access using this approach, one of their next
tasks would be to remove any reference in the log file to all
the bad attempts.

Lateral Movement

In order to get “closer” to the desired data, the attacker
will typically have to compromise additional systems after



the entrypoint system. A system may be closer to another
either in terms of network hops or in a semantic network.

Network hops simply refer to how many routers must be
traversed to get to the machine. As discussed earlier, many
networks are segmented. There is a router between each
segment, and, because segments have different security
profiles, the router is usually an internal firewall. An
attacker may have to make lateral movements from one
host to another across segments in order to close in on the
true target. Some segments are considered higher security
than others. Firewalls often mark the boundaries of these
segments. An attacker may need to make a lateral

movement to gain access to some other system on another
segment. This often involves finding a legitimate path
through the internal firewall.

A semantic network, on the other hand, represents how
the various applications are connected to each other.
Typically, for example, a web server is connected to a
database. That very same database may be connected to
another data entry or data processing system. The web
server has no application-level connections to the data
entry/processing system. The two machines may never
communicate directly to each other even if they are on the
same segment. But the web server connects to the
database which connects to the data entry/processing
system. The three systems are connected in a semantic
network where the web server is one semantic “hop” away
from the data entry/processing system. The attacker may
be completely uninterested in the database by itself but is
interested in it in order to gain access to the data
entry/processing system.

A very common approach to make a lateral movement is
stolen credentials. Compromising the password on one
machine may result in knowing the password for the same
user on other machines. Sometimes, credentials can be



observed or determined from network traffic that the
attacker passively observes.

Of course, the attacker can make a lateral movement
using the same techniques used to get the initial foothold.
Using reconnaissance and identified vulnerabilities, the
attacker can compromise other machines on the same
network.

Exfiltration or Other Malice

After patiently navigating the victim network, the attacker
hopes to eventually be able to achieve their ultimate
objective. A common objective is the exfiltration of data.
Generally, the attacker will have some kind of Command
and Control (C2C) server that can receive the data. If the
victim organization has no egress filtering or scanning, this
is a simple process that may go completely undetected.

Modern defenses should scan egress traffic. Even basic
firewalls can be configured to block outbound connections
to suspicious IP addresses. This is a very basic technique
for blocking exfiltration but often a minimum first step.

More advanced defenses will attempt to monitor for
unusual outbound connections. Large data transfers may
be suspicious for many organizations, especially from
certain systems. An even more sophisticated system might
deploy data loss prevention (DLP) techniques. DLP
technologies identify an organization’s most sensitive data,
where this data should be stored, who or what
application(s) should have access to this data, and how to
protect from the loss of this sensitive data. DLP is almost
by definition an egress scanning and filtration technology
directed toward data life cycle management.

DLP was originally created for the purpose of identifying
unintended misuse of data by an organization’s employee
(e.g., copying confidential data onto a personal USB or
external memory device). However, with the increase of



data exfiltration by threats like APTs, they are also used to
identify and block outside and inside malicious actors
trying to access, steal, or destroy data.

A typical DLP deployment can be broken into three
components: inspection visibility, inspection capability, and
detection response. Inspection visibility is the means by
which the DLP technology is able to inspect data for
exfiltration. Three common inspection approaches are
scanning data at rest, scanning data in motion on the
network, and scanning data on endpoints.

Scanning data at rest for DLP works by scanning storage
locations for known sensitive data. “These scanning
platforms are generally directed towards network share
locations, long term storage, database backups, or archive
storage locations” [92]. This is helpful with exfiltration
because the attacker may need to move the data around in
order to get it to a location where it can be sent over the
network.

Scanning data in motion is used to describe DLP
inspection capabilities that analyze outbound data transfers
on the network. Notably, there are versions of this
technology that only inspect out-of-band (meaning the data
is reviewed in parallel to its transmission) [92]. This
obviously may only be able to detect exfiltration and not
block it.

Scanning data on endpoints works by installing an agent
on hosts. The DLP component can scan data saved to the
host or data being transmitted to the host. This is obviously
very comprehensive for a given host but must be installed
on most, if not all, hosts in order to be effective [92].

Once the DLP has a visibility capability, it requires an
inspection capability in order to determine if the data is out
of policy-allowed locations and uses. There are various
approaches to this process, but three such processes are
exact data matching (EDM), indexed document matching



(IDM), and data string matching.” EDM is most often used
for data stored in a database or some other structured
format. EDM works by comparing data being scanned to
the data in the database or structured storage. IDM, on the
other hand, requires creating an index from unstructured
(free-form) documents for use by the DLP technology when
scanning. Because only part of a document may be
exfiltrated, the IDM process typically breaks up sensitive
components within a document as individual elements to be
matched. Finally, data string matching looks for known
patterns like 16-digit credit card numbers or 9-digit social
security numbers [92].

The final DLP component is the responsive component
that either raises alerts or blocks the exfiltration depending
on the configuration [92].

Generally, however, if the attacker has reached this
stage, they will probably succeed in getting the data out. A
wise organization will put in as many of these technologies
as possible to prevent it, but attackers can almost always
find a way out. Previously, in Section , I discussed using
DNS as a covert channel. As I explained in that section,
attackers can get data out using DNS. There were at least
half a dozen high-profile exfiltrations between 2014 and
2017 that used this exfiltration-over-DNS technique [33].

In addition to exfiltration of data, an attacker could do
other kinds of mischief including data destruction, system
disruption, or other malicious activities. The attacker could,
for example, deploy malware. The attacker could have
deployed other malware as part of any of the previous
stages in order to better conduct reconnaissance, establish
a foothold, or make a lateral movement. But the attacker
may wish to deploy malware on a specific server for a
specific purpose. For example, perhaps they want to lock
up very important records using ransomware. Refer to
Chapter 7 for some examples.



Clean Up and Finalize

Once the attacker has completed their objectives, they may
perform a number of cleanup tasks. For example, if the
defenders become aware of the adversary, they may be
searching their systems for the intrusion. The attacker may
spend some time cleaning up their tracks and hiding their
presence. They may wish to remain in the system in a kind
of “low profile” mode. This would require them removing
many of their tools and accounts, forging false log files, and
otherwise producing a minimum amount of network traffic.
The goal would be to attract as little attention as possible
while the defenders are searching for the intrusion. With
any luck (for the attacker), the defenders will not be able to
find the attacker or the vulnerabilities that got them into
the system. Once things have “cooled down,” the attacker
can reassert themselves on the network.

On the other hand, if the defenders are still clueless and
have no idea there is an intruder, the attacker can set to
work strengthening their hold on the system, extracting
additional data, and looking for new opportunities to
spread.

Story Time: DigiNotar—Anatomy of an Intrusion

I already mentioned DigiNotar in Chapter 6. This
Certificate Authority (CA) was infiltrated by an Iranian
hacker. A CA is supposed to keep this kind of data
carefully protected.

In terms of defenses, the DigiNotar network was
configured with segments and DMZs. The critical servers
with cryptographic secrets had those secrets secured by
hardware security modules (HSMs). So far, so good. So
how did the attacker bypass all of this security?

According to the investigation, the first system
compromised was web servers in the external DMZ.
These web servers were running outdated software. As



discussed in this chapter, that is the quickest way to get
compromised. Once the attacker had control of the
machines, they turned these web servers into their own
personal file server. These systems became the
attacker’s go-between with the inside and outside of the
organization. Data would be moved out of the sensitive
inner segments to these servers where the data could be
exfiltrated to the attacker’s computers.

The first lateral movement of the attacker was from
the external DMZ to a segment called Office-net. It
appears that there was a database on an Office-net
computer that was accessible from the web server, and
the web server had the username and password stored in
a file that was readable by the attacker. Using the
username and password, the attacker accessed the
Office-net computer to get foothold outside of the DMZ.
The attacker found other credentials using brute-force
cracking of password hashes. Because the passwords
were weak, they were easily broken by this brute-force
attack.

Using these and additional techniques, the attacker
made a subsequent lateral move into the Secure-net

segment that had the critical cryptographic secrets.
These computers were not even supposed to be directly
connected to the Internet, but apparently the attacker
created some special tools to create a tunnel connection
that bridged the gap. The attacker had full remote
desktop capabilities on the compromised machines.
Using these machines, the attacker was able to issue at
least 531 rogue (fake) certificates. There may have been
more.

One reason why it is not known how many certificates
were created is because the attacker was editing log
files. The complete record is destroyed and impossible to
completely recover.



This story illustrates many of the concepts discussed
in this section as they played out in real life.

Summary

Network security has historically been defined by
perimeter security—protecting the resources inside a
network from both threats attempting to infiltrate from
outside and from threats already inside now attempting to
propagate and cause harm. There are many reasons this is
now changing. For one thing, it is hard to identify the
“inside” anymore with the rapid shift to the cloud. With
that said, understanding the basic principles and classical
approaches is an important foundation.

Much of perimeter security is defined by firewalls.
Firewalls sit at the interface between two networks and
regulate traffic between them. One of the most basic
approaches is filtering traffic based on the source and
destination of traffic, but modern firewalls can analyze
different aspects of the traffic up to and including the
application data, the so-called layer-7 data.

Proxies of various kinds enable additional security on
traffic entering and leaving a network, such as
authorization, scanning, load balancing, and data loss
prevention. Virtual Private Networks (VPNs) enable
connecting remote networks to each other or securely
granting access to protected resources to remote
computers.

These components can be used to create a defensive
network architecture. Firewalls are placed between an
organization’s systems and the outside Internet. But they
are also used internally to divide the network into segments
that can be used to create different security zones. A
demilitarized zone (DMZ) is a special kind of segment that
separates out an organization’s public-facing systems from



all other systems. That way, if one of the public systems is
compromised, the attacker does not have direct access to
the other systems.

If threats manage to bypass the network perimeter
defenses, technologies like Intrusion Detection Systems
(IDS) and Intrusion Prevention Systems (IPS) allow for the
detection of active threats and the prevention of attempted
threats. One of the most important intrusion detection
technologies in use today is honeypots, defensive deception
technologies that are used to identify, confuse, and disrupt
intruders.

Despite all of these defenses, attackers do manage to
get through. A very nasty type of attacker is an advanced
persistent threat (APT). These attackers are stealthy,
patient, and sophisticated. They will carefully get a foothold
in a network and then methodically expand their control
until they reach the systems that have the data they are
looking for.

Further Reading

Readers should remember that the solutions described in
this chapter do not solve any problems on their own. These
are mechanisms for enforcing policy. Unfortunately, many
organizations just throw technology and architectures at
problems and hope that it keeps the adversaries out. The
proper starting point is policy. Although I have already
cited Anderson’s chapters on policy in Chapter 3, now that
you have read a mechanism-heavy chapter I suggest going
back and rereading Chapters 1 and 9 to understand how
policy and mechanism fit together [40, Chapter 1], [40,
Chapter 9]. I also like Peterson and Davie’s book Computer

Networks. This book is deeply technical and digs into how
the Internet works from top to bottom and also includes a
chapter specifically about security [205, Chapter 8].



Another good starting point for thinking about how to
actually deploy network security components is to refer to
NIST’s guide on risk management. There is never perfect
security that can prevent all possible intrusions. Instead, it
is important to investigate risk to determine what the risks
are and how they should be handled [109]. After reading
this document, I suggest reading NIST’s guide to security
and privacy controls. The controls that it lists go beyond
what you have learned in this book but should have a
number of familiar elements such as authentication,
authorization, host security, and network security [121].

NIST also provides an entire cybersecurity framework.
You can visit their website at www. nist. gov/ 
cyberframework. There is a lot on this website, however,
which is why I recommend starting with risk management
and security controls. Those two are a great start for a
more thorough study of developing a full cybersecurity
strategy.

Digging into firewalls can be fun. The colorfully named
Best Damn Firewall Book Period is, in fact, quite
comprehensive [241]. A more up-to-date book is Network

Security, Firewalls, and VPNs. This book explicitly tries to
tackle APTs and incorporate their methods into creating
appropriate defenses [252]. At a slightly broader
granularity, Bishop provides a full chapter on “Network
Security,” including a discussion of network organization,
DMZs, and firewalls [60, Chapter 28].

Another area of important reading is zero trust. I have
mentioned it repeatedly as the topic I will not discuss in
this book. Zero trust would need several chapters to really
provide sufficient background, principles, and applications.
This book, instead, focuses on the classics. If you wrap your
head around perimeter security concepts, you are ready to
move on to all the reason perimeter security is bad and
how zero trust attempts to fix the problem. Google’s

http://www.nist.gov/cyberframework


BeyondCorp is reasonably understandable and a good place
to start [58, 199, 279]. NIST also provides an architecture
document for zero trust that is also helpful [222].

To further investigate the fascinating topic of defensive
(and offensive) deception, I suggest the book Introduction

to Cyberdeception, of which I recommended a single
chapter in Chapter 1. The entire book is a great read,
however, discussing theoretical principles as well as
practical applications for all kinds of deception [225].
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This includes time setting up, configuring, and deploying the network
architecture and security policy enforcement mechanisms. It also includes time
monitoring the network for intrusion, audits to ensure changes remain
compliant, and reconfiguring based on changing IT and security needs.

 
In a historic irony, the view that network security is a bad idea and the only

solution is secure hosts has returned in at least some form with the advent of
zero trust security. Zero trust security is not considered in this book, which
focuses on more classical security technologies. However, suffice it to say that
in this zero trust model, the internal network is no longer trusted [279].
Unfortunately, most classical network security, the subject of this chapter, is
quickly becoming obsolete. You have to start with the classic tech first,
however, in order to understand what is changing and where computer security
is going.

 
These devices are, in fact, still implemented on general-purpose computer

technologies, but the systems are (supposed to be) stripped down to only
include components necessary for the security operations.

 
Again, Appendix C provides an overview of the differences between UDP and

TCP. Those differences are not particularly important here; the point is that a
firewall that examines layer-4 data can tell the difference between layer-4
protocols.

 
This is a specially reserved port number that should almost never be used

but can return results in some circumstances.

 
Please note, I am going to cite other papers and sources more heavily in this

section than I have elsewhere. I am providing only a relatively brief overview of
a very important technology. I figured it would be better to include a wide
range of reference material here for those that want to investigate other
sources instead of filling the “Further Reading” section with all of them.

 
I will refer to this as Martha’s idea, not Stoll’s. Most references that I read do

not properly attribute the idea to her. For example, see Bishop’s book on
computer security [60, Chapter 27].



8

9

10

 
I have very slightly edited this quote from the book for clarity.

 
Again, you rarely see attribution when Stoll’s work is discussed.

 
Each of these definitions comes from a different source. Refer to the survey

[207] for attribution.
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Chapter Quick Start Guide

The Internet and the World Wide Web have specific
security needs and challenges, many of which relate to
how applications are built on top of the original stateless
HTTP protocol. We will examine these issues and the
many solutions that address them.

Key Concepts

1.
The Web was originally designed for sharing
documents and linking them together semantically.

 
2.

Additional systems have been built on those
foundations, such as encrypted communications
(TLS and HTTPS) and web applications.

 
3.

These developments have required new
technologies, like cookies for state persistence,
JavaScript for interactivity, and OAuth for
authorization.

 

4.
Security technologies have been developed to make
these advances secure and reliable and to address
the additional vulnerabilities they introduce.

 

https://doi.org/10.1007/978-1-4842-9560-1_9


Common Pitfalls and Misunderstandings

1.
HTTP is a stateless protocol, but modern web
applications rely on keeping the user’s state between
individual requests. Even though these needs are not
accounted for in the original protocol, technologies
have been developed on top of HTTP to make them
possible.

 

2.
The Internet refers to the interconnection of network
resources around the globe. The Web refers to the
semantic linking of these resources in useful ways
that enable higher-level constructions like web
search, applications, and human- and machine-
readable context.

 

Useful Vocabulary

URL: Uniform Resource Locator. A format for
describing how to access a document or resource on
the Internet
HTTP: HyperText Transfer Protocol. A protocol for
requesting and transmitting documents over the
Internet
HTML: HyperText Markup Language. A language for
describing the structure and contents of a web page
JavaScript: A programming language for building
interactive applications within HTML pages
API: Application programming interface. A collection
of operations for requesting and receiving data from a
web application
SQL: Structured Query Language. A language for
reading and writing data in a database
WAF: Web Application Firewall. A filtering system for
protecting web servers from malicious inputs



Regular Expression: A syntax for matching patterns
in text
SSO: Single-Sign On. A system allowing a user to
authenticate once and subsequently receive access to
various other systems automatically

In the previous chapter, I introduced you to some of the
concepts of what I call “classical” network security.
Primarily, these technologies are focused on protecting the
Local Area Network, or LAN. In many ways, this kind of
security is perimeter security. The goal is for an
organization to defend itself from “outside” threats. As I
indicated, perimeter security, though still widely used, is
already seen as outdated and obsolete. The cloud, bring-
your-own-device (BYOD), mobile use, working from home,
and other changes render perimeter thinking less effective,
or perhaps not effective at all. This book does, however,
provide a good foundation for understanding those
components.

In this chapter, I will dig into the security components
that have developed in order to secure the World Wide
Web. The topics in this chapter are both still relevant and

provide good foundation for more advanced topics
including zero trust. Web security is a good topic to discuss
after perimeter security for a couple of reasons. First, web
security is a complementary concept to perimeter security.
Instead of isolating, web security is about securely
collaborating, interacting, sharing, and participating.
Second, web security operates primarily at the application
level of the network protocol stack. The security typically
needs to be end to end, meaning from one endpoint to
another rather than just at the boundary of a network.

To get started, some background will be useful. One of
the most common misconceptions is that the Internet and



the World Wide Web are the same thing. As discussed in
Chapter 8, an “internet” is a network composed of smaller
networks that are connected together. The Internet (with a
capital “I”) refers to the singular Internet, the worldwide
interconnections of networks. The Internet was born, from
a certain point of view, in 1969 when Stanford and UCLA
created a network connection between their two networks.

The World Wide Web, on the other hand, is a suite of
interconnected, but distributed, applications built on top of
the Internet using a common set of protocols, primarily a
protocol named HTTP (HyperText Transfer Protocol). The
Web is not centrally planned or coordinated. Instead, it is a
cooperative construct created by all the individual websites
spread throughout the Internet. It is the whole ecosystem
of search engines, ecommerce technologies, web
applications, and other services. Cloud services such as
AWS and Azure, mobile apps, and social media are all
examples of technologies built within this environment.

An Overview of Basic Web

Components

The architecture of what became the World Wide Web was
proposed in 1989. According to Tim Berners-Lee, one of the
people behind its development, the primary purpose of the
Web was to “be a shared information space through which
people and machines could communicate.” By 1994,
“browsers” started to become more widely available, and
the Web began to really grow [56].

Resources and URLs

Data in the World Wide Web is organized into named
resources. Each resource has a specific identifier known as
a Uniform Resource Identifier (URI), sometimes more



commonly called a Uniform Resource Location (URL).1 A
URL has a defined format:

 <scheme>://<authority><path>?<query>

There are four elements in the URL:
1.

Scheme defines the identification scheme. In practice,
this is usually the protocol for requesting the resource.
This is almost always http or https.

 
2.

Authority is almost always the server where the
resource is hosted. The host could be an IP address,
but is most often a host name, such as “google.com”.

 
3.

Path identifies to the server the specific location or
other identification information of the resource within
the server.

 
4.

Query enables the request to be parameterized. This
means the request can change based on the query
provided.

 

So, for example, here is a very simple URL:

 google.com

This URL does not specify the scheme, path, or query.
When schemes are not specified, it is figured out from
context and is usually http or https. When no path is
specified, a default, or root, path is used. Query is only
used for queries that can have parameters. An example
with all four elements is shown as follows:

 https://www.google.com/search?q=cat+dog

This URL identifies a Google resource for searching for
cats and dogs. The path, in this case, is “/search” and the



query is “q=cat+dog”.
The data identified by a URL does not have to take any

particular form. It could be a web page, a file to download,
an image, an action (e.g., signing out), or even data in
formats meant more for machines than people. For this
reason, data identified by a URL is called a resource.
Notice also that a query is considered part of a resource’s
identifier. So the preceding example for searching cats and
dogs is a unique resource separate from a search for
something else or even the initial Google search page.

URLs enable a crucial concept of the Web: semantic

connections between resources. The Internet, of course,
links network resources. On LANs, resources share a
common medium for communication. Over the Internet,
routers and protocols enable logical connections between
any two endpoints. This is absolutely necessary. The
problem is, however, that none of these connections have
any meaning or purpose associated with them. There is no
indication of why someone would use a connection or what
the result will be. In other words, there are no semantics.

The Web, on the other hand, introduces a level of linking
higher in abstraction. Resources, like web pages, are able
to link to other web resources using hyperlinks. A
hyperlink, or just web link or link, is designed to connect
two web resources together semantically. A link includes a
URL to another resource, linking the current resource and
the linked resource together. There was no need to create
network links, logical or otherwise, or provide routing and
a protocol stack in order to link the resources. Instead,
resources, like web pages, can simply include a hyperlink,
and the connection is created.

Moreover, the connection is semantic. The relationship
between the two resources is not created because they are
in the same LAN or because they have some kind of
network connection. Instead, the web resources are meant



to be connected because they have a relationship in the
information, data, or other concepts they represent. This is
enhanced further by free-form text that can be associated
with web links on web pages. This text can communicate
human-readable or even machine-readable information
about what the link is (e.g., “pictures of my kids!”) and/or
what the link does (e.g., “click to sign out”). Using these
kinds of links, web pages are connected together by ideas
and concepts into a mesh that is like…well, like a web.

So, the Internet can be thought of as interconnected
computers and computer processes, and the Web can be
thought of as interconnected ideas and information.

The nature of the Web also enables resource discovery

by browsing. From one link to another, a person (and even
machines!) can “crawl” the Web, discovering more and
more resources. Even search engines such as Google
answer search requests by using massive databases of
indices created by crawling the Web and adding data about
each resource.

Web browsers are programs that make the Web
accessible to humans. Browsers take the raw information
from the Internet and convert it into the visual
representation the human sees on the display. This process
is called rendering.

HTML

When a browser renders a website or other web content,
there are a lot of components that go into the process. The
starting point for most of these web pages is HTML:
HyperText Markup Language. A “markup” language is a
text-based description system wherein special control
codes or other “markup” data indicate how the text should
be rendered when displayed.

To illustrate, here is a very simple example of HTML:

 <HTML>



 <BODY>

 <H1>Simple Web Page</H1>

 <HR>

 Some other text.

 </BODY>

 </HTML>

When this data is loaded into a web browser, it is
rendered. Each browser might render the information
slightly differently, but it will look consistent for the most
part. One rendering is shown in Figure 9-1. You can see
that “Simple Web Page” is quite large and in a bold type,
while “Some other text” is smaller and is not bold.

In the HTML, “Simple Web Page” is marked with a
preceding “  H1  ” and followed by a “  /H1  ”. In
HTML, these are called “tags.” The H1 tag indicates that
the text enclosed between the H1 tag and the closing H1
tag (“  /H1  ”) should be rendered as a level 1 header.
The rendering in Figure 9-1 is a default rendering of a level
1 heading for this browser. The exact font, size, and other
attributes for the H1 heading can be customized using, for
example, style sheets.

Some tags do not have a closing tag. The “  HR  ”
tag, for example, does not. This tells the browser to put in a
“horizontal rule,” which is why the rendered page has a
line between the two text sequences.

Figure 9-1  A very simple web page



Not only are the contents of the web page rendered in
Figure 9-1 simple, but so is the structure. This web page is
rendered based on the contents of this HTML all by itself.
But most web pages have to identify additional resources at
other URLs that the browser must also download as part of
the rendering process. For example, an image is generally
included in this way. In the following listing, a new “IMG”
tag has been added:

 <HTML>

 <BODY>

 <H1>Simple Web Page</H1>

 <HR>

 Some other text.

 <P>

 <IMG SRC= "https://www.crimsonvista.com/img/logos/CV_icon.png">

 </BODY>

 </HTML>

The IMG tag tells the browser to insert an image into
the web page. The “SRC” parameter tells the browser
where to go to find the image. The location is specified as a
URL. Figure 9-2 shows a rendering of this page.

The image displayed is a logo for my consulting
company, Crimson Vista. Importantly, the image is hosted
at a different domain than the HTML. In other words, the
browser is getting the HTML listed earlier from one web
server and the image referenced in the HTML from
another. Most web browsing works this way. Usually, a
person navigates to a website URL which downloads initial
HTML to the browser. The browser then begins rendering
the browser while simultaneously downloading any
referenced content. This might be images, programming
instructions, style sheets, other HTML, or most other types
of web content. In short, rendering a single web page



almost always means making multiple requests and often
from multiple servers.

Figure 9-2  Another simple web page with an image in it

Story Time: Personal Web Pages

On a bit of a personal note, I started my undergraduate
degree at Brigham Young University in 1994. This means
I hit college just as the World Wide Web was taking off.
During these early days, you could watch the rapid
development of this new technology. Browsers improved,
the Java programming language was released, and both
personal and commercial websites emerged.

As a college student in computer science, I could create
my own web page and host it with the university. I
started learning a little HTML and some other basic



elements. Certainly, the web page I created at the time
was clunky, awkward, and not aesthetically pleasing. But
it was an amazing experience to be able to create a
“home page” that was visible to anyone else using the
World Wide Web. This was before the advent of social
media; so those with a web presence would sometimes
use their home page as a place to share about
themselves.

For example, during my senior year in 1999 (I had taken
time off from 1997–1999 for religious missionary
service), I became engaged to the brilliant and beautiful
Amy Nicole Quist. I learned just a little bit of web
scripting and was able to create a countdown timer that
would automatically display the days, hours, and minutes
left until the wedding. I wanted the whole world to know
how much I was looking forward to tying the knot with
this lovely young lady. Speaking of which, we were
married on April 20, 2000. We are still happily married
23 years later!

The protocol used for making these requests and getting
the responses is called HTTP.

Overview of HTTP

I briefly mentioned HTTP in Chapter 8. In that chapter, I
was talking about firewalls and how firewalls can examine
different parts of the network stack. HTTP was an example
of a layer-7, or application layer, protocol. In this chapter, I
will explain how this protocol works and how it is used to
exchange information on the Internet.2

Any computer program can use HTTP, but the most
common example of a program that does so is your average
web browser. When a browser is directed, either because a
user typed a URL into the URL bar or because a hyperlink



was clicked, the browser sends an HTTP request to the
host identified in the URL. There are different types of
HTTP requests. Figure 9-3 from Appendix C is an example
of an HTTP GET request.

Figure 9-3  An HTTP GET request is commonly sent by browsers to get a web
page

Figure 9-4  The first line of an HTTP request is called the “request line.”
Within the request line is a method, a path, and a version

HTTP requests have different parts that are called the

headers and the body. Figure 9-4 shows an example of this.
The first line of the HTTP request is called the “request



line,” and it has three components: the method, the path,
and the version. The remainder is the request headers. This
HTTP request has no body.

The request method tells the web server what kind of
communication the request is. A GET request, such as the
requests you have seen so far, is probably the most
common type. It indicates that the browser is specifically
requesting, and not sending or uploading, information. Any
time you have popped a URL into a browser and hit enter,
the browser has almost certainly sent a GET request. As
shown in the figure, the text sent is literally the method
type, so in this case it is the actual word “GET.”

There are other types of HTTP requests including
requests that upload data. The most common HTTP method
for upload is called a POST method. As shown in Figure 9-
5, this request looks almost the same. The “GET” text has
been replaced with “POST” text in the method location of
the request line, and there is a new header for “Content-
Length.” This new request header is required so that the
web server knows how much data is being uploaded. If the
HTTP request did not have a “Content-Length” header, the
server would not be able to tell when the upload was
complete.



Figure 9-5  An HTTP POST request

Figure 9-6  An HTTP response indicating that the resource was located

There are other request methods including HEAD, PUT,
DELETE, and others. GET and POST are the most common
for “ normal” web browsing. The other methods are more
common in machine-to-machine communications. Although
beyond the topics covered in this book, REST APIs, for
example, make use of the different request methods and
define semantics for each one.

As discussed in Appendix C, when the web server
receives an HTTP request, it is expected to send back some
kind of HTTP response. The response includes a code that
indicates some kind of response code. The response code
“200 OK” is the standard code for reporting that the
resource was found and is included in the response
message. An example of this response is shown in Figure 9-
6.



Figure 9-7  The first line of an HTTP response is called the “status line.”
Within the status line is a version, a status code, and a response phrase

As with the HTTP request, it is worth going into just a
little more detail. As shown in Figure 9-7, an HTTP
response has a “status line” that is analogous to the
“request line” in an HTTP request. The status line has an
HTTP version followed by a status code and response
phrase pair. The status code indicates the result of the
request, and the response phrase provides a human-
readable string for explaining what happened to a user.

Some of the more common HTTP status codes and
corresponding response phrases are

200 OK: The resource was found.
301 PERMANENT REDIRECT: The resource found with
this URL has permanently changed to a new URL. The
browser will usually refresh automatically to the new
URL and will cache the change.
302 TEMPORARY REDIRECT: The resource is only
temporarily relocated. The browser will usually refresh
automatically to the new URL, but will not cache the



change. That means the next time the browser tries to
access this resource, it will still use the old URL.
404 NOT FOUND: The resource could not be found.
410 GONE: The resource used to be here, but is
permanently shut down.
500 INTERNAL SERVER ERROR: The server did
something wrong.
503 SERVICE UNAVAILABLE: The server currently
cannot response.
Server response codes follow a schema wherein all

codes in the 100s are informational, 200s are success
messages, and 300s are redirections (meaning the browser
should be sent to a different URL or web address). In terms
of errors, codes in the 400s are meant to capture client-side
errors (i.e., errors from the browser such as going to a
nonexistent URL), and the 500s are server-side errors.
Server-side errors come from misconfigured servers,
servers experiencing outages, and so forth.

Story Time: The Mythical Birth of 404 Not Found

Humanity has always loved legends and mythology.
Everything must have come from somewhere, and behind
every common experience, we want to find a story
behind it. The World Wide Web is no different in this
regard. Myths and legends abound! One particularly
interesting legend surrounds the origin of the error
message “404 Page Not Found.” It goes something like
this.

Much of the development of the World Wide Web came
out of work done by scientists of CERN in Switzerland. In
many ways, this was the birthplace of the Web. During



the 1980s, these scientists worked together in an office
building and stored a central database on the fourth floor
in a room numbered, you guessed it, 404. This central
database practically was the early Web. As requests
came in from around the world for documents, they
inevitably had errors, either requesting documents that
did not exist or not formatted correctly. Eventually, the
scientists worked up a standard error message: “Room
404: file not found.” As the Web standardized under the
direction of the World Wide Web Consortium (W3C), 404
was maintained as the code for resources that could not
be found.

It is a fun story, but according to those involved, it simply
is not true. When asked for comment, one of the CERN
scientists that worked with Tim Berners-Lee, Robert
Cailliau, was explicit. “404 was never linked to any room
or any physical place at CERN,” he said in an email
interview with Wired magazine. “That’s a complete
myth.” I think it is only fair to Cailliau to point out he is
not fond of mythology at all. He also told Wired:

I don’t even have a hunch about the 404
fascination. And frankly I don’t give a damn. The
sort of creativity that goes into 404 response pages
is fairly useless. The mythology is probably due to
the irrationality, denial of evidence, and preference
for the fairy tale over reality that is quite common
in the human species... These human traits were
relatively innocent in the past, when individual
influence was small and information spread slowly.
Today, and in no small way due to the existence of
the net, these traits have gained a power that is
dangerous.



Apparently, he tied this kind of mythology with the
political issues of Donald Trump, the EU, gun violence,
and climate change [284]. I find it fascinating that
questions about the 404 error message escalated to some
of the most divisive political problems of our time. But
perhaps this is also a reflection of how powerfully myths
and legends drive the human experience.

As mentioned in the previous section, rendering a single
web page almost always means multiple HTTP requests.
Importantly, these multiple requests may very well be to
multiple servers, as depicted in Figure 9-8.

Figure 9-8  Rendering a web page requiring three requests. First, the browser
downloads the root HTML page. It must then download all of the components
referenced in the HTML, such as images and video

Cookies and State

Other than the types of messages browsers and web
servers send back and forth to each other, there is one
other really critical aspect to HTTP that you need to know.
HTTP is a stateless protocol!



A stateless protocol is one wherein every message is
evaluated independently from every other message.
Applied to HTTP, this means that a web server evaluates
each HTTP request based solely on what is in the HTTP
request. Relying on the HTTP protocol alone, the web
server cannot link the HTTP request to any previous HTTP
request. Therefore, it cannot process an HTTP request
differently based on what has come before it.

The problem is that we often want our websites to have
state. That is, we want our browsing experience to depend
on our previous interactions. Here is a very simple
example: signing in. If you sign in to the Amazon store, you
expect it to be in a different state than when you were not
signed in. If the web server cannot connect any HTTP
requests together, it cannot tell if the sender of an HTTP
request is signed in or not. The same is true for
maintaining a shopping cart or doing any other kind of
operation that needs to “remember” what the user did
previously.

The reason for this limitation of HTTP is because of
HTTP’s origin as a protocol for document retrieval. The
designers of HTTP did not foresee HTTP being used for
stateful operations.

Nevertheless, if you have used the Internet even a little,
you are certainly aware that you do sign in to websites such
as Amazon, and people can, in fact, put things into their
Amazon shopping cart. How can a web server maintain
state when the HTTP protocol does not do so? The answer
is cookies.



Figure 9-9  This is an HTTP response with some “Set-Cookie” headers. These
instruct the browser to set cookies for this domain

The term cookie just means an opaque identifier. When I
say opaque, I mean that the identifier is not required to
have any structure or meaning. It may just be a random
number. By marking all related requests with the same
cookie, the web browser can keep track of the state of the
session.

The typical flow goes something like this. When a
browser visits a website like Amazon, the web server sends
a response header back called “Set-Cookie.” The Set-
Cookie header instructs the browser to set a key-value pair
for any web page in the same host domain.

In Figure 9-9, the last two response headers are Set-
Cookie headers. Notice that the first has a value of
“session-id=12345;” and the second has a value of “user-
id=000-132-991”. This tells the browser to create two
cookies. The first, identified by “session-id,” is set to a
value of 12345. The second, identified as “user-id,” will
have 000-132-991 as its value.

Once a cookie is set, the browser will include it in a
“Cookie” request header with all subsequent requests to
the same host domain. This is illustrated in Figure 9-10. If



the HTTP response with the “Set-Cookie” headers came
from amazon.com, these Cookie headers will generally be
sent back in any HTTP request to any amazon.com web
server, no matter the path. The Set-Cookie field can include
additional information that limits where and how cookies
are used, but this is the general approach.

On the server side, when an HTTP request is received
with a cookie, the server can look up in a database the
state of the requester. So, for example, Amazon would use
a process like this. Internal to Amazon web servers, a
database keeps track of the cookie. As the user signs in, or
puts items in their cart, the information is recorded to the
database. Each page the user visits (i.e., sends an HTTP
request for with the cookies) is customized based on the
information in the database for the given cookie.

Figure 9-10  After setting cookies, subsequent HTTP requests to the same
domain will include “Cookie” headers, as shown here

You may have read news stories or other reports about
cookies and their privacy implications. The privacy
implications of cookie use are a serious issue. There are
also security issues related to cookie theft or manipulation
by attackers. I will get back to these security issues after
introducing some of the other technical components.



HTTPS

You learned about TLS in Chapter 6. Secure web
communications work by tunneling HTTP over TLS. Even
though a web browser differentiates between HTTP and
HTTPS as if they were separate protocols, HTTPS is not, for
the most part, any different from HTTP. HTTPS is just
HTTP over TLS.3

I also mentioned in Chapter 6 that exactly where TLS
fits in the idealized network stack (i.e., the OSI model) is
debated. Most sources place it between layer 4 (transport)
and layer 7 (application). The presentation layer is
supposed to handle things like encryption. However, the
TLS protocol in most circumstances does not operate like a
separate component. Instead, it is built into the
applications that are using it. Web browsers, for example,
do not have their own TCP (layer-4) or IP (layer-3)
components. These are built into the operating system. But
web browsers do have the TLS code running within the
browser itself. The web browser’s TLS component is
different from TLS running in another computer program.
In other words, the browser integrates the TLS protocol
into itself. This is why I prefer to think of it as an
application layer protocol. My interpretation is depicted in
Figure 9-11.



Figure 9-11  HTTPS (HTTP+TLS) when TLS is viewed as a layer-7 protocol

Figure 9-12  A representation of an HTTPS packet within the TCP/IP protocol
stack. The TLS packet now encapsulates the HTTP data in an encrypted,
authenticated envelope



Regardless of how one chooses to taxonomize TLS, it sits
between HTTP and TCP and creates a “secure tunnel.”
Figure 9-12 illustrates the TLS data in context with TCP
and IP. This is simplified. It is not showing data like IV,
MAC, or padding data. But generically, there is the
readable TLS header information followed by an encrypted
chunk.

To help illustrate how TLS creates a secure tunnel, take
a look at Figure 9-13. As shown here, the browser prepares
an HTTP packet. The HTTP packet is sent through TLS
processing before being sent to the TCP/IP protocol stack.
Importantly, the HTTP packet is not sent until the TLS

handshake has already taken place! So both the browser
and web server have keys that the man-in-the-middle does
not have. From the perspective of the attacker, the
encrypted data is completely “opaque.” The attacker can
get no information out of the encrypted data.

Figure 9-13  A TLS tunnel between a browser and a server. The man-in-the-
middle attacker cannot see any part of the HTTP data



Because the HTTP requests and responses are
completely encrypted, the attacker cannot see any of the
HTTP headers. Importantly, the attacker cannot see the

cookies used for state! If the attacker could see a cookie,
they could use it to steal the victim’s session, meaning if
the cookie was used for logging in to Amazon, an attacker
that could read the cookie in the HTTP could steal it and
use it to access the victim’s account.

What can the attacker see? The attacker can still see the
IP address and port. So, for example, a snooping
government could still see if data was going to an
unauthorized or “illegal” server. And it could use the TCP
port number to make guesses about the application (e.g.,
port 443 would imply web traffic).

The attacker can also gain a little bit of information from
the unencrypted parts of the handshake exchange.
Normally, the TLS handshake includes extra data I did not
describe in the walk-through because it is included in
“extensions” to the protocol, and I did not want to get lost
in that level of details. But this extra data can give clues to
attackers about important information. For example, one
very common extension includes the host name requested
(e.g., “google.com” or “amazon.com”). Note that this does
not include the entire URL, just the host name itself, but
this does leak a small amount of information.4 Some
updates to TLS get rid of this problem, but it is still a
common problem.

In terms of operational security, administrators of web
servers need to ensure that their private keys are secured
and that TLS is correctly configured. With respect to the
one or more private keys used for the website, the keys
should have limited access within the organization (i.e., to
the fewest number of employees possible), stored securely,
and password protected. As for TLS, only versions 1.2 and
1.3 should be enabled. Additionally, the TLS (and HTTPS)



configuration should be “hardened,” meaning that the
configuration should maximize security. While such
configurations can be very technical and are beyond the
scope of this book, there are plenty of guides and
recommendations for this hardening process.

Web Applications

You have now been introduced to the most common and
basic web components: URLs, HTML, HTTP, cookies, and
HTTPS. Web development teams use these elements
(directly or indirectly) to build more advanced systems that
I generically refer to as web applications. While the term
“web application” is not clearly defined, it is typically
described as more than just “content.” CNN’s news page
hosts “content,” but it would generally not be thought of as
an “application.” On the other hand, an online banking
system is an application wherein customers can check
balances, transfer funds, and pay bills.

Securing web applications is almost universally harder,
and usually much harder, than securing more general web
content. Many of the security principles, however, are
broad and can be applied to any kind of web content
whether it is a full application or not. For this reason, I am
going to talk about “web application security” with the
understanding that it can generally apply to other content.
If there are exceptions, I will attempt to identify them.

This chapter has, so far, focused on securing individual
HTTP communications. HTTPS enables the web browser
and the web server to exchange data over a secure tunnel.
When everything is working correctly for TLS, anything in
between the browser and the web server should be unable
to compromise the security of the communications.

TLS cannot, of course, prevent bad things from
happening at either or both endpoints. If there are security



issues with the web server, TLS cannot do anything about
it. Likewise, TLS provides no security against bad things
happening on the client machine, and specifically in the
browser itself. In other words, TLS enables a web
application to have security between the browser and
server components, but not for the overall application
itself. An illustration of this issue is shown in Figure 9-14.
As you can see in this figure, TLS connections are a very
small part of the entire web application architecture.

Figure 9-14  A web application is an example of a “distributed system.” It
works through the cooperation of many systems. TLS is used to protect the
communications between remote components like between the browser and the
web servers. TLS or other secure protocols are used between the web servers
and other backend systems

Figure 9-14 also illustrates another important
characteristic of web applications. I have used simplified
language any time I have said “browser and web server.” In
truth, there are often many web servers that help put
together a web application. Perhaps more importantly, the



web servers often do not have all of the information. Web
servers may draw on any number of “backend” servers for
data and operations. The backend servers include
databases, application servers, and even other third-party
cloud systems.

Clearly, securing the communication from the browser
to the web server is just a small part of the overall security
of the system.

Some of the security issues associated with securing a
web application have to do with the underlying
technologies. As with many of the other technologies
discussed in this book, the technology used in modern
systems was not developed for its current purposes but has
evolved beyond its original design to handle increased and
unpredicted functionality. The original concept of the
“Web” was document retrieval. The original designers were
not anticipating advanced web applications.

The technology behind a web application can be thought
of as having three major categories. The first is the
communications protocol between browsers and web
servers. The second category is the technologies used to
enable the client web browser to render content. Finally,
there are other technologies used by web servers in order
to provide the contents to the browser.

Client-Side Technologies: Collaborative

Websites and JavaScript

Earlier in this chapter, I introduced the concept that a web
page is often constructed from multiple HTTP requests. The
browser, for example, will get an initial HTML skeleton,
and then, based on additional URIs within the HTML, the
browser will request additional data such as images and
other content. These URIs may be to other servers. This
means that a single website might be constructed from the

servers of multiple organizations. Or, said another way, a



single website may be a collaborative construction from
multiple parties.

This ability to construct web pages from multiple parties
also enables most of modern web advertising. A website
can link in a URI to an advertiser component, thus
providing space to an ads platform such that the ads are
displayed in a space on the page. The images, text, and
other content for the ads are downloaded from the ads
platform directly to the web page without the website
owner having to do much more than insert a link. In
modern web pages, most websites do not host an individual
advertiser directly. Instead, the website web page includes
a link to an advertising broker or ads platform. Individual
advertisers sign up with the platform and pay to have their
ads shown based on contextual information from the user’s
browsing.

The security implications of this collaborative page
generation are important. Having multiple sources of
content on the same web page requires careful
management of security data. One of the big issues is how
to handle cookies from multiple sources in a single page.
Another big issue is handling programming instructions
from multiple sources on the same page.

I have not yet explained to you how programming
instructions work in a web page, although I actually
introduced the concept in Chapter 7. As illustrated, HTML
is a “markup” language. It is not really a programming
language. I have seen a very small number of sources that
generically refer to it as a programming language, but
because it has no real control flow, it does not qualify.
Basically, HTML is static. For the most part, HTML
downloaded to a browser is unchanging. User inputs are
limited to new requests to the server, such as clicking a
link or submitting a form. The HTML itself is not responsive
to inputs.



But as I explained in Chapter 7, browsers do allow
snippets of programming instructions, generically called
scripts, to be downloaded and used in the rendering of a
web page. The universal scripting language is called
JavaScript. This language is used in almost all
circumstances to make a web page dynamic.

JavaScript can be inserted directly into HTML between “
 script  ” tags. For example:

 <HTML>

 <BODY>

 <H1 id= "headline" onClick= "addUnderline()">Dynamic Web Page</H1>

 <HR>

 Click the heading above to add an underline.

 <SCRIPT>

 function addUnderline() {

   document.getElementById( "headline").style.textDecoration = 

"underline";

 }

 </SCRIPT>

 </BODY>

 </HTML>

This HTML looks more complicated, but it is actually
very simple once you know what the components mean.
Starting with the “H1” tag, you will notice that some extra
information has been put into it. It is still an “H1” tag for
defining a heading to the page; that has not changed. But
we have added some parameter information to it. The first
new parameter assigns the tag an ID. The ID can be
anything, but I chose “headline” because I thought that was
a good description of what this part of the HTML is.



Figure 9-15  An HTML hierarchy for a web page. The HTML is the root, and
then the BODY tag next. Note that the H1 tag has text as a subbranch

It is worth noting that HTML is hierarchical. By putting
an ID into the “H1” tag, I am identifying that tag and any

subelements. In this case, the only subelement is the text
“Dynamic Web Page,” but the point is I am putting an ID on
the entire chunk of HTML, not just one tag. Figure 9-15
illustrates how the HTML hierarchy is built. As illustrated,
the ID marks the entire branch.

The “H1” tag is also parameterized with an “onClick”
value. The “onClick” component tells the browser that if
the “H1” tag, or any of the data enclosed within that part of
the HTML, is clicked, it should execute a JavaScript
function named “addUnderline.” I also introduced the
concept of a function in Chapter 7. By way of reminder, a
function is a subroutine or subset of programming
instructions that is assigned a name. That part of the code
can be run by calling the assigned name. In this case, the
assigned name is “addUnderline,” and it will be called

whenever the mouse is clicked on any part of the data
enclosed by the “H1” tag.



The function must be defined (i.e., created and assigned
its name) within a “SCRIPT” tag, but that can happen
anywhere in the HTML. In this example, the JavaScript is
defined after the “H1” tag with the “onClick,” but it could
have been defined above it. Even if you cannot understand
how programming or JavaScript works, hopefully at least
some of the naming conventions are helpful. First, the
JavaScript function gets the document. In this case, the
document refers to the entire web page.

Figure 9-16  A web page with some simple JavaScript before clicking the
headline

Figure 9-17  A web page with some simple JavaScript after clicking the
headline

Without getting too deep into detail, the next part of this
JavaScript searches the HTML for an element with an ID
called “headline.” This will, of course, locate the “H1” tag
and its subelements. The JavaScript says to take whatever
tag we found (i.e., “H1”) and extract its style information.
Within the style information, the text “decoration” is set to



“underline.” This changes the appearance of all content
enclosed by the “H1” tag to have underlining turned on.

Figure 9-16 shows the web page when it is first loaded.
Figure 9-17 shows the same web page after clicking the
heading.

JavaScript does not need to be included directly between
“SCRIPT” tags. The “SCRIPT” tag can identify an external
JavaScript file that can be downloaded and incorporated.
For example, the “addUnderline” function could be stored
in another file on the web server called “font_functions.js”,
and the “SCRIPT” tag could be modified to load it, like this:

 <HTML>

 <BODY>

 <H1 id= "headline" onClick= "addUnderline()">Dynamic Web Page</H1>

 <HR>

 Click the heading above to add an underline.

 <script src= "font_functions.js"></script>

 </BODY>

 </HTML>

As long as “addUnderline” really does exist in
“font_functions.js”, this works just as well. This approach is
very common because it allows authors to put many
functions, maybe even hundreds of functions, into a single
JavaScript file. Web pages can just reference the file with
all of the functions, rather than having to make the HTML
more confusing and cluttered.

JavaScript is very powerful, but it can be dangerous. As
shown in this simple example, it is possible to look up
information within the web page itself. JavaScript can read

its own web page. JavaScript can also send data out over
the network. In other words, if an attacker inserted
JavaScript into your page (say your online banking page),
the JavaScript could read any of your private information
and then send it off to their own website.



Not only that, but JavaScript can change just about any
part of the web page as it is displayed in the browser.
Literally, the JavaScript in a web page could completely
rewrite the entire page. Applications like Gmail work by
using JavaScript to rewrite the page as needed to expand
emails, load settings, and so forth. When you use Gmail,
your browser is downloading an entire software system
that basically writes the web page contents in real time.

For this reason, there are a lot of rules put into browsers
about what JavaScript can and cannot do, where it is
allowed to come from, and how it is allowed to interact with
the page, the browser, and the system. More on this in a
moment.

Server-Side Technologies: Databases,

Applications, and Server-Side Scripting

It is common, with respect to web applications, to refer to
the frontend and backend of the system. The frontend deals
with everything the user interacts with. All of the HTML
and JavaScript you learned about in the previous section
are used in creating the frontend experience.

On the other hand, the application’s backend deals with
all of the invisible (to the user) machinery that makes the
application work. For example, most web applications
require some kind of database, a system for systematically
sorting, organizing, and operating on data. The user,
however, does not see the database. At most, they only see
information loaded from the database and put into their
web page.

For example, to reuse the banking example, when a
person checks their balance, the web application must
query the banking database and extract the current
balance. On the frontend, the user is shown their balance.
But it was on the backend that their balance was stored
and processed.5



In Figure 9-14, which I introduced earlier in the chapter,
I described web servers and backend servers. In actuality,
the web server itself does, or can do, backend processing.
In some simple applications, for example, the web server
may have a local database running on the same machine.
Generating the content for the web server and other
operations are all backend operations. However, it is not
uncommon to refer to dedicated (and invisible to the user)
servers that only perform backend tasks as backend

servers.

Databases

The interactions between a web server and a database are
an important part of backend operations. A common
workflow is for the web server to receive some kind of
input from the user through their browser. The web server
responds to this information in part by querying the
database and getting results. These results are fed into the
response to the user, typically by generating some HTML
based on the results. The online banking example
illustrates this workflow.

But there are many applications that use the same
workflow, but in a less obvious way. Users of Twitter
execute this same process when retweeting or commenting
on a post. Any of these Twitter operations transmit data to
Twitter’s servers, which in turn query and update the data
stored in databases. These databases store the tweets, who
has retweeted them, who has commented on them, and so
forth. For any particular tweet, the database has to extract
the comments, retweets, and other information in order to
build the complete web page for that tweet.

There are a number of different database technologies
in use today. One of the older, but still widely used,
database formats is called SQL, or Structured Query
Language (SQL is often pronounced “sequel”). For these



kinds of databases, queries are used for any type of
operation, including requests, updates, new data, or
deletions. Other database approaches may work differently,
but just about every kind of database has read and write
operations. The write operations, however they are set up,
are often a source of security headache for web
applications.

Application Servers

Web servers may make use of other application servers as
well. The online banking example, which I use and reuse
because of how many of these ideas it brings together,
needs servers that will handle all of the actual bank
processing. For example, when a bank customer uses the
online bill pay and the result is a check that gets mailed,
the web server will send commands to application servers
that carry out this operation. Web servers also have to
process the responses that come from the application
servers that range from confirmations (e.g., “the check has
been sent”) to data generated by the servers.

In the modern Internet, it is quite common for one
organization to use another organization’s servers for
processing. An interesting example of this is actually two-
factor authentication. One common two-factor
authentication service is Duo. Duo provides a “something-
you-have” authentication service through their mobile app.
Other websites can build Duo into their authentication
system by making Duo a backend server.

Typically, this works by having the customer (in this
case, the website operator) create a contract with Duo and
set up an account. The customer usually agrees to pay on
some kind of per-verification basis or with larger volume
pricing for large-enterprise customers. Once the account is
set up, the customer website is provided with an API, or
application programming interface, that can be integrated



into the web server, or an application server that services
the web server. When a user logs in to the website, the
website will check its own database servers to verify the
password, but the website sends a query to Duo to
authenticate the user with the Duo Mobile app. Duo does
its own authentication with the user and sends the result
back to the website operator. This process is illustrated in
Figure 9-18. It should be noted that Duo must also be
communicating with its own databases and application
servers, but this has been left out for simplicity.

Figure 9-18  A simplified and generic depiction of how services like Duo
provide 2FA services to other websites

Although not required, it is quite common for application
server APIs, especially those provided to third parties such
as in the Duo example, to use HTTPS as the
communications protocol. As I mentioned earlier, HTTP can
be used for machine-to-machine communications and not
just for human-operated browsers. By using HTTPS, the
application servers can build on top of all the HTTP
machinery that is already commonly in use as well as all of



the security of HTTPS. It also provides a very common and
standard framework for interfacing as “everybody” (in IT)
knows how HTTP works.

When creating an HTTP-based API, there are several
“styles” that have emerged. The most commonly used style
in today’s Internet is called REST, or Representational
State Transfer. REST is not a standard; instead, it is a set of
guidelines that suggest how the APIs should be built. The
details of these guidelines are not particularly important,
but it is helpful to know the term because it is used so
widely.

Duo, continuing our example, states in their online
documentation that they provide a “RESTful” API [3].
These APIs are described in detail in the documentation.
For example, Duo provides an API for querying all of the
users that are enrolled for the organization. This is done by
sending an HTTPS request to the Duo API web server of the
following form:

 GET /admin/v1/users

On the other hand, a specific user can be deleted using
the following API:

 DELETE /admin/v1/users/[user_id]

Notice that the API uses the HTTP method as a way of
indicating what kind of operation it is. Although there are
only a few HTTP methods, such as GET, POST, PUT, and
DELETE, these methods really can communicate quite a bit
as far as APIs are concerned.

The API uses the path as a type of command rather than
a document or web page. The path “/admin/v1/users,” for
example, tells the API server what resource to get (do you
see why “resource” is a good name for this concept?).



These API requests are sent as full HTTP requests, even
though they are listed on the documentation page with just
the method and path. The documentation assumes the
sender of the request can automatically configure the HTTP
version. Different HTTP versions should not affect the
results of the API request.

The HTTP responses typically include the data formatted
into a machine-readable data format. But one of the most
common formats is JSON, or JavaScript Object Notation
(pronounced “JAY-sahn”). But even though JSON can be
read by machines, it is reasonably understandable by
humans. For example, the response to the delete user API
might look like this:

 {

    "stat":  "OK",

    "response":  ""

 }

You do not have to be a machine to guess that this
means the server correctly deleted the requested user.

Server-Side Scripting

The final server-side technology to review is server-side
scripting. I already discussed client-side scripting wherein
JavaScript can be used to make web pages dynamic and
interactive. Server-side scripts, on the other hand, are used
to customize or completely generate the contents of a web

page in response to an HTTP request. In fact, server-side
scripting is largely necessary to take advantage of the
results from databases and application servers.

Although you are probably tired of it, I will return to the
example of the online banking system. When the customer
requests the balance of their accounts, a simple HTML
page to display the balances might look like this:



 <HTML>

 <BODY>

 <H1>Account Balances</H1>

 <HR>

 Your account balances are:

 <UL>

   <LI> Checking Account: $100.00

   <LI> Savings Account: $200.00

 </UL>

 TOTAL: $300.00

 </BODY>

 </HTML>

Figure 9-19 shows a rendering of this HTML. This is
clearly not a very sophisticated user interface. A real bank
would, of course, use better styles and display things in a
far more aesthetically pleasing way. But this page is good
enough for what we need to talk about. (Note: The “UL” tag
stands for “unordered list” and creates something like a
bulleted list. “LI” identifies a single item in the list.)

The problem is hopefully obvious. How does the web
page (HTML) get written? After all, the values of the
different accounts were presumably pulled from the
database at the time of the request.

One solution is to have programs or scripts (generically
all called scripts now) on the server generate the HTML
from a template. For example, the template might look like
this:

 <HTML>

 <BODY>

 <H1>Account Balances</H1>

 <HR>

 Your account balances are:

 <UL>

   <!-- TEMPLATE: BALANCES GO HERE -->



 </UL>

 TOTAL: <!-- TEMPLATE: TOTAL GOES HERE -->

 </BODY>

 </HTML>

In this example, the HTML includes “comments.” A
comment is information that is ignored by the browser. It is
usually for information purposes only. But sometimes
template systems put template instructions in the
comments. In this example, a computer program would
look for any comments marked with “TEMPLATE:” and
follow the instructions.

In real systems, template instructions do not say things
like “BALANCES GO HERE.” I have put that in to make it
understandable for readers not familiar with programming
languages. Real systems are written with identifiers that
tell it what kind of information (e.g., extracted from a
database) should be inserted into what part of the HTML.

In a database, an account might be identified by
“account_name”, and the balance might be identified
(unimaginatively) by “balance.” When extracted, the
template system would enable the programming language
to write out “  LI  ” followed by the information
identified by “account_name”, the text “: ”, and then the
information identified by “balance.”



Figure 9-19  A very basic and simplified web page display of account balances

Putting it all together, in this example the web server
receives an HTTP request from the browser requesting the
web page that displays the balance for the accounts. The
web server sends a query to the database requesting all
accounts belonging to this user and gets back (in our
example) a checking account with a balance of $100.00 and
a savings account with a balance of $200.00. The server
uses a templating system to dynamically generate the
response HTML. It builds the HTML listing each account
and the value, as well as computing a total value for all
accounts. The total is also inserted into the template. When
finished, the server has generated all of the HTML required
for the browser. It now responds to the HTTP request with
its own HTTP response, including the HTML it just
generated.

Web-Based SSO: OAuth

Web applications can work together in a number of
collaborative ways. One increasingly valuable technology is
web-based Single Sign-On, or SSO. The concept of SSO is
simple. Instead of needing to remember a username and



password to a hundred different systems, SSO allows a
user to log in to one system and then provides a secure way
for the logged-in system to prove to the others that the user
is logged in. If the other systems trust the system the user
logged in to, there is no need for the user to separately log
in to others. On the Internet, this is becoming common;
perhaps you have used it yourself. You may have seen
websites that permit you to log in using Google, Facebook,
or other websites as shown in Figure 9-20.

There are multiple technologies that can be used to
provide SSO. One of the more common web SSO
technologies is called OAuth. OAuth is technically broader
than SSO. It is a full authorization framework that allows
users to grant third-party websites some form of limited

access to their resources on a resource server. Those are a
lot of words; let’s walk through each of these key ideas.

Figure 9-20  An example widget for web-based SSO. Some websites provide
widgets such as these to permit signing in using an existing service so that no
new password is needed

Starting with the last term first, a resource server is
some system on which the user (e.g., you perhaps) has



some kind of resource. For SSO, the resource might simply
be an identity such as a username. That is a resource
because it represents the identity “owned” by the user on
the system. As I said, OAuth is broader than SSO and can
enable the sharing of other resources. For example,
suppose that you have an account on Google. Using OAuth,
you might be able to share certain Google resources, such
as your contact list or calendar, with another website. For
the purposes of this section, however, I will focus on SSO
and the sharing of identity. Also, now is probably a good
place to introduce the term resource owner. This is the
term used when talking about OAuth to describe the party
with the resources on the server. So if it is your account on
Google that you are sharing via OAuth, you are the
resource owner (i.e., Google is not the resource owner).

The second term, limited access, refers to the ability of
the resource owner to control how much information the
resource server shares. It also means that the resource
owner can revoke access to shared resources.

Finally, the third-party website is any website controlled
by a party other than the one that controls the resource
server. If, continuing the same example, you create an
account at a Pizza website using your Google account via
the OAuth protocol, the Pizza website is the third-party
website, you are the resource owner, and Google is the
resource server.

Because OAuth is a framework, it enables a number of
authentication applications to be built using its capabilities.
OpenID Connect (OIDC) is the authentication protocol that
enables OAuth to provide Single Sign-On (SSO)
functionality.

This system has a lot of moving parts that are required
to make SSO work. To walk through these, I first need to
flesh out a few components. I have already explained what



a resource owner and resource server are, but I will repeat
them just to have a complete list.

Resource: For SSO, the resource is an authenticated
identity (e.g., a username) to be shared.
Resource Owner: The user that owns the resource to be
shared.
Resource Server: The website or system or service that
will share the resource.
Authorization Server: The system that will authenticate

the user (e.g., via username and password). This can be
the same system as the resource server, but it is a
separate function and can be separated out.
Client: This may be the most confusing one because
client is the third-party server. It is called the client,
however, because even though it acts as a server to the
resource owner, it acts as a client of the resource server
from the perspective of OAuth.
For OAuth and OpenID Connect, the first step is for the

client and the authorization server to trust each other and
exchange some initial information. The client (i.e., the
third-party website) has to request, and the authorization
server has to grant, a client ID and a secret. The
implementation can vary for this step, but there must be a
secure mechanism to exchange this data. The data must be
secured both in motion from the authorization server to the
client and at rest after receipt. Typically, the data in motion
is secured by HTTPS. Secure storage of the data at rest
depends on storage security of the client and is outside of
the protocol.



Figure 9-21  In this example, the Pizza website is a client of the authorization
server. The authorization server will issue an ID and a secret to the client

One way or another, however, the secret must be, as the
name implies, kept secret. It becomes a kind of machine
password used by the client to authenticate itself to the
authorization server. The secret is typically a long random
sequence. Because it is stored and used by a machine,
there is no need to worry about if it can be remembered by
a human. In Figure 9-21, an example is depicted between a
Pizza website and SSO using a Google account.

Once the client has a client ID and secret, the client can
provide the SSO functionality. Remember that the client is
the third-party website, like the Pizza website in the
example. As shown in the figure, typically the third-party
website will include some kind of widget on the web page
that looks like a button or something similar. When the
user clicks one of these links (e.g., “Sign in with Google”),
the user is indicating to the third-party website that the
user is a resource owner of an identity stored on Google
servers and would like to authenticate using that identity
via OAuth and OpenID Connect. Now that an OAuth
protocol will start, the parties take on their roles within
that protocol. The user becomes the resource owner, the
third-party website becomes the client, and Google
becomes the authorization server and resource server. For



the purposes of this example, the authorization server and
resource server are combined.

One of the challenges of the authorization sequence is
that the authorization server must confirm the identities of
both the client and the resource owner. Moreover, both
authorizations must be tied together. Although OAuth
defines a number of means for the authentication
sequence, the approach known as Authorization Code Flow

requires the client to send the request to the authorization
server via the resource owner. Instead of sending the data
directly from the client to the authorization server, the
client (third-party website) will send information to the
user’s browser, then direct the browser to automatically
connect to the authorization server with this information.
That way, the authorization server will be able to tie the
user’s authentication and the client request together.
Communications sent through the resource owner (i.e.,
user) are known as frontend communications.

Figure 9-22  The Pizza website receives a request from the user (the resource
owner) to sign in via Google. It transmits its ID and secret along with an



OpenID scope to Google through the user. The user receives the Pizza
website’s client ID, secret, and scope

The data that is forwarded from the client to the
authorization server via the resource owner includes the
client’s ID, the redirect URI, and a scope that tells OAuth
what kind of request this is. The client ID was received in
the registration step previously. The redirect URI is
another URI of the client. It is necessary because the user’s
browser is being redirected to the authorization server. The
redirect URI tells the authorization server how to send the
user back to the third-party website when it is done
authorizing them. For SSO, the scope will be OpenID. This
entire process is illustrated in Figure 9-22.

Once the resource owner has been redirected to the
authorization server and forwarded the client’s data, the
authorization server will sign in the user if they are not
signed in already. The forward and sign-in processes are
illustrated in Figure 9-23.

The authorization server will also ask the user to
confirm the requested resource access. Typically, the
server will tell the user what the client is asking for and ask
for confirmation that this is correct. This is illustrated for
the Pizza website example in Figure 9-24.

Once all authorization is confirmed, the authorization
server will send the resource owner back to the client by
redirecting the browser to the redirect URI. The
authorization server will also send back an authorization
code to the resource owner that is forwarded to the client
at the redirect URI. Figure 9-25 shows this process for the
Pizza website.



Figure 9-23  The user sends the data received from the Pizza website to
Google. Google will provide a sign-in for the user if they are not already signed
in

Figure 9-24  Google verifies that the resource request from the Pizza website
is what the user expected



At this point, the client has an authorization code that
will enable it to talk directly with the authorization server.
This direct communication is referred to as backend

communication. The client transmits its client ID, secret,
and the authentication code directly to the authorization
server (without going through the resource owner). After
verification, the authorization server sends directly back to
the client an access token and an identity token from the
authorization server. For SSO, the identity token often has
everything that is needed, as it represents Google’s “proof”
of the user’s identity. But the client can use the access
token to request additional data from the resource server,
such as a contact list or calendar in the case of Google.
These final steps are illustrated in Figures 9-26 and 9-27.

Figure 9-25  Google sends the user back to the Pizza website using the
redirect URI that was sent by the Pizza website to Google via the user. Google
also sends an authorization code



Figure 9-26  The Pizza website now has an authentication code from Google.
Using this code, it obtains an access token and identity token directly from
Google without going through the user

At the conclusion of this process, the client (the third-
party website) is assured of the resource owner’s identity
by the authorization/resource server.



Figure 9-27  Using the access token, the client can request additional data
about the user such as a contact list

It is worth noting that the terms I have used in this
section are the terms used by OAuth. OIDC by itself uses
slightly different terms, calling the client the relying party

and the authorization server the OIDC provider. The
resource owner is also renamed by OIDC as the end user.
You should be aware of these terms, but the OAuth versions
seem to be more prevalent.

The OAuth and OIDC walk-through in this section is, like
many systems in this book, simplified. However, there are
important security lessons to be learned from this
overview. All of the communications between the three
parties are typically secured with HTTPS. However, there
are some other elements of the protocol that provide
security properties between the parties.

Starting with the client secret, notice that it is never

sent to the resource owner. The client secret is a shared
secret between the client and the authorization server. If it
were exposed to the resource owner, the resource owner
could impersonate the client to the authorization server.
Notably, there are some types of web applications in which
this could be a problem, and OAuth must use a different
type of flow in order to protect the client. While these
issues are not covered in detail here, the important lesson
is that the client secret must be secured between the client
and authorization server only and no other parties
(including the resource owner).

The purpose of the authentication code is similar. Did
you notice that the access token was not sent to the
resource owner? The client used the authentication code to
request it directly from the authorization server. The
reason for this is because the access token must also be
secured and not shared with the resource owner (or other
parties). The authentication code becomes a disposable



value that can be passed through the resource owner to the
client. Once the client has it, it can communicate directly
with the authorization server to exchange this value (which
the resource owner has had access to) for an access token
which has not been shared or exposed.

Both the access token and the identity token are
typically issued as a type of structured code known as a
JSON Web Token, or JWT (pronounced “jot”), that is signed
by the issuer. When the access token is received by the
resource server, for example, it can always verify that it is a
valid token and has not been modified or forged by the
client. Similarly, when the client receives the identity
token, it can always validate its origin by checking the
signature.

Web Threats and Defenses

Now that you have learned about some of the core
technologies behind putting together a web application, it
is time to learn about how it all goes wrong and what can
be done about it.

TLS “Visibility” and Other Attacks

There are a number of ways that TLS can be defeated in
practice. The first one I will talk about is unusual because
many people do not consider it an “attack.” It is usually
performed by authorized people and with good intentions.
But I think of it as an attack nonetheless.

The technology is called by various names, but the one
I’ll use primarily is TLS visibility. Also known as TLS
interception and other names, this system is designed to
break TLS by a presumably authorized party in order to
examine the data being sent over the encrypted channel.
This technology is typically installed on something like a
firewall or a device like a firewall. The firewall as part of



inspecting TLS data generates its own root CA certificate.
You may start to recognize from our earlier discussion on
TLS tunnels that this would allow the firewall to act as a
man-in-the-middle that, unlike the attacker in Figure 9-13,
has the keys to decrypt the traffic.

Typically, companies that use this technology require
their employees and other users to add this root CA to their

operating system and/or browsers. As you have already
learned, once you have control of a root CA, you can
generate a certificate for any website. Using this root CA,
the firewall does exactly that. For every HTTPS-protected
website the user tries to visit, the firewall generates in real
time a new certificate for the website, signed by the
firewall’s root CA. The firewall makes a connection to the
real website, using its own TLS connection. At the same
time, the firewall pretends to be the real server to the
browser by using the fake certificate. This essentially
creates two tunnels. A TLS tunnel from the browser to the
firewall (which the browser believes to be the real server)
and a TLS tunnel from the firewall to the real server. This
enables the firewall to decrypt the data from the server at
the firewall, examine it for threats, and send it back to the
browser.

The companies also configure their firewalls to block all
outbound TLS traffic that is not configured to accept the
fake root CA. This basically prevents anyone connected to
the company LAN from connecting to HTTPS secured
websites unless they have compromised their machines. An
illustration of TLS visibility is shown in Figure 9-28.



Figure 9-28  A simplified view of a TLS visibility firewall. The firewall can
generate fake certificates for any website and use those certificates to perform
man-in-the-middle interception, inspection, and modification

Although this technology is common, popular, and
accepted, I think it is bad policy, bad technology, and bad
security. Just a few of the problems with it will illustrate
the issues.

First, it creates a massive target for attackers. If an
attacker can breach the firewall and steal the private key
associated with the fake root CA, the attacker can generate
a certificate for any website.

Second, it breaks the “end-to-end” contract that users
have come to expect from TLS without any indications,
warnings, or other alerts.

Third, it trains users to trust and rely on a system that is
not working as it should.

For all of these reasons, I oppose the use of this kind of
technology. For those people that argue introspection is
required, I suggest that new technologies need to be
developed. For example, users could be forced to connect
to TLS websites through an application gateway. This
explicit security technology would force them to know that
they are not using end-to-end security and that their
connection is monitored. Another alternative would be to
create a user agent for corporate devices, which is already
common. The corporate agent could decrypt data at the



endpoint, transmit it to a centralized system for scanning,
and then return it to the user.

TLS has also had a number of attacks against it by more
malicious attackers. Many of these attacks have been
against weaknesses in the TLS cryptography. As I have
mentioned repeatedly, there are many configurations of
TLS 1.2. Some of these configurations have been found to
be vulnerable to different kinds of attacks. These weak or
broken configurations should not be used. It is worth
noting that TLS 1.3 was stripped down to a much smaller
number of secure configurations precisely because of this
problem with 1.2. Most of these attacks have “clever”
names or acronyms including POODLE, FREAK, Logjam,
Sweet32, ROBOT, CRIME, TIME, and BREACH. The
technical details of these attacks are outside the scope of
this book. But web server operators should make sure they
are aware of the current vulnerabilities in TLS and mitigate
accordingly.

Another attack of note is heartbleed. This attack only
applied to a specific implementation of TLS that used
nonstandard extensions. So, technically, this was not an
attack on TLS per se, but on a commonly used
implementation that had some added features. Heartbleed
was so called because one of the extra features was
something network designers sometimes call a “heartbeat”
message. Because connections in TCP, and by extension
TLS, are nothing more than messages, there is no way to
know if the connection has “gone down.” After all, maybe
the other side just had nothing more to say right now but
will later. A heartbeat message is a very small message
sent simply to indicate that “I’m still here!”

In the OpenSSL version of TLS, heartbeats could be
enabled. The problem was, there was an error in how they
were implemented such that one side of the TLS connection
could extract chunks of memory from the other side



through a kind of buffer overflow attack. This is not like the
buffer overflows from Chapter 7, wherein the attacker
inserted code to execute.

Instead, heartbleed overflows permitted the requesting
of data far beyond the intended buffer. This basically
permitted an attacker to read unauthorized sections of
memory of the other side of the connection. The XKCD
comic strip has a great explanation of this in comic form at
https:// xkcd. com/ 1354/ . I highly recommend that as a way
of learning more about how it works.

But the reason for mentioning heartbleed here is to
emphasize that sometimes things go wrong with specific
implementations and not within the fundamentals of the
protocol. So it is good for organizations to be aware of the
implementations they are using and the vulnerabilities
associated with them.

Cookies and Privacy

Because cookies can be used to track a user across web
requests, there are very reasonable and difficult privacy
concerns. For example, a user might be perfectly
comfortable with Amazon knowing what the contents of
their Amazon cart are, but might be far less comfortable
with Amazon knowing the balance of their bank accounts,
potentially embarrassing medical conditions, and socially
unpopular political opinions.

Suppose that a user visits a web page about a medical
issue and the web page includes advertising from Amazon.
Now imagine that the user visits a message board where a
protest is being organized and that the message board also
includes advertising from Amazon. Many other web pages
are visited including news sites, social media sites, and
hobby websites. Many of these pages had advertising from
Amazon.

After all of these page visits, what does Amazon have?

https://xkcd.com/1354/


First of all, one thing they definitely should not have are
any of the cookies meant for the other domains. That is,
even if Amazon is advertising on the web page for the
medical site, Amazon should not get the medical site’s
cookies. Ever. Remember, cookies are what enable sign-in.
If an attacker steals a user’s sign-in cookie while they are
still signed in, the attacker could access their account. The
cookie is what determines that the HTTP request is from a
signed-in user. If the attacker has it, the web server may
not be able to tell the difference.

To enforce this, browsers adopt what is known as the
“same-origin policy” for cookies. The same-origin policy
states that any information that comes from a particular
Internet domain must only ever be sent back to the same
domain. The way this works in practice is that when a
cookie is set by the server (e.g., “Set-Cookie” header in a
response), a domain is set for the cookie. This domain
instructs the browser where the cookie should be sent to.
For example, if the domain is “google.com,” then every site
that ends with “.google.com” should get the cookies. The
same-origin policy prevents the server from setting the
domain to anything other than the domain of the web page
and any parent domain, excluding public suffixes. For
example, a cookie set by “images.google.com” could be
sent to the domain “google.com” host, because it is the
parent domain of “images.google.com”. It could not,
however, set the cookie to the “.com” domain because
“.com” is a public suffix. Not all public suffixes have just
one dot. For example, “.co.uk” is another public suffix.

In any event, this policy is meant to provide a first level
of protection for cookies. Advertisers are supposedly
limited by this as well. So an advertiser on the page still
only receives their own cookies and none of the cookies for
the hosting page. At least not without some collusion with
the hosting page, which unfortunately happens.



It should be noted that even if the advertiser does not
get the cookies of the hosting page, it may, in fact, get the
name of the website visited. Many of the methods for
including the ads into the web page involve what is called
the “referer” (note the missing “r”). What this means is
that when the HTTP request is sent to the ads server for
the ads URL, a “referer” header is often included that
indicates the original host URL (or some part thereof).

This means that when the user visits the medical
website, even though Amazon only gets its own cookies, the
browser also tells Amazon that the request for the ad came
from the medical website. Amazon can now associate that
website with the user associated with the cookie. Next,
when the user visits a message board, Amazon is again
informed via the “referer” header of the website and adds
this to the information known about the individual user.

One of the solutions that is just now beginning to be
enforced in all browsers is the complete blocking (by
default) of all third-party cookies. A third-party cookie is a
cookie set by any domain other than the domain typed into
the URL bar of the browser. In the example used in this
section, when the user visits a medical site, the medical site
sets first-party cookies. But if Amazon advertises on the
page, any of its cookies would be third-party cookies. Most
browsers have permitted the blocking of third-party cookies
for some time, but now most browsers are moving to adopt
this as the default policy.

Sadly for those concerned about being tracked, the
advertising companies are already working around the
limitation. One of the most common ways to do this is for
the hosting page to voluntarily transmit unique information
directly to the ads (or other third-party) server. One way
this is done is to put the information as a parameter to the
URL.



Figure 9-29  The rendered HTML code, with the “tracking pixel” present but
hard to see

For example, suppose that the ads server has a normal
URL of “www.tracking_ads_server.com/ads”. It is trivial to
send information to this URL using the parameters
discussed earlier in this chapter, for example,
“www.tracking_ads.server.com/ads?user=john”. When
websites contract with ads servers, the ads server will
typically provide integration code for the website, so that
the transmission of this information is automatic.

Tracking can happen without visible ads as well. One of
the ways this is done is using a tracking pixel. This often
takes the form of an image tag in the HTML, but either
completely invisible or just a single dot on the screen,
called a pixel (hence the name). Recall that when an image
is inserted into HTML, there is a “SRC” parameter that
tells the HTML where to go to get the image. A tracking
pixel requests an “image” from the advertising or third-
party server. But the purpose is not to get an image,
because the image will not be displayed. The purpose is to
send information to the advertiser. Here is an example:

 <HTML>

 <BODY>

 <H1>Tracking Web Page</H1>

 <HR>

 You will see the text, but not the image

 <P>



 <IMG SRC= "https://www.crimsonvista.com/img/logos/CV_icon.png?

user=john" width= "1" height= "1">

 </BODY>

 </HTML>

Figure 9-29 shows the rendering of the HTML code.
Notice that the image is not easily seen. Figure 9-30 has it
a little larger. If you look closely, you will see it underneath
the text. Just to be clear, the image “CV_icon.png” at my
company’s website does not do any tracking. But the
Crimson Vista web server is receiving an HTTP request
with that path, including “user=john”. It is transmitted, but
because Crimson Vista is not tracking anything, the data is
ignored.

Because websites get paid to host ads on their site,
there is an incentive for them and the advertisers to work
together. As long as this is the case, it is unlikely that
information sharing will cease.

Figure 9-30  Close-up of the rendered HTML code. Notice the “tracking pixel”
in the bottom-left corner

Story Time: Browser Fingerprinting and

FingerprintJS

There are other ways of tracking people browsing the
Web that are even more terrifying. Browser
“fingerprinting” is a technique used to identify or track
an individual by tracking their specific browser. That is,
if the unique browser can be tracked and followed, the
user can be tracked (assuming there is only one use of
the browser).



This technology works by by collecting and analyzing
information about the browser configuration and system
settings, such as operating system, browser extensions,
time zone, language, and screen resolution [129]. Some
limited fingerprinting can be performed on the server,
but most information is collected on the user’s computer
itself by running JavaScript code in the browser without
the user’s knowledge. Like all tracking, this data can be
used for targeted advertising, behavioral profiling, and
fraud detection.

One reason why browser fingerprinting is so insidious is
because it can be used to identify users even if they clear
their cookies or use private browsing modes. It is often
used as an alternative to traditional tracking methods
such as cookies, which can be blocked or deleted by
users.

FingerprintJS is a browser fingerprinting library that
collects information about a user’s browser and device to
create a unique identifier, or “fingerprint.” It is often
used by websites and online services to track user
behavior and identify unique users, even if they try to
mask their identity using privacy measures such as using
a VPN or browser extensions [108].

JavaScript Protections

As discussed, JavaScript can do just about anything to a
web page. It can read data from the web page, change the
data in the web page, and even send data to arbitrary
servers. Even if JavaScript is loaded into its own page (i.e.,
is first-party code instead of third-party code), it could still



potentially trigger damaging things to web pages in other
browser tabs. For these reasons, JavaScript must be
carefully controlled.

To help confine JavaScript and limit the damage it might
be able to do, browsers enforce the same-origin policy on
JavaScript as well. The same-origin policy is quite a bit
more complicated for JavaScript than for cookies, because
JavaScript is a programming language and can do a lot
more things. In fact, the same-origin policy has so many
different applications to JavaScript that I will not cover
them all here. Instead, I will focus on a few core examples.

First, the same-origin policy prevents JavaScript from,
with very few exceptions, querying data from any part of
the document (i.e., web page) that is from a different
origin. This, of course, prevents JavaScript downloaded
from an advertiser from reading data out of the hosting
page.

Second, the same-origin policy prevents certain kinds of
network communications. JavaScript has multiple
mechanisms for sending data over the network. One type of
request is an XmlHTTPRequest. This kind of request does
not require the page to be reloaded. This makes
communications with the server much faster. However, the
same-origin policy prevents JavaScript from reading data
from any request to a different origin (it does send the
request, however). This general approach holds for many
types of requests. For example, JavaScript can request
JavaScript from another origin and can even execute its
functions, but it cannot actually read the JavaScript code
itself. The main value of this policy is to prevent JavaScript
from reading any data from any domain other than where it
originated.

One of the main reasons for this policy is to prevent
third-party JavaScript from using the browser’s current
cookies to get unauthorized data. Remember: The browser



will send the cookies it has to the designated domain for
every request to that domain! This includes requests sent
by third-party code! If the third-party code triggers a
request to another domain, the browser will send with it all

the cookies corresponding to that domain! Although the
same-origin policy allows JavaScript to make the requests,
by blocking any reading of that data, the third-party
JavaScript cannot learn any confidential information.

The third, and last, application I discuss here is how the
same-origin policy applies (or does not apply) to form
submissions. There are two parts of web forms. A browser
must visit a website to have the form rendered on the
browser (note, however, it can be hidden from the user).
The second part is a mechanism whereby the data inserted
into the form is transmitted to a server, generally
transmitted using the POST HTTP method. It may seem
strange, but forms, or parts of forms, can also be hidden.
The hidden form cannot accept user values but can be
preloaded with default values. This is commonly used to
ensure that a form transmits some kind of prepackaged
data.

The same-origin policy, with its focus on blocking
reading but not writing, does not prevent JavaScript from
transmitting a form, downloaded from one domain, from
being submitted to another origin. This is a very serious
problem because it enables an attack known as a Cross-Site

Request Forgery, or CSRF. The name “cross site” refers to
the downloading of the form from a different domain (or
site) than where the data is submitted to.

A CSRF enables an attacker to change the state of a
user’s web application by triggering data transmission.
Suppose that the user is logged in to their online banking
account at the same time that they are tricked into visiting
an attacker’s website. If the attacker’s website submits a
form (usually hidden and automatically submitted) to the



online banking website, the form will be sent to the
banking website with all of the currently logged-in cookies.
The form submitted is intended to trigger some kind of
operation on the banking side, such as transfer of funds.
This process is illustrated in Figure 9-31.

Figure 9-31  A simple example of a CSRF attack. The attacker website
appears to be benign. But it has a hidden form that auto-submits to the user’s
bank. If the user is logged in, the submission will be accepted

Notice that this example in the figure has nothing to do
with a third-party code. The two websites are running
independently. But the problem is, the browser has cookies
for the online bank in another tab (not shown). So when the
user visits the attacker’s website, the hidden, and
automatically submitting, form is transmitted to the online
bank with the appropriate cookies!

For this attack to work, the user of the browser does
have to be currently signed in to the online bank. And it
does require the attacker to know what kinds of forms can
be submitted to the bank in order to trigger a response. It
is also worth noting that the same-origin policy does
prevent the attacker from seeing the response, but in this



case the attacker is less interested in reading the result.
Sending the information is what the attacker requires.

As stated, the same-origin policy does not solve this
problem. The most common solution is to use a CSRF token

to prevent these kinds of attacks. The idea is that every
form in a legitimate page includes a hidden field with a

random value. This hidden value is transmitted with the
form data, just like any other field in the form. But it is a
value that the server validates is present before accepting
the form data as valid. When the attacker tries to submit
their fake form, they cannot predict what value to put into
the hidden field. When the fake form data is submitted, the
server will reject it for not being a valid token.

The same-origin policy is helpful with CSRF tokens
because if the attacker could read a downloaded page, the
attacker could just copy the CSRF token out of it. But the
same-origin policy prevents them from being able to get
this data.

SQL Injection Attacks

Another attack that can be used on a web application is to
attack the backend. The backend is meant to be invisible to
users, but that does not mean an attacker cannot figure out
what kind of backend systems are in use. A clever attacker
can sometimes figure out how to manipulate the frontend
in order to insert “evil” inputs into the backend.

One of the most common forms of this type of attack is
SQL injection (usually pronounced “sequel injection”). As a
reminder, SQL is a popular type of database. For these
kinds of databases, queries are created as SQL commands.
The SQL commands for a given web operation are typically
based, at least in part, on some kind of input from the user.
An evil user may find ways to transmit an input with SQL

commands in it that get inserted (or injected) into the
authorized SQL.



Without getting into too many details about how SQL
works, the following is a prototypical SQL command for
looking up the password for a user with the name of John:

 SELECT password FROM user_auth WHERE username= 'John'

Of course, when a web server needs to query a
database, it does not know ahead of time the user’s name.
That is an input from the user, perhaps at a sign-in field for
the web application. So the website might do something
like this:

 SELECT password FROM user_auth WHERE username= '[USER INPUT]'

In this example, the user’s input replaces “[USER
INPUT]”. So, if the user typed in “John” for their username,
it would result in the first SQL example earlier.

But what if the user did not enter their name? What if,
instead, they entered an input like this:

 X ' OR 1=1 OR username='X

When this is inserted into the SQL command, it now
looks like this:

 SELECT password FROM user_auth WHERE username=

'X' OR 1=1 OR username= 'X'

This new command says “get the password for a user
whose name is ‘X’ or if 1 equals 1.” Because 1 always
equals 1, this would get the password for every user in the
database. The reason for adding the duplicate
“username=‘X”’ is simply to have a matching single quote.
Remember, the template gets dropped in between quotes.
So without the duplicate username (or something like it),
we would get this:



 SELECT password FROM user_auth WHERE username= 'X' OR 1=1 '

SQL would treat this as an error, because it expects a
matching single quote somewhere.

Assuming the attacker figures out a correct construction
for the injection, the SQL database will execute the
modified instructions. Exactly what would happen depends
on how the output of the database is processed by the web
server, but in some circumstances, it might dump all of the
usernames and passwords into the web page.

Even if it does not display much that is helpful, similar
tricks can be used to delete parts of the database, change
values, or otherwise corrupt the system.

Defending against this kind of attack typically requires
the two-step process known as sanitize and filter. Basically,
“sanitize” is what a web server should do to any incoming
data from a user. The server should assume that inputs
from the user cannot be trusted. Sanitizing is a way of
eliminating unacceptable inputs. A username, for example,
can be prohibited from having single quotes.

Filtering, on the other hand, is applied to the data after
sanitizing, but before going to the database. Essentially,
the commands being sent to the database need to be
scanned to make sure they look like sane commands. When
reading from the database (e.g., to get a password), for
example, there usually should not be any writing.
Commands can be filtered to reject any such unexpected
directives.

Most web servers created these days have built-in
libraries to help ensure that data is properly prepared
before being sent to the database. Most libraries have their
own systems for inserting parameters into SQL statements.
These systems enforce parameters to follow the rules no
matter what input is sent to them. These kinds of attacks
are completely preventable. They still tend to show up



because some web developer forgets to use the library or
otherwise customizes a system in an insecure way.

Story Time: SQL Injection on WordPress Sites

In 2022, Patchstack discovered multiple security
vulnerabilities in the popular WordPress plug-in
“LearnPress.” One of the vulnerabilities, CVE-2022-
45808 [24], was an unauthenticated SQL injection
vulnerability. A particular function that handled SQL
queries did not properly sanitize or validate an input
supplied by a user. This meant that an attacker could
insert malicious code into this input, which potentially
enabled them to extract sensitive information, modify
data, or execute arbitrary code.

The solution to this vulnerability was to introduce
additional input sanitization before running the user’s
query on the database. Sanitizing the inputs ensured that
only valid inputs can become part of the SQL query
[264].

Cross-Site Scripting Attacks

One of the absolute favorite ways for an attacker to
compromise a website is to insert their own JavaScript
directly into the website. I do not mean through a third
party, or some other collaborative mechanism. I mean
literally into the HTML of the victim site itself. If the
attacker can somehow insert their JavaScript directly into

the victim web page, none of the same-origin policy applies,
and the attacker can do almost anything they want to do.

This kind of attack is called a Cross-Site Scripting
attack, oddly abbreviated XSS. Using XSS, an attacker can



steal data out of the web page, change the behavior of the
web page, and potentially use it as a foothold for further
infiltration. An XSS attack is more powerful than a CSRF
attack as anything that could be done by CSRF can be done
by XSS.

Two common approaches used by attackers for getting
their JavaScript into a victim web page are reflection and
storage. In a reflection XSS attack, the attacker tricks a
victim into submitting a compromised input into the server.
The compromised input includes JavaScript somewhere in a
way that will get written back out to the web page in the
HTTP response. Suppose, for example, that the victim user
is logged in to some kind of search engine that is not
sanitizing its inputs. Whatever is typed into the search is
put directly into the page without preprocessing. Imagine if
the following URL jumped directly to the search engine
with search results for “cat”:

 http://unsafe_search.com/search?query=cat

An attacker uses this information to create a URL to this
search engine, but replaces “cat” with JavaScript. Although
it can look awkward, the JavaScript can all be put on one
line and in a way that can be used with a URL query. Once
created, the attacker sends this URL to the victim user via
email or social media. If the victim clicks the link, it takes
them directly to this page, and, instead of searching for a
term like cat, it directly inserts JavaScript into the page and
executes it. The attacker has now run their code on the
victim’s browser. If the victim is signed in to the search
engine, the XSS script can directly read and write to this
application without running afoul of the same-origin policy,
or CSRF tokens. The code, even though sent by an attacker,
is coming from the search engine website from the
browser’s perspective. So any queries to the search engine
would be the same origin.



The other common approach to XSS is storage. In this
version, XSS gets inserted into a database. The XSS will be
pulled out and put into any web page that relies on the
data. If successful, a storage-based XSS attack is often
more flexible and powerful than a reflection attack. For one
thing, the attacker can, for example, insert the bad
JavaScript into the database from their account. Any
account that uses this stored data will be subject to the
attack. An easy example of this is social media. If someone
can create a post from their account with the evil
JavaScript inserted into the database, anyone on social
media that reads the post will have their systems
compromised when it inserts the “post” into their browser.

The best protections against XSS are the same
protections against SQL injection. Inputs need to be
sanitized. Anytime this important step is forgotten, attacks
are almost sure to follow.

Although this is the best option, some systems insert
additional defenses that attempt to mitigate the damage if
an XSS attack is successful. For example, many security-
sensitive cookies are marked “HTTPOnly.” Cookies marked
in this way cannot be read by JavaScript at all, same origin
or not. They are only included in the HTTP transmissions.
By blocking them out of JavaScript operations that can read
the web page, even a site compromised with XSS will
hopefully not lose the security cookies.

Story Time: Tesla XSS Vulnerabilities

In 2019, a security researcher discovered a stored XSS
vulnerability on the Tesla Model 3. While he was working
on discovering hacks, he experimented with changing
the name of the vehicle to reveal any format string
vulnerabilities. He then attempted to place an XSS
payload into the input. This did not initially work.



However, during a road trip later on, a rock cracked his
windshield, and he used Tesla’s in-app support to set up
an appointment to have it repaired.

When he received a message about the issue that
someone was looking into it, he was notified that the XSS
payload was executed. The XSS payload had fired on a
dashboard used for managing Tesla vehicles. In his
analysis, he concluded that an attacker could pull and
modify information about other cars using this
vulnerability.

For finding this vulnerability, he was awarded $10,000 as
part of Tesla’s bug bounty program [87]. Many
companies offer “bug bounties” to incentivize security
researchers to find and ethically report vulnerabilities in
their software and products. This often enables
companies to fix such defects before they become
publicly disclosed and thus widely exploited.

Web Application Firewalls

A Web Application Firewall (WAF) is a type of filtering
system that is used to protect web servers from malicious
inputs. A WAF can be set up as a reverse proxy, as
discussed in Chapter 8. A reverse proxy, by way of
reminder, is a proxy that acts in the place of the server. It
receives the inputs, just like the server would, but then
scans them for threats. If the input is considered safe, it is
passed on to the real server. A WAF can also be configured
as a bridge, at a router, or a plug-in for the web server
[218].

WAFs are a special kind of firewall and typically run
separately from a traditional firewall. A WAF is designed to
scan web traffic for the kind of threats that might indicate



some of the attacks described in this section, including XSS
and SQL injection.

An effective WAF uses a suite of tools for the inspection
and processing of data. For example, one tool is called
normalization. Attackers will often transform data into a
format that is hard to inspect. This is usually done in a way
that will be reversed into usable information at some point
before it hits the target component of the system. Or, it is
sometimes a format that will be understood by a computer,
but difficult to recognize as an attack signature.
Normalization is the process for taking data in various
encodings and converting them to a standard encoding.
Once converted, normal filtering rules work much better
and can be defined more easily.

Like a regular firewall, WAFs typically have to use both
signatures and heuristics. Signatures look for known bad
sequences, although the sequences can be expressed in
forms like regular expressions that match patterns rather
than exact sequences of bytes. Heuristics can combine
various rules together to attempt to identify dangerous
traffic.

Unlike a regular firewall, WAFs are often configured to
allow by default and only block traffic that is identified as
irregular. Some WAFs are set up to block by default and
only permit known good traffic, but this is a challenge
because of the extreme variety in the kind of traffic
permitted.

WAF is often considered an important security feature
for security-sensitive web applications. Even though many
of the defenses could be inserted into the web application
itself, by putting them in a firewall, the defenses can be
specialized. The WAF can be updated with new signatures
and rules regularly without the need to update each and
every web application.



Secondly, the protections are centralized. This enables
uniform security policies for all web applications within the
organization. It also means that threats can be blocked
before they reach the actual web servers.

And finally, the WAF provides defense in depth. A
security failure at the web application may be mitigated or
blocked by the security of the WAF.

Summary

The World Wide Web is built on top of the fundamental
networking technologies of the Internet and began as a way
to semantically link together documents, called web pages.
Web pages can be identified with a Uniform Resource
Identifier (URI) and can be retrieved from the web servers
hosting them using HyperText Transfer Protocol (HTTP).
The standard language for structuring web pages is
HyperText Markup Language (HTML), which provides
many semantic and formatting tags. Web browsers enable a
user to view these web pages and easily traverse the links
between them.

Although HTTP is a stateless protocol, meaning that it
did not originally keep track of a user across their time
using a website, other technologies like cookies have
allowed for the creation of web applications where users
can interact with databases, companies, and other users in
ways that merely serving web pages did not allow. You are
no doubt familiar with many web applications, from
banking to travel booking to social networking.

A critical component of web applications is the ability to
securely exchange data. HTTPS uses Transport Layer
Security (TLS) to communicate over HTTP using encryption
to keep data secret and trust the identities of the
communicating parties.

Web applications also rely on interactivity. JavaScript is
a programming language that runs in browsers to allow



users to interact with web applications in rich, responsive
ways. Scripting on the browser or even on the server allows
creating dynamic applications that use data from databases
and APIs to provide everything ranging from up-to-date
bank balances to the most recent stock market prices to
user-generated content like social media posts.

OAuth is an authorization framework that enables one
application to trust a separate application to vouch for the
identity of a user, also called Single Sign-On (SSO).

As always, these systems are subject to various forms of
attack, and we discussed several of them in this chapter.
TLS visibility allows an (ostensibly) authorized third party
to decrypt a user’s TLS traffic, a sort of man-in-the-middle
attack. Cookies have various protections built in to prevent
disclosure of sensitive site-specific information to other
websites. But advertisers employ many ways of tracking
users, from third-party cookies to tracking pixels to
browser fingerprinting. JavaScript may also present an
avenue for attack, through Cross-Site Request Forgery
(CSRF) and Cross-Site Scripting (XSS). Sites that use SQL
databases must protect against SQL injection attacks by
properly sanitizing and validating any user inputs before
passing them to the database. Finally, a Web Application
Firewall (WAF) can be used to protect applications from
many of these kinds of attacks.

Further Reading

There is a lot to know about the Web, and there are many
directions you might explore. I mentioned Peterson and
Davie’s book Computer Networks in Chapter 8. It includes
a chapter on applications including the Web and web
applications [205, Chapter 9]. But the whole book, with its
deep background into how networks work, is helpful to
understanding how the Web works.



I always recommend OWASP for web security guidance.
OWASP, or the Open Worldwide Application Security
Project, is focused on all software security, but I believe
that web security is one of their most important
contributions. The OWASP Top Ten, for example, refers to
the “Top 10 Web Application Security Risks.” This list,
which is updated every year, identifies the top ten reasons
web applications are compromised [5].

OWASP also provides a range of guides, assessments,
and tools for improving web security. OWASP’s Software
Assurance Maturity Model is used to measure and quantify
the security readiness of an organization’s software [8].
They also provide a Security Knowledge Framework for
helping to train engineers in secure software development
practices [4]. Another important project is their testing
guide for web security testing [10].

In terms of securing web servers (rather than just the
software running on a web server), Apache, which develops
an open source web server of the same name, provides a
guide on hardening the TLS/HTTPS configuration [9]. More
broadly, NIST provides SP800-44 “Guidelines on Securing
Public Web Servers.” This document is fine as far as it
goes, but it was written in 2007 and there have been no
subsequent revisions [265].

Part of the problem is that web server security is now
typically related to cloud security. Many organizations no
longer run a web server on-prem, but instead run their web
server in the cloud. For this reason, cloud security books
may be a good place to look for more information on this
topic. For example, I already mentioned Practical Cloud

Security by Dotson in Chapter 6. This book also provides
some very practical advice on understanding the security
relationship between an organization’s systems (including
web servers) and the cloud. I recommend reading the
section entitled “The Cloud Shared Responsibility Model”



as part of your reading [95]. The other cloud security books
mentioned along with Dotson, specifically Securing

DevOps: Security in the Cloud and Container Security:

Fundamental Technology Concepts that Protect

Containerized Applications, may be helpful to securing web
servers in cloud environments [217, 272].

I mentioned OAuth and OIDC briefly in this chapter.
There is a lot more to OAuth than what I could cover here,
and development is ongoing. And there are more SSO
technologies than just OAuth. A good book for learning
more about OAuth and other SSO technologies (like SAML)
is Solving Identity Management in Modern Applications:

Demystifying OAuth 2.0, OpenID Connect, and SAML 2

[283].
In terms of books that provide the offensive point of

view, the Web Application Hacker’s Handbook is
considered a classic. Although more than ten years old
now, it is still considered worth reading. The book is quite a
tome at more than 800 pages, but it breaks down a web
application into all the different components: frontend,
backend, and even people. For each component, it goes
into depth about how to attack them [255]. A more recent
book is Real-World Bug Hunting: A Field Guide to Web

Hacking. This book focuses more on specific bugs and how
to look for them [287]. If you happen to enjoy the Python
programming language, the book Black Hat Python is a lot
of fun. This book is only partially directed toward web
security issues, but it has a whole chapter on exploiting
Internet Explorer [237].

I have already mentioned the books Exploiting Software

and 24 Deadly Sins of Software Security in other chapters.
Both books have web components and are good reading for
this chapter as well [135, 137].
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Footnotes
A URI is technically a broader term than URL, and in some circumstances,

the differences might be important. However, in most circumstances, they are
used interchangeably.

 
There is also a brief overview of HTTP in Appendix C if you want to review

how it interacts with other network protocols such as TCP and IP.

 
There are a couple of minor components that tie the two pieces together. For

example, the URL in the HTTP request method must match the Common Name

in the certificate sent back by the web server. But all of the HTTP request
methods (e.g., GET and POST requests) and responses (e.g., 200 and 404
responses) work exactly the same.

 

http://www.bleepingcomputer.com/news/security/75k-wordpress-sites-impacted-by-critical-online-course-plugin-flaws/
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5

In many cases, an eavesdropper could figure out the domain from the
destination IP address that is unencrypted. However, sometimes more than one
host name is associated with an IP address, and this extension leaks which of
the host names the client is connecting to.

 
Web developers that work with both the frontend and backend are called full-

stack developers.
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Chapter Quick Start Guide

The rich infrastructure of the Internet and the World
Wide Web allows us to build semantic communications
networks that operate at a more abstract level. In this
chapter, we’ll discuss email and social media, two kinds
of overlay networks that allow communications between
individuals and organizations. Similar security principles
apply here, but because these networks also present
unique security challenges.

Key Concepts

1.
An overlay network allows communication between
nodes and is built on top of a lower-level network.

 
2.

Email and social media are two examples of such
networks in which the nodes are people rather than
machines.

 
3.

These networks may be subject to threats such as
spam, phishing, artificial amplification,
disinformation, and reputation attacks.

 
Some defenses for these threats can be built into the

https://doi.org/10.1007/978-1-4842-9560-1_10


4. Some defenses for these threats can be built into the
network technology, and some defenses rely on the

humans on the network.
 

Common Pitfalls and Misunderstandings

1.
Overlay networks often have their own protocols, but
they are usually built on top of the widely available
lower-level networks that already exist and have
broad usage.

 

2.
Social networking sites in particular invite a broad
range of threats that are unique to the broad reach
and discovery algorithms they employ.

 

Useful Vocabulary

SMTP: Simple Mail Transfer Protocol. A protocol for
sending email messages
POP: Post Office Protocol. A protocol for retrieving
email messages
IMAP: Internet Mail Access Protocol. Another (newer)
protocol for retrieving email messages
Spam: Unsolicited bulk email
Phishing: An attack that attempts to defraud a user
with generic (bulk phishing) or highly targeted (spear
phishing) messages
S/MIME: Secure/Multipurpose Internet Mail
Extensions. A feature for signing and verifying (and,
optionally, encrypting) email messages

Computer science loves layers. You may have noticed this
already. After all, we have layers of network protocols,
layers of host isolation, and layers of security components



(i.e., defense in depth). In fact, a famous expression in the
field is that, “All problems in computer science can be
solved by another level of indirection” [158]. So it will
perhaps not be surprising to learn that networks can also
be built on top of another network.

In fact, most of the commonly used Internet
communications systems can be thought of as an overlay

network, or a network that is built on top of an existing
network. These communications systems include email and
most social media. In this chapter, I will explain how these
operate as overlays and how these introduce some
interesting security challenges.

Overlay Networking Background

What is an overlay network? Quite simply, it is a network
built on top of another network. Or, said another way, a
new network is built using an old network as lower-level
infrastructure. What constitutes a network? In Appendix C,
I use the following definition:

A network, as used in this book and in most network
security contexts, refers to computing resources,
generically identified as “nodes,” that are connected
together directly or indirectly across one or more
communication media and can engage in intentional
data exchange across the media.

When you think about the Internet, for example, you
could think of your laptop as a node and the web server for
your favorite website as another node. They are connected
together via the Internet infrastructure and intentionally
engage in data exchange.



Figure 10-1  In an overlay network, there are logical connections between the
higher-level addresses. Data is sent using a lower-level network

No matter how a network is put together, it must usually
deal with the following issues:
1.

Connecting the nodes to one another  
2.

A meaningful address scheme that identifies each node  
3.

A protocol or set of protocols that enable
communication from one address to another over the
connection mechanism

 

An overlay network exists when a network is created
using another network as the mechanism for the
connection between the nodes. It is typically characterized
by having its own addressing scheme and means of getting
messages delivered between addresses. In addition to the
three requirements for a network, it usually also requires
some kind of bootstrap process in which a new node can be
inserted into the overlay network, get an address, and



obtain some initial connections to other overlay nodes.
Figure 10-1 illustrates these ideas.

An overlay network is not the same thing as the network
protocol stack that separates out the functionality and
implementation of a network into separate components. For
example, even though your laptop has both an IP address
and a MAC address, IP communications to a distant web
server cannot be carried over just your Local Area
Network. Referring again to your laptop and your favorite
website, the web server is not on your LAN and cannot
communicate with your laptop using the MAC address.
Only the IP protocol, with its routing mechanism, can
enable the worldwide communications.

On the other hand, the networks we will talk about
today, such as email and social media, have a fully working
and fully operational network as a starting point. From that
starting point, they create a new addressing scheme and a
new means of exchanging messages between those
addresses.

The reason for creating overlay networks is twofold. The
overlay networks typically want to connect at a different
conceptual level than the existing network. This is manifest
in how the addressing scheme identifies a different type of
node in a way that more meaningfully represents a node
within the new networking system. But the second reason
for an overlay network is to take advantage of the old
network’s infrastructure. After all, nobody wants to lay
down new infrastructure when effective infrastructure
already exists. It is much easier to build the new concepts
on top of the old ones. Any improvements or advancements
in the old network are automatically propagated to the
overlay network as well.

Social Networks As Overlay Networks



What is a social network? There are a number of different
definitions. The concept of a social network predates social
networking websites. The nature of human interaction is
very much a network. Humans can be modeled as a node,
and data, especially ideas, are transmitted from one human
to another.

The most classical definition of a social network is
one which is based purely on human interactions.
This is the classical study of social networks in the
field of sociology. These studies have traditionally
been conducted with painstaking and laborious
methods for measuring interactions between entities
by collecting the actual data about human
interactions manually. An example is the six-degrees-
of-separation experiment by Milgram… [32, Chapter
1]

Social media sites, such as Facebook and Twitter, “have
arisen explicitly in order to model the interactions between
different actors” [32, Chapter 1]. In other words, these
media sites were designed from the beginning to model the
social networks present in human society. One set of
authors defined these kinds of sites as having the following
characteristics [63]:
1.

Web-based services  
2.

Allow individuals to construct a public or semi-public
profile within a bounded system

 
3.

Articulate a list of other users with whom they share a
connection

 
4.

View and traverse their list of connections and those
made by others within the system

 



Interestingly, this last definition is explicitly web based,
but the term being defined is social media site, rather than
social network. I find these definitions to be too limited
because social media sites are just a more specific form of
social media networking. I will provide my own definition. A
social network is a network in which the nodes of the

network, the addressing scheme, and communications

protocols model or enable social, rather than purely

computer, interactions.

Email Operations

Using the definition of social networks I identified in the
previous section, email is such a network. Consider that
there is an email network that exists above and apart from
the Internet. This is the network that connects people
sending messages to each other based on email addresses.
An email address is not associated with a computer on the
Internet but rather with a person.1

In terms of routing messages to these human-identifying
addresses, notice that there are two different levels that
could be considered. On the one hand, email is based on
protocols that define how email messages are sent to email
servers for both inbound and outbound directions. The
other level is the social level of message routing. Each
warrants consideration.

At a technical level, traditional email uses a standard
protocol called the Simple Mail Transfer Protocol, or SMTP.
SMTP is an application protocol used to route email
messages from a sender to a destination. SMTP provides
the overlay routing for getting a message to a particular
email address destination.

An email transmission typically starts with a Mail User
Agent (MUA) transmitting an email message to a Mail
Transfer Agent (MTA). The MUA might be a program
running on a laptop, such as Microsoft Outlook, or it could



be web mail such as Google’s Gmail. Either way, the MUA
uses the SMTP protocol to connect to the MTA.2

The MTA’s job is to figure out where on the Internet the
email needs to be sent to. This involves resolving the email
domain. For example, if an email was being sent to
nobody@example.com,3 the MTA would need to figure out
the mail server for example.com. This process typically
involves using DNS to look up what are called Mail
Exchanger, or MX, records. These records, which are again
retrieved via DNS, identify which Internet servers are
responsible for email communications for the domain in
question.

Once the MTA has the MX records, it routes the email to
a destination MTA using SMTP. The destination MTA then
stores the email message for subsequent retrieval. SMTP
does not prescribe how a message is received by the actual
destination MUA, and, instead, other protocols provide this
service. For example, Post Office Protocol (POP) is a
protocol that permits the message to be downloaded (and
commonly deleted from the server), while the Internet Mail
Access Protocol (IMAP) is a protocol that reads the
messages directly from the server. This flow is depicted in
Figure 10-2.



Figure 10-2  When an email is transmitted from one person to another, the
message is first sent to the sender’s MTA and then to the recipient’s MTA using
the SMTP protocol. Once at the receiver’s MTA, the email is retrieved using a
protocol like IMAP or POP

From the perspective of the overlay network, things are
straightforward. The Internet provides all the connectivity,
and there isn’t much in the way of routing. The sending
MTA looks up the destination MTA and that is it. Within the
context of the overlay network, there is always just one
“hop.” One of the interesting issues from a security
perspective is that the default email protocol has no
verification that the sender of the email address is
authentic.

When an email is transmitted, there is both the email
content and an email envelope. What can be somewhat
confusing is that information can be duplicated because the
email content includes headers that may mirror information
in the envelope. By way of analogy, if you write a paper
letter, you might put the recipient’s name on both the
envelope and on the first line of the actual letter (e.g.,
“Dear John,”). The first line of the letter is roughly
analogous to the email headers that are in the content.



Note that the email envelope is only by the SMTP servers.
When the email message is downloaded via IMAP or POP, it
does not include the envelope. I have depicted the
envelope, content, headers, and body in Figure 10-3.

Just like a real letter, however, an email could be
addressed to someone completely different from the
recipient identified in the envelope. That is, the information
in the envelope and the information in the headers do not
have to match. In other words, the email address that is
shown as the sender in your inbox, which comes from the
headers, could be completely different from the sender
claimed in the envelope during transmission.

Worse, the email address used in the envelope is also
unreliable. So the fact that the sender address in the
headers can be different from the envelope is almost
irrelevant. Both are unreliable and unverified (by default).

Figure 10-3  Email messages have an envelope, which is used for the SMTP
communications, and a content portion. The content portion is what is
processed by an email client such as Outlook. The content is further subdivided
into headers and body



Perhaps even worse than all of this is that the sender’s
address in the headers also includes free-form text that
cannot be automatically validated. An email address in the
headers typically takes the form of Display Name
<email@address>. Even if the email address itself can be
authenticated, the display name cannot. This is because,
while there can be indications that a display name is bad,
there is no affirmative mechanism for confirming that it is
authentic. What would authentic even mean? If someone
puts their nickname into a display name, what would be the
process for confirming and authenticating that the
nickname is real? All of these issues contribute to problems
discussed in the forthcoming discussion about security
threats.

Fundamentally, SMTP, like other Internet protocols
designed before the World Wide Web, was designed for
safe networks that had limited access to a relatively small
number of users. The design of these protocols simply did
not account for the prevalence of bad actors, such as cyber
criminals, scammers, hackers, and spammers. Moreover,
these protocols were never intended to be used in vast
ecommerce enabling systems with tempting targets for
cyber criminals, like email addresses of corporate
executives and high-value information in corporate
networks.

But there is another way of looking at the overlay
network. Separately from the technical protocols that
enable the communications, there is the overlay at the
social level. From this perspective, each email address is
connected to another email address based on the social ties
that connect them. There is a strong correspondence
between a person’s social ties and their email address book
or contact list. For example, suppose a student starts their
freshman year at a university. Starting with some kind of
orientation, they are typically provided with an email



address at the university. While they may import their old
email contacts, such as friends and family, within the
context of the new organization, they have very few
connections. They probably know very few people at the
university. But as they get involved in their classes, social
organizations, and professional organizations, their email
contact list will grow. Their email social network grows
more or less proportionally with their social interactions.

Moreover, unlike the technical email network that is one
hop, the social email network is multihop. For example, the
student might send a message to a friend inviting them to a
party but also encouraging them to bring their own friends.
The originator might even ask the recipient to forward the
message. And thus, data “routes” through the social
network via forwarded emails along social lines.

Because the email social network is associated with
meaning and not just raw transmissions of unrelated data, I
refer to it as the semantic network. Both the semantic view
of the network and the more technical view of the network
have a significant impact on security concerns as discussed
later in this chapter.

The semantic nature of social routing is very interesting.
Typically, data gets forwarded based on the relationship
between the data and the social connection. For example,
work data is typically forwarded by work connections. A
person might send a colleague a professional document and
ask explicitly, or expect implicitly, the document to be
forwarded to additional colleagues that the original sender
is not directly connected to. An engineer might send a
finished design to their manager expecting that the
manager might transmit that data to a higher-level
manager or review team. Someone in sales might forward a
question from a client to a colleague. If the colleague
cannot answer the question, the salesperson might request
that they forward it along to someone that can.



On the other hand, it might be inappropriate, or even
illegal, for an employee to transmit information related to
work to a personal contact that is not authorized to receive
it. Even if it is not illegal or inappropriate, it may not be
socially expected to do so. In Figure 10-4, I have illustrated
data being forwarded along a social network. In this figure,
a full email need not be forwarded. Perhaps some portion
of the text, or even just ideas from it, is spread along the
social connections of the initial sender.

Nevertheless, exceptions can and do occur. And, of
course, there are emails such as automated emails and
notifications. These, however, are associated with a
person’s social connections in one form or another. One of
the very few types of completely socially unrelated emails a
person receives is spam email and other forms of
unsolicited communications. One reason why these might
bother us so much, besides the wasted time, is the fact that
they are unrelated to our social connections. Just like a
person may appreciate being physically close to a well-
known friend or associate but may feel extremely
uncomfortable with physical proximity of an unknown
person, our negative reactions to spam may be at least
partially because of how “alien” they are to our social
expectations.



Figure 10-4  Data being forwarded in a social network, such as email

Social Media Sites

Although I have described email as social networking, the
term is far more commonly applied to web services that
explicitly support creating connections between individuals
and social groups. As I noted in the introduction to social
networks, it has been observed that all of these various web
services tend to support some amount of profile creation,
an ability to create and maintain connections to others
within the service, and an ability to find new connections.

The concept of profile is not limited to the static data
that is often referred to as a user’s profile. This
information, such as relationship status, name, location,
age, occupation, or any other such data, is usually of
relatively little importance to the social network. Instead,
the user’s profile is reflected in their ongoing generation of
content, such as posts, images, videos, or other
personalized data.

Although many social networking services provide for a
direct message capacity that permits one-on-one
communications, most social networking interaction is
driven by publication of content either to the entire world



or to one or more sets of social connections. Service
providers support various forms of posting content that
permit users of the service to share and manage their
social content.

Although I have categorized email as a type of social
networking technology, there is an extremely significant
difference between most social media sites and email: each
social media site is the property of some organization, and
the operations of the site are directed to the organization’s

goals. This stands in stark contrast to email, which is an
open standard. Email users can take their email business to
one of a vast number of email service providers or even, if
so motivated, operate their own email server on computers
under their own control. Users can maintain an
independent email address that is independent of operator,
and any email provider is interoperable with all other
providers (meaning that a user can send an email to anyone

with an email address, not just those on the same
provider).

At least in part because of this difference, there is a
fundamental, driving force behind most social media
services: user engagement.

This driving force appears to be necessary for a social
network provider’s survival. As noted already, every social
media site has more or less the same capability to make
and maintain social links or connections to others, and
every social media site could enable the same kinds of
content to be posted. But it is only through continuous and
ongoing engagements with their users that social
networking providers maintain their relevance. Even if
Alice is connected to Bob using one social network
provider, there’s nothing to stop her from also having a
social connection with Bob through another provider. These
providers will need to compete for Alice’s attentions and for
her interactions with Bob.



This force, the need to engage users, means the social
network provider is motivated to ensure that their users
are engaged by this provider’s flavor of representation and
processing of a person’s social network and social
activities. One method that social media providers have
adopted to maintain and grow their users’ engagement is
the curation of social media content each user consumes.
This shifts a user’s interactions with their social network
from being driven by other people and organizations within
the network to being driven by the network provider.
Instead of a person finding out about the ideas, events, and
interests of those in their society through interactions and
discovery, the provider shapes and puts together a stream
that is calculated to be of interest.

That is obviously not to say, of course, that the actions of
the provider’s users have no influence on the provider. One
mechanism that is used in determining the relevance of any
given content to someone is measuring the relevance of
that content to everyone. Social networking providers
enable their users to interact with the content published by
others through reinforcement (e.g., likes and shares) or
publishing derivative content (e.g., comments or references
within other posts). The popularity of a given content
posting influences how likely that content is to be shown to
others.

Moreover, studies have shown that users are influenced
by the popularity of content and by how that content is
perceived by others. Thus, users reinforcing and extending
content amplify the power and reach of a message.
Amplification is achieved in social networks by creating the

perception of widespread popularity and acceptance. As
will be discussed later in this chapter, there are a number
of ways to manipulate this perception.



Threats

Because of the nature of social networks, including email,
they are a constant source of cybersecurity risk. What
makes them so ripe for fraud and malicious activity is the
direct connection that they have to people. It is hard
enough to secure the traffic that is bound for a computer
using a technology like a firewall. But it is harder still to
protect a living person, and their mind, from messages that
go directly to them. Although I have spoken about
computer systems as “endpoints,” human users are the true
endpoints of communications and operations on the
Internet.

Using a semantic, social network, an attacker can
induce humans to act, and to act in undesirable ways.
Firewalls and other scanning technologies can do some
filtering of messages, but more than enough malicious
content gets through to human users on a daily basis. Once
the human is reading the message, there is no effective
firewall. That information is going into the brain, and if the
brain is tricked, the human will be exploited.

In the following subsections, I discuss some common
attacks that make use of these systems. I will sometimes
use the term fraudster to refer to the malicious actor
instead of the term attacker. This is because in most of the
malicious activity, fraud is involved in one form or another.

Spam

Although unsolicited bulk email, also known as spam, is the
most benign of all the threats discussed in this chapter, it is
still a significant problem in its own right. Economic
researchers in 2012 estimated that spam is costing
businesses in the United States $20 billion per year in lost
productivity, remediation, and scams [214]. Spam
continues to increase; according to the 2019 Symantec



Internet Security Threat Report, approximately 55% of
emails received were categorized as spam [16].

You might be surprised that spam makes anyone any
money. After all, when you have looked at a spam message
for some shady pharmaceuticals, an unrealistic sounding
business opportunity, or some very strange online dating
suggestions, you may wonder why anyone would ever
respond to such an email. But the fraudsters behind spam
have numbers on their side. Because sending email is
cheap, it can be sent to millions, and maybe even tens of
millions, of people. Suppose a spam message reached one
million people overall. If even just a tenth of a percent
respond to the message, that would get the fraudster 1000
potential victims at almost no cost.

Phishing

One of the most common and effective attacks against
email and social networks is phishing. A phishing email or
social media message is one that attempts to fraudulently
induce the recipient into destructive operations such as
revealing passwords, transmitting money, or otherwise
enabling the malicious sender. Phishing tends to split
between two major subcategories: bulk phishing and spear

phishing. As with spam, these attacks work for both email
and social media communications, but for convenience I
will describe them using email only.

Phishing first began to be a popular form of malicious
email during the early 2000s and has been growing ever
more prevalent since that time. For many years, the raw
rate of phishing email was increasing, and in 2014 the
phishing rate had reached 1 in every 965 emails received
[12]. However, that overall rate has been decreasing since
that time and in 2018 was “just” 1 in 3207 emails [12, 16].
However, the drop in overall numbers should not be seen
necessarily as a good sign. As bulk phishing decreases and



spear phishing increases, the phishing rate goes down, but
the risks go up.

Phishing attacks, especially spear phishing, are such a
sore spot for businesses that it is part of the category
known as Business Email Compromise. By 2017, Symantec
reported that “Business email compromise (BEC) scams,
which rely on little more than carefully composed spear-
phishing emails, continue to cause major losses; more than
$3 billion has been stolen in the past three years” [12].

In the following subsections, I will walk through the two
different categories of phishing to identify how these
attacks operate and how they are enabled.

Bulk Phishing

A bulk phishing attack is typically a mass email (i.e., an
email that is sent to many recipients, largely without
customization to the intended recipient/victim) that tends
to impersonate well-known organizations such as banks,
online shopping services, and package delivery companies.
The email also will usually have some kind of call to action

that is some specific behaviors that the fraudster attempts
to induce on the part of the victim. For example, if the
attacker wants the victim’s online banking login, they may
tell the victim that their account is compromised and that
they need to log in and change their password. A link is
provided that goes to a fraudulent login screen. The call to
action in this case is the request for the login change
combined with a fraudulent link. Through various calls to
action, a victim may be tricked into sending passwords,
social security numbers, or bank account numbers under
the guise of an authorized information request.

Bulk phishing emails are crafted to appeal to the widest
audience possible and then distributed just as widely. Of
course, the email contents might only be relevant to a small
portion of the recipients. For example, the scammers might



send an email purporting to be from one of the large
national banks, but only a small percentage of recipients
might actually have an account with the bank identified in
the email. Regardless, the cost of sending phishing emails
is low, and even if an extremely small percentage of
recipients send money or sensitive data in response to the
scam email, it is still worthwhile for the scammers.

Bulk phishing is enabled by the following components
and characteristics:
1.

Deceptive sender identification  
2.

Deceptive website or phone number  
3.

Deceptive visual appearance of the email  
4.

Psychologically effective call to action narrative,
context, and prompt

 
5.

Large, centralized services with populous user bases  
The first of these, the deceptive sender identification,

stems from the weakness of identifying the true identity of
senders in email or social media communications. In almost
all of these technologies, there is a distinct lack of
authentication on the part of the sender’s identity. As
stated in the background on email, the original protocol has
no authentication of the sender whatsoever. There are
some approaches for validating a sender’s email, but
attackers get around this using an email address that looks
very similar. For example, if the address needs to be at
“amazon.com”, the attacker may use something like
“amazn.com” or “ama.zon.com”. Or, as I also explained
previously, the display name can always be whatever the
attacker wants. This means there is always a mechanism
for a deceptive sender identification in email.



Most social media accounts are just as problematic.
Some systems do not validate the name of the account at
all, and it is quite easy to create an account that
impersonates someone else or simply creates a fake
individual out of whole cloth. Even for social media systems
that have a verification option (e.g., “Twitter Blue” for
Twitter), that does not get rid of unverified accounts. Much
like the display name of an email, even an unverified
account with a convincing display name will trick some
users under the right circumstances.

The second issue that enables bulk phishing is a
deceptive contact point such as a website or a phone
number. While some phishing scams work with email
responses, many include a link that is the focus of the call
to action. When clicked, the link will typically load a web
page that looks authentic. It will visually have all of the
correct images, fonts, and color schemes for the web page
being impersonated. However, for most websites these
days, the authentic version will have a URL that cannot be
forged. Recall from Chapter 9 that if the website is using
HTTPS, only the holder of the private key that matches the
website’s certificate can claim the URL. Unless the website
has been hacked in a way that the attacker has stolen their
private key, or if the Certificate Authority has been hacked
in a way that permits fake certificates, the fraudster cannot
impersonate the real URL.

Attackers get around this in clever ways. One way of
doing this is to use a URL that looks almost the same. Just
like the fake email addresses discussed earlier, an attacker
can use a fake website name that looks very close to the
original. One notorious example is the compromise of John
Podesta’s Gmail account prior to the 2016 US election. The
phishing email redirected him to this URL: http:// 
myaccount. google. com-securitysettingp age. tk. To the
untrained eye, this might look like the domain name for this

http://myaccount.google.com-securitysettingpage.tk/


address is google. com. In fact, the real domain name is
com-securitysettingp age. tk.

The domain of a host is, for all intents and purposes,
calculated as the last two components of the URL, where
each component is separated by a period. The last
component is called the top-level domain or TLD. The
second to last part is a second-level domain or SLD.
Generally speaking, these are the two parts that matter in
identifying the owner or operator of a website. When a
browser shows a lock icon, meaning that the page verified
for HTTPS, the certificate must match at least these two
parts. All of the other parts that precede the SLD identify
subdomains. In terms of identification, the subdomains are
almost always irrelevant.

But to the average user, what they see in this fraudulent
email is what comes first (myaccount. google. com) instead
of what comes second. Moreover, most such users will have
no idea that the dash is not separating anything in the URL.
This and other tricks are used to convince users that they
have reached the authentic website.

The third trick to a phishing email was alluded to
already with the fake web page: convincing visuals. As
discussed in Chapter 1, humans tend to respond to visual
images. They may even include emotional pathways
through our brains that have a more convincing impact
than most other forms of expression. When a user sees an
email that has all the right visual stimuli, the normal

response for the brain is to accept it as real. Security
training forces us to reject those feelings and impressions
from what we see; but it does not get rid of them. This is
especially sad because it is easy for fraudsters to fake the
visual elements.

Fourth, the attackers use psychologically effective calls
to action. This is usually done by creating a sense of
urgency, which feeds into emotional fallback and bias

http://www.google.com/
http://www.com-securitysettingpage.tk/
http://www.myaccount.google.com/


toward action discussed in Chapter 1. There are an almost
limitless number of approaches for creating urgency in the
human mind. I find some of the approaches that make no

explicit call to action the most interesting. In these
phishing attacks, instead of asking the user to do
something, they let the user create the urgency for

themselves. This is typically done with telling the user,
almost as just an update, that some transaction (usually
involving some amount of money) has just taken place. For
example, it might say something like, “Your transaction at
Amazon for $2,000 has just been approved.” Sometimes,
the emails include a link that offers to let them view the
transaction, or report if the transaction is fraudulent, but
some include a link to (fraudulent) account access without
saying anything at all. The user freaks out over a
transaction they do not recognize and clicks on the
fraudulent link to “fix” the problem.4 In Figure 10-5, you
can see one such email that I received recently.

Finally, the last requirement for bulk phishing to work
has nothing to do with the attackers at all. It is simply the
nature of modern society. Like spam, the vast majority of
recipients will not fall for a phishing email. In order to be
successful, the email has to be sent to a large number of
potential victims. The problem is the phishing email also
has to be applicable to a large number of potential victims.
If the vast majority of people banked at small, community
banks, banking would be less desirable as a phishing target
and narrative. It would be unlikely that sending out a
phishing email would reach a population big enough to
support it. But with large national (and international) banks
that have massive customer bases, the economics of a bulk
phishing attack against banking becomes more reasonable.
Similarly, institutions like Amazon, Netflix, and PayPal
provide similar opportunities.



Spear Phishing

Another form of phishing is known as spear phishing. In
contrast to bulk phishing, spear phishing attacks are
specialized and targeted to the intended recipient/victim.
Spear phishing is typically directed at just one person,
using their name and any other personal or identifying
information the scammer was able to access in order to
craft a more legitimate-appearing email. These emails are
particularly nasty because the more information the
scammer uses about the individual, the more legitimate the
email will appear to be. For example, a scammer with
information about where an individual works and what
their role is (e.g., obtained from the individual’s social
media accounts) might be able to craft an email that
appears to come from that individual’s boss, asking for
sensitive corporate information, such as bank accounts or
other private data.

Figure 10-5  A phishing email that does not specifically tell the victim to
contact them



Figure 10-6  A short and somewhat cryptic request I received

By way of example, Figure 10-6 is a sample spear
phishing email that I received in April of 2019.

As you can see, the email is suspicious, but it can be
difficult to positively identify this email as malicious.
Although I didn’t personally know Lei Ding, Dr. Ding is
another adjunct faculty member at Johns Hopkins
University, where I taught at the time. It was at least
possible that Lei needed to speak with me. Figure 10-7 is
the follow-up exchange.

Figure 10-7  The next exchange was a clear and obvious phish attempt



Now from this follow-up email, it was easier to
immediately recognize that the emails purportedly from Dr.
Ding were spear phishing attempts. Nobody at Johns
Hopkins, or in almost any professional environment, would
ever ask for iTunes gift cards under even the most
extraordinary of circumstances. By reason of this very
blatant money-grab, this deception was not particularly
sophisticated. In fact, the entire spear phishing email was
not particularly sophisticated. All the scammer knew was
that I was at Johns Hopkins and that Lei Ding was at Johns
Hopkins. It included no information about my recent work
at the University and was not from a person I actually
worked or interacted with. However, better targeted spear
phishing emails could (and often do) result in the victims
providing the requested information in response to what
they believe is a legitimate request.

There are a couple of different types or flavors of spear
phishing attacks that are worth mentioning briefly.

The first of these are spear phishing that attempt to
redirect an existing, usually large, financial transaction.
The way these typically work is the fraudster becomes
aware that one organization is going to transmit money to
another organization. These transactions are usually
invoices in one form or another, but sometimes these
attacks take the form of a payment reversal. In the case of
invoices, the attacker waits until just before a payment and
then sends an email (as the vendor) telling the payer
(victim) that the vendor’s bank accounts have changed and
they need to update their information. In the case of a
reversal, the victim is told that a payment made needs to be
reverted for some reason or another. They might claim it
was sent from the wrong account, for example. Payment
reversals have been especially problematic in real estate.
Money is often wired, for example, to a title company. The
title company acts as a kind of clearing house and neutral



third party. It is their job to make sure that money goes
where it is supposed to (e.g., to paying off a loan) and that
the assets are transferred as per the buying and selling
agreement. But because money is usually wired in advance
of the real estate closing, attackers have been known to
contact the real estate company impersonating the buyer
and asking for the money to be sent back. There have been
many people that have lost large sums of money to this
kind of fraud.

Figure 10-8  This is an example of reducing the risk of financial loss from
email fraud. The wiring instructions are only sent via secure communications,
and all insecure communications carry a warning not to trust them

On the flip side, fraudsters have also pretended to be the
title company and tricked buyers into sending their money
to a fraudulent account. These days, it is best practice to
only send wiring instructions via secure communications
and have email include warnings about getting wiring
instructions via email. For example, as part of a transaction
in 2019, I received the warning message from a title
company shown in Figure 10-8.

Story Time: Dark Humor Is Like Security. Not

Everyone Gets It

Unfortunately, not every title company is following the
best practices illustrated in Figure 10-8. In 2021, two
years later, I was involved in another transaction
wherein I received wire instructions via email. I did not
even know who to call to verify, because the only phone
number I had was the phone number in the email. I
finally called that number anyway and told the agent that
I was going to have to find a way to verify her. She



seemed confused and asked why talking to her on the
phone was not verification. I patiently explained that
because I got the phone number from an email I could
not trust, I could not trust the phone number either. I
told her I would accept the phone number as valid if I
could find it listed on the title company’s web page
provided that the web page was protected by https. It
took a while to verify, but I was eventually able to find
and validate. The scariest part of the entire conversation
was when she told me this had never come up before.
That is fraud waiting to happen, but they had no
awareness of it.

You can see the email sent to me in Figure 10-9. They
got my name wrong too (“Neilson” instead of “Nielson”),
which made me even more suspicious.

Whether a redirected payment or a refunded deposit, the
fraudulent message is usually some form of spear phishing,
directed to accounts payable, an executive, or an
administrator. These kinds of attacks are particularly
worrisome because they often leverage an intrusion that
gets them access to some generally nonpublic information
and communication channels. While some of these financial
transactions can be predicted or guessed by attackers,
some occur because attackers break into the email systems
of a related party, like the vendor, and have accurate
information about the transactions, the current bank
accounts, and the date of payment. Moreover, they can
send emails that are, in fact, from the correct email
account so that the source is authentic even though it is
fraudulent.



Figure 10-9  An email with wiring instructions. This is not safe and cannot be
trusted, nor can the phone numbers in the virtual business card

A slightly different flavor of spear phishing is one that
simply seeks to submit an unauthorized invoice for
payment. These kinds of attacks take advantage of how
often and in how many ways invoices get introduced at
even relatively small firms. Invoices can come in from all
over an organization. Each department usually has its own
purchasing authority for the relevant vendors. Some
attackers can simply try to send an invoice directly to an
accounts payable department (which often have “helpful”
email addresses like ap@company.name) with hopes that the
department is too busy to validate and verify it. But more
often, phishing emails will be sent to people within the
company with messages like, “We got this invoice, do you
know who should handle it?” or “This one is important so
can it get expedited today?”



There is a variant of this kind of scam that involves
trying to harvest personal information instead of money or
passwords. The basic idea is to steal something like a social
security numbers and payroll data in order to file
fraudulent tax returns. Or, the attackers could simply steal
data that could be used for a more convincing and realistic
phishing attack later. These attacks can seem very
convincing and, because they are just asking for personnel
records, some victims have had their guards down. An
official warning from an Ohio government tax agency
reported the following [7]:

The W-2 scam first appeared last year.
Cybercriminals tricked payroll and human resource
officials into disclosing employee names, SSNs and
income information. The thieves then attempted to
file fraudulent tax returns for tax refunds.

This phishing variation is known as a “spoofing” e-
mail. It will contain, for example, the actual name of
the company chief executive officer. In this variation,
the “CEO” sends an email to a company payroll office
or human resource employee and requests a list of
employees and information including SSNs. The
following are some of the details that may be
contained in the emails:

Kindly send me the individual 2016 W-2 (PDF) and
earnings summary of all W-2 of our company staff
for a quick review.
Can you send me the updated list of employees with
full details (Name, Social Security Number, Date of
Birth, Home Address, Salary).
I want you to send me the list of W-2 copy of
employees wage and tax statement for 2016, I need
them in PDF file type, you can send it as an



attachment. Kindly prepare the lists and email them
to me asap.

The final flavor of spear phishing for this chapter is
sometimes called whaling. This kind of spear phishing is for
specifically going after the “biggest fish” (i.e., the
“whales”). Generally, these go after the C-suite, and the
CEO in particular. There are a number of reasons these
individuals make good targets. First of all, they do have a
lot of authority to disperse funds or have credentials to
important systems. But more importantly, they are
amenable to these kinds of frauds if for no other reason
than how busy they are. A CEO’s schedule is typically
intense and crowded. An email about getting something
like a bill paid is an annoyance and is often shifted to
someone else. But if the CEO forwards it, the recipient may
think that the CEO has confirmed that the email is
authentic. Worse, many CEOs and other top executives
have assistants with access to their email and calendar and
who respond on behalf of the CEO for certain kinds of
tasks. Attackers can exploit this relationship by crafting
emails that speak to the assistant’s desire to keep from
putting more on the CEO’s plate. Even if there is some
suspicion, some assistants have not wanted to disturb the
CEO by asking about it.

You should be aware that when fraud is perpetrated on a
company over email, it is often called a Business Email

Compromise or BEC. Many security products are marketed
as defenses against BEC, and these typically take the form
of phishing defenses.

Story Time: Paranoia Is Good

Attackers combine various techniques into a coordinated
operation. A friend of mine is the CEO of a small medical
technologies company. He told me a story of some spear



phishing that, unfortunately, cost his company tens of
thousands of dollars.

According to my friend, one of his people received an
email from a vendor shortly before a big payment was
due. The email asked to change the ACH details for the
payment. My friend was immediately suspicious. The
email appeared to be authentic, at least in terms of the
email address. It certainly came from the correct email
servers. Still, suspecting something was up, my friend
asked his employee to call the CFO and get a verbal

confirmation that the new ACH information was correct.
Some time later, the employee reported back that the
CFO had, in fact, confirmed the new data.

Surprised, but trusting his employee, my friend
changed the payment data. The wire went through, but a
few days later, the vendor called them and asked why
they had not been paid. My friend immediately knew
what was up. He called the vendor’s bank and demanded
a freeze on the transaction. That is an interesting story
all by itself but for another time. He immediately asked
his employee if he had, in fact, called and talked to the
CFO directly.

It turned out he had not. He had called, but only
gotten to the voicemail. After leaving the voicemail, he
got an email assuring him that the information was
correct. He never spoke to the CFO directly nor did he
get a verbal confirmation from anyone.

With some phone calls to the vendor’s IT office, my
friend managed to piece together what happened. They
figured out that the attackers had compromised the
vendor’s machines. The attackers had access to the
vendor’s email, which is why the spear phishing came
from “real” email addresses. Moreover, the vendor has
voicemail transcription. They saw a transcript of the
voicemail left for the CFO and responded to it by email.



After the vendor’s IT became aware of the attack, they
started remediation and intrusion response. But the
attackers knew they were about to get kicked off the
systems. Immediately they sent out a flurry of emails to
everyone they could, including my friend’s company, with
malware. Amazingly, the same employee that had been
fooled by the phishing email and voicemail interception
also fell for the malware-laden email. My friend had to
run down to his desk and stop him from getting their
networks infected.

My friend also asked this employee why he did not
follow instructions and do as he was told. Why had he not
gotten a verbal confirmation of the ACH changes? His
reply was, “I thought you were being paranoid.” Based
on his lack of appreciation for the risks of phishing and
malware in emails, the employee was given the
opportunity to resign. It was just too many strikes and
too much damage.

Let me draw your attention, however, to the bigger
point of this story. The attackers combined all kinds of
approaches to these attacks. They compromised email
servers, engaged in targeted spear phishing, and tried to
launch malware upon discovery. The really dangerous
attackers have more than one trick up their sleeves and
are skilled at coordinating offensive operations using
many tools and approaches.

Artificial Amplification and Disinformation

Email communication is most commonly one-to-one or one-
to-few. It usually occurs between parties that already know
of each other’s existence and identity, as they may have a
personal or business relationship. Social media, on the
other hand, often focuses on one-to-many communication
styles, in which users publish content not just for the
people they are directly connected to but also the friends of



their friends and even the public at large. Because of the
volume of information being created in this way, and
because of the business incentives of the platforms on
which the content is created, unique problems arise from
the way the information gets discovered, shared, and
amplified.

As discussed previously, the social networking
provider’s ability to permit users to follow one another,
retweet and like tweets, and other meta-information
services is used by individuals to indicate interest,
preferred content, and even agreement. In aggregate over
millions of users, this can lead to mass activity that
influences advertising, social ideas, and government
elections. Although each individual person using Twitter
can express their own individual influence, there appears to
be powerful influence of communities within social
networks to influence the individual. Accordingly, parties
that want influence are motivated to harness social
network influence over others in order to achieve their
objectives [81].

One of the means of influence on digital social networks,
considered by myself and others in the security community
to be malicious, is the use of “fake” participants to
influence the thinking and opinions of “real” participants.
By “real” and “fake,” I am respectively referring to social
network accounts that either more or less represent the
parties that are using them and accounts that are
intentionally dishonest about the party operating the
account, the beliefs and motivations of said party, or any
other characteristic that may be perceived as having an
impact on social influence.

One of the most problematic challenges for social
networking accounts is recognizing sock puppets. The
concept of a sock puppet is basically wherein a single party
represents to others that they are, in fact, multiple parties.



Although the concept predates modern technology, the
nature of digital communications over the Internet makes it
a much more notorious problem. In terms of social media
influence, a single party can appear to be a much larger
group. Thus, the “beliefs, judgments, and actions of others”
can be disproportionally influenced. It is widely believed
that “[e]stablishing the identity of online personas would
assist in adding meaning and credibility to social media
discourse” [81].

Story Time: Sock Puppets in Financial Markets

This “sock puppet” problem manifests in other realms,
such as financial markets, where the investing public
needs to know whether large blocks of financial
investments are controlled by related entities. In these
situations, laws can be devised to protect public trust in
the integrity of the market and to compel disclosure of
centralized control over multiple entities.

For example, investment firms controlling at least
$100 million of publicly traded securities are required to
disclose their holdings quarterly to the Securities and
Exchange Commission (SEC) on Form 13F. These forms
are made public so that investors can understand large
market players and which investments they hold, since
large players with concentrated investments may
influence companies in ways that large numbers of
smaller, unrelated investors may not.

One particular investment firm owned $32 billion of
publicly traded securities. It divided those investments
up among 13 (ostensibly unrelated) shell companies,
each of which filed the mandated reports and indicated
that the company had investment discretion over the
funds in its individual portfolio.

However, an SEC investigation uncovered that the
shell companies were not in fact operating



independently, and investment decisions were made
centrally by the parent company. The SEC imposed a fine
on the company of $5 million for these misstated filings
[236].

It is, however, difficult to solve the sock puppet problem.
This problem has appeared in other research. For example,
during the late 1990s and 2000s, there was research and
development invested into completely decentralized
systems. This research was at least one of various
influences behind blockchain and cryptocurrencies. One of
the major research challenges investigated during this
period was how to deal with participants that claimed
multiple identities and was known as the Sybil Attack. It
was noted at the time (approximately 2002) that “it is
practically impossible, in a distributed computing
environment, for initially unknown remote computing
elements to present convincingly distinct identities” [96].

To indicate how challenging the problem can be, the
general solution used in many cryptocurrencies is to use
proof of work. This basically requires solving exceptionally
challenging mathematical proofs. The theory is that it does
no good to “pretend” to be more than one party because
the computational resources would also increase. The
problem with proof-of-work solutions, however, is that it
requires exorbitant amounts of energy that cost money,
damage the environment, and provide no value. Moreover,
it leads parties with sufficient resources to purchase large
amounts of computing hardware, leading to disparity in the
social community wherein those with resources have louder
“voices” than those with modest resources. From a certain
point of view, this reduces to the same problem Sybil was
causing in the first place (i.e., that voices were artificially
louder than others).



In digital social networks, there are a number of ways to
achieve sock puppetry. One approach is to use botnets. In a
botnet, social media accounts are not directly operated by a
person. Instead, one or more automated agents, called
bots, interact with social media accounts to direct the
account activities. The easiest tasks for automated agents
are simple tasks that require minimal intelligence. These
kinds of tasks include connecting to another account and
reinforcement actions, such as “likes” or reshares.
However, bots can also be used to create content. This
artificially amplified content can be used for various
purposes. The next section applies these approaches to
attacking a reputation [61].

However, sock puppetry can also be achieved through
so-called meat puppets. Meat puppets are accounts run by
humans, but the humans are paid-for groups that are social
media mercenaries, posting content, resharing content, and
connecting to accounts for hire. In a fascinating study:

Kevin Ashton’s imaginary motivational speaker
“Santiago Swallow” legendarily raised up in
prominence through the purchase of 90,000 fake
followers for the sum of US$50. Ashton created the
fake account in less 2 hours, searched the website
fiverr.com for [people] selling Twitter followers, and
generated Santiago Swallow on the 13th of April
2013. He was then able to acquire reports from
dependable social media analysts such PeopleBrowsr,
who announced that Santiago Swallow had an @Kred
(2013) influence score of 754 out of 1000. [81]

A meat puppet is potentially deceptive in two ways.
First, the account’s behaviors are deceptive in that they do
not represent the real beliefs of the operator.5 Second, and
more problematically, a single voice is still able to exert



disproportionate influence. That is, the meat puppet
operator can operate many accounts.

One of the uses of amplification is disinformation.
Disinformation is a politically charged topic and an
incredibly sensitive one. Politically minded individuals of all
backgrounds and beliefs are arguing over what is and is not
disinformation and whether or not disinformation is
impacting public policy, and whether accusations of

disinformation are stifling public debate. While I have my
own opinions on this topic, for the purposes of this book I
am going to try to sidestep any political or public policy
debates. Instead, I will try to focus on a few technical
issues that I hope will be helpful to anyone, regardless of
their opinions on any specific example.

The first major point already discussed is the question of
artificial amplification. Parties that are motivated to sway
public opinion, including politicians, advertisers, and social
organizations, will always be incentivized to have the
loudest megaphone they can for spreading their message.
Whatever ethical constraints they may have personally or
professionally are unlikely to inhibit them from using
artificial amplification if it is available. To the extent any
part of their message is false, exaggerated, or misleading,
those parts are disinformation. And the disinformation is
enhanced by the artificial amplification.

There is a flip side to artificial amplification: artificial
diminishment. Just like voices can be perceived to be more
reasonable and persuasive through increased popularity
and engagement, voices can also be perceived to be less
reasonable and less persuasive if they seem unpopular, less
supported by others, and less prevalent. Accusations that
social media organizations themselves reduce the reach of
certain messages and content raise questions about this
kind of activity. The stated goal of such diminishment is to
reduce disinformation, but if the diminishment reduces



legitimate content, it has, itself, become a form of
disinformation.

The second point worth thinking about is the nature of
social media and what it enables in terms of manipulation.
For the first time in history, people that want to shape the
thinking of other people have near instantaneous feedback
as to how well their message is working. When the
promoters of an idea or message publish it through a social
network, they can receive instant feedback in terms of
reinforcement actions, such as likes and reshares, or
debates such as comments. Based on the feedback, the
message can be adapted and adjusted.

The most concerning part of this kind of feedback cycle
is that persuasive messages are often meant to influence
through psychology manipulations, such as those described
in Chapter 1. That kind of manipulation has been
happening throughout history for as long as mankind has
existed. However, with this kind of modern technology,
those attempting psychologically manipulative messages
know nearly instantly how effective their approach is on a
sample population. It is almost never the case that calm
and reasonable thinking or civil and respectful debate will
sell a product, elect a supported candidate, or otherwise
get the desired result. In other words, the incentives are for
the most psychologically manipulative messages as possible
with nearly instant feedback on how effective the
manipulation was.

Reputation Attacks

One of the greatest risks of social networking is that it
opens the digital doors to the worst of human prejudices
and mobocracy. In the background on social networks, I
noted that amplification is part of the nature of social
networks, both the social networks that existed before the
computers and the social networks that have been created
and expanded using the Internet. Unfortunately,



amplification can be exploited as a means of destroying
another person or organization’s reputation.

Attacks on a person or organization’s reputation are
almost always conducted over social media or other social
websites, such as forums and message boards. There are
many ways to attack someone’s reputation. One approach
simply involves posting negative sentiment on social media
and message boards.

One of the easiest ways to attack reputation is with false
reviews and other false messages. This can be done with
artificial amplification as discussed in the previous section.
But it can also be done with strategic content that will
snowball and amplify on its own. For example, companies
involved in mining or other mineral processing can be
attacked with allegations of environmental impropriety
regardless of how environmentally friendly they are. An
agent placed by a competitor or an unfriendly government
on an environmental message board can post fake photos
and false reports to get a growing mob of outraged activists
reposting and amplifying the false content. These kinds of
reputation attacks have led to live protests at the physical
sites. With the advent of generative artificial intelligence
capable of creating believable fake text and images on
behalf of these adversaries, this risk increases even more.

Another way of damaging a reputation is hacking the
account of the victim and using it to publish false and
slanderous materials. Or, alternatively, the fraudster can
impersonate a person or someone that purports to belong
to the victim organization. This can be especially bad for a
company’s reputation (i.e., brand) if the fraudster uses the
impersonation to launch attacks against the victim’s
customers.

Defenses



Unfortunately, defending against the threats identified in
this chapter is challenging for a number of reasons. First,
as you have seen repeatedly in this chapter, the ability to
distinguish between a “good” email or social media
message and a “bad” one can be very challenging for a
computer program. The fraudsters get very good at
learning how to make their messages look benign to a
defensive system. The short version is: a lot of bad
messages are going to get through.

A related problem is that a lot of good messages get

miscategorized. In the efforts of defensive systems to
identify and filter out fraudulent messages, legitimate
messages sometimes get miscategorized as malicious or
suspicious. As you have seen in other places in this book,
identifying a good message as a bad one is called a false

positive.
This happens with phishing messages. I have seen

multiple examples where legitimate messages just look
bad. For example, I had an interesting exchange that same
year depicted in Figures 10-10 and 10-11.

The legitimate password reset looked very much like a
phishing message complete with a vague, but urgent, call
to action. Perhaps an even better example was a message
that was sent from the FBI to a business executive. I cannot
reprint the email, but the message looked like classic
phishing. It suggested an urgent need to meet along with
vague references to some unknown action overseas. I was
asked to evaluate the message on behalf of the executive
and was only able to validate that it was, in fact, a
legitimate message from the FBI by calling the FBI field
office, getting the phone number for the sender, and calling
them to verify that they sent it.

The defenses that are available include tools for
filtration, tools for message controls, and services for
identifying social network misuse.



Figure 10-10  I assumed this email was phishing. Notice the link does not go
to a JHU URL



Figure 10-11  This time, it turns out the message was legitimate. But if it is
suspicious, it never hurts to check

Filtering Fraudulent Messages

In protecting email accounts from spam and phishing,
email systems generally include filtration capabilities. The
goal is to filter the messages before they reach the inbox.
Filtered messages are often put into a separate folder, such
as a spam folder. A wide range of filters have been
developed to identify malicious emails.

The approaches used for the different types of fraud
vary. Spam detection and bulk phishing detection can have
elements in common. Both tend to have general messages
that are recognizably different from more personal email.
Moreover, because the same email is blasted out to so
many people, the identification systems can quickly learn to
recognize the bad email and ones that are similar to it.

On the other hand, filtering spear phishing attacks
generally has to be done differently. As explained earlier,



spear phishing emails are custom crafted and highly
targeted and, because this is different from generic bulk
phishing emails, require different detection. Typically, a
spear phishing filter will look to see if the sender’s email
address is deceptive or if there is a detectable call to action
in the email body. The sender’s email address can be an
important clue. For example, spear phishing often appears
to come from someone that is known to the victim.
Accordingly, the potential victim’s contact list can be
scanned for display names that look the same but have
different email addresses. While not a perfect detector
(after all, there are a lot of “John Smiths” in the United
States), it is an example of how to check for spear phishing.

Another approach for filtering out both phishing and
spear phishing emails is to identify suspicious links in the
body of the email. Many domain names associated with
phishing are known and tracked by security organizations.
These organizations publish a list of bad domains and bad
IP addresses, sometimes as part of a subscription. A
defensive filter can look at URLs within the body,
determine the domain and the IP address, and check if the
domain and/or IP address is flagged as potentially
malicious. If so, the email can be discarded.

The final filtration approach I will discuss in this chapter
is detecting spoofed email addresses, which claim to be
from an address that it is not. As discussed earlier, the
default email protocol has no ability to verify that the
sender’s email address is authentic. A pair of additional
technologies called DomainKeys Identified Mail, or DKIM,
and Sender Policy Framework, or SPF, are technologies
used for providing some partial verification of the sender.
Neither technology attempts to prove that the sender
controls the claimed address. Instead, they are used during
the actual reception of the email to see if the message
came from a computer authorized to send email for the



claimed domain. That is, if the sender claimed to have a
gmail.com address (e.g., bob@gmail.com), the message
must have been sent by a Google-authorized server or it is
not authentic. DKIM works by providing an authorized
signature, while SPF works by identifying authorized IP
addresses for senders. Either technology provides similar
security. Additional mechanisms can be used to publish
which of these two methods a domain is using so that
recipients can determine how to verify the sender
addresses.

Controlling Messages

The protections in this section focus on different security
concerns than those discussed elsewhere in the chapter.
However, the conclusion ties it back to issues such as
phishing. The protections I am introducing here provide
more security email communications through the use of
cryptography and/or access controls.

Email transmissions by default are neither encrypted
nor authenticated. Without encryption, the message cannot
be kept confidential if, for example, it were accidentally
forwarded to an unintended recipient. Without
authentication, it is impossible to know, for sure, who sent
the message. Various systems have been proposed that
would add these kinds of security features into email.

A relatively old system is known as S/MIME, which
stands for Secure/Multipurpose Internet Mail Extensions.
S/MIME uses public key cryptography, similar to TLS, to
provide authenticating signatures over unencrypted email
or to provide both encryption and signatures for email.

The basic operation of S/MIME starts with an email
sender obtaining a private key and a certificate (which
contains the corresponding public key as discussed in
Chapter 6). When an email message is sent, the private key
is used to generate a signature over the message. The



signature is sent with the message. To be verified at the
other side, the recipient must have a copy of the sender’s
certificate. Using the public key in the certificate, the
contents of the message can be verified as authentic.

It is also possible to encrypt the email message provided
that the sender has a certificate of the recipient (containing
an RSA public key). Remember that when performing RSA
public key encryption, it is the public key (which is in the
certificate) that encrypts and the private key that decrypts.
If a sender has the recipient’s certificate, the RSA public
key is extracted and used to encrypt the message. The
sender will still use their private key to sign. To repeat, the
message will be signed with the sender’s private key and
encrypted with the recipient’s public key. When the
recipient receives the message, the recipient’s private key
is used to decrypt the message and obtain the original
message. The message is verified by using the public key
from the sender’s certificate.

Two challenges keep S/MIME from being widely
adopted. The first is that S/MIME performs end-to-end
encryption. It cannot be decrypted by systems in the
middle. This means it cannot be used by webmail that does
not have explicit and built-in support. The second issue is
that exchanging certificates is challenging. If the certificate
is signed by a CA, it is relatively easy to distribute. It can
be sent via any channel, even an untrusted one, because
the recipient can validate the certificate using the CA that
issued it. However, if the certificate is created self-signed,
which is quite common, the only way the certificate can be
trusted is if it is exchanged through a secure channel (e.g.,
in person or over a secure connection). In any event, the
need to keep track of a certificate for everyone that you
want to send a message to is a bit awkward and does not
scale well.



A more modern alternative is Microsoft’s Message
Encryption technology. This technology not only enables
encryption and authentication, it also enables various
access controls such as whether or not a received message
can be forwarded, printed, or even kept permanently.
Microsoft’s system works by enabling encryption and
access controls under certain triggers. For example, a user
can set a sensitivity label (e.g., “confidential”) in Outlook.6
The label may be associated with an encryption operation
and access controls, all of which are applied to the message
when it is sent.

When the message is delivered to another user of
Microsoft (with the appropriate license), Microsoft’s
software (e.g., Outlook) will decrypt the message for the
recipient to view. It will also enforce the access controls.
For users that do not use Microsoft or otherwise do not
have the built-in capabilities, a link is sent instead of the
original email. Once received, the user is required to create
a Microsoft login if they do not already have one. The link
permits them to log in and view the message in a controlled
application that performs the decryption and the
enforcement of access controls.

These systems are not directly related to preventing
attacks discussed in this chapter. However, they can
provide some protections against phishing. For S/MIME,
for example, if a recipient is used to receiving sensitive
messages signed by the sender, they may notice the spear
phishing email that claims to be from a sender, but lacks
the signature to prove it. It is also possible to introduce
policies that require messages to be signed for certain
types of messages.

Microsoft’s Message Encryption provides the same
benefit. If messages about financial transactions are
expected to arrive with a specific sensitivity label, then
users may recognize the fraudulent emails that do not have



the appropriate label. Moreover, the access controls may
also be useful at preventing exploitation. I mentioned that a
sensitivity label can be applied manually, but Microsoft
Office 365 can be automatically configured to apply
sensitivity labels upon certain stimuli, including keywords
detected in the text. So, suppose that a spear phishing
email arrived about changing an account for a payment. An
automatic policy could be implemented that would flag any
message discussing financial data that did not arrive
encrypted.

The other big benefit to Microsoft’s Message Encryption
is simply the downstream control. The access controls that
can be put on a message include a do-not-forward control
and a mechanism for automatically deleting in the future.
This limits the amount of sensitive data on other machines
and accounts, reducing the risk that if those machines or
accounts are compromised, the sender’s data will also be
compromised.

Investigating Social Media Misuse

The previous two sections both focused on fraudulent
messages, such as phishing and spam. But what about
artificial amplification and reputation attacks?

Unfortunately, these types of problems are significantly
less solvable with defenses. Defeating a reputation attack
commonly requires the use of expert services that have the
capabilities to monitor social media for references to an
organization’s brand. ZeroFox, for example, is an American
company that offers brand monitoring and remediation.
They have capabilities for scanning a wide range of sources
to detect when there is impersonation related to an
organization or when false information is being published
about an organization. Once the false info is detected, the
victim can request that the social media providers remove
the false content, which they typically have been willing to
do.



In terms of disinformation and artificial amplification,
the best thing a person can do for themselves is simply stop
using social media. Social networking sites do not have
great track records with privacy, introduce additional
channels for malware and fraud, and may not even be
healthy for mental health. At least one 2018 study of
college students, for example, found that college students
that strictly limited using social media reported improved
mental health outcomes [140].

Clearly, exiting social media may not be viable for an
organization that reaches a wide range of customers via
those channels. And even if they exited, that would not stop
brand exploitation by others. In fact, it might make it
worse. Nevertheless, it is my professional advice that
private individuals, at least, should limit social media use
both in time and in scope. If enough people reduced their
interactions with social media, there would be a natural
reduction in amplification and attacks on reputation.

Summary

Email operations and social media sites are two common
communication channels that are extensively used for
personal and professional purposes. However, these
channels are also prone to various threats such as spam,
phishing, bulk phishing, and spear phishing, which are
aimed at stealing sensitive information or money from
users.

Spam refers to unsolicited messages sent to a large
number of users, whereas phishing involves tricking users
into providing personal information by masquerading as a
trustworthy entity. Bulk phishing targets a large group of
users, whereas spear phishing is a more targeted approach
to tricking a specific user into revealing sensitive
information.



Artificial amplification and disinformation are major
threats that have emerged in recent times. These threats
involve the spread of false information and the
amplification of opinions using artificial means such as bots
and fake accounts. Reputation attacks are another common
threat that targets individuals or organizations by
damaging their reputation through negative comments or
reviews. These attacks can have serious consequences for
the target’s personal and professional life.

To defend against these threats, various strategies can
be implemented. Filtering fraudulent messages is an
effective way to prevent spam and phishing attacks.
Controlling messages by setting up security protocols,
monitoring user activity, and implementing strong
password policies can also help in reducing the likelihood
of attacks. Investigating social media misuse involves
identifying and removing fake accounts, monitoring
suspicious activity, and reporting potential security
breaches. Reducing the total amount of social media usage
would naturally result in a reduction of social media misuse
and impact.

Further Reading

Stallings’ book Cryptography and Network Security

includes an entire chapter entitled “Electronic Mail
Security.” It provides a more detailed background about
the architecture of email systems, formats of email
messages, and other background information. The chapter
also explains in detail the various threats against email and
the defenses such as DKIM, SPF, DMARC, and others
[250]. Peterson and Davie’s book Computer Networks also
covers email specifically and overlay networks generally.
This book does not discuss email and social media as
examples of overlay networks and instead focuses on more



classic peer-to-peer networking examples but the concepts
and principles apply [205, Chapter 9].

In terms of analyzing the different kinds of evil
messages in email and social media, each class has its own
area of study. Here are a few recommendations for each
one.

Spam detection and elimination has been going on for a
long time, with paper from the early 2000s to the present
[106, 113, 231, 262]. Since the beginning, the profit model
has been of fascination to researchers [144]. More modern
papers analyze spam in social media as well as in email [93,
146, 289].

There are many articles and books written about
phishing. In previous chapters, I recommended
Introduction to Cyberdeception for both the overall
psychology and defensive deception. It also discusses
phishing and the concepts and principles behind it [225].
Anderson’s chapter on psychology is also useful for
thinking about how phishing works [40, Chapter 3].
Another interesting read is Social Engineering [125]. In
some ways, though, the best reading about phishing is
simply to see as many examples as possible. I find many
examples to show my classes with simple Google searches.
For example, UC Berkeley’s Information Security Office
provides an archive of such emails [6]. You may also find it
useful to review trade papers such as Cofense’s “Annual
State of Phishing Report” [22].

A helpful analysis of trends with respect to ransomware
is the reports produced by Sophos. The most recent report
is “The State of Ransomware 2022,” and, of course, there
are reports for previous years. These reports cover
information about how often ransomware occurs, how often
the ransom is paid, and the average cost, among others
[26]. There are many articles that analyze how ransomware
and ransomware defenses are evolving and the impact of



ransomware on businesses [68, 196, 200, 285, 290]. In
terms of defense, CISA’s MS-ISAC (Multi-State Information
Sharing and Analysis Center) offers a reasonably good and
understandable guide [18]. For a more comprehensive
treatment, you might try The Art of Cyberwarfare: An

Investigator’s Guide to Espionage, Ransomware, and

Organized Cybercrime [94].
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Footnotes
Email addresses can be associated with computers for certain automated

tasks, but this is an unusual adaptation of a network that is primarily human.

 
Technically, the MUA may transmit to a Mail Submission Agent (MSA) first,

and the MSA gives the message to the MTA. However, these are often on the
same machine and work as a single agent. For simplicity, I have removed the
MSA from the explanation.

 
This is not a real address; please do not send email to this address.

 
In the movie Inception, the protagonists enter the dreams of a target and

plant a thought into his mind. They need the thought to seem self-generated, so
they place some ideas into his subconscious that later are repeated back to him
from himself.

 
It is possible, of course, for people to legitimately sell their behaviors and

voice to another. This could be a kind of spokesman or promoter engagement.
However, it is usually desirable that this purchase be disclosed so that
observers can factor that information into their opinions.

 
This functionality is not available in the default Office 365 license, either for

personal or business. As of the time of this writing, it requires Microsoft
Business Premium.

 



A: Binary and Hexadecimal Numbers

Computers are built on the concept of binary numbers:
ones and zeros. A full explanation of why is beyond the
scope of this book, but the basic idea is that computers
store value as either “something is there” or “nothing is
there.” While the computer is running, for example, a
computer can recognize a raised power level as a “1” and a
lower (or off) power level as a “0”. When the computer is
off, data stored to a hard disk can be kept permanently by
magnetizing parts of a disk. The computer again recognizes
“magnetized” and “not magnetized” as on/off values.

To understand binary numbers, however, it actually
requires understanding how our “normal” numbers work.
By normal, I mean “base-10” numbers. If you can
understand base-10, you can also understand base-2, which
are binary numbers.

Base-10 Numbers: Decimal

When you see the number 111, you see three separate 1s.
And yet, you know that this is not three 1s added together.
Even though it is the same three symbols, you know that
the value of the symbol depends on where it is placed.

In everyday society, the number 111 has a value of one
hundred and eleven. Let’s break down how that works.
Suppose we start with the right-most digit. How much is
that 1 worth? Well, it is worth 1, actually. If you replace it
with a 0, the value will decrease by 1.

But how much is the next 1 worth? If you replace it with
0, how much will the value of the number decrease by? The
answer is 10. You may remember in grade school that we
actually name the columns of our numbers. The right-most
digit is in the 1s column, and the next digit to the left is in



the 10s column. This means a 1 in the 1s column is worth 1,
while a 1 in the 10s column is worth ten.

An easy way to think about this is using coins. In the
United States, a penny is worth one cent (arguably, it is not
worth anything at all), and a dime is worth ten cents. So
even if you have one penny and one dime, you do not have
two cents. The dime is worth more.

Moving one more column to the left, we have the 100s
column and, as you might have already suspected, a 1 in
this column is worth 100.

Why, however, is it a 1s column, a 10s column, and a
100s column? It is not arbitrary! First, notice that in this
number system, there are 10 symbols for representing
numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. With just 10
symbols, any number can be represented. If we count
upward from 0, we can just advance to the next number
until we hit 9. Once we hit 9 there is no new symbol to use.
At that point, it is necessary to move over to a new column.
In effect, we reset the counter in the 1s column and
increase the counter in the 10s column because we just

reached the number 10!
In other words, when counting upward and we run out

of symbols in one column, we need the next column to the
left to “count” or keep track of that so we can reset and
start over again. So the next column over must have a value
equal to the counter when the reset happens. If the next
number after 9 is 10, then the value of the column to the
left must be 10.

But what about the 100s column? Well, remember that
counting in the 10s column isn’t counting by 1s. It is
counting by 10s. So the 100s column has to keep track of
how many times the 10s column has maxed out and reset.

There is, however, another way of looking at the value of
the column. It has to do with how base-10 numbers are
constructed. In base-10, the value of each column is ten



raised to a power (don’t forget that anything raised to the 0
power is 1!!!).

Place 3 Place 2 Place 1 Place 0

10 1
1000 100 10 1

Once these columns are established, the value of any
base-10 number is caclulated by multiplying the value of
the column times the symbol in the column. Again, using
111 as an example:

Make sure you understand this before moving on. Try
writing out some other numbers and expanding them in
this way. If you can do that, everything else in this
appendix will be easier!

Base-2 Numbers: Binary

As stated above, the number system you are most familiar
with is base-10. Binary numbers, however, are not that
different. But instead of being base-10, they are base-2.
This means that there are only two symbols instead of ten,
and the value of each column will be a power of 2 instead of
a power of 10.

As a starting point, here are the first ten binary numbers
written along side the base-10 equivalent that you are most
familiar with.

 0      0

 1      1

 2     10

 3     11

 4    100



 5    101

 6    110

 7    111

 8   1000

 9   1001

Why does binary work this way? Suppose that we want
to just count from 0 to 10. We start with 0 (which is one of
our two symbols) and when adding 1 we get 1! So far, so
good! But we are now out of symbols because, again, we
only have two: “0” and “1”! There is no symbol beyond 1.
Just like there is no symbol beyond 9 in base 10, there is no
symbol beyond 1 in base-2.

Remember that in base-10, when we ran out of symbols
we reset the column to 0 and added 1 to the next column.
So, to add 1 and 1 in binary, the right-most column resets
back to 0 and the next left column is increased.

More importantly, each column’s value can be easily
calculated using the “base raised to a power” approach
discussed previously for base 10. Recall that each column
in base 10 was 10 raised to a power. For base-2, it is 2
raised to a power as shown below:

Place 3 Place 2 Place 1 Place 0

2 1
8 4 2 1

This means that it is relatively easy to decode small
binary values. Take the binary number 1100. How much is
this worth?

So, working out the math, 1100 in binary is 12 in base-
10.



Of course, if I ask you what is 10, there is a real
problem. Am I asking what is 10 in base-2, or am I asking
what is 10 in base-10? When displaying numbers for
humans to read, most computers use “prefixes” for
numbers not in base-10. The common prefix for binary is
“0b”. So if you see “10”, you can usually assume base-10
unless told otherwise. But 0b10 is the binary number 10,
which is 2 in decimal.

Base-16 Numbers: Hexadecimal

It is also common to see certain kinds of computer numbers
written in base-16, which is known as hexadecimal. If you
are beginning to see the pattern, you should have guessed
that this means there are 16 symbols and the value of each
column is a power of 16.

You might be wondering how you can have 16 symbols.
After all, you are only familiar with 10 (0 through 9).
Hexadecimal adds in the letters “A” through “F” for the
values of 10–15 respectively. Thus, counting in “hex” is as
follows:

 0      0

 1      1

 2      2

 3      3

 4      4

 5      5

 6      6

 7      7

 8      8

 9      9

 10     A

 11     B

 12     C

 13     D

 14     E



 15     F

The following tables show the value of hexadecimal
columns as compared with binary and decimal columns.

  Place 3 Place 2 Place 1 Place 0

Binary
Decimal
Hexadecimal

Or, multiplied out:

  Place 3 Place 2 Place 1 Place 0

Binary 8 4 2 1
Decimal 1000 100 10 1
Hexadecimal 4096 256 16 1

All of these number systems work in the same way:
place value is determined by adding one to an exponent on
the base.

Hexadecimal also has a common prefix in computer
usage: “0x”. So, for example 0x10 is not decimal 10.
Rather, it is 16. Remember, the column to the left of the 1s
column in hex is worth 16.

So, as an exercise, what is the value of 0x3A0F? Using
the tables above, you can see that the value of the column
the 3 is in is 4096, the A is in the 256ths column, the zero is
ignored, and the F is in the 1s column.

Why do we care about hexadecimal in the first place?
Consider the following table with hex on the left and binary
on the right:

 0      0

 1      1



 2     10

 3     11

 4    100

 5    101

 6    110

 7    111

 8   1000

 9   1001

 A   1010

 B   1011

 C   1100

 D   1101

 E   1110

 F   1111

We ran out of digits in hex at exactly the same time that
we needed to go from 4 columns to 5 in binary! That’s
really helpful, because it means we can trivially convert
back and forth between a computer’s native and sprawling
binary numbers to the much more human-friendly and
compact hex numbers. People even get good enough at this
that they can just translate them on sight. Here’s an
example with binary on top and hex underneath:

 101 1100 1010 0011 0111

 5   c    a    3    7

No matter how big a binary number gets, you can take
every four bits and write them as a single hexadecimal
digit. For this reason many of the examples in this book,
such as the cryptography examples, put the output into
hex.

B: Computers, Data, and Programs



Computer Hardware

For purposes of this book, there are three major pieces of
computer hardware that are necessary to understand how a
computer operates.

The first component is the computer’s main processor:
the Central Processing Unit (CPU). The CPU is sometimes
described as the “brain” of a computer. As will be
discussed later in this appendix, processors have
“instructions” that are commands that trigger different
processor functions. Some of the processor’s major
functions are:

Mathematical computations
Memory operations (load/store in RAM)
Control operations
Security operations
CPUs largely work with data in system memory,

typically RAM (Random Access Memory). Computer
memory can be represented by a big long list of addresses
that start at 0 and go up to the memory’s size. The CPU can
store data in RAM at any one of these addresses and can
retrieve it again in the future. RAM, however, will not store
or retain data when the power is off.

To store data long term, permanent or “persistent”
storage is needed. Such storage typically comes in the form
of hard disks, USB sticks or drives, optical media such as
CDs, DVDs, or Blu-Ray disks, and so forth. Although the
optical media typically can only be written once, hard
drives and USB sticks can store, retrieve, and erase data.
Moreover, the data is not lost when the power is shut down
to the system.

So why do computers use RAM at all? RAM is many,
many times faster than a hard drive or USB stick. If you
tried running your programs from hard drives, it would be
incredibly slow and very likely would not function well.



Data stored, whether in RAM or on disk, is measured in
terms of the number of bytes. A “byte” is 8 bits, where a bit
is a single 1 or 0 (binary). Approximately 1,000 bytes
(1,024 to be exact) is a kilobyte (KB). Approximately one
million bytes is a megabyte (MB). Gigabytes and Terabytes
are approximately one billion and one trillion bytes
respectively.

Data Formats

As mentioned several times in this book, all computer data
is a number. So how does that work? How can a word
document be a number? How can a photograph?

To store data, an “encoding” format must be chosen and
agreed upon. An encoding format is a way of translating
data to numbers and back again. This encoding is arbitrary

but must be agreed upon by the programs that use the
data. This may seem strange, but we humans do it all the
time. Think about the number pad on a phone. You can
press a number on a phone to represent a number (e.g., for
dialing), for letters (e.g., when you need to input words),
and for commands (e.g., “press one for English.”). The
number is interpreted differently based on context.

An early encoding format for letters still used today is
called ASCII (pronounced “ask-ee”). This format assigns a
number that could fit into a single byte to each letter of the
English alphabet, plus punctuation, and a few other
symbols. For example, in ASCII, the number for the letter
‘A’ is 65 and the number for the letter ‘a’ is 97. Full charts
of this encoding can be found online with a simple Google
search.

Encoding formats are sometimes evaluated in terms of
how much space it takes to encode data. For example,
using ASCII, each character for western languages takes
up one byte. So text containing 200 characters (don’t forget



punctuation and spaces!) will require 200 bytes of storage.
Of course, word documents are larger than this because
they contain control information such as fonts, formatting,
and so forth. This data must also be encoded in some way.

It is not uncommon to have multiple layers of encoding.
Data for a webpage can be created using HyperText
Markup Language or HTML. But HTML is, itself, text and
must be encoded for actual storage on a hard drive (e.g.,
using ASCII). Here is a simple HTML document:

 <HTML>

 <BODY>

 <B>Hello</B> <I>World</I>!

 </BODY>

 </HTML>

HTML enables a document to store formatting
information along with the text. The “  B  ” tags, for
example, encode that the data in between should be in bold
and “  I  ” indicates that the text within the tags should
be italicized. Again, all of this HTML data is, itself, text that
must be encoded into numbers for storage on the file
system.

Visual data like photographs are also stored as numbers.
A picture on a computer is made up of many tiny dots
called “pixels” that, when displayed together, are
understood by the human brain to be an image. Suppose
that the image is 800 pixels by 600 pixels. The total area of
the image is 480,000 pixels. If the image is black and white,
then one way to represent it is a single bit for a pixel. If the
bit is a 1, the pixel is white. If it is 0, the pixel is black. It
would take 480,000 bits (60,000 bytes) of uncompressed
data store this 800 by 600 black-and-white picture. To
illustrate, look at Figures B-1 and B-2.



Figure B-1  In this very basic example, a 4-bit number can be encoded as a
 black-and-white image. Clearly, the pixels in this image are much bigger

than a display

Figure B-2  In a slightly more interesting example, a 80-bit number can be
encoded as an  black-and-white image. Although the pixels are
enormously sized, it begins to illustrate how an image can be created from a
binary number

If the picture needs to be color, then more bits are
required for each pixel to represent the color information
that goes along with the pixel. To represent 16 colors, for
example, it would take four bits to represent each color
individually. So an uncompressed file using this



hypothetical format would take 240,000 bytes (60,000
bytes times 4).

Most pictures are generally not stored this way because
it takes up too much space. Compression formats enable
picture data to be stored in less space using various
techniques. For example, large blocks of the picture with
the same color can be represented together instead of each
pixel individually. Videos have even more compression
techniques to keep sizes down.

The key point, however, is that all data is converted,
through an encoding means, into some kind of numeric
format that can be stored on disk and in memory.

One last point: even computer instructions are numbers.
Computer programs, which are instructions to the
processor, must be numbers as well.

Program Execution

Given all of the amazing things that computer programs
can do, it may be surprising to learn that, in the end, all
computer programs are converted one way or another into
operations that are relatively simple. A program is a set of
instructions for a computer processor. The instructions are
either ones and zeros that can be understood directly (or
natively) by the CPU, or they are instructions that are
translated by another program into the CPU’s language.

Different types or families of CPUs have different
languages. These languages are called instruction sets. An
instruction set is just the list of instructions that the
processor can understand. Despite the fact that different
processor families use different instruction sets, the types

of instructions are pretty consistent. Three of the most
crucial types of instructions almost all CPUs have are:

Arithmetic operations
Memory operations



Branching operations
Arithmetic operations are, unsurprisingly, instructions

related to adding, subtracting, multiplying, and dividing.
Memory operations, on the other hand, have to do with

loading and storing information into Random Access
Memory (RAM). CPUs typically can only store a very small
amount of data in the processor itself. This data is stored in
registers, memory storage slots that can hold a unit of data.
The registers of many CPUs each hold a 64-bit binary
number. For example, an x86-64 processor (the most
common CPU architecture for Windows computers these
days) has at least 40 registers. One register holds the
“instruction pointer,” containing a memory address of the
next instruction to be executed. Another, the “status
register,” holds data about the status of the processor and
about the calculation most recently performed.

A large number of the registers, of course, store data
primarily for immediate computations. For example, most
arithmetic operations require some or all of the data to be
located in registers. The results of operations are often
stored in registers as well. But there needs to be a way to
load data into registers and a way to save data out of
registers (before, for example, it gets overwritten by the
next operation). Memory operations allow the CPU to load
the data from RAM and store results to RAM as needed.

The last set of operations, branching operations, are, in
many ways, what makes a program a program. As I stated
above, a program is a set of instructions. Running a
program involves passing those instructions to the CPU to
execute. If there was no ability to branch (take different
paths through the set of instructions), the CPU could only
execute the instructions one right after the other until they
were finished. The program would do the same thing every
single time it was run, no matter what input it received. A



branching operation changes this by changing which
instruction runs next based on some condition.

Branching instructions are often structured like this: if
the value in a register is 0, jump ahead 100 instructions.
There are also instructions like jump that are not
conditional but instead mandate a jump to some specific
instruction.

As discussed earlier, a number stored in a computer
could be used in one place to be a number, or a letter in
another place, or the number could be an instruction to a
processor. So, running a program is basically sending a
bunch of numbers to the processor that the processor
interprets as instructions.

Where did the numbers come from? Running a program
typically involves copying some sequence of instructions
and other data out of storage into RAM. Storage
technologies, including hard drives, are typically too slow
for program execution.

The RAM memory is basically one big long sequence of
memory locations. Commonly the addresses are based on
bytes so that every one byte (eight bits) is a single address.
For various reasons, the first memory location is identified
as 0 instead of 1 and it is usually writen out with leading
zeros: 0x00000000. The actual number of leading zeros will
depend on the hardware and software of the system. The 8
digits I am using are meant to be illustrative.

Also, notice the “0x” prefix. Recall from the discussion of
binary in Appendix A that “0x” is a prefix that indicates
hexadecimal notation and is often used as a shorthand for
binary numbers. Because the memory addresses are used
internally by the computer they are, themselves, stored in
binary. So it is common to write them in this form.

The memory addressing is sequential. The next byte of
memory has the address of 1 or, written in hexadecimal
and with leading zeros, 0x00000001. The memory



addresses can be used flexibly depending on the system.
Many systems use multiple bytes together as a single unit.
These units are called words and are commonly 32-bits (4
bytes) and 64-bits (8 bytes). But these systems do not need
to change the addressing of memory. They can simply have
the first word at 0 (0x00000000) and the second word at 4
(0x00000004). This is the case with instructions, which are
almost never one byte.

When a process starts up, the program’s instructions are
copied into memory, there is a loading process wherein the
address of the first instruction is sent to the CPU, which
stores it as the current instruction address. The CPU loads
the instruction out of memory at the current instruction
address and executes the loaded instruction. If the
instruction is not a branching instruction, the CPU will
increase the current instruction address by the appropriate
amount so that the CPU can then load and execute the next
instruction in memory.

On the other hand, if it is a branching instruction, the
instruction will tell the CPU the next address to use as the
current instruction address. This is similar to a “Choose-
Your-Own-Adventure” book you may have read as a kid. If
you were reading the book, you would go on from one page
to the next unless it had instructions at the bottom to turn
to a specific page, often dependent on a choice you made.

Although an example from a real CPU would be helpful,
instructions in modern CPUs can be a little bit complicated
and require more explanation than is appropriate for this
background section. As an alternative, I will walk through
an example using a made-up set of assembly instructions.

CPU Simulation Example

In order to help you understand how a processor works
with its registers and with memory (RAM), I will walk you
through a very simple and simplified paper-and-pencil



example. This example will illustrate how instructions to a
computer processor are just numbers and how those
numbers are interpreted. It will also illustrate how these
commands can be used to compute values. I will walk
through two very simple programs. The first will basically
just count to 3. The other will average 10 numbers stored
in memory. You should try to do these steps on your own
with pencil and paper before reading the solution.

Before walking through the exercise, I need to provide
some setup instructions. For this exercise to work, we are
going to have to create (in our imaginations) our very own
computer processor. Why? Because real processors are
much too complicated. It would be very difficult to do an
exercise like this with real instructions. I will help you
imagine up a much simpler processor.

As discussed above, a CPU makes use of some basic
building blocks. Computer program instructions are usually
stored in RAM along with data that it needs. It may also
require some space for intermediate results. As discussed
in Chapter 7, it also needs to hold the stack. In this
example, we will not be simulating functions or subroutines
and will not need a stack.

The CPU also has registers. The registers are special
places where small amounts of data can be stored for the
CPU to have (very) quick access to while it is executing
instructions. These registers store only a small amount
data. In a 32-bit computer, they generally store only 32 bits
each; while in a 64-bit system, they generally store 64 bit
values. But for purposes of this simulation, it would be a
pain to work with even 32 bits. So our computer will only
have 8-bit registers!

Related to our small registers is a small memory. In a
real computer, memory can be many gigabytes. We are not
going to try and simulate gigabytes of memory! That would
take too much paper! Instead, our memory will only have



256 addresses (0 through 255) and each address holds
exactly one byte (or 8 bits). This introduces many
limitations. Because our memory can only hold 8 bits in an
address, each memory storage slot’s maximum value is
255! For a real computer, this would be a serious limitation
indeed. But for our simulation, we only want to work with
relatively small numbers that make sense for paper-and-
pencil computations.

I have already explained earlier in this appendix the
concepts for how a processor (CPU) works. The CPU reads
an instruction out of RAM, performs the instruction, and
then moves on to a new instruction. We are going to do that
here in our simulation! So, to get started, we need to have
a list of instructions the CPU can understand.

In our simulation, the instructions are going to be 8 bits
each (yes, the same size as our registers and our memory
locations). When a CPU receives an instruction, the bits are
broken up into pieces, each of which means a different
thing. Typically, some number of bits at the beginning are
called the Op Code and are the basic type of command. Our
little simple and imaginary CPU will only understand 8 op
codes. The first 3 bits (from the left-hand side) of every
instruction will be the op code for that instruction. The
following 5 bits will be used to specify the parameters
which define the data on which the instruction is going to
be performed. The set of all instructions for a CPU is called
its instruction set.

Our 8-bit computer has the following instruction set:
Load: 000
Store: 001
Add: 010
Subtract: 011
Multiply: 100
Divide: 101
Jump: 110



Jump if not zero: 111
There are 3 types of instruction in this instruction set.

The first is data movement: STORE and LOAD instructions.
The first three bits (bits 1–3) define the instruction. The
next 2 bits (bits 4–5) specify the register to store from or
load to. The next 2 bits (bits 6–7) specify the register
holding the memory address to store to or load from. The
last bit is ignored.

In order to better understand how these instructions
work, consider the following sequence of 8 bits:
‘00001110’. This can be parsed as such:

Bits 1–3: 000 means Load.
Bits 4–5: 01 specifies register r1 which is used to hold the
data loaded from memory.
Bits 6–7: 11 specifies register r3 for loading the address
from memory.
So, those 8 bits actually mean “Load r1 r3”. When the

CPU encounters these 8 bits, it will look in the r3 register,
get a memory address, load the value stored in memory at
that address, and store the result in r1. You might
remember that hexadecimal is a shorthand way to
representing binary values. Therefore, these 8 bits can be
represented using hexadecimal as 0x0E and it means the
same thing. This instruction is illustrated in Figure B-3.



Figure B-3  An example LOAD instruction

The second is type of instructions are the arithmetic
instructions: ADD, SUBTRACT, MULTIPLY, and DIVIDE.
For these instructions, there are two values that need to be
provided to perform the arithmetic operation on and then a
location where the result will be saved. The first 3 bits (bits
1–3) are the instruction. The next bit (bit 4) specifies
whether the second value for the operation is taken from a
register (1) or is given as a literal number (0). The next 2
bits (bits 5–6) specify the register holding the first value for
the operation. It is also the register where the operation
result will be saved to. The final 2 bits (bits 7–8) specify
either the register holding the second value or the literal
value. Note that the DIVIDE instruction will halt the
processor if there is a divide by zero error and it only
returns the whole integer number of the division (no
fractions or decimals).

It should also be noted that if doing these operations
results in an answer that is bigger than 255 (the biggest
number a register or memory address can hold), the value
just wraps around. That is,  ,  and so
forth. Some real processor instructions will save an



overflow value in another register is overflow occurs. Our
simple system ignores any complexity.

Repeating our exercise from above, here is an example
ADD instruction of ‘01000010’

Bits 1–3: 010 means Add.
Bit 4: 0 means the last parameter is a number (not a
register).
Bits 5–6: 00 specifies register r0, from which a value will
be loaded, and in which the final result will also be
stored.
Bits 6–7: 10 specifies the number (not register) 2, which
will be added into r0.
So, those 8 bits actually mean “Add r0 2”. When the

CPU encounters these 8 bits, it will take the value stored in
r0, add 2 to it and then place it back into r0. The
hexadecimal for this instruction is 0x42. This instruction is
illustrated in Figure B-4.

Figure B-4  An example ADD instruction

The third type are the jump instructions. The first is the
JUMP instruction, also called the unconditional jump. This
instruction has only 1 parameter. Bits 4–5 specify the
register which holds the address of where the execution



should jump to. The last 3 bits are ignored. The second is
the ‘Jump if not zero’ instruction (or JNZ), also called the
conditional jump. This takes 2 parameters. The first bit (bit
4) after the instruction itself specifies if the processor
should jump forward or backward. The next 4 bits (bits 5–
8) are a literal value of how many instructions to jump
forward (0) or backward (1). When this instruction is
encountered, the CPU checks the value inside a specific
register (in actual systems, it’s a flag, instead of a full
register value) to see if its value is zero. If the condition is
met, then it will jump execution to a different place in the
program and continue execution from there. In this
hypothetical CPU, we will use r3 to be the register used to
check for zero for a conditional jump. A JNZ instruction, or
something like it, is roughly how if-statements are
implemented at a low level.

In our final example, consider the 8 bits: ‘11101001’.
Bits 1–3: 111 means Jump if not zero.
Bit 4: 0 means a jump forward.
Bits 5–8: 1001 is binary for 9. This means the processor
should jump forward by 3 instructions.
This instructions, therefore, means “Jump if not zero 9”.

One piece of information is missing here: the value of r3 is
not given. As explained above, the JNZ checks that register
for the “not zero” check. So, depending on whether the
value in r3 is zero or not, the jump may or may not be
performed. The hexadecimal for this instruction is 0xE9. I
have illustrated this JNZ instruction in Figure B-5.



Figure B-5  An example JNZ instruction

You should notice that there are only 2 bits ever allotted
for specifying registers. This means that for our
hypothetical CPU, there can only be 4 registers named as
r0, r1, r2, and r3. Similarly, the literal value can be at most
3 (0b11) when there are 2 bits, as is the case for most of
our instructions; but for the JNZ instruction, we have 4 bits,
which means that the maximum value can be 15.

Example 1: Count to 3  Now, let’s walk through a simple
program which increments register r0 until it reaches 3.
That is, when the value of register r0 reaches 3, the
program ends.

As you may have noticed, our assembly instructions are
extremely limited. For example, using these instructions,
the biggest number that can be added directly to another
number is 3 (remember, there are only two bits in an add
instruction for a number to add, so that means the biggest
number that can be added is 3). So it will take a little bit of
work to do some of the things we want to do.

The basic instructions for our program will be as
follows:
1. Add 3 to r2 (assume all registers start at 0)



 
2.

Add 1 to r0  
3.

Multiply 0 into r3  
4.

Add r2 into r3  
5.

Subtract r0 from r3  
6.

JNZ -4  
To show how the processor would see it, I have listed

the binary that goes along with each instruction in the table
below:

Instruction Binary Meaning Comment

1. 01001011 Add, r2,
3

Initialize r2 to 3

2. 01000001 Add, r0,
1

Increment r0 by 1

3. 10000000 Mul, r3,
0

Reset r3 to 0

4. 01011110 Add, r3,
r2

Get the value of r2 in r3

5. 01111100 Sub, r3,
r0

Subtract r0 from r3 to check if the target
value is reached

6. 11110100 JNZ, -4 If r3 is not zero, i.e., the target was not
reached, jump back by 4 instructions to
beginning of loop for next iteration.

If you want to try your hand at this exercise, please try
to “run” this program on your own pencil and paper before
reading how it works. Keep track of all four registers and
make sure to only jump-if-not-zero if r3 is not zero. When
you are finished, keep reading!



Did you try it? Let’s walk through the logic. The
following repeats the instructions but from a semantic
perspective (i.e., what they mean for the program).
1.

Initialize r2 to the value 3 by adding 3 (again, assume
all registers start at 0)

 
2.

Increase r0 by 1  
3.

Clear the value of r3 by setting it back to 0  
4.

Set the value of r3 to be the same as r2, which is 3  
5.

Subtract r0 from r3, which is 3 (i.e.  ).  
6.

If  is not zero, r0 is not 3 so jump back 4
instructions to instruction 2

 
That last step, the JNZ step, will always jump back until

r0 is 3. Once it is 3, when subtracted from r3, r3 becomes
0, so the JNZ stops looping.

The value of the registers is important to understand as
the program continues to execute. Table B-1 shows the
values of each of the registers as the processor executes all
the instructions and it loops over them until the value in r0
reaches the target. It is a lot to look at so I will highlight r0
when it is incremented, which is the counter we are
tracking, and the r3 values on each JNZ check.

Table B-1  The table shows the values of each of the registers as the program
executes and loops over the instructions

Instruction r0 r1 r2 r3 Comment

Add 3 to r2 0 0 3 0 initialization
Add 1 to r0 1 0 3 0 increment r0

Multiply 0 into r3 3 1 0 3 0 reset r3 to 0
Add r2 into r3 1 0 3 3 copy r2 into r3



Instruction r0 r1 r2 r3 Comment

Subtract r0 from r3 1 0 3 2 subtract 3 from r3
JNZ -4 1 0 3 2 r3 is not 0, loop

Add 1 to r0 2 0 3 2 increment r0

Multiply 0 into r3 2 0 3 0 reset r3 to 0
Add r2 into r3 2 0 3 3 copy r2 into r3
Subtract r0 from r3 2 0 3 1 subtract 3 from r3
JNZ -4 2 0 3 1 r3 is not 0, loop

Add 1 to r0 3 0 3 1 increment r0

Multiply 0 into r3 3 0 3 0 reset r3 to 0
Add r2 into r3 3 0 3 3 copy r2 into r3
Subtract r0 from r3 3 0 3 0 subtract 3 from r3
JNZ -4 3 0 3 0 r3 is 0

End of program 3 0 3 0 –

Example 2: Average Numbers in Memory  This next
exercise averages ten numbers in memory and stores the
result in memory as well. More precisely, the program will
load the numbers from memory in memory locations 0
through 9 (10 numbers total) and sum them. It will then
divide the total by ten (keeping just the whole-number part)
and store that value into memory at location 10.

The instructions for the program are:
ADD r3 3 – set r3 to 3
MULTIPLY r3 3 – increase r3 to 9
ADD r3 1 – increase r3 to 10
SUBTRACT r3 1 – decrement the memory address for
load
LOAD r0 r3 – load number into r0
ADD r2 r0 – sum loaded number into total
JNZ -3 – if r3 isn’t 0, jump back to load; the loop should
sum memory addresses 0–9
MULTIPLY r0 0 – clear r0



ADD r0 3 – set r0 to 3
MULTIPLY r0 3 – r0 is now 9
ADD r0 1 – r0 is now 10
DIVIDE r2 r0 – divide by 10
STORE r2 r0 – Store value of r2 at location 10 in r0
Note that the biggest number we can add directly into a

register at one time is 3. We can add bigger numbers if
they are already stored in a register, but if not, 3 is the
max. So in this example, to load in the number 10, for
example, we have to get creative. You will see in the first
couple of instructions that r3 is first set to 3, then
multiplied by 3 to get 9, and then incremented by 1. This
allows our r3 to be set to 10.

Of course real processors have bigger instructions and
not so many limitations. However, even real processors
sometimes have to be “creative” too and for similar
reasons. There is always some kind of operation that
cannot be done with a single or obvious instruction and
combinations must be used.

It may also help to remember how LOAD and STORE
work. LOAD has two registers as parameters. It uses the
memory address stored in the second to load the value
from memory and then stores it in the first register. So
suppose that register r3 has the value 5 in it. The
instruction “LOAD r0 r3” would go out to memory address
5, load the value there, and store it in r0.

Please try this using paper and pencil. It is not as hard
as it might look. Just make sure you keep track of your
registers! You will need to start with some numbers loaded
into memory. I suggest using the numbers 1 through 10
(stored in memory locations 0 through 9). Using this
configuration, this program will sum the numbers 1
through 10 and generate the average.

How did you do? If you did it right, and you used the
numbers 1 through 10, you should have the value 5 stored



in memory location 10.
If you struggled, here is a basic recap.

1.
The first three instructions get a value of 10 into r3;
this is one more than the maximum memory location
for the numbers we want to add

 
2.

This probably seems odd because right after adding 1
to r3 we subtract 1; but we need to have the subtract
before the JNZ so we had to start r3 at 10 instead of
9; after subtracting 1 it is 9, which is the first memory
location to load

 

3.
The load instruction loads a value from memory based
on the address in r3; the first time through this
address is 9

 
4.

The loaded number (in r0) is added into r2; because
all values start at 0, this value is now the first loaded
number

 
5.

If r3 isn’t 0 (and it is currently 9), jump back 3
instructions

 
6.

We are now repeating our loop; this time the load
value is 8 (remember we subtracted one from r3?)

 
7.

After loading the value in memory location 8, it is
added into r2, so the total is now the first two
numbers

 
8.

The loop repeats until r3 is zero; the JNZ is checked
right after loading the last number at memory
location 0

 
9.

After all loops are done, r2 will hold the total of the
ten summed numbers

 
We now need a register with the value of 10; Register



10.
g ; g

r0 is set to 0, then 3, then 9 and finally 10  
11.

The total in r2 is divided by the 10 value in r0 to get
the average

 
12.

We want to store the average in memory location 10;
the value 10 is already in r0 and we use it as the
memory address in the STORE instruction

 

C: Computer Communications and

Networking

Computer Networks

A network, as used in this book and in most network
security contexts, refers to computing resources,
generically identified as nodes, that are connected together
directly or indirectly across one or more communication
media and can engage in intentional data exchange across
the media. Note that media is the plural of medium. There
are multiple physical media used for communications
exchange but the two most common are radio waves (e.g.,
WiFi) and coaxial cables (e.g., Ethernet).

Modern networks almost always use an approach called
packet switching. The telephone system used to use a
system called circuit switching. (Imagine a switchboard
operator plugging and unplugging cables to physically
connect phone calls.) Although circuit switching still exists
in some components, it has almost completely been
replaced by packet switching. And packet switching has
always been the primary means of data transmissions (as
opposed to voice). For these reasons network security deals
with packet switching networks, and they are the only type
of network talked about in this book.



Some of the characteristics of a packet-switched
network are:
1.

Communications can be, and usually are, general

rather than specific to a certain application
 

2.
Devices of all types and purposes can participate in the
network (the generality necessitates generic names
such as “node”)

 
3.

Nodes send data to each other in discrete blocks called
packets

 
4.

Nodes have addresses used to identity source and
destinations of packets

 
5.

Smaller networks can be aggregated into larger inter-
networks by using a shared node connected to both
networks

 
6.

Routing enables packets to systematically move across
interconnected networks to find destination addresses

 
7.

Applications hosted on nodes communicate with each
other over networks and inter-networks using
protocols to harness the generic communications for
their specific needs

 

I will expand on these points in the following
paragraphs. It should be noted that nodes on a network
may be physical computers, virtual computers, a process or
program on a computer, a specialized networking devices,
or any other computing component that can have an
address on the network.

The Network Protocol Stack



A networking protocol is a term used to describe the rules
of communication between two nodes connected on a
network. The protocol tells each machine how to form,
transmit, process, and respond to messages. In everyday
life, humans use “protocols” all the time in communicating
with other humans. For example, when a person picks up
the phone, he or she typically says “Hello?” While most of
us wouldn’t think of this as a “rule”, the communications
could break down pretty quickly if someone picked up a
ringing phone and said, “Goodbye!” We use these rules to
help manage the complexities of social interactions.

Computers are not that different. If one computer wants
to “talk” to another computer, it must know how to say
“hello,” what kind of messages to send, and when to say
“goodbye.”

One of the most commonly used protocols today is
HTTP, the HyperText Transfer Protocol. HTTP is the
common protocol for the World Wide Web. When someone
connects to a web site using a web browser, the browser
sends a message, called an HTTP request, to the computer
server that hosts the web site. The web site responds to the
HTTP request with its own message, called an HTTP
response. While many types of network messages are
written in a binary format, HTTP messages are human
readable. An example HTTP request is shown in Figure C-1
and an HTTP response in Figure C-2.



Figure C-1  An HTTP GET request is commonly sent by browsers to get a
webpage

Figure C-2  Webservers send back HTTP response messages to browsers

HTTP messages are described in greater detail in
Chapter 9. The point of this example is to emphasize what a
protocol is. The HTTP protocol is the set of rules that tells
the browser how an HTTP request message is constructed
and tells the server how to put together a legitimate
response to the browser.

To better manage the complexities and configuration
issues associated with computer communications,
transmissions are typically governed by a collection of
protocols called a protocol stack. Because there are so
many necessary steps to global network communications,
no one protocol should handle them all. Network architects
create network protocols that chain together, with each
element in the chain handling a different part of the
communication processing. The chain of protocols is
sometimes called a network stack [205, Chapter 1].

In the case of HTTP, for example, the request message
sent by the browser only has information about the request
and the context of the request. This is not enough to get the
message to where it needs to be and it cannot be sent yet.
Instead, the HTTP message is first passed to another



protocol called TCP, the Transmission Control Protocol.
One of the key functions of TCP is to create a session that
enables multiple packets to be grouped together.

Packets

Data is not transmitted in a continuous stream. It is broken
up into chunks that are generically called packets. How a
packet is constructed and processed is defined by one or
more protocols. A packet usually includes two major
components: the data, also called the body or payload, and
the metadata. The metadata contains information like how
many bytes are in the packet, or when it was sent, or
information about what type of message it is. The data is
always sent or received in a sequence, so it can be depicted
as a single line of binary data. If the metadata is prepended
to the data, it is usually called a header, and most packets
have a header. Sometimes metadata is appended to the
data, and this is called a trailer.

Although HTTP messages by themselves are packets,
they are generally not referred to as such. Because HTTP
messages are easy to visualize because of their human
readability, I will use the two messages, or packets, from
Figures C-1 and C-2, to explain packets, headers, and
bodies.

In HTTP, the packets are divided into a header and a
body for data. Describing the HTTP packets as human
readable is, in reality, only half true because the data is
sometimes binary. The header is a human readable set of
directives, each demarcated by a line separator, which is
why even though the data is transmitted in a single
sequence, it is displayed broken up into lines. After the
header, which is indicated by a blank line (i.e., a line
separator immediately following the previous line
separator), is the body.



Looking at Figure C-1, you will notice there is no body.
But that makes sense because when a browser sends a
request to a web server, it is not transmitting any data. It is
requesting data. In Figure C-2, there is a header and a
body. The body is the actual data being sent back by the
server. It contains the text and images that the browser will
use to render the webpage. But the header is essential. It
has information about whether the server found the
requested information. If you have ever seen a message on
your browser that says “404, Not Found”, it was because it
received an HTTP response that indicated the server could
not find the URL. An HTTP response with a 404 error code
is depicted in Figure C-3. On the very first line is the 404
code that a browser uses to know that the web page does
not exist. Notice also that there is not data (body) in Figure
C-3 because there is no data to send. Error messages like
this one can send an error message as the body but it is not
required.

Figure C-3  The 404 “not found” response web servers send when the
requested URL does not exist

When HTTP data is found, the header also has basic
information about how much data there is. Referring back
to Figure C-2, notice the line in the header that contains
the words “Content-Length”. This field tells the browser
how many bytes of data are in the body. Without this
information, the browser would have no way of knowing
when the HTTP response packet ends.



All packets, like these HTTP packets, are more or less
atomic, meaning each packet is meant to be processed as a
unit. At the same time, however there is no guarantee that

two or more packets will be delivered together, in order, or

at all. Worse, the nature of computer networks means that
when data is actually sent, the packets will be too large and
will need to be broken up into smaller pieces. These pieces,
just like any other packets, cannot be guaranteed to arrive
together or in order or even at all.

HTTP cannot solve all of these problems by itself.
Instead, HTTP is going to hand off processing to another
protocol called TCP. Protocols can work together through a
process called encapsulation. The idea is that an HTTP
packet can be completely encapsulated within another
packet, like TCP. This means that entire HTTP packet,
header and all, becomes the data for the TCP packet. The
TCP packet has its own metadata for its own operations in
its own header. TCP does not need to know anything about
the data. TCP, for example, does not need to know that the
data it is carrying is HTTP. All TCP packets have to worry
about is performing their assignment with the data they
have been given (whatever it is).

Sessions

Not only can packets like HTTP be encapsulated in packets
like TCP, but HTTP operations are ecnapsulated within TCP
operations. What I mean is, HTTP is trying to request a
page from a website and receive a response. That operation
is encapsulated inside TCP’s operations. TCP operations
include creating a session.

A session, at least in this context, is the concept of all
the data that is meant to be grouped together across
packets. The TCP protocol is designed to create reliable

sessions. TCP is responsible for making sure that data will
be received, will be received in order, and received without



error. As I explained, packets are not grouped together by
the nature of networks. It requires a communications
protocol to force them into a session.

TCP does this by putting indexing information into its
headers as well as some error detection information. This
information is transmitted in TCP packets. When those
packets are received, TCP examines the indexing
information to make sure packets are put in order. It also
checks the error detection information to see if the packet
needs to be discarded. If everything is correct, it sends
back a separate acknowledgement about the data that was
received. If the sender does not receive an
acknowledgement within a specific period of time, it will
resend the data.

This is really crucial. Although a browser and a web
server are initiating requests and responses, separate TCP
components process their own requests and responses in
order to make sure that the HTTP messages are received
and delivered. Also notice that there is a decapsulation
process on the other side of encapsulation. Just as the
HTTP message was encapsulated in TCP on the sender
side, that same message is decapsulated on the receiver
side after TCP has ensured that it is in order and correct.
This process is depicted in Figure C-4.



Figure C-4  Webservers send back HTTP response messages to browsers

Ports

TCP serves one other function besides creating sessions. It
also performs an operation called multiplexing.
Multiplexing means mixing data together from multiple
sources into a single channel. The browser is not the only
program transmitting data on the network, after all. There
has to be a way to identify data meant for the browser, an
email program, a chat program, video games, Internet
music programs, and so forth. Also, a server, such as a web
server, has to be able to distinguish between traffic from
multiple clients! TCP solves this problem with port
numbers. TCP port numbers are just a number between 0
and 65535.

When an outbound connection, such as the request from
a browser for a webpage, is sent, an unused TCP port
number is assigned as the “source port”. This port number
enables the information sent back from the server to be
sent to the correct program. For example, many users have
multiple webpages open at once. Each one is a separate
TCP session and each has its own randomly assigned



source port number. This ensures that the responses go to
the correct places. The outbound TCP session also includes
a “destination port” indicating which application should
process the data at the server. When data arrives, the
process is demultiplexed, which means the single channel
is split back up into its individual components. In Figure C-
5, incoming packets are demultiplexed into data for the
webserver and data for the Minecraft server running on the
same machines. This figure only shows using the
destination TCP ports but full demultiplexing uses other
bits of information to, as described in the next paragraphs
[205, Chapter 5].

Figure C-5  The TCP protocol uses port numbers to multiplex data. When data
is received, it is demultiplixed based, in part, off the destination ports shown
here

In order to receive data, a server, such as a web server,
will register or reserve an unused port (number) from the
operating system in order to receive incoming requests.
For commonly used applications, the server will typically
use a “well-known” port. Web servers, for example, usually
use port 80 for regular traffic (HTTP) and port 443 for



encrypted traffic (HTTPS). When the browser sends data to
a webserver, the browser indicates to TCP the destination
port (e.g., 80 or 443 depending on whether the data is
supposed to be encrypted or not). This port is put into the
TCP header along with the randomly chosen source port
before the TCP packet is sent over the network. When this
data arrives at the server, the destination port is checked.
The server that reserved, or claimed, that port, will create
a unique session for this specific client. The server uses
these unique sessions to differentiate the communications
from different clients [205, Chapter 5].

Addresses

TCP, however, does not solve all network problems either.
For example, TCP packets do not have any address

information. Just like pen-and-paper letters put into
envelopes, source and destination addresses are required
to ensure that the letter arrives at the correct location. TCP
port numbers are used for finding the right session on a
given computer, but does not indicate which computer to
arrive at in the first place. (In terms of an address on an
envelope, a port number is somewhat similar to an
apartment or suite number). So TCP is not enough. We
need another protocol with addressing.

Enter the Internet Protocol (IP). As mentioned in the
summary on packet-switched networking, there is the
concept of a network and a collection of networks (inter-
network). The IP protocol is designed to enable
communications across interconnected networks. The
global Internet (note the capital “I”) is the interconnected
network that almost everyone in the world interacts with.
For simplicity, I will stop talking about internets (small “i”)
and only talk about the Internet (capital “I”) from this point
on. While internets exist that are not connected to the
Internet, it is such a small fraction that it is not worthwhile



to spend time trying to distinguish between the two. The
technology is the same anyway.

The IP protocol provides IP addresses, which are global
addresses used for routing messages. Although we typically
use domain names on the Internet (e.g., “cnn.com”), these
domain names are converted into IP addresses for actually
getting packets to the right places. There are two versions
of the IP protocol in use. These are version 4 (IPv4) and
version 6 (IPv6). An IPv4 address is comprised of four
numbers, each between 0 and 255. The numbers are dotted
together like this:

 192.168.0.1

An IPv6 address is more complicated. An IPv6 address
has 8 4-digit hexadecimal numbers concatenated with
colons. Like this:

 fdf8:f53b:82e4::53

In IPv6, leading zeros are omitted so 0053 is shown as
53.

For understanding the concepts in this book it is not
necessary to understand much of these addresses. All that
matters at this point is to understand that IP addresses are
used to route data all over the world in the Internet. The IP
protocol is designed to bridge individual networks.

Network Structures

At this point, it is a good time to explain the different levels
of networking. A Local Area Network, or LAN, is comprised
of nodes all connected on the same medium. The medium
could be radio waves, such as WiFi. Another medium are a
system of coaxial cables, such as Ethernet. The idea behind
a LAN is that all of the nodes are able to talk to each other
directly. There is no need for routing because all devices on



the LAN can directly talk to all other devices on the LAN.
The Internet, on the other hand, is a Wide Area Network.

Another requirement for a LAN is that broadcast is
possible. For various reasons, it is sometimes necessary to
“flood” a network with a particular message. LANs usually
have a special mechanism for broadcasting a message to all
devices on the LAN. For this reason a LAN is sometimes
said to be a broadcast domain and all the computers on the
LAN are part of the same broadcast domain.

Clearly it is impossible to have all of the computers in
the world on the same LAN. But it is possible to create
devices that have the capacity to connect to two different
LANs at the same time. That is, the device is a node on
both networks and can communicate on both media. Such a
device interconnects the two LANs and acts as a gateway

between the two. As a gateway device, it can receive data
from one network and route it over to the other.

As with TCP encapsulating application protocols like
HTTP, IP encapsulates TCP. So in the example of a browser
sending an HTTP message, the HTTP message is
encapsulated in a TCP packet. And the TCP packet is
encapsulated in an IP packet. The IP packet has a source IP
address and a destination address in its header. This
enables the IP packet to be delivered across the Internet,
and then the TCP packet can be extracted and processed.
This double encapsulation is shown in Figure C-6.



Figure C-6  An HTTP GET request encapsulated as the data of a TCP packet.
The entire TCP packet (including the HTTP GET request) is encapsulated as the
data of the IP packet

Together, TCP and IP are capable of connecting any two
processes anywhere on the Internet. In computer science,
this is sometimes described as a logical connection. The
word “logical” is often used to describe something that
does not exist as a purely physical element but has, instead,
been built, at least in part, using computer commands,
instructions, and protocols (i.e., computer “logic”). For
example, physical hard drives can be used by computers to
simulate multiple hard drives. Each one of the simulated
drives is called a logical drive. Similarly, a browser and a
website on opposite sides of the world do not have a direct,
physical connection between the two processes. It is a
logical connection created by the combination of the TCP
and IP protocols.

The individual LANs also have their own protocols.
There is a WiFi protocol for wireless LANs and an Ethernet
protocol for wired LANs as well. These protocols enable
communications between the devices directly on the LAN.
The LAN has to have its own addressing scheme, which
means that a node has both an IP address and a LAN



address. The LAN address is called a Media Access Control
(MAC) address.

MAC addresses are used exclusively for communicating
between the nodes on the LAN. Like all the other protocols,
LAN protocols encapsulate the higher (IP protocol) data.
This enables the data to be sent around the LAN and then
extracted for processing. If the data needs to go off the
LAN, the IP data is encapsulated into a MAC packet,
transmitted to a gateway. The data is then extracted and
re-encapsulated in a MAC packet for the other network
before being transmitted on the new medium (Figure C-7).

Figure C-7  A gateway is connected to two LANs, each with ther own LAN
medium. The gateway can route a packet from one to the other, but must
remove the MAC encapsulation for the first network and reencapsulate with a
MAC packet for the second

Protocol Stacks

This may seem really complicated. For example, why can’t
HTTP do everything? Why do we need to do all of this
protocol encapsulation and so forth?

First of all, trying to create HTTP to do all of these steps
together would be a nightmare. The complexity of the
implementation would be significantly higher which is



typically associated with more bugs and security
vulnerabilities.

Second, without modularity, the system is too brittle and
cannot easily be reconfigured. HTTP is typically
encapsulated by TCP. But there are other application
protocols that do not use TCP and instead use an
alternative called UDP. UDP, like TCP, has ports so that
data can still be multiplexed and demultiplexed. Unlike TCP
however, UDP does not try to create sessions, reorder
packets, or resend lost packets. UDP is terrible for things
like file downloads, which is why it is not used for most
HTTP traffic.1 However, real-time video or audio generally
prefer UDP because resending data will generally cause
more problems for these kinds of applications than it will
fix.

There are even some systems that need to be able to use
TCP or UDP depending on circumstances. By having a
modular protocol stack, different protocols can be inserted
at different levels. Without modularity, everything would
have to be rewritten from top to bottom to accomodate a
change in the middle.

Another example of modularity is the IP protocol. You
will recall that there are two versions of IP: IPv4 and IPv6.
By having a modular protocol stack, IPv4 and IPv6 can be
swapped in and out without impacting the other protocols
in the stack.

This type of approach permits each protocol to focus on
its own job. HTTP does not have to deal with ensuring
delivery or Internet routing or communicating with other
devices on the WiFi. It treats everything below it as a
transportation service and does not have to know or be
responsive to internal implementation details.

The OSI Model



Because there can be different approaches for solving
similar problems, the different layers of the protocol stack
are conceptually assigned different responsibilities.
Whatever protocols exist at that layer have to implement
those responsibilities. For example, TCP and UDP are
protocols that exist at the same layer. Although they solve
problems differently, they are both intended to operate
above a layer that solves routing and interconnectivity, but
below a layer of application data.

A conceptual reference model for network stacks was
created in the 1980s called the Open Systems
Interconnection model (OSI) model. This model did not
identify specific protocols such as TCP or IP, but rather
defined what a protocol at a specific numbered layer should
do. The OSI model defined 7 layers as shown in Figure C-8.
The space in the figure is too limited to fully illustrate the
encapsulation as you move down the stack, the size for a
packet increases. This is, of course, because as data moves
down the stack, additional header data must be added by
each successive protocol. On the receiving side, this
process is reversed as headers are stripped off until only
the application data remains.



Figure C-8  The OSI model of an idealized protocol stack

The OSI model is an idealistic concept. In our HTTP
example, we did not describe seven layers. Within the
current Internet architecture, most networking applications
and devices deal with only layer 22 (such as WiFi and
Ethernet), layer 3 (IP), layer 4 (TCP and UDP), and layer 7
(application data such as HTTP). Nevertheless, OSI is
considered the standard way of discussing protocols and
networking stacks and the layer numbers are still used. So,
for example, TCP is considered a layer 4 protocol, and
HTTP is considered a layer 7 protocol. Even though UDP is
also a layer 4 protocol, TCP is so commonly used that this
model is often referred to as the TCP/IP stack. This stack is
visualized in Figure C-9.



Figure C-9  The TCP/IP protocol stack

The amazing generality of packet switched networks
enables nodes to combine different applications together in
order to perform more complicated tasks. A good example
of this is the Domain Name System (DNS). I mentioned
DNS with respect to IP addresses. An IP address is
required to connect one computer to another on the
Internet and yet you do not have to enter an IP address into
a browser. Having to use an IP address would be
problematic because IP addresses would be almost
impossible to remember, domain names (e.g.,
“amazon.com”) may be assigned to multiple IP addresses
for various reasons, and a domain name may need to
change the IP address it is bound to.

DNS and DHCP

Because Internet communications are general, it is not
necessary to build into the network a separate layer for
converting names to addresses. Instead, the DNS server



can run on the network like any other application. When a
browser wants to connect to “google.com,” it first connects
to a DNS server and looks up the IP address for
google.com. Once it gets a response from the DNS name
server with the IP address, it can then begin the actual
HTTP transmission like the one described in this appendix’s
example.

Of course, the browser has to have the DNS server’s IP
address loaded into the system somewhere. For obvious
reasons, the DNS server cannot have a domain name. But
using a DNS system in this manner the browser only needs
to be configured to have one IP address and all other
addresses can be resolved from domain names.

To understand how DNS resolves domain names, it is
necessary to start with how domain names are constructed.
Domain names are hierarchical moving from right to left
(even though they are read from left to right). So, taking
“www. google. com” as an example, there are four divisions:
the root, “com”, “google”, and “www”. Because DNS is
hierarchical, there is are DNS servers (distributed around
the world) that hold root DNS data with information about
the next level.

The next level chunk in a domain name is called the Top-

Level Domain or TLD. Each TLD has its own operator that
handles primary administration of that level of the doman
name system. VeriSign Global Registry Services is the
operator for the .com TLD as of the time of this writing.
VeriSign is responsible for operating DNS servers that can
authoritatively identify all .com domains such as
“google.com”, “amazon.com”, “netflix.com”, and so forth.
Even though VeriSign operates the domain, most domain
names are sold through resellers such as GoDaddy or
Google Domains.

Organizations can have multiple subdomains. Google,
for example, has a “www” subdomain and an “images”

http://www.google.com/


subdomain (“www. google. com” and “images.google.com”).
Another lower set of DNS servers can authoritatively
resolve these subdomains within an organization. A very
small portion of this hierarchy is illustrated in Figure C-10.

Figure C-10  A small subset of the DNS hierarchy. The root DNS servers
provide authoritative lookups for the top-level domains, such as .com and .org.
Then, servers for .com and .org identify nameservers within the domain, such
as google.com. Google itself has internal DNS servers for subdomains such as
images and scholar

So, in summary, when a computer needs to resolve, for
example, “images.google.com”, it could start with a query
to the root servers to obtain the addresses for the DNS
servers for “.com.” Next, it would query the .com servers
for “google.com.” Once it had Google’s DNS servers, it
would query those for the IP address of
“images.google.com”.

Not only is DNS hierarchical across a domain name, it is
also recursive. Recursive is a computer science term that
referse to doing the same operation repeatedly in a way

http://www.google.com/


that gets closer and closer to the solution until a final
solution is reached.

In DNS, recursion is used to spread results across DNS
servers throughout the entire world-wide Internet. DNS
servers can be placed in any network including local
networks. It is not uncommon for a DNS server to be co-
located with a gateway. A computer starts by querying the
local DNS server. If the local DNS server does not know the
mapping of the domain to the address, it can do a recursive
query to a DNS server further “up stream.” As a last resort,
it can query the authoritative server for the mapping. Once
it has a mapping, it can store it in its own tables for
subsequent requests.

I mention briefly that every device on a LAN has to have
an IP address that matches a pattern that is established for
the LAN. For example, there are networks where all
addresses must be prefixed with 192.168.1 (e.g.,
192.168.1.100, 192.168.1.35). The way these patterns are
used and expressed is not necessary for this book so I will
not invest space going into more details. But what matters
is that each device on a network has to have an IP address
compatible with that specific LAN.

In order to make devices more plug-and-play, especially
devices that might change networks regularly and would
need a different IP address for each network, most devices
are configured to request IP address information
automatically. Dynamic Host Configuration Protocol, or
DHCP, is used to retrieve an IP address along with
identification of the correct gateway and local DNS servers.
Networks operate a DHCP server to hand out IP addresses
to requesting devices.

Client Server Architecture



You have probably heard the word “server” and you have
seen it used already in this appendix. This word can be
used to mean a lot of different things depending on context.
Sometimes it is used to refer to an actual computer that is
dedicated to acting as a server. But a more technical
definition of server is a process (i.e., a running program)
that listens on a computer network for incoming
connections and then responds to subsequent requests
from those connections. So a computer would only be
referred to as a server if it has at least one process hosted
on the machine that is a server process. For purposes of
this book, I will use the word “server” to refer to the
running process. A web server, therefore, is the process
that responds to HTTP requests (e.g., from browsers). If I
need to refer to the hosting computer system, I will use the
term “server machine.” Note that within the protocol stack,
layer-3 (IP protocol) has addresses for machines and layer-
4 (TCP or UDP protocols) has ports for the process.
Machines only need an address. Servers require a port.

The counterparty of a server is called a client. A client is
a process that initiates a network connection to a server in
order to make requests of the server. As with the term
server, I will use the term client to refer to the process
(e.g., a browser). If I need to refer to the hosting computer
system, I will use the term “client machine.”

Because clients and servers are processes, it is possible
to have a client and a server running on the same machine.
Even though the devices are on the same machine, the
client still makes a network connection to the server and
the two processes exchange information using the same
network stack (e.g., TCP, IP, etc.).

Distributed computing is any computer-based system
that needs to have at least two components running as
different nodes, connected cooperatively together over a
network. A client-server architecture is one model of



distributed computing. Typically, a server is configured
with a sufficient amount of resources to service requests
from some anticipated number of clients. The server will
generally require more processor, memory, and storage
resources than an individual client because a single server
will have to provide service to potentially many clients at
once. The server can also enable communications between
the clients with each other, but the server mediates all such
communications. This means that the server also controls
client interactions and is responsible for enforcing “good
behavior” and security policies.

There are other models of distributed computing, such
as peer-to-peer networks. But the client-server model is the
most commonly used configuration in the Internet.

For example, consider online banking. A bank configures
a online bank webserver at a specific domain name (e.g.,
“bankofamerica.com”, “chase.com”, “wellsfargo.com”,
etc.). The bank provisions a server to accept requests from
millions of clients (browsers). The server must respond to
many requests simultaneously and must have a sufficient
amount of resources to do so. Clients may interact with
each other like, for example, sending money from one
person’s account to another person’s account. But the
server mediates all of these operations.

References
1. Cortex XDR incident handling v3.

2. Crypto done right!

3. Duo auth API.

4. Owasp security knowledge framework.

5. Owasp top ten.

6. Phishing examples archive.
7.



Security summit alert: Renewed alert about phishing e-mail scam
targeting payroll or human resource departments.

8. Software assurance maturity model.

9. Ssl/tls strong encryption: How-to.

10. Wstg—stable.

11. TA13-032: Oracle Java multiple vulnerabilities. 2 2013. Last updated: 19
Oct 2016.

12. Istr: Internet security threat report, Phrack vol. 22, Apr 2017. http:// 
phrack. org/ issues/ 49/ 14. html.

13. Crisis: Security vs performance. 04 2018.

14. Active deception to combat advanced threats. Technical report, Attivo
Networks, 2019.

15. IEEE standard for authenticated encryption with length expansion for
storage devices, 2019.

16. Istr: Internet security threat report, vol. 24, Feb 2019.

17. The quantum computer and its implications for public-key crypto systems.
Technical report, Entrust Datacard, 2019.

18. Ransomware guide. Technical report, 09 2020.

19. CVE-2021-44228. 11 2021.

20. Forensic methodology report: How to catch NSO group’s pegasus. 07
2021.

21. Packet flow sequence in PAN-OS. 06 2021.

22. 2022 annual state of phishing report. Technical report, Cofense, 2022.

23. Application sandbox. 10 2022.

24. CVE-2022-45808. 11 2022.

25. Intel SGX deprecation review. 01 2022.

26. The state of ransomware 2022. Technical report, Sophos, 04 2022.

27. What are computer viruses, 2022.

28. Mcafee endpoint security 10.6.0—threat prevention product guide—
windows. Technical report, Trellix, 2023.

http://phrack.org/issues/49/14.html


29. Acronis. 2018. A guide to ransomware and how acronis active protection
can help.

30. Adkins, A. 1997. Secret war: The navajo code talkers in world war II. New

Mexico Historical Review 72(4): 10.

31. Agarwal, A., S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen, and Y.
Yarom. 2022. Spook.js: Attacking chrome strict site isolation via
speculative execution. In 43rd IEEE Symposium on Security and Privacy

(S&P’22).

32. Aggarwal, C.C. 2011. Social Network Data Analytics. Springer.
[zbMATH]

33. Ahmed, J., H.H. Gharakheili, Q. Raza, C. Russell, and V. Sivaraman. 2019.
Real-time detection of DNS exfiltration and tunneling from enterprise
networks. In 2019 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), 649–653.

34. Ahmed, M., L. Sharif, M. Kabir, and M. Al-Maimani. 2012. Human errors
in information security. International Journal of Advanced Trends in

Computer Science and Engineering 1(3): 82–87.

35. Aleph One (Unknown Author). 1996. Smashing the stack for fun and
profit. 7(49): 11. newsgroup article or web page (?).

36. Almeshekah, M.H., E.H. Spafford, and M.J. Atallah. 2013. Improving
security using deception. Technical Report 13, Purdue University, 11.
CERIAS Tech Report 2013-13.

37. Alshamrani, A., S. Myneni, A. Chowdhary, and D. Huang. 2019. A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities. IEEE Communications Surveys and Tutorials

21(2): 1851–1877.

38. Alessandro Bulgarelli, M.A., and M.C. Francesca Mazzoni. 2005.
Honeyspam: Honeypots fighting spam at the source. In Steps to Reducing

Unwanted Traffic on the Internet Workshop (SRUTI’05), Cambridge, MA,
ed. by D. Katabi and B. Krishnamurthy. USENIX Association.

39. Anderson, R.J. 1993. Why cryptosystems fail. In Proceedings of the 1st

ACM Conference on Computer and Communications Security (CCS’93),
New York, 215–227. Association for Computing Machinery.

40. Anderson, R.J. 2020. Security Engineering: A Guide to Building

Dependable Distributed Systems, 3 ed. Wiley Publishing.
41.

Antonakakis, M., T. April, M. Bailey, M. Bernhard, E. Bursztein, J.

http://www.emis.de/MATH-item?1275.91007


Cochran, Z. Durumeric, J.A. Halderman, L. Invernizzi, M. Kallitsis, D.
Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan,
K. Thomas, and Y. Zhou. 2017. Understanding the Mirai botnet. In
Proceedings of the 26th USENIX Conference on Security Symposium

(SEC’17), 1093–1110. USENIX Association.

42. Arm Limited, Cambridge, England. 2018. Arm TrustZone Technology for

the Armv8-M Architecture, version 2.1 edition.

43. Arm Limited, Cambridge, England. 2022. Introduction to the Armv8-M

Architecture and Its Programmers Model, version 1.0 edition

44. Armour, P. 2000. The five orders of ignorance. Communications of the

ACM 43(10): 17–20.

45. Arntz, P. 2013. What is host intrusion prevention system (HIPS) and how
does it work?

46. Arntz, P. 2021. Ryuk ransomware develops worm-like capability.

47. Badger, L., D. Sterne, D. Sherman, K. Walker, and S. Haghighat. 1995.
Practical domain and type enforcement for unix. In Proceedings 1995

IEEE Symposium on Security and Privacy, 66–77.

48. Barkley, J. 1995. Application engineering in health care. In Proceedings of

the 2nd Annual CHIN Summit.

49. Barkley, J., K. Beznosov, and J. Uppal. 1999. Supporting relationships in
access control using role based access control. In Proceedings of the

Fourth ACM Workshop on Role-Based Access Control (RBAC’99), New
York, 55–65. Association for Computing Machinery.

50. Bazaliy, M., C. Neckar, G. Sinclair, and in7egral. 2016. Technical analysis
of the pegasus exploits on IoS. Technical report, Lookout

51. Bell, D. 2005. Looking back at the Bell-La Padula model. In 21st Annual

Computer Security Applications Conference (ACSAC’05)

52. Bell, D.E., and L.J. LaPadula. 1973. Secure computer systems:
Mathematical foundations. Draft MTR, The MITRE Corporation, 2.

53. Bellovin, S.M., and W.R. Cheswick. 1994. Network firewalls. IEEE

Communications Magazine 32(9): 50–57.
[zbMATH]

54. Belokosztolszki, A. 2004. Role-based access control policy administration.
Technical Report 586, University of Cambridge. UCAM-CL-TR-586.

55.
Beres, Y., A. Baldwin, M.C. Mont, and S. Shiu. 2007. On identity

http://www.emis.de/MATH-item?0866.68038


assurance in the presence of federated identity management systems. In
Proceedings of the 2007 ACM Workshop on Digital Identity Management

(DIM’07), New York, 27–35. Association for Computing Machinery.

56. Berners-Lee, T. 1996. WWW: Past, present, and future. Computer 29(10):
69–77.

57. Bernstein, D.J. 2005. Salsa20 design. Department of Mathematics,

Statistics, and Computer Science. The University of Illinois at Chicago,

Chicago.

58. Beyer, B.A.E., C.M. Beske, J. Peck, and M. Saltonstall. 2017. Migrating to
beyondcorp: Maintaining productivity while improving security.
Login42(2). ISSN 1044-6397.

59. Biba, K.J. 1977. Integrity considerations for secure computer systems.
Technical report, MITRE Corporation.

60. Bishop, M. 2019. Computer Security Art and Science, 2nd ed. Addison-
Wesley Professional.

61. Boshmaf, Y., I. Muslukhov, K. Beznosov, and M. Ripeanu. 2013. Design
and analysis of a social botnet. Computer Networks 57(2): 556–578.

62. Bossler, A., and T. Holt. 2009. On-line activities, guardianship, and
malware infection: An examination of routine activities theory.
International Journal of Cyber Criminology (IJCC) ISSN 3: 974–2891.

63. Boyd, D.M., and N.B. Ellison. 2007. Social network sites: Definition,
history, and scholarship. Journal of Computer-Mediated Communication

13(1): 210–230.

64. Braden, R., and J. Postel. 1987. Requirements for internet gateways
(1009).

65. Brossard, D., G. Gebel, and M. Berg. 2017. A systematic approach to
implementing ABAC. In Proceedings of the 2nd ACM Workshop on

Attribute-Based Access Control (ABAC’17), New York, 53–59. Association
for Computing Machinery.

66. Bruce, S. 1996. Applied Cryptography: Protocols, Algorithms, and Source

Code in C.-2nd. Wiley.
[zbMATH]

67. Bush, G., P. Luu, and M.I. Posner. 2000. Cognitive and emotional
influences in anterior cingulate cortex. Trends in Cognitive Sciences 4(2):
215–222.

68.
Cartwright, A., E. Cartwright, J. MacColl, G. Mott, S. Turner, J. Sullivan,

http://www.emis.de/MATH-item?0853.94001


and J.R. Nurse. 2023. How cyber insurance influences the ransomware
payment decision: theory and evidence. The Geneva Papers on Risk and

Insurance-Issues and Practice, 1–32 (48).

69. Cawthra, J., M. Ekstrom, L. Lusty, J. Sexton, and J. Sweetnam. 2020. Data
integrity: Detecting and responding to ransomware and other destructive
events. Special Publication (NIST SP) 1800-26, National Institute of
Standards and Technology, Gaithersburg.

70. Cerdeira, D., N. Santos, P. Fonseca, and S. Pinto. 2020. SoK:
Understanding the prevailing security vulnerabilities in trustzone-assisted
tee systems. In 2020 IEEE Symposium on Security and Privacy (SP),
1416–1432.

71. Chatel, M. 1996. Classical versus transparent IP proxies (1919).

72. Chaumette, S., O. Ly, and R. Tabary. 2011. Automated extraction of
polymorphic virus signatures using abstract interpretation. In 2011 5th

International Conference on Network and System Security, 41–48. IEEE.

73. Cheswick, W.R., S.M. Bellovin, and A.D. Rubin. 2003. Firewalls and

Internet Security, 2nd ed. Addison Wesley Professional.

74. Chung, D. Ferraiolo, D. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K.
Scarfone. 2019. Guide to attribute based access control (ABAC) definition
and considerations. Special Publication (NIST SP) 800-162, National
Institute of Standards and Technology, Gaithersburg.

75. Cluley, G. 2013. The dying art of computer viruses. Virus Bulletin 2. www. 
virusbulletin. com/ virusbulletin/ 2013/ 08/ dying-art-computer-viruses.

76. Cohen, F. 1987. Computer viruses: Theory and experiments. Computers

and Security 6(1): 22–35.
[MathSciNet]

77. Cohen, F. 2004. The use of deception techniques: Honeypots and decoys.

78. Columbus, L. 2019. 74% of data breaches start with privileged credential
abuse.

79. Community, C. 2023. 3cx desktopapp security alert.

80. Community, C. 2023. Threat alerts from sentinelone for desktop update
initiated from desktop client.

81. Cook, D.M., B. Waugh, M. Abdipanah, O. Hashemi, and S.A. Rahman.
2014. Twitter deception and influence: Issues of identity, slacktivism, and
puppetry. Journal of Information Warfare 13(1): 58–71.

82.

http://www.virusbulletin.com/virusbulletin/2013/08/dying-art-computer-viruses
http://www.ams.org/mathscinet-getitem?mr=881283


Cowan, C., C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, Q. Zhang, and H. Hinton. 1998. StackGuard: Automatic adaptive
detection and prevention of Buffer-Overflow attacks. In 7th USENIX

Security Symposium (USENIX Security 98), San Antonio. USENIX
Association.

83. Cowan, C., P. Wagle, C. Pu, S. Beattie, and J. Walpole. 2000. Buffer
overflows: Attacks and defenses for the vulnerability of the decade. In
Proceedings DARPA Information Survivability Conference and Exposition

(DISCEX’00), vol. 2, 119–129. IEEE.

84. Craciun, V.C., A. Mogage, and E. Simion. 2019. Trends in design of
ransomware viruses. In Innovative Security Solutions for Information

Technology and Communications, ed. J.-L. Lanet and C. Toma, 259–272.
Springer International Publishing.

85. Cranor, L. 2016. Time to rethink mandatory password changes.

86. CrowdStrike. 2023. Crowdstrike prevents 3cxdesktopapp intrusion
campaign.

87. Curry, S. 2019. Cracking my windshield and earning $10,000 on the tesla
bug bounty program.

88. Cushing, T. 2017. How minecraft led to the Mirai botnet. TechDirt.

89. Dame-Boyle, A. 2015. EFF at 25: Remembering the case that established
code as speech.

90. Dang, T.H., P. Maniatis, and D. Wagner. 2015. The performance cost of
shadow stacks and stack canaries. In Proceedings of the 10th ACM

Symposium on Information, Computer and Communications Security

(ASIA CCS’15), New York, 555–566. Association for Computing
Machinery.

91. Davies, D.W., and W.L. Price. 1984. Security for Computer Networks: An

Introduction to Data Security in Teleprocessing and Electronic Funds

Transfer. New York: Wiley.

92. Devlin, R. 2016. Data loss prevention—Devlin. Technical report, SANS
Institute.

93. Dhaka, D., and M. Mehrotra. 2019. Cross-domain spam detection in social
media: A survey. In Emerging Technologies in Computer Engineering:

Microservices in Big Data Analytics: Second International Conference,

ICETCE 2019, Jaipur, 98–112. Springer.

94. DiMaggio, J. 2022. The Art of Cyberwarfare: An Investigator’s Guide to

Espionage, Ransomware, and Organized Cybercrime. No Starch Press.



95.
Dotzon, C. 2019. Practical Cloud Security: A Guide for Secure Design and

Deployment. Sebastopol: O’Reilly Media.

96. Douceur, J.R. 2002. The sybil attack. In Peer-to-Peer Systems: First

International Workshop (IPTPS 2002), Cambridge, MA, 251–260.
Springer.

97. Duckett, C. 2020. Zoom concedes custom encryption is substandard as
citizen lab pokes holes in it.

98. Dullien, T. 2020. Weird machines, exploitability, and provable
unexploitability. IEEE Transactions on Emerging Topics in Computing

8(2): 391–403.

99. Dyskstra, J., and D. Hough. 2021. Action bias and the two most dangerous
words in cybersecurity.

100. Economy, E.C. 2018. The great firewall of China: Xi Jinping’s internet
shutdown. The Guardian

101. Elgamal, D.T., and K.E. Hickman. 1995. The SSL Protocol. Internet-Draft
draft-hickman-netscape-ssl-00, Internet Engineering Task Force, Work in
Progress.

102. Elsworthy, E. 2020. Australia fires see spike in fraudster behaviour.

103. Federal Bureau of Investigation. 2018. The Morris worm: 30 years since
first major attack on the internet.

104. Ferraiolo, D.F., J.F. Barkley, and D.R. Kuhn. 1999. A role-based access
control model and reference implementation within a corporate intranet.
ACM Transactions on Information and System Security (TISSEC) 2(1):
34–64.

105. Ferraiolo, D.F., and D.R. Kuhn. 1992. Role-based access controls. In 15th

National Computer Security Conference, 554–563. National Institute of
Standards and Technology.

106. Ferrara, E. 2019. The history of digital spam. Communications of the ACM

62(8): 82–91.

107. Findley, N. 1993. Shadowplay. Penguin Group.

108. FingerpringJS, Inc. Frequently asked questions.

109. Force, J.T. 2018. Risk management framework for information systems
and organizations. Special Publication (NIST SP) 800-37r2, National
Institute of Standards and Technology, Gaithersburg.



110. Franklin, B. Benjamin Franklin quotes.

111. Garber, M. 2014. There are 64 tiananmen terms censored on China’s
internet today. The Atlantic.

112. Gartner. Endpoint detection and response (EDR) solutions reviews and
ratings.

113. Geerthik, S. 2013. Survey on internet spam: Classification and analysis.
International Journal of Computer Technology and Applications 4(3): 384.

114. Grassi, P., J. Fenton, E. Newton, R. Perlner, A. Regenscheid, W. Burr, J.
Richer, N. Lefkovitz, J. Danker, Y.-Y. Choong, K. Greene, and M.
Theofanos. 2020. Digital identity guidelines: Authentication and lifecycle
management. Special Publication (NIST SP) 800-63B, National Institute
of Standards and Technology, Gaithersburg.

115. Green, M. 2011. How (not) to use symmetric encryption.

116. Green, M. 2023. A few thoughts on cryptographic engineering.

117. Greenberg, A. 2021. The full story of the stunning RSA hack can finally be
told.

118. Griffiths, J. 2020. ‘I love you’: How a badly-coded computer virus caused
billions in damage and exposed vulnerabilities which remain 20 years on.
CNN Business.

119. Grimes, R.A. 2020. Hacking Multifactor Authentication. Wiley.

120. Grother, P., W. Salamon, and R. Chandramouli. 2013. Biometric
specifications for personal identity verification. Special Publication (NIST
SP) 800-76r2, National Institute of Standards and Technology,
Gaithersburg.

121. Group, J.T.F.T.I.I.W. 2020. Security and privacy controls for federal
information systems and organizations. Special Publication (NIST SP)
800-53r5, National Institute of Standards and Technology, Gaithersburg.

122. Gryaznov, D. 1999. Scanners of the Year 2000: Heuristics. In Proceedings

of the 5th International Virus Bulletin.

123. Guerrero-Saade, J.A. 2023. Smoothoperator: Ongoing campaign trojanizes
3cxdesktopapp in supply chain attack.

124. Guttman, B., and E.A. Roback. 2017. An introduction to computer
security: The NIST handbook. Special Publication (NIST SP) 800-12r1,
National Institute of Standards and Technology, Gaithersburg.

125.
Hadnagy, C. 2018. Social Engineering: The Science of Human Hacking,



2nd ed. Wiley.

126. Halderman, J.A., and E.W. Felten. 2006. Lessons from the Sony CD DRM
episode. In Proceedings of the 15th Conference on USENIX Security

Symposium – Volume 15 (USENIX-SS’06). USENIX Association.

127. Hanson, R. 2010. Confronting the negativity bias.

128. Hassold, C. 2022. The victimology of ransomware: 4,200 ransomware
victims and counting.

129. Hauk, C. 2023. What is browser fingerprinting? How it works and how to
stop it. Pixel Privacy.

130. Havenridge, J. 2015. Passwords are like underwear.

131. Hernacki, B., J. Bennett, and T. Lofgren. 2004. Symantec deception server
experience with a commercial deception system. In Recent Advances in

Intrusion Detection, ed. E. Jonsson, A. Valdes, and M. Almgren, 188–202.
Berlin/Heidelberg: Springer.

132. Hilchenbach, B. 1997. Observations on the real-world implementation of
role-based access control. In Proceedings of the 20th National

Information Systems Security Conference, 341–352.

133. Hirstein, W., and V.S. Ramachandran. 1997. Capgras syndrome: A novel
probe for understanding the neural representation of the identity and
familiarity of persons. Proceedings. Biological Sciences 264: 437–444.

134. Hitchens, M., and V. Varadharajan. 2000. Design and specification of role
based access control policies. IEE Proceedings-Software 147(4): 117–129.

135. Hoglund, G., and G. McGraw. 2004. Exploiting Software. Addison-Wesley
Professional.

136. Honan, M. 2012. How apple and Amazon security flaws led to my epic
hacking.

137. Howard, M., D. LeBlanc, and J. Viega. 2009. 24 Deadly Sins of Software

Security. McGraw-Hill.

138. Hu, C.T., D. Ferraiolo, R. Chandramouli, and D. Kuhn. 2017. Attribute

Based Access Control. Norwood: Artech House.

139. Huffman, S. 2000. The navajo code talkers: A cryptologic and linguistic
perspective. Cryptologia 24(4): 289–320.

140.
Hunt, M.G., R. Marx, C. Lipson, and J. Young. 2018. No more FOMO:
Limiting social media decreases loneliness and depression. Journal of



Social and Clinical Psychology 37(10): 751–768.

141. Internal Revenue Service. 2020. Irs warns against covid-19 fraud; other
financial schemes.

142. ITL, C. 2019. Binary hardening in IoT products.

143. Johansson, J.M., and R. Grimes. 2008. The great debate: Security by
obscurity. TechNet Magazine.

144. Judge, P., D. Alperovitch, and W. Yang. 2005. Understanding and
reversing the profit model of spam (position paper). In Proceedings of the

4th Workshop on the Economics of Information Security.

145. Junod, P. 2001. On the complexity of Matsui’s attack. In Selected Areas in

Cryptography, ed. S. Vaudenay and A.M. Youssef, 199–211.
Berlin/Heidelberg: Springer.

146. Kabakus, A.T., and R. Kara. 2017. A survey of spam detection methods on
Twitter. International Journal of Advanced Computer Science and

Applications 8(3): 29–38.

147. Kahn, D. 1996. The Codebreakers: The Comprehensive History of Secret

Communication from Ancient Times to the Internet. Scribner.

148. Karami, M., and D. McCoy. 2013. Understanding the emerging threat of
DDoS-as-a-Service. In 6th USENIX Workshop on Large-Scale Exploits and

Emergent Threats (LEET 13), Washington, DC. USENIX Association.

149. Karger, P., and R. Schell. 2002. Multics security evaluation: Vulnerability
analysis. In 18th Annual Computer Security Applications Conference,

2002. Proceedings, 127–146.

150. Kennedy, D.M. 1999. Victory at sea. The Atlantic Monthly 51–76. www. 
theatlantic. com/ magazine/ archive/ 1999/ 03/ victory-at-sea/ 306272/ .

151. Klein, G., K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D.
Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. 2009. SeL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles (SOSP’09), New York, 207–220. Association for Computing
Machinery.

152. Knudsen, L.R., and J.E. Mathiassen. 2001. A chosen-plaintext linear attack
on des. In Fast Software Encryption, ed. G. Goos, J. Hartmanis, J. van
Leeuwen, and B. Schneier, 262–272. Berlin/Heidelberg: Springer.

153.
Kocher, P., J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. 2019.

http://www.theatlantic.com/magazine/archive/1999/03/victory-at-sea/306272/


Spectre attacks: Exploiting speculative execution. In 40th IEEE

Symposium on Security and Privacy (S&P’19).

154. Kominski, I. 1989. Computer use in the United States: 1989. Technical
Report 171, U.S. Department of Commerce, Bureau of the Census,
Washington, DC.

155. Krebs, B. 2016. Seagate phish exposes all employee W-2s.

156. Kshetri, N., and J. Voas. 2017. Do crypto-currencies fuel ransomware? IT
Professional 19(5): 11–15.

157. Lab, T.D. Why do we prefer doing something to doing nothing? The action
bias, explained.

158. Lampson, B. 1993. Principles for Computer System Design. New York:
Association for Computing Machinery.
[zbMATH]

159. Landwehr, C.E. 1981. Formal models for computer security. ACM

Computing Surveys 13(3): 247–278.

160. Larochelle, D., and D. Evans. 2001. Statically detecting likely buffer
overflow vulnerabilities. In 10th USENIX Security Symposium (USENIX

Security 2001), Washington, DC. USENIX Association.

161. Leveson, N.G., and C.S. Turner. 1993. An investigation of the therac-25
accidents. Computer 26(7): 18–41.

162. Lhee, K.-S. and S.J. Chapin. 2003. Buffer overflow and format string
overflow vulnerabilities. Software Practice and Experience 33(5): 423–
460.

163. Lipp, M., M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S.
Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. 2018.
Meltdown: Reading kernel memory from user space. In 27th USENIX

Security Symposium (USENIX Security 18).

164. Luo, T., Z. Xu, X. Jin, Y. Jia, and X. Ouyang. 2017. Iotcandyjar: Towards an
intelligent-interaction honeypot for IoT devices, 1–11.

165. Luo, X., R. Brody, A. Seazzu, and S. Burd. 2011. Social engineering: The
neglected human factor for information security management.
Information Resources Management Journal (IRMJ) 24(3): 1–8.

166.
Luostarinen, K., A. Naumenko, and M. Pulkkinen. 2006. Identity and
access management for remote maintenance services in business
networks. In Project E-Society: Building Bricks, ed. R. Suomi, R. Cabral,

http://www.emis.de/MATH-item?1135.68306


J.F. Hampe, A. Heikkilä, J. Järveläinen, and E. Koskivaara, Boston, 1–12.
Springer.

167. Luotonen, A., and K. Altis. 1994. World-wide web proxies. Computer

Networks and ISDN Systems 27(2): 147–154. Selected Papers of the First
World-Wide Web Conference.

168. Maffeo, S.E. 2000. Most Secret and Confidential, Intelligence in the Age

of Nelson. Naval Institute Press.

169. Mairh, A., D. Barik, K. Verma, and D. Jena. 2011. Honeypot in network
security: A survey. In Proceedings of the 2011 International Conference

on Communication, Computing and Security (ICCCS’11), New York, 600–
605. Association for Computing Machinery.

170. Mann, D.E., and S.M. Christey. 1999. Towards a common enumeration of
vulnerabilities. In 2nd Workshop on Research with Security Vulnerability

Databases, West Lafayette.

171. Marczak, B., and J. Scott-Railton. 2016. The million dollar dissident.
Technical Report 78, University of Toronto.

172. Marczak, B., and J. Scott-Railton. 2020. Move fast and roll your own
crypto: A quick look at the confidentiality of zoom meetings. Technical
Report 126, University of Toronto.

173. Marinho, T. 2018. Ransomware encryption techniques. Medium.

174. Markoff, J. 1988. Author of computer ‘Virus’ is son of N.S.A. expert on
data security. The New York Times.

175. Matsui, M. 1994. Linear cryptanalysis method for des cipher. In Advances

in Cryptology—EUROCRYPT’93, ed. T. Helleseth, 386–397.
Berlin/Heidelberg: Springer.

176. McGilvray, D. 2021. Executing Data Quality Projects: Ten Steps to Quality

Data and Trusted InformationTM . Elsevier Inc.

177. McRae, C.M., and R.B. Vaughn. 2007. Phighting the phisher: Using web
bugs and honeytokens to investigate the source of phishing attacks. In
2007 40th Annual Hawaii International Conference on System Sciences

(HICSS’07), 270c.

178. Meadows, C. 1995. Applying the dependability paradigm to computer
security. In Proceedings of 1995 New Security Paradigms Workshop, 75–
79.

179.
Menezes, A.J., S.A. Vanstone, and P.C.V. Oorschot. 1996. Handbook of

Applied Cryptography, 1st ed. Boca Raton: CRC Press, Inc.



[zbMATH]

180. Merriam-Webster. Adversary.

181. Merriam-Webster. Identity.

182. Metz, C. 1999. AAA protocols: Authentication, authorization, and
accounting for the internet. IEEE Internet Computing 3(6): 75–79.

183. Microsoft Corporation. 2023. Memory integrity and VBS enablement.

184. Microsoft Corporation. 2023. Virtualization-based security system
resource protections.

185. Microsoft Corporation. 2023. Virtualization-based security (VBS).

186. Mitnick, K.D., and W.L. Simon. 2003. The Art of Deception: Controlling

the Human Element of Security. Wiley.

187. Morrison, S. 2020. Hackers stole $13,103.91 from me. Learn from my
mistakes.

188. Moussaileb, R., B. Bouget, A. Palisse, H. Le Bouder, N. Cuppens, and J.-L.
Lanet. 2018. Ransomware’s early mitigation mechanisms. In Proceedings

of the 13th International Conference on Availability, Reliability and

Security (ARES 2018), New York. Association for Computing Machinery.

189. Mphago, B., O. Bagwasi, B. Phofuetsile, and H. Hlomani. 2015. Deception
in dynamic web application honeypots: Case of Glastopf. In Proceedings

of the International Conference on Security and Management (SAM’15),
Las Vegas, ed. by K. Daimi and H.R. Arabnia.

190. Munson, R.V. 2001. Telling wonders: Ethnographic and political discourse
in the work of herodotus.

191. Muttik, I. 1999. Macro viruses—Part 1. Virus Bulletin 13–14. www. 
virusbulletin. com/ uploads/ pdf/ magazine/ 1999/ 199909. pdf.

192. Najm, Z., D. Jap, B. Jungk, S. Picek, and S. Bhasin. 2018. On comparing
side-channel properties of AES and chacha20 on microcontrollers. In
2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),
552–555.

193. National Institute of Standards and Technology. 2023. Post quantum
cryptography FAQs: To protect against the threat of quantum computers,
should we double the key length for AES now?

194. Nir, Y., and A. Langley. 2015. ChaCha20 and Poly1305 for IETF Protocols
(7539).

http://www.emis.de/MATH-item?0868.94001
http://www.virusbulletin.com/uploads/pdf/magazine/1999/199909.pdf


195. Norman, D. 1983. Design rules based on analyses of human error.
Communications of the ACM 26: 254–258.

196. O’Kane, P., S. Sezer, and D. Carlin. 2018a. Evolution of ransomware. IET

Networks 7(5): 321–327.

197. O’Kane, P., S. Sezer, and D. Carlin. 2018b. Evolution of ransomware. IET

Networks 7(5): 321–327.

198. Oracle. 2013. Java applet and web start code signing.

199. Osborn, B., J. McWilliams, B. Beyer, and M. Saltonstall. 2016.
Beyondcorp: Design to deployment at Google. ;login: 41: 28–34.

200. Oz, H., A. Aris, A. Levi, and A.S. Uluagac. 2022. A survey on ransomware:
Evolution, taxonomy, and defense solutions. ACM Computing Surveys

54(11s): 1–37.

201. Palmer, D. 2019. Mydoom: The 15-year-old malware that’s still being used
in phishing attacks in 2019.

202. Palmer, D. 2022. Android malware: A million people downloaded these
malicious apps before they were finally removed from Google play.

203. Park, Y., and S.J. Stolfo. 2012. Software decoys for insider threat. In
Proceedings of the 7th ACM Symposium on Information, Computer and

Communications Security (ASIACCS’12), New York, 93–94. Association
for Computing Machinery.

204. Parshall, J., A. Tully, and J.B. Lundstrom. 2005. Shattered sword: The

untold story of the Battle of Midway. Washington, DC: Potomac Books.

205. Peterson, L.L., and B.S. Davie. 2021. Computer Networks, 6th ed. Morgan
Kaufmann.
[zbMATH]

206. Pinto, S., and N. Santos. 2019. Demystifying arm trustzone: A
comprehensive survey. ACM Computing Surveys 51(6): 1–36.

207. Pouget, F., M. Dacier, and H. Debar. 2003. White paper: Honeypot,
honeynet, honeytoken: Terminological issues. Technical Report RR-03-
081, Eurecom.

208. Poulsen, K. 2003. Matrix sequel has hacker cred. The Register.

209. Prodhan, G. 2010. Secret coding inventors finally win recognition.

210. Provos, N. 2004 A virtual honeypot framework. In 13th USENIX Security

Symposium (USENIX Security 04), San Diego. USENIX Association.

http://www.emis.de/MATH-item?0857.68007


211. Rachlin, H., and B.A. Jones. 2008. Social discounting and delay
discounting. Journal of Behavioral Decision Making 21(1): 29–43.

212. Ramachandran, V.S. 2007. VS Ramachandran: 3 clues to understanding
your brain.

213. Ranum, M.J. 1994. Thinking about firewalls. In Proceedings of Second

International Conference on Systems and Network Security and

Management (SANS-II).

214. Rao, J.M., and D.H. Reiley. 2012. The economics of spam. Journal of

Economic Perspectives 26(3): 87–110.

215. Rescorla, E. 2018. The Transport Layer Security (TLS) Protocol Version
1.3 (8446).

216. Rescorla, E., and T. Dierks. 2008. The Transport Layer Security (TLS)
Protocol Version 1.2 (5246).

217. Rice, L. 2020. Container Security: Fundamental Technology Concepts

That Protect Containerized Applications. Sebastopol: O’Reilly Media.

218. Ristic I., et al. 2006. Web application firewall evaluation criteria.
Technical report, Web Application Security Consortium.

219. Ritchie, H., and M. Roser. 2019. Causes of death.

220. Roemer, R., E. Buchanan, H. Shacham, and S. Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM

Transactions on Information and System Security 15(1): 1–34.

221. Root, E. 2021. Spook.js, a scary bedtime story.

222. Rose, S., O. Borchert, S. Mitchell, and S. Connelly. 2020. Zero trust
architecture. Special Publication (NIST SP) 800-207, National Institute of
Standards and Technology, Gaithersburg.

223. Ross, R., S. Katzke, and L. Johnson. 2006. FIPS-200. Minimum security
requirements for federal information and information systems. Technical
report, National Institute of Standards and Technology Federal
Information Processing Standards (NIST FIPS), Gaithersburg.

224. Ross, R., V. Pillitteri, K. Dempsey, M. Riddle, and G. Guissanie. 2020.
Protecting controlled unclassified information in nonfederal systems and
organizations. Special Publication (NIST SP) 800-171r2, National
Institute of Standards and Technology, Gaithersburg.

225. Rowe, N.C., and J. Rrushi. 2016. Introduction to Cyberdeception, 1 ed.
Springer International Publishing Switzerland.



226. Russinovich, M. 2005. Inside Sony’s rootkit. Virus Bulletin 11–14. www. 
virusbulletin. com/ uploads/ pdf/ magazine/ 2005/ 200512. pdf.

227. Sagarin, B.J., and K.D. Mitnick. 2012. The path of least resistance. In Six

Degrees of Social Influence: Science, Application, and the Psychology of

Robert Cialdini, ed. D.T. Kenrick, N.J. Goldstein, and S.L. Braver, chapter
3, 27–38. Oxford University Press.

228. Sandhu, R. 1996. Rationale for the rbac96 family of access control
models. In Proceedings of the First ACM Workshop on Role-Based Access

Control (RBAC’95), New York, 9–17. Association for Computing
Machinery.

229. Sandhu, R., D. Ferraiolo, R. Kuhn, et al. 2000. The NIST model for role-
based access control: Towards a unified standard. In ACM Workshop on

Role-Based Access Control, vol. 10.

230. Sandhu, R.S. 1998. Role-based access control. In Advances in Computers,
vol. 46, 237–286. Elsevier.

231. Sanz, E.P., J.M. Gómez Hidalgo, and J.C. Cortizo Pérez. 2008. Email spam
filtering. In Software Development, Advances in Computers, vol. 74, 45–
114. Elsevier.

232. Sarna-Starosta, B., and S.D. Stoller. 2004. Policy analysis for security-
enhanced Linux. In Proceedings of the 2004 Workshop on Issues in the

Theory of Security (WITS), 1–12. Available at http:// www. cs. sunysb. edu/ 
~stoller/ WITS2004. html.

233. Scarfone, K., and P. Mell. 2007. Guide to intrusion detection and
prevention systems (IDPS). Special Publication (NIST SP) 800-94,
National Institute of Standards and Technology, Gaithersburg.

234. Schaller, M., J. Park, and J. Faulkner. 2003. Prehistoric dangers and
contemporary prejudices. European Review of Social Psychology 14(1):
105–137.

235. Schneier, B. Schneier on security.

236. Securities and Exchange Commission, U. 2023. Administrative proceeding
file no. 3-21306.

237. Seitz, J., and T. Arnold. 2021. Black Hat Python: Python Programming for

Hackers and Pentesters, 2nd ed. No Starch Press.

238. Seltzer, L. 2020. 2020 ransomware attacks still mostly through unsecured
RDP.

239.

http://www.virusbulletin.com/uploads/pdf/magazine/2005/200512.pdf
http://www.cs.sunysb.edu/%257Estoller/WITS2004.html


Shacham, H., M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
2004. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM Conference on Computer and

Communications Security (CCS’04), New York, 298–307. Association for
Computing Machinery.

240. Shakevsky, A., E. Ronen, and A. Wool. 2022. Trust dies in darkness:
Shedding light on Samsung’s TrustZone keymaster design. In 31st

USENIX Security Symposium (USENIX Security 22), Boston, 251–268.
USENIX Association.

241. Shinder, T.W. 2008. The Best Damn Firewall Book Period, 2nd ed.
Syngress.

242. Siddiqui, R. 2013. Alan turing: A note on his role as world war II
cryptanalyst. International Journal of Applied Engineering and Technology

ISSN: 2277-212X (Online) 3: 21–26.

243. Sikorski, M., and A. Honig. 2012. Practical Malware Analysis. San
Francisco: No Starch Press.

244. Sonnemaker, T. 2021. Verkada allowed at least 100 employees, including
interns and sales staff, to access customers’ camera feeds. Business

Insider.

245. Souppaya, M., and K. Scarfone. 2022. Guide to enterprise patch
management planning. Special Publication (NIST SP) 800-40r4, National
Institute of Standards and Technology, Gaithersburg.

246. Souppaya, M., K. Scarfone, and D. Dodson. 2022. Secure software
development framework (SSDF) version 1.1. Special Publication (NIST
SP) 800-218, National Institute of Standards and Technology,
Gaithersburg.

247. Spafford, E.H. 1989. The internet worm program: An analysis. SIGCOMM

Computer Communications Review 19(1): 17–57.

248. Spitzner, L. 2003. Honeypots: Catching the insider threat. In 19th Annual

Computer Security Applications Conference, 2003, 170–179. IEEE.

249. Spitzner, L. 2003. Honeytokens: The other honeypot.

250. Stallings, W. 2013. Cryptography and Network Security: Principles and

Practice, 6th ed. Prentice Hall Press.

251. Stallings, W. 2016. ICAM: A foundation for trusted identities in
cyberspace. IT Professional 18(1): 26–33.

252.
Stewart, J.M., and D. Kinsey. 2020. Network Security, Firewalls, and



VPNs, 3rd ed. Jones & Bartlett Learning.

253. Stoll, C. 1989. The Cuckoo’s Egg: Tracking a Spy Through the Maze of

Computer Espionage. New York: Doubleday.

254. Stueh. 2023. Comment on: [3cx breach update].

255. Stuttard, D., and M. Pinto. 2011. The Web Application Hacker’s

Handbook: Finding and Exploiting Security, 2nd ed. Wiley.

256. Suljkanovic, S. 2005. Honeypots or honey delusions. Technical report,
SANS Institute.

257. Swanson, M., J. Hash, and P. Bowen. 2006. Guide for developing security
plans for federal information systems. Special Publication (NIST SP) 800-
18r1, National Institute of Standards and Technology, Gaithersburg.

258. Symonds, C. 2011. The Battle of Midway, Pivotal Moments in American
History. Oxford University Press.

259. Szappanos, G. 2004. Virus analysis 2: We’re all doomed. Virus Bulletin 9–
13. www. virusbulletin. com/ uploads/ pdf/ magazine/ 2004/ 200403. pdf.

260. Thakur, M.A., and R. Gaikwad. 2015. User identity and access
management trends in it infrastructure—An overview. In 2015

International Conference on Pervasive Computing (ICPC), 1–4.

261. The PC Security Channel. 2023. 3cx: How this malware almost hacked
every business.

262. Thorkildssen, H.W. 2004. Spam-different approaches to fighting
unsolicited commercial email a survey of spam and spam
countermeasures. Network and System Administration Research Surveys

1: 45–55.

263. Toulas, B. 2022. New Intel chips won’t play blu-ray disks due to SGX
deprecation.

264. Toulas, B. 2023. 75k wordpress sites impacted by critical online course
plugin flaws. Bleeping Computer. www. bleepingcomputer . com/ news/ 
security/ 75k-wordpress-sites-impacted-by-critical-online-course-plugin-
flaws/ .

265. Tracy, M., W. Jansen, K. Scarfone, and T. Winograd. 2007. Guidelines on
securing public web servers. Special Publication (NIST SP) 800-44r2,
National Institute of Standards and Technology, Gaithersburg.

266. Tunggal, A.T. 2022. What is role-based access control (RBAC)? Examples,
benefits, and more.

http://www.virusbulletin.com/uploads/pdf/magazine/2004/200403.pdf
http://www.bleepingcomputer.com/news/security/75k-wordpress-sites-impacted-by-critical-online-course-plugin-flaws/


267. Tuohy, W. 2007. America’s Fighting Admirals. Zenith Press.

268. Tzu, S. 2002. Sun Tzu: Art of War. Trans. Ralph D. Sawyer. Basic Books.

269. Ur, B., F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L.F. Cranor,
H. Dixon, P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher. 2017.
Design and evaluation of a data-driven password meter. In Proceedings of

the 2017 CHI Conference on Human Factors in Computing Systems

(CHI’17), New York, 3775–3786. Association for Computing Machinery.

270. Vaas, L. 2022. Samsung shattered encryption on 100m phones.

271. van der Dennen, J., K. Thienpont, and R.L. Cliquet. 2000. Of badges,
bonds and boundaries: Ingroup/outgroup differentiation and
ethnocentrism revisited. In In-group/out-group behaviour in modern

societies: An evolutionary perspective, NIDI/CBGS Publications, ed.
Robert Cliquet and Kristiaan Thienpont, 37–74. Nederlands
Interdisciplinair Demografisch Instituut (NIDI); Centrum voor Bevolkings-
en Gezinsstudien (CBGS).

272. Vehent, J. 2018. Securing DevOps: Security in the Cloud. Shelter
Island/New York: Manning Publications Co.

273. VeraCrypt. VeraCrypt documentation: Authenticity and integrity.

274. VeraCrypt. VeraCrypt documentation: Header key derivation, salt, and
iteration count.

275. Verizon. 2017. Verizon 2017 data breach investigations report.

276. Vijayan, J. 2023. 3cx breach widens as cyberattackers drop second-stage
backdoor.

277. Vinck, A.J.H. 2012. Introduction to public key cryptography. Accessed 08
Oct 2018.

278. Vopson, M.M. 2021. The world’s data explained: how much we’re
producing and where it’s all stored.

279. Ward, R., and B. Beyer. 2014. Beyondcorp: A new approach to enterprise
security. ;login: 39(6): 6–11.

280. Whitney, L. 2021. Microsoft power apps misconfiguration exposes data
from 38 million records.

281. Wilcox, J. 2015. Solving the ENIGMA: History of the Cryptanalytic Bombe.
National Security Agency Center for Cryptologic History.

282.
Williams, C. 2016. Double ko! Capcom’s street fighter v installs hidden



rootkit on PCs. The Register.

283. Wilson, Y., and A. Hingnikar. 2022. Solving Identity Management in

Modern Applications: Demystifying OAuth 2.0, OpenID Connect, and

SAML 2, 2nd ed. Apress.

284. Wiseman, B. 2017. Page not found: A brief history of the 404 error.

285. Woods, D.W. 2023. A turning point for cyber insurance. Communications

of the ACM 66(3): 41–44.

286. Yang, S. 2022. As China shuts out the world, internet access from abroad
gets harder too. LA Times.

287. Yaworski, P. 2019. Real-World Bug Hunting: A Field Guide to Web

Hacking. No Starch Press.

288. Yiu, J. 2017. Software development in ARMv8-M architecture. Presented
at Embedded World 2017.

289. Yurtseven, İ, S. Bagriyanik, and S. Ayvaz. 2021. A review of spam
detection in social media. In 2021 6th International Conference on

Computer Science and Engineering (UBMK), 383–388. IEEE.

290. Yuryna Connolly, L., D.S. Wall, M. Lang, and B. Oddson. 2020. An
empirical study of ransomware attacks on organizations: An assessment
of severity and salient factors affecting vulnerability. Journal of

Cybersecurity 6(1): tyaa023.

Index

A

Access controls 207
ACL 204, 206
AES keys 206
browsers 205
computer systems 204
DAC 204
document, encrypting 206
drive-by download attack 205
Google 205
MAC 204



middleware 204
one-tab-per-process 205
process 204

Access control lists (ACLs) 204, 206, 211
ACM 84, 85
club 84
delegation 86
DTE 85, 86
groups 86
limitations 86
Linux 86
MAC 85
permissions 84
personal computers 84

Access control matrix (ACM) 84, 85
Access control technologies 62, 83

capabilities 87–88
complete mediation 89
CRUD 83, 84
implementation issues 88–89
program execution 83
psychology 89–90
reference monitors 89
side channels 90–91
state 83

Address Space Layout Randomization (ASLR) 222–224, 249
Administrative role-based access controls (ARBAC) 62, 78
Advanced Encryption Standard (AES) 102, 120, 124
Advanced persistent threat (APT) 291–292
Adversaries 4, 8
Affordances 2, 22
ALG, see Application layer gateway (ALG)
Algorithm 95–97, 101–103, 110, 112
Alice’s browser 179–180
Ancillary programs 83



Android operating system 88
Anterior cingulate cortex (ACC) 23
Anti-malware 197, 227, 239, 240, 244, 246
Antivirus (AV) 225–227, 240, 241
Application layer gateway (ALG) 259–260, 267–268
Application servers 325–327
APT, see Advanced persistent threat (APT)
Artificial amplification and disinformation 373, 380
Artificial intelligence 4, 375
Asymmetric algorithms 156–158
Asymmetric cryptography 157

asymmetric encryption
algorithm 147
Alice and Bob 148, 149
bulk encryption 146
comments 149
data 149
key transport 149
MACs 148
public key/private key 146, 147
RSA 146, 147
sharing secrets 147
symmetric key 147, 148
warnings 149

digital signatures 150–151, 158
key agreement (see Key agreement)
and MACs 145
operations 145
public key/private key 145

Attackers 197, 249
Attribute-based access controls (ABAC) 61, 62, 77, 80–82

access control 80
authorization 82
data quality 82
data rot 82



definition 80
employee 82
factors 81
financial environment 81

Authenticated Encryption with Additional Data
(AEAD) 120, 129, 144
Authentication 27, 62, 82

approaches 30, 59
attackers 58
basic formula 30
computers 29
credentials 31
depiction 30
false negative 31
false positive 31
identity management 27
identity theft 29
password managers 59
permissions 59
principals 30
something you are (see Something you are approach)
something you have (see Something you have approach)
something you know (see Something you know
approach)
string 29
username 30

Authentication, Authorization, and Accounting (AAA) 28
Authenticity components 169–170
Authorization 61, 91

approaches 62
leaks 90
models 66, 77
policies

ABAC (see Attribute-based access controls (ABAC))
Bell-LaPadula (BLP) (see Bell-LaPadula (BLP))



Biba (see Biba)
buffer overflow 64
challenges 64
complexity issues 65
data breaches 65
DTE (see Domain and Type Enforcement (DTE))
least privilege 65
MAC 69
permissions 65
RBAC (see Role-based access control (RBAC))
security holes 66
vulnerabilities 64, 65

Average numbers, memory
instructions 400
LOAD and STORE work 400

B

Behavior blockers 247
Bell-LaPadula (BLP) 61, 62, 66, 233

access controls 67
authorization ideas 68
characteristics 69
classifications 66
clearances 67
confidentiality 72
creation 66, 68
DAC 69
difficulties 71
labels 66
limitations 69
MAC 69
MLS 66, 67
multilevel security 66
no-read-up (NRU) 67–69
no-write-down (NWD) 67–70
object 66, 70



policies 69
*-property 68
protection properties 67
running program 71
subjects 66, 70
TCB 70
trusted subjects 70
users 66, 67

Bias 2, 7, 16, 23
Biba model 61, 62

availability 72
confidentiality 72
download programs 73
exceptions 73
files 73
integrity 72
internet browser 73
key properties 71–72
no-read-down 71, 72
no-write-up 71, 72

Binary numbers 385, 387
Biological evolution 7
Bitcoin 236
Blu-rays 208
Boolean Algebra 110
Botnet 15, 198
Bot networks 238–239
Bring-your-own-device (BYOD) 304
Brute force 28, 39, 43, 97, 99
Buffer overflow 198, 212, 249, 250
Business email compromise (BEC) 369
BYOD, see Bring-your-own-device (BYOD)

C

Caesar cipher
algorithm 96



Cancer 4
Capcom rootkit 235
Capgras syndrome 19
Ceasar ciphers

algorithm 96
attackers 98
brute force 97
ciphertext 96
decryption 96
encipher/encryption 96
keys 97
key space 96, 116
letter substitution mapping 96
shift mapping 96

Central processing unit (CPU)
simulation

arithmetic instructions 395–396
8-bit computer 395
data movement 395
jump instructions 396–397
memory 394
processors 394

Certificate authentication
Alice’s browser 185
certificate pinning 186
certificate transparency 186–187
DigiCert’s public key 184
hierarchical 180
metadata 179
private keys 183
random serial number 182
subfields 181
TLS 185
trusted third party 183
validity period 180

ChaCha 20, 120, 138, 141, 142, 158



ChaCha20-Poly1305 120
Cipher Block Chaining (CBC) 120, 126–129, 144
Ciphers

block ciphers 93
Caesar cipher (see Caesar cipher)
monoalphabetic cipher 103, 104
playfair cipher (see Playfair cipher)
qualities 121
stream ciphers 93, 104
Vigenere cipher 104–105

Citizen Lab 246
Classical network security technology

firewalls 258–260
IT security professionals 255
See also Legacy networking security implications

Cleanup tasks 298–299
Client server architecture 416–417
Client-side technologies

addUnderline 322
HTML 323
JavaScript 321
SCRIPT tag 323
security implications 321

Cloud-based email and calendar systems 86
Cloud systems 69
Command and Control (C2) server 238
Compact discs (CDs) 234, 235
Complete mediation 31, 89, 201
Computer algorithm 95
Computer hardware

CPU 389
data formats 390–391
processors 389–390
See also Program execution

Computer networks



circuit switching 403
packet switching 403

Computer programs 200, 202, 204, 210, 213, 241
Computer security 2, 3, 8, 10, 11, 16, 23, 2563–64
Computer systems 64, 65, 83
Confidentiality 94, 108, 109, 117, 119, 135, 136, 142
Confidentiality, integrity, availability (CIA) 72
Containers 195, 211, 212
Content vectoring protocol (CVP) 269
Control flow hijacking attacks 212
CPU, see Central processing unit (CPU)
Create, read, update, and delete (CRUD) 83, 84
Cross-site scripting attacks 345–347
Cryptanalysis 99, 121
Crypto Done Right (CDR) 159
Cryptographic systems 93, 94, 106

authenticity property 166
confidentiality 166
data in motion 165
data integrity 165
data protections 163
MITM 164–165
primitives 157, 162
properties 165

Cryptography
algorithms 95
asymmetric (see Asymmetric cryptography)
block ciphers 93
Ceasar ciphers (see Ceasar ciphers)
cipher strength 117
ciphertext 95
decriminalization 139
definition 106
encryption 94, 95
foundations



binary data 107–108
information security goals 108–110

hashing (see Hashing)
hybrid cryptography 148
key 93, 110, 117
monoalphabetic substitution cipher 99–100
plaintext 95
playfair cipher (see Playfair cipher)
stream ciphers 93, 116
symmetric (see Symmetric cryptography)
uses 94, 95
vigenere cipher 104–105

Customers 65–66, 79
CX’s softphone application software 311
Cyber criminals 8, 14, 236, 357
Cyber-physical systems 83, 84
Cybersecurity 1, 7, 8, 10, 11, 14, 18, 19
Cybersecurity professionals 8, 14, 24
Cyberspace 109
CyLab Usable Privacy and Security Laboratory (CUPS) 59

D

Data breaches 65
Data communications 109, 268
Data-in-motion communications 167
Data integrity 94, 109
Data loss prevention (DLP) techniques

component 298
scanning data

on endpoints 298
in motion 298
at rest 297

Data origin authentication 109, 117, 142, 150
DDOS, see Distributed denial of service (DDOS)
Decimal numbers 383–384
Decryption 95, 96, 103, 106, 117



Defenses
business executive 375
controlling messages 378–380
filtering fraudulent messages 377
fraudsters 375

Defensive deception system
cyberdeception 283
cyber-invaders 284
documents 285
honeypot 286, 288
honeytoken 287
ideas 285

Delay discounting 7
Demilitarized zone (DMZ) 288
Denial-of-service (DOS) 226, 230
Dental hygiene 3
Design principles

affordances 22
error robustness 23
failure robustness 23
irrational modes 22–23
manageable decisions 23–24
rational centering 23

DHCP, see Dynamic Host Configuration Protocol (DHCP)
Diffie-Hellman (DH) algorithms 152, 155, 156
Digital Signature Algorithm (DSA) 151, 155, 156, 158
Digital signatures 150–151, 158
Digraphs 100
Discretionary access controls (DAC) 62, 69, 204
Discretionary systems 86
Distributed computing 416
Distributed denial-of-service (DDOS) 198, 238, 239, 266–
267
DMZ, see Demilitarized zone (DMZ)
DNS, see Domain Name System (DNS)



Domain and Type Enforcement (DTE) 61, 62
assured pipelines 74
classification 73
domain-to-domain 73
implementation 74
implicit typing 74
permissions 74
policy

administrative domain 75–77
domains 75
init program 75, 77
login domain 75, 76
nonhuman authorization 77
object types 75
power and granularity 77
rules 75–76
system domain 75–77
user domain 75, 77

security capabilities 74
SELinux 75, 77
subject 74
types 74

Domain Definition Table (DDT) 74
Domain Interaction Table (DIT) 74
Domain Name System (DNS) 413
Domain-type enforcement language (DTEL) 77
Dynamic analysis 246
Dynamic Host Configuration Protocol (DHCP) 414–416

E

Electronic Code Book (ECB) 120, 125–127
Electronic Frontier Foundation (EFF) 139
Elliptic Curve Diffie-Hellman (ECDH) algorithms 152, 155,
156
Elliptic Curve Digital Signature Algorithm (ECDSA) 151,
155, 156, 158



Email address 355–359
Email operations 380
Emulation 245
Encryption 94, 95, 119, 120, 124–126, 130, 142, 150

algorithm 95, 105–106
Endpoint 199, 248
Endpoint Detection and Response Solutions (EDR) 247
End-User License Agreement (EULA) 234, 235
Entity authentication 94, 109, 117
Entropy 28, 45
Exfiltration 297–298
Extended Copy Protection (XCP) 234, 235

F

Fake emails/phishing emails 20
False accept rate (FAR) 56
False negative 28, 31, 56
False positive 28, 31, 56
False reject rate (FRR) 56
Firewalls

ALG 259–260
gateway device 258
and remoteWAN networks 258

Flushot program 247
Foothold 295–296

G

Galois Counter Mode (GCM) 120
Galois Message Authentication Code (GMAC) 145
Google 205, 206
Government Communications Headquarters (GCHQ) 147
Grover’s algorithm 156

H

Halting Problem 243
Hash 28, 33, 35–37
Hash-Based Message Authentication Code (HMAC) 143



Hash function 112–116
Hashing 28, 36, 44, 94, 157

algorithms 116
computer sizes 113
digest function 113
fingerprints, data 114
function 112
hacker 115
hash function 112, 113, 115, 116
hash number 114
output 113
preimage 115
pseudomath notation 114
random number 114
spreadsheet 114
transformation 112, 113
transform data 113

Heuristic rules 240, 242
Hexadecimal numbers 386–387
Home Theater PC (HTPC) 208
Host 198, 199, 248
Host Intrusion Prevention System (HIPS) 247
Host security technology

access controls (see Access controls)
computer programs 200
hardware-based isolation 207–209
isolation 200

computer programs 202
errors 202
hardware isolation 202
malicious programs 202
side-channel 202

OS
address virtualization 202
availability 201



CPU 200, 201
file access 201
privilege levels 201
process isolation 202, 203
processor 201
time slicing 200
unprivileged programs 201
virtual address 202

process 200
software-based isolation (see Software-based isolation)

Host systems technology
attacks 249

HTML, see HyperText Markup Language (HTML)
HTTP, see HyperText Transfer Protocol (HTTP)
Human brain, security technology

human behavior 6
human reasoning 6
intellectual tools 6
low-level responses 6
negativity bias 6
security issues 6
security technologies 6, 7
threats 6
time horizons 7

Human cognition
human error (see Human error)
human manipulation (see Human manipulation)

Human error
complex rules 9–10
cybersecurity 8, 14–15
mental automation 9
meta-ignorance 10–11
sources 1, 9, 24
wrong model stubbornness

architect 12



criminal investigations and prosecutions 13
cybersecurity professional 14
environment 12
error identification 13
good thinking 13
justice system 14
models 12, 13
opaque materials 12

Human manipulation
active bias 15–16
attackers 15
automatic/reactive response 15
deference to authority 18–19
emotional fallback

attackers 17, 18
banter pushes 18
emotional responses 16
gossip 17, 18
hacker 18
human thinking 16
PI 17
pretexting 17
social engineer 17

sources 1, 24
visual emotional responses 19–20

Human Vigilance 246
HyperText Markup Language (HTML)

domain 308
example 307
web content 308
web page 307–308

HyperText Transfer Protocol (HTTP) 35, 305
cookie 315–316
limitation 314
and POST method 310–311
request line 310



status line 312
and TLS 170–173, 316–317
URL 309
web server 310

HyperText Transfer Protocol Secure (HTTPS) 35, 172
and TLS 170

I

Identity and Access Management (IAM) 28
Identity, Credential, and Access Management 28
Identity management 28
IDS, see Intrusion Detection Systems (IDS)
Impersonation 19, 375, 380
Initialization vector (IV) 120, 128, 129
Integrity checkers 247, 248
Internet of Things (IoT) 238, 239
Intrusion Detection Systems (IDS)

alarm system 280
data and analysis 283
features 281
and IPS 282
signatures 281, 283

Intrusion Prevention System (IPS) 282
IPS, see Intrusion Prevention System (IPS)

J

JavaScript 324
application 342
CSRF tokens 343
network communications 342

Java Virtual Machine (JVM) 211

K

Kerckhoffs’s principle 97
Key agreement

Alice and Bob 152, 154–156
DH algorithm 152, 153, 155



DH Ephemeral (DHE) 154, 155
ECDH algorithm 152
forward secrecy 153, 158
and key transport 151, 152
long-term keys 155
nonmathematical explanation 152
private key 152
public keys 152
RSA 153–155
session key 154
symmetric key 152

Key Encrypting Key (KEK) 190, 193, 194
Krebs on Security 239

L

Last-in-first-out (LIFO) principle 216
Lateral Movement 296–297
Layer-7 firewalls

App-ID 269
CVP protocol 269
DNS 270–271
LAN 271
and security products 269
tunneling 270

Legacy networking security implications
computers 256
organization 255
policy guidelines 256
servers and port scans 257

Legacy systems 44–45

M

MAC, see Message Authentication Codes (MAC)
Malware 224
Malware-specific defenses

identify and neutralize 239



dynamic analysis 244–246
malware 240
static analysis (see Static analysis)

mitigation 239, 247
recover and respond 239, 247–249

Mandatory access controls (MAC) 62, 69, 78, 88, 204
Man-in-the-middle (MITM) 136

attacker 164
default communications protocols 164

McAfee VirusScan 241
Meltdown 203, 250
Message Authentication Codes (MAC) 119, 120, 129, 136,
142–144, 148, 157, 168179, 191

authenticity and integrity 175
encryption 174

Middleware 204, 205, 207, 249
Minecraft servers 238, 408
MITM, see Man-in-the-middle (MITM)
Monoalphabetic substitution cipher, see Caesar cipher
Multifactor authentication (MFA) 27, 58
Multilevel secure (MLS) systems 66
Mutation engine 241

N

NAT, see Network address translation (NAT)
National Institute of Standards and Technology (NIST) 28,
57, 67, 80, 92, 156, 224, 250251
Network address translation (NAT)

firewall 272–273
HTTP request 272
IP addresses 271–272
and LAN 272
security feature 273

Network architectures
DMZ 288
segmentation 288



SIEMs 289–290
SOC 289

Network protocol
addresses 409
communication 404
complexities and configuration 405
DNS and DHCP 414–416
HTTP 404–405
network structures 410–411
OSI model 412–414
packets

header and trailer 405–406
HTTP messages 405
metadata 405

ports 407–409
sessions 407
stacks 411–412

Network stack 405
Node 199, 255, 256, 258

O

One-time pad (OTP) 120
attacker 135, 136
brute force 133
CBC 130
ciphertext 132, 135
confidentiality 135
encryption 134, 136
high-security data 131
ideal function 131
information-theoretically secure 130
key 131, 132
MACs 136, 158
plaintext 131, 132, 135, 157
possibilities 132
predictability 135



random data 133
rules 134
steps 130
stream ciphers 158
transformation 132
XOR 131, 132, 134
XORed 135
XORing 134, 135

Operating system (OS) 197, 200–210, 222, 226, 228, 233–
235, 246
Overlay network

bootstrap process 353
conceptual level 354
data 353
defenses (see Defenses)
definition 352
IP communications 353
threats (see Threats)
See also Social network

P

Packet filtration 263–264
Padding 102–103, 117
Palo Alto Networks (PAN) 232, 270, 273, 290
Permissions 62, 64–66, 69, 73–77, 82–84
Per-packet filtration

block data 262
concept of 260
default deny rule 261
IP addresses 260
and port information 261

Phishing 16, 19, 238, 295, 296
Playfair cipher

algorithm 101
block size 100, 103, 116
ciphertext 103



duplicate letters 100
key expansion 102
key space 102
letter pairs 101
message 102
padding 102
permutation 102
plaintext 103
rules 101
set up 100

Policies 62, 64, 68, 69, 73, 83, 91
Power Apps 65
Principal 28, 30–32, 49
Principle of least privilege 23
Privacy controls 199
Private investigators (PI) 17
Processor 398–399
Professional-level security 3
Program 197, 200, 202, 205–207, 210, 212, 219, 225229,
240
Program execution

arithmetic operations 392
branching instructions 393
CPU 392
program’s instructions 393
RAM and store results 392
RAM memory 393

Provable correctness 250
Proxy 300

DLP scanning 277
forward proxy 276
reverse 277–278
transparent 276

Psychological issues 3, 5
Psychology 89–90
Psychology-aware design



attitudes 20
automatic fire gate 22
closed gates 21
fire safety devices 21
psychological accommodation 22
suggestions 1, 24

Psychology-aware systems 25
Public key cryptography, see Asymmetric cryptography
Public key infrastructure (PKI) 149

Q

Quantum computing 156, 158
Quantum cryptography 156–157
Quantum resistant algorithms 156, 157

R

Ransomware 198, 232, 251
AES keys 237
AIDS 236
Bitcoin 236
cryptography 236, 237
definition 235
elements 236
encryption 237
hybrid cryptography ransomware 236
Popp’s malware 236
recorded case 236
RSA public/private keys 236
threat 238

Reciprocal suppression model 23
Reconnaissance

APT 292
attacker 292–293
CVE organization 293
SQL database 295
TCP port 294



Reference monitors 89
Return-oriented programming (ROP) 198, 223, 249
Rivest, Shamir, and Adleman (RSA) 146, 147, 149–151
Role-based access control (RBAC) 61, 62

advantages 78–80
ARBAC 78
data quality 82
data rot 82
employee 82
MAC 78
roles 78–80
separating duties and concerns 80

Rootkits 198, 234–235
RSA data breach 52

S

Salsa 20, 139, 140, 158
Sandboxing technologies 209, 211
Scammers 19, 357, 362
Science fiction–based video game 5
Seagate Technology 19
Secrecy 97, 108
Securing storage

encryption algorithms 188–189
IEEE Standard 1619.1 187–188

Securities and Exchange Commission (SEC) 372
Security 1–3, 6, 8, 11, 14, 15, 18, 22

controls 199
engineering 91
experts 97
goal/property 63
mechanisms 61
by obscurity/security through obscurity 97–98
policy 61, 63, 64
professionals 20, 45, 64, 248, 255
system 8



target 63, 64
Security-Enhanced Linux (SELinux) 75, 77, 204
Security Information and Event Management (SIEM) 289–
290
Security Operations Center (SOC) 289
SentinelOne antivirus software 11
Separating duties and concerns 23
Server-side technologies 327–329

backend processing 324–325
database 324

Set-Cookie headers 315
Signatures 119, 146, 150
Single sign-on (SSO)

access 330
authorization code 333
authorization server 332
JSON Web Token 336
OAuth 329
OIDC 335
OpenID Connect 330
Pizza website 334
resource owner and resource server 330
resource server 330
secret 331

Smashing the stack technique 221
Social engineering 2, 17, 20, 25, 35, 52, 231, 233246, 295,
296
Social media misuse 380
Social network

definition 354
email address 355–359
media 354
social media sites 359–360

Software-based isolation
Android and iOS 209, 210
applets 211



browsers 210
containers 212
hypervisor 212
JavaScript 210, 211
JVM 211
permissions 209
processors 212
sandboxes 210, 211
software 209
virtualization 209, 211
VMs 209, 211, 212

Software Guard Extensions (SGX) 208
Software vulnerabilities

ASLR 222, 223
attackers 221, 222
buffers 212, 219
call stack 214
data 215, 218, 221
gadgets 223
instructions 221
launch operations 222
libc 222, 223
main function 217
memory 219
mental models 219
null terminating character 219
pages 221
password 219
process 215
ROP 223
shells 222
stack 215, 219–222, 224
subroutine 213–215, 217
unprivileged process 224
weather app 213

Something you are approach 27



biometric errors 56
biometric identification 56
biometric requirements

measurable characteristic 54
secure protocol 56–58
stable characteristic 54–56
unforgeable characteristic 54
unique characteristic 54

biometrics 54–58
contemporary systems 53
equal error rate 57
FAR 56
fingerprint reader 57
FRR 56
harder-to-detect characteristics 58
identity 53
receiver operating characteristic 57
statistics nature 57

Something you have approach 27
alternatives 52
authentication server 50
codes 52
counterargument 52
fob 50–52
identity 49
potential problems 51
process 51
proofs 49
registration process 51
RSA SecurID 50
seed 50, 52
SMS 52, 53
soft tokens 52
time interval 51
token requirements

possession 49



secure protocol 50
unforgeable 49–50

Something you know approach 27
cracking stored passwords

Best of rules 6443
brute-force guessing 39
combinations 39, 43
computer-based guessing 39
dictionary words 42
entropy 45
good password 45
guessing phrases 39
hash algorithms 43, 44
humans’ guessing 38
lowercase letters 39, 40
number of guesses 43
numbers, lowercase/uppercase 41
password changing 47
password database 38
password length 40
password manager 45
password meter 46
personal information 38
possibilities 40, 43
possible passwords 41, 42
symbols 41, 42
weak passwords 38

password requirement
knowledge 32
unforgettable 32
unguessable 32

password reset challenges 47–48
passwords 31, 33
password verification and storage

attackers 35, 36
authentication system 33, 34



cracks passwords 38
evil website 36, 37
hackers 37
hash function 33
hash of password 36
malicious authentication system 36
password manager 37, 38
registration 33–35
salts 34, 35
security issues 36
security risk 33
username 37
verification 37

Spear phishing
financial transaction 366
fraudulent message 367
sample 365
scammer 366
social security numbers 368
types/flavors 366
whaling 369

Spectre 203, 206, 250
Spook.js 205–206
SQL injection 344–345
Static analysis

AV 241
guesses 243
Halting Problem 243, 244
heuristics 240, 242–244
malware 240
mutation engine 241
polymorphic virus 241, 242
signatures 240, 244
signature scanners 241, 242
simulated execution 241
8 Tunes virus 240



virus authors 243, 244
Storage data

host record 188
KEK 190
1619.1 standard 189
TLS 189

Subject matter experts (SMEs) 10, 11, 149
Subroutine 213–217, 222, 223
Sun Microsystems 228
Super-admin accounts 79
Super-admin surveillance 78–80
Sybil Attack 372
Symmetric cryptography 94, 95, 110

AES 124
key 120
modern block ciphers

attacker 123, 124
b_encrypt function 122, 123
block size 121
Caesar cipher 121
chosen ciphertext attack 123
chosen plaintext attack 123
DES 123
hashing 122
permutation 121, 122
playfair cipher 121
pseudorandom functions 122, 124
random assignment 122
related key attack 123
threat model 123
Vigenere cipher 121

modern stream ciphers
AES CounterMode 137–138, 158
AES-CTR 137–139
ChaCha20 (see ChaCha20)



OTP (see One-time pad (OTP))
Vigenere cipher 130

modes of operation
AEAD 129, 144, 145
AES 124, 125, 129
AES-CBC mode 128
avalanche property 125, 126
block cipher 127
block size 124
CBC 126–129
ChaCha 20, 145
ECB 125–127
encryption 124, 125
IV 127–129
MAC 129, 144, 145
XOR 127

operations 120
SYN flood attack 264–266

T

TCP packet 275
Therac-25 64
Threats

artificial amplification and disinformation
botnets 373
digital social networks 371
feedback cycle 374
proof of work 372
social media organizations 374
sock puppet 371

bulk phishing
attacker 362
components and characteristics 362
emotional pathways 364
requirement 364
scammers 362



social media 363
subdomains 363

endpoints 360–361
firewalls and scanning technologies 361
phishing email 361–362
reputation attacks 374–375
spam 361
spear phishing 364–371

Transport Layer Security (TLS) 161, 319
authentication mechanism 179
data packet 173
data transfer in 173
handshake 175–178
and HTTPS 316–318
protocol 171
1619.1 standard 192–193
standard 195

Trojan horse 198, 233–234
Trusted computing base (TCB) 62, 70
Trusted execution environment (TEE) 198, 208
TrustZone 207–209
Twitter handle 48

U

Uniform Resource Identifier (URI)
and computer processes 306
elements 305
HTML 321
parameter 340
resources 306

URI, see Uniform Resource Identifier (URI)

V

Vector program 228–230
Vendor marketing 91
Virtualization 202, 211, 245



Virtualization-Based Security (VBS) 234
Virtual machines (VMs) 209, 211, 212
Virtual private networks (VPN) 36

HTTPS 280
ipsec 279
network security 279
provider-edge 279
remote access 278
TLS 279

Viruses 198, 225
classic virus 227
code 225, 226
DOS 226
8 Tunes 226
email 226, 227
instructions 225, 226
jump 225
macro virus 226
polymorphic virus 241, 242
program files 226

VirusTotal 244

W

Warfare-like nature 4
Web Access for Web Servers

CNN’s firewall 262
HTTP and web traffic 262
TCP packets 263

Web Application Firewall (WAF)
normalization 347
signatures and heuristics 348

Web applications
securing 319
technologies 320
TLS 319

Web components



browsers 305
HTML 307–309
HTTP 309–319
resources and URLs 305

Web threats and defenses
CA 337
cross-site scripting attacks 345–347
HTTPS 336
TLS (see Transport Layer Security (TLS))
WAF 347–348

Whaling 369
Windows operating systems 88
World Wide Web 227, 228, 305
Worm 198

buffer overflow attack 227
computer program 228
crack passwords 229, 230
DOS attack 230, 232
emails 232
file deletion 232
finger program 229
machines 228, 229
mass mailer 231
Mirai 238, 239
Morris processes 230
MyDoom worm 232
online presence management 229
reinfection 230, 231
remote shell 229
sendmail program 229
vector program 228–230
vs. virus 227
vulnerabilities 227

X

XOR 110–112, 117



1

2

Z

Zero-Knowledge Password Proofs (ZKPP) 33

Footnotes
This is changing however. Some HTTP traffic is now carried over the QUIC

protocol which is layered on top of UDP.

 
Technically, layer 1 is still present and some applications do make the

distinction. But may components just combine layer 2 and layer 1 into a single
element.
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