

Table of Contents
Preface

Part 1: Building the Application

Chapter 1: The Space-Truckers Operation Manual

Chapter 2: Ramping up on Babylon.js

Chapter 3: Establishing the Development Workflow

Chapter 4: Creating the Application

Chapter 5: Adding a Cut Scene and Handling Input

Part 2: Constructing the Game

Chapter 6: Implementing the Game Mechanics

Chapter 7: Processing Route Data

Chapter 8: Building the Driving Game

Chapter 9: Calculating and Displaying Scoring Results

Chapter 10: Improving the Environment with Lighting and Materials

Part 3: Going the Distance

Chapter 11: Scratching the Surface of Shaders

Chapter 12: Measuring and Optimizing Performance

Chapter 13: Converting the Application to a PWA

Chapter 14: Extended Topics, Extended

Index

Other Books You May Enjoy

Preface
The world of 3D application and game development is a vast and actively
changing landscape. With all the stunning capabilities of modern GPU
hardware exposed to the web browser via WebGL, AAA-quality interactive
rendering can be achieved by anyone with some knowledge of JavaScript.
Babylon.js is just the right tool to use for an effortless experience and a
robust application built using WebGL technologies.

Although changes in and the evolution of browser software and hardware
standards continue at their own pace and on their own schedules, Babylon.js
is a framework that prioritizes maintaining backward compatibility. Code
written for BJS 2.0 is highly likely to run with little to no modifications in
BJS 5.20, so product managers and stakeholders can use BJS with
confidence about the long-term stability of the code.

If Babylon.js is the ticket for WebGL, then this book is your ticket to
mastering Babylon.js. Well, you probably won’t become a twentieth-level
Babylon.js developer by the end of this (let’s be real for a moment), but
you’ll certainly learn the key concepts and techniques that will enable you
to progress down that path should you so choose!

All of this is starting to become a kind of bad sales pitch, so let’s drop the
pretense and talk brass tacks. You want or need to learn about 3D game or
app development. As a human being, you also desire entertainment. This
book attempts to satisfy both of those needs by avoiding being too boring
wherever possible while still delivering the big knowledge bombs.
Entertainment and enlightenment, all in one package.

Who this book is for
This book is for artists who avoid coding because they think they’re bad at
math (give yourself more credit!), game designers whose fingers long to
leave the spreadsheet, and developers dreaming of worlds yet to be made.
This book is for students who want to learn outside of their classrooms,
teachers who want their students to learn inside their classrooms, and
parents who want their teenage kids to learn something, anything at all.

What this book covers
Chapter 1, The Space-Truckers Operation Manual, gives an overview of
the world of Space-Truckers and 3D development with Babylon.js.

Chapter 2, Ramping up on Babylon.js, gets us started with (or refreshed on)
Babylon.js with a simple 3D animated scene.

Chapter 3, Establishing the Development Workflow, puts a solid design-
and-build time experience into place to allow rapid future development.

Chapter 4, Creating the Application, involves building a stateful application
that will host the game.

Chapter 5, Adding a Cut Scene and Handling Input, takes us through
imperatively creating an animated “cut scene” and learning how to handle
user input of different types.

Chapter 6, Implementing the Game Mechanics, starts off the construction of
the main route planning phase of the game. Here, we will augment the
existing physics with orbital mechanics and simulated gravitational forces.

Chapter 7, Processing Route Data, involves adding random encounter
tables that correspond to a space biome.

Chapter 8, Building the Driving Game, takes us through dynamically
generating a route and allowing players to drive along it.

Chapter 9, Calculating and Displaying Scoring Results, deals with
capturing and showing stats on player performance in a reusable dialog with
the help of the GUI Editor.

Chapter 10, Improving the Environment with Lighting and Materials,
covers how we can improve the look and feel of the game by enhancing key
visual elements.

Chapter 11, Scratching the Surface of Shaders, discusses extended
analogies explaining shaders and writing shader code that doesn’t involve
writing any shader code.

Chapter 12, Measuring and Optimizing Performance, explains the
heuristics and approaches for testing the runtime performance and the
strategies for improvement, along with dynamic runtime optimization with
the SceneOptimizer tool.

Chapter 13, Converting the Application to a PWA, explores preparing the
application for installation as a Progressive Web Application (PWA). We
then go through publishing this to a major App Store and adding support for
offline usage.

Chapter 14, Extended Topics, Extended, looks at AR/VR with WebXR and
Babylon Native before a foray into photorealistic raytracing and Babylon.js
in a CMS or e-commerce scenario.

To get the most out of this book
You’ll want to be at least passingly familiar with JavaScript before
engaging with the activities in this book, at least to the point where you are
not fazed by looking at code that may initially be unfamiliar. Knowing basic
3D concepts and terms is also helpful. If you are new to Babylon.js,
JavaScript, or 3D development, then a fantastic place to start is the
Babylon.js start page at https://doc.babylonjs.com/journey/theFirstStep.

https://doc.babylonjs.com/journey/theFirstStep

A web browser with the Mozilla or Chrome rendering engine is
recommended, as it has the greatest level of support for various WebGL and
WebGPU features. Safari (WebKit) is known to be significantly behind the
other engines listed in its support with similar functionality.

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book’s GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

The Babylon.js community is the most valuable resource around for getting
help with everything related to BJS.As an Open Source project, Babylon.js
is kept alive by its’ dedicated community of contributors. Who can
contribute? Anyone. What can be contributed? Almost anything. Join the
BJS community on the official forums at https://forum.babylonjs.com and
meet the gang!

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/jelster/space-truckers/. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here:
https://packt.link/CGb69.

Conventions used
There are a number of text conventions used throughout this book.

https://forum.babylonjs.com/
https://github.com/jelster/space-truckers/
https://github.com/PacktPublishing/
https://packt.link/CGb69

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: “The createSpinAnimation
method is called from createStartScene to make the spinAnim variable
available to the rest of the scene’s controlling code.”

A block of code is set as follows:

planets.forEach(p => {

 p.animations.push(spinAnim);

 scene.beginAnimation(p, 0, 60, true,

BABYLON.Scalar.RandomRange(0.1, 3));

});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

planets.forEach(p => {

 glowLayer.addExcludedMesh(p);

 p.animations.push(spinAnim);

 scene.beginAnimation(p, 0, 60, true,

BABYLON.Scalar.RandomRange(0.1, 3));

 });

Any command-line input or output is written as follows:

npx webpack –config webpack.common.js

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: “Clicking Run should now show a nifty-looking
starfield in a skybox you can pan around.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Going the Distance with Babylon.js, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com/
clbr://internal.invalid/book/OPS/xhtml/pref001.xhtml

Part 1: Building the Application
This first part of the book establishes the important foundations that will be
leveraged in future chapters. Starting with a survey of Space-Truckers and
Babylon.js, we will construct the main pillars of the game’s hosting
application. Although a basic understanding of Babylon.js is recommended,
the main requirement is to have some knowledge of JavaScript or a similar
programming language.

This section comprises the following chapters:

Chapter 1, The Space-Truckers Operation Manual
Chapter 2, Ramping up on Babylon.js
Chapter 3, Establishing the Development Workflow
Chapter 4, Creating the Application
Chapter 5, Adding a Cut Scene and Handling Input

The Space-Truckers Operation
Manual
It’s not considered to be a very emotionally evolved stance to judge a book
by its cover, but have you seen the cover of this book? If it’s something you
like, then please, by all means, do judge this book by its cover, you counter-
culture influencer, you – carry on reading!

If for some reason you don’t like the cover, then bully for you for literally
turning over a new page to see what’s inside – unlike some superficial
cretins. We’re above that sort of petty judgment, after all.

Note

Sometimes, relevant information will be presented in these Note boxes.
Other times, these same boxes will contain completely irrelevant but
possibly irreverent information. At all times, or at none (sometimes), should
you pay attention to what’s in these boxes.

Regardless of whether you’re on Team Cover or Team Content, it’s clear
you’re incredibly smart and well mannered for the simple fact that you’ve
started reading this book. We’re about to embark on a journey together over
the next 14 chapters. This is not the type of journey that you might
encounter flipping through channels while you search for something to
watch before bedtime. This is a journey across the wide and vast terrain that
is the Babylon.js ecosystem. It isn’t a safari, but it is a sojourn. One thing it
is not, however, is an Odyssey. Primarily because you don’t have to actually
go anywhere, and you get to go back to your regular life whenever you’re
not reading this book, but perhaps for other reasons too.

Important Note

Like its less-distinguished cousin the Note, Important Note boxes will
occasionally make an appearance. Generally, these are used for Things You
Might Regret Not Knowing About Before…

We are going to cover a huge amount of ground over the course of our
sojourn, our journey, but you won’t be traveling unprepared. Our overall
objective here is to build a game hosted by and in a generic web
application. Over the course of three separate parts, we’re going to
progressively do three things:

Each chapter will build on the work established in the previous chapter. It’s
possible that the code in one chapter will need to be modified in subsequent
chapters, and that should be looked at as a reflection of our evolving
understanding of how the application needs to be structured to accomplish
the goal at hand. Every chapter (save this one) contains links to the game’s
code in the same context as the chapter’s text, in addition to live demos and
Playground links specific to the content.

While we are building upon the application, we will also be providing fewer
and fewer line-by-line code details in favor of providing extra context
and/or information relating to how something works “under the hood.”
Don’t worry, the code and Playground samples are still there to help you
find your way! We’ll be exploring concepts that in themselves can occupy
entire texts longer than this not-very-short book, and we’ll be doing so with
less room to expand on those same topics. As a result, we will be looking to
cover some areas at a high level while others will be discussed to a greater
depth.

We’re going to start by walking through the game from the standpoint of
the player, then we’ll move on to look at the underlying game and
application design. As a finisher, we wrap this first travel segment up with a
tour of the Space-Truckers GitHub repository and other online resources.
Let’s start with the ending, in classic literary fashion.

Create and set up an application and development workflow that gives
Space-Truckers: The Video Game! a place to live

Layer on additional functionality to our application (hosting Space-
Truckers: The Video Game!)
Zoom out on the level of detail to take on a wide range of

enhancements and add to our good knowledge

Note

For the movie version of this scene, picture a shimmering dissolve with
appropriate sound effects as we transition to a different world…

Introducing the World of Space-
Truckers
Astronomers recently started receiving a mysterious signal, apparently from
outside of our Solar System. Far from being random noise, the signal
appears to contain structured data in the form of text, audio, and visual
content – an alien transmission! The transmission starts with a basic primer
on terminology and math and rapidly works its way up to describing some
sort of large plastic disc imprinted with something the message called
“multi-media interactive content” that is then connected to a display device
and spun around (how ludicrous!) at thousands of RPMs while a laser beam
reads grooves burned into the spinning disc. Laser beams. Grooves.
Spinning wheels. All ridiculous, but there’s no accounting for alien
sensibilities, right?

The following is a reconstruction of the content that was recovered from
that transmission and burned onto what is now known as the “Dead Sea
CD.” Due to the nature of its journey through space and time, parts of the
transmission were not received, and the data contained was unrecoverable.
At the same time, the connected nature of the data resulted in other parts
being corrupted. Consequently, many of the images and still frames you are
about to view represent data that has been patched back together using the
best tools and resources at our disposal.

Talented teams of professional engineers, scientists, and even sociologists
have worked long and hard to bring about this reconstructed image of what
we believe the people who left us – or sent to us – this record look like:

Figure 1.1 – Best guess at the appearance of the originators of the Space-
Truckers transmission

The next section contains the reconstructed text and image content
recovered from the transmission. Because the original message was
expressed symbolically and not in any human language, the latest GPT-3
text generation AI was trained on the transmission’s symbols so that it
could then produce the content that follows and format it consistently with
the rest of this book.

So, You Wanna be a Space-
Trucker?
BEGIN TRANSMISSION

Figure 1.2 – Reconstruction of the Space-Truckers transmission. Probably
intended as a “day in the life” image

Being a Space-Trucker isn’t for the faint of heart, nor is it for the lonely of
mind. There are hazards and dangers to be found in spades – but there’s also
the allure of fortune and fame. Ever since legendary Space-Trucker
Winchell Chung’s (call sign: Rocket Cat) famous “Grand Tour,” every kid
across the system has grown up aspiring to emulate him. After using the last
of his reaction mass to deliver his cargo, he saved millions of starving
children suffering after the Great Space-Potato Famine. Sadly, that selfless
act left his Space-Rig adrift with no way home. Chung’s Space-Truck was
lost as it drifted off into the Darkness Beyond the Sun. His last
transmission, garbled as it was, contained a single recoverable fragment of
text:

“The cold, hard equations care not for starvation or famine.
<indecipherable>…[b]ecause we’re Space-Truckers. It’s what we do.”

Space-Trucker Chung is a sterling example of what it means to be a Space-
Trucker, but in all fairness, there’s a dark side to the business. What isn’t
publicized is the high rate of turnover among Space-Truckers. Some go mad
from the experience of being alone among the stars, while others simply
refuse to go back out after their run. Others depart from one place never to
arrive at their intended destination.

Figure 1.3 – Space-Trucking is dangerous business

Sure, computers can help, and other technologies also contribute to help
make Space-Trucking safe and dependable. However, no amount of
hardware or software compares to the wetware of the human mind when it
comes to dealing with unanticipated situations, and that’s why Space-
Truckers need to be behind the wheel of their Space-Rigs.

Before any space wheels can hit the space pavement, our driver needs to
know where to go. Space-Dispatch is here to help with Route Planning
services, and with their detailed orbital and launch simulation, different
potential routes to the cargo’s destination can be evaluated and tried without
risk to the Space-Trucker.

Figure 1.4 – Planning a route involves timing the launch as well as properly
aiming it. The left-side bar controls the launch impulse – higher is faster

Despite the risks, the potential rewards are quite high. Completing a Space-
Haul has a variable payout for the Space-Trucker, with space-bucks being
awarded or demerited based on the driver’s performance in the field.
Factors from the simulated route include the total transit time, how much
fuel (launch force) is consumed, and the total distance traveled.

Figure 1.5 – Space-Trucking pays well when things go well

Many different obstacles can be encountered, and no two routes are the
same, but the scoring factors ensure that when it comes to comparing runs,
the High Scores board is the ultimate arbiter of the G.O.A.T Space-
Truckers.

Note

G.O.A.T. is not referring to any animal in this context. The Greatest of All
Time Space-Truckers are a select and elite group – show proper respect!

Timing is of the essence in Space-Trucking, but so is safety. By being
mindful of the latter in service of the former, the Space-Trucker stands the
best chance of completing their Space-Haul and getting the opportunity to
spend their payday on the Space-Beach.

Never forget, Space-Trucker – the cold, hard equations of planetary motion
have no concern for whether you’ve got enough air to breathe or heat to
stay warm. Keep your slide rule handy in case of instrument failure and go
forth to find your fortune slinging cargo!

Figure 1.6 – Recovered image of a “Space-Trucker” and their “Space-Rig.”
The Space-Trucker is the small figure in the foreground

END TRANSMISSION

The life of a Space-Trucker certainly must be full of glamorous riches and
perilous travels for those folks to send a recruitment leaflet all that distance!
Stepping back to the real world is hard, but it’s important that we break
down the various elements of how Space-Truckers is designed and put
together. Ideally, as you progress through this book, you’ll have this
foundation to help you stay grounded with where everything goes and fits
together.

Space-Truckers: The Video Game
Design
The basic idea behind Space-Truckers is simple: get stuff from Point A to
Point B, in spaaace! (It’s not required to draw out that last word, but it helps
set the mood.) As a game, it is separated into several distinct phases or
states:

Each of these screens (used as a synonym for “state” here) will be
established, then later enhanced over the course of this book along with an
underlying application to support and coordinate between them.

Landing

Landing (Home) Screen

Splash Screen

Menus (inc. High Scores)

Route Planning

Driving + Scoring

This is the first thing that a player sees when they navigate to space-
truckers.com (or the beta testing site, dev.space-truckers.com). It’s an
HTML page with a simple Call to Action: “Launch.” Under the hood,
however, the HTML page is the host for the main application canvas – the
WebGL context onto which all the rendered outputs are painted. It is
responsible for loading the packaged web application as well as registration
of a Service Worker (see Chapter 13, Converting the Application to a PWA)
to manage and pre-fetch assets. As the DOM host, it provides access to the
web browser and through it the host machine’s resources, such as the ability
to play sound or read input from gamepads or VR hardware. Learn more
about this in Chapter 3, Establishing the Development Workflow.

Splash Screen
In music and comedy, a warm-up act precedes the main headline
performance as a way to put audiences into a particular frame of mind or
mood. After all, it’s much easier to crank things up past 10 on the volume
dial when you’re already at 7! The Space-Truckers Splash Screen serves
that purpose, as well as giving us an opportunity to showcase the underlying
framework and proclaim that this game is Powered by Babylon.js. Once
the short, animated content completes, the application enters “attract mode”
to entice players to continue.

Menus
The transportation hub of the game, the Main Menu, is where players will
start a new game, view high scores, exit back to the landing page, and
potentially do more. Sound effects and an animated selection icon bring a
bit of motion to a twinkling background. The menu system is initially
covered in Space-Truckers: The Main Menu section of Chapter 4, Creating
the Application.

Route Planning

One of the two main game phases, the Route Planning Simulation, is where
players become content creators. Using a top-down map view, drivers plan
their route before embarking on their journey. From an initial starting orbit
close to the inner-most planet, players must balance how much launch force
is used with aiming and timing to put the simulated cargo on a path to the
destination planet. Once launched, the cargo is entirely at the mercy of
gravity and Sir Isaac Newton. Pro tip: aim ahead of where you want to end
up but be sure to account for the pull of the sun. Because it is a simulation
of a route, there are no consequences for failure – the player is free to try as
many times as they want to find the perfect route to drive in the next phase.

Driving and Scoring
After planning out the desired route, it’s time for players to then take the
wheel and guide their Space-Truck through the transit corridor while
avoiding collision with the random events that have been recorded during
the route planning phase. The player’s unit drifts in free-fall, so velocity
accrued in any given direction will remain unless later canceled out by
opposing acceleration. Collision results in damage, and with enough
damage, the truck and its cargo are destroyed.

Figure 1.7 – Collisions during the driving phase have consequences

On a brighter note, completing the course results in the player’s score being
calculated. Several different factors contribute to the overall total final
score. The length of the route, the time it took the simulation to complete
the route versus the time the player took, and the initial launch velocity in
route planning are all some of the factors involved in scoring. If a player’s
score is high enough, then it will displace one of the previous high score
holders to place the player’s selected initials into the hall of legends.

This is the game in a nutshell. As with any such high-level overview, it is
necessarily lacking in some detail, but it provides a holistic picture of what
we’re going to be developing over the course of this book. To get into more
detail, we’re going to need to first get an understanding of where we can
find those details as well as where and how to pick up supporting context in
the GitHub repository for Space-Truckers.

Space-Truckers: The Repository

Exploration is an important learning tactic for the discovery of new
knowledge. Its converse, exploitation, is an equally important tactic used to
convert passing knowledge into actionable skills. The key to maximizing
learning is the proper application of each type of learning at the appropriate
level and time. With tight iterative exchanges between the two, it is possible
to learn a lot in a little amount of time.

Our journey has many stops and signposts along the way to help assist and
guide us toward our destination, and in the spirit of maximizing learning,
each chapter represents an evolution toward our goal that includes live,
runnable examples (exploration) along with the exact source code for the
application at that point of the journey.

Figure 1.8 – View the application source in context with the stage of your
journey

We accomplish this in a simple fashion via the use of Git branches – one for
each chapter involving the application code. In addition, each chapter may
have one or more Playground snippets (see Chapter 2, Ramping up on
Babylon.js, for more on the Playground) specific to the content covered in
that chapter. Snippets are neat in a lot of ways and one of those is that they
can have multiple revisions. Toggling between different revisions of a

snippet is a great way to visually see how an example has evolved and can
help bring insights as to why a particular piece of code behaves as it does.

Maybe things were going OK but then you’ve found yourself stuck on
something that you just can’t figure out. That’s OK too – there are places
you can go for help! Create a post or add to an existing one in the
Discussions board over at https://github.com/jelster/space-
truckers/discussions for questions, comments, or concerns about content in
the repository and/or book. Questions more general to BJS can be posted
over at the BJS community forums – https://forum.babylonjs.com. Creating
an account for both GitHub and the BJS Forums can be relatively quick and
painless.

Tip

If you are planning to create both a BJS Forum and a GitHub account login,
save yourself half the effort by signing up for GH first. Then, when you
create your forum account, you can select the Login With GitHub option,
supplying the information for your newly created GH account.

The Space-Truckers repository has more than just the source code and
discussions, though. It also hosts the Issue Tracker for the game
(https://github.com/jelster/space-truckers/issues), which is where people can
request a new feature or file a bug report – it’s also where folks looking to
contribute to the project can peek to find something suitable to their
abilities.

Tip

Another pro-tip offered pro rata via the cost of this book: Scan through
issues with the labels good-first-issue and needs-help. Those are ones the
repository’s maintainers either need assistance with or feel that the issue
represents a gentle introduction to the code base.

Community contributions are what Open-Source Software (OSS) is all
about, but because they are largely volunteer-driven, there’s always more
work than there are people that can get that work done. Consequently, most
maintainers are thrilled whenever somebody submits a Pull Request – a set

https://github.com/jelster/space-truckers/discussions
https://forum.babylonjs.com/
https://github.com/jelster/space-truckers/issues

of changes to be incorporated into the code base – to the project that
resolves an existing issue!

Tip

Getting tired of these yet? Fair enough. Final tip: Even projects like BJS
with many maintainers working full time on it have this problem. The
maintainers might not be having to scrounge donations to keep servers on,
but they do have to scrounge for the time to accomplish everything that we
want them to!

It can be difficult to synthesize and learn new things when it feels like
you’re in drinking all the newness through a firehose. That’s why the
Space-Truckers code base is branched by chapter. Though an individual
chapter won’t necessarily resemble the current, final game as represented in
the main or develop branches (production and beta environments,
respectively), each branch has as much complexity as it needs to have for
that point in the book and no more. To put it differently, the evolution of the
application will mirror the evolution of our journey as it unfolds.

Summary
The next thirteen chapters each represent their own signpost denoting the
progress of our journey, and there is much yet to see and accomplish.
Pulling onto the Space-Highway, it can appear like the space-road ahead is
stretching out toward infinity. The truth is every road seems that way at the
start of a trip. By keeping the focus on what’s immediately ahead, the
infinite can become finite, and overwhelming complexity becomes
manageable tasks.

Much like this book is separated into sections and chapters, Space-Truckers
is separated into distinct phases or states. The Landing Page is the
launchpad (pun intended) for starting the game, while the Splash Screen
prepares the audience and sets the mood. Meanwhile, the Main Menu
Screen serves as a navigation hub between the main gameplay states and
the others.

There are two(ish) phases to the gameplay. Route Planning is where players
use an orbital mechanics simulation to plot a course for their Space-Cargo
to get from the origin to the destination planets. The direction and force of
the launch are set by the player prior to launch, with the timing of the
launch also a major factor in how players dictate their route.

Having planned a route, the next game phase sees that route being used to
create a tunnel filled with obstacles (random encounters) that the player
now must navigate their Space-Truck through to reach the end point. Time
matters, but so does bringing the cargo to its destination in as good a
condition as possible. Once the destination has been reached, a third,
pseudo-game phase enters the stage.

Scoring is done using several factors that will be outlined in detail as part of
Chapter 9, Calculating and Displaying Scoring Results. Players’ decisions
from Route Planning impact the final scores in multiple ways ranging from
time goals to fuel costs. Only the top scores get persisted into the High
Score Screen, a feature available in both the web and PWA versions of the
application.

The place where all the work around Space-Truckers is tracked and
managed is in Space-Truckers: The GitHub Repository. Additionally,
each chapter of the book (with a few exceptions) has its own branch in the
source code. This allows you to view the state of the overall application in
context with the content of the corresponding chapter. Additional assistance
can be found by posting in either Space-Truckers: The Discussion Boards
or on the BJS official community forums.

Next, we’ll start by gradually building some momentum through a back-to-
basics review of the BJS framework and ecosystem. We’ll look at some of
the tools, resources, and techniques and if necessary (re)introduce ourselves
to how rendering in BJS works. We’ll learn about the Playground and begin
the process of building our application by creating a simple loading
animation. Buckle up, Space-Trucker – we’re hitting the road!

Ramping up on Babylon.js
At the risk of sounding hyperbolic, Babylon.js (BJS) is nothing short of
incredible in how fast effortless, and fun it can be to work with 3D graphics
and games. Most game and graphics engines come with sizable footprints in
terms of size and computing resource requirements, but BJS is different
because it can run in a web browser. The BJS team has created a rich web-
based tooling ecosystem that covers a wide range of development
workflows and use cases to support developers and designers from many
different angles. After establishing some shared vocabulary and reviewing
some basics, we will begin our journey with the Babylon.js Playground
(PG). After this chapter, we’ll have laid the foundations for Space-Truckers
by creating and rendering a basic animated scene that uses the PG along
with content from the asset library.

In order to get from where we are to where we want to be, we’ll divide the
work into these sections:

Technical Requirements
Like most things in software, you’ll get the best results with Babylon.js. PG
snippets requires only a web browser supporting WebGL, but a desktop-
based browser is required for some BJS web-based toolsets such as the
Node Material Editor (NME). A keyboard is highly recommended for
typing code into the PG. With regards to browser support, while there are
some exceptions around specific devices and platforms the latest versions
of Edge, Chrome, and Firefox all support WebGL2, with ever-growing
support for the newer WebGPU functionality. See

Catching up or Refreshing on Babylon.js

Building Our Scene in the Playground

Animating Orbits

Extended Topics

https://caniuse.com/webgl2 for the most up-to-date list of browser vendors
supporting WebGL2.

Catching up or Refreshing on
Babylon.js
When starting a new project, it’s easy to get overwhelmed by the sheer
number of different things that need to be done. Throw unfamiliar
technologies or domains into the mix, and even the most seasoned software
veteran might blanch a bit at the challenge. That’s an okay feeling to have!
The key to overcoming and moving past it is both difficult and simple at the
same time: you just need to find an atomic, well-defined task and then just
do that task. After tackling a few of these tasks, you can take a step back to
reassess things in light of what you now know. Most likely, you will find
that the work you originally thought was needed isn’t.

Whether you’re a veteran game developer exploring the possibilities of BJS
or someone who has never programmed a game before, a strategy of
starting simple and building iteratively can be the best way to get usable,
immediate results. Let’s start with the basics. The following screenshot is
part of the BJS 4.2 release content that demonstrates simply how BJS can
render scenes with high visual fidelity.

https://caniuse.com/webgl2

Figure 2.1: A real-time interactive demo from the Babylon.js home page.
Semi-transparent shadows, reflections, and refraction are clearly visible
along (and inside) the bottle and table, just as different substances cast
different shadows in the real world.
(https://playground.babylonjs.com/#P1RZV0)

The Basics of BJS
BJS is a WebGL-based, full-featured 3D rendering engine written in
TypeScript and compiled to JavaScript. Although commonly accessed via a
web browser, current versions do not require an HTML DOM or Canvas
elements, meaning that it can run “headless” on a server. The BJS team has
a very clear vision and mandate, as illustrated from the BJS home page
(https://www.BJS.com):

“Our mission is to create one of the most powerful, beautiful, and simple
Web rendering engines in the world. Our passion is to make it completely
open and free for everyone. We are artists, developers, creators, and

https://playground.babylonjs.com/#P1RZV0
https://www.bjs.com/

dreamers and we want to make it as simple as possible to enable everyone
to bring their ideas to life.”

BJS supports a wide range of both input and output scenarios, from game
pads and accelerometer-based input to single- or multiple-viewport output
(e.g., VR/AR). A full list of the engine’s specifications is available at
https://www.babylonjs.com/specifications. Something that’s less obvious
from the specifications is that support for WebGPU is limited only by the
implementation of the standard by browser vendors, so if you read news
about WebGPU support being released for a browser, you can be confident
that BJS will be able to take full advantage of it without needing you to do
anything at all!

Tip

Something I always forget to apply to when I’m working with imported
assets being from other 3D/image editing tools such as Blender is
coordinate conventions. The 3D coordinate system used by BJS is “left-
handed,” meaning that the positive y-axis will (by default) point in the “up”
direction, the positive x-axis to the “right,” and the positive z-axis “toward”
the camera.

Get Started with Getting Started
Something that will quickly become apparent to anyone browsing the
documentation for BJS is how thorough and comprehensive that
documentation is. Given the high quality of the Getting Started content
there, it would be a pointless waste of precious space in this book to attempt
to recreate the basic tutorial at https://doc.babylonjs.com/start. If this is your
first time adventuring with game development, BJS, or JavaScript, it is
highly recommended that you take the time to at least browse through the
Getting Started tutorial linked earlier. Don’t worry about leaving –
everything will still be here right as you left it when you get back!

Tools for the Toolbox

https://www.babylonjs.com/specifications
https://doc.babylonjs.com/start

One of the advantages of being JavaScript-based is that it is very easy to
make web-based tooling available that allows users to code and render in
real time in a tight iteration loop. The BJS Playground (PG) is probably
the most prominent member of the BJS toolchain, but that should not
diminish the utility and importance of the other tools that we’re going to
cover. The following table summarizes the various tools available and their
purposes:

Throughout this book, we’ll be making heavy use of the PG; we’ll use it to
quickly put together a piece of code or test a concept before integrating it
into our application code. Not to be left out, the Inspector (and its
accompanying tools) is also going to see heavy usage for its powerful
scene-debugging capabilities. Finally, the NME will be covered later in this
book as we dive into the making of Space-Truckers.

Note

The typical usage of the word Game in this book denotes the portion of the
overall Application that is devoted to the game mechanics, logic, and
loops.

The Asset Types of BJS
Many different types of files and formats are supported by BJS, either
directly or indirectly (via exporter plugins). When selecting and/or creating
assets for your game, it’s important to put together a production workflow
that minimizes the amount of friction without sacrificing quality –
something we’ll learn more about in the next chapter. Here are a few of the
most commonly encountered third-party tools and file types that BJS
supports:

Textures/Images:

DDS (DXT1, 4bpp, and RGBA)

PNG/JPEG/BMP

TGA

HDR

3D Models:

GLTF (preferred)

OBJ

STL

BLENDER/3DS Max/Maya (exporter plugins)

Sounds:

WAV

MP3

MP4

M4A

More relevant to our immediate purposes, however, is the BJS Asset
Library. You can see the asset categories and browse entries by category at
https://doc.babylonjs.com/toolsAndResources/assetLibraries, but the true
power of the Asset Library comes from being able to reference and load
them from the PG! Let’s start off our scene creation by doing just that.
Open up your browser of choice and head to the BJS PG:
https://playground.babylonjs.com.

Building the Playground Scene
The Babylon.js Playground is designed around providing users with the
easiest, shortest possible path to rendering content in the scene. Open your
web browser of choice and navigate to https://playground.babylonjs.com/
and you’ll see the basic outline of a snippet. This basic template snippet
simply creates a new scene and a camera that renders it, but it’s as good a
starting place as any!

On the left of the playground is the code editor and on the right the render
canvas. The important thing to know about the playground is that each
snippet is unique in two ways, both contained within the URL to the
snippet. The characters after the first hash (#) symbol are the snippet’s ID,
the number after the second hash the revision. Every time a snippet is
created it is assigned a unique identifier, and every time that snippet is
saved a new revision is created. For example, #L92PHY#36 points to a
sample showing multiple viewports in an FPS camera, with the current
revision being 36. Thus, it’s possible to step incrementally through a
particular snippet’s revision history simply by changing the URL.

Note

Fonts:

TrueType

OTT

https://doc.babylonjs.com/toolsAndResources/assetLibraries
https://playground.babylonjs.com/
https://playground.babylonjs.com/

The completed playground snippet for this chapter is #0UYAPE#42. That
is, snippet 0UYAPE at revision 42.

Because we are going to be using snippets from the PG in our game though,
we’re going to want to do a little bit of preparatory structuring so that we
can easily and reliably transfer code between our PG snippets and the
source repos (more on this in Chapter 3, Establishing the Development
Workflow). Throughout the book and in snippets, we will be using ES6
syntax where possible. This gives us access to some important language
features that we’ll be leveraging to help keep our code readable and
maintainable.

Tip

ES6 recommendation: choose let over var.

It’s all about hoisting and closures. Variables declared using the var
keyword are valid in their declaring scopes, but also potentially in a/their
containing scope (known as “hoisting”). Additionally, you can reference a
var prior to its usage without throwing a runtime error. When a variable is
declared with the let statement, it is only available in the declared scope,
and it must be declared prior to usage; otherwise, an error will be thrown.
Generally, you should prefer the use of let over var because it will more
easily prevent and expose all-too-common-but-potentially-quite-subtle
defects. Of course, if you aren’t going to be changing the value, you should
use const over let.

Establishing the AppStartScene
A new PG snippet starts with a single block of code – the createScene
function. As the code comments also indicate, the engine and canvas
global variables are available in the window’s context.

Important Note

The HTML Canvas element has been removed as a dependency in BJS
4.2+, but for backward compatibility reasons, methods involving the HTML

Canvas element will still function as expected.

Modifying the createScene function

To make the reuse of code easier, we will make a small change to the initial
function template. Instead of putting all of the scene’s logic into the same
createScene function, we’re going to subdivide the logic into atomic
functions as much as possible. The initialization routine will be done in a
new function, which will return an object containing the populated scene
objects:

let createScene = function () {

 let eng = engine;

 let startScene = createStartScene(eng);

 return startScene.scene;

};

A sharp observer will notice that we have not as yet implemented the
createStartScene function, which is of course the next step. Its purpose is
to create and initialize the scene and its elements – see the following list.
Low-friction change is critically important, so to make it easier to change
them later we’re going to place each piece of functionality into its own
function (pun intended):

It’s time to fill out our add and populate this new function,
createStartScene. First, we are creating the scene and camera, specifying
some specifics before making calls to soon-to-be-written functions (in bold)
that create their respective elements:

ArcRotateCamera

Point light

Star (sun)

Skybox for background

Planets – four rocky and one gas giant

function createStartScene(engine) {

 let that = {};

 let scene = that.scene = new BABYLON.Scene(engine);

 let camAlpha = 0,

 camBeta = -Math.PI / 4,

 camDist = 350,

 camTarget = new BABYLON.Vector3(0, 0, 0);

 let camera = that.camera = new

BABYLON.ArcRotateCamera("camera1", camAlpha, camBeta,

camDist, camTarget, scene);

 let env = setupEnvironment(scene);

 let star = that.star = createStar(scene);

 let planets = that.planets =

populatePlanetarySystem(scene);

 camera.attachControl(true);

 return that;

}

To save you the effort of doing the math in your head, the camBeta (or, the
latitudinal position in radians of the camera from the target) value comes
out to around 0.785 rad - 45 degrees, between the equator and the pole of an
imaginary circle around the target of camDist radius. Of course, this code
won’t compile or run yet because we haven’t yet defined
setupEnvironment, createStar, or populatePlanetarySystem. Add stub
implementations for these functions to make sure that the code runs as
expected. The resulting scene is empty, but it’s a good checkpoint in our
progress. It’s time to fill in the stubs and make our scene come to life! Don’t
forget to save (Ctrl + S) your snippet before continuing.

Setting up the Environment

The default environment is pretty bland and dark. The primary source of
lighting for the scene is going to be a Point Light positioned at the center
of the star system, while a skybox gives the scene perspective. The
texturing of the skybox is of particular interest, because an attractive-
looking skybox tends to be quite large in terms of file size. We care about
this because we are going to use this scene as a loading graphic, meaning
that it needs to load and begin rendering as quickly as possible. Loading a
large texture over an internet connection is unlikely to help us with that

goal, so instead we will create the texture on the fly using the Starfield
Procedural Texture from the Babylon.js Procedural Textures Library
(see
https://doc.babylonjs.com/toolsAndResources/assetLibraries/proceduralText
uresLibrary for the full list of available procedural textures).

Tip

Every procedural texture may or may not have its own set of input
parameters that can be set to modify the output rendering of the texture. For
the Starfield Procedural Texture, we are setting just two out of many
available properties: darkmatter, which controls the lacunae (voids), and
distfading, which governs the sharpness or blurriness of the rendered
texture. The values in the code listed in the following code were arrived at
after trial-and-error, so experiment to see what you like the best!

PointLight is, as the name implies, a source of light that radiates in a
spherical shell from a single point in space. Because of the darkness of the
scene and its large-ish size, the intensity of the light gets a bump before
setting some sun-like colors for the diffuse and specular color channels. We
use the Scene’s createDefaultEnvironment method along with some
previously defined options to create the skybox and accompanying
background material. That method returns an EnvironmentHelper instance,
which we will kindly return to the original caller of setupEnvironment:

function setupEnvironment(scene) {

 let starfieldPT = new

BABYLON.StarfieldProceduralTexture("starfieldPT", 512,

scene);

 starfieldPT.coordinatesMode =

BABYLON.Texture.FIXED_EQUIRECTANGULAR_MIRRORED_MODE;

 starfieldPT.darkmatter = 1.5;

 starfieldPT.distfading = 0.75;

 let envOptions = {

 skyboxSize: 512,

 createGround: false,

 skyboxTexture: starfieldPT,

 environmentTexture: starfieldPT

 };

 let light = new BABYLON.PointLight("starLight",

BABYLON.Vector3.Zero(), scene);

https://doc.babylonjs.com/toolsAndResources/assetLibraries/proceduralTexturesLibrary

 light.intensity = 2;

 light.diffuse = new BABYLON.Color3(.98, .9, 1);

 light.specular = new BABYLON.Color3(1, 0.9, 0.5);

 let env = scene.createDefaultEnvironment(envOptions);

 return env;

}

Clicking Run should now show a nifty-looking starfield in a skybox you
can pan around. If everything is working correctly, now is a good time to
save your work.

Figure 2.2 – Starfield skybox environment

Birthing a Star

The mesh for our star is a simple sphere, but when we add the standard
material and some color channels, the result is a single-toned, flat-appearing
circle – not very “star-like.” We can get a more nuanced look with very
little effort by combining an emissive (or, the color of light emanating from
the object) color with a diffuse (a color map of light reflected off the object
non-directionally) texture containing some noise or distortion. Fortunately,
the BJS Texture Library contains a distortion texture that should do
perfectly. Because we’re loading from there, we can simply specify a

relative path to the specific filename of the desired texture in the
constructor for BABYLON.Texture:

function createStar(scene) {

 let starDiam = 16;

 let star = BABYLON.MeshBuilder.CreateSphere("star",

 { diameter: starDiam, segments: 128 }, scene);

 let mat = new BABYLON.StandardMaterial("starMat",

 scene);

 star.material = mat;

 mat.emissiveColor = new BABYLON.Color3(0.37, 0.333,

 0.11);

 mat.diffuseTexture = new BABYLON.Texture

 ("textures/distortion.png", scene);

 mat.diffuseTexture.level = 1.8;

 return star;

}

Without changing the diffuseTexture.level value, the emissiveColor
tends to either wash out the distortion or be extinguished entirely by the
diffuse texture’s pixel values. The level, 1.8, was a product of trial-and-
error (as is the case with many of these “magic numbers” that tend to show
up during app design/game development). This is a good checkpoint for
saving your progress if you haven’t recently.

Figure 2.3 – Emissive color combined with a diffuse distortion texture

Producing Planets

There’s only one remaining top-level scene element that we still need to
create, and that’s the populatePlanetarySystem function. The
implementation for this is a classic example of the power of compositional
software patterns – a topic we will be returning to later. There’s what you
might think of as a central control logic in the form of
populatePlanetarySystems, which is responsible for defining the number
and unique properties of the various planetary bodies. It then asks another
function, the new createPlanet method, to take care of how the actual
object is constructed. Finally, it collects the planets into an array that it
returns to the caller.

We want to be able to create different types of planets with different
properties, so in our populatePlanetarySystems method, we create an

array of objects that define each planet. For the full listing of planetary data,
see https://playground.babylonjs.com/#0UYAPE#26:

let hg = {

 name: "hg",

 posRadians: BABYLON.Scalar.RandomRange(0, 2 * Math.PI),

 posRadius: 14,

 scale: 2,

 color: new BABYLON.Color3(0.45, 0.33, 0.18),

 rocky: true

}; //...

The posRadians property generates a random value between 0 and 360
degrees (in radians), whereas the posRadius property specifies the distance
from the origin the planet should reside – how far away it is from the sun.
The overall size of the planet is determined by its scale factor, while the
specular and diffuse color channels of the material are populated with the
eponymous color property. We’ll cover the final property in a moment.
Scaling of a scene can be tricky, but you can use relative scale guides to
help come up with appropriate ranges of numbers.

You don’t have to stick to realistic numbers – have you ever been told that
“Space is Big. Really Big”? It is, in fact, quite too big to fit in our tiny
viewport, so when choosing posRadius for the planet, it might be easier to
approach coming up with a figure from a different direction. By looking at
the orbital radius in terms of the relative steps between planets, we can
come up with a decent-looking (but probably not realistically stable) system
of planets. Our starDiameter is 16, giving us a radius of 8 units. Our inner-
most planet, “hg”, needs to be at least 8 + 2 = 10 units to avoid intersecting
the star; putting it at 14 units seems about right. Moving to subsequent
planets, by placing each planet around 1.5–1.8x, the orbital radius of the
previous planet will give nice-looking results that aren’t too far from the
ratios found in our own Solar System – that’s how you know it will be
interesting!

This leaves us with the rocky property. This flag will signal our logic that it
needs to apply a different set of textures to the Standard Material the
planet model uses to be rendered. With this data in hand, we push new

https://playground.babylonjs.com/#0UYAPE%2326

items returned from createPlanet into the planets array before returning
the populated array:

planets.push(createPlanet(hg, scene));

planets.push(createPlanet(aphro, scene));

planets.push(createPlanet(tellus, scene));

planets.push(createPlanet(ares, scene));

planets.push(createPlanet(zeus, scene));

return planets;

The final sub-task needed to display our planetary system is to implement
the createPlanet function. In this method, we do the following:

1. Create a new Sphere Mesh using the MeshBuilder.

2. Create a new StandardMaterial, assigning diffuseColor and
specularColor to the passed-in Color3 value.

3. Assign textures based on the value of the rocky flag.

4. Assign the material to the mesh.

5. Scale and position planet according to the passed-in scale,
posRadians, and posRadius values.

It may not be immediately obvious, but we are also setting the material’s
specularPower to zero. This is because we will otherwise get very shiny
spots on our planets, making them look more like billiard balls than rocky
or gaseous spheres. For rocky planets, we are pulling in both bumpTexture
(a.k.a. a Normal Map) and a regular diffuseTexture from the BJS
Textures Library. For planets with no visible surface, we use the distortion
texture to add the appearance of cloud bands in the atmosphere:

function createPlanet(opts, scene) {

 let planet = BABYLON.MeshBuilder.

 CreateSphere(opts.name, { diameter: 1 }, scene);

 let mat = new BABYLON.StandardMaterial(planet.

 name + "-mat", scene);

 mat.diffuseColor = mat.specularColor = opts.color;

 mat.specularPower = 0;

 if (opts.rocky === true) {

 mat.bumpTexture = new

 BABYLON.Texture("textures/rockn.png", scene);

 mat.diffuseTexture = new

 BABYLON.Texture("textures/rock.png", scene);

 }

 else {

 mat.diffuseTexture = new BABYLON.Texture

 ("textures/distortion.png", scene);

 }

 planet.material = mat;

 planet.scaling.setAll(opts.scale);

 planet.position.x = opts.posRadius *

 Math.sin(opts.posRadians);

 planet.position.z = opts.posRadius *

 Math.cos(opts.posRadians);

 return planet;

}

With that code in place, you should be able to Run the scene and get a most
excellent result, showing our central star with four various-sized and
colored planets at varying distances from the star.

Figure 2.4 – Star system with planets and a skybox

Save the snippet and strap in, because next, we’re going to learn two
different ways and styles of making our planets move.

Animating the Orbits
BJS has many different ways of accomplishing any given task; animating
objects in a scene is no different. Some of the different ways to animate in
BJS include the following:

For our title screen animations, we will be using the first and third methods
to animate the rotations and circular orbits of our little solar system,
respectively. In later chapters, we will see more of the second.

Putting Spin on the Star and Planets
The rotation of stars and planets is pretty simple, but it can serve as a good
review of the principle and practice of keyframe animation. Since
animations can be looped or cycled, it’s often unnecessary to need a large
number of frames for a given animation. We’ll follow a few easy steps to
add a createSpinAnimation function that returns a new Animation
instance.

First, we figure out what/which properties of the animation’s target will be
changing. In this case, it is just the target node’s rotation.y value. We can
say that our animation should complete a full circle (360 degrees or 2 * Pi
radians) in 2 seconds. Next, determine how many frames the animation
should comprise in total, the number of frames per second (fps), and the

Define a reusable BABYLON.Animation object that will interpolate
specified properties between an array of keyframes.

Import pre-built Animations from a file – BABYLON, GLTF, GLB, OBJ, and
so on.

Use OnPreRenderObservable to update object properties (e.g.,
position, rotation, color, and so on) before each frame is rendered.

length of time you want the animation to last. A framerate of 30 fps is
sufficient, so our total number of frames is 2 s * 30 fps = 60 frames. Just
two keyframes will suffice: one showing the rotation’s initial value and the
other at the end point of Scalar.TwoPi. This is all we need to implement
the code to create and set the animation properties:

function createSpinAnimation() {

 let orbitAnim = new BABYLON.Animation("planetspin",

 "rotation.y", 30,

 BABYLON.Animation.ANIMATIONTYPE_FLOAT,

 BABYLON.Animation.ANIMATIONLOOPMODE_CYCLE);

 const keyFrames = [];

 keyFrames.push({

 frame: 0,

 value: 0

 });

 keyFrames.push({

 frame: 60,

 value: BABYLON.Scalar.TwoPi

 });

 orbitAnim.setKeys(keyFrames);

 return orbitAnim;

}

The createSpinAnimation method is called from createStartScene to
make the spinAnim variable available to the rest of the scene’s controlling
code.

Once the animation has been created, it can then be added to one or more
different mesh.animations arrays. This attaches the animation to that
particular mesh, but you might notice that the Animation object has no
start function or equivalent. That is because the Animation itself is
agnostic of its target, allowing it to be used across any arbitrary number of
different meshes. Starting with star and then looping through our planets
array, we add spinAnim to each mesh:

let spinAnim = createSpinAnimation();

star.animations.push(spinAnim);

scene.beginAnimation(star, 0, 60, true);

To start an animation, you call the scene.beginAnimation function,
passing the start frame, the end frame, and the speed parameters along with
the animation object. We want it to loop, so we pass true as our final
parameter to the method:

planets.forEach(p => {

 p.animations.push(spinAnim);

 scene.beginAnimation(p, 0, 60, true,

 BABYLON.Scalar.RandomRange(0.1, 3));

});

When the scene is run, the animation automatically starts and you can
observe the rotation of all the bodies.

Making Orbital Motion
Unlike the Animation-based keyframing we did for the planetary rotation,
the circular motion of the planets around the star will be performed by
computing the planet’s new position prior to being rendered on every frame.
We can do this by adding an observer function to
scene.onBeforeRenderObservable. In the context of the game engine
loop, this is where the update logic happens. At the end of createPlanet,
we will add code to attach the event listener along with additional data that
tracks the planet’s orbital parameters:

planet.orbitOptions = opts;

planet.orbitAnimationObserver =

 createAndStartOrbitAnimation(planet, scene);

Our createAndStartOrbitAnimation method needs to derive a number of
values. Two of these, the orbital radius (posRadius) and the angular
position (posRadians) are added to planet as the orbitOptions property.

The period orbital is the amount of time it takes for the planet to make one
complete revolution (360 degrees or 2 * Pi radians) and is measured in
seconds. We want each planet to have a different period, with distant bodies
taking longer than closer ones to complete an orbit, but we don’t want to

laboriously tweak values until they look good. Physics – or, more
specifically, Newtonian mechanics – gives us the equations to compute a
planet’s orbital speed given its distance (radius) from a given massive body.
Knowing the rate of position change over time, it’s possible to calculate the
angular velocity:

function createAndStartOrbitAnimation(planet, scene) {

 const Gm = 6672.59 * 0.07;

 const opts = planet.orbitOptions;

 const rCubed = Math.pow(opts.posRadius, 3);

 const period = BABYLON.Scalar.TwoPi * Math.sqrt

 (rCubed / Gm);

 const v = Math.sqrt(Gm / opts.posRadius);

 const w = v / period;

 const circum = Scalar.TwoPi * opts.posRadius;

 let angPos = opts.posRadians;

The Gm constant is more or less arbitrarily chosen to ensure a smooth
distribution of orbital velocities as the radius changes. The state variable
needed is angPos, which is incremented by w every frame and kept within a
valid range by wrapping the statement in a call to Scalar.Repeat. In
general, it’s useful to think of the angular components of these kinematics
as being counters or watch dials; incrementing the angular position by the
angular velocity over time and computing position components completes
the logic:

let preRenderObsv = scene.onBeforeRenderObservable.add(sc =>

{

 planet.position.x = opts.posRadius * Math.sin(angPos);

 planet.position.z = opts.posRadius * Math.cos(angPos);

 angPos = BABYLON.Scalar.Repeat(angPos + w,

 BABYLON.Scalar.TwoPi);

});

return preRenderObsv;

Returning the preRenderObsv object isn’t needed to make this work, but it’s
a good practice so that we can later on cleanly dispose of the observer when
it’s no longer needed. Now, when the scene is run, the planets all circle
around the sun in a unique fashion. This is all looking great, but there’s one

last thing we can do to really spice things up before we move on. Mash
Save and let’s move on to the finale.

Orbit Lines
To cap off this animation, we’re going to add lines to each planet’s orbit
using a TrailMesh. This is a built-in mesh type that attaches to a given
Transform Node or Mesh and follows it as its position changes, extruding
a variable width and length ribbon as it does. The
createAndStartOrbitAnimation method is a good place to do this. We
declare our TrailMesh and pass it planet to attach to along with the circum
orbital (length) of the trail ribbon, also specifying that we want the trail to
start immediately. At the same time, we also create a new material and
associate it with the Trail Mesh:

planet.computeWorldMatrix(true);

let planetTrail = new BABYLON.TrailMesh(planet.name +

 "-trail", planet, scene, .1, circum, true);

let trailMat = new BABYLON.StandardMaterial

 (planetTrail.name + "-mat", scene);

trailMat.emissiveColor = trailMat.specularColor =

 trailMat.diffuseColor = opts.color;

planetTrail.material = trailMat;

Before adding the trail mesh, we need to force recomputation of the planet’s
World Matrix; otherwise, the trail will have artifacts from the origin to the
planet’s location. That’s it! The orbits trace out nice circles as they move,
but it still feels as if the scene were a bit dark and washed out.

Shining up with GlowLayer
By default, BJS does not add the emissive color channel of a material to the
lighting computations – emissive textures and colors don’t brighten up a
scene. Making objects glow is easy; just add this line to the
createStartScene method:

let glowLayer = new BABYLON.GlowLayer("glowLayer", scene);

Unless otherwise specified, the GlowLayer will impact every mesh in the
scene. We don’t want the planets to glow, so while we’re looping through
the planets to animate their rotation, add the planet to the mesh exclusion
list of the GlowLayer:

planets.forEach(p => {

 glowLayer.addExcludedMesh(p);

 p.animations.push(spinAnim);

 scene.beginAnimation(p, 0, 60, true,

 BABYLON.Scalar.RandomRange(0.1, 3));

 });

Click Run to view the results. If you’re not satisfied with how things look,
you can tweak the camera altitude and angle (beta and alpha respectively),
distance, and so on. Make sure to save the snippet in any case and enjoy the
fruits of your labor. Once you’re done admiring your work, post your
snippets on the boards at https://github.com/jelster/space-
truckers/discussions/21, where you can look at other folks’ creations, share,
and discuss – but don’t forget to come back here, there’s still more work to
be done!

https://github.com/jelster/space-truckers/discussions/21

Figure 2.5 – Completed orbital animation with GlowLayer and Trail
Meshes

Extended Topics
The completed snippet meets the immediate needs of our application, but
that doesn’t mean that there aren’t ways to improve it! The following are a
few ideas you might pursue on your own that could enhance the scene. Join
the BJS and the Space-Truckers community by posting and sharing your
snippets over at the Space-Truckers Discussions board
(https://github.com/jelster/space-truckers/discussions) or over on the BJS
forums (https://forum.babylonjs.com/). The discussion boards and forum
aren’t just there to share your accomplishments, however. They’re a place
where you can post questions or issues you’re encountering, with a thriving
community that loves to help.

You could do the following:

Remove the helix-like appearance of the planet trails. The spin
animation and the trail mesh are both parented to the planet. As the
planet rotates, the trail mesh gets twisted around. One approach to
fixing this could be to add a TransformNode to the scene and parent
the planet to it. Keep the spin animation on the planet, but associate and
point the TrailMesh and the orbital animation at the TransformNode.

Replace the star’s current texture with a particle system. The
ParticleHelper has a sun effect that can bring a cool effect to the scene.
The docs on this are at
https://doc.babylonjs.com/divingDeeper/particles/particle_system/partic
leHelper, where there’s also useful information on how to create your
own custom ParticleSets. The easiest (and perhaps the best) option for
creating custom particle systems is to use the NME
(https://nme.babylonjs.com/) in Particle mode. The NME is to shaders
as the PG is to scenes, meaning that just as you can save and share PG
snippets, you can also save and share NME snippets. The difference
between them in this context is that you can use NME snippets in the
PG but not vice versa.

https://github.com/jelster/space-truckers/discussions
https://forum.babylonjs.com/
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particleHelper
https://nme.babylonjs.com/

Summary
Over the course of this chapter, we’ve refreshed and ramped ourselves up
on BJS by creating a simple scene in the PG. We learned about different

Add a comet on an inclined orbit that brightens and shows a tail as it
gets closer to the star on its elliptical path through the scene. An
inclination simply means that the object includes the y axis as it “bobs”
up and down through the orbital plane. An elliptical orbit has the same
period as a circular orbit, with an orbital radius that’s the same as the
ellipse’s semi-major axis (the length of the line dividing the ellipse
along its long side), but the difference is that rather than having a
constant velocity along its path, objects moving in an elliptical orbit
travel fastest at their closest approach (apopse).

Give the outer-most gas giant planet a ring system. One way to
approach this would be to create a flat torus mesh using the
MeshBuilder, and then use BJS Parenting to attach the rings to a
planet. Another approach that builds on the prior would be to use the
Solid Particle System (SPS) to generate tens or even hundreds of small
rocks to comprise the rings. Consider it a preview of what’s coming up:
in the next chapter, we’ll be using the SPS to create an asteroid belt.

Add clouds specular, terrain bump (normal) map to a rocky planet to
make it look like real-world planets. The BJS Asset Library has a
height map of the earth’s terrain along with various textures for cloud
and ground effects. The Materials Library also has some interesting
options to explore for making the planets unique and attractive – have
fun!

Make the camera pan and zoom around the system cinematically.
Choose one of the animation methods we discussed previously,
targeting the scene’s camera. Depending on your methods and plan, you
may want to unset or change the camera’s target to be a
TransformNode. This new, non-rendered node acts as a sort of “mark”
that can be moved around to change the camera’s view as the position
changes. Another option is to explore a different type of camera than the
current ArcRotateCamera.

ways of animating a scene along with how to load textures and other assets
from the BJS Asset Library. Hopefully, we’ve had a little bit of fun along
the way, but this is just the tip of the iceberg when it comes to what’s in
store in later chapters. If you needed a little bit of a refresher on BJS,
hopefully this has gotten you warmed up and ready to go. If you’re new to
BJS, then I hope this has empowered you to push onward to the next
chapter. Coming up in the next chapter, we will begin Space-Truckers in
earnest by setting up a local development environment along with source
control and debugging.

Further Reading
The BJS documentation site contains an enormous wealth of knowledge
and content. Here are some relevant pages from the docs that go into more
detail on the topics covered in this chapter:

Once you’ve gotten how to do individual Animations, read about
Animation sequencing, grouping, and combining, starting at
https://doc.babylonjs.com/divingDeeper/animation/sequenceAnimations
.

Learn about importing different files types of assets into a scene and
how loaders work at
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes.

The Diving Deeper: The Mesh section has details on how the
GlowLayer works at
https://doc.babylonjs.com/divingDeeper/mesh/glowLayer.

For details on the different types of cameras and their properties, see
https://doc.babylonjs.com/divingDeeper/cameras/camera_introduction.
Something that is worth mentioning is that whenever you see the docs
mention FreeCamera, TouchCamera, or GamepadCamera, you should
instead substitute or use UniversalCamera, as it supersedes those three,
which are retained for backward compatibility reasons.

https://doc.babylonjs.com/divingDeeper/animation/sequenceAnimations
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes
https://doc.babylonjs.com/divingDeeper/mesh/glowLayer
https://doc.babylonjs.com/divingDeeper/cameras/camera_introduction

Establishing the Development
Workflow
While it is an extremely versatile and powerful tool for developing,
running, and sharing a working 3D rendered scene, the Babylon.js
Playground (PG) also has a place in the development workflow of a
traditional web application. Effective software development is effectively
enabled by the removal of friction. Friction in this sense is anything that
presents an obstacle between writing code and executing the results and can
take almost any form, from the mundane to the obscure. As an example, say
it takes an hour between the time a change is made in code to the time that
changed code is running in the developer’s web browser. The developer will
then be compelled to include as much as possible in every new build, which
then makes it more difficult to understand the effects of any one change on
the application’s behavior. Focus is diluted and progress is incremental and
not in proportion to the effort required in these situations, which is why
small tweaks to a development workflow can yield large gains. We’re going
to examine one out of many potential Babylon.js development workflows
during the course of this chapter, and by the end of it, you will have the
tools to rapidly and efficiently build games that can evolve as rapidly as you
can think of designs!

Everyone is going to have a different way of approaching the structure and
process of development, and that’s OK. Each of these sections illustrates an
aspect of the workflow that seeks to maximize developer efficiency and
quality while minimizing tech debt and uncertainty:

Setting up the Environment

Crafting a Playground Snippet

Transitioning from the Playground to the Application

Constructing the Landing Page

Technical Requirements
The base set of requirements for running the BJS PG are detailed in
Chapter 2, Ramping up on Babylon.js, but in addition to those
requirements, there are some additional development tools that we’re going
to be using.

Important Note

Although the examples and such are all based on a Windows-based
developer experience, there are no Operating System requirements to
follow along with this book. All of the tools discussed are available on
multiple platforms and any differences in syntax or usage will be
highlighted or called out where feasible.

The specific usages of each individual item will be covered during the
accompanying chapter material, and it is assumed that you have some
familiarity with the tools and/or usage. For information on setting up and
configuring a given tool, please see the corresponding link to the tool’s
documentation.

A Note for TypeScript Users

Visual Studio Code is our IDE of choice, is available on all platforms,
works wonderfully, and is free: https://code.visualstudio.com

Node.js v14.15.4 (LTS) or greater: https://docs.npmjs.com/

Node Package Manager (npm) CLI v6.x (LTS Release) or greater,
installed via a node version manager listed at
https://docs.npmjs.com/cli/v6/configuring-npm/install

Git SCM client. Also, to be able to submit Pull Requests, file issues,
or participate in Discussions, a valid GitHub account is required:
https://github.com

https://code.visualstudio.com/
https://docs.npmjs.com/
https://docs.npmjs.com/cli/v6/configuring-npm/install
https://github.com/

Should you prefer to do all your coding in TypeScript as opposed to
straight-JavaScript, that’s great! Babylon.js itself is written in TypeScript
and is fully supported for developing in BJS. Following along with the code
in this book is possible, and any differences in syntax and structure aren’t
always going to be explained or called out. That said, the code should be
largely compatible between the two languages, keeping in mind the
following two primary changes:

1. Playground snippets should use TypeScript mode. This has a slightly
different template. Start at https://www.babylonjs-
playground.com/ts.html# and click New The createScene method is
encapsulated as a static method within a class called Playground.
Declare new classes and use them in the createScene method similar
to how you would in regular JavaScript.

2. When integrating classes written in the PG, it’s important to add the
export modifier to your class declaration, (e.g. export class Foo {
//… }). Since you will be using the tsc (TypeScript Compiler) to
output JavaScript, there are times when you’ll need to import certain
Babylon.js modules for their side effects. Please see
https://doc.babylonjs.com/divingDeeper/developWithBjs/npmSupport
#typescript-support for more on how to configure TypeScript for use
with Babylon.js

Setting up the Environment
Effective software development relies on being able to confidently
introduce changes to an application’s construction. Confidence in
introducing, changing, or removing code comes from a) being able to run
the code using the new changes, and b) through not being in a position
where undoing changes imposes risks of its own. Let’s park that thought for
a moment to back up and start from the beginning.

Preparatory Steps

https://www.babylonjs-playground.com/ts.html
https://doc.babylonjs.com/divingDeeper/developWithBjs/npmSupport#typescript-support

The a priori assumption going into this step is that you have Git, VSCode,
Node.js, and NPM all set up and ready to go. A linting tool such as ESLint
is also recommended. If you know what you’re doing, go ahead and get
those tools set up and configured now. No rush, it’s just the rest of the book
that’s waiting is all – this has been speculated to go faster if you work while
humming The Girl from Ipanema to yourself. VSCode has a rich ecosystem
of extensions that can make your life easier. Here is a list of some of the
ones you’ll want to install (or their equivalents). Go to the Extensions panel
in VSCode, then search for the appropriate item’s Marketplace ID:

Figure 3.1 – List of useful VSCode extensions

If you’re not quite there yet when it comes to knowing where and how to do
this sort of thing, here’s what you can do. Ignore the elevator muzak, tie a
bandana around your forehead, and dive straight into an 80s movie montage
sequence. You will probably want to set a bookmark on this page first – the
montage features a series of vignettes of you flipping to the Further
Reading section at the end of this chapter, reading and following the links,
culminating in a triumphantly successful installation… and then flipping
back to your bookmark, ready to continue the journey.

Initialize All the Things
There are a number of unflashy tasks that go on here – things such as
creating a new Git repository in GitHub and cloning it locally, which would
take up too much space to go through in detail. Instead, here’s a rough
checklist of what to expect to do as part of this step:

1. Create a new Git repository. If created in GitHub, you may need to
clone the repos locally.

2. Add a .gitignore file to the repos – the only contents it really needs
at this point are entries for the output dist/ folder and for the
node_modules/ folders.

3. Create some folders – src, dist, public, and assets – to hold the
source code, the packed output, and game assets, respectively.

4. Run npm init to create a package.json for the application.

5. Install webpack and core Babylon.js libraries and dependencies as
developer dependencies with this command:

npm install -–save-dev webpack webpack-cli webpack-

 dev-server webpack-merge clean-webpack-plugin file-

 loader html-webpack-plugin source-map-loader url-

 loader eslint `@babylonjs/core

6. Install additional Babylon.js modules that we’ll be using:

npm install -save-dev @babylonjs/materials

 @babylonjs/loaders @babylonjs/gui

 @babylonjs/procedural-textures @babylonjs/post-

 processes @babylonjs/serializers

 @babylonjs/inspector

With the package dependencies squared away, it’s time to add a few more
foundational pieces to our nascent application.

Scripts and ESLint Configuration
At some point in the very near future, we’re going to want to be able to add
some automation around our application’s build and deployment tasks. The
key to making this as frictionless as possible is to leverage as much of the
(and similar) application infrastructure as possible. Keeping it simple and
focusing scripts on a single task will allow for easier automation in the
future.

package.json Scripts

There are three basic commands that we want to start out adding to our
package.json file. These are simple scripts that will allow both local and
production builds and linting of source. We’ll address dev versus
production builds in an upcoming section, but for now, add these scripts to
the package.json file:

Check your work for typos, and make sure that you save and commit both
your package.json and your package.lock.json files. At this point, we’re

start: The webpack dev server and related packing processes for local
development. Command: npx webpack serve --mode development

build: Runs webpack in production configuration. Command: npx
webpack --mode production

lint: Makes sure our code doesn’t have any big “whoopsies!”.
Command: npx eslint

still a couple of items short on our checklist to set up the application, so
let’s get them knocked out so we can press forward on our journey!

Important Note

While it is possible to simply reference and load the entire Babylon.js
library into the application, it is incredibly inefficient to do so – because
BJS does so much, there’s a lot to the libraries, meaning they’re quite large
in size and complexity. Clients are forced to download the full bundle of JS
before the application can become responsive to input, reducing a user’s
perception of an application’s performance. One of the most modern and
effective ways to reduce an application’s footprint is by leveraging a feature
of ES6 called tree shaking. The process of tree shaking results in code
output that includes only dependencies that are actually used in the code,
resulting in smaller, faster, and more efficient JavaScript modules.

What’s the downside? As you’ll see, every imported type must have its own
import statement, but in addition, the full path of the type must be specified
– not just the containing package. Still, the benefits can be substantial – as I
commented in this pull request: https://github.com/jelster/space-
truckers/pull/15. The start scene was reduced in size from 8.91 MB to 3.11
MB, a more than 50% reduction!

Babylon.js has been around longer than ES6 modules have been supported,
and the team has made a firm commitment to support backward
compatibility in the engine. That’s why you’ll notice there are some places
where compromises in that vein result in the need to import modules purely
for side effects – the MeshBuilder CreateXXXX APIs are a prominent
example of this. The BJS docs have more information located at
https://doc.babylonjs.com/divingDeeper/developWithBjs/treeShaking that
can explain more about why and what modules behave in this fashion.

The PG examples we’ve looked at previously haven’t required anything
special in the way of building, but that’s because the PG is built towards a
different goal than what we’re looking to accomplish. We’re building a
complete application that needs to not be dependent on the same luxuries
(such as a CDN for grabbing the Babylon.js libraries) as the PG. To do that,

https://github.com/jelster/space-truckers/pull/15
https://doc.babylonjs.com/divingDeeper/developWithBjs/treeShaking

we will sacrifice the flexible but inefficient load-everything approach of the
PG for the compactness and efficiency of a webpacked application.

Adding Configuration for ESLint

Add a new file using VSCode to the root folder of your repository, named
.eslintignore. This is a text file that we’ll use to exclude certain
directories from being checked by the lint tool, improving responsiveness
and reliability. We don’t want our node_modules directory to be checked
since we’re not working on those libraries. Neither do we care about
JavaScript that’s already been packaged and output – anything in our dist/
folder. Add the following lines to the .eslintignore file you’ve just
created:

node_modules

dist

Save and close the file.

Configuring Webpack
Add another new file to the root directory and name it webpack.common.js,
then create another two named webpack.dev.js and webpack.prod.js.
We’ll put the base webpack config in the webpack.common.js file and
merge environment-specific config at script runtime using webpack-merge.
At the same time, create a new empty file in src and name it index.js
along with an empty index.html in the public/ directory. This will serve
as a placeholder for future work while allowing us to test and validate our
current config.

Note

Webpack has a lot of different ways and means of configuration, which can
sometimes make it hard to figure out which way, or how, to approach a
particular scenario. Always keep in mind what you want to accomplish and
finding a path can be much easier. In this case, the end goal of using

Webpack is to identify, aggregate, and compress the source code for our
application into an atomic set of bundled JavaScript written to our dist/
folder. Other related assets may also be affected in ways ranging from
generating correct URL paths to rendering markup templates into output
directories and more. Check out the Webpack repos along with the docs at
https://github.com/webpack/webpack to learn more about configuration and
plugin options.

Development versus Production Modes

When running in a production build context, there are really only two things
we need to happen. First, Webpack does its thing, bundling and packaging
up all the .js scripts in the src/ folder, outputting the results to the dist/
folder. Second, a script reference to the application’s entry point – index.js
– is injected into an index.html file that is what gets served to web
browsers.

Local development has a slightly different set of needs than a production
build. We want to be able to make changes to our code and see the results of
those changes as quickly as possible, which rules out the potentially lengthy
process of re-bundling everything from scratch upon a change. Instead, the
webpack development server is smart enough to both cache build output
and selectively rebuild only what’s been changed. A WebSocket
connection to the browser is used to automatically refresh the page when a
new bundle is compiled, helping further to close any gaps in iteration. We
also want to emit JavaScript source maps to aid in debugging as well as to
specify content paths for non-bundled content served by our development
server.

Common Webpack Config

Regardless of whether webpack is being run for development or production
usage, we always want to make sure that our destination directory is
cleaned of any old or potentially stale source files. We’ll use the

https://github.com/webpack/webpack

CleanWebpackPlugin for that purpose, and the HtmlWebpackPlugin to
inject the proper script references into our index.html template.

Back to the webpack.common.js file, let’s add some import statements and
define the module.exports stub function:

const path = require("path");

const HtmlWebpackPlugin = require("html-webpack-plugin");

const { CleanWebpackPlugin } = require("clean-webpack-

 plugin");

const appDirectory = __dirname;

module.exports = env => {

 return {

 };

};

You may notice that unlike the rest of our application, our webpack
configuration isn’t using ES6 module syntax. This is one you’ll probably
just need to get over for now, because although there are workarounds, it’s
overall more trouble than it’s worth to use ES6 syntax in just a couple of
files that aren’t part of the build output. The configuration requires an entry
object that designates the script that will serve to launch our application on
the client; it will be injected into a <script> tag in the site’s default
index.html landing page.

Important Note

File and folder paths can be tricky to navigate when working in a cross-
platform environment. The __dirname webpack-provided variable is a good
way to avoid problems in the first place because it will correctly and
consistently represent the equivalent of fs.cwd().

The entry item and potentially other config elements will need to know
what base paths to use when reading and writing files, so we designate and
compute that value. While we’re at it, we might as well add the output entry
to our config. This object specifies where to emit the packed results, and to
help identify it among potential other scripts we name it
babylonBundle.js. Finally, we instantiate new instances of our
CleanWebpackPlugin and HtmlWebpackPlugin modules.

Important Note

The order that plugins are added to the plugins array is important! Make
sure that your CleanWebpackPlugin is always at the top of the plugin list so
that it runs first.

The HtmlWebpackPlugin is given the path to our publicly served HTML
index.html page and told to inject the proper script tags for the bundle into
the document. Once that is done, we’ll test our config quickly before
completing the common (and also the biggest) configuration setup:

module.exports = {

 const appDirectory = __dirname;

 return {

 entry: "./src/index.js"),

 output: {

 filename: "js/babylonBundle.js",

 path: path.resolve(appDirectory, "./dist")

 },

 plugins: [

 new CleanWebpackPlugin(),

 new HtmlWebpackPlugin({

 template: path.resolve("public/index.html"),

 inject: true

 })

]

 };

};

By specifying an assetModuleFilename pattern, we are instructing
WebPack to output any assets resolved (see the next section) into the
output’s assets subfolder with the original file name, extension, and any
query string parameters. To test out our configuration, make sure you’ve
saved everything and enter the following command in a terminal window
(make sure your working directory is the same as the root of the repository):

npx webpack –config webpack.common.js

If everything goes well, you should see a bunch of text in your command
window, some green text, and no errors. That’s great, but there’s not much

of anything going on so we can’t take a break quite yet – we’re very close
to finishing this section!

Resolver and Loader Configuration

As part of processing your source code, Webpack will compile a list of all
the various import (or require for CommonJS modules) and invoke a
processing pipeline that uses matching rules to select the appropriate logic
to resolve the location for the request.

Note

This is an area where TypeScript users will see significant differences
between their implementations and this ES6 (-ish) one. Raanan Weber of
the BJS team has made a TypeScript starter repository available at
https://github.com/RaananW/babylonjs-webpack-es6. The TypeScript
Webpack code listed here is modeled to be as similar as possible to
Raanan’s starter template to make transitioning between reading this text
and your code easier.

To avoid the need to have to code for environmental differences in static
asset URLs, we use asset loader to serve up various types of asset files
from the assets folder as described previously. The source-map-loader
helps to match symbols from runtime code with locations in the source
code. Before that though, our config needs a resolve object that specifies
an array of extensions to enable searching through. Add this as a property
of the returned config, just below the output property. Here’s what that part
of the config might look like:

// entry, output, etc…

 resolve: {

 extensions: [".js"],

 fallback: {

 fs: false,

 path: false,

 },

 },

 module: {

 rules: [

https://github.com/RaananW/babylonjs-webpack-es6

 {

 test: /\.(png|jpg|gif|env|glb|stl)$/i,

 use: [

 {

 loader: "url-loader",

 options: {

 limit: 8192,

 },

 },

],

 },

// plugins, etc.

The list of rules in the modules property define what constitutes a separate
module in the eyes of WebPack. Each of these has their own configuration
that defines a regular expression-based test to perform to see whether the
given loader will handle the request. The long regular expression for the
asset/resource module type is essentially a list of all the different file
extensions that we want to be considered as assets, which are copied
without further processing into the output directory.

Webpack Development and Production
Configurations

In our webpack.dev.js, we’re going to make use of the webpack-merge
add-on to webpack. This handy utility will merge two webpack config
objects together, returning the combined result. Why is this handy? Because
we’ll be able to have separate development and production configurations
without needing to hardcode their names into the webpack.common.js or
the package.json scripts. If we want to add another environment
configuration, all we need to do is add the new webpack config file, merge
our common config, and then point our npx webpack --config parameter
at the appropriate file.

There are really only two things we need from our dev config that we don’t
have in common. First, configuration for the web server launched with npx
webpack serve. Second, we specify that we want our source maps to be
sent inline with our scripts. The top-level mode of “development” ensures

that various production-suited optimization paths are not taken by webpack.
This is what our webpack.dev.js looks like when we’re done:

const { merge } = require('webpack-merge');

const common = require('./webpack.common.js');

const path = require('path');

const appDirectory = __dirname;

const devConfig = {

 mode: "development",

 devtool: "inline-source-map",

 devServer: {

 contentBase: path.resolve(appDirectory, "public"),

 compress: true,

 hot: true,

 open: true,

 publicPath: "/"

 }

};

module.exports = merge(common, devConfig);

Creating webpack.prod.js is even simpler since we don’t need the dev
server configuration, and it shares the same set of top-level require
statements as our dev configuration. To reduce the size of our script
packages, we will choose not to emit source maps, and other than setting
the mode to production, that’s the only difference:

const { merge } = require('webpack-merge');

const common = require('./webpack.common.js');

const prodConfig = {

 mode: "production"

};

module.exports = merge(common, prodConfig);

Before we shift our focus a bit, let’s get some markup into our
public/index.html file. We don’t need much right now, so let’s start with
this simple markup:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Space-Truckers: The Video Game!</title>

 <style>

 html,

 body {

 overflow: hidden;

 width: 100%;

 height: 100%;

 margin: 0;

 padding: 0;

 }

 canvas {

 width: 100%;

 height: 100%;

 touch-action: none;

 }

 </style>

 </head>

 <body>

 </body>

</html>

This is enough for us to check our progress by making sure all files have
been saved before running npm run start. Success is indicated by the
launching of your web browser and a console output similar to this
screenshot:

Figure 3.2 – Webpack output after successful bundle

While the webpack development server is running, any changes you make
to your source code will automatically refresh your browser. Leave the dev
server running, because we’re going to start making use of it!

Crafting a PG Snippet
Before we can use our PG code in our application, we’re going to need to
do some light refactoring. A little bit of preparation can save a lot of time
later! The things we’re going to change are select pieces of code that could
vary between the PG and local environments, such as texture paths and
URLs, along with some minor structural modifications. For your
convenience, here’s a link to the refactored snippet. If you are just joining
us here in the journey, use the link below. If you’ve been following along,
substitute your own snippet URL for the following one. Start by opening
your favorite browser and navigating to either your own snippet or to
https://playground.babylonjs.com/#0UYAPE#42.

Cleaning up the BABYLON
Namespace Prefix

One of the things that you may have found annoying about coding in the
PG is how in the PG it’s necessary to always prefix BJS types with the
BABYLON namespace. This is not ideal, but we can get rid of the need for
them by adding an alias to all the various types we’re using to the top of our
snippet. The alias in our PG snippet will be defined as a const assembled
from the various BJS types used:

const { Mesh,

MeshBuilder,

StandardMaterial,

// ...

} = BABYLON;

We can then do a Find and Replace (Ctrl + F or Command + F) for the
string BABYLON. (don’t forget the period!) and that will complete our work
on this section. To preview where this is headed, when we move this into
our VSCode environment, we’ll convert this to an import statement. Doing
this refactoring after the fact, like we are in this case, isn’t ideal; in the

https://playground.babylonjs.com/#0UYAPE%2342

future, we will start our snippets out with this construct and build it over
time. That way, it won’t be nearly as much effort!

Extracting Magic Strings
There are three separate textures (not including the procedural one) in use
in our snippet, and we want to make it easier to change the specific URL or
file path. We begin that by defining a set of const strings in the PG to
contain the PG-specific paths:

const distortTexture = "textures/distortion.png";

const rockTextureN = "textures/rockn.png";

const rockTexture = "textures/rock.png";

We can then go into the createStar and createPlanet functions and
replace the hardcoded paths with our constant expressions:

mat.diffuseTexture = new Texture(distortTexture, scene);

Once you’ve replaced all of the hardcoded string values, click Save and
refresh the page to make sure the snippet still runs OK, paying attention to
any missing textures, and fixing any missing references that may pop up.
With these changes in place, it will be a smooth transition from running this
in the PG to using it in our application.

Transitioning from the PG to the
Application
The PG is a rich, robust, and extensible way to quickly get started writing
and running code, but our application has different needs from the PG that
we will need to account for and fulfill. We want to make sure that our code
is both easy to change and easy to understand, but fortunately, there are
small steps we can take that will make a large difference later on.

Creating the Engine Instance
Now, the immediate question is this: how do we take our plucky snippet
here and plug it into our application without turning it into an exercise in
both masochism and self-discipline? The secret lies in preparation. When
we built our PG snippet, we structured logic as atomically as possible into
various discrete functions, which have all their dependencies passed in as
parameters. This will help us “lift-and-shift” the code into our application.
First, though, we need to add some code to our index.js that will take the
place of the PG’s engine initialization. Add this to the file below the part
where we created the canvas element:

let eng = new Engine(canvas, true, null, true);

let startScene = createStartScene(eng);

eng.runRenderLoop(() => {

 startScene.scene.render();

});

This is a pretty bog-standard Babylon.js Engine initialization. The Engine
constructor has a number of interesting different parameters and
configuration options that we’ll explore further on down the road. For now,
we are mostly using the engine defaults except for enabling anti-aliasing
(the second parameter) and instructing the engine to adapt automatically to
the device’s viewport ratio (the last parameter). Although it’s not yet part of
the project, we’ve added the necessary call to createStartScene in
anticipation of its imminent arrival.

Adding and Importing the StartScene
Create a new file in your project’s src folder and name it startscene.js.
Copy and paste everything from the PG snippet into this new file except the
createScene function. A couple of minor modifications are all that’s
needed thanks to the groundwork we previously laid down!

Change the const to import, also replacing the = with from
“@babylonjs/core” as the name to source imports. The

StarfieldProceduralTexture isn’t a part of the core BJS framework, so
we’ll also need to pull that entry out of the import list and give it its own
entry: import { StarfieldProceduralTexture } from
“@babylonjs/procedural-textures”;.

The final change is to replace our const texture paths with import
statements pointing to the appropriate texture in our /assets/textures
folder.

Important Note

If you don’t already have the three textures downloaded and in the asset
directory, now would be a good time to do it. The URL prefix for textures is
just https://www.babylonjs-playground.com/textures/, followed by the name
of the texture with the extension, (e.g., rock.png). We want to be able to
use consistent paths to refer to assets throughout the application, so we are
using Webpack to resolve and supply the runtime URL to a given asset.
The way we are telling Webpack to provide these URLs is via the import
statement.

Why don’t we just use the online version of the resource instead of
duplicating it locally? Good question. Later on in the book, we’ll cover how
to make Space-Truckers into a Progressive Web Application (PWA), and
how to make assets available for offline use.

When the Webpack bundle is created, any assets referenced in one of these
import statements will be included in the build output. In addition, the asset
is assigned a unique filename that helps bust aggressive caches when assets
are modified:

import distortTexture from

 "../assets/textures/distortion.png";

import rockTextureN from "../assets/textures/rockn.png";

import rockTexture from "../assets/textures/rock.png";

https://www.babylonjs-playground.com/textures/

Exporting and Importing the Start
Scene

One last item to add to our startscene.js and we’ll be ready to finish
wiring it into the game! If we reflect back on the overall design of our
snippet’s functions, we can readily see that the only “public” function need
be the createStartScene function. Let’s make that function available to
consumers by adding export default to the function declaration:

export default function createStartScene(engine) {

Save the file and switch back to your index.js. Since we’ve already added
the invocation of the createStartScene and the following render loop, all
we need to do to make this complete is to add the following import to the
top of the file’s import list: import createStartScene from
“./startscene”;. Save the file and check that the Webpack output
doesn’t contain any errors. When your browser refreshes, you should see a
familiar scene being rendered. Go ahead and give yourself a pat on the back
– you’ve completed pulling in our main application background scene!
There’s something still missing, however, and that’s something for visitors
to see when they first arrive at the web page but before they launch the
game. It would be sort of rude to just take over a visitor’s browser and start
downloading MBs of content without asking first, so we are going to put
out a welcome mat in the form of the landing HTML page.

Constructing the Landing Page
Although it is web-based and hosted by a web server, there is a critical
principle at play for Space-Truckers: the game that we haven’t done much
but hint at previously. That principle is that we want to, by all means
necessary, avoid using the HTML DOM in the game. Now, to be fair, it’s
not a total blanket ban on using HTML or CSS anywhere, just anywhere
important. The reason for this is we want to give our future selves a gift that
makes it seamless to target Space-Truckers to Babylon Native; code that

uses the HTML DOM isn’t compatible with BJS Native. That said, there is
still the need to do a little bit of HTML and CSS work to make the landing
page a little bit more hospitable to visitors.

The Concept (Art)
When Space-Truckers was just in the process of being conceived as an idea,
early concept sketches were useful in helping to establish various different
aspects of the look, feel, and setting of the game. The following figure
depicts what we want our landing page to look like:

Figure 3.3 – HTML landing page design

When a user navigates to the Space-Truckers website, they’ll be presented
with a centered image that functions in the same way that a book cover
attempts to convey some sense of the book’s content. A Call-to-Action
button to Launch the game sits prominently and visibly in the center of the
viewport, enticing the visitor to click the button and play the game. Lastly,
we have a small site footer with the standard privacy, support, repository,
license, copyright notices, and so on.

Note

We will want to structure our markup such that it will display appropriately
on-screen dimensions ranging from the high dpi (but small screen size) of a
smartphone or tablet to the much larger but lower resolutions offered by
large-screen TVs and display monitors. Aspect ratios are important too!

Sticking the Landing
If all goes well, we’ll end up with something similar to this for our landing
page. We’re not going to worry about fonts or background images right now
as much as we want to get more of a sense of how we want to lay out and
design various elements.

Figure 3.4 – The Space-Truckers landing page. Behind the foreground
content are the animated orbiting planets created in Chapter 2, Ramping up
on Babylon.js

To achieve this, there’s some HTML markup along with CSS styles that
need to be added to the /public/index.html page. There’s an additional
small change we’ll need to make to the index.js file that will add a class of
background-canvas to the newly created HTML Canvas that is appended
to the document with canvas.classList.add(“background-canvas”);, so
get that change out of the way and open up the public/index.html file in
VSCode. There’s enough that needs to be added that it would take up a
prohibitive amount of page space, so at this point, you have a couple of
options:

Take the homework assignment and build out the HTML/CSS to get to
the preceding screenshot

There isn’t any right or wrong answer; it’s whatever you will enjoy and
learn from the most in the amount of time you have available that means the
most and you’re the only one who can decide what that is! Each chapter in
this book has an accompanying branch (and tag) in Git. The purpose of
leaving the entire branch with its commit history in place is to give you the
opportunity to see how the code evolves, commit by commit, while
avoiding adding too much noise to the main branch’s commit history.

Summary
In a whirlwind of Webpack, ES6 Imports, and CSS shenanigans, we’ve
completed a key process that started with a simple PG snippet and finished
with an animated landing page. Along the way, we set up our local
development scripts so we can take advantage of modern JavaScript
features such as tree-shaking to optimize our package bundle sizes, while
still being able to quickly integrate and view changes into the application.

What’s next from here should be fairly obvious to anyone who has ever
stood in front of a Big Red Button labeled “Launch”. It’s time to Push the
Button, and make it do interesting things! Yes, we will be implementing our
application’s Launch-time experience, which involves establishing some
mechanics of state in the application. Don’t worry if you’re not through
with this section yet, there’s more to be done!

Extended Topics
For the person looking to make the launch page their own or who wants to
dive deeper into the potential possibilities opened up by this chapter, here
are some things you might consider doing:

Grab the finished files (there will be two or so in total, in addition to
the index.js change) from https://github.com/jelster/space-
truckers/tree/ch3-final

https://github.com/jelster/space-truckers/tree/ch3-final

Add a cool hover-in/out effect to the launch button so that when the
cursor hovers over it, a color and/or animated effect is applied. Do the
same for clicking the button.

Improve the landing page’s navigational structure with links to the
GitHub repos, and so on.

Make the central hero area into an image carousel that can be
populated with additional concept art, screenshots, gameplay videos,
and so on.

Use CSS to blend the canvas animation with the hero image in an
interesting fashion. You can do different types of blending, such as
difference, exclusion, screen, and so on, along with other cool
transformations.

Creating the Application
The Space-Truckers application needs to be capable of maintaining and
transitioning between a set of discrete states that correspond with different
screens, such as a Menu screen and a Game screen. Transitions between
application states typically occur as a result of user interaction (e.g., the
user selects a menu item) or as part of something such as an application
launch or exit. Here, we derive our basic application flow, which we then
use to build a basic framework for presenting and transitioning between
arbitrary screens.

In the first chapter, we saw the complete Space-Truckers game in all its
glory and beauty. We then immediately went on to create the loading
screen’s animation in the Playground before slowing down a bit to build out
the supporting application infrastructure that the game will need. It may feel
seem to be a bit of a let-down that we’ve been focusing so much on things
that aren’t part of the game’s design, and it’s natural to want to focus on
activities such as bringing in 3D models and textures or programming game
mechanics. Fear not – we will be getting there in the not-too-distant future!
Part 2: Constructing the Game is all about those sorts of topics, but without
the work from this chapter and the accompanying ones, there would be
nothing to tie together a thematically connected collection of interesting
Playground snippets and code fragments.

Important Note

This chapter will represent even more of a shift in how the code and content
are presented. From here on out, code listings will tend towards displaying
fragments or highlighting interesting areas of a larger piece of code. A link
to the repository or Playground will always be provided so you can check
your work or use the code to skip ahead!

The work of this section and chapter is to build the necessary pieces of
software and logic to allow a cohesive and compelling experience to
emerge from the individual pieces. Over the course of this chapter, we will
write code to implement state management and transitioning logic to

support the future development of the core game mechanics under these
headings:

Technical Requirements
For this chapter, we’ll continue to use the development process covered in
Chapter 3, Establishing the Development Workflow. If you’re just joining us
on the journey or haven’t been writing code on your own, you can catch up
by cloning or checking out the ch3-final tag from Space-Truckers: The
GitHub Repository at https://github.com/jelster/space-truckers/tree/ch3-
final. Before writing any code for the material in this chapter, it’s typically a
good idea to create a new git branch that tracks the previous chapter’s
branch or tag. This is unusual, as you would normally set up your branch
to track develop or main. In this case, however, you want to be comparing
commits from a specific point in the repository’s commit history prior to
where you’re starting, and not everything that comes afterward has been
covered yet.

Adding a Custom Loading UI
As we start to gain some traction and therefore momentum, we first have to
let our engines rev up before we can think about shifting gears. A short
exercise in code management is just the thing to get those RPMs up! Once
we’ve hit our sweet spot, we’re going to cruise straight into leveraging that
work to build our loading screen. Remember, as we progress through the
metaphorical gearbox of complexity, we’ll be seeing fewer details such as
the following while at the same time covering greater amounts of ground.

Adding a Custom Loading UI

Space-Truckers: The State Machine

Space-Truckers: The Main Menu

Integrating the Main Menu

https://github.com/jelster/space-truckers/tree/ch3-final

Solo Exercise: Refactoring the
StartScene to Extract the

AstroFactory
To lay the groundwork for this and some future features, we want to extract
all the logic involved in creating new planets that aren’t specific to the
scene from the startScene. That logic goes into a new astroFactory class.
The essentials of this refactoring are straightforward, but the key to it all is
going to be creating an array of planetary data objects, then looping through
that array, calling the AstroFactory’s various methods to compose the
scene’s objects. Consider performing this refactoring a bit of a special
exercise or challenge, but don’t sweat it too much. The idea is to try and
apply the new knowledge, not to assign passing or failing grades!
Alternatively, if you don’t feel you need the practice or want to skip this
exercise, start your code by checking out and examining the patch diff at the
following commit URL: https://github.com/jelster/space-
truckers/commit/9821811. Take the time you need to understand the
material, but don’t forget to come back for the rest of the chapter and book!

The CustomLoadingScreen Type
Babylon.js provides a default loading UI that appears automatically during
AssetContainer operations, or manually by calling the
engine.displayLoadingUI() method. Either way that it is invoked, we’re
going to replace the default loading UI with one of our own devising. The
Babylon.js docs specify the specifics of the LoadingScreen TypeScript
interface that will be implemented in JavaScript, but there are really only
two that are required: displayLoadingUI() and hideLoadingUI() – do
those look familiar or what? Add a new JS file to the project’s source and
name it SpaceTruckerLoadingScreen. Before declaring the class, add an
import for the createStartScene function from our old friend,
startscene.js.

https://github.com/jelster/space-truckers/commit/9821811

The CustomLoadingScreen we’ll be implementing will use it to host the
planets animating on the render canvas during loading operations. Declare
the SpaceTruckerLoadingScreen class and define a constructor for it that
takes an engine instance (required by the createStartScene method). In
the constructor, we’ll initialize and assign some class-level properties for
later use – including _startScene:

constructor(engine) {

 this._totalToLoad = 0.00;

 this._loadingText = "Loading Space-Truckers: The Video

 Game...";

 this._currentAmountLoaded = 0.00;

 this._engine = engine;

 this._startScene = createStartScene(engine);

}

That takes care of constructing the loading screen. Now, we need to
implement the LoadingScreen interface’s members to show and hide the UI
at the appropriate times. This is just done by having the show and hide
methods toggle an _active Boolean flag; we’ll let other code that we’ll
write shortly decide what to do about it:

displayLoadingUI() {

 this._active = true;

}

hideLoadingUI() {

 this._active = false;

}

The last thing needed is to conditionally render the scene. Since we have
the engine instance passed into the constructor, we will add a simple render
routine to call runRenderLoop at the end of the constructor:

 engine.runRenderLoop(() => {

 if (this._startScene && this._active === true) {

 this._startScene.scene.render();

 }

});

We’ve gotten the bulk of the work done, but there’s still a bit more to do
before we can call this a done task.

Enhancing the Loading Screen with
Progress Display

We’ve added what is called a non-deterministic progress bar, but what if we
want to display some text along with a percentage of assets loaded? Though
our project doesn’t quite yet have said assets, it soon will. Fortunately, there
are only a couple of small things we need to do in order to support this
when it’s needed.

Adding Property Getters

The SpaceTruckerLoadingScreen class already contains definitions for
properties to hold the data we’re interested in, but it makes for a lot more
maintainable design if we make these fields available as properties. The
only one we need to make available in this fashion is loadingUIText; it
will be potentially invoked or queried by external code. While we’re at it
though, let’s add additional getters as follows:

get progressAvailable() {

 return this._progressAvailable;

}

get currentAmountLoaded() {

 return this._currentAmountLoaded;

}

get totalToLoad() {

 return this._totalToLoad;

}

get loadingUIText() {

 return this._loadingText;

}

A sharp eye may notice that the progressAvailable getter uses a field we
didn’t define in the constructor. The place where this is set and managed is

the same place where currentAmountLoaded and totalToLoad get their
values from – the onProgressHandler function.

Handling Progress

onProgressHandler is an event handler that gets subscribed to HTTP and
other Progress events emitted by various Babylon.js components such as
AssetManager and SceneLoader:

onProgressHandler(evt) {

 this._progressAvailable = evt.lengthComputable === true;

 this._currentAmountLoaded = evt.loaded || this.

 currentAmountLoaded;

 this._totalToLoad = evt.total || this.

 currentAmountLoaded;

 if (this._progressAvailable) {

 this._loadingText = "Loading Space-Truckers:

 The Video Game... " + ((this._current

 AmountLoaded / this._totalToLoad) * 100).

 toFixed(2);

 }

}

The evt event data object is used to set the progressAvailable property
value. If the progress event doesn’t have a computable length,
currentAmountLoaded is set to 0 (false) if incomplete and 1 (true) if
complete. Otherwise, it’s set to the number of bytes loaded. If we can
calculate the percentage loaded, we do so and set the loadingUIText
backing field accordingly. The final piece of the loading screen is
displaying loadingText and the progress string (if it’s available).

Displaying Loading Text and Progress

To display text in our scene, we’ll use the Babylon.js 2D GUI system.
There’s going to be a lot more on this later in this chapter, so for now, copy
and paste this at the end of the constructor for
SpaceTruckerLoadingScene:

this._textContainer = AdvancedDynamicTexture.CreateFullscre

 enUI("loadingUI", true, this._startScene.scene);

const textBlock = new TextBlock("textBlock", this._

 loadingText);

textBlock.fontSize = "62pt";

textBlock.color = "antiquewhite";

textBlock.verticalAlignment = Container.VERTICAL_ALIGNMENT_

 BOTTOM;

textBlock.paddingTop = "15%";

this._textContainer.addControl(textBlock);

All we’re doing here is creating a new AdvancedDynamicTexture sized to
the render canvas, then adding a TextBlock that we apply a couple of size,
color, and placement adjustments to before adding it to the texture’s control
collection.

Note

onProgressHandler will update the loadingUIText value if it’s available.

We’ve completed the loading screen functionality, now it’s time to wire it
up globally in the index.js component. This is just one line of code that is
added right after the eng instance is created:

const eng = new Engine(canvas, true, null, true);

logger.logInfo("Created BJS engine");

eng.loadingScreen = new SpaceTruckerLoadingScreen(eng);

That’s all there is to it! Now, any time that a piece of code asks the Engine
to show the loading UI, our little planet animations will be shown. Though
it may seem to be a minor piece of functionality, completing this part of the
application leaves us ready to change the pace a bit and examine the ins and
outs of how we’re going to manage the overall behavior of Space-Truckers:
The Application.

Space-Truckers: The State
Machine

People who have some familiarity with game development may be familiar
with the idea of a game being structured around a series of loops. An
Update loop runs the simulation and physics, moving objects and applying
effects according to the latest update. A render loop is when the scene is
actually drawn to the screen. We’ve seen examples of this previously, such
as when we add event observers for the
scene.onBeforeRenderObservable, but that’s at a lower level than what
we’re looking at currently. Our application is going to be a host for multiple
different BJS scenes and it will therefore need a way to periodically update
the application’s state as well as tell the active scene to render. Finally, it
must be able to manage to transition between different scenes.

An application of the kind we’re building has some implicit requirements
when it comes to how it responds to input and evolves its internal state over
time. For instance, when a player selects a menu item or exits their current
game, the system must respond by altering (or “mutating”) its data to fill
and render a submenu, or by returning to the main menu. Implicit
requirements make for poorly designed software, so we’re going to start by
making the implicit explicit.

Logging Interlude
Our application is about to get more complex, so it’s a good time to begin
adding basic instrumentation and debugging messages – we can always
enhance and refine the logging routines later, but not having them at all is a
much more difficult place to begin the more code we write. The source file
logger.js with its exported class, ConsoleProxy, is an incredibly basic
wrapper around the console object that provides functions to log different
levels of log messages (INFO, WARN, ERROR, and FATAL) to the console
(if present). Each of the different logging methods has an identical body (if
this bothers you, fix it and open a PR! The beauty of open source software
in action), so in the interest of saving space, only one of the functions will
be shown in the following code:

class ConsoleProxy {

 constructor(console) {

 this._console = console;

 this._consoleIsPresent = this._console == true;

 this._messageBuffer = [];

 }

 logInfo(message) {

 const logObj = { type: "INFO", message: message};

 if (this._consoleIsPresent) {

 this._console.log(logObj);

 return;

 }

 this._messageBuffer.push(message);

 }

// …

}

const theProxy = new ConsoleProxy(console);

export default theProxy;

Most of the preceding code is pretty bog-standard – the sort of thing you’d
see in almost any home-brew application framework. The constructor
accepts a console parameter, which it uses to set a presence flag. This is
because it’s not always guaranteed that the console object will be available,
and we don’t want any logging calls to fail and cause problems with the rest
of the application if that were to be the case. The _messageBuffer array is
used as a fall-back when the console isn’t available. In this case, application
logging can still be accessed by attaching a debugger and reading the
contents of the log array. Should it be required, this can easily be extended
to suit the scenario at hand. Outside of the class definition, a new const
instance, theProxy, is instantiated before being exported as a single object.
Consumers of the logger don’t instantiate a new log instance – they just call
logger.logXXX. When using this logger in Playground snippets, don’t
forget to omit the last export default line and change theProxy to
logger. We’ll want to have this handy for the next part so that we can easily
test and verify proper code behavior, or you can refer to snippet #EK321G
as a starting reference template.

Generators and function* Iterators
From the perspective of software design, we will be thinking about our
State Machine as a type of iterator, or a type of looping construct where
each iteration yields the next (or current) state, also allowing callers to

specify state conditions. The JavaScript language construct that gives us
this functionality is known as a Generator function, or a function*.

The MDN Web Docs at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/function* say this about
Generators and their behavior:

“Generators are functions that can be exited and later re-entered. Their
context (variable bindings) will be saved across re-entrances…”

“When the iterator’s next() method is called, the generator function’s body
is executed until the first yield expression, which specifies the value to be
returned from the iterator”

“Calling the next() method with an argument will resume the generator
function execution, replacing the yield expression where an execution was
paused with the argument from next()”

“A return statement in a generator, when executed, will make the generator
finish”

Writing a Generator function

It’s more helpful to see actual code than it is to read descriptions of it, so
let’s start up a new Playground Snippet and lay down some code. Using the
base PG snippet (#EK321G), add some room in the createScene function
for our Generator function stub:

 function* appStateMachine() {

 let currentState = "INDETERMINATE";

 yield currentState;

 yield currentState + "-POST";

 yield "DONE";

 }

Remember that when the body of this function is executed, control is
transferred any time a yield statement is encountered. The value is
returned by the iterator – in the form of an object with a structure that looks

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

as follows: { value: <yielded value>, done: false|true }. In the
preceding code, we define and set a local variable, currentState, before
yielding its value. Execution stops in this method until next is called on the
iterator, at which point the code immediately yields back a modified
version of the currentState variable. After execution resumes, the code
once again yields back – this time with the phrase “DONE” before implicitly
returning.

Using the Generator

To best illustrate some of the non-intuitive behavior of iterator functions,
let’s write two different ways of using the appStateMachine Generator we
just defined. Follow along in your own Playground or skip ahead and load
up the result of this sub-section as the next snippet revision (we started with
0) – #EK321G#1.

The first – and arguably the simplest – method of using our
appStateMachine Generator is to use the for…of ES6 iteration construct to
progressively swap execution through each yield statement:

 let index = 0;

 const asm = appStateMachine();

 for (const a of asm) {

 logger.logInfo("Index " + index++, a);

 }

In the previous snippet, the value of the index variable is logged to the
console before being incremented as a convenient way of displaying the
behavior of the code. Open your browser’s Developer Tools and look at the
console output after clicking Run. The output should look similar to this:

{type: "INFO", message: "Index 0"} "INDETERMINATE"

{type: "INFO", message: "Index 1"} "INDETERMINATE-POST"

{type: "INFO", message: "Index 2"} "DONE"

You can see from the progression of the Index value from 0 to 2 shows how
the yield statement is switching the code execution between the generator

function and the for…of loop. This means of iterating over the generator
works best for situations where the looping logic doesn’t need to do a lot of
heavy lifting or if the code that you’re writing needs to coordinate many
different asynchronous operations in the correct order and you don’t need
fine control over the iteration.

An alternative use instead of iterating over the generated function is to
manually call the next() function to transfer control. Each time it is called
is equivalent to an iteration of the looping construct discussed previously,
but recall that the difference is that instead of directly getting whatever
value was part of the yield statement, an iterator object is returned with
value and done properties:

 const asm2 = appStateMachine();

 let s0 = asm2.next();

 let s1 = asm2.next();

 let s2 = asm2.next();

 let s3 = asm2.next();

 logger.logInfo("s0", s0);

 logger.logInfo("s1", s1);

 logger.logInfo("s2", s2);

 logger.logInfo("s3", s3);

Running this leads to an identical output to the prior code, but with an extra
value. Instead of only having three separate index values, this approach
leaves you with four:

{type: "INFO", message: "s3"} {value: undefined, done: true}

This “s3” object doesn’t have a value, and it has the done flag set to true,
indicating the sequence is complete. Any further calls to asm2.next() will
return the same undefined value and true flag. The advantage of this
approach is that consumers of the Generator have a lot of control over when
and how to call next(), which is a critical feature that we’re about to use
when we create our first State Machine.

The Definition of a State Machine

A core concept in computer science a Finite State Machine (FSM) – or
just a State Machine – is defined and characterized, for our purposes, by
these important attributes:

1. The system can only ever be in one state at any given time.

2. The State Machine has a finite number of possible states. For
practical purposes, at a minimum, there is an initial state and a final
state for the system.

3. Transitions between states are triggered in response to commands,
external input, or other changes in the environment (e.g., time
passing).

4. Before a frame is rendered, the State Machine should be updated with
the latest information about the state.

Let’s look at each of these points in some more detail.

One State at a Time

This is pretty self-explanatory. A given state machine may only be in a
single state, no matter how many possible states could be valid – there is no
mixing, aggregated, or hybrid types of state. In code terms, this means our
state machine will have a single field or property to represent its current
state. This is not to say that a particular state machine can’t have attributes
that themselves have their own states (e.g., an animation might be in the
RUNNING state), just that the state machine as a whole will only be
classified as being in a single state at any given time. At the time of writing,
quantum computing has not yet reached mainstream availability, neatly
avoiding any discussion of potential eigenstates – a probabilistic
combination of potential states – and keeping the subject matter firmly
rooted in classical computational theory.Phew, what a relief!

Finite Number of States, Start and Finish

There needs to be an initial state for the machine to begin in and there
should also be an end state. Technically, the end state and the initial state
can be the same, but it doesn’t make for very interesting or relevant
software. In between the start and finish can be any number of states,
although to keep things practical, we’ll only be looking to define a small
handful of them.

Transitions Happen When Something
Happens

It sounds silly, but it’s true. During the course of a given Update cycle, the
application or game logic may receive input events that trigger a state
transition. Part of our FSM’s definition is the logic to invoke any given state
transition. That implies our code will contain methods for transitions that
have names such as goToMainMenu.

Note

If it helps, try to think of a state as being a short-hand way of describing a
single, discrete combination of the system’s internal data. State transitions
are the logic controlling the mutation of one combination of internal data
into another different arrangement of data.

Updating the State Machine

Wrapping it all up is the mechanism by which we can progress or evolve
the machine’s state on a frequent basis. Because we’re going to be
managing multiple scenes, we can’t use something such as
scene.onPreRenderObservable, as we’ve already done for things such as
animating the planetary orbits. Instead, we’ll make use of the
engine.runRenderLoop callback as a way of ensuring that our update logic
is invoked no matter which scene is being rendered. This also fulfills the
requirement of updating the state before rendering the frame quite nicely.

Important Note

If you need to ensure that animations and physics are synchronized or if you
need framerate-independent rendering, you’ll need to ensure that you do
both of the following things:

a) Set the deterministicLockstep flag of the options parameter when
creating the Engine instance

b) Use onBeforeStep along with the onAfterStep observables instead of
the onPre/onAfterRenderObservable sets to perform state updates

With the knowledge of how we’re going to build the next part of our
application, it’s time to look at the specifics of our design and start to
prototype the Playground snippet.

Space-Truckers: The Application State
Diagram

Before we dive into writing code for our FSM, we should take a moment to
figure out just what it is that we’re going to need to build. An important
distinction we need to make out of the gate is between the gameplay and
non-gameplay sections of the application. The gameplay will have its own
state machine to manage the different phases of play, and each phase in turn
can have its own mini-state machine. It’s state machines all the way down!
The following diagram shows each state and how they transition between
them. The circles in the diagram represent events or transitions triggered by
external input, such as a user clicking a button:

Figure 4.1 – A State diagram, from the early Space-Truckers design
process, showing the application and game state – transitions between states
(lines and arrows) happen sequentially (such as Initialized) or as the result
of an input event (such as user Cancelled)

For now, we’ll disregard the lower portion of the diagram. Being an early
iteration, some of it (that is, the cut scenes) is at any rate aspirational.
Looking at the diagram’s upper portion, if we consider that the Loading
Screen is in the Initializing state then we can see a 1:1 correspondence
between the states and application screens. It should also start to become
clearer how each screen also corresponds to a BJS scene. Reasoning along
these lines, we can generalize the different CutScene and Splash Screen

items as simply being two separate instances of the same thing (save with
different actual content, but that’s not relevant here). Here are the screens
and scenes from the diagram that we’ve identified so far:

Figure 4.2 – A table of application-level states and transition rules

This may look like a lot to take in, but it’s really not as complicated as it
seems. It’s time to open up VSCode and start adding some new code. You
can either follow along here or if you would rather just copy, paste, and
modify existing code, go to snippet #EK321G#6. Bear in mind that you’ll
need to make similar types of adaptations to the snippet as we made in the
previous chapter as you progress through incorporating the snippet into
your code.

Almost Infinitely Looping State
The first thing we’re going to add to our project is the AppStates
enumeration. This is a simple object defining constants and values for the
different states in the preceding table. Add a new file, appstates.js, to the
project’s /src directory. Since this is a very simple and unchanging object,
we can use Object.freeze to ensure that the values aren’t changed at
runtime:

export default Object.freeze({

 CREATED: 0,

 INITIALIZING: 2,

 CUTSCENE: 3,

 MENU: 4,

 RUNNING: 5,

 EXITING: 6

});

After adding the AppStates enumeration, add a new file,
spaceTruckerApplication.js, to contain a class definition named
(surprise!) SpaceTruckerApplication:

class SpaceTruckerApplication {

}

This class is the central class of this application (as the name implies). It
will be growing much larger as time passes, so treasure it in all of its
adorable brevity while you can before breaking ground on it by defining our
appStateMachine function*. Add a function* definition inside the class for
it.

As we discussed earlier, a state machine needs to have one and only one
current state. It becomes very useful in state calculations to be able to
compare the present state to whatever value the previous state was, so in the
body of the function* Generator, add a couple of variable declarations to
contain those values, along with a helper function to change them:

function* appStateMachine() {

 let previousState = null;

 let currentState = null;

 function setState(newState) {

 previousState = currentState;

 currentState = newState;

 logger.logInfo("App state changed. Previous

 state:" + previousState + "

 New state: " + newState);

 return newState;

 }

}

// … create scene, camera return scene

We can now turn our attention to the state machine’s output – what it will
yield back to callers. Our little sample earlier would simply stop (returning
done: true) once it had reached the end of its sequence, but we want our
FSM to run for as long as the application is running, and we don’t know

ahead of time how many times that means calling the Generator’s next()
method. The way we address this is by placing that call inside of an infinite
loop.

Each time, the loop first starts by receiving input from the caller to indicate
the desired nextState – the caller does this by passing the value as an
argument to next – and assuming the state is valid, then our setState
method makes the actual state change. Once that happens, the code checks
to see whether the conditions have been met to reach the end state
(AppStates.EXITING), returning the currentState if so – otherwise, it will
yield back to the caller at the top of the loop:

while (true) {

 let nextState = yield;

 if (nextState !== null && nextState !== undefined) {

 setState(nextState);

 if (nextState === AppStates.EXITING) {

 return currentState;

 }

 }

}

Our state machine implementation is done (for now), and now it’s time to
hook-up the supporting application logic.

Adding the Constructor and
Supporting Logic

We need to initialize the state machine by creating a function from our
Generator along with other creation tasks, so add a constructor to our new
class. Because we are creating and managing scenes with this class, we
need to take in BABYLON.Engine as a parameter in the constructor and
initialize the private property, _engine, with it. While we’re here, we might
as well call the Generator and add a field for tracking which scene to render.
Finally, the last action in the constructor is to transition the state of the
application from its previous value of undefined to CREATED. We’ll do this

by invoking the to-be-created moveNextAppState function (see the
following code block):

constructor(engine) {

 this._engine = engine;

 this._currentScene = null;

 this._stateMachine = this.appStateMachine();

 this.moveNextAppState(AppStates.CREATED);

}

It can be cumbersome to have to write statements such as
this._stateMachine.next().value, and worse, it reveals the internal
implementation details to code that doesn’t need to know about that sort of
stuff, making it harder to make changes in the future. Let’s insulate the rest
of our code from having to deal with that by adding some accessor
properties to retrieve currentState and activeScene. Also as mentioned
previously, we will add the moveNextAppState helper method to help us to
hide the passing of values to and from the state machine:

 get currentState() {

 return this._stateMachine.next();

 }

 get activeScene() {

 return this._currentScene;

 }

 moveNextAppState(state) {

 return this._stateMachine.next(state).value;

 }

Something important to note before we move any further is that the
application must respect its boundaries as far as not trying to perform heavy
loading tasks during construction time.

That type of task is reserved for AppStates.INITIALIZING, and the reason
for this is crucial to the user experience. We don’t want to do anything that
might transfer large amounts of data to the client until they’ve affirmatively
decided to launch the game. That respects people who might be curious
about the game and are on limited data or a limited bandwidth connection
and enforces a clean separation between the HTML-based landing page and
the WebGPU or WebGL-based game.

Important Note

The state diagram we looked at earlier starts when the user clicks the
Launch button on our landing page.

The effect of clicking the landing page’s Launch button is a mini-transition
in and of itself – a transition between the DOM-focused HTML page and
the Canvas-rendered game application. The first step towards implementing
this is to add a new function we’ll name run to the
SpaceTruckerApplication class. This is the place where we hook the
engine’s runRenderLoop callback up with our applicationStateMachine:

 run() {

 this._engine.runRenderLoop(() => {

 // update loop

 let state = this.currentState;

 switch (state) {

 case AppStates.CREATED:

 case AppStates.INITIALIZING:

 break;

 case AppStates.CUTSCENE:

 break;

 case AppStates.MENU:

 break;

 case AppStates.RUNNING:

 break;

 case AppStates.EXITING:

 break;

 default:

 break;

 }

 this._currentScene?.render();

 });

 }

Within the runRenderLoop callback, we retrieve the currentState by using
the getter method to call the _applicationStateMachine.next() function
without any parameters. There’s not much to see at the moment, but the
stubbed-out switch statement shows where each state is handled. The first
two, CREATED and INITIALIZING, are grouped because they are not rendered
– or at least in the case of INITIALIZING, the loading UI is the rendered
output of that state. Once scene selection and management have been

completed, the render() method of the _currentScene (if present) is
called.

Wiring the initial call to run is done with two lines that we’ll add to the
index.js file. There’s some cleanup of now-obsolete code needed too – we
don’t want index.js calling createStartScene, nor do we want it
interacting with the engine’s render loop. After creating and setting up
SpaceTruckerLoadingScreen, declare and instantiate a new instance of
SpaceTruckerApplication. Since it’s pretty well named as a type, just call
it theApp. Next, add a line to invoke theApp.run() in the Launch button’s
click handler. It can be useful to add logging statements at key areas in the
code to help in understanding the app’s runtime behavior during
development, so make liberal use of them! This is the basic framework for
our application’s state management functionality all wired up and ready to
be filled with more interesting states and behaviors. To that end, it’s time to
start fleshing out these states and behaviors as we get ready to build the
Main Menu.

Writing the Initialize logic
Returning to the State Diagram, once the application has finished
initialization, it should transition to displaying the opening splash screen
(cut scene) before transitioning to the Main Menu again. This is a nice
linear progression, so it is simple to implement with the aid of the await
ES6 feature.

Since the INITIALIZING state is the first state after construction, it should
be the first thing that happens in the run() method. With this change, we’ll
also need to mark the run() method as async to allow us to use this
language feature, so change the first few lines of the function to match the
following:

 async run() {

 await this.initialize();

 // …

Now, add the function for initialize. We want this method to accomplish
several tasks, some of which we will be simulating for the time being.
Another method stub, goToMainMenu, helps us to complete the first part of
the state diagram with what we will build next:

 async initialize() {

 this._engine.enterFullscreen(true);

 this._engine.displayLoadingUI();

 this.moveNextAppState(AppStates.INITIALIZING)

 // for simulating loading times

 const p = new Promise((res, rej) => {

 setTimeout(() => res(), 5000);

 });

 await p;

 this._engine.hideLoadingUI();

 this.goToMainMenu();

 }

First, we request a fullscreen session from the engine. This is equivalent to
the user selecting their web browser’s fullscreen option, which we want to
do before we have to do any serious rendering – applying canvas scaling or
a size change is faster when there’s not anything being rendered yet. Next,
we want to display the engine’s Loading UI – which if you recall, we’ve
replaced with our own custom loading UI in our codebase.

Note

When running this in the Playground, the default Babylon.js loading UI will
be displayed instead of our customized one.

After that, we are officially into the INITITIALIZING state, so we transition
to that state by calling moveNextAppState with the new state. Lastly, we are
simulating a 5-second load time by creating a new Promise that resolves
after the timeout period. We await this to occur before hiding the loading
UI and then initiating the next state transition to the MENU state.

Transitioning to the Main Menu

The goToMainMenu function definition is very simple, as it has a very
specific task. It needs to create an instance of the (soon-to-be-created)
MainMenuScene class before transitioning to the MENU state. Add the
following function definition to the class:

 goToMainMenu() {

 this._engine.displayLoadingUI();

 this._mainMenu = new MainMenuScene(this._engine);

 this._engine.hideLoadingUI();

 this.moveNextAppState(AppStates.MENU);

 }

There’s one more change needed before we can finish wiring up our state
machine. In our main Update loop, under the AppStates.MENU case
statement, we need to set the _currentScene value to our Main Menu’s
scene:

 case AppStates.MENU:

 this._currentScene = this._mainMenu.scene;

 break;

Of course, this doesn’t currently exist, and now’s a good time to address
that deficiency! Create another new JS file, mainMenuScene.js, and add a
stub class to the snippet called MainMenuScene. Implement its constructor to
take an engine instance; it should also create a new Scene instance that is
exposed via a public get accessor named scene. To keep the scene happy,
create a new ArcRotateCamera, using the final parameter of its constructor
to set the camera as the scene’s default. To blend with the existing
background, we’ll also set scene.clearColor to an opaque black with
RGBA values of 0, 0, 0, and 1 respectively. The camera distance parameter
is set to -30 and seems somewhat arbitrary – however, the value will be
important soon when we are rendering an animated background. This is
how your class definition should look after putting in the basic elements
(don’t forget to add import statements for Scene, Vector3, and
ArcRotateCamera, and to add from “@babylonjs/core” to the top of the
file and export default MainMenuScene to the bottom!):

class MainMenuScene {

 get scene() {

 return this._scene;

 }

 constructor(engine) {

 this._engine = engine;

 let scene = this._scene = new Scene(engine);

 const camera = new ArcRotateCamera("menuCam",

 0, 0, -30, Vector3.Zero(), scene, true);

 }

}

export default MainMenuScene;

Check to make sure there aren’t any syntax errors or other issues, and make
sure to save and commit your work. Things are about to get more
interesting here!

The final listing for our basic state machine is in snippet #EK321G#6.
Don’t be fooled by the seeming lack of accomplishment – it’s not always
wise to gauge progress using visual indicators. We’ve laid the foundations
with this groundwork that will help with our future efforts, which will make
more sense as we seek to coordinate between multiple scenes and screens.
The first screen that we’re going to build is the Main Menu, which on our
diagram isn’t the next state in the sequence – the splash scene is what
comes next on it – but we will be returning to that after we’ve built some of
the display and transitioning logic that we’re going to need as part of
building cut scenes.

Space-Truckers: The Main Menu
One of the primary features that pretty much every single video game in
existence has in common with each other is that they all have a Main Menu.
Space-Truckers is to be no exception, but we first have to sit down and
figure out how we want our menu to look before we can make it. We start
with a basic concept sketch of the layout and elements of the menu, which
we’ll then use as a guidepost for building out a PG snippet of the menu.
From the background to the foreground, we’ll build up a GUI menu display

progressively, adding containers, a title block, and then buttons that will be
ready to practically drag and drop into the codebase!

Basic Design
Firstly, let’s think about the application’s navigational structure. Consulting
our State Diagram (Fig. 4.1), we can see that there are a couple of different
branches that the state can transition to from the Menu AppState. With the
exception of the initial transition into the Main Menu, each of the paths
represent a different menu item or selection option:

Appearance-wise, we want to make the menu functionally attractive and to
show a bit of dynamic behavior over time, both in the foreground and the
background. Another consideration is that because players may be using a
gamepad or controller instead of a keyboard and mouse, we’ll want to have
a selection indicator that shows the player which menu item will be
invoked by clicking or pressing the appropriate button on their controllers.
The following sketch shows how this may look without any background:

Transitioning from MENU to Running will be user-triggered by
clicking a PLAY button.

Exiting the application is triggered by clicking an EXIT button.

Additional menus are accessed by clicking their respective buttons.
Initially, we’ll only be creating a High Scores sub-menu.

Figure 4.3 – A Main Menu design sketch

To help the menu stand out against the background, we’ll fill it with a
gradient or other semi-opaque image, as well as give the container a border.

The background doesn’t need to have a lot going on – time and bandwidth
constraints are likely to put this particular piece of content on a low-priority
track. That’s OK because we can quickly and easily put something in place
that looks pretty good and does what we want – do you remember our old
friend the Starfield Procedural Texture (PT)? We’ll use it to give the
menu a cool space-themed background, and then we’ll animate it to give the
illusion of travel.

Switch back to the Playground in your web browser and click the New icon
to create a new snippet for our Main Menu.

Setting up the Main Menu snippet
Knowing how we plan to transport the code in our snippet into our
codebase at some point is a great opportunity to invest the time and effort
into making the process as quick, reliable, and accurate as possible.

We can start with this by defining some aliases for the various BABYLON
components and namespaces at the top of our snippet, just as we did back in
Chapter 3, Establishing the Development Workflow:

const {

 Color4,

 Vector3,

 ArcRotateCamera,

 Scene

} = BABYLON;

There will be more items to add to this list as we involve additional
Babylon.js APIs, so don’t forget to update this list when that happens!
Below the alias declarations in the snippet, copy and paste just the
MainMenuScene class definition from your local file.

Note

The items in the alias list that we just defined will need to be converted into
import statements when integrated into the codebase.

When we’re ready to integrate and commit our changes, we’ll update the
local files by essentially performing the same thing in reverse. In the
snippet’s createScene function, instantiate a new instance of
MainMenuScene and return its scene property, and that will hook up our
budding MainMenuScene class into the snippet’s rendering loop:

var createScene = function () {

 const mainMenu = new MainMenuScene(engine);

 return mainMenu.scene;

};

Short and sweet, we don’t have to think about this part of the snippet ever
again.

Building the Background
We’ll start with the general environment and background setup for the
scene, so scroll back up to the class definition and add a new instance
method named _setupBackgroundEnvironment. This is where we will
instantiate and configure the Starfield PT that serves as the background for
the screen. It’s also where we’ll set up the texture to animate gradually over
time to give the illusion of traveling through the starfield.

Invoke this._setupBackgroundEnvironment() at the end of the
constructor so we can use the run button immediately to see results. Before
coding the body of the function though, add these types to the top alias
definition list:

The scene already has a camera placed at -30 units from the origin and
pointing at the origin, but it’s going to need a light and something for that
light to illuminate as well. Instead of using a cubical mesh as a skybox, as
we did with the Loading Screen, we’ll create a conical sort of shape made
by making a tube with different radii for each end cap. Applying the
Starfield PT to the interior of the cylinder requires us to set
backFaceCulling to false, since we want to see the interior faces. To
animate the starfield, we can simply increment the time property of
StarfieldProceduralTexture before every frame is rendered:

HemisphericLight

StarfieldProceduralTexture (put on its own line, you’ll thank
yourself later)

StandardMaterial

CylinderBuilder

Texture

_setupBackgroundEnvironment() {

 const light = new HemisphericLight("light", new Vector3

 (0, 0.5, 0), this._scene);

 const starfieldPT = new StarfieldProceduralTexture

 ("starfieldPT", 1024, this._scene);

 const starfieldMat = new StandardMaterial("starfield",

 this._scene);

 const space = CylinderBuilder.CreateCylinder("space",

 { height: 64, diameterTop: 0, diameterBottom: 64,

 tessellation: 512 },

 this._scene);

 starfieldMat.diffuseTexture = starfieldPT;

 starfieldMat.diffuseTexture.coordinatesMode = Texture.

 SKYBOX_MODE;

 starfieldMat.backFaceCulling = false;

 starfieldPT.beta = 0.1;

 space.material = starfieldMat;

 return this._scene.onBeforeRenderObservable.add(() => {

 starfieldPT.time += this._scene.getEngine().

 getDeltaTime() / 1000;

 });

}

HemisphericLight is a type of light source in Babylon.js that simulates an
ambient environment type of lighting. There are a ton of interesting effects
that you can achieve by messing around with the combination of diffuse,
specular, and, unique to this type of light, groundColor, but we don’t need
to do that right now since our needs are pretty simple.

Important Note

Dividing the scene’s delta time by 1,000 is what sets the rate at which the
starfield twinkles and shifts. Try removing the division statement and see
what happens!

Finishing up the function, we are following a similar pattern to what we did
when we created the planetary orbits animation for the Loading Screen by
registering an observer in onBeforeRenderObservable and returning the
observer for tidy later disposal. If all went well, clicking the Run button
should display a nice picture of our starfield, twinkling and glittering as it
slowly shifts.

Click Save and let’s move on! If you find that your snippet isn’t working
the way it should be, or are having any other trouble, pull up Playground
snippet #16XY6Z to see the full code for this snippet at this point in
development.

Creating the
AdvancedDynamicTexture and GUI

There can be a lot to take in when it comes to the extensive functionality
present in the Babylon.js 2D GUI system. More extensive documentation
on the GUI APIs can be found at
https://doc.babylonjs.com/divingDeeper/gui/gui, but what we’re about to do
with it now should either refresh your memory or provide enough of a
foundation to begin learning. Add new types to the alias list, but instead of
putting them in the BABYLON object, add a new BABYLON.GUI entry that is
similar to the BABYLON entry, with the following types from the
BABYLON.GUI namespace:

Add a new method called _setupUi to MainMenuClass, and add a line in the
constructor to invoke it at the bottom of the function.

We’re not going to try to do anything fancy with the menu UI right now, so
the first thing the _setupUi function needs to do is to create an instance of
the BABYLON.GUI.AdvancedDynamicTexture class in the (default) fullscreen
mode. This results in a 2D texture the size of the render canvas, with the
controls painted on it, which is rendered on top of the scene in turn. One

AdvancedDynamicTexture

Rectangle

Image

StackPanel

TextBlock

Control

https://doc.babylonjs.com/divingDeeper/gui/gui

minor tweak we’ll make is to tell the texture to render at its ideal size – this
will help avoid fuzziness in rendered text caused by down- or up- sampling
effects. To allow other class instance methods to access the texture, assign it
to the _guiMenu property:

const gui = AdvancedDynamicTexture.CreateFullscreenUI("UI");

gui.renderAtIdealSize = true;

this._guiMenu = gui;

Next up, we need to add a Rectangle control to contain the actual menu
items. We don’t want it to be completely opaque, but it should have a
contrasting background color or gradient.

Adding the Menu Container and
Background

For web developers and designers, there are a lot of what are hopefully
comfortingly familiar concepts at play. A GUI control tree is a hierarchy
similar to an HTML DOM, where controls can be nested inside of each
other, with siblings inheriting some of their layouts from the parent element
or control. In order to be rendered, a control needs to be able to trace its
parentage back to AdvancedDynamicTexture either directly or indirectly.
It’s often easiest to show this rather than describe it, so add the following
code to define our menu’s container and basic appearance:

 const menuContainer = new Rectangle("menuContainer");

 menuContainer.width = 0.8;

 menuContainer.thickness = 5;

 menuContainer.cornerRadius = 13;

 this._guiMenu.addControl(menuContainer);

 this._menuContainer = menuContainer;

The width is set as a percentage of the canvas size (0.8) so that the menu
doesn’t cover the entire background, while the border width (thickness) is in
pixels and the corner radius is specified in degrees – got all that?

Tip

Intellisense can be your best friend in providing quick descriptions of the
numerous properties available on GUI controls, particularly when it comes
to determining which units are in use (e.g., pixels or percentage).

Next, we want to add an Image control to hold the background of the menu.
Apropos of the Image, it’s easy to create a nice background image texture,
but what use is it if it can’t be seen in the Playground? So, it’s time for a
magic trick…

Image Aside: Bringing in External
Content

The Babylon.js Playground has a feature configured in its web server’s
configuration to allow Cross-Origin Resource Sharing (CORS) of content
served from a number of well-known and established repository hosts, such
as GitHub. By crafting the appropriate URL to our source repository, we
can load textures, sounds, and models in our Playground snippet – just as
with the Babylon.js Asset Libraries! By way of demonstrating how this
works, add the following line to the very top of the snippet (first line):

const menuBackground = https://raw.githubusercontent.com/jels

ter/space-truckers/ch4/assets/menuBackground.png

 + "?" + Number(new Date());

Breaking the URL down, here’s how you can apply this tactic to any
publicly hosted GitHub repository:

1. Starting with the base URL of raw.githubusercontent.com, add the
path segments (in order) for the repository owner (or owning
Organization) name, and the name of the repository itself – for
example, raw.githubusercontent.com/jelster/space-truckers.

2. Next, add a path segment for the name of the branch or tag from
which to retrieve the asset. For this book, the assets will be listed in
their chapter’s respective branch, but for many other repositories, this
will be main, master, or possibly develop.

http://raw.githubusercontent.com/

3. Finally, add the rest of the path to the asset, including the file
extension. Because there are pretty robust caching headers
accompanying the responses for these files, it’s often a good idea
during active content production to append a cache-using string such
as the current date and time to the end of the URL so that you can be
sure you’re always seeing the most current version of the file.

Using the menuBackground URL, create an Image and add it to the
menuContainer we previously added:

 const menuBg = new Image("menuBg", menuBackground);

 menuContainer.addControl(menuBg);

Test out your progress by clicking Run, fixing any issues, then of course
make sure to Save the snippet. To check yourself or to start with the latest
snippet for this chapter, use #16XY6Z#1. This is how it should look:

Figure 4.4 – The main menu at #16XY6Z#1 has the Starfield PT
background and a semi-opaque gradient-filled rectangle that will contain
menu items

Laying out the Title and Menu Items
Referring back to Figure 4.2, we can see that the menu screen can be
divided up into a grid with two rows – one for the title and one for the menu

items. To ensure that the buttons and selection icons all line up the way we
want them to, we’ll need the grid to have three columns, each one-third of
the width of the grid (which itself has a width of 0.8 or 80%). Grid has the
addColumnDefinition and addRowDefinition methods to accomplish this,
making the setup very simple to add to our _setupUi method:

 const menuGrid = new GUI.Grid("menuGrid");

 menuGrid.addColumnDefinition(0.33);

 menuGrid.addColumnDefinition(0.33);

 menuGrid.addColumnDefinition(0.33);

 menuGrid.addRowDefinition(0.5);

 menuGrid.addRowDefinition(0.5);

 menuContainer.addControl(menuGrid);

 this._menuGrid = menuGrid;

The title text is an important factor in defining a game or application’s look
and feel through its font and display, but we’re going to be circling back to
that topic in Chapter 7, Processing Route Data. For now, we’ll use the
default font and ensure that it auto-sizes the text as needed. Vertically
aligning TextBlock with the top of the grid will ensure that no matter how
many buttons there are, the title will always stay where it belongs. A bit of
styling to add shadows and padding results in code similar to this:

 const titleText = new TextBlock("title", "Space-

 Truckers");

 titleText.resizeToFit = true;

 titleText.textWrapping = GUI.TextWrapping.Ellipse;

 titleText.fontSize = "72pt";

 titleText.color = "white";

 titleText.width = 0.9;

 titleText.verticalAlignment = Control.

 VERTICAL_ALIGNMENT_TOP;

 titleText.paddingTop = titleText.paddingBottom =

 "18px";

 titleText.shadowOffsetX = 3;

 titleText.shadowOffsetY = 6;

 titleText.shadowBlur = 2;

 menuContainer.addControl(titleText);

Check your work by running it and then save your progress. For those
following along, this can be found at #16XY6Z#2. The next task is to write

some functionality to populate the menu with selectable button items. We’ll
be doing a bunch of these, so the less we have to repeat ourselves, the more
keystrokes we can save.

Populating the Menu with Items
Similar to how we added and then implemented the _setupUi function,
we’ll start our latest task by adding an _addMenuItems function and
constructor invocation expression to our class. We know that we want all
the buttons of the menu to share a certain subset of property values, but not
all of them. The properties that are unique to a given instance of a menu
item can be defined by a simple object such as the following one defining
the Play button’s properties:

const pbOpts = {

 name: "btPlay",

 title: "Play",

 background: "red",

 color: "white",

 onInvoked: () => console.log("Play button clicked")

};

A button needs to have a unique name and it also needs some text to
display. The foreground and background colors ought to be specific to each
item, and of course, the action that is taken when the button is selected
certainly qualifies as being specific to a given button. Within the
_addMenuItems definition but before the pbOpts expression, add this local
helper function to create and populate a button control with the given
properties:

function createMenuItem(opts) {

 const btn = Button.CreateSimpleButton(opts.name || "",

 opts.title);

 btn.color = opts.color || "white";

 btn.background = opts.background || "green";

 btn.height = "80px";

 btn.thickness = 4;

 btn.cornerRadius = 80;

 btn.shadowOffsetY = 12;

 btn.horizontalAlignment = Control.

 HORIZONTAL_ALIGNMENT_CENTER;

 btn.fontSize = "36pt";

 if (opts.onInvoked) {

 btn.onPointerClickObservable.add((ed, es) =>

 opts.onInvoked(ed, es));

 }

 return btn;

}

With the button returned from our helper method, there’s just the matter of
adding it to the menu grid:

const playButton = createMenuItem(pbOpts);

this._menuGrid.addControl(playButton, this._menuGrid.

 children.length, 1);

Unlike the same functions of its Control relatives, the addControl function
of Grid accepts an optional row and column assignment as its second and
third parameters, respectively. This lets us insert an item in the last row
without knowing its index by getting the count of its child rows. We want
buttons to be centered, so the column will always be the same – one.

Finish the buttons by adding an exit button according to these options, and
don’t forget to Save! To compare with the checkpoint snippet, see
#16XY6Z#3:

const ebOpts = {

 name: "btExit",

 title: "Exit",

 background: "yellow",

 color: "black",

 onInvoked: () => console.log("Exit button clicked")

}

We’ve come a long way in this chapter, but we’re not quite done yet.
There’s been a lot of different things that we’ve been juggling so far, and all
of the functionality we plan to build is completed – now, we just need to
incorporate this functionality into the rest of our code.

Adding Menu Item Selection and
Indicators

Although there are a chunk of players who will want to and enjoy using a
keyboard and mouse to play Space-Truckers, it should also be an enjoyable
experience with a gamepad. In the next chapter, we’ll look at how to work
with gamepad input in more detail, and to prepare for that, we need the
main menu’s items to be selectable without invoking their actions and
without the presence of a mouse pointer hovering over them. A selection
indicator icon will serve this purpose, displaying the icon next to the
currently selected menu item and showing the player what command or
option will be invoked on the appropriate button press.

Before we get to the visual aspect of the selected item, let’s add some
supporting properties to our class in the form of a get and set pair of
functions that we’ll call selectedItemIndex. Retrieving the value is simple
using return this_selectedItemIndex. Setting it is a little bit more
complicated. We want to ensure that the index doesn’t exceed the number of
menu items and that upon reaching the end of the menu items, we want it to
start over at the first item. There are other things that we want to enact
when the selected item index changes, but a set method is not the place to
do anything more than simple logic, as follows:

 get selectedItemIndex() {

 return this._selectedItemIndex || -1;

 }

 set selectedItemIndex(idx) {

 const itemCount = this._menuGrid.rowCount;

 const newIdx = Scalar.Repeat(idx, itemCount);

 this._selectedItemIndex = newIdx;

 this._selectedItemChanged.notifyObservers(newIdx);

 }

We saw the usage of Scalar.Repeat earlier, when animating planetary
orbits. Then, we used it to ensure that the radian values stayed smoothly
circular. Similarly, we want the selection to loop around smoothly once it
reaches the end. The new item (highlighted in the preceding code) is for a

class member that we haven’t yet declared, the _selectedItemChanged
Observer.

Indicating Selection and Reacting to
Change

Calling the Observer something new is a bit of a misnomer; we’ve been
using the Babylon.js Observable since the very second chapter, when we
used scene.onBeforeRenderObservable. This time, however, we’re not
using a built-in observable on a BJS object, but one that we’re declaring
ourselves. The usage semantics are exactly the same as they are for the
other ones we’ve used – calling the add() method to register a function to
be invoked whenever the observable is triggered. Creating the observable is
just as simple, done by creating a new Observable instance. At the end of
the MainMenuScene constructor, add code to create the
_selectedItemChanged observable, then call its add method to register our
selection’s changed logic:

this._selectedItemChanged = new Observable();

this._selectedItemChanged.add((idx) => {

 const menuGrid = this._menuGrid;

 const selectedItem = menuGrid.getChildrenAt(idx, 1);

 if (selectedItem[0].isEnabled !== true) {

 this.selectedItemIndex = 1 + idx;

 }

 this._selectorIcon.isVisible = true;

 menuGrid.removeControl(this._selectorIcon);

 menuGrid.addControl(this._selectorIcon, idx);

});

When the selection changes, the event handler is passed the newly-selected
item’s index – its row in the grid. Sometimes, we might want to display
non-selectable menu items, so we retrieve the selected item and then check
the item retrieved from the second column of the selected row to see
whether it’s isEnabled. If that’s not the case, then we increment
selectedItemIndex – making sure to use the property setter and not
directly changing the backing field’s value. The last part of our event

handler again represents something we haven’t added yet – the selection
icon. This hides the icon first before removing it from the grid and re-
adding it at the new position. Moving backward now, again, add a method
call to this._createSelectorIcon() to the constructor, then add the
eponymous function declaration to the class. Here’s how the body of the
function should look:

_createSelectorIcon() {

 const selectorIcon = new BABYLON.GUI.Image

 ("selectorIcon", selectionIcon);

 selectorIcon.width = "160px";

 selectorIcon.height = "60px";

 selectorIcon.horizontalAlignment = Control.

 HORIZONTAL_ALIGNMENT_CENTER;

 selectorIcon.shadowOffsetX = 5;

 selectorIcon.shadowOffsetY = 3;

 selectorIcon.isVisible = false;

 this._menuGrid.addControl(selectorIcon, 1, 0);

 this._selectorIcon = selectorIcon;

}

This creates a new GUI.Image using the final undeclared constant, the
selectionIcon URL string. The rest of the method is boilerplate code
we’ve written in the not-so-distant past.

Note

To avoid ambiguity with the HTML DOM Image type, the fully-qualified
name is used in the Playground.

Wrap up the penultimate task of this section by adding the selectionIcon
URL string at the top of the snippet:

const selectionIcon = "https://raw.githubusercontent.com/jels

ter/space-truckers/ch4/assets/ui-selection-

icon.PNG" + "?" + Number(new Date());

Feel free to substitute your image of choice for the one in the repository,
and if you want to see it used in the production game, send us a Pull
Request with it! Finally, we want to automatically select the first item in

the menu, but only after the scene has completely finished loading and is
waiting for user input. We do that by adding a simple line to the end of our
constructor:

scene.whenReadyAsync().then(() => this.selectedItemIndex = 0)

;

Clicking Run should show a finely crafted main menu – click Save and
congratulate yourself. Look at how much you’ve accomplished during just
this one pretty small section of one chapter of a (relatively) short book and
contemplate how far you’ll be by the end! To compare your code for
troubleshooting or catching up, see snippet #16XY6Z#4. The Main Menu
looks nice, but despite the starfield twinkling in the background, it still
needs a little bit of motion to give it some life and energy. Let’s be honest
too – hornet yellow for the Exit button isn’t really the look we’re aiming for
either, so let’s take a moment to correct those matters before moving on.

Visual Improvements and Animating
the Selection Idle

The easiest change we want is to set the color property of our ebOpts
object, all the way down in the _createMenuItems method, to the string
color black. For the next change, we will add a small animation to the
selection icon to make it look as though the truck is floating next to the
menu item. This is a two-step process and the components of each
individual step should be familiar from recent usage.

First, we need to track the current animation frame for the icon with a class
member named _selectorAnimationFrame. Second, we need to register an
onBeforeRenderObservable that will execute a new function,
_selectorIconAnimation, before every frame is rendered in the scene. In
that function, we increment the current frame (looping around if necessary)
and use that value to compute the position of the icon along the vertical axis
according to our circular standby – the sine function. This is what the
animation function should resemble:

_selectorIconAnimation() {

 const animTimeSeconds = Math.PI * 2;

 const dT = this._scene.getEngine().

 getDeltaTime() / 1000;

 this._selectorAnimationFrame = Scalar.Repeat(this._

 selectorAnimationFrame + dT * 5, animTimeSeconds * 10);

 this._selectorIcon.top = Math.sin(this.

 _selectorAnimationFrame).toFixed(0) + "px";

}

The total time that it takes to go through a complete animation cycle is
given by the first expression, while the amount of time (in seconds) elapsed
since the last frame was rendered is given by the second. As we did before
with Scalar in set selectedItemIndex, we loop
_selectorAnimationFrame here when it reaches the frame count, but we
are scaling some values by arbitrary factors at the same time to yield the
new top position (in pixels) that is set in the final line. Running this should
result in a much more pleasing color for the Exit button as well as
displaying a nice subtle floating appearance for the truck selection icon.

Figure 4.5 – The Main Menu snippet complete with the floating animation
of a truck icon

If this is starting to feel repetitive, then that’s good, because it means that
the material in this book is starting to sink in! Snippet #16XY6Z#5 has the
latest code; if you’ve not prepared your own, then navigate to this one and
make sure you have VSCode open and ready to accept the application’s
sparkling new Main Menu.

Integrating the Main Menu
Despite the potentially intimidating heading, there’s really not a whole lot
we’ll need to do in order to incorporate all of the work from our snippets
into the application’s code structure. In fact, after all of the effort and
journeying we’ve done throughout this chapter, it may feel a bit anti-
climactic when we finish this part of the work.

The most straightforward and simple way to do it is to copy and paste the
whole of the MainMenuScene class from the snippet into your local file,
making sure to entirely replace the existing class declaration. You’ll need to
only slightly adjust your import statements; here are the two most relevant
lines where this changes:

import { Scene, Vector3, Scalar, Observable, Sound,

HemisphericLight } from "@babylonjs/core";

import { AdvancedDynamicTexture, Rectangle, Image, Button,

Control, TextBlock, Grid, TextWrapping } from

"@babylonjs/gui";

For the selection icon image asset, download the one at the snippet’s URL
or make your own. Either way, add an import statement for it as well:

import selectionIcon from "../assets/

 ui-selection-icon.PNG";

Either wait for the development webpack output to finish or run the
webpack process to test your changes, and don’t forget to commit and push
your work – there’s no reason to lose work due to the omission of a few
keystrokes. Earlier, when we went over our State Machine, we learned that
in addition to the state behaviors, it’s important to define the transitions to
and from those states.On the topic of transitions, here's one now!

Entering and Leaving Transitions

When we’re looking at the integration of our Main Menu with the
SpaceTruckerApplication State Machine, there are two functions that we’ve
yet to implement and wire up. Those functions are the two transition
functions for the main menu. In other words, we need to define the logic for
what happens when we transition to the MENU state, as well as out of that
state. Naming these new functions is actually pretty easy for once –
_onMenuEnter and _onMenuLeave. While there might be more involved
behavior we’d like to implement later, for now, we will say that when the
menu either starts or ceases to be the current state of the application, we
want it to fade in or out accordingly.

The simplest way to accomplish this is by animating the
menuContainer.alpha property between either 0 to 1 (entering) or 1 to 0
(leaving). As with the selection icon animation, we’ll need to store the
current frame of fadeIn and fadeOut. Unlike the selection icon animation,
we have a finite amount of time that the animation should last, so we also
need to store the total duration value of the transition. Between every
frame, we should set the current alpha value to one that is only slightly
different from the previous value, so the transition appears smooth. Finally,
when the animation ends, we want to (in the case of the leaving transition)
set the menu’s visibility to false, along with any other clean-up that needs
to happen. Interestingly enough, the logic for the enter and leave transitions
is identical save for swapping the ranges in the SmoothStep function used to
interpolate the alpha value. Here’s the _onMenuEnter function:

_onMenuEnter(duration) {

 let fadeIn = 0;

 const fadeTime = duration || 1500;

 const timer = BABYLON.setAndStartTimer({

 timeout: fadeTime,

 contextObservable: this._scene.

 onBeforeRenderObservable,

 onTick: () => {

 const dT = this._scene.getEngine().

 getDeltaTime();

 fadeIn += dT;

 const currAmt = Scalar.SmoothStep(0, 1, fadeIn

 / fadeTime);

 this._menuContainer.alpha = currAmt;

 },

 onEnded: () => {

 this.selectedItemIndex = 0;

 }

 });

 return timer;

}

Instead of using the standard timer creation method in JavaScript of calling
setTimeout, we’re using the BABYLON.setAndStartTimer utility function.
By attaching contextObservable to scene.onBeforeRenderObservable,
the onTick method is called consistently before each frame is rendered. The
onEnded function is invoked when the name implies – after the timer has
completed. In our case, we want to wait until the menu has transitioned in
fully before showing the selection icon, so we set the selectedItemIndex
there. In the constructor, we can replace the callback used with
scene.whenReadyAsync to call our onMenuEnter function as follows:

 scene.whenReadyAsync().then(() => this._onMenuEnter())

;

Save the file and run the app. You should see the menu fade in over the
course of a couple of seconds before the selection item shows up. Learn
more about this and other related functionality at
https://doc.babylonjs.com/divingDeeper/events/observables#setandstarttime
r, but maybe wait a tiny bit to do that – it’s time to finish off this chapter!

The onMenuLeave function is, as was mentioned earlier, almost identical to
its onMenuEnter counterpart (with the exception of the onEnded callback),
just swapping terms in SmoothStep (as follows). Add the onMenuLeave
function with the changed expression:

const currAmt = Scalar.SmoothStep(1, 0, fadeOut / fadeTime);

Hooking up the Exit button to onMenuLeave is easy: in the _addMenuItems
method’s ebOpts object definition, change the onInvoked function to look
something similar to the following:

onInvoked: () => {

 console.log("Exit button clicked");

 this._onMenuLeave(1000);

}

Save again and test your work to ensure it’s behaving as expected. This is
looking and behaving excellently, but before we can pull over and rest,
there’s one last thing left to accomplish.

Menu Finishing Touches
It’s a bit too quiet here for what should be an engaging and interesting main
menu screen. We can fix that though, with the power of music! Although
we’ll be covering the playing of sounds and music in more detail later, it’s
too simple to pass the opportunity up, so here’s the quick and dirty version
in as few words as possible:

Add an import statement

import titleMusic from "../assets/sounds/space-trucker-title-

theme.m4a";

Load and play the music from the
constructor

this._music = new Sound("titleMusic", titleMusic, scene, ()

=> console.log("loaded title music"), { autoplay: true,

loop: true, volume: 0.5 });

Enjoy the vibes

<enjoy the music>

OK, so maybe the last part is getting a bit carried away; we do want to stop
the music at some point. In the onEnded callback of _onMenuLeave, call
this._music.stop() to stop the sound from playing when the Exit button
is clicked. Once you’ve run the app and corrected any issues, it’s time to
commit changes to source control and have a nice refreshing beverage –
we’ve completed the chapter!

Summary
What a journey we’ve taken during this chapter. Some might prefer to think
of it as more of a slog, and that’s not unfair – we’ve been wading through
some pretty dense material here! Despite there being a fair bit of theory and
high-level concepts tossed around, think back to what’s been accomplished
over the course of this chapter – where we started was with a landing page
that launches into an animation. Now, we have a landing page that launches
into an application.

Coming up next, we’re going to look at how to address the problem of
accepting different forms and methods of input in a way that produces
consistent and predictable behavior from the application – stick with us, and
don’t be afraid to take your time to go back and re-read anything you didn’t
understand the first time around. It’s amazing how much comprehension
can require multiple passes to really take hold, but if that’s not working and
you find you’re struggling to understand or follow along, no worries.
Navigate to the Space-Trucker Discussions or the Babylon.js forums and
post your question or problem to the community – you aren’t alone!

Extended Topics
Things are just getting some momentum, but that doesn’t mean there isn’t
more to explore and extend what we’ve got already! Here are some ideas
for things that you might look at, explore, or build into this chapter’s code:

Create or extend the regular Babylon.js Animation type’s capabilities
to include 2D GUI controls – or – implement a class that mimics the

behavior of the Animation object with GUI controls.

Can you spot the defect in the SpaceTruckerLoadingScreen.js code?
It’s a bit subtle if you’re reading through it in your head, but there’s
definitely a logical defect in the code. Running it won’t cause any errors
to be thrown but it does have effects that are visible at runtime under the
right conditions.

Instead of using a single, full-screen AdvancedDynamicTexture, use
one or more mesh-attached textures that are painted onto the meshes in
the scene, which can then be animated in interesting ways.

Add an attract mode that engages after the Main Menu has been
displayed without user input for more than 30 seconds. An attract mode
was an arcade game feature that puts the game into a non-interactive
demo mode intended to catch the attention of passers-by. What is your
idea for an attract mode?

Adding a Cut Scene and Handling
Input
Much of the work we’ve completed so far has contributed to the whole
largely unseen and unheard. The only action we’ve required – or even
listened for – from users is a single button click. How boring – and quiet.
That’s all about to change, though! In this chapter, we’re going to add some
flavor to our app’s launch by adding a Splash Screen that tells the world
that everything they’re about to see is “Powered by Babylon.js” in the
process of providing players with their first experience with Space-
Truckers. We’ll also be giving users agency in the game world by adding
inputs for multiple different device types, along with the logic to process
inputs into actions in the game.

This seems like a lot to cover in such a short chapter, but thanks to how
easy it can be to accomplish tasks in Babylon.js, progress can come faster
than you might think.

In this chapter, we will cover the following topics:

Everything we’ll be doing will build from the work we’ve done in previous
chapters, but it’s OK if you’re just picking things up from here – read on for
technical details on how to obtain the source code to complete this chapter.

Technical Requirements
This is the first time that we’re going to be expanding the technical
requirements, but it should hardly be a surprise to anyone that to work with
a particular type of input device – be it a mouse and keyboard, Xbox™
controller, Sony PlayStation™ controller, or even a VR joystick – it is

Space-Truckers – the Splash Screen

Designing the Input System

necessary to either have one of such devices handy or (worst case)
download and install a suitable emulator/simulation app. That said, Space-
Truckers should be playable with the following input types:

An appropriate audio output device will be needed to play music and
sounds.

This chapter will follow a similar pattern as previous chapters, where we
will build out one or more PlayGround snippets before integrating them into
the application’s code base. The code we’ll be starting from is at
https://github.com/jelster/space-truckers/tree/ch4 if you want a reference
point or a place from where you can start your journey. Now, with that
squared away, we can turn our full attention to our first task: building the
Splash Screen!

Space-Truckers – the Splash Screen
Nothing gets the attention of an audience better than a splashy entrance, and
nobody knew this better than good ol’ William Shakespeare. A glance at the
first few pages of any of his plays uncovers a host of different exciting
scenes from a street brawl between rival gangs in Romeo and Juliet to an
interrupted wedding in A Midsummer Night’s Dream. The Bard knew how
to get the attention of his audiences – a notable feat in those times – and just
as he shamelessly plundered history and mythology (sometimes both at the
same time!) for his stories, we’re going to shamelessly plunder the
techniques he used in our work.

Keyboard and mouse

Virtual joysticks/touch screen

Xbox™ controller

Sony PlayStation™ controller

Generic gamepads

https://github.com/jelster/space-truckers/tree/ch4

The specific inspiration from Mr. S. that we will examine is the idea of
engaging the attention of an audience to prepare and prime them for what
they’re about to experience. We don’t have a fancy fight scene or a fantasy
wedding in the cards for Space-Truckers, but we do have our Splash
Screen!

Looking at the Splash Screen in context, the user has just clicked the
Launch button on the regular HTML web page, transitioning the page over
to WebGL and rendering the animated Loading Screen we built back in
Chapter 2, Ramping up on Babylon.js. Immediately following the
completion of the Splash Screen (either because it ran to the end or because
the user chose to skip through it), the user will be taken to the Main Menu
screen that we built out in the previous chapter. Through a series of
animated sequences and in conjunction with the audio soundtrack, users
will be put solidly into the mood of a Space-Trucker.

Storyboarding the Scene
While it’s easy to let the mind wander off into the potential avenues that a
splash scene might show, we’ll Save It For A PR™ and instead start with
something incredibly simple that we can then use as a base for expansion. A
storyboard doesn’t have to be an immensely complicated and planned-out
artifact. Time spent storyboarding is time that isn’t being spent trying out
the ideas laid out by the storyboard, so don’t worry about making it look
good, worry about the boards capturing a set of snapshots of what you want
to happen. The following diagram shows the sketched-out series of panels
that comprise the Splash Screen storyboard:

Figure 5.1 – Storyboard for the Splash Screen sequence. Being a sketch, the
numbers given for timings should not be taken at face value

Let’s break this diagram down a bit by walking through the scene in a
temporal order. At time = 0, we have a blank stage (screen). After 2 seconds
have passed, the first panel with the words “Powered By” is fully visible.
Half (0.5) a second after that (or T+2.5s) marks the beginning of the exit

sub-sequence, which completes with the panel fully hidden another half a
second later. The total amount of time that the first panel depicts is 3
seconds. Armed with that explanation, the other three panels should also
make sense. Each panel progresses the scene forward, starting at the top-
left, moving right, and wrapping back to the left panel, respectively. The
image shown in a panel fades in and out according to the given timings, but
those numbers should be used as rough guide markers only – it’s important
to tweak the values to what you like.

If you were to compare the storyboard with the final splash screen
sequence, there are some gross similarities; the panels are all mostly the
same and in the same order, the timings notated are roughly the same, and
more. That shows the evolution of the design from start to finish and serves
to drive home a central point of storyboarding – the boards are not the
whole story! These admittedly crude sketches serve the purpose of putting a
stake in the ground, giving loose definition to the basic elements and
timings involved so that we can focus on other aspects of implementation –
such as the code.

Building the Scene
There is only one new concept that we haven’t encountered yet that we’ll
need to learn to build out the Splash Screen in code. Everything else will
use a combination of techniques that we’ve used in previous chapters in one
way or another, so hopefully, this will seem pretty easy! For this part of the
chapter, we’ll be working exclusively in the PlayGround (PG) – if you’re
following along, this is where you’ll want to load up the PG with a new
snippet.

Important note

Code listings will continue to become less complete and more focused on
specific aspects or areas of the code under discussion that are important,
tricky, or non-obvious. The complete code for this chapter can be found at
https://github.com/jelster/space-truckers/tree/ch5. Don’t hesitate to pull it
up to compare your progress against it or check your work – sometimes, an
explanation just won’t cut it and you need to see working code!

https://github.com/jelster/space-truckers/tree/ch5

When we break out the various animated sequences outlined in the
storyboard, there’s an immediate structure or way of ordering the cut scene
that sticks out right away. Each board in the storyboard represents a distinct
snapshot of what is happening at a given time in the scene, so we need to
come up with a way to represent these cut scene segments in code. We want
it to be a reusable component, and we want to be able to use The Power of
Composition to assemble multiple segments into a greater whole. As with
any flexible programming language, there are many ways we might fulfill
these requirements. A class-based approach leverages ES6 language
features to make it quick and easy to create new instances of a
CutSceneSegment, and a new SplashScene class can be used to compose
and manage those segments with proper timings and transitions.

The CutSceneSegment Class

The CutSceneSegment class is a simple container that can represent an
atomic portion of the scene’s sequence, but although it is simple, it isn’t
devoid of any behaviors. A CutSceneSegment should be able to start and
stop its sequence, potentially looping playback. Similarly, other
components may need to know when a segment completes, so a onEnd
observable will make it easier for us to write controlling logic to manage
multiple segments in sequence. Because we don’t hate ourselves and we
don’t want to spend time debugging mysteriously misbehaving code, we’ll
treat an instance of a CutSceneSegment as immutable. That is, once we’ve
created the object, we’re not going to try to change it by say, swapping out
the contained animations.

Important note

Can you keep a secret? Those who have experience with JavaScript may be
thinking that the word “immutable” is incorrectly being applied. While it is
true that from a strictly technical sense, the objects we’re dealing with are
not immutable, the idea is that we simply pretend it is immutable. If we’re
using it as-is, and if nobody tells, does it matter whether an object is
immutable or not? Be warned, though – it’s easy to lose the distinction

between ways of thinking about software and expressing those concepts in
code, so don’t mistake this for language-specific guidance!

Although it would be useful to be able to control multiple target scene
elements in a single CutSceneSegment, we don’t need that complexity to
implement the scene from our storyboards. This decision, in conjunction
with the previous decision regarding immutability, has two important
implications for how we will write our classes’ constructor.

First, we’ll need to get a target against which the segment will operate.
This can be anything capable of being animated, so, pretty much any BJS
type you may want to animate can be used here (with the notable exception
of the types in BABYLON.GUI.Controls). Second, the constructor will
need to accept an array of arbitrary individual Animation instances as an
animationSequence. Of course, the “ctor” (as the cool kids all call it) will
need to take a reference to the current scene, which gives us the following
signature for the method:

class CutSceneSegment {

 //loopAnimation = false;

 //animationGroup;

 //onEnd = new Observable();

 constructor(target, scene, ...animationSequence) { ... }

You may be unfamiliar with the highlighted language construct. That’s OK
because although it’s not uncommon, it’s also not something that you might
encounter in your everyday JavaScript. The three periods (.) before
animationSequence indicate that the parameter is treated as an arbitrary
params-style array. This is merely a convenient piece of “syntactic sugar”
that allows callers of the function to avoid the need to create and pass an
Array and instead pass a comma-separated list of the elements comprising
the Array. The following code fragment shows arrays being passed as the
trailing three parameters:

new CutSceneSegment(billboard, scene, fadeAnimation,

 scaleAnimation, rotateAnimation);

In the CutSceneSegment constructor, there are two primary things we need
to accomplish:

1. Create a TargetedAnimation from each Animation in
animationSequence.

2. Add the TargetedAnimations to a new AnimationGroup.

Going in reverse order, AnimationGroup is something new to the project.
Do not try to overthink it – it is and does exactly what its name suggests.
Next, because we already have animations that just need targeting, we can
loop through the animationSequence collection and use AnimationGroup’s
addTargetedAnimation method to complete the binding. The Babylon.js
Docs site at
https://doc.babylonjs.com/divingDeeper/animation/groupAnimations has
more information on different aspects of the AnimationGroup properties
and methods, but other than the previous looping logic, the usage of an
AnimationGroup is very similar to an individual Animation. Having
accomplished these tasks, all that’s left for the constructor is to delegate the
CutSceneSegment.onEnd member property to
AnimationGroup.onAnimationGroupEndObservable. Here’s what the entire
constructor looks like:

constructor(target, scene, ...animationSequence) {

 this._target = target;

 let ag = new AnimationGroup(target.name +

 "-animGroupCS", scene);

 for (var an of animationSequence) {

 ag.addTargetedAnimation(an, target);

 }

 this.animationGroup = ag;

 this.onEnd = ag.onAnimationGroupEndObservable;

 this._scene = scene;

}

Finishing the CutSceneSegment class are the start and stop methods.
These are extremely simple, and just call the appropriate function of
this.animationGroup. When we want to loop a CutSceneSegment – not a
typical usage – we can set the loopAnimation flag to true before calling
start:

https://doc.babylonjs.com/divingDeeper/animation/groupAnimations

start() {

 this.animationGroup.start(this.loopAnimation);

}

stop() {

 this.animationGroup.stop();

}

This completes the CutSceneSegment class. It’s ready to be used in the code
we’re just about to write for the SplashScene class, where we’ll be creating
a segment for each panel in the storyboard before playing them in sequence.
First, though, let’s add another set of building blocks for our scene – the
animations driving the scene’s visuals.

The Animations

There are only three separate types of animations that we need for the
scene. The keyframes and targets may be different, but the base property
being animated is the same. Separate from any class declaration, add
declarations for flipAnimation, fadeAnimation, and scaleAnimation. To
keep the frame rates the same, we declare animationFps as const:

const animationFps = 30;

const flipAnimation = new Animation("flip", "rotation.x",

 animationFps, Animation.ANIMATIONTYPE_FLOAT,

 ANIMATIONLOOPMODE_CONSTANT, true);

const fadeAnimation = new Animation("entranceAndExitFade",

 "visibility", animationFps,

 Animation.ANIMATIONTYPE_FLOAT,

 Animation.ANIMATIONLOOPMODE_CONSTANT, true);

const scaleAnimation = new BABYLON.Animation("scaleTarget",

 "scaling", animationFps, Animation.ANIMATIONTYPE_VECTOR3,

 Animation.ANIMATIONLOOPMODE_CYCLE, true);

This should be pretty familiar by now, except for the highlighted true
parameter; this instructs the Babylon.js animation engine to enable the
animation to be blended with others. It’s not necessarily something we’re
leveraging immediately in the scene, but it’s important to configure it
correctly at the outset for when it’s needed.

Important note

In the BJS PlayGround, IntelliSense may sometimes confuse the
BABYLON.Animation type with browser or DOM types with the same name.
Adding the BABYLON prefix can help clear up confusion, but remember to
remove it later – you won’t need it when the code is integrated locally.

The pieces have all been prepared and moved into place for us to start
constructing the SplashScene class, where we’ll create and assemble
CutSceneSegments into a complete scene.

The SplashScene Class

When designing a class or component’s code structure, a good way to start
can be simply identifying and capturing any currently known variables of
the state as class members, even if the value won’t be set until later. One
such example of this is currentSegment. This property holds the currently
playing CutSceneSegment. We’ll populate the various segments in the
constructor, but by declaring the members outside of constructor (as
opposed to defining it in the ctor – for example, this.foo = 3), we
improve the readability of the code – something that is incredibly important
in any code destined for production! Here are the class members that we’ll
want to define:

currentSegment

poweredBy

babylonBillboard

communityProduction

dedication

onReadyObservable = new Observable()
skipRequested = false

Each of the preceding segments (save the highlighted ones, for obvious
reasons) corresponds to a panel on the storyboard – in order of execution to
help with readability. Though we won’t use it until later in this chapter,
onReadyObservable is there to signal that all the assets have finished
loading and the cutscene is ready to start. It’s a similar situation with
skipRequested – later in this chapter, we’ll add the ability for players to
skip the cut scene, so adding this now is legitimate. Adding the small pieces
of code to hook it up is trivial too since we’re already working in that area,
and it’s one less thing to worry about later.

There will be enough setup code in the constructor as it is, so a forward-
thinker might consider adding method stubs to encapsulate each segment’s
setup process! Turning our attention to the createScene function, we want
to start seeing things as soon as possible, so let’s hook up one end of the
logic, which will allow our segments to transition between each other.

Just as our previous PlayGround snippets have been structured, the
SplashScene constructor needs a BABYLON.Engine instance passed as a
parameter, which it uses to create the scene. Also similar is the sparse and
simple createScene function, which is used purely in the PlayGround. In
case a refresher is needed, here’s how to hook up the code with the
Playground in the body of createScene:

const splashScreen = new SplashScene(engine);

splashScreen.onReadyObservable.add(() =>

 splashScreen.run());

return splashScreen.scene;

We need to be able to discretely control when SplashScene starts and stops,
so the constructor isn’t going to be the place to start playing
CutSceneSegments. Instead, we’ll add a run method (highlighted in the
preceding snippet) to perform those duties in response to a signal from
onReadyObservable. Now, as we enhance and expand SplashScene, we’ll
be able to build off from this without having to worry about getting
everything to start at the same time.

The SplashScreen.run() function looks very similar to the run function of
the SpaceTruckerApplication run function if you squint enough and

possibly stare unprotected at the sun for a bit.

Important note

Do not look directly at the sun without proper eye protection! Sunglasses,
even ones that block UV radiation, are not sufficient protection for eyes,
and permanent damage may result. On a related note, never take advice on
what to do in the outdoors from a technical book on programming. HTH.

The reason they look similar to each other is that they both serve similar
duties. Similar problems face similar solutions and all, so here we are:

run() {

 this.currentSegment.start();

 let prior, curr = this.currentSegment;

 this.onUpdate = this.scene.onBeforeRenderObservable

 .add(() => {

 if (this.skipRequested) {

 this?.currentSegment.stop();

 this.currentSegment = null;

 return;

 }

 curr = this.currentSegment;

 if (prior !== curr) {

 this.currentSegment?.start();

 }

 });

}

Even though this scene doesn’t use the function* generators that we saw in
the previous chapter, it still qualifies as a simple type of state machine. The
current state (represented by currentSegment) is polled on every frame and
compared with the previous frame’s value. If they are different, then it
means that a new segment has been swapped in and must have its start
method invoked to continue the sequence. Because it’s so straightforward,
and again because we’re already here, the logic for managing the use case
where the player wishes to skip the cutscene and go straight to the Main
Menu gets added as well. The only real items of note are the combination of
setting this.currentSegment = null with the ?. operators to prevent any
attempt to call a method on an undefined value; if currentSegment is null

(from the viewpoint of the code), then the cutscene either hasn’t started yet,
or it has finished.

To provide a stable platform for creating the CutSceneSegments, there are
still a few things that we need to add to the constructor logic, as shown in
the following code:

const scene = this.scene = new Scene(engine);

scene.clearColor = Color3.Black();

this.camera = new ArcRotateCamera("camera", 0, Math.PI / 2,

 5, Vector3.Zero(), scene);

this.light = new HemisphericLight("light", new Vector3(0,

 1, 0), scene);

this.light.groundColor = Color3.White();

this.light.intensity = 0.5;

const billboard = this.billboard =

 PlaneBuilder.CreatePlane("billboard", {

 width: 5,

 height: 3

}, scene);

billboard.rotation.z = Math.PI;

billboard.rotation.x = Math.PI;

billboard.rotation.y = Math.PI / 2;

const billMat = new StandardMaterial("stdMat", scene);

billboard.material = billMat;

Setting up the scene, camera, and light should be pretty standard by now,
and although the billboard Plane isn’t new either, it’s understandable to
wonder at what role it plays in the scene. It’s pretty simple if you think
about it. There’s camera to render the scene, there’s light to illuminate
billboard, and there’s billboard to display our content – whatever that
may be! We want the billboard to face perpendicular to the camera’s view,
hence setting the initial rotations. The values may seem a bit weird, but they
will all make sense shortly. Now that we have the framework to render the
cutscene, it’s time to start defining the cutscene segments! We’ve gone quite
a bit without saving (or not, if you’re well disciplined!), so now’s a good
time to run the snippet and check for any obvious issues or errors before
saving it for posterity.

The “Powered By” CutScene Segment

Referring to our initial storyboard, as our first segment, we’ve got a
billboard displaying a stylized “Powered By” image. The timings make
sense, and it’s perfectly serviceable. However, the problem with it is that it’s
just plain outright boring. Let’s spice it up a bit by having the billboard spin
around slowly throughout the segment using flipAnimation we created
earlier. At the same time, we’ll apply fadeAnimation to fade the billboard
in and out at the appropriate times. To keep the constructor to a manageable
size, add a new class member function to SplashScene and call it
buildPoweredByAnimations. Then, in the body of the function, start by
declaring constants for each of the key timing events of the segment:

 const start = 0;

 const enterTime = 2.5;

 const exitTime = enterTime + 2.5;

 const end = exitTime + 2.5;

The values in the preceding snippet were arrived at through
experimentation, so feel free to try out other values until you find
something that works right for you. With absolute timing values computed,
we can also compute the associated frame number for each timing event:

 const entranceFrame = enterTime * animationFps;

 const beginExitFrame = exitTime * animationFps;

 const endFrame = end * animationFps;

These frame numbers are important when we want to define the animations’
key frames array. Each separate animation will need a set of keyframes
defined for it, so we’ll need a fade-in and fade-out set of keyframes and a
set of rotation – or “flip” – keyframes. Remember, the value for fade
animations corresponds to the alpha property, so it will be between 0
(completely transparent) and 1 (completely opaque). The flipKey values
represent the y component of the target’s rotation:

const keys = [

 { frame: start, value: 0 },

 { frame: entranceFrame, value: 1 },

 { frame: beginExitFrame, value: 0.998 },

 { frame: endFrame, value: 0 }

];

 fadeAnimation.setKeys(keys);

 const flipKeys = [

 { frame: start, value: Math.PI },

 { frame: entranceFrame, value: 0 },

 { frame: beginExitFrame, value: Math.PI },

 { frame: endFrame, value: 2 * Math.PI }

];

 flipAnimation.setKeys(flipKeys);

After defining each of the relevant keyframes according to the computed
frame timings, it’s important to pass those keyframes onto the animation by
calling setKeys. This works with our plan for reusing Animations because
the keyframes are copied into the resulting TargetAnimation instance
created when associated with its target; we can just call setKeys again with
a new set of keyframes whenever needed.

Important note

The pattern that we’re establishing here for this CutSceneSegment will be
used for the rest of the segments. In other words, this will be on the test!

The final thing our buildPoweredByAnimations function needs to do is
create and return a new CutSceneSegment that puts everything together:

const seg0 = new CutSceneSegment(this.billboard,

 this.scene, fadeAnimation, flipAnimation);

return seg0;

Back in the SplashScene constructor is where we’ll invoke the
buildPoweredByAnimations function to create a poweredBy object variable.
Assigning poweredBy to this.currentSegment will ensure that when run is
called, the sequence is started. Following that, we need to load up the
“Powered By” image as a texture that we can use with billMat. Since this
involves an external image asset, add top-level declarations for the full
URL to the image files (see the previous chapter for more on constructing
the full GitHub URL for an asset). In this initial case, it’ll be a file called
https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/powered-by.png. Use that URL to construct a new

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/powered-by.png

texture, then assign the new texture to the previously-created
billMat.diffuseTexture property.

Important note

Make sure you load the texture before assigning it to the material!

When running, you should see the image on the surface of the billboard
plane, which is a good way to test your work before saving it!

Transitioning to the Next
CutSceneSegment… and Beyond

When a CutSceneSegment begins running, it may make certain assumptions
about the current state of the different actors and set pieces involved in a
scene. For instance, a lighting animation that dims a light in a specific
pattern may need the intensity values to start at a specific level. At the same
time, a given segment can’t “know” anything about other segments or their
relationships – with a single crucial, albeit caveated exception. Upon
completion of a CutSceneSegment, the onEnd observable notifies any
interested parties of the fact, but the observer itself doesn’t know anything
about its subscribers. This is why adding a delegate to handle the onEnd
observable is the ideal solution – and at the same time is also the caveat! To
keep some local variables in the constructor conveniently in scope, we can
call onEnd.addOnce(() => { … }). The body of the function is where we
want to tidy up objects in the scene, along with designating the next
segment in the Splash Scene sequence:

 poweredBy.onEnd.addOnce(() => {

 console.log("powered End");

 billMat.diffuseTexture = babylonTexture;

 billboard.rotation.x = Math.PI;

 this.light.intensity = 0.667;

 billboard.visibility = 0;

 this.currentSegment = babylonBillboard;

 });

In our immediate case, the next segment is going to be the
babylonBillboard segment, so make the last statement be
this.currentSegment = babylonBillboard in the poweredBy.onEnd
handler. Before that expression, we need to reset the rotation of the
billboard to be front (perpendicular) facing to the camera, as well as swap
billMat.diffuseTexture for the Babylon.js logo texture.

Important note

Before moving on to the next segment, it’s a good idea to try and run the
PlayGround snippet to see how it looks and test it for any major errors.
Opening the browser's Dev Tools to see logged messages can help you gain
a sense of timing!

What’s that? The new segment doesn’t exist and neither does the Texture?
That’s right – it’s time to Repeat the Process that we just did but this time,
apply it to the next panel in the scene! “Repetition is the key to learning” is
how the phrase commonly goes, and because it gets repeated so much it has
got to make sense, so take the opportunity to review what we’ve just done
and apply it using these values for the logic of the buildBabylonAnimation
function: for the texture, use
https://raw.githubusercontent.com/BabylonJS/Brand-
Toolkit/master/babylonjs_identity/fullColor/babylonjs_identity_color.png
and for animationSequence, use fadeAnimation:

After adding the buildBabylonAnimation method, make sure to call it in
the constructor so that you can subscribe to the new segment’s onEnd
observable. In the babylonBillboard.onEnd handler, there’s no need to
reposition the billboard since it didn’t move during this segment, but there
is the matter of teeing up the next one, in what is hopefully a familiar
cadence.

https://raw.githubusercontent.com/BabylonJS/Brand-Toolkit/master/babylonjs_identity/fullColor/babylonjs_identity_color.png

The next segment is called communityProduction and is functionally
identical to the previous segment save for a different texture, located at
https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/splash-screen-community.png. It is also just using
fadeAnimation. Here are the main relevant timings and numbers needed:

Just like the previous segment, the communityProduction.onEnd handler
will be responsible for setting the next segment – callToAction – and
swapping billMat.diffuseTexture to the next one, which for lack of any
better name will be called rigTexture. This texture is rendered onto the
billboard mesh, where after fading in we’ll apply a looping animation to
its scaling property to make it look more dynamic.

Important note

The storyboard indicates this panel is where copyright notices and such
would go, but there’s no reason those can’t go someplace else that’s equally
useful but less prominent. Instead, we’ll make the panel contain a Space-
Trucker image, with the image slowly pulsing the scale and opacity in a
ready-wait indication state, waiting for the player to interact.

In a short while, we will be adding some input management. To prepare for
that, we’re going to need a way to display some appropriately formatted
Text. In a block. A sort of TextBlock, as it were. Our SplashScreen is
going to need to use the BABYLON.GUI.

The Last Segment

Our final CutSceneSegment – callToAction – follows a similar path that
the others have taken, in that we use billBoard to display a
diffuseTexture that fades into the scene. Here is where the segments start

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/splash-screen-community.png

to diverge because instead of fading out again, we want it to fade in and
then loop around without ever completely fading away. At the same time,
we will use scaleAnimation to vary the scale of the billboard mesh along
its X- and Z-axes. This will give the two-dimensional flat image a fake
appearance of depth and scale as the animation cycles, which means that it
looks cool! Here are the timings for each animation in the segment:

When the end timing is reached, we want our Call To Action (CTA) text to
be made visible, inviting us to press a key or tap their touch screen to
continue. In another of the Bard’s favorite tricks, here is some
foreshadowing (not of the shading variety, the literary kind) – the CTA
serves the subtle purpose of allowing the application to figure out what type
of input the player wants to use. It’s an incredibly direct means of
communication between two entities that otherwise have almost zero
capability to understand each other, and it works because its binary (the
irony! It burns!) simplicity conveys a user’s preference simply by them
picking up the device and engaging an input.

Before we go there, we need to wrap up the implementation of the
constructor by creating BABYLON.GUI.AdvancedDynamicTexture mentioned
earlier: callToActionTexture. Creating, configuring the properties of, and
adding a TextBlock to a GUI is a familiar exercise by now (though stick
around for Chapter 10, Improving the Environment with Lighting and
Materials, where we’ll introduce the GUI Editor!), so the next listing
should require very little explanation:

// ... create billboard textures used in segments

let callToActionTexture =

 this.callToActionTexture =

 BABYLON.GUI.AdvancedDynamicTexture.

 CreateFullscreenUI("splashGui");

let ctaBlock = new TextBlock("ctaBlock",

 "Press any key or tap the screen to continue...");

ctaBlock.textWrapping = BABYLON.GUI.TextWrapping.WordWrap;

ctaBlock.color = "white";

ctaBlock.fontSize = "16pt";

ctaBlock.verticalAlignment =

 ctaBlock.textVerticalAlignment =

 TextBlock.VERTICAL_ALIGNMENT_BOTTOM;

ctaBlock.paddingBottom = "12%";

ctaBlock.isVisible = false;

callToActionTexture.addControl(ctaBlock);

// ... call the builder functions

// ... Attach onEnd delegates

One thing not to forget is to set the initial visibility of ctaBlock
(highlighted) to false. If you want to display it sooner than in the handler
for callToAction.onEnd, go ahead – it’s your game! Once you’ve gotten
everything added to the constructor, give it a whirl and fix any errors that
come up. Hit Save, then make sure you either put on headphones or can
otherwise crank up your computer’s audio – it’s time to put in the theme
song!

Fading in the Title Music

After working on this SplashScene for so long by now, it’s probably started
to feel a bit bland, and that is something we will not accept any longer. In
Chapter 4, Creating the Application, we added the Space-Truckers main
theme song to the Main Menu. Here, we’ll be doing something very
similar, but with a SplashScene twist.

Recall what was hopefully not-so-long-ago, when you read this gem?

“Though we won’t use it until later in this chapter, onReadyObservable is
there to signal that all the assets have finished loading and the cutscene is
ready to start.”

Well, “later in this chapter” starts right now. Since we’ve already put
everything else into place, there are only four tasks left to wrap up this bad
boy and take ‘er home:

1. Add a string to hold the URL to the song (or substitute your own) at
https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/music/space-trucker-title-theme.m4a.

2. Create a new Sound in the constructor, calling
SplashScene.onReadyObservable.notifyObservers in the Sound’s
readyToPlayCallback. Set the volume really low – 0.01 works
nicely – to give the volume room to grow.

3. Add a call to this.music.play() in the SplashScene.run method.

4. Crank up the volume (also in the run method) over some time by
calling this.music.setVolume(0.998, 500).

Do the usual drill of running, fixing issues, repeating as needed, and then
saving. If you run into trouble or want to compare your results with a
known “working” snippet, check out
https://playground.babylonjs.com/#DSALXR. Still can’t seem to get things
working? Head over to the Space-Truckers GitHub Discussion boards at
https://github.com/jelster/space-truckers/discussions and get help from the
community, leave feedback or bug reports, and catch any updates to the
code since this book was published. Having a runnable sample of what you
want to accomplish in the PG is a great way to play around with ideas and
concepts, but now, it’s time to metaphorically remove our more abstract and
theoretical game designer’s hat and put on our more concrete and pragmatic
software engineer’s work helmet – we’ll need those qualities as we
integrate our PG code with the application.

Integrating the SplashScene
The integration phase of the work is where the shiny, pretty, elegant PG
Snippet meets the hard-faced ugly truth of reality. It’s the part where things
are most likely to go wrong, and also where bugs in the application code
can be uncovered. The reason this happens has little to do with the character
and attributes of the person writing the code, even though it might feel that
way sometimes. Any bugs or defects uncovered at this point are reflections
of what wasn’t known at the time the original code was written, and that
means there’s an opportunity to improve it!

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/music/space-trucker-title-theme.m4a
https://playground.babylonjs.com/#DSALXR
https://github.com/jelster/space-truckers/discussions

Seeing the Difference

Because you have the benefit of this text to help guide your efforts, you’ll
be spared having to track down and fix two issues uncovered in the
SpaceTruckerApplication.js component, along with some other changes
we’ll make structurally to the class. Including the two issues just
mentioned, here is a list of the things we need to do to integrate
SplashScreen:

The spaceTruckerApplication.js file will see the greatest changes with
these tasks:

And finally, the two issues that would otherwise prevent the application
from correctly progressing and rendering are as follows:

Add new files to /src - cutSceneSegment.js and splashScene.js

Add appropriate imports to new files and copy over class definitions

Remove the placeholder Promises that were used to simulate loading
times in spaceTruckerApplication. With those gone, we can also
remove the async designator from their hosting functions.

Instantiate the Scenes in the initialize method instead of previous
locations.

Register an Observer in goToOpeningCutscene that listens for the
SplashScreen’s onReady event.

(Issue) AppStateMachine should yield currentState.

(Issue) Logic in the engine.runRenderLoop callback needs to be a
class-level function to access this properly. The problem can be
resolved by extracting the arrow function into a class-level function –
that is, this._engine.runRenderLoop(() => this.onRender());.

The best way to visualize the changes is to view a diff, or difference, report
between two revisions. The Git Source Control Management (SCM)
system offers a huge amount of functionality when it comes to comparing
the contents of a repository at two (or more) points in time, so let’s leverage
that to help understand what needs to change to integrate SplashScreen
into the app.

However it is accessed, the range of revisions we need to compare can be
represented with the ch4...6db9f7e expression. Use this as an argument to
git diff or paste it into a browser as the trailing path to <repo
URL>/compare/<revision range>, or in this case,
https://github.com/jelster/space-truckers/compare/ch4...6db9f7e.

Depending on the particulars of your development environment, a diff will
be displayed in a varying number of (pardon the pun) different ways.
Regardless of the specific tool, almost every diff will organize its report by
individual files that have changed between the given range of revisions.
VSCode’s Timeline feature will show the commit history for an opened
file; the diff can be viewed by clicking the revision in the Timeline pane.

Tip

Making a habit of examining these diffs closely before each commit or
merge can improve your coding abilities, together with the quality of your
code. A good sign that you are trying to do too much in a single commit is
having a complicated and long changeset. Break the work into smaller
components and commit each separately, and not only will any reviewers of
your Pull Request (PR) thank you, but you’ll find yourself moving faster
and with greater confidence.

The GitHub web interface can also be useful for viewing differences
between revisions, branches, and even forks (also known as upstream
repositories). Navigating through and understanding the different reports is
a key skill for people who wish to become skilled in software development,
but it can be tough to block out the inevitable noise that comes with
viewing so much information. GitHub will try to do some of this for you,
by collapsing large diffs by default, for instance, but the best way to deal
with poor a signal:noise ratio is unfortunately not retroactive; it is only

https://github.com/jelster/space-truckers/compare/ch4...6db9f7e

useful when applied at the time of commit or push. This solution is to be
mindful of and structure commits with a high signal:noise ratio from the
beginning. Here are some tips for helping with that:

Using the diff as a reference guide when needed, try to accomplish the
activities listed earlier on your own. Of course, since you’re already looking
at the diff, you should feel free to simply pull down the code at commit
6db9f7e if you’d simply like to resume following along right away. The
following figure shows a still capture of where you should end up after
running the application, clicking the Launch button, and after the
conclusion of the Splash Screen:

Figure 5.2 – Splash Screen finished and waiting for user input

We’ll get into the nitty-gritty details of all of the items – some familiar,
some new – contained in that commit’s patch soon enough, but before we
do, let’s quickly recap what we’ve accomplished so far.

Starting with a set of storyboard panels depicting snapshots of the scene at
various points in time, we used the boards to pin down timings for the
various animations and transitions involved. Then, we crafted some
reusable code to define a CutSceneSegment, along with other logic relating
to animating objects. Finally, we wrote the containing SplashScreen class
and its attendant asset and CutSceneSegment orchestration logic that
comprises the full timeline of the scene. That’s a lot to accomplish – don’t
neglect to acknowledge that!

Next, we’ll be moving on to one of the more under-appreciated areas of
game development: input systems. Because of its importance, we’ll be
devoting the rest of this chapter to going over how the Space-Truckers input
system functions and how it is implemented.

Designing the Input System
The topic of the User Interface (UI) often focuses quite heavily on visual
elements, layout, and design. For the majority of web applications, the
basics of tracking a pointer, touches, or taps along with keyboard input are
handled by the web browser, which in turn delegates many responsibilities,
such as hardware driver interfacing to the underlying Operating System
(OS). When using a web-native application library such as Babylon.js,
developers can take advantage of these already-present abstractions to make
it quick and easy to add user interaction elements to their scenes. In this
section, we’ll learn how to add the application scaffolding that can support
multiple types of inputs on-the-fly, followed by implementing a way to map
arbitrary inputs to actions or commands in the game.

It’s said that imitation is the sincerest form of flattery, so let’s flatter the
Babylon.js team by “stealing” (called “researching” in polite company) the
camera input management code. Using the FreeCamera as an example
(read about it at
https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/sr

https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/src/Cameras/Inputs/freeCameraGamepadInput.ts

c/Cameras/Inputs/freeCameraGamepadInput.ts), here is how the data flows
between the controller and the application:

Figure 5.3 – Flow of input from a Human Input Device (HID) through the
Web Browser’s APIs, to the HTML/Canvas and into Babylon.js and the
various components of the FreeCamera’s input system

Data starts at the top with the device itself sending data to the connected
host OS, which (via its device driver interface) translates that raw input data
into structures compatible and familiar to the web browser or native host
interfaces. Eventually, it makes its way into Babylon.js, where it is

https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/src/Cameras/Inputs/freeCameraGamepadInput.ts

massaged, processed, filtered down, and passed around until it reaches the
target of its affections: the FreeCamera. Here is a PG that represents a
slightly simplified version of the actual input system we’ll be discussing
now – use it as a working reference if you get lost:
https://playground.babylonjs.com/#78MJJ8#64.

Defining the Main Menu Control
Scheme

Although we won’t be defining control maps for the game phases at this
time, the foundations we’ll establish with this pattern will make it quick,
painless, and easy to add whatever arbitrary control maps later as they
become necessary. The table shows the various inputs and actions that we’ll
be interested in handling in the Menu system:

Figure 5.4 – Menu controls mapped to various inputs

When it comes to the basic keyboard and (mouse) pointer interactions, the
Babylon.js Scene offers the onKeyboardObservable and
onPointerObservable properties to allow subscribers to be notified of
keyboard and mouse (touch) interactions, respectively. GamepadManager
(accessible from a scene’s gamepadManager property) and VirtualJoystick
are useful for adding gamepads and their virtual touch equivalents for when
mouse and keyboard aren’t the goal. You can read more about these in the
Babylon.js docs at

https://playground.babylonjs.com/#78MJJ8%2364

https://doc.babylonjs.com/divingDeeper/input/virtualJoysticks and
https://doc.babylonjs.com/divingDeeper/input/gamepads.

Important note

As alluded to earlier, the topic of input handling is sufficiently complex that
it would take a great deal of the finite space available in these pages to
review all the code line by line, so the code that is listed will be highlighted
in sections under a particular area of discussion. Don’t worry about not
being able to follow along, though – you can still examine the full source
code and the links to PG snippets won’t be going away either!

Mapping Input Data
Although the table of controls from the previous section is something that
would work well in the game or application’s user manual, it’s less clear
how the information in that table can be leveraged in this application.

A JavaScript object map (or hashmap) refers to a regular JS object where
the string name for each property is the key to its value. Using object-key
notation (for example, accessing an object’s values, as in
foo[“property”]), indices will be represented in the new source file we’ll
call inputActionMaps.js. In it, we will define all the various object
constants and helper functions relating to – as suggested by the name –
mapping inputs to actions:

const inputControlsMap = {

 /* Keyboard Mappings */

 w: 'MOVE_UP', 87: 'MOVE_UP',

 s: 'MOVE_DOWN', 83: 'MOVE_DOWN',

 a: 'MOVE_LEFT', 65: 'MOVE_LEFT',

 d: 'MOVE_RIGHT', 68: 'MOVE_RIGHT',

 //...

 PointerTap: 'ACTIVATE',

 //...

 button1: 'ACTIVATE', buttonStart: 'ACTIVATE',

 buttonBack: 'GO_BACK', button2: 'GO_BACK',

 dPadDown: 'MOVE_DOWN', lStickDown: 'MOVE_DOWN',

};

export default { inputControlsMap, ...};

https://doc.babylonjs.com/divingDeeper/input/virtualJoysticks
https://doc.babylonjs.com/divingDeeper/input/gamepads

On the left-hand side (the property name or key) of the object map is every
unique potential input index that we are interested in handling. We include
every potential combination of input codes that should apply to this action;
this includes the integer codes, as well as the character keys, to allow
interchangeability between different types of keyboard input events; this
will also make it easier to add additional input methods in the future. You’ll
notice that we’ve defined our own input indexes as well, in the form of the
button1 and buttonStart members. Although it seems duplicative and
redundant, having a layer of indirection between the actual device codes
and the logic handling them gives the system a ton of flexibility.

When it comes to handling the various types of gamepad input, indirection
comes in handy once again. The BABYLON.DeviceType enumeration defines
constants for each supported type of gamepad device. We’ll use another
object map to store how each particular device’s inputs matches up to our
defined inputControlsMap:

const gamePadControlMap = {

 /* deviceType */

 2: [

 { 0: 'button1' }, // BABYLON.Xbox360Button.A

 { 1: 'button2' },

 { 2: 'button3' },

 { 3: 'button4' }

]

};

The preceding code is what the mapping for the Xbox360 controller looks
like at a very basic level. As the comment indicates, each object in the
deviceType array corresponds to a different input index on the controller.

In a moment, we’ll learn how to use this mapping information at runtime to
resolve inputs from connected devices, but first, let’s get a bit of a wider
perspective by taking a small step back – not too far, we don’t want to get
overwhelmed in it all! The following diagram illustrates the different
concerns we’ll need to address to be able to handle input in Space-Truckers:

Figure 5.5 – Handling input Part 1 of 4. This section covers mapping input
data from multiple devices and types into standardized structures that can
be resolved to game or application-level actions

Entire books can be written just on the topic of designing the input models
and such, but the important thing to take away here is that the goal of the
code we’re writing or are about to write is to hide away (or abstract) the
details of how inputs are processed from the game’s core logic. The game
logic doesn’t care or need to know about whether a user wants to move their
truck with a keyboard or a gamepad – it just needs to know that the user
wants to move their truck and in what direction!

Input Management
When it comes to managing the specific inputs and devices,
SpaceTruckerInputManager (follow along with the code at
https://github.com/jelster/space-truckers/blob/ch5/src/spaceTruckerInput.js)
is responsible for managing the lower-level device management tasks of
subscribing and unsubscribing to/from device events, retrieving input from
the underlying Babylon.js input abstraction layers, and preparing it for
being processed into actions.

Coalescing, or aggregating input from multiple devices, can be both tricky
and tedious – not the best combination for anything requiring concentration
and recall as coding does. Tackling the tricky part by breaking down the
complexity is the first step; the second step is paradoxically (or perhaps
ironically) more complicated than the first step because it is more up to the
individual involved to find ways to keep chugging through to the end.

Addressing Inputs

One of the most common decisions that needs to be made about a potential
software design is where (in the code) to assign various responsibilities. It
can sometimes be tempting to just put all the logic, data, and code into a
single file for convenience’s sake, but unless this is all taking place in the
PG, enhancing and maintaining the application will quickly become an
uncontrollable nightmare in every practical respect.

One way that the SpaceTruckerInputManager (STIM) manages
complexity is by maintaining individual and separate device-specific

https://github.com/jelster/space-truckers/blob/ch5/src/spaceTruckerInput.js

registration logic. Different devices present their data in different ways;
some types of inputs lend themselves to Observables that can be subscribed
to receive input events:

Figure 5.6 – Observables propagating events – onKeyDownObservable in
this case

Others are more suited to have their state polled on a frame-by-frame basis:

Figure 5.7 – Analog inputs (joystick axis, triggers, and more) need to be
polled to get the current state of the device

To make things more fun, many devices mix paradigms, with some inputs
exposed via observable events and some only available via polling! All this
data is aggregated into an inputMap hashmap (there it is again!) that
contains the current state of all registered inputs.

The Input Manager must deal with either scenario with aplomb and grace
according to Etiquette, and so it shall. Leaving a subscription dangling after

the subscriber has gone away is considered poor form, so we must ensure
the Input Manager also cleans up after itself like a good houseguest. That
means we need to track our subscriptions and their sources so that we can
use Observable.remove. Fortunately, we also have a parallel need for the
Input Manager to have access to a given Scene.

Input Registration

Whenever a Scene wants to be able to accept input, it must register that
intent. From the perspective of SpaceTruckerInputManager, it doesn’t
matter who is invoking registerInputForScene, it just needs
sceneToRegister into its inputSubscriptions array. The object map that’s
added to the list is keyed by the scene being registered because the lifetime
of SpaceTruckerInputManager follows a Singleton pattern (for example,
there is only one instance of the STIM in the application). We do this
because we want to be able to control when and how a particular scene is
routed input at runtime, and to be good neighbors, we hook ourselves up to
Scene.onDisposeObservable (highlighted). The subscriptions array
contains the returned set of Observers from each of the enabled device
types (enableKeyboard, enableMouse, and enableGamePad):

registerInputForScene(sceneToRegister) {

 logger.logInfo("registering input for scene",

 sceneToRegister);

 const inputSubscriptions = this.inputSubscriptions;

 const registration = {

 scene: sceneToRegister, subscriptions: [

 this.enableKeyboard(sceneToRegister),

 this.enableMouse(sceneToRegister),

 this.enableGamepad(sceneToRegister)

]

 };

 sceneToRegister.onDisposeObservable.add(() =>

 this.unregisterInputForScene(sceneToRegister));

 inputSubscriptions.push(registration);

 sceneToRegister.attachControl();

}

The aforementioned device-enable functions return an object with a very
specific shape – and that shape is one of the keys (pardon the deep-running
pun here) to making everything come together smoothly.

Checking Inputs

To deal with inputs requiring polling, each type of device needs to have a
checkInput method that knows how to retrieve input and place it into the
SpaceTruckerInputManager.inputMap hash map. For devices that
exclusively utilize observables in their input surfacing, the checkInput
function can be a no-op or empty function that does nothing. Devices with
mixed or solely axis inputs (for example, thumbsticks, joysticks, triggers –
any input type that returns an input that isn’t always a 0 or 1) implement
checkInput to read the gamepad’s state every time it is called (every
frame). Since things such as normalizing input are concerns shared across
different models of gamepads, the utility functions in inputActionMap.js
(referenced as SpaceTruckerControls in the following code block) are
leveraged to ensure that axis input values are in the range of -1 <= value
<= 1. Other functions take those normalized values and map them to a
particular input direction based on the inputs crossing a threshold value:

const checkInputs = () => {

 const iMap = this.inputMap;

 if (!this.gamepad) { return; }

// handle quantitative or input that reads between 0 and 1

//(on/off) inputs are handled by the onButton/ondPad

Observables

 let LSValues = SpaceTruckerControls

 .normalizeJoystickInputs(this.gamepad.leftStick);

 SpaceTruckerControls

 .mapStickTranslationInputToActions(LSValues, iMap);

 let RSValues = SpaceTruckerControls

 .normalizeJoystickInputs(this.gamepad.rightStick);

 SpaceTruckerControls

 .mapStickRotationInputToActions(RSValues, iMap);

};

The preceding code block is from spaceTruckerInput.js and is contained
as part of the checkInputs function object defined in the enableGamepads
method. For any type of analog input device, there will be a certain amount
of imprecision and noise in the inputs. To deal with that, the input is
“normalized” (that is, values that are reported are in the range of -1 <= x
<= 1) using static methods.

Disposing Input Subscriptions

The other property of the enableDevice contract is the dispose method.
This is a function, like checkInputs, that contains all the specific logic
needed to unsubscribe any observers and clean up after itself. Those two
properties allow the consumers of inputManager to remain completely
ignorant about the specifics of how input is collected by the application.
This makes the code simpler and gives us more attention to focus on
accomplishing other things (such as getting through the rest of this chapter).
This is what the return value of the enableGamepad method looks like:

return {

 checkInputs,

 dispose: () => {

 this.gamepad = null;

 manager.onGamepadConnectedObservable

 .remove(gamepadConnectedObserver);

 manager.onGamepadDisconnectedObservable

 .remove(gamepadDisconnectedObserver);

 }

 };

All this talk about observers, observables, and subscriptions can be
confusing. That’s the complexity you’re tasting, but hopefully, that taste
will yield to a more pleasing robust, functional flavor as we discuss the
final piece of the STIM: the getInputs method.

The getInputs Method

Although we want a scene to check inputs every frame, we haven’t defined
what will invoke that logic yet, or where it will occur in the application. For
the STIM, that is a largely irrelevant question. The getInputs function
takes a Scene as its sole parameter. The Scene is used to look up the
inputSubscriptions registered to that scene, captured as the
sceneInputHandler local constant. Each of the subscriptions in the
sceneInputHandler.subscriptions array has its checkInputs function
invoked as part of a forEach loop; recall that each subscription represents a
specific input type and that the checkInputs function populates
SpaceTruckerInputManager.inputMap with the latest values.

With inputMap containing all the various inputs to the Screen, an array of
entries is iterated across and mapped into an input event structure
containing the action name or key, along with any contextual event
information in the form of the lastEvent property:

getInputs(scene) {

 const sceneInputHandler = this.inputSubscriptions

 .find(is => is.scene === scene);

 if (!sceneInputHandler) {

 return;

 }

 sceneInputHandler.subscriptions

 .forEach(s => s.checkInputs());

 const im = this.inputMap;

 const ik = Object.keys(im);

 const inputs = ik

 .map((key) => {

 return {

 action: controlsMap[key],

 lastEvent: im[key]

 };

 });

 if (inputs && inputs.length > 0) {

 this.onInputAvailableObservable

 .notifyObservers(inputs);

 }

 return inputs;

}

The resulting inputs array is then returned to callers, as well as getting
syndicated via onInputAvailableObservable (currently unused). Note the

large gap in this discussion, namely the question as to where and who calls
the getInputs function. This is indeed a good question, but it is not one
that SpaceTruckerInputManager needs to concern itself with – that is a
matter for our next topic: Input Processing:

Figure 5.8 – Two of the four components covered so far

Input Processing
Mapping raw inputs to game or application inputs is a crucial part of Input
Management, the two components of our input system that we’ve covered
so far. That’s potentially enough to be sufficient for a relatively simple
application or game, but Space-Truckers has different needs. It needs to be
able to selectively route the input to Screens without needing to know
anything about the details of that input. It also needs to handle input state –
not just the current, but past as well.

There is a point whereupon it becomes rude to ask additional favors from a
distinguished houseguest, and if our houseguest is
SpaceTruckerInputManager, then asking it to take on these responsibilities
is… well, it’s just too much. We need another component to take up the
burden: SpaceTruckerInputProcessor.

Attaching Controls

Similar to the registerInputForScene and unRegisterInputForScene
methods of its sibling, SpaceTruckerInputManager, the
SpaceTruckerInputProcessor (STIP) has the attachControl and
detachControl functions. Unlike its sibling, though, the STIP functions do
not accept a Scene as a parameter. That is because a given STIP instance is
tied to a given Screen that it will be performing input processing against. It
is the SpaceTruckerInputProcessor.attachControl method that calls
registerInputForScene in the first place:

attachControl() {

 if (!this.controlsAttached) {

 this.scene.attachControl();

 this.inputManager.registerInputForScene(this.scene);

 this.onInputObserver =

 this.inputManager.onInputAvailableObservable

 .add((inputs) => {

 this.inputAvailableHandler(inputs);

 });

 this.controlsAttached = true;

 }

}

Also, as part of attaching control to the Screen,
inputManager.onInputObservable gets
SpaceTruckerInputProcessor.inputAvailableHandler subscribed to be
notified when a new set of inputs has been received. It’s a simple little
method that just pushes received inputs into inputQueue, which is
processed as part of the update method.

Update

This is where the magic happens. After a quick check to ensure that it’s OK
to be handling inputs, inputManager.getInputs is invoked, which, in turn,
triggers an out-of-function process that ends up populating inputQueue
with information. This may not happen in time for the rest of the update
function logic, but that’s OK because it will just be handled in the next
frame:

update() {

 if (!this.controlsAttached) {

 return;

 }

 this.inputManager.getInputs(this.scene);

 this.lastActionState = this.actionState;

 const inputQueue = this.inputQueue;

 while (inputQueue.length > 0) {

 let input = inputQueue.pop();

 this.inputCommandHandler(input);

 }

}

The current map of actions to state (this.actionState) is copied into
this.lastActionState to preserve it for later usage in processing inputs.
Then, inputQueue is drained of items one by one and dispatched by
inputCommandHandler.

InputCommandHandler

This deceptively simple method does a lot more than it might seem at first
glance. That’s all due to the power of (third time’s the charm!) hashmaps.
In this case, there are a couple of layers of this type of shenanigans going
on, but right now, we’ll focus solely on actionMap. The actionMap class
member is an object map that relates a game action (ACTIVATE) to an
executable function in the hosting Screen – a topic we’ll delve into shortly –
which it uses to look up and invoke the game logic attached to the given
action:

inputCommandHandler(input) {

 input.forEach(i => {

 const inputParam = i.lastEvent;

 const actionFn = this.actionMap[i.action];

 if (actionFn) {

 const priorState = this.lastActionState

 ? this.lastActionState[i.action] :

null;

 this.actionState[i.action] =

 actionFn({priorState}, inputParam);

 }

 });

}

By convention, we pass an object with lastActionState, along with the
event object passed along from inputManager, and store the return value in
a previously mentioned object map, actionState. Each individual
actionFn decides what to return, as well as what to do with the passed-in
state value without inputProcessor ever needing to deal with the specifics
– nice and tidy!

The buildActionMap Function

What buildActionMap does is what is known as metaprogramming or
writing code that writes code. Going through each of the action parameters
passed in actionList, the actionDef.action string property is used to

look up a function with the same name in the
SpaceTruckerInputProcessor.screen object:

buildActionMap(actionList, createNew) {

 if (createNew) {

 this.actionMap = {};

 }

 actionList.forEach(actionDef => {

 const action = actionDef.action;

 const actionFn = this.screen[action];

 if (!actionFn) {

 return;

 }

 this.actionMap[action] = actionDef.shouldBounce() ?

 bounce(actionFn, 250, this) : actionFn;

 });

}

If located, actionMap is populated with the located function after optionally
wrapping it with a pre-processing bounce function to prevent it from being
invoked too many times in a given period… which brings us to the final
component of our input system: Action Handling:

Figure 5.9 – Input Processing, Input Management, and Mapping of Input
data covered. Just Action Handling remains

Action Handling
We’ve spent the last few pages diving through multiple levels of abstraction
and indirection, and we’re now finally at the point where it all starts to do
something – the Action Handling. While the previous steps were confined
to a specific class or instance type, the action handlers are the screens
themselves.

Conventional Actions

Sounds like the name of a bad early 2000s cover band, but it’s a term for
how we go about naming and describing our action functions on a given
screen. It’s a lot simpler than it sounds: for every action that a Screen
would like to handle, create a function with the same name as the action. If
you want to track the previous state of the given action, accept a state
parameter. Should you need to get more information about the input event,
add a second parameter to the function to accept an inputEvent.

Important note

Remember, an action is a game-specific concept, such as MOVE_UP, or
ACTIVATE. Those are just the names given for this game; you are free to
name them whatever you want!

Using SpaceTruckerMainMenuScreen as an example, the MOVE_UP and
MOVE_DOWN actions should increment or decrement selectedItemIndex for
the menu items. An ACTIVATE action should invoke the menu item. Here’s
what that looks like when we code up the MOVE_UP action:

MOVE_UP(state) {

 logger.logInfo("MOVE_UP");

 const lastState = state.priorState;

 if (!lastState) {

 const oldIdx = this.selectedItemIndex;

 const newIdx = oldIdx - 1;

 this.selectedItemIndex = newIdx;

 }

 return true;

}

Similarly, ACTIVATE retrieves selectedItem before simulating a click event
by calling its onPointerClickObservable.notifyObservers method to
invoke whatever result is indicated by the particular button selected.

Skipping the Splash Screen

As part of constructing the Splash screen earlier in this chapter, we added a
skipRequested flag to the scene, but there wasn’t ever anything that would
change that value… until now! The ACTIVATE action doesn’t need to know
what key was pressed – it only needs to know that it happened at all; just
that a key was pressed in the first place. That makes this a pretty simple
piece of logic:

ACTIVATE(state) {

 const lastState = state.priorState;

 if (!this.skipRequested && !lastState) {

 logger.logInfo("Key press detected. Skipping cut

 scene.");

 this.skipRequested = true;

 return true;

 }

 return false;

}

The SpaceTruckerSplashScreen.update function, where the
actionProcessor.update function is invoked, is, in turn, called during
SpaceTruckerApplication.Render, but only if it is the currently active
screen.

Figure 5.10 – All four components of the input system

Summary

Glancing back through the previous pages in this chapter, it might be easy
to think that we haven’t accomplished a whole lot, but never sell yourself
short – the things we’ve covered in this chapter aren’t the most
straightforward to understand or wrap your brain around! Constructing and
orchestrating the sequencing of SplashScreen starts to ramp up the
complexity of our code, not counting the mental whiplash induced by
pivoting from that to input in the space of a page.

As stated earlier and not redundantly stated again now, entire thick
textbooks can and have been written on the topic of input handling,
something we’re trying to cram into a mere fraction of that. Not only that,
but we are now able to approach future features with a much clearer picture
of how all of the non-game-specific tasks are to be managed and handled.

That statement could be expanded to cover this and the other chapters in
this section as well – we’ve gotten much of the supporting application in
place now, which leaves us far more attention to focus on the topics in our
next section! In section two, we’ll build the gameplay mechanics, set up
lighting and materials, and much, much more.

Extended Topics
Where to start? There are simply so many interesting things and
possibilities to explore! Here are just a few ideas for things you can do to
further your learning and enhance SplashScreen:

Add a camera animation to the beginning portion that has the camera
moving and rotating along a path in such a way that the billboard
panel grows in apparent size at about the same rate as the volume of the
music rises

Add background environmental effects to the Scene, similar to what
we did with the Main Menu and the Procedural Starfield texture

Replace the final static image with a mesh, texture, material, or
something else

The input system is also a great source of ideas. Here are a few to consider:

Implement support for your favorite gamepad or joystick device. Use
this testing site to see the various inputs and values emitted by your
device: https://luser.github.io/gamepadtest/

Modify the input system to allow for multiple simultaneously
connected users – that is, local multiplayer

Expose the joystick sensitivity settings to the application so that they
can be edited in-game by the player

https://luser.github.io/gamepadtest/

Part 2: Constructing the Game
In this second part of the book, we will build on the foundations of the first
part to implement the primary components that comprise Space-Truckers:
The Video Game. The pace picks up, as there’s far more material to cover
than there is space to contain it.

This section comprises the following chapters:

Chapter 6, Implementing the Game Mechanics
Chapter 7, Processing Route Data
Chapter 8, Building the Driving Game
Chapter 9, Calculating and Displaying Scoring Results
Chapter 10, Improving the Environment with Lighting and Materials

Implementing the Game Mechanics
The focus of the previous chapters was solidly on building an application
foundation for Space-Truckers. Now, it’s time to shift gears (as it were)
and look at the way we want to implement the game for its first phase:
Route Planning. As we usually want to do when faced with a single,
daunting, complex problem, we break down this part of the game into two
principal facets: simulation and game elements. Throughout this chapter,
we’ll start by looking at the simulation part of the game before layering the
game mechanics on top of the simulation in a way that gives us the freedom
to iterate.

It’s a common tactic of reality shows and gameshows where the host will
give a wind-up speech that seems to indicate that they’re about to get to the
big reveal, but then instead the show cuts to a commercial. This is relevant
because we’re going to perform a similar headfake – instead of diving
directly into the exciting simulation and game mechanics, we’re going to
first take a short detour so that we can learn about how to manage music
and sounds in Space-Truckers. Though a short one, it will be a handy
addition as we continue integrating more and more functionality into the
application.

In this chapter, we will cover the following topics:

Technical Requirements
The first section of this chapter deals with audio files and playing them, so
it’s helpful but not necessary to have speakers or some other way of hearing

A Detour into Sound Management

Designing the Game Elements of the Route Simulation

Creating the Orbital Mechanics Simulation

Defining the Rules – Game Mechanics

sound output. As always, the source code is available on GitHub at
https://github.com/jelster/space-truckers/tree/ch6.

As you might expect, most of the technical requirements from previous
chapters apply to this one since we’re continuing the work that started there.

Helpful Things to Know
The following are helpful things to know:

Note

Computers are supposed to be the ones who are good at crunching numbers,
not you. Don’t freak out if you don't consider yourself a math person –
we’ve got you covered!

Useful Links from the Babylon.js Docs
The following are some useful links:

Outside of the technical realm of software, there are some concepts
and skills that are helpful to have previous knowledge of coming into
this section. Don’t worry if you don’t recognize or aren’t familiar with
this stuff – that’s the whole reason you’re reading this book in the first
place – to learn! This includes vector operations in 3D space, addition,
subtraction, multiplication, and so on, as well as the difference between
normalized (1- unit) and non- normalized vectors.

Basic kinematic physics – calculate the velocity or position of
something based on time, with and without including acceleration.

Familiarity with force and momentum relationships.

Physics Engine and Forces:
https://doc.babylonjs.com/divingDeeper/physics/forces

https://github.com/jelster/space-truckers/tree/ch6
https://doc.babylonjs.com/divingDeeper/physics/forces

A Detour into Sound Management
The topic of playing music and sound FX has come up previously in our
journey – the theme song sound is played as part of the Splash Screen that
we built in Chapter 5, Adding a Cut Scene and Handling Input, after all.
The sound plays just fine, and everything seems to work, so what need is
there to make things more complicated for no apparent reason? This is an
excellent point to raise because, in software, the best approaches tend to
also be the simplest, and simple is good because it means fewer things can
go wrong (by definition). When fewer things can go wrong in software, it’s
easy and cheap to make changes, additions, and enhancements and that is
good for both Engineering and Accounting – a two-for-one special!

What all of that is getting to is that even though it works fine in isolation to
load and directly play the BABYLON.Sound instance directly in the Screen
itself, things break down when more than one Scene and Screen become
involved. The main reason for this has to do with the fact that AudioEngine
is independent of the Scene, but the Sound is not. This causes issues when
we want to coordinate the starting, stopping, and volume levels of multiple
Sounds across multiple different Scenes.

Sounds, SoundTracks, and the
AudioEngine

Mesh Copies, Clones, and Instances – look at the Solid Particle
System (SPS), Instances, and Thin Instances:
https://doc.babylonjs.com/divingDeeper/mesh/copies

Environment Skyboxes (which we will get more into in Chapter 10,
Improving the Environment with Lighting and Materials):
https://doc.babylonjs.com/divingDeeper/environment/skybox

Events and Actions:
https://doc.babylonjs.com/divingDeeper/events/actions

https://doc.babylonjs.com/divingDeeper/mesh/copies
https://doc.babylonjs.com/divingDeeper/environment/skybox
https://doc.babylonjs.com/divingDeeper/events/actions

Analogous to how the WebGL2/WebGPU canvas is used to perform
rendering, the underlying audio engine used in Babylon.js is based on the
Web Audio specification. If you’re interested in diving into that, and/or if
you have insomnia, check it out at https://webaudio.github.io/web-audio-
api/. To read more details on the abstractions built on top of that
specification, the relevant Babylon.js API docs can be found at
https://doc.babylonjs.com/typedoc/classes/babylon.sound.

To boil down our requirements when it comes to audio, we need the
application to be able to do the following things or have the following
qualities:

To accomplish the first item, we’ll leverage the functionality of
BABYLON.SoundTrack. This type is well named because it tells you what it
does in the name! Instances of a Sound are associated with a SoundTrack
via the SoundTrack.addSound function. The collective volume of any
Sounds belonging to a given SoundTrack is controlled with the setVolume
function. There are other methods in SoundTrack of course, but the two
mentioned functions are the ones that we’re interested in now.

Looking back at the list of requirements, the third can be provided by a
property accessor, while the second requirement is fulfilled by creating a
mapping between a friendly string identifier and an object map (see Chapter
5, Adding a Cut Scene and Handling Input, the Designing the Input System

We need to be able to control the collective volume (gain) level for
groups of related types of sounds, such as background music, UI
feedback sounds, and game sound effects

It should be easy to change out the underlying sound assets without
needing to change any of the consuming components’ code

Consumers of the audio component should be able to easily access the
underlying BABYLON.Sound

The asynchronous loading of audio assets should be coordinated to
ensure all of a Scene’s assets have completed their tasks before
signaling readiness

https://webaudio.github.io/web-audio-api/
https://doc.babylonjs.com/typedoc/classes/babylon.sound

section for more examples of this). The last requirement can be satisfied
easily with the use of the functionality of the JS-standard Promise object.
We’ll see how these all work together shortly, but it’s worth taking a
moment to step back from the detailed requirements discussed previously to
understand how this fits into the bigger picture.

A helpful way of identifying missing requirements and potential
opportunities to solve problems relating to those requirements is to mentally
picture a concrete scenario involving the matter at hand. In this case, picture
the gameplay screen. Things are happening in it – the player inputs
commands, the application responds to acknowledge entry, and events
happen in-game. At the same time, music is playing in the background
underneath the mechanical whines and screeching put out by the player’s
cargo pod as it is launched or as it crashes. There is a multitude of audio
samples being played at any given time, but they all have different volumes
appropriate to their category or type of sound. Keep that goal in mind
because as we dive into the details, this overall big picture will help guide
and keep us on track.

SpaceTruckerSoundManager
The first two steps – design and build – concern the specifics of how we
will use the audio features of Babylon.js to create our audio component,
while the third concerns how we will make use of that component. The full
code for the following snippets can be found in this chapter’s branch of the
Space-Truckers GitHub repository at https://github.com/jelster/space-
truckers/blob/ch6/src/spaceTruckerSoundManager.js.

Design

We need a bit of helper logic that will wrap the Babylon.js objects and help
us manage their lifetimes and behavior. Because we’re so very imaginative,
we’ll call it SpaceTruckerSoundManager – catchy, right? There are
probably a lot of different ways that this can be constructed, but we want
The Simplest Thing That Could Possibly Work, and that is
spaceTruckerSoundMap.js and its soundFileMap:

https://github.com/jelster/space-truckers/blob/ch6/src/spaceTruckerSoundManager.js

const soundFileMap = {

 "title": { url: titleSongUrl, channel: 'music',

 loop: true },

 "overworld": { url: backgroundMusicUrl,

 channel: 'music', loop: true },

 "whoosh": { url: uiWhooshSoundUrl,

 channel: 'ui', loop: false }

};

The URL for each sound file is supplied by an associated import statement,
with the object key being an arbitrary (but unique) string name. SoundTrack
that the sound will be added to, as well as the loop flag to control auto-
looping, are the two other data pieces rounding out soundFileMap, so let’s
move on to how SpaceTruckerSoundManager uses it.

Build

Each instance of SpaceTruckerSoundManager is initialized with the
associated scene, along with a list of one or more soundId. These are stored
in the registeredSounds object map, which can be used to retrieve a given
Sound by calling the sound(id) accessor function:

registeredSounds = {};

sound(id) {

 return this.registeredSounds[id];

}

The three different SoundTracks are stored in the channels property and
initialized in the constructor:

constructor(scene, ...soundIds) {

 this.channels.music = new SoundTrack(scene,

 { mainTrack: false, volume: 0.89 });

 this.channels.sfx = new SoundTrack(scene,

 { mainTrack: true, volume: 1 });

 this.channels.ui = new SoundTrack(scene,

 { mainTrack: false, volume: 0.94 });

As mentioned previously, constructor takes scene and a list of soundIds;
what was not mentioned previously was that after the constructor finishes,
the component will not be ready for use yet – the onReadyObservable
property of the component will notify subscribers when
SpaceTruckerSoundManager has finished loading and preparing all its child
Sound instances:

Promise.all(onReadyPromises).then(readyIds =>

 this.onReadyObservable.notifyObservers(readyIds));

The bulk of the constructor’s logic is taken up by a loop over the list of
soundIds. Inside the loop is logic charged with the business of instantiating
and managing how that Sound is loaded, the state of which is represented
by prom. When the Sound’s onLoaded callback fires, the newly loaded
Sound is added to the appropriate channel, SoundTrack, and the promise is
resolved successfully:

const onReadyPromises = [];

soundIds.forEach(soundId => {

 const mapped = soundFileMap[soundId];

 const chan = this.channels[soundId] ??

 scene.mainSoundTrack;

 // guard logic omitted for length

 const prom = new Promise((resolve, reject) => {

 const sound = new Sound(soundId, mapped.url, scene,

 () => {

 chan.addSound(this.registeredSounds[soundId]);

 resolve(soundId);

 }, {

 autoplay: false,

 loop: mapped.loop,

 spatialSound: mapped.channel === 'sfx'

 });

 sound.onEndedObservable.add((endedSound, state)

 => {

 this.onSoundPlaybackEnded

 .notifyObservers(endedSound.name);

 });

 this.registeredSounds[soundId] = sound;

 });

 onReadyPromises.push(prom);

 });

}

The individual asynchronous Promises are coordinated in two ways: first,
an array of promises is constructed containing all of the different
asynchronous calls that need to be resolved before continuing. Second, the
Promise.all method takes that array of Promises and returns another
Promise that, when resolved, will contain the results of each Promise
contained in the array. In other words, it waits until everything has finished
and then announces its completion.

Because we can’t mark the constructor as async, we can’t await the
Promise results. Instead, we attach a function to the Promise.then chain,
which, in turn, signals readiness via onReadyObservable. What’s notable is
the absence is any sort of error or exception handling or catching –
something that we will want to include in a more production-hardened
application!

Integrate

The Splash Screen (see Chapter 5, Adding a Cut Scene and Handling Input)
already plays a Sound, so we’ll want to replace that with a
SpaceTruckerSoundManager instance that is initialized in the constructor:

this.audioManager = new SpaceTruckerSoundManager

 (scene, 'title');

this.audioManager.onReadyObservable.addOnce(_ =>

 this.onReadyObservable.notifyObservers());

The Scene will have completed loading and initialization long before
audioManager.onReadyObservable fires, so we will use that event to signal
the Screen’s overall readiness. To make the refactor seamless and easy, the
music field of SplashScene is changed into the get music() accessor,
which retrieves the title Sound from the underlying audioManager:

get music() {

 return this.audioManager.sound("title");

}

As a result, no other code changes are necessary to retrofit
SpaceTruckerSoundManager into SplashScreen – it’s good to go! This
brings our little detour to its end, but this won’t be the last time we see this
since we’re going to be making direct use of it later in this chapter. For now,
however, we’re going to be shifting topics to look at the route simulation
and how it is constructed.

Designing the Game Elements of
the Route Simulation
The Helios star system is the setting for Space-Truckers, but up until now,
we haven’t gotten into what that entails. A topic covered in exhaustive
detail in other books both fiction and non- is the well-known fact that Space
Is Big. Like, Really Big. At the scale of a solar system, distances involved
are so large compared to relative sizes of things that trying to represent this
huge scale accurately in our game will neither be fun nor performant.

An Overview of the Helios System
The following diagram is a rather stylized view of the Helios system – the
home setting for Space-Truckers – from a bird’s-eye view. Bracketed
planetary bodies show the two different start and end route possibilities –
outward going in toward the sun and vice versa. In the following diagram,
the different shaded regions correspond to different potential encounters for
players during the driving phase:

Figure 6.1 – Depiction of the route planning gameplay map

The closest planet is Hermes, so-called because it speeds around in its tight
orbit of Helios. In the game world, it’s the primary starting position for
route planning. Routes originating from Hermes will end at the busy hive of
construction at Zeus. The alternative, the B route, starts a bit further out
from the star around the planet Tellus and has as its destination as the
distant ice factories of Janus.

In between either set of origins and destinations are a whole solar system’s
worth of potential hazards and obstacles. Close to the turbulent star, solar
storms are common. They can ruin a Space-Trucker’s Day by twisting and
curling the Space-Road and forcing operators to steer their vehicle and
cargo through them to maintain accurate navigation. A bit past the orbit of
the blue-and-green jewel Tellus is another navigation hazard in the form of
a dense asteroid belt.

In the real world, there’s no such thing as an asteroid belt thick enough to
be a meaningful navigation hazard, but in the world of Space-Truckers,
decades of asteroid mining operations have littered and set loose enough
debris to make it a real problem for vessels aiming to pass through the
rocky hazards. Past the asteroid belt lies the gas giant Zeus, the titan of
planets in the Helios system, where a hive of industrial activity sparkles and
glimmers around the clock. The busy factories require a constant supply of
raw materials, spare parts, and supplies, and that’s where Space-Truckers
come in. Getting straight to Zeus isn’t always as easy as it may seem,
though.

Not content to confine their industries to merely the orbit of the giant
planet, recent engineering projects at the leading and trailing LaGrange
points take advantage of the rich resources present in the so-called Trojan
and Greek families of asteroids. Anyone familiar with road construction
knows the delays, detours, and occasional flag-waver directing traffic that
has been diverted, and those construction zones are no different in space!

Past the glowing forges and factories of the Zeus system, things start to get
dark and cold. The ice giant Janus sits at the gateway between the warm
buzzing of activity of the inner system with the quiet darkness of the outer.
Space-Truckers arrive and depart from the area on journeys to deliver stored
energy gathered in the brightness sunward, departing with full loads of icy
volatiles vital to sustaining life in the inner system. However, they are not
alone out there – large herds of simple space-life roam these cold and
distant plains. Not used to seeing visitors, they present a navigational
hazard for the unwary Space-Trucker on the tail-end of a long haul.

Putting everything together, the following screenshot shows what the
system looks like when the route planning begins:

Figure 6.2 – The ReadyToLaunch phase of the route planning screen. This
shows most of the actors involved, including the Star, destinationMesh,
planets, launchArrow, and cargo

Now that we’ve looked at the system from the big picture perspective, it’s
time to break out the individual actors and look for commonalities between
them. This allows us to start creating game components that will help
service the game concepts that in a way is kind of like putting together a list
of job requirements.

Actors and Their Behavior
Before we get into the specifics of the different objects and components that
will comprise the route planning screen, let’s take a look at what our object
hierarchies look like concerning our game objects. The basic idea is that
there are several pieces of data and behaviors that we know our game
objects will need, but at the same time, we want to avoid writing repetitive
code. We need to be able to update or advance the simulation, sometimes at
a very fine-grained level, so we will generally avoid having components
register their own onBeforeRender handlers and instead provide an

update(deltaTime) method that will serve the same purpose. Here is one
way of depicting how our various components interact with each other, with
data, and with the application:

Figure 6.3 – A class diagram of the Game Components involved in
RoutePlanningScreen

In the preceding diagram, the abstract hierarchy of classes is in the center.
BaseGameObject is the least derived (for example, it doesn’t extend any
other type), while the various classes for the game concepts are the most
derived. RoutePlanningScreen hosts the various instances of those game
component classes, managing their behavior in a fashion that is like the
overall rendering pipeline:

Figure 6.4 – The SpaceTruckerApplication update and render cycle,
simplified

Each frame that the RoutePlanningScreen.update method is invoked by
SpaceTruckerApplication, RoutePlanningScreen goes through its own
child components and (optionally) calls their update methods. When all of
those have been completed and RoutePlanningScreen has finished its
update cycle, the screen is finally rendered. There are a few steps that are
missing in this diagram, such as the before and after physics steps, but that
is the mechanism for how our game’s underlying state can change and
evolve. That’s how we describe the most primitive behavior needed by our
game objects, so let’s use that knowledge to code it up!

Abstracting the BaseGameObject Class

The BaseGameObject class (see https://github.com/jelster/space-
truckers/blob/ch6/src/baseGameObject.js for its source) is what provides
that shared, low-level functionality that we don’t want to have to duplicate
across game objects. It is the least common denominator for any object that
we may want to render in a Scene. Many of the properties of
BaseGameObject are simple proxies that allow access to the underlying
properties of the different Babylon.js components comprising the game
object, such as the Vector3 rotation property accessors:

get rotation() { return this.mesh?.rotation; }

set rotation(value) { this.mesh.rotation = value; }

In addition to consolidating access to the various component and data
properties, BaseGameObject provides two crucial behaviors: update and
dispose.

update doesn’t seem to do much in this base class, since all it does is
update the lastSceneTime property, but it’s an important role; many types
of behaviors require tracking not just the amount of time since the last
frame was rendered but also the previous value to properly integrate things
such as velocity and acceleration.

Important note

If an extending class depends on the deltaTime and/or lastSceneTime
value, make sure to call super.update(deltaTime) as the first thing it does
in its update method.

For folks with experience in traditional Object-Oriented Programming
(OOP) languages, the usage pattern might be familiar: an abstract base
class provides common functionality to its more derived classes. An
example of how this works is in the orbital mechanics simulation that we’ve
implemented.

Defining the Orbital Mechanics
Simulation Elements

https://github.com/jelster/space-truckers/blob/ch6/src/baseGameObject.js

The Planet class (covered shortly) builds off the OrbitingGameObject
class (https://github.com/jelster/space-
truckers/blob/ch6/src/orbitingGameObject.js), which, in turn, is derived
from the BaseGameObject prototype. OrbitingGameObject provides a base
suite of data and behavior about the various calculations involved in both
orbital motion and gravitational acceleration – the nerdy but interesting
physics and math stuff we’d otherwise end up repeating across multiple
places in the code base. Though it isn’t intended for objects of this type to
be rendered directly, it would still be possible to do so by simply setting the
mesh and material properties appropriately. The following table
summarizes the data and behavior of OrbitingGameObject:

Figure 6.5 – Summary of the behavior and data of the OrbitingGameObject
component

By abstracting away the details of the orbital and gravitational calculations,
more derived classes are much easier to understand, build, and maintain. A

https://github.com/jelster/space-truckers/blob/ch6/src/orbitingGameObject.js

great example of how this can be leveraged is the Planet class.

Implementing the Star and Planets

The bulk of the constructor logic for the Planet class
(https://github.com/jelster/space-truckers/blob/ch6/src/route-
planning/planet.js) is devoted to the pertinent needs of reading the input
planData and then instantiating and configuring the render-specific aspects
of the component – tasks such as creating materials and loading and
applying textures. Notice that there is no mention in the Planet class file of
anything relating to our orbital simulation – only the specifics that make a
given Planet instance different from another.

To aid in this effort, the class is data-driven: planData passed into the
constructor function contains all the data needed. That’s the beauty of the
mixed inheritance/composition patterns that we’ve been applying; each of
our components only needs to concern itself with the specific tasks that it
has been designed to accomplish and nothing more! As a result, this is what
a typical planData looks like:

{

 name: "tellus",

 posRadians: Scalar.RandomRange(0, 2 * Math.PI),

 posRadius: 750,

 scale: 30,

 color: new Color3(0.91, 0.89, 0.72),

 diffuseTexture: earthDiffuseUrl,

 normalTexture: earthNormalUrl,

 specularTexture: earthSpecularUrl,

 lightMapUrl: earthCloudsUrl,

 mass: 1e14

 }

Perhaps this looks familiar? Back in Chapter 2, Ramping Up on Babylon.js,
we saw a very similar structure that was used to generate the orbiting
planets of the Loading Screen – with a few new members (such as mass).
Similarly, the Star class (https://github.com/jelster/space-
truckers/blob/ch6/src/route-planning/star.js) can be very short and sweet

https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/planet.js

since although it does not orbit like other game objects, it does participate
in gravitational calculations.

By setting autoUpdatePosition = false, the star will not move in its
central position in the world space. This makes the constructor and
subsequent class quite simple:

constructor(scene, options) {

 super(scene, options);

 this.autoUpdatePosition = false;

 const starData = options;

 this.mesh = MeshBuilder.CreateSphere("star",

 { diameter: starData.scale }, this.scene);

 this.material = new StandardMaterial("starMat",

 this.scene);

 this.material.emissiveTexture = new

 Texture(starData.diffuseTexture, this.scene);

}

The last two actors of our dramatis personae are the player’s avatar, also
known as the cargo, and the hazardous collection of boulders that form the
asteroid belt. We’ll cover the cargo later because we have a major new
concept to cover first in the Asteroid Belt – Thin Instances. If you have a
phobia of numbers and math (and it’s OK if you do!), fair warning – there
be matrices and quaternions ahead, but there’s no need to worry – you
won’t have to sweat any of the hard maths. All of the hard work and heavy
thinking is done by functions in Babylon.js, so all we need to do is
understand when and how to use them!

Procedurally Generating the Asteroid Belt

Before we talk about the particulars of the AsteroidBelt class
(https://github.com/jelster/space-truckers/blob/ch6/src/route-
planning/asteroidBelt.js), we should review some definitions and concepts
in the context of rendering meshes. Firstly, it’s important to understand
what a mesh is at its simplest level. Starting with the simplest explanation,
a mesh is a bunch of points set up in a particular order in 3D space. More

https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/asteroidBelt.js

in-depth, a mesh is a collection of points in 3D space that can be positioned,
rotated, and scaled together. To describe it in extremely precise terms, a
mesh is an array of vectors grouped as a set of matrices that represent the
position, translation, and rotation of each part of the 3D model, respectively.
While a mesh’s geometry is sent to the GPU once, that same geometry can
be linked (reused) by the GPU to render as many additional instances as are
required.

In the case of regular instances, it is important to understand that although
the mesh geometry is not duplicated in the GPU, there is still a CPU
(JavaScript) overhead stemming from the need to iterate over each instance
every frame for processing. That’s the price of being able to retain control
over individual instances, but some situations may not require that much
control. That’s where Thin Instances come into play.

Note

If you’ve used 3D Modeling tools such as Blender, Thin Instances in
Babylon.js are referred to as linked objects in Blender.

The essential concept that we’re focusing on here is the idea that there are
circumstances where we might need hundreds, thousands, or even tens of
thousands of individual copies of a given mesh to be rendered in a
particular Scene, but we don’t want to incur the memory or CPU overhead
of having to process and maintain multiple copies of that mesh’s geometry.
Think trees in a forest (for example,
https://playground.babylonjs.com/#YB006J#75), or an ocean comprised of
LEGO® (for example, https://playground.babylonjs.com/#TWQZAU#3),
or, as is relevant to our case, a large number of asteroids – giant, floating
space rocks (for example, https://playground.babylonjs.com/#5BS9JG#59 –
with a tip of the hat to Babylon.js community member Evgeni_Popov).

The key limitations to keep in mind when thinking about (Thin) Instances
are as follows:

All instances, Thin or not, must share the same Material

https://playground.babylonjs.com/#YB006J%2375
https://playground.babylonjs.com/#TWQZAU%233
https://playground.babylonjs.com/#5BS9JG%2359

Even with those limitations in mind, it makes sense to use Thin Instances to
render the Asteroid Belt – we want at least a thousand (or so...) of them, so
we don’t need to exercise much control over them, and since we want them
to look relatively homogenous, it’s OK for them to share the same Material.
We’ll get more into the Material we’ll use for the asteroids later, so for now,
let’s look at how we are creating each asteroid’s Thin Instance through the
power of Analogy.

Important note

We are operating under the assumption that an instance has the same sign
for its scaling, position, and rotation components (this is known in matrix
jargon as having the same sign determinant). You should not directly mix
elements with opposite signs. For example, the following statement results
in a mixed determinant sign:

Matrix.Compose(new Vector3(-1, 1, 1),Quaternion.Identity(),

newVector3(2, 1, 0))

This is because the negative sign in the first argument conflicts with the
positive 1 that an Identity Quaternion represents.

Astrophysicists who study black holes have an interesting way of
describing the properties of their scientific studies.

Although much more efficient than cloning a mesh, Instances are still
both CPU- and GPU-bound

For Thin Instances, you must manipulate an individual Instance’s
properties (for example, position, scaling, rotation, and so on) by
manually manipulating the specific Instance’s matrix values

All Thin Instances are always drawn (or not) – there is no way to hide
or skip the rendering of an individual Thin Instance

Thin Instances check collisions as a single, giant mesh; there is no way
to register collision detection for individual Instances

The idea is that, any given black hole only has three observable properties –
electric charge, mass, and spine that uniquely defines it, whereas things like
people, stars and plants, have quite a few additional attributes making them
– and you – uniquely special. Like this no-hair theorem, as it’s called, each
Thin Instance of our asteroid will be distinguished apart from its brethren
by just their properties of position, rotation, and scale. We will define
values for each of these properties, for each instance individually, storing
the arrays as class members. Thus, the algorithm for generating the
asteroids can be relatively quite simple: declare the matrices, quaternions,
rotations, scalings, and position arrays. Then, allocate a Float32Array to
use as the matrix buffer. The size should be nine times the count of
asteroids to create to hold the resulting data.

For every asteroid that we want to create, we must do the following:

1. Generate a set of three vectors, one each for the position, rotation,
and scale.

2. Randomly set the component values of each vector to a number in
limits.

3. Add the new vectors to their respective arrays.

4. Create and add a new, empty Quaternion, Matrix to arrays.

5. Convert the rotation vector into a Quaternion.

6. Use vectors and quaternions to compose the Matrix.

7. Copy the matrix elements to the matrix buffer.

8. Set the thinInstance buffer on the target mesh to the instance from
the matrix buffer.

When we randomly generate the values, we need to ensure that the values
are all within valid parameters, and we can do this in several different ways.
The first is used for the scaling and rotational vector values and helps to
create the rough, rock-shaped surface of what started as a smooth
IcoSphere mesh. Because Math.random() returns a floating-point number
between zero and one, we scale that number out by a factor representing the

maximum in the range of values we want to see generated – in other words,
when the random value is equal to one.

Since it’s also possible to get zero as a value, the scale has an additional
additive constant to ensure at least a minimum value. A similar, though
more simple expression, generates rotations for each axis. The scaling
Vector3 works well for defining the scale and rotation of the asteroid
instance, but specifying the position requires another approach.

Once again, we must shift from thinking in linear terms to that of angular.
Using the Babylon.js Scalar.RandomRange() utility function, we can
generate a random point somewhere in the torus (donut shape) by defining
innerBeltRadius and outerBeltRadius – that is, we generate a random
number (rTheta) that is then combined with another random number
between 0 and 2 * π.

Note

Recall that the sine and cosine functions take their inputs in radians, and a
full circle is described by 2 * π or approximately 6.28319 radians.

The X and Z-axis values for the world position of the asteroid are computed
by converting the radial (angular) value into world coordinates – for
example, Math.sin(theta) or Math.cos(theta) – which yields a
normalized value, then multiplying that by our randomized scale constant to
properly place the object in the world. Because we are using a very
simplified mathematical model to distribute the asteroids in space, we can
treat the vertical Y-axis by multiplying half of a random number by the
density configuration constant:

this.positions.push(new Vector3(

 Math.sin(theta) * rTheta,

 (Math.random() - 0.5) * density,

 Math.cos(theta) * rTheta

));

Updating an asteroid’s rotation, position, or scale is a two-step process. The
first step is for the AsteroidBelt class to modify values in the desired array

at the index corresponding to the desired asteroid instance. In the update
loop, each asteroid’s rotation values are tweaked by a small random amount
by modifying this.rotations[i].

Once that has been completed, the second step is the same as the original
generation algorithm, conveniently factored out into the updateMatrices
function of the class. The only difference between creating and updating the
thin instance data is that when we update, we use
mesh.thinInstanceBufferUpdated instead of
mesh.thinInstanceSetBuffer.

Note

For more on the technical aspects of using Babylon.js with meshes,
Instances, and the GPU, see the official docs at
https://doc.babylonjs.com/divingDeeper/mesh/copies/instances and
https://doc.babylonjs.com/divingDeeper/mesh/copies/thinInstances.

It is finally time to put everything we’ve been looking at together into one
and begin our examination of the actual Route Planning Screen. Although
it may seem a bit confusing due to an apparent lack of big-picture focus, we
didn’t have the proper context established yet to take that picture in. Still, it
can be difficult to follow along with this type of overview, so here’s yet
another occasion where the PG comes in handy. As shown previously, this
snippet (https://playground.babylonjs.com/#5BS9JG#59) is a preliminary,
basic implementation of the planet simulation, and although not 100%
identical to the game’s code, it’s illustrative of all the concepts described
previously, as well as some we have yet to cover!

Adding the CargoUnit Class

The CargoUnit class is this part of the game’s projection of the player into
the game world. It derives from OrbitingGameObject, but it does not
automatically have its position updated – just like the Star class we just
finished looking at. Unlike the Star class, there’s a little bit more
happening.

https://doc.babylonjs.com/divingDeeper/mesh/copies/instances
https://doc.babylonjs.com/divingDeeper/mesh/copies/thinInstances
https://playground.babylonjs.com/#5BS9JG%2359

Starting with the data, the CargoUnit class tracks several pieces of game-
specific in-flight information, such as timeInTransit and
distanceTraveled. The isInFlight Boolean flag is implicitly correlated
with PLANNING_STATE.InFlight, if that wasn’t apparent already. These and
other pieces of data are consumed by both RoutePlanningScreen and
PlanningScreenGui (more on that later) and get updated as part of the
hopefully now-familiar update method pattern shown in the following code.

During the update, there is some logic to point the cargo unit’s rotation in
the direction of flight, which involves a tiny bit of vector math, but more
importantly, there is logic to apply the current frame’s accumulated
gravitational forces to the box. Since force is calculated in terms of effect
per second, it must be scaled to the amount of time that has passed since the
last frame, using deltaTime. After the force is applied, we clear the
currentGravity field to prevent forces from infiltrating across rendered
frames:

update(deltaTime) {

 super.update(deltaTime);

 if (this.isInFlight) {

 this.lastGravity = this.currentGravity.clone();

 const linVel =

 this.physicsImpostor.getLinearVelocity();

 this.lastVelocity = linVel.clone();

 linVel.normalize();

 this.timeInTransit += deltaTime;

 this.distanceTraveled +=

 this.lastVelocity.length() * deltaTime;

 this.rotation = Vector3.Cross(this.mesh.up,

 linVel);

 this.physicsImpostor.applyImpulse(this.

 currentGravity.scale(deltaTime),

 this.mesh.getAbsolutePosition());

 this.currentGravity = Vector3.Zero();

 }

 }

A vector cross-product is a mathematical operation that takes two
orthogonal vectors (that is, two vectors perpendicular to each other) and
yields a third, new vector that points in a direction perpendicular to both of

the inputs. By inputting the (normalized) physical velocity of cargoUnit
along with the local Up axis, we are given the resulting rotational
coordinates that cargoUnit must adopt to point itself in the direction of
travel.

Note

A force applied to an asymmetrically massed body such as cargoUnit will
cause angular rotation, or torque, causing the unit to spin wildly around its
center of mass. This is not as bad as the game crashing, but not great,
especially when paired with TrailMesh! By setting the rotation to point in
the direction of travel, we are ensuring that gravitational forces transfer to
the unit’s linear – not angular – velocity. Also, we prevent TrailMesh from
twisting itself up into knots – a factor that is critical when generating the
next phase’s route.

Defining the CargoUnit’s behaviors is the last thing to cover before we shift
focus. In addition to the update behavior, only three other actions are
implemented by the class.

The reset, launch, and destroy actions are fairly self-explanatory from
their names. The reset method is called any time the simulation is being
restarted, such as when the player presses the Delete key on their keyboard.
It clears all of the stored state data from CargoUnit before moving itself
back to its initial start location and setting the isInFlight flag to false.
The launch function is where TrailMesh is instantiated, along with the
initial kick from the launcher; it is responsible for setting the isInFlight
flag appropriately. Lastly, the destroyed function is called whenever
SpaceTruckerApplication has determined that CargoUnit has been
officially destroyed, for example, when encountering an obstacle that is not
amused by the impact. It is responsible for making sure that CargoUnit
doesn’t fly off at infinite velocity after a collision and instead stays put
where it is.

That was certainly a large number of different concepts and classes to go
over in such a short space, but there is so much more to see we can’t
possibly stay on this topic any longer. We have mentioned several times that
we would eventually go into some detail regarding how the flight

mechanics are implemented with the physics engine, and we’ve almost got
to the point where we can create a critical mass of contextual knowledge.
This knowledge will propel us toward a greater understanding and progress
– hang in there!

Establishing the Basic Route Planning
Screen

Of all the different things we’ve worked on to date in Space-Truckers,
SpaceTruckerPlanningScreen (https://github.com/jelster/space-
truckers/blob/ch6/src/route-planning/spaceTruckerPlanningScreen.js) is by
far the most complex. We’ve come prepared to manage that complexity by
looking at the individual components first; with fewer things to have to try
and keep track of, it’s much easier to stay focused on the topic at hand.
Let’s break down the different aspects of the screen to make it a bit more
manageable. There are three basic categories or facets that we’ll focus on –
this should start to be getting familiar by now – data, behavior, and state
transitions. Each has a distinct role to play, and by understanding each, in
turn, we will be prepared to take the next steps toward creating the
simulation.

Developing the Data

A lot of different pieces of data are needed to both run the simulation and
embody the game mechanics. Some of them, such as launchForce, origin,
and cargo, deal with the game mechanics, while others, such as the
planets array and the asteroidBelt and star objects, store information
needed for the gravitational simulation. onStateChangeObservable is used
by other components (for example, the PlanningScreenGui class at
https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/route-
plan-gui.js) to respond to changes in the gameState property, an
enumeration value of one of the PLANNING_STATE keys:

static PLANNING_STATE = Object.freeze({

 Created: 0,

https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/spaceTruckerPlanningScreen.js
https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/route-plan-gui.js

 Initialized: 1,

 ReadyToLaunch: 2,

 InFlight: 3,

 CargoArrived: 4,

 GeneratingCourse: 6,

 CargoDestroyed: 7,

 Paused: 8

 });

Rounding out the defined data for this Screen is preFlightActionList (see
Chapter 5, Adding a Cut Scene and Handling Input), which specifies the
names of the input actions this class should handle, as well as whether the
input should be bounced, or prevented from repeating for a brief time:

const preFlightActionList = [

 { action: 'ACTIVATE', shouldBounce: () => true },

 { action: 'MOVE_OUT', shouldBounce: () => false },

 { action: 'MOVE_IN', shouldBounce: () => false },

 { action: 'GO_BACK', shouldBounce: () => true },

 { action: 'MOVE_LEFT', shouldBounce: () => false },

 { action: 'MOVE_RIGHT', shouldBounce: () => false },

];

In this particular instance, our actions will be linked to the previously
mentioned factors such as launchForce, allowing players to choose their
launch direction, timing, and speed using whatever input method has been
configured – except for touch and visual controls (those must be created
and hosted in the GUI).

As you may expect, the constructor is where the majority of the Screen’s
objects are initialized. Game Components such as soundManager,
actionProcessor, camera, lights, skybox, and so on are all created and
configured there. For lighting, we use a PointLight with the intensity
cranked up to a cool ten million – the vastness of space is dark – and we
want to make sure the light of star can light up the scene in the way we
want. That covers many of the familiar happenings occurring in the
constructor, but there’s a lot more going on that falls outside of the familiar.

Driving Behavior with Data

An important factor driving the code design is the need to drive the
behavior of the simulation via data as much as possible (without going
overboard). This means that instead of hardcoding values directly into
SpaceTruckerPlanningScreen, we define the gameData file to hold our
configuration values. By reading through the configuration data passed into
the constructor, it is easy to run the simulation using arbitrary, easily
changed values (more on refactoring to accommodate iteration will be
covered shortly). Factors such as the origin planet and the destination planet
are stored in gameData, along with physical information about the system
(for example, PrimaryReferenceMass, or how much the central star
weighs).

Some components of SpaceTruckerPlanningScreen are defined internally
to the class. An example of this is the launchArrow mesh, which was
created using a combination of the arrowLines Vector3 array, and
MeshBuilder.CreateDashedLines functions, which returns a mesh from a
passed-in array of points. Other meshes are much simpler, such as
destinationMesh – a sphere parented to a Planet that’s used for visual and
collision purposes.

Preparing for the implementation of the game mechanics is part of our task
here, so we will create and set up destinationMesh with an ActionManager
that will look out for intersections with cargo.mesh (the player’s cargo
unit), invoking the cargoArrived function if that does happen:

this.destinationMesh.actionManager = new

ActionManager(this.scene);

this.destinationMesh.actionManager.registerAction(

 new ExecuteCodeAction(

 {

 trigger:

 ActionManager.OnIntersectionEnterTrigger,

 parameter: this.cargo.mesh

 },

 (ev) => {

 console.log('mesh intersection triggered!', ev);

 this.cargoArrived();

 }

));

The purpose of cargoArrived is to set the current state for Screen, along
with any other needed state-change-related actions to stop the simulation.
For now, this is enough, but later, we will be adding additional behavior to
this function.

Similar to how SpaceTruckerApplication takes different sets of actions in
its per-frame update method, (see Chapter 3, Establishing the Development
Workflow), switching on currentState to control its behavior,
SpaceTruckerPlanningScreen does so as well. The first thing to do is
calculate the number of milliseconds since the last time the frame was
rendered, which we can do using the deltaTime parameter (for testing) or
retrieve using scene.getEngine().getDeltaTime() if missing. After that,
actionProcessor updates its list of inputs and mappings to actions. Now,
it’s time to switch on gameState:

switch (this.gameState) {

 case SpaceTruckerPlanningScreen.PLANNING_STATE.Created:

 break;

 case SpaceTruckerPlanningScreen.

 PLANNING_STATE.ReadyToLaunch:

 this.star.update(dT);

 this.planets.forEach(p => p.update(dT));

 this.asteroidBelt.update(dT);

 this.cargo.update(dT);

 this.cargo.position = this.origin.position.clone().

 scaleInPlace(1.1, 1, 1);

 break;

 case SpaceTruckerPlanningScreen.

 PLANNING_STATE.InFlight:

 this.star.update(dT);

 this.planets.forEach(p => p.update(dT));

 this.asteroidBelt.update(dT);

 this.cargo.update(dT);

 let grav =

 this.updateGravitationalForcesForBox(dT);

 this.cargo.physicsImpostor.applyImpulse(grav,

 this.cargo.mesh.getAbsolutePosition());

 break;

 // ...and so on

}

Looking at the statement, it’s easy to see that when gameState is in the
ReadyToLaunch or InFlight stages, the various celestial bodies get their
update methods called. In other words, the simulation is only advanced
when the game state is either ReadyToLaunch or InFlight. This brings up
the overall question of how we will implement the signature feature of this
Screen: the orbital mechanics simulation.

Transitioning States

As implied in the previous discussion about the cargoArrived function,
changes in the Screen’s gameState are triggered by cargoArrived and
similar functions. Here is a summary of the different state changes, the
functions initiating the change, and their usage:

Except for the setReadyToLaunchState function, all of the state changes in
this Screen arise from either events happening in the game or via direct user
input. The reason that setReadyToLaunchState is the exception is that
while the Screen is created as part of the overall application initialization
process, certain things can’t happen until the Scene is being rendered. In
addition, we need to be able to arbitrarily reset the screen to its initial state

so that players don’t have to restart the entire application when they want to
try a new route. Here’s what a very basic success route looks like with the
CargoArrived state:

Figure 6.6 – The Route planning screen after a successful cargo arrival at
the Destination planet. The trail mesh shows the path of the cargo from start
to finish

On the topic of routes, it can be difficult at first to figure out how to get a
successful cargo launch, so here is a quick tip – aim in the opposite
(retrograde) direction to the direction of the orbital motion to get a more
direct flight path. As depicted in the preceding screenshot, you can see the
trail of the cargo unit going in a counterclockwise direction to the camera
while the planets all orbit clockwise.

Understanding the three facets we examined for the Route Planning Screen
helps make the connection between the inputs and how the application
should behave as a result (its outputs). Behaviors are defined to be
dependent upon data to drive the specifics of that behavior. Game data

specifies how far planets might orbit from their star, their mass, and more,
but the application state is what ultimately controls and decides whether and
how much to move them in their celestial dance.

Creating the Orbital Mechanics
Simulation
When thinking about the various components involved in
SpaceTruckerPlanningScreen, it’s important to consider how the
simulation runs. Every frame (actually, it could be potentially more than
once per frame, but for simplicity’s sake, we’ll go with once per frame), the
physics simulation updates its own internal state. That state is largely
opaque to us – though if needed we can always access it – but is manifested
through the post-physics step changes that are made to an object’s position
and/or rotation. To make our CargoUnit perform the necessary gravitational
boogie, we need to tell the physics simulation the force it should impart,
calculated from the accumulated gravitational forces of the system.

Though very similar in appearance, the InFlight game state has two major
differences from ReadyToLaunch: when we are InFlight, we want the
cargo to be affected by the gravity of all the different massive bodies in the
system. To keep things tidy, we wrap up the task of summing together all
these forces into the updateGravitationalForcesForBox function:

updateGravitationalForcesForBox(timeStep) {

 const cargoPosition = this.cargo.position;

 let summedForces =

 this.star.calculateGravitationalForce(cargoPosition);

 this.planets.forEach(p => summedForces.addInPlace(p.

 calculateGravitationalForce(cargoPosition)));

 return summedForces.scaleInPlace(timeStep);

}

What’s nice about this function is that it can leverage the base functionality
provided by OrbitingGameObject to obtain each component’s contribution
to the overall forces experienced by the cargo unit, even though we are
mixing different types of objects such as stars and planets. The returned

Vector3 is passed to physicsImpostor (see the Understanding the Physics
section) as an impulsive shove imparted to the cargo object. From there, we
let the physics engine take over the task of updating the CargoUnit’s
position and velocity.

Understanding the Physics
Most people are familiar with the apocryphal story of how Isaac Newton
came up with his Theory of Gravity after getting hit on the head by a falling
apple, and of how he changed how we think about the world we live in and
the universe we inhabit. We don’t need to have memorized the equations to
experience the effects of gravity – being a law of nature and all, it doesn’t
care one way or another how someone feels about it. Stars wheel and
twinkle around the night sky as planets spin in a celestial dance, and all of it
– at least from the viewpoint of a 17th-century scientist – can be described
with just a few equations.

Important note

We will be diving a bit into some physics and algebra here, but greatly
simplified from what a more realistic simulation would require. For
example, by assuming that our planets all have perfectly circular orbits, we
obviate the need to implement the more complicated equations needed to
support elliptical ones. Another example of how we’re simplifying this is
that the force calculations are only being performed on cargoUnit and not
between each massive body, as would be the case in the real world.

The first and most fundamental is known as Newton’s First Law of Motion.
It describes the relationship between an object, a force applied to that
object, and the object’s resistance to being accelerated – its inertia:

Figure 6.7 – Newton’s First Law of Motion. The force (a vector) on an
object is equal to the object’s mass times its current acceleration. This is
commonly re-arranged to solve for either m or a unknowns

Since force is what we ultimately want to calculate when we are running the
simulation, we can replace the left-hand side of the preceding equation with
the following equation. The two values for the object’s mass cancel each
other out, leading to a rather curious conclusion – the only mass that
matters for our calculations is the mass of the larger body. The mass of
cargoUnit does not factor in at all:

Figure 6.8 – Newton’s Law of Universal Gravitation. Implemented in
OrbitingGameObject. The value of the Gravitational Constant (G) has been
experimentally verified to many decimal places

In conversational language, the equation can be phrased thus: the force (F)
experienced by an object of a given mass (m1) at a distance of r from
another mass (m2) is equal to a constant value (G), times the product of the
two masses divided by the square of the distance between them. In
computational terms, we separately compute the direction of the force (via a
vector subtraction of the two object’s positions) and its magnitude (via the
preceding equation), or scale, before combining and returning a final result
vector.

The choice of units can be arbitrary but must be consistent; the metric
system is assumed throughout this text because sanity is a prized possession
and should be treasured. Therefore, masses are in kilograms, and the radius
is in meters. This makes the resulting Force a value with units of .
Put alternatively, this is the measure of how fast a 1 kg mass is accelerated
in 1 second by the applied force and is known as the N, or Newton, for
obvious reasons. What is much less obvious are some of the implications of
the equation.

First, the force, F, is a vector value, not a scalar. This means that there are
both direction and magnitude components to the force.

Second, unlike electrical and magnetic forces, which have positive or
negative charges, gravity is always positive. Because mathematicians are
constantly trying to prove their theory that they have a sense of humor, this

fact is denoted in the equation by the negative sign, indicating that objects
are always pulled toward the gravitational mass, never pushed away.

Third, the force experienced by the object is dictated by the sum of all the
forces from each mass capable of influencing the object. This means that
the overall force may be lessened to a degree or even canceled out
altogether from equal or stronger resulting forces at opposing positions
from the object under scrutiny.

A final note on this topic aimed at those who might have some knowledge
of calculus and numerical integration: though our time step between physics
calculations may be around 1/60th of a second, the straightforward
integration via summation is inherently inaccurate. It is accurate enough,
however, to allow the simulation to exhibit the type of emergent behavior
that we’re looking to see using our simplified orbital physics model. The
full implementation of the gravitational force calculation for a single pair of
bodies is contained in
OrbitingGameObject.calculateGravitationalForce(position). The
code can also be viewed at https://github.com/jelster/space-
truckers/blob/8a8022b4cac08f1df9e4c7cfc8ff7c6275c71558/src/orbitingGa
meObject.js#L72.

Hopefully, that little digression into abstract equations wasn’t too
intimidating, because that was the worst of it (for now…) and
understanding how those equations are structured helps to clarify the
simulation’s InFlight behavior. But before the simulation can perform any
InFlight calculations, the physics engine and the data it depends upon
must be initialized and configured.

Driving the Simulation’s Physics
The Babylon.js distribution contains built-in support for four separate
physics engines: Cannon, Oimo, Energy, and Ammo. Each of them has
pros and cons, and though not perfect, the Ammo physics library is what is
being used in Space-Truckers. The choice comes down to an individual
project’s needs and the developer’s preferences, but there are some practical
matters relating to the developer’s experience that are worth understanding.

https://github.com/jelster/space-truckers/blob/8a8022b4cac08f1df9e4c7cfc8ff7c6275c71558/src/orbitingGameObject.js#L72

The team behind Babylon.js is fiercely dedicated to maintaining backward-
compatibility support for users. As we discussed in Chapter 3, Establishing
the Development Workflow, the Babylon.js ES6 libraries retain some of the
prior versions’ patterns in use at the time, such as the use of side-effect only
import statements. Further complicating matters is the fact that the
Babylon.js team doesn’t own or maintain any of the physics engines
themselves – only the Babylon.js plugin wrapper for the library – yet the
CDN and full Babylon.js distributions come bundled with all supported
engines.

Because the point of tree-shaking with ES6 modules is to only package and
load the source files needed, it is necessary to add a package.json
reference to one or more physics engines. Unfortunately, none of the
libraries with available Babylon.js plugins currently have a trusted, verified,
and up-to-date package published to the NPM, but the GitHub repository
for Ammo shows the most consistent activity over the last few years,
indicating that it is likely to continue active development on updates, bug
fixes, and feature enhancements, which is where Node’s support for
referencing a package directly from a GitHub repository is very handy.

Important note

The initialization of the Ammo.js physics library is asynchronous (this is a
breaking change from the previous 4.X version of the library), meaning that
it is necessary to resolve or somehow await the Ammo promise. To ensure
that the library has been properly initialized and loaded, a wrapper is
needed. The /src/externals/ammoWrapper.js module first imports the
ammo.js library, and exports two variables: ammoModule itself along with an
ammoReadyPromise that populates ammoModule before resolving.

In SpaceTruckerPlanningScreen, ammoReadyPromise is imported and
resolved as part of the constructor logic, ensuring that by the time
initializePhysics is called, AmmoJsPlugin has everything it needs to do
its job (see the next section for more on initializePhysics).

The great thing about using a physics engine that has already been built and
proven is that there isn’t much to do other than set up the desired

parameters for the physics simulation. This is done in the
SpaceTruckerPlanningScreen.initializePhysics method.

Configuring the InFlight Physics
Simulation

The initializePhysics method is not invoked during object construction
because we know the screen won’t initially be shown to players, and we
want to make sure that the scene has been completely set up with all the
meshes involved before doing anything with the physics engine. It is
invoked by setReadyToLaunchState, and since that method can be called
several different ways, the initializePhysics function can’t make
assumptions about the current state of the engine. That is why the physics
engine is reset and cleared before every flight – keeping the interface
between the engine and game opaque makes for simpler code.

The first thing we want to make sure and do is set scene.gravity to
Vector3.Zero – otherwise, it would default to the Earth-normal value of
(0, -9.8, 0). This is a space simulation, and it wouldn’t pass muster to
have players falling at the wrong speed and direction! Next, we must
dispose of any existing physics impostors before disabling the engine
entirely. That paves the way for the newly-created AmmoJSPlugin to get
passed into the scene.enablePhysics method. Let’s slow down for a
moment – what is a PhysicsImpostor?

Most meshes (or at least most interesting meshes) are going to have
complicated geometries. The overall shape of the mesh may not be
symmetric on all axes, and there may be convex or concave surfaces that
can obscure or hide other parts of the geometry, depending on the angle in
question. Some meshes may also have dense geometries, with vertice
counts in the hundreds of thousands or more. Performing physics – and
when we mention physics in this context, what we are referring to are
collision calculations for the most part – against such complicated
geometries is complicated, inaccurate, and untenably slow.

To make these calculations work in the short amount of time available
between frames, we must substitute a much simpler geometric shape that
can approximate the actual mesh’s shape in place of the original. This
approximation is generally a simple shape, such as a Box, Sphere, or
Cylinder. The challenge for the developer is to select the most appropriate
impostor type for the mesh getting physics applied.

The physics Impostor sounds pretty cool as a name, but in terms of its
functionality, it might also be thought of as being a proxy object to act on
behalf of the Mesh when dealing with the Physics engine. It holds
information such as mass, linear and angular velocities, and friction values,
as you might expect, but there’s also logic for controlling how the Impostor
syncs data between engine and mesh.

After enabling the physics engine with AmmoJSPlugin, every planet, as
well as star and cargoUnit have their physicsImpostor properties
populated with appropriate values read from the gameData configuration,
similar to the one shown here:

this.star.physicsImpostor = new

 PhysicsImpostor(this.star.mesh,

 PhysicsImpostor.SphereImpostor, {

 mass: this.config.starData.mass,

 restitution: 0,

 disableBidirectionalTransformation: false,

}, this.scene);

Once the impostors have been created, cargoUnit.physicsImpostor is
subscribed to the onCargoDestroyed method handler, which is responsible
for transitioning the game state from InFlight to CargoDestroyed.

This was a big lead-up to what is a bit of an anti-climax – shouldn’t
complex stuff like physics and gravity be a lot more complicated? Perhaps
it should be, but thanks to the hard work of a LOT of people over a very
long time, it isn’t anymore! That’s a fortunate thing indeed because that
allows us to pay more attention to the game mechanics and how they fit on
top of the orbital simulation.

Defining the Rules – Game
Mechanics
Typical business application development focuses on dividing the
responsibilities of the application into logical segments that layer on top of
one another, with the user on one side and the application’s foundational
infrastructure on the other. Data and commands pass sequentially from one
layer to another as user-initiated events propagate in concert with system
and application events. Ideally, the code has the qualities of both being
loosely coupled and tightly cohesive.

This may sound like a paradox or contradiction – how can something be
both loose and tight at the same time? The answer is that it can be both
because the two qualities tend to be inversely correlated with each other.
Loose coupling between components means that making changes to one has
little to no effect on the other. A tightly cohesive system is one where
functionality is confined to a small number of code or application
components; everything needed to accomplish a particular task is close at
hand.

When developing a game, we strive to factor it in a similarly well-
structured fashion – not because it looks nice in a class diagram but because
it makes it easy to change, extend, fix, and enhance. Now, let’s provide a
summary of the basic game mechanics (also known as Business Rules) that
are applied to RoutePlanningScreen.

Controllable Launch Parameters
A key part of the principal game loop in route planning is that the player
should be able to control the timing, angle, and velocity of their launch.
This only applies in the ReadyToLaunch phase. A minimum and a maximum
launch velocity should be enforced, with the specific values for the
minimum and maximum determined by empirical iteration (for example,
trial and error).

The player should be able to visually gauge the launch factors, with or
without the help of seeing the underlying data. If the player isn’t satisfied
with their alignments or they want to start over, they should be able to reset
to starting parameters. In the Supporting Input Controls section, we’ll look
at the input mapping to see how players should interact from their end of
things. Next, we’ll talk about how a player might succeed or fail at the
game along with what defines a particular scenario.

Going Places and Crashing
EVERYWHERE

A given game playthrough should have an origin and a destination
Planet designated in the scenario’s gameData. These should be visible to the
player so that they know where they are and where they need to be.
Potential hazards and obstacles should be made visible to players. After the
player has elected to launch their cargo into its ballistic trajectory, the game
ends in a losing state (CargoDestroyed) if CargoUnit contacts our Star or
any Planet.

If the player can align their launch so that it intersects the destination within
a certain radius, they will be considered to have successfully planned their
flight route. If the player chooses to reject the given flight plan, the
simulation is reset in the same way as it is elsewhere. Should the player
accept the flight plan, gameplay moves to the next phase.

Future game phases, along with the game mechanics of scoring, will be
covered later in this book. To read more about the basic game design, the
original game design docs for Space-Truckers can be found at
https://github.com/jelster/space-truckers/blob/develop/design/game-design-
specs.md. While mostly out of date, it can provide further insights into how
the game’s elements have evolved and grown over time, in addition to
potentially deriving some degree of amusement by looking at the various
concept sketches.

Supporting Input Controls

https://github.com/jelster/space-truckers/blob/develop/design/game-design-specs.md

In the previous chapter, we looked at the input processing and control
system. That system defines an inputActionMap, with every potential input
getting mapped to the name of an Action (Command). The specific
meaning and effect of a given action is determined by whatever code
implements that action and is specific to the Screen.

Let’s look at the Route Planning’s control scheme in its entirety. Some
entries are new since the preceding chapter; the pointer (touch/mouse)
operations are assumed to be centered around GUI elements (see the
Showing Game Information with the GUI section) and the camera controls
are using native keymaps unless otherwise noted:

The GamePad control scheme is oriented toward an Xbox® controller, but
other types of controllers can still be supported with little effort – see
Chapter 5, Adding a Cut Scene and Handling Input, along with the
gamePadControlMap constant in the inputActionMap.js file at
https://github.com/jelster/space-truckers/blob/ch6/src/inputActionMaps.js.

For the most part, we’ve already covered the function implementations for
each of these actions separately in earlier sections of this chapter, so we
aren’t going to spend time on how that operates because we’ve only looked
at half of the feedback loop by looking at user input. We need to close that
loop by examining the sorts of information that the game presents back to
the user.

Showing Game Information with the
GUI

https://github.com/jelster/space-truckers/blob/ch6/src/inputActionMaps.js

When folks think about UIs, the first thing that comes to mind are those of
a graphical nature – web pages, start menus, and the like. While the visual
medium is one of the dominant means of communication between person
and computer, audio and other channels of output are definitely on the
docket for us to look through – just not at this time. We’ll be beefing up the
environmental effects both visually and audibly in the next chapter. For
now, let’s look at how the GUI is structured.

Unlike the Splash and Main Menu Screens, the Planning Screen screen
doesn’t directly create or manage its UI. As you may recall, we’ve been
using the Babylon.js GUI’s AdvancedDynamicTexture to render our GUI
elements, and that isn’t going to change. What is different, however, is that
SpaceTruckerPlanningScreen hosts an instance of PlanningScreenGui
(see https://github.com/jelster/space-truckers/blob/ch6/src/route-
planning/route-plan-gui.js). In turn, PlanningScreenGui takes the
SpaceTruckerPlanningScreen instance in its constructor, allowing it to
access all of the data it needs to dynamically update the GUI. We need to
perform our UI initialization and configuration after the Scene has finished
loading and the Screen is completely constructed; otherwise, our GUI will
need to contain an eventual spaghetti-flavored mess of conditional and null
checks.

Avoiding that is straightforward: listen for scene.onReadyObservable and
then use that to instantiate the GUI. To provide additional flexibility in
separating construction from configuration time, the bindToScreen function
creates the actual UI components, links display objects with meshes from
the Screen, and performs other boilerplate-type creation tasks. This
completes the static configuration of the GUI, but we want – no, demand –
that the GUI should update in more-or-less real time with the latest data
from the simulation and game. That’s where our double-fisted combination
comes in handy!

The first punch is given by the event subscription to
SpaceTruckerPlanningScreen.onStateChangeObservable with the
onScreenStateChange function:

this.planningScreen.onStateChangeObservable.add(state => {

 const currentState = state.currentState;

https://github.com/jelster/space-truckers/blob/ch6/src/route-planning/route-plan-gui.js

 this.onScreenStateChange(currentState);

});

This ensures that the GUI is informed whenever the game state changes,
such as from ReadyToLaunch to InFlight. The logic in that method looks at
newState to determine which controls should be visible, and what color the
text should be. That handles the problem of needing to coordinate UI
changes with state changes, while the other side of this pugilistic analogy is
the knock-out blow of per-frame updates to controls done as part of the
update method.

In the update method, numbers are formatted for display, controls update
their text properties, and the Launch Arrow gets scaled according to the
current launch Force. Essentially, anything that doesn’t directly affect the
game gets updated in this method. The problem of needing to display
dynamically updated data has been solved as well – we can cease our
unyielding demands and claim victory!

It’s a great thing that we’ve knocked out the rest of this chapter, not only
because of the great amount of information we’ve covered in quite a small
amount of text but because the boxing analogy is very off-brand for Space-
Truckers and it was wearing quite thin. Let’s review what we’ve just gone
over and look at some ideas for what you can do to practice working with
the concepts.

Summary
We started this chapter having freshly completed the Main Menu Screen,
and we’ve finished it having implemented the Route Planning Screen and
the bulk of its core game loop – that’s quite the trip for how short a time
we’ve been traveling! SpaceTruckerSoundManager maintains an internal
catalog of all sound assets and makes those assets available to hosting
Screens that want to play sounds. Although it seems like it does a lot, when
it comes to actual Babylon.js Sounds, it likes to delegate responsibility to
the Sound.

The ability to mix different sounds and sources is provided by the different
SoundTracks defined by SpaceTruckerSoundManager, and they make it
very easy to have background music playing at the same time as a game
sound effect without having to code logic around volume levels. This is
because each soundtrack has a volume (gain) control.

After reviewing the GameObject class hierarchy, we dove – or more
appropriately, fell – into the specifics of how the rendered actors are
constructed. Toolbox ready, we created SpaceTruckerPlanningScreen and
set up a set of states and transitions between them. From there, we danced
over basic gravitational physics – doesn’t that sound cool? Find a way to
work into your next conversation that you know gravitational physics and
stroke your chin thoughtfully.

Then, we learned a bit about how the Ammo.js physics engine is set up and
configured with our project. Having set the planets in motion, we shifted
our focus to layering on some of the gameplay elements. Player-controlled
launch parameters, collision detection, and showing players their stats all
went quickly to our enlightened senses, leaving us facing the path forward.

In the next chapter, solar flares and prominences will erupt from the particle
systems we’ll put in place.Later, we will explore encounter zones and focus
on capturing route data as we flesh out route planning and prepare for the
next phase of gameplay.

Extended Topics

Are you not feeling quite ready to move on to the next chapter? Are you
having trouble figuring out how all of what you’ve just read works? Jump
over to the Space-Truckers discussion board
(https://github.com/jelster/space-truckers/discussions) to search for answers
or post your questions so that others may be able to help answer them. Not
ready to move on but feel like you’ve got a good grasp of things? Why not
try enhancing the Screen with some of these ideas:

When the game begins, have the camera start somewhere far out
before pulling in toward the star, giving a tour of the system as it does

https://github.com/jelster/space-truckers/discussions

(Easier) Use Euler’s method to calculate the cargo unit’s new/future
position using the current velocity and the frame’s deltaTime combined
with the previous frame’s velocity and position
(https://en.wikipedia.org/wiki/Euler_method).

(Harder) Use Verlet integration to do the same
(https://en.wikipedia.org/wiki/Verlet_integration).

so, before ending in the starting camera position. There are lots of ways
to accomplish this, but one potential approach would be to create an
animation and set of keyframes that dictate the camera’s position.
Another might be to use autoFramingBehavior, along with tweaking
the camera’s inertia and other related values.

Make the gamepad’s triggers usable for adjusting the launch force;
pulling on the left could decrease the force while pulling on the right
could increase the force. Essentially, this would work the same way as
the current button presses do, except that the constant value being
incremented is scaled or replaced by the trigger value instead (the
trigger is the positive axis, while the other is negative).

Think the physics calculations are too inaccurate? Do you sneer at the
idea of matrix math being complex? Do you begin to question your
existence when someone says that you’re irrational? OK, here’s a
challenge: add a basic numerical integrator to the part of the simulation
where the forces are scaled according to deltaTime.

OK, so maybe the last one was a bit too hardcore, but there’s still the
urge to do something to make the code suck a little bit less… here’s a
challenge that doesn’t specifically require knowledge of any of the
aforementioned topics but does require engineering savvy and great
source code literacy: integrate the core gravitational simulation into the
Babylon.js physics plugin/engine.

If you accomplish any of these things, be sure to share your work with
the world by posting links on the Space-Truckers discussion, the
Babylon.js Forums, and/or by opening a Pull Request!

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Verlet_integration

Processing Route Data
Although we won’t be looking at the transition between route planning and
route driving quite yet, in the big picture of where things stand, generating a
route is an integral piece of the Space-Truckers gameplay. In this chapter,
we’re going to stick with the previous practice of taking a brief detour into
a tangential topic – in this case, that topic will be spiffing up the Sun
rendering with some Particle Systems.

Following our detour into particle systems, we’ll dive straight into how to
capture, crunch, and consolidate the data from route planning into a rich set
of encounters based on location, which will then drive player challenges in
the next phase.

What makes this all possible is a technique that has its roots in the earliest
days of the RPG – when dark Dungeons filled with dangerous Dragons saw
players rolling dice against encounter tables that would determine their fate.
The encounter tables for Space-Truckers are categorized by zoneand play a
similar part in determining a Space-Trucker's fate. Each zone has a list of
potential encounters along with a base probability or chance of that
encounter happening. Most encounters carry potential hazards the player
must act upon to avoid or mitigate, while, more rarely, other encounters
may have beneficial effects (if managed correctly).

In this chapter, we will cover the following topics:

A Detour into Practical Systems

Marking Out the Route

Defining the Encounter Zone

Selecting Encounters

Adding Encounter Visuals

By the end of this chapter, we’ll have prettied up the route-planning
environment a little, but for the most part, the areas of the application being
covered won’t have as much tangible effect on the end user experience.
That’s OK – it will end up having a huge effect later! For this to become the
case, though, we must build up some logic to process and prepare the route
for encounters.

Technical requirements
The technical prerequisites are not a whole lot different in this chapter, but
there are some concepts and techniques that may have utility for the topics
in this chapter.

Here are some topics to research if you’re feeling lost, overwhelmed by
complexity, or having trouble with a particular area:

The source code for this chapter is located at
https://github.com/jelster/space-truckers/tree/ch7 and contains all the work
in this chapter and previous ones. In addition to that, there are several
improvements, bug fixes, and tweaks that have been introduced separately
from what’s been covered previously in this book. While it would be great
if we could include and discuss each of these in greater detail, that’s not
possible in the space and time available! Where relevant, though, these
changes will be called out. For the most part, however, the changes aren’t
introducing any new concepts or techniques, but just refining, fixing, or
enhancing what’s already present.

Particle System: https://doc.babylonjs.com/divingDeeper/particles

Torus Set Shape:
https://doc.babylonjs.com/divingDeeper/mesh/creation/set/torus

Torus (maths): https://www.mathsisfun.com/geometry/torus.html

More torus maths: https://www.geeksforgeeks.org/calculate-volume-
and-surface-area-of-torus/

https://github.com/jelster/space-truckers/tree/ch7
https://doc.babylonjs.com/divingDeeper/particles
https://doc.babylonjs.com/divingDeeper/mesh/creation/set/torus
https://www.mathsisfun.com/geometry/torus.html
https://www.geeksforgeeks.org/calculate-volume-and-surface-area-of-torus/

A Detour into Particle Systems
Particle systems are an area of graphics programming that, like the topic of
input processing, can have entire books devoted to covering particle
systems from basic theory to concrete implementation. We’re not going to
get into that level of detail here, because we’ve got a lot of other things to
do in addition to learning about particle systems! Here’s what you need to
know about particle systems in general. In a moment, we’ll look at their
relationship to Babylon.js and how we can use them for fun and profit.

Think back to the last video game you played. If it was a text-based game,
then think of the last game you played that wasn’t text-based. Did the game
have explosions? Are there magic fireballs exploding? What about
fireworks or campfires? Each of these is an example of where a particle
system might be employed by a game developer.

Let’s back up a bit. A particle is a single entity with a discrete life cycle of
creation and death. It is usually represented not with a single mesh but with
a texture, for most particles are 2D billboard textures or sprites. The texture
or image has transparency properties blended into the rest of the scene in a
varying number of ways. If “transparency properties” is confusing, it can be
helpful to recall that transparency refers to the alpha channel, and the
properties of this channel are the instructions to the engine on how to blend
or mix that channel with overlapping colors. This means that often, a
particle will always be oriented so that it is always directly facing the
camera, and that it will have the ability to fade in and out of view.

A particle system is more than just an aggregation of particles. A particle
system is what defines and controls the entire life cycle of its constituent
particles. It does this through a few primary mechanisms:

Emitter(s): The mesh or node where a particle begins its life. Different
properties of the emitter allow granular control over parts of the mesh
and the shape of the emission, as well as the number of particles emitted
and the rate of emissions.

If a particle system is comprised of particles, then what about a collection
of particle systems? That is what’s called a Particle System Set, and that is
also what we will be employing to give the Sun of Space-Truckers a bit of
“flare!”

Important note

That last sentence may have been a pun too far.

The advantage of using a Particle System Set is that we can use a single
consolidated piece of logic to load, start, and stop all the systems at once.
Although we’ll be using the Particle System Set in our imminent future,
there are a couple of other different but related means of generating and
managing particles in Babylon.js.

The Disparate Particle Systems of
Babylon.js

The family tree of BJS particle systems isn’t nearly as complex as the
Greek pantheon, but what it does share with that fabled genealogy is a
separation of generations.

The “Classic” CPU Particle System

This is what everyone knows, loves, and is familiar with. The vanilla flavor
of the three, this offers the greatest amount of end developer (that is, you)
programmatic control over every aspect of the particle’s behavior. Because

Particle properties: Both visual and behavioral, these include size,
scaling, rotation, color, and speed for the former, and lifetime for the
latter.

Animations, noise, and blending effects: Adding noise to the system
enhances the realism of the particle system, while animations provide a
dynamic look and feel to it.

it runs on the CPU every frame, it must share time in the frame budget with
everything else the game needs to happen between frames. If the target
framerate is 60 FPS, then the intra-frame budget is just 1/60s or just under
17 milliseconds. As any middle-child sibling knows, compromise is key!

The “New Wave” GPU Particle System

Since graphics accelerators have become pretty much ubiquitous in today’s
computing environment (evidenced by a certain Web-GPU JavaScript
framework…), so have the tools needed to program them to become more
powerful. Later, in Chapter 11, Scratching the Surface of Shaders, we’ll
take a closer look at how we can easily and effectively leverage this power
for fun (and profit!), but for the present moment, the relevant fact is that the
same particle systems that we used to run on the CPU are now executed and
updated directly on the GPU. The biggest effect of this change is that the
number of particles available to use has gone up drastically. Instead of
worrying about the effect of a few hundred particles on performance, the
same concerns only start to appear when particles number in the tens of
thousands – quite a large improvement!

The “Hard Core” Solid Particle System

When the pedal hits the pavement and things get real, it’s time to pull out
the big guns. A Solid Particle System (SPS) is constructed not from a
point-like particle but from a three-dimensional mesh. Each particle
instance must share the same material as the other SPS instances, but the
other attributes such as position, scale, rotation, and others are all controlled
by the developer. SPS particles can be physics-enabled, along with
providing support for collisions. The downside of this level of control and
detail is that each property must also be set and controlled individually –
unlike a regular particle system that evolves according to the various
attribute values associated with it. Hard-coding the individual values for a
system is tedious, error-prone, and not very fun to maintain. It’s fine to do
that for Playgrounds and prototypes, but for our application, we’re going to

want to be able to represent our Particle Systems as data that we can
manage separately from the behavior of the application.

Loading Particle Systems From Saved
Data

When dealing with CPU or GPU Particle Systems, it can be extremely
tedious and error-prone to type and tweak each specific property through
code. The almighty Babylon.js Inspector (praise be its crazy good nature!)
is probably the quickest way to iterate against different property values to
see what they look like in real time, but how to effectively capture the
current state of every property for every particle system in a Particle System
Set may appear, at first, to be elusive. However, like many things in
Babylon.js, there are multiple ways to accomplish the same goal.
Fortunately, though, there are multiple ways to get the same result; each of
them makes use of different methods of the ParticleHelper. All three are
available to use in the Inspector (see Figure 7.2), which can be used to
choose the most appropriate method for the requirements of the project.

ExportSet/Save to File (Inspector)

First up is the purely programmatic approach of calling
ParticleHelper.ExportSet(setA, setB,…). The output of the function is
a JSON string, which can then be saved to a file or stored somewhere else.
It’s easiest to use this method in the Playground after putting together
multiple systems. Using the Inspector, it’s possible to save a single system
to JSON by selecting the desired system in the Scene Explorer, then
clicking the Save… button under the FILE heading. This is useful for
single-system setups, but for saving multiple systems to file, the ExportSet
is the best option.

Saving a Snippet to the Snippet Server
(Inspector)

With the Babylon.js Playground open in a browser – here’s one for
reference: https://playground.babylonjs.com/#735KL4#15 – notice how the
specific Playground is identified by a unique combination of a hash (the
#735KL4 part) and a revision (#15). Well, the idea of making Playground
resources referenceable in that fashion worked so well that the concept has
been extended to many other areas of Babylon.js.

Want to load up a GUI setup in the GUI Editor? Use a snippet! How about
that fancy procedural texture created in the Node Material Editor?
Snippet’s got you! The Particle System Set JSON’s too big a drag to
include? Snippet’s. Got. You. Like the Save to File option, but under the
Snippet Server heading, click the Save to Snippet Server button to do
what it says on the box. Loading can be done by clicking the Companion
button manually or programmatically by calling
ParticleHelper.CreateFromSnippetAsync. You can read more about the
Snippet Server for Particle Systems in the official docs:
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particle_s
nippets.

Using a Built-In Particle System Set

Aristotle was an influential guy even during his time, and his idea that
things are made of four “elements” – air, earth, fire, and water – was widely
accepted as being true, mostly due to good marketing. In that spirit,
Babylon.js provides a basic “elemental” catalog of particle system sets for
you to use. Here are the available effects (see more about them in the docs
at
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particleH
elper#available-effects):

Explosion: Good for blowing stuff up.

Rain: For that extra bit of melancholy.

Smoke: Useful to signal the selection of a new Pope, but also for a lot
of other things. Just remember, where there’s smoke, there’s often…

https://playground.babylonjs.com/#735KL4%2315
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particle_snippets
https://doc.babylonjs.com/divingDeeper/particles/particle_system/particleHelper#available-effects

Note

There was another theory floating around that things are made of these tiny,
indivisible particles called (ἄτομος, or atomos), but its main proponent,
Democritus, wasn’t as popular as Aristotle, so nobody listened to him.
Who’s got the last laugh now, Aristotle?

What’s this problem mentioned? It’s not a big one. It’s kind of – no, it’s
exactly the opposite of a big problem. It’s a small problem, one of scale.
The Sun effect is perfect for our needs, but it’s way, way, way too small. We
need to be able to scale it up to match our astronomical proportions, but it’s
not going to be precise in how or where things are scaled – that will take
some experimentation. The Playground at
https://playground.babylonjs.com/#J9J6CG#9 shows the tweaks involved
that were eventually incorporated into the JSON data committed to the
Space-Truckers code repository.

Note

Though it would be ideal to include all the various game design aspects and
decisions involved in this book, it isn’t possible to anticipate everything
ahead of time. There are also pragmatic limits as to how large this book can
get. Therefore, where applicable, links will be provided to GitHub Issues
that provide details about the feature or part of the game. Issues in GitHub
can be linked to other Issues and to Pull Requests (among other things),
which makes it easy to quickly assess and evaluate the code associated with
a given Issue or feature. Relevant to our current work, this issue – Star
should have occasional flares and activity (https://github.com/jelster/space-
truckers/issues/71) – aggregates links from the Babylon.js docs and from
Playground snippets to provide insight into the desired outcome. Comments
and linked Pull Requests show the history and evolution of the issue. This

Fire: Whether it’s a campfire, a torch, or a good old-fashioned house
fire, this is the place to start.

Sun: Jackpot! This particle set includes flares, a dynamically evolving
surface, and the hazy glare of a coronasphere. There’s just one
problem…

https://playground.babylonjs.com/#J9J6CG%239
https://github.com/jelster/space-truckers/issues/71

isn’t to say that we’re not going to cover the game design or details of it –
far from it! Simply put, things in software evolve and change at a vastly
disproportionate rate to that of other goods and industries, such as
publishing. Those wishing to see how the game has evolved can do so by
reading through the Issues documenting that change.

Before we can get into those changes, we must figure out how to load and
start the Particle System Set from a JSON file. There is friction in
attempting this. The ParticleHelper is designed and built with the focus on
removing complexity for developers, certain aspects of which can be
obstacles to our goals.

Parsing From a JSON File

One of those convenient features that ends up becoming a bit of an obstacle
is that the CreateAsync method of PracticalHelper takes just a string
representing the type of the system to create – that is, “rain,” “smoke,”
“Sun,” and so on. This string is then used in conjunction with
ParticleHelper.BaseAssetsUrl to construct the full URL for the JSON
file. Unless explicitly overridden, BaseAssetsUrl has a value of
https://github.com/BabylonJS/Assets/tree/master/particles/. The structure of
the folders places the JSON files in a /systems subfolder and textures in the
/textures subfolder – a nice consistent convention that works great for
most use cases, save ours. The main conflicts with our setup are as follows:

Our folder structure is different from what the convention assumes

Multiple assets need to use the same textures

We are using webpack to bundle and manage our assets and
dependencies, so our design-time folder structures vary slightly from
that of runtime

Relying on external sources for core game assets and data complicates
and prevents offline/native/PWA-type scenarios

https://github.com/BabylonJS/Assets/tree/master/particles/

The first and last items can be mitigated, to an extent, by using relative
paths and by overriding BaseAssetsUrl and making it something like
document.baseURI. The middle two, however, require a bit more thinking
to resolve. Examining the ParticleHelper source code (see
https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/sr
c/Particles/particleHelper.ts) reveals that there’s no practical way to
override the conventional logic that computes the URL of the JSON file.
However, once past that step, parsing and hydrating the particle system set
is very straightforward. The problem here isn’t that we can’t use the
conventional approach, it’s that because of webpack, we don’t need to
figure out how to load the JSON data – we already have it, while the
ParticleHelper expects to have to retrieve the same. It’s time to start
thinking like everyone’s favorite field engineer from the mid-1980s,
MacGyver.

What would MacGyver do (WWMD)? MacGyver’s greatest strength
wasn’t that he was big and brawny, or that he could kick bad-guy butt in a
fistfight. It wasn’t even his luxurious mane of hair that would make an
Olympian God (or Goddess!) jealous. No, MacGyver’s greatest strength
was that he could build, hack, or otherwise science his way out of pretty
much any situation he found himself stuck in. By paying attention to his
surroundings and then applying his (extensive) knowledge of subjects far
and wide, he proved that a sharp eye and a clever mind can overcome
almost any obstacle. Let’s look at this problem through a MacGyver-tinted
lens:

“We need to get a ParticleSystemSet before the bomb goes off! The JSON
data is loaded, but the ParticleHelper needs the URL string, and there’s
only one minute left until everything goes boom… What else do we have,
let’s see… ah! Pass the object data to ParticleSystemSet.Parse and bypass
the ParticleHelper entirely but do it quickly – we’re running out of time!”

So, according to MG up there, we don’t want to use the ParticleHelper at
all and instead directly pass the loaded object data to
ParticleSystemSet.Parse, since that’s what the ParticleHelper ends up
doing anyway. How did he know to try this? He traced down the different
ways the Babylon.js source code APIs allow a ParticleSystemSet to be

https://github.com/BabylonJS/Babylon.js/blob/master/packages/dev/core/src/Particles/particleHelper.ts

created until he came across the Parse method
(https://doc.babylonjs.com/typedoc/classes/babylon.particlesystemset#parse
). Knowing that we were starting with a plain old JavaScript object
deserialized from the correct definition file, he made the rather obvious (in
hindsight, natch) conclusion that since the result (a ParticleSystemSet) was
all that mattered, there was no need to involve the ParticleHelper since the
only additional action it takes other than loading the data file is to specify
the name property. Thanks to MG, we have the tools we need to be able to
integrate the Sun particle system set with our application!

Adapting the Sun Particle System Set
The proof-of-concept Playground
(https://playground.babylonjs.com/#J9J6CG#9) gave us a general idea of
where to scale things in the game, but there’s more to be done to get the Sun
system working the way we want it to. The Playground only has one of the
three particle systems – the flare system – while there are two others; that
is, the Sun and glare systems. These must also be properly scaled and
configured. The best way to get it done is by following these steps:

1. Go to the Babylon.js assets repository and save the needed JSON and
texture files to the local repository. For example, the Sun set is
located at
https://github.com/BabylonJS/Assets/blob/master/particles/systems/s
un.json.

2. Open the sun.json file and change the texture paths to reflect the
project’s folder structure. Use relative paths, but make sure to
consider the relative path of the consuming script, not the path of the
JSON file. In the Star class, add the necessary code to load and start
the set (see https://github.com/jelster/space-
truckers/blob/ch7/src/route-planning/star.js#L26).

3. With the application running and on the appropriate screen, open the
Inspector window by pressing the appropriate key combination (Shift
+ Alt + I by default). Modify the properties of the systems and wait
for the changes to take effect.

https://doc.babylonjs.com/typedoc/classes/babylon.particlesystemset#parse
https://playground.babylonjs.com/#J9J6CG%239
https://github.com/BabylonJS/Assets/blob/master/particles/systems/sun.json
https://github.com/jelster/space-truckers/blob/ch7/src/route-planning/star.js#L26

4. Update the properties of the various systems so that they match the
desired values.

5. GOTO (3).

The result will be whatever you think looks the coolest, but if you want to
start with or just go with the existing definition, you can find it at
https://github.com/jelster/space-truckers/blob/ch7/src/systems/sun.json:

Figure 7.1 – After the Sun particle system has been adapted to the scale of
Space-Truckers. The Inspector window is crucial to being able to see the
effect of different values in real time

In general, the particle counts may need to be increased for the Sun and
glare particles, but whatever the change, make sure to wait a few seconds
for it to propagate to newly spawned particles, since some may have
lifetimes measured in the low 10s of seconds!

In this section, we’ve learned about the different types of particle systems
available in Babylon.js, as well as some techniques to quickly iterate toward
finding our desired look and feel. Hopefully, we’ve made ol’ Mac proud by

https://github.com/jelster/space-truckers/blob/ch7/src/systems/sun.json

channeling his clever knack for finding solutions to the problem of loading
up and adapting the Sun ParticleSystemSet to the game. As we pull away
from this detour, let’s turn our gaze to what’s coming up next – building the
foundation for tracking our CargoUnit as it traverses the system in its flight.

Marking Out the Route
A key aspect of the gameplay of Space-Truckers is how the path taken by
CargoUnit in the route planning phase affects the challenges – and the
rewards – of the driving phase. We’ve already tackled the ballistic flight
mechanics of the route planning, so now, we need to capture that route and
data about the environments it traverses. The following diagram shows the
primary properties of our route and how they might be represented:

Figure 7.2 – Various pieces of telemetry are captured during the in-flight
part of route planning. The Position, rotation, velocity, and a timestamp are
all collected for each sample

Here, the idea that CargoUnit is what is responsible for saving its path,
which translates out to the CargoUnit class, thus gaining a new
routePath[] property along with associated logic in the reset() and
update() methods to clear and update the path, respectively. The data itself
is simple, though we’ll get into the encounterZone field in a bit:

let node = new TransformNode("cargoNode", this.scene,

 true);

node.position = this.mesh.position.clone();

node.rotationQuaternion = this.mesh.rotationQuaternion?.

 clone() ??

 Quaternion.FromEulerVector(this.rotation.clone());

node.scaling = this.lastVelocity.clone();

node.velocity = this.lastVelocity.clone();

node.gravity = this.lastGravity.clone();

node.time = this.timeInTransit;

node.encounterZone = this.encounterManager.

 currentZone?.name;

A TransformNode is a non-rendered object in the Scene that is a superclass
of the more-derived Mesh type. We’ll look at one way that storing this data
as a TransformNode is useful in the Adding Encounter Visuals section.
Because they implement everything needed to calculate and place the
node’s position in the world of the Scene, TransformNodes are useful in a
lot of different applications. This includes the ability to both be a parent
and/or a child to other objects within the Scene. Some examples include a
“camera dolly” made by parenting a camera to a node, a source for
particles, and scaffolding to hold a PhysicsImpostor.

Since this code comes right after we’ve freshly calculated the velocity,
gravity, and rotation properties, we’re ensuring that we have the latest and

most up-to-date values. Why are we storing the rotation as a Quaternion
rather than the Vector3 representation we already have? The reason is that
we are going to want to perform some mathematical transformations against
mesh vertices in a local space, rather than world space, and having the
quaternion already computed makes for more simple calculations, as well as
being more efficient.

Important note

Don’t forget that JavaScript reference types assign by reference, not by
value – hence the need to clone the Vector3 property values.

Although that’s all there is to capturing the path telemetry data, there’s still
more work to do before this will start to be useful in the game. One of those
pieces of work is to implement the concept of an Encounter Table and its
concomitant Encounter Zones. After that, we can start to put the two
together into the SpaceTruckerEncounterManager. If you want to get
more in-depth into the history and linkages between the different
components we’ll be talking about and their high-level design,
https://github.com/jelster/space-truckers/issues/70 is a good place to start.

Defining the Encounter Zone
An Encounter Table is what it says on the box: it’s a tabular format of
probabilities for certain events to occur based on a random factor. In
tabletop and RPG-style games, the random factor is provided by rolling one
or more dice of various numbered sides. In computer-based games, the
same thing applies, except that instead of tossing physical dice, we’ll
generate encounters based on the output of a random number generator.

Like much of the rest of the game objects, the Encounter Zones (EZs) are
updateable game components, while each Encounter serves as a container
for data defining that encounter. This allows the EncounterManager to
choose which EZ should be responsible for running encounter checks,
simplifying the logic required in the EZ. Easy, right?

https://github.com/jelster/space-truckers/issues/70

Encounters Overview
The structure of an Encounter table is simple. Down each row is a specific
event or encounter that the game designer wants to make possible. A
probability column in the table indicates the likelihood of that event
occurring in the form of a number between 0 (no chance whatsoever) and 1
(guaranteed). This is a good start, but we need to be able to further group
encounters by their spatial locations in the world; it wouldn’t make much
sense to encounter a solar flare in the dark reaches of the Outer System,
would it? That’s where the concept of an Encounter Zone comes in.

Encounter Zones and Encounter
Tables

An Encounter Zone is an Encounter Table scoped to a specific spatial
location in the game world, as alluded to previously. From the Inner System
to the Outer Reaches, each Encounter Zone has a unique set of potential
encounters for the player to deal with – or benefit from! The following is a
table of encounters grouped by zone that was part of the Space-Truckers
game design specifications. Incomplete and purposefully vague on
specifics, it still provides a clear picture of how the feature should work and
interoperate with other features:

Figure 7.3 – Design for the Space-Truckers encounter. Source:
https://github.com/jelster/space-truckers/issues/65

When implementing encounters, there will be different needs and thus
differently structured solutions for each type of encounter. Fortunately, we
don’t need to define those specifics quite yet, so we’ll park it for the
moment and take a step back to look at how the Encounter Zone can track
CargoUnit.

Tracking Intersections
Each EZ needs to register the intersection exit and enter triggers for the
CargoUnit mesh’s Action Manager, but we don’t want to have to write code
to do that for each Zone – what if we change the number of

https://github.com/jelster/space-truckers/issues/65

EncounterZones, or want to change the way intersections are used?
Thankfully, this problem can be solved easily.

When the initialize method of SpaceTruckerEncounterManager is
invoked, the list of encounterZones is iterated across in a forEach loop.
Among other actions, each zone is passed by cargo.mesh as a parameter to
its registerZoneIntersectionTrigger method. This function performs the
intersection registration on meshToWatch.actionManager, which hooks up
the corresponding OnIntersectionExitTrigger and
OnIntersectionEnterTrigger to the EncounterZone’s onExitObservable
and onEnterObservable, respectively.

Note

SpaceTruckerEncounterManager is a member of CargoUnit.

The primary purpose of SpaceTruckerEncounterManager is to (as the name
implies) manage encounters in its constituent Zones but to be able to do
that, it needs to know which EZ cargoUnit is currently transiting. You may
initially surmise that because EncounterZone has a torus shape, nested (but
not overlapping) zones should fire their intersection triggers only when the
mesh is crossed, but that’s not the case in practice.

Performing intersection calculations against a complex mesh is a very
computationally expensive process, making it not very suitable for real-time
processing applications. Instead, what Babylon.js does is use the much less
expensive and computationally efficient bounding box intersection
calculations. Though fast, they do not mimic the actual geometries being
tested very accurately, resulting in a problem wherein the cargo unit appears
to the application as if it is within not just the zone at its location but all
other zones that are nested around it!

To resolve this, SpaceTruckerEncounterManager keeps track of all
triggered intersections with the inAndOut field. Incremented whenever a
zone signals the entrance, and decremented for the converse, it is an integer
that represents an index to currentZone that’s offset by the total number of
encounter zones:

get currentZone() {

 let zidx = this.encounterZones.length - this.inAndOut;

 return this.encounterZones[zidx]?.zone;

}

This property is used in several areas, from CargoUnit to the Route
Planning GUI, but the underlying zones in the encounter manager need to
be populated ahead of time with data defining the boundaries and
characteristics of each zone.

Encounter Zones and Game Data
An Encounter Zone (like most software components) is defined by its
behaviors and data. The data comes from the encounter zone’s definition
and looks something like this:

asteroidBelt: {

 id: "asteroid_belt",

 name: "Asteroid Belt",

 innerBoundary: 1000,

 outerBoundary: 1700,

 encounterRate: 0.2,

 colorCode: "#ff0000",

 encounters: [

 { id: 'rock_hazard', name: 'Rock Hazard', image

 hazard_icon, probability: 0.90 },

 { name: '', id: 'no_encounter', probability: 0.1,

 image: '' }

]

}

At construction time, SpaceTruckerEncounterZone uses this structure
(passed as a parameter to the constructor) to initialize and configure the EZ.
Some properties are self-explanatory, but innerBoundary and
outerBoundary warrant explicit definitions, along with encounterRate.
Once we’ve covered those, we’ll dive into the encounters array and how it
works.

The innerBoundary field is the radius (remember that for later) of the
innermost circle of a torus – a donut shape – making this value the radius of
the donut hole, while outerBoundary is the radius of the outer circle
described by the torus. Though this makes sense from a conceptual
viewpoint, it is a bit different from how the Babylon.js TorusBuilder API
approaches the subject. When calling the createTorus method, the primary
“knobs and switches” available to control the size of the mesh are the
diameter and thickness parameters. These two values sound like they
would work well if we were to pass outerBoundary and (outerBoundary –
innerBoundary), respectively, but closely reading the parameter
descriptions tells us a different story.

The best way to picture how the various parameters all fit together is by
taking a length of wire and forming it into a half-circle of some radius, r.
The diameter is 2 * r. Now, picture taking a small paper coaster of the
radius, R, and poking the wire through the center of it while joining the two
ends of the wire to make a complete circle. So, the thickness of the torus
described by the coaster around the wire is 2 * R. The outer boundary of
the torus isn’t the same as the diameter parameter – it’s equal to the
diameter plus one-half the thickness. The inner boundary is equal to half of
the diameter minus half the thickness. That’s not the best way to picture
this, but it is one way to describe it! Here’s something better than a
description – a visualization for that analogy, available at the Playground
link in the caption:

Figure 7.4 – The properties of a torus. The diameter is depicted by a solid
circle with its thickness described by a second smaller circle. This
Playground can be found at https://playground.babylonjs.com/#P2YP2E#1

Why are we going through these hoops? Because by structuring it in this
way, we can quickly and easily compare and align encounter zones with
planetary orbits, as defined in gameData.

Finally, getting back to the EZ data, the encounterRate field is a percentile
(0 – 1) number indicating how often encounters happen in general for the
zone. Each zone independently keeps its own encounter table, which it then
uses to determine what, if any, encounter might occur. Since we’re on the
topic of encounters and random numbers, we might as well try to gain an
understanding of exactly how to go about implementing the logic of picking
entries from the Encounter Table. For that, we need to talk about something
called a Cumulative Distribution Mass Function.

Selecting Encounters
A developer implementing this kind of functionality for the first time might
devise a simple function, getEncounter, that picks a random number to
serve as a dice roll before searching through an array of encounters for the
first one with a probability less than or equal to the dice roll. To that
developer’s chagrin, this simple approach would also be incorrect! Though
this approach works when rolling to determine the chance of a singular
Encounter, it won’t work when there are multiple potential encounters.
Here’s what the Asteroid Belt Encounter Table looks like in simplified
form:

encounters: [

 { id: 'rock_hazard', name: 'Rock Hazard',

 image: hazard_icon, probability: 0.90 },

 { name: '', id: 'no_encounter', probability:

 0.1, image: '' }

]

https://playground.babylonjs.com/#P2YP2E%231

Each entry in the encounter table has an associated probability factor, the
total of which will usually (but doesn’t have to due to some code we’ll write
shortly) equal 1 (100%). When you want to pick a random entry from the
table, it’s necessary to consider all the potential other events that might take
place. The fancy-pants way of referring to the process of computing an
event output in response to a random number input is a Cumulative (Mass)
Distribution Function (CMDF). In the EncounterZone source (see
https://github.com/jelster/space-
truckers/blob/ch7/src/encounterZone.js#L44), the CMDF is implemented in
the constructor as a two-step process.

Summing the Probabilities
In step one, we take the sum of all the individual encounters’ probabilities.
This step is what will allow the application to handle scenarios where the
individual probabilities don’t all add up to 1 and is used by step two. While
we’re there, the encounter table gets populated from the definition:

var total = 0;

definition.encounters.forEach((e, i) => {

 total += e.probability;

 this.encounterTable.push(e);

});

The point of this step is that while we can’t necessarily guarantee that the
total of the probabilities will come to one, we can normalize that sum in the
next step so that each entry in the table is correctly and proportionally
represented in the CMDF.

Populating CMDF Results
Step two involves looping through the list of encounters again (after pre-
baking the first element of the cumulativeDistribution array) and
populating entries into a second array – the aforementioned
cumulativeDistribution array. This collection’s entries represent the

https://github.com/jelster/space-truckers/blob/ch7/src/encounterZone.js#L44

CMDF over its entire space and can therefore be used as an index to look
up values for arbitrary inputs:

this.cumulativeDistribution[0] = this.encounterTable[0].

 Probability / total;

for (var I = 1; i < definition.encounters.length; i++) {

 this.cumulativeDistribution[i] =

 this.cumulativeDistribution[i - 1] +

 definition.encounters[i].probability / total;

}

Note that because the loop looks backward, the first element is calculated
outside of the loop, which then starts at the second element. Essentially, the
current element of the loop’s value (this.cumulativeDistribution[i]) is
equal to the previous element’s value added to the current encounter’s share
of probability toward total. This only needs to happen once, upon
initialization. Once in place, it is now possible to “roll the dice” and
implement a more correct form of getEncounter.

Rolling an Encounter Check
Every time EncounterZone’s update method is called, the logic will
evaluate whether an encounter happens before deciding which encounter is
going to take place. It needs to consider how much time has elapsed since
the last frame, as it would then tie encounters to a player’s frame rate – not
what we want! Once that is considered, and if there is indeed an encounter
indicated for the zone, the getEncounter method is called to retrieve a
random entry from encounterTable. The encounter retrieved is then passed
as the event parameter for onEncounterObservable, letting any subscriber
know about encounter:

const encounterProbability = this.encounterRate * deltaTime;

if (Math.random() < encounterProbability) {

 let encounter = this.getEncounter();

 console.log('encounter ' + encounter?.name);

 this.onEncounterObservable.notifyObservers(encounter);

}

That’s the update loop in its entirety. If only life could always be as elegant
and simple as these solutions, maybe people would get along better, because
the getEncounter method boils down to a single line of correct, though
slightly esoteric, JavaScript:

for (var i = 0; i < this.cumulativeDistribution.length &&

(diceRoll > this.cumulativeDistribution[i]); i++) {};

The reason this is a bit esoteric is that, as you might have noticed, the for
loop has no body! There isn’t a body in the loop because, simply put, there
isn’t a need for any. The purpose of the loop is to find the index (i) that
conforms to the CMDF, given the input random diceRoll number. Once
that condition has been fulfilled, the i value sticks around due to being
declared with var rather than with let. The encounter itself is retrieved as
an index and returned to the calling method for distribution.

Listening for Encounters
Once the EncounterZone has notified its subscribers of the
onEncounterObservable’s new event, its role in the encounter journey has
ended. It doesn’t need to know anything about who is listening to that event
or what happens as a result of it, which allows our code to be more resistant
to change (robust) and to be simpler and easier to understand
(maintainable). This is one of the many strengths that can be leveraged from
an event-driven system. The primary subscriber of these events is
SpaceTruckerEncounterManager, which then acts as a broker and
aggregator for distributing the news of Encounter throughout the
application in its onEncounter observer method. The same observer is
subscribed to all the zone’s onEncounterObservable, which is what gives
us the aggregation of these events that we need, along with the
CargoUnit’s lastFlightPoint telemetry package.

Both the encounter and cargoData are then bundled together and pushed
into the encounterEvents array for future reference. The index of the
newly added element is what is then propagated to observers of
onNewEncounterObservable:

const cargoData = this.cargo.lastFlightPoint;

const idx = this.encounterEvents.push({ encounter,

 cargoData });

this.onNewEncounterObservable.notifyObservers(idx - 1);

The reason we are passing an index (or pointer) to the encounterEvents
collection is that we want to ensure that we can dispose of those objects
cleanly and at any time; if the object were passed in the event, it might not
be possible for the system to determine whether memory can be freed up
from disposed-of objects – a condition known as a memory leak.

At this point, we have finished inspecting and discussing the underlying
infrastructure needed to define, locate, and generate encounters of different
types. These encounters will be brought to life later in this book when we
get into the driving phase game logic for each encounter. However, while
our understanding of encounters is fresh, let’s look at how encounters might
be used and presented within the context of the route planning screen.

Adding Encounter Visuals
This is where our previous work in the Marking Out the Route section
comes into play. Recall that as our CargoUnit falls through its trajectory, it
is constantly laying down a line of breadcrumbs to mark out its path. This is
visualized by the CargoUnit.trailMesh component, which other than
needing to be initialized and disposed of during scenario resets, takes care
of itself without much need for us to intervene. We need an equivalently
hands-off way to similarly render visualizations for encounters when and
where they occur along the route, and that’s precisely what the work we just
covered is meant to enable.

Important note:

While the following section is ultimately cut from the game, the technique
demonstrated is helpful to have in your pocket.

Putting 2D Labels into 3D Space

Although there is a 3D GUI system in Babylon.js, our current needs don’t
require the use of a full 3D UI. Still, one of the advantages of a 3D GUI is
that it is easy to position elements within the World Space – for reasons that
should hopefully be obvious.

Note

Unlike jokes, there’s no risk of ruining this with an explanation. The
obvious reason is that positioning 2D elements concerning a 3D world-
space point can get tricky because of the need to combine camera position,
world position, and screen position transformations to get the correct
coordinates as opposed to a 3D GUI system operating in the same
coordinate space.

Much of the complexity inherent in coordinate transformations is,
fortunately, hidden away from the developer by the BJS GUI framework –
linkWithMesh and moveToVector both allow callers to place a GUI control
somewhere in the World Space. That’s good for part of the way, but we
still need to have someplace to hang the visuals as well as provide a base
for future enhancements and behaviors.

If you’ve come back to this section after a break, you can thank your Past
Self for putting all the pieces into place. If you’ve been binging through this
chapter (don’t stop – won’t stop – can’t stop!) then take a moment to pat
yourself on the back. It’s important to take the time to properly
acknowledge yourself and the impact of previous actions on present
situations – both good and bad! This is going to be easy, in other words.

Remember how we used a TransformNode to track our cargo’s flight path?
This is where that decision is finally justified. Most Controls in the
Babylon.js GUI system have the linkWithMesh function, whose name
implies that you must only pass a Mesh. This would be a wrong, though
understandable, conclusion to make that can be remedied by studying the
method’s documentation and seeing that while the name of the parameter is
mesh, the expected type of the parameter is our old friend Transform Node!

Note

The documentation isn’t wrong, strictly speaking, because Mesh extends
the TransformNode type.

The PlanningScreenGui component already has access to the
encounterManager property of the planningScreen field in its constructor,
so we can subscribe to its onNewEncounterObservable to be notified when
a new encounter happens. In the observer function, we get the image URL
from the encounter itself and use it to create Babylon.js GUI elements that
are then linked to the associated TransformNode of the flight path:

const encounter = evt.encounter;

let panel = new Rectangle("panel-" + encounter.name);

let image = new Image("image-" + encounter.name,

 encounter.image);

image.alpha = 0.68;

panel.addControl(image);

panel.thickness = 0;

this.gui.addControl(panel);

this.encounterPanels.push(panel);

panel.linkWithMesh(evt.cargoData);

That’s the visual placed in the correct spot and with the right image, so now,
let’s think about what else is involved with displaying an encounter. First,
we want there to be a sound effect that plays. This can be done by
registering SpaceTruckerPlanningScreen to onNewEncounterObservable,
as shown in the following code:

this.encounterManager.onNewEncounterObservable.add(enc =>

 this.soundManager.sound("encounter").play());

While we’re not currently using the actual encounter index now, this
approach allows it to be easily extended in the future – to allow individual
encounters to specify their own sound to play, for instance. When an
encounter occurs, we don’t want an icon to simply appear, with no fanfare.
We want to make sure the player’s attention is called to it, but only
momentarily. One way to accomplish that is to initially render the panel so
that it’s much larger than its eventual size and then animate the panel so that
it’s shrinking to its final size and position.

Animating the Encounter Panel
In Chapter 4, Creating the Application, we saw how to statically define an
Animation that was later targeted to a specific object as part of an
AnimationGroup. We will use the same technique here to define the
animations involved in shrinking the encounter panel.

Important note

Even though it may not seem like it, almost any object can be the target of
an Animation – including GUI components! You just need to know the
specific name(s) of the properties to animate. In our case, those are the
scaleX and scaleY properties of the GUI.Image component.

Note that there are two separate animations involved – one each for the X
and Y-axes – since an Animation can only target a single property. Though
there are separate animations for each mentioned axis, they have the same
set of keyframes. In our encounter observer function, we can create an
AnimationGroup and use addTargetedAnimation along with the target
panel and panelShrink Animation, after which the animation is started:

let animationGroup = new

AnimationGroup("shrinkAnimationGroup-"+ encounter.name,

 this.scene);

animationGroup.addTargetedAnimation(panelShrinkX, panel);

animationGroup.addTargetedAnimation(panelShrinkY, panel);

animationGroup.start(false, 1.0, 0, 180, true);

This gives us a nice presentation for the encounters, leaving just one more
use case that we have yet to cover – resetting the route planning screen.

Clearing Encounter Panels
The list that encounters the GUI elements that are collected in anticipation
of just this scenario is the encounterPanels array. Since each GUI control
implements a dispose function, we reset the encounters UI by simply
looping through the array and calling dispose on each element in turn. To

avoid the need to anticipate every single place we need to do this, we can
add the logic to the place it makes the most sense – the
onScreenStateChange observer function. Whenever it executes logic to
transition to the ReadyToLaunch state, the encounter panel is cleared of any
elements and all children are disposed of:

this.encounterPanels.forEach(panel => {

 panel.children.forEach(child => child.dispose());

 panel.dispose();

});

That’s all there is to it.

Important note

Of course, that’s not all there is to it! There is much, much more that can be
done and is being done in the context of Encounter visuals, but by and
large, all of this is based on the same concepts presented throughout this
section and chapter. If you haven’t already, don’t forget to remind yourself:
game development is hard and there are a lot of moving parts!

Although we have only covered how the encounter GUI panels are cleared,
this pattern completes the circle of creation and destruction.

Registering to listen for EncounterManager.onNewEncounterObservable
informs components of new encounters, while setting
SpaceTruckerPlanningScreen.onStateChangeObservable to the
ReadyToLaunch state clears any existing ones.

Summary
Let’s take a step back and review what we’ve covered in this chapter. First,
we took another side route to visit the various Babylon.js particle systems,
making use of and adapting the Sun Particle System Set for our purposes.

We can look at particle systems in three rough categories of distinction –
the “Classic”, “New Wave”, and “Hard Core” monikers. Each references

the always-available CPU-bound Particle System, the GPU-bound GPU
Particle System, and the mixed Solid Particle System (SPS). While the
first two systems are based around 2D billboards and sprites –
characteristics that can animate via sprite sheets and the like – an SPS uses
a source mesh to generate particles, which can, in turn, be assigned any type
of Material desired (we’ll get more into Materials, the different types, their
properties, and more in Chapter 10, Improving the Environment with
Lighting and Materials).

Loading a custom Particle System Set involves capturing a serialized JSON
file containing the specific parameters for each Particle System involved in
the appropriate structure. This can be done by calling
ParticleHelper.ExportSet(setA, setB,…). Loading saved JSON from a
URL is easy but loading it from a local URL gets a bit more complicated.
However, by falling back to the ParticleSystemSet.Parse function, we
can load data for the ParticleSystemSet in any way we please!

Following our detour into Particles, we examined the telemetry data our
CargoUnit captures during its flight, and how we can use
TransformNodes to represent spatial locations. This proves to be crucial
for making it easy to display visuals without writing a lot of code and
provided a good on-ramp to get into how Encounter Zones work.

Each Encounter Zone can be thought of as a unique biome or environment
in the world of Space-Truckers. From the toasty Inner System to the frosty
Outer System, each Zone has its own set of potential Encounters players
might face. Defined by an inner and outer Boundary, some light math is
involved in converting those handy gameData figures into parameter
values used to create a set of nested Torus meshes to represent the zones.
Not rendered, these meshes’ ActionManagers are used to register
IntersectionEnter and IntersectionExit triggers against the CargoUnit.
As it traverses the system, the SpaceTruckerEncounterManager keeps
track of which Zone the player’s CargoUnit is currently transiting.

While transiting a given zone, the Zone’s update method makes a weighted
random check every frame to decide whether there should be an Encounter,
selected from the Zone’s Encounter Table. The Encounter Zone’s
constructor pre-computes the Cumulative Mass Distribution Function

values for every entry in the Table, normalizing the probabilities so that the
total adds up to 1. If an encounter is “rolled,” the value of the roll (a number
between 0 and 1) is used as an input to the function, which returns an index
to the indicated event. SpaceTruckerEncounterManager listens for these
Encounter Zone events.

Responsible for aggregating Encounter data with CargoUnit data and
informing subscribers of where to find the resulting encounter data, the
onNewEncounterObservable is the primary means for components such
as the PlanningScreenGui to update themselves without needing to pepper
appropriate logic throughout the application’s components. Within the
PlanningScreenGui, techniques first perfected during the construction of
the Splash Screen come in handy. Here, we can define some Animations
that target the Encounter’s Image panel to give it a shrinking effect as an
entrance.

Within the onNewEncounter observer, targeted animations are generated
from the Animations and put into an AnimationGroup associated with the
new GUI display elements. Our previous planning in the Marking the Route
section pays off here as well, as we can ensure that the UI element is
correctly positioned by calling linkWithMesh and passing in the
TransformNode captured from the flight telemetry.

As usual, the code discussed in this chapter is available at
https://github.com/jelster/space-truckers/tree/ch7, and while the game is
still incomplete at this point in its history, we can point to concrete and
valuable progress through the course of this chapter – never forget to give
yourself credit for progress made on a journey! The Discussions board at
https://github.com/jelster/space-truckers/discussions is a good place to post
questions about the code, book, or application. Want to contribute?
Navigate to the Issues at https://github.com/jelster/space-truckers/issues and
browse for open ones that catch your fancy, or create a new Issue to discuss
your enhancement, bug, or new feature. In the next chapter, we’re going to
make good use of the route and the encounters generated to build the
driving mini-game. Along the way, we’ll learn how to shift camera
perspectives to a first-person view, apply decals to meshes, and more!

Note

https://github.com/jelster/space-truckers/tree/ch7
https://github.com/jelster/space-truckers/discussions
https://github.com/jelster/space-truckers/issues

There’s an entire category of Issues aimed at first-time contributors and
people lacking experience or familiarity with Babylon.js and/or Space-
Truckers – it’s called Good First Issue. Want to make MacGyver proud and
fix Issues that nobody else can fix? Check out the Help Wanted label!

Extended Topics
There is always more content and ideas than there are time and space to
implement them, so here are some ways that you can push yourself further
with the content from this chapter. Before moving on to the next chapter, or
at any time later, think of these as launch pads for you to clarify and fold the
lessons learned here in the forge of experience:

Add a new particle system based on the Sparks particle sample that is
triggered when the cargo collides with something during the route
planning’s flight phase.

The world of Space-Truckers is rich and varied, and the game could
display more of that richness. Use an animated particle system to bring
these areas to life:

Orbital manufacturing might look like a series of flashing lights
from maneuver thrusters and welding torches clustering around
shadowed block structures

Traffic in the Space-Construction and Space-Highway zones could
similarly be approximated with clusters of flashing lights zipping
around

Add the capability to load encounter lists from external sources other
than the gameData file. The source can be a relative or remote path,
with CMDFs being recomputed for the new list for each zone.

Make an enhanced random number generator that will weigh or re-roll
random values to avoid returning the same value more than X times in Y
rolls.

Random numbers generated by computers tend to cluster and clump
unrealistically – the Asteroids are a great demonstration of that. There
are other ways to weigh and generate random series of numbers, though.
Sneak to the ch10 branch of the Space-Truckers source code on GitHub
to see how the randomGenerator module implements
getGaussianRandom for one example.

Building the Driving Game
It may not be easy to believe it, but we are officially past the halfway point
– while the end is still not in sight, we’ve made so much progress it’s tough
to see our starting point. In the previous six chapters, we built out a huge
amount of functionality encompassing an almost breathtaking diversity of
subjects. The following figure shows where we were before and where we
are now:

Figure 8.1 – How it started versus how it’s going. A montage of screenshots
showing our progress

From setting up the basic web application to implementing random
encounters, a lot has gone into our code base to get to this point, but we’re
not stopping or even slowing down any time soon! Making it this far into
this book shows admirable persistence and determination – this chapter is
where all of that will pay off. One of the more enjoyable aspects of game
development is also one of the more obvious ones – the part of getting to
work on the core gameplay and logic code. Unfortunately, and as people
with experience of developing and shipping software will attest, all the
other activities that go into building and delivering software tend to take up
the lion’s share of available project time.

Throughout this chapter, we’re going to be building out the driving phase of
Space-Truckers. Along with some of the techniques we learned earlier,
we’re going to introduce a few new tools for the ol’ toolbox. We’re going to
take things up a notch by adding a second camera to our scene that will
render the Graphical User Interface (GUI). We’ll generate a route based
on the previous phase’s simulated route and allow players to drive their
trucks along it, avoiding obstacles (if they can). Our scene will use physics
as the previous phase does, but instead of mainly using it as a gravitational
simulation, we’re going to make use of the physics engine’s capabilities to
simulate the results of collisions, friction, and more. Some things we’re
going to introduce but defer more detailed examination until upcoming
chapters – when this is the case, the relevant chapters and sections will be
linked for easy reference.

All those exciting topics will hopefully more than make up for the more
mundane but no less important task of building the necessary logic ahead of
us. By the end of this chapter, we’ll have a playable driving game that sets
us up for the following chapter, where we will continue to finish the overall
game’s life cycle as we learn how to calculate and display scoring results.

In this chapter, we will cover the following topics:

Prototyping the Driving Phase

Integrating with the Application

Adding Encounters

Technical Requirements
Nothing in this chapter is required from a technical perspective that hasn’t
already been listed as being needed for the previous chapters, but there are
some technical areas where it might be useful to have working knowledge
as you read through this chapter:

Prototyping the Driving Phase
There’s a lot to do, so let’s dive right into it. Due to the way the driving
phase is designed, players must navigate their trucks along a route that’s
been pre-determined by the players in the previous game phase. The nature
of the overall planned route determines similar overall characteristics of the
driving route. Factors such as total transit time, distance, and velocities all
fall into that kind of characteristic. Others, such as random encounters along
the path, are more localized to a specific portion of the path. The behavior
of each encounter is variable, but all will have a general form of forcing the
player to make choices to avoid/obtain a collision while piloting their

Making the Mini-Map

MultiViews:
https://doc.babylonjs.com/divingDeeper/cameras/multiViewsPart2

Layer Masks:
https://doc.babylonjs.com/divingDeeper/cameras/layerMasksAndMulti
Cam

In-Depth Layer Masks:
https://doc.babylonjs.com/divingDeeper/scene/layermask

Loading Any File Type:
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes

Polar Coordinates:
https://tutorial.math.lamar.edu/Classes/CalcII/PolarCoordinates.aspx
and https://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-2/

https://doc.babylonjs.com/divingDeeper/cameras/multiViewsPart2
https://doc.babylonjs.com/divingDeeper/cameras/layerMasksAndMultiCam
https://doc.babylonjs.com/divingDeeper/scene/layermask
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes
https://tutorial.math.lamar.edu/Classes/CalcII/PolarCoordinates.aspx
https://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-2/

space-truck. Capturing the correlations between the two phases is an
important design specification that will be useful – here’s what is listed on
the Space-Trucker Issue created for that purpose:

Figure 8.2 – Comparison of Route Planning versus driving phase variables.
Source: https://github.com/jelster/space-truckers/issues/84

Some of the properties have a direct 1:1 correlation between phases, such as
total transit time and distance traveled. Others are used as scale or other
indirect influencing factors, such as the point velocity affecting the route’s
diameter. This will all be quite useful a bit further down this chapter’s
journey, but for now, we will turn our attention to building out a Playground
demonstrating the core principles of the driving phase.

Playground Overview
Prototyping in software is all about reducing a particular problem or area of
interest to its bare essence. It forces us to ask the question – what is the
smallest set of characteristics, attributes, features, and so on needed to
evaluate the viability of a particular approach? In the case of our driving
phase prototype, we don’t need to play through the planning phase to
accomplish our goals – we just need to be able to process the route data
generated by that phase. Focusing in, the problem of hooking up our route
data to the driving phase isn’t the problem we’re trying to solve right now
(though we can certainly do our future selves a solid by structuring our code
in ways that facilitate building that logic!). This saves mental bandwidth

https://github.com/jelster/space-truckers/issues/84

and energy that can be put to good use elsewhere, which is where we will
begin.

Important note

The Playground at https://playground.babylonjs.com/#WU7235#49 is the
reference for this section of this chapter.

We’ll need physics to be working so that we can playtest the interactions
and relationships between the truck, obstacles, and velocities. We need to
determine the proper scaling, orientation, and import settings for loading
the first 3D asset model into the game – the semi-truck. Finally, we need to
figure out how we’re going to plot oncoming obstacles in the radar GUI
presented to the player. This seems like quite a lot to take on, but thanks to
the functionality built into Babylon.js there’s much less complexity than it
might seem. The following screenshot illustrates how these elements all
come together in the Playground demo:

https://playground.babylonjs.com/#WU7235%2349

Figure 8.3 – Space-Truckers driving phase Playground at
https://playground.babylonjs.com/#WU7235#49

In the center of the viewport is our game’s protagonist, the eponymous
space-trucker. The space-road stretches out in front of them, littered with
the untextured blocks that are filling the place of encounters. In the lower-
left part of the screen, a radar display sweeps in a circle, revealing
upcoming obstacles as blips. The camera is chained to the truck so that the
player’s perspective is always behind and a bit above the truck – the classic
Third-Person Perspective. The controls are simple – W and S accelerate and
decelerate in the truck’s forward direction, while A and D accelerate to the
left and right, respectively. Vertical acceleration is managed with the up
arrow and down arrow keys, and rotation with the right arrow and left
arrow; resetting the demo is done by pressing the Delete key. Try to make it
to the end of the path as fast as you can!

Let’s swap over to looking at the code for the demo, and how the demo is
structured. Right away, we can see some similarities but also some
differences from how we’ve structured our previous Playground demos. At
the very top are the various asset URL and BABYLON namespace aliases;
moving down, we have a rather hefty gameData object, and then we get to
the most striking difference yet: the async drive(scene) function.

This is, as implied by the async prefix, an asynchronous JavaScript
function. Its purpose is two-fold: one, to allow the use of the await
statement in expressions within the function body, and two, to provide a
container for closure over all the *var*-ious objects and values used by the
demo.

Note

The editors of this book apologize for subjecting you to the inredibad pun
that was just made.

Furious punning discharged, we will continue with the first few lines of the
PG above the drive function. To load our route data, we’ll choose the
simple approach of wrapping a call to jQuery.getJSON in a promise that
resolves to the array of route path points:

https://playground.babylonjs.com/#WU7235%2349

var scriptLoaded = new Promise(

 (resolve, reject) =>

 $.getJSON(routeDataURL)

 .done(d => resolve(d))

);

This requires us to specify our createScene method as async, allowing us
to write a simple harness to instantiate and return the Playground’s Scene
after doing the same for the driving phase initialization logic:

var createScene = async function () {

 var routeJSON = await scriptLoaded;

 var scene = new BABYLON.Scene(engine);

 const run = await drive(scene, routeJSON);

 run();

 return scene;

};

The drive function is responsible for creating and/or loading any type of
asset or resource that might require a bit of time to complete, so it is also
marked as async. There’s a ton of code that goes into this function, so to
make it easier to work with, the logic is split up into a few helper methods.
Before those, the logic for basic scene and environment setup is constructed
or defined. These are elements that might be needed by any or all the
(potentially asynchronous) helper functions that include the invocation of
those helper functions in the proper order. Once those tasks are complete,
the run function is returned:

await loadAssets();

initializeDrivingPhase();

initializeGui();

return run;

We’ll cover the initializeGui method in this chapter’s Making a Mini-
Map section after we establish a bit more context. Earlier in the drive
function is probably the most important helper function that we want to
prove out in the Playground, and that is the
calculateRouteParameters(routeData) method. This is the workhorse
function of the driving phase’s world creation and has probably the largest

impact on how gameplay evolves in the form of dictating the properties of
the route driven by the player.

Generating the Driving Path
In Chapter 7, Processing Route Data, we set up cargoUnit to log
routeData: timing, position, velocity, rotation, and gravity are all captured
every few frames of rendering into a collection of data points (along with
encounters, which we’ll get to in the Adding Encounters section). The
telemetry data is a deep well for creative and interesting ideas (see
Extended Topics), but for now, we’ll just use the position, velocity, and
gravity route values described in the Playground Overview section to
generate the route path.

The beginning of the function grabs routeDataScalingFactor from
gameData; though currently set to a value of 1.0, changing this allows us to
scale the route size and length consistently, easily, and quickly across route
elements. In a concession to our desire to load up captured route telemetry
from a JSON file, we iterate through the data array to ensure that the
position, gravity, and velocity elements have been instantiated to their
respective Vector3 values, as opposed to a Plain Ol’ JavaScript Object.

Important note

Taking proactive steps like this to reduce friction on quick iteration is key to
building momentum!

Once that’s done, we use the positional vectors from the telemetry data to
construct a new Path3D instance:

let path3d = new Path3D(pathPoints.map(p => p.position),

 new Vector3(0, 1, 0), false, false);

let curve = path3d.getCurve();

From the Babylon.js docs
(https://doc.babylonjs.com/divingDeeper/mesh/path3D),

https://doc.babylonjs.com/divingDeeper/mesh/path3D

“A Path3D is a mathematical object created from a sequence of position
vectors of points on a curve.”

Error! Hyperlink reference not valid.

Put another way, a Path3D represents an ordered set of coordinate points
with some interesting and useful properties.

Note

The reason for calling it a “mathematical object” is because it is not a
member of the Scene and does not take part in rendering. This also sounds a
lot cooler than calling it a “non-rendered abstract geometrical data
structure.”

The getCurve() method is a utility method that spits back the sequence of
points that define the path, but there are even more useful nuggets of value
tucked away in Path3D that we’ll soon be exploring. First, though, we want
to display the specific path taken by the player during the planning phase as
a straight line going down the middle of the space-road. This is easy – we
use the curve array in a call to MeshBuilder.CreateLines and that’s all
there is to it! For more on this, see
https://doc.babylonjs.com/divingDeeper/mesh/creation/param/lines. After
that is when we start constructing the geometry for the space-road, which is
where things start to get interesting.

The geometric shape forming the base of our space-road is a Ribbon – a
series of one or more paths, each with at least two Vector3 points. The
order the paths are provided works in conjunction with the paths themselves
to produce geometry with a huge range of flexibility, and though potentially
entertaining, it would be counterproductive to attempt to reproduce the
excellent examples already created as part of the Ribbon’s documentation at
https://doc.babylonjs.com/divingDeeper/mesh/creation/param/ribbon_extra.
From those docs, this thought experiment nicely explains the concept we’re
looking at currently:

“Imagine a long ribbon of narrow width in the real world with a wire
running down its length. Closing the paths forms a loop of ribbon while

https://doc.babylonjs.com/divingDeeper/mesh/creation/param/lines
https://doc.babylonjs.com/divingDeeper/mesh/creation/param/ribbon_extra

closing the array would form a tube.”

Closing the array seems like the option we want rather than closing the
paths themselves since we want our road to be enclosed, but not like a
donut or loop. This faces us with a bit of a choice regarding how we’d like
to approach implementing this, but only after we have established the value
in doing it via prototyping, which in this circumstance becomes the link
back to our choice of implementation paths in an endlessly circular
argument.

When prototyping out the path creation (or any prototyping process in
software), there’s a certain point in the process where you realize the need
to transition from throwing something together to see if it works and taking
consideration to build something more robust with the knowledge that it
will be incorporated into the final product. Playground snippet
#WU7235#11 (https://playground.babylonjs.com/#WU7235#11) shows,
starting around line 168, what this prototyped logic can look like
(comments have been removed for clarity):

let pathA = [];

let pathB = [];

let pathC = [];

let pathD = [];

for (let i = 0; i < pathPoints.length; i++) {

 const { position, gravity, velocity } = pathPoints[i];

 let p = position;

 let speed = velocity.length();

 let pA = new Vector3(p.x+speed, p.y-speed, p.z+speed);

 let pB = new Vector3(p.x-speed, p.y-speed, p.z-speed);

 let pC = pB.clone().addInPlaceFromFloats(0, speed * 2,

 0);

 let pD = pA.clone().addInPlaceFromFloats(0, speed * 2,

 0);

 pathA.push(pA);

 pathB.push(pB);

 pathC.push(pC);

 pathD.push(pD);

}

This is a scheme for path geometry that takes the form of a four-sided box
(the ends are open). The preceding code uses four separate arrays of points

https://playground.babylonjs.com/#WU7235%2311

– one for each corner – to capture the paths as it loops through each of the
points along the route. This is what that looks like:

Figure 8.4 – Prototype path geometry hardcoded to make a four-sided box
with open ends. Four paths are used. Simple and effective, yet extremely
limited (https://playground.babylonjs.com/#WU7235#11)

Mission accomplished! We’re done here, right? Wrong. This is just the
beginning! It’s OK to celebrate accomplishments, but it’s best to keep any
celebrations proportional to the achievement in the context of the end goal.
A box shape works to prove that we can create a playable path demo from
actual route data, but it’s not particularly fun or attractive to look at. To step
this up to a place where it’s something that will surprise and delight users,
we need to make it more spherical and less boxy. We need to add more path
segments to do this, and that’s where our prototype reaches its limits.

Referring to the previous code listing, each path of the ribbon has been
predefined in the form of the pathA, pathB, pathC, and pathD arrays. If we
want to add more segments, we need to manually add the additional path

https://playground.babylonjs.com/#WU7235%2311

array, along with the appropriate logic, to locate path segments that aren’t at
90-degree right-angles to each other correctly – and that makes our current
approach much tougher. There’s a certain mindset that prefers to attack this
sort of problem head-on, with brute force. They might add pathE, pathF, or
pathG arrays and pre-calculate the paths’ offsets relative to one another
based on hardcoded numbers and after the dust settles, what comes out will
probably work just fine… until the need arises to change the number of
segments again. Or worse yet, the need arises to dynamically set the number
of paths based on, for example, device performance characteristics. That’s
why it’s necessary to come up with a Better Way Forward.

Let’s jump back to the original Playground we started with – #WU7235#23
– and look at how it’s evolved starting at line 140. First things first, we
know that we need to be able to specify how many separate paths should be
created. That’s easy – just define a NUM_SEGMENTS constant. Next, we need
to instantiate new path arrays to hold each path. We do this in a simple loop:

const NUM_SEGMENTS = 24;

let paths = [];

for (let i = 0; i < NUM_SEGMENTS; i++) {

 paths.push([]);

}

Great – we have our array of path arrays ready to go. Now, it’s time to
populate those paths, so we set up an outer loop over routePath containing
an inner loop over each path array. But how do we figure out where each
point of each path is supposed to be located? It’s not enough to use the
simple constant offsets to each point position like we did in the prototype;
each path segment’s points will have different offset values from each other.
In the following diagram, the hoop or ring shape is a single cross-section
segment, with all points lying in the same plane (math folks call this an
affine set of points):

Figure 8.5 – Creating a point of route geometry starts from the center point
that moves clockwise around the diameter, adding path points for each
discrete segment

Start from the current route position and use it as the center point. Now,
focusing on one individual execution of the outer-most loop through
routeData, we know that we need to create points equal in number to the
number of desired segments. We also know that those segments should be
evenly and contiguously distributed around the diameter of a hypothetical
circle.

Note

The reason we use a circle rather than a sphere is that relative to a given
route point, the Z-axis values will always be the same for every path
segment around that point. This is rather tautological since that’s also a
somewhat meandering way to define a circle!

Putting those facts together and combining them with what we already
know regarding circles and trig functions, we have a way to do just what we
want. There’s just one remaining obstacle: how can we vary the position
offset on the individual path being computed? Fortunately, this isn’t as big
of an issue as it might seem at first.

Let’s remind ourselves of these facts about circles and trigonometric
functions. The sine and cosine functions each take an input angle (in radians
for this text unless otherwise noted) and output a value between -1 and 1
corresponding to the angle-dependent X- and Y-axis values, respectively. A
full circle comprises two times Pi (3.14159…) radians, or about 6.28
radians. If we divide the number of segments by 6.28 radians, we would get
the arc that an individual segment traverses, but if we divide the number of
segments by the zero-based index of the currently iterating segment, then
we get something more useful – the position between 0..1 of our current
segment. A percentage, or ratio in other words. By multiplying that ratio
with our two times Pi value, we get… the position of the segment, in
radians! All that’s left is to scale the result by a value representing the
desired radius (or diameter, for the X-axis) and add it to the path collection:

for (let i = 0; i < pathPoints.length; i++) {

 let { position, velocity } = pathPoints[i];

 const last = position;

 for (let pathIdx = 0; pathIdx < NUM_SEGMENTS;

 pathIdx++) {

 let radiix = (pathIdx / NUM_SEGMENTS) *

 Scalar.TwoPi;

 let speed = velocity.length();

 let path = paths[pathIdx];

 let pathPoint = last.clone().addInPlaceFromFloats(

 Math.sin(radiix) * speed * 2,

 Math.cos(radiix) * speed, 0);

 path.push(pathPoint);

 }

}

In the preceding code listing from #WU7235#25, we are using the length
of the point’s velocity vector to determine the size of the space-road. We
must clone the last point before mutating it; otherwise, we will end up
corrupting the data needed by the rest of the application. By setting the
value of NUM_SEGMENTS to 4 and progressively running the Playground at
increasing numbers, it’s easy to see that the updated logic can now handle
an arbitrary amount of line segments – an enormous improvement over our
first-generation prototype! This code will be ready to integrate with the
application when we’re ready to begin that process starting in the
Initializing the Driving Phase section. There are still a few more things to
prove out in other areas before that can happen, though. The loadAssets
function is next up on our list.

Loading Assets Asynchronously
In this Playground, we’re going to be loading two things asynchronously as
part of the loadAssets function – the semi-truck model and the radar
procedural texture asset. We need to make sure that all the asynchronous
function calls have been completed before continuing by returning a
promise that resolves only when all of its constituent promises have done so
as well. Here’s what that looks like in loadAssets():

return Promise.all([nodeMatProm, truckLoadProm])

 .then(v => console.log('finished loading

 assets'));

nodeMatProm is created using a pattern that is used throughout Babylon.js
and one we most recently used in the previous chapter’s discussion on
loading JSON for a ParticleSystemSet, only for this Playground, instead
of loading JSON directly, we will load data from the Babylon.js Snippet
Server. Specifically, we are loading a snippet from the Node Material
Editor (NME) that we will then use to create the radar procedural texture
that is displayed on the GUI. Further details on those elements will have to
wait until Chapter 11, Scratching the Surface of Shaders:

const nodeMatProm = NodeMaterial.ParseFromSnippetAsync

 (radarNodeMatSnippet, scene)

 .then(nodeMat => {

 radarTexture = nodeMat.createProceduralTexture(

 radarTextureResolution, scene);

 });

While it may be obvious that radarTexture is a variable containing the
procedural texture, it’s less obvious where the radarTextureResolution
value comes in. One of the difficulties in creating a “simple” game
prototype is that even something simple requires creating and managing a
fair amount of configuration data. The gameData structure serves the
purpose of centralizing and consolidating access to these types of values;
when we want to utilize one or more of these values in a function, we can
use JavaScript’s deconstruction feature to simplify and make our code
much more readable:

const {

 truckModelName,

 truckModelScaling,

 radarTextureResolution } = gameData;

As we saw in the preceding code block, radarTextureResolution is used
for determining the render height and width in pixels of the procedural
texture, whereas we’ll shortly see how truckModelName and
truckModelScaling are used. The SceneLoader.ImportMeshAsync method
(new to v5!) takes an optional list of model names, along with the path and
filename of an appropriate file containing the meshes to load (for example,
.glb, .gltf, .obj, and so on), along with the current scene. The promise
that’s returned resolves to an object containing the loaded file’s meshes,
particleSystems, skeletons, and animationGroups, although we’re only
going to be using the meshes collection for this scenario.

Note

You can learn more about SceneLoader and its related functionality at
https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes#scenel
oaderimportmesh.

Once we’ve loaded the semi-truck’s model file, we’ve got a bit more work
to do before we can start using the loaded asset. Models saved in the GLTF

https://doc.babylonjs.com/divingDeeper/importers/loadingFileTypes#sceneloaderimportmesh

or GLB formats are imported into Babylon.js with some additional
properties that are going to get in our way, so let’s simplify and set up
truckModel for the game world:

const truckLoadProm = SceneLoader.ImportMeshAsync

 (truckModelName, truckModelURL, "", scene)

 .then((result) => {

 let { meshes } = result;

 let m = meshes[1];

 truckModel = m;

 truckModel.setParent(null);

 meshes[0].dispose();

 truckModel.layerMask = SCENE_MASK;

 truckModel.rotation = Vector3.Zero();

 truckModel.position = Vector3.Zero();

 truckModel.scaling.setAll(truckModelScaling);

 truckModel.bakeCurrentTransformIntoVertices();

 m.refreshBoundingInfo();

 }).catch(msg => console.log(msg));

The first few lines of our processing pipeline perform some convenient
setup for the variables from the result structure, but then we do something a
bit unusual by setting the parent of truckModel to null before disposing of
the first mesh in the meshes array – what’s up with that, and what’s with
SCENE_MASK?

Note

For more on layer masks and how they operate, see the docs at
https://doc.babylonjs.com/divingDeeper/cameras/layerMasksAndMultiCam
.

The answer to the second is, briefly, that cameras can be assigned a specific
number that only allows meshes with a compatible layerMask to be
rendered by that camera. We use the layerMask property to hide non-GUI
meshes from the main scene camera, for example. The answer to the first
lies in the specifics of how an asset is loaded from a GLB or GLTF file.
When Babylon.js reads in the file, there is an invisible transform node
named __root__ placed at the root of the model hierarchy. Although it
doesn’t cause any problems in simple scenarios, when dealing with physics,

https://doc.babylonjs.com/divingDeeper/cameras/layerMasksAndMultiCam

parenting, collisions, and transforms, it becomes a major hindrance. The
following screenshot illustrates what this looks like in the Scene Inspector
window:

Figure 8.6 – The Alien.gltf model. The Scene Inspector window shows the
__root__ transform node. From
https://playground.babylonjs.com/#8IMNBM#1

The Alien geometry is what we’re interested in working with, but because it
is parented to the __root__ node, any changes to the position, rotation, or
scaling of Alien are evaluated in a coordinate space relative to that root
node, resulting in undesired and unpredictable results. The solution to this is
simple and answers our earlier question regarding what was up with our
loadAssets code – unparent the desired mesh and dispose of the root. Once
that’s accomplished, the rest of the code in our truck loading method is all
housekeeping setup for the model – with some important considerations to
keep in mind:

https://playground.babylonjs.com/#8IMNBM%231

Important note

Normally, it’s not recommended to call
bakeCurrentTransformIntoVertices when there are better options such as
parenting and pivotPoints that might work. In this case, we need to
perform this step since we’ve removed the parenting to root. See
https://doc.babylonjs.com/divingDeeper/mesh/transforms/center_origin/bak
ingTransforms for more information and guidance on this topic.

As mentioned previously, the result of calling Promise.all with the
unresolved promises is the returned Promise from loadAssets, bringing us
full circle back to where this discussion started! Initialization is mostly done
– or at least the portion of it taking the longest time is complete – and now
with the availability of the semi-truck model, the initializeDrivingPhase
function has been invoked to set up the rest of the scene’s elements. This
function sets up the cameras, creates the ground ribbon mesh from the
routePaths, sets up physics, and more.

Initializing the Driving Phase Scene

Order of operations is important, but not in the way you might think.
Changes to a TransformNode (which Mesh is a descendent of) over a
given frame are applied in the fixed order of Transform, Rotate, Scale
(TRS).

Use setParent(null) rather than the alternative of setting
mesh.parent = null. The setParent function preserves positional and
rotational values, whereas setting the parent to null does not. This
results in any root transformations being removed from the mesh, which
is why we need to reset the position and rotation vectors.

Once the transformations have been cleared and the scaling has been
set to world-appropriate values, the mesh geometry will need to have
new bounding information generated. Otherwise, collisions won’t work
properly. The solution to this is the two-step process of calling
mesh.bakeCurrentTransformIntoVertices() before calling
mesh.refreshBoundingInfo().

https://doc.babylonjs.com/divingDeeper/mesh/transforms/center_origin/bakingTransforms

As mentioned in this chapter’s introduction, the viewpoint for the player is
in a third-person perspective, with the camera behind the semi-truck and
looking over its top. As the truck moves (translation) or rotates (um,
rotation), the camera mimics every movement from its offset position. The
way this is accomplished is one of those situations where real-world
analogies match well to software, in the form of cameraDolly.

A camera dolly is normally an engineered sort of cart used in the film
industry that allows the Grip operating the camera to smoothly move in
multiple dimensions while capturing footage. Our camera dolly doesn’t run
on tracks, but it fulfills a similar purpose by moving with the truck to
maintain the same forward-facing orientation regardless of the truck’s
world-space orientation. This can be accomplished in just a few steps:

1. Create a TransformNode to serve as the “camera dolly:”

var cameraDolly = new TransformNode("dolly", scene);

2. Define an ArcRotateCamera and set up its basic properties. We’re
patching property values in from gameData structures to reduce the
amount of code:

for (var k in followCamSetup) {

 followCamera[k] = followCamSetup[k];

}

3. Order of operations is important for this and the next step! First,
parent cameraDolly to truckMesh.

4. Now, parent followCamera to cameraDolly:

 cameraDolly.parent = truckModel;

 followCamera.parent = cameraDolly;

The first thing that happens in the initializeDrivingPhase method is that
the camera gets created and the Viewport is set up. A quick aside to explain
a bit more about that.

If a Camera is a bridge between a Scene and the Display, then a Viewport
is what defines the Display aspect of that bridge. The default Viewport is
fixed at coordinates (0,0) and has a size of (1,1). In other words, the
default Viewport’s top-left corner is located at (0,0) and the bottom-right
corner is located at (1,1); the entire screen is covered by it. This is greatly
desired when a Scene has but a single camera, but there are many
circumstances where it is useful to have a second camera positioned
somewhere in the scene that renders to a smaller segment of the full screen
– think of strategy games that provide a mini-map or racing games that have
a rear-view mirror display.

In most cases, there are elements of the scene that should be rendered just in
one camera, but not in another, which is finally where we make the
connection with Layer Masks. By setting layerMask of all the involved
cameras and meshes, we can efficiently show or hide geometry according to
the mesh’s role in the scene. Our driving screen currently has two separate
layer masks: SCENE_MASK and GUI_MASK. Cleverly toggling a mesh’s
layerMask property can allow fine-grained control over camera rendering;
if we want to display the mesh on one camera or the other, we can explicitly
set its layerMask to SCENE_MASK or GUI_MASK (0x00000001 and 0x00000002,
respectively). If we wish to display a mesh on both cameras, we can set
and/or leave the default layer mask value in place (0xFFFFFFFF). Now that
we know what’s going on with the viewport, we can get back to the
function code.

After setting up the viewport, the parenting steps listed previously are
executed. The MeshBuilder.CreateRibbon method is the next point of
interest, where we pass the array or path arrays into the options of the
function and get back our path geometry, which then gets some property
tweaks and a grid material (for now) assigned:

var groundMat = new GridMaterial("roadMat", scene);

var ground = MeshBuilder.CreateRibbon("road", {

 pathArray: route.paths,

 sideOrientation: Mesh.DOUBLESIDE

}, scene);

ground.layerMask = SCENE_MASK;

ground.material = groundMat;

ground.visibility = 0.67;

ground.physicsImpostor = new PhysicsImpostor(ground,

 PhysicsImpostor.MeshImpostor,

 {

 mass: 0,

 restitution: 0.25

 }, scene);

With the ribbon created, material assigned, and a physics impostor similarly
created and assigned to the ground mesh, the restitution property makes
anything hitting the wall rebound with a little less momentum than before.
That’s new, but there’s a bit of a twist (highlighted in the preceding code
block) with the type of impostor we’re using here as well – MeshImpostor.
Previously only available in the CannonJS physics plugin, where it is
limited to interacting only with spheres, MeshImpostor is different from the
other PhysicsImpostor types we’ve previously looked at (Box and Sphere).

Instead of using a rough approximation of the physics-enabled object’s
geometry, it uses that very geometry itself to provide precise collision
detection! The trade-off is that collision computation becomes more
expensive the more complex the mesh’s geometry is structured. We should
be OK for our needs though, since we don’t need our obstacles (that is,
encounters) to interact with the path, leaving just the truck with complex
collision calculation needs. Just a few more tasks remain before we will be
done with our preparations and be ready to write the runtime logic!

After setting up the physics of truckModel – albeit using the equally
applicable and much simpler BoxImpostor – we spawn some sample
obstacles along the path before setting up an OnIntersectionExitTrigger
that calls killTruck whenever the truck exits the routePath ribbon mesh’s
confines. The spawnObstacles function will ultimately be discussed in the
Adding Encounters section, so skipping over a discussion of that leads us to
the familiar-in-practice of setting up ground.actionManager with the
appropriate trigger (see the section on Defining the EncounterZones in
Chapter 7, Processing Route Data) – another place that is familiar enough
to skip past. Now, we approach the final act of the

initializeDrivingPhase function – (re)setting the truck to its starting
position and state.

Using our sample route data, we could empirically determine what
coordinates in the world space the truck should start at, its initial rotation,
and other such values. We would iteratively refine our values through trial
and error until the results were satisfactory, but would that satisfy our
requirements? No.

Note

If you ever see a question asked in the preceding fashion, the answer is
almost always “No.” This is the second instance in this chapter of that kind
of rhetorical writing. Can you spot the third?

That entire trial and error approach will not “satisfy our requirements,” no
thank you sir! We can make this extremely easy on ourselves by recalling
that we already know exactly and precisely where the truck should start,
where it should be pointing, and how fast it should be moving in the form
of our pal route.path3d. It was mentioned in the earlier discussion on
Path3D, it is a mathematical construct, and two of the more useful functions
it provides, getPointAt and getTangentAt, are used to help us position the
truck, but we didn’t get much into the details of why they’re useful.

Think about a path of some arbitrary length that consists of several points.
Every point along that path has a set of vectors describing the position
(naturally!), the tangent (a vector pointing in the direction of travel at that
specific point along the curve), the normal (an arbitrarily chosen vector
pointing perpendicularly to the tangent), and the binormal (a vector chosen
to be perpendicular to the normal). These are all computed for us by the
Path3D instance, making it easy to work with.

If we think of the point’s position in the path’s collection of points (that is,
what index it occupies in the array) as being the ratio between the index and
the total number of elements, then we can easily picture that ratio being a
percentage, or a number between 0 and 1 (inclusive of both). Interpolated
functions of the Path3D module all accept a number representing the

percentage (between 0 and 1) along the path to operate against and include
the related getNormalAt, getBinormalAt, and getDistanceAt functions.

Note

There are more interpolation functions to explore! See
https://doc.babylonjs.com/divingDeeper/mesh/path3D#interpolatio for the
full list.

This is useful because you don’t need to know what the length of the path is
or how many points are in it to obtain useful information. In the
resetTruck function, we get the position and the tangent of the first point
in the route – the beginning of the path – then set the truck’s properties
accordingly:

const curve = route.path3d.getPointAt(0);

const curveTan = route.path3d.getTangentAt(0);

truckModel.position.copyFrom(curve);

truckModel.rotationQuaternion =

 Quaternion.FromLookDirectionRH(curveTan, truckModel.up);

truckModel.physicsImpostor.setAngularVelocity(currAngVel);

truckModel.physicsImpostor.setLinearVelocity(currVelocity);

Since the physics engine sets and uses the rotationQuaternion property,
we can’t just use the vector provided by getTangentAt(0) – we need to
convert it into a Quaternion using the FromLookDirectionRH method. This
function takes two vectors for its arguments: the first, a vector representing
the desired forward direction, and then another vector representing the
orthogonal (for example, perpendicular along all axis), with the return value
being a Quaternion representing the input vectors. After setting the truck’s
position and rotation, it’s necessary to reset the truck’s physical values for
velocity since, from the physics engine’s perspective, the effects of being
moved and rotated would need to be considered. Therefore, the reset
method is a deterministic function – the effect on the state of the scene is
always the same whenever it is called. This makes it especially useful to use
it both immediately post-initialization and any time that the player chooses
to do so. We listen for that player input in this Playground’s update method.

https://doc.babylonjs.com/divingDeeper/mesh/path3D#interpolatio

Running the Update Loop
Most of the code discussed up to this point has been code that directly
relates to the context at hand. That’s the great thing about Babylon.js and its
tooling – many common tasks are possible to complete with just a few lines
of code. The update method is a good example of that but it’s also an
example of one of the few places in the Playground where the code will
need to be changed around completely to integrate it with the application,
simply due to the more complex nature of the application versus the much
more narrowly scoped Playground (see the next section, Integrating with
the Application, for more). For that reason, we aren’t going to look too hard
at the specifics of the function and instead focus on the mechanics of how
the truck is controlled by the logic in it.

The truck can be controlled in the three translational axes (forward/back,
left/right, up/down) and one rotational axis (the yaw axis), which might
seem to make for a total of eight separate pieces of logic to handle the
motion. However, since pairs of actions (for example, left and right) are
simply the negated values of each other, we only need to figure it out for
four – a nice reduction in complexity. In each frame, the delta frame time
variable is used to scale truckAcceleration and truckTurnSpeedRadians
to the correct values; the currVelocity and currAngVel counter variables
track the accumulated changes that are then applied to the physics model’s
linear and angular velocities at the end of the update process. This is like
what we’ve done in the past, but some mathematical tools are being
employed that we’ve not yet seen that are worth taking a closer look at.

Changing the forward or backward translational velocity is simple – just get
the current forward vector for the truck mesh, scale it by currAccel, then
add it to the currVelocity counter; the backward vector consists of the
negated value of the forward vector:

if (keyMap['KeyW']) {

 currVelocity.addInPlace(currDir.scale(currAccel));

}

else if (keyMap['KeyS']) {

 currVelocity.addInPlace(currDir.scale(currAccel)

 .negateInPlace());

}

All of the various Vector3 math methods come in various flavors that allow
the developer to control whether or not the operation should allocate
memory or reuse an existing object. In this case, we are using the
addInPlace function to avoid creating a new vector object, whereas we
create a new Vector3 with the currDir.scale(currAccel) function call to
avoid corrupting the truck mesh’s forward vector – a value relied upon by
the engine for proper rendering.

Important note

Knowing when and what to perform memory allocation and disposal with
can be key to a smoothly rendered scene. See Chapter 13, Converting the
Application to a PWA, for more information and guidance.

Back to our truck’s control logic, the mathematical trick is in how we figure
out what direction to apply the remaining translational and rotational forces.
Translating to the truck’s left or right is done by taking the cross product of
the truck’s forward vector and the truck’s up vector – the result is a vector
pointing in either the left or right direction (the same trick with
negateInPlace can yield the opposite side from the same inputs):

let left = Vector3.Cross(currDir, truckModel.up);

currVelocity.addInPlace(left.scale(currAccel / 2));

Allowing players to side-strafe at the same speed as the other directions
feels a bit too easy to lose control of the truck, so we cut the value in half to
help players keep their speed under control. After integrating the
accumulated changes to velocities and resetting the accumulation counters,
the respective linear and angular physics properties are set along with an
angular “damping” mechanism to help ease control:

linVel.addInPlace(currVelocity);

truckModel.physicsImpostor.setLinearVelocity(linVel);

angVel.addInPlace(currAngVel);

currVelocity.setAll(0);

currAngVel.setAll(0);

// dampen any tendencies to pitch, roll, or yaw from

 physics effects

angVel.scaleInPlace(0.987);

truckModel.physicsImpostor.setAngularVelocity(angVel);

That’s the end of the Playground’s update method, as well as the end of our
examination of the driving phase prototype. After looking through what we
want to accomplish overall with the Playground, we learned how to take the
raw route data and turn it into a segmented tube encompassing the path. In
an asynchronous loading method, we saw how a GLTF model can be
imported and prepared for use with a Scene before we saw how the
initializeDrivingPhase function sets up the camera dolly, physics, and
obstacles along the path. With the reset method, we saw how to use the
Path3D methods to properly position the truck, regardless of where it is and
what state it is in. Not counting the GUI (which we’ll cover in the next
chapter), we’ve seen how each of our objectives for the prototype is
accomplished. This is a great foundation for the next step in progressing the
game along, which is the less fun but ultimately more rewarding aspect of
integrating our playground into the rest of the game.

Integrating with the Application
By constructing the playground driving demo, we’ve uncovered the
techniques and basic design approach to use for the application code. The
structure of our code is such that we should be able to simply lift and shift
key pieces of functionality straight into the application’s code base, but only
after we make modifications to prepare the way.

Playground logic aside, there are various hooks in
SpaceTruckerApplication that need to be added or modified to get the
driving phase to work properly, some of which include the ability to load
into the driving game without going through Route Planning. Our basic
input controls will need to be adapted to the input system of Space-
Truckers, as well as the converse need to add new pieces of functionality to
the input system. All of this starts with de-structuring and bringing in code
from the Playground.

Splitting Up the Playground
spaceTruckerDrivingScreen is where the primary logic will reside for the
driving phase, and similarly to how we tucked the Route Planning modules
into the /src/route-planning subdirectory, we put the driving phase code
and data into a /src/driving folder. Within that folder and, again, like the
route-planning folder, is the gameData.js file, where we will place the
equivalently named Playground object. A new addition to the gameData
object from the Playground is the environmentConfig section; this data
contains information such as the environment texture URL and other pieces
of deployment-time-specific information.

Note

We will be using the Encounter system (see the Adding Encounters section,
later in this chapter) to populate the path with obstacles so that the
obstacleCount property is omitted from the application code.

Although it is less consistent with the code design for Route Planning, the
Driving screen breaks out the environment creation code into its own
module, environment.js. Exporting just the initializeEnvironment
function, this module demonstrates how it isn’t always necessary to create
JavaScript classes to encapsulate and abstract logic – sometimes, a simple
function will do the job just as well:

const initializeEnvironment = (screen) => {

 const { scene } = screen;

 var light = new HemisphericLight("light", new

 Vector3(0, 1, 0), scene);

 light.intensity = 1;

 var skyTexture = new CubeTexture(envTextureUrl, scene);

 skyTexture.coordinatesMode = Texture.SKYBOX_MODE;

 scene.reflectionTexture = skyTexture;

 var skyBox = scene.createDefaultSkybox(skyTexture,

 false, skyBoxSize);

 skyBox.layerMask = SCENE_MASK;

 screen.environment = { skyBox, light, skyTexture };

 return screen.environment;

};

export default initializeEnvironment;

None of the code in the preceding listing is particularly different from what
we’ve already looked at in the Playground, except for the screen parameter
representing the SpaceTruckerDrivingScreen instance being targeted by
the function. To ensure that we can access (and later dispose of properly)
the environment data, a composite data structure is returned to the caller
containing skyBox, hemisphericLight, and skyTexture. This is similar to
how the initializeEnvironment method of environment.js, driving-
gui.js contains the initializeGui function. A minor detail for this is that,
unlike initializeEnvironment, the initializeGui method is marked as
async, but the details of what’s going on in this module will have to await
the next chapter.

Note

Is there any limit to how bad a pun can get before intervention becomes
necessary?

Our last component of the driving phase is the humble truck. The driving
phase analog of the Route Planning’s cargoUnit, our Truck class is derived
from BaseGameObject, where it inherits the update, dispose, and various
other properties of its base. We’re able to use most of the code from the
Playground’s loadAssets method verbatim, and we only need to grab the
non-input handling code from the Playground’s update method to use it
with the truck (the screen will host the input actions and processing). Now
that we’ve defined the logic and behavior for the screen, let’s look at how
that logic is applied to the application.

Transitioning to the Driving Screen
During regular gameplay, the Driving phase is preceded immediately by the
Route Planning phase. When the player manages to get the cargo unit to its
destination, they are asked to confirm the route or retry. On the choice to
confirm, the screen raises routeAcceptedObservable to notify interested
parties of the event, the main subscriber to which is the initialize method
of SpaceTruckerApplication:

this._routePlanningScene.routeAcceptedObservable.add(()

 => {

 const routeData = this._routePlanningScene.routePath;

 this.goToDrivingState(routeData);

});

For the other Screens (Main Menu, Splash Screen, and Route Planning),
we’ve taken the approach of creating and loading up the screens as part of
the SpaceTruckerApplication.initialize method. This obviates delay
when transitioning between the Screens mentioned previously, but this
approach won’t work with the Driving screen.

The Driving screen, as you might recall from earlier discussions in this
chapter, needs to have routeData supplied to it at construction time. As we
are yet unable to determine a player’s route before they’ve created it, so we
must defer construction of the Screen until that time. We should also keep
in mind that though a Screen might not be taking up render time, it will
certainly consume memory – it would be prudent of us to dispose of the
Route Planning screen and free up its resources as we transition to our new
game state. This is the job of the goToDrivingPhase function:

goToDrivingState(routeData) {

 this._engine.displayLoadingUI();

 routeData = routeData ??

 this._routePlanningScene.routePath;

 this._currentScene?.actionProcessor?.detachControl();

 this._engine.loadingUIText = "Loading Driving

 Screen...";

 this._drivingScene = new SpaceTruckerDrivingScreen

 (this._engine, routeData, this.inputManager);

 this._currentScene = this._drivingScene;

 this._routePlanningScene.dispose();

 this._routePlanningScene = null;

 this.moveNextAppState(AppStates.DRIVING);

 this._currentScene.actionProcessor.attachControl();

}

Many of the code is standard to the family of methods we’ve written to
handle state transitions, such as the process of detaching control from
_currentScene and attaching it to the new _drivingScene and

moveNextAppState, with the main difference being in the disposal of
_routePlanningScene.

The disposal logic for a Screen is fairly simple. Most resources associated
directly with the Scene will be disposed of along with the Scene, but it’s
also necessary to ensure that SoundManager is disposed of along with
EncounterManager:

dispose() {

 this.soundManager.dispose();

 this.onStateChangeObservable.clear();

 this.routeAcceptedObservable.clear();

 this.encounterManager.dispose();

 this.scene.dispose();

}

The Observable.clear() method is useful when disposing of an object that
you have control over because it precludes any need to know or have any
references to the original subscription created via Observable.add. The
final piece of the Driving phase transition is a shortcut to having the
application directly load the Driving phase when launched, using the
sample route data instead of a player’s simulated route. This is done by
including the testDrive Query String value in the browser’s URL; when it
is present and the player skips the Splash Screen, it will use the sample
JSON route data:

const queryString = window.location.search;

if (queryString.includes("testDrive")) {

 this.goToDrivingState(sampleRoute);

}

This is a nice trick enabled by the fundamentally web-based nature of
Babylon.js – we can easily use familiar web development tricks and tools to
ease testing! Being able to quickly jump to a populated, “known good”
Driving phase lets us quickly add and test various pieces of code for the
application, which leads us to the major area of difference between the
Playground and our application – how the Truck component is updated with
input.

Truck Update and Input Controls
Right away, there’s one obvious difference that needs to be addressed, and
that’s the aspect of handling user input. Our Playground used a very simple
input scheme, which will need to be refactored to use
SpaceTruckerInputProcessor (see Chapter 5, Adding a Cut Scene and
Handling Input). With the delegation of the actual per-frame update logic to
the Truck component (see the Splitting Up the Playground section), the
update method of SpaceTruckerDrivingScreen becomes very simple:

update(deltaTime) {

 const dT = deltaTime ??

 (this.scene.getEngine().getDeltaTime() / 1000);

 this.actionProcessor?.update();

 if (this.isLoaded) {

 this.truck.update(dT);

 }

 }

The isLoaded flag is used to help prevent extraneous updates from being
processing during/while the async initialization logic is executing. Input
must be updated before calling the Truck’s update method, to ensure that
the latest values have been read and set. Looking at the control scheme for
the Drive phase, it’s also obvious that there are differences between it and
the controls for the Route Planning phase. The application needs a way to
specify new or modified control map schemes that can apply just to the
currently active Screen.

Patching the input map
The original inputActionMap defined the set of actions relevant to the
Route Planning screen and the Main Menu, but there are additional actions
that we need to support that aren’t present in the mapping file. We also need
to redefine specific inputs that are used to control the camera during Route
Planning. Consolidating those changes, we have a “patch” of sorts that we
can apply to inputActionMap:

const inputMapPatches = {

 w: "MOVE_IN", W: "MOVE_IN",

 s: "MOVE_OUT", S: "MOVE_OUT",

 ArrowUp: 'MOVE_UP',

 ArrowDown: 'MOVE_DOWN',

 ArrowLeft: 'ROTATE_LEFT',

 ArrowRight: 'ROTATE_RIGHT'

};

SpaceTruckerInputManager.patchControlMap(inputMapPatches);

The patchControlMap function is a static method of the
SpaceTruckerInputManager class. It has a corresponding
unPatchControlMap function that reverts a given input map patch to the
previous values:

static patchControlMap(newMaps) {

 tempControlsMap = Object.assign({}, controlsMap);

 Object.assign(controlsMap, newMaps);

}

static unPatchControlMap() {

 controlsMap = tempControlsMap;

 tempControlsMap = {};

}

The two different uses of Object.assign are interesting to note. The first
uses a new, empty object ({}) to create a copy or clone of the original
controlsMap, while the second copies the properties from newMaps into the
existing controlsMap. This has the effect of overwriting any pre-existing
properties, as well as creating new properties from the input patch. While
the unpatching can be done manually, by adding it to the
SpaceTruckerInputManager.dispose() function, it is performed
automatically as part of the dispose function.

If it seems like we’re starting to move a lot faster now than we were earlier
in this chapter, which is because it’s true – we’ve gotten the most complex
part of the Driving Screen out of the way with our Playground demo. The
Playground code is factored into different functions that can be split off and
made into their own source files (with some modifications), and then
consumed and orchestrated by SpaceTruckerDrivingScreen. We looked at
the state machine changes to SpaceTruckerApplication that were needed

to load sample route data by appending a query string to the browser URL
before turning our attention to updating the control scheme and adding the
ability for a screen to patch the input control map. Now that we’ve seen
how it has been integrated with the application, it’s time to look at how
encounters factor into the Driving phase gameplay.

Adding Encounters
The first thing needed to get encounters from Route Planning into the
driving phase is to capture them into the route in the first place. Making a
slight modification to the SpaceTruckerEncounterManager.onEncounter
function gets the job done:

const cargoData = this.cargo.lastFlightPoint;

cargoData.encounter = encounter;

The addition to the code (highlighted) adds the encounter instance to the
last telemetry data point in the route, making it available to us later when
we process the route. In calculateRouteParameters, we are making sure
to include the encounter data in the resulting routePath structure, along
with the position, velocity, and gravitational acceleration.

Now that the encounters have been located and processed, we can spawn
the encounters themselves. For the time being, we are creating a temporary
spherical mesh in the constructor to serve as a template for when we spawn
the encounters:

// temporary until the encounter spawner is implemented

this.tempObstacleMesh = CreateSphere("tempObstacle",

 this.scene);

this.tempObstacleMesh.visibility = 1;

this.tempObstacleMesh.layerMask = 0;

It may seem contradictory to set tempObstacleMesh.visibility to 1 (fully
visible) along with layerMask = 0 (not rendered at all), but it makes sense
when we look at the spawnObstacle(seed) function body and how it uses

tempObstacle mesh as a template from which to create individual
Instances of the mesh:

let point = pathPoints[seed];

let {encounter, position, gravity, velocity} = point;

let encounterMesh = tempObstacleMesh.createInstance

 (encounter.id + '-' + seed);

In Chapter 6, Implementing the Game Mechanics, we saw a few different
ways of efficiently replicating a single mesh across a scene, hundreds or
even thousands of times. In that case, we used Thin Instances to
procedurally generate and render the asteroid belt because the balance of
features and friction met our needs. In this case, we are creating more CPU-
bound Instance meshes because we want to enable physics, animate
properties such as scale and position, and have more control over the
characteristics of the resultant mesh. At the same time, because Instances
are all drawn during the same draw call on the GPU (and therefore share
render characteristics), changing the visibility property would have the
same effect across all instances. layerMask is not shared between Instances,
though, hence why we use it to hide the mesh used for Instancing.

We are retaining some vestiges of the Playground, even though those
elements don’t need to remain in the code base in the long term; an example
of this is tempObstacleMesh. Though it will be very important for us to
switch this out for a more appropriate set of meshes that match the
encounters, it is not a feature that is needed to make immediate progress.
How do we ensure that we do not neglect to return to this area in the future?
Since we’re using GitHub, we can create an Issue to track it.

Note

See https://github.com/jelster/space-truckers/issues/92 to read about the
history of the issue described previously.

Unlike the needs captured in the Issue, being able to place encounters as
obstacles in the driving route is a critical-path piece of functionality
because, without it, we wouldn’t be able to properly plot those obstacles
into the player’s radar UI display. Now that we do have them, we have

https://github.com/jelster/space-truckers/issues/92

enough context to look at how encounters are combined with the GUI
system to make the mini-map.

Making the Mini-Map
While the bulk of the next chapter will focus on the Babylon.js GUI, we’ll
dip our feet into the waters of the topic of User Interfaces (UIs) as we take
a moment to discuss coordinate systems and polar coordinates. First,
though, let’s look at how we get to the point where talk of coordinate
systems becomes necessary by examining the initializeGui method of
our Playground.

Note

In the application, this logic is contained in the driving-gui.js module in
/src/driving/. Aside from moving the code to load the Node Material into
it, the code is identical to the Playground.

At the beginning of this chapter, we talked about Viewports in the
Initializing the Driving Phase Scene section, and we described two main
characteristics – the viewport’s size and position. For the main Scene
camera, the Viewport stretches the full size of the screen, but for our GUI
system, the Viewport is defined differently.

The GUI Camera
The initializeGui function starts its business by immediately defining the
camera and Viewport, but it also sets the camera up in Orthographic mode.
This is a different way of rendering the 3D scene onto a 2D screen that can
be essentially summarized as being a camera mode that renders objects
without distance or perspective corrections:

let guiCamera = new UniversalCamera("guiCam", new

 Vector3(0, 50, 0), scene);

 guiCamera.layerMask = GUI_MASK;

 guiCamera.viewport = new Viewport(0, 0, 1 - 0.6,

 1 - 0.6);

 guiCamera.mode = UniversalCamera.ORTHOGRAPHIC_CAMERA;

 guiCamera.orthoTop = guiViewportSize / 2;

 guiCamera.orthoRight = guiViewportSize / 2;

 guiCamera.orthoLeft = -guiViewportSize / 2;

 guiCamera.orthoBottom = -guiViewportSize / 2;

 scene.activeCameras.push(guiCamera);

In our code, guiViewportSize corresponds to the number of units that the
camera should cover in its field of view. That value is taken and used to
compute the respective top, right, left, and bottom coordinates for the
camera. Lastly, guiCamera is pushed onto the Scene’s activeCameras array
to begin rendering through the camera. Once the camera and Viewport have
been set up, the camera needs to have something to render, and that is the
job of radarMesh.

As a simple Plane, radarMesh gets its magic from the textures assigned to
its StandardMaterial. The first texture is one we mentioned earlier, and
that’s the radar procedural texture created from NodeMaterial that we
loaded up (see Chapter 11, Scratching the Surface of Shaders, for more on
NodeMaterial and the NME), and the second is a variant of our old friend
AdvancedDynamicTexture:

let radarMesh = MeshBuilder.CreatePlane("radarMesh",

 { width: guiViewportSize, height: guiViewportSize },

 scene);

radarMesh.layerMask = GUI_MASK;

radarMesh.rotation.x = Math.PI / 2;

//...

let radarGui =

 AdvancedDynamicTexture.CreateForMeshTexture(radarMesh,

 radarTextureResolution, radarTextureResolution, false);

CreateFullScreenUI is what we’ve used in the past when defining our GUI
containers, and CreateForMeshTexture is quite similar. Instead of creating
a texture the height and width of the screen, CreateForMeshTexture does
the same for a specific mesh. The GUI texture can then be assigned to the
mesh’s material as one of its textures:

radarMesh.material = radarMaterial;

radarMaterial.diffuseTexture = radarGui;

After the GUI system has been set up and assigned to the radar mesh, the
encounters are looped over to create individual GUI “blips” to represent
each:

encounters.forEach((o, i) => {

 let blip = new Rectangle("radar-obstacle-" + i);

 o.uiBlip = blip;

 blip.width = "3%";

 blip.height = "3%";

 blip.background = "white";

 blip.color = "white";

 blip.cornerRadius = "1000";

 radarGui.addControl(blip);

});

var gl = new GlowLayer("gl", scene, { blurKernelSize: 4,

 camera: guiCamera });

Developers familiar with CSS may recall using the trick of setting a high
corner radius on a square to turn it into a circle, but otherwise, there isn’t
anything we haven’t seen before in this code. The last thing to happen in the
initializeGui function is the creation of a GUI-specific Glow Layer to
help illuminate the radar and punch up its look. Defining the GUI elements
involved putting a few new tools into our tool belt, and what better way to
validate those tools than to put them to use in the runtime behavior of the
radar?

Blip Plotting in Polar Coordinates
Normally, when we talk about the position of a particular object such as an
encounter, we refer to it in terms of it representing a position in the World
Space, the top-level 3D coordinate space for a rendered Scene. Sometimes,
usually in the context of a model and its submeshes or bones, the position
referred to is given relative to the parent mesh or transform node’s origin, or
center. This is called a Local Space position and relates to a World Position
via the World Matrix. In this chapter, we saw an example of working with
these elements when we loaded the semi-truck model and removed the
parent root node (see the Loading Assets Asynchronously section earlier in
this chapter). The following diagram depicts some different ways of
representing coordinates:

Figure 8.7 – Local and World Space coordinate systems are Cartesian
coordinate systems that depict locations as a combination of vector
elements

Sometimes, it can be advantageous to represent coordinates in a different
form. A Polar Coordinate system is one of those alternate ways of
representing the position of something concerning another.

In polar coordinates, the origin of the plot represents the unit’s location in
space with all other objects plotted around the center of that circle. Those
objects’ coordinates can be captured into just two variables: angle (theta,
or θ) and distance (r, or radius).

Important note

Since the radar is in two dimensions but the location is in three, we use the
X- and Z-axes while the Y-axis is discarded. Information about the object’s
position along that axis is preserved as part of the Vector distance between
the origin and the object being plotted.

The math to accomplish this is deceptively easy once we know the
operations needed. To determine the vector distance, we could subtract the
position of the encounter obstacle from the truck and obtain it via the
Vector3.length() function, but the more direct path is to use the static
Vector3.Distance() function instead. The value for theta has multiple
paths to the same end:

let r = Vector3.Distance(obstacle.absolutePosition,

 absolutePosition);

let theta = Vector3.GetAngleBetweenVectorsOnPlane

 (absolutePosition, up, obstacle.absolutePosition);

Vector3.GetAngleBetweenVectorsOnPlane is perfect for our use because it
will automatically take differences in altitude between the truck and the
obstacle into account by projecting each onto the same plane defined by the
truck’s up vector. The next part is a bit tricky, though, because our
coordinate system places (0, 0) at the center, whereas the GUI system
placement puts the origin at the top-left bounds:

let posLeft = Math.cos(theta) * r;

let posTop = -1 * Math.sin(theta) * r;

uiBlip.left = posLeft * 4.96 - (r * 0.5);

uiBlip.top = posTop * 4.96 - (r * 0.5);

When setting the left and top properties of uiBlip, the points are scaled to
the mesh’s size before correcting for origin locations. The result, as shown
in the following screenshot, is circular blips that show their position relative
to the player in a cool-looking way:

Figure 8.8 – The radar GUI element plots the positions of encounters in
terms of their relative distance and angle from the player (at the center of
the circle)

Though this section may have been short, it has certainly been full of sweet
knowledge and results. There remain several mysteries to uncover
regarding the radar mesh texture and its construction, but those will have to
await a later chapter of our journey. We come out of this section knowing
how to plot polar coordinates as well as how to set up a multi-camera scene
with layer masks and Viewports. It’s a nice way to wrap up our work in this
area and prepares us for what comes next!

Summary
Let’s take a step back and look at how far we’ve come during this chapter.
When we started it, all we had was some route data and a vague idea of
what we wanted to happen. Having completed it, we now have a game that
can be played from end to end from Route Planning to Driving!

Along the way, we’ve leveraged the Playground to help us define a
prototype demo of the driving phase gameplay. It was in that Playground
that we learned how to take the raw route data and turn it into a
configurable Ribbon mesh with as many or few segments as we’d like. The
semi-truck GLB asset was introduced as we learned how to load and
prepare assets like this for use in our Scene. Once we learned how to set up
the scene, we defined physics and gave our truck the ability to bounce off
the route’s walls with MeshImpostor, as well as a way to automatically
“kill” the truck if it wanders out of bounds. All that work set us up for
smooth integration with the application.

Beginning with a divide-and-conquer approach, we split the code from the
Playground up into its different functional areas of responsibility. Then, we
hooked up the plumbing to transition from either the splash screen (with the
?testDrive URL Query string) or the onCargoAccepted event of the Route
Planning Screen. Having the ability to quickly jump into the driving phase
using sample route data made it easy to iterate and test through the rest of
the integration with the runtime and input systems.

Our input handling needs for the Driving Phase are different from those of
the Planning Phase, so to support that, we added the ability to path the base
input action map with an updated set of input-to-action mappings. To keep
our space-truck from getting lonely along its route, we turned our attention
to hooking up encounters with the Driving screen via routeData.

Once we’d added encounter data to the overall routeData, it was
straightforward to use a (for now) sphere mesh as a source for Instances of
an Encounter. We’ll be changing this around later, but at this time, we don’t
want to arrest any of the hard-earned momenta gained to take on any side-
quests. Similarly, we learned how to set up our alternate GUI camera along
with the polar coordinates – plotting encounters onto our radar procedural
texture/GUI mesh. Put all together, we are in a great place to begin the next
chapter in our journey, where we will cover the GUI.

Up until now, we’ve kept our GUI to a minimum. Even so, what amounts to
basic boilerplate code while assigning values to properties can be quite
astonishing. Nobody wants to have to write all that code and nobody wants
to have to maintain it. In the next chapter, we’ll learn how we solve both of
those problems while covering some other problems we didn’t even know
existed when we go in-depth into the brand-new Babylon.js GUI Editor.

Until then, if you want to spend some more time exploring the ideas and
concepts from this chapter, check out the Extended Topics section next for
ideas and projects. As always, Space-Truckers: The Discussion Boards at
https://github.com/jelster/space-truckers/discussions is the place to ask
questions and exchange ideas with fellow Space-Truckers, while the
Babylon.js forums are where to engage with the greater Babylon.js
community. See a problem with the code or have an idea you’d like to see
implemented? Feel free to create an Issue in the Space-Truckers repository!

Extended Topics
The following are some extended topics for you to try out:

https://github.com/jelster/space-truckers/discussions

Add an “encounter warning” UI indication whenever the truck is
within a set distance of an encounter

When the ship hits the side of the wall, play an appropriate sound
effect. The volume of the played effect should scale with the energy of
the impact. Bonus points for spatially locating the sound at the location
of the collision.

An Encounter Table implies something static. Make encounters more
dynamic by loading the list of potential encounters from a remote index
repository hosted on GitHub. Community members can contribute new
encounters by submitting a Pull Request containing the new encounter’s
definition. Once accepted and merged, the encounter becomes available
to be used in a game session.

As a prerequisite for the preceding bullet, adding the ability for each
encounter to use a different mesh/material combination is a necessity.
Read the mesh URL from the encounter data but be careful that you’re
not creating new meshes/materials for every instance of an encounter!

Another Encounter feature could be the ability for each encounter type
to define and control its behavior. An easy and cool way to do this is
outlined in the very next chapter in the Advanced Coroutine Usage
section.

Calculating and Displaying Scoring
Results
Whether a game is implemented as a piece of software or a cut-out piece of
cardboard, almost all games, regardless of origin or format, feature intrinsic
ways to give players feedback on their performance throughout a game
session. Whether it reflects the number of goals scored or the player’s
ability to keep a steel ball from dropping between bumpers, the scoring
process is where a game connects to its players at a most visceral level.

In this chapter, we’ll be introducing two new powerful tools for your game
development toolbox, both completely new to version 5 of Babylon.js: the
GUI Editor (GUIE) and coroutines. The GUIE is a solution to a problem
that we’ve already seen previously when implementing our GUI. Think
back (or just refer to the code) to the Planning Screen GUI implemented in
src/route-planning/route-plan-gui.js and recall that there is a large
amount of boilerplate, typo-prone, and ultimately tedious code that needs to
be written just to get a bare-bones basic GUI displayed. Much of the code
involved is of the make this object that color, and place it here variety,
making it more difficult to visualize how components and elements will
look at runtime. The GUIE allows a developer or designer to separate the
presentation from the behavioral logic of the application – a concept very
familiar to most developers! In addition to the GUIE, we’re going to
introduce another incredibly powerful tool – the coroutine.

A coroutine behaves and is constructed in a fashion that will be very
familiar to those who have read the Space-Truckers – The State Machine
section of Chapter 4, Creating the Application, but instead of having the
specific purpose of managing our application state, a coroutine is built from
an arbitrarily defined function generator (see Chapter 4, Creating the
Application, for a refresher on function* generators in JavaScript) and
attached to a BabylonJS.Observable. Most of the time, this Observable
will be the Scene’s onBeforeRenderObservable, meaning that the coroutine
executes before every frame, but any Observable can run a coroutine. The

behavior of the yield keyword in conjunction with some other elements
that we’ll look at shortly makes coroutines a perfect tool to use when a
game’s logic needs to span multiple rendered frames, a quality we’re going
to be using to our advantage to display the scoring results.

As part of and in addition to our examinations of the GUIE and coroutines,
we’ll build out a reusable dialog system that will serve as the base for our
Scoring Dialog and Results screen before putting score tracking logic into
the rest of the game. Though this might seem like a backward approach,
having the ability to display scores first will help us discover what needs to
be tracked and calculated by the rest of the application. Is there much still
that could and should be done? Of course! There will always be more to do,
but an important skill in software development is knowing which things
must be done versus which things only need to be done.

In this chapter, we will cover the following topics:

Technical Requirements
There aren’t any new or additional requirements from the software or
hardware side of things that are needed for this chapter, but there are some
topics in the Babylon.js documentation or elsewhere that might be handy as
we explore some of these areas:

Introducing the Babylon.js GUI Editor

Building a Reusable Dialog Box Component

Calculating Scores

Creating the Scoring Dialog Using Coroutines

The Babylon.js 2D GUI system at
https://doc.babylonjs.com/divingDeeper/gui

Coroutines (Babylon.js) at
https://doc.babylonjs.com/divingDeeper/events/coroutines

https://doc.babylonjs.com/divingDeeper/gui
https://doc.babylonjs.com/divingDeeper/events/coroutines

Introducing the Babylon.js GUI
Editor
Boilerplate code is a term given to code that has the characteristics of being
simple, standardized, and frequently repeated. As a software developer, it’s
generally best not to write that type of code yourself for some very good
reasons. First, the nature of boilerplate code is that it is repetitive, making it
prone to syntax or other superficial logical defects (that is, typos, fat-
fingers, and more). Second, it’s tough to maintain, since when changes need
to be introduced, those changes are generally needed throughout the
expanse of the boilerplate. Finally (at least for our purposes), it’s really,
really, really boring to read and write code of this nature.

To solve these (and other related) problems, the Babylon.js team created the
GUIE. As just one of a huge number of new tools and features introduced
with v5.0 of Babylon.js the GUIE fills an important niche in the Babylon.js
ecosystem. Like its brethren, the Animation Curve Editor, the Node
Material Editor, and the Playground, the GUIE and its associated snippet
server are hosted online at https://gui.babylonjs.com and possess similar
dual capabilities to work with unique IDs and revisions for persistence or
directly with JSON files.

Important note

There are two basic kinds of GUIs that Babylon.js supports: 2D and 3D.
The 2D GUI renders to a utility layer using an Advanced Dynamic Texture
(see The Advanced Dynamic Texture section), whereas the 3D GUI system
renders meshes on a utility layer. The content in this chapter and through
much of this book focuses mainly on the 2D GUI. However, the 2D and 3D
systems have very similar APIs. See
https://doc.babylonjs.com/divingDeeper/gui/gui3D for more on the 3D GUI
system.

GUI Editor user’s guide/manual at
https://doc.babylonjs.com/toolsAndResources/tools/guiEditor

https://gui.babylonjs.com/
https://doc.babylonjs.com/divingDeeper/gui/gui3D
https://doc.babylonjs.com/toolsAndResources/tools/guiEditor

Before we start looking at the GUIE’s interface and capabilities, it will be
useful if we start with either a refresher or a primer on how the Babylon.js
GUI components operate at the level of the Advanced Dynamic Texture
(ADT).

The Advanced Dynamic Texture
Throughout this book, we’ve been making use of ADTs and the 2D GUI
system, but to this point, we haven’t tried to peek inside an ADT and see
what it does. To do so, let’s peel off the Advanced part of the term and focus
first on the more basic Dynamic Texture (DT).

A DT is a design-time integration component that exposes the HTML5
Canvas drawing API on one end of it; on the other, on the Babylon.js side,
it exposes a BABYLON.DynamicTexture. Because it derives from a regular
BABYLON.Texture, it is typically rendered by assigning the DT to an
appropriate Texture slot in a Material. The Playground at
https://playground.babylonjs.com/#5ZCGRM#2 demonstrates the basics of
how this works for drawing simple text, but any Canvas API is accessible
via the DT’s getContext function.

Note

See https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API to
learn more about the Canvas API and its different functions and
capabilities, and
https://doc.babylonjs.com/divingDeeper/materials/using/dynamicTexture to
learn more about the BablyonJS DT.

Accessing the Canvas APIs in this way allows for a huge amount of
flexibility for developers wishing to render strings or other UI elements but
at the cost of requiring those same developers to have to manage a large
amount of what is essentially boilerplate code. Sound familiar? The
BABYLON.GUI system is a higher layer of abstraction over the Canvas
APIs on one end of the integration, and like its antecedent Dynamic
Texture, the Advanced Dynamic Texture comprises the other.

https://playground.babylonjs.com/#5ZCGRM%232
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://doc.babylonjs.com/divingDeeper/materials/using/dynamicTexture

Put one way, an ADT is a procedural texture generated and managed by
the BABYLON.GUI APIs. That’s it. If it feels like this is somewhat of a
letdown considering how much build-up there’s been to this definition, then
you’re in luck because the details are far more involved than a simple
procedural texture. We can start by picturing how an ADT fits into the
overall scene and rendering process:

Figure 9.1 – The Canvas API and Babylon.js render layers that host a
multitude of different features, such as the Inspector, Glow Layers, Gizmos,
and more

If we follow the analogy of an HTML Canvas being like a cloth canvas
used for painting, a layer is like a distinct coat of paint on the canvas;
multiple layers overlap and blend to create the whole piece. As with a real-
world canvas, the order in which pixels (or swatches of paint) are laid down
is important to the final appearance – whichever color is placed last on the
canvas is generally going to be the dominant color for that pixel.

The ADT is rendered as one of those layers when created using
AdvancedDynamicTexture.CreateFullScreenUI, with the isForeground
property of the ADT determining whether its layer is rendered in front of all
other layers. Crucially, this also means that the ADT can be affected by the
same sorts of factors that affect other layers (for example, Layer Masks and
Post-Processes; see Chapter 8, Building the Driving Game, the Loading
Assets Asynchronously section for more). When a full-screen UI isn’t the
right tool for the job, AdvancedDynamicTexture can be used identically to
any texture by creating it using the
AdvancedDynamicTexture.CreateMeshTexture function. This is what we
did in Chapter 8, Building the Driving Game, in the Making the Minimap
section, so it’s a good sign that we’re ready to progress up the ladder to the
point where we can start using better tools to work with
AdvancedDynamicTexture regardless of its type. In a similar vein, the GUIE
will save us enormous amounts of time and effort, so let’s take a brief tour
and get cranking!

UI Design with the GUIE
As always, the latest documentation on the Babylon.js GUIE can be found
at https://doc.babylonjs.com/toolsAndResources/tools/guiEditor, but some
basic principles are still worth going over. The top-most horizontal menu,
featuring the hamburger icon, has controls for managing the zoom level,
copying and pasting controls, and more.

Clicking on empty space in the navigation panel displays the properties for
the ADT. These are used to render the layout canvas in addition to buttons
for loading and saving the GUI in various formats. The following
screenshot contains, from right to left, the different areas of the GUI editor
– the navigation tree, layout canvas, and property panes, respectively:

https://doc.babylonjs.com/toolsAndResources/tools/guiEditor

Figure 9.2 – The GUIE’s three primary workspace areas, from left to right:
navigation panel, layout canvas, and property pane. The layout shows the
currently selected layoutGrid container element. Source:
https://gui.babylonjs.com/#923BBT#37

The control tree can be seen on the left-hand navigation pane, separated
from the layout canvas by the vertical list of control icons available to
insert. Probably one of the more important sets of these controls is going to
be the various types of containers.

From StackPanels to Grids with a sprinkling of ScrollViewers and
Rectangles to round things out, the container elements behave exactly as
you may expect them to if you are accustomed to the concepts. The GUI
shown in Figure 9.2 is a simple dialog box design, with content broken out
into the three separate rows of the layoutGrid Grid Control. That control, in
turn, is contained within the Rectangle dialogBorder, which is contained
within the dialogRoot Container for the entire UI.

If you’re not familiar with containers and their behavior, a review of the
BJS Docs section on containers might be worth a quick (and informative!)
read at https://doc.babylonjs.com/divingDeeper/gui/gui#containers.

https://gui.babylonjs.com/#923BBT%2337
https://doc.babylonjs.com/divingDeeper/gui/gui#containers

Resizing and laying out visual elements can be done by dragging around
handles in the visual layout pane or by directly setting properties to specific
values – use the former to get an approximation and the latter to “dial in” to
pixel-perfect precision!

Note

The current list of supported controls and links to their associated
documentation sections can be found at
https://doc.babylonjs.com/toolsAndResources/tools/guiEditor#supported-
controls.

Row indices start at zero, so the middle row is row number one and
contains the primary content of the dialog. The following diagram
illustrates how the layoutGrid’s three rows allocate 25%, 50%, and 25% of
the available height between them, respectively:

https://doc.babylonjs.com/toolsAndResources/tools/guiEditor#supported-controls

Figure 9.3 – A simplified view of the layoutGrid and its child controls. The
top and bottom rows each get 25% of the available height, while the middle
row is allocated the remaining 50% of the available height at render time

Let’s go through the rows in turn. The first row contains the titleText
control; as its name suggests, it is exactly what it seems like it is – a
container for displaying the dialog’s title heading. The second, middle row
contains the primary display content and therefore needs the most room for
its scroll viewer (to allow arbitrarily long or wide child content – a useful
quality to note for later…) and its own stackPanel content control. Last but
not least is the footer row (that is, row two). This row contains the two

visual interactive elements of the dialog: the userCancel and userAccept
buttons. These will be hooked up to click logic in the next section and will
be spaced using relative (percentage) positioning to ensure the buttons stick
to their respective sides.

Note

HTML/CSS folks are probably angrily wondering why we’re not using
columns and span cells, or a justified alignment with a horizontal
StackPanel. Those would indeed be wonderful approaches – if cell spanning
or full justification alignment were available, but as they are not (at the time
of writing), alternative approaches must be sought!

The final stop on our GUIE tour is less of a feature of the editor and more
of a very strongly recommended workflow practice of naming the controls
in the tree:

Figure 9.4 – Control tree structure with named controls. Having clear,
indicative names is crucial to effectively integrating the GUIE with
applications. The child elements of the layoutGrid Grid container display
their respective [row:column] indices in the tree

If you have read a certain type of genre fantasy, then you will know that
having the name of something gives one power over the thing being named,
and our GUI control tree is no different! Our integration pattern for
combining the GUI definition with JavaScript logic will hinge on using the
power of a control’s name to summon it forth when needed, but instead of
relying on magic spells and summoning circles, we’ll see how to use

Control.findByName as part of the tidy integration options made possible
by features in both the Babylon.js GUI and its core framework!

Integration with the GUIE
It’s time to move past the GUIE and see how we can make use of its output
in a simple Playground setting. The Playground at
https://playground.babylonjs.com/#WIVN8Z#6 is what we’ll be using as
the starting point for this section; we’ll build it out and finish it up in the
next section; that is, Building a Reusable Dialog Box Component. For now,
let’s run the Playground and click or tap anywhere in the display area to
summon a Dialog Box. Clicking one of the buttons will either dismiss or
spawn a new dialog box, depending on which is clicked.

Now, let’s focus on the createScene function. It’s very short – under 40
lines of code, with most of the code devoted to subscribing to various
Observables of the DialogBox component and the scene’s
onPointerObservable. Defining the initial dialog opts object and creating
the DialogBox instance rounds out the scene creation logic of our
Playground, leaving us free to focus our attention on how to convert the
const DIALOG_GUI_SNIPPET = "923BBT#32" line into an interactive
component, bringing us one step closer to seeing how DialogBox works.

Right above the DialogBox class definition – line 60 – is where the
CONTROL_NAMES constant is defined:

const CONTROL_NAMES = Object.freeze({

 cancel: 'userCancel',

 accept: 'userAccept',

 titleText: 'titleText',

 bodyText: 'dialogText',

 acceptText: 'userAcceptText',

 cancelText: 'userCancelText',

 dialog: 'dialogBorder',

 bodyScrollViewer: 'bodyContainer',

 bodyStackPanel: 'bodyStackPanel',

});

Recall when we mentioned the importance of names. This is where that
discussion becomes important! It also becomes the only place in our code
that needs to know anything specific about how our GUI is structured,
allowing us to modify our GUI to a certain extent without the need to make
corresponding changes to our application code.

OK – now, we have a map of control names that we can use to access
controls via code, but we haven’t loaded up anything for our code to access
yet. We’ll need to create an instance of an AdvancedDynamicTexture –
fullscreen mode is fine – and we also want to make sure that the text and
lines are crisp and sharp at whatever size it ends up being rendered:

this.advancedTexture = AdvancedDynamicTexture

 .CreateFullscreenUI("dialog", false, scene,

 Texture.NEAREST_NEAREST, true);

Using NEAREST_NEAREST as the sampling method when scaling the texture
gives the best results for text while the true flag for the last parameter
enables adaptive scaling for a nice look whatever the scale. Now that we
have something to host the GUI, it’s time to go ahead and load said GUI
into the ADT.

Because we want to use DIALOG_GUI_SNIPPET as the source to load our GUI
from, we’ll need to use the parseFromSnippetAsync method from an
instance of AdvancedDynamicTexture. Since the function is asynchronous,
this means we can await its completion from an appropriately marked async
function:

this.scene.executeWhenReady(async () => {

 await this.advancedTexture

 .parseFromSnippetAsync(DIALOG_GUI_SNIPPET,

 false);

 this.dialogContainer.isVisible = false;

Once advancedTexture has completed loading the GUI definition from the
snippet server (and, in the preceding case, opting out of rescaling the
texture), it can be accessed from advancedTexture.getControlByName().

To avoid repetition in our code, we can define property accessors in a class
or object to wrap the logic for getting or setting these control values:

get dialogContainer() {

 return this.advancedTexture

 .getControlByName(CONTROL_NAMES.dialog);

}

get titleText() {

 let ctrl = this.advancedTexture

 .getControlByName(CONTROL_NAMES.titleText);

 return ctrl.text;

}

set titleText(value) {

 let ctrl = this.advancedTexture

 .getControlByName(CONTROL_NAMES.titleText);

 ctrl.text = value;

}

In the preceding code, there are two examples of retrieving a control, as
well as a control’s text value. Additionally, the final property shows a
similar process for setting the text value of the titleText control. These
property accessors and others like them form a core part of the DialogBox
class, which is the topic of the next section.

The Advanced Dynamic Texture is a powerful way to dynamically
generate and render a hierarchical set of controls onto either a full-screen
canvas layer or as a mesh texture. Complementing the ADT is the GUIE, a
powerful interactive development environment for designing a GUI.
Consuming the output of the GUIE can be done by saving JSON from the
GUIE or by saving a snippet, just like the Playground, Animation Curve
Editor, Node Material Editor, and other BJS tools operate. Working with
ADTs authored with the editor in code can be made easy and maintainable
with the use of JavaScript property getters and setters that wrap calls to
AdvancedDynamicTexture.getControlByName.

Now, using this combination of tools, data, and code, it’s time to put theory
into practice. We need an easier way to implement the concept of a dialog
box in our application, and there are at least two places that need dialog box
functionality – route confirmation and scoring. This problem speaks to the
need to build something once that can be used in multiple situations.

Building a Reusable Dialog Box
Component
A reusable component is capable of utilization in multiple places and
contexts within a particular code base. Designing a reusable component is
different from designing a single-purpose one in several ways. The most
relevant one of these ways is that the reusable component’s functionality
must be designed to be customizable by users without the basic code
needing to be reinvented for it to be worked with.

We examined parts of DialogBox previously when we looked at how to
wrap advancedTexture.getControlByName in a get or set accessor, so let’s
build off that to make an important reminder/note.

Important note

The CONTROL_NAMES enumeration lists all the properties implemented by the
DialogBox class, but there are more properties than there are controls.
Getting or setting a property such as titleText or bodyText operates
against a text control’s text property directly.

The key parts of our component are going to be the initialization
(construction) logic, which is important because it needs to parse the GUI
data, entrance, and exit management, and event handling things such as
button clicks. After examining how each of these works, we’ll put the
individual pieces together to build the route confirmation dialog prompt.

Constructing the DialogBox Class
The constructor function for the DialogBox class accepts an options object
and a Scene instance as its two parameters. These parameters are mostly for
pre-populating the dialog box’s content, but the displayOnLoad parameter
is a behavioral flag that instead controls whether or not DialogBox is
supposed to be visible when it’s finished loading and initializing. When the

value is false, then the show() method must be explicitly invoked to
display the dialog:

const {

 bodyText, titleText,

 displayOnLoad, acceptText,

 cancelText

} = options; //...later...

if (bodyText) { this.bodyText = bodyText; }

this.titleText = titleText ?? "Space-Truckers: The Dialog

 Box";

this.acceptText = acceptText ?? "OK";

this.cancelText = cancelText ?? "Cancel";

The constructor logic ensures that the dialog box will have any required
pieces of content populated, even if they’re not specified by the caller.
Previously, we looked at the creation of AdvancedDynamicTexture, along
with how to populate the GUI elements using parseFromSnippetAsync.
This is a pattern that we’re using for the Playground to load from the
snippet server. For the application, we will load a JSON file defining the UI
using advancedTexture.parseContent() – a non-async method that also
obviates the need to run the initialization logic in the callback from
scene.executeWhenReady, which we used in the Playground. This is the
only meaningful difference between our Playground’s DialogBox class and
what will eventually end up in the Space-Truckers Application. This
highlights the power of iterative code design using the PG!

The rest of the constructor is devoted to subscribing to and wiring the
subcomponents of the DialogBox class. Our two buttons have their click
event handlers wrapped by the class and the respective
onAcceptedObservable and onCancelledObservable:

this.#acceptPointerObserver =

 this.acceptButton.onPointerClickObservable

 .add(async (evt) => {

 await this.onAccepted();

 this.onAcceptedObservable.notifyObservers();

 });

this.#cancelPointerObserver =

 this.cancelButton.onPointerClickObservable

 .add((evt) => {

 await this.onCancelled();

 this.onCancelledObservable.notifyObservers();

 });

this.scene.onDisposeObservable.add(() => {

 this.dispose();

});

To avoid leaking resources, we are capturing the Observers that have been
returned from the subscription methods in non-public class members
(denoted with the # prefix), which we clean up in the dispose method:

dispose() {

 if (this.#showTimer) {

 this.#showTimer = null;

 }

 this.onAcceptedObservable?.clear();

 this.onAcceptedObservable?.cancelAllCoroutines();

 this.onCancelledObservable?.clear();

 this.onCancelledObservable?.cancelAllCoroutines();

 this.advancedTexture?.clear();

}

Any ongoing asynchronous operations must be canceled along, with any
coroutines (see the Creating the Scoring Dialog with Coroutines section for
a definition). The createScene function of our Playground demonstrates
how this works when the initial confirmation DialogBox is disposed of in
the onAccept handler, spawning a new DialogBox in its place.

Our basic DialogBox defines two explicit interaction points with users: the
accept and cancel buttons. It also defines two behaviors: show and hide.
Next, we’ll learn how the two relate to each other and how to make the
show and hide methods complete only after the DialogBox class has
finished transitioning.

Handling Button Clicks and Changing
Visibility

In addition to handling the acceptButton and cancelButton click events,
the onAccepted and onCancelled functions both offer customizers for the
DialogBox class to run custom logic before notifying external observers of
the event – the default behavior shows this by hiding the dialog before
triggering the Observable:

 onAccepted() {

 return this.hide();

 }

 onCancelled() {

 return this.hide();

 }

Both onAccepted and OnCancelled return a Promise that resolves when the
dialog box has finished hiding itself. If the caller cares about waiting for the
dialog to fully show or hide itself, it can either use the standard async or
Promise resolution patterns – that is, await myDialog.show() or
myDialog.hide().then(…). As for the logic to show or hide DialogBox, it
uses the BABYLON.setAndStartTimer utility function to trigger the fade-in
or fade-out of the DialogBox class in conjunction with the
Scalar.SmoothStep function (note that some code has been elided in the
following listing for space reasons):

return new Promise((resolve, reject) => {

 this.dialogContainer.alpha = 1;

 this.#showTimer = setAndStartTimer(

 {

 timeout: this.#fadeInTransitionDurationMs,

 onTick: (d) => this.dialogContainer.alpha = Scalar

 .SmoothStep(0.998, 0, d.completeRate),

 onEnded: () => {

 this.advancedTexture.isForeground = false;

 this.dialogContainer.isVisible = false;

 resolve();

 },

 breakCondition: this.dialogContainer == null

 });

 }

});

In the preceding code, most of the action happens in the onTick and
onEnded callbacks of the setAndStartTimer option. The dialog starts with
an alpha of 1 and ends after a period of #fadeInTransitionDurationMs
(800 ms or so) with an alpha of 0. In between, values are interpolated using
the onTick argument’s completeRate, giving a value from 0 to 1 regarding
how far the timer has progressed to finishing.

The onEnded callback removes the DialogBox class from foreground
rendering (see The Advanced Dynamic Texture section, earlier in this
chapter) and sets the GUI’s isVisible to false before resolving the
original Promise. On the other hand, breakCondition ensures that if the
DialogBox instance is disposed of before completing the hide or show
animation, the timer won’t attempt to call disposed of objects.

Note

The show() function is almost identical to the hide() function, except that
it is more like a mirror inverse image than it is a clone. This is because it
starts as being fully transparent and ends up being completely hidden.

Let’s review how to use the DialogBox class in five easy steps:

1. Create an opts object containing, at a minimum, a guiData field
containing a snippet ID:

let opts = {

 bodyText: "Your flight plan appears to be viable!"

 + '\n'

 + "Would you like to file it with Space-

 Truckers Traffic Control (STC)?",

 titleText: 'Route Planning Success',

 displayOnLoad: false,

 acceptText: 'Launch!',

 cancelText: 'Retry',

 guiData: DIALOG_GUI_SNIPPET // e.g., "923BBT#32"

};

2. Instantiate a new instance of DialogBox, passing in the previously
created opts object and a reference to the Scene:

let dialog = new DialogBox(opts, scene);

3. Attach observers to the dialog box’s onAcceptedObservable and
onCancelledObservable to respond to user input (in this case, calling
createScoringDialog):

dialog.onAcceptedObservable.add(async () => {

 dialog.dispose();

 dialog = createScoringDialog(null, scene);

});

dialog.onCancelledObservable.add(()=>console.log

 ('cancelled'))

4. Call the show method to display the DialogBox class if the (optional)
displayOnLoad flag is not set to true:

dialog.show();

5. To dismiss or hide the dialog, click cancelButton or call the hide()
function. To defer action until the DialogBox class has completely
faded out, the Promise that’s returned from hide can be awaited:

await dialog.hide();

With our reusable DialogBox completed in proof-of-concept form, let’s
quickly look at the practice of integrating with the Space-Truckers
Application by looking at how the route planning screen uses it to prompt
the player to move to the next phase of gameplay.

Prompting Users after Successful
Route Planning

Not too many changes need to be made to the DialogBox class from the
Playground. However, as mentioned in the Constructing the DialogBox
Class section, we’ll be changing from using a snippet loaded from a remote
server to a JSON file loaded from the game’s assets folder.

After saving the GUI JSON definition from the GUIE, the definition is
added to the /src/guis folder as gui-dialog-buttons-scroll.json. One
important change is needed, though, so open up the file and find any
external resources (*.png) to change their URLs from absolute to relative
ones pointing to the appropriate file in the assets folder. For example, the
image that’s used as the DialogBox background will look like this after
being modified:

"source":"/assets/menuBackground.png"

The DialogBox class itself is housed next door to the GUI JSON, in
guiDialog.js, and as per our change from the snippet server to JSON, we
must add that import to the top of the file before passing it into the
DialogBox constructor as the guiData property value:

import stackedDialog from "./gui-dialog-buttons-

 scroll.json";

// later…

this.advancedTexture.parseContent(stackedDialog, false);

Pivoting to SpaceTruckerPlanningScreen, we need to add an import for
DialogBox to the file:

import DialogBox from "../guis/guiDialog";

A new routeConfirmationDialog attribute has been added to
SpaceTruckerPlanningScreen, initialized near the end of the constructor
function with logic that should be very familiar if you have read the entirety
of this chapter thus far:

this.routeConfirmationDialog = new DialogBox({

 bodyText: 'Successful route planning! Use route and

 launch?',

 titleText: 'Confirm Flight Plan',

 acceptText: 'Launch!',

 cancelText: 'Reset',

 displayOnLoad: false

}, this.scene);

this.routeConfirmationDialog.onAcceptedObservable.add(() =>

 {

 this.routeAcceptedObservable.notifyObservers();

 this.gameState = PLANNING_STATE.RouteAccepted;

 this.routeConfirmationDialog.hide();

});

this.routeConfirmationDialog.onCancelledObservable.add(()

 => {

 this.routeConfirmationDialog.hide();

 this.setReadyToLaunchState();

});

Now, there is no doubt that the actual copy used in the confirmation dialog
box could use some work, but it does the job for now – maybe you’ll be the
one to submit a Pull Request to change it to something a bit more
interesting?

On the topic of interesting, the onAcceptedObservable handler for the
dialog does several interesting things. First, it notifies any interested parties
that the player has accepted the route. Then, it updates gameState to reflect

the new reality before hiding routeConfirmationDialog and allowing
whatever logic is subscribed to routeAcceptedObservable to take things
from that point. This is not too different from the Playground example, and
not too much time is needed to get that up and running either! We’ll want to
hold onto that feeling for now though because next, we’re going to be
making a series of targeted changes to the application to gather, process,
and calculate scoring data for the game.

Calculating Scores
Much of the fun that comes from playing a game is through the different
ways that a game can provide feedback to the player – positive or negative.
This is a great opportunity for game designers to connect with players at an
emotional level. Connecting positive events and outcomes to a player’s
actions creates a feedback loop between the game and the player, and one of
the oldest and truest connections in gaming is the concept of a point score
that accumulates throughout gameplay.

The scoring system used in Space-Truckers bases a player’s final score
around a few basic categories and concepts, details of which we’ll be
covering shortly. When scoring is triggered (that is, the player reaches their
cargo’s destination), the game displays a DialogBox that is initially empty,
but which displays each category of scores in a line-by-line fashion before
giving the final score.

Before building out the logic to capture and calculate scores, it’s useful to
define the desired scoring data model in a sample score. This is the desired
output of the scoring process logic, irrespective of how that logic generates
the data. This will clue us into what sorts of changes are needed elsewhere
in the application to support the scoring system.

Scoring System Design
The score data that is generated and used by Space-Truckers can be broken
down into three broad groups: score factors, multipliers, and final scores.
Score factors are categories reflecting base attributes of both route planning

and driving performance. The number of encounters, length of the route,
and initial launch force are all fixed and set in the Route Planning Phase,
but the cargo condition is dynamic up until the player reaches their
destination in the driving phase (sample values have been provided for
context):

scoreFactors: {

 routeLength: 12450.25,

 cargoCondition: 0.768,

 encounters: 125,

 launch: 100.00

},

multipliers: {

 transitTime: { expected: 180, actual: 150, factor:

1.2 },

 delivery: 1.0,

 condition: 0.768,

 encounterTypes: 1.05

},

finalScores: {

 'Base Delivery': 1000,

 'Route Score': 14940,

 'Cargo Score': 11474,

 'Delivery Bonus': 10000,

 'Encounters': 1312,

 'Final Total': 38726

}

Below scoreFactors are the multipliers. These values are used by the
scoring calculations to modify one or more scoreFactors in various ways
that we’ll get into in the next section, Adding Up and Tallying Scores.
However, before we move on, there’s just one more thing to do. One last –
you may even say final – section to cover. finalScores are the categorized
and summed up values that come out of the combination of scoreFactor
and multipliers. This is what will ultimately be displayed to the players in a
“here’s the bottom line…” type of fashion.

Continuing to ignore any sort of details on how the scoring data is captured
is still a useful tactic because although we may know the general shape of
the scoring data, until we know how to calculate those scores, we won’t
know precisely what and where data needs to be captured.

Adding Up and Tallying Scores
The scoring logic is contained within the
src/scoring/spaceTruckerScoreManager.js file. Similar to how we are
compartmentalizing using the sample score shown previously, consumers of
this component only need to call the default export computeScores and pass
in a route data structure to get a score object in return. The computeScores
function is a simple orchestration function – its only purpose is to
coordinate the invocation of the various other functions that are calculating
the individual scoring areas:

let computeScores = function (route) {

 let score = createDefaultScoring();

 calculateEncounterScoreToRef(route, score);

 calculateRouteScoreToRef(route, score);

 calculateCargoScoreToRef(route, score);

 calculateBonusScoreToRef(route, score);

 calculateFinalScoreToRef(score);

 console.log(score);

 return score;

}

The createDefaultScoring function in the second line of the preceding
listing is a factory method for creating empty score data objects, like the
previous sample score but with 0 or blank values. As the score object is
passed between each of the various calculateXXXScoreToRef methods, its
values are built up and used by successive function calls.

The ToRef suffix on these function names indicates that they will be
mutating a parameter (usually the last parameter provided by convention)
rather than creating a new instance of one. This is most seen with Vector
and Matrix objects but consistency in naming is crucial to the long-term
health of a code base! Following that are individual subsections that go
through the details of each aspect of the scoring calculations.

Because we’re still in the development process, we’re not going to worry
too much about getting these calculations balanced and tweaked to the
extent we may want. What we need to do is establish a basic way to provide

a dynamic scoring experience that is easy to come back to later when we’re
ready to balance and tweak.

Encounter Scores

We start by calculating the encounter score. Right off, we know that we
want to get a list of encounters and that we will want to use that list to add
up the individual modifiers for each encounter to get the final encounter
modifier. If we assume that the route parameter contains a pathPoints
object collection (see the
/src/driving/spaceTruckerDrivingScreen.calculateRouteParameters

function for details) and that any given entry in the pathPoints collection
may or may not have an associated encounter containing a decimal
scoreModifier value, then we can use a simple map and reduce operation:

const { pathPoints } = route;

const encounters = pathPoints

 .map(p => p.encounter)

 .filter(e => e);

scoreFactors.encounters = encounters.length;

let encounterModifier =

 1 + encounters.map(e => e.scoreModifier)

 .reduce((prev, curr, cidx, arr) => {

 return prev + curr;

 });

multipliers.encounterTypes = encounterModifier;

let encounterScore = 100 * encounters.length *

 multipliers.encounterTypes;

finalScores['Encounters'] = encounterScore;

The preceding code calls map with a simple extraction function that
retrieves the scoreModifier value – a number. Next, it passes the array of
scoreModifier numbers to the reduce function. Array.reduce (if you
aren’t already familiar with it) is a useful aggregation tool that takes a
function as its primary parameter. Looping (or iterating) over the array, arr,
the function is invoked for each curr element in turn, with the results of the
prev operation being passed along with the value of the curr element at the
cidx position. This is just a fancy way of saying that the reduce operation
sums up the total of all the elements in an array of numbers! This

aggregated value becomes encounterModifier, which is used in
conjunction with the overall number of encounters to determine the total
encounters score value.

Route Scores

Route scoring calculations are performed slightly differently from
encounter scoring. The main factor for route scoring is the length of the
overall route (how far the cargo had to travel before arriving), but there are
several equally important modifiers. When it comes to transitTime of the
route, there are two relevant values: the planned transit time and the actual
(driving phase) transit time. The ratio between those values, when added to
a constant, gives us transit.factor, an important multiplier that’s used in
two ways. First, it is applied to distanceTraveled; after it is applied to the
launchForce value, which is used during the Route Planning Phase. The
first is subtracted from the second to produce the final Route Score value:

transit.factor = 0.5 + route.transitTime /

 route.actualTransitTime;

finalScores['Route Score'] =

(route.distanceTraveled * transit.factor) –

(route.launchForce * transit.factor);

Cargo Scores

Cargo scoring is based primarily on the condition of the cargo upon arrival,
meaning that it reflects player performance from the Driving phase. The
cargo starts with a condition value of 100. When collisions with encounters
or with sufficient velocity occur, the route path can reduce that value (see
the Capturing Scoring Data section for more), which is used as the basis for
the Cargo Score after it’s been scaled by the condition multiplier:

const { cargoCondition } = route;

scoreFactors.cargoCondition = cargoCondition;

let cargoScore = 10 * cargoCondition *

 multipliers.condition;

finalScores['Cargo Score'] = cargoScore;

Bonus Scoring

If the player delivers their cargo in pristine condition, extra rewards are in
order. In that case, the Delivery Bonus is applied to finalScores:

if (route.cargoCondition >= 100) {

 s.finalScores['Delivery Bonus'] = DELIVERY_BONUS;

} else { s.finalScores['Delivery Bonus'] = 0;}

Final Scoring

Once all the various sub-scores have been tallied and multiplied, it’s time to
sum them all up to get our total value. After populating with
BASE_DELIVERY_SCORE, we use Object.values to produce an array of
numbers that we (sound familiar?) pass to another reduce operation to give
the Final Total score value:

let { finalScores } = score;

finalScores['Base Delivery'] = BASE_DELIVERY_SCORE;

let finalScore = Object.values(finalScores)

 .reduce((prev, curr) => prev + Number(curr));

score.finalScores['Final Total'] = finalScore;

Putting these computations together helps give us an idea of what data is
already available in the route and what needs to be collected. There’s more
information about a game session than just the route path, after all!

Capturing Scoring Data
With the sample scoring data serving as a guide, we can work backward to
identify the places in the application where scoring data is generated before
capturing it. This may result in the need to update or change existing data
structures and code, but that’s OK because we will also make the needed
changes to allow players to complete the driving phase and see their final
scores displayed in their full glory!

Enriching the Route Data

The first and possibly the biggest change is that we’ve added a new
routeData property to SpaceTruckerPlanningScreen, which packages up
all data needed by the scoring calculations later in the game (see the Adding
Up and Tallying Scores section for more):

 get routeData() {

 return {

 route: this.cargo.routePath,

 launchForce: this.launchForce,

 transitTime: this.cargo.timeInTransit,

 distanceTraveled: this.cargo.distanceTraveled

 }

 }

routePath of the Cargo object tracks encounters and other path-specific
data, while the other values provide a baseline travel time and the length of
the route. Encounters were already being captured as part of cargoData
associated with the encounter, but the additional scoreModifier field is
needed for every encounter listed in the route-planning/gameData.js file:

{

 name: 'Rock Hazard',

 id: 'rock_hazard',

 image: hazard_icon,

 probability: 0.89,

 scoreModifier: 0.019

}

There’s still more to do, but this completes the data collection aspect of
scoring. Next, we need to add a trigger that will initiate the scoring process
(provided the player has finished the route…) and show the Scoring Dialog.

Completing the Driving Phase

So far, the SpaceTruckerDrivingScreen.killTruck function has
indiscriminately performed the grim responsibilities implied in its name.

Today, though, is different. Today, the Grim Reaper of trucks gets a
conscience:

let closestPathPosition =

 path3d.getClosestPositionTo(mesh.absolutePosition);

// not close enough!

if (closestPathPosition < 0.976) {

 this.reset();

 return;

}

this.completeRound();

When the method is called by the onMeshIntersectExit action trigger, it
checks the absolute (World reference) position of the mesh against the
closest Path3D segment of the route. See Chapter 8, Building the Driving
Game, the Generating the Driving Path section for more on Path3D and
how it relates to the route path.

Note

Path3D exposes positions as a normalized route with positions between 0
(beginning) and 1 (end).

Should the truck happen to exit its route path (thus triggering this method)
too far from its destination, the Grim Task of reaping continues as it did in
the past. Let’s not dwell on the past and instead look to the alternative,
happy future that involves calling the completeRound method of the
SpaceTruckerDrivingScreen class. The first two things that need to
happen are that we want to hide the driving phase GUI, which we do by
setting the appropriate layerMask to 0. Next, we transition the screen to the
DRIVING_STATE.RouteComplete state to prevent further updates to the
simulation that may impact scoring, which, speaking of, is what
immediately follows:

completeRound() {

 this.gui.guiCamera.layerMask = 0x0;

 this.currentState = DRIVING_STATE.RouteComplete;

 this.route.actualTransitTime = this.currentTransitTime;

 // gather data for score computation

 let scoring = computeScores(this.route);

 let scoreDialog = createScoringDialog(scoring, this);

 scoreDialog.onAcceptedObservable

 .addOnce(() =>

 this.onExitObservable.notifyObservers());

 scoreDialog.onCancelledObservable

 .addOnce(() => this.reset());

 this.scoreDialog = scoreDialog;

}

Once the scoring data has been gathered and computed,
createScoringDialog (from /src/scoring/scoringDialog.js) is
invoked to do the necessary DialogBox creation and management; all that
remains for completeRound to do is hook up the onAcceptedObservable
and onCancelledObservable properties to the appropriate logic. Then, we
are good to go from the standpoint of the driving screen!

The createScoringDialog function is a nice analogy to this book; it starts
with the familiar, then mixes in something completely unexpected and/or
unfamiliar as it progresses until, by the end, it seems like everything works
by magic. Let’s finish this section by looking at the familiar parts of the
function:

 let opts = {

 bodyText: 'Time to earn payday!',

 titleText: 'The Drayage Report',

 displayOnLoad: true,

 acceptText: 'Main Menu',

 cancelText: 'Retry'

 };

 const { scene, soundManager } = drivingScreen;

 const sound = soundManager.sound('scoring');

 let scoreDialog = new DialogBox(opts, scene);

 let dialog = { scoreDialog };

 dialog.height = "98%";

 let scoringCo = scoringAnimationCo();

This is slightly different from the Playground at
https://playground.babylonjs.com/#SQG1LV#28, but only because the PG
doesn’t have SpaceTruckerSoundManager to retrieve and manage the sound
used by the next section. There’s nothing unusual in this code until the very

https://playground.babylonjs.com/#SQG1LV%2328

last line. What a fantastic opportunity as well to introduce one of the more
exciting features of Babylon.js v5 – coroutines!

The logic involved in calculating the scores themselves is as simple as
possible and no more – it requires nothing but the data passed into it
directly to operate, but that data needs to come from somewhere. The
different categories of scores are sourced from different components of the
game; encounters contribute to their multiplier, transit times are calculated
in both driving and route planning, and the cargo’s health is tracked by the
truck during driving. Each of these factors and multipliers contributes to the
overall final scores that get displayed in the Scoring Dialog.

Creating the Scoring Dialog Using
Coroutines
If you have come from a background working with Unity, Unreal, or other
game engines, you might be familiar with the concept of a coroutine. A
coroutine in those contexts is defined much the same way as it is in
Babylon.js: a stateful method that runs across multiple frames of rendering.

Though it may imply the presence of multiple threads, typically, in most
frameworks (for example, Unity and most certainly JavaScript!), this is not
the case. The C# programming language uses Iterators along with the yield
keyword to implement coroutines, but in JavaScript, we use a (spoiler
alert!) function* generator. Bet no one saw that callback to Chapter 4,
Creating the Application coming! Instead of using them as part of our
application’s state machine, we’re going to define the logic that will make
the score dialog’s scoring entries count upwards from zero, along with
playing a cash-register type of sound. Lastly, we’ll crank things up to 11 by
looking at a standalone Playground sample to show how it’s possible to
devise a controller system composed of multiple, independently reusable
behaviors.

Reviewing Function Generators

For a more detailed overview of JavaScript function generators, see
Chapter 4, Creating the Application, the Space-Truckers – The State
Machine section. Here’s a quick example of a function generator to help
remind us how they work and how to use them. Let’s say that our designers
have devised a color palette for printing the rows of a report. We can define
a nextColor() star function that will produce a new hex color string at
every iteration:

function* nextColor() {

 while (true) {

 yield "#0d5088";

 yield "#94342c";

 yield "#e2ba77";

 yield "#787b6d";

 }

}

let colorPicker = nextColor();

When a function is generated by calling nextColor(), it will always
produce a color from the list, in order, when requested. Where does this
come into play? The createScoringBlock(label) function is responsible
for creating and styling the actual GUI element that is displayed in the
scoring DialogBox, calling colorPicker.next() to produce a new value
each time it is called:

// ...inside the createScoringDialog function scope

// ...inside the function* scoringAnimationCo scope

function createScoringBlock(label) {

 let scoreBlock = new TextBlock("scoreLine",

 `${label}`);

 scoreBlock.width = "100%";

 scoreBlock.color = colorPicker.next().value;

 scoreBlock.textHorizontalAlignment =

 Control.HORIZONTAL_ALIGNMENT_LEFT;

 // …snip…

 return scoreBlock;

}

There’s our brief review of function* concepts, all packed up nice and tidy.
Now, let’s see how those fit into coroutines and Babylon.js by looking

deeper into scoringDialog.js, where we’ll unwrap scoringAnimationCo
and put it to work in our DialogBox!

Counting Player Scores with a
Coroutine

Coroutines are neat because they allow the developer to express complex
behavior via relatively simple logic (when done right). Any time a
coroutine wants to return control to the caller, it calls yield – with or
without arguments (see the Advanced Coroutine Usage section). The timing
and manner in which a coroutine (CoRo) advances in execution depends
on the host BABYLON.Observable for that CoRo.

Important note

New in the Babylon.js v5 Observable API is the
Observable.runCoroutineAsync and Observable.cancelAllCoroutines
functions. See https://doc.babylonjs.com/divingDeeper/events/coroutines
for more!

If attached to one of the Scene’s render event Observables, the CoRo will
run every frame, whenever the host Observable is triggered. If attached to
scene.onPointerObservable, the CoRo will fire any time the pointer
moves or interacts with the scene. This is incredibly powerful when
combined with the way that JavaScript closures work – since an iterator
function is a stateful construct, it can remember and track past events and
conditions as they evolve over multiple frames of simulation/rendering.

This makes a coroutine ideal for implementing a sort-of “cash register”
style of tallying up the player’s scores and presenting the final totals in
conjunction with the DialogBox class created earlier as part of the
createScoringDialog function. The coroutine logic can be deceptively
simple: given a score object generated by the Scoring Manager (see the
Adding Up and Tallying Scores section) and a scene, loop over each
property of the Final Scores property and display its value in the DialogBox
class by counting up to it from zero:

https://doc.babylonjs.com/divingDeeper/events/coroutines

Figure 9.5 – A logical flowchart of the scoringAnimationCo behavior.
Circles represent yield statements with the optional use of
Tools.DelayAsync. Rectangles list the actions taken

The preceding diagram shows that several other pieces need to be handled:
the height of the bodyStack StackPanel needs to be adjusted to account for
the new row that was added to it, the scrollbar that contains the bodyStack
control needs to be set to its new maximum value to ensure that the current
line of text is fully visible, and so on.

Despite the seeming complexity of this logic, it comprises well under 100
lines of code! If we only look at the actual logic of the coroutine and

exclude the state management code, we have even fewer lines of code to
write:

for (let i in finalScores) {

 yield Tools.DelayAsync(500);

 // ...snip... compute and adjust height

 yield Tools.DelayAsync(1800);

 if (skipCountUp) {

 // display score right away

 }

 else {

 const MAX_COUNT = 50;

 while (frameCounter <= MAX_COUNT) {

 let currProgress = frameCounter / MAX_COUNT;

 sound.play();

 let speed = Scalar

 .SmoothStep(0, score, currProgress);

 scoreBlock.text =

 `${label}.........${speed.toFixed()

 .toLocaleString()}`;

 frameCounter++;

 yield Tools.DelayAsync(50);

 }

 }

 yield;

 }

 return;

The value for MAX_COUNT was arbitrarily determined via experimentation; it
controls the length of the counting animation. The progress is governed by
the SmoothStep function, which starts slow before speeding up greatly just
before coming to a gentle stop at the end. Every time Tools.DelayAsync is
passed as the argument to yield, the coroutine will pause itself for the
indicated amount of time – or as close to it as possible – before resuming
execution.

Note

Because frame delta times don’t always add up to the exact amount of time
specified, a coroutine can be paused for slightly longer than the indicated
amount of time.

When all is said and done and the final Final Score has been rendered, the
coroutine returns rather than yields, indicating completion and signaling
to the hosting onBeforeRenderObservable that it’s OK to clean up and
dispose of that coroutine function instance. From the perspective of the
code that started things off, we have two simple lines – one to create the
iterator function and another to start it running:

let scoringCo = scoringAnimationCo();

scene.onBeforeRenderObservable.runCoroutineAsync(scoringCo);

In this scenario, we don’t want to block execution and wait until the
coroutine completes to continue executing createScoringDialog, but if we
were doing something different, such as making asynchronous HTTP calls
as part of a coroutine, it would be prudent to await or capture the returned
Promise of runCoRoutineAsync. Thus, it can be used and passed around
just like any other asynchronous operation, allowing for more advanced
scenarios and complex behaviors.

Advanced Coroutine Usage
Unless you’re a passenger on the Titanic, there’s good news: this is just the
tip of the iceberg! Because coroutines leverage the underlying mechanics of
function iterators, it’s possible to use the yield* operator to chain together
multiple function* iterations into a single coroutine, as exemplified in the
Playground at https://playground.babylonjs.com/#5Z2QLW#1.

Note

See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/yield* for more details and
examples of using the yield* operator.

The yield* operator is used in the context of a function* body, and
provides a way to “pass through” the results of another iterator function –
or, and this is easily missed part of the definition (emphasis added):

https://playground.babylonjs.com/#5Z2QLW%231
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/yield*

“The yield* expression is used to delegate to another generator or iterable
object.”

Although not used in our example, this would allow a developer to, for
example, write a coroutine that produced a stream of values from an array
populated by device sensors, among many other applications. In our
example, we are using the yield* operator analogously as we may extract
reusable code into a function by invoking another function*.

Seemingly a small detail, this ability to execute other iterator functions
allows us to use the powerful Compositional pattern of software design to
put simple building blocks together to express complex behavior. We start
with the function* think() coroutine. It is named appropriately because
its job is to decide what the sphere mesh is going to do next:

function* think() {

 while (true) {

 yield Tools.DelayAsync(1500);

 yield* moveToTarget(new Vector3(PERIMETER / 2, 1,

 0));

 yield Tools.DelayAsync(1500);

 yield* patrolCo();

 yield* moveToTarget(new Vector3(0, 1, 0));

 }

}

Think of the preceding code as the primary controller or, more colloquially,
the AI for a game object. It can read the environment and make decisions
on what to do. In our case, it waits for a second and a half before invoking
the moveToTarget function (listed in the following code snippet) with the
desired target position. This moves the sphere from wherever it is
positioned in the middle of the right-hand side of the perimeter Plane. After
another short delay, the patrolCo function is invoked.

function* patrolCo is another compositional element that combines
multiple moveToTarget iterations, along with logic, to change the color of
the sphere on every movement direction change:

function* patrolCo() {

 let targetVector = new BABYLON.Vector3(0, 1, 0)

 yield;

 sphereMat.diffuseColor = BABYLON.Color3.Random();

 targetVector.set(PERIMETER / 2, 1, 0);

 yield* moveToTarget(targetVector);

 sphereMat.diffuseColor = BABYLON.Color3.Random();

 targetVector.addInPlaceFromFloats(0, 0, PERIMETER / 2);

 // ...snip...

 yield* moveToTarget(targetVector);

 return;

}

Each set of yield* statements delegates execution to the moveToTarget
function, which is the real workhorse of this example. This behavior does
what it says on the tin – it moves the subject (the sphere mesh, in our case)
of the behavior as close as it can to the given target world position. A
maxDelta value caps the amount of ground the sphere can cover in any
given frame (due to the coroutine being hosted and executed by
onBeforeRenderObservable):

const maxDelta = 0.0075;

function* moveToTarget(targetPosition) {

 let hasArrived = false;

 while (!hasArrived) {

 let dir = targetPosition.subtract(sphere.position);

 if (dir.length() <= 0.75) {

 hasArrived = true;

 }

 dir.scaleInPlace(maxDelta);

 sphere.position.addInPlace(dir);

 yield;

 }

 return;

}

The direction of movement is computed by subtracting the two relevant
position vectors, the result of which is used to determine whether the sphere
has arrived at its destination, as well as moving the sphere by adding a
scaled vector pointing toward targetPosition. Upon arrival, the iterator
function returns control to the calling iterator function – either patrolCo()
or think(), which then proceeds to the next step in its iterator chain.

This simple example can easily be extended with additional behavior and
logic, simply by adding additional function* definitions. Like a library or
toolbox of behaviors, simple behaviors such as moveToTarget are stitched
together into more complex behaviors such as patrolCo, which is, in turn,
orchestrated by the overall think function iterator endlessly pondering the
game’s world. An entire non-player actor/controller can be quickly put
together in this fashion! Hopefully, by presenting the concepts in an isolated
Playground, it’s easier to see how composition can make the whole greater
than the sum of its parts.

Summary
We’ve accomplished a lot in this chapter. Starting with the Babylon.js
GUIE, a basic DialogBox was designed and saved to both the snippet
server and JSON. After learning how to use it in conjunction with the ADT,
we implemented the reusable DialogBox component and tested it by adding
the Route Planning confirmation dialog.

Armed with those initial results, we turned to the scoring system used in
Space-Truckers and the logic needed to calculate each area of the scoring
game. The data to accomplish this became apparent throughout, so we made
the needed modifications to the Space-Trucker Application to capture
scoring data. Because we already have the foundational dialog structure in
place, it’s easy to create the Scoring Dialog from both captured and sample
scoring data.

It’s not enough to simply display the scores in our Scoring Dialog, though,
so we employed another new feature in v5 of Babylon.js: coroutines.
Hosted and managed by any BablyonJS.Observable (but mostly used in
onBeforeRenderObservable), coroutines allow complex multi-frame logic
to be simply written and executed. Through scoringAnimationCo, each line
of the Final Scores object is displayed and counted to its final value from
zero.

Moving away from the Scoring Dialog, we wrapped up this chapter by
learning how to use coroutines with multiple function* definitions to create
complex behavior from simple actions. A think orchestration coroutine

decides which sub-routines to invoke and in what order, armed with a
toolbox of behaviors such as moveToTarget and patrolCo.

In the next chapter, we’re going to look at the space of Space-Truckers by
diving into environments, Image-Based Lighting (IBL), and how to use
Physically-Based Rendering (PBR) with Babylon.js. From workflows for
converting images for use with IBL to adding post-processes for effect,
we’ll see how easy it is to take a few lines of code and make something
attractive and performant!

Extended Topics
It’s important not to focus too much on the particulars of the DialogBox
design UI – this book isn’t a book on graphic design, much to everyone’s
relief – so here are some ideas and resources for taking your UI adventures
to the next level:

These two samples are for a main menu system and an in-game menu and
inventory system – what sorts of things can you build when you combine
those as a starting point with what you’ve learned in this chapter?

The Babylon.js team ran a summer event in August 2022 that urged
community members to submit the amazing UI builds they had created
with the GUIE. Two “starter” templates were provided for people that
didn’t have an existing project:

https://playground.babylonjs.com/#QCH724#1

https://playground.babylonjs.com/#QCH724#1

The Space-Truckers Main Menu is very much imperatively coded as
opposed to the GUIE JSON files, which are declarative. As we’ve seen,
a declarative data-driven UI is much easier to build and maintain, so try

https://playground.babylonjs.com/#QCH724%231
https://playground.babylonjs.com/#QCH724%231

applying that knowledge to the Main Menu by replacing some of the
GUI components created in code with a DialogBox.

Composable coroutines can provide a simple and easy way to add
interesting behaviors to a game or application. Add a way for an
arbitrary encounter instance in the Driving Phase to run a coroutine
“behavior.” The encounter itself should provide the coroutine, but it will
need to be provided with current game state information:

Three components working together can help cleanly separate and
define this functionality:

A Behavior component that does the “thinking”

A Think Context that provides a vehicle for state information

A set of actions that the behavior(s) can perform (for example,
“Move,” “Eat,” “Disperse,” “Acquire Target,” and so on)

An encounter coroutine may load a mesh and material, set some
values, and perform other initialization tasks before beginning its
behavioral “think” loop.

Actions can be other coroutine behaviors, such as patrolling
behavior.

Improving the Environment with
Lighting and Materials
Welcome to Chapter 10! This chapter is brought to you by The Number 5,
twice. Babylon.js v5 brings with it not only incredibly powerful and fast
features but also a suite of new tools to help work with almost every area
that a game engine could ask for from a framework. We’ve worked with
several of them already, including just this past chapter on the GUI Editor
(GUIE). Previously, we’ve worked with the Particle Editor in the
Inspector in addition to the GUIE and the Playground. But that’s not all
of them, not by a long shot.

As we cover the IBL Toolkit and the Sandbox in this chapter, the shadow
of a giant looms over us. The mighty Node Material Editor (NME) will be
the topic of the next chapter, and we’re going to use this chapter to prepare
for it by leveling up our knowledge of some important topics in 3D graphics
programming.

When it comes to the graphical experience of a game or 3D application,
lighting is probably the single greatest contributor to the overall look and
feel of a scene. Like many of the topics we’ve covered or will be covering,
there are entire libraries of much more in-depth, better written, and
thorough texts that cover these subjects. Hence, our objective will be to
provide a solid basis of the principles, grounded in a practical usage
scenario. No matter what visual effects look is desired, the best and most
performant lighting technique for current real-time 3D rendering is Image-
Based Lighting (IBL), where the main source of light for a scene is, as the
name implies, a specially prepared image texture.

Note

The 1993 movie Jurassic Park pioneered this technique as a way to capture
the on-set lighting for use with the computer-generated elements of scenes.

This chapter isn’t just about lighting, however. It’s incredibly difficult to
talk meaningfully about lighting in a scene without involving the concept of
materials. Simply put, material is the term we use for mathematics to
describe how light interacts with a surface. There’s quite a lot more that
goes into that definition, but as usual, Babylon.js provides a shortcut with
the PBRMaterial. This helps keep the most complicated parts of the math –
both here in this book and in your code – tucked and hidden away behind a
shiny abstraction that leaves us the task of knowing which parameters need
to be set and to what value.

Before we try to drink from the firehose of lighting topics, there are some
other pieces of business for us to tackle. Make sure to check out the
Technical Requirements section for some links to posts, books, and articles
relevant to the topics in this chapter. There’s also a list of fancy words you
can use in Scrabble or to impress your friends who aren’t fortunate enough
to be reading this book like you are and a list of both free and paid software
for working with and preparing images to use in your project. Don’t feel
guilty about your rapidly growing knowledge – feel good as you read the
first section to learn about all the different things we’ve done and changed
since we last visited the code base.

In this chapter, we will cover the following topics:

Technical Requirements
The source code for this chapter is located at
https://github.com/jelster/space-truckers/tree/ch10. While we’ll still be
looking at some Playground code, most of our work in this chapter lies
elsewhere. For working with images and textures, the following non-
exhaustive list of tools will be useful for preparing and converting image
assets for use with Babylon.js.

Materials, Lighting, and the BRDF

Working with PBR Materials and IBL Scenes

Tone Mapping and Basic Post-Processing

https://github.com/jelster/space-truckers/tree/ch10

Tools
The following tools will help you in this chapter:

Glossary of terms (abridged)
Here is a list of some of the more common acronyms and terms that you
might encounter during this chapter or while reading other resources on the
topic of 3D lighting and materials. It’s far from complete but will serve as a
jumping-off point to expand your vocabulary further:

Direct Draw Surface (DDS): A file format that’s useful for storing
high-resolution images. This includes MIP maps. Babylon.js supports
the so-called “legacy” DX1 DDS format.

MIP map: Referred to as pyramids in some areas of 3D graphics, a
MIP map is a series of progressively smaller, lower- resolution
reproductions of the original image. This is used for many applications,
such as Level of Detail (LOD) and storing pre-computed lighting
values.

Physical Based Rendering (PBR): This is a technique for realistically
simulating the behavior of light after interacting with some surface
material. A Specular/Glossiness model and a Roughness/Metallicity
model are two approaches. For the two major parameters, there are pairs
of Specular/Gloss, and Rough/Metallic, respectively, with values that
fall in the range of [0,1].

Image-Based Lighting (IBL): A method of scene illumination that
incorporates a spherical projection of an image to provide lighting.

Skybox: A mesh cube textured on the inside, with the camera
positioned within. This is done by using a specially laid out single
image or six separate individual images. A camera positioned on the
interior of the cube will view the texture as if it appeared very far away.

Environment Texture: This is a special type of texture; it is the “I” of
“IBL.”

BRDF: This stands for Bidirectional Reflectance Distribution
Function (pronounced similar to “Bird”) and is a mathematical function
that contributes terms to the overall Rendering Function that relates the
angle of reflectance to the amount of incoming and outgoing light.

Rendering Function: When implemented, this is known as a
rendering pipeline. This is a mathematical function that’s used to
calculate the final screen color of a 2D pixel depicting part of a 3D
scene. The final color value of that pixel is influenced by many different
factors, such as lighting or the position of the camera.

Material: This is an asset or code component that, when applied to a
mesh geometry, defines the behavior of light impacting upon the mesh.

Luminance: This is a measurement of the amount of light in a given
unit area.

Dynamic Range: The ratio between the brightest and the darkest parts
of a scene.

Tone Mapping: Used to adapt an HDR image for use in a non-HDR
display or medium.

Color Space: The potential range of colors that can be represented by
a particular file or image format. This is often notated in terms of bytes

Recommended Reading
Here are some links to resources that can be helpful to skim before, during,
or after reading this chapter. Some are more on the conceptual side, while
the documentation links are eminently practical:

per channel; for example, R8G8B8A8.

The BRDF, as told by Wikipedia:
https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_fun
ction

The PBR BRDF, as described by the Academy Award-winning
engineering group who pioneered the technique in professional film:
https://www.pbr-book.org/

Official BJS docs:

Setting up an HDR Environment to use with PBR:
https://doc.babylonjs.com/divingDeeper/materials/using/HDREnvir
onment

All the things you never knew you wanted to know about the
properties of PBRMaterial:
https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR

Break-out of different reflection and refraction features:
https://doc.babylonjs.com/divingDeeper/materials/using/reflectionTe
xture

The Khronos Foundation BRDF reference implementation used by
Babylon.js for modeling metallic roughness materials:
https://www.khronos.org/registry/glTF/specs/2.0/glTF-
2.0.html#appendix-b-brdf-implementation

Two separate Hard-Core BRDF definitions, along with example
implementations of realistic PBR suitable for scientific or engineering
models:

https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
https://www.pbr-book.org/
https://doc.babylonjs.com/divingDeeper/materials/using/HDREnvironment
https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR
https://doc.babylonjs.com/divingDeeper/materials/using/reflectionTexture
https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#appendix-b-brdf-implementation

Materials, Lighting, and the BRDF
The analogy of a 3D scene to a real-world movie studio set is an obvious
but useful one. Some parts are obvious, such as the scene and stage,
cameras, and lights, while others are not. Meshes are the actors and the set
pieces, while materials are their costumes. This section is all about the
costuming and lights, but it’s tough to discuss either without digging down
a bit into the theoretical underpinnings of how light gets modeled in a
scene.

This section is a bit of a doozy, so here’s a quick fly-over of what we’re
going to talk about. First, we’re going to dabble with a little bit of symbolic
mathematics and some extremely light calculus. Next, we’ll look at the
different ways that light can reflect and interact with surfaces, and how it’s
modeled or approximated in 3D. This will serve as a strong basis for us to
learn about Materials and how they relate to math at a high level. After that,
we will introduce PBR and Environments to cap off our tour. Time to dive
in!

Introducing the BRDF
Light is modeled in terms of either being incident or reflected – denoted
with the subscripts i and r – representing a measured amount of light that is
either incident upon an object (is being reflected) or coming from an object

https://math.nist.gov/~FHunt/appearance/brdf.html

https://developer.nvidia.com/gpugems/gpugems/part-iii-
materials/chapter-18-spatial-brdfs

For the textbook crowd: Essential Mathematics for Games and
Interactive Applications, 3rd ed. Van Herth and Bishop. 2016 Taylor &
Francis Group. (https://www.essentialmath.com)

Image Encoding for HDR:
http://www.anyhere.com/gward/hdrenc/hdr_encodings.html

https://math.nist.gov/~FHunt/appearance/brdf.html
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-18-spatial-brdfs
https://www.essentialmath.com/
http://www.anyhere.com/gward/hdrenc/hdr_encodings.html

(reflected off of it). The terms for these two scenarios are radiance for the
light reflected from the object and irradiance to represent the amount of
incoming light. The ratio between the incident radiance and the reflected
irradiance is computed using some derivation of the BRDF:

This is a scary-looking piece of math if you’re not a level 3 calculus adept
or higher, but it’s not as bad as it seems when we restate the equation in
terms of how it works. The change in reflected radiance (dLr) depends on
the angle between the incident (Li) ray of light and the surface normal (n) –
used to calculate θ, with input values represented by the combination of (ωi,
ωr). There are three important constraints that any code implementing this
function must satisfy to realistically model a physical system:

We don’t ever have to directly deal with implementing this equation,
fortunately, but it’s good to know the underlying forces driving the higher-
level abstractions in Babylon.js. Later in this section, we’ll look at how the
PBRMaterial parameters affect the underlying BRDF, but first, we’re
going to continue exploring the theory and concepts behind lighting.

How Light is Modeled in 3D
Applications

To reduce the sheer number and complexity of lighting calculations needed,
we need to simplify how we treat light. For our purposes, light behaves as a
ray emitted from its source that then reflects from surfaces in a
deterministic fashion. When it comes to these calculations, there can be
great numbers of individual parameters that contribute to the result, but at

The result of fr(ωi, ωr) must be greater than or equal to zero.

Reversing the terms (ωi, ωr) yields identical output. This is known as
reciprocity.

Energy must be conserved. In other words, the total amount of
irradiance going into a particular area and the total amount of radiance
going out of that same area must be less than or equal to one.

the heart of it, there are just a few parameters that contain essential terms
for lighting computation: light direction (I), radiance (L), the surface
normal (n), and the view position (V). The BRDF is evaluated once per
light source, for every light sample in a scene, because of the need to
calculate the angle between the object’s surface normal and the point of
incidence:

Figure 10.1 – Basic parameters involved in lighting computations. The
normalized vectors, I and V, represent the direction of the light and the
viewer, respectively, while the normalized vector, n, points in the direction
of the surface normal

The normalized vector I points toward the light source, while the vector L –
sometimes denoted with ω in equations – provides the intensity. When you
put these together, you get the brightness (luminance) of light incident upon
the object in each color. Different light sources use different equations to
compute values for I and L. Two examples of this are the point light, which
radiates light equally in all directions, and the spotlight, which radiates light
in a single direction. Both types of lights illuminate an object, but their
properties result in different behavior in surface interactions.

Note

It’s important that the I, N, and V vectors are normalized to preserve the
relationships between values after transformation. The final value is scaled
by either a color or scalar value computed from L.

The quality of radiance is a measure of the amount of incident light
impacting a square meter area if you want to be technically precise. More
colloquially, radiance is the brightness of a particular source of light.
Complementary to radiance is color. Color is, physically speaking, defined
by the wavelength of a particular packet of light, or the amount of energy
contained in a photon. Computationally, color is usually represented as a
Vector3 or Vector4 quantity, depending on whether an alpha transparency
channel is being used. Being able to treat colors as vectors is a very useful
technique since the whole toolbox of vector calculations then applies to
mixing and blending colors. Before we know what types of calculations to
perform, though, we need to know more about the types of reflected light.

Diffuse

When light reaches the View position, it can do so along an almost infinite
number of different combinations of paths. The diffuse lighting term refers
to light that is evenly scattered from the surface of an object. Another way
of putting it is that a shaft of light striking the object’s surface scatters
diffuse light in all possible directions. Light being scattered will be
influenced by the color specified by the object’s diffuse material settings or
from a texture lookup:

Figure 10.2 – Diffuse light is scattered in all directions

Specular

The Specular term of the lighting model represents light that reflects
directly from an object to the viewer. Depending on the term’s value, this
can give an object a “shiny” appearance, approximating a smooth or rough
surface. The specular term is very strongly affected by the angle between
the incident shaft of light, the object, and the viewer as the angle
approaches 90 degrees:

Figure 10.3 – Specular light is directly reflected by the viewer

Emissive

Unlike the other lighting terms, the emissive term is not related to the
external light source, but rather is light that is generated by the object itself.
Importantly for lighting design purposes, it does not illuminate other objects
in the scene. For that reason, emissive lighting is sometimes referred to as
self-lighting:

Figure 10.4 – Emissive lighting or self-lighting illuminates only the object
itself

So far, we’ve looked at the definitions for the Uem, Uspec, and Udiffuse
terms, but we’ve said nothing as to how we compute those values in the
first place, nor how we combine these values. If you are curious, you can go
to the Recommended Reading section of this chapter for more information
on the details of these equations. The last lighting term we’ll cover is
ambient lighting, one of the simplest forms of light.

Ambient

When ambient lighting is discussed in the context of 3D applications, it
refers to a general class of lighting contributors that are incident to the
surface but whose paths do not directly come from the light source. An
intuitive example of this is the lighting of a cloudy, sunless day. On such a
day, all light from the environment seems to come from every direction; it’s

omnidirectional. Shadows (that is, Ambient Occlusion or AO) can be pre-
baked and are easy to make and fast to render:

Figure 10.5 – UAmbient light doesn’t depend on direction and comes from
the indirect incidence of light from the source environment. It is
approximated by a single color with a constant value across the scene

Because of the indirect path taken by the light ray from the source to the
receiver via the object’s surface, we approximate the ambient contribution
by setting a single color per scene. Ambient light has no direction, so its
brightness is constant throughout the scene.

Defining the properties of light and its basic behavior is but one piece of the
lighting puzzle. The other piece of the puzzle is the surface material
properties that govern what happens to incident light coming in from a
given direction with a given view position. Modern 3D engines and asset

creation tools have embraced the concept of a material as a means of
defining how an object’s surface reacts to light at any given angle and point.

Materials and Textures
At a conceptual level, a material is a BRDF implementation; the material
contains a combination of data and logic that’s plugged into the relevant
terms of the overall graphics pipeline (see Chapter 11, Scratching the
Surface of Shaders, for more on graphics pipelines and shaders) in the form
of programmable shaders, textures, and other attributes. Bringing together
the concepts from the previous sections, we’ll see why it makes sense to use
the term Material to encompass the specific configuration of shaders and
textures and introduce the approximations that allow for real-time
realistically lit scenes in the form of PBR.

Materials Overview

In Babylon.js, there are two basic general-purpose material components,
along with a library of specialized ones, that allow you to add cool and
interesting effects with very little effort. For example, the Lava Material
procedurally simulates a lava effect to applied meshes, while the Fur
Material gives meshes a furry appearance. You can even render video from
external sources into your scene using the VideoTexture! Browse the
Babylon.js Materials Library and read about how to use them at
https://doc.babylonjs.com/toolsAndResources/assetLibraries/materialsLibra
ry.

StandardMaterial is the workhorse material in Babylon.js. Materials in
general (for example, StandardMaterial) group color and texture attributes
and shaders, with an important performance implication: each distinct
material is drawn to the screen in a separate call. Better performance is
generally realized with fewer draw calls, so avoid creating new instances of
a particular material and instead assign existing instances to meshes when
possible. PBRMaterial is the Babylon.js implementation of PBR, a
technique we’ll discuss in further detail shortly.

https://doc.babylonjs.com/toolsAndResources/assetLibraries/materialsLibrary

Which material to use, be it standard or PBR, depends on the needs of the
scene. Most of the time, a properly set up PBRMaterial will have a far
greater degree of photorealism than one using StandardMaterial. The
realism comes at the expense of greater computational cost. Given the
additional and much more complex BRDF involved, it doesn’t always make
the most sense. For example, a depiction of a star, such as the Sun in the
route planning screen, should use StandardMaterial since it self-
illuminates via emissive lighting. Emissive lighting isn’t necessarily
contradictory to a PBR process, but in the example of the Sun, any visual
benefits of PBR are lost in the emissive glare.

As mentioned earlier, a material is a container and a wrapper of both assets
and executable logic. Calling back to even earlier discussions, it is
responsible for computing the various lighting terms in its BRDF. The
Ambient, Specular, Emissive, and Diffuse options can vary by the
material type for the specialized materials, but for both StandardMaterial
and PBRMaterial, each of those lighting terms can be specified by either a
color or a set of one or more different texture images.

Textures and Materials

Setting the color for a particular term, say the diffuse term, has the effect of
introducing that color evenly across every mesh covered by that material.
This might be OK for some scenarios, but it makes for a very bland and
boring-looking scene. Assigning textures to different terms is the way to go
here, and it’s also where the complexity starts ramping up (as if it weren’t
already complex enough!) significantly. Another factor that complicates
things is that the choices and types of textures you’ll want to use can differ
between StandardMaterial and PBRMaterial.

Important note

You may notice mention of PBRMetallicRoughnessMaterial and
PBRSpecularGlossinessMaterial in the Babylon.js docs and APIs. These
materials provide a fast on-ramp to converting from using
StandardMaterial to PBRMaterial with little effort or for adding PBR to
a scene quickly at the cost of fine control over parameters. See

https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR#from-
metallicroughness-to-pbrmaterial for more on the differences between the
simplified PBRXXXMaterials and the general-purpose PBRMaterial.

Texturing assets is a sub-skill of 3D graphics design that takes practice,
patience, and the ability to look at the world in a slightly warped fashion. If
a mesh’s material is its costume, then the material’s textures are the mesh’s
blouse. A mesh defines a 2D set of coordinates for each vertex commonly
referred to as (u,v) instead of (x,y). A UV is a tuple (two-member set)
with values between [0,1]. It is the point on the texture that, when
sampled, defines the color of that point on the mesh. This lookup is referred
to as using a Texture Map.

On the topic of maps, think of how you can project the Earth, which is
spherical, onto a flat piece of paper. Even though Australia is roughly three
times larger in area, Greenland appears to be the same size. This is the
distortion inherent to mapping the surface of a sphere onto the surface of a
plane, and the degree to which it will be apparent is largely dependent upon
the geometry that the texture was created to cover. We’ll return to this topic
when we cover spherical environment maps, but returning to the topic of
Texture Maps, it is the lookup aspect that is most pertinent to our current
discussion.

Note

Albedo is to Diffuse as Reflectivity is to Specular when looking at the
Babylon.js PBRMaterial. Colors can be set for each lighting term as an
alternative or in addition to textures providing the same.

As we saw earlier in our discussion of How Light is Modeled, there is more
to lighting than just looking up a particular color from a texture and
adjusting its intensity based on the distance to the light source. The
preceding Note gives an analogy for translating the terms for base texture
between materials, but there will often be more than one texture involved in
a Material.

When additional image textures are mixed with either diffuseTexture in
StandardMaterial or albedoTexture in PBRMaterial to provide fine

https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR#from-metallicroughness-to-pbrmaterial

details or show relief of surface features, we call those textures detail
maps. A detail map is commonly used with a normal map, oftentimes
referred to as a bumpTexture. An ambient (sometimes also called
occlusion) texture and other lighting factors, such as the surface normal
(N), aren’t part of a regular texture image and are supplied as data contained
in one or more separate texture images. Most 3D content creation software
has varying capabilities for generating and creating these alternative types
of textures, and as a result, most 3D models that can be obtained via asset
marketplaces and the like will already have these textures packaged. The
key to making the best use of these is knowing which things to plug into
what values, so let’s learn about the parameters that we can supply before
looking at how we can supply them!

PBR as a Different Type of BRDF

Looking at PBRMaterial through the “lens” of the BRDF, though the
output has the same shape (that is, format) as any other BRDF, the means of
arriving at the values is quite different. This manifests in the form of a
whole swathe of different parameters controlling very specific aspects of
the material’s behavior toward lighting. Here is a selected list of commonly
used properties and a short description, in the order that they appear in the
Babylon.js documentation at
https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR. This
page contains many Playground examples showing the different effects of
setting various PBR properties, which can be useful in understanding what
options are available:

Metallic: This affects the specular term and determines how much the
material behaves like a conductive or metal substance.

Roughness: This specifies how smooth a surface is. Smoother surfaces
will have sharper specular highlights (that is, shiny spots).

Subsurface (#sub-surface): A whole category of properties that are
used in things from flesh tones to translucent reflective materials. This
specifically applies to refraction and translucency in v5.0 of Babylon.js.
It also controls the scattering effect.

https://doc.babylonjs.com/divingDeeper/materials/using/masterPBR

Many different parameters and settings can be configured on PBRMaterial,
so it’s worth taking a step back to look at what goes into PBR.

PBR and IBL
Formally speaking, PBR is a technique for the realistic real-time simulation
of lighting in a 3D scene. A smooth, shiny object reflects more incident
light directly into the viewer (specular), whereas a rough, dull object tends
to scatter light in all directions more evenly (diffuse or ambient). Other
sources of scattering at, above, or below the surface of the material can
further affect the course and fate of a light ray in conjunction with the
object’s basic surface properties. Textures can be used to supply many of
these property values, oftentimes by using different color channels to store
different material data. An example of this is the Unity convention for detail
maps, which uses a single detail map to store diffuse, normal, and
roughness data. It does this by using the Red channel for a grayscale albedo
(diffuse) map, the Green channel for the green component of the normal
map, the Blue channel for roughness values, and the Alpha channel for the
red component of the normal map. Properties in PBRMaterial such as
useRoughnessFromMetallicTextureAlpha and
useMetallnessFromMetallicTextureBlue can allow broad flexibility on
the part of the asset designer, as well as the developer, to be creatively
efficient in how material data is supplied at runtime. This can be of vital
importance when memory and compute resources are limited – it’s far
better to process a single texture than three separately. PBR can give great-
looking results on its own in a scene, but it is far more effective when used
in conjunction with IBL.

Important note

Clear Coat (#clear-coat): Models light interactions with the topmost
surface of the material. A shiny clean waxed car has a clear coat layer
just visible above the actual paint color.

Anisotropy (#anisotropy): This is used to shape asymmetrical
reflections (specular highlights) and is highly dependent upon view and
incident angles.

Despite the superficial resemblance to the acronym for Irritable Bowel
Syndrome (IBS), IBL has nothing to do with yours nor with anyone else’s
bowels. Neither does PBR, in case there was any need for clarification.

IBL is a technique for lighting a scene that derives a scene’s primary
lighting information from an image source. While other light sources may
still be present, such as a PointLight, they are there to provide secondary
and/or supplemental illumination. IBL is a distinctly different category of
technique from PBR, but it doesn’t make much sense to set up an IBL scene
and not use PBR Materials that can take advantage of it! The way that IBL
works is that, during rendering, a high dynamic range (HDR) image –
that’s been specially captured and prepared as a CubeMap – is sampled to
supply the Li values instead of a particular light source.

Environment Textures and Reflection
Textures

One of the benefits of using IBL and PBR is that with the right setup, things
that would be otherwise complex to procedurally model simply fall out of
the physical light simulation. Take, for example, an urban scene.

It is night, and there are neon lights above dark restaurant doorways. The
center of the scene is a four-way street intersection, where a car has suffered
an accident. Reflections in the windshield show the surrounding buildings,
while shattered panes of glass gleam with scintillations tinged with the neon
glow of signs advertising cheap beer. Water gushes onto the street from a
broken fire hydrant, and in the rippling faces of the growing puddles, the
driver’s shock of curly hair can be seen exploding from the sides of the
airbag, her visible eye appearing to tremble with the rippling puddle. What
a rich description!

In a conventional or, more accurately nowadays, a more legacy rendering
approach, almost all the details described in the preceding passage would
need to be custom crafted and coded for a single use and purpose. Using
IBL and PBR in combination with appropriate texture assets can allow
designers to create and use scenes with the kind of details you can only read

about in a cheap noir detective novel! The key component of an IBL setup
is the image part, naturally. This image is known as the Environment
Texture and, as mentioned earlier, is what is sampled to provide lighting
information for PBRMaterial instances.

While it is certainly possible to specify a separate environment map for
each PBRMaterial, it’s generally easier to set it up on the Scene, a task
which we will see how to accomplish in greater detail in the next section,
Working with PBR Materials and IBL Scenes. A specific use case where an
environment texture and a material’s reflection texture might be different
might be the rear-view mirror of a car, which shows not just the
environment but reflections of objects within the scene itself – something
that IBL and environment lighting can’t do.

In this scenario, a common solution is to dynamically generate a reflection
texture using a Reflection Probe. This is a form of Render Target Texture
(which itself is a form of procedural texture) that can provide an updated
environment map from a specified position’s perspective using a list of
render targets to track. The Babylon.js docs contain more details on how to
use reflection probes:
https://doc.babylonjs.com/divingDeeper/materials/using/reflectionTexture#
dynamic-environment-maps-rendertargettexture-and-friends.

In this section, we’ve introduced a raft of new concepts, such as the BRDF
and some of the parameters and terms involved in simulating lighting,
starting with an understanding of the difference between diffuse, specular
(Albedo), emissive, and ambient lighting sources. That laid the groundwork
for us to explore the concept of a material with a focus on the Babylon.js
PBRMaterial. PBRMaterial implements a technique known as PBR,
which uses lighting information provided by the environment, along with a
constellation of material properties, to realistically simulate the behavior of
light against surfaces rough and shiny, smooth, and dull. Once we learned
about materials and lighting, we looked at how IBL can be used to further
enhance the realism of a rendered scene.

In the next section, we’re going to put theory into practice and learn about
the different assets needed to make use of the previously discussed
concepts. After learning about some of the asset types involved and the file

https://doc.babylonjs.com/divingDeeper/materials/using/reflectionTexture#dynamic-environment-maps-rendertargettexture-and-friends

and image formats related to them, we’ll look at some of the tooling needed
to produce those assets and how to use them.

This is a complicated subject, so if you don’t feel like everything makes
sense yet, it’s OK to take a beat and look at some of the Playground
examples listed in the Babylon.js documents. If this section has mostly been
a review for you, then you might be interested in some of the more
advanced topics linked in the Recommended Reading section earlier in this
chapter.

Working with PBR Materials and
IBL Scenes
StandardMaterial is very forgiving when it comes to being able to use
various types of assets. It doesn’t mind if a texture is 8, 16, or 3 bits per
pixel or JPEG, GIF, or PNG – it’ll paint a mesh with it. While this is also
largely true for PBRMaterial in that it is a robust component and able to
operate with a wide range of inputs, the rendered look of any PBRMaterial
is far more sensitive to insufficient or improperly formatted texture data.
We’re going to look at the specifics of what the Babylon.js PBR
implementation expects, as well as the tools that will help create assets that
fit those specifications. Later, we’ll go through the heuristics – a set of
guidelines – of how to decide what and which assets and values to put into
which properties to accomplish a particular look for your material. Let’s
start by examining some of the ways to represent an image digitally.

Image Formats and File Types
Bitmaps are the simplest type of image. The name says it all – it’s a
sequential array (or map) of values that each represent a single channel (red,
green, or blue) of a single pixel in the image. When an image is
decompressed into (typically the GPU) RAM, a bitmap is the result. With
each pixel mapped to a different location in memory, it is extremely fast to
look up values from arbitrary locations in the image. When storing images

on a disk, however, the goal is to optimize file size at the expense of
computational speed.

There are only a few file formats that can support HDR images. Two
popular native HDRI formats are HDR and EXR. The RAW image format
captures pixel values as close to the digital camera’s sensors as possible,
meaning calibration may be needed across different devices to get
consistent results. Some image types, such as TIFF, can act as containers for
other images, and similarly, some offer a wide range of options in their
formats, such as DDS. Despite their popularity, GIF, and JPEG are not
formats that are capable of representing an HDRI, even though they may
still be able to display what appears to be an HDR image. This is made
possible by a process known as tone mapping, which we’ll discuss after we
finish exploring why a JPEG isn’t an HDRI. To do so, we will cover bit
depth and dynamic ranges.

Bit Depth and Dynamic Ranges
When thinking about graphics and how they are displayed, it’s useful to
break the topic down into fundamentals. Each pixel of an image has a value
for each of the red, green, and blue color channels (some images may also
have an additional alpha channel for transparency).

If we use a single byte (8 bits) to represent each channel, we have 24 or 32
bits per pixel, again depending on the presence of a dedicated alpha
channel. Each color channel can only take on a value between 0 and 255,
for a total of 65,536 total unique possible colors in the color space. That
sounds like a lot of colors – and it is – but it is a far cry from the range of
colors discernable by the human eye. More importantly, in the context of
display technologies, it is incapable of properly representing an HDR
without tone mapping. Tone mapping is the process of scaling down from
the infinite to the finite in discrete steps.

Between zero and one lies infinity, or close enough to it if you’re using 32-
bit floating point numbers to represent a color channel. On the other hand,
the much smaller and countable ratio of 1:256 is the full dynamic range
possible in an 8-bit channel. To be a High Dynamic Range Image

(HDRI), an image needs to be able to use 16- or 32-bit floating point
numbers to represent the red, green, and blue color channels. This adds up
to a total of 48/96 bits per pixel, allowing for a theoretically 1:infinite
dynamic range. As a practical matter, though, this can take quite a large
amount of space – a 4K image has roughly 8.3 million pixels, and at 96 bpp
has a raw size of 800 MB!

That’s not all, though. An image used in PBR and IBL needs to have what
is known as mipmaps, either generated at loading time or pre-baked into
the image file. A mipmap is a lower-resolution version of the main texture
and is used similarly to a meshes Level-of-Detail (LOD) in which objects
further away are rendered using less detailed textures, thus saving memory
and rendering time. Just like auto-LOD works for meshes, Babylon.js can
generate mipmaps at the time a texture is loaded.

Note

As pretty much anyone who has purchased a download-only version of a
modern AAA game knows, those high-quality textures come with a high-
bandwidth and high-disk usage cost. The last installment of the Call of Duty
franchise, Modern Warfare, is over 175 GB! If the assets are all that size
after being compressed, consider how large the textures are and that will
answer the question of what all those gigabytes of RAM are doing during
gameplay.

It’s not just important that an art asset looks good in an image viewer – it
must be sized and formatted properly so that it contains or retains the full
range of colors and brightness across the image. Fortunately, there are a few
available tools within the Babylon.js ecosystem alone that can help with
that task.

Using and Creating Assets for PBR
and IBL

Because there are such varying ways to consume and use assets with PBR
and IBL, it’s difficult to figure out what to use where, and why. Assets

created specifically for a given project are the most likely to give the best
results overall but have the inherent difficulty of requiring the skill and
knowledge to create the assets yourself, or the financial resources to
purchase or commission the assets from someone who does. Regardless of
how the texture or other asset is obtained, more decisions are required to
assess its suitability and compatibility with Babylon.js. The following
diagram illustrates the high-level decision-making process you can use to
evaluate a given texture asset, known as the “I” in IBL:

Figure 10.6 – High-level evaluation process for working with a texture and
IBL/PBR. This is a qualitative assessment, not a quantitative one, so other
factors such as texture resolution are still important to evaluate

Let’s walk through the highlights for each of these nodes. Keep in mind that
whether or not an asset is suitable for use with PBR and IBL doesn’t
necessarily mean that it is useful. At the same time, it is useful to consider
the context in which the asset will be viewed; what good is a high-
resolution texture that is only ever rendered at a large distance from the
camera?

Obtaining Assets

This step is one of the more complicated and hard-to-define steps. The
process of getting the proper 3D assets will differ greatly, depending on a
few basic factors:

Important note

No matter which approach or path you take, always make sure that you
have clear and free permission and rights to use an art asset before deciding
to include it.

If you have the resources, it’s best to engage with a professional artist or
team of artists, but these people can’t draw for free. Be prepared to
compensate them for their work. Purchasing a set of pre-made assets can
often be almost as good as having assets custom made-to-suit, but they have
the advantage of being able to be deployed almost immediately at the cost
of a lack of flexibility – any changes or file conversions are up to you.
Unless you are a polymath – that is, professionally skilled in multiple areas
such as the famed creator of Babylon.js Deltakosh, then it’s usually going
to be a better use of your time and efforts to not try and do more than a light
edit of assets.

Access to a professional graphic artist (and the time for them to work
on it!)

Purchase/obtain an asset pack from a vendor

Self-authoring capabilities – for example, produce everything yourself

A la carte assemble assets from a mixture of sources

Important note

Don’t neglect to browse through the Babylon.js Asset Library – it contains
many very useful “base” texture and mesh assets that are ready for you to
put into your project! New to v5, the Asset Librarian is a tool for directly
injecting references to BJS Assets into a Playground. You can learn more at
https://doc.babylonjs.com/toolsAndResources/assetLibrarian.

The last option, a la carte asset amalgamation, is a compromise of the other
three options, and as such, basically offers almost all the downsides from
each and only a few of the upsides. The only thing this approach has going
for it is its flexibility, which can’t be beaten. It is a sort of lowest common
denominator to take this approach, but care and effort are needed to provide
a consistent overall look and feel for the application. As a corollary to this
approach, there is always the “escape hatch” of programmatically setting
the material properties through code without textures.

Environment Textures, Conversions, and
Compression

To be used in Babylon.js as an HDRI for PBR, an environment texture must
be in an HDR format. If it isn’t, then it needs to be converted into either
HDR or DDS format if it can store 16- or 32-bit floating point
representations of each color channel for the texture. From that point, there
are a couple of options, but from a scene quality perspective, it’s important
to make sure that the image has been prepared as either a single
Equirectangular or as a series of CubeMap images.

In a process such as adapting a flat paper map of the world onto a globe, the
environment map represents a spherical or panoramic view of the
surrounding environment. As an alternative to using a sphere, a cube can
also be used in the same fashion, with a projected image of each face on the
cube unwrapped into six separate images or image sections. See
https://doc.babylonjs.com/divingDeeper/environment/skybox#about-
skyboxes for more on CubeMap images.

https://doc.babylonjs.com/toolsAndResources/assetLibrarian
https://doc.babylonjs.com/divingDeeper/environment/skybox#about-skyboxes

Important note

When the environment texture is a Cube Map, HDR rendering is
unavailable and seams or other visual artifacts may be visible.

As mentioned in the Bit Depth and Dynamic Ranges section, there is a large
footprint to storing all that floating-point image data, something that can be
very important when dealing with web-based applications. The easiest way
to compress a DDS or HDR image for use in an application is to use the
Babylon.js IBL tool at https://www.babylonjs.com/tools/ibl/. Using an
image that has been prepared as an equirectangular, as described earlier,
will give the best results, but it isn’t required. Drag and drop the image file
you want to use into the central panel of the page and wait a moment – you
may not see anything immediately happen because it can take some time to
process an image, depending on its size and type. Once the tool has
finished, two things will happen: first, the image will appear on the page,
prepped and ready as a preview. Second, a .env file will be downloaded to
your computer. This file is a compressed and pre-processed version of the
source image, and a quick comparison of file sizes will show a significant
difference between the source and output files – 30 MB can easily be
compressed to a few hundred KB! You can read more about the rle-RGBE
format and extra pre-computed data that allows this compression to be
achieved at
https://doc.babylonjs.com/divingDeeper/materials/using/HDREnvironment
#what-is-a-env-tech-deep-dive.

Assigning to Material Texture Slots

The non-environmental texture section of Figure 10.6 illustrates some of
the more commonly used texture channels in a Babylon.js PBRMaterial,
along with some things to keep in mind when using it. For example, when
using a texture to define the material’s metallic and/or roughness
parameters, it might be necessary to specify which color channel (R, G, or
B) contains the relevant data values.

Some properties of PBRMaterial expand into a new set of properties,
many of which can accept a texture as the means of specifying values. Clear

https://www.babylonjs.com/tools/ibl/
https://www.babylonjs.com/tools/ibl/
https://doc.babylonjs.com/divingDeeper/materials/using/HDREnvironment#what-is-a-env-tech-deep-dive

coat, subsurface, and detail maps (and more) each have their own set of
parameters and textures that can be used to improve the quality of the final
output, making for a bewildering array of possible configurations. Don’t
worry about trying to understand and visualize every one of them and how
they work – in the next chapter, we’ll learn how the Node Material Editor
(NME) helps make sense of these options.

In this section, we built upon the theoretical foundations established by
previous sections to learn about how HDR images are digitally represented
and stored. An HDR image is in linear color space (as opposed to gamma
or sRGB space – that is, how many and what arrangement of bits are used
to represent each color channel) and uses at least 16-bit floating point
numbers for each color. Most of the time, in standard Dynamic Range
images, linear colors fall between the range of [0,1]. An HDRI, though, has
a range that can, at a practical level, go from [0, ∞]. For example, an HDRI
of a scene including the Sun on a cloudless day might have a range of [0,
150000]!

There are several commonly-used file formats for storing HDR images, but
the two best-supported for use with Babylon.js assets are HDR and DDS.
Environment textures need to be laid out in either a rectangular projection
onto a spherical surface – an Equirectangular projection – or as a series of
six images in a Cube Map. The Babylon.js IBL Tool is useful for viewing
the fine details of an image dropped onto it, but more importantly, it can
convert and compress an HDR or DDS image into a size much more
manageable for use on the web: the ENV file format.

Most computer displays and print technologies are incapable of rendering
such a wide range of values – and indeed, any display capable of accurately
representing the brightness of the Sun would be an extremely toasty
experience for anyone viewing it. To accurately render an HDR image in a
non-HDR display, it is necessary to remap color values back into the range
of [0,1]. The process of doing this is called tone mapping and is part of an
important step in finishing a scene for presentation, known as Post-
Processing.

Tone Mapping and Basic Post-
Processing
Although this section is split into separate sub-sections between tone
mapping and Post-Processing, tone mapping is technically a type of post-
process. It’s an important enough subject within the context of this chapter
to warrant a bit of space to explain it.

Post-Processing is a familiar concept wrapped in a potentially unfamiliar
language. When you superimpose cat ears on your FaceTime, Zoom, or
Teams calls, you are using a post-process. If you select an Instagram filter,
you’re using a post-process. When you give yourself a cool motion blur
effect in TikTok, you’re using a post-process. Babylon.js comes with
several different built-in effects, both subtle and not so, and to avoid you
having to remember and create the most common post-process effects,
there’s also a Default Rendering Pipeline that comes with all the basics
wrapped up in a plug-and-play fashion.

Tone Mapping
As we discussed in the previous section, rendering an HDR image onto a
non-HDR display medium requires the values for each pixel’s colors to be
remapped from a potentially infinite range into a decidedly finite one via
the process of tone mapping. There are several different algorithms and
ways to accomplish this, but regardless of the specifics, any tone map is
going to have to make compromises.

Let’s just say that we have a set of numbers – [0.1, 0.1, 0.2, 0.3, 0.5, 0.8,
1.0, 1.0, 2.5, 10] – that we need to remap into a range between zero and
one. Here’s a chart that shows the difference before and after tone mapping
that series using the simplest tone mapping technique:

Figure 10.7 – Chart of pre- and post- tone mapping combined radiance
values with HDR values. This mapping doesn’t perfectly capture the
original dynamic range of values

The dashed line in the preceding chart shows how the range represented by
the solid line has been compressed to fit between the zero and one bars of
the chart. An ideal mapping would closely mimic the solid line as much as
possible – this is not the case with this simple linear mapping. This is
adequate for many applications, but other mapping functions can get us
closer to matching the curve. A gamma-correction function uses two
constants, A and γ, which must be either separately computed or manually
determined, to map values in a way that much more closely matches the
original curve:

Figure 10.8 – Tone mapping with gamma correction produces a curve
almost indistinguishable from the original. The values for the two constants
must be determined separately

The dashed line perfectly overlaps with the original HDR brightness curve
when the appropriate values of the constants, A and gamma, are supplied. A
drawback of this technique is that those constants can vary by display
device, OS, and other potential variables. Fortunately, Babylon.js does all
the work for you when it comes to tone mapping as part of its built-in
Image Processing and Post-Processing features.

Post-Processing and the Rendering
Pipeline

It’s a safe assumption that anyone reading this is familiar with the concept
of a live camera filter. Flip a switch and your photo looks like an old-time
photo, another and it takes on the look of a comic book poster, all in real
time. If you’ve ever wondered how that sort of thing works, then Post-
Processing is as good a place as any to start! Think of a post-process as
being like a real-time Photoshop for your scene. In games, some of the

more obvious post-processes are ones such as rain or snow falling, screen
shaking, and the always classic “drunken stagger.”

There are a few different ways to implement, import, and employ post-
processes with Babylon.js, but all post-process effects work the same way:
they start with a texture. This texture is kind of like a framed blank canvas
at the start of the frame; the color of the blankness is the Scene’s clear color.
If each stage in the digital rendering process is like a step in the manual
rendering of paint onto canvas, the point in time during the frame’s
rendering pipeline we are interested in is the part after the paint’s been laid
down on the canvas but before it’s been set and dried. This texture is the
output of transforming all the scene’s geometry into positions relative to the
camera, then to 2D screen space. A post process deals with the individual
pixels of this texture, not the geometry of the scene. Babylon.js has several
ready-to-use PostProcessRenderingPipelines and PostProcesses that can
be added with a line or two of code. A little bit further down the road in the
next chapter, we’ll look at how we can create post processes and two
different ways to accomplish that. Let’s not let the next chapter steal this
chapter’s thunder and continue to look at more built-in post-processing
functionality with volumetric light scattering – that is, “God Rays.”

Adding the Volumetric Light Scattering
Post-Process Effect

Let’s look at a simple yet concrete example of using a built-in post process
in the route planning screen. When a strong light source lies behind an
object and the viewer, light striking the object at oblique angles may scatter,
creating a distinctive glare effect that will make the Sun, well, shine! This
type of effect is called volumetric light scattering (also known as “God
Rays”), and it’s so easy to use you don’t even need to know how it works.
Here are the two lines of code needed (split across multiple lines for
clarity):

var godrays = new VolumetricLightScatteringPostProcess(

 'godrays', 1.0, this.scene.activeCamera,

 this.mesh, 100, Texture.BILINEAR_SAMPLINGMODE,

 this.scene.getEngine(), false, this.scene);

godrays._volumetricLightScatteringRTT.renderParticles =

 true;

These lines, added to the Star.js constructor, are all that is needed. The
constructor for the VolumetricLightScatteringPostProcess (VLSPP) takes
several standard parameters and attaches them to the Star.mesh sphere,
using the active camera for rendering. The last line sets an internal property
that instructs the internally used Render Target Texture involved in the
post-processing to render particles to include in the effect.

The following screenshot depicts the results of applying this post-process.
Quite the improvement:

Figure 10.9 – The volumetric light scattering effect added via post-
processing gives the apparent impression of camera glare from the bright
Sun on the route planning screen

Babylon.js has several post processes available right out of the box in
addition to the VLSPP, most of which are just as easy to use. If none of
those suit your needs, the option to create a post-process of your own
always exists in several forms, which we’ll cover in the next chapter. To
wrap things up with the current subject matter, we’ll look at how easy it is
to get a big bundle of rendering quality improvements for a small bit of
code with the Default Rendering Pipeline of post processes.

The Default Rendering Pipeline

It’s not as much of a mouthful to say as the previous section was, but the
Default Render Pipeline makes up for it by being such a cute and useful
bundle of different effects. A diligent browser of video game graphics
settings menus (who isn’t?) will recognize many of the post processes that
comprise this Rendering Pipeline. Included in the pipeline are the same
Image Processing effects that are available at the material level, but there
are also others such as Bloom, Film Grain, FXAA, and more! Each is
provided with sensible defaults, but it is important to know what those are
so they can be adjusted to fit the specifics of the situation. The BJS
Playground at https://playground.babylonjs.com/#Y3C0HQ#146 is a
complete example of the Default Rendering Pipeline straight from the
Babylon.js docs page – it has an interactive UI to allow you to quickly
change parameters or enable/disable post processes and see their effects.
Play around with the sample to get a feel for how different types of effects
and their settings can completely change a scene’s look and feel with only a
few adjustments! Using this rendering pipeline is basic table stakes for
getting a high-quality image; it’s a good place to start.

The evolution of an application or game’s look and feel will invariably
include the addition of other, unique combinations of post processes and
effects. This is what makes a game or application stand out from others, and
it’s a place where there’s lots of room for art and aesthetics. In this section,
we discussed how tone mapping works to “shift” a high-dynamic range
image or scene into a range that displays are capable of rendering. There are
different types of tone mapping algorithms because there are some
compromises that need to be made when performing tone mapping that

https://playground.babylonjs.com/#Y3C0HQ%23146

result in varying visual differences in output. We learned about how tone
mapping fits into a post-processing pipeline as part of either material-based
or pixel-based Image Processing effects. These effects share common
configurations and include several adjustments in addition to tone mapping.
Other post-processing effects are included with the Image Processing effect
in the Default Rendering Pipeline. These effects include FXAA, Bloom,
Film Grain, and more.

Summary
This chapter may have felt either extremely long, extremely short, or
extremely boring, depending on your existing knowledge and experience.
The behavior of light in the real world is extremely complicated, so when
simulating it in a scene, it’s necessary to make simplifications and
assumptions about that behavior.

Traveling in rays from source to destination material, light is modeled using
some implementation of the Bi-Directional Reflectance Function
(BRDF). This function computes the (ir)radiance or brightness at a given
input point and angle from a source of light. The function has a set of terms
that are each calculated in separate functions, then combined to provide a
result.

The Diffuse term (also called Albedo) accounts for light that has been
evenly scattered from the surface of the material, kind of like how a point
light evenly projects light in all directions. Specular is the term for light that
is reflected from the material directly into the camera or observer and has a
bright, potentially sharp outline. The specifics of the specular lighting
contribution depend greatly on the material’s properties; a metallic, smooth
surface will more cohesively reflect light than a rough, non-metallic one
will. Emissive light is also called self-illumination because it is light that
doesn’t have a light source as an origin and it does not factor into other
material’s lighting. Finally, ambient lighting is a catch-all term for any type
of lighting that arrives at the camera indirectly from its source. Atmospheric
scattering is one example of an ambient lighting source.

The different qualities and properties that describe the behavior of light on a
mesh are grouped into components called materials. A material implements
various key functions that go into the BRDF. StandardMaterial of
Babylon.js fulfills most basic scene needs that do not require a
photorealistic rendering, while PBRMaterial provides a Physically-Based
Rendering (PBR) BRDF implementation that closely models the real-
world behavior of different surface types, from rough to smooth, shiny to
dull.

For PBR to work effectively, the environment of a scene needs to provide
essential lighting information. Image-Based Lighting (IBL) is a technique
in which a special type of image is sampled at rendering time to provide
information about the scene’s lighting at the current camera position and
view. What makes the image type special is that it represents image data
using 16- or 32-bit floating point numbers for each color channel (Red,
Green, Blue, and, sometimes, Alpha). Having more bits to represent a
number means that, for practical purposes, the ratio, or range of brightness
in a scene between its brightest and darkest areas, can effectively be
infinite. This is what both defines and allows an HDR photo or image to be
captured and stored.

The texture is known as an Environment texture, but in the context of a
skybox, this comes in the form of a reflection texture; both perform the
same duties using the same texture, but from different approaches.
Environment or reflection textures for a static scene can be pre-generated in
several ways. They can be “baked” using a 3DCC tool such as Blender or
Maya from an existing scene, they can be captured from render output by a
suitably configured camera, or they can be manually prepared from an
existing image using a tool such as GIMP or Photoshop. These will be
unable to take into account the scene’s meshes and their properties, so a
dynamic approach such as Reflection Probes can be used to generate a
reflection texture in real time.

Once you’ve obtained an HDR image, there are a couple of options
regarding what to do next. File sizes for DDS and HDR images can be quite
large, so the Babylon.js IBL Tool is where to go to convert images into the
ENV format for use in Babylon.js scenes. There are several different

parameters and texture slots available to assign on a PBRMaterial, but
between the BJS docs, Playground examples, and, of course, this book, you
should be sufficiently equipped to explore them all!

Once a scene has been rendered on the GPU, it isn’t necessarily passed to
the display device right away. Post-processes are employed in the form of a
series of Pipelines that allow the output from a scene’s camera to be
successively processed in different ways. The built-in ImageProcessing
offers many common image corrections and adjustments that you may
recognize from your smartphone’s photo editing software, but other post
processes are available that add real-time effects only limited by RAM and
imagination.

One of the more important post processes to engage when working with
PBR/HDR scenes is tone mapping. This is a mathematical operation that
converts the High Dynamic Range, which can’t be represented by most
display devices, into a standard range of colors and brightness. Because this
involves compressing the potentially infinite (or at least very large) into a
much more finite space, there will be some losses in fidelity and accuracy.
Thus, there are different algorithms for performing this mapping that
emphasize different areas of the brightness or color curve.

In the next chapter, we’re going to be taking a diamond awl to the rock-hard
topic of Shaders. Babylon.js has many ways that allow developers to write,
manage, and apply standard GLSL code. What that means and what a
shader is are things that will be defined shortly, so buckle up – this next
chapter’s going to be a wild ride!

Extended Topics
There’s no better way to learn something new than to just take a stab at
carving something familiar from what is unfamiliar territory. At the same
time, it can be difficult to determine where and what slices are best to cut
off. Here are some ideas, exercises, and examples that might give you a
good starting point:

Using an example from your IRL world, create a photorealistic
recreation of that example’s environment:

Use the camera on your smartphone or device to capture the
surrounding cube or sphere map texture in as high of a quality as the
device allows.

Import the pictures into an image editing tool and adjust the image
to give it a high dynamic range (make sure to save it in a 32-bit
RGBA format!).

Export the HDR images in DDS format, then convert them into an
ENV file using the BJS texture tools.

Create a PG that uses your environment and test it by placing some
meshes into the environment. Make sure to configure and give them
a PBR Material!

A skybox doesn’t have to share the same texture as the scene’s
environment (reflection) texture. Demonstrate this by modifying the
Space-Truckers route planning scene to use a high-quality skybox with
a highly compressed ENV file.

Using a static background environment for reflections doesn’t mean
that a scene can’t create a reflection texture on the fly that is dynamic to
the scene. Make the driving phase route mesh shiny and reflective and
then use a reflection probe (see
https://doc.babylonjs.com/divingDeeper/environment/reflectionProbes
for how to use them) to cause the surface of the Space-Road to reflect
an image of the truck as it passes over it.

Some systems can handle the added load of post-processes, but others
(especially mobile devices) may not be able to maintain a desirable
frame rate. Enable the post-processes to be toggled and for variables to
be tweaked by the end users of Space-Truckers. Later, this can be
hooked up to a Settings dialog, or potentially linked to a Scene
Optimization (see Chapter 12, Measuring and Optimizing Performance,
for more details).

https://doc.babylonjs.com/divingDeeper/environment/reflectionProbes

Part 3: Going the Distance
The last part of the book is where we take our developed game from being a
rough demo to a completed application. As a bonus, the final chapter
contains a smorgasbord of disparate topics that weren’t addressed in the rest
of the text. Guest contributors bring additional context to and detail on other
topics of interest within the world of Babylon.js.

This section comprises the following chapters:

Chapter 11, Scratching the Surface of Shaders
Chapter 12, Measuring and Optimizing Performance
Chapter 13, Converting the Application to a PWA
Chapter 14, Extended Topics, Extended

Scratching the Surface of Shaders
Captain Edward J. Smith of the erstwhile and ill-fated ship the Titanic
would no doubt be among the first to acknowledge the fact that the visible
surface of an iceberg represents but a small fraction of an immensely
greater object. When used as an analogy, the phrase “tip of the iceberg” is
commonly understood to mean that what is visible, isn’t and shouldn’t be
taken to be representative of the entire thing.

Note

The aforementioned, oddly specific call-out to Captain Ed Smith, is a
fantastic Random Fact to know on Trivia Night.

Similarly, the idea of scratching the surface of a topic evokes imagery of
kids attempting to dig a hole to the other side of the planet. Juxtaposed with
a to-scale globe, it suggests the immensity of the digger’s undertaking. In
no way does it diminish the enjoyment the children get from their quixotic
adventure, but by depicting the differentiated layers of crust, mantle, and
core, it acknowledges how a serious endeavor involves more than doing
existing things on larger scales.

The preceding paragraph could come straight out of a self-help book with
how hard it tries to hit its reader over the head with the analogy, but it does
accurately describe the subject matter of this chapter. Shaders and
programming for the GPU are the topics of this chapter in a broad sense,
with a focus on the tools and how to use them in service of the topic. This
leaves us with a problem like previous ones we encountered when we
looked at input and control systems (Chapter 5, Adding a Cut Scene and
Handling Input). As you may recall, the problem was that the amount of
material needed to gain a solid understanding of the topic requires a book of
its own to properly cover it!

As we did in previous instances, we’re going to cover as much of the
fundamentals as possible while still laying the groundwork for whatever
next steps you decide to take in learning this subject. This means that there

might be things that don’t get a whole lot of space, but that will be made up
for (hopefully) by the excellent links and resources that are available and
listed.

In this chapter, we will cover the following topics:

This is a far more limited number of topics than what could have been
covered, but by the end of this chapter, you’ll know enough to be
immediately productive in current projects while also having enough
grounding to see where your next steps in learning lead.

Technical Requirements
The technical requirements for this chapter are the same as the previous
ones; however, there are some subjects and areas that might be useful to
refresh or catch up on:

Understanding Shader Concepts

Understanding Shader Concepts

Writing and Using Shaders in Babylon.js

Shader Programming with the Node Material Editor

Vector math operations: This includes addition, subtraction, dot,
cross, and others. You won’t need to perform the calculations or
memorize any equations, but knowing the significance or purpose of
them (for example, you can use vector subtraction to find the direction
between two objects) is the key to making the knowledge useful.

Function graphs: Both Windows and macOS have built-in or freely
available graphing calculators that can graph entered equations. This is
useful in understanding the output of a piece of shader code across
varying inputs. Graph like it’s TI-89! An online-only option is the
Desmos Graphing Calculator at https://www.desmos.com/calculator.

https://www.desmos.com/calculator

In the days before standalone GPUs were commonplace, drawing pixels to
the screen was a lot different than it is today. Kids these days just don’t
know how good things have gotten with their programmable shaders! Back
then, you would write pixel color values directly into a buffer in memory
that becomes the next frame sent to the display. The advent and
proliferation of the dedicated graphics processor as an add-on came in the
late 1990s, and it changed the landscape completely. Access to display
pixels was abstracted around two major Application Programming
Interfaces (APIs): DirectX and OpenGL. There’s an incredibly rich history
of the evolution of those interfaces but this isn’t a book on graphics
hardware interfaces and their history – it’s a book on present 3D graphics
development, so let’s just leave the details to those tomes and summarize
them in short.

To avoid the need for developers and end user software to support every
model and make of graphics cards, a set of APIs was developed that a
hardware manufacturer could then implement. Two competing standards
emerged – DirectX and OpenGL – and for the subsequent decade or so,
drama ensued as each tried to adapt and change to a rapidly evolving
graphics technology landscape. We’re going to finish this section by
looking at shaders themselves, which requires us to understand how a
shader relates to the rest of the computer hardware and software. Before we
can understand that aspect, however, we need to understand why it’s
important to make these types of distinctions in the first place.

Differences Between a GPU and a
CPU

A graphics processor isn’t built the same way as a regular CPU. At a
fundamental hardware level, a graphics processor is built around
performing certain types of tasks very fast. This meant that applications
needed to contain specialized code that could leverage these capabilities to
their fullest. As opposed to code that you may typically write for the
frontend or backend of a website, where code is executed sequentially, one
instruction after another, a GPU wants to execute as many operations in
parallel as possible. Still, this is not an illuminating way to describe how a

GPU is programmed differently from how we may know from previous
experience and intuition. A better analogy might be in thinking about how a
painter might render a large mural onto a wall, as seen in Figure 11.1.

Like traditional programs, most printing that people are familiar with at the
consumer level is done by a process known as rasterization – a print head
scans the paper, spraying down ink of specific colors at times and places it
corresponding to the patterns of colors of the print. In this way, a picture is
progressively built from one corner to its opposite, line by line, pixel by
pixel. Our painter works similarly, starting from one part of the painting and
building up the mural piece by piece:

Figure 11.1 – An analogy of traditional computing has a single painter
working on the entire portrait themselves as being analogous to how a CPU
processes instructions

In contrast to our lone painter-as-a-CPU, graphics processors ditch the
raster process and go with a more distributed shotgun approach to painting
an image. Here, thousands of painters are all assigned to work on different

small slices of the same piece. None of the individual “painters” has any
knowledge about what their brethren are up to; they just have their
instructions for painting their tiny piece of the full picture:

Figure 11.2 – Graphics cards execute instructions simultaneously, with each
“painter” getting only a tiny piece of the full canvas to work on, and with
no knowledge of any other painter

It is in this manner that graphics cards can handle the billions of
calculations per second needed to drive modern 3D graphics applications
and games. As the previous diagram implies, instead of a single painter

(processor) methodically laying down each line and each layer of paint until
the picture is complete, there is a legion of painters that each execute the
same set of instructions, but with data wholly specific to their part of the
canvas.

Shaders are GPU Applications
How can applications take advantage of this way of processing? More
importantly, how can a developer write code that takes advantage of this
massively parallel processing resource? To answer those questions fully and
with the appropriate context would (again) require an entire book of its
own. The Extended Topics section of this chapter contains several such
excellent tomes! We will leave historical context, fundamental concepts,
and the hard mathematics to those more worthy voices and instead focus on
more practical aspects of writing the instructions handed to those legions of
painters in the form of graphics card programs, more commonly referred to
as shaders.

In the graphics rendering process, we start with various data from the
Scene, such as geometry, lighting, and materials, and we finish with a frame
displayed on the screen. This result comprises a collection of pixels and
their colors, one pixel/color combination for every point displayed on the
screen. In the space between the Scene and the Screen, there are several
important steps, but at a high level, this is the Rendering Pipeline:

Figure 11.3 – Simplified rendering pipeline. Starting with the Scene as
initial the input, sequentially executed shader programs convert the scene

geometry into pixel locations, and then finally pixel locations into colors

Each step of the pipeline receives input from the previous steps’ output. The
logic specific to each step that we’re interested in is handled and
represented by an individual shader program. However, recall that in this
context, an individual shader program is a piece of code that will be
executed in a massively parallel fashion, with the data relevant to each part
of the screen or scene making up the inputs and the processed equivalents
of their outputs.

About Shaders
As mentioned earlier, a shader is a type of executable program that runs on
the GPU. The shader program is provided a set of constants, or uniforms,
that contain the input data that can be used by the shader. Shaders can also
reference textures as input for sampling purposes – a powerful capability
we’ll exploit later in this chapter. Some examples of common uniforms are
animation time multipliers, vector positions or colors, and other data useful
in providing configuration data to the shader. The output of a given shader
varies; for a vertex shader, the output is the given geometry’s projection
from world to screen space at the vertex level. A fragment shader’s output
is completely different – it is a pixel color value. Something more advanced
is a WebGPU Compute shader, whose output can be arbitrary – later in
this chapter, we will look at this more closely!

The shader program types we’re going to be working with here fall into two
categories: Vertex and Fragment. Although they’re being introduced as
separate things, they are usually contained and defined within the same
shader code. Two main languages are used to write shader programs in use
today: Hardware Lighting and Shading Language (HLSL) and OpenGL
Shader Language (GLSL). The first, HLSL, is used by the Microsoft
DirectX graphics API. We’re not going to spend any time on HLSL because
WebGL, WebGL2, and WebGPU (with a caveat; see the following Note)
all use the second language, GLSL. Since Babylon.js is built on a
WebGL/2/GPU platform, GLSL is what we’re going to focus on in our brief
overviews.

Note

WebGPU uses a variant of GLSL called wGLSL, but because Babylon.js is
so focused on maintaining backward compatibility, you have the choice to
use wGLSL or continue writing shaders in regular GLSL – either way, you
can still use WebGPU thanks to the way Babylon.js transpiles shader code.
See https://doc.babylonjs.com/advanced_topics/webGPU/webGPUWGSL
for more information on wGLSL and Babylon.js transpilation features.

Both HLSL and GLSL are syntactically related in flavor to the C/C++
family of programming languages, and though JavaScript is a much higher-
level language, there should be enough familiar concepts for people familiar
with it to gain a good starting position for learning GLSL. Coming from
JavaScript, it’s probably the most important to keep in mind that, unlike JS,
GLSL is strongly typed and doesn’t like trying to infer the types of
variables and such on its own. There are other quirks to keep in mind, such
as the need to add a . suffix to numbers when a floating-point variable is set
to an integer value. This is a good segue to talk a little bit more about how
shader programs are different from other software programs.

Shaders, as a class of software, have several distinctive features:

They are stateless. Because a given graphics processor (of which a
graphics card might have thousands or millions available) might be
tasked with rendering Instagram pics one moment, it could just as easily
be rendering an email or text document the next. Any data needed by
the shader, whether it’s a texture, a constant, or a uniform, must be
either defined within the shader itself or passed into it at runtime.

There is no access to shared state or thread data – each process stands
alone, executing with no knowledge of its neighbors.

Shader code is written to address the entire view or screen space, but
the instructions that are given to each instance must be formulated in
such a way that each instance gets the same directions yet produces the
desired individual results.

https://doc.babylonjs.com/advanced_topics/webGPU/webGPUWGSL

Between the first two items causing the third is the genesis of the reputation
for the fiendish difficulty that shaders have gotten. Like everything, writing
shader code is something that requires practice. Eventually, with practice, it
will become easier and easier to slip into the shader mindset and solve
increasingly more complex and difficult problems; you’ll soon be
wondering what all the fuss was about! In the next section, you will learn
about a few of the different ways to incorporate a custom shader into a
project. Again, don’t sweat the next section too much if this is outside of
your comfort zone – let it soak through you. The concepts we’re covering
here will be useful later when we learn how to use the Node Material
Editor (NME) to do all the heavy lifting of writing shader code while you
focus on what you want to get done.

Writing and Using Shaders in
Babylon.js
Being that shaders are defined using plain text, there are a lot of different
ways to store and load shaders in a project. We’ll review some of the ways
to accomplish this after we learn a bit about how shader code is structured.
The Create Your Own Shader (CYOS) tool is the shader equivalent of the
Babylon.js Playground and is just one way to write shader code for
Babylon.js. Navigating to the CYOS URL at https://cyos.babylonjs.com
shows the shader code on the left pane and a live preview of the output on
the right:

https://cyos.babylonjs.com/

Figure 11.4 – The Babylon.js Create Your Own Shader tool functions
similarly to the BJS Playground

In the preceding screenshot, you can see that the shader code is defined for
vertex and fragment shaders in the left-hand pane, while a live preview
shows on the right. Starter templates can be selected from the dropdowns,
along with different meshes to use in the preview.

Just like the Playground, you can save your work to a snippet server, or you
can download a ZIP file containing the shader code embedded into a
template HTML file. Also, just like the PG, the Play button compiles and
runs live the results of your shader programs. That’s the overall mechanics
and usage of the tool. Now, let’s see how it fits into what we’ve been
learning about the different types of shaders.

Fragment and Vertex Shaders
Let’s remind ourselves of what the top section, the Vertex shader, and the
bottom, the Fragment shader, do in this context. The Vertex shader is

relevant only when there is mesh geometry involved, which means that
Vertex shaders must be applied to a mesh. In other words, this is what we’d
call a Material. Fragment shaders determine the color of a vertex fragment
(for Meshes) or pixel (procedural textures, post-processes). They can stand
alone, such as when they are used for a Post Process, or with Vertex shaders
in a Material. Like our JavaScript code files, a shader program consists of a
set of different types of declarations. Instead of a constructor function and
the like, a shader program is required to have at least a definition for the
void main(void) function because that is the function that is executed by
the GPU. Outside of the main function, subroutines or helper functions are
commonly used to help encapsulate and isolate code, just as you would do
with any other well-written code that you may write. Inputs to the shader
are specified at the top along with other declarations. Depending on the type
of shader and how it is defined, there might be several different arbitrary
declarations present, but two that are always provided are the position and
uv attribute declarations. The former is a Vector3, while the latter is a
Vector2; both represent data coming from the source mesh geometry:

Other declarations include the following:

The output of the Vertex shader is a Vector3, in the form of the
gl_Position variable, and must be set in the shader before reaching the end

The local space position of the vertex is the coordinates relative to
the mesh origin, not the world origin.

The uv attribute is the texture coordinates. It is so-called to avoid
confusion with the xy coordinates outside of the texture space.

A uniform four-by-four Matrix called worldViewProjection that
contains the transformations needed to convert the vertex position from
local into World and then into View (screen, or 2D) space.

A varying (reference type variable capable of being mutated or
changed) vUV. This is one piece of (optional) data that’s passed to the
fragment shader. It’s important for looking up pixel colors from a
sampled texture.

of main. Its value is computed by applying the provided matrix
transformation to the vertex position after any custom computations have
been applied to the position value.

Important note

A lot of detail about these concepts isn’t being covered here because
otherwise, we wouldn’t be able to cover everything about other topics.
However, these basics should be enough to help you start being able to read
and understand shader code, and that’s the first step to attaining
proficiency!

The bottom part of the CYOS screen’s code panel is where the Fragment
shader lives. Instead of receiving the vertex position of a mesh, the
fragment shader receives a 2D screen position in the form of varying vUV
and outputs a color to gl_FragColor. This color value represents the final
color of the current pixel on the screen. When using textures with shaders,
textureSampler references a loaded texture in the GPU memory, with the
texture coordinates vUV used to look up the color value. These coordinates
can be supplied by the mesh geometry (in the case of a material), view or
screen coordinates (for post-processes or particles), by some computational
process (as is the case for procedurally generated digital art), or with some
combination of all three techniques. Change the dropdown selector labeled
Templates to see more examples of how you can use shaders for fun and
profit!

Compute Shaders (New to v5!)
The availability of programmable shaders exposes the power of the modern
GPU to everyday desktop applications. With the latest WebGL2 and
WebGPU standards becoming more and more commonly implemented by
major web browser vendors, that power is now available to web
applications too. The biggest WebGPU feature when it comes to shaders is
a new generation that’s intended for general-purpose computation, called
the Compute shader.

For specific documentation on how to write and use WebGPU Compute
shaders, go to
https://doc.babylonjs.com/advanced_topics/shaders/computeShader. Vertex
and fragment shaders are purposefully limited in the extent and scope as to
what they can accomplish, especially when those tasks don’t directly
involve Scene geometry. Compute shaders, on the other hand, are a way to
run more arbitrary – though no less massively parallel – calculations and
output. Let’s look at a concrete example of the types of problems that
Compute shaders are good at solving.

In this scenario, we want to simulate the effects of water erosion on terrain.
Things such as an ocean tide besieging a sandcastle or long-term
weathering of mountains are more accurate when the underlying
calculations have finer resolution – more particles involved means that each
particle can represent a smaller and smaller piece of the overall fluid
volume. There are a few things that make this scenario quite nice for
Compute shaders. When modeling fluids, approximations are used to
simplify calculations. As mentioned previously, the number and size of the
individual calculation units are directly tied to the overall accuracy and
performance of the simulation. If the simulation were a mural, the speed it
is painted and the resolution or detail depend on how many “painters” are
assigned to handle painting the mural. What makes a Compute shader the
ideal choice is that vertex and fragment shaders have more limitations on
how many, what types, and which data can be updated, whereas Compute
shaders are capable of writing output (similar to a texture) that isn’t
displayed directly onto the screen. They even make passing data back to the
CPU from the GPU more practical, although it is still not a great idea if you
can avoid it – passing any data in that direction will always be a slow
operation. Additionally, the increased computing power makes more
accurate but computationally intensive calculations available.

This may not seem like a big deal, but it is. Being able to persist and then
reference output of and from a compute shader allows for a huge amount of
utility – it’s like Inspector Gadget and his signature catchphrase. Yell “Go
Go Gadget Compute shader!” and anything can happen! The output from a
compute shader can be used to drive a terrain height map, compute the
values of a vector field, and much more.

https://doc.babylonjs.com/advanced_topics/shaders/computeShader

Note

See https://playground.babylonjs.com/?webgpu#C90R62#12 to learn how
to use a Compute shader to simulate erosion with a height map and dynamic
terrain. Note the addition of webgpu to the query string – running WebGPU
samples requires a browser with WebGPU support. As of April 2022, only
Chrome and Edge Canary builds support WebGPU features. See
https://github.com/gpuweb/gpuweb/wiki/Implementation-Status to view the
latest implementation support and status in Chromium-based browsers.

Compute shaders require WebGPU and carry with them a great deal of
complexity, but some problems are worth that added complexity. Able to
perform massive numbers of calculations in parallel, Compute shaders are
different from vertex or fragment shaders because they can write to textures
or other storage buffers to read and write values from that can then be used
by other processes in the rendering pipeline. Still nascent in its eventual
ascendancy to widespread adoption and replacement of WebGL2, and with
support only beginning to appear in major web browsers, WebGPU and
Compute shaders are technologies worth getting familiar with sooner
rather than later.

Continuing the Shader Code Journey
It mentioned earlier, the topic of shaders is a vast and complex enough topic
to warrant its own book rather than just a chapter. Fortunately, books such
as those do exist, and one of the best is The Book of Shaders, by Patricio
Gonzalez Vivo and Jen Lowe. Completely free and accessible at
https://thebookofshaders.com, The Book of Shaders describes itself as “a
gentle step-by-step guide through the abstract and complex universe of
Fragment shaders,” and it’s a case where the description closely matches
reality. As it says, the book focuses on Fragment shaders only, but its wider
value comes from the immersion and practices it provides for thinking in
shader code. Filled with self-executing examples and exercises, it won’t
take long to start having fun and being productive with shaders!

Let’s recap on the different types of shaders and what they are used for with
this handy table:

https://playground.babylonjs.com/?webgpu#C90R62%2312
https://github.com/gpuweb/gpuweb/wiki/Implementation-Status
https://thebookofshaders.com/

With how easy WebGL2 makes it to expose shader logic and GPU features
in the web browser, there are many tools and resources to explore in your
journey of learning shaders. Maybe your experience is more on the design
and art side of things, and the idea of writing code could be intimidating or
otherwise off-putting in some way. Perhaps it’s simply difficult to keep in
mind both the goal of what you want to accomplish while holding the
concepts of vertex and fragment shader syntax. Or it could be that you’re
unsure of how to write a particular shader effect and need to experiment and
explore to discover how to proceed. All these reasons, plus many more not
listed, are good reasons to take a good long look at one of the flagship
features of Babylon.js: the Node Material Editor (NME). This is what we
are going to do in the next section.

Shader Programming with the
Node Material Editor
As something that has been referred to numerous times throughout this
book, the NME may have taken on an almost mythic status as a
productivity tool. Its plug-and-play, drag-and-drop nature allows just about
anyone to assemble shaders using visual blocks. It democratizes the GPU in
the seamless way it integrates with the Inspector. Its simple deployment in

tandem with the Playground provides a short runway from fancy to flight.
The NME may just be about the best thing to happen since sliced bread met
butter.

All these statements are true, except the part about the NME being better
than sliced bread and butter – that one isn’t. It’s better than sliced bread and
butter, falling just short of being better than sliced bread alone. It’s a thin
leavened line, but it’s one worth baking. Hyperbole aside, the NME is truly
one of the most powerful, if not the most powerful, tools in the Babylon.js
toolbox.

In this section, we’re going to learn how to get the most out of the NME.
By the end, you’ll find it easy to “think in nodes”! First, we’ll explore how
to create and apply a NodeMaterial to a mesh. Next, we’ll explore using
the NME to create procedural textures. Finally, we’ll wrap things up with a
quick look at how to use NME to create a Post Process.

Using the NME to Build the Planet
Earth Material

Sometimes, when learning something new, it can be helpful to have a
concrete example to work toward, with the example being the end goal to
reach. Other times, it can be more illuminating to begin not with the
example of a finished product, but with an atomic subset of that final goal.
The goal we’re going to start with – our first atomic subset – will be simple:
create a new NodeMaterial that renders a texture onto a sphere mesh. Easy,
right?

Note

Unlike most rhetorical questions framed similarly, the answer to the
preceding question is an unambiguous, full-throated “YES!”. If it isn’t
already apparent that Babylon.js places an incredibly high emphasis on ease
of use, it would be helpful to go back and re-read (or simply read for the
first time) the previous chapters of this book. It’s OK, no one’s judging you
for skimming or skipping! Well, OK. Maybe a little bit. But not much.

As we work through this chapter, we’re going to start by covering a lot
more details on the mechanics of how to accomplish various tasks with the
NME, but as we make progress through the following sections, we’ll have
to start zooming out from those mechanical details to make sure we leave
enough space and time for bigger-picture topics. As always, the Babylon.js
docs are a great place to learn more about the topics we’re covering, with
great material on the NME that includes combination Playground and NME
examples for a wide variety of tasks. The BJS forums are a great place to
view examples from the community, as well as to solicit feedback and ask
questions. There’s even a thread dedicated to NME examples at
https://forum.babylonjs.com/t/node-materials-examples! Let’s get started.

NME Overview

Navigate to https://nme.babylonjs.com; the default material mode “blank
slate” is the initial node graph to be loaded. Broken down into four
functional areas with a fifth preview pane, the first pane – the left-hand side
vertical column – hosts a searchable list of different nodes that can be
placed into the center pane of the work canvas:

https://forum.babylonjs.com/t/node-materials-examples
https://nme.babylonjs.com/

Figure 11.5 – The default Node Material Editor view

In the preceding screenshot, the left-hand pane contains the list of nodes.
The center pane work canvas is where nodes and their connections are
displayed, while the right-hand pane shows contextual properties for the
selected item. Note the render preview pane.

The right-hand pane displays a contextual list of properties that can be
modified, or if nothing is selected, the snippet properties and options.
Tucked into the bottom (scroll down if it’s not visible initially) of the
Property pane is the Preview panel. Pop that out into its own window right
away – being able to immediately see the effects of making a change is one
of the keys to success in this type of development. The bottom well or
gutter, depending on how you want to term it, contains console output from
the shader compilation process of the node graph – if the bottom line is red,
then your nodes aren’t compiling!

Important note

Sometimes, it can be tough to tell if a particular change is extremely subtle
or whether it has no effect at all. Always make sure to check that your most
recent console output isn’t colored red or contains an error; otherwise, you
may mistake a broken node with an ineffectual change!

Background Context

Nodes are connected by lines between specific connector ports on the two
involved nodes. Any given node represents a particular operation that can
be performed on a series of inputs and outputs, connected by dragging lines
from the former to the latter. The graph of nodes and their connection
follows two simple rules that result in strikingly complex behaviors.

First, nodes always accept input on the left-hand side connectors and output
values on their right. What happens inside the node between the input and
output is nobody’s business but the nodes’. An interesting implication of
this is that uniforms, attributes, constants, or other externally provided data
do not have input connectors. Rather, values are set via code, the Inspector,

or at design time in the property pane. Conversely, a few nodes only contain
inputs and have no output connector. These are the endpoints for the node’s
shader code generation; in other words, they represent the return value of
the applicable shader, such as a color for the fragment shader and a position
vector for the vertex. Since they are the final result of the shader
calculations, they must always be the last item in the node graph.

The second rule for node graphs, and following from the first, is that only
nodes connected to an output node are included in the generated shader
code. Remember, the final goal is to generate a vector for the vertex shader
and a color for the fragment. This means that a properly formed node graph
executes a sequential path from start to finish (usually left to right), but
which is defined by that path traced from end to start (the opposite, or right
to left).

This mismatch in mental models (try saying that five times fast!) can
sometimes make it difficult to visualize the steps needed to get to a
particular goal line. That’s why it’s important to make things easy to change
or add to without having to make unrelated changes to the application that
are needed just to be able to make a change. In our case, we’re going to
structure our work so that we can incrementally build an ultra-high detail
and quality Planet Earth material.

Back to the NME window, drag out the fragment and vertex output nodes
out to the right to make room for the new nodes we’re going to add. Make
sure that the render preview is set to Sphere, and while you’re at it, pop the
preview out into a separate window if you haven’t done that yet. Now,
we’re ready to accomplish our first micro-goal of learning how to add and
use textures.

Adding a Texture to the Material

In the default configuration for the Node Material Editor’s Material mode,
the inputs for the vertex shader are mesh.position, World Matrix, and
View Projection Matrix. A series of TransformBlock nodes connect the
inputs to form the final vertex position. Click in the search pane of the left-
hand node list and start typing the word texture to filter the list down to

display the Texture node of the Inputs group, then drag it out onto the
surface somewhere. You’ll see the Texture node appear, but if it isn’t
already present on the canvas, an additional Vector2 mesh.uv node hooked
up to the uv connector of the Texture block will be created. In general, this
is a consistent pattern – if the required inputs for a node block aren’t
present, they will be added automatically:

Figure 11.6 – Dragging the Texture node onto the surface also adds the
mesh.uv value. This is used to select the portion of the texture
corresponding to the mesh vertex

The preceding screenshot shows the setup, but it also shows our next step:
dragging out the source input port on the Texture block to create a new
ImageSource node. An ImageSource is an important piece of indirection

that allows a node material to separate the process of loading a texture from
the data contained in it. Advanced usage scenarios can involve using a
Render Target Texture (RTT) to obtain a rendered texture of a mesh
before performing additional processing. Click the Image Source node.
Then, in the Link property textbox, upload from your local repository or
provide this URL: https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/textures/2k_earth_daymap.jpg (it’s up to you!). The
image should load into the Texture block, as depicted in the previous
screenshot. It’s a good practice to tidy as we go along, so rename the node
by selecting the node if it isn’t already and changing the Name property to
baseTexture. Half of our initial objective has now been achieved by
bringing in the texture. Now, we need to paint it onto the preview mesh.

Accomplishing this is incredibly easy, but it’s valuable to remember the
underlying mechanisms involved since they will be important soon. Recall
that the vertex shader is passed the mesh position and a UV texture
coordinate corresponding to that vertex location, which passes the UV
coordinates into the fragment shader. Now, we need to sample the texture to
set the fragment shader’s final color, and we do that by dragging the rgb
output of the baseTexture node to the rgb input of the FragmentOutput
node. Look at the Render Preview; a familiar-looking globe should be
visible:

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/textures/2k_earth_daymap.jpg

Figure 11.7 – The Render preview of the Planet Earth material after adding
baseTexture and sampling it for FragmentOutput

You can check your work-in-progress against the snippet at #YPNDB5. If
your preview doesn’t match the preceding screenshot perfectly, it’s OK –
it’s just a preview at this point and the important thing is that you can see
the texture on the sphere. Our first mission is accomplished! What’s next?
It’s time to start adding nodes to our graph that will use additional textures
to add further detail to our Planet Earth material.

Mixing Clouds

Start by adding another Texture node and ImageSource to the canvas. Name
them cloudTexture and cloudTextureSource and upload or link to the file

at https://raw.githubusercontent.com/jelster/space-
truckers/develop/assets/textures/2k_earth_clouds.jpg to load the cloud
texture into the design surface. The simplest way to get the clouds overlaid
on top of the base texture is to add the colors from each texture, so drag an
Add block out onto the surface and name it Mix Cloud and Base
Textures. This highlights an important property of nodes that may catch
those who aren’t familiar with this type of editing surface off guard – type
matching.

When the node is initially added to the canvas, both the input and output
ports are a solid red color, indicating that the type of input and output has
yet to be designated. In this case, the possible types could include a Vector
of 2, 3, or even 4 elements (or a color comprised of the same number), a
single scalar number, or even a matrix. Which type the block turns into
depends on the first connection made to the node. Connect the rgb ports of
the two textures to the separate inputs of the node and replace the fragment
shader’s output with the output from the Mix Cloud and Base Textures node
to finish the operation. The clouds are visible on the render preview, but
they’re a bit faint and hard to see.

This can easily be fixed by applying a scaling factor to the cloud color
before it is mixed with the base texture color. This mixing of colors is a
very common operation, especially more so when we move on to the next
section, Procedural Textures and the NME. Add a Float input block and
name it cloudBrightness. Give it an initial value of 1.25 or so and then
use it as the input factor to a new Scale node that you’ll also add to the
canvas. Name that node Scale Cloud Levels and connect the other input
to the output of the cloudTexture node. The output of the Scale Cloud
Levels node replaces the input to the Mix Cloud and Base Textures
node:

https://raw.githubusercontent.com/jelster/space-truckers/develop/assets/textures/2k_earth_clouds.jpg

Figure 11.8 – (a) After adding the cloud texture and a scale factor to the
base texture color, clouds can be seen floating over a serene Planet Earth.
(b) The node material graph for mixing and scaling the cloud texture with
base Earth texture. The cloudBrightness value can be set to a value that
matches the desired look and feel of the clouds

The result should look like the first screenshot. If it doesn’t, compare your
node graph to the second screenshot or to the snippet at #YPNDB5#1 to see

what might be different between them. Once you’re happy with the output,
it would be a good idea to save the snippet as a unique URL.

Note

While working on something with the NME, it’s quickest to save snippets
as URLs until you are ready to download the definition file and use it in
your project.

Our Planet Earth Material is looking pretty good now, but what is cooler
than a boring old static texture? An animated texture! Let’s animate the
clouds to give our material some life.

Framing Animations

When we think about animations, it’s easy to forget that there are many
different methods of animating things in a scene. One of the simplest, most
straightforward means is to manipulate the texture coordinates (the uv
value) over time. Furthermore, by changing just the u (or X-axis) value, the
texture will be shifted in an East-to-West or West-to-East fashion, similar to
how it might look for a geostationary satellite!

Search for and add a Time node to the canvas. This represents a built-in
shader input that provides the amount of time since the scene was started, in
milliseconds (ms). We can use this value to drive our animation, and by
multiplying it with a scaling factor float input of timeScaleFactor in the
scaleSceneTime node, we can control the precise speed of the animation at
design and runtime.

Important note

Why are we using Time instead of Delta Time? Remember, shaders have no
memory of past events. They only deal with the data passed in, and the data
passed in doesn’t persist between frames. Therefore, instead of storing the
delta time and adding it to the u coordinate, we use total scene time and
scale.

It’s important to keep a node graph readable, as much for your future self as
for others reading it. One great way to do that is to organize nodes into
collapsible Frames. Arrange the three Time, scale, and Multiply nodes close
to each other, then hold down the Shift key while clicking and dragging a
box around the three nodes to create a Frame:

Figure 11.9 – The SceneTimeScaled frame encapsulates the logic for
exposing an animation frame counter to the rest of a node graph. This is the
expanded form of the frame

Frames are an easy and fast way to make a complex node graph more
manageable, much as a function helps to separate and isolate pieces of code
from each other. The SceneTimeScaled frame (or any frame) can even be
reused across different Node Materials by downloading its JSON definition,
then using the Add… functionality in the left-hand node list. Now, it’s time
to make some movement by hooking up the output from the frame to the
cloudTexture U coordinate.

Unlike when we mixed the cloud texture with the base texture where
everything involved is of the same type, we need to be able to change a
single element of a Vector2 value. First, we’ll need to split the source vector
into its components before adding the scaledSceneTime value to the x
component. Then, we’ll recombine the Vector and hook it into the
cloudTexture UV input:

Figure 11.10 – Connecting the SceneTimeScaled frame with the u (x)
texture coordinate using the Vector merger and Vector Splitter nodes

When this is connected, pull up the render preview and marvel at the slowly
moving banks of clouds over serene blue oceans. If you don’t see the
expected results, check the output well to make sure the last (current) line
isn’t an error or in red. If needed, compare your NME graph with the one at
T7BG68#2 to see what you’re doing differently.

There’s much more to the NME material mode than what we’ve
accomplished in just a few short paragraphs. In that short span of text, we
were able to create a nice render effect of an animated Planet Earth globe
using the NME in Material Mode and with high-resolution textures
provided by the kind folks at NASA. Dragging nodes out onto the canvas is
fast becoming a familiar activity as we learned how to mix textures into a
final Fragment Color, and even animate the cloud cover. Using built-in
Time counters and Vector Splitter and Merger nodes will become second
nature to us with practice and experience. There’s more to be covered than
just how to map a texture onto a mesh with the NME, though. In the next
section, we’ll take away the Vertex shader and focus on the Fragment
shader as we finally learn how our Radar Procedural Texture is built (see
Chapter 9, Calculating and Displaying Scoring Results, for more
information on how this fits into the game).

Procedural Textures and the NME
In most specialized fields of study, a particularly hard foundational subject
for the field at hand is often given to students early on in their journeys to
weed or wash out students from the program. It sounds harsh, but exposing
pupils early on to the realities of their chosen field can be a valuable way to
save time and effort on both the students’ and teacher’s behalf. This part of
the chapter is not intended to have that effect because presumably, you’re
here by choice and by interest, and this isn’t a gatekeeping exercise, it’s an
inclusive one. The Procedural Texture mode of the NME will still contain
the vertex shader output – and it is still required to be present on the canvas
– but our attention will be focused on the Fragment shader, because what
else is better equipped to process a bunch of arbitrary pixels all at the same
time than the Fragment shader? Nothing! In the case of procedural
textures, the Fragment shader outputs to a texture buffer instead of the
screen buffer – which is what a post-process uses. That texture, as we’ve
seen with the Radar texture, can then be applied to various material texture
slots in the scene for rendering.

It is in that regard and spirit that the node graph for the Radar Texture
should be accepted – not as a scarecrow to frighten off those who might be
less confident but to bolster and support those people. That’s why we’ll start
with the simplest depiction of this node graph that still conveys the
essentials. The reason for this is that while there are a decent number of
moving parts involved in making this texture, each is fairly easy to
understand once broken down. Follow along with the text by loading up
snippet XB8WRJ#13 in the NME. Refer to the following diagram for notes
on each specific component of the texture:

Figure 11.11 – The components of the Radar procedural texture

In the preceding diagram, the three circles (A), the two crossed lines (B),
and the sweeping line (C) can each be examined independently of each
other. Three concentric circles bind the texture, each a slightly different
shade of light blue. Meeting at the center, each perpendicular to the other
and oriented at 45 degrees concerning the upward direction are the crosses,
in a darker blue-gray tone. Rounding out the static parts of the texture is the
sweeping line, a turquoise-ish colored animated pizza slice with an opacity

gradient. In the following screenshot, the node graph is shown fully
collapsed down to its largest constituent components. Each element from
Figure 11.12 has its own frame in the following screenshot:

Figure 11.12 – A node graph of the radar procedural texture

After grouping the major elements of the radar procedural texture, the node
graph is still complex, but much easier to understand. Organizing and
naming elements in the NME is important! For reference, the NME snippet
can be found at #XB8WRJ#13.

To examine the specifics of any individual piece of the shader graph,
expand the frame to see the steps comprising that portion of the fragment
shader logic. The output of each frame varies a bit. Each CircleShape
frame outputs a color value in the Add Circles frame, which, as its name
implies, adds the color values together. A key element of procedural shape
generation is that pixels that aren’t a part of the shape will be assigned a
clear or empty color value. That’s why, if you peek inside the CircleShape,
Cross, or Moving Line frames, you’ll find conditional nodes and other

node operations that result in the output being set to a value between zero
and one [0…1]. A value of 0 means the pixel isn’t a part of the shape at all.
Any other value is indicative of the relative brightness of whatever the
pixel’s final color ends up being.

The final color value is arrived at by individually scaling each element’s
defined color (various shades of blue or white) by that brightness factor,
then adding it together with the color output of all the other elements. Like
magic, shapes emerge from a blank canvas! Regarding magic, one of the
essential references mentioned at the beginning of this chapter was The
Book of Shaders. The radar procedural texture was adapted from a
ShaderToy example listed as part of its chapter on Shapes, located at
https://thebookofshaders.com/07/. Even though there isn’t a node graph to
be found on the site, every code snippet is interactive. Anyone interested in
procedural textures or similar topics should make the time and effort to read
through this concise, gentle, and amazingly well-put-together resource as
part of continuing their journey in this area.

Very similar to Procedural Textures, the Post-Process mode of the NME
works against the Fragment Shader. Let’s take a quick stroll through the
landscape of Post-Processes in the NME.

Developing Post-Processes with the
NME

Unlike the Procedural Texture mode, the Post-Process editor has a special
Current Screen node. This node is an input texture that’s passed to the
fragment shader. It contains a screenshot preview of the frame as it would
be rendered without any post-processing. You can set any texture for this;
its purpose is just to provide visual feedback on the post-process output.

One of the simplest Post-Processes that can be constructed with the NME is
the never-out-of-style fade in/fade out mechanic:

https://thebookofshaders.com/07/

Figure 11.13 – Simple fade in/out post-process in the MNE

The Preview Animation frame is there to provide an animated view of what
the post-process looks like in action. The fadeFactor uniform controls the
degree of the effect. The snippet is hosted at Z4UNYG#2.

In the logic depicted in the preceding screenshot, the fadeColor node is
scaled by a fadeFactor. To help visualize the effect, the Preview
Animation frame passes the Time value through the Sin function to show
the effect ping-pong between fadeFactors ranging from 0 (completely
black) to 1 (normal) and up to 10 (completely white).

Important note

Because our scale starts at zero, assigning a value of 10 to fadeFactor is
the same as cranking things up to 11, because that’s how far Babylon.js
goes. You’ve been warned!

We started this section by learning about the basics of the NME and using
our newly learned techniques to build a high-resolution Planet Earth
Material, complete with animated cloud coverage. Because we took our
time to go over the basics, we were able to pick up some steam heading into
the topic of Procedural Textures. We learned that they are built very
similarly to Materials, except the work is all done in the fragment shader.
Like the Procedural Texture, Post-Processes do not operate against Scene
geometry. A post-process is identical in function to a procedural texture
because the Current Screen node is the rendered texture buffer for each
pixel of the screen.

Summary
If it feels like we’ve been skirting a deep examination of this and the other
topics we’ve covered so far in this chapter, then either you have a good
sense of intuition or you read the title of this chapter. As this chapter’s title
suggests, we’re only scratching the surface of a topic not only wide but
deep in its complexity. That doesn’t mean that we haven’t covered a lot of
material – quite the opposite! We started this chapter by learning a bit about
some of the shader concepts and the differences between Vertex, Fragment,
and Compute shaders. Each type of shader is a specialized software
program that runs on the GPU once for every piece of geometry (vertex)
and every pixel (fragment) on the screen.

None of the shader instances has any memory about things that happened in
the previous frame and don’t know what any of their neighbors are doing.
This makes shader programs a little bit mind-bending to work with initially.
Fortunately, the language shader code used in Babylon.js is written in
GLSL, which you should be familiar with if you are used to working with
Python or JavaScript.

Compute shaders are new to Babylon.js v5.0 and are a powerful new
addition to the WebGPU toolbox. Compute shaders are a more generalized
form of a shader and unlike the vertex or fragment shader, they are capable
of writing output to more than just a texture target or a mesh position.
Therefore, they can perform parallel calculations of complicated systems
such as fluid dynamics, weather, climate simulations, and many more things
waiting to be invented.

Once we had a solid foundational understanding of shaders, we applied that
knowledge to writing shader programs using the NME. The NME has
several modes of operation, and we started again with the basics with the
Material mode and the Planet Earth Material. After quickly learning how to
add and mix textures, we topped the cake off with some icing by adding an
animated effect to the cloud texture, learning about Frames as we went.

This knowledge of Frames came in handy when we tried to understand the
much more complex Radar Procedural Texture. Ignoring the vertex output,

the procedural texture and post-process modes operate against the fragment
output. This similarity made it an easy transition to the Post-Process editor.
Always classy and simple to implement, a basic fade in/fade out effect is
quick to assimilate into our growing understanding of this important topic.

Like an iceberg’s tip peeking out of the water, there’s so much more to
shaders and the NME than what’s visible from the surface. If this chapter
were to do the topic its full justice, it would undoubtedly require another
couple hundred pages! Be sure to check the next section, Extended Topics,
for suggestions on where to go next and what to do.

We’ve come incredibly far along in our journey across the vastness of
Babylon.js, but there’s still more ground to be covered. In the next chapter,
we’re going to start moving from the express lanes over to the exit lane, but
there are still a few more landmarks to make before we reach our
destination terminal. In real-world terms, we’re going to shift our focus
back to the overall application and learn about how to make Space-Truckers
run offline and record high scores before publishing it to a major app store.
If that sounds like a refreshing change of scenery, then read on! Otherwise,
if you’re looking for some side-quests to keep things going in the Land of
Shaders, the Extended Topics section might have some interesting
challenges you can undertake. See you in the next chapter!

Extended Topics
Here are some ideas on ways to further your journey with the NME in
particular, but also some resources on shaders in general:

Use the techniques we learned about in this chapter to create
procedural clouds for the Planet Earth Material. One way to approach
this would be to start with the existing cloud texture and distort it using
some type of Noise node.

The Book of Shaders (https://thebookofshaders.com/) is a free online
resource that, while still an evolving work-in-progress, can be, as the
authors describe it, “a gentle step-by-step guide through the abstract and
complex universe of Fragment shaders.” Even though it focuses entirely

https://thebookofshaders.com/

on Fragment shaders, it is nonetheless a spring-powered steppingstone
toward improving your understanding of shaders. Each chapter
introduces examples and exercises along with the necessary material –
try reproducing examples from this book in the NME. Post your results
on the BJS forums and see what others have done at
https://forum.babylonjs.com/c/demos/9.

It can be tough to understand what’s going on in the GPU, especially
since there’s no easy way to attach a debugger and step through code
like many might be used to doing with regular code. SpectorJS is a
browser extension that can give insights into what is happening on the
GPU. You can learn more at https://spector.babylonjs.com/.

The TrailMesh that extrudes along the route taken by the simulated
cargo passes through different encounter zones on its journey. Create a
Node Material or Texture that takes in encounter zone information and
uses it to render the trail mesh in a unique pattern for every zone.

Related to the preceding bullet point, create an effect that is triggered
whenever an encounter is rolled during route planning. The effect
should be positioned at the location of the encounter and can be
different according to the type of encounter (although it needn’t be). For
gameplay purposes, it probably shouldn’t reveal too much information
to the player, but it can certainly tease!

The Babylon.js Docs contain numerous topics and resources about the
NME. They also contain links to various YouTube videos that provide
tutorials on different aspects of using the NME:

Creating and using Node Materials in code. If you are writing a
paper or a book about programming and want to sound smart,
“Imperatively Reflecting JavaScript into GLSL” is a good title:
https://doc.babylonjs.com/divingDeeper/materials/node_material/no
deMaterial.

A list of related videos can be found at the bottom of the preceding
link. Video topics include PBR Nodes, Procedural Projection
Textures, Procedural Node Materials, Anisotropy, and more!

https://forum.babylonjs.com/c/demos/9
https://spector.babylonjs.com/
https://doc.babylonjs.com/divingDeeper/materials/node_material/nodeMaterial

Measuring and Optimizing
Performance
In software engineering circles, it’s common to hear the expression
“premature optimization is the root of all evil.” This is usually bestowed
very knowingly from a more Senior developer to a more Junior one.
Stroking of the chin – whether a beard is present or not – is almost always
required to attain the Solemn Air of Pronouncement accompanying such
declarations. Strange delivery or not, it is good advice to follow.

There aren’t many worse ways to approach software design than by starting
to make performance-related changes while that software is still largely
being built. That, in turn, is because the optimization of a code base is
inversely related to the code’s readability, its maintainability, and ultimately
the facility to which new features and changes can be introduced. To put it
another way, the more optimized a code base tends to be, the harder it is for
someone to understand the code and subsequently make changes to that
code.

At this point in our journey, we have established a full end-to-end
application experience. Though there may still be some rough edges, all the
major features have been implemented in the application, making this an
ideal time to examine our application’s performance. At the same time,
though, we don’t have much insight into how Space-Truckers performs at
really any other level than the bare basics. Our first task is clear: we must
capture a baseline performance profile, or rather one profile each for both
the Route Planning and Driving phases.

The Babylon.js Real-time performance viewer can record real-time
performance statistics across a wide range of metrics relevant to a
Babylon.js Scene. With these tools in hand, we’ll be able to identify
“hotspots” in the Space-Truckers code base that we can then target for
selective performance enhancements, but that doesn’t tell us anything about
how we can improve the performance or what to look for in our tooling.
Not yet at least!

Something we haven’t discussed so far has been how the very breadth and
reach of a web application also means a greater number of different
potential hardware and software configurations that must then be supported
by you, the developer. How do we avoid having to go down the rabbit hole
of testing, verifying, and fixing functionality for every combination of
device, software, and display? By knowing what areas or scenarios in a
Scene put the most stress on which part of the system, we can defer the
optimization from design time to runtime and handle it in real time. The
Babylon.js Scene Optimizer is the ideal solution to dynamically balance
performance and render quality with its ability to turn on and off different
performance optimizations based on the difference between a target and the
current frame rates, or frames per second (FPS).

Aside from the runtime Scene Optimizer, there are other things we can do
to improve an application’s performance in Babylon.js. We’ll continue to
use and re-measure the impact of any changes we make, first individually,
then all together, because how can you know if any improvement has been
made if you don’t have something for comparison? The rhetorical answer is
that you can’t – not unless you are consistent in your measurement
procedure and capturing measurements, but as the fastidious and
methodical creator of Software That Does Magic™, you’ve already got that
part down!

Important note

Levity aside, something that will help enforce and facilitate this kind of
development work greatly is to leverage the mighty power of Git. Any time
you save a change to a source code file, consider at least staging that
change, if not committing it. Revert commits that don’t work instead of
plowing ahead. In other words, by working with, not against, Source
Control, you might be amazed at how fast you can get things done!

Our last port of call for this, the penultimate stage of our Babylon.js long-
haul, will be looking at the network performance of our app. Specifically,
we’ll see how our asset and data resources affect both loading time and
bandwidth usage. Today’s web browsers almost all support both robust
caching functionality, as well as local storage mechanisms such as

IndexedDb, which is a mini SQL server made available by the browser to
scripts running inside it. Why is this relevant?

Note

In case you missed it, rhetorical questions are back in style!

The relevance of IndexedDB is that we can use it to stuff all our assets –
textures, sounds, JSON, and more. Instead of having to download
everything from the server, we store resources locally on the browser. It’s a
great place to cache assets. This positions us well for the next chapter’s look
at making Space-Truckers into an installable publishable Progressive Web
Application (PWA). But first things first, let’s go over the topics covered in
this chapter and some technical requirements and recommendations.

The following topics will be covered in this chapter:

Technical Requirements
Most of the requirements in this chapter are the same as they have been for
the previous chapters, but some new tools can be incredibly useful for
performance measurement and improvement. Here are the tools that are
new and/or specific to this chapter:

Knowing What To Measure

Measuring Performance and Identifying Bottlenecks

Improving Runtime Performance with the Scene Optimizer

This is not a requirement, but it is very helpful to have multiple
displays available while working on performance captures. Accurate
and consistent measurements can be tough enough – don’t add more
variables into the mix if you can help it!

The Scene Optimizer:
https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer

https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer

Knowing What To Measure
Quantum Mechanics has a concept called the Uncertainty Principle.
Named after physicist Werner Heisenberg, the principle can be summarized
for our purposes as the act of measuring some quantity itself affecting the
observed value of that quantity. Although merely an analogy for us
currently bound to non-quantum systems, it serves as a useful warning as
we take our measures and metrics: don’t let the instrumentation impact the
measurements that are being taken for our app’s performance.

Starting with some general guidelines, we’ll look at some key factors that
need to be attended to and accounted for to gather meaningful test data.
Using those guidelines to establish a basic context, we’ll start learning some
key terminology that will allow us to get into more specifics in future
sections of this chapter.

General Guidelines
As we review and examine the various means and procedures for taking our
performance profile, we’ll go over the tooling-specific steps as they come
up. But first, let’s look at a few guidelines that generally apply.

Keep External Factors To a Minimum

Computers are quite good at sharing slices of computing time between
processes, but we’re better off closing all our other browser windows and
shutting down any other non-essential programs that may compete with
ours for resources. No, it’s not as “real world” as might be expected, but the
goal here is to gather clean, consistent data, and that doesn’t have to stick to
the “real world” rules. Rebel.

Optimizing with Octrees:
https://doc.babylonjs.com/divingDeeper/scene/optimizeOctrees

BVH article/information link

https://doc.babylonjs.com/divingDeeper/scene/optimizeOctrees

Choose a Target Resolution and Stick To It

This is a bit trickier than it might seem. Simply going with the highest
resolution possible and putting on the highest pixel-dense display is
certainly a good way to stress-test a graphical application, but it won’t yield
a very useful performance profile. Too low of a resolution and the GPU
won’t break a sweat, also not yielding a very useful profile. Going for a
Veruca Salt-meets-goldilocks approach, select a value somewhere in the
upper-middle range that avoids “redlining” either CPU or GPU but still
makes those components work for their electrons!

Compare Apples to Apples

Always make sure your comparisons are equivalent, all other things
considered. Follow the same testing procedure – resist the urge to
“improve” or take shortcuts – and collect data in the same fashion between
test runs. If methodologies differ, then there’s a good possibility that your
results won’t tell you what you think they say.

Change Only One Thing Between
Measurements

One of the less helpful things you might do to yourself is put off re-
measuring after making one set of changes. For example, say you refactor
one method, then make another set of changes somewhere else in the
application. Repeat this a few times, and you’ve now lost the ability to
definitively say whether your change has improved anything – regardless of
whether the app performs better or worse! This is also a poor situation to be
in because you’re also restrained in the changes you can safely make in the
future without risking regression in the code you’re trying to change. Avoid
getting into this in the first place by committing each cohesive set of
changes together, and by re-measuring after each major change to validate
your assumptions about how the code behaves.

The preceding guidelines aren’t rules set in stone – they’re pieces of advice
aimed at helping you proactively avoid arriving at false conclusions and the
resulting consequences. This is surely helpful, but not directly so. To help
connect this advice to a useful context, we’ll first look at what sorts of
metrics are important. Then, we’ll look at the tools that collect this data.
Finally, we’ll apply what we’ve learned to find and fix performance
bottlenecks and resource pressures that lurk in the Space-Truckers code
base.

Performance-Related Terminology
“I Wanna Go Fast!”

Yes, Ricky Bobby, so do we all. When referring to cars or racing, the
meaning of the phrase is clear, but what does “[going] Fast!” mean for a 3D
application? Sure, it cannot be a good thing for a laptop to suddenly take off
in a cloud of burning plastic at 200 kph! At least, not a laptop without
wheels. Brakes too – those are also important.

The equivalent measure for 3D applications and games is, of course, the
Frame Rate, or Frames Per Second (FPS).

Note

Positioned unfortunately close in proximity to a First-Person Shooter
(FPS), noting that the two are not directly related is yet another reminder
that context is important.

Similar to how a speed limit posted on a highway serves to limit (in theory,
at least) the top speed of drivers on the road, the number of frames that can
be rendered every second is limited at the end by an intrinsic maximum that
matches the refresh rate of the display device or monitor doing the
rendering. In the Old Days, this was limited by the speed at which the
electron gun of a Cathode Ray Tube (CRT) display could traverse the
width and height of the screen. Barbarian times, they were. In today’s era of
more Enlightened Display Technologies, Light Emitting Diode (LED)

displays can switch on or off with incredible speed. Here are some typical
FPS values and examples that you may recognize from the real world:

FPS is a convenient metric because it is almost completely unambiguous –
higher values are almost always better. The only real exception to this is in
scenarios where power consumption is a higher priority than maintaining a
high frame rate. Because that deals with actions taken at runtime, we’re
going to look at how to approach a scenario like that later in this chapter in
the Improving Runtime Performance with the Scene Optimizer section. The
ugly downside of a higher FPS is that there’s less time to get all the needed
inter-frame processing that goes on, whether inside the GPU or in the CPU.

This Frame Budget, depicted in the second-to-left-most column in the
previous table, dictates what can happen during the inter-frame time. Go
over the budget and the frame rate drops. Go too much under budget and
time is being wasted that could be rendering additional frames or running
other processing tasks. Performance management can be approached by
either reducing the CPU Frame Time or by reducing the GPU Frame Time.
Sometimes, there’s crossover between the two – a good example of this is
the Thin Instances used for the Route Planning phases’ asteroid belt (see the
A Detour into Particle Systems section of Chapter 7, Processing Route
Data, for more).

Every frame, the asteroid’s rotation and position matrices are updated by
code running on the CPU, which is then copied over into the GPU. These
matrixes are then passed into the vertex and fragment shaders, which apply

them during a single Draw call to every instance in the Scene. While this is
an extremely fast process, there is one potential bottleneck on the CPU, and
that’s the loop over each Thin Instance that recalculates the two matrices.
Any improvements there would theoretically improve either the
performance or the maximum number of asteroids that can be rendered
without severe performance degradation.

Shifting over to the GPU, bottlenecks can occur when the device is tasked
with too many (or fewer, slower) shader programs competing for the same
limited frame budget. The raw number of shader executions is expressed as
the number of Draw calls made in each second and serves as a complement
to the GPU intra-frame time spent executing shaders. As each Draw call is
associated with a single material (some materials will make multiple calls to
Draw), the number of different materials in a Scene is directly related to the
number of times the GPU is being asked to switch contexts to run that
material’s shader programs every second.

Switching the GPU between contexts (shaders) has been brutally optimized
in hardware, but it isn’t completely free. Each shift carries a small amount
of overhead, and though trivial individually, this can add up to substantial
losses with large numbers. Thus, reducing the number of draw calls can
improve performance directly from the reduced context switches and
indirectly through the shader code that is no longer being invoked.

Important note

The fastest code is code that doesn’t exist. Think about that.

There are a few other metrics that are worth defining but are most obvious
from their name or context. One exception, though, is Absolute FPS.
Absolute FPS is the number of frames that can be processed each second,
not counting any actual render timings. This is a measure of how well the
CPU side of things is performing through its update loop.

As with most of the content in this book, the preceding terms aren’t a
comprehensive survey of the 3D performance programming landscape, but
as a primer for what comes next, it is as comprehensive as needed. A
comfortably high frame rate – one at or above 60 FPS – carries a frame

budget of around 16 milliseconds, during which all processing needed to
process a simulation and prepare it for the next frame must be completed.
GPUs are screamingly fast at doing this type of thing, but just as an
overburdened CPU can spin and churn trying to service too many
competing processes, so can a GPU become overburdened by shader
programs.

To help us understand what all of that talk about CPUs, GPUs, burdens, and
everything else that plays out in an actual scenario, we need to learn about
how and what to measure. Simply measuring things is rarely enough. Like
chemistry students planning their lab procedures out in their notebooks,
we’ll need to learn how to plan our testing strategies, as well as how to
interpret the results. In the next section, we’re going to take on the tasks of
planning out, executing, and interpreting a performance test, but not before
we learn more about the tools that will help accomplish those tasks for us.

Measuring Performance and
Identifying Bottlenecks
Effective problem-solving starts by clearly defining the problem that needs
to be solved. Sometimes, this is less than obvious, or sometimes, there’s
more than one problem that appears to be front and center. Oftentimes, the
thing that makes defining a problem difficult is that it is presented as a
qualitative statement, like this one: “The Route Planning Screen doesn’t
perform well.”

A statement such as that one is unambiguIus in one sense – there’s no doubt
as to its meaning – but it is completely opaque in another, for we have no
understanding to what degree the performance is poor. That’s the basic
difference between having qualitative data and having specific, qualitative
measures. Without the former, there’s no understanding of the overall
picture, and without the latter, there’s no way to know whether any actions
have been resolved, mitigated, or even made worse. So, gathering
quantitative data on how the Route Planning screen performs is the first

step we need to take so that we can better define our conditions for victory,
as it were.

Inspecting the Performance of Route
Planning

The Babylon.js Inspector is a Swiss-army knife of useful goodness. If
you’re as-yet-unfamiliar with the Inspector, now wouldn’t be a bad time to
check out the docs at
https://doc.babylonjs.com/toolsAndResources/tools/inspector, as well as
take another refresher through Chapter 2, Ramping up On Babylon.js, to set
you straight. The Inspector has long had a Performance tab that displays
all manner of statistics regarding the currently running Scene, but until the
Babylon.js v5.0 release, there wasn’t an easy way to capture and analyze
those metrics as they progress over time. The Performance Profiler is an
extensible tool that has two similar concepts but different practice modes:
headless and real time.

Important note

In case you don’t recall, the keyboard shortcut for bringing up the Inspector
when running Space-Truckers is Shift + Alt + I.

Real-Time Performance Viewer
Metrics

When running in Real Time mode, a live graph is rendered showing the
selected metrics from a list of the available metrics. Headless mode, in
contrast, displays nothing but captures data that can later be exported to
CSV format for further analysis. All three of these options (Start/Stop, Real
Time, Headless, and Import/Export to CSV) are covered in more detail in
the BJS docs at
https://doc.babylonjs.com/toolsAndResources/tools/performanceProfiler.

https://doc.babylonjs.com/toolsAndResources/tools/inspector
https://doc.babylonjs.com/toolsAndResources/tools/performanceProfiler

The following table lists the out-of-the-box metrics collected by the
Performance Profiler, along with a basic explanation of these metrics:

The specific values for each of the preceding metrics will depend on the
hardware and software environment, so specific target values aren’t very
useful. The different property groupings of metrics tend to reflect the
dimension or unit that values assume. The top section focuses on counted
metrics – things such as the number of meshes, vertices, textures, and more.
After that, there are timing metrics, which show the amount of time that
specific parts of the scene are consuming during and in-between frames. It’s
this base set of metrics that the Performance Profiler captures and displays
in a visual graph. Let’s move on and look at what a procedure looks like for
our profiling.

Defining the Testing Procedure
Following the guidelines laid out previously in this chapter, we need to
define a repeatable procedure for profiling the application. There’s no need

to over-complicate this, so let’s do the Simplest Thing That Could Possibly
Work. We want to refresh the web page for the application to reset and clear
memory and such, and then we want to let the application settle for a bit
and find its groove before we launch some cargo and take some more
measurements. The last part is to save our performance profile to a CSV file
for posterity before loading it into the Performance Viewer for basic
analysis.

Important note

Unless there’s a specific reason to not do it, always evaluate performance
and capture metrics against code built in Production environment mode!

Here’s what our testing procedure looks like. Remember, we want to repeat
this same series of steps every time we make a significant change to the
code so that we can understand the impact of that change:

1. Refresh the browser, launch the game, and navigate to route planning

2. Allow game to stabilize for 10s

3. Begin capture

4. Allow 10 seconds to stabilize and establish a baseline

5. Launch cargo unit into an empty space

6. Collect data for 10 seconds

7. Stop capture and export to CSV

A more thorough testing procedure would also want to include camera
panning and zooming, but this procedure will serve our purposes
adequately. At this point in this book, Step 1 shouldn’t need further
elaboration. Step 2 is also straightforward and to the point. It is Step 3
where we need to pause to get into the details of what the step entails.

Before we start capturing our profile, we need to launch the BJS Inspector
by pressing the Shift + Alt + I key combination. The Statistics tab in the
right-hand pane contains our target information, but first, detach the
Inspector panes from the browser window (you can close the Scene

Explorer instead if desired) so that they do not take up or cover up any part
of the app window. If you’re using multiple monitors, it can be convenient
to dedicate one monitor to the browser window, but it’s not required. Just
remember the Guideline About Using the Same Screen Size and
Resolution! When you’re ready, press the Begin Recording button circled
in the following screenshot:

Figure 12.1 – The Statistics tab of the Inspector contains controls for
starting, stopping, exporting, and viewing Performance Profile data

By clicking the Begin Recording button, we can initiate a performance
profile in Headless mode. This gives us better accuracy because, in a nod to
Dr. Heisenberg, our measurements won’t be affecting the application’s
execution to as much of a degree.

Step 4 involves the difficult task of waiting – without touching anything –
for 10 seconds to allow stabilization to occur in the application. These first
10 seconds also help establish a runtime baseline profile that we can use to
compare different actions taken during a test. When the allotted time has
passed, Step 5 is to point the launcher toward an empty patch of space and
fire away – we want to capture the behavior of the game during flight. After
letting the Cargo Unit cruise for another 10 seconds, Step 6 has been
completed, and thus Step 7 comes, where we click the Stop Recording
button, followed by the Export Perf to CSV button, to download it. Now
that we’ve finished capturing our profile, it’s time to examine it.

Viewing and Analyzing a Captured
Profile

The fastest way to view a performance profile is to choose Load Perf
Viewer using the CSV button, then select the freshly downloaded CSV file
previously captured to launch the Perf Viewer.

Important note

Depending on whether you’re doing this locally or against a deployed
environment, your browser’s pop-up blocker may engage and prevent the
Realtime Performance Viewer window from showing. Make sure you
disable or add exceptions to your blocker rules to allow the window to
appear!

Your first impression of the performance graph might be that someone
spilled a box of colored spaghetti or perhaps Pick-up-Stix and now it’s
going to need to be cleaned up. That’s because all metrics are selected for
display at the time of load. Click the master toggles on the group headers to
disable all the Count items, leaving FPS. Selectively remove items that have
very small values – if something is taking less than a millisecond to
complete, there are better things to worry about! The graph is a lot easier to
comprehend now! Zoom in and out with the mouse wheel, while panning
across the timeline by dragging.

This will transition us from looking at a larger overall picture to a
progressively more granular view of things, where there are a few things of
interest to note.

Initial Assessments

Notice how the Inter-frame time seems to correlate inversely with FPS?
That is, if you look carefully at the two data series, you’ll see how the FPS
drops dramatically any time there is a similar shift in the opposite direction
by the Inter-frame time. Something else obvious to see in this format is the
statement that whenever it takes more time between frames, there are fewer
frames as a result.

If we add the GPU frame time to this graph, a more nuanced picture starts
to emerge. Although there are exceptions and outliers, in most of the areas
where Inter-frame time increases (followed immediately by a drop in FPS),
there is a corresponding decrease in GPU frame time:

Figure 12.2 – A snapshot of a portion of a performance profile

In the preceding figure, the darker line at the top initially is the FPS, while
the bottom-most line is the Inter-frame time. In the middle is the GPU
frame time.

If the GPU frame time is improving, why is the FPS dropping? Without
knowledge of the Space-Truckers application and how it’s put together, it
might take an expert a bit of time to puzzle out the source of this strange
connection, but seasoned coders of the Space-Highways followers of this
book will likely already know exactly what this means and what’s causing
it.

Integrating External Knowledge

Even though the CPU and the GPU operate pretty much independently from
each other, events or conditions affecting one can still indirectly affect the
other. In the case of our Route Planning Screen, we can infer that the GPU
frame time drops because it is waiting to be told what to do by the CPU.
Therefore, it is the increase in the Inter-frame time that is the proximate
cause of both the FPS drop and the GPU frame time decrease.

Reach back into your memories of Chapter 6, Implementing Game
Mechanics, and recall how we went about implementing the asteroid belt in
the Building the Asteroid Belt section. The belt is comprised of many
hundreds of individual rock meshes that have been procedurally generated
as a set of Thin Instances. Note that as we discussed in Chapter 7,
Processing Route Data, Thin Instances are blazing fast because they run on
the GPU.

Checking the Particle frame steps timing tends to support that assertion as
the amount of time the CPU spends managing particles is small enough that
it is unlikely to account for the two distinctly different systems in use in the
Scene (the Sun Particle System is also a GPU-based ParticleSystem, with
the asteroid Thin Instances being the other). Why, then, focus on the
asteroid belt as the source of our high Inter-frame bottleneck? This is
because our Thin Instances are not statically held in place – they
individually rotate. To accomplish this rotation, we implemented a scheme
wherein we stored a set of rotation, position, and scaling data locally on the
CPU. Every frame, we looped through the set of asteroids and adjusted the
rotation values for each asteroid, updating their matrices before signaling to
the GPU that it should refresh the Thin Instance Buffer to update the
objects on screen:

Ior (lIt i = 0; i < this.numAsteroids; ++i) {

 this.rotations[i].x += Math.random() * 0.01;

 this.rotations[i].y += Math.random() * 0.02;

 this.rotations[i].z += Math.random() * 0.01;

}

this.updateMatrices();

this.mesh.thinInstanceBuf"erUpda"ed("matrix");

gameData for the Route Planning screen contains an asteroidBeltOptions
configuration object, which, in turn, contains the number property that
controls the number of asteroids (Thin Instances) to create and manage.
Next, it’s time to test our hypothesis by running an experiment.

Validating Assumptions

Change the number of asteroids to about 75% percent of its current value,
then re-run the performance profile. It should be immediately apparent that
the Inter-frame time improves, along with the overall FPS. As we are
hoping to see, the GPU frame time either stays constant or trends upwards,
supporting our conjecture about the GPU waiting for work from an over-
taxed CPU.

If you wish to be extra thorough (and you should if you’re still learning!),
change the asteroid count again, but this time in the opposite direction, re-
doing the test afterward. The results, once again, should support our
proposed explanation that the number of asteroids is inversely correlated to
the FPS, and the degree to which it correlates should be consistent between
runs as well, showing both quantitative and qualitative sides of the story.

Be sure to revert the change to the asteroid count since this is a situation
where one size doesn’t fit all – different CPUs will be able to support a
varying number of asteroids without tanking performance. We need to be
able to dynamically change the asteroid count at runtime based on how well
the app is performing. Once again Babylon.js has the perfect tool for the job
– the Scene Optimizer. The Babylon.js Inspector is the launching pad for
engaging in performance analysis and improvement. The Statistics tab
contains a whole set of aggregated Counts – textures, meshes, and more –
and timings, such as GPU time and FPS. Supplementing that, the metric
display is the new Real-time Performance Viewer, which uses the same
metrics to draw a time-evolving graph of performance. It can run in Real-
Time and Headless mode, but Headless will have the least impact on
performance.

Capturing and exporting performance data to CSV can be done with a click
of the button but having a testing procedure in place is just as crucial as the

data collected (if not more!). After defining our procedure, we saw how to
execute it to capture a performance profile. Upon analysis of the profile, a
trend appeared to emerge that indicated there might be a bottleneck in the
CPU due to the number of asteroid Thin Instances involved in the Scene.
Because it’s so easy to capture profiles – changing the number of asteroids
and re-running the test doesn’t take long, and the results appear to confirm
our assertion of connecting the number of asteroids to the overall frame
rate.

Improving this situation isn’t as simple as just lowering the number of
asteroids, though. Because this is so heavily bound to the CPU’s ability to
chug through the various matrix calculations, different CPUs are going to
have different responses to the same variables. A dynamically set number of
asteroids, matching the number the CPU can handle, would be the perfect
solution. In the next section, we’ll learn all about how to use the Scene
Optimizer in both its vanilla, out-of-the-box configuration and with a
custom stratagem.

Improving Runtime Performance
with the Scene Optimizer
Developing games for a given platform comes with its own set of unique
challenges and benefits. Console games have the benefit of having standard
hardware specifications and drivers to target, but at the expense of those
same hardware specifications creating severe limitations in other areas,
such as RAM or video RAM (vRAM). Browser-based games have their
own bag of double-edged swords too – the ubiquitous nature of JavaScript
and the web brings similar problems to console developers with restricted
hardware specs, and some of the same problems that PC developers must
face with a wide variety of hardware combinations.

Using the tools and lessons from this chapter and the preceding chapters of
this book, it’s easy to imagine writing some code – a coroutine perhaps –
that monitors the real-time performance of the application and makes
tweaks to various settings in response to bring frame rates up to target.

However, it is easy to imagine and probably easy to prototype or create a
proof-of-concept that works in a few limited situations. The devil is always
in the details though, and considerable time and effort would have to be
expended that could otherwise be put to other uses.

Fortunately, and hopefully getting somewhat repetitive to hear at this point,
is that Babylon.js has got you covered with SceneOptimizer
(https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer). Every
time the specified sampling interval passes (by default, every 2,000 ms),
SceneOptimizer checks the current frame rate, and if it isn’t close to or at
the target, the next optimization in the queue is applied. If the optimization
is capable of further action, it remains in the queue until it reports it can’t
help any longer.

Through the SceneOptimizerOptions object, SceneOptimizer works from
a queue of strategies that each offer a different type of performance
optimization, allowing for graceful degradation of scene quality while
maintaining a stable frame rate.

Some examples of operations that the built-in optimization strategies can
perform are as follows:

Each specific Optimization has a priority value assigned to it, with lower
valued optimizations being applied first. To make it more convenient,
SceneOptimizerOptions has a set of static factory methods that allow you
to specify a set of optimizations according to the amount of visual
degradation you’re willing to allow in the scene – low, moderate, or high.
See the docs at the link mentioned previously for more details on the
specifics of which optimizations are used for what degradation level.
Interestingly, SceneOptimizer can be configured to run in the opposite
direction – instead of degrading scene quality, it will enable or apply effects

Merging multiple similar meshes into a single mesh

Disabling shadows and/or post-processes

Reducing texture resolution or hardware scaling

Particle count reductions

https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer

until the point where the FPS drops to or below the target. This is useful in
power-limited scenarios where energy usage is an important consideration
but isn’t an area that we’re going to cover here (see Extended Topics for
more though!).

In addition to the built-in optimization strategies, it’s possible to define
custom optimization strategies. This is quite useful for our salient purpose
and doesn’t require more than a line or two of JavaScript. We’re going to
use this to create a custom strategy later in the Creating a Custom
Optimization Strategy for the Asteroid Belt section, but first, let’s learn to
crawl before we walk by learning a bit about SceneOptimizer on its own.
Don’t be fooled by the tall Section Headers – it’s quite simple when we
look at the mechanics of it!

Understanding the Scene Optimizer
and its Operating Modes

The Babylon.js Scene Optimizer executes in one of two modes:
Improvement and… !isInImprovementMode. That’s a bit of an insider joke
because that’s the property set by the last parameter to the SceneOptimizer
constructor and it can be easy to mix up their operational behaviors.
Whenever the default value of true is set, optimizations are applied until
the target frame rate has been reached or we run out of strategies to apply.
When false, it does the opposite or enhances the visuals while the frame
rate is above the target. Each Optimization (even Custom ones) adapts its
behavior to whichever mode is set, so a strategy that tries to increase frame
rate might turn off shadows when in optimization mode and turn them on
when in enhancement mode.

The list of optimization/enhancement strategies used by SceneOptimizer is
managed by the SceneOptimizerOptions module. Although it’s possible to
start with a blank set of options and manually create and add strategies, a
set of static factory methods for SceneOptimizerOptions are available that
will create a pre-defined set of strategies based on how aggressive or
extensive the actions are. The three methods range from
LowDegradationAllowed to HighDegradationAllowed (see

https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer#options for
more on the specific strategies included in each).

Important note

Changing the value of isInImprovementMode will not affect the behavior of
SceneOptimizer– the only place that it can be set is in the constructor!

Once you’ve set up SceneOptimizerOptions and SceneOptimizer, things
get kicked off with a call to sceneOptimizer.start() and halted with
sceneOptimizer.stop(). To help with debugging and troubleshooting
(among other potential uses), SceneOptimizer has a set of three
Observables that are triggered whenever an optimization is applied,
succeeds, or fails, respectively.

Any Optimizer (that is, a Strategy for those who like Code Patterns) that is
to be used with SceneOptimizer must implement two specific JavaScript
methods to fulfill its software design contract: apply and getDescription.
The apply(scene, optimizer) method is called against each Optimization
with a priority matching the current priority of SceneOptimizer, while
getDescription is responsible for returning a human-readable textual
description of what the Optimization does to the given Scene. That’s all
there is to it at a basic level – simple as promised! Building from this simple
foundation, and now that we’re ready for it, let’s focus on that custom
Optimization hinted at earlier.

Creating a Custom Optimization
Strategy for the Asteroid Belt

Earlier in this chapter, we used the Realtime Performance Viewer to
identify and verify a performance bottleneck. We discovered that during the
Route Planning phase, the number of asteroids has a direct relationship to
the FPS for the Scene. Since changing the number of Thin Instances (TIs)
is a simple matter of setting the mesh’s thinInstanceCount property, this
seems like a good candidate for a custom Optimization Strategy.

https://doc.babylonjs.com/divingDeeper/scene/sceneOptimizer#options

Though several different ways exist to define an Optimization, the quickest
and easiest way is to call the
sceneOptimizerOptions.addCustomOptimization method. This function
takes three parameters – callbacks for apply and getDescription and a
value for priority that, by not-much-of-a-coincidence, happens to be the
interface contract for an Optimizer that we so recently discussed!

The Playground at https://playground.babylonjs.com/#17ZX41#10 is a
modified and stripped-down version of some earlier PGs that we looked at
during Chapter 6, Implementing Game Mechanics. This PG just contains
the central star and the TI asteroid belt. Play with
asteroidBeltOptions.number until you get a value that gives you a low-
ish frame rate, then click the MAKE ME GO FAST button to start
fastOptimizer to see SceneOptimizer in action as part of the bottom-most
createScene method body. Most of this should be easy to understand, but
one potential head-scratcher is this line of code:

optimizerOptions.optimizations.forEach(o => o.priority += 1);

What’s happening here? Well, we want our TI Optimizer to run first before
any other Optimizers do. Yes, it’s like we’re an only or a first-born child –
incredibly selfish and self-centered – but this is our application, and we
know what we’re doing. For the most part. But we also can’t allow other
Optimizations to run at the same priority because we don’t want to change
anything except for the TI count before trying anything else to improve
things. So, we loop over every existing priority in the optimizerOptions
object and bump its priority to be one greater than whatever it previously
was at (the default value is zero). That way, in the very next line, when we
call addCustomOptimization with a priority of 0, we know our stuff comes
first. Take that, younger Sibs! The custom optimization definition can
account for either mode of operation, and in its full version, it is capable of
automatically computing min and max values for the instance count based
on degradation requirements. The following code has been abridged for
brevity and clarity but otherwise, it is the same as its big brother at
https://github.com/jelster/space-
truckers/blob/ch12/src/thinInstanceCountOptimization.js:

https://playground.babylonjs.com/#17ZX41%2310
https://github.com/jelster/space-truckers/blob/ch12/src/thinInstanceCountOptimization.js

let optimizerOptions = new SceneOptimizerOptions(targetFps,

 2000);

optimizerOptions.addCustomOptimization((scene, opt) => {

 let currTI = mesh.thinInstanceCount;

 if (!opt.isInImprovementMode) {

 if (currTI <= MIN_INSTANCE_COUNT) {

 return true;

 }

 mesh.thinInstanceCount = Math.ceil(currTI * 0.91);

 }

 else {

 if (currTI >= MAX_INSTANCE_COUNT) {

 return true;

 }

 mesh.thinInstanceCount = Math.ceil(currTI * 1.09);

 }

 return false"

}, () => "Change thin ins"ance count");

The interesting thing in the preceding code is that instead of changing the
TI count by a fixed, set amount, we are changing it in increments of roughly
9%. This allows designers and developers to make changes more freely to
the base asteroid count without needing to make other changes to
accommodate different scales of values. Hopefully, it’s easy to see how
easy it can be to make runtime adaptations to an application’s visual quality
to meet a target frame rate, because that’s the extent of what we’re going to
be covering in this topic, at least for this edition of this book.

There’s nothing magical about SceneOptimizer, even though the effect it
has of saving developers’ time certainly can be that way. With the
incredible number of individual performance characteristics accessible to
web applications, the amount of hand-optimization that is possible or
practical becomes more difficult and expensive. Balancing performance
optimizations done at design time with ones dynamically applied at runtime
can be the key to getting beautiful and smooth visuals for the widest
possible range of audiences.

SceneOptimizer is created by passing in a SceneOptimizerOptions object
that defines the set of Optimizations that will be executed and whether they
should be run to improve the frame rate to improve the visuals. Many built-
in optimizations are provided and can be quickly created with

SceneOptimizerOptions.LowDegradationAllowed and its companion
methods, but custom Optimizations are almost as quick and easy to use too.
Our custom optimizer changes the number of TIs until the target frame rate
has been achieved. By adding it to the Optimization collection by passing
an apply function, a getDescription function, and a priority number to
optimizerOptions.addCustomOptimization, the custom optimizer is
intended to run solo. Therefore, before we even do that, we must nudge the
existing Optimization priorities up to keep ours both first and on its own in
the queue.

Summary
When condensed down to an outline form, it may not seem like we covered
a whole lot of ground in this chapter, but nothing could be further from the
truth! Sure, there has been little to no mention of many important areas of
performance optimization and measurement. We’ve covered nothing about
the use of Octtrees to speed up collisions and mesh selection
(https://doc.babylonjs.com/divingDeeper/scene/optimizeOctrees), toggling
various convenience caches to reduce memory footprints
(https://doc.babylonjs.com/divingDeeper/scene/reducingMemoryUsage), or
any other of the almost two-dozen specific optimization heuristics
(https://doc.babylonjs.com/divingDeeper/scene/optimize_your_scene) that
constitute “low-hanging fruit” areas for improvement. That’s OK, though.
This book’s title starts with Going the Distance, not Plumbing the Depths,
and we can always detour into those details in the Second Edition (should
there ever be one!).

What we have covered are the basics of how to approach thinking and
learning about performance testing and profiling, starting with general
guidelines and advice before progressing to the Real-Time Performance
Viewer tool new to Babylon.js v5. Using those skills, we took a capture of
our application and used it to identify factors that show that performance is
sensitive to changes, such as the number of asteroids rendered in the Route
Planning Asteroid Belt. Finally, we saw how easy basic scene optimization
at runtime can be with SceneOptimizer. We solved the previously
identified performance bottleneck with a custom optimization strategy that

https://doc.babylonjs.com/divingDeeper/scene/optimizeOctrees
https://doc.babylonjs.com/divingDeeper/scene/reducingMemoryUsage
https://doc.babylonjs.com/divingDeeper/scene/optimize_your_scene

will gradually lower the number of thin instances until the frame rate
reaches acceptable levels.

In the next chapter, we’ll learn how to enhance our game and level it up
from a regular web application to a Progressive Web Application. This will
be the final step of making our game fully playable and accessible to
everyone at any time; by the end of the next chapter, we’ll have an
application ready to run offline and be published to the major app stores!

Extended Topics
As always, there’s more to learn and explore in the topics we’ve looked at
in this chapter. The following are ways you can engage further and practice
the knowledge you’ve gained in the chapter. Don’t forget to post your
questions and share your accomplishments on the Babylon.js forums or in
the Space-Truckers discussion boards at https://forum.babylonjs.com and
https://github.com/jelster/space-truckers/discussions:

Perform a more comprehensive quantitative analysis of the asteroid
belt data to extract the precise relationship between the FPS and asteroid
count. What is the specific FPS to asteroid ratio? Having the CSV file is
handy here because spreadsheet tools such as Excel, Sheets, and Google
Sheets are the best way to compare and calculate these figures.

Are there ways to rewrite the AsteroidBelt.update method to reduce
the CPU inter-frame time? Maybe it isn’t necessary to loop through
every asteroid individually if they could be addressed in bundles or
batches…

Along the lines of the previous bullet point, is it possible to refactor
the Asteroid Belt so that it behaves identically to how it does currently,
but happen entirely on the GPU? Given what we learned about Shaders
and Node Materials in the previous chapter, the answer should be an
enthusiastic “YES!”. Now go prove it by making it happen!

Invert the custom asteroid scene optimization strategy to add thin
instances instead of removing them. Integrate this with the application

https://forum.babylonjs.com/
https://github.com/jelster/space-truckers/discussions

so that the scene tries to maintain a comfortable FPS range between 24
and 60.

Add the ability for users to configure an overall graphics quality
preference setting. Their choice could influence the specific
SceneOptimizerOptions that are included to either improve visuals or
performance.

Converting the Application to a
PWA
Over the course of the last couple of chapters, it may have started to
become clear that we are closing in on the end of our journey. Passing
through the sweeping, vast countryside that is Babylon.js, we’ve seen and
done much, and Space-Truckers is a functionally complete game thanks to
our efforts. Now, we have one last stretch on the highway to cover in this
chapter before we hit the off-ramp to the side-streets of Chapter 14,
Extended Topics, Extended chapter.

Just because we’re close to the end doesn’t mean we are there yet – close
doesn’t count when it comes to Space-Truckers or orbital mechanics, only
horseshoes and hand grenades. We’ve still got some road ahead of us,
Space-Trucker, and there’s still time before we hit the limit on our hours of
service, so let’s drive!

In this chapter, we are going to expose the intersection between Babylon.js
and Progressive Web Applications (PWAs). A PWA is a middle space, a
hybrid between the browser-based traditional web application (whatever
that means these days) and a native desktop application. They can be
browsed as a website can be, installed as an app can be, and run offline
without an internet connection. Users can also find and install PWAs from
their device or major app store – whether Google Play, Microsoft, and
Apple. This gives developers greater space to allow potential users to
discover their app while requiring little cost and effort to achieve.

Important Note

Apple’s support for PWAs is far behind other providers. There are some
serious restrictions and limitations placed on PWAs running on iOS and
they can have their own quirks when it comes to support for different
features. See the excellent third-party site https://firt.dev/notes/pwa-ios/ for
the latest feature support for Safari and iOS.

https://firt.dev/notes/pwa-ios/

Converting our existing web app to a PWA is simple and easy, but it does
require some changes to the application. A Service Worker is needed for
offline support and a manifest is needed to describe the characteristics of
our PWA. This includes icons, a description, and potentially even
screenshots for store submissions. However, there is one final feature that
Space-Truckers is missing that we’ll be implementing in this chapter (it
wouldn’t be a Going the Distance chapter if we didn’t have something of
this sort, would it?).

This feature is one that has historically led to countless arguments and
strained relationships among siblings and besties alike. A feature that has
enabled bragging rights going back in time to the glory days of classics
such as Galaga, Pac-Man, and Donkey Kong. This feature, of course, is a
high score board. We’re going for a scoreboard that’s a bit more modern
than the ones from those days because our scoreboard will save more than
just the top 10 high scores; it will also retain those scores between
application launches and computer restarts by saving data to the
IndexedDB.

That’s the extent of the plan for this chapter – unlike previous chapters,
there’s far less conceptual and theoretical discussion needed, so let’s get
started. First though, let’s take a quick glance at the Technical Requirements
section for this chapter. There’s a bit of a change from the previous ones,
and that’s because, as we’ll shortly learn, PWAs have a specific set of
hosting requirements that must be met.

We will be covering the following topics in this chapter:

Technical Requirements

Introduction to PWAs

Converting the Space-Truckers Application into a PWA

Using IndexDB to Persist Scores

Storing and Displaying High Scores

This chapter has new tech requirements that, although low to no cost, do
require some decisions and potentially a bit of research on your part to help
get you to the specific outcome that works best for your project. After
talking about the Secure Sockets Layer (SSL) certificate requirements,
we’ll go over some of the more popular options for hosting your PWA.

Hosting Requirements
To explain it briefly, SSL is a mechanism through which a client can verify
the identity of a particular server and establish an encrypted
communications channel. It’s literally the ‘s’ in HTTPS! An SSL
connection is a requirement for a PWA without exception. Even though
there are no exceptions, there actually is one exception, and that is the
localhost loop-back address, to make testing easier. Obtaining a valid SSL
certificate in most cases is free and easy to carry out. Depending on your
hosting setup, SSL support might even be built into the hosting platform!
Check the documentation for your specific provider to learn more about
how to obtain and bind a site to a certificate.

Options for Hosting your PWA
There’s nothing special about a hosting provider with regards to making an
application into a PWA; any public-facing website that supports SSL has
the capability to host a PWA. Some environments may make the
organization and the process around hosting an SSL or HTTPS-based web
app harder or easier, so here is a table listing some of the major hosting
options:

GitHub Pages is one of the easiest options if you’re hosting the source of
the application in GitHub already. Deploying to a GH page site involves
pushing commits to a specially named (and never merged) branch. What
gets committed in our case is essentially the output of npm run build – the
dist/ folder and all its contents.

Azure Static Websites is also a free, easy choice. Though it does require an
Azure subscription, creating a static website is free and quick. Integration
with source code in GitHub is exceptionally clean and useful and is even
easier with the VSCode extension for Azure Static Websites. When
deploying to a Site, a GH action performs all the work in the background
for you whenever a pull request is opened or closed. To see an example of
how this works in action, see the Space-Truckers repository’s
.github/workflows folder for the details.

Google and AWS Static Sites are both unique products that nevertheless
perform the same essential services as the previous two. AWS offers static
websites via AWS Amplify, while Google also has a similar offering within
its Cloud Storage product. The reason for the asterisks on these services is
that the base products do not support custom domains nor HTTPS served
over those custom domains, at least not out of the box. More work is
needed on the developer’s part to add the other infrastructure components
(such as an HTTPS proxy) that are necessary to accomplish and fulfill the
requirements for custom domains and SSL or HTTPS. See the
documentation provided in the next section for more information on how to

do this – we don’t have enough road left in front of us to swerve into the
weeds following this topic!

Resources and Reading
PWA Builder – https://pwabuilder.com

The IndexedDB API – https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API

Azure Static Web Apps:

https://docs.microsoft.com/en-us/azure/static-web-apps/

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-
static-website-how-to?tabs=azure-portal

AWS Amplify – https://aws.amazon.com/amplify/hosting/

Google Static Sites – https://cloud.google.com/storage/docs/hosting-
static-website

GitHub Pages and PWAs -
https://christianheilmann.com/2022/01/13/turning-a-github-page-into-a-
progressive-web-app/

Service Workers and Workbox:

https://developer.chrome.com/docs/workbox/service-worker-
overview/

https://developer.chrome.com/docs/workbox/

The source code for this chapter is in the ch13 branch of the Space-
Truckers GitHub repository - https://github.com/jelster/space-
truckers/tree/ch13

Playground URLs are listed in their relevant sections

https://pwabuilder.com/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://docs.microsoft.com/en-us/azure/static-web-apps/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-static-website-how-to?tabs=azure-portal
https://aws.amazon.com/amplify/hosting/
https://cloud.google.com/storage/docs/hosting-static-website
https://christianheilmann.com/2022/01/13/turning-a-github-page-into-a-progressive-web-app/
https://developer.chrome.com/docs/workbox/service-worker-overview/
https://developer.chrome.com/docs/workbox/
https://github.com/jelster/space-truckers/tree/ch13

Introduction to PWAs
As mentioned earlier in the introduction, a PWA is a sort of hybrid type of
application that bridges the gap between a web application and a regular
desktop application. Without additional context, it’s a description that
comes close to meaninglessness context. It’s not the individual words and
it’s not the term “Web App” that lacks clarity, so what does it mean for a
web app to be “Progressive”?

Well, as most of us are aware of course, web browsers have a vastly
different security model than regular applications or games. JavaScript
running in a browser’s sandboxed environment has, by design, extremely
limited access to the underlying machine’s hardware and filesystem.
Important to our discussion is the limitation placed on scripts, along with
the vast range of implementation support in browsers, which means that any
given web application may or may not have access to certain device
features and functions. In these types of cases, or when an application is
being distributed widely across different device and software profiles, it is
very important for an application to be able to – wait for it –
“Progressively” and gracefully enhance or degrade its capabilities on-
demand based on what the hosting device has and is willing to share with
the browser app.

That takes us to the next question, then: how do PWAs work? There are
three main defining requirements that a web application must fulfill to be
eligible to be installed as a PWA by a web browser. These requirements are
SSL, Service Workers, and (Web) Manifests (SSM). So much word salad
to digest, so little time. Let’s prep a salad fork and dig into these in more
detail.

Note

If you prefer (or if you just really enjoy confusing people), you can use
MMS or even SMS for an acronym. You do you!

SSL

Conducted over HTTPS, this is a non-negotiable requirement – and for
good reason! Installing a web app as a PWA expands the capabilities of the
app greatly, but at the same time, commensurately exposes the host machine
and its data to a greater risk of malicious or incompetent actors accessing it.
Requiring a secure connection between the client and server neither
compensates for incompetent or bad coding nor does it guarantee that the
server involved is protected from malicious intent. What it does guarantee
is that the identity of the hosting site has been verified as being what the site
says it is.

Service Workers
Used to fetch and retrieve assets for and from offline use, SW is code
loaded from a JavaScript file separate from the main application’s code.
Running in a DOM-less sandbox, an SW is nonetheless the key
intermediary between the application and the underlying network. An SW
enables offline usage of the app in a transparent fashion – nothing in the
application knows that it is really communicating with the SW when it
makes a web request for a resource.

Every time a script, HTML tag, or CSS definition triggers a request from
the web application, the request is intercepted and handled by the SW. The
SW then has the choice of either returning the indicated resource to the
caller from its cache or of refreshing its cache prior to returning the
resource. To make this even more effective, the SW’s first job upon
installation and activation is to pre-fetch all the resources and put them into
its cache ahead of time.

Web Manifest
The last element needed to “unlock” the capabilities of a PWA in a browser
is a Web Manifest. This is a simple JSON-formatted file that’s usually given
an extension of .webmanifest, and it tells the web browser and other
consumers of the manifest all sorts of neat information about the
application. In addition to containing basic information about an
application, such as the name, description, and version, the manifest

contains sections that allow a developer to specify icon images at varying
sizes and aspects for display by the host OS (e.g., the iOS Home Screen),
display orientation preferences, screenshots, and even age and content
ratings. View a full listing of possible elements and what they mean on the
Mozilla Developer docs site at https://developer.mozilla.org/en-
US/docs/Web/Manifest.

These different pieces of metadata all work together to describe how the
application should be presented and the parameters of its expected behavior.
In addition, the Web Manifest is heavily leveraged when listing a PWA in
one of the app stores. The benefits of being able to define the application’s
metadata once for publication everywhere should be obvious, but how to
easily define values for each of those properties is not. Fortunately, as with
working with Babylon.js, there are many tools and resources available that
can help speed things along.

We’ll cover the tools and the mechanics of PWAs shortly but let’s
summarize what we know about PWAs and how they work first. When
users browse to a website that is PWA-enabled, an icon appears in the
browser indicating that an application can be installed for the current site.
Clicking the icon transforms what used to be a regular website into an
offline-capable, Start Menu-pinnable application indistinguishable from a
native application.

What allows this to happen are the three specific things that a PWA must
have properly configured – the SSM trio: (S)SL connections, a (S)ervice
Worker to pre-fetch and cache resources for offline use, and a Web
(M)anifest. Having an SSL connection means that the website hosting the
PWA is accessed over the HTTPS protocol and requires a valid certificate
to be obtained for this purpose. SWs are JavaScript code components that
run in a separate sandbox from the rest of the browser’s application code.
They intercept requests transparently and return cached resources stored
locally. The Web Manifest describes everything that a hosting OS and web
browser need to know to install the PWA. In addition, the Web Manifest
also serves as an app Store package listing, meaning that for the effort of
preparing a single store submission, one can make submissions to all of the
major app Stores.

https://developer.mozilla.org/en-US/docs/Web/Manifest

Coming up in the next section, we’re going to power up Space-Truckers:
The Web Application and make it into Space-Truckers: The Progressive
Web Application. We’ll see how two simple packages, along with a little bit
of code and a WebPack configuration, are all that’s needed to get the job
done. In a way, the simplicity and ease of making the conversion could be a
bit anticlimactic, but don’t worry – we’ll soon thereafter be looking at
adding something flashier and with more flare when we come to the high
score board!

Converting the Space-Truckers
application into a PWA
As we discussed shortly prior to this section, a hallmark – or signature –
feature of a PWA is its ability to gracefully adapt to varying conditions and
host environments. How should the application behave when a network
connection is lost? What happens when a new version of the app is
published? When assets change, how do you ensure that any cached
versions of the old asset are evicted, and the new ones are stored?

Putting the “P” in PWA
These are all good questions and present real technical and engineering
challenges that need to be solved. If you are one of those beautiful, curious,
intelligent, and slightly mad kinds of people, you should prepare yourself to
be disappointed. While, again, these are worthy topics to study and
understand, this is a case where tools have evolved to the point where it is
possible to accomplish a lot while knowing very little about the underlying
technology. It’s possible that the overall brevity of this section – or really, of
this entire chapter – hasn’t escaped notice and that’s a hint at just how easy
it is to put the ”P” in PWA.

It’s also possible that the author of this book counted the number of pages
originally promised and realized that the budgeted page count had been
blown quite a while back, but nobody’s here to litigate the issue of which is
which, are we?

Note

[Why yes, actually. We are paying quite close attention to the page count. –
The Editors]

Right then. In the interest of getting to the point, and in not further
antagonizing The Editors, let’s walk through the steps that will make Space-
Truckers into a PWA.

Step 1 – Installing the Workbox WebPack
Plugin

Workbox is an open source project maintained by Google with the purpose
of making the creation, usage, and management of SWs smooth and easy.
The project also maintains a plugin that integrates with WebPack (see
Chapter 4, Creatingthe Application) and automatically generates the SW
code for you. Install it into the project as a developer dependency along
with CopyPlugin with this command:

npm i workbox-webpack-plugin copy-webpack-plugin --save-dev

copy-webpack-plugin is a simple plugin that copies static files from a
given directory into the output directory with the rest of the webpack
output, which is handy for when we want to include icons and a Web
Manifest with the build.

Step 2 – Configuring WebPack Plugins

We’ve made new plugins available to WebPack and now we need to import
them into webpack.common.js:

const WorkboxPlugin = require('workbox-webpack-plugin');

const CopyPlugin = require('copy-webpack-plugin');

Next, we will instantiate the plugins with their respective options. If you
recall from Chapter 3, Establishing the Development Workflow, WebPack
plugins run in the order they are defined. These new plugins need to run
after the HTML template has been injected with the bundle and after the
destination directory has been cleaned:

plugins: [

 new CleanWebpackPlugin(),

 new HtmlWebpackPlugin({

 template: path.resolve(appDirectory,

"public/index.html"),

 inject: true

 }),

 new WorkboxPlugin.GenerateSW({

 clientsClaim: true,

 skipWaiting: true,

 maximumFileSizeToCacheInBytes: 8388608,

 }),

 new CopyPlugin({

 patterns: [

 { from: path.resolve(appDirectory,

 'public/assets/icons'), to:

 path.resolve(appDirectory,

 'dist/assets/icons') },

 { from: path.resolve(appDirectory,

 'public/manifest.json'), to:

 path.resolve(appDirectory,

 'dist/manifest.webmanifest') }

]

 })

]

The Workbox WebPack Plugin npm package has two primary plugins
(modes) of operation, GenerateSW and InjectManifest, the use cases for
which fall under the categories “Basic” and “Advanced”. Our needs are
currently quite Basic, so we are using the GenerateSW plugin. Its
configuration has flags that specify the SW should immediately claim
matching clients (for upgrade scenarios) as well as skip waiting for older
workers to be disposed. Most importantly, we set
maximumFileSizeToCacheInBytes to four times its default value. This is
needed because we want as many of our assets to be cached locally as
possible.

The CopyPlugin configuration is intended for copying two static assets that
don’t yet exist, our app icon sets, and the Web Manifest JSON file (which is
renamed with the .webmanifest extension along the way). We’ll create
those files in subsequent steps after we make some changes to our
index.html file.

Step 3 – Modifying index.html

Two important modifications need to be made to the index.html file in the
repository’s /public folder. The first is to add a <link> tag for the Web
Manifest to the files’ <head> tag. The second is to add a short <script> tag
that loads and registers the SW on page load:

<link rel="manifest" href="./manifest.webmanifest" />

<script>

 if ('serviceWorker' in navigator) {

 window.addEventListener('load', () => {

 navigator.serviceWorker.register('service-worker.js')

 .then(registration => {

 console.log('SW registered: ', registration);

 }).catch(registrationError => {

 console.log('SW registration failed: ',

 registrationError);

 });

 });

 }

</script>

In keeping with the graceful enhancement strategy that PWA advocates, our
script is completely transparent to the rest of the application – when it is
present, things just work. After checking to see whether the browser
supports SWs, the navigator.serviceWorker.register function is called
with the name and path of the SW script. This script is generated by
GenerateSW and output into the /dist folder, so it shouldn’t trouble you
that the file referenced doesn’t seem to exist!

At this point, running the app should generate the expected console
messages indicating successful SW registration and operation. Common
problems that may occur are an incorrect path or file name for the SW, or an

incorrect GenerateSW configuration. That’s the SW part of the PWA
requirements met – let’s fill in the one for the missing Web Manifest.

Step 4 – Adding the Web Manifest

The Web Manifest, as previously mentioned in the Introduction to PWA
section, is the developer-friendly, JSON-formatted file describing the
PWA’s attributes and characteristics. To maintain the development-time
experience, we place the Web Manifest into the /public folder as a sibling
to index.html. This makes sure that our links work properly when being
hosted on webpack-dev-server or built for a production environment and
hosted from the /dist folder.

The file is named manifest.json in the /public folder, which is then
renamed to manifest.webmanifest at build-time. Here are some of the
more important properties:

For the icons array, each entry in the array specifies an icon whitespace-
separated list of sizes, along with a path either directly to a file or to a base
file name with sizes prefixed – as in, myicon, where the file names are
48x48-myicon and 52x52-myicon. Supplying entries for every possible icon
size isn’t necessary, although depending on the source image, some
distortion and unintended display effects could occur. At this point, when
the application is run on the local web server, the browser should “light up”
with the ability to install the site as a PWA. If it doesn’t, open the browser
developer tools and check for relevant console errors. The Lighthouse tab

in Google Chrome and Microsoft Edge browsers can scan websites for
many types of problems and optimization issues, including those involving
PWAs.

A great many other properties are defined for the Web Manifest schema,
and although not many are required, many are recommended. To see more
of the properties available in the manifest, see
https://developer.mozilla.org/en-US/docs/Web/Manifest. It can be difficult
to manually create and manage all the different metadata, not to mention
creating the icons, and that’s why there are tools that can help us get the job
done fast. One such tool previously discussed was the Workbox project.
Another tool we haven’t discussed yet though is the PWABuilder
Extension for VSCode.

Using the PWABuilder Extension
Carrying out the previous steps manually has some benefits. You get fine
control over every detail of the process while learning the internals of
everything along the way. It’s also a tedious process prone to error. An
alternative to the previous steps is to use the official PWABuilder
Extension for Visual Studio Code. This extension, built and maintained by
the same team that maintains the excellent resource PWABuilder.com,
makes setting up a PWA quick and easy. Aside from generating the source
code for various PWA components, the extension can validate an existing
website to check its PWA readiness status – very useful for debugging.

After installing the extension from the VSCode extension marketplace,
open the extension’s left-hand pane to reveal the Web Manifest and
Service Worker panes. Click the + icons on the respective panes to
generate those resources. When generating the application icons, depending
on your settings, the PWA extension may generate the entire range of icon
sizes – which can number above 60. For that reason, once the icons have
been generated, feel free to go ahead and whittle down those files to
whatever set of sizes works best. Make sure to update the manifest to
remove the files!

https://developer.mozilla.org/en-US/docs/Web/Manifest
http://pwabuilder.com/

When generating the SW, the extension will ask whether you would like a
Basic or Advanced SW; the answer for Space-Truckers is Basic, since
we’re not (yet) using PWA features such as push notifications. The
extension will install any needed npm packages (such as workbox) and
provide a code snippet to copy-paste into your index.html. Does the code
look familiar?

The final step when making a PWA is, of course, publishing the application
to an HTTPS host. The specifics of this depend on your hosting provider,
but Google, AWS, and Microsoft all provide VSCode extensions that can
make publishing a breeze. Whichever provider is involved, the goal will be
to run the build script followed by copying all of the files in the /dist
folder to the root of the hosting website.

As promised in this section’s introduction, the tools and technologies
available make creating and deploying a PWA incredibly simple and fast. A
series of four straightforward steps are needed – adding two WebPack
plugin packages to generate the Service Worker, modifying webpack
config, then index.html to register the SW and link assets, then finally
adding a Web Manifest to describe the extent of the changes needed.
Whether those changes are performed manually or with the help of an
extension such as the PWA Builder Extension, there’s a rich world of native
application functionality that opens up to application developers. We’re not
seeing the full range and extent of the capabilities of PWAs, so head over to
PWABuilder.com to read more about the different cool tricks that can be
done with them!

Before we wrap things up for the chapter, there’s one more topic to explore.
High scores are a staple for arcade-style games such as Space-Truckers,
but since we’re running on the web, we need a way to be able to store a
player’s high scores that persists beyond reloading the web page. The
IndexedDB object store built into most modern browsers is a great solution
for this type of problem, and in the following section, we’re going to learn
how to create a component to make use of it.

Using IndexedDB to Persist Scores

http://pwabuilder.com/

Web developers needing to store information on a local client have
traditionally had a limited number of options, most of which have had
significant drawbacks. One of the oldest and simplest methods is the
humble browser cookie. These little text files stored on the client’s browser
are sent to the server alongside every request made by the browser client.
Because of that, and for similarly related reasons, cookies aren’t an efficient
or practical solution to many if not most client-side storage needs, including
our own. For an in-depth examination of the different pros and cons of
available client-side storage, see https://web.dev/storage-for-the-web/.

The IndexedDb Object Store (IDB) is a client-side, browser-sandboxed
database enjoying a broad spectrum of consistently implemented support
across major browsers and platforms. While the amount of data a site is
allowed to store is limited to the disk space that’s available to the browser,
our application has very modest storage space requirements outside of the
assets.

Important Note

While it is possible to use IDB as an asset cache for textures, meshes, and
the like, it is far easier, efficient, and a better fit overall for those assets to
use the SW set up earlier in this chapter.

This section’s focus is on the basics of IDB and how we will make use of it
in our application. After taking a moment to review the foundational
elements of IndexedDb, we’ll put together some code to wrap the lower-
level IDB functions with more application-layer-friendly helpers. Then,
we’ll see how to integrate those helpers into a Playground that we’ll use in
the next section, Storing and Displaying High Scores.

Learning about IndexedDB
IndexedDB is an official API specification maintained by the World Wide
Web Consortium (w3c), an organization also responsible for most web-
based standards such as HTML and CSS. The specification can be found at
https://w3c.github.io/IndexedDB/ but we don’t need to go much deeper here
to gain an understanding of how IDB works.

https://web.dev/storage-for-the-web/
https://w3c.github.io/IndexedDB/

The wide support in web browsers for the IDB specification gives us
confidence that we can proceed with using the APIs and that the same code
should work the same across different browsers – the operative phrase
being “should work.” Don’t leave off testing across different browsers and
versions. Otherwise, you run a very high potential risk of running into
support issues with end users that aren’t using the same setup as you!

When it comes to consuming the IDB API, there are two important things
to note. First is that they are asynchronous. The second is that operations
produce results via various event handler functions. When an asynchronous
operation is invoked, the return value of that function isn’t immediately
available – the function doesn’t return anything. Further, the operation may
or may not succeed. In the case of the former, the result is produced by an
event handler function specific to the operation and object involved. The
IDBOpenRequest object has event handlers such as onsuccess, onerror,
and onupgradedneeded, while the IDBObjectStore object has events such
as transaction.oncomplete. As some of the names suggest, the latter case
of an operation failing is handled by the onerror handler function.

An important consideration is how the various code paths of the
indexedDB.open function are managed. The onsuccess event produces an
instance of IDBDatabase, but that’s only part of the story. When a unique
combination of the database name and the current schema versions (the first
and second parameters to the Open operation) is requested that does not
match any existing object stores, the onpugradeneeded event is fired. It is at
that time that the specific object store has its schema created, any indexes
added, and any version change migrations performed.

That’s enough foundational concepts for us to start writing some code! We
need to write some helper code that takes the event-based asynchronous
IndexedDB functions and makes them easy to use in our application.

Using IndexedDB
All the different needs, scenarios, and data schema definitions involved
with IndexedDB constitute several moving parts. Therefore, our first task is
going to be crafting a wrapper around these operations that exposes the

desired API in the form of functions returning Promises. There are several
libraries available that implement similar helper code, but for our simple
needs, it is more illustrative and useful to just write the code ourselves.

Note

The following code pattern is common in JavaScript programming as an
approach for wrapping lower-level or legacy programming interfaces into
forms more friendly to higher-level applications consuming that
functionality. If you’re not familiar with this pattern, it’s a useful one to
have in your toolbox!

The Playground snippet #U20E4X contains the code we’ll be using for this
and the next part, so follow along as we visit some of the more interesting,
opaque, and complex parts of the sample.

We will start by declaring and storing the SpaceTruckersDb function as our
outer scope. The body of this function contains our working set of variables
shared across our helper functions to maintain the internal state, as well as a
const array of seed scoreData:

let SpaceTruckersDb = function () {

 const scoreData = [

 { name: "AAA", score: 10000 },

 { name: "BBB", score: 7000 },

 { name: "CCC", score: 5000 },

 { name: "DDD", score: 3400 },

 { name: "EEE", score: 3000 },

 { name: "FFF", score: 2500 },

 { name: "GGG", score: 2000 },

 { name: "HHH", score: 1000 },

 { name: "III", score: 1000 },

 { name: "JBE", score: 500 },

];

 let indexedDbIsSupported = window.indexedDB;

 const currentSchemaVersion = 1;

 const databaseName = "SpaceTruckersDb";

 const tableName = "HighScores";

 var database;

// ...

return { retrieveScores, addScore, readyPromise };

Jumping to the bottom of the function, we are returning an object
containing the helper functions to retrieve a list of scores as well as to add a
new score. Alongside these functions is readyPromise, used to check for
and ensure full initialization at a time of the caller’s choosing. Because our
needs are so simple, we don’t need any additional logic or methods
currently.

The most complicated logic of the entire sample is the first step –
initializing the IDB object database and the corresponding object store (or
table) that we’re using to store the scoring data for our application. This is
tricky to handle because there are multiple potential branches that the code
might need to take depending on whether the object store already exists,
and further, whether the schema version of the object stores matches the
most current version requested.

That’s what the onupgradeneeded event handler must, uh, handle. We start
at the top of the readyPromise delegate’s function body by invoking
indexedDb.open. This returns (one of the only times this happens with the
IDB APIs) an openDbRequest object with its attendant onerror, onsuccess,
and of course, the onupgradeneeded events. The error logic is simple –
reject readyPromise and pass through the thrown error. The success logic is
also simple – just set the database variable to event.target.result and
resolve the promise with it.

Note

Remember, the onsuccess event is not fired on the first run of the script for
a given currentSchemaVersion and databaseName. Instead,
onupgradeneeded is raised.

Let’s look at what happens with the onupgradeneeded event. After
extracting the database from the event object, we create objectStore itself.
The autoIncrement flag indicates that new records should get an
autoincremented key assigned and is followed by the creation of the non-
unique score index. This is important and needed to ensure that the scores
are stored in the proper ranked order:

openDbRequest.onupgradeneeded = (event) => {

 database = event.currentTarget.result;

 database.onerror = handleError;

 let objectStore = database.createObjectStore(tableName,

 {

 autoIncrement: true

 });

 objectStore.createIndex("score", "score",

 {unique: false});

 objectStore.transaction.oncomplete = (event) => {

 let scoreStore = database

 .transaction(tableName, "readwrite")

 .objectStore(tableName);

 scoreData.forEach(scoreD =>

 scoreStore.add(scoreD));

 resolve(database);

 };

};

To proceed after creating the score index, we attach a function to the
oncomplete event of objectStore.transaction. This function
immediately initiates a readwrite transaction against the same table
(scoreStore), which is then used to populate the initially empty score table
with a set of initial high scores (scoreData). After adding the seed data to
the store, we resolve readyPromise – there’s no need to wait for the write
transaction to complete. That’s the most complicated logic we have for this
component.

The retrieveScores and addScore functions are both simpler variations on
the main themes presented with the onupgradeneeded event logic. A txn
object is created with requested permissions of either read-only or read-
write. objectStore is then retrieved from the transaction and used to
perform either a getAll or add operation. For getAll, the results are
produced in the onsuccess handler of the object returned from
objectStore.getAll, similarly to how the result of indexedDB.open is
produced in onsuccess.

Recap

As simply as this, we’ve created a reusable component that we can drop
into the Space-Truckers application as part of a high score screen! Let’s
review what we’ve learned about IndexedDB before we move on to the next
section.

IDB is a browser-based storage mechanism that has the capability of storing
very large amounts of data. While the basic storage means is object-based,
IDB has the concept of databases containing a set of one or more object
stores or tables. The schema for each table must be defined at the time of
creation or schema version upgrade. This is defined by
currentSchemaVersion passed to the indexedDB.open function. When the
current version doesn’t exist or is lower than the version requested, the
onupgradeneeded event fires.

During this event, object stores are created, their indexes are defined, and
their data is populated. When upgrading versions, it’s important to include
migration logic in this event handler – otherwise, data will be lost! In our
case, we don’t need to migrate score data and it’s unlikely we’ll need to do
much substantially to require a schema change soon (see the Extended
Topics section at the end of this chapter for some ideas that might involve
doing that).

Because the pattern of accessing the IDB APIs doesn’t natively support
Promises, we’ve wrapped the major operations we need in a Promise-
capable one. readyPromise is where the actual initialization and opening of
the object store are performed and is also where the onupgradeneeded logic
is housed. Once readyPromise resolves, the getScores and addScore
methods become operational. These functions also return Promises for their
respective operations, producing a list of scores or a confirmation that a
new score was added.

Our IDB wrapper functions are the tools that we had to build in order to
build the high score screen – now, it’s time to use them. In the last section
of this chapter, we’re going to combine what we’ve just learned with the
knowledge we’ve gained about coroutines and toss in our reusable GUI
DialogBox component to create a tasty salad that is Space-Truckers: The
High Scores!

Storing and Displaying High Scores
Keeping with the cooking theme that we wrapped up the previous section
on, this section is all about combining our ingredients into a meal. All the
hard work and learning have already happened, so this section will go by
quickly – all the better to start feasting! The Playground at
https://playground.babylonjs.com/#VBMMDZ#23 is what we’ll use as a
live example – keep following along or try to replicate the functionality in
the sample from the descriptions and snippets mentioned in this section.

Important Note

Don’t try to eat your computer, or anything that isn’t food – we are just
using a metaphor, albeit one taken a bit further than needed! In fact, let’s
just switch themes entirely. For the rest of this section, we’ll go with a
classic heist, in the style of Ocean’s Eleven.

The Heist
It won’t be enough to enlist the reluctant aid of the “muscle”, DialogBox, to
throw a list of scores onto the screen and call it a day. Nor is it enough to
bring in the quick-witted “safe cracker”, SpaceTruckersDb, to finish the
job. If we truly want to pull off this major gig, The High Score, each score
needs to make a grand entrance. Failing that, they can at least not all appear
on the screen at the same time as a crowd of raucous monkeys storming a
banana barrel. In the case of a new high score in need of recording, we need
to be able to collect the user’s initials in the “traditional” three-letter format
used by the arcade cabinets of old. We need “brains”to do the thinking. We
need our old friend the coroutine to “come out of retirement for one last
job”.

To summarize our plan in exciting sub-sections, imagine of a compelling
montage sequence that shows exactly how hard (actually, it’s not hard but
roll with it) completing the job will be for The Crew, let’s begin.

https://playground.babylonjs.com/#VBMMDZ%2323

The Muscle
We’ll host the high score display with the DialogBox component (see
section Building a Reusable Dialog Box Component in Chapter 9,
Calculating and Displaying Scoring Results). Scores themselves are hosted
within a StackPanel that gets added to bodyContainer. Each score is an
object with just the name and score properties. The getScoreTextLine
helper function takes an individual score object and returns a formatted
string that can be displayed in TextBox:

function getScoreTextLine(s) {

 if (!s.score) {

 return s.name;

 }

 let scoreText = s.score.toFixed(0);

 let text = `${s.name}${'.'.repeat

 (20 - scoreText.length)}${s.score}\n`;

 return text;

}

Though we expect the s.score value to be present, we check for its absence
anyhow, since the process of adding a new score necessarily precludes the
entry of a name. We also expect the score to be a whole, integer value, but
we convert it to a fixed string with zero points beyond the decimal just to be
safe. A format string is returned that considers the length of the score
value’s text representation.

The Safe Cracker
Persistence logic will be provided by SpaceTruckersDb that we built in the
previous section. Its functions are called and managed by scoreBoardCoro.
True to the current thematic form, there’s not much else to be said about the
“safe cracker” that won’t be included with our review of the “brains.”

The Brains

The ScoreBoard CoRoutine (ScoreBoardCoRo) coordinates retrieving
scores and displaying them in DialogBox as well as the edit mode for
entering new scores. When scoreBoardCoro is invoked as a function (as
part of preparing to run the coroutine – see Chapter 9, Calculating and
Displaying Scoring Results, for more), the newScore parameter is used to
pass in the new high score awaiting three-letter branding. If present, the
editHighScores flag is set and a placeholder, scoreToAdd, is added to the
scores list already retrieved by databaseManager that is initialized
immediately upon entry. Equally, the nameInput InputText control as well
as the VirtualKeyboard GUI element are instantiated and added to the
dialog’s control tree. An observer function is added to
nameInput.onTextChangedObservable that limits entries to three
characters or fewer. Additionally, it will also take action when detecting that
the Enter key was pressed by setting the editHighScores flag to false:

nameInput.onTextChangedObservable.add((ev, es) => {

 if (ev.text.indexOf('↵') >= 0 || ev.text.length >= 3 ||
 ev.currentKey === "Enter") {

 scene.editHighScores = false;

 }

});

// ...

while (scene.editHighScores) {

 yield Tools.DelayAsync(1000);

}

Once the coroutine has finished waiting to exit edit mode, if there’s
newScore, that means the user’s entered their initials and that the score is
waiting to be saved. We do that before cleaning up the controls involved in
gathering the user input:

if (newScore) {

 scoreToAdd.name = nameInput.text.substring(0,3);

 await databaseManager.addScore(scoreToAdd);

 console.log('saved newScore', scoreToAdd);

 virtualKB.disconnect();

 virtualKB.dispose();

 newScore = null;

 nameInput.dispose();

 scoreToAdd = null;

 scores = await databaseManager.retrieveScores();

 await displayScores(scores);

}

After the controls have been cleaned up, we refresh the scores list from
storage to put everything back into a clean, initial state. If there isn’t a
newScore, the coroutine’s work is done and the job’s complete – the scores
were already retrieved and displayed at the beginning of the coroutine’s
execution. With such a skilled Crew and exquisite preparation, it shouldn’t
surprise anyone following along that the Job of displaying the scores itself
is short and sweet.

The Job
Assembling The Crew was the crucial first step, planning out The Job was
the second, and now it’s time to execute that plan. Here’s our shortcut to a
montage of the following steps in a linear sequence of events:

1. (yield) until the “safe cracker” (databaseManager) signals that it’s
ready.

2. Get the scores list from the “safe cracker” (databaseManager) and
put them into the scores array.

3. Show “the muscle” (DialogBox). Wait for it to fully make its entrance
before continuing.

4. If “the brains” “sez” there’s another score to add (newScore), the
following happens:

The editHighScores flag is set

A placeholder score entry is created sans a name and added to
the scores list

Input elements are put into place to collect the player’s initials
(nameInput and virtualKB)

A “little bird” (a.k.a an observer) listens for changes in the input
element, toggling out of the editHighScores mode when the

5. “The host” puts on the show of showing the scores (displayScores
is called).

6. Tension builds on the stakeout as everyone waits for the edit flag to
drop (yield in use while editHighScores is true).

7. Prepare the getaway, but first, have “the brains” scan the
newly-“liberated” score (scoreToAdd).

8. Before jumping into the getaway car, “the host” puts on a smoke-and-
mirrors show (clears and re-displays the scores from storage).

9. We see The Crew walking off into the sunset having successfully
completed The Job. The credits roll and lights go up.

Enter key is pressed or three elements or greater have been
entered

Figure 13.1 – The Space-Truckers high score board in add or edit mode

There are no plans for a sequel (yet…) – however, the extended edition
(director’s cut) shows what happens after the plucky heisters have finished
their job, and that’s the nitty-gritty of integrating the crafted code from the
snippet discussed previously with the overall Space-Truckers application.

The Integration
The beauty of the DialogBox component is that it can be slotted into an
existing Scene. This is a good thing because we want to be able to display
the screen in two separate places – Main Menu, as a new menu item, and
after clicking Next from the Scoring Dialog. HighScoreScreen is the high-
level wrapper function that instantiates and starts the ScoreBoard coroutine,
returning the scoreBo.dialog instance so that callers can listen for its
dismissal.

How this works out in the Main Menu screen is simple, but there are a
couple of different pieces involved. First, we make use of the newly-added
onHighScoreActionObservable that is hooked up to the also newly-added
High Scores button, which is defined by this option data:

const highScoreOpts = {

 name: "btHighScores",

 title: "High Scores",

 background: "green",

 color: "black",

 onInvoked: () => {

 logger.logInfo("High Scores button clicked");

 this._onMenuLeave(1000, () =>

 this.onHighScoreActionObservable.

 notifyObservers());

 }

}

This is the same pattern used for the other menu buttons added as part of the
_addMenuItems private function of the MainMenuScene constructor – the
menu is faded out for one second before notifying observers of
onHighScoreActionObservable that something interesting happened.

The subscriber of this observable is set up in the constructor function of the
MainMenuScene constructor, and is responsible for setting up scoreDialog
and then returning the UI to Main Menu after the user clicks Go Back:

this.onHighScoreActionObservable.add(async () => {

 this.isTopMost = false;

 let scoreDialog = HighScoreScreen(this.scene);

 scoreDialog.onCancelledObservable.add(() => {

 this._onMenuEnter(1000);

 this.isTopMost = true;

});

We’ve introduced the isTopMost flag to MainMenuScene so that we know
whether to handle input (see the MainMenuScene.update function) or if any
DialogBox instances are responsible for that task. Once we set that flag, we
show and get the scoreDialog instance via the HighScoreScreen function.
Now that the scoreDialog instance is available, we can then attach logic to
onCancelledObservable, which re-displays the menu and sets it to handle
input.

Similarly, scoringDialog attaches a handler to its onAcceptedObservable,
which does the same as the
MainMenuScreen.onHighScoreActionObservable handler does:

scoreDialog.onAcceptedObservable.add(async () => {

 let score = scoreData.finalScores['Final Total'];

 await scoreDialog.hide();

 let scoreScreen = HighScoreScreen(scene, score);

 scoreScreen.onCancelledObservable.add(async () => {

 await scoreDialog.show();

 });

});

The major difference here is that before calling HighScoreScreen, we are
extracting the Final Total score value and passing it into the function
along with the scene so that it can potentially be added as a new entry to the
list.

Being able to meet new requirements by putting together existing
components with few modifications is a pinnacle achievement in software

architecture and design, which makes it a great place to finish this section.
In this section, we’ve gone over the sequence of events and actors involved
in the processes of both persisting and displaying high scores. The existing
DialogBox component is reused to host the scoreboard, while the
IndexedDB component built in the previous section of this chapter provides
the storage and the ScoreBoard coroutine orchestrates everything.

Integration is simplest in the case of progressing to the high score screen
from the Scoring Dialog but launching the high scores from the main menu
isn’t much more complicated. We needed to add an isTopMost flag to the
menu so that it knew not to handle input when a dialog is being shown, and
we also added onHighScoresActionObserver to signal when to change
screens. The rest is just hooking up appropriate show and hide logic to the
various dialog events. What else is there that could be done? So much! See
the Extended Topics section at the end of this chapter for some ideas on
things to improve that you can contribute.

Summary
We started this chapter by focusing on what is needed to turn our
application into a PWA and how this is done. We finished the chapter by
implementing a high score board for our application, and in between, we
managed to learn a lot. Let’s recap what we’ve learned.

A PWA is a type of application that blurs the boundaries between a regular
website and a traditional native application. As with desktop applications, a
PWA can run offline without a network connection. It has access to the host
computer’s filesystem and hardware devices. Also, as with desktop
applications, a PWA can be published and deployed via an App Store such
as the Apple App Store, Google Play, or Microsoft Store. Unlike a desktop
app, PWAs can be accessed via a single URL and operate as a regular web
application with reduced functionality. When different limitations or
restrictions are encountered, the app gracefully enhances or degrades its
functionality, making PWAs useful for a wide range of application
scenarios.

Three elements are needed for a web application to be considered a PWA:
SSL hosting to secure the connection, an SW to pre-cache and intercept
requests, and a Web Manifest to define the application’s metadata. Hosting
a site under SSL has a widely varying set of steps needed that depend very
heavily on the specific hosting provider. For instance, Azure Static Web
Apps allows a site with a custom domain name to have SSL without the
need for the developer to provide or purchase a certificate, whereas Google
and AWS both require additional infrastructure to be provisioned to support
some or all SSL scenarios. SWs are pieces of code that run in a sandboxed
execution environment in the web browser. They can do all sorts of things,
but in our simple application use case, we are using them to perform pre-
caching and the loading of assets. When the application requests a
particular resource from a remote URL, the SW intercepts the request and
supplies the response from the local cache, allowing for a transparent
mechanism of going offline without having to modify any application code.
The Web Manifest serves as the main descriptor of the application to any
interested systems. A JSON document containing a few required and many
optional elements, the Web Manifest is what is used to package and publish
a PWA to an app store, as well as to specify how the PWA should look and
feel when installed.

When it comes to different ways of storing data on the client, there’s no
longer any need to rely on mechanisms such as cookies to persist arbitrary
amounts of data. The IndexedDb browser service provides an object store
for applications that can store an arbitrarily large amount of data. Although
not terribly complicated to employ, the programming patterns used to work
with IDB are best integrated by wrapping them with more easy-to-handle
Promises. Our needs were simple enough that we didn’t need to use one of
the many existing libraries that can work with IDB here, as we only needed
to be able to add a single score and retrieve a list of scores.

The high score screen displays the beauty and power of the Composition
Pattern by combining (composing) together the DialogBox component for
display, the IDB component for persistence, and a coroutine to manage it all
into the SpaceTruckerHighScores component. The generic nature of
DialogBox allows us to easily integrate the new high score screen into the
rest of the Space-Truckers application. Both the main menu and the Scoring

Dialog play host to the scoreboard, which allows players with scores that
make the cut to enter their three-letter initials using either a physical or
virtual keyboard.

There’s a lot that can be enhanced and added to the application, but the
beauty of an open source project is that anyone can contribute to it – even
you! Check out and post on the discussion boards with questions or
comments on the game or book. The issues listed in the repository capture
various pieces of work that different folks have identified as needing to be
addressed or implemented. Different labels denote and categorize the issues
in different ways – for example, the “Good First Issue” label is intended to
give new contributors a simple or straightforward task that can get their feet
wet and can be done relatively easily without discussion. See the list of
issues at https://github.com/jelster/space-truckers/issues and discussions at
https://github.com/jelster/space-truckers/discussions.

Our turn signal is on as we prepare to reach the terminal phase of our space-
road trip – we’re approaching the end of the line! As we navigate our way
through local streets and intersections towards the space docks for delivery,
we still have a few loose ends to wrap up. The next chapter is going to be a
grab-bag of topics, as we try to fit in as much as possible about all the
things that we haven’t previously covered. Local guides will help us
navigate these winding and sometimes convoluted streets as we look at
cutting-edge topics such as real-time ray tracing (path marching), WebXR,
VR and AR applications, and Babylon Native, but also important pragmatic
subjects such as using Babylon.js with a CMS or e-commerce application.
Keep your seatbelts buckled – this trip isn’t finished yet!

Extended Topics
Use an SW to do something other than fetch and cache data. Take your

framerates to the ultimate by moving the Space-Trucker rendering into
an offscreen canvas. Essentially, you’ll use SW to do the actual
rendering work on a different execution thread from the single main
thread JavaScript is normally stuck with. The Babylon.js docs go into

https://github.com/jelster/space-truckers/issues
https://github.com/jelster/space-truckers/discussions

more detail on this at
https://doc.babylonjs.com/divingDeeper/scene/offscreenCanvas.

Add a button or key combination that clears all existing scores from
the database. This is a two-part feature: the first task would be to add
the ability to remove or clear the scores in SpaceTruckerDb and the
second to provide a way for that to be invoked.

Animate the entrance of each individual score in the list. Bonus points
for effects that change with the rank of the score. Even more bonus
points for giving players a nice fireworks display when they get a top
score.

Split the entry JavaScript module so that the landing page, scores, and
main menu are in the initially loaded module with the driving and route
planning sections in separate ones. This will supercharge the initial page
load time and allow the SW to fetch game assets more efficiently.

https://doc.babylonjs.com/divingDeeper/scene/offscreenCanvas

Extended Topics, Extended
This is a chapter about endings, but it is also a chapter about beginnings.
Our journey together on this long haul may be approaching its destination,
but this is just the beginning of your personal journey with Babylon.js. In
this chapter, we abandon any pretense of linear or sequential progress, and
instead, we will be bouncing between several disparate topics that will each
provide individual jumping-off points to help you go the distance with
Babylon.js.

When navigating unfamiliar streets, it can be useful to have a guide,
someone who is knowledgeable about an area. Someone with deep practical
experience, who knows how to guide visitors and new arrivals to the best
places and sights. Our Space-Dispatcher has located several talented
individuals to show us areas of Babylon.js that we didn’t get to see or learn
about during our trip.

In this chapter, we’re going to visit two active construction sites in the
metatropolies of BJS. At the first of those sites, we’ll learn about ongoing
efforts to bring the simple elegance of Babylon.js out of the web and
directly onto device hardware with Babylon Native. The second of those
sites encompasses the exciting world (“metaverse”) of augmented reality
(AR) and virtual reality (VR) in the form of WebXR – the new standard
for web-based AR/VR applications.

After those stops, we’ll meet our first guide, BJS community member and
serial helper of people on the forum, Andrei Stepanov, who will take us
through the loading docks and into the Babylon.js Mall. He’ll show us
glittering displays of the latest gadgets on a tour of how easy it is to use BJS
with Content Management Systems and e-commerce platforms. Parting
ways with Mr. Stepanov, we next visit a shiny new transport terminal as we
go to meet our last guide, Erich Loftis.

Erich has been ranging out on a journey of his own for some time now, and
he’s going to entertain and enlighten us with the story of his quest seeking
the Holy Grail of photorealism in 3D graphics – Real-Time Ray (Path)

Tracing. That’s just a preview of what’s to come because it’s time to take a
hard right and put on a hard hat as we pull into our first construction site for
AR and VR with WebXR.

There’s always more to learn in any given technical arena, and that applies
double or more when the topic is rapidly changing. WebXR is the standard
for developing web-based AR and VR, and it qualifies under the “double-
or-more” policy with its rapidly evolving mix of standard and support. As
we learn about WebXR, we’re not going to focus on every feature of the
standard – that would be like trying to ice-skate up a hill during a heatwave.
What we’re going to focus on are the features and capabilities of Babylon.js
that allow you as the developer to write applications that make use of
WebXR while lowering the risks involved in those changing standards and
APIs.

Here are the topics that we’ll be covering in this chapter:

AR and VR with WebXR
The inexorable march of Moore’s law has brought increasingly greater
computing power into increasingly smaller microchips at a steady rate for
long enough that the casual consumer has a staggering amount of raw
computational silicone contained in their smartphones and tablets. There’s
enough processing throughput in the average smartphone now that it’s
realistic to entertain scenarios such as AR and VR.

AR is a category of applications that encompasses a large variety of
different use cases and scenarios. The common feature shared by these
scenarios is that they make use of a device’s camera, location, orientation,
and other sensors to emplace 3D content into a depiction of the real world.

AR and VR with WebXR
A tour of the Babylon.js Native project
Incorporating 3D content into a website

Tracing out a path to advanced rendering

VR is very similar to AR, save that instead of the content being immersed
in the user’s world (the real world), the user is immersed in the content (the
virtual world).

Whether considering an AR and VR experience, it is important to keep in
mind that both are more of a spectrum than a binary quality – there’s no rule
that says something must use X percent of features to be considered an AR
or a VR app. That would be a silly piece of gatekeeping.

Note

If you are looking for a great band name, Reality-Virtuality
Spectrum/Continuum are both cool sounding ones! Read more about the
Virtuality Spectrum at https://creatxr.com/the-virtuality-spectrum-
understanding-ar-mr-vr-and-xr/.

Consider this – an application may only support basic head tracking and
stereoscopic views, but it is still a VR application. Similarly, a simple
application that draws a rabbit’s ears over a person’s image in a video feed
could technically be considered an AR application. Most of the time when
discussing AR and VR in context of web development, it is assumed that
the focus is on the VR side of things. Historically, that has been accurate,
but it won’t always be the case. By examining some historical context, it
will be clearer how this might have come to pass and when to expect that to
change.

An Abridged History of AR/VR on the
WWW

In the wide world of web development, there have been numerous attempts
to bring about a standardized set of APIs for VR content, such as the
VRML standard. The last-but-one effort was called WebVR, which was
aimed at VR content with little to no consideration for AR – not out of
neglect, but simply because AR didn’t exist in any commercially accessible
form until relatively recently (let’s call it ca. 2015 or so).

https://creatxr.com/the-virtuality-spectrum-understanding-ar-mr-vr-and-xr/

By 2018, it had become clear that to make AR a commercially viable
application, it needed to be able to run on the web. The problem is
deceptively simple but deviously hard to solve. Consumers don’t want to
have to install five separate apps to browse five separate furniture stores
just to display selections of furniture in the prospective buyer’s living room,
but they’re happy to go to a website that offers the same! Unfortunately,
requirements for even basic AR involve accessing device and sensor data
that normally isn’t available to the browser JavaScript sandbox, where
performance can also sometimes be suboptimal.

The WebXR standard was introduced in 2018 by an industry-wide
consortium of hardware and software manufacturers. This standard
encapsulates and abstracts many areas that were left out of the previous
WebVR standard, such as object/body part tracking, unified controller
interfaces that account for the many different inputs possible with AR/VR,
and in general, everything needed to program a world-class experience. All
the cool kids (Apple, Google, Meta/Facebook, Samsung, Microsoft, et al)
are a part of this standards body, which means that developers and
consumers alike should be able to benefit from an explosion of innovation
in the commercial AR/VR space. Or at least that should have been the case.
Devices dedicated to AR, such as Microsoft’s HoloLens, as well as devices
dedicated to VR, such as Oculus, have started to proliferate the consumer
electronics market, but progress in general for supporting the WebXR
standard has been stunted at best by the actions – or rather, a lack of action
– from one of the most influential members of that consortium.

While most of the consortium members have been busy working to
implement key WebXR features and standards, one of its members – Apple
– has sat mostly on the sidelines. They have recently released their new iOS
hardware-based application SDK known as ARKit, which is a potential
reason for Apple’s inaction on supporting WebXR. Allowing the hardware
access that WebXR requires would effectively involve breaking the iron
grip that WebKit has on web rendering on iOS. That’s unfortunate, because
in the United States, iOS enjoys roughly 60 percent of the market share,
meaning that most of the US market is inaccessible to companies,
individuals, and organizations who want to develop and provide AR
experiences and products on the web (for contrast, iOS holds less than 30 of

the percent market share worldwide outside of the US. Android owns the
bulk of the overseas market). The news doesn’t get too much better on the
Apple front: as of summer 2022, it does not appear likely that Apple will
release support for WebXR in its WebKit rendering engine at any point
within the upcoming 6 to 12 months.

Important Note

Pending anti-trust litigation and legislation debate is ongoing in numerous
courts and legislatures around the world. It is possible that the outcome of
some of these matters could result in Apple allowing alternative web
engines (such as Chromium) to be used in iOS. All bets are off if that
happens!

With all that depressing talk of WebXR not being supported on iOS,
constantly shifting standards, and frequent breaking changes, what’s the
silver lining? How is the glass half-full, and why would you want to subject
yourself to this type of software engineering misery? Let’s all say it
together now: “Because Babylon.js’ Got You” with the WebXR Experience
Helper – blunting sharp pains into dull aches.

Building Tomorrow, Today with the
WebXR Experience Helper

It’s a founding precept of Babylon.js that backward compatibility is of
paramount importance. Code written 10 years ago on BJS 1.0 still largely
works in BJS 5.0, which is quite an achievement when talking about tech
and the web! When dealing with something like WebXR, where features
and APIs can come and go quickly though, does it even make sense to try
and build a production application against such a moving target?

Note

Recalling our previous discussion about rhetorical questions and their
answers, you should already know the answer to that question to be “YES!”

The BJS WebXRExperienceHelper is a component that does exactly what it
says it does on the box – that is, to help with WebXR implementation by
setting up all of the necessary elements for an immersive session. The
Default Experience provided is set up for a VR session along with basic
features such as pointer tracking and teleportation while, of course,
providing the ability to enable, attach, and use other features in
collaboration with the FeatureManager.

The important concept to understand about how the FeatureManager
works is the process of enabling a given feature – at either a specific
version, the “latest,” or “stable” version – and making it available to be
attached to a Scene. Enabling a feature and attaching to the Scene is, along
with their associated converse operations such as disabling and detaching, a
two-step process for the application code. Two steps for the application, but
hidden under the hood lies a whole host of sub-operations. Things such as
browser feature detection, device capability enumeration, and more all
occur during the feature enabling stage. The result of the enabling process
leaves the WebXRSession with a new set of Observables related to the
newly enabled feature(s). These Observables are now available to be used
to attach those features to a given Scene.

The reason why this is an important concept is because while it isn’t
necessary to use WebXRExperienceHelper or FeatureManager, those
components provide your code with the critical ability to isolate itself from
the effects of external changes. Production applications can make use of the
latest VR/AR functionality available on a user’s device with confidence that
they won’t suddenly break when the standard or a web browser’s support
for the standard changes. The abstractions provided allow developers to
write, extend, and maintain applications that leverage cutting-edge browser
capabilities while gracefully degrading functionality for devices that don’t.

WebXR has some incredibly exciting features and capabilities available
today in Chrome- and Mozilla-based browsers, though some might require
users to “unhide” features via flags. The types and features of applications
built using WebXR are just beginning to be explored, and the Babylon.js
team intends to be there to help developers use them the entire way.
Unfortunately, that’s all the time we’ve got for this construction site visit –

there are other places to go and things to see, after all, and we have a
schedule to keep!

Further Reading

Our next visit will be to the grounds of a sprawling new technology campus
in the Babylon.js “Metatropolis.” This campus is the home of the Babylon
Native project – an impressive, ambitious, and particularly complex
undertaking. Among other areas of study, Native offers one potential
solution to the problems posed around iOS support for WebXR. Let’s learn
more about Native and what that solution looks like as part of our campus
tour of the Babylon Native ecosystem.

A Tour of the Babylon.js Native
Project
Babylon.js is primarily used as part of a web application, but that’s not the
only place where it can add value. Sometimes, an application needs to target
multiple platforms with the same code base. Other times, an existing device
application wants to be able to easily add 3D rendering activities that are
secondary to the application’s purpose (for example, in a scientific
simulation, the renderer is simply drawing the output of the simulation onto
the screen). Specific requirements might include the need for AR
capabilities on platforms that include iOS.

WebXR Experience Helpers:
https://doc.babylonjs.com/divingDeeper/webXR/webXRExperienceHel
pers

WebXR Features Manager:
https://doc.babylonjs.com/divingDeeper/webXR/webXRFeaturesManag
er

Demos and Playgrounds:
https://doc.babylonjs.com/divingDeeper/webXR/webXRDemos

https://doc.babylonjs.com/divingDeeper/webXR/webXRExperienceHelpers
https://doc.babylonjs.com/divingDeeper/webXR/webXRFeaturesManager
https://doc.babylonjs.com/divingDeeper/webXR/webXRDemos

In each of those scenarios (and more that aren’t listed), there is a place for
Babylon.js to add value to an application. What’s commonly referred to as
“Babylon Native” in the singular, proper sense is actually a collection of
technologies that apply to a specific range of scenarios. Every scenario is
different and should have a solution tailored to the specific needs of the
situation, and the set of technologies that comprise Babylon Native allows
you as the developer to pick and choose where and when to apply them.
One way to understand the technologies is to show them along a spectrum
with a fully native app at one end and a fully web-native app at the other:

Figure 14.1 – Spectrum of application types. Source:
https://github.com/BabylonJS/BabylonNative/blob/master/Documentation/
WhenToUseBabylonNative.md

The preceding diagram (taken from the BJS Native docs, linked in the
caption) is one method of depicting the Native Collective that shows the
relative scale of how close to the native device hardware a particular
component or framework lies.

In his blog post about the technical underpinnings of BJS Native at
https://babylonjs.medium.com/a-babylon-native-backstage-tour-
f9004bebc7fb, Sergio explains how the Babylon Native parts fit from a
different perspective:

https://github.com/BabylonJS/BabylonNative/blob/master/Documentation/WhenToUseBabylonNative.md
https://babylonjs.medium.com/a-babylon-native-backstage-tour-f9004bebc7fb

Figure 14.2 – A layered diagram of how Babylon Native works in the
absence of WebGL. Diagram source: https://babylonjs.medium.com/a-
babylon-native-backstage-tour-f9004bebc7fb

Whether using Babylon React Native or simply Babylon Native, the
preceding diagram shows how the unifying abstraction layer of Babylon
Native covers the ugly and sometimes chaotic mess of talking to various
hardware components, such as the BGFX cross-platform graphics driver
with ARCore and ARKit for other device sensor and input API abstractions.
Having these concepts in mind, we can now consider a few potential usage
scenarios where it makes sense to take a good look at the options presented
by Babylon Native.

Choosing Babylon Native
The decision on whether Babylon Native is a good fit for a given project
can be complex. The docs for Native have an entire page devoted to a
questionnaire to help you determine what approaches are worth the most

https://babylonjs.medium.com/a-babylon-native-backstage-tour-f9004bebc7fb

research – and what aren’t – and while helpful, they can be better
understood via a contrived scenario.

If your application is based on React Native, there is a light integration
option and a full integration option. The light option is to use a WebView to
host the WebGL context and canvas. This has the advantage of being able to
take advantage of the Just-In-Time (JIT) compilation of JavaScript,
meaning JS code will tend to be faster than when not using a WebView for
some platforms. The full integration option is to use Babylon React
Native. Here’s what we might imagine the app this looks like.

The Evolution of a Babylon Native
App

The LARP’in app is an app for Live Action Role Players – people who
like to take the table out of tabletop games and act out the gameplay
themselves using the app to coordinate events, chat, and so on, with all the
different luxuries that people have come to expect from a modern Web
Application. The “Player App” is built using React and has enjoyed a
steady run of releases, enhancing and extending the site’s functionality. The
app’s creators want to allow event schedulers to be able to manage events
offline (because event spaces sometimes don’t have reception) so they’ve
added PWA capabilities, making everyone happy.

Then one day, some LARP’in LARPers were playing Pokémon Go when
they had the realization that while LARPing is cool, what’s even cooler is
LARPing… with AR! Players would be able to see visualizations of their
spells cast, detect traps with skill rolls, and walk around exploring a fantasy
world brought to life. Their existing LARP tools consist of some home-
brewed Bluetooth-connected devices embedded into items (for example, a
sword) that register hits and similar game-management tasks by lighting up
or beeping, but that’s the extent of it. Many of the members have iOS
devices, while others are on Android, and there are even a few odd souls
clinging to heavily tweaked versions of Windows Mobile (bless their souls).
In 2021, the group won first prize at a cosplay competition, which came
with enough funds to allow the group to purchase a set of HoloLens

headsets along with an Oculus VR device for a member whose health
problems prevented them from attending events in person. The AR-
enhanced Player App would need to be able to talk to these devices to be
useful as well as utilize existing functionality within the Player App (for
example, displaying the player’s inventory). Finally, the group has
developed a custom C# desktop application they appropriately call the “GM
App” to connect to these BT devices and to act as a game’s referee (often
called a GM or Game Master). The app’s maintainers have the wonderful
opportunity here to evolve the app toward their vision in valuable and
discrete steps:

1. Bring the app over into a React Native application that otherwise
behaves exactly as it currently does.

2. Add basic rendering capabilities with Babylon in a WebView. This
will allow the team to release the same functionality with the same
code base as the web app.

Build local mesh connectivity between BT and WiFi devices that feeds data
into React Native app.

3. Integrate a Babylon Native rendering of a pure 3D scene in the C#
application to show GMs different views of the action (picture a
sword fight where the swords have sensors embedded in them, with
the scene depicting the state of the swords as relayed by sensors).

4. Transition rendering responsibilities from a WebView to Babylon
React Native. Use Babylon.js with WebXR to leverage device
capabilities to render scenes onto a live image stream or to a VR set
in a remote location.

5. Enjoy LARPing!

This example isn’t intended to be comprehensive or exhaustive, but it does
cover a decent range of potential use cases by implication. When embarking
on a Native project, it is worth considering whether the same goals might be
accomplished more easily using a different framework such as Unity or
Unreal. It is also important to keep in mind that the current (summer 2022)
state of the project at the time of writing is still immature, and thus there are

limitations and gaps in supported functionality. Check the links in the next
section to get the latest information on what is supported and what isn’t in
Babylon Native.

Further Reading
As the project is rapidly evolving, so too is the documentation. Here are
some places to start reading more about Babylon Native and Babylon React
Native at the following links:

Although it was short, our overview of the Babylon Native campus has
covered the more important guideposts and signs that mark the various
trails throughout the area. As a collection of technologies, Babylon Native
is all about fitting the right set of tools to the right situation. Web apps that
already use React or apps using React Native are the most stable and
advanced implementations currently available, but Babylon Native is the
path to follow if you’re looking to build an AR app that runs on iOS. Each
of those approaches has its benefits and drawbacks, some potentially quite
significant. The good news is that regardless of which approach is chosen,
the code you write that interacts with Babylon.js doesn’t need to change for
multiplatform targeting scenarios.

Moving on, we’ve got business to attend to with our first guide, Andrei
Stepanov. Andrei has been working with Babylon.js and Content
Management Systems (CMSs) for a long time now, so he’s the perfect
person to give us a quick tour of how BJS can be used in e-commerce and
CMS business scenarios.

Incorporating 3D Content into a
Website

https://www.babylonjs.com/native/

https://www.babylonjs.com/reactnative/

https://www.babylonjs.com/native/
https://www.babylonjs.com/reactnative/

When it comes to understanding how to make Babylon.js work in real-
world, customer-centric business scenarios, there aren’t many people more
knowledgeable about the topic than Andrei, who posts to the BJS
community forums under the name of “Labris.” As a senior 3D developer at
MetaDojo (https://metadojo.io), he satisfies and delights clients with 3D
experiences built to spec. Not content with just talking about how to build
and create with Babylon.js, Andrei is also the creator of the BabylonPress
site (https://babylonpress.org), which serves as a showcase of different
examples and patterns that use BJS in conjunction with the WordPress
CMS.

Babylon.js and CMS
Babylon.js lets us build very complex JS 3D applications from scratch. At
the same time, there are a lot of cases when we need to integrate Babylon.js
into an already existing website with CMS – an application that enables
users to create, edit, publish and store digital content – or just to some
HTML template.

There are numerous ways to do this, on different levels. They will depend
on specific needs, especially on the “3D User Experience,” which you need
to provide. Since the number and variety of different CMS wouldn’t allow
us the luxury of describing all possible solutions in this space, I will explain
in the next few subsections just some of the most common solutions and
approaches.

The Babylon Viewer

Babylon.js has an official extension, Babylon Viewer, which may simplify a
lot of time for integration. It even has its own HTML tags, <babylon>
</babylon>, between which you define all needed parameters.

To display a 3D model in a prepared environment – with already tuned
lights, shadows, reflections, and so on – you just need to add a script
reference to the viewer like so:

https://metadojo.io/
https://babylonpress.org/

<script

 src="https://cdn.babylonjs.com/viewer/babylon.viewer.js">

</script>

Then, add a <babylon> tag and set the model attribute to point to a .gltf or
.glb file:

<babylon model="model.gltf"></babylon>

Besides the .gtlf and .glb formats, Babylon Viewer also supports the
.babylon, .obj, and .stl formats. Its simplicity allows easy integration of
Babylon Viewer into any CMS and makes it an ideal choice for cases where
you need to display a lot of different 3D models (e-commerce, game
websites, and 3D artist blogs) in a user-editable CMS. More information
about different Babylon Viewer configurations is available here:
https://doc.babylonjs.com/extensions/babylonViewer/configuringViewer.

Babylon Viewer 3D WordPress Plugin

Built on the base of Babylon Viewer, there also exists a community
extension: the Babylon Viewer 3D Wordpress plugin. This allows you to
display 3D models and 3D scenes with the help of a Shortcode:

[babylon]model.gltf[/babylon]

You can use the 3D Viewer in Wordpress posts and pages, Woocommerce
products, Elementor blocks – any place that you can define content using
shortcode. The plugin is especially made very simple because it doesn’t use
the WordPress database. You can find more detailed info about the Babylon
Viewer 3D WordPress plugin in the README file at its home on GitHub at
https://github.com/eldinor/babylon-wordpress-plugin.

Kiosk Mode and Iframes

https://doc.babylonjs.com/extensions/babylonViewer/configuringViewer
https://github.com/eldinor/babylon-wordpress-plugin

With regards to iframe implementations, it is worth mentioning that the
Babylon Sandbox (https://sandbox.babylonjs.com/) has a special “kiosk”
mode that allows you to use its functionality with any 3D model in
appropriate format. As an example, have a look at this beautiful example (a
3D model of an ancient mosquito in amber) of GLTF transparency in the
Khronos Group article: https://www.khronos.org/news/press/new-gltf-
extensions-raise-the-bar-on-3d-asset-visual-realism.

The different query string elements embedded within the URL allow the
content creator or manager to define the source 3D file and all other
parameters, such as camera position, auto-rotation behavior, the skybox,
and environment texture.

To use “kiosk mode,” define the URL according to the following table. The
first parameter starts with ? after https://sandbox.babylonjs.com/; all others
start with & before the parameter. Also note that since Babylon.js is an open
source project, you can create and host your own version of the Sandbox!

Table 14.1 – Table of parameters for iframes for the BJS Sandbox

At the end, you’ll get something like this – quite a long HTML link:

https://sandbox.babylonjs.com/?
kiosk=true&assetUrl=https://raw.githubusercontent.com/wallabyway/gltf-
presskit-
transparency/main/docs/MosquitoInAmber_withRefraction.glb&cameraPos
ition=-0.14,0.005,0.03&autoRotate=true&skybox=true&environment=https
://assets.babylonjs.com/environments/studio.env

https://sandbox.babylonjs.com/
https://www.khronos.org/news/press/new-gltf-extensions-raise-the-bar-on-3d-asset-visual-realism
https://sandbox.babylonjs.com/
https://sandbox.babylonjs.com/?kiosk=true&assetUrl=https://raw.githubusercontent.com/wallabyway/gltf-presskit-transparency/main/docs/MosquitoInAmber_withRefraction.glb&cameraPosition=-0.14,0.005,0.03&autoRotate=true&skybox=true&environment=https://assets.babylonjs.com/environments/studio.env

The BJS Playground and Iframes

Another option that is especially useful for displaying scenes directly from
Babylon Playground is a special HTML template. Just add frame.html
before the Playground URL and it will show the render area in full screen,
but with a bottom toolbar showing FPS, reload and edit buttons.

Here is an example: https://www.babylonjs-
playground.com/frame.html#6F0LKI#2.

To show only the render area, use full.html as the prefix. More info about
Playground URL formats is available here:
https://doc.babylonjs.com/toolsAndResources/tools/playground#playground
-url-formats. The result of this option is that you can then use that URL as
the source for an iframe image element – see
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe for
how to define an iframe element.

Babylon.js within a CMS

Finally, if you are looking for more close integration between Babylon.js
and a CMS, you would need to take into consideration these universal steps.
Make sure that you have the following:

The Babylon.js scripts are loaded properly. Depending on the CMS,
you can also load Babylon.js conditionally if there is 3D content to be
displayed on the web page.

The CMS supports the uploading of 3D files (most modern CMSs have
a limited set of allowed file extensions).

A proper canvas element to display. It makes sense to assign a unique
ID to each Babylon canvas (for example, with the help of a post ID or
other CMS variable).

Canvas and BJS Engine elements properly hooked up to respond to
resizes.

https://www.babylonjs-playground.com/frame.html#6F0LKI%232
https://doc.babylonjs.com/toolsAndResources/tools/playground#playground-url-formats
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

Here, the complexity and the scale of applications depends only on your
creativity. Server-side languages can preprocess any needed data before
delivering it to a JS client, allowing us to build a truly 3D CMS, where all
user experiences and interactions happen in 3D space.

Babylon.js is not just another JavaScript framework to use for two-
dimensional websites; it is one of the key components required to build
multi-user 3D worlds and metaverses, at least with the current meaning of
this term.

There’s a big difference between loading a 3D model onto a single web
page and bringing potentially lots of 3D models onto lots of different web
pages. Managing the content and change processes is of utmost importance,
but with the Guidance of Andrei, you’ll be ready to face those challenges
and more. Now, what does 3D content in an e-commerce or CMS app have
to do with a roughly 50-year-old technique for photo-realistic renders?
Why, Babylon.js, of course! It’s time to continue our tour as we transition
from the highly practical to the highly experimental side of 3D
programming.

Tracing out a Path to Advanced
Rendering
Our last stop on our Extended Topics, Extended tour is with musician,
engineer, and graphics wizard Erich Loftis. He’s going to guide us with the
story of his journey to achieving Real-Time Path Tracing (RTPT) with
Babylon.js. RTPT – also referred to as Ray Tracing or just RT – is a
rendering technique built on top of Path Tracing that companies such as
Nvidia and AMD are only just beginning to make available in AAA
commercial titles, and only in select ways. Through the retelling of Erich’s
journey, the reason why the technique has been so difficult to accomplish in
real-time games and simulations will hopefully become abundantly clear.

Ray Tracing and its History by Erich
Loftis

RT is a technique for rendering realistic images and effects on a computer.
It follows the laws of optics and models how physical light rays behave in
the real world. Therefore, RT can produce truly photo-realistic images. RT
is the standard for photo-realistic offline rendering. Because it has found its
way into real-time applications and games (where Rasterization was the
undisputed king), it’s important to have at least a basic understanding of
how it all works under the hood.

By leveraging the awesome Babylon.js engine, we can use this
understanding to make our own Physically Based Renderer that runs right
inside the browser. This is important because it opens the door to
experiencing photo-realistic graphics on any platform or device, even your
cellphone. Of course, the journey to get to this point wasn’t exactly the
most straightforward or easy, but as you’ll see from the demos and
examples, the effort is totally worth it!

My Own RT Journey

It was this dream of experiencing RT on all devices that led me to create a
Path Tracing Renderer for three.js, starting back in 2015. For the past 7+
years, I have been slowly but steadily researching, building, refining, and
optimizing a browser-based renderer that not only produces high-quality,
photo-realistic images but also aims to do so at 30–60 frames a
second! Please check out my ongoing project on GitHub, where you can
try dozens of clickable demos: https://github.com/erichlof/THREE.js-
PathTracing-Renderer.

A while ago, back in 2020, a Babylon.js developer reached out to me and
asked if I could possibly make a similar renderer for the BJS engine. I must
state here that I have primarily worked with three.js all these years, but I
have always admired and been impressed by the amazing Babylon.js
library. When I agreed to do the port of my ray/path tracing system from

https://github.com/erichlof/THREE.js-PathTracing-Renderer

three.js to BJS, I was equally impressed with the BJS forum community.
They are so friendly and helpful and are just awesome folks! I couldn’t
have gotten our BJS renderer up and running without their help and support.
So, before we dive in, a quick shout out to you all – thank you, BJS
community!

RT or Rasterization?

What does it take to get interactive, real-time RT working inside of BJS and
a browser? Firstly, let’s take a quick look at the two main techniques for
rendering 3D graphics. Once we see how that works, we’ll also see why we
would want to try this RT route with BJS.

When it comes to displaying 3D graphics on a 2D screen, there are two
main approaches: Rasterization and RT. In a nutshell, Rasterization works
by first taking the scene geometry, in the form of 3D vertices, and then
projecting those to the screen in the form of many flat 2D triangles. Any
pixels on the device’s display that happen to occupy a screen triangle’s area
are sent to the pixel shader (also known as a fragment shader). When the
fragment shader is run on a pixel, its final display color is computed. All of
these colored pixels make up the final image that we see on our devices.

In contrast, RT renders images by addressing each pixel on the display first.
For every pixel on the screen, a geometric Ray is constructed that starts at
the camera’s position. Pointing from the camera, this Camera Ray then
shoots out toward its pixel wherever it lies on the view plane (usually your
screen). After piercing through the target pixel, the Camera Ray continues
out into the 3D scene. It will then model how a physical light ray in the real
world would interact with its environment.

Only now at this point in the pipeline do we consider the scene geometry.
Each of the camera pixel rays is tested for intersection against every 3D
shape in the scene. Wherever the ray hits a surface, the color and lighting at
that location are recorded and a “bounce” ray is then spawned and sent in a
new direction. This direction is dictated by the material properties of the hit
surface location. Further, the bounce ray must check the entire scene
geometry (every 3D shape or triangle) for any intersections just as its parent

ray did, thus repeating the whole process again and again for however long
you are willing to wait for it to complete. After a pixel’s camera ray and its
spawned bounce rays finish interacting with the scene, the ray tracer reports
back the final color for that pixel. Just like Rasterization, we end up with a
screen full of colored pixels but with a totally different path taken to arrive
at these results!

Both rendering approaches have trade-offs in terms of realism and speed.
Rasterization (comprising 99% of all 3D graphics) has full GPU hardware
support, so it is very fast and efficient. There’s a drawback, though. As soon
as the GPU is done projecting and rasterizing the scene’s triangles to the 2D
screen, the surrounding 3D scene information is lost. To retrieve this lost
global scene information, sophisticated techniques such as light mapping,
shadow mapping, reflection probes, and others must be used. In other
words, a lot of graphics knowledge and extra effort is required to get close
to RT-quality visuals.

RT, on the other hand, automatically produces the ultimate in realistic
graphics, right out of the box! Lighting effects that are difficult if not
impossible with Rasterization just naturally fall out of the RT algorithm.
However, as of 2022, RT is not widely supported by most GPU hardware.
All CPUs can run RT programs, but CPUs aren’t designed to be massively
parallel. Therefore, traditional CPU-based software RT is very slow in
comparison to hardware-accelerated Rasterization on the GPU. Even if the
RT software is moved inside a shader that runs entirely on the GPU (as our
project here will do), several RT algorithm optimizations must be made in
that shader, and/or a decent acceleration structure such as a Bounding
Volume Hierarchy (BVH) is required if we can have any hope of RT at
interactive frame rates.

Taking the RT Route

So, knowing most of these trade-offs in advance (and some not until I was
years-deep into the project – ha!), I decided to go the RT route. I’ll now
fast-forward to when I started implementing RT with Babylon.js as the host

engine. I’ll give an overview of the necessary setup, as well as a few code
snippets to show some of the implementation details. Let’s jump right in!

Since we are now following the RT approach, we must find a way to
construct a viewing ray from the camera through to each and every pixel on
the screen. A common method for gaining access to the screen pixels is to
create a Full-Screen Post-Process Effect, or just Post-Process for short (as
you learned in Chapter 10, Improving the Environment with Lighting and
Materials). Since the post-process is a common operation, BJS has a really
handy library wrapper that takes care of all the WebGL boilerplate code
and post-process setup for us. In BJS, this helper is called an
EffectWrapper. Here’s an example of a typical post-process creation:

const { Effect, RenderTargetTexture, Constants } = BABYLON;

const store =

 Effect.ShadersStore["screenCopyFragmentShader"];

const screenCopyEffect = new EffectWrapper({

 engine: engine,

 fragmentShader: store,

 uniformNames: [],

 samplerNames: ["pathTracedImageBuffer"],

 name: "screenCopyEffectWrapper"

});

Now, here is where the setup gets a little tricky, not because of BJS (or
WebGL) but because we must set up a progressive renderer that keeps
smoothing out and refining the image over time. How we accomplish this is
by creating what is sometimes referred to as ping pong buffers, which are
made from two different post-process effects that “feed” each other their
results back and forth. Starting with the first post-process (named
pathTracingEffect), we ray trace on all pixels and save their color results
by using a Render Target Texture (RTT):

const pathTracingRenderTarget =

 new RenderTargetTexture("pathTracingRenderTarget",

 {width, height}, pathTracingScene, false, false,

 Constants.TEXTURETYPE_FLOAT, false,

 Constants.TEXTURE_NEAREST_SAMPLINGMODE,

 false, false, false, Constants.TEXTUREFORMAT_RGBA);

This large RGBA texture covering the entire screen is then copied by the
second post-process (named screenCopyEffect) and then fed back through
to the first post-process (pathTracingEffect) on the next animation frame.
Now, our GPU ray tracer can use its previous result (its own pixel color
history) to blend with the fresh new pixel color results that it is currently
calculating from RT. In other words, it keeps blending and mixing with
itself again and again. Over a couple of hundred frames or so, this ping-
pong feedback process will quickly produce very smooth anti-aliased
results that seem to magically converge right before our eyes! The last piece
of the rendering setup puzzle is a final monitor output post-process (named
screenOutputEffect). Its job is to perform noise filtering, then Tone
Mapping (which you learned about in Tone Mapping and Basic Post-
Processing section of Chapter 10, Improving the Environment with Lighting
and Materials), and then finally some gamma correction (also in Tone
Mapping and Basic Post-Processing section of Chapter 10, Improving the
Environment with Lighting and Materials) to produce more pleasing color
output on digital monitors and screens.

All in all, we need a total of three post-processing effects:

Note

pathTracingEffect: This performs all of the RT calculations on every
single pixel. It will take whatever pixel history given to it by the
following screenCopyEffect to use for blending with itself. It outputs
to RenderTargetTexture (RTT), which is finally fed to the following
post-process.

screenCopyEffect: This takes that supplied RTT output from the
preceding post-process and copies/saves it to its own RTT. It then sends
this saved copy back through to the preceding pathTracingEffect to
use for blending with itself.

screenOutputEffect: This post-process is responsible for the screen’s
final color output. It takes the preceding pathTracingEffect RTT
(which holds all the refined, ping-pong blended, ray-traced pixel results
so far), applies its special filters and pixel color adjustments, and then
directly outputs to your screen.

The first two effects make up the ping-pong buffers, or feedback loop.

Now that we have our custom system set up for progressively refining our
ray-traced images over time and can correctly display the final pixel color
output, we just need to do one more thing – the actual RT! Let’s switch
gears for a moment and briefly discuss the similarities and differences
between RT and Path Tracing (PT), and what our ray tracers/path tracers
will need in order to do their magic in the browser.

The Path to PT

To best understand how RT and PT are related, let’s follow a brief
timeline/lineage of RT discoveries and techniques in CG history. In 1968,
Arthur Appel invented Ray Casting, a groundbreaking technique in which
mathematical rays are shot out from the camera through every pixel.
Whatever these camera rays hit first out in the 3D scene determines what
we see in our image. Then, in 1979, Turner Whitted invented RT, which
relies on Appel’s earlier 1968 Ray Casting technique but does it many times
recursively while following the laws of optics, in order to capture
physically accurate reflections and refractions from specular surfaces
(mirrors, glass, and so on). Then, in 1986, James Kajiya invented PT, the
ultimate evolution of RT. Building from all the previous RT techniques,
Kajiya added Monte Carlo integration (random sampling and averaging) to
randomly sample material BRDFs (diffuse surfaces in particular), in order
to capture physical light effects such as caustics and inter-reflected diffuse
surface “bounce lighting.” PT gets its name from tracing (random sampling)
all the possible paths that light rays might take as they interact with
different types of materials in the scene, and then gathering all of these light
paths’ contributions to produce a ground-truth, photo-realistic image.

Looking at this potted RT/PT history, hopefully you can see how PT is
related to, evolved from, and improves upon RT (and Ray Casting before
that). Since I wanted the ultimate in realistic graphics, I chose the more
sophisticated Monte Carlo PT method (1986 Kajiya-style), which captures
light effects that are impossible with Rasterization and even older-style RT.
And thanks to our hard work on setting up the progressively refining post-

process effects system, our randomly sampled Monte Carlo PT results for
all pixels can be correctly averaged and refined over time into a ground-
truth image. This basically means photo-realistic rendering in your
browser!

PT in the Browser

Now, let’s discuss scene geometry and what PT requires in terms of how the
scene is defined. We have two options for telling the PT fragment shader
what is in the scene. The first and easiest option is to simply write a GLSL
function in the fragment shader itself that defines the entire scene’s
geometry as part of the shader. All objects/shapes are hardcoded and listed
one after the other. This is fine if the number of shapes/objects in your
scene does not exceed 20 or so, but as soon as you get into the hundreds of
objects or, worse yet, use a typical model with thousands of triangles (with
each triangle being tested by every ray!), our path tracer would grind to a
halt. To speed things up tremendously and keep our PT interactive, we need
to use an acceleration structure, such as a BVH. A BVH is basically just a
binary tree of bounding boxes that tightly surrounds the triangular model(s).
When testing for intersection, rays can skip large portions of the model if
they miss some of the larger bounding boxes. To see how a BVH is built,
check out my custom BVH builder code at
https://github.com/erichlof/Babylon.js-PathTracing-
Renderer/blob/main/js/BVH_Fast_Builder.js. Recall that the path tracer
(inside the fragment shader) must have access to the entire scene, and since
we can’t fit most large scenes containing thousands of triangles into shader
uniforms (there is a hard limit on most graphics cards), we tightly pack the
BVH and all its bounding boxes into a data texture. This BVH texture will
give our GPU path tracer quick and easy access to the entire optimized
scene geometry (via simple texture lookups).

Next, all ray tracers and path tracers require a shape intersection library to
have ray intersection testing with a wide variety of primitive shapes, such as
spheres, boxes, and triangles. Historically, when RT was just coming into
existence, computers were only fast enough to intersect rays with simple
mathematical shapes. Examples of these shapes include spheres, cylinders,

https://github.com/erichlof/Babylon.js-PathTracing-Renderer/blob/main/js/BVH_Fast_Builder.js

cones, and planes, and they all belong to a class of shapes known as
quadrics. The solution for where a ray intersects these quadric shapes is
handled by simply solving the quadratic equation for that shape. That’s
why, when you look at more historical ray-traced images, the scenes only
contain checkered planes and spheres (or other quadrics) of different sizes
and materials. In these early years of RT, the math for intersecting rays with
more complex triangle geometry (like what we use today) was well
understood, but it would take many years for computers to get fast enough
to be able to handle testing rays with an entire polygonal 3D model with
thousands of triangles. Over the last 7 years, I have collected almost every
routine I could find for determining the intersection of rays against various
shapes. Here’s a link to my PathTracingCommon.js file, which contains all
of these intersection routines: https://github.com/erichlof/Babylon.js-
PathTracing-Renderer/blob/main/js/PathTracingCommon.js. Equally
important and also included in this library file are the functions that handle
Monte Carlo PT-style random sampling of different light source types
(point, spot, directional, area, and HDRI) and material types (BRDFs from
the Tone Mapping and Basic Post-Processing of Chapter 10, Improving the
Environment with Lighting and Materials) that rays might interact with in
any given scene.

Further Reading

Well, unfortunately, there isn’t enough space in this more general,
overview-style article to go into detail about my GLSL PT shader code
(where all the RT/PT algorithms happen). However, if you want to see some
nice examples of RT/PT in GLSL (where I have learned from too), check
out a couple of these shaders on Shadertoy:

https://www.shadertoy.com/view/Xtt3DB

https://www.shadertoy.com/view/XsSSWW

https://www.shadertoy.com/view/XdcfRr

https://www.shadertoy.com/view/tddSz4

https://github.com/erichlof/Babylon.js-PathTracing-Renderer/blob/main/js/PathTracingCommon.js
https://www.shadertoy.com/view/Xtt3DB
https://www.shadertoy.com/view/XsSSWW
https://www.shadertoy.com/view/XdcfRr
https://www.shadertoy.com/view/tddSz4

And if you would like to go much deeper into the theory and practice of RT
and PT, I can think of no better resource than Scratchapixel. This amazing
website contains everything you need to know about Rasterization, RT, PT,
and graphics in general: https://www.scratchapixel.com/.

Lastly, to see all of the pieces of this article come together, check out the
Babylon.js PathTracing Renderer: https://github.com/erichlof/Babylon.js-
PathTracing-Renderer

This is our ongoing project, which has several clickable demos that
showcase different areas of PT. As with the Space-Truckers OSS project,
this BJS PathTracing Renderer project is open for Pull Requests. If you
start getting into this fascinating world of RT and PT, we would love to see
your contributions! A word of warning though – once you start down the
road of RT and PT, it can be hard to stop!

Happy rendering!

Summary
We’ve seen a lot of new things on our trip through the BJS Metatropolis.
We’ve heard of new wonders under construction but ready for business,
such as VR and AR with WebXR. To help developers make use of these
wonders, we learned about how Babylon.js offers the
WebXRExperienceHelper. Working in conjunction with the
FeaturesManager, it allows developers to code with confidence against a
rapidly evolving and changing standard.

Babylon.js is a project that places backward compatibility as one of its
cornerstone principles, and so as hardware improves – or more products
open up their hardware to WebXR APIs – capabilities will “light up” as
browser vendors add support. While it would be great to include iOS (and
WebKit) in the supported application list today for WebXR, and while we
can lament for a world that could have been, applications using Babylon.js
will be ready to best take advantage when that day finally does arrive.

https://www.scratchapixel.com/
https://github.com/erichlof/Babylon.js-PathTracing-Renderer

Until that happens, developers and designers have several potential
approaches that will ideally allow the greatest code reuse and lowest
friction to implement and maintain. The Babylon.js Native project is a
collection of tools and techniques that people working on cross-platform or
Native projects can leverage to gain maximum productivity and
effectiveness. These tools fall into a spectrum going from full-on bare-metal
BJS Native to the “vanilla” BJS that we’ve come to know and love. In
between, Babylon React Native provides a way for developers already
using React and React Native to incorporate BJS into their applications,
while toward the other end of the spectrum, the hosting of a WebGL
context in a WebView provides another avenue for potential native device
application integration in arbitrary software apps.

Babylon.js is more than about making games such as Space-Truckers. As a
general 3D application development platform, BJS gives us access to entire
universes of possibilities, waiting to be unlocked by curious explorers.
Perhaps one of those curious explorers will be you! Every coin has a flip
side, and the flip side of having so many possibilities is that it’s very
difficult to give a good account of the more interesting ones in the same
context as the rest of our journey with Space-Truckers. That is where our
two guides come into play. As long-time explorers into some of these other
provinces of BJS, Andrei Stepanov and Erich Loftis have much to share
with the community.

Through his Babylon Viewer 3D WordPress Plugin and his extensive and
detailed example site, babylonpress.org, which shows off the viewer,
Andrei has opened our eyes to how easy it can be to use shortcodes to
include 3D models as a content editor once the proper script references
have been injected into the CMS page. By telling us of his journey into
PT/RT, Erich Loftis has, in turn, opened our eyes to the innovative history
of graphics rendering technologies and how they’re used in the world of
computer graphics.

Each of them has given us their unique insights and approaches to their
respective topics and helped to guide us to the Terminal Destination for this
book. Although this is the end of one journey, it is just the beginning of
another. Unlike this book though, the path for this new journey – your

http://babylonpress.org/

journey – isn’t captured or written out anywhere, nor is there any pre-
determination on what route that path will take. Where this path takes and
what it entails is entirely up to you, but wherever that destination lies,
whether shrouded in mist or lit up with a beacon, you’re not alone. The BJS
community is there to assist, support, and, of course, guide folks. The BJS
forums at https://forum.babylonjs.com are the best place to go to ask
questions, meet folks like Erich and Andrei, and learn from other
community members.

Good luck on your journey – the world of web-based 3D and the BJS
community awaits!

https://forum.babylonjs.com/

Index
As this ebook edition doesn't have fixed pagination, the page numbers
below are hyperlinked for reference only, based on the printed edition of
this book.

Symbols

2D labels

putting, into 3D space 191, 192

3D applications

lighting model 270, 271

3D content

incorporating, in website 375

3D space

2D labels, putting into 191, 192

A

abstract 121

Advanced Dynamic Texture (ADT) 235, 241

Albedo 275

Ambient Occlusion (AO) 273

animation, BJS 30

Animation Curve Editor (ACE) 265

AnimationGroup 192

animations 105

Application Programming Interfaces (APIs) 296

app performance

guidelines, for measurement 325, 326

performance-Related Terminology 327-329

AppStartScene

createScene function, modifying 22-24

environment, setting up 24, 25

establishing 22

planets, creating 27-30

star, creating 26

ArcRotateCamera 36

ARKit 369

Asset Librarian

reference link 282

assets

creating, for IBL 280, 281

creating, for PBR 280, 281

obtaining 282

using, for IBL 280, 281

using, for PBR 280, 281

asset types, BabylonJS

about 20

reference link 21

Asteroid Belt

Custom Optimization Strategy, creating 338, 339

AsteroidBelt class

generating 151-154

AstroFactory

startScene, refactoring to extract 60

asynchronous JavaScript function 201

attachControl function 128

augmented reality (AR)

using, with WebXR 368, 369

AWS Amplify

reference link 346

Azure Static Web Apps

references 346

Azure Static Websites 345

B

BABYLON.GUI.Controls 103

Babylon.js

asset types 20

basics 19

Getting Started section 19

Getting Started section, reference link 19

integrating, with CMS 375, 377

reference link, for specifications 19

refreshing 18

shader, using 301, 302

shader, writing 301, 302

tools 19, 20

URL 19

Babylon.js, CYOS

URL 301

BabylonJS Doc

references 138

Babylon.js ES6 support, with tree shaking

reference link 43

BabylonJS GUI Editor

Advanced Dynamic Texture (ADT) 235

integration with 239-241

UI Design 235-238

BabylonJS IBL Tool 284

Babylon.js Inspector 329, 335

BabylonJS Materials Library

reference link 274

Babylon.js Native project 371-373

Babylon.js Playground

about 21

reference link 21

Babylon.js Procedural Textures Library

reference link 24

BABYLON Namespace Prefix

cleaning up 51

Babylon Native

reference link 374

selecting 373

Babylon Native app

evolution 373, 374

BabylonPress

reference link 375

Babylon React Native

reference link 374

Babylon Sandbox

Iframes 376

kiosk mode 376

reference link 376

Babylon Viewer 375, 376

Babylon Viewer 3D Wordpress plugin 376

BaseGameObject class

abstracting 147, 148

Bidirectional Reflectance Distribution Function (BRDF)

about 267-270

reference link 268

binormal 214

BJS Asset Library 21

BJS community forums

reference link 14

BJS forums

URL 35

BJS Native

reference link 372

BJS particle systems

about 175

CPU Particle System 176

GPU Particle System 176

Solid Particle System 176

BJS Playground (PG)

about 19

using, with Iframes 377

URL 21

bonus scores

calculating 252

bottlenecks

captured profile, analyzing 332, 333

captured profile, viewing 332, 333

identifying 329

performance, measuring 329

Route Planning, performance inspecting 329

testing procedure, defining 331, 332

viewer metrics, Real Time mode 330

bottlenecks, captured profile

assumptions, validating 335

external knowledge, integrating 334

initial assessments 333, 334

Bounding Volume Hierarchy (BVH) 380, 382

buildActionMap function 130

Built-In Particle System Set

using 177, 178

Business Rules 167

C

Call To Action (CTA) 113

Camera Ray 379

Canvas API 300

captured profile

analyzing 332

viewing 332

cargo scores

calculating 251

CargoUnit Class 154-156

CargoUnit 190

Cathode Ray Tube (CRT) 327

CleanWebpackPlugin 46

coalescing 122

color space 268

compression 283

Compute shader

about 304, 305

reference link 304

constructor 103

Content Management Systems (CMSs)

about 375

Babylon.js, integrating with 375-378

conversions 283

CopyPlugin configuration 351

coroutines

used, for counting player scores 257-260

used, for creating Scoring Dialog 256

CPU

versus GPU 297, 298

CPU Particle System 176

Create Your Own Shader (CYOS) tool 301

Cross-Origin Resource Sharing (CORS) 85

ctor 106

CubeMap 277

Cumulative (Mass) Distribution Function (CMDF)

about 187, 188

result, populating 188

CustomLoadingScreen Type 61

custom loading UI

adding 60

Custom Optimization Strategy

creating, for Asteroid Belt 338, 339

CutSceneSegment Class 103

D

deconstruction feature 208

Default Render Pipeline 288

detachControl function 128

DialogBox Class

constructing 242, 243

Direct Draw Surface (DDS) 267

distortion texture 26

driving path

generating 202-207

driving phase

assets, loading asynchronously 208-211

driving path, generating 202-207

Playground, overview 199-202

prototyping 199

update loop, running 215-217

driving phase scene

initializing 211-215

dynamic range 268

Dynamic Texture (DT)

about 233

reference link 233

E

EffectWrapper 380

Elementor blocks 376

EncounterManager 184

encounter panel

animating 192, 193

clearing 193, 194

encounters

adding 223, 224

check, rolling 189

listening 190

probabilities, summing 188

selecting 187

encounter scores

calculating 250, 251

Encounter Tables 183-185, 187

encounter visuals

2D labels, putting into 3S space 191, 192

adding 190

Encounter Zones (EZs)

about 184-187

defining 183

intersections, tracking 185, 186

overview 184

environment setup

about 41

ESLint, configuring 44

package dependencies, installing 42

package.json scripts, configuring 43, 44

preparatory steps 41

Webpack configuration, performing 44

Environment Textures 267, 277, 283

ES6 module syntax 45

exploitation 13

exploration 13

ExportSet 177

EXR format 279

F

FeatureManager 370

final scores

calculating 252

Finite State Machine (FSM) 69

First-Person Shooter (FPS) 327

fragment shader 302, 303, 379

Frame Budget 328

frames per second (FPS) 324, 327

FreeCamera

reference link 118

Full-Screen Post-Process Effect 380

function generators

reviewing 256, 257

G

gameData 186, 187

game development

action, handling 131

getInputs Method 125, 126

input data, mapping 119-121

input, managing 122

input, processing 127

inputs, addressing 122, 123

inputs, checking 124

inputs, registering 123

inputs subscriptions, disposing 125

input systems, designing 117, 118

Main Menu Control Scheme, defining 119

Main Menu Control Scheme, designing 119

game development, action

conventional actions 132

Splash Screen, skipping 132

game development, input

buildActionMap function 130

controls, attaching 128

inputCommandHandler 129, 130

update method 128, 129

game elements, of route simulation

actors behavior 146, 147

AsteroidBelt class, generating 151-154

BaseGameObject Class, abstracting 147, 148

CargoUnit Class, adding 154-156

designing 143

Helios system overview 143-146

orbital mechanics simulation elements, defining 148, 149

Route Planning Screen, establishing 156

star and planets, implementing 149-151

Game Master (GM) 374

game mechanics

controllable launch parameters 167

game infomation, displaying with GUI 168, 169

input controls, supporting 168

player, failing 167

player, succeeding 167

rules, defining 166

gamma correction 381

generator function

about 66

using 67, 68

writing 67

getInputs Method 125, 126

G.O.A.T Space-Truckers 9

Google Static Sites

reference link 346

GPU

versus CPU 297, 298

GPU Applications

shader 299

GPU Particle System 176

ground-truth image 382, 383

GUI Editor 177

H

Hardware Lighting and Shading Language (HLSL) 300

hashmap 120, 123, 129

HDR format 279

Helios system

overview 143-146

High Dynamic Range Image (HDRI) 277, 280

I

IBL Scenes

working with 279

IBL Toolkit 265

Iframes

BJS Playground, using with 377

Image-Based Lighting (IBL) 265, 267, 277

immutable 103

IndexedDB

about 324, 354, 355

using 355-357

using, to persist scores 354

IndexedDB API

reference link 346

IndexedDb Object Store (IDB) 354, 358

index.html

modifying 351

inputCommandHandler 129, 130

input systems

designing 117

Inspector 20

interpolated functions

about 214

reference link 214

Irritable Bowel Syndrome (IBS) 277

iterator functions 67

J

JSON file

parsing from 179, 180

L

layer masks

reference link 210

Level of Detail (LOD) 267, 280

Light Emitting Diode (LED) 327

lighting 269

lighting model

ambient 273

diffuse 271

emissive 272, 273

in 3D applications 270, 271

specular 272

loadAssets function 208

Loading Screen

enhancing, with Progress Display 62

text, displaying 63, 64

Local Space position 226

luminance 268

M

Main Menu Control Scheme

defining 119

Main Menu, finishing touches

import statement, adding 96

music, loading from constructor 96

materials

about 268, 269, 274, 275

overview 274

Materials Library 36

Material Texture Slots

assigning 283

mesh 151, 191

metaprogramming 130

mini-map

blip plotting, in polar coordinates 227, 228

GUI Camera 224-226

making 224

mipmap 280

MIP map 267

Monte Carlo PT method 382

N

Node Material Editor (NME)

about 177, 265, 284, 301, 306

overview 307

Procedural Texture mode 315-317

URL 307

used, for developing Post-Process mode 318, 319

used, for programming shader 306

using, to build Planet Earth Material 306

Node Material Editor, to build Planet Earth Material

animations, framing 313, 314

background context 308

clouds, mixing 311, 312

Texture node, adding 309-311

no-hair theorem 152

noise filtering 381

normal 214

O

object map 120

Object-Oriented Programming (OOP) 148

onEncounterObservable’s 190

Operating System (OS) 117

orbital animation

about 30

GlowLayer, using 34, 35

orbital motion, making 32, 33

orbit lines 34

spin, putting on star and planets 31, 32

orbital mechanics simulation

creating 161

elements, defining 148, 149

InFlight physics simulation, configuring 165, 166

physics 162-164

physics, driving 164, 165

P

ParticleHelper

about 36, 178

reference link 179

Particle mode 36

ParticleSets 36

particle systems

about 174, 175, 334

mechanisms 175

ParticleSystemSet

reference link 180

particle systems, from saved data

Built-In Particle System Set, using 177, 178

ExportSet 177

loading 176

parsing, from JSON file 179, 180

Save to File 177

Snippet, saving to Snippet Server (Inspector) 177

Path Tracing (PT)

about 382

path 382

using, in browser 382

PBRMaterial

about 266, 270, 274

assets, creating for PBR and IBL 280, 281

assets, using for PBR and IBL 280, 281

bit depth 279, 280

dynamic ranges 279, 280

file types 279

image formats 279

reference link 268

working with 279

PBRMetallicRoughnessMaterial

about 275

reference link 275

PBRSpecularGlossinessMaterial 275

Performance Profiler 329

Physical Based Rendering (PBR)

about 267, 274, 276

reference link 268

Physical Based Rendering (PBR), BRDF type

about 276

anisotropy 276

clear coat 276

metallic 276

roughness 276

subsurface 276

Physically Based Renderer 378

physics engines

Ammo 164

Cannon 164

Energy 164

Oimo 164

ping pong buffers 381

Planet class 149

Planet Earth Material

building, with NME 306

PlayGround (PG) 102

Playground Scene

AppStartScene, establishing 22

building 21

Playground Snippet

BABYLON Namespace Prefix, cleaning up 51

crafting 51

strings, extracting 51, 52

Playground, transitioning to application

about 52

engine instance, creating 52

StartScene, adding 53

StartScene, exporting 53, 54

StartScene, importing 53, 54

PointLight 24, 277

polar coordinates

blip plotting 227, 228

PostProcesses 287

Post-Processing

about 284, 286

volumetric light scattering effect, adding 287

Post-Process mode

developing, with NME 318, 319

PostProcessRenderingPipelines 287

Powered By 109, 110

procedural texture 24

procedural texture mode 315-317

progress

handling 63

Progressive Web Application (PWA)

about 324, 343, 346, 347

hosting, options 345

hosting, requirements 344

Space-Truckers application, converting into 348

StartScene, importing 53

Progressive Web Application (PWA), requirements

SSL 347

SWs 347

Web Manifest 347, 348

property getters

adding 62, 63

Pull Request (PR) 91, 116

PWA Builder

URL 346

PWABuilder Extension, for Visual Studio Code

using 353

Q

quadrics 383

R

Raanan Weber

reference link 47

radius 186

rasterization 379, 380

Ray Tracing (RT) 378-380

Real-Time Path Tracing (RTPT) 367, 378

Real-time performance viewer 323, 338

Reflection Probe 278

reflection texture 278

regular expression 48

rendering function 268

rendering pipeline 268, 287

Render Target Texture (RTT) 278, 287, 310

Reusable Dialog Box Component

building 241

button clicks, handling 243-246

DialogBox Class, constructing 242, 243

prompting, users successful route planning 246, 247

visibility, changing 243-246

clbr://internal.invalid/book/OPS/xhtml/ch018.xhtml

RGBA texture 381

route

marking out 181-183

routePaths 211

Route Planning

performance, inspecting 329

Route Planning Screen

about 154, 334

behavior, driving with data 158-160

data development 157

establishing 156

states, transitioning 160, 161

route scores

calculating 251

RT route

taking 380, 381

Runtime Performance

improving, with Scene Optimizer 336, 337

S

Sandbox 265

Save to File (Inspector) 177

scene geometry 379

Scene Inspector window 210

Scene Optimizer

about 324, 337

modes, operating 337

used, for improving Runtime Performance 336, 337

SceneOptimizerOptions 336

ScoreBoard CoRoutine (ScoreBoardCoRo) 360

scores

adding up 249, 250

calculating 248

tallying 249, 250

scoring data

capturing 252

Driving Phase, completing 253-255

Route Data, enriching 252, 253

Scoring Dialog

advanced coroutine usage 260-262

creating, with coroutines 256

function generators, reviewing 256, 257

player scores, counting with coroutine 257-260

scoring system design 248, 249

Scratchapixel

reference link 384

Secure Sockets Layer (SSL) 344, 347

Service Workers and Workbox

references 346

Service Workers (SWs) 347

shader

about 300, 301

concepts 296

features 301

GPU Applications 299

programming, with Node Material Editor 306

types 305

using, in Babylon.js 301, 302

writing, in Babylon.js 301, 302

shader code 305

shadertoy

reference link 383

Shortcode 376

Singleton pattern 123

Skybox

about 267

reference link 283

Snippet Server (Inspector)

Snippet, saving to 177

Solid Particle System (SPS) 36, 176

sound management

about 138

AudioEngine 140

sounds 139

SoundTracks 139, 140

SpaceTruckerSoundManager 140

Source Control Management (SCM) 116

Space-Dispatch 8

SpaceTruckerApplication

input map, patching 221, 222

integrating with 217

Playground, splitting up 217-220

user input 221

Space-Trucker Chung 7

SpaceTruckerInputManager (STIM) 122

SpaceTruckerInputProcessor (STIP) 128

SpaceTruckerLoadingScene 63

SpaceTruckerLoadingScreen class 62

Space-Truckers

about 4-9, 10, 64, 100

AdvancedDynamicTexture, creating 83, 84

background, adding 84, 85

background, building 81-83

change, reacting to 90-92

external content, fetching 85

function* iterators 66

generators 66

GUI, creating 83, 84

indicators, adding 89

logging routines 65, 66

Main Menu 79

Main Menu design sketch 79, 80

Main Menu, finishing touches 96

Main Menu, integrating 93

Main Menu snippet, setting up 80, 81

Menu Container, adding 84

Menu Item Selection, adding 89

Menu, populating with Items 87-89

repository 13, 14

Selection Idle, animating 92, 93

selection, indicating 90-92

Title and Menu Items, laying out 86, 87

transitions, entering and leaving from states 94-96

visual Improvements 92, 93

Space-Truckers application

converting, into PWA 348

Space-Truckers, converting into PWA

index.html, modifying 351

PWABuilder Extension for Visual Studio Code, using 353

Web Manifest, adding 352

WebPack Plugins, configuring 349, 350

Workbox WebPack Plugin, installing 349

Space-Truckers, High Scores screen

brains 360, 361

displaying 358

heist 359

integration 362-364

job 361, 362

muscle 359

safe cracker 359

storing 358

Space-Truckers, landing page

constructing 54

design 54, 55

lay out and element, designing 55, 56

SpaceTruckerSoundManager

about 140

build 141, 142

design 140, 141

integration 143

Space-Trucker, video game design

about 10

driving 12

landing 11

menus 11

route planning 11

scoring 12

splash screen 11

SplashScene

differences, viewing 115-117

integrating 115

SplashScene Class 106-108

Splash Screen

about 100

scene, building 102

scene, storyboarding 101, 102

skipping 132

Splash Screen, scene

about 109, 110

animations 105

CutSceneSegment Class 103-105

fading, in Title Music 114, 115

final CutSceneSegment 112-114

SplashScene Class 106, 107, 108

transitioning, to next CutSceneSegment 111, 112

StandardMaterial 274

Starfield Procedural Texture (PT) 24, 80

startScene

refactoring, to extract AstroFactory 60

State Machine

Application State Diagram 70-72

constructor, adding 74-76

defining 69

finite number of states 69

infinitely looping state 72, 73

Initialize logic, writing 76, 77

Main Menu, transitioning to 78, 79

single state 69

supporting logic, adding 74-76

transition, between states 69

updating 70

strings

extracting 51, 52

sun effect 36

Sun particle system set

adapting 180, 181

T

tangent 214

testing procedure

defining 331, 332

Texture Map 275

textures 274, 275

Thin Instances (TIs)

about 151, 334, 338

limitations 152

three.js 379

Title Music

fading 114, 115

tone mapping 268, 279, 285, 286, 381

tools, BabylonJS 19, 20

TorusBuilder API 186

TrailMesh 34, 36

TransformNode 36, 191

Transform, Rotate, Scale (TRS) 211

tree shaking 43

TypeScript 40

U

Uncertainty Principle 325

update method 128, 129, 215-217

upstream repositories 116

User Interfaces (UIs) 224

V

Vertex shader 302, 303

video RAM (vRAM) 336

VideoTexture 274

viewer metrics

Real Time mode, running 330

Viewport 212

virtual reality (VR)

using, with WebXR 368, 369

VolumetricLightScatteringPostProcess (VLSPP) 287

VRML standard 369

VSCode 41

W

web app manifests

reference link 348

Web Audio specification 139

WebGL 300

WebGL2 300

WebGL2/WebGPU canvas 139

WebGPU 300, 304, 305

WebGPU Compute shader 300

Web Manifest

about 348

adding 352

Webpack

about 44

configuration 45-47

configuration, performing 44

development, configuring 48-50

development modes, versus production modes 45

loader, configuring 47, 48

production, configuring 48-50

reference link 44

resolver, configuring 47, 48

WebPack Plugins

configuring 349, 350

WebVR standard 369

WebXR

about 367

AR/VR, using with 368-370

WebXR Experience Helper

using 370, 371

wGLSL 300

Woocommerce products 376

Workbox 349

Workbox WebPack Plugin

installing 349

Why subscribe?
Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packt.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

http://packt.com/
http://www.packt.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Real-Time 3D Graphics with WebGL 2

Farhad Ghayour, Diego Cantor

https://www.packtpub.com/product/real-time-3d-graphics-with-webgl-2/9781788629690

ISBN: 978-1-78862-969-0

Understand the rendering pipeline provided in WebGL

Build and render 3D objects with WebGL

Develop lights using shaders, 3D math, and the physics of light
reflection

Create a camera and use it to navigate a 3D scene

Use texturing, lighting, and shading techniques to render realistic 3D
scenes

Implement object selection and interaction in a 3D scene

Cover advanced techniques for creating immersive and compelling
scenes

Learn new and advanced features offered in WebGL 2

JavaScript from Frontend to Backend

Eric Sarrion

https://www.packtpub.com/product/javascript-from-frontend-to-backend/9781801070317

ISBN: 978-1-80107-031-7

Packt is searching for authors like
you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Share Your Thoughts
Hi,

I am Josh Elster, author of Going the Distance with Babylon.js. I really
hope you enjoyed reading this book and found it useful for increasing your
productivity and efficiency in Babylon.js.

It would really help me (and other potential readers!) if you could leave a
review on Amazon sharing your thoughts on Going the Distance with
Babylon.js.

Trigger deferred processing with JavaScript

Implement Express and MongoDB with Node.js

Build components with Vue.js

Understand how to create and use modules with Node.js

Familiarize yourself with npm

Build a client-side application entirely with JavaScript

Dive into full stack development with Vue.js, Node.js, and MongoDB

http://authors.packtpub.com/

Go to the link below to leave your review:

https://packt.link/r/1801076588

Your review will help me to understand what’s worked well in this book,
and what could be improved upon for future editions, so it really is
appreciated.

Best Wishes,

Josh Elster

clbr://internal.invalid/book/OPS/xhtml/ch019.xhtml

	Cover Page
	Table of Contents
	Preface
	Part 1: Building the Application
	Chapter 1: The Space-Truckers Operation Manual
	Introducing the World of Space-Truckers
	So, You Wanna be a Space-Trucker?
	Space-Truckers: The Video Game Design
	Space-Truckers: The Repository
	Summary

	Chapter 2: Ramping up on Babylon.js
	Technical Requirements
	Catching up or Refreshing on Babylon.js
	Building the Playground Scene
	Animating the Orbits
	Extended Topics
	Summary
	Further Reading

	Chapter 3: Establishing the Development Workflow
	Technical Requirements
	Setting up the Environment
	Crafting a PG Snippet
	Transitioning from the PG to the Application
	Constructing the Landing Page
	Summary
	Extended Topics

	Chapter 4: Creating the Application
	Technical Requirements
	Adding a Custom Loading UI
	Space-Truckers: The State Machine
	Space-Truckers: The Main Menu
	Integrating the Main Menu
	Summary
	Extended Topics

	Chapter 5: Adding a Cut Scene and Handling Input
	Technical Requirements
	Space-Truckers – the Splash Screen
	Designing the Input System
	Summary
	Extended Topics

	Part 2: Constructing the Game
	Chapter 6: Implementing the Game Mechanics
	Technical Requirements
	A Detour into Sound Management
	Designing the Game Elements of the Route Simulation
	Creating the Orbital Mechanics Simulation
	Defining the Rules – Game Mechanics
	Summary

	Chapter 7: Processing Route Data
	Technical requirements
	A Detour into Particle Systems
	Marking Out the Route
	Defining the Encounter Zone
	Selecting Encounters
	Adding Encounter Visuals
	Summary
	Extended Topics

	Chapter 8: Building the Driving Game
	Technical Requirements
	Prototyping the Driving Phase
	Integrating with the Application
	Adding Encounters
	Making the Mini-Map
	Summary
	Extended Topics

	Chapter 9: Calculating and Displaying Scoring Results
	Technical Requirements
	Introducing the Babylon.js GUI Editor
	Building a Reusable Dialog Box Component
	Calculating Scores
	Creating the Scoring Dialog Using Coroutines
	Summary
	Extended Topics

	Chapter 10: Improving the Environment with Lighting and Materials
	Technical Requirements
	Materials, Lighting, and the BRDF
	Working with PBR Materials and IBL Scenes
	Tone Mapping and Basic Post-Processing
	Summary
	Extended Topics

	Part 3: Going the Distance
	Chapter 11: Scratching the Surface of Shaders
	Technical Requirements
	Understanding Shader Concepts
	Writing and Using Shaders in Babylon.js
	Shader Programming with the Node Material Editor
	Summary
	Extended Topics

	Chapter 12: Measuring and Optimizing Performance
	Technical Requirements
	Knowing What To Measure
	Measuring Performance and Identifying Bottlenecks
	Improving Runtime Performance with the Scene Optimizer
	Summary
	Extended Topics

	Chapter 13: Converting the Application to a PWA
	Technical Requirements
	Introduction to PWAs
	Converting the Space-Truckers application into a PWA
	Using IndexedDB to Persist Scores
	Storing and Displaying High Scores
	Summary
	Extended Topics

	Chapter 14: Extended Topics, Extended
	AR and VR with WebXR
	A Tour of the Babylon.js Native Project
	Incorporating 3D Content into a Website
	Tracing out a Path to Advanced Rendering
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts

