Going the Distance
with Babylon.js

Building extensible, maintainable, and attractive
browser-based interactive applications using JavaScript

Josh Elster ‘ babylon.js
Foreword by David Catuhe, creator and leader of the
Babylon.js open source project

Going the Distance
with Babylon.js

Building extensible, maintainable, and attractive
browser-based interactive applications using JavaScript

Josh Elster o] babylon.js
Foreword by David Catuhe, creator and leader of the
Babylon.js open source project

Table of Contents

Preface

Part 1: Building the Application

Chapter 1: The Space-Truckers Operation Manual

Chapter 5: Adding a Cut Scene and Handling Input

Part 2: Constructing the Game
Chapter 6: Implementing the Game Mechanics

Chapter 7: Processing Route Data

Chapter 8: Building the Driving Game

Chapter 9: Calculating and Displaying Scoring Results

Chapter 10: Improving the Environment with Lighting and Materials

Part 3: Going the Distance

Chapter 11: Scratching the Surface of Shaders

Chapter 12: Measuring and Optimizing Performance

Chapter 14: Extended Topics, Extended

Index

Other Books You May Enjoy,

Preface

The world of 3D application and game development is a vast and actively
changing landscape. With all the stunning capabilities of modern GPU
hardware exposed to the web browser via WebGL, AAA-quality interactive
rendering can be achieved by anyone with some knowledge of JavaScript.
Babylon.js is just the right tool to use for an effortless experience and a
robust application built using WebGL technologies.

Although changes in and the evolution of browser software and hardware
standards continue at their own pace and on their own schedules, Babylon.js
is a framework that prioritizes maintaining backward compatibility. Code
written for BJS 2.0 is highly likely to run with little to no modifications in
BJS 5.20, so product managers and stakeholders can use BJS with
confidence about the long-term stability of the code.

If Babylon.js is the ticket for WebGL, then this book is your ticket to
mastering Babylon.js. Well, you probably won’t become a twentieth-level
Babylon.js developer by the end of this (let’s be real for a moment), but
you’ll certainly learn the key concepts and techniques that will enable you
to progress down that path should you so choose!

All of this is starting to become a kind of bad sales pitch, so let’s drop the
pretense and talk brass tacks. You want or need to learn about 3D game or
app development. As a human being, you also desire entertainment. This
book attempts to satisfy both of those needs by avoiding being too boring
wherever possible while still delivering the big knowledge bombs.
Entertainment and enlightenment, all in one package.

Who this book is for

This book is for artists who avoid coding because they think they’re bad at
math (give yourself more credit!), game designers whose fingers long to
leave the spreadsheet, and developers dreaming of worlds yet to be made.
This book is for students who want to learn outside of their classrooms,
teachers who want their students to learn inside their classrooms, and
parents who want their teenage kids to learn something, anything at all.

What this book covers

Chapter 1, The Space-Truckers Operation Manual, gives an overview of
the world of Space-Truckers and 3D development with Babylon.js.

Chapter 2, Ramping up on Babylon.js, gets us started with (or refreshed on)
Babylon.js with a simple 3D animated scene.

Chapter 3, Establishing the Development Workflow, puts a solid design-
and-build time experience into place to allow rapid future development.

Chapter 4, Creating the Application, involves building a stateful application
that will host the game.

Chapter 5, Adding a Cut Scene and Handling Input, takes us through
imperatively creating an animated “cut scene” and learning how to handle
user input of different types.

Chapter 6, Implementing the Game Mechanics, starts off the construction of
the main route planning phase of the game. Here, we will augment the
existing physics with orbital mechanics and simulated gravitational forces.

Chapter 7, Processing Route Data, involves adding random encounter
tables that correspond to a space biome.

Chapter 8, Building the Driving Game, takes us through dynamically
generating a route and allowing players to drive along it.

Chapter 9, Calculating and Displaying Scoring Results, deals with
capturing and showing stats on player performance in a reusable dialog with
the help of the GUI Editor.

Chapter 10, Improving the Environment with Lighting and Materials,
covers how we can improve the look and feel of the game by enhancing key
visual elements.

Chapter 11, Scratching the Surface of Shaders, discusses extended
analogies explaining shaders and writing shader code that doesn’t involve
writing any shader code.

Chapter 12, Measuring and Optimizing Performance, explains the
heuristics and approaches for testing the runtime performance and the
strategies for improvement, along with dynamic runtime optimization with
the SceneOptimizer tool.

Chapter 13, Converting the Application to a PWA, explores preparing the
application for installation as a Progressive Web Application (PWA). We
then go through publishing this to a major App Store and adding support for
offline usage.

Chapter 14, Extended Topics, Extended, looks at AR/VR with WebXR and
Babylon Native before a foray into photorealistic raytracing and Babylon.js
in a CMS or e-commerce scenario.

To get the most out of this book

You’ll want to be at least passingly familiar with JavaScript before
engaging with the activities in this book, at least to the point where you are
not fazed by looking at code that may initially be unfamiliar. Knowing basic
3D concepts and terms is also helpful. If you are new to Babylon,js,
JavaScript, or 3D development, then a fantastic place to start is the

Software/hardware covered in the book | Operating system requirements

Babylon.js 5.x Windows, macOS, or Linux

WebPack v5.0

ECMAScript 2016+

https://doc.babylonjs.com/journey/theFirstStep

A web browser with the Mozilla or Chrome rendering engine is
recommended, as it has the greatest level of support for various WebGL and
WebGPU features. Safari (WebKit) is known to be significantly behind the
other engines listed in its support with similar functionality.

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book’s GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

The Babylon.js community is the most valuable resource around for getting
help with everything related to BJS.As an Open Source project, Babylon.js
is kept alive by its’ dedicated community of contributors. Who can
contribute? Anyone. What can be contributed? Almost anything. Join the
BJS community on the official forums at https://forum.babylonjs.com and
meet the gang!

Download the example code files

You can download the example code files for this book from GitHub at

will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here:
https://packt.link/CGb69.

Conventions used

There are a number of text conventions used throughout this book.

https://forum.babylonjs.com/
https://github.com/jelster/space-truckers/
https://github.com/PacktPublishing/
https://packt.link/CGb69

code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLSs, user input,
and Twitter handles. Here is an example: “The createspinAnimation
method is called from createStartScene to make the spinanim variable
available to the rest of the scene’s controlling code.”

A block of code i1s set as follows:

planets.forEach (p => {
p.animations.push (spinAnim) ;
scene.beginAnimation(p, 0, 60, true,
BABYLON.Scalar.RandomRange (0.1, 3));
}) s

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

planets.forEach (p => {
glowLayer .addExcludedMesh (p) ;
p.animations.push (spinAnim) ;
scene.beginAnimation(p, 0, 60, true,
BABYLON.Scalar.RandomRange (0.1, 3));
1)

Any command-line input or output is written as follows:

npx webpack -config webpack.common.js

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: “Clicking Run should now show a nifty-looking
starfield in a skybox you can pan around.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Going the Distance with Babylon.js, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com/
clbr://internal.invalid/book/OPS/xhtml/pref001.xhtml

Part 1: Building the Application

This first part of the book establishes the important foundations that will be
leveraged in future chapters. Starting with a survey of Space-Truckers and
Babylon.js, we will construct the main pillars of the game’s hosting
application. Although a basic understanding of Babylon.js is recommended,
the main requirement is to have some knowledge of JavaScript or a similar
programming language.

This section comprises the following chapters:

Chapter 1, The Space-Truckers Operation Manual
Chapter 2, Ramping up on Babylon.js

Chapter 3, Establishing the Development Workflow
Chapter 4, Creating the Application

Chapter 5, Adding a Cut Scene and Handling Input

The Space-Truckers Operation
Manual

It’s not considered to be a very emotionally evolved stance to judge a book
by its cover, but have you seen the cover of this book? If it’s something you
like, then please, by all means, do judge this book by its cover, you counter-
culture influencer, you — carry on reading!

If for some reason you don’t like the cover, then bully for you for literally
turning over a new page to see what’s inside — unlike some superficial
cretins. We’re above that sort of petty judgment, after all.

Note

Sometimes, relevant information will be presented in these Note boxes.
Other times, these same boxes will contain completely irrelevant but
possibly irreverent information. At all times, or at none (sometimes), should
you pay attention to what’s in these boxes.

Regardless of whether you’re on Team Cover or Team Content, it’s clear
you’re incredibly smart and well mannered for the simple fact that you’ve
started reading this book. We’re about to embark on a journey together over
the next 14 chapters. This is not the type of journey that you might
encounter flipping through channels while you search for something to
watch before bedtime. This is a journey across the wide and vast terrain that
is the Babylon.js ecosystem. It isn’t a safari, but it is a sojourn. One thing it
is not, however, is an Odyssey. Primarily because you don’t have to actually
go anywhere, and you get to go back to your regular life whenever you’re
not reading this book, but perhaps for other reasons too.

Important Note

Like its less-distinguished cousin the Note, Important Note boxes will
occasionally make an appearance. Generally, these are used for Things You
Might Regret Not Knowing About Before...

We are going to cover a huge amount of ground over the course of our
sojourn, our journey, but you won’t be traveling unprepared. Our overall
objective here is to build a game hosted by and in a generic web
application. Over the course of three separate parts, we’re going to
progressively do three things:

Create and set up an application and development workflow that gives
Space-Truckers: The Video Game! a place to live

Layer on additional functionality to our application (hosting Space-
Truckers: The Video Game!)

Zoom out on the level of detail to take on a wide range of
enhancements and add to our good knowledge

Each chapter will build on the work established in the previous chapter. It’s
possible that the code in one chapter will need to be modified in subsequent
chapters, and that should be looked at as a reflection of our evolving
understanding of how the application needs to be structured to accomplish
the goal at hand. Every chapter (save this one) contains links to the game’s
code in the same context as the chapter’s text, in addition to live demos and
Playground links specific to the content.

While we are building upon the application, we will also be providing fewer
and fewer line-by-line code details in favor of providing extra context
and/or information relating to how something works “under the hood.”
Don’t worry, the code and Playground samples are still there to help you
find your way! We’ll be exploring concepts that in themselves can occupy
entire texts longer than this not-very-short book, and we’ll be doing so with
less room to expand on those same topics. As a result, we will be looking to

cover some areas at a high level while others will be discussed to a greater
depth.

We’re going to start by walking through the game from the standpoint of
the player, then we’ll move on to look at the underlying game and
application design. As a finisher, we wrap this first travel segment up with a
tour of the Space-Truckers GitHub repository and other online resources.
Let’s start with the ending, in classic literary fashion.

Note

For the movie version of this scene, picture a shimmering dissolve with
appropriate sound effects as we transition to a different world...

Introducing the World of Space-
Truckers

Astronomers recently started receiving a mysterious signal, apparently from
outside of our Solar System. Far from being random noise, the signal
appears to contain structured data in the form of text, audio, and visual
content — an alien transmission! The transmission starts with a basic primer
on terminology and math and rapidly works its way up to describing some
sort of large plastic disc imprinted with something the message called
“multi-media interactive content” that is then connected to a display device
and spun around (how ludicrous!) at thousands of RPMs while a laser beam
reads grooves burned into the spinning disc. Laser beams. Grooves.
Spinning wheels. All ridiculous, but there’s no accounting for alien
sensibilities, right?

The following is a reconstruction of the content that was recovered from
that transmission and burned onto what is now known as the “Dead Sea
CD.” Due to the nature of its journey through space and time, parts of the
transmission were not received, and the data contained was unrecoverable.
At the same time, the connected nature of the data resulted in other parts
being corrupted. Consequently, many of the images and still frames you are
about to view represent data that has been patched back together using the
best tools and resources at our disposal.

Talented teams of professional engineers, scientists, and even sociologists
have worked long and hard to bring about this reconstructed image of what
we believe the people who left us — or sent to us — this record look like:

Figure 1.1 — Best guess at the appearance of the originators of the Space-
Truckers transmission

The next section contains the reconstructed text and image content
recovered from the transmission. Because the original message was
expressed symbolically and not in any human language, the latest GPT-3
text generation Al was trained on the transmission’s symbols so that it
could then produce the content that follows and format it consistently with
the rest of this book.

S0, You Wanna be a Space-
Trucker?

BEGIN TRANSMISSION

|
4

Figure 1.2 — Reconstruction of the Space-Truckers transmission. Probably
intended as a “day in the life”” image

Being a Space-Trucker isn’t for the faint of heart, nor is it for the lonely of
mind. There are hazards and dangers to be found in spades — but there’s also
the allure of fortune and fame. Ever since legendary Space-Trucker
Winchell Chung’s (call sign: Rocket Cat) famous “Grand Tour,” every kid
across the system has grown up aspiring to emulate him. After using the last
of his reaction mass to deliver his cargo, he saved millions of starving
children suffering after the Great Space-Potato Famine. Sadly, that selfless
act left his Space-Rig adrift with no way home. Chung’s Space-Truck was
lost as it drifted off into the Darkness Beyond the Sun. His last
transmission, garbled as it was, contained a single recoverable fragment of
text:

“The cold, hard equations care not for starvation or famine.
<indecipherable>...[b]ecause we’re Space-Truckers. It’s what we do.”

Space-Trucker Chung is a sterling example of what it means to be a Space-
Trucker, but in all fairness, there’s a dark side to the business. What isn’t
publicized is the high rate of turnover among Space-Truckers. Some go mad
from the experience of being alone among the stars, while others simply
refuse to go back out after their run. Others depart from one place never to
arrive at their intended destination.

Figure 1.3 — Space-Trucking is dangerous business

Sure, computers can help, and other technologies also contribute to help
make Space-Trucking safe and dependable. However, no amount of
hardware or software compares to the wetware of the human mind when it
comes to dealing with unanticipated situations, and that’s why Space-
Truckers need to be behind the wheel of their Space-Rigs.

Before any space wheels can hit the space pavement, our driver needs to
know where to go. Space-Dispatch is here to help with Route Planning
services, and with their detailed orbital and launch simulation, different
potential routes to the cargo’s destination can be evaluated and tried without
risk to the Space-Trucker.

Figure 1.4 — Planning a route involves timing the launch as well as properly
aiming it. The left-side bar controls the launch impulse — higher is faster

Despite the risks, the potential rewards are quite high. Completing a Space-
Haul has a variable payout for the Space-Trucker, with space-bucks being
awarded or demerited based on the driver’s performance in the field.
Factors from the simulated route include the total transit time, how much
fuel (launch force) is consumed, and the total distance traveled.

The Drayage Report

Cargo Score

Figure 1.5 — Space-Trucking pays well when things go well

Many different obstacles can be encountered, and no two routes are the
same, but the scoring factors ensure that when it comes to comparing runs,
the High Scores board is the ultimate arbiter of the G.O.A.T Space-
Truckers.

Note

G.0.A.T. is not referring to any animal in this context. The Greatest of All
Time Space-Truckers are a select and elite group — show proper respect!

Timing is of the essence in Space-Trucking, but so is safety. By being
mindful of the latter in service of the former, the Space-Trucker stands the
best chance of completing their Space-Haul and getting the opportunity to
spend their payday on the Space-Beach.

Never forget, Space-Trucker — the cold, hard equations of planetary motion
have no concern for whether you’ve got enough air to breathe or heat to
stay warm. Keep your slide rule handy in case of instrument failure and go
forth to find your fortune slinging cargo!

Figure 1.6 — Recovered image of a “Space-Trucker” and their “Space-Rig.”
The Space-Trucker is the small figure in the foreground

END TRANSMISSION

The life of a Space-Trucker certainly must be full of glamorous riches and
perilous travels for those folks to send a recruitment leaflet all that distance!
Stepping back to the real world is hard, but it’s important that we break
down the various elements of how Space-Truckers is designed and put
together. Ideally, as you progress through this book, you’ll have this
foundation to help you stay grounded with where everything goes and fits
together.

Space-Truckers: The Video Game
Design

The basic idea behind Space-Truckers is simple: get stuff from Point A to
Point B, in spaaace! (It’s not required to draw out that last word, but it helps
set the mood.) As a game, it is separated into several distinct phases or
states:

Landing (Home) Screen
Splash Screen

Menus (inc. High Scores)
Route Planning

Driving + Scoring

Each of these screens (used as a synonym for “state” here) will be
established, then later enhanced over the course of this book along with an
underlying application to support and coordinate between them.

Landing

This is the first thing that a player sees when they navigate to space-
truckers.com (Or the beta testing site, dev.space-truckers.com). It’s an
HTML page with a simple Call to Action: “Launch.” Under the hood,
however, the HTML page is the host for the main application canvas — the
WebGL context onto which all the rendered outputs are painted. It is
responsible for loading the packaged web application as well as registration
of a Service Worker (see Chapter 13, Converting the Application to a PWA)
to manage and pre-fetch assets. As the DOM host, it provides access to the
web browser and through it the host machine’s resources, such as the ability
to play sound or read input from gamepads or VR hardware. Learn more
about this in Chapter 3, Establishing the Development Workflow.

Splash Screen

In music and comedy, a warm-up act precedes the main headline
performance as a way to put audiences into a particular frame of mind or
mood. After all, it’s much easier to crank things up past 10 on the volume
dial when you’re already at 7! The Space-Truckers Splash Screen serves
that purpose, as well as giving us an opportunity to showcase the underlying
framework and proclaim that this game is Powered by Babylon.js. Once
the short, animated content completes, the application enters “attract mode
to entice players to continue.

29

Menus

The transportation hub of the game, the Main Menu, is where players will
start a new game, view high scores, exit back to the landing page, and
potentially do more. Sound effects and an animated selection icon bring a
bit of motion to a twinkling background. The menu system is initially
covered in Space-Truckers: The Main Menu section of Chapter 4, Creating
the Application.

Route Planning

One of the two main game phases, the Route Planning Simulation, is where
players become content creators. Using a top-down map view, drivers plan
their route before embarking on their journey. From an initial starting orbit
close to the inner-most planet, players must balance how much launch force
is used with aiming and timing to put the simulated cargo on a path to the
destination planet. Once launched, the cargo is entirely at the mercy of
gravity and Sir Isaac Newton. Pro tip: aim ahead of where you want to end
up but be sure to account for the pull of the sun. Because it is a simulation
of a route, there are no consequences for failure — the player is free to try as
many times as they want to find the perfect route to drive in the next phase.

Driving and Scoring

After planning out the desired route, it’s time for players to then take the
wheel and guide their Space-Truck through the transit corridor while
avoiding collision with the random events that have been recorded during
the route planning phase. The player’s unit drifts in free-fall, so velocity
accrued in any given direction will remain unless later canceled out by
opposing acceleration. Collision results in damage, and with enough
damage, the truck and its cargo are destroyed.

Figure 1.7 — Collisions during the driving phase have consequences

On a brighter note, completing the course results in the player’s score being
calculated. Several different factors contribute to the overall total final
score. The length of the route, the time it took the simulation to complete
the route versus the time the player took, and the initial launch velocity in
route planning are all some of the factors involved in scoring. If a player’s
score is high enough, then it will displace one of the previous high score
holders to place the player’s selected initials into the hall of legends.

This is the game in a nutshell. As with any such high-level overview, it is
necessarily lacking in some detail, but it provides a holistic picture of what
we’re going to be developing over the course of this book. To get into more
detail, we’re going to need to first get an understanding of where we can
find those details as well as where and how to pick up supporting context in
the GitHub repository for Space-Truckers.

Space-Truckers: The Repository

Exploration is an important learning tactic for the discovery of new
knowledge. Its converse, exploitation, is an equally important tactic used to
convert passing knowledge into actionable skills. The key to maximizing
learning is the proper application of each type of learning at the appropriate
level and time. With tight iterative exchanges between the two, it is possible
to learn a lot in a little amount of time.

Our journey has many stops and signposts along the way to help assist and
guide us toward our destination, and in the spirit of maximizing learning,
each chapter represents an evolution toward our goal that includes live,
runnable examples (exploration) along with the exact source code for the
application at that point of the journey.

ch3

Figure 1.8 — View the application source in context with the stage of your
journey

We accomplish this in a simple fashion via the use of Git branches — one for
each chapter involving the application code. In addition, each chapter may
have one or more Playground snippets (see Chapter 2, Ramping up on
Babylon.js, for more on the Playground) specific to the content covered in
that chapter. Snippets are neat in a lot of ways and one of those is that they
can have multiple revisions. Toggling between different revisions of a

snippet is a great way to visually see how an example has evolved and can
help bring insights as to why a particular piece of code behaves as it does.

Maybe things were going OK but then you’ve found yourself stuck on
something that you just can’t figure out. That’s OK too — there are places
you can go for help! Create a post or add to an existing one in the
Discussions board over at https://github.com/jelster/space-
truckers/discussions for questions, comments, or concerns about content in
the repository and/or book. Questions more general to BJS can be posted
over at the BJS community forums — https://forum.babylonjs.com. Creating
an account for both GitHub and the BJS Forums can be relatively quick and
painless.

Tip

If you are planning to create both a BJS Forum and a GitHub account login,
save yourself half the effort by signing up for GH first. Then, when you
create your forum account, you can select the Login With GitHub option,
supplying the information for your newly created GH account.

The Space-Truckers repository has more than just the source code and
discussions, though. It also hosts the Issue Tracker for the game
(https://github.com/jelster/space-truckers/issues), which is where people can
request a new feature or file a bug report — it’s also where folks looking to
contribute to the project can peek to find something suitable to their
abilities.

Tip

Another pro-tip offered pro rata via the cost of this book: Scan through
issues with the labels good-first-issue and needs-help. Those are ones the
repository’s maintainers either need assistance with or feel that the issue
represents a gentle introduction to the code base.

Community contributions are what Open-Source Software (OSS) is all
about, but because they are largely volunteer-driven, there’s always more
work than there are people that can get that work done. Consequently, most
maintainers are thrilled whenever somebody submits a Pull Request — a set

https://github.com/jelster/space-truckers/discussions
https://forum.babylonjs.com/
https://github.com/jelster/space-truckers/issues

of changes to be incorporated into the code base — to the project that
resolves an existing issue!

Tip

Getting tired of these yet? Fair enough. Final tip: Even projects like BJS
with many maintainers working full time on it have this problem. The
maintainers might not be having to scrounge donations to keep servers on,
but they do have to scrounge for the time to accomplish everything that we
want them to!

It can be difficult to synthesize and learn new things when it feels like
you’re in drinking all the newness through a firehose. That’s why the
Space-Truckers code base is branched by chapter. Though an individual
chapter won’t necessarily resemble the current, final game as represented in
the main or develop branches (production and beta environments,
respectively), each branch has as much complexity as it needs to have for
that point in the book and no more. To put it differently, the evolution of the
application will mirror the evolution of our journey as it unfolds.

Summary

The next thirteen chapters each represent their own signpost denoting the
progress of our journey, and there is much yet to see and accomplish.
Pulling onto the Space-Highway, it can appear like the space-road ahead is
stretching out toward infinity. The truth is every road seems that way at the
start of a trip. By keeping the focus on what’s immediately ahead, the
infinite can become finite, and overwhelming complexity becomes
manageable tasks.

Much like this book is separated into sections and chapters, Space-Truckers
1s separated into distinct phases or states. The Landing Page is the
launchpad (pun intended) for starting the game, while the Splash Screen
prepares the audience and sets the mood. Meanwhile, the Main Menu
Screen serves as a navigation hub between the main gameplay states and
the others.

There are two(ish) phases to the gameplay. Route Planning is where players
use an orbital mechanics simulation to plot a course for their Space-Cargo
to get from the origin to the destination planets. The direction and force of
the launch are set by the player prior to launch, with the timing of the
launch also a major factor in how players dictate their route.

Having planned a route, the next game phase sees that route being used to
create a tunnel filled with obstacles (random encounters) that the player
now must navigate their Space-Truck through to reach the end point. Time
matters, but so does bringing the cargo to its destination in as good a
condition as possible. Once the destination has been reached, a third,
pseudo-game phase enters the stage.

Scoring is done using several factors that will be outlined in detail as part of
Chapter 9, Calculating and Displaying Scoring Results. Players’ decisions
from Route Planning impact the final scores in multiple ways ranging from
time goals to fuel costs. Only the top scores get persisted into the High
Score Screen, a feature available in both the web and PWA versions of the
application.

The place where all the work around Space-Truckers is tracked and
managed is in Space-Truckers: The GitHub Repository. Additionally,
each chapter of the book (with a few exceptions) has its own branch in the
source code. This allows you to view the state of the overall application in
context with the content of the corresponding chapter. Additional assistance
can be found by posting in either Space-Truckers: The Discussion Boards
or on the BJS official community forums.

Next, we’ll start by gradually building some momentum through a back-to-
basics review of the BJS framework and ecosystem. We’ll look at some of
the tools, resources, and techniques and if necessary (re)introduce ourselves
to how rendering in BJS works. We’ll learn about the Playground and begin
the process of building our application by creating a simple loading
animation. Buckle up, Space-Trucker — we’re hitting the road!

Ramping up on Babylon.js

At the risk of sounding hyperbolic, Babylon.js (BJS) is nothing short of
incredible in how fast effortless, and fun it can be to work with 3D graphics
and games. Most game and graphics engines come with sizable footprints in
terms of size and computing resource requirements, but BJS is different
because it can run in a web browser. The BJS team has created a rich web-
based tooling ecosystem that covers a wide range of development
workflows and use cases to support developers and designers from many
different angles. After establishing some shared vocabulary and reviewing
some basics, we will begin our journey with the Babylon.js Playground
(PG). After this chapter, we’ll have laid the foundations for Space-Truckers
by creating and rendering a basic animated scene that uses the PG along
with content from the asset library.

In order to get from where we are to where we want to be, we’ll divide the
work into these sections:

Catching up or Refreshing on Babylon.js
Building Our Scene in the Playground
Animating Orbits

Extended Topics

Technical Requirements

Like most things in software, you’ll get the best results with Babylon.js. PG
snippets requires only a web browser supporting WebGL, but a desktop-
based browser is required for some BJS web-based toolsets such as the
Node Material Editor (NME). A keyboard is highly recommended for
typing code into the PG. With regards to browser support, while there are
some exceptions around specific devices and platforms the latest versions
of Edge, Chrome, and Firefox all support WebGL2, with ever-growing
support for the newer WebGPU functionality. See

https://caniuse.com/webgl2 for the most up-to-date list of browser vendors
supporting WebGL2.

Catching up or Refreshing on
Babylon.js

When starting a new project, it’s easy to get overwhelmed by the sheer
number of different things that need to be done. Throw unfamiliar
technologies or domains into the mix, and even the most seasoned software
veteran might blanch a bit at the challenge. That’s an okay feeling to have!
The key to overcoming and moving past it is both difficult and simple at the
same time: you just need to find an atomic, well-defined task and then just
do that task. After tackling a few of these tasks, you can take a step back to
reassess things in light of what you now know. Most likely, you will find
that the work you originally thought was needed 1sn’t.

Whether you’re a veteran game developer exploring the possibilities of BJS
or someone who has never programmed a game before, a strategy of
starting simple and building iteratively can be the best way to get usable,
immediate results. Let’s start with the basics. The following screenshot is
part of the BJS 4.2 release content that demonstrates simply how BJS can
render scenes with high visual fidelity.

https://caniuse.com/webgl2

Figure 2.1: A real-time interactive demo from the Babylon.js home page.
Semi-transparent shadows, reflections, and refraction are clearly visible
along (and inside) the bottle and table, just as different substances cast
different shadows in the real world.

The Basics of BJS

BJS 1s a WebGL-based, full-featured 3D rendering engine written in
TypeScript and compiled to JavaScript. Although commonly accessed via a
web browser, current versions do not require an HTML DOM or Canvas
elements, meaning that it can run “headless” on a server. The BJS team has
a very clear vision and mandate, as illustrated from the BJS home page
(https://www.BJS.com):

“Our mission is to create one of the most powerful, beautiful, and simple
Web rendering engines in the world. Our passion is to make it completely
open and free for everyone. We are artists, developers, creators, and

https://playground.babylonjs.com/#P1RZV0
https://www.bjs.com/

dreamers and we want to make it as simple as possible to enable everyone
to bring their ideas to life.”

BJS supports a wide range of both input and output scenarios, from game
pads and accelerometer-based input to single- or multiple-viewport output
(e.g., VR/AR). A full list of the engine’s specifications is available at
https://www.babylonjs.com/specifications. Something that’s less obvious
from the specifications is that support for WebGPU is limited only by the
implementation of the standard by browser vendors, so if you read news
about WebGPU support being released for a browser, you can be confident
that BJS will be able to take full advantage of it without needing you to do
anything at all!

Tip

Something I always forget to apply to when I’'m working with imported
assets being from other 3D/image editing tools such as Blender is
coordinate conventions. The 3D coordinate system used by BJS is “left-
handed,” meaning that the positive y-axis will (by default) point in the “up
direction, the positive x-axis to the “right,” and the positive z-axis “toward”
the camera.

Get Started with Getting Started

Something that will quickly become apparent to anyone browsing the
documentation for BJS is how thorough and comprehensive that
documentation is. Given the high quality of the Getting Started content
there, it would be a pointless waste of precious space in this book to attempt
to recreate the basic tutorial at https://doc.babylonjs.com/start. If this is your
first time adventuring with game development, BJS, or JavaScript, it is
highly recommended that you take the time to at least browse through the
Getting Started tutorial linked earlier. Don’t worry about leaving —
everything will still be here right as you left it when you get back!

Tools for the Toolbox

2

https://www.babylonjs.com/specifications
https://doc.babylonjs.com/start

One of the advantages of being JavaScript-based is that it is very easy to
make web-based tooling available that allows users to code and render in
real time 1n a tight iteration loop. The BJS Playground (PG) is probably
the most prominent member of the BJS toolchain, but that should not
diminish the utility and importance of the other tools that we’re going to
cover. The following table summarizes the various tools available and their

purposes:
Tool How to Access It Purpose
Playground (PG) https://playground.babylonjs. | Writing, running, and debugging runnable
com. snippets. Saving and sharing snippets.
Sandbox https://sandbox.babylonjs.com. | Viewing 3D models, and computing environment

textures for PBR/IBL.

Node Material Editor
(NME)

https://nme.babylonjs.com.

Creating, saving, and sharing custom shaders
made via a GUL Custom materials, texture
shaders, post-processes, and more.

Inspector Invoked via code or PG. Visual debugging and modification of running
scene.

Sprite Editor Built-into inspector. Create and share snippets for sprites. Manage
and debug sprite properties.

GUI Editor Built-into inspector - standalone tool | Visually create and manage GUI elements.

forthcoming .
Particle Editor Built-into inspector. Create, manage, and debug particle systems.
Texture Editor Built into inspector. Upload, view, and modify textures in a scene.

Skeleton Viewer

Built into inspector.

Display skeleton info of models in scene.

Throughout this book, we’ll be making heavy use of the PG; we’ll use it to
quickly put together a piece of code or test a concept before integrating it
into our application code. Not to be left out, the Inspector (and its
accompanying tools) is also going to see heavy usage for its powerful
scene-debugging capabilities. Finally, the NME will be covered later in this
book as we dive into the making of Space-Truckers.

Note

The typical usage of the word Game in this book denotes the portion of the
overall Application that is devoted to the game mechanics, logic, and

loops.

The Asset Types of BJS

Many different types of files and formats are supported by BJS, either
directly or indirectly (via exporter plugins). When selecting and/or creating
assets for your game, it’s important to put together a production workflow
that minimizes the amount of friction without sacrificing quality —
something we’ll learn more about in the next chapter. Here are a few of the
most commonly encountered third-party tools and file types that BJS
supports:

Textures/Images:

DDS (DXT1, 4bpp, and RGBA)
PNG/JPEG/BMP

TGA

HDR

3D Models:

GLTF (preferred)

OBJ

STL

BLENDER/3DS Max/Maya (exporter plugins)

Sounds:

WAV
MP3
MP4
M4A

Fonts:

TrueType
OTT

More relevant to our immediate purposes, however, is the BJS Asset
Library. You can see the asset categories and browse entries by category at
https://doc.babylonjs.com/toolsAndResources/assetlibraries, but the true
power of the Asset Library comes from being able to reference and load
them from the PG! Let’s start off our scene creation by doing just that.
Open up your browser of choice and head to the BJS PG:
https://playground.babylonjs.com.

Building the Playground Scene

The Babylon.js Playground is designed around providing users with the
easiest, shortest possible path to rendering content in the scene. Open your
and you’ll see the basic outline of a snippet. This basic template snippet
simply creates a new scene and a camera that renders it, but it’s as good a
starting place as any!

On the left of the playground is the code editor and on the right the render
canvas. The important thing to know about the playground is that each
snippet is unique in two ways, both contained within the URL to the
snippet. The characters after the first hash (#) symbol are the snippet’s ID,
the number after the second hash the revision. Every time a snippet is
created it is assigned a unique identifier, and every time that snippet is
saved a new revision is created. For example, #L92PHY#36 points to a
sample showing multiple viewports in an FPS camera, with the current
revision being 36. Thus, it’s possible to step incrementally through a
particular snippet’s revision history simply by changing the URL.

Note

https://doc.babylonjs.com/toolsAndResources/assetLibraries
https://playground.babylonjs.com/
https://playground.babylonjs.com/

The completed playground snippet for this chapter is #0UYAPE#42. That
is, snippet QOUYAPE at revision 42.

Because we are going to be using snippets from the PG in our game though,
we’re going to want to do a little bit of preparatory structuring so that we
can easily and reliably transfer code between our PG snippets and the
source repos (more on this in Chapter 3, Establishing the Development
Workflow). Throughout the book and in snippets, we will be using ES6
syntax where possible. This gives us access to some important language
features that we’ll be leveraging to help keep our code readable and
maintainable.

Tip
ES6 recommendation: choose 1et over var.

It’s all about hoisting and closures. Variables declared using the var
keyword are valid in their declaring scopes, but also potentially in a/their
containing scope (known as “hoisting”). Additionally, you can reference a
var prior to its usage without throwing a runtime error. When a variable is
declared with the 1et statement, it is only available in the declared scope,
and it must be declared prior to usage; otherwise, an error will be thrown.
Generally, you should prefer the use of 1et over var because it will more
easily prevent and expose all-too-common-but-potentially-quite-subtle
defects. Of course, if you aren’t going to be changing the value, you should
US€ const OVET let.

Establishing the AppStartScene

A new PG snippet starts with a single block of code — the createscene
function. As the code comments also indicate, the engine and canvas
global variables are available in the window’s context.

Important Note

The HTML Canvas element has been removed as a dependency in BJS
4.2+, but for backward compatibility reasons, methods involving the HTML

Canvas element will still function as expected.
Moditying the createScene function

To make the reuse of code easier, we will make a small change to the initial
function template. Instead of putting all of the scene’s logic into the same
createScene function, we’re going to subdivide the logic into atomic
functions as much as possible. The initialization routine will be done in a
new function, which will return an object containing the populated scene
objects:

let createScene = function () {
let eng = engine;
let startScene = createStartScene (eng);

return startScene.scene;

'y

A sharp observer will notice that we have not as yet implemented the
createStartScene function, which is of course the next step. Its purpose is
to create and initialize the scene and its elements — see the following list.
Low-friction change is critically important, so to make it easier to change
them later we’re going to place each piece of functionality into its own
function (pun intended):

ArcRotateCamera
Point light

Star (sun)

Skybox for background

Planets — four rocky and one gas giant

It’s time to fill out our add and populate this new function,
createStartScene. First, we are creating the scene and camera, specifying
some specifics before making calls to soon-to-be-written functions (in bold)
that create their respective elements:

function createStartScene (engine) {
let that = {};

let scene = that.scene = new BABYLON.Scene (engine) ;
let camAlpha = O,
camBeta = -Math.PI / 4,

camDist = 350,
camTarget = new BABYLON.Vector3 (0, 0, 0);
let camera = that.camera = new
BABYLON.ArcRotateCamera ("cameral", camAlpha, camBeta,
camDist, camTarget, scene);
let env = setupEnvironment (scene) ;
let star = that.star = createStar (scene) ;
let planets = that.planets =
populatePlanetarySystem(scene) ;
camera.attachControl (true) ;
return that;

To save you the effort of doing the math in your head, the campeta (or, the
latitudinal position in radians of the camera from the target) value comes
out to around 0.785 rad - 45 degrees, between the equator and the pole of an
imaginary circle around the target of campist radius. Of course, this code
won’t compile or run yet because we haven’t yet defined
setupEnvironment,createStar,OrpopulatePlanetarySystemJ}\ddfﬁub
implementations for these functions to make sure that the code runs as
expected. The resulting scene is empty, but it’s a good checkpoint in our
progress. It’s time to fill in the stubs and make our scene come to life! Don’t
forget to save (Ctrl + S) your snippet before continuing.

Setting up the Environment

The default environment is pretty bland and dark. The primary source of
lighting for the scene is going to be a Point Light positioned at the center
of the star system, while a skybox gives the scene perspective. The
texturing of the skybox is of particular interest, because an attractive-
looking skybox tends to be quite large in terms of file size. We care about
this because we are going to use this scene as a loading graphic, meaning
that it needs to load and begin rendering as quickly as possible. Loading a
large texture over an internet connection is unlikely to help us with that

goal, so instead we will create the texture on the fly using the Starfield
Procedural Texture from the Babylon.js Procedural Textures Library
(see
https://doc.babylonjs.com/toolsAndResources/assetlibraries/procedural Text
uresLibrary for the full list of available procedural textures).

Tip

Every procedural texture may or may not have its own set of input
parameters that can be set to modify the output rendering of the texture. For
the Starfield Procedural Texture, we are setting just two out of many
available properties: darkmatter, which controls the lacunae (voids), and
distfading, which governs the sharpness or blurriness of the rendered
texture. The values in the code listed in the following code were arrived at
after trial-and-error, so experiment to see what you like the best!

PointLight 1, as the name implies, a source of light that radiates in a
spherical shell from a single point in space. Because of the darkness of the
scene and its large-ish size, the intensity of the light gets a bump before
setting some sun-like colors for the diffuse and specular color channels. We
use the Scene’s createDefaultEnvironment method along with some
previously defined options to create the skybox and accompanying
background material. That method returns an EnvironmentHelper instance,
which we will kindly return to the original caller of setupEnvironment:

function setupEnvironment (scene) {
let starfieldPT = new
BABYLON.StarfieldProceduralTexture ("starfieldPT", 512,
scene) ;
starfieldPT.coordinatesMode =
BABYLON.Texture.FIXED EQUIRECTANGULAR MIRRORED MODE;
starfieldPT.darkmatter = 1.5;
starfieldPT.distfading = 0.75;
let envOptions = {
skyboxSize: 512,
createGround: false,
skyboxTexture: starfieldPT,
environmentTexture: starfieldPT
i
let light = new BABYLON.PointLight ("starLight",
BABYLON.Vector3.Zero (), scene);

https://doc.babylonjs.com/toolsAndResources/assetLibraries/proceduralTexturesLibrary

light.intensity = 2;

light.diffuse = new BABYLON.Color3 (.98, .9, 1);
light.specular = new BABYLON.Color3(1, 0.9, 0.5);

let env = scene.createDefaultEnvironment (envOptions) ;
return env;

Clicking Run should now show a nifty-looking starfield in a skybox you
can pan around. If everything is working correctly, now is a good time to
save your work.

1 > function createstar(scene) {

33 v function setupEnvironment(scene) {

34 let starfieldeT = YLON. StarfieldProceduralTexture("starfieldPT", 512, scene);

3 starfieldPT.coordinatesMode = BABYLON.Texture.FIXED_EQUIRECTANGULAR_MIRRORED_MODE ;
starfieldPT.darkmatter = 1,5;

3 starfieldPT.distfading = @.75;
38 v let envOptions - {
skyboxsize: 512,

) createGround: false,

a1 skyboxTexture: starfieldPT,

a2 environmentTexture: starfieldPT

a4 BABYLON.PointLight("starLight", BABYLON.Vect: %))
a6 ABYLON.Color3[l (.98, .9, 1);

48 ns);

o}

52 > function populateplanetarysystem(scene) {

o0)

162 function createstartscene(engine) {

103 let that = {};
4 let scene = that.scene = new BABYLON.Scene(engine);
105 v let camaAlpha = ©

camBeta =

3
= setupen
110 let = that.s
2
4

let = tha poj tarysystem(scene);
let camera = that.camera = new BABYLON.ArcRotateCamera("cameral”, camAlpha, camBeta, camDi
camera. attachControl(true);

return that;

b

Figure 2.2 — Starfield skybox environment
Birthing a Star

The mesh for our star is a simple sphere, but when we add the standard
material and some color channels, the result is a single-toned, flat-appearing
circle — not very “star-like.” We can get a more nuanced look with very
little effort by combining an emissive (or, the color of light emanating from
the object) color with a diffuse (a color map of light reflected off the object
non-directionally) texture containing some noise or distortion. Fortunately,
the BJS Texture Library contains a distortion texture that should do

perfectly. Because we’re loading from there, we can simply specify a

relative path to the specific filename of the desired texture in the
constructor for BABYLON. Texture:

function createStar (scene) {
let starDiam = 16;
let star = BABYLON.MeshBuilder.CreateSphere ("star",

{ diameter: starDiam, segments: 128 }, scene);

let mat = new BABYLON.StandardMaterial ("starMat",
scene) ;

star.material = mat;

mat.emissiveColor = new BABYLON.Color3(0.37, 0.333,
0.11);

mat.diffuseTexture = new BABYLON.Texture
("textures/distortion.png", scene);

mat.diffuseTexture.level = 1.8;

return star;

Without changing the diffuseTexture.level value, the emissiveColor
tends to either wash out the distortion or be extinguished entirely by the
diffuse texture’s pixel values. The level, 1.8, was a product of trial-and-
error (as is the case with many of these “magic numbers” that tend to show
up during app design/game development). This is a good checkpoint for
saving your progress if you haven’t recently.

Figure 2.3 — Emissive color combined with a diffuse distortion texture

Producing Planets

There’s only one remaining top-level scene element that we still need to
create, and that’s the populatePlanetarySystem function. The
implementation for this is a classic example of the power of compositional
software patterns — a topic we will be returning to later. There’s what you
might think of as a central control logic in the form of
populatePlanetarySystems, which is responsible for deﬁning the number
and unique properties of the various planetary bodies. It then asks another
function, the new createPlanet method, to take care of how the actual
object is constructed. Finally, it collects the planets into an array that it
returns to the caller.

We want to be able to create different types of planets with different
properties, SO in our populatePlanetarySystems method, we create an

array of objects that define each planet. For the full listing of planetary data,

let hg = {
name: "hg",
posRadians: BABYLON.Scalar.RandomRange (0, 2 * Math.PI),
posRadius: 14,
scale: 2,
color: new BABYLON.Color3(0.45, 0.33, 0.18),
rocky: true

Yoo /7.

The posradians property generates a random value between 0 and 360
degrees (in radians), whereas the posradius property specifies the distance
from the origin the planet should reside — how far away it is from the sun.
The overall size of the planet is determined by its scale factor, while the
specular and diffuse color channels of the material are populated with the
eponymous color property. We’ll cover the final property in a moment.
Scaling of a scene can be tricky, but you can use relative scale guides to
help come up with appropriate ranges of numbers.

You don’t have to stick to realistic numbers — have you ever been told that
“Space is Big. Really Big”? It is, in fact, quite too big to fit in our tiny
viewport, so when choosing posradius for the planet, it might be easier to
approach coming up with a figure from a different direction. By looking at
the orbital radius in terms of the relative steps between planets, we can
come up with a decent-looking (but probably not realistically stable) system
of planets. Our starbDiameter is 16, giving us a radius of 8 units. Our inner-
most planet, “hg”, needs to be at least 8 + 2 = 10 units to avoid intersecting
the star; putting it at 14 units seems about right. Moving to subsequent
planets, by placing each planet around 1.5-1.8x, the orbital radius of the
previous planet will give nice-looking results that aren’t too far from the
ratios found in our own Solar System — that’s how you know it will be
interesting!

This leaves us with the rocky property. This flag will signal our logic that it
needs to apply a different set of textures to the Standard Material the
planet model uses to be rendered. With this data in hand, we push new

https://playground.babylonjs.com/#0UYAPE%2326

items returned from createPlanet into the planets array before returning
the populated array:

planets.push (createPlanet (hg, scene));
planets.push (createPlanet (aphro, scene)) ;
planets.push (createPlanet (tellus, scene));
planets.push (createPlanet (ares, scene)) ;
planets.push (createPlanet (zeus, scene));
return planets;

The final sub-task needed to display our planetary system is to implement
the createpPlanet function. In this method, we do the following:

1. Create a new Sphere Mesh using the MeshBuilder.

2. Create a new StandardMaterial, assigning di ffuseColor and
specularColor to the passed-in color3 value.

Assign textures based on the value of the rocky flag.
4. Assign the material to the mesh.

5. Scale and position planet according to the passed-in scale,
posRadians,andpmsRadius\Nﬂue&

It may not be immediately obvious, but we are also setting the material’s
specularpower to zero. This is because we will otherwise get very shiny
spots on our planets, making them look more like billiard balls than rocky
or gaseous spheres. For rocky planets, we are pulling in both bumpTexture
(a.k.a. a Normal Map) and a regular di ffuseTexture from the BJS
Textures Library. For planets with no visible surface, we use the distortion
texture to add the appearance of cloud bands in the atmosphere:

function createPlanet (opts, scene) {
let planet = BABYLON.MeshBuilder.
CreateSphere (opts.name, { diameter: 1 }, scene);
let mat = new BABYLON.StandardMaterial (planet.

name + "-mat", scene);
mat.diffuseColor = mat.specularColor = opts.color;
mat.specularPower = 0;
if (opts.rocky === true) {

mat.bumpTexture = new

BABYLON.Texture ("textures/rockn.png", scene);
mat.diffuseTexture = new
BABYLON.Texture ("textures/rock.png", scene);
}
else {
mat.diffuseTexture = new BABYLON.Texture
("textures/distortion.png", scene);
}
planet.material = mat;
planet.scaling.setAll (opts.scale);
planet.position.x = opts.posRadius *
Math.sin (opts.posRadians) ;
planet.position.z = opts.posRadius *
Math.cos (opts.posRadians) ;
return planet;

With that code in place, you should be able to Run the scene and get a most
excellent result, showing our central star with four various-sized and
colored planets at varying distances from the star.

Figure 2.4 — Star system with planets and a skybox

Save the snippet and strap in, because next, we’re going to learn two
different ways and styles of making our planets move.

Animating the Orbits

BJS has many different ways of accomplishing any given task; animating
objects in a scene is no different. Some of the different ways to animate in
BJS include the following:

Define a reusable BaABYLON.Animation object that will interpolate
specified properties between an array of keyframes.

Import pre-built Animations from a file — BaBRYL.ON, GLTF, GLB, OBJ, and
SO on.

Use onPreRenderObservable to update object properties (e.g.,
position, rotation, color, and so on) before each frame is rendered.

For our title screen animations, we will be using the first and third methods
to animate the rotations and circular orbits of our little solar system,
respectively. In later chapters, we will see more of the second.

Putting Spin on the Star and Planets

The rotation of stars and planets is pretty simple, but it can serve as a good
review of the principle and practice of keyframe animation. Since
animations can be looped or cycled, it’s often unnecessary to need a large
number of frames for a given animation. We’ll follow a few easy steps to
add a createSpinAnimation function that returns a new Animation
instance.

First, we figure out what/which properties of the animation’s target will be
changing. In this case, it 1s just the target node’s rotation.y value. We can
say that our animation should complete a full circle (360 degrees or 2 * Pi
radians) in 2 seconds. Next, determine how many frames the animation
should comprise in total, the number of frames per second (fps), and the

length of time you want the animation to last. A framerate of 30 fps is
sufficient, so our total number of frames is 2 s * 30 fps = 60 frames. Just
two keyframes will suffice: one showing the rotation’s initial value and the
other at the end point of scalar.Twopi. This is all we need to implement
the code to create and set the animation properties:

function createSpinAnimation () {

let orbitAnim = new BABYLON.Animation ("planetspin",
"rotation.y", 30,
BARYLON.Animation. ANIMATIONTYPE FLOAT,
BABYLON.Animation. ANIMATIONLOOPMODE_CYCLE) 2

const keyFrames = [];

keyFrames.push ({
frame: O,
value: 0

1)
keyFrames.push ({
frame: 60,
value: BABYLON.Scalar.TwoPi

1)
orbitAnim.setKeys (keyFrames) ;
return orbitAnim;

The createSpinAnimation method is called from createStartScene to
make the spinanim variable available to the rest of the scene’s controlling
code.

Once the animation has been created, it can then be added to one or more
different mesh.animations arrays. This attaches the animation to that
particular mesh, but you might notice that the animation object has no
start function or equivalent. That is because the Animation itself is
agnostic of its target, allowing it to be used across any arbitrary number of
different meshes. Starting with star and then looping through our pilanets
array, we add spinaAnim to each mesh:

let spinAnim = createSpinAnimation () ;
star.animations.push (spinAnim) ;
scene.beginAnimation (star, 0, 60, true);

To start an animation, you call the scene.beginAnimation function,
passing the start frame, the end frame, and the speed parameters along with
the animation object. We want it to loop, so we pass true as our final
parameter to the method:

planets.forEach (p => {
p.animations.push (spinAnim) ;
scene.beginAnimation(p, 0, 60, true,
BABYLON.Scalar.RandomRange (0.1, 3));
}) s

When the scene is run, the animation automatically starts and you can
observe the rotation of all the bodies.

Making Orbital Motion

Unlike the Animation-based keyframing we did for the planetary rotation,
the circular motion of the planets around the star will be performed by
computing the planet’s new position prior to being rendered on every frame.
We can do this by adding an observer function to
scene.onBeforeRenderObservable. In the context of the game engine
loop, this is where the update logic happens. At the end of createPlanet,
we will add code to attach the event listener along with additional data that
tracks the planet’s orbital parameters:

planet.orbitOptions = opts;
planet.orbitAnimationObserver =
createAndStartOrbitAnimation (planet, scene);

Our createAndsStartOrbitAnimation method needs to derive a number of
values. Two of these, the orbital radius (posrRadius) and the angular
position (posRadians) are added to planet as the orbitOptions property.

The period orbital is the amount of time it takes for the planet to make one
complete revolution (360 degrees or 2 * Pi radians) and is measured in
seconds. We want each planet to have a different period, with distant bodies
taking longer than closer ones to complete an orbit, but we don’t want to

laboriously tweak values until they look good. Physics — or, more
specifically, Newtonian mechanics — gives us the equations to compute a
planet’s orbital speed given its distance (radius) from a given massive body.
Knowing the rate of position change over time, it’s possible to calculate the
angular velocity:

function createAndStartOrbitAnimation (planet, scene) {
const Gm = 6672.59 * 0.07;
const opts = planet.orbitOptions;
const rCubed = Math.pow (opts.posRadius, 3);
const period = BABYLON.Scalar.TwoPi * Math.sqgrt
(rCubed / Gm) ;
const v = Math.sqgrt (Gm / opts.posRadius) ;
const w = v / period;
const circum = Scalar.TwoPi * opts.posRadius;
let angPos = opts.posRadians;

The cm constant is more or less arbitrarily chosen to ensure a smooth
distribution of orbital velocities as the radius changes. The state variable
needed is angPos, which is incremented by w every frame and kept within a
valid range by wrapping the statement in a call to scalar.Repeat. In
general, it’s useful to think of the angular components of these kinematics
as being counters or watch dials; incrementing the angular position by the
angular velocity over time and computing position components completes
the logic:

let preRenderObsv = scene.onBeforeRenderObservable.add(sc =>
{
planet.position.x = opts.posRadius * Math.sin (angPos) ;
planet.position.z = opts.posRadius * Math.cos (angPos) ;

angPos = BABYLON.Scalar.Repeat (angPos + w,
BABYILON.Scalar.TwoPi) ;
}) i

return preRenderObsv;

Returning the prerenderobsv object isn’t needed to make this work, but it’s
a good practice so that we can later on cleanly dispose of the observer when
it’s no longer needed. Now, when the scene is run, the planets all circle

around the sun in a unique fashion. This is all looking great, but there’s one

last thing we can do to really spice things up before we move on. Mash
Save and let’s move on to the finale.

Orbit Lines

To cap off this animation, we’re going to add lines to each planet’s orbit
using a TrailMesh. This is a built-in mesh type that attaches to a given
Transform Node or Mesh and follows it as its position changes, extruding
a variable width and length ribbon as it does. The
createAndStartOrbitAnimation method is a good place to do this. We
declare our TrailMesh and pass it planet to attach to along with the circum
orbital (length) of the trail ribbon, also specifying that we want the trail to
start immediately. At the same time, we also create a new material and
associate it with the Trail Mesh:

planet.computeWorldMatrix (true) ;

let planetTrail = new BABYLON.TrailMesh (planet.name +
"-trail", planet, scene, .1, circum, true);

let trailMat = new BABYLON.StandardMaterial
(planetTrail.name + "-mat", scene);

trailMat.emissiveColor = trailMat.specularColor =
trailMat.diffuseColor = opts.color;
planetTrail .material = trailMat;

Before adding the trail mesh, we need to force recomputation of the planet’s
World Matrix; otherwise, the trail will have artifacts from the origin to the
planet’s location. That’s it! The orbits trace out nice circles as they move,
but it still feels as if the scene were a bit dark and washed out.

Shining up with GlowLayer

By default, BJS does not add the emissive color channel of a material to the
lighting computations — emissive textures and colors don’t brighten up a
scene. Making objects glow is easy; just add this line to the
createStartScene method:

let glowLayer = new BABYLON.GlowLayer ("glowLayer", scene);

Unless otherwise specified, the GlowLayer will impact every mesh in the
scene. We don’t want the planets to glow, so while we’re looping through
the planets to animate their rotation, add the planet to the mesh exclusion
list of the GlowLayer:

planets.forEach (p => {
glowLayer .addExcludedMesh (p) ;
p.animations.push (spinAnim) ;
scene.beginAnimation(p, 0, 60, true,
BABYLON.Scalar.RandomRange (0.1, 3));
}) s

Click Run to view the results. If you’re not satisfied with how things look,
you can tweak the camera altitude and angle (beta and alpha respectively),
distance, and so on. Make sure to save the snippet in any case and enjoy the
fruits of your labor. Once you’re done admiring your work, post your
snippets on the boards at https://github.com/jelster/space-
truckers/discussions/21, where you can look at other folks’ creations, share,

and discuss — but don’t forget to come back here, there’s still more work to
be done!

https://github.com/jelster/space-truckers/discussions/21

Figure 2.5 — Completed orbital animation with GlowLayer and Trail
Meshes

Extended Topics

The completed snippet meets the immediate needs of our application, but
that doesn’t mean that there aren’t ways to improve it! The following are a
few 1deas you might pursue on your own that could enhance the scene. Join
the BJS and the Space-Truckers community by posting and sharing your
snippets over at the Space-Truckers Discussions board

forums (https://forum.babylonjs.com/). The discussion boards and forum
aren’t just there to share your accomplishments, however. They’re a place
where you can post questions or issues you’re encountering, with a thriving
community that loves to help.

You could do the following:

Remove the helix-like appearance of the planet trails. The spin
animation and the trail mesh are both parented to the planet. As the
planet rotates, the trail mesh gets twisted around. One approach to
fixing this could be to add a TransformNode to the scene and parent
the planet to it. Keep the spin animation on the planet, but associate and
point the TrailMesh and the orbital animation at the TransformNode.

Replace the star’s current texture with a particle system. The
ParticleHelper has a sun effect that can bring a cool effect to the scene.
The docs on this are at
https://doc.babylonjs.com/divingDeeper/particles/particle_system/partic
leHelper, where there’s also useful information on how to create your
own custom ParticleSets. The easiest (and perhaps the best) option for
creating custom particle systems is to use the NME
(https://nme.babylonjs.com/) in Particle mode. The NME is to shaders
as the PG is to scenes, meaning that just as you can save and share PG
snippets, you can also save and share NME snippets. The difference
between them in this context is that you can use NME snippets in the
PG but not vice versa.

https://github.com/jelster/space-truckers/discussions
https://forum.babylonjs.com/
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particleHelper
https://nme.babylonjs.com/

Add a comet on an inclined orbit that brightens and shows a tail as it
gets closer to the star on its elliptical path through the scene. An
inclination simply means that the object includes the y axis as it “bobs”
up and down through the orbital plane. An elliptical orbit has the same
period as a circular orbit, with an orbital radius that’s the same as the
ellipse’s semi-major axis (the length of the line dividing the ellipse
along its long side), but the difference is that rather than having a
constant velocity along its path, objects moving in an elliptical orbit
travel fastest at their closest approach (apopse).

Give the outer-most gas giant planet a ring system. One way to
approach this would be to create a flat torus mesh using the
MeshBuilder, and then use BJS Parenting to attach the rings to a
planet. Another approach that builds on the prior would be to use the
Solid Particle System (SPS) to generate tens or even hundreds of small
rocks to comprise the rings. Consider it a preview of what’s coming up:
in the next chapter, we’ll be using the SPS to create an asteroid belt.

Add clouds specular, terrain bump (normal) map to a rocky planet to
make it look like real-world planets. The BJS Asset Library has a
height map of the earth’s terrain along with various textures for cloud
and ground effects. The Materials Library also has some interesting
options to explore for making the planets unique and attractive — have
fun!

Make the camera pan and zoom around the system cinematically.
Choose one of the animation methods we discussed previously,
targeting the scene’s camera. Depending on your methods and plan, you
may want to unset or change the camera’s target to be a
TransformNode. This new, non-rendered node acts as a sort of “mark”
that can be moved around to change the camera’s view as the position
changes. Another option is to explore a different type of camera than the
current ArcRotateCamera.

Summary

Over the course of this chapter, we’ve refreshed and ramped ourselves up
on BJS by creating a simple scene in the PG. We learned about different

ways of animating a scene along with how to load textures and other assets
from the BJS Asset Library. Hopefully, we’ve had a little bit of fun along
the way, but this is just the tip of the iceberg when it comes to what’s in
store in later chapters. If you needed a little bit of a refresher on BJS,
hopefully this has gotten you warmed up and ready to go. If you’re new to
BJS, then I hope this has empowered you to push onward to the next
chapter. Coming up in the next chapter, we will begin Space-Truckers in
earnest by setting up a local development environment along with source
control and debugging.

Further Reading

The BJS documentation site contains an enormous wealth of knowledge
and content. Here are some relevant pages from the docs that go into more
detail on the topics covered in this chapter:

Once you’ve gotten how to do individual Animations, read about
Animation sequencing, grouping, and combining, starting at
https://doc.babylonjs.com/divingDeeper/animation/sequence Animations

Learn about importing different files types of assets into a scene and
how loaders work at

The Diving Deeper: The Mesh section has details on how the
GlowLayer works at
https://doc.babylonjs.com/divingDeeper/mesh/glowLayer.

For details on the different types of cameras and their properties, see
https://doc.babylonjs.com/divingDeeper/cameras/camera_introduction.
Something that is worth mentioning is that whenever you see the docs
mention FreeCamera, TouchCamera, OI GamepadCamera, yOu should
instead substitute or use UniversalCamera, as it supersedes those three,
which are retained for backward compatibility reasons.

https://doc.babylonjs.com/divingDeeper/animation/sequenceAnimations
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes
https://doc.babylonjs.com/divingDeeper/mesh/glowLayer
https://doc.babylonjs.com/divingDeeper/cameras/camera_introduction

Establishing the Development
Workflow

While it is an extremely versatile and powerful tool for developing,
running, and sharing a working 3D rendered scene, the Babylon.js
Playground (PG) also has a place in the development workflow of a
traditional web application. Effective software development is effectively
enabled by the removal of friction. Friction in this sense is anything that
presents an obstacle between writing code and executing the results and can
take almost any form, from the mundane to the obscure. As an example, say
it takes an hour between the time a change is made in code to the time that
changed code is running in the developer’s web browser. The developer will
then be compelled to include as much as possible in every new build, which
then makes it more difficult to understand the effects of any one change on
the application’s behavior. Focus is diluted and progress is incremental and
not in proportion to the effort required in these situations, which is why
small tweaks to a development workflow can yield large gains. We’re going
to examine one out of many potential Babylon.js development workflows
during the course of this chapter, and by the end of it, you will have the
tools to rapidly and efficiently build games that can evolve as rapidly as you
can think of designs!

Everyone is going to have a different way of approaching the structure and
process of development, and that’s OK. Each of these sections illustrates an
aspect of the workflow that seeks to maximize developer efficiency and
quality while minimizing tech debt and uncertainty:

Setting up the Environment

Crafting a Playground Snippet

Transitioning from the Playground to the Application
Constructing the Landing Page

Technical Requirements

The base set of requirements for running the BJS PG are detailed in
Chapter 2, Ramping up on Babylon.js, but in addition to those
requirements, there are some additional development tools that we’re going
to be using.

Important Note

Although the examples and such are all based on a Windows-based
developer experience, there are no Operating System requirements to
follow along with this book. All of the tools discussed are available on
multiple platforms and any differences in syntax or usage will be
highlighted or called out where feasible.

The specific usages of each individual item will be covered during the
accompanying chapter material, and it is assumed that you have some
familiarity with the tools and/or usage. For information on setting up and
configuring a given tool, please see the corresponding link to the tool’s
documentation.

Visual Studio Code is our IDE of choice, is available on all platforms,
works wonderfully, and is free: https://code.visualstudio.com

Node.js v14.15.4 (LTS) or greater: https://docs.npmjs.com/

Node Package Manager (npm) CLI v6.x (LTS Release) or greater,
installed via a node version manager listed at
https://docs.npmjs.com/cli/v6/configuring-npm/install

Git SCM client. Also, to be able to submit Pull Requests, file issues,
or participate in Discussions, a valid GitHub account is required:
https://github.com

A Note for TypeScript Users

https://code.visualstudio.com/
https://docs.npmjs.com/
https://docs.npmjs.com/cli/v6/configuring-npm/install
https://github.com/

Should you prefer to do all your coding in TypeScript as opposed to
straight-JavaScript, that’s great! Babylon.js itself is written in TypeScript
and 1s fully supported for developing in BJS. Following along with the code
in this book is possible, and any differences in syntax and structure aren’t
always going to be explained or called out. That said, the code should be
largely compatible between the two languages, keeping in mind the
following two primary changes:

1. Playground snippets should use TypeScript mode. This has a slightly
different template. Start at https://www.babylonjs-
playground.com/ts.html# and click New The createscene method is
encapsulated as a static method within a class called p1ayground.
Declare new classes and use them in the createscene method similar
to how you would in regular JavaScript.

2. When integrating classes written in the PG, it’s important to add the
export modifier to your class declaration, (e.g. export class Foo {
//.. }). Since you will be using the tsc (TypeScript Compiler) to
output JavaScript, there are times when you’ll need to import certain
Babylon.js modules for their side effects. Please see

with Babylon.js

Setting up the Environment

Effective software development relies on being able to confidently
introduce changes to an application’s construction. Confidence in
introducing, changing, or removing code comes from a) being able to run
the code using the new changes, and b) through not being in a position
where undoing changes imposes risks of its own. Let’s park that thought for
a moment to back up and start from the beginning.

Preparatory Steps

https://www.babylonjs-playground.com/ts.html
https://doc.babylonjs.com/divingDeeper/developWithBjs/npmSupport#typescript-support

The a priori assumption going into this step is that you have Git, VSCode,
Node.js, and NPM all set up and ready to go. A linting tool such as ESLint
1s also recommended. If you know what you’re doing, go ahead and get

those tools set up and configured now. No rush, it’s just the rest of the book
that’s waiting is all — this has been speculated to go faster if you work while
humming The Girl from Ipanema to yourself. VSCode has a rich ecosystem
of extensions that can make your life easier. Here is a list of some of the
ones you’ll want to install (or their equivalents). Go to the Extensions panel
in VSCode, then search for the appropriate item’s Marketplace ID:

Extension

Description

VSCode Marketplace

Live Server (opt.)

A simple local web server with live reload

ritwickdey.LiveServer

Node.js Extension Pack

A bundle of extensions relevant to Node.js development

waderyan.nodejs-extension-pack

statements. Bundled with the Node.js Extension Pack.

ESLint Performs design-time checks for potential issues with | dbaeumer.vscode-eslint
JavaScript code. Bundled with the Node.js Extension Pack.
NPM Intellisense Provides autocompletion for npm modules in import | christian-kohler.npm-intellisense

JavaScript (ES6) Snippets

Snippets of ES6 code for common tasks. Bundled with
the Node.js Extension Pack.

xabikos.JavaScriptSnippets

Npm

Validates package json dependencies and integrates npm
scripts with VSCode Command Pallet. Bundled with the
Node.js Extension Pack.

eg2.vscode-npm-script

Path Intellisense

Autocompletion extension for filenames in the current
project. Bundled with the Node.js Extension Pack.

christian-kohler.path-intellisense

Debugger for Chrome
Debugger for Edge
Debugger for Firefox

JavaScript debugging in Chrome, Chromium Edge,
Firefox, EdgeHTML

msjsdiag.debugger-for-chrome
msjsdiag.debugger-for-edge

firefox-devtools.vscode-firefox-debug

Figure 3.1 — List of useful VSCode extensions

If you’re not quite there yet when it comes to knowing where and how to do
this sort of thing, here’s what you can do. Ignore the elevator muzak, tie a
bandana around your forehead, and dive straight into an 80s movie montage
sequence. You will probably want to set a bookmark on this page first — the
montage features a series of vignettes of you flipping to the Further
Reading section at the end of this chapter, reading and following the links,
culminating in a triumphantly successful installation... and then flipping
back to your bookmark, ready to continue the journey.

Initialize All the Things

There are a number of unflashy tasks that go on here — things such as
creating a new Git repository in GitHub and cloning it locally, which would
take up too much space to go through in detail. Instead, here’s a rough
checklist of what to expect to do as part of this step:

1.

6.

Create a new Git repository. If created in GitHub, you may need to
clone the repos locally.

Add a .gitignore file to the repos — the only contents it really needs
at this point are entries for the output dist/ folder and for the
node_modules/iﬁﬂder&

Create some folders — src, dist, public, and assets — to hold the
source code, the packed output, and game assets, respectively.

Run npm init to create a package.json for the application.

Install webpack and core Babylon.js libraries and dependencies as
developer dependencies with this command:

npm install --save-dev webpack webpack-cli webpack-
dev-server webpack-merge clean-webpack-plugin file-
loader html-webpack-plugin source-map-loader url-

loader eslint “@babylonjs/core

Install additional Babylon.js modules that we’ll be using:

npm install -save-dev @babylonjs/materials
@babylonjs/loaders @babylonjs/gui

@babylonjs/procedural-textures @babylonjs/post-

processes @babylonjs/serializers
@babylonjs/inspector

With the package dependencies squared away, it’s time to add a few more
foundational pieces to our nascent application.

Scripts and ESLint Configuration

At some point in the very near future, we’re going to want to be able to add
some automation around our application’s build and deployment tasks. The
key to making this as frictionless as possible is to leverage as much of the
(and similar) application infrastructure as possible. Keeping it simple and
focusing scripts on a single task will allow for easier automation in the
future.

package.json Scripts

There are three basic commands that we want to start out adding to our
package.json file. These are simple scripts that will allow both local and
production builds and linting of source. We’ll address dev versus
production builds in an upcoming section, but for now, add these scripts to
the package.json file:

start: The webpack dev server and related packing processes for local
deveknnnent(jonnnand:npx webpack serve --mode development

build: Runs webpack in production configuration. Command: npx

webpack --mode production

1int: Makes sure our code doesn’t have any big “whoopsies!”.
Command: npx eslint

Check your work for typos, and make sure that you save and commit both
your package. json and your package.lock.json files. At this point, we’re

still a couple of items short on our checklist to set up the application, so
let’s get them knocked out so we can press forward on our journey!

Important Note

While it is possible to simply reference and load the entire Babylon.js
library into the application, it is incredibly inefficient to do so — because
BJS does so much, there’s a lot to the libraries, meaning they’re quite large
in size and complexity. Clients are forced to download the full bundle of JS
before the application can become responsive to input, reducing a user’s
perception of an application’s performance. One of the most modern and
effective ways to reduce an application’s footprint is by leveraging a feature
of ES6 called tree shaking. The process of tree shaking results in code
output that includes only dependencies that are actually used in the code,
resulting in smaller, faster, and more efficient JavaScript modules.

What’s the downside? As you’ll see, every imported type must have its own
import statement, but in addition, the full path of the type must be specified
— not just the containing package. Still, the benefits can be substantial — as I
commented in this pull request: https://github.com/jelster/space-
truckers/pull/15. The start scene was reduced in size from 8.91 MB to 3.11
MB, a more than 50% reduction!

Babylon.js has been around longer than ES6 modules have been supported,
and the team has made a firm commitment to support backward
compatibility in the engine. That’s why you’ll notice there are some places
where compromises in that vein result in the need to import modules purely
for side effects — the MeshBuilder CreateXXXX APIs are a prominent
example of this. The BJS docs have more information located at
https://doc.babylonjs.com/divingDeeper/developWithBjs/treeShaking that
can explain more about why and what modules behave in this fashion.

The PG examples we’ve looked at previously haven’t required anything
special in the way of building, but that’s because the PG is built towards a
different goal than what we’re looking to accomplish. We’re building a
complete application that needs to not be dependent on the same luxuries
(such as a CDN for grabbing the Babylon.js libraries) as the PG. To do that,

https://github.com/jelster/space-truckers/pull/15
https://doc.babylonjs.com/divingDeeper/developWithBjs/treeShaking

we will sacrifice the flexible but inefficient load-everything approach of the
PG for the compactness and efficiency of a webpacked application.

Adding Configuration for ESLint

Add a new file using VSCode to the root folder of your repository, named
.eslintignore. This is a text file that we’ll use to exclude certain
directories from being checked by the lint tool, improving responsiveness
and reliability. We don’t want our node modules directory to be checked
since we’re not working on those libraries. Neither do we care about
JavaScript that’s already been packaged and output — anything in our dist/
folder. Add the following lines to the .eslintignore file you’ve just
created:

node modules
dist

Save and close the file.

Configuring Webpack

Add another new file to the root directory and name it webpack.common. s,
then create another two named webpack.dev.js and webpack.prod.s.
We’ll put the base webpack config in the webpack. common. js file and
merge environment-specific config at script runtime using webpack-merge.
At the same time, create a new empty file in src and name it index.7s
along with an empty index.html in the public/ directory. This will serve
as a placeholder for future work while allowing us to test and validate our
current config.

Note

Webpack has a lot of different ways and means of configuration, which can
sometimes make it hard to figure out which way, or how, to approach a
particular scenario. Always keep in mind what you want to accomplish and
finding a path can be much easier. In this case, the end goal of using

Webpack is to identify, aggregate, and compress the source code for our
application into an atomic set of bundled JavaScript written to our dist/
folder. Other related assets may also be affected in ways ranging from
generating correct URL paths to rendering markup templates into output
directories and more. Check out the Webpack repos along with the docs at
https://github.com/webpack/webpack to learn more about configuration and
plugin options.

Development versus Production Modes

When running in a production build context, there are really only two things
we need to happen. First, Webpack does its thing, bundling and packaging
up all the . 5s scripts in the src/ folder, outputting the results to the dist/
folder. Second, a script reference to the application’s entry point — index.Js
—1is injected into an index.html file that is what gets served to web
browsers.

Local development has a slightly different set of needs than a production
build. We want to be able to make changes to our code and see the results of
those changes as quickly as possible, which rules out the potentially lengthy
process of re-bundling everything from scratch upon a change. Instead, the
webpack development server is smart enough to both cache build output
and selectively rebuild only what’s been changed. A WebSocket
connection to the browser is used to automatically refresh the page when a
new bundle is compiled, helping further to close any gaps in iteration. We
also want to emit JavaScript source maps to aid in debugging as well as to
specify content paths for non-bundled content served by our development
server.

Common Webpack Config

Regardless of whether webpack is being run for development or production
usage, we always want to make sure that our destination directory is
cleaned of any old or potentially stale source files. We’ll use the

https://github.com/webpack/webpack

CleanWebpackPlugin for that purpose, and the HtmlWebpackPlugin to
inject the proper script references into our index.html template.

Back to the webpack.common. s file, let’s add some import statements and
define the module.exports stub function:

const path = require ("path"):;
const HtmlWebpackPlugin = require ("html-webpack-plugin") ;
const { CleanWebpackPlugin } = require ("clean-webpack-
plugin™);
const appDirectory = dirname;
module.exports = env => {
return {

¥
b e

You may notice that unlike the rest of our application, our webpack
configuration isn’t using ES6 module syntax. This is one you’ll probably
just need to get over for now, because although there are workarounds, it’s
overall more trouble than it’s worth to use ES6 syntax in just a couple of
files that aren’t part of the build output. The configuration requires an entry
object that designates the script that will serve to launch our application on
the client; it will be injected into a <script> tag in the site’s default
index.html landing page.

Important Note

File and folder paths can be tricky to navigate when working in a cross-
platform environment. The dirname webpack-provided variable is a good
way to avoid problems in the first place because it will correctly and
consistently represent the equivalent of fs.cwd ().

The entry item and potentially other config elements will need to know
what base paths to use when reading and writing files, so we designate and
compute that value. While we’re at it, we might as well add the output entry
to our config. This object specifies where to emit the packed results, and to
help identify it among potential other scripts we name it
babylonBundle.js. Finally, we instantiate new instances of our
CleanWebpackPluginEHKthmlWebpackPluginInodukﬂ.

Important Note

The order that plugins are added to the plugins array is important! Make
sure that your CleanWebpackPlugin is always at the top of the plugin list so
that it runs first.

The HtmlwebpackPlugin is given the path to our publicly served HTML
index.html page and told to inject the proper script tags for the bundle into
the document. Once that is done, we’ll test our config quickly before
completing the common (and also the biggest) configuration setup:

module.exports = {
const appDirectory = dirname;
return {
entry: "./src/index.js"),
output: {

filename: "js/babylonBundle.js",
path: path.resolve (appDirectory, "./dist")
}I
plugins: [
new CleanWebpackPlugin (),
new HtmlWebpackPlugin ({
template: path.resolve ("public/index.html"),
inject: true

})

¥
b e

By specifying an assetModuleFilename pattern, we are instructing
WebPack to output any assets resolved (see the next section) into the
output’s assets subfolder with the original file name, extension, and any
query string parameters. To test out our configuration, make sure you’ve
saved everything and enter the following command in a terminal window
(make sure your working directory is the same as the root of the repository):

npx webpack -config webpack.common.js

If everything goes well, you should see a bunch of text in your command
window, some green text, and no errors. That’s great, but there’s not much

of anything going on so we can’t take a break quite yet — we’re very close
to finishing this section!

Resolver and Loader Configuration

As part of processing your source code, Webpack will compile a list of all
the various import (or require for CommonJS modules) and invoke a
processing pipeline that uses matching rules to select the appropriate logic
to resolve the location for the request.

Note

This is an area where TypeScript users will see significant differences
between their implementations and this ES6 (-ish) one. Raanan Weber of
the BJS team has made a TypeScript starter repository available at
https://github.com/RaananW/babylonjs-webpack-es6. The TypeScript
Webpack code listed here is modeled to be as similar as possible to
Raanan’s starter template to make transitioning between reading this text
and your code easier.

To avoid the need to have to code for environmental differences in static
asset URLs, we use asset loader to serve up various types of asset files
from the assets folder as described previously. The source-map-1loader
helps to match symbols from runtime code with locations in the source
code. Before that though, our config needs a resolve object that specifies
an array of extensions to enable searching through. Add this as a property
of the returned config, just below the output property. Here’s what that part
of the config might look like:

// entry, output, etc..
resolve: {
extensions: [".]js"],
fallback: {
fs: false,
path: false,
Yy
}I
module:
rules: [

https://github.com/RaananW/babylonjs-webpack-es6

test: /\.(pngljpglgif|env|glb|stl)$/1i,
use: |

{

loader: "url-loader",
options: {
limit: 8192,
Yy
Yy
1,

Yo
// plugins, etc.

The list of rules in the modules property define what constitutes a separate
module in the eyes of WebPack. Each of these has their own configuration
that defines a regular expression-based test to perform to see whether the
given loader will handle the request. The long regular expression for the
asset/resource module type is essentially a list of all the different file
extensions that we want to be considered as assets, which are copied
without further processing into the output directory.

Webpack Development and Production
Configurations

In our webpack.dev.js, we’re going to make use of the webpack-merge
add-on to webpack. This handy utility will merge two webpack config
objects together, returning the combined result. Why is this handy? Because
we’ll be able to have separate development and production configurations
without needing to hardcode their names into the webpack.common.js or
the package.json scripts. If we want to add another environment
configuration, all we need to do 1s add the new webpack config file, merge
our common config, and then point our npx webpack --config parameter
at the appropriate file.

There are really only two things we need from our dev config that we don’t
have in common. First, configuration for the web server launched with npx
webpack serve. Second, we specify that we want our source maps to be
sent inline with our scripts. The top-level mode of “development” ensures

that various production-suited optimization paths are not taken by webpack.
This 1s what our webpack.dev.js looks like when we’re done:

const { merge } = require ('webpack-merge');
const common = require ('./webpack.common.js');
const path = require('path');
const appDirectory = dirname;
const devConfig = {

mode: "development",

devtool: "inline-source-map",

devServer: {

contentBase: path.resolve (appDirectory, "public"),
compress: true,
hot: true,
open: true,
publicPath: "/"
}
};

module.exports = merge (common, devConfig);

Creating webpack.prod.js 1s even simpler since we don’t need the dev
server configuration, and it shares the same set of top-level require
statements as our dev configuration. To reduce the size of our script
packages, we will choose not to emit source maps, and other than setting
the mode to production, that’s the only difference:

const { merge } = require ('webpack-merge')
const common = require('./webpack.common.js');
const prodConfig = {

mode: "production"
b

module.exports = merge (common, prodConfig);

Before we shift our focus a bit, let’s get some markup into our
public/index.html file. We don’t need much right now, so let’s start with

this simple markup:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Space-Truckers: The Video Game!</title>

<style>
html,
body {
overflow: hidden;
width: 100%;
height: 100%;
margin: O0;
padding: O;
}
canvas {
width: 100%;
height: 100%;
touch-action: none;
}
</style>
</head>
<body>
</body>
</html>

This is enough for us to check our progress by making sure all files have
been saved before running npm run start. Success is indicated by the
launching of your web browser and a console output similar to this
screenshot:

: asset 29 MiB (name: main)

asset u78 bytes

runtime modules 25.4 HiB 12 modules

modules by path ./node_modules/@babylonjs/core/ 8.25 MiB 890 modules

modules by path ./node_modules/webpack-dev-server/ 21.2 KiB
modules by path ./node_modules/webpack-dev-server/client/ 20.9 KiB 10 modules
modules by path ./node_modules/webpack-dev-server/node_modules/ 296 bytes 2 modules

modules by path ./node_modules/webpack/hot/ 4.u46 HiB 5 modules

modules by path ./node_modules/html-entities/lib/*.js 61 KiB 5 modules

modules by path ./node_modules/url/ 37.4 HKiB 3 modules

modules by path ./node_modules/querystring/*.js 4.51 KiB
./node_modules/querystring/index.js 127 bytes [built] [code generated]
./node_modules/querystring/decode.js 2.3U HKiB [built] [code generated]
./node_modules/querystring/encode.js 2.04 KiB [built] [code generated]

6 modules

webpack 5.17.0 compiled in 25523 ms

Figure 3.2 — Webpack output after successful bundle

While the webpack development server is running, any changes you make
to your source code will automatically refresh your browser. Leave the dev
server running, because we’re going to start making use of it!

Crafting a PG Snippet

Before we can use our PG code in our application, we’re going to need to
do some light refactoring. A little bit of preparation can save a lot of time
later! The things we’re going to change are select pieces of code that could
vary between the PG and local environments, such as texture paths and
URLSs, along with some minor structural modifications. For your
convenience, here’s a link to the refactored snippet. If you are just joining
us here in the journey, use the link below. If you’ve been following along,
substitute your own snippet URL for the following one. Start by opening
your favorite browser and navigating to either your own snippet or to
https://playground.babylonjs.com/#0UYAPE#42.

Cleaning up the BABYLON
Namespace Prefix

One of the things that you may have found annoying about coding in the
PG is how in the PG it’s necessary to always prefix BJS types with the
BABYLON namespace. This is not ideal, but we can get rid of the need for
them by adding an alias to all the various types we’re using to the top of our
snippet. The alias in our PG snippet will be defined as a const assembled
from the various BJS types used:

const { Mesh,
MeshBuilder,
StandardMaterial,
/...

} = BABYLON;

We can then do a Find and Replace (Ctrl + F or Command + F) for the
string BABYLON. (don’t forget the period!) and that will complete our work
on this section. To preview where this is headed, when we move this into
our VSCode environment, we’ll convert this to an import statement. Doing
this refactoring after the fact, like we are in this case, isn’t ideal; in the

https://playground.babylonjs.com/#0UYAPE%2342

future, we will start our snippets out with this construct and build it over
time. That way, it won’t be nearly as much effort!

Extracting Magic Strings

There are three separate textures (not including the procedural one) in use
in our snippet, and we want to make it easier to change the specific URL or
file path. We begin that by defining a set of const strings in the PG to
contain the PG-specific paths:

const distortTexture = "textures/distortion.png";
const rockTextureN = "textures/rockn.png";
const rockTexture = "textures/rock.png";

We can then go into the createstar and createPlanet functions and
replace the hardcoded paths with our constant expressions:

mat.diffuseTexture = new Texture (distortTexture, scene);

Once you’ve replaced all of the hardcoded string values, click Save and
refresh the page to make sure the snippet still runs OK, paying attention to
any missing textures, and fixing any missing references that may pop up.
With these changes in place, it will be a smooth transition from running this
in the PG to using it in our application.

Transitioning from the PG to the
Application

The PG is a rich, robust, and extensible way to quickly get started writing
and running code, but our application has different needs from the PG that
we will need to account for and fulfill. We want to make sure that our code
is both easy to change and easy to understand, but fortunately, there are
small steps we can take that will make a large difference later on.

Creating the Engine Instance

Now, the immediate question is this: how do we take our plucky snippet
here and plug it into our application without turning it into an exercise in
both masochism and self-discipline? The secret lies in preparation. When
we built our PG snippet, we structured logic as atomically as possible into
various discrete functions, which have all their dependencies passed in as
parameters. This will help us “lift-and-shift” the code into our application.
First, though, we need to add some code to our index. s that will take the
place of the PG’s engine initialization. Add this to the file below the part
where we created the canvas element:

let eng = new Engine (canvas, true, null, true);
let startScene = createStartScene (eng);
eng.runRenderLoop (() => {

startScene.scene.render () ;

1)

This is a pretty bog-standard Babylon.js Engine initialization. The Engine
constructor has a number of interesting different parameters and
configuration options that we’ll explore further on down the road. For now,
we are mostly using the engine defaults except for enabling anti-aliasing
(the second parameter) and instructing the engine to adapt automatically to
the device’s viewport ratio (the last parameter). Although it’s not yet part of
the project, we’ve added the necessary call to createstartScene in
anticipation of its imminent arrival.

Adding and Importing the StartScene

Create a new file in your project’s src folder and name it startscene.s.
Copy and paste everything from the PG snippet into this new file except the
createScene function. A couple of minor modifications are all that’s
needed thanks to the groundwork we previously laid down!

Change the const to import, also replacing the = with from
“@babylonjs/core” as the name to source imports. The

StarfieldProceduralTexture isn’t a part of the core BJS framework, so
we’ll also need to pull that entry out of the import list and give it its own
entry: import { StarfieldProceduralTexture } from

“@babylonjs/procedural-textures”;.

The final change is to replace our const texture paths with import

statements pointing to the appropriate texture in our /assets/textures
folder.

Important Note

If you don’t already have the three textures downloaded and in the asset
directory, now would be a good time to do it. The URL prefix for textures is
just https://www.babylonjs-playground.com/textures/, followed by the name
of the texture with the extension, (e.g., rock.png). We want to be able to
use consistent paths to refer to assets throughout the application, so we are
using Webpack to resolve and supply the runtime URL to a given asset.
The way we are telling Webpack to provide these URLs is via the import

statement.

Why don’t we just use the online version of the resource instead of
duplicating it locally? Good question. Later on in the book, we’ll cover how
to make Space-Truckers into a Progressive Web Application (PWA), and
how to make assets available for offline use.

When the Webpack bundle is created, any assets referenced in one of these
import statements will be included in the build output. In addition, the asset
is assigned a unique filename that helps bust aggressive caches when assets

are modified:

import distortTexture from
"../assets/textures/distortion.png";

import rockTextureN from "../assets/textures/rockn.png";

import rockTexture from "../assets/textures/rock.png";

https://www.babylonjs-playground.com/textures/

Exporting and Importing the Start
Scene

One last item to add to our startscene.js and we’ll be ready to finish
wiring it into the game! If we reflect back on the overall design of our
snippet’s functions, we can readily see that the only “public” function need
be the createstartscene function. Let’s make that function available to
consumers by adding export default to the function declaration:

export default function createStartScene (engine) {

Save the file and switch back to your index.7s. Since we’ve already added
the invocation of the createstartscene and the following render loop, all
we need to do to make this complete is to add the following import to the
top of the file’s import list: import createStartScene from
“./startscene”;. Save the file and check that the Webpack output
doesn’t contain any errors. When your browser refreshes, you should see a
familiar scene being rendered. Go ahead and give yourself a pat on the back
— you’ve completed pulling in our main application background scene!
There’s something still missing, however, and that’s something for visitors
to see when they first arrive at the web page but before they launch the
game. It would be sort of rude to just take over a visitor’s browser and start
downloading MBs of content without asking first, so we are going to put
out a welcome mat in the form of the landing HTML page.

Constructing the Landing Page

Although it 1s web-based and hosted by a web server, there is a critical
principle at play for Space-Truckers: the game that we haven’t done much
but hint at previously. That principle is that we want to, by all means
necessary, avoid using the HTML DOM in the game. Now, to be fair, it’s
not a total blanket ban on using HTML or CSS anywhere, just anywhere
important. The reason for this is we want to give our future selves a gift that
makes it seamless to target Space-Truckers to Babylon Native; code that

uses the HTML DOM isn’t compatible with BJS Native. That said, there is
still the need to do a little bit of HTML and CSS work to make the landing
page a little bit more hospitable to visitors.

The Concept (Art)

When Space-Truckers was just in the process of being conceived as an idea,
early concept sketches were useful in helping to establish various different
aspects of the look, feel, and setting of the game. The following figure
depicts what we want our landing page to look like:

Space-Trucked

Hero Image

LAUNCH

Figure 3.3 — HTML landing page design

When a user navigates to the Space-Truckers website, they’ll be presented
with a centered image that functions in the same way that a book cover
attempts to convey some sense of the book’s content. A Call-to-Action
button to Launch the game sits prominently and visibly in the center of the
viewport, enticing the visitor to click the button and play the game. Lastly,
we have a small site footer with the standard privacy, support, repository,
license, copyright notices, and so on.

Note

We will want to structure our markup such that it will display appropriately
on-screen dimensions ranging from the high dpi (but small screen size) of a
smartphone or tablet to the much larger but lower resolutions offered by
large-screen TVs and display monitors. Aspect ratios are important too!

Sticking the Landing

If all goes well, we’ll end up with something similar to this for our landing
page. We’re not going to worry about fonts or background images right now
as much as we want to get more of a sense of how we want to lay out and
design various elements.

Figure 3.4 — The Space-Truckers landing page. Behind the foreground
content are the animated orbiting planets created in Chapter 2, Ramping up
on Babylon,js

To achieve this, there’s some HTML markup along with CSS styles that
need to be added to the /public/index.html page. There’s an additional
small change we’ll need to make to the index. js file that will add a class of
background-canvas to the newly created HTML Canvas that is appended

to the document with canvas.classList.add (“background-canvas”) ;, SO
get that change out of the way and open up the public/index.ntml file in
VSCode. There’s enough that needs to be added that it would take up a
prohibitive amount of page space, so at this point, you have a couple of
options:

Take the homework assignment and build out the HTML/CSS to get to
the preceding screenshot

Grab the finished files (there will be two or so in total, in addition to
the index.js change) from https://github.com/jelster/space-
truckers/tree/ch3-final

There 1sn’t any right or wrong answer; it’s whatever you will enjoy and
learn from the most in the amount of time you have available that means the
most and you’re the only one who can decide what that is! Each chapter in
this book has an accompanying branch (and tag) in Git. The purpose of
leaving the entire branch with its commit history in place is to give you the
opportunity to see how the code evolves, commit by commit, while
avoiding adding too much noise to the main branch’s commit history.

Summary

In a whirlwind of Webpack, ES6 Imports, and CSS shenanigans, we’ve
completed a key process that started with a simple PG snippet and finished
with an animated landing page. Along the way, we set up our local
development scripts so we can take advantage of modern JavaScript
features such as tree-shaking to optimize our package bundle sizes, while
still being able to quickly integrate and view changes into the application.

What’s next from here should be fairly obvious to anyone who has ever
stood in front of a Big Red Button labeled “Launch”. It’s time to Push the
Button, and make it do interesting things! Yes, we will be implementing our
application’s Launch-time experience, which involves establishing some
mechanics of state in the application. Don’t worry if you’re not through
with this section yet, there’s more to be done!

Extended Topics

For the person looking to make the launch page their own or who wants to
dive deeper into the potential possibilities opened up by this chapter, here
are some things you might consider doing:

https://github.com/jelster/space-truckers/tree/ch3-final

Add a cool hover-in/out effect to the launch button so that when the
cursor hovers over it, a color and/or animated effect is applied. Do the
same for clicking the button.

Improve the landing page’s navigational structure with links to the
GitHub repos, and so on.

Make the central hero area into an image carousel that can be
populated with additional concept art, screenshots, gameplay videos,
and so on.

Use CSS to blend the canvas animation with the hero image in an
interesting fashion. You can do different types of blending, such as
difference, exclusion, screen, and so on, along with other cool
transformations.

Creating the Application

The Space-Truckers application needs to be capable of maintaining and
transitioning between a set of discrete states that correspond with different
screens, such as a Menu screen and a Game screen. Transitions between
application states typically occur as a result of user interaction (e.g., the
user selects a menu item) or as part of something such as an application
launch or exit. Here, we derive our basic application flow, which we then
use to build a basic framework for presenting and transitioning between
arbitrary screens.

In the first chapter, we saw the complete Space-Truckers game in all its
glory and beauty. We then immediately went on to create the loading
screen’s animation in the Playground before slowing down a bit to build out
the supporting application infrastructure that the game will need. It may feel
seem to be a bit of a let-down that we’ve been focusing so much on things
that aren’t part of the game’s design, and it’s natural to want to focus on
activities such as bringing in 3D models and textures or programming game
mechanics. Fear not — we will be getting there in the not-too-distant future!
Part 2: Constructing the Game is all about those sorts of topics, but without
the work from this chapter and the accompanying ones, there would be
nothing to tie together a thematically connected collection of interesting
Playground snippets and code fragments.

Important Note

This chapter will represent even more of a shift in how the code and content
are presented. From here on out, code listings will tend towards displaying
fragments or highlighting interesting areas of a larger piece of code. A link
to the repository or Playground will always be provided so you can check
your work or use the code to skip ahead!

The work of this section and chapter is to build the necessary pieces of
software and logic to allow a cohesive and compelling experience to
emerge from the individual pieces. Over the course of this chapter, we will
write code to implement state management and transitioning logic to

support the future development of the core game mechanics under these
headings:

Adding a Custom Loading UI
Space-Truckers: The State Machine
Space-Truckers: The Main Menu
Integrating the Main Menu

Technical Requirements

For this chapter, we’ll continue to use the development process covered in
Chapter 3, Establishing the Development Workflow. If you’re just joining us
on the journey or haven’t been writing code on your own, you can catch up
by cloning or checking out the ch3-final tag from Space-Truckers: The
GitHub Repository at https://github.com/jelster/space-truckers/tree/ch3-
final. Before writing any code for the material in this chapter, it’s typically a
good idea to create a new git branch that tracks the previous chapter’s
branch or tag. This is unusual, as you would normally set up your branch
to track develop or main. In this case, however, you want to be comparing
commits from a specific point in the repository’s commit history prior to
where you’re starting, and not everything that comes afterward has been
covered yet.

Adding a Custom Loading Ul

As we start to gain some traction and therefore momentum, we first have to
let our engines rev up before we can think about shifting gears. A short
exercise in code management is just the thing to get those RPMs up! Once
we’ve hit our sweet spot, we’re going to cruise straight into leveraging that
work to build our loading screen. Remember, as we progress through the
metaphorical gearbox of complexity, we’ll be seeing fewer details such as
the following while at the same time covering greater amounts of ground.

https://github.com/jelster/space-truckers/tree/ch3-final

Solo Exercise: Refactoring the
StartScene to Extract the
AstroFactory

To lay the groundwork for this and some future features, we want to extract
all the logic involved in creating new planets that aren’t specific to the
scene from the startScene. That logic goes into a new astroFactory class.
The essentials of this refactoring are straightforward, but the key to it all is
going to be creating an array of planetary data objects, then looping through
that array, calling the AstroFactory’s various methods to compose the
scene’s objects. Consider performing this refactoring a bit of a special
exercise or challenge, but don’t sweat it too much. The idea is to try and
apply the new knowledge, not to assign passing or failing grades!
Alternatively, if you don’t feel you need the practice or want to skip this
exercise, start your code by checking out and examining the patch diff at the
following commit URL: https://github.com/jelster/space-
truckers/commit/9821811. Take the time you need to understand the
material, but don’t forget to come back for the rest of the chapter and book!

The CustomLoadingScreen Type

Babylon.js provides a default loading UI that appears automatically during
AssetContainer operations, or manually by calling the
engine.displayLoadingUI () method. Either way that it is invoked, we’re
going to replace the default loading UI with one of our own devising. The
Babylon.js docs specify the specifics of the LoadingScreen TypeScript
interface that will be implemented in JavaScript, but there are really only
two that are required: displaylLoadingUT () and hideLoadingUI () —do
those look familiar or what? Add a new JS file to the project’s source and
name it SpaceTruckerLoadingScreen. Before declaring the class, add an
import for the createstartscene function from our old friend,
startscene.js.

https://github.com/jelster/space-truckers/commit/9821811

The CustomLoadingScreen we’ll be implementing will use it to host the
planets animating on the render canvas during loading operations. Declare
the SpaceTruckerLoadingScreen class and define a constructor for it that
takes an engine instance (required by the createstartScene method). In
the constructor, we’ll initialize and assign some class-level properties for
later use — including startscene:

constructor (engine) {
this. totalToLoad = 0.00;
this. loadingText "Loading Space-Truckers: The Video

Game...";
this. currentAmountLoaded = 0.00;
this. engine = engine;
this. startScene = createStartScene (engine);

That takes care of constructing the loading screen. Now, we need to
implement the LoadingScreen interface’s members to show and hide the Ul
at the appropriate times. This is just done by having the show and hide
methods toggle an active Boolean flag; we’ll let other code that we’ll
write shortly decide what to do about it:

displayLoadingUT () {
this. active = true;
}
hideLoadingUI () {
this. active = false;

}

The last thing needed is to conditionally render the scene. Since we have
the engine instance passed into the constructor, we will add a simple render
routine to call runRenderLoop at the end of the constructor:

engine.runRenderLoop (() => {
if (this. startScene && this. active === true) ({
this. startScene.scene.render () ;

We’ve gotten the bulk of the work done, but there’s still a bit more to do
before we can call this a done task.

Enhancing the Loading Screen with
Progress Display

We’ve added what is called a non-deterministic progress bar, but what if we
want to display some text along with a percentage of assets loaded? Though
our project doesn’t quite yet have said assets, it soon will. Fortunately, there
are only a couple of small things we need to do in order to support this
when it’s needed.

Adding Property Getters

The SpaceTruckerLoadingScreen class already contains definitions for
properties to hold the data we’re interested in, but it makes for a lot more
maintainable design if we make these fields available as properties. The
only one we need to make available in this fashion is 10adingUIText; it
will be potentially invoked or queried by external code. While we’re at it
though, let’s add additional getters as follows:

get progressAvailable () {
return this. progressAvailable;

}
get currentAmountLoaded () {
return this. currentAmountLoaded;

}
get totalToLoad () |
return this. totalToLoad;

}
get loadingUIText () {
return this. loadingText;

}

A sharp eye may notice that the progressavailable getter uses a field we
didn’t define in the constructor. The place where this is set and managed is

the same place where currentAmountLoaded and totalToLoad get their
values from — the onProgressHandler function.

Handling Progress

onProgressHandler 1s an event handler that gets subscribed to HTTP and
other Progress events emitted by various Babylon.js components such as
AssetManagerzﬂnisceneLoaderi

onProgressHandler (evt) {

this. progressAvailable = evt.lengthComputable === true;

this. currentAmountLoaded = evt.loaded || this.
currentAmountLoaded;

this. totalToLoad = evt.total || this.

currentAmountLoaded;
if (this. progressAvailable) {

this. loadingText = "Loading Space-Truckers:
The Video Game... " + ((this. current
AmountLoaded / this. totalToLoad) * 100).
toFixed (2) ;

The evt event data object is used to set the progressavailable property
value. If the progress event doesn’t have a computable length,
currentAmountLoaded 1S set to 0 (false) if incomplete and 1 (true) if
complete. Otherwise, it’s set to the number of bytes loaded. If we can
calculate the percentage loaded, we do so and set the 1o0adingUIText
backing field accordingly. The final piece of the loading screen is
displaying 1oadingText and the progress string (if it’s available).

Displaying Loading Text and Progress

To display text in our scene, we’ll use the Babylon.js 2D GUI system.
There’s going to be a lot more on this later in this chapter, so for now, copy
and paste this at the end of the constructor for
SpaceTruckerLoadingScene:

this. textContainer = AdvancedDynamicTexture.CreateFullscre
enUI ("loadingUI", true, this. startScene.scene);
const textBlock = new TextBlock("textBlock", this.

loadingText) ;
textBlock.fontSize = "62pt";
textBlock.color = "antiquewhite";
textBlock.verticalAlignment = Container.VERTICAL ALIGNMENT
BOTTOM;
textBlock.paddingTop = "15%";

this. textContainer.addControl (textBlock);

All we’re doing here is creating a new AdvancedDynamicTexture sized to
the render canvas, then adding a TextBlock that we apply a couple of size,
color, and placement adjustments to before adding it to the texture’s control
collection.

Note
onProgressHandler Will update the 10adingUIText value if it’s available.

We’ve completed the loading screen functionality, now it’s time to wire it
up globally in the index.3s component. This is just one line of code that is
added right after the eng instance is created:

const eng = new Engine (canvas, true, null, true);
logger.logInfo ("Created BJS engine");
eng.loadingScreen = new SpaceTruckerLoadingScreen (enqg) ;

That’s all there is to it! Now, any time that a piece of code asks the Engine
to show the loading UI, our little planet animations will be shown. Though
it may seem to be a minor piece of functionality, completing this part of the
application leaves us ready to change the pace a bit and examine the ins and
outs of how we’re going to manage the overall behavior of Space-Truckers:
The Application.

Space-Truckers: The State
Machine

People who have some familiarity with game development may be familiar
with the idea of a game being structured around a series of loops. An
Update loop runs the simulation and physics, moving objects and applying
effects according to the latest update. A render loop is when the scene is
actually drawn to the screen. We’ve seen examples of this previously, such
as when we add event observers for the
scene.onBeforeRenderObservable, but that’s at a lower level than what
we’re looking at currently. Our application is going to be a host for multiple
different BJS scenes and it will therefore need a way to periodically update
the application’s state as well as tell the active scene to render. Finally, it
must be able to manage to transition between different scenes.

An application of the kind we’re building has some implicit requirements
when it comes to how it responds to input and evolves its internal state over
time. For instance, when a player selects a menu item or exits their current
game, the system must respond by altering (or “mutating”) its data to fill
and render a submenu, or by returning to the main menu. Implicit
requirements make for poorly designed software, so we’re going to start by
making the implicit explicit.

Logging Interlude

Our application is about to get more complex, so it’s a good time to begin
adding basic instrumentation and debugging messages — we can always
enhance and refine the logging routines later, but not having them at all is a
much more difficult place to begin the more code we write. The source file
logger.js With its exported class, ConsoleProxy, 1s an incredibly basic
wrapper around the console object that provides functions to log different
levels of log messages (INFO, WARN, ERROR, and FATAL) to the console
(if present). Each of the different logging methods has an identical body (if
this bothers you, fix it and open a PR! The beauty of open source software
in action), so in the interest of saving space, only one of the functions will
be shown in the following code:

class ConsoleProxy {
constructor (console) {
this. console = console;

this. consolelsPresent = this. console == true;
this. messageBuffer = [];
}
logInfo (message) {
const logObj = { type: "INFO", message: message};
if (this. consolelIsPresent) {
this. console.log(logObj);
return;

}

this. messageBuffer.push (message);

/]
}

const theProxy = new ConsoleProxy (console) ;
export default theProxy;

Most of the preceding code is pretty bog-standard — the sort of thing you’d
see in almost any home-brew application framework. The constructor
accepts a console parameter, which it uses to set a presence flag. This is
because it’s not always guaranteed that the console object will be available,
and we don’t want any logging calls to fail and cause problems with the rest
of the application if that were to be the case. The messageBuffer array is
used as a fall-back when the console isn’t available. In this case, application
logging can still be accessed by attaching a debugger and reading the
contents of the log array. Should it be required, this can easily be extended
to suit the scenario at hand. Outside of the class definition, a new const
instance, theProxy, 1s instantiated before being exported as a single object.
Consumers of the logger don’t instantiate a new log instance — they just call
logger.logXXX. When using this logger in Playground snippets, don’t
forget to omit the last export default line and change theProxy to
logger. We’ll want to have this handy for the next part so that we can easily
test and verify proper code behavior, or you can refer to snippet #EK321G
as a starting reference template.

Generators and function®* Iterators

From the perspective of software design, we will be thinking about our
State Machine as a type of iterator, or a type of looping construct where
each iteration yields the next (or current) state, also allowing callers to

specify state conditions. The JavaScript language construct that gives us
this functionality is known as a Generator function, or a function*.

The MDN Web Docs at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/function™® say this about
Generators and their behavior:

“Generators are functions that can be exited and later re-entered. Their
context (variable bindings) will be saved across re-entrances...”

“When the iterator’s next () method is called, the generator function’s body
is executed until the first yie1d expression, which specifies the value to be
returned from the iterator”

“Calling the next () method with an argument will resume the generator
function execution, replacing the yield expression where an execution was
paused with the argument from next ()”

“A return statement in a generator, when executed, will make the generator
finish”

Writing a Generator function

It’s more helpful to see actual code than it is to read descriptions of it, so
let’s start up a new Playground Snippet and lay down some code. Using the
base PG snippet (#EK321G), add some room in the createsScene function
for our Generator function stub:

function* appStateMachine () {
let currentState = "INDETERMINATE";
yield currentState;
yield currentState + "-POST";
yield "DONE";

Remember that when the body of this function is executed, control is
transferred any time a yield statement is encountered. The value is
returned by the iterator — in the form of an object with a structure that looks

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

as follows: { value: <yielded value>, done: false|true }.In the
preceding code, we define and set a local variable, currentstate, before
yielding its value. Execution stops in this method until next is called on the
iterator, at which point the code immediately yields back a modified
version of the currentstate variable. After execution resumes, the code
once again yields back — this time with the phrase “pone” before implicitly
returning.

Using the Generator

To best illustrate some of the non-intuitive behavior of iterator functions,
let’s write two different ways of using the appstateMachine Generator we
just defined. Follow along in your own Playground or skip ahead and load
up the result of this sub-section as the next snippet revision (we started with
0) — #EK321G#1.

The first — and arguably the simplest — method of using our
appStateMachine Generator is to use the for...of ES6 iteration construct to
progressively swap execution through each yie1d statement:

let index 0;
const asm appStateMachine () ;
for (const a of asm) {
logger.logInfo ("Index " + index++, a);

}

In the previous snippet, the value of the index variable is logged to the
console before being incremented as a convenient way of displaying the
behavior of the code. Open your browser’s Developer Tools and look at the
console output after clicking Run. The output should look similar to this:

{type: "INFO", message: "Index 0"} "INDETERMINATE"
{type: "INFO", message: "Index 1"} "INDETERMINATE-POST"
{type: "INFO", message: "Index 2"} "DONE"

You can see from the progression of the T1ndex value from 0 to 2 shows how
the yield statement is switching the code execution between the generator

function and the for..of loop. This means of iterating over the generator
works best for situations where the looping logic doesn’t need to do a lot of
heavy lifting or if the code that you’re writing needs to coordinate many
different asynchronous operations in the correct order and you don’t need
fine control over the iteration.

An alternative use instead of iterating over the generated function is to
manually call the next () function to transfer control. Each time it is called
is equivalent to an iteration of the looping construct discussed previously,
but recall that the difference is that instead of directly getting whatever
value was part of the yield statement, an iterator object is returned with
value and done properties:

const asm2 = appStateMachine () ;
let s0 = asm2.next () ;
let sl = asm2.next () ;
let s2 = asm2.next();
let s3 = asm2.next();

logger.logInfo ("s0", sO0)
logger.logInfo ("sl", sl1)
logger.logInfo ("s2", s2)
logger.logInfo ("s3", s3)

Running this leads to an identical output to the prior code, but with an extra
value. Instead of only having three separate index values, this approach
leaves you with four:

{type: "INFO", message: "s3"} {value: undefined, done: true}

This “s3” object doesn’t have a value, and it has the done flag set to true,
indicating the sequence is complete. Any further calls to asm2.next () will
return the same undefined value and true flag. The advantage of this
approach is that consumers of the Generator have a lot of control over when
and how to call next (), which is a critical feature that we’re about to use
when we create our first State Machine.

The Definition of a State Machine

A core concept in computer science a Finite State Machine (FSM) — or
just a State Machine — is defined and characterized, for our purposes, by
these important attributes:

1. The system can only ever be in one state at any given time.

2. The State Machine has a finite number of possible states. For
practical purposes, at a minimum, there is an initial state and a final
state for the system.

3. Transitions between states are triggered in response to commands,
external input, or other changes in the environment (e.g., time

passing).

4. Before a frame is rendered, the State Machine should be updated with
the latest information about the state.

Let’s look at each of these points in some more detail.
One State at a Time

This is pretty self-explanatory. A given state machine may only be in a
single state, no matter how many possible states could be valid — there 1s no
mixing, aggregated, or hybrid types of state. In code terms, this means our
state machine will have a single field or property to represent its current
state. This is not to say that a particular state machine can’t have attributes
that themselves have their own states (e.g., an animation might be in the
RUNNING state), just that the state machine as a whole will only be
classified as being in a single state at any given time. At the time of writing,
quantum computing has not yet reached mainstream availability, neatly
avoiding any discussion of potential eigenstates — a probabilistic
combination of potential states — and keeping the subject matter firmly
rooted in classical computational theory.Phew, what a relief!

Finite Number of States, Start and Finish

There needs to be an initial state for the machine to begin in and there
should also be an end state. Technically, the end state and the initial state
can be the same, but it doesn’t make for very interesting or relevant
software. In between the start and finish can be any number of states,
although to keep things practical, we’ll only be looking to define a small
handful of them.

Transitions Happen When Something
Happens

It sounds silly, but it’s true. During the course of a given Update cycle, the
application or game logic may receive input events that trigger a state
transition. Part of our FSM’s definition is the logic to invoke any given state
transition. That implies our code will contain methods for transitions that
have names such as goToMainMenu.

Note

If it helps, try to think of a state as being a short-hand way of describing a
single, discrete combination of the system’s internal data. State transitions
are the logic controlling the mutation of one combination of internal data
into another different arrangement of data.

Updating the State Machine

Wrapping it all up is the mechanism by which we can progress or evolve
the machine’s state on a frequent basis. Because we’re going to be
managing multiple scenes, we can’t use something such as
scene.onPreRenderObservable, as we’ve already done for things such as
animating the planetary orbits. Instead, we’ll make use of the
engine.runRenderLoop callback as a way of ensuring that our update logic
1s invoked no matter which scene is being rendered. This also fulfills the
requirement of updating the state before rendering the frame quite nicely.

Important Note

If you need to ensure that animations and physics are synchronized or if you
need framerate-independent rendering, you’ll need to ensure that you do
both of the following things:

a) Set the deterministicLockstep flag of the options parameter when
creating the Engine instance

b) Use onBeforestep along with the onafterstep observables instead of
the onPre/onAfterRenderObservable sets to perform state updates

With the knowledge of how we’re going to build the next part of our
application, it’s time to look at the specifics of our design and start to
prototype the Playground snippet.

Space-Truckers: The Application State
Diagram

Before we dive into writing code for our FSM, we should take a moment to
figure out just what it is that we’re going to need to build. An important
distinction we need to make out of the gate is between the gameplay and
non-gameplay sections of the application. The gameplay will have its own
state machine to manage the different phases of play, and each phase in turn
can have its own mini-state machine. It’s state machines all the way down!
The following diagram shows each state and how they transition between
them. The circles in the diagram represent events or transitions triggered by
external input, such as a user clicking a button:

Launched

Initializin
O :

A

App State Machine Initialized

Splash Screen

user cancelled ...etc
Existi _v O———» .
— Main Menu < | Credits H
Start L

Game Quit Game

Phase 3-Scoring

Arrival CutScene

Phase 1-Route Phase 2-driving the route
tutorial (1% play) Rianning E

Route Confirmed

Pause Menu

CutScene

Paused
pasnedqun

<

Game Over

‘ T
Route Building >
Route

Constructed

Launch CutScene

Game State Machine

Figure 4.1 — A State diagram, from the early Space-Truckers design
process, showing the application and game state — transitions between states
(lines and arrows) happen sequentially (such as Initialized) or as the result
of an input event (such as user Cancelled)

For now, we’ll disregard the lower portion of the diagram. Being an early
iteration, some of it (that is, the cut scenes) is at any rate aspirational.
Looking at the diagram’s upper portion, if we consider that the Loading
Screen is in the Initializing state then we can see a 1:1 correspondence
between the states and application screens. It should also start to become
clearer how each screen also corresponds to a BJS scene. Reasoning along
these lines, we can generalize the different CutScene and Splash Screen

items as simply being two separate instances of the same thing (save with
different actual content, but that’s not relevant here). Here are the screens
and scenes from the diagram that we’ve identified so far:

App State Screen/Scene Transitions From Transitions To
CREATED n/a n/a INITIALIZING
INITIALIZING Loading UI CREATED CUTSCENE
CUTSCENE Splash Scene INITIALIZING MENU

MENU Main Menu CUTSCENE CUTSCENE
CUTSCENE Intro Scene MENU RUNNING
RUNNING Varies CUTSCENE MENU
EXITING n/a MENU n/a

Figure 4.2 — A table of application-level states and transition rules

This may look like a lot to take in, but it’s really not as complicated as it
seems. It’s time to open up VSCode and start adding some new code. You
can either follow along here or if you would rather just copy, paste, and
modify existing code, go to snippet #EK321G#6. Bear in mind that you’ll
need to make similar types of adaptations to the snippet as we made in the
previous chapter as you progress through incorporating the snippet into
your code.

Almost Infinitely Looping State

The first thing we’re going to add to our project is the AppStates
enumeration. This is a simple object defining constants and values for the
different states in the preceding table. Add a new file, appstates. s, to the
project’s /src directory. Since this is a very simple and unchanging object,
We can use Object. freeze to ensure that the values aren’t changed at
runtime:

export default Object.freeze ({
CREATED: O,
INITIALIZING: 2,
CUTSCENE: 3,
MENU: 4,
RUNNING: 5,

EXITING: 6
1)

After adding the AppStates enumeration, add a new file,
spaceTruckerApplication.js, to contain a class definition named
(surprise!) spaceTruckerApplication:

class SpaceTruckerApplication ({

}

This class is the central class of this application (as the name implies). It
will be growing much larger as time passes, so treasure it in all of its
adorable brevity while you can before breaking ground on it by defining our
appStateMachine function*. Add a function® definition inside the class for
1t.

As we discussed earlier, a state machine needs to have one and only one
current state. It becomes very useful in state calculations to be able to
compare the present state to whatever value the previous state was, so in the
body of the function* Generator, add a couple of variable declarations to
contain those values, along with a helper function to change them:

function* appStateMachine () {

let previousState = null;

let currentState = null;

function setState(newState) {
previousState = currentState;
currentState = newState;
logger.logInfo ("App state changed. Previous

state:" + previousState + "
New state: " + newState):;

return newState;
}
}

// .. create scene, camera return scene

We can now turn our attention to the state machine’s output — what it will
yield back to callers. Our little sample earlier would simply stop (returning
done: true) once it had reached the end of its sequence, but we want our
FSM to run for as long as the application is running, and we don’t know

ahead of time how many times that means calling the Generator’s next ()
method. The way we address this is by placing that call inside of an infinite
loop.

Each time, the loop first starts by receiving input from the caller to indicate
the desired nextstate — the caller does this by passing the value as an
argument to next — and assuming the state is valid, then our setstate
method makes the actual state change. Once that happens, the code checks
to see whether the conditions have been met to reach the end state
(AppStates.EXITING), returning the currentstate if so — otherwise, it will
yield back to the caller at the top of the loop:

while (true) {
let nextState = yield;

if (nextState !== null && nextState !== undefined) {
setState (nextState) ;
if (nextState === AppStates.EXITING) {

return currentState;

}

Our state machine implementation is done (for now), and now it’s time to
hook-up the supporting application logic.

Adding the Constructor and
Supporting Logic

We need to initialize the state machine by creating a function from our
Generator along with other creation tasks, so add a constructor to our new
class. Because we are creating and managing scenes with this class, we
need to take in BABYLON.Engine as a parameter in the constructor and
initialize the private property, engine, with it. While we’re here, we might
as well call the Generator and add a field for tracking which scene to render.
Finally, the last action in the constructor is to transition the state of the
application from its previous value of undefined to cREATED. We’ll do this

by invoking the to-be-created moveNextappstate function (see the
following code block):

constructor (engine) {
this. engine = engine;
this. currentScene = null;
this. stateMachine = this.appStateMachine();
this.moveNextAppState (AppStates.CREATED) ;

It can be cumbersome to have to write statements such as

this. stateMachine.next () .value, and worse, it reveals the internal
implementation details to code that doesn’t need to know about that sort of
stuff, making it harder to make changes in the future. Let’s insulate the rest
of our code from having to deal with that by adding some accessor
properties to retrieve currentState and activeScene. Also as mentioned
previously, we will add the moveNextappstate helper method to help us to
hide the passing of values to and from the state machine:

get currentState() {
return this. stateMachine.next ()

}
get activeScene () {
return this._currentScene;

}
moveNextAppState (state) {
return this. stateMachine.next (state) .value;

}

Something important to note before we move any further is that the
application must respect its boundaries as far as not trying to perform heavy
loading tasks during construction time.

That type of task is reserved for AppStates.INITIALIZING, and the reason
for this is crucial to the user experience. We don’t want to do anything that
might transfer large amounts of data to the client until they’ve affirmatively
decided to launch the game. That respects people who might be curious
about the game and are on limited data or a limited bandwidth connection
and enforces a clean separation between the HTML-based landing page and
the WebGPU or WebGL-based game.

Important Note

The state diagram we looked at earlier starts when the user clicks the
Launch button on our landing page.

The effect of clicking the landing page’s Launch button is a mini-transition
in and of itself — a transition between the DOM-focused HTML page and
the Canvas-rendered game application. The first step towards implementing
this is to add a new function we’ll name run to the
SpaceTruckerApplication class. This is the place where we hook the
enghKfSrunRenderLoopCaﬂbacqu)WdﬂlOurapplicationStateMachine:

run () {
this. engine.runRenderLoop(() => {
// update loop
let state = this.currentState;

switch (state) {

case AppStates.CREATED:

case AppStates.INITIALIZING:
break;

case AppStates.CUTSCENE:
break;

case AppStates.MENU:
break;

case AppStates.RUNNING:
break;

case AppStates.EXITING:
break;

default:
break;

}

this. currentScene?.render();

Within the runrRenderLoop callback, we retrieve the currentstate by using
the getter method to call the applicationStateMachine.next () function
without any parameters. There’s not much to see at the moment, but the
stubbed-out switch statement shows where each state is handled. The first
two, CREATED and INITIALIZING, are grouped because they are not rendered
— or at least in the case of tnTTTALTZING, the loading UI is the rendered
output of that state. Once scene selection and management have been

completed, the render () method of the currentscene (if present) is
called.

Wiring the initial call to run is done with two lines that we’ll add to the
index.js file. There’s some cleanup of now-obsolete code needed too — we
don’t want index.s calling createstartScene, nor do we want it
interacting with the engine’s render loop. After creating and setting up
SpaceTruckerLoadingScreen, declare and instantiate a new instance of
SpaceTruckerApplication. Since it’s pretty well named as a type, just call
it theapp. Next, add a line to invoke theapp.run () in the Launch button’s
click handler. It can be useful to add logging statements at key areas in the
code to help in understanding the app’s runtime behavior during
development, so make liberal use of them! This is the basic framework for
our application’s state management functionality all wired up and ready to
be filled with more interesting states and behaviors. To that end, it’s time to
start fleshing out these states and behaviors as we get ready to build the
Main Menu.

Writing the Initialize logic

Returning to the State Diagram, once the application has finished
initialization, it should transition to displaying the opening splash screen
(cut scene) before transitioning to the Main Menu again. This is a nice
linear progression, so it is simple to implement with the aid of the await
ES6 feature.

Since the INITIALIZING state is the first state after construction, it should
be the first thing that happens in the run () method. With this change, we’ll
also need to mark the run () method as async to allow us to use this
language feature, so change the first few lines of the function to match the
following:

async run () {
await this.initialize();

/]

Now, add the function for initialize. We want this method to accomplish
several tasks, some of which we will be simulating for the time being.
Another method stub, goToMainMenu, helps us to complete the first part of
the state diagram with what we will build next:

async initialize () {
this. engine.enterFullscreen (true);
this. engine.displayLoadingUI () ;
this.moveNextAppState (AppStates.INITIALIZING)
// for simulating loading times

const p = new Promise((res, rej) => {
setTimeout (() => res (), 5000);

1)

await p;

this. engine.hideLoadingUI () ;
this.goToMainMenu () ;

First, we request a fullscreen session from the engine. This is equivalent to
the user selecting their web browser’s fullscreen option, which we want to
do before we have to do any serious rendering — applying canvas scaling or
a size change is faster when there’s not anything being rendered yet. Next,
we want to display the engine’s Loading UI — which if you recall, we’ve
replaced with our own custom loading UI in our codebase.

Note

When running this in the Playground, the default Babylon.js loading UI will
be displayed instead of our customized one.

After that, we are officially into the INTTITIALTIZING state, so we transition
to that state by calling moveNextappstate with the new state. Lastly, we are
simulating a 5-second load time by creating a new promise that resolves
after the timeout period. We await this to occur before hiding the loading
UI and then initiating the next state transition to the MENU state.

Transitioning to the Main Menu

The goToMainMenu function definition is very simple, as it has a very
specific task. It needs to create an instance of the (soon-to-be-created)
MainMenuScene class before transitioning to the MEnu state. Add the
following function definition to the class:

goToMainMenu () {
this. engine.displayLoadingUI () ;
this. mainMenu = new MainMenuScene (this. engine);

this. engine.hideLoadingUI () ;
this.moveNextAppState (AppStates.MENU) ;

There’s one more change needed before we can finish wiring up our state
machine. In our main update loop, under the appstates.MENU case
statement, we need to set the currentscene value to our Main Menu’s
scene:

case AppStates.MENU:
this. currentScene = this. mainMenu.scene;
break;

Of course, this doesn’t currently exist, and now’s a good time to address
that deficiency! Create another new JS file, mainMenuScene.js, and add a
stub class to the snippet called MainMenuscene. Implement its constructor to
take an engine instance; it should also create a new Scene instance that is
exposed via a public get accessor named scene. To keep the scene happy,
create a new ArcRotateCamera, using the final parameter of its constructor
to set the camera as the scene’s default. To blend with the existing
background, we’ll also set scene.clearcolor to an opaque black with
RGBA values of 0, 0, 0, and 1 respectively. The camera distance parameter
is set to -30 and seems somewhat arbitrary — however, the value will be
important soon when we are rendering an animated background. This is
how your class definition should look after putting in the basic elements
(don’t forget to add import statements for scene, vector3, and
ArcRotateCamera, and to add from “@babylonjs/core” to the top of the
file and export default MainMenuScene to the bottom!):

class MainMenuScene {
get scene () {
return this. scene;

}

constructor (engine) {

this. engine = engine;
let scene = this. scene = new Scene(engine);
const camera = new ArcRotateCamera ("menuCam",

0, 0, -30, Vector3.Zero(), scene, true);
}
}

export default MainMenuScene;

Check to make sure there aren’t any syntax errors or other issues, and make
sure to save and commit your work. Things are about to get more
interesting here!

The final listing for our basic state machine is in snippet #EK321G#6.
Don’t be fooled by the seeming lack of accomplishment — it’s not always
wise to gauge progress using visual indicators. We’ve laid the foundations
with this groundwork that will help with our future efforts, which will make
more sense as we seek to coordinate between multiple scenes and screens.
The first screen that we’re going to build is the Main Menu, which on our
diagram isn’t the next state in the sequence — the splash scene is what
comes next on it — but we will be returning to that after we’ve built some of
the display and transitioning logic that we’re going to need as part of
building cut scenes.

Space-Truckers: The Main Menu

One of the primary features that pretty much every single video game in
existence has in common with each other is that they all have a Main Menu.
Space-Truckers is to be no exception, but we first have to sit down and
figure out how we want our menu to look before we can make it. We start
with a basic concept sketch of the layout and elements of the menu, which
we’ll then use as a guidepost for building out a PG snippet of the menu.
From the background to the foreground, we’ll build up a GUI menu display

progressively, adding containers, a title block, and then buttons that will be
ready to practically drag and drop into the codebase!

Basic Design

Firstly, let’s think about the application’s navigational structure. Consulting
our State Diagram (Fig. 4.1), we can see that there are a couple of different
branches that the state can transition to from the Menu AppState. With the
exception of the initial transition into the Main Menu, each of the paths
represent a different menu item or selection option:

Transitioning from MENU to Running will be user-triggered by
clicking a PLAY button.

Exiting the application is triggered by clicking an EXIT button.

Additional menus are accessed by clicking their respective buttons.
Initially, we’ll only be creating a High Scores sub-menu.

Appearance-wise, we want to make the menu functionally attractive and to
show a bit of dynamic behavior over time, both in the foreground and the
background. Another consideration is that because players may be using a
gamepad or controller instead of a keyboard and mouse, we’ll want to have
a selection indicator that shows the player which menu item will be
invoked by clicking or pressing the appropriate button on their controllers.
The following sketch shows how this may look without any background:

TITLE

PLAY

HIGH SCORES

EXIT

Figure 4.3 — A Main Menu design sketch

To help the menu stand out against the background, we’ll fill it with a
gradient or other semi-opaque image, as well as give the container a border.

The background doesn’t need to have a lot going on — time and bandwidth
constraints are likely to put this particular piece of content on a low-priority
track. That’s OK because we can quickly and easily put something in place
that looks pretty good and does what we want — do you remember our old
friend the Starfield Procedural Texture (PT)? We’ll use it to give the
menu a cool space-themed background, and then we’ll animate it to give the
illusion of travel.

Switch back to the Playground in your web browser and click the New icon
to create a new snippet for our Main Menu.

Setting up the Main Menu snippet

Knowing how we plan to transport the code in our snippet into our
codebase at some point is a great opportunity to invest the time and effort
into making the process as quick, reliable, and accurate as possible.

We can start with this by defining some aliases for the various BaByL.oN
components and namespaces at the top of our snippet, just as we did back in
Chapter 3, Establishing the Development Workflow:

const {
Color4,
Vector3,
ArcRotateCamera,
Scene

} = BABYLON;

There will be more items to add to this list as we involve additional
Babylon.js APIs, so don’t forget to update this list when that happens!
Below the alias declarations in the snippet, copy and paste just the
MainMenuScene class definition from your local file.

Note

The items in the alias list that we just defined will need to be converted into
import statements when integrated into the codebase.

When we’re ready to integrate and commit our changes, we’ll update the
local files by essentially performing the same thing in reverse. In the
snippet’s createScene function, instantiate a new instance of
MainMenuScene and return its scene property, and that will hook up our
budding MainMenuScene class into the snippet’s rendering loop:

var createScene = function () {
const mainMenu = new MainMenuScene (engine) ;
return mainMenu.scene;

5

Short and sweet, we don’t have to think about this part of the snippet ever
again.

Building the Background

We’ll start with the general environment and background setup for the
scene, so scroll back up to the class definition and add a new instance
method named setupBackgroundEnvironment. This is where we will
instantiate and configure the Starfield PT that serves as the background for
the screen. It’s also where we’ll set up the texture to animate gradually over
time to give the illusion of traveling through the starfield.

Invokethis._setupBackgroundEnvironment()attheend(ﬁfhe
constructor so we can use the run button immediately to see results. Before
coding the body of the function though, add these types to the top alias
definition list:

HemisphericLight

StarfieldProceduralTexture (put on its own line, you’ll thank
yourself later)

StandardMaterial
CylinderBuilder

Texture

The scene already has a camera placed at -30 units from the origin and
pointing at the origin, but it’s going to need a light and something for that
light to illuminate as well. Instead of using a cubical mesh as a skybox, as
we did with the Loading Screen, we’ll create a conical sort of shape made
by making a tube with different radii for each end cap. Applying the
Starfield PT to the interior of the cylinder requires us to set
backFaceCulling to false, since we want to see the interior faces. To
animate the starfield, we can simply increment the time property of
StarfieldProceduralTexture before every frame is rendered:

__setupBackgroundEnvironment () {
const light = new HemisphericLight ("light", new Vector3
(0, 0.5, 0), this. scene);
const starfieldPT = new StarfieldProceduralTexture
("starfieldPT", 1024, this. scene);
const starfieldMat = new StandardMaterial ("starfield",
this. scene);
const space = CylinderBuilder.CreateCylinder ("space",
{ height: 64, diameterTop: 0, diameterBottom: 64,
tessellation: 512 1},
this. scene);
starfieldMat.diffuseTexture = starfieldPT;
starfieldMat.diffuseTexture.coordinatesMode = Texture.
SKYBOX MODE;
starfieldMat.backFaceCulling = false;
starfieldPT.beta = 0.1;
space.material = starfieldMat;
return this. scene.onBeforeRenderObservable.add(() => {
starfieldPT.time += this. scene.getEngine() .
getDeltaTime () / 1000;
}) s

HemisphericLight 1S a type of light source in Babylon.js that simulates an
ambient environment type of lighting. There are a ton of interesting effects
that you can achieve by messing around with the combination of diffuse,
specular, and, unique to this type of light, groundColor, but we don’t need
to do that right now since our needs are pretty simple.

Important Note

Dividing the scene’s delta time by 1,000 is what sets the rate at which the
starfield twinkles and shifts. Try removing the division statement and see
what happens!

Finishing up the function, we are following a similar pattern to what we did
when we created the planetary orbits animation for the Loading Screen by
registering an observer in onBeforeRenderObservable and returning the
observer for tidy later disposal. If all went well, clicking the Run button
should display a nice picture of our starfield, twinkling and glittering as it
slowly shifts.

Click Save and let’s move on! If you find that your snippet isn’t working
the way it should be, or are having any other trouble, pull up Playground
snippet #16xyv67 to see the full code for this snippet at this point in
development.

Creating the
AdvancedDynamicTexture and GUI

There can be a lot to take in when it comes to the extensive functionality
present in the Babylon.js 2D GUI system. More extensive documentation
on the GUI APIs can be found at
https://doc.babylonjs.com/divingDeeper/gui/gui, but what we’re about to do
with it now should either refresh your memory or provide enough of a
foundation to begin learning. Add new types to the alias list, but instead of
putting them in the BaBYLON Object, add a new BaBYLON.GUT entry that is
similar to the BABYL.ON entry, with the following types from the
BABYLON.GUI namespace:

AdvancedDynamicTexture
Rectangle

Image

StackPanel

TextBlock

Control

Add a new method called setupUi to MainMenuClass, and add a line in the
constructor to invoke it at the bottom of the function.

We’re not going to try to do anything fancy with the menu Ul right now, so
the first thing the setupui function needs to do is to create an instance of
the BABYLON.GUI.AdvancedDynamicTexture class in the (default) fullscreen
mode. This results in a 2D texture the size of the render canvas, with the
controls painted on it, which is rendered on top of the scene in turn. One

https://doc.babylonjs.com/divingDeeper/gui/gui

minor tweak we’ll make is to tell the texture to render at its ideal size — this
will help avoid fuzziness in rendered text caused by down- or up- sampling
effects. To allow other class instance methods to access the texture, assign it
to the guiMenu property:

const gui = AdvancedDynamicTexture.CreateFullscreenUI ("UI");
gui.renderAtIdealSize = true;
this. guiMenu = gui;

Next up, we need to add a Rectangle control to contain the actual menu
items. We don’t want it to be completely opaque, but it should have a
contrasting background color or gradient.

Adding the Menu Container and
Background

For web developers and designers, there are a lot of what are hopefully
comfortingly familiar concepts at play. A GUI control tree is a hierarchy
similar to an HTML DOM, where controls can be nested inside of each
other, with siblings inheriting some of their layouts from the parent element
or control. In order to be rendered, a control needs to be able to trace its
parentage back to AdvancedbDynamicTexture either directly or indirectly.
It’s often easiest to show this rather than describe it, so add the following
code to define our menu’s container and basic appearance:

const menuContainer = new Rectangle ("menuContainer");
menuContainer.width = 0.8;

menuContainer.thickness = 5;
menuContainer.cornerRadius = 13;

this. guiMenu.addControl (menuContainer) ;

this. menuContainer = menuContainer;

The width is set as a percentage of the canvas size (0. 8) so that the menu
doesn’t cover the entire background, while the border width (thickness) is in
pixels and the corner radius is specified in degrees — got all that?

Tip

Intellisense can be your best friend in providing quick descriptions of the
numerous properties available on GUI controls, particularly when it comes
to determining which units are in use (e.g., pixels or percentage).

Next, we want to add an Image control to hold the background of the menu.
Apropos of the Image, it’s easy to create a nice background image texture,
but what use 1s it if it can’t be seen in the Playground? So, it’s time for a
magic trick...

Image Aside: Bringing in External
Content

The Babylon.js Playground has a feature configured in its web server’s
configuration to allow Cross-Origin Resource Sharing (CORS) of content
served from a number of well-known and established repository hosts, such
as GitHub. By crafting the appropriate URL to our source repository, we
can load textures, sounds, and models in our Playground snippet — just as
with the Babylon.js Asset Libraries! By way of demonstrating how this
works, add the following line to the very top of the snippet (first line):

const menuBackground = https://raw.githubusercontent.com/jels
ter/space-truckers/ch4/assets/menuBackground.png
+ "?" + Number (new Date());

Breaking the URL down, here’s how you can apply this tactic to any
publicly hosted GitHub repository:

1. Starting with the base URL of raw.githubusercontent.com, add the
path segments (in order) for the repository owner (or owning
Organization) name, and the name of the repository itself — for

exanqﬂe,raw.githubusercontent.com/jelster/space—truckers.

2. Next, add a path segment for the name of the branch or tag from
which to retrieve the asset. For this book, the assets will be listed in
their chapter’s respective branch, but for many other repositories, this
VVﬂlbelnain,master,OrpOSSﬂﬂ)’develop.

http://raw.githubusercontent.com/

3. Finally, add the rest of the path to the asset, including the file
extension. Because there are pretty robust caching headers
accompanying the responses for these files, it’s often a good idea
during active content production to append a cache-using string such
as the current date and time to the end of the URL so that you can be
sure you’re always seeing the most current version of the file.

Using the menuBackground URL, create an Tmage and add it to the
menuContainer we previously added:

const menuBg = new Image ("menuBg", menuBackground) ;
menuContainer.addControl (menuBqg) ;

Test out your progress by clicking Run, fixing any issues, then of course
make sure to Save the snippet. To check yourself or to start with the latest
snippet for this chapter, use #16XY6Z#1. This is how it should look:

Figure 4.4 — The main menu at #16XY6Z#1 has the Starfield PT
background and a semi-opaque gradient-filled rectangle that will contain
menu items

Laying out the Title and Menu Items

Referring back to Figure 4.2, we can see that the menu screen can be
divided up into a grid with two rows — one for the title and one for the menu

items. To ensure that the buttons and selection icons all line up the way we

want them to, we’ll need the grid to have three columns, each one-third of

the width of the grid (which itself has a width of 0.8 or 80%). Grid has the
addColumnDefinition and addRowDefinition methods to accomplish this,
making the setup very simple to add to our setupui method:

const menuGrid new GUI.Grid ("menuGrid") ;
menuGrid.addColumnDefinition (0.33) ;

menuGrid.
menuGrid.
menuGrid.
menuGrid.

addColumnDefinition (0.33) ;
addColumnDefinition (0.33) ;
addRowDefinition (0.5) ;
addRowDefinition (0.5) ;

menuContainer.addControl (menuGrid) ;
this. menuGrid = menuGrid;

The title text is an important factor in defining a game or application’s look
and feel through its font and display, but we’re going to be circling back to
that topic in Chapter 7, Processing Route Data. For now, we’ll use the
default font and ensure that it auto-sizes the text as needed. Vertically
aligning TextBlock with the top of the grid will ensure that no matter how
many buttons there are, the title will always stay where it belongs. A bit of
styling to add shadows and padding results in code similar to this:

const titleText new TextBlock ("title", "Space-
Truckers") ;
titleText.resizeToFit true;
titleText.textWrapping = GUI.TextWrapping.Ellipse;
titleText.fontSize = "72pt";
titleText.color "white";
titleText.width 0:.9¢
titleText.verticalAlignment
VERTICAL ALIGNMENT TOP;
titleText.paddingTop = titleText.paddingBottom
"18px";
titleText.shadowOffsetX =
titleText.shadowOffsetY
titleText.shadowBlur = 2;
menuContainer.addControl (titleText) ;

Control.

35
6;

Check your work by running it and then save your progress. For those
following along, this can be found at #16XY6Z#2. The next task is to write

some functionality to populate the menu with selectable button items. We’ll
be doing a bunch of these, so the less we have to repeat ourselves, the more
keystrokes we can save.

Populating the Menu with Items

Similar to how we added and then implemented the setupui function,
we’ll start our latest task by adding an addMenuTtems function and
constructor invocation expression to our class. We know that we want all
the buttons of the menu to share a certain subset of property values, but not
all of them. The properties that are unique to a given instance of a menu
item can be defined by a simple object such as the following one defining
the Play button’s properties:

const pbOpts = {

name: "btPlay",

title: "Play",

background: "red",

color: "white",

onInvoked: () => console.log("Play button clicked")
}i

A button needs to have a unique name and it also needs some text to
display. The foreground and background colors ought to be specific to each
item, and of course, the action that is taken when the button is selected
certainly qualifies as being specific to a given button. Within the
_addMenuTtems definition but before the pbopts expression, add this local
helper function to create and populate a button control with the given
properties:

function createMenultem (opts) {

const btn = Button.CreateSimpleButton (opts.name || "",
opts.title);

btn.color = opts.color || "white";
btn.background = opts.background || "green";
btn.height = "80px";
btn.thickness = 4;
btn.cornerRadius = 80;
btn.shadowOffsetY = 12;

btn.horizontalAlignment = Control.
HORIZONTAL ALIGNMENT CENTER;
btn.fontSize = "36pt";
if (opts.onInvoked) {
btn.onPointerClickObservable.add((ed, es) =>
opts.onInvoked(ed, es));

}

return btn;

With the button returned from our helper method, there’s just the matter of
adding it to the menu grid:

const playButton = createMenultem (pbOpts) ;
this. menuGrid.addControl (playButton, this. menuGrid.
children.length, 1);

Unlike the same functions of its Control relatives, the addcontrol function
of Grid accepts an optional row and column assignment as its second and
third parameters, respectively. This lets us insert an item in the last row
without knowing its index by getting the count of its child rows. We want
buttons to be centered, so the column will always be the same — one.

Finish the buttons by adding an exit button according to these options, and
don’t forget to Save! To compare with the checkpoint snippet, see
#16XY6ZH#3:

const ebOpts = {
name: "btExit",
title: "Exit",
background: "yellow",
color: "black",
onInvoked: () => console.log("Exit button clicked")

We’ve come a long way in this chapter, but we’re not quite done yet.
There’s been a lot of different things that we’ve been juggling so far, and all
of the functionality we plan to build is completed — now, we just need to
incorporate this functionality into the rest of our code.

Adding Menu Item Selection and
Indicators

Although there are a chunk of players who will want to and enjoy using a
keyboard and mouse to play Space-Truckers, it should also be an enjoyable
experience with a gamepad. In the next chapter, we’ll look at how to work
with gamepad input in more detail, and to prepare for that, we need the
main menu’s items to be selectable without invoking their actions and
without the presence of a mouse pointer hovering over them. A selection
indicator icon will serve this purpose, displaying the icon next to the
currently selected menu item and showing the player what command or
option will be invoked on the appropriate button press.

Before we get to the visual aspect of the selected item, let’s add some
supporting properties to our class in the form of a get and set pair of
functions that we’ll call selectedItemIndex. Retrieving the value is simple
using return this selectedItemIndex. Setting it is a little bit more
complicated. We want to ensure that the index doesn’t exceed the number of
menu items and that upon reaching the end of the menu items, we want it to
start over at the first item. There are other things that we want to enact

when the selected item index changes, but a set method is not the place to
do anything more than simple logic, as follows:

get selectedItemIndex () {
return this. selectedItemIndex || -1;

}

set selectedItemIndex (idx) {

const itemCount = this. menuGrid.rowCount;
const newldx = Scalar.Repeat (idx, itemCount);
this. selectedItemIndex = newlIdx;

this. selectedItemChanged.notifyObservers (newIdx) ;

We saw the usage of scalar.Rrepeat earlier, when animating planetary
orbits. Then, we used it to ensure that the radian values stayed smoothly
circular. Similarly, we want the selection to loop around smoothly once it
reaches the end. The new item (highlighted in the preceding code) is for a

class member that we haven’t yet declared, the selectedItemChanged
Observer.

Indicating Selection and Reacting to
Change

Calling the Observer something new is a bit of a misnomer; we’ve been
using the Babylon.js Observable since the very second chapter, when we
used scene.onBeforeRenderObservable. This time, hOWGVGI’, we’re not
using a built-in observable on a BJS object, but one that we’re declaring
ourselves. The usage semantics are exactly the same as they are for the
other ones we’ve used — calling the add () method to register a function to
be invoked whenever the observable is triggered. Creating the observable is
just as simple, done by creating a new Observable instance. At the end of
the MainMenuScene constructor, add code to create the
_selectedItemChanged observable, then call its add method to register our
selection’s changed logic:

this. selectedItemChanged = new Observable();
this. selectedItemChanged.add((idx) => {
const menuGrid = this. menuGrid;
const selectedItem = menuGrid.getChildrenAt (idx, 1);
if (selectedItem[0].isEnabled !== true) {
this.selectedItemIndex = 1 + idx;

}

this. selectorIcon.isVisible = true;
menuGrid.removeControl (this. selectorIcon);
menuGrid.addControl (this. selectorIcon, idx);

1)

When the selection changes, the event handler is passed the newly-selected
item’s index — its row in the grid. Sometimes, we might want to display
non-selectable menu items, so we retrieve the selected item and then check
the item retrieved from the second column of the selected row to see
whether it’s isEnabled. If that’s not the case, then we increment
selectedItemIndex — making sure to use the property setter and not
directly changing the backing field’s value. The last part of our event

handler again represents something we haven’t added yet — the selection
icon. This hides the icon first before removing it from the grid and re-
adding it at the new position. Moving backward now, again, add a method
call to this. createSelectorIcon() tothe constructor, then add the
eponymous function declaration to the class. Here’s how the body of the
function should look:

_createSelectorIcon() {

const selectorIcon = new BABYLON.GUI.Image
("selectorIcon", selectionlIcon):;

selectorIcon.width = "160px";

selectorIcon.height = "60px";

selectorIcon.horizontalAlignment = Control.
HORIZONTAL ALIGNMENT CENTER;

selectorIcon.shadowOffsetX = 5;

selectorIcon.shadowOffsetY 3;

selectorIcon.isVisible = false;

this. menuGrid.addControl (selectorIcon, 1, 0);

this. selectorIcon = selectorIcon;

This creates a new GuUI.Image using the final undeclared constant, the
selectionIcon URL string. The rest of the method is boilerplate code
we’ve written in the not-so-distant past.

Note

To avoid ambiguity with the HTML DOM Image type, the fully-qualified
name 1s used in the Playground.

Wrap up the penultimate task of this section by adding the selectionIcon
URL string at the top of the snippet:

const selectionIcon = "https://raw.githubusercontent.com/jels
ter/space-truckers/chd4/assets/ui-selection-
icon.PNG" + "?2" 4+ Number (new Date()) ;

Feel free to substitute your image of choice for the one in the repository,
and if you want to see it used in the production game, send us a Pull
Request with it! Finally, we want to automatically select the first item in

the menu, but only after the scene has completely finished loading and is
waiting for user input. We do that by adding a simple line to the end of our
constructor:

scene.whenReadyAsync () .then (() => this.selectedItemIndex = 0)

14

Clicking Run should show a finely crafted main menu — click Save and
congratulate yourself. Look at how much you’ve accomplished during just
this one pretty small section of one chapter of a (relatively) short book and
contemplate how far you’ll be by the end! To compare your code for
troubleshooting or catching up, see snippet #16XY6Z#4. The Main Menu
looks nice, but despite the starfield twinkling in the background, it still
needs a little bit of motion to give it some life and energy. Let’s be honest
too — hornet yellow for the Exit button isn’t really the look we’re aiming for
either, so let’s take a moment to correct those matters before moving on.

Visual Improvements and Animating
the Selection Idle

The easiest change we want is to set the color property of our ebopts
object, all the way down in the createMenultems method, to the string
color black. For the next change, we will add a small animation to the
selection icon to make it look as though the truck is floating next to the
menu item. This is a two-step process and the components of each
individual step should be familiar from recent usage.

First, we need to track the current animation frame for the icon with a class
member named selectorAnimationFrame. Second, we need to register an
onBeforeRenderObservable that will execute a new function,
_selectorIconAnimation, before every frame is rendered in the scene. In
that function, we increment the current frame (looping around if necessary)
and use that value to compute the position of the icon along the vertical axis
according to our circular standby — the sine function. This is what the
animation function should resemble:

_selectorIconAnimation () {
const animTimeSeconds = Math.PI * 2;

const dT = this. scene.getEngine() .
getDeltaTime () / 1000;
this. selectorAnimationFrame = Scalar.Repeat (this.

selectorAnimationFrame + dT * 5, animTimeSeconds * 10);
this. selectorIcon.top = Math.sin(this.
_selectorAnimationFrame) .toFixed (0) + "px";

The total time that it takes to go through a complete animation cycle is
given by the first expression, while the amount of time (in seconds) elapsed
since the last frame was rendered is given by the second. As we did before
with Scalar in set selectedItemIndex, we loop
_selectorAnimationFrame here when it reaches the frame count, but we
are scaling some values by arbitrary factors at the same time to yield the
new top position (in pixels) that is set in the final line. Running this should
result in a much more pleasing color for the Exit button as well as
displaying a nice subtle floating appearance for the truck selection icon.

Space-lruckers

-

Figure 4.5 — The Main Menu snippet complete with the floating animation
of a truck icon

If this 1s starting to feel repetitive, then that’s good, because it means that
the material in this book is starting to sink in! Snippet #16XY6Z#5 has the
latest code; if you’ve not prepared your own, then navigate to this one and
make sure you have VSCode open and ready to accept the application’s
sparkling new Main Menu.

Integrating the Main Menu

Despite the potentially intimidating heading, there’s really not a whole lot
we’ll need to do in order to incorporate all of the work from our snippets
into the application’s code structure. In fact, after all of the effort and
journeying we’ve done throughout this chapter, it may feel a bit anti-
climactic when we finish this part of the work.

The most straightforward and simple way to do it is to copy and paste the
whole of the MainMenuscene class from the snippet into your local file,
making sure to entirely replace the existing class declaration. You’ll need to
only slightly adjust your import statements; here are the two most relevant
lines where this changes:

import { Scene, Vector3, Scalar, Observable, Sound,
HemisphericLight } from "@babylonjs/core";

import { AdvancedDynamicTexture, Rectangle, Image, Button,
Control, TextBlock, Grid, TextWrapping } from
"@babylonjs/gui";

For the selection icon image asset, download the one at the snippet’s URL
or make your own. Either way, add an import statement for it as well:

import selectionIcon from "../assets/
ui-selection-icon.PNG";

Either wait for the development webpack output to finish or run the
webpack process to test your changes, and don’t forget to commit and push
your work — there’s no reason to lose work due to the omission of a few
keystrokes. Earlier, when we went over our State Machine, we learned that
in addition to the state behaviors, it’s important to define the transitions to
and from those states.On the topic of transitions, here's one now!

Entering and Leaving Transitions

When we’re looking at the integration of our Main Menu with the
SpaceTruckerApplication State Machine, there are two functions that we’ve
yet to implement and wire up. Those functions are the two transition
functions for the main menu. In other words, we need to define the logic for
what happens when we transition to the MENU state, as well as out of that
state. Naming these new functions is actually pretty easy for once —
_onMenuEnter and onMenuLeave. While there might be more involved
behavior we’d like to implement later, for now, we will say that when the
menu either starts or ceases to be the current state of the application, we
want it to fade in or out accordingly.

The simplest way to accomplish this is by animating the
menuContainer.alpha property between either 0 to 1 (entering) or 1 to 0
(leaving). As with the selection icon animation, we’ll need to store the
current frame of fadeIn and fadeout. Unlike the selection icon animation,
we have a finite amount of time that the animation should last, so we also
need to store the total duration value of the transition. Between every
frame, we should set the current a1pha value to one that is only slightly
different from the previous value, so the transition appears smooth. Finally,
when the animation ends, we want to (in the case of the leaving transition)
set the menu’s visibility to false, along with any other clean-up that needs
to happen. Interestingly enough, the logic for the enter and leave transitions
1s identical save for swapping the ranges in the smoothstep function used to
interpolate the a1pha value. Here’s the onMenuEnter function:

_onMenuEnter (duration) {
let fadeIn = 0;
const fadeTime = duration || 1500;
const timer = BABYLON.setAndStartTimer ({
timeout: fadeTime,
contextObservable: this. scene.
onBeforeRenderObservable,
onTick: () => {
const dT = this. scene.getEngine() .
getDeltaTime () ;
fadeIn += dT;
const currAmt = Scalar.SmoothStep (0, 1, fadeln
/ fadeTime) ;
this. menuContainer.alpha = currAmt;

by

onkEnded: () => {
this.selectedItemIndex = 0;
}
1) ;

return timer;

Instead of using the standard timer creation method in JavaScript of calling
setTimeout, we’re using the BABYLON. setAndStartTimer utility function.
By attaching contextObservable t0 scene.onBeforeRenderObservable,
the onTick method is called consistently before each frame is rendered. The
onEnded function is invoked when the name implies — after the timer has
completed. In our case, we want to wait until the menu has transitioned in
fully before showing the selection icon, so we set the selectedItemIndex
there. In the constructor, we can replace the callback used with
scene.whenReadyAsync to call our onMenuEnter function as follows:

scene.whenReadyAsync () .then(() => this. onMenuEnter ())

Save the file and run the app. You should see the menu fade in over the
course of a couple of seconds before the selection item shows up. Learn
more about this and other related functionality at
https://doc.babylonjs.com/divingDeeper/events/observables#setandstarttime
1, but maybe wait a tiny bit to do that — it’s time to finish off this chapter!

The onMenulLeave function is, as was mentioned earlier, almost identical to
its onMenuEnter counterpart (with the exception of the ontEnded callback),
just swapping terms in smoothstep (as follows). Add the onMenuLeave
function with the changed expression:

const currAmt = Scalar.SmoothStep(l, 0, fadeOut / fadeTime) ;

Hooking up the Exit button to onMenuLeave is easy: in the addMenuItems
method’s ebopts object definition, change the on1nvoked function to look
something similar to the following:

onInvoked: () => {
console.log ("Exit button clicked");
this. onMenuLeave (1000) ;

Save again and test your work to ensure it’s behaving as expected. This is
looking and behaving excellently, but before we can pull over and rest,
there’s one last thing left to accomplish.

Menu Finishing Touches

It’s a bit too quiet here for what should be an engaging and interesting main
menu screen. We can fix that though, with the power of music! Although
we’ll be covering the playing of sounds and music in more detail later, it’s
too simple to pass the opportunity up, so here’s the quick and dirty version
in as few words as possible:

Add an import statement

import titleMusic from "../assets/sounds/space-trucker-title-
theme.m4a";

Load and play the music from the
constructor

this. music = new Sound("titleMusic", titleMusic, scene, ()
=> console.log("loaded title music"), { autoplay: true,
loop: true, volume: 0.5 });

Enjoy the vibes

<enjoy the music>

OK, so maybe the last part is getting a bit carried away; we do want to stop
the music at some point. In the onEnded callback of onMenuLeave, call
this. music.stop () to stop the sound from playing when the Exit button
is clicked. Once you’ve run the app and corrected any issues, it’s time to
commit changes to source control and have a nice refreshing beverage —
we’ve completed the chapter!

Summary

What a journey we’ve taken during this chapter. Some might prefer to think
of it as more of a slog, and that’s not unfair — we’ve been wading through
some pretty dense material here! Despite there being a fair bit of theory and
high-level concepts tossed around, think back to what’s been accomplished
over the course of this chapter — where we started was with a landing page
that launches into an animation. Now, we have a landing page that launches
into an application.

Coming up next, we’re going to look at how to address the problem of
accepting different forms and methods of input in a way that produces
consistent and predictable behavior from the application — stick with us, and
don’t be afraid to take your time to go back and re-read anything you didn’t
understand the first time around. It’s amazing how much comprehension
can require multiple passes to really take hold, but if that’s not working and
you find you’re struggling to understand or follow along, no worries.
Navigate to the Space-Trucker Discussions or the Babylon.js forums and
post your question or problem to the community — you aren’t alone!

Extended Topics

Things are just getting some momentum, but that doesn’t mean there i1sn’t
more to explore and extend what we’ve got already! Here are some ideas
for things that you might look at, explore, or build into this chapter’s code:

Create or extend the regular Babylon.js Animation type’s capabilities
to include 2D GUI controls — or — implement a class that mimics the

behavior of the Animation object with GUI controls.

Can you spot the defect in the spaceTruckerLoadingScreen.js code?
It’s a bit subtle if you’re reading through it in your head, but there’s
definitely a logical defect in the code. Running it won’t cause any errors
to be thrown but it does have effects that are visible at runtime under the
right conditions.

Instead of using a single, full-screen AdvancedbynamicTexture, use
one or more mesh-attached textures that are painted onto the meshes in
the scene, which can then be animated in interesting ways.

Add an attract mode that engages after the Main Menu has been
displayed without user input for more than 30 seconds. An attract mode
was an arcade game feature that puts the game into a non-interactive
demo mode intended to catch the attention of passers-by. What is your
idea for an attract mode?

Adding a Cut Scene and Handling
Input

Much of the work we’ve completed so far has contributed to the whole
largely unseen and unheard. The only action we’ve required — or even
listened for — from users is a single button click. How boring — and quiet.
That’s all about to change, though! In this chapter, we’re going to add some
flavor to our app’s launch by adding a Splash Screen that tells the world
that everything they’re about to see is “Powered by Babylon.js” in the
process of providing players with their first experience with Space-
Truckers. We’ll also be giving users agency in the game world by adding
inputs for multiple different device types, along with the logic to process
inputs into actions in the game.

This seems like a lot to cover in such a short chapter, but thanks to how
easy it can be to accomplish tasks in Babylon.js, progress can come faster
than you might think.

In this chapter, we will cover the following topics:

Space-Truckers — the Splash Screen
Designing the Input System

Everything we’ll be doing will build from the work we’ve done in previous
chapters, but it’s OK if you’re just picking things up from here — read on for
technical details on how to obtain the source code to complete this chapter.

Technical Requirements

This is the first time that we’re going to be expanding the technical
requirements, but it should hardly be a surprise to anyone that to work with
a particular type of input device — be it a mouse and keyboard, Xbox™
controller, Sony PlayStation™ controller, or even a VR joystick — it is

necessary to either have one of such devices handy or (worst case)
download and install a suitable emulator/simulation app. That said, Space-
Truckers should be playable with the following input types:

Keyboard and mouse

Virtual joysticks/touch screen
Xbox™ controller

Sony PlayStation™ controller

Generic gamepads

An appropriate audio output device will be needed to play music and
sounds.

This chapter will follow a similar pattern as previous chapters, where we
will build out one or more PlayGround snippets before integrating them into
the application’s code base. The code we’ll be starting from is at

point or a place from where you can start your journey. Now, with that
squared away, we can turn our full attention to our first task: building the
Splash Screen!

Space-Truckers — the Splash Screen

Nothing gets the attention of an audience better than a splashy entrance, and
nobody knew this better than good ol” William Shakespeare. A glance at the
first few pages of any of his plays uncovers a host of different exciting
scenes from a street brawl between rival gangs in Romeo and Juliet to an
interrupted wedding in A Midsummer Night's Dream. The Bard knew how
to get the attention of his audiences — a notable feat in those times — and just
as he shamelessly plundered history and mythology (sometimes both at the
same time!) for his stories, we’re going to shamelessly plunder the
techniques he used in our work.

https://github.com/jelster/space-truckers/tree/ch4

The specific inspiration from Mr. S. that we will examine is the idea of
engaging the attention of an audience to prepare and prime them for what
they’re about to experience. We don’t have a fancy fight scene or a fantasy
wedding in the cards for Space-Truckers, but we do have our Splash
Screen!

Looking at the Splash Screen in context, the user has just clicked the
Launch button on the regular HTML web page, transitioning the page over
to WebGL and rendering the animated Loading Screen we built back in
Chapter 2, Ramping up on Babylon.js. Immediately following the
completion of the Splash Screen (either because it ran to the end or because
the user chose to skip through it), the user will be taken to the Main Menu
screen that we built out in the previous chapter. Through a series of
animated sequences and in conjunction with the audio soundtrack, users
will be put solidly into the mood of a Space-Trucker.

Storyboarding the Scene

While it’s easy to let the mind wander off into the potential avenues that a
splash scene might show, we’ll Save It For A PR™ and instead start with
something incredibly simple that we can then use as a base for expansion. A
storyboard doesn’t have to be an immensely complicated and planned-out
artifact. Time spent storyboarding is time that isn’t being spent trying out
the ideas laid out by the storyboard, so don’t worry about making it look
good, worry about the boards capturing a set of snapshots of what you want
to happen. The following diagram shows the sketched-out series of panels
that comprise the Splash Screen storyboard:

Powered
by

Start: Os
Entered: +2s
begin Exit: +.5s
Offstage: +.5s

O0-+3.0s

A
Liquid Electron
Community Production

©

Babylon.js

Start: +2.75s
Entered: +1.5s
begin Exit: +1.5s
Offstage: +1s

2.75s5 - +6.75s

Start: 16.75bs
Entered: +1.5s
begin Exit: +1.5s
Offstage: +.5s

6.75s - 10.25s

<Copyright &
Licensing>

Start: 10.25s
Entered: +0.70s
begin Exit: +0.3s
Offstage: +1.2s

10.25s - 12.45s

Figure 5.1 — Storyboard for the Splash Screen sequence. Being a sketch, the
numbers given for timings should not be taken at face value

Let’s break this diagram down a bit by walking through the scene in a
temporal order. At time = 0, we have a blank stage (screen). After 2 seconds
have passed, the first panel with the words “Powered By” 1s fully visible.
Half (0.5) a second after that (or T+2.5s) marks the beginning of the exit

sub-sequence, which completes with the panel fully hidden another half a
second later. The total amount of time that the first panel depicts is 3
seconds. Armed with that explanation, the other three panels should also
make sense. Each panel progresses the scene forward, starting at the top-
left, moving right, and wrapping back to the left panel, respectively. The
image shown in a panel fades in and out according to the given timings, but
those numbers should be used as rough guide markers only — it’s important
to tweak the values to what you like.

If you were to compare the storyboard with the final splash screen
sequence, there are some gross similarities; the panels are all mostly the
same and in the same order, the timings notated are roughly the same, and
more. That shows the evolution of the design from start to finish and serves
to drive home a central point of storyboarding — the boards are not the
whole story! These admittedly crude sketches serve the purpose of putting a
stake in the ground, giving loose definition to the basic elements and
timings involved so that we can focus on other aspects of implementation —
such as the code.

Building the Scene

There is only one new concept that we haven’t encountered yet that we’ll
need to learn to build out the Splash Screen in code. Everything else will
use a combination of techniques that we’ve used in previous chapters in one
way or another, so hopefully, this will seem pretty easy! For this part of the
chapter, we’ll be working exclusively in the PlayGround (PG) — if you’re
following along, this is where you’ll want to load up the PG with a new
snippet.

Important note

Code listings will continue to become less complete and more focused on
specific aspects or areas of the code under discussion that are important,
tricky, or non-obvious. The complete code for this chapter can be found at
https://github.com/jelster/space-truckers/tree/chS. Don’t hesitate to pull it
up to compare your progress against it or check your work — sometimes, an
explanation just won’t cut it and you need to see working code!

https://github.com/jelster/space-truckers/tree/ch5

When we break out the various animated sequences outlined in the
storyboard, there’s an immediate structure or way of ordering the cut scene
that sticks out right away. Each board in the storyboard represents a distinct
snapshot of what is happening at a given time in the scene, so we need to
come up with a way to represent these cut scene segments in code. We want
it to be a reusable component, and we want to be able to use The Power of
Composition to assemble multiple segments into a greater whole. As with
any flexible programming language, there are many ways we might fulfill
these requirements. A class-based approach leverages ES6 language
features to make it quick and easy to create new instances of a
CutSceneSegment, and a new splashScene class can be used to compose
and manage those segments with proper timings and transitions.

The CutSceneSegment Class

The cutscenesegment class 1s a simple container that can represent an
atomic portion of the scene’s sequence, but although it is simple, it isn’t
devoid of any behaviors. A cutsScenesegment should be able to start and
stop its sequence, potentially looping playback. Similarly, other
components may need to know when a segment completes, so a onkEnd
observable will make it easier for us to write controlling logic to manage
multiple segments in sequence. Because we don’t hate ourselves and we
don’t want to spend time debugging mysteriously misbehaving code, we’ll
treat an instance of a CutScenesSegment as immutable. That is, once we’ve
created the object, we’re not going to try to change it by say, swapping out
the contained animations.

Important note

Can you keep a secret? Those who have experience with JavaScript may be
thinking that the word “immutable” is incorrectly being applied. While it is
true that from a strictly technical sense, the objects we’re dealing with are
not immutable, the idea 1s that we simply pretend it is immutable. If we’re
using it as-1s, and if nobody tells, does it matter whether an object 1s
immutable or not? Be warned, though — it’s easy to lose the distinction

between ways of thinking about software and expressing those concepts in
code, so don’t mistake this for language-specific guidance!

Although it would be useful to be able to control multiple target scene
elements in a single cutScenesegment, we don’t need that complexity to
implement the scene from our storyboards. This decision, in conjunction
with the previous decision regarding immutability, has two important
implications for how we will write our classes’ constructor.

First, we’ll need to get a target against which the segment will operate.
This can be anything capable of being animated, so, pretty much any BJS
type you may want to animate can be used here (with the notable exception
of the types in BABYLON.GUI.Controls). Second, the constructor will
need to accept an array of arbitrary individual Animation instances as an
animationSequence. Of course, the “ctor” (as the cool kids all call it) will
need to take a reference to the current scene, which gives us the following
signature for the method:

class CutSceneSegment {
//loopAnimation = false;
//animationGroup;
//onEnd = new Observable () ;
constructor (target, scene, ...animationSequence) { ... }

You may be unfamiliar with the highlighted language construct. That’s OK
because although it’s not uncommon, it’s also not something that you might
encounter in your everyday JavaScript. The three periods (.) before
animationSequence indicate that the parameter is treated as an arbitrary
params-style array. This is merely a convenient piece of “syntactic sugar”
that allows callers of the function to avoid the need to create and pass an
array and instead pass a comma-separated list of the elements comprising
the Array. The following code fragment shows arrays being passed as the
trailing three parameters:

new CutSceneSegment (billboard, scene, fadeAnimation,
scaleAnimation, rotateAnimation);

In the cutscenesegment constructor, there are two primary things we need
to accomplish:

1. Create a TargetedAnimation from each Animation in

animationSequence.

2. Add the Targeted Animations to a new AnimationGroup.

Going in reverse order, AnimationGroup 1S something new to the project.
Do not try to overthink it — it is and does exactly what its name suggests.
Next, because we already have animations that just need targeting, we can
loop through the animationsequence collection and use AnimationGroup’s
addTargetedAnimation method to complete the binding. The Babylon.js
Docs site at
https://doc.babylonjs.com/divingDeeper/animation/groupAnimations has
more information on different aspects of the AnimationGroup properties
and methods, but other than the previous looping logic, the usage of an
AnimationGroup 18 very similar to an individual animation. Having
accomplished these tasks, all that’s left for the constructor is to delegate the
CutSceneSegment .onEnd member property to
AnimationGroup.onAnimationGroupEndObservable. Here’s what the entire
constructor looks like:

constructor (target, scene, ...animationSequence) {
this. target = target;
let ag = new AnimationGroup (target.name +

"—animGroupCS", scene);
for (var an of animationSequence) ({
ag.addTargetedAnimation (an, target);

}

this.animationGroup = ag;
this.onEnd = ag.onAnimationGroupEndObservable;
this. scene = scene;

Finishing the cutsceneSegment class are the start and stop methods.
These are extremely simple, and just call the appropriate function of
this.animationGroup. When we want to loop a CutScenesegment —not a
typical usage — we can set the 1oopanimation flag to true before calling
start:

https://doc.babylonjs.com/divingDeeper/animation/groupAnimations

start () {
this.animationGroup.start (this.loopAnimation) ;

}

stop () |
this.animationGroup.stop() ;

}

This completes the cutScenesegment class. It’s ready to be used in the code
we’re just about to write for the sp1ashscene class, where we’ll be creating
a segment for each panel in the storyboard before playing them in sequence.
First, though, let’s add another set of building blocks for our scene — the
animations driving the scene’s visuals.

The Animations

There are only three separate types of animations that we need for the
scene. The keyframes and targets may be different, but the base property
being animated is the same. Separate from any class declaration, add
deckﬂaﬁonsfbrflipAnimation,fadeAnimation,andscaleAnimation.TO
keep the frame rates the same, we declare animationFps as const:

const animationFps = 30;

const flipAnimation = new Animation("flip", "rotation.x",
animationFps, Animation.ANIMATIONTYPE FLOAT,
ANIMATIONLOOPMODE CONSTANT, true);

const fadeAnimation = new Animation ("entranceAndExitFade",
"visibility", animationFps,
Animation.ANIMATIONTYPE FLOAT,
Animation.ANIMATIONLOOPMODE_CONSTANT, true) ;

const scaleAnimation = new BABYLON.Animation ("scaleTarget",
"scaling", animationFps, Animation.ANIMATIONTYPE VECTOR3,
Animation.ANIMATIONLOOPMODE CYCLE, true);

This should be pretty familiar by now, except for the highlighted t rue
parameter; this instructs the Babylon.js animation engine to enable the
animation to be blended with others. It’s not necessarily something we’re
leveraging immediately in the scene, but it’s important to configure it
correctly at the outset for when it’s needed.

Important note

In the BJS PlayGround, IntelliSense may sometimes confuse the
BABYLON.Animation type with browser or DOM types with the same name.
Adding the BaBvLON prefix can help clear up confusion, but remember to
remove it later — you won’t need it when the code is integrated locally.

The pieces have all been prepared and moved into place for us to start
constructing the splashscene class, where we’ll create and assemble
CutSceneSegments into a complete scene.

The SplashScene Class

When designing a class or component’s code structure, a good way to start
can be simply identifying and capturing any currently known variables of
the state as class members, even if the value won’t be set until later. One
such example of this is currentsegment. This property holds the currently
playing cutscenesegment. We’ll populate the various segments in the
constructor, but by declaring the members outside of constructor (as
opposed to defining it in the ctor — for example, this.foo = 3), we
improve the readability of the code — something that is incredibly important
in any code destined for production! Here are the class members that we’ll
want to define:

currentSegment

poweredBy

babylonBillboard

communityProduction

dedication

onReadyObservable = new Observable()
skipRequested = false

Each of the preceding segments (save the highlighted ones, for obvious
reasons) corresponds to a panel on the storyboard — in order of execution to
help with readability. Though we won’t use it until later in this chapter,
onReadyObservable 1S there to signal that all the assets have finished
loading and the cutscene is ready to start. It’s a similar situation with
skipRequested — later in this chapter, we’ll add the ability for players to
skip the cut scene, so adding this now is legitimate. Adding the small pieces
of code to hook it up is trivial too since we’re already working in that area,
and it’s one less thing to worry about later.

There will be enough setup code in the constructor as it is, so a forward-
thinker might consider adding method stubs to encapsulate each segment’s
setup process! Turning our attention to the createscene function, we want
to start seeing things as soon as possible, so let’s hook up one end of the
logic, which will allow our segments to transition between each other.

Just as our previous PlayGround snippets have been structured, the
SplashScene constructor needs a BABYLON.Engine instance passed as a
parameter, which it uses to create the scene. Also similar is the sparse and
simple createscene function, which is used purely in the PlayGround. In
case a refresher is needed, here’s how to hook up the code with the
Playground in the body of createscene:

const splashScreen = new SplashScene (engine) ;

splashScreen.onReadyObservable.add (() =>
splashScreen.run()) ;

return splashScreen.scene;

We need to be able to discretely control when splashscene starts and stops,
so the constructor isn’t going to be the place to start playing
CutSceneSegments. Instead, we’ll add a run method (highlighted in the
preceding snippet) to perform those duties in response to a signal from
onReadyObservable. Now, as we enhance and expand splashscene, we’ll
be able to build off from this without having to worry about getting
everything to start at the same time.

The splashscreen.run () function looks very similar to the run function of
the spaceTruckerapplication run function if you squint enough and

possibly stare unprotected at the sun for a bit.
Important note

Do not look directly at the sun without proper eye protection! Sunglasses,
even ones that block UV radiation, are not sufficient protection for eyes,
and permanent damage may result. On a related note, never take advice on
what to do in the outdoors from a technical book on programming. HTH.

The reason they look similar to each other is that they both serve similar
duties. Similar problems face similar solutions and all, so here we are:

run () A
this.currentSegment.start () ;
let prior, curr = this.currentSegment;
this.onUpdate = this.scene.onBeforeRenderObservable
.add(() => {
if (this.skipRequested) {
this?.currentSegment.stop () ;

this.currentSegment = null;
return;

}

curr = this.currentSegment;

if (prior !== curr) {

this.currentSegment?.start () ;

Even though this scene doesn’t use the function* generators that we saw in
the previous chapter, it still qualifies as a simple type of state machine. The
current state (represented by currentSegment) is polled on every frame and
compared with the previous frame’s value. If they are different, then it
means that a new segment has been swapped in and must have its start
method invoked to continue the sequence. Because it’s so straightforward,
and again because we’re already here, the logic for managing the use case
where the player wishes to skip the cutscene and go straight to the Main
Menu gets added as well. The only real items of note are the combination of
setting this.currentSegment = null with the 2. operators to prevent any
attempt to call a method on an undefined value; if currentsegment is null

(from the viewpoint of the code), then the cutscene either hasn’t started yet,
or it has finished.

To provide a stable platform for creating the CutSceneSegments, there are
still a few things that we need to add to the constructor logic, as shown in
the following code:

const scene = this.scene = new Scene (engine) ;
scene.clearColor = Color3.Black();
this.camera = new ArcRotateCamera ("camera", 0, Math.PI / 2,

5, Vector3.Zero (), scene);

this.light = new HemisphericLight ("1light", new Vector3 (0,
1, 0), scene);

this.light.groundColor = Color3.White()

this.light.intensity = 0.5;

const billboard = this.billboard =
PlaneBuilder.CreatePlane ("billboard", {

width: 5,
height: 3
}, scene);

billboard.rotation.z = Math.PI;

billboard.rotation.x = Math.PI;

billboard.rotation.y = Math.PI / 2;

const billMat = new StandardMaterial ("stdMat", scene);
billboard.material = billMat;

Setting up the scene, camera, and light should be pretty standard by now,
and although the bi11board Plane isn’t new either, it’s understandable to
wonder at what role it plays in the scene. It’s pretty simple if you think
about it. There’s camera to render the scene, there’s 1ight to illuminate
billboard, and there’s billboard to display our content — whatever that
may be! We want the billboard to face perpendicular to the camera’s view,
hence setting the initial rotations. The values may seem a bit weird, but they
will all make sense shortly. Now that we have the framework to render the
cutscene, it’s time to start defining the cutscene segments! We’ve gone quite
a bit without saving (or not, if you’re well disciplined!), so now’s a good
time to run the snippet and check for any obvious issues or errors before
saving it for posterity.

The “Powered By” CutScene Segment

Referring to our initial storyboard, as our first segment, we’ve got a
billboard displaying a stylized “Powered By” image. The timings make
sense, and it’s perfectly serviceable. However, the problem with it is that it’s
just plain outright boring. Let’s spice it up a bit by having the billboard spin
around slowly throughout the segment using f1ipAnimation we created
earlier. At the same time, we’ll apply fadeanimation to fade the billboard
in and out at the appropriate times. To keep the constructor to a manageable
size, add a new class member function to Splashscene and call it
buildPoweredByAnimations. Then, in the body of the function, start by
declaring constants for each of the key timing events of the segment:

const start = 0;

const enterTime = 2.5;

const exitTime = enterTime + 2.5;
const end = exitTime + 2.5;

The values in the preceding snippet were arrived at through
experimentation, so feel free to try out other values until you find
something that works right for you. With absolute timing values computed,
we can also compute the associated frame number for each timing event:

const entranceFrame = enterTime * animationFps;
const beginExitFrame = exitTime * animationFps;
const endFrame = end * animationFps;

These frame numbers are important when we want to define the animations’
key frames array. Each separate animation will need a set of keyframes
defined for it, so we’ll need a fade-in and fade-out set of keyframes and a
set of rotation — or “flip” — keyframes. Remember, the value for fade
animations corresponds to the alpha property, so it will be between 0
(completely transparent) and 1 (completely opaque). The f1ipkey values
represent the y component of the target’s rotation:

const keys = [

frame: start, value: 0 },

frame: entrancefFrame, value: 1 },
frame: beginExitFrame, value: 0.998 1},
frame: endFrame, value: 0 }

e B N)

fadeAnimation. setKeys (keys) ;
const flipKeys = [
{ frame: start, value: Math.PI },
{ frame: entranceFrame, value: 0 },
{ frame: beginExitFrame, value: Math.PI },
{ frame: endFrame, value: 2 * Math.PI }
17
flipAnimation. setKeys (flipKeys) ;

After defining each of the relevant keyframes according to the computed
frame timings, it’s important to pass those keyframes onto the animation by
calling setkeys. This works with our plan for reusing Animations because
the keyframes are copied into the resulting Targetanimation instance
created when associated with its target; we can just call setkeys again with
a new set of keyframes whenever needed.

Important note

The pattern that we’re establishing here for this cutscenesegment will be
used for the rest of the segments. In other words, this will be on the test!

The final thing our buildPoweredByAnimations function needs to do is
create and return a new cutScenesegment that puts everything together:

const seg0 = new CutSceneSegment (this.billboard,
this.scene, fadeAnimation, flipAnimation);
return seg0;

Back in the splashscene constructor is where we’ll invoke the
buildPoweredByAnimations function to create a poweredBy object variable.
Assigning poweredBy t0 this.currentSegment Will ensure that when run is
called, the sequence is started. Following that, we need to load up the
“Powered By’ image as a texture that we can use with bilimat. Since this
involves an external image asset, add top-level declarations for the full
URL to the image files (see the previous chapter for more on constructing
the full GitHub URL for an asset). In this initial case, it’ll be a file called
https://raw.githubusercontent.com/jelster/space-

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/powered-by.png

texture, then assign the new texture to the previously-created
billMat.diffuseTexture property.

Important note
Make sure you load the texture before assigning it to the material!

When running, you should see the image on the surface of the billboard
plane, which is a good way to test your work before saving it!

Transitioning to the Next
CutSceneSegment... and Beyond

When a cutscenesegment begins running, it may make certain assumptions
about the current state of the different actors and set pieces involved in a
scene. For instance, a lighting animation that dims a light in a specific
pattern may need the intensity values to start at a specific level. At the same
time, a given segment can’t “know” anything about other segments or their
relationships — with a single crucial, albeit caveated exception. Upon
completion of a cutScenesegment, the onEnd observable notifies any
interested parties of the fact, but the observer itself doesn’t know anything
about its subscribers. This is why adding a delegate to handle the onEnd
observable is the ideal solution — and at the same time 1s also the caveat! To
keep some local variables in the constructor conveniently in scope, we can
call onEnd.addonce (() => { .. }). The body of the function is where we
want to tidy up objects in the scene, along with designating the next
segment in the Splash Scene sequence:

poweredBy.onknd.addOnce (() => {
console.log ("powered End") ;
billMat.diffuseTexture = babylonTexture;
billboard.rotation.x Math.PI;
this.light.intensity 0.667;
billboard.visibility Og
this.currentSegment = babylonBillboard;

In our immediate case, the next segment is going to be the
babylonBillboard segment, so make the last statement be
this.currentSegment = babylonBillboard In the poweredBy.onEnd
handler. Before that expression, we need to reset the rotation of the
billboard to be front (perpendicular) facing to the camera, as well as swap
billMat.diffuseTexture for the Babylon.js logo texture.

Important note

Before moving on to the next segment, it’s a good idea to try and run the
PlayGround snippet to see how it looks and test it for any major errors.
Opening the browser's Dev Tools to see logged messages can help you gain
a sense of timing!

What’s that? The new segment doesn’t exist and neither does the Texture?
That’s right — 1t’s time to Repeat the Process that we just did but this time,
apply it to the next panel in the scene! “Repetition is the key to learning” is
how the phrase commonly goes, and because it gets repeated so much it has
got to make sense, so take the opportunity to review what we’ve just done
and apply it using these values for the logic of the bui1ldBabylonAnimation
function: for the texture, use
https://raw.githubusercontent.com/BabylonJS/Brand-
Toolkit/master/babylonjs_identity/fullColor/babylonjs_identity_color.png
and for animationSequence, US€ fadeAnimation:

Attribute Timing Keyframe Value
Start 0 0

Entrance 2.5 1.0

BeginExit Entrance + 3 0.998

Exit BeginExit + 2.5 0

After adding the buildBabylonAnimation method, make sure to call it in
the constructor so that you can subscribe to the new segment’s onknd
observable. In the babylonBillboard.onEnd handler, there’s no need to
reposition the billboard since it didn’t move during this segment, but there
is the matter of teeing up the next one, in what is hopefully a familiar
cadence.

https://raw.githubusercontent.com/BabylonJS/Brand-Toolkit/master/babylonjs_identity/fullColor/babylonjs_identity_color.png

The next segment is called communitypProduction and is functionally
identical to the previous segment save for a different texture, located at
https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/splash-screen-community.png. It is also just using
fadeAnimation. Here are the main relevant timings and numbers needed:

Attribute Timing Keyframe Value
Start 0.0 0

Entrance 4.0 1

BeginExit Entrance + 2.5 0.998

Exit BeginExit + 3.0 0

Just like the previous segment, the communityProduction.onEnd handler
will be responsible for setting the next segment — callToAction —and
swapping billMat.diffuseTexture to the next one, which for lack of any
better name will be called rigTexture. This texture is rendered onto the
billboard mesh, where after fading in we’ll apply a looping animation to
its scaling property to make it look more dynamic.

Important note

The storyboard indicates this panel is where copyright notices and such
would go, but there’s no reason those can’t go someplace else that’s equally
useful but less prominent. Instead, we’ll make the panel contain a Space-
Trucker image, with the image slowly pulsing the scale and opacity in a
ready-wait indication state, waiting for the player to interact.

In a short while, we will be adding some input management. To prepare for
that, we’re going to need a way to display some appropriately formatted
Text. In a block. A sort of TextBlock, as it were. Our SplashScreen 1S
going to need to use the BABYLON.GUIL.

The Last Segment

Our final cutscenesegment — callToAction — follows a similar path that
the others have taken, in that we use bi11Board to display a
diffuseTexture that fades into the scene. Here is where the segments start

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/splash-screen-community.png

to diverge because instead of fading out again, we want it to fade in and
then loop around without ever completely fading away. At the same time,
we will use scaleanimation to vary the scale of the bil1board mesh along
its X- and Z-axes. This will give the two-dimensional flat image a fake
appearance of depth and scale as the animation cycles, which means that it
looks cool! Here are the timings for each animation in the segment:

Attribute Timing Fade KFV Scale KFV
start 0 0 (1,1,1)
enterTime 3.0 1 (1.25,1, 1.25)
exitTime enterTime + 2.5 0.998 (1.5,1, 1.5)
end exitTime + 3.0 1 (1,1,1)

When the end timing is reached, we want our Call To Action (CTA) text to
be made visible, inviting us to press a key or tap their touch screen to
continue. In another of the Bard’s favorite tricks, here is some
foreshadowing (not of the shading variety, the literary kind) — the CTA
serves the subtle purpose of allowing the application to figure out what type
of input the player wants to use. It’s an incredibly direct means of
communication between two entities that otherwise have almost zero
capability to understand each other, and it works because its binary (the
irony! It burns!) simplicity conveys a user’s preference simply by them
picking up the device and engaging an input.

Before we go there, we need to wrap up the implementation of the
constructor by creating BABYLON.GUI .AdvancedDynamicTexture mentioned
earlier: callToActionTexture. Creating, configuring the properties of, and
adding a TextBlock to a GUI is a familiar exercise by now (though stick
around for Chapter 10, Improving the Environment with Lighting and
Materials, where we’ll introduce the GUI Editor!), so the next listing
should require very little explanation:

// ... create billboard textures used in segments
let callToActionTexture =
this.callToActionTexture =
BABYLON.GUI.AdvancedDynamicTexture.
CreateFullscreenUI ("splashGui") ;
let ctaBlock = new TextBlock("ctaBlock",
"Press any key or tap the screen to continue...");

ctaBlock.textWrapping = BABYLON.GUI.TextWrapping.WordWrap;
ctaBlock.color = "white";
ctaBlock.fontSize = "lo6pt";
ctaBlock.verticalAlignment =
ctaBlock.textVerticalAlignment =
TextBlock.VERTICAL ALIGNMENT BOTTOM;
ctaBlock.paddingBottom = "12%";
ctaBlock.isVisible = false;
callToActionTexture.addControl (ctaBlock) ;
// ... call the builder functions
// ... Attach onEnd delegates

One thing not to forget is to set the initial visibility of ctaBlock
(highlighted) to fa1se. If you want to display it sooner than in the handler
for cal1ToAction.onEnd, go ahead — it’s your game! Once you’ve gotten
everything added to the constructor, give it a whirl and fix any errors that
come up. Hit Save, then make sure you either put on headphones or can
otherwise crank up your computer’s audio — it’s time to put in the theme
song!

Fading in the Title Music

After working on this splashscene for so long by now, it’s probably started
to feel a bit bland, and that is something we will not accept any longer. In
Chapter 4, Creating the Application, we added the Space-Truckers main
theme song to the Main Menu. Here, we’ll be doing something very
similar, but with a splashScene twist.

Recall what was hopefully not-so-long-ago, when you read this gem?

“Though we won’t use it until later in this chapter, onReadyObservable is
there to signal that all the assets have finished loading and the cutscene 1s
ready to start.”

Well, “later in this chapter” starts right now. Since we’ve already put
everything else into place, there are only four tasks left to wrap up this bad
boy and take ‘er home:

1. Add a string to hold the URL to the song (or substitute your own) at
https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/music/space-trucker-title-theme.m4a.

2. Create a new Sound in the constructor, calling
SplashScene.onReadyObservable.notifyObservers in the Sound’s
readyToPlayCallback. Set the volume really low — 0.01 works
nicely — to give the volume room to grow.

3. Addacallto this.music.play () inthe splashScene.run method.

4. Crank up the volume (also in the run method) over some time by
calling this.music.setVolume (0.998, 500).

Do the usual drill of running, fixing issues, repeating as needed, and then
saving. If you run into trouble or want to compare your results with a
known “working” snippet, check out

working? Head over to the Space-Truckers GitHub Discussion boards at
https://github.com/jelster/space-truckers/discussions and get help from the
community, leave feedback or bug reports, and catch any updates to the
code since this book was published. Having a runnable sample of what you
want to accomplish in the PG is a great way to play around with ideas and
concepts, but now, it’s time to metaphorically remove our more abstract and
theoretical game designer’s hat and put on our more concrete and pragmatic
software engineer’s work helmet — we’ll need those qualities as we
integrate our PG code with the application.

Integrating the SplashScene

The integration phase of the work is where the shiny, pretty, elegant PG
Snippet meets the hard-faced ugly truth of reality. It’s the part where things
are most likely to go wrong, and also where bugs in the application code
can be uncovered. The reason this happens has little to do with the character
and attributes of the person writing the code, even though it might feel that
way sometimes. Any bugs or defects uncovered at this point are reflections
of what wasn’t known at the time the original code was written, and that
means there’s an opportunity to improve it!

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/music/space-trucker-title-theme.m4a
https://playground.babylonjs.com/#DSALXR
https://github.com/jelster/space-truckers/discussions

Seeing the Difference

Because you have the benefit of this text to help guide your efforts, you’ll
be spared having to track down and fix two issues uncovered in the
SpaceTruckerApplication.js component, along with some other changes
we’ll make structurally to the class. Including the two issues just
mentioned, here is a list of the things we need to do to integrate

SplashScreen:

Add new files to /src - cutSceneSegment.js and splashScene.js

Add appropriate imports to new files and copy over class definitions

The spaceTruckerapplication.js file will see the greatest changes with
these tasks:

Remove the placeholder promises that were used to simulate loading
times in spaceTruckerApplication. With those gone, we can also
remove the async designator from their hosting functions.

Instantiate the Scenes in the initialize method instead of previous
locations.

Register an Observer in goToOpeningCutscene that listens for the
SplashScreen’s onready event.

And finally, the two issues that would otherwise prevent the application
from correctly progressing and rendering are as follows:

GSSue)AppStateMachineShOuki)deklcurrentState.

(Issue) Logic in the engine. runRenderLoop callback needs to be a
class-level function to access this properly. The problem can be
resolved by extracting the arrow function into a class-level function —
that is, this. engine.runRenderLoop(() => this.onRender());.

The best way to visualize the changes is to view a diff, or difference, report
between two revisions. The Git Source Control Management (SCM)
system offers a huge amount of functionality when it comes to comparing
the contents of a repository at two (or more) points in time, so let’s leverage
that to help understand what needs to change to integrate splashScreen
into the app.

However it is accessed, the range of revisions we need to compare can be
represented with the ch4. . .6db9f7e expression. Use this as an argument to
git diff or paste it into a browser as the trailing path to <repo
URL>/compare/<revision range>, O in this case,

Depending on the particulars of your development environment, a diff will
be displayed in a varying number of (pardon the pun) different ways.
Regardless of the specific tool, almost every diff will organize its report by
individual files that have changed between the given range of revisions.
VSCode’s Timeline feature will show the commit history for an opened
file; the diff can be viewed by clicking the revision in the Timeline pane.

Tip

Making a habit of examining these diffs closely before each commit or
merge can improve your coding abilities, together with the quality of your
code. A good sign that you are trying to do too much in a single commit is
having a complicated and long changeset. Break the work into smaller
components and commit each separately, and not only will any reviewers of
your Pull Request (PR) thank you, but you’ll find yourself moving faster
and with greater confidence.

The GitHub web interface can also be useful for viewing differences
between revisions, branches, and even forks (also known as upstream
repositories). Navigating through and understanding the different reports is
a key skill for people who wish to become skilled in software development,
but it can be tough to block out the inevitable noise that comes with
viewing so much information. GitHub will try to do some of this for you,
by collapsing large diffs by default, for instance, but the best way to deal
with poor a signal:noise ratio is unfortunately not retroactive; it is only

https://github.com/jelster/space-truckers/compare/ch4...6db9f7e

useful when applied at the time of commit or push. This solution is to be
mindful of and structure commits with a high signal:noise ratio from the
beginning. Here are some tips for helping with that:

Instead Of... Try Doing...

Waiting until a feature is finished before committing | Commit atomic groups of changes at regular intervals
Leaving no or a cryptic commit message State the effect of applying this commit to the code
Mixing unrelated changes in the same commit Always try to make a particular commit about one single thing

Using the diff as a reference guide when needed, try to accomplish the
activities listed earlier on your own. Of course, since you’re already looking
at the diff, you should feel free to simply pull down the code at commit
6db9f7e if you’d simply like to resume following along right away. The
following figure shows a still capture of where you should end up after
running the application, clicking the Launch button, and after the
conclusion of the Splash Screen:

Press any key or tap the screen to continue

Figure 5.2 — Splash Screen finished and waiting for user input

We’ll get into the nitty-gritty details of all of the items — some familiar,
some new — contained in that commit’s patch soon enough, but before we
do, let’s quickly recap what we’ve accomplished so far.

Starting with a set of storyboard panels depicting snapshots of the scene at
various points in time, we used the boards to pin down timings for the
various animations and transitions involved. Then, we crafted some
reusable code to define a cutscenesegment, along with other logic relating
to animating objects. Finally, we wrote the containing splashScreen class
and its attendant asset and cutScenesegment orchestration logic that
comprises the full timeline of the scene. That’s a lot to accomplish — don’t
neglect to acknowledge that!

Next, we’ll be moving on to one of the more under-appreciated areas of
game development: input systems. Because of its importance, we’ll be
devoting the rest of this chapter to going over how the Space-Truckers input
system functions and how it is implemented.

Designing the Input System

The topic of the User Interface (UI) often focuses quite heavily on visual
elements, layout, and design. For the majority of web applications, the
basics of tracking a pointer, touches, or taps along with keyboard input are
handled by the web browser, which in turn delegates many responsibilities,
such as hardware driver interfacing to the underlying Operating System
(OS). When using a web-native application library such as Babylon.js,
developers can take advantage of these already-present abstractions to make
it quick and easy to add user interaction elements to their scenes. In this
section, we’ll learn how to add the application scaffolding that can support
multiple types of inputs on-the-fly, followed by implementing a way to map
arbitrary inputs to actions or commands in the game.

It’s said that imitation is the sincerest form of flattery, so let’s flatter the
Babylon.js team by “stealing” (called “researching” in polite company) the
camera input management code. Using the FreeCamera as an example
(read about it at
https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/sr

https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/src/Cameras/Inputs/freeCameraGamepadInput.ts

c/Cameras/Inputs/freeCameraGamepadInput.ts), here is how the data flows
between the controller and the application:

HID Device (OS)

v

Web Browser (Web APISs)

v

Canvas/HTML DOM (browser APIs)

v

Babylon.js —» Device Source Manager

v

Input Manager

v

X Camera Keyboard Input Manager Scene Camera
X Camera Mouse Input Manager Input Manager

v

XYZ Input Processor

v

Camera

Figure 5.3 — Flow of input from a Human Input Device (HID) through the
Web Browser’s APIs, to the HTML/Canvas and into Babylon.js and the
various components of the FreeCamera’s input system

Data starts at the top with the device itself sending data to the connected
host OS, which (via its device driver interface) translates that raw input data
into structures compatible and familiar to the web browser or native host
interfaces. Eventually, it makes its way into Babylon.js, where it is

https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/src/Cameras/Inputs/freeCameraGamepadInput.ts

massaged, processed, filtered down, and passed around until it reaches the
target of its affections: the FreeCamera. Here is a PG that represents a
slightly simplified version of the actual input system we’ll be discussing
now — use it as a working reference if you get lost:
https://playground.babylonjs.com/#78MJJ8#64.

Defining the Main Menu Control
Scheme

Although we won’t be defining control maps for the game phases at this
time, the foundations we’ll establish with this pattern will make it quick,
painless, and easy to add whatever arbitrary control maps later as they
become necessary. The table shows the various inputs and actions that we’ll
be interested in handling in the Menu system:

GamePad Key(s) Action

D-Pad Up/L. Stick W, Up Arrow MOVE_UP
D-Pad Down/L. Stick S, Down Arrow MOVE_DOWN
D-Pad Left/L. Stick A, Left Arrow MOVE_LEFT
D-Pad Right/L. Stick D, Right Arrow MOVE_RIGHT
A/X Enter/Return ACTIVATE
B/Circle Backspace/Delete GO_BACK
B/Circle Space bar ACTIVATE

Figure 5.4 — Menu controls mapped to various inputs

When it comes to the basic keyboard and (mouse) pointer interactions, the
Babylon.js Scene offers the onkeyboardobservable and
onPointerObservable properties to allow subscribers to be notified of
keyboard and mouse (touch) interactions, respectively. GamepadManager
(accessible from a scene’s gamepadManager pI‘OpCI’ty) and virtualJoystick
are useful for adding gamepads and their virtual touch equivalents for when
mouse and keyboard aren’t the goal. You can read more about these in the
Babylon.js docs at

https://playground.babylonjs.com/#78MJJ8%2364

https://doc.babylonjs.com/divingDeeper/input/virtualJoysticks and

Important note

As alluded to earlier, the topic of input handling is sufficiently complex that
it would take a great deal of the finite space available in these pages to
review all the code line by line, so the code that is listed will be highlighted
in sections under a particular area of discussion. Don’t worry about not
being able to follow along, though — you can still examine the full source
code and the links to PG snippets won’t be going away either!

Mapping Input Data

Although the table of controls from the previous section is something that
would work well in the game or application’s user manual, it’s less clear
how the information in that table can be leveraged in this application.

A JavaScript object map (or hashmap) refers to a regular JS object where
the string name for each property is the key to its value. Using object-key
notation (for example, accessing an object’s values, as in

foo [“property”]), indices will be represented in the new source file we’ll
call inputactionMaps.js. In it, we will define all the various object
constants and helper functions relating to — as suggested by the name —
mapping inputs to actions:

const inputControlsMap = {
/* Keyboard Mappings */
w: 'MOVE UP', 87: '"MOVE UP',
s: 'MOVE DOWN', 83: 'MOVE DOWN',
a: 'MOVE LEFT', 65: 'MOVE LEFT',
d: 'MOVE RIGHT', 68: 'MOVE RIGHT',
/...
PointerTap: 'ACTIVATE',
/...
buttonl: 'ACTIVATE', buttonStart: 'ACTIVATE',
buttonBack: 'GO BACK', button2: 'GO BACK',
dPadDown: 'MOVE DOWN', 1StickDown: 'MOVE DOWN',
Y
export default { inputControlsMap, ...};

https://doc.babylonjs.com/divingDeeper/input/virtualJoysticks
h